Science.gov

Sample records for acid mining lakes

  1. Microbial ecology of acid strip mine lakes in southern Indiana

    SciTech Connect

    Gyure, R.A.

    1986-01-01

    In this study, the author examined the limnology and microbial ecology of two acid strip mine lakes in the Greene-Sullivan State Forest near Dugger, Indiana. Reservoir 29 is a larger lake (225 ha) with water column pH of 2.7 and sediment pH of 3.8. Lake B, a smaller (20 ha) lake to the south of Reservoir 29, also has an acidic water column (pH 3.4) but more neutral sediments (pH 6.2). Both have very high sulfate concentrations: 20-30 mM in the water column and as high as 100 mM in the hypolimnion of Lake B. Low allochthonous carbon and nutrient input characterize these lakes as oligotrophic, although algal biomass is higher than would be expected for this trophic status. In both lakes, algal populations are not diverse, with a few species of single-celled Chlorophyta and euglenoids dominating. Algal biomass is concentrated in a thin 10 cm layer at the hypolimnion/metalimnion interface, although light intensity at this depth is low and severely limits productivity. Bacterial activity based on /sup 14/C-glucose incorporation is highest in the hypolimnion of both lakes, and sulfate-reduction is a dominant process in the sediments. Rates of sulfate-reduction compare with those in other freshwater environments, but are not as high as rates measured in high sulfate systems like saltmarsh and marine sediments.

  2. Sulfur Oxidation, Microbes And Acidity In A Mine Tailings Lake

    NASA Astrophysics Data System (ADS)

    Warren, L. A.; Bernier, L.

    2003-12-01

    Disposal of tailings (waste rock) aqueously is a common approach at mine sites to minimize oxidation of the associated sulfur minerals (pyrrhotite, pyrite) and the associated generation of acidity that accompanies this process. The study site, Moose Lake, receives tailings runoff at a nickel mine in Northern Ontario, which has rendered the lake highly acidic (surface pH values less than 3.5) with high metal loads and on-going acid export to off-site, downstream systems. To investigate the potential influence of microbial processes for acid generation, as well as characterizing any attendant influences for metal behaviour, the biogeochemistry of Moose Lake was characterized on a seasonal and a diel basis during the summer of 2002. Physico-chemical profiles were used to identify the area of strong redox gradient across the thermocline (typically 1 to 2 metres across this zone) on each sampling day. Samples at five depths within this redox gradient, were then collected for Fe3+/Fe2+, SO42-/H2S, metal and microbial samples, in addition to more highly resolved Hydrolab profiling. Samples were collected both during the lighted portion of the day (10am-12pm) and at dusk (6pm-8pm) to evaluate any contributions to S and Fe cycling attributed to photosynthetic activity. Results indicate a clear seasonal increase in acidity in the upper waters of the lake: pH values dropped from 3.19 in May to 2.90 in September. Further, a strong diel trend of increasing acidity (lower pH) from mid morning to dusk was also observed for each sampling period. Biotic control on S processes appears to be important associated with the thermocline region of the lake, whilst surficial processes occurring in the upper one to three meters are more consistent with a dominant abiotic control. Both pathways contribute to acidity generation, however the controls and rates differ. These results and implications for mitigation strategies will be presented.

  3. Generation of Acid Mine Lakes Associated with Abandoned Coal Mines in Northwest Turkey.

    PubMed

    Sanliyuksel Yucel, Deniz; Balci, Nurgul; Baba, Alper

    2016-05-01

    A total of five acid mine lakes (AMLs) located in northwest Turkey were investigated using combined isotope, molecular, and geochemical techniques to identify geochemical processes controlling and promoting acid formation. All of the investigated lakes showed typical characteristics of an AML with low pH (2.59-3.79) and high electrical conductivity values (1040-6430 μS/cm), in addition to high sulfate (594-5370 mg/l) and metal (aluminum [Al], iron [Fe], manganese [Mn], nickel [Ni], and zinc [Zn]) concentrations. Geochemical and isotope results showed that the acid-generation mechanism and source of sulfate in the lakes can change and depends on the age of the lakes. In the relatively older lakes (AMLs 1 through 3), biogeochemical Fe cycles seem to be the dominant process controlling metal concentration and pH of the water unlike in the younger lakes (AMLs 4 and 5). Bacterial species determined in an older lake (AML 2) indicate that biological oxidation and reduction of Fe and S are the dominant processes in the lakes. Furthermore, O and S isotopes of sulfate indicate that sulfate in the older mine lakes may be a product of much more complex oxidation/dissolution reactions. However, the major source of sulfate in the younger mine lakes is in situ pyrite oxidation catalyzed by Fe(III) produced by way of oxidation of Fe(II). Consistent with this, insignificant fractionation between δ(34) [Formula: see text] and δ(34) [Formula: see text] values indicated that the oxidation of pyrite, along with dissolution and precipitation reactions of Fe(III) minerals, is the main reason for acid formation in the region. Overall, the results showed that acid generation during early stage formation of an AML associated with pyrite-rich mine waste is primarily controlled by the oxidation of pyrite with Fe cycles becoming the dominant processes regulating pH and metal cycles in the later stages of mine lake development. PMID:26987541

  4. Similar bacterial community composition in acidic mining lakes with different pH and lake chemistry.

    PubMed

    Kampe, Heike; Dziallas, Claudia; Grossart, Hans-Peter; Kamjunke, Norbert

    2010-10-01

    As extreme environmental conditions strongly affect bacterial community composition (BCC), we examined whether differences in pH-even at low pH-and in iron and sulfate concentrations lead to changes in BCC of acidic mining lakes. Thereby, we tested the following hypotheses: (1) diversity of the bacterial community in acidic lakes decreases with reducing pH, (2) BCC differs between epilimnion and hypolimnion, and (3) BCC in extremely acidic environments does not vary much over time. Therefore, we investigated the BCC of three acidic lakes with different pH values (2.3, 2.7, and 3.2) by denaturing gradient gel electrophoresis (DGGE) and subsequent sequencing of DGGE bands as well as catalyzed reporter deposition-FISH (CARD-FISH). BCC did not significantly vary among the studied lakes nor differ much between water layers. In contrast, BCC significantly changed over time, which is contradictory to our hypotheses. Bacterial communities were dominated by Alpha-, Beta-, and Gammaproteobacteria, whereas Actino- and Acidobacteria rarely occurred. Cell numbers of both free and attached bacteria were positively related to DOC concentration. Overall, low pH and extreme chemical conditions of the studied lakes led to similar assemblages of bacteria with pronounced temporal differences. This notion indicates that temporal changes in environmental conditions including food web structure also affect unique communities of bacteria thriving at low pH.

  5. Physical and chemical limnological study of an acid mine lake in Sullivan County, Indiana

    SciTech Connect

    Broomall, P.A.

    1992-01-01

    Southwestern Indiana has numerous lakes developed in abandoned coal mine spoils which support recreational sports fisheries. Some lakes, due to exposure to acid mine drainage from coal wastes and pyritic spoils, are unsuitable habitats for fisheries development. This study examines a publicly owned acid mine lake with an area of approximately 51 ha, following reclamation and elimination of acid producing areas in its drainage basin. Fifteen physico-chemical sample collections were made over a thirteen month period (1991--1992). Parameters sampled included pH, total acidity, iron, manganese, and aluminum. Comparisons were made to historic pre-reclamation water quality data and to established models of acid mine lake recovery. Due to the local topography and exposure to prevailing winds, the lake was generally well mixed throughout the study. Virtually no summer stratification was found, but typical winter season stratification occurred. The water column was well oxygenated throughout the study. Secchi disk transparency varied from 2.5 m to clear to lake bottom (6 m). This study found no significant change in lake water pH (2.9--3.0 to 3.0--3.2 s.u.) since reclamation activities in 1988. However, changes in total acidity and total metal concentrations had occurred since reclamation which suggested that the lake was in early recovery stages. No trends in water quality improvement were determined which could assist in planning toward the eventual establishment of a sports fishery.

  6. Pathways of acid mine drainage to Clear Lake: implications for mercury cycling.

    PubMed

    Shipp, William G; Zierenberg, Robert A

    2008-12-01

    Pore fluids from Clear Lake sediments collected near the abandoned Sulphur Bank Mercury Mine have low pH (locally <4) and elevated sulfate (> or =197 mmol/L), aluminum (> or =52 mmol/L), and iron (> or =28 mmol/L) contents derived from oxidation of sulfide minerals at the mine site. Acid mine drainage (AMD) is entering Clear Lake by advective subsurface flow nearest the mine and by diffusion at greater distances. Oxygen and hydrogen isotope ratios, combined with pore fluid compositions, constrain the sources and pathways of contaminated fluids. Sediment cores taken nearest the mine have the highest concentrations of dissolved sulfate, aluminum, and iron, which are contributed by direct subsurface flow of AMD from sulfide-bearing waste rock. Sediment cores as far as 100 m west of the Clear Lake shoreline show the presence of AMD that originated in the acidic lake that occupies the abandoned Herman Pit at the mine site. High sulfate content in the AMD has the potential to promote the activity of sulfate-reducing bacteria in the organic-rich lake sediments, which leads to methylation of Hg+2, making it both more toxic and bioavailable. Quantitative depletion of pore water sulfate at depth and sulfur isotope values of diagenetic pyrite near 0 per thousand indicate that sulfate availability limits the extent of sulfate reduction in the lake sediments away from the mine. Profiles of pore water sulfate in the sediments near the mine show that excess sulfate is available to support the activity of sulfate-reducing bacteria near the mine site. Enriched isotope values of dissolved sulfate (as high as 17.1 per thousand) and highly depleted isotope values for diagenetic pyrite (as low as -22.6 per thousand) indicate active bacterial sulfate reduction in the AMD-contaminated sediments. Sulfate- and iron-rich acid mine drainage entering Clear Lake by shallow subsurface flow likely needs to be controlled in order to lower the environmental impacts of Hg in the Clear Lake

  7. Pathways of acid mine drainage to Clear Lake: implications for mercury cycling.

    PubMed

    Shipp, William G; Zierenberg, Robert A

    2008-12-01

    Pore fluids from Clear Lake sediments collected near the abandoned Sulphur Bank Mercury Mine have low pH (locally <4) and elevated sulfate (> or =197 mmol/L), aluminum (> or =52 mmol/L), and iron (> or =28 mmol/L) contents derived from oxidation of sulfide minerals at the mine site. Acid mine drainage (AMD) is entering Clear Lake by advective subsurface flow nearest the mine and by diffusion at greater distances. Oxygen and hydrogen isotope ratios, combined with pore fluid compositions, constrain the sources and pathways of contaminated fluids. Sediment cores taken nearest the mine have the highest concentrations of dissolved sulfate, aluminum, and iron, which are contributed by direct subsurface flow of AMD from sulfide-bearing waste rock. Sediment cores as far as 100 m west of the Clear Lake shoreline show the presence of AMD that originated in the acidic lake that occupies the abandoned Herman Pit at the mine site. High sulfate content in the AMD has the potential to promote the activity of sulfate-reducing bacteria in the organic-rich lake sediments, which leads to methylation of Hg+2, making it both more toxic and bioavailable. Quantitative depletion of pore water sulfate at depth and sulfur isotope values of diagenetic pyrite near 0 per thousand indicate that sulfate availability limits the extent of sulfate reduction in the lake sediments away from the mine. Profiles of pore water sulfate in the sediments near the mine show that excess sulfate is available to support the activity of sulfate-reducing bacteria near the mine site. Enriched isotope values of dissolved sulfate (as high as 17.1 per thousand) and highly depleted isotope values for diagenetic pyrite (as low as -22.6 per thousand) indicate active bacterial sulfate reduction in the AMD-contaminated sediments. Sulfate- and iron-rich acid mine drainage entering Clear Lake by shallow subsurface flow likely needs to be controlled in order to lower the environmental impacts of Hg in the Clear Lake

  8. The evolution of a mining lake - From acidity to natural neutralization.

    PubMed

    Sienkiewicz, Elwira; Gąsiorowski, Michał

    2016-07-01

    Along the border of Poland and Germany (central Europe), many of the post-mining lakes have formed "an anthropogenic lake district". This study presents the evolution of a mining lake ecosystem (TR-33) based on subfossil phyto- and zooplankton, isotopic data (δ(13)C, δ(15)N), elemental analyses of organic carbon and nitrogen (C/N ratio and TOC) and sedimentological analyses. Recently, lake TR-33 became completely neutralized from acidification and an increase in eutrophication began a few years ago. However, the lake has never been neutralized by humans; only natural processes have influenced the present water quality. From the beginning of the existence of the lake (1920s) to the present, we can distinguish four stages of lake development: 1) very shallow reservoir without typical lake sediments but with a sand layer containing fine lignite particles and very poor diatom and cladoceran communities; 2) very acidic, deeper water body with increasing frequencies of phyto- and zooplankton; 3) transitional period (rebuilding communities of diatoms and Cladocera), meaning a deep lake with benthic and planktonic fauna and flora with wide ecological tolerances; and 4) a shift to circumneutral conditions with an essential increase in planktonic taxa that prefer more fertile waters (eutrophication). In the case of lake TR-33, this process of natural neutralization lasted approximately 23years.

  9. Geochemical characterization of acid mine lakes in northwest Turkey and their effect on the environment.

    PubMed

    Yucel, Deniz Sanliyuksel; Baba, Alper

    2013-04-01

    Mining activity generates a large quantity of mine waste. The potential hazard of mine waste depends on the host mineral. The tendency of mine waste to produce acid mine drainage (AMD) containing potentially toxic metals depends on the amounts of sulfide, carbonate minerals, and trace-element concentrations found in ore deposits. The acid mine process is one of the most significant environmental challenges and a major source of water pollution worldwide. AMD and its effects were studied in northwest Turkey where there are several sedimentary and hydrothermal mineral deposits that have been economically extracted. The study area is located in Can county of Canakkale province. Canakkale contains marine, lagoon, and lake sediments precipitated with volcanoclastics that occurred as a result of volcanism, which was active during various periods from the Upper Eocene to Plio-Quaternary. Can county is rich in coal with a total lignite reserve >100 million tons and contains numerous mines that were operated by private companies and later abandoned without any remediation. As a result, human intervention in the natural structure and topography has resulted in large open pits and deterioration in these areas. Abandoned open pit mines typically fill with water from runoff and groundwater discharge, producing artificial lakes. Acid drainage waters from these mines have resulted in the degradation of surface-water quality around Can County. The average pH and electrical conductivity of acid mine lakes (AMLs) in this study were found to be 3.03 and 3831.33 μS cm(-1), respectively. Total iron (Fe) and aluminum (Al) levels were also found to be high (329.77 and 360.67 mg L(-1), respectively). The results show that the concentration of most elements, such as Fe and Al in particular, exceed national and international water-quality standards.

  10. Geochemical characterization of acid mine lakes in northwest Turkey and their effect on the environment.

    PubMed

    Yucel, Deniz Sanliyuksel; Baba, Alper

    2013-04-01

    Mining activity generates a large quantity of mine waste. The potential hazard of mine waste depends on the host mineral. The tendency of mine waste to produce acid mine drainage (AMD) containing potentially toxic metals depends on the amounts of sulfide, carbonate minerals, and trace-element concentrations found in ore deposits. The acid mine process is one of the most significant environmental challenges and a major source of water pollution worldwide. AMD and its effects were studied in northwest Turkey where there are several sedimentary and hydrothermal mineral deposits that have been economically extracted. The study area is located in Can county of Canakkale province. Canakkale contains marine, lagoon, and lake sediments precipitated with volcanoclastics that occurred as a result of volcanism, which was active during various periods from the Upper Eocene to Plio-Quaternary. Can county is rich in coal with a total lignite reserve >100 million tons and contains numerous mines that were operated by private companies and later abandoned without any remediation. As a result, human intervention in the natural structure and topography has resulted in large open pits and deterioration in these areas. Abandoned open pit mines typically fill with water from runoff and groundwater discharge, producing artificial lakes. Acid drainage waters from these mines have resulted in the degradation of surface-water quality around Can County. The average pH and electrical conductivity of acid mine lakes (AMLs) in this study were found to be 3.03 and 3831.33 μS cm(-1), respectively. Total iron (Fe) and aluminum (Al) levels were also found to be high (329.77 and 360.67 mg L(-1), respectively). The results show that the concentration of most elements, such as Fe and Al in particular, exceed national and international water-quality standards. PMID:23223936

  11. Neutralization of an acidic surface mine lake using organic additives. Final research report, 1 July 1991-1 October 1993

    SciTech Connect

    Brugam, R.B.

    1993-10-01

    We added 9.1 metric tons of manure to a pH 2.9 acid coal mine lake in Southern Illinois to test whether the added organic matter would support sulfate and iron reduction by anaerobic bacteria resulting in the production of alkalinity and a rise in pH. The added organic matter did cause a rise in pH in the deep water of the lake, but the effect did not increase the pH of the whole lake. Experiments in laboratory microcosms at 23 C show that lake sediment treated with manure can permanently raise the pH of acid mine drainage. In the open lake diffusion of oxygen into the anaerobic zones of the water column and low water temperatures in the winter limited the effects of sulfate and iron reduction to the deep water of the lake during summer thermal stratification.

  12. Organic matter preservation in the sediment of an acidic mining lake.

    PubMed

    Laskov, Christine; Amelung, Wulf; Peiffer, Stefan

    2002-10-15

    Sustainable management of acidic mining lakes requires knowledge on the origin and reactivity of its sedimentary organic matter. We identified different pools of organic matter (OM) in the Fe-rich sediment (up to 35 wt %) of an acidic (pH 2.8) mining lake using delta13C-signals, C/N ratios, and the markers alkanes, lignin-derived phenols, and benzenepolycarboxylic acids (BPCA). Additionally, a density fractionation was applied to each sediment layer. Three fractions, aquatic (AOM), terrestrial (TOM), and lignite-derived (LOM) organic matter, were discriminated, of which AOM comprises only a small fraction, with a minimum at the sediment bottom. The terrestrial contribution to sedimentary OM is higher than that of AOM but still low throughout the sediment core, whereas lignite-derived OM constitutes the major C-fraction, even in the upper sediment layers. The size of the carbon pools was quantified with a mass-balance approach, in which the BPCA content was utilized as an estimate for the lignite fraction in combination with the delta13C-signals of the three C fractions. The largest amount of OM was found in the heaviest (>2.4 g cm3) of the three density fractions of the two upper sediment layers, which implies strong interaction with iron hydroxides. Comparisons with C-oxidation rates revealed that besides the refractory origin of the OM, sorptive preservation by solid iron phases controls C-reactivity in the sediment and, hence, the internal neutralization capacity of the lake system.

  13. Influence of bioturbation on the biogeochemistry of the sediment in the littoral zone of an acidic mine pit lake

    NASA Astrophysics Data System (ADS)

    Lagauzère, S.; Moreira, S.; Koschorreck, M.

    2010-10-01

    In the last decades, the mining exploitation of large areas in Lusatia (South-eastern Germany) but also in other mining areas worldwide has led to the formation of hundreds of pit lakes. Pyrite oxidation in the surrounding dumps makes many such lakes extremely acidic (pH < 3). The biogeochemical functioning of these lakes is mainly governed by cycling of iron. This represents a relevant ecological problem and intensive research has been conducted to understand the involved biogeochemical processes and develop bioremediation strategies. Despite some studies reporting the presence of living organisms (mostly bacteria, algae, and macro-invertebrates) under such acidic conditions, and their trophic interactions, their potential impact on the ecosystem functioning was poorly investigated. The present study aimed to assess the influence of chironomid larvae on oxygen dynamics and iron cycle in the sediment of acidic pit lakes. In the Mining Lake 111, used as a study case since 1996, Chironomus crassimanus (Insecta, Diptera) is the dominant benthic macro-invertebrate species and occurs at relatively high abundances in shallow water. A 16-day laboratory experiment using microcosms combined with high resolution measurements (DET gel probes and O2 microsensors) was carried out. The burrowing activity of C. crassimanus larvae induced a 3-fold increase of the oxygen consumption by sediment, and stimulated the mineralization of organic matter in the upper layers of the sediment. The iron cycle was also impacted (e.g. lower rates of reduction and oxidation, increase of iron-oxidizing bacteria abundance, stimulation of mineral formation) but with no significant effect on the iron flux at the sediment-water interface, and thus on the water acidity budget. This work provides the first assessment of bioturbation in an acidic mining lake and shows that its influence on biogeochemistry cannot be neglected.

  14. Influence of bioturbation on the biogeochemistry of littoral sediments of an acidic post-mining pit lake

    NASA Astrophysics Data System (ADS)

    Lagauzère, S.; Moreira, S.; Koschorreck, M.

    2011-02-01

    In the last decades, the mining exploitation of large areas in Lusatia (Eastern Germany) but also in other mining areas worldwide has led to the formation of hundreds of pit lakes. Pyrite oxidation in the surrounding dumps makes many such lakes extremely acidic (pH < 3). The biogeochemical functioning of these lakes is mainly governed by cycling of iron. This represents a relevant ecological problem and intensive research has been conducted to understand the involved biogeochemical processes and develop bioremediation strategies. Despite some studies reporting the presence of living organisms (mostly bacteria, algae, and macro-invertebrates) under such acidic conditions, and their trophic interactions, their potential impact on the ecosystem functioning was poorly investigated. The present study aimed to assess the influence of chironomid larvae on oxygen dynamics and iron cycle in the sediment of acidic pit lakes. In the Mining Lake 111, used as a study case since 1996, Chironomus crassimanus (Insecta, Diptera) is the dominant benthic macro-invertebrate species and occurs at relatively high abundances in shallow water. A 16-day laboratory experiment using microcosms combined with high resolution measurements (DET gel probes and O2 microsensors) was carried out. The burrowing activity of C. crassimanus larvae induced a 3-fold increase of the diffusive oxygen uptake by sediment, indicating a stimulation of the mineralization of organic matter in the upper layers of the sediment. The iron cycle was also impacted (e.g. lower rates of reduction and oxidation, increase of iron-oxidizing bacteria abundance, stimulation of mineral formation) but with no significant effect on the iron flux at the sediment-water interface, and thus on the water acidity budget. This work provides the first assessment of bioturbation in an acidic mining lake and shows that its influence on biogeochemistry cannot be neglected.

  15. A microbial arsenic cycle in sediments of an acidic mine impoundment: Herman Pit, Clear Lake, California

    USGS Publications Warehouse

    Blum, Jodi S.; McCann, Shelley; Bennett, S.; Miller, Laurence G.; Stolz, J. R.; Stoneburner, B.; Saltikov, C.; Oremland, Ronald S.

    2015-01-01

    The involvement of prokaryotes in the redox reactions of arsenic occurring between its +5 [arsenate; As(V)] and +3 [arsenite; As(III)] oxidation states has been well established. Most research to date has focused upon circum-neutral pH environments (e.g., freshwater or estuarine sediments) or arsenic-rich “extreme” environments like hot springs and soda lakes. In contrast, relatively little work has been conducted in acidic environments. With this in mind we conducted experiments with sediments taken from the Herman Pit, an acid mine drainage impoundment of a former mercury (cinnabar) mine. Due to the large adsorptive capacity of the abundant Fe(III)-rich minerals, we were unable to initially detect in solution either As(V) or As(III) added to the aqueous phase of live sediment slurries or autoclaved controls, although the former consumed added electron donors (i.e., lactate, acetate, hydrogen), while the latter did not. This prompted us to conduct further experiments with diluted slurries using the live materials from the first incubation as inoculum. In these experiments we observed reduction of As(V) to As(III) under anoxic conditions and reduction rates were enhanced by addition of electron donors. We also observed oxidation of As(III) to As(V) in oxic slurries as well as in anoxic slurries amended with nitrate. We noted an acid-tolerant trend for sediment slurries in the cases of As(III) oxidation (aerobic and anaerobic) as well as for anaerobic As(V) reduction. These observations indicate the presence of a viable microbial arsenic redox cycle in the sediments of this extreme environment, a result reinforced by the successful amplification of arsenic functional genes (aioA, and arrA) from these materials.

  16. Influence of Acid Mine Drainage (AMD) on recent phyto- and zooplankton in "the Anthropogenic Lake District" in south-west Poland

    NASA Astrophysics Data System (ADS)

    Sienkiewicz, Elwira; Gasiorowski, Michal

    2015-04-01

    In south-west Poland (central Europe) many the post-mining lakes formed so-called "the Anthropogenic Lake District". Areas, where water comes in contact with lignite beds characterized by high concentration of sulfide minerals are called Acid Mine Drainage (AMD). Pyrite oxidation and other sulfide compounds caused release sulfuric acids and heavy metal ions. These processes caused decline of water pH, sometimes to extremely low pH < 2.8. Presently, pit lakes located in south-west Poland have water pH ranged between 2.7 and 8.9. Differences of water reaction in the mine lakes depend on many factors, such as bedrock buffer capacity, geological structure of carboniferous area, exploitation technique of lignite, methods of filling and water supply of reservoirs and their age. During the evolution of lakes' ecosystems, sulfate-iron-calcium type of waters occurring in acid lakes will transform in alkaline hydrogen-carbonate-calcium type of waters. Due to the different time of the completion of lignite exploitation, lakes' age varied between forty and over one hundred years. Studies showed that younger lakes are more acidic in compare to older. To estimate impact of AMD we analyzed recent diversity of diatoms and Cladocera remains and water chemistry from extremely acidic, relatively young lakes and from alkaline, older water bodies. As we expected, flora and fauna from acidic lakes have shown very low diversity and species richness. Among diatoms, Eunotia exigua (Bréb. ex Kütz.) Rabenhorst and/or E. paludosa Grunow were dominated taxa, while fauna Cladocera did not occurred in lakes with water pH < 3. On this area, exploitation of lignite continued up to 1973. Older lakes were formed in the region where the mine started work in 1880 and lignite mining stopped in 1926. Measurements of pH value in situ point to neutral or alkaline water, but because of the possibility of hysteresis phenomenon, the studies of phyto- and zooplankton have shown if there has already been a

  17. Algal and Bacterial Activities in Acidic (pH 3) Strip Mine Lakes

    PubMed Central

    Gyure, Ruth A.; Konopka, Allan; Brooks, Austin; Doemel, William

    1987-01-01

    Reservoir 29 and Lake B are extremely acid lakes (epilimnion pHs of 2.7 and 3.2, respectively), because they receive acidic discharges from coal refuse piles. They differ in that the pH of profundal sediments in Reservoir 29 increased from 2.7 to 3.8 during the period of thermal stratification, whereas permanently anoxic sediments in Lake B had a pH of 6.2. The pH rise in Reservoir 29 sediments was correlated with a temporal increase in H2S concentration in the anaerobic hypolimnion from 0 to >1 mM. The chlorophyll a levels in the epilimnion of Reservoir 29 were low, and the rate of primary production was typical of an oligotrophic system. However, there was a dense 10-cm layer of algal biomass at the bottom of the metalimnion. Production by this layer was low owing to light limitation and possibly H2S toxicity. The specific photosynthetic rates of epilimnetic algae were low, which suggests that nutrient availability is more important than pH in limiting production. The highest photosynthetic rates were obtained in water samples incubated at pH 2.7 to 4. Heterotrophic bacterial activity (measured by [14C]glucose metabolism) was greatest at the sediment/water interface. Bacterial production (assayed by thymidine incorporation) was as high in Reservoir 29 as in a nonacid mesotrophic Indiana lake. PMID:16347430

  18. Algal and bacterial activities in acidic (pH 3) strip mine lakes

    SciTech Connect

    Gyure, R.A.; Konopka, A.; Brooks, A.; Doemel, W.

    1987-09-01

    Reservoir 29 and Lake B are extremely acid lakes (epilimnion pHs of 2.7 and 3.2, respectively), because they receive acidic discharges from coal refuse piles. They differ in that the pH of profundal sediments in Reservoir 29 increased from 2.7 to 3.8 during the period of thermal stratification, whereas permanently anoxic sediments in Lake B had a pH of 6.2. The pH rise in Reservoir 29 sediments was correlated with a temporal increase in H/sub 2/S concentration in the anaerobic hypolimnion from 0 to >1 mM. The chlorophyll a levels in the epilimnion of Reservoir 29 were low, and the rate of primary production was typical of an oligotrophic system. However, there was a dense 10-cm layer of algal biomass at the bottom of the metalimnion. Production by this layer was low owing to light limitation and possibly H/sub 2/S toxicity. The specific photosynthetic rates of epilimnetic algae were low, which suggests that nutrient availability is more important than pH in limiting production. The highest photosynthetic rates were obtained in water samples incubated at pH 2.7 to 4. Heterotrophic bacterial activity (measured by (/sup 14/C)glucose metabolism) was greatest at the sediment/water interface. Bacterial production (assayed by thymidine incorporation) was as high in Reservoir 29 as in a nonacid mesotrophic Indiana lake.

  19. Organic matter in sediments of an acidic mining lake as assessed by lipid analysis. Part I: fatty acids.

    PubMed

    Poerschmann, Juergen; Koschorreck, Matthias; Górecki, Tadeusz

    2012-01-01

    Fatty acid (FA) patterns of sediments collected from the bottom of an acidic mine pit lake (AML) at different depths (surface sediment: 0 to 1cm; deep sediment: 4 to 5 cm) were studied to characterize microbial communities and the sources of sedimentary organic matter (SOM). Studies were performed on the molecular level utilizing source-specific, diagnostic FA biomarkers. The biomarker-based approach has been used widely in marine sediment studies, but has not been applied for sediments from AMLs so far. Combined FA concentrations in the surface sediment were higher compared to those in the deep sediment (497 vs. 127 μg g(-1)d.w., respectively). This was related to deposition of autochthonous biomass and higher terrestrial plants onto the surface sediment, as well as--to lesser extent--with higher bacterial activity on the sediment-water interface. The FA distribution in both sediments was characterized by a strong even-over-odd preference and was bimodal in nature: there was a cluster at nC(14)-nC(18) characteristic of chiefly autochthonous (algal and bacterial) SOM production, and another cluster at nC(22-28) related to input from higher plants. The FA distribution in the surface sediment pointed to higher terrestrial input compared to autochthonous contribution to SOM (67%:33%) as an estimate. Fingerprinting of viable bacteria was accomplished through signature FA markers including branched C(15) and C(17) surrogates, cyclopropanoic acids, 3-hydroxy (OH) acids and monounsaturated surrogates with unusual double bond localization. The abundance of Gram-negative bacteria was higher in the surface sediment as evidenced by total diagnostic 3-OH-fatty acids (37 μg g(-1) versus 25 μg g(-1)). Potential source taxa in both sediment layers included acidophilic iron- and sulfur-oxidizing bacteria including Acidithiobacillus ferrooxidans. High abundances of terminally branched C(15) and C(17) surrogates in both sediments pointed to sulfate- and iron-reducing bacteria

  20. Processes at the sediment water interface after addition of organic matter and lime to an acid mine pit lake mesocosm

    SciTech Connect

    Matthias Koschorreck; Elke Bozau; Rene Froemmichen; Walter Geller; Peter Herzsprung; Katrin Wendt-Potthoff

    2007-03-01

    A strategy to neutralize acidic pit lakes was tested in a field mesocosm of 4500 m{sup 3} volume in the Acidic Pit Mine Lake 111 in the Koyne-Plessa lignite mining district of Lusatia, Germany. Carbokalk, a byproduct from sugar production, and wheat straw was applied near to the sediment surface to stimulate in lake microbial alkalinity generation by sulfate and iron reduction. The biogeochemical processes at the sediment-water interface were studied over 3 years by geochemical monitoring and an in situ microprofiler. Substrate addition generated a reactive zone at the sediment surface where sulfate and iron reduction proceeded. Gross sulfate reduction reached values up to 10 mmol m{sup -2} d{sup -1}. The neutralization rates between 27 and 0 meq m{sup -2} d{sup -1} were considerably lower than in previous laboratory experiments. The precipitation of ferric iron minerals resulted in a growing acidic sediment layer on top of the neutral sediment. In this layer sulfate reduction was observed but iron sulfides could not precipitate. In the anoxic sediment H{sub 2}S was oxidized by ferric iron minerals. H{sub 2}S partly diffused to the water column where it was oxidized. As a result the net formation of iron sulfides decreased after 1 year although gross sulfate reduction rates continued to be high. The rate of iron reduction exceeded the sulfate reduction rate, which resulted in high fluxes of ferrous iron out of the sediment. 46 refs., 6 figs., 1 tab.

  1. [Microeukaryotic biodiversity in the waste ore samples surrounding an acid mine drainage lake].

    PubMed

    Li, Si-Yuan; Hao, Chun-Bo; Wang, Li-Hua; Lü, Zheng; Zhang, Li-Na; Liu, Ying; Feng, Chuan-Ping

    2013-10-01

    The abandoned mineral samples were collected in an acid mine drainage area in Anhui Province. Molecular ecological methods were used to construct 18S rDNA clone libraries after analyzing the main physicochemical parameters, and then the microeukaryotic diversity and community structure in the acid mine drainage area were studied. The results showed that the region was strongly acidic (pH <3), and the concentrations of Fe, SO2-(4), P, NO-(3) -N showed the same trend, all higher in the bare waste ore samples PD and 1 M than in the vegetation covered samples LW and XC. Four eukaryotic phyla were detected in the abandoned mineral samples: Ascomycota, Basidiomycota, Glomeromycota and Arthropoda. Glomeromycota can form an absolute symbiotic relationship with the plant, and it was a key factor for early plant to adapt the terrestrial environment. The biodiversity of the vegetation covered samples LW and XC, which contained Glomeromycota, was much higher than that of the bare abandoned rock samples PD and 1 M. Moreover, many sequences in the libraries were closely related to some isolated strains, which are tolerant to low pH and heavy metals, such as Penicillium purpurogenum, Chaetothyriales sp. and Staninwardia suttonii.

  2. Structure and function of the microbial community in an in situ reactor to treat an acidic mine pit lake.

    PubMed

    Koschorreck, Matthias; Geller, Walter; Neu, Thomas; Kleinsteuber, Sabine; Kunze, Tobias; Trosiener, Annegret; Wendt-Potthoff, Katrin

    2010-08-01

    Sulfate-reducing bioreactors are a promising option for the treatment of acid mine drainage. We studied the structure and function of a biofilm in a methanol-fed fixed-bed in-lake reactor for the treatment of an acidic pit lake by a combination of laboratory incubations, chemical and molecular analyses and confocal laser scanning microscopy to determine whether competition by different groups of microorganisms as well as the precipitation of minerals affect reactor performance negatively. The biofilm growing on the surface of a synthetic carrier material consisted of dense microbial colonies covered by iron-sulfide precipitates. The microorganisms continuously had to overgrow this mineral coating, resulting in a high biomass turnover. About one third of the added methanol was used by sulfate reduction, and the rest by competing reactions. Sulfate-reducing bacteria as well as methanogens and acetogens were involved in methanol consumption. Six different groups of Deltaproteobacteria, dominated by the genera Desulfomonile, Desulfobacterium and a phylotype related to Geobacter, Gram-positive sulfate reducers of the genus Desulfosporosinus, acetogenic Acetobacteria, different fermenting bacteria as well as methylotrophic methanogens were identified. The versatility of the microbial food web is probably an important factor stabilizing the biofilm function under fluctuating and partly oxidizing conditions in the reactor.

  3. An evaluation of problems arising from acid mine drainage in the vicinity of Shasta Lake, Shasta County, California

    USGS Publications Warehouse

    Fuller, Richard H.; Shay, J.M.; Ferreira, R.F.; Hoffman, R.J.

    1978-01-01

    Streams draining the mined areas of massive sulfide ore deposits in the Shasta Mining Districts of northern California are generally acidic and contain large concentrations of dissolved metals, including iron, copper, and zinc. The streams, including Flat, Little Backbone, Spring, West Squaw, Horse, and Zinc Creeks, discharge into Shasta Reservoir and the Sacramento River and have caused numerous fish kills. The sources of pollution are discharge from underground mines, streams that flow into open pits, and streams that flow through pyritic mine dumps where the oxidation of pyrite and other sulfide minerals results in the production of acid and the mobilization of metals. Suggested methods of treatment include the use of air and hydraulic seals in the mines, lime neutralization of mine effluent, channeling of runoff and mine effluent away from mine and tailing areas, and the grading and sealing of mine dumps. A comprehensive preabatement and postabatement program is recommended to evaluate the effects of any treatment method used. (Woodard-USGS)

  4. Toxicity of acid mine pit lake water remediated with limestone and phosphorus

    SciTech Connect

    Neil, L.L.; McCullough, C.D.; Lund, M.A.; Evans, L.H.; Tsvetnenko, Y.

    2009-11-15

    Pit lakes are increasingly common worldwide and have potential to provide many benefits. However, lake water toxicity may require remediation before beneficial end uses can be realised. Three treatments to remediate AMD (pH similar to 4.8) pit lake water containing elevated concentrations of Al and Zn from Collie, Western Australia were tested in mesocosms. Treatments were: (a) limestone neutralisation (L), (b) phosphorus amendment (P), and c) combined limestone neutralisation and phosphorus amendment (L+P). Laboratory bioassays with Ceriodaphnia cf. dubia, Chlorella protothecoides and Tetrahymena thermophila assessed remediation. Limestone neutralisation increased pH and reduced heavy metal concentrations by 98% (Al) to 14% (Mg), removing toxicity to the three test species within 2 months. Phosphorus amendment removed toxicity after 6 months of treatment. However, phosphorus amendment to prior limestone neutralisation failed to reduce toxicity more than limestone neutralisation alone. Low concentrations of both phosphorus and nitrogen appear to limit phytoplankton population growth in all treatments.

  5. Factors determining growth and vertical distribution of planktonic algae in extremely acidic mining lakes (pH 2.7)

    NASA Astrophysics Data System (ADS)

    Bissinger, Vera

    2003-04-01

    In this thesis, I investigated the factors influencing the growth and vertical distribution of planktonic algae in extremely acidic mining lakes (pH 2-3). In the focal study site, Lake 111 (pH 2.7; Lusatia, Germany), the chrysophyte, Ochromonas sp., dominates in the upper water strata and the chlorophyte, Chlamydomonas sp., in the deeper strata, forming a pronounced deep chlorophyll maximum (DCM). Inorganic carbon (IC) limitation influenced the phototrophic growth of Chlamydomonas sp. in the upper water strata. Conversely, in deeper strata, light limited its phototrophic growth. When compared with published data for algae from neutral lakes, Chlamydomonas sp. from Lake 111 exhibited a lower maximum growth rate, an enhanced compensation point and higher dark respiration rates, suggesting higher metabolic costs due to the extreme physico-chemical conditions. The photosynthetic performance of Chlamydomonas sp. decreased in high-light-adapted cells when IC limited. In addition, the minimal phosphorus (P) cell quota was suggestive of a higher P requirement under IC limitation. Subsequently, it was shown that Chlamydomonas sp. was a mixotroph, able to enhance its growth rate by taking up dissolved organic carbon (DOC) via osmotrophy. Therefore, it could survive in deeper water strata where DOC concentrations were higher and light limited. However, neither IC limitation, P availability nor in situ DOC concentrations (bottom-up control) could fully explain the vertical distribution of Chlamydomonas sp. in Lake 111. Conversely, when a novel approach was adopted, the grazing influence of the phagotrophic phototroph, Ochromonas sp., was found to exert top-down control on its prey (Chlamydomonas sp.) reducing prey abundance in the upper water strata. This, coupled with the fact that Chlamydomonas sp. uses DOC for growth, leads to a pronounced accumulation of Chlamydomonas sp. cells at depth; an apparent DCM. Therefore, grazing appears to be the main factor influencing the

  6. [Microbial diversity and ammonia-oxidizing microorganism of a soil sample near an acid mine drainage lake].

    PubMed

    Liu, Ying; Wang, Li-Hua; Hao, Chun-Bo; Li, Lu; Li, Si-Yuan; Feng, Chuan-Ping

    2014-06-01

    The main physicochemical parameters of the soil sample which was collected near an acid mine drainage reservoir in Anhui province was analyzed. The microbial diversity and community structure was studied through the construction of bacteria and archaea 16S rRNA gene clone libraries and ammonia monooxygenase gene clone library of archaea. The functional groups which were responsible for the process of ammonia oxidation were also discussed. The results indicated that the soil sample had extreme low pH value (pH < 3) and high ions concentration, which was influenced by the acid mine drainage (AMD). All the 16S rRNA gene sequences of bacteria clone library fell into 11 phyla, and Acidobacteria played the most significant role in the ecosystem followed by Verrucomicrobia. A great number of acidophilic bacteria existed in the soil sample, such as Candidatus Koribacter versatilis and Holophaga sp.. The archaea clone library consisted of 2 phyla (Thaumarchaeota and Euryarchaeota). The abundance of Thaumarchaeota was remarkably higher than Euryarchaeota. The ammonia oxidation in the soil environment was probably driven by ammonia-oxidizing archaea, and new species of ammonia-oxidizing archaea existed in the soil sample.

  7. GEOCHEMICAL FEATURES OF WATER-ROCK INTERACTIONS AT THE SULPHUR BANK MERCURY MINE, LAKE COUNTY, CALIFORNIA

    EPA Science Inventory

    The Sulphur Bank Mercury Mine on the eastern shore of Clear Lake is the source of poor quality acid mine drainage seeping into Clear Lake. Lateral and vertical geochemical trends in ground water composition point to a number of redox reactions taking place as a function of subsu...

  8. AERIAL VIEW, LOOKING NORTH, OF SILVER LAKE. NOTE IOWA MINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW, LOOKING NORTH, OF SILVER LAKE. NOTE IOWA MINE RUINS AT LEFT CENTER AND SILVER LAKE MINE RUINS BEYOND NORTHWEST SHORE. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  9. Systematics and species-specific response to pH of Oxytricha acidotolerans sp. nov. and Urosomoida sp. (Ciliophora, Hypotricha) from acid mining lakes

    PubMed Central

    Weisse, Thomas; Moser, Michael; Scheffel, Ulrike; Stadler, Peter; Berendonk, Thomas; Weithoff, Guntram; Berger, Helmut

    2013-01-01

    We investigated the morphology, phylogeny of the 18S rDNA, and pH response of Oxytricha acidotolerans sp. nov. and Urosomoida sp. (Ciliophora, Hypotricha) isolated from two chemically similar acid mining lakes (pH ∼ 2.6) located at Langau, Austria, and in Lusatia, Germany. Oxytricha acidotolerans sp. nov. from Langau has 18 frontal-ventral-transverse cirri but a very indistinct kinety 3 fragmentation so that the assignment to Oxytricha is uncertain. The somewhat smaller species from Lusatia has a highly variable cirral pattern and the dorsal kineties arranged in the Urosomoida pattern and is, therefore, preliminary designated as Urosomoida sp. The pH response was measured as ciliate growth rates in laboratory experiments at pH ranging from 2.5 to 7.0. Our hypothesis was that the shape of the pH reaction norm would not differ between these closely related (3% difference in their SSU rDNA) species. Results revealed a broad pH niche for O. acidotolerans, with growth rates peaking at moderately acidic conditions (pH 5.2). Cyst formation was positively and linearly related to pH. Urosomoida sp. was more sensitive to pH and did not survive at circumneutral pH. Accordingly, we reject our hypothesis that similar habitats would harbour ciliate species with virtually identical pH reaction norm. PMID:23021638

  10. Acidic lakes and streams in the United States: The role of acidic deposition

    SciTech Connect

    Baker, L.A.; Herlihy, A.T.; Kaufmann, P.R.; Eilers, J.M.

    1991-01-01

    A statistically designed survey of lakes and streams in acid-sensitive areas of the United States, the National Surface Water Survey (NSWS), was used to identify the role of acidic deposition, relative to other factors, in causing acidic conditions in 1,181 lakes and 4,668 streams. Atmospheric deposition is the dominant source of acid anions in 75% of the acidic lakes and 47% of the acidic streams. Organic anions are dominant in one-fourth of the acidic lakes and streams; acidic mine drainage is the dominant acid source in 25% of the acidic streams. Other causes of acidic conditions are relatively unimportant on a regional scale. Nearly all the deposition-dominated acidic systems were found in six well-delineated subpopulations that represent about one-fourth of the NSWS lake population and one-third of the NSWS stream population.

  11. RELEASE OF MERCURY FROM MINE RESIDUES INTO LAKE SUPERIOR

    EPA Science Inventory

    Using recent compilations of mine production and discharge rates, we will demonstrate that the cumulative Hg inputs to Lake Superior from mining activities are much higher than from atmosphereic deposition.

  12. Gazetteer of coal-mine lakes in southwestern Indiana

    USGS Publications Warehouse

    Bobo, Linda L.

    1979-01-01

    This gazetteer is a catalog of lakes formed by surface coal mining in southwestern Indiana that are 0.5 acre or larger and in nonactive mine areas. Approximately 1,000 of the lakes are listed by 7.5-minute quadrangle topographic-map name, lake-identification number, latitude and longitude, and county. Other data given are shape of lake, maximum length, mean width, length and development of shoreline, surface area, orientation, presence of a stream inlet or outlet, and geologic data (geologic formation of area surrounding the lake and the mined coal-bed member). Field data (sampling date, pH, specific conductance, apparent color of lake, and general vegetation along the shoreline) were collected for 287 of the lakes. The apparent colors of the lakes observed were varying shades of aqua, blue, brown, lime green, red, and green. Eighty percent of the lakes sampled were green. (Woodard - USGS)

  13. Perchlorate in Lake Water from an Operating Diamond Mine.

    PubMed

    Smith, Lianna J D; Ptacek, Carol J; Blowes, David W; Groza, Laura G; Moncur, Michael C

    2015-07-01

    Mining-related perchlorate [ClO4(-)] in the receiving environment was investigated at the operating open-pit and underground Diavik diamond mine, Northwest Territories, Canada. Samples were collected over four years and ClO4(-) was measured in various mine waters, the 560 km(2) ultraoligotrophic receiving lake, background lake water and snow distal from the mine. Groundwaters from the underground mine had variable ClO4(-) concentrations, up to 157 μg L(-1), and were typically an order of magnitude higher than concentrations in combined mine waters prior to treatment and discharge to the lake. Snow core samples had a mean ClO4(-) concentration of 0.021 μg L(-1) (n=16). Snow and lake water Cl(-)/ClO4(-) ratios suggest evapoconcentration was not an important process affecting lake ClO4(-) concentrations. The multiyear mean ClO4(-) concentrations in the lake were 0.30 μg L(-1) (n = 114) in open water and 0.24 μg L(-1) (n = 107) under ice, much below the Canadian drinking water guideline of 6 μg L(-1). Receiving lake concentrations of ClO4(-) generally decreased year over year and ClO4(-) was not likely [biogeo]chemically attenuated within the receiving lake. The discharge of treated mine water was shown to contribute mining-related ClO4(-) to the lake and the low concentrations after 12 years of mining were attributed to the large volume of the receiving lake.

  14. Investigations on the "Extreme" Microbial Methane Cycle within the Sediments of an Acidic Impoundment of the Inactive Sulfur Bank Mercury Mine: Herman Pit, Clear Lake, California.

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Baesman, S. M.; Miller, L. G.; Wei, J. H. C.; Welander, P. V.

    2014-12-01

    The inactive Sulfur Bank Mercury Mine is located in a volcanic region having geothermal flow and gas inputs into the Herman Pit impoundment. The acidic (pH 2 - 4) waters of the Herman Pit are permeated by hundreds of continuous flow gas seeps that contain CO2, H2S and CH4. We sampled one seep and found it to be composed of 95 % CO2 and 5 % CH4, in agreement with earlier measurements. Only a trace of ethane (10 - 20 ppm) was found and propane was below detection, resulting in a high CH4/C2H6 + C3H8 ratio of > 5,000, while the δ13CH4 and the δ13CO2 were respectively - 24 and - 11 per mil. Collectively, these results suggested a complex origin for the methane, being made up of a thermogenic component resulting from pyrolysis of buried organics, along with an active methanogenic portion. The relatively 12C-enriched value for the CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. We found that dissolved methane in the collected water from 2-4 m depth was high (~ 400 µM), which would support methanotrophy in the lake's aerobic biomes. We therefore tested the ability of bottom sediments to consume methane by conducting aerobic incubations of slurried bottom sediments. Methane was removed from the headspace of live slurries, and subsequent additions of methane to the headspace over the course of 2-3 months resulted in faster removal rates suggesting a buildup of the population of methanotrophs. This activity could be transferred to an artificial medium originally devised for the cultivation of acidophilic iron oxidizing bacteria (Silverman and Lundgren, 1959; J. Bacteriol. 77: 642 - 647), suggesting the possibility of future cultivation of acidophilic methanotrophs. A successful extraction of some hopanoid compounds from the sediments was achieved, although the results were too preliminary at the time of this writing to identify any hopanoids specifically linked to methanotrophic bacteria. Further efforts to amplify functional genes for

  15. Effects of acid mine effluent on sediment and water geochemistry, Ruttan Cu-Zn mine

    USGS Publications Warehouse

    Shilts, W.W.

    1996-01-01

    Waters were collected from the surface and bottom of four lakes as well as from the Churchill River and approximately 20 small ponds beside the Leaf Rapids-Ruttan mine-South Indian Lake road to determine geochemical variations related to tailings and waste rock disposal from the Ruttan Cu-Zn VHMS deposit. Using sonar profiling as a guide, grab samples and cores of sediments were also collected in Ruttan, Brehaut, Rusty, and Alto lakes to investigate the geochemical and sedimentological effects of liming the acid (pH 2.5) outflow from Ruttan Lake. Preliminary results indicate that metals anthropogenically enriched in Ruttan Lake (Zn, Cd, and Hg in particular) are scavenged and precipitated at the inflow end of Brehaut Lake as a result of adding lime solutions to the Vermilion River, midway through the 500 m reach that connects Ruttan Lake and Brehaut Lake. Zn in Ruttan Lake water (up to 17 ppm) is precipitated in the limey sediment. Zn is not enriched in waters of Rusty Lake, the next lake downstream from Brehaut Lake. Rusty Lake has Zn concentrations comparable to background water from Alto Lake (<10 ppb Zn). At present, liming appears to be controlling metal migration effectively, but a body of Zn-Cd-Hg-rich carbonate precipitate occupies the south end of Brehaut Lake which, without liming, would be receiving water of pH 2.5 from Ruttan Lake, resulting in a remobilization of metals. The related study also showed that Zn concentrations are elevated in water in contact with waste rock used to upgrade sections of the Leaf Rapids-South Indian Lake and Brehaut Lake roads.

  16. Acid mine drainage. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-09-01

    The bibliography contains citations concerning the control and treatment of acid mine drainage. Techniques discussed for treating wastes containing heavy metals include precipitation, cementation, ion exchange, charge membrane, ultrafiltration, ozonation, solvent extraction, and electrodialysis. The environmental impacts of acid mine drainage on rivers, streams, and lakes are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  17. Acid mine drainage. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations concerning the control and treatment of acid mine drainage. Techniques discussed for treating wastes containing heavy metals include precipitation, cementation, ion exchange, charge membrane, ultrafiltration, ozonation, solvent extraction, and electrodialysis. The environmental impacts of acid mine drainage on rivers, streams, and lakes are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  18. Investigations on the "Extreme" Microbial Arsenic Cycle within the Sediments of an Acidic Impoundment of the Former Sulfur Bank Mercury Mine: Herman Pit, Clear Lake, California.

    NASA Astrophysics Data System (ADS)

    Blum, J. S.; Hoeft McCann, S. E.; Bennett, S.; Miller, L. G.; Stoneburner, B.; Saltikov, C.; Oremland, R. S.

    2014-12-01

    The involvement of prokaryotes in the redox reactions of arsenic occurring between this element's +5 [arsenate; As(V)] and + 3 [arsenite; As(III)] oxidation states has been well established. Most research has focused upon circum-neutral pH environments, such as freshwater lake and aquifer sediments, and extreme environments like hot springs and hypersaline soda lakes have also been well investigated. In contrast, little work has been conducted on acidic environments. The azure-hued, clear waters of the Herman Pit are acidic (pH 2-4), and overlie oxidized sediments that have a distinctive red/orange coloration indicative of the presence of ferrihydrites and other Fe(III) minerals. There is extensive ebullitive release of geothermal gases from the lake bottom in the form of numerous continuous-flow seeps which are composed primarily of mixtures of CO2, CH4, and H2S. We collected near-shore surface sediments with an Eckman grab, and stored the "soupy" material in filled mason jars kept at 4˚C. Initial experiments were conducted using 3:1 mixtures of lake water: sediment so as to generate dilute slurries which were amended with mM levels of electron acceptors (arsenate, nitrate, oxygen), electron donors (arsenite, acetate, lactate, hydrogen), and incubated under N2, air, or H2. Owing to the large adsorptive capacity of the Fe(III)-rich slurries, we were unable to detect As(V) or As(III) in the aqueous phase of either live or autoclaved controls, although the former consumed lactate, acetate, nitrate, or hydrogen, while the latter did not. This prompted us to conduct a series of further diluted slurry experiments using the live materials from the first as a 10 % addition to lakewater. In these experiments we observed reduction of As(V) to As(III) in anoxic slurries and that rates were enhanced by addition of electron donors (H2, acetate, or lactate). We also observed oxidation of As(III) to As(V) in oxic slurries and in anoxic slurries amended with nitrate. These

  19. Predictability of Permanent Stratification In Opencast Mining Lakes

    NASA Astrophysics Data System (ADS)

    Boehrer, B.

    Residual voids from exploited or abandoned opencasts are increasingly becoming a world-wide environmental and landscape disruption. As soon as groundwater pump- ing ceases, some of the pits fill naturally from groundwater sources, others are flooded for several reasons from external sources, e.g. from near-by rivers. Especially in east- ern Germany, a large number of opencast lignite mines were abandonend within only few years, after the political wende of 1989 changed energy policy fundamentally. 490 lakes in opencast mines can be listed for Germany, many of which lie in the densely populated area of Central Germany. In many cases, the future shorelines are in imme- diate proximity of residential areas. As a consequence, public pressure is high for the utilisation of those lakes. Many mining lakes tend to be meromictic. To prognosticate water quality and biolog- ical evoloution, knowledge about the permanent stratification is essential. Due to their specific chemistry and temporal evolution, mining lakes pose a number of unsolved questions concerning the density structure. A number of approaches to those problems are discussed. In this context, we refer to four mining complexes where an intensive investigation has taken place on the development of the stratification in the new lakes.

  20. Gazetteer of coal-mine lakes in southwestern Indiana

    USGS Publications Warehouse

    Bobo, Linda L.

    1979-01-01

    This gazetteer is a catalog of lakes formed by surface coal mining in southwestern Indiana that are 0.5 acre or larger and in nonactive mine areas. Approximately 1,000 of the lakes are listed by 7.5-minute quadrangle topographic-map name, lake-identification number, latitude and longitude, and county. Other data given are shape of lake, maximum length, mean width, length and development of shoreline, surface area, orientation, presence of a stream inlet or outlet, and geologic data (geologic formation of area surrounding the lake and the mined coal-bed member). Field data (sampling date, pH, specific conductance, apparent color of lake, and general vegetation along the shoreline) were collected for 287 of the lakes. Two hundred eighty-seven lakes were sampled once for pH and specific conductance. Vegetation along the shoreline and apparent color of each lake were identified at the same time. Although these data are not sufficient to quantify the water quality of the lakes, they do illustrate the variability of these characteristics. The pH of the 287 lakes ranged from 2.5 to 10.0; however, the pH of 80 percent of them ranged from 6 to 9. Specific conductance ranged from 99 to 3,800 micromhos per centimeter at 25? Celsius. Specific conductance for approximately 70 percent of the lakes in the Staunton and Brazil formations was less than 500 micromhos per centimeter at 25? Celsius, but for approximately 65 percent in the Dugger and Petersburg Formations it was greater than 1,000 micromhos per centimeter at 25? Celsius. The apparent colors of the lakes observed were varying shades of aqua, blue, brown, lime green, red, and green. Eighty percent of the lakes sampled were green. Lake sizes ranged from a chosen minimum of 0.5 acre to a maximum of 344 acres. Maximum length ranged from 0.1 to 2 miles, and the mean width was generally less than 0.8 mile.

  1. Amino acids in the Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Kminek, G.; Botta, O.; Glavin, D. P.; Bada, J. L.

    2002-01-01

    High-performance liquid chromatography (HPLC) based amino acid analysis of a Tagish Lake meteorite sample recovered 3 months after the meteorite fell to Earth have revealed that the amino acid composition of Tagish Lake is strikingly different from that of the CM and CI carbonaceous chondrites. We found that the Tagish Lake meteorite contains only trace levels of amino acids (total abundance = 880 ppb), which is much lower than the total abundance of amino acids in the CI Orgueil (4100 ppb) and the CM Murchison (16 900 ppb). Because most of the same amino acids found in the Tagish Lake meteorite are also present in the Tagish Lake ice melt water, we conclude that the amino acids detected in the meteorite are terrestrial contamination. We found that the exposure of a sample of Murchison to cold water lead to a substantial reduction over a period of several weeks in the amount of amino acids that are not strongly bound to the meteorite matrix. However, strongly bound amino acids that are extracted by direct HCl hydrolysis are not affected by the leaching process. Thus even if there had been leaching of amino acids from our Tagish Lake meteorite sample during its 3 month residence in Tagish Lake ice and melt water, a Murchison type abundance of endogenous amino acids in the meteorite would have still been readily detectable. The low amino acid content of Tagish Lake indicates that this meteorite originated fiom a different type of parent body than the CM and CI chondrites. The parent body was apparently devoid of the reagents such as aldehyldes/ketones, HCN and ammonia needed for the effective abiotic synthesis of amino acids. Based on reflectance spectral measurements, Tagish Lake has been associated with P- or D-type asteroids. If the Tagish Lake meteorite was indeed derived fiom these types of parent bodies, our understanding of these primitive asteroids needs to be reevaluated with respect to their potential inventory of biologically important organic compounds.

  2. Acid lakes from natural and anthropogenic causes

    SciTech Connect

    Patrick, R.; Binetti, V.P.; Halterman, S.G.

    1981-01-30

    Lakes may be acid because of natural ecological conditions or because of anthropogenic activities. Apparently there has been a recent increase in acidity of many lakes in the northeastern United States. Factors that may be contributing to this increase include the use by utilities of precipitators, sulfur scrubbers, and tall stacks; the use of petroleum; and methods of combustion of fossil fuels.

  3. BOUNDS ON SUBSURFACE MERCURY FLUX FROM THE SULPHUR BANK MERCURY MINE, LAKE COUNTY, CALIFORNIA

    EPA Science Inventory

    The Sulphur Bank Mercury Mine (SBMM) in Lake County, California has been identified as a significant source of mercury to Clear Lake. The mine was operated from the 1860s through the 1950's. Mining started with surface operations, progressed to shaft mining, and later to open p...

  4. Historical overview and future directions of the microbial role in the acidic coal mine drainage system

    SciTech Connect

    Robbins, E.I.

    1998-12-31

    Bacteria have been implicated and analyzed at every step in the production of acidic coal mine drainage (AMD). This review paper provides detailed information about microbial studies in mines, laboratory settings, waste piles, ground water, receiving streams, and downstream rivers and lakes. Research on AMD treatment, beneficial uses, and seasonal variability is also reviewed. 102 refs.

  5. Spatiotemporal trends in fish mercury from a mine-dominated ecosystem: Clear Lake, California.

    PubMed

    Suchanek, Thomas H; Eagles-Smith, Collin A; Slotton, Darell G; Harner, E James; Colwell, Arthur E; Anderson, Norman L; Mullen, Lauri H; Flanders, John R; Adam, David P; McElroy, Kenneth J

    2008-12-01

    Clear Lake, California, USA, receives acid mine drainage and mercury (Hg) from the Sulphur Bank Mercury Mine, a U.S. Environmental Protection Agency (U.S. EPA) Superfund Site that was active intermittently from 1873 to 1957 and partially remediated in 1992. Mercury concentrations were analyzed primarily in four species of Clear Lake fishes: inland silversides (Menidia beryllina, planktivore), common carp (Cyprinus carpio, benthic scavenger/omnivore), channel catfish (Ictalurus punctatus, benthic omnivorous predator), and largemouth bass (Micropterus salmoides, piscivorous top predator). These data represent one of the largest fish Hg data sets for a single site, especially in California. Spatially, total Hg (TotHg) in silversides and bass declined with distance from the mine, indicating that the mine site represents a point source for Hg loading to Clear Lake. Temporally, fish Hg has not declined significantly over 12 years since mine site remediation. Mercury concentrations were variable throughout the study period, with no monotonic trends of increase or decrease, except those correlated with boom and bust cycles of an introduced fish, threadfin shad (Dorosoma petenense). However, stochastic events such as storms also influence juvenile largemouth bass Hg as evidenced during an acid mine drainage overflow event in 1995. Compared to other sites regionally and nationally, most fish in Clear Lake exhibit Hg concentrations similar to other Hg-contaminated sites, up to approximately 2.0 mg/kg wet mass (WM) TotHg in largemouth bass. However, even these elevated concentrations are less than would be anticipated from such high inorganic Hg loading to the lake. Mercury in some Clear Lake largemouth bass exceeded all human health fish consumption guidelines established over the past 25 years by the U.S. Food and Drug Administration (1.0 mg/kg WM), the National Academy of Sciences (0.5 mg/kg WM), and the U.S. EPA (0.3 mg/kg WM). Mercury in higher trophic level fishes

  6. Spatiotemporal trends in fish mercury from a mine-dominated ecosystem: Clear Lake, California.

    PubMed

    Suchanek, Thomas H; Eagles-Smith, Collin A; Slotton, Darell G; Harner, E James; Colwell, Arthur E; Anderson, Norman L; Mullen, Lauri H; Flanders, John R; Adam, David P; McElroy, Kenneth J

    2008-12-01

    Clear Lake, California, USA, receives acid mine drainage and mercury (Hg) from the Sulphur Bank Mercury Mine, a U.S. Environmental Protection Agency (U.S. EPA) Superfund Site that was active intermittently from 1873 to 1957 and partially remediated in 1992. Mercury concentrations were analyzed primarily in four species of Clear Lake fishes: inland silversides (Menidia beryllina, planktivore), common carp (Cyprinus carpio, benthic scavenger/omnivore), channel catfish (Ictalurus punctatus, benthic omnivorous predator), and largemouth bass (Micropterus salmoides, piscivorous top predator). These data represent one of the largest fish Hg data sets for a single site, especially in California. Spatially, total Hg (TotHg) in silversides and bass declined with distance from the mine, indicating that the mine site represents a point source for Hg loading to Clear Lake. Temporally, fish Hg has not declined significantly over 12 years since mine site remediation. Mercury concentrations were variable throughout the study period, with no monotonic trends of increase or decrease, except those correlated with boom and bust cycles of an introduced fish, threadfin shad (Dorosoma petenense). However, stochastic events such as storms also influence juvenile largemouth bass Hg as evidenced during an acid mine drainage overflow event in 1995. Compared to other sites regionally and nationally, most fish in Clear Lake exhibit Hg concentrations similar to other Hg-contaminated sites, up to approximately 2.0 mg/kg wet mass (WM) TotHg in largemouth bass. However, even these elevated concentrations are less than would be anticipated from such high inorganic Hg loading to the lake. Mercury in some Clear Lake largemouth bass exceeded all human health fish consumption guidelines established over the past 25 years by the U.S. Food and Drug Administration (1.0 mg/kg WM), the National Academy of Sciences (0.5 mg/kg WM), and the U.S. EPA (0.3 mg/kg WM). Mercury in higher trophic level fishes

  7. GROUNDWATER IMPACTED BY ACID MINE DRAINAGE

    EPA Science Inventory

    The generation and release of acidic, metal-rich water from mine wastes continues to be an intractable environmental problem. Although the effects of acid mine drainage (AMD) are most evident in surface waters, there is an obvious need for developing cost-effective approaches fo...

  8. BIORECOVERY OF METALS FROM ACID MINE DRAINAGE

    EPA Science Inventory

    Acid mine water is an acidic, metal-bearing wastewater generated by the oxidation of metallic sulfides by certain bacteria in both active and abandoned mining operations. The wastewaters contain substantial quantities of dissolved solids with the particular pollutants dependant u...

  9. A Mass balance mercury budget for a mine-dominated lake: Clear Lake, California

    USGS Publications Warehouse

    Suchanek, T.H.; Cooke, J.; Keller, K.; Jorgensen, S.; Richerson, P.J.; Eagles-Smith, C. A.; Harner, E.J.; Adam, D.P.

    2009-01-01

    The Sulphur Bank Mercury Mine (SBMM), active intermittently from 1873-1957 and now a USEPA Superfund site, was previously estimated to have contributed at least 100 metric tons (105 kg) of mercury (Hg) into the Clear Lake aquatic ecosystem. We have confirmed this minimum estimate. To better quantify the contribution of the mine in relation to other sources of Hg loading into Clear Lake and provide data that might help reduce that loading, we analyzed Inputs and Outputs of Hg to Clear Lake and Storage of Hg in lakebed sediments using a mass balance approach. We evaluated Inputs from (1) wet and dry atmospheric deposition from both global/regional and local sources, (2) watershed tributaries, (3) groundwater inflows, (4) lakebed springs and (5) the mine. Outputs were quantified from (1) efflux (volatilization) of Hg from the lake surface to the atmosphere, (2) municipal and agricultural water diversions, (3) losses from out-flowing drainage of Cache Creek that feeds into the California Central Valley and (4) biotic Hg removal by humans and wildlife. Storage estimates include (1) sediment burial from historic and prehistoric periods (over the past 150-3,000 years) from sediment cores to ca. 2.5m depth dated using dichloro diphenyl dichloroethane (DDD), 210Pb and 14C and (2) recent Hg deposition in surficial sediments. Surficial sediments collected in October 2003 (11 years after mine site remediation) indicate no reduction (but a possible increase) in sediment Hg concentrations over that time and suggest that remediation has not significantly reduced overall Hg loading to the lake. Currently, the mine is believed to contribute ca. 322-331 kg of Hg annually to Clear Lake, which represents ca. 86-99% of the total Hg loading to the lake. We estimate that natural sedimentation would cover the existing contaminated sediments within ca. 150-300 years. ?? 2008 Springer Science+Business Media B.V.

  10. Acid deposition: Processes of Lake Acidification

    SciTech Connect

    Not Available

    1984-01-01

    The Panel on Processes of Lake Acidification was assembled by the National Research Council at the request of the Environmental Protection Agency. The panel was charged with discussing the processes that control the rate of acidification of streams and lakes and to suggest how EPA's research program might approach addressing current deficiencies in knowledge. The panel defined the acidification of lakes and streams as a decrease in alkalinity over time. Soil acidification is the decrease in the percent base saturation over time. The panel concurred that in forested watersheds that are underlain by granitic or other highly siliceous bedrock with acidic forest soils not receiving appreciable acid deposition, most lakes and streams have bicarbonate as the dominant anion and pH levels above 5.5. Generally, lakes and streams in similar habitats but in areas receiving appreciable acid deposition have sulfate as the dominant anion.

  11. Bioremediation of Pit Lakes - Gilt Edge Mine

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Region 8 Superfund Office and the EPA National Risk Management Research Laboratory (NRMRL) Mine Waste Technology Program (MWTP) conducted a field-scale treatability study demonstrating an in situ bio/geochemical treatment technology ...

  12. Acid Raindrops Keep Fallin' in My Lake.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2003

    2003-01-01

    Demonstrates acid rain falling into lakes using vinegar and explores the effects on different types of solids such as chalk, sand, and lime. Includes instructor information and student worksheets. (YDS)

  13. RECENT GEOCHEMICAL SAMPLING AND MERCURY SOURCES AT SULPHUR BANK MERCURY MINE, LAKE COUNTY, CA

    EPA Science Inventory

    The Sulphur Bank Mercury Mine (SBMM), located on the shore of Clear Lake in Lake County, California, has been identified as a significant source of mercury to the lake. Sulphur Bank was actively minded from the 1880's to the 1950's. Mining and processing operations at the Sulph...

  14. Acid mine drainage prediction and remediation

    SciTech Connect

    Robb, G.; Robinson, J.

    1996-12-31

    The use of constructed wetlands for treatment of acid mine drainage is discussed in the article. Drainage characteristics and mine water flow rate are identified as important predictors of remediation success. Aerobic and anaerobic chemical reaction processes are described. Problems and potential uses of wetlands are briefly described.

  15. Injection of FGD Grout to Abate Acid Mine Drainage in Underground Coal Mines

    SciTech Connect

    Mafi, S.; Damian, M.T.; Senita, R.E.; Jewitt, W.C.; Bair, S.; Chin, Y.C.; Whitlatch, E.; Traina, S.; Wolfe, W.

    1997-07-01

    Acid Mine Drainage (AMD) from abandoned underground coal mines in Ohio is a concern for both residents and regulatory agencies. Effluent from these mines is typically characterized by low pH and high iron and sulfate concentrations and may contaminate local drinking-water supplies and streams. The objective of this project is to demonstrate the technical feasibility of injecting cementitious alkaline materials, such as Flue Gas Desulfurization (FGD) material to mitigate current adverse environmental impacts associated with AMD in a small, abandoned deep mine in Coshocton County Ohio. The Flue Gas Desulfurization material will be provided from American Electric Power`s (AEP) Conesville Plant. It will be injected as a grout mix that will use Fixated Flue Gas Desulfurization material and water. The subject site for this study is located on the border of Coshocton and Muskingum Counties, Ohio, approximately 1.5 miles south-southwest of the town of Wills Creek. The study will be performed at an underground mine designated as Mm-127 in the Ohio Department of Natural Resources register, also known as the Roberts-Dawson Mine. The mine operated in the mid-1950s, during which approximately 2 million cubic feet of coal was removed. Effluent discharging from the abandoned mine entrances has low pH in the range of 2.8-3.0 that drains directly into Wills Creek Lake. The mine covers approximately 14.6 acres. It is estimated that 26,000 tons of FGD material will be provided from AEP`s Conesville Power Plant located approximately 3 miles northwest of the subject site.

  16. Applications of multi-season hyperspectral remote sensing for acid mine water characterization and mapping of secondary iron minerals associated with acid mine drainage

    NASA Astrophysics Data System (ADS)

    Davies, Gwendolyn E.

    Acid mine drainage (AMD) resulting from the oxidation of sulfides in mine waste is a major environmental issue facing the mining industry today. Open pit mines, tailings ponds, ore stockpiles, and waste rock dumps can all be significant sources of pollution, primarily heavy metals. These large mining-induced footprints are often located across vast geographic expanses and are difficult to access. With the continuing advancement of imaging satellites, remote sensing may provide a useful monitoring tool for pit lake water quality and the rapid assessment of abandoned mine sites. This study explored the applications of laboratory spectroscopy and multi-season hyperspectral remote sensing for environmental monitoring of mine waste environments. Laboratory spectral experiments were first performed on acid mine waters and synthetic ferric iron solutions to identify and isolate the unique spectral properties of mine waters. These spectral characterizations were then applied to airborne hyperspectral imagery for identification of poor water quality in AMD ponds at the Leviathan Mine Superfund site, CA. Finally, imagery varying in temporal and spatial resolutions were used to identify changes in mineralogy over weathering overburden piles and on dry AMD pond liner surfaces at the Leviathan Mine. Results show the utility of hyperspectral remote sensing for monitoring a diverse range of surfaces associated with AMD.

  17. Determination of polyfluoroalkyl phosphoric acid diesters, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, perfluoroalkyl carboxylic acids, and perfluoroalkane sulfonic acids in lake trout from the Great Lakes region.

    PubMed

    Guo, Rui; Reiner, Eric J; Bhavsar, Satyendra P; Helm, Paul A; Mabury, Scott A; Braekevelt, Eric; Tittlemier, Sheryl A

    2012-11-01

    A comprehensive method to extract perfluoroalkyl carboxylic acids, perfluoroalkane sulfonic acids, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, and polyfluoroalkyl phosphoric acid diesters simultaneously from fish samples has been developed. The recoveries of target compounds ranged from 78 % to 121 %. The new method was used to analyze lake trout (Salvelinus namaycush) from the Great Lakes region. The results showed that the total perfluoroalkane sulfonate concentrations ranged from 0.1 to 145 ng/g (wet weight) with perfluorooctane sulfonate (PFOS) as the dominant contaminant. Concentrations in fish between lakes were in the order of Lakes Ontario ≈ Erie > Huron > Superior ≈ Nipigon. The total perfluoroalkyl carboxylic acid concentrations ranged from 0.2 to 18.2 ng/g wet weight. The aggregate mean perfluorooctanoic acid (PFOA) concentration in fish across all lakes was 0.045 ± 0.023 ng/g. Mean concentrations of PFOA were not significantly different (p > 0.1) among the five lakes. Perfluoroalkyl phosphinic acids were detected in lake trout from Lake Ontario, Lake Erie, and Lake Huron with concentration ranging from non-detect (ND) to 0.032 ng/g. Polyfluoroalkyl phosphoric acid diesters were detected only in lake trout from Lake Huron, at levels similar to perfluorooctanoic acid.

  18. Do mining lakes in the Lusatian lignite mining region (Eastern Germany) affect regional precipitation patterns?

    NASA Astrophysics Data System (ADS)

    Brück, Yasemine; Pohle, Ina; Keuler, Klaus; Schaller, Eberhard; Hinz, Christoph

    2016-04-01

    Due to the flooding of former open-pit mines, Europe's largest artificial lake district is created in Eastern Germany. Between 1990 and 2006 more than 80 km² of new lakes have already been formed. These large-scale land cover changes may impact regional meteorological characteristics, therefore it is of interest, whether effects of the mining lakes can already be observed. We especially focus on whether the evaporation from the mining pit lakes leads to a higher precipitation on their lee side. To detect changes in the precipitation patterns, we analysed daily precipitation data (1980-2014) of 25 stations in an area of 10 000 km² widely around the lake district. Under the assumption that the influences of the lakes should be detectable either directly as trends in the observed data or as a deviation from a general measure for precipitation we combined statistical tests and principal component analysis (PCA). We applied pre-whitening Mann-Kendall tests to detect precipitation trends and Mann-Whitney tests to detect differences between split samples (before and after the flooding of most of the lakes). The PCA was applied based on the correlation matrix of daily precipitation at the different stations. As the daily precipitation can sufficiently be explained by the first five principal components, the recombination of these five principal components was used as a general measure of precipitation in the region. By regression trees (random forests) a relationship between the eigenvectors of the first five principal components and physiogeographic characteristics of the stations (e.g. altitude) was shown. Both the observed data and the deviations between the measurements and the recombination of the first five principal components showed divergent trends with high spatial variability and also interannual variability, but a pattern consistent with the lee side of the lake could not be detected. Therefore, it has been demonstrated that the emerging lakes had no

  19. Metals in crayfish from neutralized acidic and non-acidic lakes

    SciTech Connect

    Bagatto, G.; Alikhan, M.A.

    1987-09-01

    Large amounts of acid forming SO/sub 2/, as well as Cu, Ni and other metals are being continuously released into the environment by mining and smelting activities at Sudbury, Ontario, Canada. Consequently, a number of lakes in this region has become both acid and metal stressed. The addition of basic calcium compounds to acidic ponds and lakes has long been recognized as beneficial, as it contributes to increased fish production and water quality. In addition to increases in pH and alkalinity, such additions may reduce water-dissolved metal concentrations, change water transparency and bring about alterations in species diversity. Neutralization experiments have shown that an increase in water alkalinity and DOC may reduce the acute toxicity of Cu to fish. However, the influence of water quality on metal availability and accumulation has received scant attention. Earlier work showed that tissue metal concentrations in crayfish were related to the distance from the emission site. The purpose of the present study is to compare concentrations of six metals in freshwater crayfish from a neutralized acidic lake and a closely situated non-acidic lake. Various tissue concentrations in crayfish are also examined to determine specific tissue sites for these accumulations.

  20. Acidophilic, heterotrophic bacteria of acidic mine waters

    SciTech Connect

    Wichlacz, P.L.; Unz, R.F.

    1981-05-01

    Obligately acidophilic, heterotrophic bacteria were isolated both from enrichment cultures developed with acidic mine water and from natural mine drainage. The bacteria were grouped by the ability to utilize a number of organic acids as sole carbon sources. None of the strains were capable of chemolithotrophic growth on inorganic reduced iron and sulfur compounds. All bacteria were rod shaped, gram negative, nonencapsulated, motile, capable of growth at pH 2.6 but not at pH 6.0, catalase and oxidase positive, strictly aerobic, and capable of growth on citric acid. The bacteria were cultivatable on solid nutrient media only if agarose was employed as the hardening agent. Bacterial densities in natural mine waters ranged from approximately 20 to 250 cells per ml, depending upon source and culture medium.

  1. Penn State researches acid mine drainage

    SciTech Connect

    Not Available

    1984-08-27

    A brief news item reports that work is being carried out at Penn State University on the effectiveness of sphagnum moss and other marsh-type plants in removing iron from acid mine water. A sphagnum moss bog has been established in a greenhouse at the University and field work is also being undertaken in a natural environment in Clearfield County.

  2. SEASONAL VARIATIONS OF DISSOLVED MERCURY CONCENTRATIONS AT THE SULPHUR BANK MERCURY MINE, CLEAR LAKE, CALIFORNIA: IMPLICATIONS FOR MINE DRAINAGE MONITORING

    EPA Science Inventory

    The Sulphur Bank Mercury Mine in Lake County, California (SBMM) was operated from the 1860s through the 1950s. Mining for sulfur started with surface operations and then progressed to shaft and later open pit techniques to obtain mercury. SBMM is located adjacent to the shore o...

  3. Mechanism of microearthquakes within the Cigar Lake mine, Canada

    NASA Astrophysics Data System (ADS)

    Adamova, Petra; Šílený, Jan

    2015-04-01

    The moment tensor (MT) used today as a universal tool for descriptions of the mechanism, captures general balanced dipole sources. However, in the case of small-scale earthquakes, the moment tensor needs not always be reliably determined. In an effort to fit the data, there may be notable non-shear components caused by a low quality of input data. Implementation of a constrained model of the mechanism, described by less parameters than the traditional MT, can reduce the error in the retrieved source mechanism. In addition, constraining the source model to determine directly a simpler one is convenient for describing the physical phenomena expected for a particular focus. An opening of new fractures can be described, to a first approximation, by a tensile crack, optionally combined with a shear slip. The reverse motion describes a closing of a vacancy. This model, alternative to the MT, is called a shear-tensile crack (STC) source model. The combination is practical, and can be used both to identify events that reflect purely mode-I (tensile/implosion) failure and to determine the dilation angle of the fracture undergoing shear. Its application is useful in situations where there is a physical reason to expect volume changes in the foci of seismogenic events, which is the case of many processes taking place in induced seismicity. The Cigar Lake mine is the second largest high grade uranium deposit in the world: it is located in northern Saskatchewan, Canada. A microseismic monitoring system was installed as a tool to locate potential ground movements during or after the mine dewatering process. The microseismic monitoring system initially included six monitoring boreholes. Each site is equipped with four three-component geophones stationed between 275 - 575 meters in depth. The seventh borehole is configured with eight geophones: four near surface string and the other four in a lower positioned string. The approximate surveillance coverage of the microseismic

  4. Acid mine water treatment using engineered wetlands

    NASA Astrophysics Data System (ADS)

    Kleinmann, Robert L. P.

    1990-03-01

    During the last two decades, the United States mining industry has greatly increased the amount it spends on pollution control. The application of biotechnology to mine water can reduce the industry's water treatment costs (estimated at over a million dollars a day) and improve water quality in streams and rivers adversely affected by acidic mine water draining from abandoned mines. Biological treatment of mine waste water is typically conducted in a series of small excavated ponds that resemble, in a superficial way, a small marsh area. The ponds are engineered to first facilitate bacterial oxidation of iron; ideally, the water then flows through a composted organic substrate that supports a population of sulfate-reducing bacteria. The latter process raises the pH. During the past four years, over 400 wetland water treatment systems have been built on mined lands as a result of research by the U.S. Bureau of Mines. In general, mine operators find that the wetlands reduce chemical treatment costs enough to repay the cost of wetland construction in less than a year. Actual rates of iron removal at field sites have been used to develop empirical sizing criteria based on iron loading and pH. If the pH is 6 or above, the wetland area (m2) required is equivalent to the iron load (grams/day) divided by 10. Theis requirement doubles at a pH of 4 to 5. At a pH below 4, the iron load (grams/day) should be divided by 2 to estimate the area required (m2).

  5. Hyperspectral analysis for qualitative and quantitative features related to acid mine drainage at a remediated open-pit mine

    NASA Astrophysics Data System (ADS)

    Davies, G.; Calvin, W. M.

    2015-12-01

    The exposure of pyrite to oxygen and water in mine waste environments is known to generate acidity and the accumulation of secondary iron minerals. Sulfates and secondary iron minerals associated with acid mine drainage (AMD) exhibit diverse spectral properties in the ultraviolet, visible and near-infrared regions of the electromagnetic spectrum. The use of hyperspectral imagery for identification of AMD mineralogy and contamination has been well studied. Fewer studies have examined the impacts of hydrologic variations on mapping AMD or the unique spectral signatures of mine waters. Open-pit mine lakes are an additional environmental hazard which have not been widely studied using imaging spectroscopy. A better understanding of AMD variation related to climate fluctuations and the spectral signatures of contaminated surface waters will aid future assessments of environmental contamination. This study examined the ability of multi-season airborne hyperspectral data to identify the geochemical evolution of substances and contaminant patterns at the Leviathan Mine Superfund site. The mine is located 24 miles southeast of Lake Tahoe and contains remnant tailings piles and several AMD collection ponds. The objectives were to 1) distinguish temporal changes in mineralogy at a the remediated open-pit sulfur mine, 2) identify the absorption features of mine affected waters, and 3) quantitatively link water spectra to known dissolved iron concentrations. Images from NASA's AVIRIS instrument were collected in the spring, summer, and fall seasons for two consecutive years at Leviathan (HyspIRI campaign). Images had a spatial resolution of 15 meters at nadir. Ground-based surveys using the ASD FieldSpecPro spectrometer and laboratory spectral and chemical analysis complemented the remote sensing data. Temporal changes in surface mineralogy were difficult to distinguish. However, seasonal changes in pond water quality were identified. Dissolved ferric iron and chlorophyll

  6. Spatial characterization of acid rain stress in Canadian Shield lakes

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1986-01-01

    The acidification of lake waters from airborne pollutants is of continental proportions both in North America and Europe. A major concern of the acid rain problem is the cumulative ecosystem damage to lakes and forest. The number of lakes affected in northeastern United States and on the Canadian Shield is though to be enormous. The principle objective is to examine how seasonal changes in lake water transparency are related to annual acidic load. Further, the relationship between variations in lake acidification and ecophysical units is being examined. Finally, the utility of Thematic Mapper (TM) based observations to measure seasonal changes in the optical transparency in acid lakes is being investigated.

  7. Mining, metallurgy and the historical origin of mercury pollution in lakes and watercourses in Central Sweden.

    PubMed

    Bindler, Richard; Yu, Ruilian; Hansson, Sophia; Classen, Neele; Karlsson, Jon

    2012-08-01

    In Central Sweden an estimated 80% of the lakes contain fish exceeding health guidelines for mercury. This area overlaps extensively with the Bergslagen ore region, where intensive mining of iron ores and massive sulfide ores occurred over the past millennium. Although only a few mines still operate today, thousands of mineral occurrences and mining sites are documented in the region. Here, we present data on long-term mercury pollution in 16 sediment records from 15 lakes, which indicate that direct release of mercury to lakes and watercourses was already significant prior to industrialization (lakes show increases in mercury from 3-fold-equivalent to the enrichment factor in many remote lakes today-to as much as 60-fold already during the period AD 1500-1800, with the highest values in the three lakes most closely connected to major mines. Although the timing and magnitude of the historical increases in mercury are heterogeneous among lakes, the data provide unambiguous evidence for an incidental release of mercury along with other mining metals to lakes and watercourses, which suggests that the present-day problem of elevated mercury concentrations in the Bergslagen region can trace its roots back to historical mining.

  8. Distribution of haloacetic acids in the water columns of the Laurentian Great Lakes and Lake Malawi.

    PubMed

    Scott, Brian F; Spencer, Christine; Marvin, Christopher H; MacTavish, David C; Muir, Derek C G

    2002-05-01

    Haloacetic acids (HAAs) are persistent and mildly phytotoxic compounds that have been detected in many aquatic environments, including the waters of the Great Lakes. Sources of HAAs, especially of trifluoroacetic acid (TFA), are not well understood. In this study we assessed the influence of urbanization on the concentrations and profiles of HAAs in the Laurentian Great Lakes and in Lake Malawi, an African Great Lake. Vertical depth profiles for these compounds were taken for each of the Great Lakes with additional profiles taken 2 years later for Lakes Erie and Ontario. The results showed that while TFA was relatively constant throughout the water column, the chloroacetic acids (CAAs) varied with depth. There was a trend of increasing TFA proceeding from Lake Superior to Lake Ontario (18-150 ng/L). Total CAA concentrations were relatively constant throughout the lakes (approximately 500 ng/L) with dichloroacetic acid being the most abundant. No bromoacetic acids were detected. In the Detroit River, a connecting channel between Lakes Huron and Erie, the TFA values were similar to those in Lake Huron, but the CAAs levels were higher than in the upstream lakes and dependent on location, indicating inputs from urban areas along the river. These results were compared to those from Lake Malawi, which has a high population density within the watershed but no heavy industry. CAAs were nondetectable, and TFA concentrations were just at the detection limit (1 ng/L). Total HAA in the water column of Lakes Superior and Huron was compared to annual precipitation inputs at a site situated near both lakes. For Lake Huron, precipitation was a minor contributor to the total HAA inventory of the lake, but for Lake Superior precipitation could be the major contributor to the mass of HAA in this lake. Generally, high HAA levels paralleled the degree of industrial activity in the adjacent waters.

  9. PREVENTION OF ACID MINE DRAINAGE GENERATION FROM OPEN-PIT MINE HIGHWALLS

    EPA Science Inventory



    Exposed, open pit mine highwalls contribute significantly to the production of acid mine

    drainage (AMD) thus causing environmental concerns upon closure of an operating mine. Available information on the generation of AMD from open-pit mine highwalls is very limit...

  10. Artificial Post mining lakes - a challenge for the integration in natural hydrography and river basin management

    NASA Astrophysics Data System (ADS)

    Fleischhammel, Petra; Schoenheinz, Dagmar; Grünewald, Uwe

    2010-05-01

    In terms of the European Water Framework Directive (WFD), post mining lakes are artificial water bodies (AWB). The sustainable integration of post mining lakes in the groundwater and surface water landscape and their consideration in river basin management plans have to be linked with various (geo)hydrological, hydro(geo)chemical, technological and socioeconomic issues. The Lower Lusatian lignite mining district in eastern Germany is part of the major river basins of river Elbe and river Oder. Regionally, the mining area is situated in the sub-basins of river Spree and Schwarze Elster. After the cessation of mining activities and thereby of the artificially created groundwater drawdown in numerous mining pits, a large number of post mining lakes are evolving as consequence of natural groundwater table recovery. The lakes' designated uses vary from water reservoirs to landscape, recreation or fish farming lakes. Groundwater raise is not only substantial for the lake filling, but also for the area rehabilitation and a largely self regulated water balance in post mining landscapes. Since the groundwater flow through soil and dump sites being affected by the former mining activities, groundwater experiences various changes in its hydrochemical properties as e.g. mineralization and acidification. Consequently, downstream located groundwater fed running and standing water bodies will be affected too. Respective the European Water Framework Directive, artificial post mining lakes are not allowed to cause significant adverse impacts on the good ecological status/potential of downstream groundwater and surface water bodies. The high sulphate concentrations of groundwater fed mining lakes which reach partly more than 1,000 mg/l are e.g. damaging concrete constructures in downstream water bodies thereby representing threats for hydraulic facilities and drinking water supply. Due to small amounts of nutrients, the lakes are characterised by oligo¬trophic to slightly

  11. Acid mine treatment with open limestone channels

    SciTech Connect

    Ziemkiewicz, P.F.; Brant, D.L.; Skousen, J.G.

    1996-12-31

    Acid mine drainage (AMD) is often associated with mining of pyritic coal and metal deposits. Typical AMD associated with coal mines in the eastern US can have acidity and iron concentrations ranging from the teens to the thousands of mg/l. Aluminum and manganese can be present in concentrations ranging from zero to the low hundreds of mg/l. Much attention has been devoted to developing inexpensive, limestone (LS)-based systems for treating AMID with little or no maintenance. However, LS tends to coat with metal hydroxides when exposed to AMID in an oxidized state, a process known as {open_quotes}armoring{close_quotes}. It is generally assumed that once armored, LS ceases to neutralize acid. Another problem is that the hydroxides tend to settle into plug the pore spaces in LS beds forcing water to move around rather than through the LS. While both are caused by the precipitation of metal hydroxides, armoring and plugging are two different problems. Plugging of LS pores can be avoided by maintaining a high flushing rate through the LS bed. Armoring, however, occurs regardless of water velocity. This study investigated the influence of armoring on LS solubility and the implications of armoring and plugging on the construction of open (oxidizing) LS channels for treating AMD. We evaluated the AMID treatment performance of armored and unarmored LS in oxidizing environments both in laboratory and field studies.

  12. Artificial Post mining lakes - a challenge for the integration in natural hydrography and river basin management

    NASA Astrophysics Data System (ADS)

    Fleischhammel, Petra; Schoenheinz, Dagmar; Grünewald, Uwe

    2010-05-01

    In terms of the European Water Framework Directive (WFD), post mining lakes are artificial water bodies (AWB). The sustainable integration of post mining lakes in the groundwater and surface water landscape and their consideration in river basin management plans have to be linked with various (geo)hydrological, hydro(geo)chemical, technological and socioeconomic issues. The Lower Lusatian lignite mining district in eastern Germany is part of the major river basins of river Elbe and river Oder. Regionally, the mining area is situated in the sub-basins of river Spree and Schwarze Elster. After the cessation of mining activities and thereby of the artificially created groundwater drawdown in numerous mining pits, a large number of post mining lakes are evolving as consequence of natural groundwater table recovery. The lakes' designated uses vary from water reservoirs to landscape, recreation or fish farming lakes. Groundwater raise is not only substantial for the lake filling, but also for the area rehabilitation and a largely self regulated water balance in post mining landscapes. Since the groundwater flow through soil and dump sites being affected by the former mining activities, groundwater experiences various changes in its hydrochemical properties as e.g. mineralization and acidification. Consequently, downstream located groundwater fed running and standing water bodies will be affected too. Respective the European Water Framework Directive, artificial post mining lakes are not allowed to cause significant adverse impacts on the good ecological status/potential of downstream groundwater and surface water bodies. The high sulphate concentrations of groundwater fed mining lakes which reach partly more than 1,000 mg/l are e.g. damaging concrete constructures in downstream water bodies thereby representing threats for hydraulic facilities and drinking water supply. Due to small amounts of nutrients, the lakes are characterised by oligo¬trophic to slightly

  13. Acid mine water aeration and treatment system

    DOEpatents

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  14. Spatial characterization of acid rain stress in Canadian Shield lakes

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1986-01-01

    A major concern of the acid rain problem is the cumulative ecosystem damage to lakes and forests. The number of lakes affected in northeastern United States and on the Canadian Shield is thought to be enormous. Seasonal changes in lake transparency are examined relative to annual acidic load. The relationship between variations in lake acidification and ecophysical units is being examined. Finally, the utility of Thematic Mapper (TM) based observations is being used to measure seasonal changes in the optical transparency in acid lakes.

  15. Using a mass balance to understand the geology and geochemistry of a reservoir receiving and discharging acid mine drainage

    SciTech Connect

    Turney, D.C.; Edwards, K.

    1996-11-01

    Howard-Williams Lake is a 14.5 acre reservoir located in an abandoned coal mine in Perry County, Ohio. With a pH of 3.0 and acidity values of 300--400 mg/L, the reservoir has no plants or fish currently surviving in the lake. Reclamation of spoil piles adjacent to the lake to the north in the late 1980s was not successful in reducing the acidity of the lake. Currently, papermill sludge is being used on the reclaimed area to the north to promote vegetation, but the reservoir has shown no signs of improving. The goal of this project is to transform the lake into a fishable and swimmable one. The reservoir is receiving about 175 gallons per minute of acid mine drainage, not including seepage into the lake, from eight different sources. Three of the sources account for about 165 gallons per minute of the surface water that enters the lake. These inflows have relatively low acidity readings, which range from 66 mg/L to 568 mg/L. The other five sources of acid mine drainage have much lower flowrates, but have acidity values as high as 3,000 mg/L. Samples of all of the surface inflows and the outflow of the lake were taken and sent to a laboratory and tested for the following parameters: total acidity as CaCO{sub 3}, total alkalinity as CaCO{sub 2}, specific conductivity, total suspended solids, sulfate, chloride calcium, magnesium, sodium, potassium, total iron, total manganese, aluminum, and hardness. During sampling of the surface inflows, volumetric flowrates were measured for each inflow. Once the flowrates and the concentrations of the various parameters were known, a mass balance could be constructed which would show how much of each parameter was entering the lake each day. These data were then used to gain an understanding of the geochemistry and geology of the site.

  16. Egg fatty acid composition from lake trout fed two Lake Michigan prey fish species.

    USGS Publications Warehouse

    Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.; Brown, S.B.

    2009-01-01

    We previously demonstrated that there were significant differences in the egg thiamine content in lake trout Salvelinus namaycush fed two Lake Michigan prey fish (alewife Alosa pseudoharengus and bloater Coregonus hoyi). Lake trout fed alewives produced eggs low in thiamine, but it was unknown whether the consumption of alewives affected other nutritionally important components. In this study we investigated the fatty acid composition of lake trout eggs when females were fed diets that resulted in different egg thiamine concentrations. For 2 years, adult lake trout were fed diets consisting of four combinations of captured alewives and bloaters (100% alewives; 65% alewives, 35% bloaters; 35% alewives, 65% bloaters; and 100% bloaters). The alewife fatty acid profile had higher concentrations of arachidonic acid and total omega-6 fatty acids than the bloater profile. The concentrations of four fatty acids (cis-13, 16-docosadienoic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) were higher in bloaters than in alewives. Although six fatty acid components were higher in lake trout eggs in 2001 than in 2000 and eight fatty acids were lower, diet had no effect on any fatty acid concentration measured in lake trout eggs in this study. Based on these results, it appears that egg fatty acid concentrations differ between years but that the egg fatty acid profile does not reflect the alewife-bloater mix in the diet of adults. The essential fatty acid content of lake trout eggs from females fed alewives and bloaters appears to be physiologically regulated and adequate to meet the requirements of developing embryos.

  17. UNDERSTANDING THE IMPACT OF ENVIRONMENTAL VARIABLES ON THE LEACHING OF MERCURY-CONTAMINATED MINE WASTES FROM THE SULFUR BANK MERCURY MINE, CLEAR LAKE, CA

    EPA Science Inventory

    For nearly a century, Clear Lake in northern California has received inputs of mercury (Hg) mining wastes trom the Sulfur Bank Mercury Mine (SBMM). About 1.2 million tons of Hg-contaminated overburden and mine tailings were distributed over a 50-ha surface area due to mining oper...

  18. ANTHROPOGENIC COPPER INVENTORIES AND MERCURY PROFILES FROM LAKE SUPERIOR: EVIDENCE FOR MINING IMPACTS

    EPA Science Inventory

    During the past 150 years, the mining indstry discharged more than a billion tons of tailings along Lake Superior shorelines and constructed numerous smelters in the watershed. Given the vast size of Lake Superior, were sediment profiles at locations far offshore impacted by near...

  19. Acid mine drainage and subsidence: effects of increased coal utilization.

    PubMed Central

    Hill, R D; Bates, E R

    1979-01-01

    The increases above 1975 levels for acid mine drainage and subsidence for the years 1985 and 2000 based on projections of current mining trends and the National Energy Plan are presented. No increases are projected for acid mine drainage from surface mines or waste since enforcement under present laws should control this problem. The increase in acid mine drainage from underground mines is projected to be 16 percent by 1985 and 10 percent by 2000. The smaller increase in 2000 over 1985 reflects the impact of the PL 95-87 abandoned mine program. Mine subsidence is projected to increase by 34 and 115 percent respectively for 1985 and 2000. This estimate assumes that subsidence will parallel the rate of underground coal production and that no new subsidence control measures are adopted to mitigate subsidence occurrence. PMID:540617

  20. Spatial characterization of acid rain stress in Canadian Shield Lakes

    NASA Technical Reports Server (NTRS)

    Tanis, F. J.; Marshall, E. M.

    1989-01-01

    The lake acidification in Northern Ontario was investigated using LANDSAT TM to sense lake volume reflectance and also to provide important vegetation and terrain characteristics. The purpose of this project was to determine the ability of LANDSAT to assess water quality characteristics associated with lake acidification. Results demonstrate that a remote sensor can discriminate lake clarity based upon reflection. The basic hypothesis is that seasonal and multi-year changes in lake optical transparency are indicative of sensitivity to acidic deposition. In many acid-sensitive lakes optical transparency is controlled by the amount of dissolved organic carbon present. Seasonal changes in the optical transparency of lakes can potentially provide an indication of the stress due to acid deposition and loading.

  1. A study of acid and ferruginous mine water in coal mining operations

    NASA Astrophysics Data System (ADS)

    Atkins, A. S.; Singh, R. N.

    1982-06-01

    The paper describes a bio-chemical investigation in the laboratory to identify various factors which promote the formation of acidic and ferruginous mine water. Biochemical reactions responsible for bacterial oxidation of Iron pyrites are described. The acidic and ferruginous mine water are not only responsible for the corrosion of mine plant and equipment and formation of scales in the delivery pipe range, but also pollution of the mine surface environment, thus affecting the surface ecology. Control measures to mitigate the adverse effects of acid mine discharge include the protection of mining equipment and prevention of formation of acid and ferruginous water. Various control measures discussed in the paper are blending with alkaline or spring water, use of neutralising agents and bactericides, and various types of seals for preventing water and air coming into contact with pyrites in caved mine workings.

  2. Phycomicrobial ecology of acid mine drainage in the Piedmont of Virginia

    SciTech Connect

    Krishnaswamy, R.; Hanger, R.A.

    1998-12-31

    Acid mine drainage encompasses 18 km{sup 2} of Louisa County, Virginia. Heavy metal laden acidic leachate flows from abandoned mines along the Piedmont`s Gold-Pyrite Belt. The oxidation of pyrite, sphalerite, chalcopyrite and other sulfide minerals that are disseminated throughout the mine tailings release H{sub 2}SO{sub 4}, Fe, Cu, Zn, Ni, Cd, As, Pb and other heavy metals into the Contrary Creek watershed and beyond, into Lake Anna. Downstream of these abandoned pyrite mines, high levels of acidity and heavy metals have made this a severely stressed environment incapable of supporting a healthy creek ecosystem. In an effort to assess in-situ, bioaccumulatory remediation of acid mine drainage by phycomicrobial mats, surveys have been conducted for 11 months in Contrary Creek; several extremophiles that are tolerant of acid mine systems have been found. Twelve to thirteen genera of algae and a few cocci and bacilli have been identified in surface waters. Predominant genera include Ulothrix, Pinnularia and Oscillatoria. Preliminary results demonstrate that the phycomicrobial communities found in this acid mine system maintain density and species diversity independent of pH and heavy metal fluctuations. These extremophiles also demonstrate high potential for heavy metal sorption. Phycomicrobial mats bioaccumulate 60--70% more heavy metals than concentrations found in surface waters and the creek. To date, remediatory attempts to restore Contrary Creek have not been successful. Results suggest that the extremophile ecology found in this system will facilitate the remediation process of other, similar acid mine affected ecosystems.

  3. Remediation of acid mine drainage with sulfate reducing bacteria

    SciTech Connect

    Hauri, J.F.; Schaider, L.A.

    2009-02-15

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed changes in dissolved metal concentrations and pH. Using synthetic acid mine drainage and combinations of inputs, students monitor their bioreactors for decreases in dissolved copper and iron concentrations.

  4. Hydrogeologic controls on the groundwater interactions with an acidic lake in karst terrain, Lake Barco, Florida

    USGS Publications Warehouse

    Lee, T.M.

    1996-01-01

    Transient groundwater interactions and lake stage were simulated for Lake Barco, an acidic seepage lake in the mantled karst of north central Florida. Karst subsidence features affected groundwater flow patterns in the basin and groundwater fluxes to and from the lake. Subsidence features peripheral to the lake intercepted potential groundwater inflow and increased leakage from the shallow perimeter of the lake bed. Simulated groundwater fluxes were checked against net groundwater flow derived from a detailed lake hydrologic budget with short-term lake evaporation computed by the energy budget method. Discrepancies between modeled and budget- derived net groundwater flows indicated that the model underestimated groundwater inflow, possibly contributed to by transient water table mounding near the lake. Recharge from rainfall reduced lake leakage by 10 to 15 times more than it increased groundwater inflow. As a result of the karst setting, the contributing groundwater basin to the lake was 2.4 ha for simulated average rainfall conditions, compared to the topographically derived drainage basin area of 81 ha. Short groundwater inflow path lines and rapid travel times limit the contribution of acid-neutralizing solutes from the basin, making Lake Barco susceptible to increased acidification by acid rain.

  5. Chemical hazards from acid crater lakes

    NASA Astrophysics Data System (ADS)

    van Bergen, M. J.; Sumarti, S.; Heikens, A.; Bogaard, T. A.; Hartiyatun, S.

    2003-04-01

    Acid crater lakes, which are hosted by a considerable number of active volcanoes, form a potential threat for local ecosystems and human health, as they commonly contain large amounts of dissolved chemicals. Subsurface seepage or overflow can lead to severe deterioration of the water quality of rivers and wells, as observations around several of these volcanoes have shown. The Ijen crater lake in East Java (Indonesia) is a striking example, as this reservoir of hyperacid (pH<0.5) sulphate, chloride and fluoride-rich water is the source of a ca. 50 km long acid river that transports substantial quantities of potentially toxic elements. A downstream trend of increasing pH from <1 to 2.5-4 is largely due to dilution with moderately acid springs (pH= ca. 4) and neutral tributaries (pH= ca. 7) inside the Ijen caldera. Geochemical controls that regulate element transport are subject to seasonal fluctuations in rainfall. Long-term monitoring has shown that fluoride levels pose some of the most severe environmental threats. Its concentration decreases from ca. 1300 mg/kg in the lake to ca. 10 mg/kg in a coastal area downstream, where virtually all of the river water is used for irrigating rice fields and other cropland. Apart from serious problems for agriculture, our survey of 55 drinking water wells in the irrigation area shows that 50% contain fluoride above the 1.5 ppm WHO limit, in line with the observation that dental fluorosis is widespread among the ca. 100,000 residents of the area. A conspicuous spatial correlation between fluoride concentrations and the irrigation system suggest that long-term (century) infiltration of irrigation water may have affected the quality of groundwater. Fluorosis is also a problem in some villages within the caldera, where well water sources may have a more direct subsurface connection with the lake system. From our observations we conclude that water-quality monitoring is especially needed for health reasons in volcanic areas where

  6. LIME TREATMENT LAGOONS TECHNOLOGY FOR TREATING ACID MINE DRAINAGE FROM TWO MINING SITES

    EPA Science Inventory

    Runoff and drainage from active and inactive mines are someof the most environmentally damaging land uses i the US. Acid Mine drainage (AMD) from mining sites across the country requires treatment because of high metal concentrations that exceed regulatory standards for safe disc...

  7. Is acid rain impacting the Sudetic lakes?

    PubMed

    Sienkiewicz, Elwira; Gasiorowski, Michał; Hercman, Helena

    2006-10-01

    The diatoms and Cladocera (Crustacea) remains from two lakes in the Sudets Mountains were analyzed to indicate an influence of acidification induced by anthropogenic factors during the last 150 years. The border area of the Czech Republic, Germany and Poland, the so-called "Black Triangle", has been strongly impacted by developed industry for several decades. The most visible effect of this process is the destruction of mountain forests in the region by acid rains. The diatom communities of Mały Staw and Wielki Staw show that acid rain has strongly affected water biota. Diatom-inferred pH reconstruction suggests major acidification during the last two decades. This process was controlled mainly by anthropogenic factors. Cladoceran records also presented changes of dominant taxa in this period and point to significant changes in living conditions. The discovery of a pH decrease during the last decade is contradictory to emissions data that suggest decrease in industrial pollution.

  8. Bioreactor for acid mine drainage control

    DOEpatents

    Zaluski, Marek H.; Manchester, Kenneth R.

    2001-01-01

    A bioreactor for reacting an aqueous heavy metal and sulfate containing mine drainage solution with sulfate reducing bacteria to produce heavy metal sulfides and reduce the sulfuric acid content of the solution. The reactor is an elongated, horizontal trough defining an inlet section and a reaction section. An inlet manifold adjacent the inlet section distributes aqueous mine drainage solution into the inlet section for flow through the inlet section and reaction section. A sulfate reducing bacteria and bacteria nutrient composition in the inlet section provides sulfate reducing bacteria that with the sulfuric acid and heavy metals in the solution to form solid metal sulfides. The sulfate reducing bacteria and bacteria nutrient composition is retained in the cells of a honeycomb structure formed of cellular honeycomb panels mounted in the reactor inlet section. The honeycomb panels extend upwardly in the inlet section at an acute angle with respect to the horizontal. The cells defined in each panel are thereby offset with respect to the honeycomb cells in each adjacent panel in order to define a tortuous path for the flow of the aqueous solution.

  9. Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge.

    PubMed

    Anawar, Hossain Md

    2015-08-01

    The oxidative dissolution of sulfidic minerals releases the extremely acidic leachate, sulfate and potentially toxic elements e.g., As, Ag, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Th, U, Zn, etc. from different mine tailings and waste dumps. For the sustainable rehabilitation and disposal of mining waste, the sources and mechanisms of contaminant generation, fate and transport of contaminants should be clearly understood. Therefore, this study has provided a critical review on (1) recent insights in mechanisms of oxidation of sulfidic minerals, (2) environmental contamination by mining waste, and (3) remediation and rehabilitation techniques, and (4) then developed the GEMTEC conceptual model/guide [(bio)-geochemistry-mine type-mineralogy- geological texture-ore extraction process-climatic knowledge)] to provide the new scientific approach and knowledge for remediation of mining wastes and acid mine drainage. This study has suggested the pre-mining geological, geochemical, mineralogical and microtextural characterization of different mineral deposits, and post-mining studies of ore extraction processes, physical, geochemical, mineralogical and microbial reactions, natural attenuation and effect of climate change for sustainable rehabilitation of mining waste. All components of this model should be considered for effective and integrated management of mining waste and acid mine drainage.

  10. Impact of Placer Mining on Sediment Transport in Headwaters of the Lake Baikal Basin.

    NASA Astrophysics Data System (ADS)

    Pietron, J.; Jarsjo, J.; Chalov, S.

    2015-12-01

    Adverse practices in alluvial surface mining (placer mining) can lead to shifts in sediment transport regimes of rivers. However, some placer mines are located in remote parts of river basins, which constrain data availability in mining impact assessments. One such mining area is the Zaamar Goldfield (Northern Mongolia) which stretches 60 km along the Tuul River. The area is located in the headwaters of the Lake Baikal Basin, and may impact the UNESCO World Heritage Site of Lake Baikal. Previous studies indicate that the mining industry in the Zaamar Goldfield loads the river system with considerable amount of contaminated sediments (heavy metals). Still, transport processes and possible changes in local to regional sediment transport need to be better understood. In this work, we use snapshot field measurements and various flow and transport modelling techniques to analyze (1) the impact of placer mining in the sediment delivery to the river system and (2) the dynamics of further sediment transport to downstream Tuul River. Our results indicate that surface mining operations and waste management have considerable impact on the sediment input from the landscape. Furthermore, dynamic in-channel storage of sediments can act as intermittent sources of mining sediments. These effects occur in addition to impacts of on-going changes in hydro-climatic conditions of the area. We hope that our methodology and results will aid in studying similar unmonitored and mining-affected river basins.

  11. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    ERIC Educational Resources Information Center

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  12. The control of acid mine drainage at the Summitville Mine Superfund Site

    SciTech Connect

    Ketellapper, V.L.; Williams, L.O.

    1996-11-01

    The Summitville Mine Superfund Site is located about 25 miles south of Del Norte, Colorado, in Rio Grande County. Occurring at an average elevation of 11,500 feet in the San Juan Mountain Range, the mine site is located two miles east of the Continental Divide. Mining at Summitville has occurred since 1870. The mine was most recently operated by Summitville Consolidated Mining Company, Inc. (SCMCI) as an open pit gold mine with extraction by means of a cyanide leaching process. In December of 1992, SCMCI declared bankruptcy and vacated the mine site. At that time, the US Environmental Protection Agency (EPA) took over operations of the water treatment facilities to prevent a catastrophic release of cyanide and metal-laden water from the mine site. Due to high operational costs of water treatment (approximately $50,000 per day), EPA established a goal to minimize active water treatment by reducing or eliminating acid mine drainage (AMD). All of the sources of AMD generation on the mine site were evaluated and prioritized. Of the twelve areas identified as sources of AMD, the Cropsy Waste Pile, the Summitville Dam Impoundment, the Beaver Mud Dump, the Reynolds and Chandler adits, and the Mine Pits were consider to be the most significant contributors to the generation of metal-laden acidic (low pH) water. A two part plan was developed to control AMD from the most significant sources. The first part was initiated immediately to control AMD being released from the Site. This part focused on improving the efficiency of the water treatment facilities and controlling the AMD discharges from the mine drainage adits. The second part of the plan was aimed at reducing the AMD generated in groundwater and surface water runoff from the mine wastes. A lined and capped repository located in the mine pits for acid generating mining waste and water treatment plant sludge was found to be the most feasible alternative.

  13. Acid rain stimulation of Lake Michigan phytoplankton growth

    USGS Publications Warehouse

    Manny, Bruce A.; Fahnenstiel, G.L.; Gardner, W.S.

    1987-01-01

    Three laboratory experiments demonstrated that additions of rainwater to epilimnetic lake water collected in southeastern Lake Michigan stimulated chlorophyll a production more than did additions of reagent-grade water during incubations of 12 to 20 d. Chlorophyll a production did not begin until 3–5 d after the rain and lake water were mixed. The stimulation caused by additions of rain acidified to pH 3.0 was greater than that caused by additions of untreated rain (pH 4.0–4.5). Our results support the following hypotheses: (1) Acid rain stimulates the growth of phytoplankton in lake water; (2) phosphorus in rain appears to be the factor causing this stimulation. We conclude that acid rain may accelerate the growth of epilimnetic phytoplankton in Lake Michigan (and other similar lakes) during stratification when other sources of bioavailable phosphorus to the epilimnion are limited

  14. THE HERMAN PIT AND ITS ROLE IN MERCURY TRANSPORT AT THE SULPHUR BANK MERCURY MINE SUPERFUND SITE, CLEAR LAKE, CALIFORNIA

    EPA Science Inventory

    The Sulphur Bank Mercury Mine (SBMM) is an abandoned sulphur and cinnabar mine located on the eastern shore of the Oaks Arm of Clear Lake, Lake County, California. SBMM was one of the largest mercury producers in California and has been described as one of the most productive sh...

  15. Acid mine drainage on public and private lands, the Walker Mine experience, Plumas County, California

    SciTech Connect

    Croyle, W.A.; Rosenbaum, S.E.

    1996-11-01

    A widespread environmental problem associated with abandoned mines and their tailings is acid mine drainage (AMD). AMID typically has low pH and elevated metal concentrations that are toxic to aquatic life. In Northern California, Iron Mountain and other mines in the Shasta mining districts are the largest sources of AMD. Additional sources lie to the south along a discontinuous belt of copper and zinc mineralization in the western Sierra foothills. Between these areas lies a remote group of copper mines in northeastern Plumas County including the Walker, Engels and Superior mines. Of this group, AMD from Walker Mine has caused the most severe water quality impairment. This paper describes the history and environmental setting of Walker Mine and the approaches used by the Central Valley Regional Water Quality Control Board, a state regulatory agency, to improve water quality at the site. Both the mine and its tailings contribute pollutants to the watershed. The mine has a portal discharge with depressed pH and high copper concentrations. The tailings add fine grained sediment to the creek and generate low but significant concentrations of dissolved copper. The mine is on private property and the tailings are on land managed by the U. S. Forest Service. Because of these differences in pollution problems and ownership, the methods employed by the Regional Board to improve conditions at the mine and tailings have been on different, but parallel tracks. Monitoring shows these efforts have significantly improved water quality in the watershed over the last 10 years.

  16. Copper isotope fractionation in acid mine drainage

    USGS Publications Warehouse

    Kimball, B.E.; Mathur, R.; Dohnalkova, A.C.; Wall, A.J.; Runkel, R.L.; Brantley, S.L.

    2009-01-01

    We measured the Cu isotopic composition of primary minerals and stream water affected by acid mine drainage in a mineralized watershed (Colorado, USA). The ??65Cu values (based on 65Cu/63Cu) of enargite (??65Cu = -0.01 ?? 0.10???; 2??) and chalcopyrite (??65Cu = 0.16 ?? 0.10???) are within the range of reported values for terrestrial primary Cu sulfides (-1??? < ??65Cu < 1???). These mineral samples show lower ??65Cu values than stream waters (1.38??? ??? ??65Cu ??? 1.69???). The average isotopic fractionation (??aq-min = ??65Cuaq - ??65Cumin, where the latter is measured on mineral samples from the field system), equals 1.43 ?? 0.14??? and 1.60 ?? 0.14??? for chalcopyrite and enargite, respectively. To interpret this field survey, we leached chalcopyrite and enargite in batch experiments and found that, as in the field, the leachate is enriched in 65Cu relative to chalcopyrite (1.37 ?? 0.14???) and enargite (0.98 ?? 0.14???) when microorganisms are absent. Leaching of minerals in the presence of Acidithiobacillus ferrooxidans results in smaller average fractionation in the opposite direction for chalcopyrite (??aq-mino = - 0.57 ?? 0.14 ???, where mino refers to the starting mineral) and no apparent fractionation for enargite (??aq-mino = 0.14 ?? 0.14 ???). Abiotic fractionation is attributed to preferential oxidation of 65Cu+ at the interface of the isotopically homogeneous mineral and the surface oxidized layer, followed by solubilization. When microorganisms are present, the abiotic fractionation is most likely not seen due to preferential association of 65Cuaq with A. ferrooxidans cells and related precipitates. In the biotic experiments, Cu was observed under TEM to occur in precipitates around bacteria and in intracellular polyphosphate granules. Thus, the values of ??65Cu in the field and laboratory systems are presumably determined by the balance of Cu released abiotically and Cu that interacts with cells and related precipitates. Such isotopic signatures

  17. A gazetteer of surface-mine lakes, Eastern Interior Coal Province, Illinois

    USGS Publications Warehouse

    Voelker, D.C.

    1985-01-01

    Hundreds of lakes have been formed as a result of surface mining in Area 35 of the Eastern Interior Coal Province in Illinois. This gazetteer contains physical and chemical data from 107 surface-mine lakes sampled from June through August 1983. Information collected includes location, morphology, and vertical profile measurements of water quality of the lakes. Sampled lakes range in size from 8.8 to 210 acres, and are from 4.0 to 92.0 feet deep. Maximum widths range from 0.03 to 0.35 mile, and maximum lengths range from 0.27 to 3.08 miles. Some lake waters were stratified, whereas others were completely mixed. General water quality differed widely among the lakes. Specific conductances ranged from 130 to 7,800 micromhos per centimeter (at 25 degrees Celsius). Specific conductances of 2 ,000 to 5,000 micromhos per centimeter were most prevalent. The pH values ranged from 1.8 to 9.6 at the surface, whereas bottom measurements ranged from 2.0 to 8.5. Water temperatures near the surface ranged from 22.5 degrees Celsius in June to 34.5 degrees Celsius in August. Dissolved-oxygen concentrations differed greatly among the lakes; concentrations near the surface ranged from 6.0 to 13.2 milligrams per liter. Transparencies ranged from 0.3 to 35.4 feet. (USGS)

  18. MINE WASTE TECHNOLOGY PROGRAM PREVENTION OF ACID MINE DRAINAGE GENERATION FROM OPEN-PIT HIGHWALLS

    EPA Science Inventory

    This document summarizes the results of Mine Waste Technology Program Activity III, Project 26, Prevention of Acid Mine Drainage Generation from Open-Pit Highwalls. The intent of this project was to obtain performance data on the ability of four technologies to prevent the gener...

  19. Injection of FGD grout to abate acid mine drainage in underground coal mines

    SciTech Connect

    Mafi, S.; Damian, M.T.; Baker, R.

    1998-12-31

    The objective of this project is to demonstrate the technical feasibility of injecting cementitious alkaline materials in the form of fixated flue gas desulfurization (FGD) material to reduce and mitigate acid mine drainage in a small abandoned deep mine in Coshocton County, Ohio. The project will attempt to demonstrate if a grout consisting of FGD and water can economically seal off seepage from old mine works and reduce or eliminate acid mine drainage. By attempting to seal and fill primarily the lower, down-dip areas of the mine, the authors will attempt to establish a practical procedure which can be economically applied to larger mines where full scale filling would be cost prohibitive due to the quantities required. In addition to the design of the grout mix and the mine seal, the research project will be studying the following aspects of the use of FGD in this application: Impact of FGD on ground and surface water quality; Effect of AMD chemistry on acid neutralizing capacity of FGD; Weathering Kinetics of FGD grout subject to AMD conditions; Effect on physical properties of FGD caused by AMD weathering; and Sulfur Isotopic Characterization of the site coal, FGD, acid mine water, and groundwater samples.

  20. Reconstructing the history of mining and remediation in the Coeur d'Alene, Idaho Mining District using lake sediments.

    PubMed

    Morra, Matthew J; Carter, Meghan M; Rember, William C; Kaste, James M

    2015-09-01

    Mining that began in the late 1800s intensified during World War II contaminating Lake Coeur d'Alene sediments with potentially toxic elements. We used 80y of the sediment record to reconstruct metal(loid) loadings to the lake and quantitatively evaluate the effectiveness of tailings management. Sediment core analysis for pollen, chronological markers, and metal(loid)s permitted stratigraphic reconstruction showing that contaminant loading decreased after tailings pond construction, but that most metal(loid) concentrations exceed recommended limits. Arsenic concentrations (250-450 mg kg(-)(1)) at the sediment-water interface are potentially toxic; however, low P concentrations in recent sediments (1.0-1.4 mg kg(-)(1)) inhibit eutrophication and the concomitant release of soluble As. Zinc (3 g kg(-)(1)), Cd (10 mg kg(-)(1)), Ag (10 mg kg(-)(1)), and Cu (90 mg kg(-)(1)) concentrations are now lower than in sediments deposited during active mining, but remain an environmental concern. Sedimentary Cr and Pb concentrations have not changed in the last 50y, because tailings continue to enter the lake. Although modern Cr concentrations (40 mg kg(-)(1)) are unlikely to cause toxicity, current Pb concentrations (4 g kg(-)(1)) exceed acceptable limits, creating challenges for remediation. Strategies to manage other mining-contaminated watersheds should include consideration of elemental differences when evaluating remediation effectiveness.

  1. Assessment of factors limiting algal growth in acidic pit lakes--a case study from Western Australia, Australia.

    PubMed

    Kumar, R Naresh; McCullough, Clint D; Lund, Mark A; Larranaga, Santiago A

    2016-03-01

    Open-cut mining operations can form pit lakes on mine closure. These new water bodies typically have low nutrient concentrations and may have acidic and metal-contaminated waters from acid mine drainage (AMD) causing low algal biomass and algal biodiversity. A preliminary study was carried out on an acidic coal pit lake, Lake Kepwari, in Western Australia to determine which factors limited algal biomass. Water quality was monitored to obtain baseline data. pH ranged between 3.7 and 4.1, and solute concentrations were slightly elevated to levels of brackish water. Concentrations of N were highly relative to natural lakes, although concentrations of FRP (<0.01 mg/L) and C (total C 0.7-3.7 and DOC 0.7-3.5 mg/L) were very low, and as a result, algal growth was also extremely low. Microcosm experiment was conducted to test the hypothesis that nutrient enrichment will be able to stimulate algal growth regardless of water quality. Microcosms of Lake Kepwari water were amended with N, P and C nutrients with and without sediment. Nutrient amendments under microcosm conditions could not show any significant phytoplankton growth but was able to promote benthic algal growth. P amendments without sediment showed a statistically higher mean algal biomass concentration than controls or microcosms amended with phosphorus but with sediment did. Results indicated that algal biomass in acidic pit lake (Lake Kepwari) may be limited primarily by low nutrient concentrations (especially phosphorus) and not by low pH or elevated metal concentrations. Furthermore, sediment processes may also reduce the nutrient availability. PMID:26593729

  2. Assessment of factors limiting algal growth in acidic pit lakes--a case study from Western Australia, Australia.

    PubMed

    Kumar, R Naresh; McCullough, Clint D; Lund, Mark A; Larranaga, Santiago A

    2016-03-01

    Open-cut mining operations can form pit lakes on mine closure. These new water bodies typically have low nutrient concentrations and may have acidic and metal-contaminated waters from acid mine drainage (AMD) causing low algal biomass and algal biodiversity. A preliminary study was carried out on an acidic coal pit lake, Lake Kepwari, in Western Australia to determine which factors limited algal biomass. Water quality was monitored to obtain baseline data. pH ranged between 3.7 and 4.1, and solute concentrations were slightly elevated to levels of brackish water. Concentrations of N were highly relative to natural lakes, although concentrations of FRP (<0.01 mg/L) and C (total C 0.7-3.7 and DOC 0.7-3.5 mg/L) were very low, and as a result, algal growth was also extremely low. Microcosm experiment was conducted to test the hypothesis that nutrient enrichment will be able to stimulate algal growth regardless of water quality. Microcosms of Lake Kepwari water were amended with N, P and C nutrients with and without sediment. Nutrient amendments under microcosm conditions could not show any significant phytoplankton growth but was able to promote benthic algal growth. P amendments without sediment showed a statistically higher mean algal biomass concentration than controls or microcosms amended with phosphorus but with sediment did. Results indicated that algal biomass in acidic pit lake (Lake Kepwari) may be limited primarily by low nutrient concentrations (especially phosphorus) and not by low pH or elevated metal concentrations. Furthermore, sediment processes may also reduce the nutrient availability.

  3. Expanding Models of Lake Trophic State to Predict Cyanobacteria in Lakes: A Data Mining Approach

    EPA Science Inventory

    Background/Question/Methods: Cyanobacteria are a primary taxonomic group associated with harmful algal blooms in lakes. Understanding the drivers of cyanobacteria presence has important implications for lake management and for the protection of human and ecosystem health. Chloro...

  4. Copper isotope fractionation in acid mine drainage

    SciTech Connect

    Kimball, Bryn E; Mathur, Ryan; Dohnalkova, Alice; Wall, A J; Runkel, R L; Brantley, Susan L

    2009-03-01

    We surveyed the Cu isotopic composition of primary minerals and stream water affected by acid mine drainage in a mineralized watershed located in southwestern Colorado, USA. The δ65Cu values (based on 65Cu/63Cu) of local enargite (δ65Cu = -0.01 ± 0.10‰; 2σ) and chalcopyrite (δ65Cu = 0.16 ± 0.10‰) are within the general range of previously reported values for terrestrial primary Cu sulfides (-1‰ < δ65Cu < 1). These mineral samples show lower δ65Cu values than stream waters (δ65Cu = 1.36 - 1.74 ± 0.10‰), with an average isotopic fractionation (quantified as Δaq-mino = δ65Cuaq – δ65Cu min, where Cuaq is leached Cu and Cu mino is the original mineral) of 1.60 ± 0.14‰ and 1.43 ± 0.14‰ for enargite and chalcopyrite, respectively.

  5. Injection of coal combustion byproducts into the Omega Mine for the reduction of acid mine drainage

    SciTech Connect

    Gray, T.A.; Moran, T.C.; Broschart, D.W.; Smith, G.A.

    1998-12-31

    The Omega Mine Complex is located outside of Morgantown, West Virginia. The mine is in the Upper Freeport Coal, an acid-producing coal seam. The coal was mined in a manner that has resulted in acid mine drainage (AMD) discharges at multiple points. During the 1990`s, the West Virginia Division of Environmental Protection (WVDEP) assumed responsibility for operating a collection and treatment system for the AMD. Collection and treatment costs are approximately $300,000 per year. An innovative procedure of injecting grout into the mine workings to reduce AMD and the resulting treatment costs is proposed. The procedure involves injecting grout mixes composed primarily of coal combustion byproducts (CCB`s) and water, with a small quantity of cement. The intention of the injection program is to fill the mine voids in the north lobe of the Omega Mine (an area where most of the acidity is believed to be generated) with the grout, thus reducing the contact of air and water with potentially acidic material. The grout mix design consists of an approximate 1:1 ratio of fly ash to byproducts from fluidized bed combustion. Approximately 100 gallons of water per cubic yard of grout is used to help achieve flowability. Observation of the mine workings via subsurface borings and downhole video camera operation confirmed that first-mined areas were generally open while second-mined areas were generally partially collapsed. Closer injection hole spacing was used in second-mined areas to account for collapsed workings. The construction documents have been prepared with the project being bid in late 1997. The engineer`s cost estimate was approximately $2,500,000, with the low bid of approximately $2,300,000 being submitted by Howard Concrete Pumping of Bridgeville, PA.

  6. INTERACTIVE ABANDONED MINE LANDS WORKSHOP SERIES - ACID MINE WATER TREATMENT TECHNOLOGIES

    EPA Science Inventory

    The purpose of this interactive workshop is to present and discuss active and passive acid mine wastes cleanup technologies and to discuss the apparent disconnect between their development and their implementation. The workshop addressed five main barriers to implementing innovat...

  7. Microbial Diversity and Its Relationship to Physicochemical Characteristics of the Water in Two Extreme Acidic Pit Lakes from the Iberian Pyrite Belt (SW Spain)

    PubMed Central

    López-Pamo, Enrique; Gomariz, María; Amils, Ricardo; Aguilera, Ángeles

    2013-01-01

    The Iberian Pyrite Belt (IPB) hosts one of the world’s largest accumulations of acidic mine wastes and pit lakes. The mineralogical and textural characteristics of the IPB ores have favored the oxidation and dissolution of metallic sulfides, mainly pyrite, and the subsequent formation of acidic mining drainages. This work reports the physical properties, hydrogeochemical characteristics, and microbial diversity of two pit lakes located in the IPB. Both pit lakes are acidic and showed high concentrations of sulfate and dissolved metals. Concentrations of sulfate and heavy metals were higher in the Nuestra Señora del Carmen lake (NSC) by one order of magnitude than in the Concepción (CN) lake. The hydrochemical characteristics of NSC were typical of acid mine waters and can be compared with other acidic environments. When compared to other IPB acidic pit lakes, the superficial water of CN is more diluted than that of any of the others due, probably, to the strong influence of runoff water. Both pit lakes showed chemical and thermal stratification with well defined chemoclines. One particular characteristic of NSC is that it has developed a chemocline very close to the surface (2 m depth). Microbial community composition of the water column was analyzed by 16S and 18S rRNA gene cloning and sequencing. The microorganisms detected in NSC were characteristic of acid mine drainage (AMD), including iron oxidizing bacteria (Leptospirillum, Acidithiobacillus ferrooxidans) and facultative iron reducing bacteria and archaea (Acidithiobacillus ferrooxidans, Acidiphilium, Actinobacteria, Acidimicrobiales, Ferroplasma) detected in the bottom layer. Diversity in CN was higher than in NSC. Microorganisms known from AMD systems (Acidiphilium, Acidobacteria and Ferrovum) and microorganisms never reported from AMD systems were identified. Taking into consideration the hydrochemical characteristics of these pit lakes and the spatial distribution of the identified microorganisms, a

  8. Microbial Diversity and Its Relationship to Physicochemical Characteristics of the Water in Two Extreme Acidic Pit Lakes from the Iberian Pyrite Belt (SW Spain).

    PubMed

    Santofimia, Esther; González-Toril, Elena; López-Pamo, Enrique; Gomariz, María; Amils, Ricardo; Aguilera, Angeles

    2013-01-01

    The Iberian Pyrite Belt (IPB) hosts one of the world's largest accumulations of acidic mine wastes and pit lakes. The mineralogical and textural characteristics of the IPB ores have favored the oxidation and dissolution of metallic sulfides, mainly pyrite, and the subsequent formation of acidic mining drainages. This work reports the physical properties, hydrogeochemical characteristics, and microbial diversity of two pit lakes located in the IPB. Both pit lakes are acidic and showed high concentrations of sulfate and dissolved metals. Concentrations of sulfate and heavy metals were higher in the Nuestra Señora del Carmen lake (NSC) by one order of magnitude than in the Concepción (CN) lake. The hydrochemical characteristics of NSC were typical of acid mine waters and can be compared with other acidic environments. When compared to other IPB acidic pit lakes, the superficial water of CN is more diluted than that of any of the others due, probably, to the strong influence of runoff water. Both pit lakes showed chemical and thermal stratification with well defined chemoclines. One particular characteristic of NSC is that it has developed a chemocline very close to the surface (2 m depth). Microbial community composition of the water column was analyzed by 16S and 18S rRNA gene cloning and sequencing. The microorganisms detected in NSC were characteristic of acid mine drainage (AMD), including iron oxidizing bacteria (Leptospirillum, Acidithiobacillus ferrooxidans) and facultative iron reducing bacteria and archaea (Acidithiobacillus ferrooxidans, Acidiphilium, Actinobacteria, Acidimicrobiales, Ferroplasma) detected in the bottom layer. Diversity in CN was higher than in NSC. Microorganisms known from AMD systems (Acidiphilium, Acidobacteria and Ferrovum) and microorganisms never reported from AMD systems were identified. Taking into consideration the hydrochemical characteristics of these pit lakes and the spatial distribution of the identified microorganisms, a

  9. Acid-base accounting to predict post-mining drainage quality on surface mines.

    PubMed

    Skousen, J; Simmons, J; McDonald, L M; Ziemkiewicz, P

    2002-01-01

    Acid-base accounting (ABA) is an analytical procedure that provides values to help assess the acid-producing and acid-neutralizing potential of overburden rocks prior to coal mining and other large-scale excavations. This procedure was developed by West Virginia University scientists during the 1960s. After the passage of laws requiring an assessment of surface mining on water quality, ABA became a preferred method to predict post-mining water quality, and permitting decisions for surface mines are largely based on the values determined by ABA. To predict the post-mining water quality, the amount of acid-producing rock is compared with the amount of acid-neutralizing rock, and a prediction of the water quality at the site (whether acid or alkaline) is obtained. We gathered geologic and geographic data for 56 mined sites in West Virginia, which allowed us to estimate total overburden amounts, and values were determined for maximum potential acidity (MPA), neutralization potential (NP), net neutralization potential (NNP), and NP to MPA ratios for each site based on ABA. These values were correlated to post-mining water quality from springs or seeps on the mined property. Overburden mass was determined by three methods, with the method used by Pennsylvania researchers showing the most accurate results for overburden mass. A poor relationship existed between MPA and post-mining water quality, NP was intermediate, and NNP and the NP to MPA ratio showed the best prediction accuracy. In this study, NNP and the NP to MPA ratio gave identical water quality prediction results. Therefore, with NP to MPA ratios, values were separated into categories: <1 should produce acid drainage, between 1 and 2 can produce either acid or alkaline water conditions, and >2 should produce alkaline water. On our 56 surface mined sites, NP to MPA ratios varied from 0.1 to 31, and six sites (11%) did not fit the expected pattern using this category approach. Two sites with ratios <1 did not

  10. Stimulation of sulfate-reducing bacteria in lake water from a former open-pit mine through addition of organic wastes

    SciTech Connect

    Castro, J.M.; Wielinga, B.W.; Gannon, J.E.; Moore, J.N.

    1999-03-01

    A method to improve water quality in a lake occupying a former open-pit mine was evaluated in a laboratory-scale study. Untreated pit lake water contained high levels of sulfate, iron, and arsenic and was mildly acidic ({approximately} pH 6). Varying amounts of two locally available organic waste products were added to pit water and maintained in microcosms under anoxic conditions. In selected microcosms, populations of sulfate-reducing bacteria increased with time; sulfide was generated by sulfate reduction; sulfate, iron, and arsenic concentrations approached zero; and pH approached neutrality. Best results were obtained with intermediate amounts of waste potato skin.

  11. Evidence for Microbial Fe(III) Reduction in Anoxic, Mining-Impacted Lake Sediments (Lake Coeur d'Alene, Idaho)

    PubMed Central

    Cummings, David E.; March, Anthony W.; Bostick, Benjamin; Spring, Stefan; Caccavo, Frank; Fendorf, Scott; Rosenzweig, R. Frank

    2000-01-01

    Mining-impacted sediments of Lake Coeur d'Alene, Idaho, contain more than 10% metals on a dry weight basis, approximately 80% of which is iron. Since iron (hydr)oxides adsorb toxic, ore-associated elements, such as arsenic, iron (hydr)oxide reduction may in part control the mobility and bioavailability of these elements. Geochemical and microbiological data were collected to examine the ecological role of dissimilatory Fe(III)-reducing bacteria in this habitat. The concentration of mild-acid-extractable Fe(II) increased with sediment depth up to 50 g kg−1, suggesting that iron reduction has occurred recently. The maximum concentrations of dissolved Fe(II) in interstitial water (41 mg liter−1) occurred 10 to 15 cm beneath the sediment-water interface, suggesting that sulfidogenesis may not be the predominant terminal electron-accepting process in this environment and that dissolved Fe(II) arises from biological reductive dissolution of iron (hydr)oxides. The concentration of sedimentary magnetite (Fe3O4), a common product of bacterial Fe(III) hydroxide reduction, was as much as 15.5 g kg−1. Most-probable-number enrichment cultures revealed that the mean density of Fe(III)-reducing bacteria was 8.3 × 105 cells g (dry weight) of sediment−1. Two new strains of dissimilatory Fe(III)-reducing bacteria were isolated from surface sediments. Collectively, the results of this study support the hypothesis that dissimilatory reduction of iron has been and continues to be an important biogeochemical process in the environment examined. PMID:10618217

  12. Mineralogical transformations controlling acid mine drainage chemistry

    SciTech Connect

    Peretyazhko, Tetyana; Zachara, John M.; Boily, Jean F.; Xia, Yuanxian; Gassman, Paul L.; Arey, Bruce W.; Burgos, William D.

    2009-05-30

    The role of Fe(III) minerals in controlling acid mine drainage (AMD) chemistry was studied using samples from two AMD sites [Gum Boot (GB) and Fridays-2 (FR)] located in northern Pennsylvania. Chemical extractions, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) were used to identify and characterize Fe(III) phases. The mineralogical analysis revealed that schwertmannite and goethite were the principal Fe(III) phases in the sediments. Schwertmannite transformation occurred at the GB site where poorly-crystallized goethite rich in surface-bound sulfate was initially formed. In contrast, no schwertmannite transformation occurred at the FR site. The goethite in GB sediments had spherical morphology due to preservation of schwertmannite structure by adsorbed sulfate. Results of chemical extractions showed that poorly-crystallized goethite was subject to further crystallization accompanied by sulfate desorption. Changes in sulfate speciation preceded its desorption, with a conversion of bidentate- to monodentate-bound sulfate surface complexes. Laboratory sediment incubation experiments were conducted to evaluate the effect of mineral transformation on water chemistry. Incubation experiments were carried out with schwertmannite-containing sediments and AMD waters with different pH and chemical composition. The pH decreased to 1.9-2.2 in all suspensions and the concentrations of dissolved Fe and S increased significantly. Regardless of differences in the initial water composition, pH, Fe and S were similar in suspensions of the same sediment. XRD measurements revealed that schwertmannite transformed into goethite in GB and FR sediments during laboratory incubation. The incubation experiment demonstrated that schwertmannite transformation controlled AMD water chemistry during “closed system” laboratory contact.

  13. Spatial characterization of acid rain stress in Canadian Shield Lakes

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1987-01-01

    The acidification of lake waters from airborne pollution is of continental proportions both in North America and Europe. A major concern of the acid rain problem is the cumulative ecosystem damage to lakes and forest. The number of lakes affected in northeastern U.S. and on the Canadian Shield is though to be enormous. How seasonal changes in lake transparency are related to annual acidic load was examined. The relationship between variations in lake acidification and ecophysical units was also examined. The utility of Thematic Mapper based observations to measure seasonal changes in the optical transparency in acid lakes was investigated. The potential for this optical response is related to a number of local ecophysical factors with bedrock geology being, perhaps, the most important. Other factors include sulfate deposition, vegetative cover, and terrain drainage/relief. The area of southern Ontario contains a wide variety of geologies from the most acid rain sensitive granite quartzite types to the least sensitive limestone dolomite sediments. Annual sulfate deposition ranges from 1.0 to 4.0 grams/sq m.

  14. Drift-mine reclamation in Big Four Hollow near Lake Hope, Ohio; a preliminary data report

    USGS Publications Warehouse

    Nichols, Vance E.

    1983-01-01

    A subsurface clay dike and hydraulic seals were constructed in 1979 by the Ohio Department of Natural Resources, Division of Reclamation, to reduce acid mine drainage from an abandoned drift mine into Big Four Hollow Creek; Big Four Hollow Creek flow into Sandy Run, the major tributary to Lake Hope. A monitoring program was established in 1979 by the U.S. Geological Survey, Water Resources Division to evaluate sealing effects on surface-water and ground-water systems fo the Big Four Hollow Creek and Sandy Run area just below the mine. Data were collected by private consultants in 1970-71 near the mouth of Big Four Hollow Creek (U.S. Geological Survey station (03201700). Results showed an average pH of 3.1 (calculated from mean hydrogen-ion concentration in moles per liter) and a pH range of 2.7 to 4.8. The estimated sulfate load was 1,000 pounds per day, and the estimated iron load wsa 100 pounds per day. Data collected in 1979, before dike construction at this site, showed a daily mean pH range of 3.4 to 5.4 with an average of 3.7, and a daily mean specific-conductance range of 160 to 600 micromhos per centimeter at 25 degrees Celsius (?mho/cm), averaging 400. Again, the estimated sulfate load was 1,000 pounds per day, but the estimated iron load had decreased to 50 pounds per day. The first 6 months of postconstruction data from the site in 1980 showd a daily mean pH range of 4.5 to 6.8 with an average of 4.9, and a daily mean conductance range of 175 to 405 ?mho/cm with an average of 300. The estimated sulfate load had decreased to 570 pounds per day and the iron load to 8.5 pounds per day. Data collected during the first 6 months after construction indicate moderate improvement in water quality. However, acidic water is still being impounded behind the dike and seals and has not yet been flushed ou by infiltrating rain and ground water. Because the system has not yet stabilized, no interpretation or conclusive statement can be made at this time.

  15. Modeling the fate of elevated Cd, Cu and Zn in groundwater flowing from two sulfide mine pit lakes

    SciTech Connect

    Taufen, P.M.

    1996-10-01

    A study was made of observed reductions in the elevated levels of dissolved Cd, Cu and Zn over distances up to 1000m in groundwaters discharging from two acid mine pit lakes in southwestern Quebec, Canada. Groundwater flow from the lakes is chiefly in glacial till sediments on the bedrock. The shallow groundwaters were sampled for chemical analysis over two summers. Metal adsorption and mineral precipitation were assessed as a function of flow distance from the pit lakes. The tills were analyzed for their surface areas and content of organic C, Al{sub 2}O{sub 3}, MnO{sub 2}, and for total, oxide, carbonate and organic iron content. The tills were subjected to acid-base titrations to measure their adsorptive behavior towards Cd, Cu and Zn as a function of pH. Electrostatic adsorption models were found inapplicable to study results. However, distribution coefficients (K{sub d} values) for metal adsorption showed strong positive correlations with pH. Useful correlations with other till properties were absent.

  16. Impact of Acid Mine Drainage on the hydrogeological system at Sia, Cyprus

    NASA Astrophysics Data System (ADS)

    Ng, Stephen; Malpas, John

    2013-04-01

    Discontinued mining of the volcanogenic massive sulphide ore bodies of Cyprus has left significant environmental concerns including Acid Mine Drainage. Remnant sulphide ore and tailings in waste dumps react with oxygenated rainwater to produce sulphuric acid, a process which is multiplied when metal-loving acidophilic bacteria are present. Given that Cyprus has a Mediterranean climate, characterized by its warm and dry summers and cool and wet winters, the low pH effluent with high levels of trace elements, particularly metals, is leached out of the waste tips particularly during the wet season. The Sia site includes an open mine-pit lake, waste rock and tailings dumps, a river leading to a downstream dam-lake, and a localised groundwater system. The study intends to: identify the point source and nature of contamination; analyze the mechanism and results of local acid generation; and understand how the hydrogeological system responds to seasonal variations. During two sampling campaigns, in the wet and dry seasons of 2011, water samples were collected from the mine pit lake, from upstream of the adjacent river down to the dam catchment, and from various boreholes close to the sulphide mine. The concentration of ions in waters varies between wet and dry seasons but, in both, relative amounts are directly related to pH. In the mine-pit lake, Fe, Mn, Mg, Cu, Pb, Zn, Ni, Co and Cd are found in higher concentrations in the dry season, as a result of substantial evaporation of water. The Sia River runs continuously in the wet season, and waters collected close to the waste tips have pH as low as 2.5 and higher concentrations of Al, Cu, Fe and Zn. Further downstream there is a significant decrease in trace metal contents with a concomitant rise of pH. Al and Fe dominate total cation content when pH is lower than 4. Al is derived from the weathering of clay minerals, especially during the wet season. Fe is derived from the oxidation of pyrite. Once pH's exceed 4, a white

  17. Extremely acid Permian lakes and ground waters in North America

    USGS Publications Warehouse

    Benison, K.C.; Goldstein, R.H.; Wopenka, B.; Burruss, R.C.; Pasteris, J.D.

    1998-01-01

    Evaporites hosted by red beds (red shales and sandstones), some 275-265 million years old, extend over a large area of the North American mid- continent. They were deposited in non-marine saline lakes, pans and mud- flats, settings that are typically assumed to have been alkaline. Here we use laser Raman microprobe analyses of fluid inclusions trapped in halites from these Permian deposits to argue for the existence of highly acidic (pH < 1) lakes and ground waters. These extremely acidic systems may have extended over an area of 200,000 km2. Modern analogues of such systems may be natural acid lake and groundwater systems (pH ~2-4) in southern Australia. Both the ancient and modern acid systems are characterized by closed drainage, arid climate, low acid-neutralizing capacity, and the oxidation of minerals such as pyrite to generate acidity. The discovery of widespread ancient acid lake and groundwater systems demands a re-evaluation of reconstructions of surface conditions of the past, and further investigations of the geochemistry and ecology of acid systems in general.

  18. Detecting acid precipitation impacts on lake water quality

    NASA Astrophysics Data System (ADS)

    Loftis, Jim C.; Taylor, Charles H.

    1989-09-01

    The United States Environmental Protection Agency is planning to expand its long-term monitoring of lakes that are sensitive to acid deposition effects. Effective use of resources will require a careful definition of the statistical objectives of monitoring, a network design which balances spatial and temporal coverage, and a sound approach to data analysis. This study examines the monitoring objective of detecting trends in water quality for individual lakes and small groups of lakes. Appropriate methods of trend analysis are suggested, and the power of trend detection under seasonal (quarterly) sampling is compared to that of annual sampling. The effects of both temporal and spatial correlation on trend detection ability are described.

  19. Assessing Resiliency in a Large Lake Receiving Mine Tailings Waste: Impacts of Major Environmental Disturbance.

    NASA Astrophysics Data System (ADS)

    Petticrew, Ellen; Owens, Philip; Albers, Sam

    2016-04-01

    On 4th August 2014, the tailings impoundment of the Mount Polley copper and gold mine in British Columbia failed. Material from the impoundment (surface area = 2.7 km2) flowed into nearby Polley Lake and Hazeltine Creek, before discharging into Quesnel Lake, a large (ca. 100 km long, >500 m deep), relatively pristine lake. Initial estimates suggest that approximately 25 Mm3 of tailings (water and solids) and eroded soils and surficial materials from Hazeltine Creek were delivered to Quesnel Lake, raising the lake by 7.7 cm. Much of this material was deposited at the bottom of Quesnel Lake but a plume of fine-grained sediment (D50 of ca. 1 μm) remained suspended in the water column. The impact of the distribution of this sediment was monitored over the next 15 months using water column profiling for temperature, conductivity, fluorescence and turbidity with depth. The plume movement was regulated by natural processes associated with the physical limnology of this large fjord lake, specifically, seiche events which transferred suspended particles both up-lake, against the flow regime, and down-lake into the Quesnel River. Samples of lake water and bottom sediment taken from the impacted area show elevated levels of total metals and other elements, which may have important ecosystem implications in this watershed. Indeed, the breach occurred at a time when a peak run of sockeye salmon were returning to their natal streams in the Quesnel basin. Zooplankton sampling for metals was initiated in fall 2014 to determine up take of metals into the food web. This poster describes the failure of the impoundment dam and presents results of sampling the aquatic environment over the first fifteen months of impact.

  20. ACID-BASE ACCOUNT EFFECTIVENESS FOR DETERMINATION OF MINE WASTE POTENTIAL ACIDITY. (R825549C048)

    EPA Science Inventory

    The oxidation of sulfide minerals in mine waste is a widespread source of resource degradation, often resulting in the generation of acidic water and mobilization of heavy metals. The quantity of acid forming minerals present in mine waste, dominantly as pyrite (FeS2

  1. 40 CFR 434.30 - Applicability; description of the acid or ferruginous mine drainage subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434.30 Applicability; description of the acid or ferruginous mine drainage subcategory. The provisions of this subpart are applicable to acid or ferruginous mine drainage from an active mining area...

  2. 40 CFR 434.30 - Applicability; description of the acid or ferruginous mine drainage subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434.30 Applicability; description of the acid or ferruginous mine drainage subcategory. The provisions of this subpart are applicable to acid or ferruginous mine drainage from an active mining area...

  3. 40 CFR 434.30 - Applicability; description of the acid or ferruginous mine drainage subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SOURCE CATEGORY BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434.30 Applicability; description of the acid or ferruginous mine drainage subcategory. The provisions of this subpart are applicable to acid or ferruginous mine drainage from an active mining...

  4. 40 CFR 434.30 - Applicability; description of the acid or ferruginous mine drainage subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SOURCE CATEGORY BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434.30 Applicability; description of the acid or ferruginous mine drainage subcategory. The provisions of this subpart are applicable to acid or ferruginous mine drainage from an active mining...

  5. 40 CFR 434.30 - Applicability; description of the acid or ferruginous mine drainage subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SOURCE CATEGORY BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434.30 Applicability; description of the acid or ferruginous mine drainage subcategory. The provisions of this subpart are applicable to acid or ferruginous mine drainage from an active mining...

  6. Multi-trophic level response to extreme metal contamination from gold mining in a subarctic lake.

    PubMed

    Thienpont, Joshua R; Korosi, Jennifer B; Hargan, Kathryn E; Williams, Trisha; Eickmeyer, David C; Kimpe, Linda E; Palmer, Michael J; Smol, John P; Blais, Jules M

    2016-08-17

    Giant Mine, located in the city of Yellowknife (Northwest Territories, Canada), is a dramatic example of subarctic legacy contamination from mining activities, with remediation costs projected to exceed $1 billion. Operational between 1948 and 2004, gold extraction at Giant Mine released large quantities of arsenic and metals from the roasting of arsenopyrite ore. We examined the long-term ecological effects of roaster emissions on Pocket Lake, a small lake at the edge of the Giant Mine lease boundary, using a spectrum of palaeoenvironmental approaches. A dated sedimentary profile tracked striking increases (approx. 1700%) in arsenic concentrations coeval with the initiation of Giant Mine operations. Large increases in mercury, antimony and lead also occurred. Synchronous changes in biological indicator assemblages from multiple aquatic trophic levels, in both benthic and pelagic habitats, indicate dramatic ecological responses to extreme metal(loid) contamination. At the peak of contamination, all Cladocera, a keystone group of primary consumers, as well as all planktonic diatoms, were functionally lost from the sediment record. No biological recovery has been inferred, despite the fact that the bulk of metal(loid) emissions occurred more than 50 years ago, and the cessation of all ore-roasting activities in Yellowknife in 1999. PMID:27534958

  7. Current approaches for mitigating acid mine drainage.

    PubMed

    Sahoo, Prafulla Kumar; Kim, Kangjoo; Equeenuddin, Sk Md; Powell, Michael A

    2013-01-01

    AMD is one of the critical environmental problems that causes acidification and metal contamination of surface and ground water bodies when mine materials and/or over burden-containing metal sulfides are exposed to oxidizing conditions. The best option to limit AMD is early avoidance of sulfide oxidation. Several techniques are available to achieve this. In this paper, we review all of the major methods now used to limit sulfide oxidation. These fall into five categories: (1) physical barriers,(2) bacterial inhibition, (3) chemical passivation, ( 4) electrochemical, and (5) desulfurization.We describe the processes underlying each method by category and then address aspects relating to effectiveness, cost, and environmental impact. This paper may help researchers and environmental engineers to select suitable methods for addressing site-specific AMD problems.Irrespective of the mechanism by which each method works, all share one common feature, i.e., they delay or prevent oxidation. In addition, all have limitations.Physical barriers such as wet or dry cover have retarded sulfide oxidation in several studies; however, both wet and dry barriers exhibit only short-term effectiveness.Wet cover is suitable at specific sites where complete inundation is established, but this approach requires high maintenance costs. When employing dry cover, plastic liners are expensive and rarely used for large volumes of waste. Bactericides can suppress oxidation, but are only effective on fresh tailings and short-lived, and do not serve as a permanent solution to AMD. In addition, application of bactericides may be toxic to aquatic organisms.Encapsulation or passivation of sulfide surfaces (applying organic and/or inorganic coatings) is simple and effective in preventing AMD. Among inorganic coatings,silica is the most promising, stable, acid-resistant and long lasting, as compared to phosphate and other inorganic coatings. Permanganate passivation is also promising because it

  8. Current approaches for mitigating acid mine drainage.

    PubMed

    Sahoo, Prafulla Kumar; Kim, Kangjoo; Equeenuddin, Sk Md; Powell, Michael A

    2013-01-01

    AMD is one of the critical environmental problems that causes acidification and metal contamination of surface and ground water bodies when mine materials and/or over burden-containing metal sulfides are exposed to oxidizing conditions. The best option to limit AMD is early avoidance of sulfide oxidation. Several techniques are available to achieve this. In this paper, we review all of the major methods now used to limit sulfide oxidation. These fall into five categories: (1) physical barriers,(2) bacterial inhibition, (3) chemical passivation, ( 4) electrochemical, and (5) desulfurization.We describe the processes underlying each method by category and then address aspects relating to effectiveness, cost, and environmental impact. This paper may help researchers and environmental engineers to select suitable methods for addressing site-specific AMD problems.Irrespective of the mechanism by which each method works, all share one common feature, i.e., they delay or prevent oxidation. In addition, all have limitations.Physical barriers such as wet or dry cover have retarded sulfide oxidation in several studies; however, both wet and dry barriers exhibit only short-term effectiveness.Wet cover is suitable at specific sites where complete inundation is established, but this approach requires high maintenance costs. When employing dry cover, plastic liners are expensive and rarely used for large volumes of waste. Bactericides can suppress oxidation, but are only effective on fresh tailings and short-lived, and do not serve as a permanent solution to AMD. In addition, application of bactericides may be toxic to aquatic organisms.Encapsulation or passivation of sulfide surfaces (applying organic and/or inorganic coatings) is simple and effective in preventing AMD. Among inorganic coatings,silica is the most promising, stable, acid-resistant and long lasting, as compared to phosphate and other inorganic coatings. Permanganate passivation is also promising because it

  9. Mining cosmic dust from the blue ice lakes of Greenland

    NASA Technical Reports Server (NTRS)

    Maurette, M.; Brownlee, D. E.; Fehrenback, L.; Hammer, C.; Jehano, C.; Thomsen, H. H.

    1985-01-01

    Extraterrestrial material, most of which invisible settles to Earth's surface as dust particles smaller than a millimeter in size were investigated. Particles of 1/10 millimeter size fall at a rate of one/sq m/yr collection of extraterrestrial dust is important because the recovered cosmic dust particles can provide important information about comets. Comets are the most important source of dust in the solar system and they are probably the major source of extraterrestrial dust that is collectable at the Earth's surface. A new collection site for cosmic dust, in an environment where degradation by weathering is minimal is reported. It is found that the blue ice lakes on the Greenland ice cap provide an ideal location for collection of extraterrestrial dust particles larger than 0.1 mm in size. It is found that the lakes contain large amounts of cosmic dust which is much better preserved than similar particles recovered from the ocean floor.

  10. Microorganisms in subterranean acidic waters within Europe's deepest metal mine.

    PubMed

    Kay, Catherine M; Haanela, Anu; Johnson, D Barrie

    2014-11-01

    The Pyhäsalmi mine, central Finland, has operated as a deep metal mine since 1967. It currently reaches a depth of almost 1500 m, making it the deepest mining operation in Europe. Around 900,000 m(3) of metal-rich, extremely acidic water are pumped out of the mine each year. The near constant air temperature of ∼ 24 °C together with exposure of sulfidic rock surfaces to air and water, have created an environment that is highly suitable for colonization by acidophilic mineral-oxidizing microorganisms. Using a combined cultivation-dependent and molecular approach, indigenous bacteria in waters at two depths within the mine, and of an acid streamer sample were identified and isolated. Iron-oxidizing chemolithotrophs (Acidithiobacillus and Leptospirillum spp., and "Ferrovum myxofaciens" were the most abundant bacteria in mine water samples, whereas the acid streamer community contained a greater proportion of heterotrophic acidophiles (Ferrimicrobium acidiphilum and a gammaproteobacterium related to Metallibacterium scheffleri). The most abundant isolates obtained from both water and streamer samples were all strains of Acidithiobacillus Group IV, a proposed separate species of iron-oxidizing acidithiobacilli that has not yet been classified as such. Archaea were also detected in water and streamer samples using molecular methods, but most were not identified and no isolates were obtained.

  11. Source-control techniques for acid mine drainage

    SciTech Connect

    Hill, R.D.; Wilmoth, R.C.

    1985-10-01

    The potential for production of acidic discharges from mining activities is related to the pyritic concentration in the overburden and to the available alkalinity. Exposure of the pyritic material to weathering causes oxidation and the release of sulfuric acid. Source control techniques include pyrite segregation the selective burial, use of bacteriacides to retard bacterial catalysis, use of alkaline reagents to provide in-situ treatment, and the use of treatment systems to neutralize acidic drainages.

  12. Using imaging spectroscopy to map acidic mine waste

    USGS Publications Warehouse

    Swayze, G.A.; Smith, K.S.; Clark, R.N.; Sutley, S.J.; Pearson, R.M.; Vance, J.S.; Hageman, P.L.; Briggs, P.H.; Meier, A.L.; Singleton, M.J.; Roth, S.

    2000-01-01

    The process of pyrite oxidation at the surface of mine waste may produce acidic water that is gradually neutralized as it drains away from the waste, depositing different Fe-bearing secondary minerals in roughly concentric zones that emanate from mine-waste piles. These Fe-bearing minerals are indicators of the geochemical conditions under which they form. Airborne and orbital imaging spectrometers can be used to map these mineral zones because each of these Fe-bearing secondary minerals is spectrally unique. In this way, imaging spectroscopy can be used to rapidly screen entire mining districts for potential sources of surface acid drainage and to detect acid producing minerals in mine waste or unmined rock outcrops. Spectral data from the AVIRIS instrument were used to evaluate mine waste at the California Gulch Superfund Site near Leadville, CO. Laboratory leach tests of surface samples show that leachate pH is most acidic and metals most mobile in samples from the inner jarosite zone and that leachate pH is near-neutral and metals least mobile in samples from the outer goethite zone.

  13. Effects of storm runoff on acid-base accounting of mine drainage

    SciTech Connect

    Sjoegren, D.R.; Olyphant, G.A.; Harper, D.

    1997-12-31

    Pre-reclamation conditions were documented at an abandoned mine site in an upland area at the headwaters of a small perennial stream in southwestern Indiana. Stream discharge and chemistry were monitored from April to October 1995, in an effort to assess the total acid-base budget of outflows from the site. The chemistry of three lakes, a shallow aquifer, and flooded mine voids was also monitored. During the period of monitoring, thirty-five rainfall-runoff events occurred, producing a total storm discharge of approximately 6.12 x 10{sup 7} L. Baseflow during the monitoring period was approximately 1.10 x 10{sup 8} L and was characterized by water chemistry that was similar to that of a spring that issued from the flooded mine voids. Analysis of the discharge and chemistry associated with an isolated thunderstorm revealed fluctuations in acidity that were not congruent with fluctuations in the total discharge hydrograph. For example, acidity increased rapidly during the initial phase of hydrograph rise, but dropped significantly as the storm hydrograph peaked. A second, more subdued, rise in acidity occurred during a second rain pulse, and the acidity gradually decreased to pre-storm levels during hydrograph recession. The trends are interpreted to reflect different sources of storm runoff associated with various components of the total discharge hydrograph. Preliminary calculations indicate that the total quantity of acidity that is discharged during stormflow is about eight times higher than that which is discharged during a comparable period under baseflow conditions. While the lower acid concentrations generated during storm events are ecologically favorable, the increase in total quantities of acidity can have implications for the buffering capacities of receiving water bodies.

  14. Lake Michigan faces exotic species, dune sand mining, other challenges

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    As Steve Pothoven scooped out his bottom trawl catch on the deck of a U.S. government research vessel in June, he expected the regular monitoring exercise to land alewives and a mound of zebra mussels. These two now-ubiquitous exotic aquatic species are among more than 130 that have entered the Great Lakes ecosystem over the past century. They have invaded by various means: hiding in ballast water, navigating through connecting channels such as the Welland Canal that was completed in 1829 as a route around Niagara Falls, or introduced on purpose.

  15. ANCHOR HILL PIT LAKE IN SITU TREATMENT, GILT EDGE MINE SUPERFUND SITE, S. DAKOTA, USA - A RETROSPECTIVE

    EPA Science Inventory

    The EPA Region VII Superfund office and the EPA National Risk Management Research Laboratory (NRMRL) Mine Waste Technology Program (MWTP)have been conducting a field scale technology demonstration of an in situ treatment of the Anchor Hill Pit Lake at the Gilt Edge Mine Superfund...

  16. Airborne remote sensing of coal waste and acid mine drainage

    SciTech Connect

    Kim, K.E.; Lee, T.S.

    1996-07-01

    High resolution airborne remote sensing data, spatial resolution of 2m X 2m, were used to study the stream quality degradation due to the coal mines in Taebaek city, one of the major coalfields in Korea. In order to circumvent the severe topographic effect and small scale of the water stream, principal components with the least variances were utilized. They showed the subtle details in the image that were obscured by higher contrast due to the topographic effect. Through maximum likelihood classification of those components, yellowboy and mine waste could be effectively identified. Areas affected by acid mine drainage and mine waste could be also located by identifying areas of dead or dying vegetation using vegetation index map.

  17. Pre-industrial atmospheric pollution: was it important for the pH of acid-sensitive Swedish lakes?

    PubMed

    Bindler, Richard; Korsman, Tom; Renberg, Ingemar; Högberg, Peter

    2002-09-01

    Acid rain has caused extensive surface water acidification in Sweden since the mid-20th century. Sulfur emissions from fossil-fuel burning and metal production were the main sources of acid deposition. In the public consciousness, acid deposition is strongly associated with the industrial period, in particular the last 50 years. However, studies of lake-water pH development and atmospheric pollution, based on analyses of lake sediment deposits, have shown the importance of a long-term perspective. Here, we present a conceptual argument, using the sediment record, that large-scale atmospheric acid deposition has impacted the environment since at least Medieval times. Sulfur sources were the pre-industrial mining and metal industries that produced silver, lead and other metals from sulfide ores. This early excess sulfur deposition in southern Sweden did not cause surface water acidification; on the contrary, it contributed to alkalization, i.e. increased pH and productivity of the lakes. Suggested mechanisms are that the excess sulfur caused enhanced cation exchange in catchment soils, and that it altered iron-phosphorus cycling in the lakes, which released phosphorus and increased lake productivity.

  18. The Impact of Microbial Communities on Water Quality in an Acid Mine Drainage Impacted Watershed

    NASA Astrophysics Data System (ADS)

    McDaniel, G. R.; Rademacher, L. K.; Faul, K. L.; Brunell, M.; Burmeister, K. C.

    2011-12-01

    Acid mine drainage (AMD) from the former Leona Heights Sulfur mine in Oakland, CA, contributes toxic levels of Cu, Cd, and Zn and elevated levels of Fe2+ and SO42- to downstream reaches of Lion Creek via Leona Creek. To investigate the extent of AMD and its relationship to microbial community structure, water samples were collected from three tributaries (two natural, and one with AMD) as well as the inlet and outlet of Lake Aliso (a reservoir downstream of the confluence of the three tributaries) beginning in July 2009. Lake Aliso was dammed in the late 1800s but since the early 1990s it has been full during the dry season and drained during the wet season, thus dramatically altering the geochemical conditions on a seasonal basis. Natural waters from Lion Creek and Horseshoe Creek tributaries dilute the water from Leona Creek, thus reducing concentrations of major ions and metals below toxic levels before water discharges into Lake Aliso. Precipitation events lead to episodes of increased mobilization of Cu and Cd in Leona Creek and produce toxic levels of these metals below the confluence with Lion Creek. Tributary mixing calculations suggest that even though Leona Creek contributes the smallest volume of water of the three tributaries, it is the main source of metals entering Lake Aliso. The input of the metal-rich AMD from Leona Creek changes the redox conditions of Lion Creek. In addition, Lake Aliso has a significant impact on water quality in the Lion Creek watershed. Observations of temperature, conductivity, pH, and dissolved oxygen in lake depth profiles indicate that Lake Aliso is stratified during the dry season when the lake is full. Based on concentration differences between the inlet and outlet of the lake, Na, Mg, SO42-, Ca, Mn, Zn, Cd, Cu and Ni are removed from the water while K, As, Pb and Fe are mobilized when Lake Aliso is full. Geochemical modeling using PhreeqcI suggests the deposition of minerals containing the metals that are being removed

  19. Injection of alkaline ashes into underground coal mines for acid mine drainage abatement

    SciTech Connect

    Aljoe, W.W.

    1996-12-31

    The injection of fly ash, scrubber sludge, fluidized-bed combustion (FBC) ash, and other alkaline waste materials into abandoned underground coal mines for acid mine drainage (AMD) abatement has obvious conceptual appeal. This report describes three ongoing projects -- one each in West Virginia, Maryland, and Ohio -- where field demonstrations of the technique are being pursued in cooperative efforts among State and Federal agencies and/or private companies. The West Virginia site produces AMD that is causing the State to incur very high treatment costs and operational problems, especially in the storage and disposal of metal hydroxide sludges that result from treatment. In an attempt to achieve a more cost-effective long-term remediation scheme, the State is working with local coal companies and power generators on a plan to fill part or all of the mine voids with slurries of fly ash and/or FBC ash. At the Maryland site, the goal is to demonstrate the feasibility of completely filling a very small underground mine with an FEC ash slurry. The information gained here will determine whether large-scale AMD remediation can be achieved if deep mine disposal of ash is incorporated into the design of a new FBC power plant. In Ohio, it is believed that sealing and complete flooding of a relatively small mine will be able to curtail its AMD production. In order to accelerate the flooding process and insure that alkaline conditions will prevail in the mine, a waste slurry of calcium hydroxide from a nearby source will be injected into the mine voids in conjunction with mine sealing.

  20. Thiamine and fatty acid content of Lake Michigan Chinook salmon

    USGS Publications Warehouse

    Honeyfield, D.C.; Peters, A.K.; Jones, M.L.

    2008-01-01

    Nutritional status of Lake Michigan Chinook salmon (Oncorhynchus tshawytscha) is inadequately documented. An investigation was conducted to determine muscle and liver thiamine content and whole body fatty acid composition in small, medium and large Chinook salmon. Muscle and liver thiamine concentrations were highest in small salmon, and tended to decrease with increasing fish size. Muscle thiamine was higher in fall than spring in large salmon. The high percentage of Chinook salmon (24-32% in fall and 58-71% in spring) with muscle thiamine concentration below 500 pmol/g, which has been associated with loss of equilibrium and death in other Great Lake salmonines, suggest that Chinook appear to rely less on thiamine than other Great Lakes species for which such low concentrations would be associated with thiamine deficiency (Brown et al. 2005b). A positive correlation was observed between liver total thiamine and percent liver lipids (r = 0.53, P < 0.0001, n = 119). In medium and large salmon, liver lipids were observed to be low in fish with less than 4,000 pmol/g liver total thiamine. In individuals with greater than 4,000 pmol/g liver thiamine, liver lipid increased with thiamine concentration. Individual fatty acids declined between fall and spring. Essential omega-3 fatty acids appear to be conserved as lipid content declined. Arachidonic acid (C20:4n6), an essential omega-6 fatty acid was not different between fall and spring, although the sum of omega-6 (Sw6) fatty acids declined over winter. Elevated concentrations of saturated fatty acids (sum) were observed in whole body tissue lipid. In summary, thiamine, a dietary essential vitamin, and individual fatty acids were found to vary in Lake Michigan Chinook salmon by fish size and season of the year.

  1. HANDBOOK FOR CONSTRUCTED WETLANDS RECEIVING ACID MINE DRAINAGE

    EPA Science Inventory

    In the summer of 1987, a pilot constructed wetland was built at the Big Five Tunnel in Idaho Springs, Colorado. This report details the theory, design and construction of wetlands receiving acid mine drainages, based on the second and third year of operation of this wetland, whic...

  2. DEVELOPMENT OF SRB TREATMENT SYSTEMS FOR ACID MINE DRAINAGE

    EPA Science Inventory

    Over the past decade, significant advances have been made in the development of sulfate- reducing bacteria (SRB) technology to treat acid mine drainage (AMD), Bench-scale testing, field demonstrations, and engineered applications of SRBs for the treatment of AMD will be presented...

  3. Use of sulfate reducing bacteria in acid mine drainage treatment

    SciTech Connect

    Powers, T.J.

    1995-10-01

    The environmental impacts caused by Acid Mine Drainage (AMD) were first recorded in 1556 by Georgius Agricola. In the United States 10,000 miles of streams and 29,000 surface acres of impoundments are estimated to be seriously affected by AMD. Abandoned surface mines are estimated to contribute about 15% of the drainage, while active mines (40%) and shaft and drift mines (45%) contribute the remainder. AMD results when metal sulfide minerals, particularly pyrite (FeS{sub 2}), come in contact with oxygen and water. Acid generation occurs when metal sulfide minerals are oxidized according to the Initiator Reaction: FeS{sub 2}(pyrite) + 3 1/2O{sub 2} + H{sub 2}O {yields} Fe{sup 2+} + 2SO{sub 4}{sup 2-} + 2H{sup +}. This reaction is one of many that results in increased metal mobility and increased acidity (lowered pH) of the mine water. The oxidation of ferrous sulfate is accelerated by bacterial action of Thiobacillus ferrooxidans, a naturally occurring bacterium that at pH 3.5 or less, can rapidly accelerate the conversion of dissolved Fe{sup 2+} (ferrous iron) to Fe{sup 3+} (ferric iron), and can act as an oxidant for the oxidation of pyrite. Ferric ions, as well as other metal ions, and the sulfuric acid have a deleterious influence on the biota of streams receiving AMD. The Lilly/Orphan Boy Mine, located in the Elliston Mining District of Powell County, Montana, was selected as the Sulfate Reducing Bacteria (SRB) technology demonstration site. The mine is situated on a patented claim on Deerlodge National Forest Land about 11 miles south of Elliston, Montana. This abandoned mining operation consists of a 250-foot shaft, four horizontal workings, and some stopping. The shaft is flooded with AMD to the 74-foot level and is discharging about 3 gallons per minute (gpm) at a pH of 3.0 from the adit associated with this level.

  4. Microbial Fe cycling and mineralization in sediments of an acidic, hypersaline lake (Lake Tyrell, Victoria, Australia)

    NASA Astrophysics Data System (ADS)

    Roden, E. E.; Blöthe, M.; Shelobolina, E.

    2009-12-01

    Lake Tyrrell is a variably acidic, hypersaline, Fe-rich lake located in Victoria, Australia. Terrestrial acid saline lakes like Lake Tyrrell may be analogs for ancient Martian surface environments, as well as possible extant subsurface environments. To investigate the potential for microbial Fe cycling under acidic conditions and high salt concentration, we collected sediment core samples during three field trips between 2006 and 2008 from the southern, acidic edge of the lake. Materials from the cores were used for chemical and mineralogical analyses, as well as for molecular (16S rRNA genes) and culture-based microbiological studies. Near-surface (< 1 m depth) pore fluids contained low but detectable dissolved oxygen (ca. 50 uM), significant dissolved Fe(II) (ca. 500 uM), and nearly constant pH of around 4 - conditions conducive to enzymatic Fe(II) oxidation. High concentrations of Fe(III) oxides begin accumulate at a depth of ca. 10 cm, and may reflect the starting point for formation of massive iron concretions that are evident at and beneath the sediment surface. MPN analyses revealed low (10-100 cells/mL) but detectable populations of aerobic, halophilic Fe(II)-oxidizing organisms on the sediment surface and in the near-surface ground water. With culture-dependent methods at least three different halotolerant lithoautotrophic cultures growing on Fe(II), thiosulfate, or tetrathionate from different acidic sites were obtained. Analysis of 16S rRNA gene sequences revealed that these organisms are similar to previous described gamma proteobacteria Thiobacillus prosperus (95%), Halothiobacillus kellyi (99%), Salinisphaera shabanense (95%) and a Marinobacter species. (98%). 16S rRNA gene pyrosequencing data from two different sites with a pH range between 3 and 4.5 revealed a dominance of gamma proteobacteria. 16S rRNA gene pyrosequencing libraries from both cores were dominated by sequences related to the Ectothiorhodospiraceae family, which includes the taxa

  5. Effects of coal mining on the water quality and sedimentation of Lake Tuscaloosa and selected tributaries, North River basin, Alabama

    USGS Publications Warehouse

    Cole, E.F.

    1985-01-01

    Lake Tuscaloosa, a reservoir on North River, is the primary source of water supply for the city of Tuscaloosa, Alabama, and surrounding areas. Between October 1982 and September 1983, 14 sites in the North River basin were sampled to determine if surface coal mining has impacted the quality of water in the lake and selected tributaries. Water draining mined basins showed increases in specific conductance, sulfate concentrations , and dissolved and total recoverable iron and manganese concentrations after mining started in 1975. Although water in the reservoir has become more mineralized with only an estimated 5 percent of the basin mined, total dissolved solids concentrations are still very low, ranging from 28 to 35 milligrams per liter at the dam. The quality of water at most sites was, except for pH, iron, and manganese, within secondary drinking water standards. The pH of water from streams draining either mined or unmined basins was generally less than 6.5. Sedimentation has occurred at most measured lake cross sections since impoundment. However, natural factors such as steep overland and channel slopes, may cause more sedimentation in the lake from unmined basins than from coal mining in a different basin. (USGS)

  6. Pyrite microencapsulation: Potential for abatement of acid mine drainage

    SciTech Connect

    Seta, A.K.; Evangelou, V.P.

    1996-12-31

    Oxidation of pyrite in mining waste or overburden is the main source of acid mine drainage (AMD) production which causes major environmental pollution. Presently, the most common method of controlling AMD problems is through the mixing alkaline substances, such as limestone, with the AMD producing materials. However, the effectiveness of this method is still questionable. The main reason for this is that the surface of pyrite particles in mining waste are still exposed to the atmospheric O{sub 2} after treatment. Experimental evidence on novel pyrite microencapsulation technologies currently under development in our laboratory are presented. It was demonstrated that these technologies, which include ferric hydroxide-phosphate-coatings and ferric-hydroxide-silica coatings, could effectively protect pyrite from oxidation.

  7. A survey of lakes in the Republic of Ireland: hydrochemical characteristics and acid sensitivity.

    PubMed

    Aherne, Julian; Kelly-Quinn, Mary; Farrell, Edward P

    2002-09-01

    In 1997, as part of a national program to determine and map critical loads, a lake survey was carried out in the Republic of Ireland. In total 200 lakes were sampled, which represents approximately 3.3% of the total lake population. The majority of lakes were situated in remote, high-altitude, acid-sensitive areas along the coastal margins of the country. Lake chemistry was dominated by marine inputs. Approximately 50% of the lakes had DOC > 5 mg L-1 due to the presence of organic soils in a large proportion of the catchments. Nonmarine sulfate concentrations were at background levels (< 20 mu eq L-1) in 50% of the lakes. Exceedance of critical load was observed in 7% of the sampled lakes (13 lakes). However, there are uncertainties in the critical load calculations due to the interference of sea salts and organic acids; accurate estimation under such conditions requires long-term lake and deposition chemistry.

  8. The role of anaerobic bacteria in the neutralization of acid mine drainage. [Desulfovibrio

    SciTech Connect

    Bell, P.E.

    1988-01-01

    In contrast to the acidic water column, the sediments underlying Lake Anna, which receives acid mine drainage, are circumneutral and contain 1-4 meq alkalinity/L. Indirect fluorescent antibody counts of a methanogen (strain CA) and a sulfate reducer (Desulfovibrio strain SM) demonstrated that these organisms were present in the sediments at numbers of approximately 10{sup 6} bacteria/mL sediment. Anaerobic heterotrophs in the sediments underlying the acidified arm of the lake outnumbered anaerobic heterotrophs in a non-acidified arm of the lake. A major storm event resulted in the deposition of 11 cm of oxidized, acidic new sediment material over the older circumneutral sediments. The Eh in the new sediments decreased by 200 mV within one week after the storm event. The pH and alkalinity increased even in the 1-cm layer by two weeks after the storm and products of sulfate reduction (acid volatile sulfide) increased at three weeks after the storm. This suggests that biological processes other than sulfate reduction were responsible for the initial buffering of these sediments. Laboratory experiments using the sulfate reducer and two anaerobes (also isolated from the sediments) suggested that alkalinity production during sulfate reduction decreases with decreasing carbon concentration. Generation of alkalinity was found not to be a simple function of sulfate reduction or of iron reduction. The generation of alkalinity was found to be a function of the carbon source, and concentration, organisms present, and mineral phase formed. Iron reduction rates in the sediments of Contrary Creek ranged from 4.9-27.8 mM/m{sup 2}-sediment-day. Alkalinity was produced in the floc layer in the absence of sulfate reduction. Iron reduction could be responsible for the mineralization of 15-90% of the carbon input to this system.

  9. Post-Depositional Behavior of Cu in a Metal-Mining Polishing Pond (East Lake, Canada)

    USGS Publications Warehouse

    Martin, A.J.; Jambor, J.L.; Pedersen, Thomas F.; Crusius, J.

    2003-01-01

    The post-depositional behavior of Cu in a gold-mining polishing pond (East Lake, Canada) was assessed after mine closure by examination of porewater chemistry and mineralogy. The near-surface (upper 1.5 cm) sediments are enriched in Cu, with values ranging from 0.4 to 2 wt %. Mineralogical examination revealed that the bulk of the Cu inventory is present as authigenic copper sulfides. Optical microscopy, energy-dispersion spectra, and X-ray data indicate that the main Cu sulfide is covellite (CuS). The formation of authigenic Cu-S phases is supported by the porewater data, which demonstrate that the sediments are serving as a sink for dissolved Cu below sub-bottom depths of 1-2 cm. The zone of Cu removal is consistent with the occurrence of detectable sulfide and the consumption of sulfate. The sediments can be viewed as a passive bioreactor that permanently removes Cu as insoluble copper sulfides. This process is not unlike that which occurs in other forms of bioremediation, such as wetlands and permeable reactive barriers. Above the zone of Cu removal, dissolved Cu maxima in the interfacial porewaters range from 150 to 450 ??g L-1 and reflect the dissolution of a Cu-bearing phase in the surface sediments. The reactive phase is thought to be a component of treatment sludges delivered to the lake as part of cyanide treatment. Flux calculations indicate that the efflux of dissolved Cu from the sediments to the water column (14-51 ??g cm-2 yr-1) can account for the elevated levels of dissolved Cu in lake waters (???50 ??g L-1). Implications for lake recovery are discussed.

  10. Spatial and spectral characterization of acid rain stress in Canadian Shield lakes

    NASA Technical Reports Server (NTRS)

    Marshall, Elizabeth J.; Tanis, Frederick J.

    1989-01-01

    Results from this study demonstrate that a remote sensor can discriminate lake clarity based upon reflection. The basic hypothesis was that seasonal and multiyear changes in lake optical transparency are indicative of sensitivity to acidic deposition. In many acid-sensitive lakes optical transparency is controlled by the amount of dissolved organic carbon (DOC) present. DOC is a strong absorbing, nonscattering material which has the greatest impact at short visible wavelengths, including Thematic Mapper band 1. Acid-sensitive lakes have high concentrations of aluminum which have been mobilized by acidic components contained in the runoff. Aluminum complexing with DOC is considered to be the primary mechanism to account for observed increases in lake transparency in acid-sensitive lakes. Thus seasonal changes in the optical transparency of lakes should provide an indication of the stress due to acid deposition and loading.

  11. Remediation of acid mine drainage from the Santa Fe tin mine, Bolivia

    NASA Astrophysics Data System (ADS)

    Calvo, Daniel; Zamora Echenique, Gerardo; Alfonso, Pura; Casado, Jordi; Trujillo, Elvys; Jiménez-Franco, Abigail; Garcia-Valles, Maite

    2015-04-01

    The Santa Fe mine, department of Oruro, is located in the Andean Tin belt, is exploited for tin, zinc, lead and silver. This in an underground mine mined up to the -108 level. Today it is only mined up to the -50 level. Under this level the table water covers the mine. Water reaches the surface with a very acidic composition, with a high content in potentially toxic elements. This water drains directly to the Santa Fe River and contribute to the pollution present in this river that directly affect to the aquatic communities. In addition, population of this area have problems in the supply of drinking water, so remediation by obtaining cleaning water is a priority for this area. This study presents a neutralization-precipitation treatment with lime to the acid water inside the mine. The ore mineralogy of the Santa Fe mined deposit consists mainly in cassiterite, pyrite, sphalerite, galena, arsenopyrite argentite and sulphosalts. The host mineral is mainly quartz, with a minor content in feldspars and tourmaline. Alteration minerals as alunite, goethite and pumbojarosite are abundant and indicate the occurrence of reactions that lead to the formation of acid mine drainage. The mean pH of water drained from the Santa Fe mine is 2.2 and chemical analyses show high contents in potentially toxic elements: 27-295 ppm Zn, 0.05-0.2 ppm Pb, 0.06-0.09 ppm Cd, 04-0.12 ppm Cu, 113-165 ppm Fe, 4 ppm Mn and 564-664 ppm S. As and Sb were under 0.5 ppm. A settler tank inside the mine was designed by means of seal a selected gallery to clean the mine water. The function of this gallery is to sediment the sludge resulting from the neutralization - precipitation treatment process to obtain a clear water overflow continuously to the outside. The neutralization tests indicate that 0.65g/L of lime and 2ml of flocculant should be added to neutralize water up to pH 6-7. A flow rate of 80 L /s was considered. After a geotechnical study, a chamber located in the mine was selected to locate

  12. VALUING ACID MINE DRAINAGE REMEDIATION OF IMPAIRED WATERWAYS IN WEST VIRGINIA: A HEDONIC MODELING APPROACH

    EPA Science Inventory

    States with active and abandoned mines face large private and public costs to remediate damage to streams and rivers from acid mine drainage (AMD), the metal rich runoff flowing primarily from abandoned mines and surface deposits of mine waste. AMD can lower stream and river pH ...

  13. USE OF ENVIRONMENTAL ISOTOPES TO DIFFERENTIATE WATER SOURCES AND CONSTRAIN THE WATER BUDGET AT THE SULPHUR BANK MERCURY MINE, CLEAR LAKE, CALIFORNIA

    EPA Science Inventory

    The Sulphur Bank Mercury Mine (SBMM) is a 65 ha site located on the eastern shore of the Oaks Arm of Clear Lake, Lake County, California. Between 1864 and 1957, SBMM was the site of underground and open pit mining operations for S and Hg, coinciding with past and present hot spr...

  14. Characteristics of acidic lakes in the eastern United States (journal version)

    SciTech Connect

    Landers, D.H.; Eilers, J.M.; Brakke, D.F.; Kellar, P.E.

    1988-01-01

    Acidic lakes are found in many regions of the world and are especially common in those regions of the temperate northern hemisphere that have received high levels of acidic deposition during the last several decades. The National Lake Survey was a one-time fall sampling of lakes in regions of the United States suspected of containing lakes susceptible to acidic deposition. The sample lakes were statistically selected from all lakes identified on medium-scale topographic maps to permit population estimates to be calculated of the characteristics of lakes in the target populations in the regions surveyed. Acidic lakes were defined as those lakes with acid-neutralizing capacity (ANC) < or = 0 (as determined by Gran analysis). This definition is limiting in that only the lakes with no remaining ANC are included. It is clear that lakes with ANC > 0 may be acidic based on pH; however, the rationale for defining other or additional categories of acidic lakes is beyond the scope of the presentation.

  15. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains

    USGS Publications Warehouse

    Nanus, L.; Williams, M.W.; Campbell, D.H.; Tonnessen, K.A.; Blett, T.; Clow, D.W.

    2009-01-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration 3000 m, with 80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  16. Inhibition of bacterial activity in acid mine drainage

    NASA Astrophysics Data System (ADS)

    Singh, Gurdeep; Bhatnagar, Miss Mridula

    1988-12-01

    Acid mine drainage water give rise to rapid growth and activity of an iron- and sulphur- oxidizing bacterium Thiobacillus ferrooxidians which greatly accelerate acid producing reactions by oxidation of pyrite material associated with coal and adjoining strata. The role of this bacterium in production of acid mine drainage is described. This study presents the data which demonstrate the inhibitory effect of certain organic acids, sodium benzoate, sodium lauryl sulphate, quarternary ammonium compounds on the growth of the acidophilic aerobic autotroph Thiobacillus ferrooxidians. In each experiment, 10 milli-litres of laboratory developed culture of Thiobacillus ferrooxidians was added to 250 milli-litres Erlenmeyer flask containing 90 milli-litres of 9-k media supplemented with FeSO4 7H2O and organic compounds at various concentrations. Control experiments were also carried out. The treated and untreated (control) samples analysed at various time intervals for Ferrous Iron and pH levels. Results from this investigation showed that some organic acids, sodium benzoate, sodium lauryl sulphate and quarternary ammonium compounds at low concentration (10-2 M, 10-50 ppm concentration levels) are effective bactericides and able to inhibit and reduce the Ferrous Iron oxidation and acidity formation by inhibiting the growth of Thiobacillus ferrooxidians is also discussed and presented

  17. Plan for injection of coal combustion byproducts into the Omega Mine for the reduction of acid mine drainage

    SciTech Connect

    Gray, T.A.; Moran, T.C.; Broschart, D.W.; Smith, G.A.

    1997-12-31

    The Omega Mine Complex is located outside of Morgantown, West Virginia. The mine is in the Upper Freeport Coal, an acid-producing coal seam. The coal was mined in a manner that has resulted in acid mine drainage (AMD) discharges at multiple points. During the 1990`s, the West Virginia Division of Environmental Protection (WVDEP) assumed responsibility for operating a collection and treatment system for the AMD. Collection and treatment costs are approximately $300,000 per year. An innovative procedure of injecting grout into the mine working to reduce AMD and the resulting treatment costs is proposed. The procedure involves injecting grout mixes composed primarily of coal combustion byproducts (CCB`s) and water, with a small quantity of cement. The intention of the injection program is to fill the mine voids in the north lobe of the Omega Mine (an area where most of the acidity is believed to be generated) with the grout, thus reducing the contact of air and water with potentially acidic material. The grout mix design consists of an approximate 1:1 ratio of fly ash to byproducts from fluidized bed combustion. Approximately 100 gallons of water per cubic yard of grout is used to help achieve flowability. Observation of the mine workings via subsurface borings and downhole video camera operation confirmed that first-mined areas were generally open while second-mined areas were generally partially collapsed. The injection program was developed to account for this by utilizing closer injection hole spacing in second-mined areas. Administration of a construction contract for the project is on-going through WVDEP`s Abandoned Mine Lands (AML) program. Funding for the project is coming from the WVDEP; Allegheny Power; Consol, Inc.; United States Office of Surface Mining Reclamation and Enforcement (OSMRE); Anker Energy Corporation; and the Electric Power Research Institute.

  18. Detour Lake mine - gold in upper greenschist-lower amphibolite terrane

    SciTech Connect

    Marmont, S.

    1985-01-01

    The Detour Lake mine, Abitibi belt, Superior Province, Canada, shows many similarities and some significant disimilarities with other gold deposits in the belt. The deposit is in tholeiitic basalts, granodioritic feldspar porphyries, massive felsic units and an amphibole-carbonate-mica schist. The structural footwall of the orebody consists of well layered, pelitic metasediments. Alteration is extensive and comprises carbonatization, biotitization, sericitization, introduction of potassic feldspars, silicification and sulfidation. The relationships between penetrative tectonic fabrics, veins, intrusions and primary flow features suggest that many intermittent stages of ductile and brittle deformation, representative of a simple shear system with an overall dextral motion took place. These features are shared by numerous other gold deposits in the Abitibi belt. However, unlike the deposits in the core of the belt, which are found in lower greenschist facies, the rocks of the Detour Lake mine constitute an upper greenschist-lower amphibolite assemblage. This higher grade of metamorphism represents either the thermal aureole of a granitic body or a deeper level in the crust. In addition, gold is commonly submicroscopic with preference for chalcopyrite, and occurs in veins or in their immediate wall rock. The structural history of the auriferous veins demonstrates that gold was deposited late in the hydrothermal processes, post-dates folding and is synchronous with or later than the felsic intrusions.

  19. Acid lake in N.Y. gets relief

    NASA Astrophysics Data System (ADS)

    A pond in the Adirondack Mountains of New York State has received a second soothing dose of baking soda. The 21 tons of sodium bicarbonate should moderate the pond's acidic conditions, lethal to fish and other forms of life.Wolf Pond, 25 miles (40 km) north of Saranac Lake, has developed an extremely low pH (4.5) because of acid rain and the runoff of acidic surface water, combined with very little outflow. The pond was first treated with sodium bicarbonate by t h e New York Department of Environmental Conservation in 1984; afterward the pH rose to about 6.2. Fish stocked by local residents have continued to live in the pond, despite the eventual rebound in its acidity.

  20. Impact of acid mine drainages on surficial waters of an abandoned mining site.

    PubMed

    García-Lorenzo, M L; Marimón, J; Navarro-Hervás, M C; Pérez-Sirvent, C; Martínez-Sánchez, M J; Molina-Ruiz, José

    2016-04-01

    Weathering of sulphide minerals produces a great variety of efflorescences of soluble sulphate salts. These minerals play an important role for environmental pollution, since they can be either a sink or a source for acidity and trace elements. This paper aims to characterise surface waters affected by mining activities in the Sierra Minera of Cartagena-La Union (SE, Spain). Water samples were analysed for trace metals (Zn, Cd, Pb, Cu, As and Fe), major ions (Na(+), K(+), Ca(2+) and Mg(2+)) and anions (F(-), Cl(-), NO3 (-), CO3 (2-), SO4 (2-)) concentrations and were submitted to an "evaporation-precipitation" experiment that consisted in identifying the salts resulting from the evaporation of the water aliquots sampled onsite. Mineralogy of the salts was studied using X-ray diffraction and compared with the results of calculations using VISUAL MINTEQ. The study area is heavily polluted as a result of historical mining and processing activities that has produced large amount of wastes characterised by a high trace elements content, acidic pH and containing minerals resulting from the supergene alteration of the raw materials. The mineralogical study of the efflorescences obtained from waters shows that magnesium, zinc, iron and aluminium sulphates predominate in the acid mine drainage precipitates. Minerals of the hexahydrite group have been quantified together with minerals of the rozenite group, alunogen and other phases such as coquimbite and copiapite. Calcium sulphates correspond exclusively to gypsum. In a semiarid climate, such as that of the study area, these minerals contribute to understand the response of the system to episodic rainfall events. MINTEQ model could be used for the analysis of waters affected by mining activities but simulation of evaporation gives more realistic results considering that MINTEQ does not consider soluble hydrated salts.

  1. Impact of acid mine drainages on surficial waters of an abandoned mining site.

    PubMed

    García-Lorenzo, M L; Marimón, J; Navarro-Hervás, M C; Pérez-Sirvent, C; Martínez-Sánchez, M J; Molina-Ruiz, José

    2016-04-01

    Weathering of sulphide minerals produces a great variety of efflorescences of soluble sulphate salts. These minerals play an important role for environmental pollution, since they can be either a sink or a source for acidity and trace elements. This paper aims to characterise surface waters affected by mining activities in the Sierra Minera of Cartagena-La Union (SE, Spain). Water samples were analysed for trace metals (Zn, Cd, Pb, Cu, As and Fe), major ions (Na(+), K(+), Ca(2+) and Mg(2+)) and anions (F(-), Cl(-), NO3 (-), CO3 (2-), SO4 (2-)) concentrations and were submitted to an "evaporation-precipitation" experiment that consisted in identifying the salts resulting from the evaporation of the water aliquots sampled onsite. Mineralogy of the salts was studied using X-ray diffraction and compared with the results of calculations using VISUAL MINTEQ. The study area is heavily polluted as a result of historical mining and processing activities that has produced large amount of wastes characterised by a high trace elements content, acidic pH and containing minerals resulting from the supergene alteration of the raw materials. The mineralogical study of the efflorescences obtained from waters shows that magnesium, zinc, iron and aluminium sulphates predominate in the acid mine drainage precipitates. Minerals of the hexahydrite group have been quantified together with minerals of the rozenite group, alunogen and other phases such as coquimbite and copiapite. Calcium sulphates correspond exclusively to gypsum. In a semiarid climate, such as that of the study area, these minerals contribute to understand the response of the system to episodic rainfall events. MINTEQ model could be used for the analysis of waters affected by mining activities but simulation of evaporation gives more realistic results considering that MINTEQ does not consider soluble hydrated salts. PMID:26347422

  2. Azaphilones from an Acid Mine Extremophile Strain of a Pleurostomophora sp.

    PubMed

    Stierle, Andrea A; Stierle, Donald B; Girtsman, Teri; Mou, T C; Antczak, Christophe; Djaballah, Hakim

    2015-12-24

    An extremophilic fungus identified as a Pleurostomophora sp. was isolated from the Berkeley Pit, an acid mine waste lake. When grown in liquid culture, the fungus produced berkchaetoazaphilones A-C (1, 2, and 5), the red pigment berkchaetorubramine (6), and the known compound 4-(hydroxymethyl)quinoline. These compounds were evaluated as inhibitors of matrix metalloproteinase-3, caspase-1, and proinflammatory cytokine production in induced THP-1 cells. Berkchaetoazaphilone B (2) inhibited IL-1β, TNFα, and IL-6 production in the induced inflammasome assay and was cytotoxic toward human retinoblastoma cell line Y79 (IC50 = 1.1 μM), leukemia cell lines CCRF-CEM and SR, and the melanoma cell line LOX IMVI (IC50 = 10 μM). PMID:26641525

  3. EXAFS of heavy metal coordination in acid mine drainage sediments

    SciTech Connect

    Carroll, S.; O`Day, P.; Waychunas, G.; Phillips, B.

    1995-12-01

    We use extended x-ray adsorption fine structure (EXAFS) spectroscopy to examine the chemical environment of zinc (1-2 wt. %), lead (300-600 ppm) and cadmium (50-200 ppm) in complex acid mine drainage sediments from the Tri-State Mining District (KS, MO, OK). The sediments in streams draining tailings piles and open mine shafts are dominated by quartz or amorphous iron hydroxides; accessory minerals include calcite. The bulk water chemistry is buffered by the limestone geology and is undersaturated with respect to pure heavy metal carbonates and hydroxides. EXAFS spectra of the sediment samples were taken at SSRL with a fluorescence detector at low temperature ({approximately}10 K). Heavy metals do not form pure carbonate or hydroxide phases, nor do they appear to sorb to quartz surfaces. In sediments near the mine source, the metals are present primarily as sulfides, the original host mineral. With increasing distance from the source, second-neighbor backscattering from Fe indicates that the metals leached from the sulfides are taken up with amorphous iron hydroxides.

  4. DISPOSAL OF FLUIDIZED BED COMBUSTION ASH IN AN UNDERGROUND MINE TO CONTROL ACID MINE DRAINAGE AND SUBSIDENCE

    SciTech Connect

    Unknown

    2000-10-01

    This project evaluated the technical, economic and environmental feasibility of filling abandoned underground mine voids with coal combustion byproducts. Success was measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). Phase 1 of the project was completed in September 1995 and was concerned with the development of the grout and a series of predictive models. These models were verified through the Phase II field phase and will be further verified fin the large scale field demonstration of Phase III. The verification allows the results to be packaged in such a way that the technology can be easily adapted to different site conditions. Phase II was successfully completed with 1000 cubic yards of grout being injected into Anker Energy's Fairfax mine. The grout flowed over 600 feet from a single injection borehole. The grout achieved a compressive strength of over 1000 psi (twice the level that is needed to guarantee subsidence control). Phase III was a full scale test at Anker's eleven acre Longridge mine site. The CCB grout replaced what was an open mine void with a solid so that the groundwater tends to flow around and through the pillars rather than through the previously mined areas. The project has demonstrated that CCBs can be successfully disposed in underground mines. Additionally, the project has shown that filling an abandoned underground mine with CCBs can lead to the reduction and elimination of environmental problems associated with underground mining such as acid mine drainage and subsidence. The filling of the Longridge Mine with 43,000 cubic yards of CCB grout resulted in a 97% reduction in acid mine drainage coming from the mine.

  5. Plasma osmotic and electrolyte concentrations of largemouth bass from some acidic Florida lakes

    SciTech Connect

    Canfield, D.E. Jr.; Maceina, M.J.; Nordlie, F.G.; Shireman, J.V.

    1985-05-01

    Five acidic clear (pH 3.7-4.9), three acidic colored (pH 4.1-4.6), and three neutral (pH 6.9-7.3) north-central Florida lakes were surveyed in 1983 to determine plasma osmotic and electrolyte concentrations, growth, and coefficients of condition for largemouth bass Micropterus salmoides floridanus. Plasma osmotic concentrations averaged greater than 273 milliosmoles/kg in fish from acidic colored and circumneutral lakes, but averaged less than 269 milliosmoles/kg in four of the acidic clear lakes. Growth and coefficients of condition of largemouth bass > 305 mm total length in the acidic lakes were significantly lower than in the neutral lakes. Reductions in fish growth and condition, however, could be related to either acidic conditions or lake trophic status. 29 references, 3 tables.

  6. Efflorescent sulfates from Baia Sprie mining area (Romania)--Acid mine drainage and climatological approach.

    PubMed

    Buzatu, Andrei; Dill, Harald G; Buzgar, Nicolae; Damian, Gheorghe; Maftei, Andreea Elena; Apopei, Andrei Ionuț

    2016-01-15

    The Baia Sprie epithermal system, a well-known deposit for its impressive mineralogical associations, shows the proper conditions for acid mine drainage and can be considered a general example for affected mining areas around the globe. Efflorescent samples from the abandoned open pit Minei Hill have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman and near-infrared (NIR) spectrometry. The identified phases represent mostly iron sulfates with different hydration degrees (szomolnokite, rozenite, melanterite, coquimbite, ferricopiapite), Zn and Al sulfates (gunningite, alunogen, halotrichite). The samples were heated at different temperatures in order to establish the phase transformations among the studied sulfates. The dehydration temperatures and intermediate phases upon decomposition were successfully identified for each of mineral phases. Gunningite was the single sulfate that showed no transformations during the heating experiment. All the other sulfates started to dehydrate within the 30-90 °C temperature range. The acid mine drainage is the main cause for sulfates formation, triggered by pyrite oxidation as the major source for the abundant iron sulfates. Based on the dehydration temperatures, the climatological interpretation indicated that melanterite formation and long-term presence is related to continental and temperate climates. Coquimbite and rozenite are attributed also to the dry arid/semi-arid areas, in addition to the above mentioned ones. The more stable sulfates, alunogen, halotrichite, szomolnokite, ferricopiapite and gunningite, can form and persists in all climate regimes, from dry continental to even tropical humid. PMID:26544892

  7. Advances in the hydrogeochemistry and microbiology of acid mine waters

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2000-01-01

    The last decade has witnessed a plethora of research related to the hydrogeochemistry and microbiology of acid mine waters and associated tailings and waste-rock waters. Numerous books, reviews, technical papers, and proceedings have been published that examine the complex bio-geochemical process of sulfide mineral oxidation, develop and apply geochemical models to site characterization, and characterize the microbial ecology of these environments. This review summarizes many of these recent works, and provides references for those investigating this field. Comparisons of measured versus calculated Eh and measured versus calculated pH for water samples from several field sites demonstrate the reliability of some current geochemical models for aqueous speciation and mass balances. Geochemical models are not, however, used to predict accurately time-dependent processes but to improve our understanding of these systems and to constrain possible processes that contribute to actual or potential water quality issues. Microbiological studies are demonstrating that there is much we have yet to learn about the types of different microorganisms and their function and ecology in mine-waste environments. A broad diversity of green algae, bacteria, archaea, yeasts, and fungi are encountered in acid mine waters, and a better understanding of their ecology and function may potentially enhance remediation possibilities as well as our understanding of the evolution of life.

  8. Pollution in acid mine drainage from mine tailings in Svalbard Norwegian Arctic

    NASA Astrophysics Data System (ADS)

    Holm, E. B.; Brandvik, P. J.; Steinnes, E.

    2003-05-01

    Throughout the summer season of 2000 samples of acid mine drainage (AMD) were collected from areas below tailing deposits from the coal mining in Svalbard, Norwegian Arctic. The water was analysed for pH, oxygen, conductivity, 9 sulfate and various metals. Oxygen, pH and conductivity were measured by standard electrodes, sulphate was determined gravimetrically and metals were determined by flame/graphite furnace AAS. The AMD was found to contain heavy metals and sulphate in high concentrations, causing damage to the local tundra vegetation. Large spatial variation however was observed in pH (2.5-9.5) as well as in metal concentrations in the AMD, indicating strongly inhomogeneous distribution of sulphide minerais in the tailing deposits.

  9. Microbial diversity at the moderate acidic stage in three different sulfidic mine tailings dumps generating acid mine drainage.

    PubMed

    Korehi, Hananeh; Blöthe, Marco; Schippers, Axel

    2014-11-01

    In freshly deposited sulfidic mine tailings the pH is alkaline or circumneutral. Due to pyrite or pyrrhotite oxidation the pH is dropping over time to pH values <3 at which acidophilic iron- and sulfur-oxidizing prokaryotes prevail and accelerate the oxidation processes, well described for several mine waste sites. The microbial communities at the moderate acidic stage in mine tailings are only scarcely studied. Here we investigated the microbial diversity via 16S rRNA gene sequence analysis in eight samples (pH range 3.2-6.5) from three different sulfidic mine tailings dumps in Botswana, Germany and Sweden. In total 701 partial 16S rRNA gene sequences revealed a divergent microbial community between the three sites and at different tailings depths. Proteobacteria and Firmicutes were overall the most abundant phyla in the clone libraries. Acidobacteria, Actinobacteria, Bacteroidetes, and Nitrospira occurred less frequently. The found microbial communities were completely different to microbial communities in tailings at

  10. Clustering chlorine reactivity of haloacetic acid precursors in inland lakes.

    PubMed

    Zeng, Teng; Arnold, William A

    2014-01-01

    Dissolved organic matter (DOM) represents the major pool of organic precursors for harmful disinfection byproducts, such as haloacetic acids (HAAs), formed during drinking water chlorination, but much of it remains molecularly uncharacterized. Knowledge of model precursors is thus a prerequisite for understanding the more complex whole water DOM. The utility of HAA formation potential data from model DOM precursors, however, is limited due to the lack of comparability to water samples. In this study, the formation kinetics of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), the two predominant HAA species, were delineated upon chlorination of seventeen model DOM precursors and sixty-eight inland lake water samples collected from the Upper Midwest region of the United States. Of particular interest was the finding that the DCAA and TCAA formation rate constants could be grouped into four statistically distinct clusters reflecting the core structural features of model DOM precursors (i.e., non-β-diketone aliphatics, β-diketone aliphatics, non-β-diketone phenolics, and β-diketone phenolics). A comparative approach built upon hierarchical cluster analysis was developed to gain further insight into the chlorine reactivity patterns of HAA precursors in inland lake waters as defined by the relative proximity to four model precursor clusters. This work highlights the potential for implementing an integrated kinetic-clustering approach to constrain the chlorine reactivity of DOM in source waters.

  11. Potential hydrologic effects of peat mining in the Red Lake Peatlands, north-central Minnesota: A project plan

    USGS Publications Warehouse

    Siegel, Donald I.

    1979-01-01

    Peat is being considered for fuel in Minnesota. This study will investigate the potential effects of large-scale surface mining of peat on the hydrology and water quality of Upper Red Lake and the Tamarac River. The major aspects of the study are the characterization of the surface-water and groundwater hydrology and water quality, including the trace-metal content of the peat. Data will be collected to construct two- and three-dimensional digital models to simulate the movement of ground water and its relation to surface water in the peatlands, streams, and lakes. After the model is calibrated with field data, it will be used to evaluate the effect of mining peat on the hydrology and water quality of the Upper Red Lake and Tamarac River.

  12. The Black Lake (Quebec, Canada) mineral carbonation experimental station: CO2 capture in mine waste

    NASA Astrophysics Data System (ADS)

    Beaudoin, G.; Constantin, M.; Duchesne, J.; Dupuis, C.; Entrazi, A.; Gras, A.; Huot, F.; Fortier, R.; Hebert, R.; Larachi, F.; Lechat, K.; Lemieux, J. M.; Molson, J. W. H.; Maldague, X.; Therrien, R.; Assima, G. P.

    2014-12-01

    Passive mineral carbonation of chrysotile mining and milling waste was discovered at the Black Lake mine, southern Québec, 10 years ago. Indurated crusts were found at the surface and within waste piles where mineral and rock fragments are cemented by hydrated magnesium carbonates. A long-term research program has yielded significant insight into the process of CO2 capture from the atmosphere, and how it can be implemented during mining operations. Laboratory experiments show that the waste mineralogy is crucial, brucite being more reactive than serpentine. Partial water saturation, circa 40%, is also critical to dissolve magnesium from minerals, and transport aqueous CO2 to precipitation sites. Grain armoring by iron oxidation induced by dissolved oxygen prevents further reaction. Two experimental cells constructed with milling waste and fitted with various monitoring probes (T, H2O content, leachate) and gas sampling ports, have been monitored for more than 3 years, along with environmental conditions. The interstitial gas in the cells remains depleted in CO2 indicating continuous capture of ambient atmospheric CO2 at rates faster than advection to reaction sites. The energy released by the exothermic mineral carbonation reactions has been observed both in laboratory experiments (up to 4 °C) and in the field. Warm air, depleted to 10 ppmv CO2, vents at the surface of the waste piles, indicating reaction with atmospheric CO2 deep inside the piles. A thermal anomaly, detected by airborne infrared and coincident with a known venting area, was selected for locating a 100 m deep borehole fitted with sensor arrays to monitor active mineral carbonation within the pile. The borehole has intersected areas where mineral carbonation has indurated the milling waste. The borehole will be monitored for the next 3 years to better understand the mineral carbonation process, and its potential to yield recoverable geothermal energy in mining environments.

  13. A screening procedure for identifying acid-sensitive lakes from catchment characteristics.

    PubMed

    Berg, N H; Gallegos, A; Dell, T; Frazier, J; Procter, T; Sickman, J; Grant, S; Blett, T; Arbaugh, M

    2005-06-01

    Monitoring of Wilderness lakes for potential acidification requires information on lake sensitivity to acidification. Catchment properties can be used to estimate the acid neutralizing capacity (ANC) of lakes. Conceptual and general linear models were developed to predict the ANC of lakes in high-elevation (> or = 2170 m) Wilderness Areas in California's Sierra Nevada mountains. Catchment-to-lake area ratio, lake perimeter-to-area ratio, bedrock lithology, vegetation cover, and lake headwater location are significant variables explaining ANC. The general linear models were validated against independently collected water chemistry data and were used as part of a first stage screen to identify Wilderness lakes with low ANC. Expanded monitoring of atmospheric deposition is essential for improving the predictability of lake ANC.

  14. Widespread waterborne pollution in central Swedish lakes and the Baltic Sea from pre-industrial mining and metallurgy.

    PubMed

    Bindler, Richard; Renberg, Ingemar; Rydberg, Johan; Andrén, Thomas

    2009-07-01

    Metal pollution is viewed as a modern problem that began in the 19th century and accelerated through the 20th century; however, in many parts of the globe this view is wrong. Here, we studied past waterborne metal pollution in lake sediments from the Bergslagen region in central Sweden, one of many historically important mining regions in Europe. With a focus on lead (including isotopes), we trace mining impacts from a local scale, through a 120-km-long river system draining into Mälaren--Sweden's third largest lake, and finally also the Baltic Sea. Comparison of sediment and peat records shows that pollution from Swedish mining was largely waterborne and that atmospheric deposition was dominated by long-range transport from other regions. Swedish ore lead is detectable from the 10th century, but the greatest impact occurred during the 16th-18th centuries with improvements occurring over recent centuries, i.e., historical pollution > modern industrial pollution.

  15. Potential risks of effluent from acid mine drainage treatment plants at abandoned coal mines.

    PubMed

    Seo, Jaehwan; Kang, Sung-Wook; Ji, Wonhyun; Jo, Hun-Je; Jung, Jinho

    2012-06-01

    The lethal and sublethal toxicity of effluent from three acid mine drainage treatment plants were monitored from August 2009 to April 2010 using Daphnia magna (reference species) and Moina macrocopa (indigenous species). Acute lethal toxicity was observed in Samma effluent due to incomplete neutralization of acid mine drainages by the successive alkalinity producing system (SAPS). Additionally, there was no significant difference in toxicity values (TU) between D. magna and M. macrocopa (p < 0.05). Toxicity identification results of the final effluent collected in January 2010 showed that Al and Zn were key toxicants in addition to acidic pH. Unlike the Samma effluent, both Hwangji and Hamtae effluent had pH values that were near neutrality and showed either no acute toxicity or toxicity values less than 1 TU. However, the feeding rates of D. magna and M. macrocopa were significantly reduced when compared to the control (p < 0.05). These findings suggest that the Hamtae and Hwangji effluent likely have a sublethal effect on aquatic organisms in receiving water bodies. PMID:22415647

  16. Spatial characterization of acid rain stress in Canadian Shield Lakes. Final report

    SciTech Connect

    Tanis, F.J.; Marshall, E.M.

    1989-03-01

    The lake acidification in Northern Ontario was investigated using LANDSAT TM to sense lake volume reflectance and also to provide important vegetation and terrain characteristics. The purpose of this project was to determine the ability of LANDSAT to assess water quality characteristics associated with lake acidification. Results demonstrate that a remote sensor can discriminate lake clarity based upon reflection. The basic hypothesis is that seasonal and multi-year changes in lake optical transparency are indicative of sensitivity to acidic deposition. In many acid-sensitive lakes optical transparency is controlled by the amount of dissolved organic carbon present. Seasonal changes in the optical transparency of lakes can potentially provide an indication of the stress due to acid deposition and loading.

  17. Metabolically active eukaryotic communities in extremely acidic mine drainage.

    PubMed

    Baker, Brett J; Lutz, Michelle A; Dawson, Scott C; Bond, Philip L; Banfield, Jillian F

    2004-10-01

    Acid mine drainage (AMD) microbial communities contain microbial eukaryotes (both fungi and protists) that confer a biofilm structure and impact the abundance of bacteria and archaea and the community composition via grazing and other mechanisms. Since prokaryotes impact iron oxidation rates and thus regulate AMD generation rates, it is important to analyze the fungal and protistan populations. We utilized 18S rRNA and beta-tubulin gene phylogenies and fluorescent rRNA-specific probes to characterize the eukaryotic diversity and distribution in extremely acidic (pHs 0.8 to 1.38), warm (30 to 50 degrees C), metal-rich (up to 269 mM Fe(2+), 16.8 mM Zn, 8.5 mM As, and 4.1 mM Cu) AMD solutions from the Richmond Mine at Iron Mountain, Calif. A Rhodophyta (red algae) lineage and organisms from the Vahlkampfiidae family were identified. The fungal 18S rRNA and tubulin gene sequences formed two distinct phylogenetic groups associated with the classes Dothideomycetes and Eurotiomycetes. Three fungal isolates that were closely related to the Dothideomycetes clones were obtained. We suggest the name "Acidomyces richmondensis" for these isolates. Since these ascomycete fungi were morphologically indistinguishable, rRNA-specific oligonucleotide probes were designed to target the Dothideomycetes and Eurotiomycetes via fluorescent in situ hybridization (FISH). FISH analyses indicated that Eurotiomycetes are generally more abundant than Dothideomycetes in all of the seven locations studied within the Richmond Mine system. This is the first study to combine the culture-independent detection of fungi with in situ detection and a demonstration of activity in an acidic environment. The results expand our understanding of the subsurface AMD microbial community structure.

  18. Handbook for constructed wetlands receiving acid mine drainage

    SciTech Connect

    Wildeman, T.; Dietz, J.; Gusek, J.; Morea, S.

    1993-09-01

    In the summer of 1987, a pilot constructed wetland was built at the Big Five Tunnel in Idaho Springs, Colorado. The report details the theory, design and construction of wetlands receiving acid mine drainages, based on the second and third year of operation of this wetland, which was funded by the U.S. Environmental Protection Agency under the SITE Emerging Technologies Program. The text is divided into two broad sections: Part A - Theoretical Development, and Part B - Design Consideration. In the latter sections of Part A and through all of Part B the focus is on removal of metals by precipitation of sulfides through the activity of sulfate reducing bacteria.

  19. Copper electrowinning from acid mine drainage: a case study from the closed mine "Cerovo".

    PubMed

    Gorgievski, M; Bozić, D; Stanković, V; Bogdanović, G

    2009-10-30

    Copper removal from acid mine drainage originating from closed copper mine "Cerovo" RTB Bor, Serbia and containing approximately 1.3 g dm(-3) of copper and a very small amount of Fe2+/Fe3+ ions, has been successfully performed by the direct electrowinning method using either a porous copper sheet or carbon felt as the cathode. A cell with a fluidised bed of inert turbulent promoters, also used in this study, may be considered as unacceptable for the purpose view, having a cell voltage between 12 and 14 V. The cells used in the electrowinning experiments were compared in terms of cell voltage, pH and copper concentration. The results showed that it is possible to remove copper successfully from the mine waters with a high degree of electrowinning--higher than 92% and with a satisfactorily average current efficiency (>60%). Depending on the process time and the applied current, a final copper concentration less than 0.1 g dm(-3) was achieved. The specific energy consumption was approximately 7 kWh kg(-1) of deposited copper. A dense copper deposit was obtained when a three-dimensional electrode was used. PMID:19493615

  20. Geochemical forecast of acid mine drainage to evaluate corrective action plans for mine reclamation

    SciTech Connect

    Simmons, S.P.; Gentile, L.F.; McGarvie, S.D.

    1997-12-31

    A geochemical model was developed as part of the site investigation to characterize current geochemical conditions in coal refuse disposal areas and to support a modification to the reclamation plan at a closed underground coal mine in southern Illinois. The model provided significant insight into the geochemical processes which impact the development of a reclamation plan for the mine. Specifically, the geochemical model was designed to simulate the actual chemical reactions between infiltrating water and coal refuse and/or soil. The modeled acid mine drainage (AMD) was calibrated to observed conditions. New geochemical models were developed to predict the effectiveness of proposed reclamation activities on ground-water quality. Development of the geochemical model proceeded in two steps: (i) construction of a detailed conceptual model which accounted for all reaction paths; and (ii) computer geochemical modeling to confirm the validity of each reaction path using MINTEQA2 and PHREEQE. Mineralogical analysis of the coal refuse confirmed that pyrite was the mineral responsible for the AMD, therefore the conceptual model focused on pyrite dissolution and the generation of sulfate. The computer modeling accurately predicted the resulting sulfate concentrations in the AMD observed for all reaction paths in the conceptual model. Once the system was adequately characterized by a geochemical model, new models were generated and validated via comparison to ground water analyses, followed by computer modeling to forecast the impact of a range of corrective action scenarios on the ground water. The selected reclamation plan consists of hydraulic control of impacted ground water by pumping and construction of an enhanced cover system comprising a compacted clay liner overlain by a soil cover. This paper demonstrates how geochemical modeling is a valuable tool to use in evaluating and developing solutions for surface mine reclamation.

  1. Po-210 and Pb-210 in water and fish from Taboshar uranium mining Pit Lake, Tajikistan.

    PubMed

    Skipperud, L; Jørgensen, A G; Heier, L S; Salbu, B; Rosseland, B O

    2013-09-01

    Polonium-210 in water and (210)Pb and (210)Po in different fish organs from 3 different fish species in Taboshar Pit Lake (n = 13), located in the uranium mining area in Tajikistan, and in Kairakkum Reservoir (reference lake, n = 3), have been determined as part of a Joint project between Norway, Kazakhstan, Kyrgyzstan and Tajikistan. The average activity concentration of (210)Pb and (210)Po in liver, muscle and bone of Carassius auratus was higher than the concentration in similar tissues of C. carpio and Sander lucioperca from the reference site. The accumulation of (210)Po was higher than for (210)Pb, and the accumulation of (210)Po was highest in the liver of C. auratus (3673 ± 434 Bq kg(-1) ww). Although the average activity concentration of (210)Pb in liver and bones of C. auratus from Pit Lake were fairly similar, a huge variation in the liver activity concentrations (25-327 Bq kg(-1) ww) was found. The results confirm direct uptake of unsupported (210)Po into the liver, and that the distributions of (210)Po and (210)Pb in fish organs were different. The BCF (L/kg) for (210)Po in bone, liver and muscle clearly demonstrates high accumulation of (210)Po in C. auratus, especially in the liver. The average BCFs of liver, bone and muscle were >1.4 × 10(5), >2.5 × 10(4) and >1.4 × 10(4), respectively. All fish in the Pit Lake were found to be in the same trophic level, however, a linear correlation between log (210)Po in liver and δ(15)N could indicate biomagnification of (210)Po in liver of C. auratus. In regards to the recommended Annual Limit of Intake (ALI) for (210)Po, the concentration of (210)Po in muscle tissues of C. auratus is alarming, as there is a high probability for the local population at risk to exceed the recommended ALI through consumption of fish from Taboshar Pit Lake.

  2. Effects of acidic deposition on in-lake phosphorus availability: a lesson from lakes recovering from acidification.

    PubMed

    Kopáček, Jiří; Hejzlar, Josef; Kaňa, Jiří; Norton, Stephen A; Stuchlík, Evžen

    2015-03-01

    Lake water concentrations of phosphorus (P) recently increased in some mountain areas due to elevated atmospheric input of P rich dust. We show that increasing P concentrations also occur during stable atmospheric P inputs in central European alpine lakes recovering from atmospheric acidification. The elevated P availability in the lakes results from (1) increasing terrestrial export of P accompanying elevated leaching of dissolved organic carbon and decreasing phosphate-adsorption ability of soils due to their increasing pH, and (2) decreasing in-lake P immobilization by aluminum (Al) hydroxide due to decreasing leaching of ionic Al from the recovering soils. The P availability in the recovering lakes is modified by the extent of soil acidification, soil composition, and proportion of till and meadow soils in the catchment. These mechanisms explain several conflicting observations of the acid rain effects on surface water P concentrations.

  3. Effects of acidic deposition on in-lake phosphorus availability: a lesson from lakes recovering from acidification.

    PubMed

    Kopáček, Jiří; Hejzlar, Josef; Kaňa, Jiří; Norton, Stephen A; Stuchlík, Evžen

    2015-03-01

    Lake water concentrations of phosphorus (P) recently increased in some mountain areas due to elevated atmospheric input of P rich dust. We show that increasing P concentrations also occur during stable atmospheric P inputs in central European alpine lakes recovering from atmospheric acidification. The elevated P availability in the lakes results from (1) increasing terrestrial export of P accompanying elevated leaching of dissolved organic carbon and decreasing phosphate-adsorption ability of soils due to their increasing pH, and (2) decreasing in-lake P immobilization by aluminum (Al) hydroxide due to decreasing leaching of ionic Al from the recovering soils. The P availability in the recovering lakes is modified by the extent of soil acidification, soil composition, and proportion of till and meadow soils in the catchment. These mechanisms explain several conflicting observations of the acid rain effects on surface water P concentrations. PMID:25660534

  4. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains.

    PubMed

    Nanus, L; Williams, M W; Campbell, D H; Tonnessen, K A; Blett, T; Clow, D W

    2009-06-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration <100 microeq/L, and therefore sensitive to acidic deposition, are located in basins with elevations >3000 m, with <30% of the catchment having northeast aspect and with >80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world. PMID:19544737

  5. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains.

    PubMed

    Nanus, L; Williams, M W; Campbell, D H; Tonnessen, K A; Blett, T; Clow, D W

    2009-06-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration <100 microeq/L, and therefore sensitive to acidic deposition, are located in basins with elevations >3000 m, with <30% of the catchment having northeast aspect and with >80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  6. Paleomagnetic study of the Portage Lake Volcanics exposed in the Quincy Mine

    NASA Astrophysics Data System (ADS)

    Michels, Alexander C.

    A detailed paleomagnetic and rock-magnetic investigation was conducted on thirty six basaltic flows of the ˜1095 Ma Portage Lake Volcanics. The flows were sampled along the East Adit of the Quincy Mine (Hancock, MI). Thirty two flows yielded well-defined primary magnetization directions carried by magnetite. A secondary magnetization component carried by hematite was also found in twenty nine flows. After correction for serial correlation between the flows, nineteen independent mean directions were calculated. The corresponding paleomagnetic pole is located at 25.5 °N, 182.1 °W (A95 = 3.5°). The new pole overlaps with the pole from the ˜1087 Ma Lake Shore Traps suggesting a standstill of the North American plate during that time period. The low angular dispersion of virtual geomagnetic poles (S = 7.9°) suggests that the flows were erupted within a short time period, or that the strength of geomagnetic secular variation was lower than that of the recent field.

  7. Depositional influences on porewater arsenic in sediments of a mining-contaminated freshwater lake.

    PubMed

    Toevs, Gordon; Morra, Matthew J; Winowiecki, Leigh; Strawn, Daniel; Polizzotto, Matthew L; Fendorf, Scott

    2008-09-15

    Arsenic-containing minerals mobilized during mining activities and deposited to Lake Coeur d'Alene (CDA), Idaho sediments represent a potential source of soluble As to the overlying water. Our objective was to delineate the processes controlling porewater As concentrations within Lake CDA sediments. Sediment and porewater As concentrations were determined, and solid-phase As associations were probed using X-ray absorption near-edge structure (XANES) spectroscopy. Although maximum As in the sediment porewaters varied from 8.4 to 16.2 microM, As sorption on iron oxyhydroxides at the oxic sediment-water interface prevented flux to overlying water. Floods deposit sediment containing variable amounts of arsenopyrite (FeAsS), with majorfloods depositing large amounts of sediment that bury and preserve reduced minerals. Periods of lower deposition increase sediment residence times in the oxic zone, promoting oxidation of reduced minerals, SO4(2-) efflux, and formation of oxide precipitates. Depositional events bury oxides containing sorbed As, transitioning them into anoxic environments where they undergo dissolution, releasing As to the porewater. High Fe:S ratios limit the formation of arsenic sulfides in the anoxic zone. As a result of As sequestration at the sediment-water interface and its release upon burial, decreased concentrations of porewater As will not occur unless As-bearing erosional inputs are eliminated.

  8. Depositional Influences on Porewater Arsenic in Sediments of a Mining-Contaminated Freshwater Lake

    SciTech Connect

    Toevs, G.; Morra, M.J.; Winowiecki, L.; Strawn, D.; Polizzotto, M.L.; Fendorf, S.

    2009-05-26

    Arsenic-containing minerals mobilized during mining activities and deposited to Lake Coeur d'Alene (CDA), Idaho sediments represent a potential source of soluble As to the overlying water. Our objective was to delineate the processes controlling porewater As concentrations within Lake CDA sediments. Sediment and porewater As concentrations were determined, and solid-phase As associations were probed using X-ray absorption near-edge structure (XANES) spectroscopy. Although maximum As in the sediment porewaters varied from 8.4 to 16.2 microM, As sorption on iron oxyhydroxides at the oxic sediment-water interface prevented flux to overlying water. Floods deposit sediment containing variable amounts of arsenopyrite (FeAsS), with majorfloods depositing large amounts of sediment that bury and preserve reduced minerals. Periods of lower deposition increase sediment residence times in the oxic zone, promoting oxidation of reduced minerals, SO4(2-) efflux, and formation of oxide precipitates. Depositional events bury oxides containing sorbed As, transitioning them into anoxic environments where they undergo dissolution, releasing As to the porewater. High Fe:S ratios limit the formation of arsenic sulfides in the anoxic zone. As a result of As sequestration at the sediment-water interface and its release upon burial, decreased concentrations of porewater As will not occur unless As-bearing erosional inputs are eliminated.

  9. At-source control of acid mine drainage

    NASA Astrophysics Data System (ADS)

    Kleinmann, Robert L. P.

    1990-03-01

    At present, there is no general solution to the problem of acid drainage from mined lands. There are, however, many options to diminish acid discharges, especially where the oxidizing pyrite is located at or near the land surface. These techniques include barrier methods that isolate the pyrite from oxygen or water, chemical additives and inhibition of iron-oxidizing bacteria. This paper emphasizes technology developed during the last decade that includes the addition of high volumes of alkalinity and/or phosphate, the use of surface geophysics to identify problem source areas, the sealing of fractured streambeds using polyurethane grout and the use of anionic surfactants to inhibit the activity of iron-oxidizing bacteria.

  10. TREATMENT OF ACID MINE DRAINAGE USING FISHBONE APATITE IITM

    SciTech Connect

    Neal A. Yancey

    2006-10-01

    ABSTRACT. In 2000, a reactive barrier was installed on the East Fork of Ninemile Creek near Wallace, Idaho to treat acid mine discharge. The barrier was filled with fishbone derived Apatite IITM to remove the contaminants of concern (Zn, Pb, and Cd) and raise the pH of the acidic mine discharge. Metal removal has been achieved by a combination of chemical, biological, and physical precipitation. Flow for the water ranges from 5 to 35 gallons per minute. The water is successfully being treated, but the system experienced varying degrees of plugging. In 2002, gravel was mixed with the Apatite IITM to help control plugging. In 2003 the Idaho National Laboratory was ask to provide technical support to the Coeur d’Alene Basin Commission to help identify a remedy to the plugging issue. Air sparging was employed to treat the plugging issues. Plastic packing rings were added in the fall of 2005, which have increased the void space in the media and increased flows during the 10 months of operation since the improvements were made.

  11. Treatment of mining acidic leachates with indigenous limestone, Zimapan Mexico.

    PubMed

    Labastida, I; Armienta, M A; Lara-Castro, R H; Aguayo, A; Cruz, O; Ceniceros, N

    2013-11-15

    An experimental study to evaluate the potential of using indigenous limestones in a passive system to treat acid mine drainage, at a mining zone of Mexico was carried out. Chemical and mineralogical characteristics of four types of native rocks (KIT1, KIT2, KSS, QZ) showed distinct CaCO3 contents. Synthetic aqueous leachates from an old tailings impoundment had a pH of 2.18, 34 mg/L As, 705 mg/L Fetotal, and 3975 mg/L SO4(2-). To evaluate dissolution behavior of rocks, kinetic batch experiments with an acid Fe-rich solution were performed. Decaying kinetic constants adjusting H(+) concentration to a first order exponential process were: KIT1 (k = 2.89), KIT2 (k = 0.89) and KSS (k = 0.47). Infrared spectrum and XRD of precipitates showed schwertmannite formation. To determine As and heavy metals (Fe, Cd, Zn, Al) removal from the synthetic leachates, batch experiments using KIT1 were developed. Arsenic decreased from 34.00 mg/L to 0.04 mg/L, Fe and Al were totally removed, and concentrations of Zn and Cd decreased 88% and 91% respectively. Analyses by IR and SEM-EDS indicate that co-precipitation with Fe-Hydroxides formed upon leachate interaction with limestone is the main As removal process. Chamosite, identified by XRD may participate in the removal of Al, SiO2 and a fraction of Fe.

  12. Treatment of mining acidic leachates with indigenous limestone, Zimapan Mexico.

    PubMed

    Labastida, I; Armienta, M A; Lara-Castro, R H; Aguayo, A; Cruz, O; Ceniceros, N

    2013-11-15

    An experimental study to evaluate the potential of using indigenous limestones in a passive system to treat acid mine drainage, at a mining zone of Mexico was carried out. Chemical and mineralogical characteristics of four types of native rocks (KIT1, KIT2, KSS, QZ) showed distinct CaCO3 contents. Synthetic aqueous leachates from an old tailings impoundment had a pH of 2.18, 34 mg/L As, 705 mg/L Fetotal, and 3975 mg/L SO4(2-). To evaluate dissolution behavior of rocks, kinetic batch experiments with an acid Fe-rich solution were performed. Decaying kinetic constants adjusting H(+) concentration to a first order exponential process were: KIT1 (k = 2.89), KIT2 (k = 0.89) and KSS (k = 0.47). Infrared spectrum and XRD of precipitates showed schwertmannite formation. To determine As and heavy metals (Fe, Cd, Zn, Al) removal from the synthetic leachates, batch experiments using KIT1 were developed. Arsenic decreased from 34.00 mg/L to 0.04 mg/L, Fe and Al were totally removed, and concentrations of Zn and Cd decreased 88% and 91% respectively. Analyses by IR and SEM-EDS indicate that co-precipitation with Fe-Hydroxides formed upon leachate interaction with limestone is the main As removal process. Chamosite, identified by XRD may participate in the removal of Al, SiO2 and a fraction of Fe. PMID:22819958

  13. Method for distinctive estimation of stored acidity forms in acid mine wastes.

    PubMed

    Li, Jun; Kawashima, Nobuyuki; Fan, Rong; Schumann, Russell C; Gerson, Andrea R; Smart, Roger St C

    2014-10-01

    Jarosites and schwertmannite can be formed in the unsaturated oxidation zone of sulfide-containing mine waste rock and tailings together with ferrihydrite and goethite. They are also widely found in process wastes from electrometallurgical smelting and metal bioleaching and within drained coastal lowland soils (acid-sulfate soils). These secondary minerals can temporarily store acidity and metals or remove and immobilize contaminants through adsorption, coprecipitation, or structural incorporation, but release both acidity and toxic metals at pH above about 4. Therefore, they have significant relevance to environmental mineralogy through their role in controlling pollutant concentrations and dynamics in contaminated aqueous environments. Most importantly, they have widely different acid release rates at different pHs and strongly affect drainage water acidity dynamics. A procedure for estimation of the amounts of these different forms of nonsulfide stored acidity in mining wastes is required in order to predict acid release rates at any pH. A four-step extraction procedure to quantify jarosite and schwertmannite separately with various soluble sulfate salts has been developed and validated. Corrections to acid potentials and estimation of acid release rates can be reliably based on this method.

  14. A Demonstration of Acid Rain and Lake Acidification: Wet Deposition of Sulfur Dioxide.

    ERIC Educational Resources Information Center

    Goss, Lisa M.

    2003-01-01

    Introduces a science demonstration on the dissolution of sulfuric oxide emphasizing the concept of acid rain which is an environmental problem. Demonstrates the acidification from acid rain on two lake environments, limestone and granite. Includes safety information. (YDS)

  15. A Demonstration of Acid Rain and Lake Acidification: Wet Deposition of Sulfur Dioxide

    NASA Astrophysics Data System (ADS)

    Goss, Lisa M.

    2003-01-01

    A demonstration showing acid rain and lake acidification is described. In this demonstration, SO2 gas is generated in a large graduated cylinder and then dissolved in water droplets from a simple spray bottle. The droplets carry the acid into simulated lakes, one of which includes solid CaCO3 to mimic limestone's natural buffering capacity.

  16. Thermal and trophic stability of deeper Maine lakes in granite waterhsheds implacted by acid deposition

    SciTech Connect

    Stauffer, R.E.; Wittchen, B.D. )

    1990-09-01

    Acid deposition can lead to lake and watershed acidification, increases in lake transparency, and reduction in thermal stability and hypolimnetic oxygen deficits. On the basis of lake surveys during August-September 1985, we determined to what extent the deeper (maximum depth z{sub m}{gt}17 m) Maine lakes in acid-sensitive granitic watersheds have registered changes in temperature and oxygen stratification, as compared to 1938-1942, when G.P. Cooper performed the earliest scientific surveys of the state's lakes. After correcting for small but geographically consistent interannual differences in summer hypolimnetic temperatures related to spring turnover, and weather-dependent differences in mixed layer depth, there has been no significant change in thermal stratification in these Maine lakes over approximately 43 years. On the basis of specific historical contrasts in the late summer metalimnetic, hypolimnetic, and bathylimnetic oxygen concentrations there has been no significant change in lake trophic state or transparency.

  17. Catchment and atmospheric effects on acidity of lakes in the northeastern United States

    SciTech Connect

    Davis, R.B.; Anderson, D.S.; Rhodes, T.E.

    1995-06-01

    Sedimentary evidence from 12 lakes in northeastern United States reveals that both catchment and atmospheric processes have caused changes in lake acidity. Diatom remains indicate pH 5.2 to 5.8 (one lake 6.8) for one to two centuries before impacts on the catchment by Euro-americans. These low-alkalinity lakes were very sensitive to altered fluxes of base cations and acids. Several lakes increased in pH by 0.2 to 0.6 unit in the 1800s and early 1900s when their catchments were logged. Re-acidification of some of the lakes was initially due to forest succession. Older sediment from one of the lakes also shows alkalization by natural disturbance, and acidification paralleling forest succession. However, much of the recent acidification, to uniquely low levels by the 1970s is due to high sulfur deposition.

  18. Arcellacea (testate lobose amoebae) as pH indicators in a pyrite mine-acidified lake, Northeastern Ontario, Canada.

    PubMed

    Patterson, R Timothy; Lamoureux, Edouard D R; Neville, Lisa A; Macumber, Andrew L

    2013-04-01

    Arcellacea (testate lobose amoebae) were examined in 24 sediment-water interface samples collected over two late August field seasons in 2010 and 2011, from James and Granite lakes, Temagami Region, Northeastern Ontario. The work was carried out to quantitatively test species-environment relationships in a lake system known to be characterized by a significant pH gradient, partially the result of contamination from the early twentieth century Northland Pyrite Mine Co., located on the shoreline in the southern basin of James Lake. Redundancy analysis confirmed that arcellacean assemblage structure was most strongly controlled by pH, explaining 14.06 % (p < 0.002) of the total variance. Q- and R-mode cluster analysis supported by detrended correspondence analysis yielded two major faunal assemblages. The Oligotrophic Assemblage (1) had a Shannon Diversity Index (SDI) ranging up to 2.45, typical of healthy boreal lakes. This assemblage characterized samples collected from higher pH stations within James and Granite lakes away from the immediate area of the mine site, while the Low pH Assemblage 2010 (2a) and Low pH Assemblage 2011 (2b) groupings were from the very low pH environments of James Lake adjacent to the former mine site. Both low diversity assemblages (SDI ranging from 0.62 to 1.22) were characterized by Arcella vulgaris, a species known to thrive in hostile lacustrine environments. Differing depositional conditions during August 2010, a probable result of different prevailing wind patterns that summer, led to allochthonous specimens of the seasonally planktic Cucurbitella tricuspis dominating the Low pH Assemblage 2010 (2a) fauna.

  19. Acid mine drainage biogeochemistry at Iron Mountain, California

    PubMed Central

    Druschel, Gregory K; Baker, Brett J; Gihring, Thomas M; Banfield, Jillian F

    2004-01-01

    The Richmond Mine at Iron Mountain, Shasta County, California, USA provides an excellent opportunity to study the chemical and biological controls on acid mine drainage (AMD) generation in situ, and to identify key factors controlling solution chemistry. Here we integrate four years of field-based geochemical data with 16S rRNA gene clone libraries and rRNA probe-based studies of microbial population structure, cultivation-based metabolic experiments, arsenopyrite surface colonization experiments, and results of intermediate sulfur species kinetics experiments to describe the Richmond Mine AMD system. Extremely acidic effluent (pH between 0.5 and 0.9) resulting from oxidation of approximately 1 × 105 to 2 × 105 moles pyrite/day contains up to 24 g/1 Fe, several g/1 Zn and hundreds of mg/l Cu. Geochemical conditions change markedly over time, and are reflected in changes in microbial populations. Molecular analyses of 232 small subunit ribosomal RNA (16S rRNA) gene sequences from six sites during a sampling time when lower temperature (<32°C), higher pH (>0.8) conditions predominated show the dominance of Fe-oxidizing prokaryotes such as Ferroplasma and Leptospirillum in the primary drainage communities. Leptospirillum group III accounts for the majority of Leptospirillum sequences, which we attribute to anomalous physical and geochemical regimes at that time. A couple of sites peripheral to the main drainage, "Red Pool" and a pyrite "Slump," were even higher in pH (>1) and the community compositions reflected this change in geochemical conditions. Several novel lineages were identified within the archaeal Thermoplasmatales order associated with the pyrite slump, and the Red Pool (pH 1.4) contained the only population of Acidithiobacillus. Relatively small populations of Sulfobacillus spp. and Acidithiobacillus caldus may metabolize elemental sulfur as an intermediate species in the oxidation of pyritic sulfide to sulfate. Experiments show that elemental sulfur

  20. Heavy metals content in acid mine drainage at abandoned and active mining area

    NASA Astrophysics Data System (ADS)

    Hatar, Hazirah; Rahim, Sahibin Abd; Razi, Wan Mohd; Sahrani, Fathul Karim

    2013-11-01

    This study was conducted at former Barite Mine, Tasik Chini and former iron mine Sungai Lembing in Pahang, and also active gold mine at Lubuk Mandi, Terengganu. This study was conducted to determine heavy metals content in acid mine drainage (AMD) at the study areas. Fourteen water sampling stations within the study area were chosen for this purpose. In situ water characteristic determinations were carried out for pH, electrical conductivity (EC), redox potential (ORP) and total dissolved solid (TDS) using multi parameter YSI 556. Water samples were collected and analysed in the laboratory for sulfate, total acidity and heavy metals which follow the standard methods of APHA (1999) and HACH (2003). Heavy metals in the water samples were determined directly using Inductive Coupled Plasma Mass Spectrometry (ICP-MS). Data obtained showed a highly acidic mean of pH values with pH ranged from 2.6 ± 0.3 to 3.2 ± 0.2. Mean of electrical conductivity ranged from 0.57 ± 0.25 to 1.01 ± 0.70 mS/cm. Redox potential mean ranged from 487.40 ± 13.68 to 579.9 ± 80.46 mV. Mean of total dissolved solids (TDS) in AMD ranged from 306.50 ± 125.16 to 608.14 ± 411.64 mg/L. Mean of sulfate concentration in AMD ranged from 32.33 ± 1.41 to 207.08 ± 85.06 mg/L, whereas the mean of total acidity ranged from 69.17 ± 5.89 to 205.12 ± 170.83 mgCaCO3/L. Heavy metals content in AMD is dominated by Fe, Cu, Mn and Zn with mean concentrations range from 2.16 ± 1.61 to 36.31 ± 41.02 mg/L, 0.17 ± 0.13 to 11.06 ± 2.85 mg/L, 1.12 ± 0.65 to 7.17 ± 6.05 mg/L and 0.62 ± 0.21 to 6.56 ± 4.11 mg/L, respectively. Mean concentrations of Ni, Co, As, Cd and Pb were less than 0.21, 0.51, 0.24, 0.05 and 0.45 mg/L, respectively. Significant correlation occurred between Fe and Mn, Cu, Zn, Co and Cd. Water pH correlated negatively with all the heavy metals, whereas total acidity, sulfate, total dissolved solid, and redox potential correlated positively. The concentration of heavy metals in the AMD

  1. Gold mining impact on riverine heavy metal transport in a sparsely monitored region: the upper Lake Baikal Basin case.

    PubMed

    Thorslund, Josefin; Jarsjö, Jerker; Chalov, Sergey R; Belozerova, Ekaterina V

    2012-10-26

    Mining and ore excavation can cause the acidification and heavy metal pollution of downstream water systems. It can be difficult to assess the load contributions from individual mining areas, which is commonly required for environmental impact assessments. In the current study, we quantified the net impact of the unmonitored mining activities in the Zaamar Goldfield (Mongolia) on heavy metal transport in the downstream Tuul River-Selenga River-Lake Baikal water systems. We also noted that the Zaamar site shares the conditions of limited monitoring with many rapidly developing regions of the world. The heavy metal concentrations and flow data were obtained from historical measurement campaigns, long-term monitoring, and a novel field campaign. The results indicate that natural mass flows of heavy metals in dissolved form increased by an order of magnitude because of mining. Prevailing alkaline conditions in the vicinity of Zaamar can limit the dissolution, maintaining the on-site concentrations below health-risk based guideline values. However, suspended river concentrations are much higher than the dissolved concentrations. The placer gold mining at the Zaamar site has increased the total riverine mass flows of Al, As, Cu, Fe, Mn, Pb and Zn by 44.300, 30.1, 65.7, 47.800, 1.480, 76.0 and 65.0 tonnes per year respectively. We suggest that local to regional transformation and enrichment processes in combination with suspended sediment transport from numerous existing upstream mining areas contribute to high concentrations of dissolved heavy metals in downstream parts of the Selenga River, including its delta area at Lake Baikal. Furthermore, single hydrological events can increase the suspended load concentrations by at least one order of magnitude. Overall, the Selenga River Basin, which drains into Lake Baikal, should be recognised as one of the world's most impacted areas with regard to heavy metal loads, and it contributes to 1% and 3% of the world flux of

  2. Composition of Humic Acids of the Lake Baikal Sediments

    NASA Astrophysics Data System (ADS)

    Vishnyakova, O.; Chimitdorzhieva, G.; Andreeva, D.

    2012-04-01

    Humic substances are the final stage of the biogeochemical transformation of organic matter in the biosphere. Its natural compounds are found not only in soil, peat, coal, and sediments of basins. Chemical composition and properties of humic substances are determined by the functioning of the ecosystem as a whole. Therefore the study of the unique Lake Baikal sediments can provide information about their genesis, as well as the processes of organic matter transformation. For this purpose, preparations of humic acids (HA) were isolated by alkaline extraction method. The composition of HA was investigated by the elemental analyzer CHNS/O PerkinElmer Series II. Various located sediments of the Lake Baikal were the objects of the study: 1 - Chivyrkuisky Bay, 2 - Kotovo Bay, 3 - Selenga river delta near Dubinino village, 4 - Selenga river delta near Murzino village. Data on the elemental composition of HA in terms of ash-free portion show that the carbon content (CC) is of 50-53% with a maximum value in a sample 3, and minimum - in a sample 2. Such values are characteristic also for the soils with low biochemical activity. The hydrogen content is of 4,2-5,3%, a maximum value is in a sample 1. Data recalculation to the atomic percentages identified following regularities. The CC of HA is of 35-39 at. %. Hydrogen content is of 37-43 at. %. According to the content of these elements investigated substances are clearly divided into two groups: HA of the sediments of the Lake Baikal and river Selenga delta. The magnitude of the atomic ratio H/C can be seen varying degrees of condensation of the molecules of humic acids. The high atomic ratio H/C in HA of the former group indicates the predominance of aliphatic structures in the molecules. Humic acids of the later group are characterized by a low value H/C (<1), suggesting a large proportion of aromatic components in HA composition. In sediments of the Selenga river delta there is an addition of organic matter of terrigenous

  3. Acid neutralization within limestone sand reactors receiving coal mine drainage

    USGS Publications Warehouse

    Watten, B.J.; Sibrell, P.L.; Schwartz, M.F.

    2005-01-01

    Pulsed bed treatment of acid mine drainage (AMD) uses CO2 to accelerate limestone dissolution and intermittent fluidization to abrade and carry away metal hydrolysis products. Tests conducted with a prototype of 60 L/min capacity showed effective removal of H+ acidity over the range 196-584 mg/L (CaCO3) while concurrently generating surplus acid neutralization capacity. Effluent alkalinity (mg/L CaCO3) rose with increases in CO2 (DC, mg/L) according to the model Alkalinity = 31.22 + 2.97(DC)0.5, where DC was varied from 11-726 mg/L. Altering fluidization and contraction periods from 30 s/30 s to 10 s/50 s did not influence alkalinity but did increase energy dissipation and bed expansion ratios. Field trials with three AMD sources demonstrated the process is capable of raising AMD pH above that required for hydrolysis and precipitation of Fe3+ and Al3+ but not Fe2+ and Mn2+. Numerical modeling showed CO2 requirements are reduced as AMD acidity increases and when DC is recycled from system effluent. ?? 2005 Elsevier Ltd. All rights reserved.

  4. Site-specific study on stabilization of acid-generating mine tailings using coal fly ash

    SciTech Connect

    Shang, J.Q.; Wang, H.L.; Kovac, V.; Fyfe, J.

    2006-03-15

    A site-specific study on stabilizing acid-generating mine tailings from Sudbury Mine using a coal fly ash from Nanticoke Generating Station is presented in this paper. The objective of the study is to evaluate the feasibility of codisposal of the fly ash and mine tailings to reduce environmental impacts of Sudbury tailings disposal sites. The study includes three phases, i.e., characterization of the mine tailings, and coal fly ash, oxidation tests on the mine tailings and kinetic column permeation tests. The results of the experiments indicate that when permeated with acid mine drainage, the hydraulic conductivity of Nanticoke coal fly ash decreased more than three orders of magnitude (from 1 x 10{sup -6} to 1 x 10{sup -9} cm/s), mainly due to chemical reactions between the ash solids and acid mine drainage. Furthermore, the hydraulic gradient required for acid mine drainage to break through the coal fly ash is increased up to ten times (from 17 to 150) as compared with that for water. The results also show that the leachate from coal fly ash neutralizes the acidic pore fluid of mine tailings. The concentrations of trace elements in effluents from all kinetic column permeation tests indicated that coplacement of coal fly ash with mine tailings has the benefit of immobilizing trace elements, especially heavy metals. All regulated element concentrations from effluent during testing are well below the leachate quality criteria set by the local regulatory authority.

  5. Characteristics of three acidic lakes in Kejimkujik National Park, Nova Scotia, Canada.

    PubMed

    Kerekes, J; Freedman, B

    1989-01-01

    This report summarizes a study of the chemical and biological characteristics of three oligotrophic lakes located in a region that receives a moderately acidic precipitation (mean annual pH 4.5-4.6), and a sulfate deposition of about 20 kg/ha/yr. The two brownwater lakes are relatively acidic (pH 4.5 and 4.8), and much of their acidity is attributable to organic anions. The brownwater lakes also have a large concentration of aluminum and iron, but these are bound to dissolved organic matter and are relatively non-toxic to biota. Average phytoplankton production was largest in the clearwater lake. This was due to its relatively deep euphotic zone, since the average unit-volume productivity did not differ much among the lakes. In fact, productivity at light optimum was largest in the most acidic brownwater lake, probably because of its larger phosphorus concentration. The clearwater lake had extensive macrophyte vegetation, which covered its bottom to a depth of 6.5 m. In the brownwater lakes, macrophytes were confined to shallow nearshore water because of the limited water transparency. Zooplankton density and biomass were largest in the most acidic brownwater lake, probably because of allochthonous organic particulates and little fish predation. Benthic invertebrates were abundant in all three lakes, and were dominated by insects, especially Chironomids. Lakes in the study area appear to be sustaining fish populations at more acidic pHs than elsewhere. This may be due to the large concentration of dissolved organic matter in many lakes, which complexes and partially detoxifies metals such as aluminum.

  6. Geoelectrical surveys for monitoring acid mine drainage in groundwater at abandoned open-cast lignite mines

    NASA Astrophysics Data System (ADS)

    Stollberg, R.; Hirsch, M.; Weiss, H.

    2013-05-01

    Surface and borehole geoelectrical survey techniques (DC resistivity measurements, Direct Push based electrical conductivity logging) were used to identify and localize acid mine drainage (AMD) at former lignite mining areas and adjacent groundwater bodies in Central Germany. Geoelectrical surface measurements are a fast and high-resolution survey method for the identification and discrimination of subsurface sections with different electrical properties. The method is based on a current injection by a pair of electrodes and electrical potential measurements by a second pair of electrodes. An electrical resistivity distribution of the subsurface can be measured by the ratio of injected currents and measured potentials. Moreover, electrical conductivity logging (EC-logging) was applied along the profile line of the geoelectrical surface measurement. A direct-push machine was used to push a GeoProbe® Wenner-Probe attached to a rod string into the ridges of mining dumps for recording vertical electrical resistivity profiles. The main objective has been the comparison between the superficial resistivity measurements and the results from in-situ downhole EC-logging for identifying the presence of AMD. Both, surface and subsurface measurements yielded in a precise and corresponding imaging of acidification effects in the underground. The electrical properties of soil/dump material and groundwater were found to be a proper proxy for the assessment of extension and degree of AMD impacts on soil and groundwater systems. A good correlation of the results obtained by these non- to minimal invasive investigation techniques with conventional (i.e. groundwater sampling) approaches could be proven.

  7. Assessment of Phytostabilization Success in Metalliferous Acid Mine Tailings

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Root, R. A.; Hammond, C.; Amistadi, M. K.; Maier, R. M.; Chorover, J.

    2014-12-01

    Legacy mine tailings are a significant source of metal(loid)s due to wind and water erosion, especially in the arid southwest, and exposure to fugative dusts presents a health risk to surrounding populations. Compost assisted phytostabilization has been implemented to reduce off site emissions at the Iron King Mine U.S. Superfund Site in central Arizona, concurrent with a greenhouse mesocosm study for detailed study of subsurface mechanisms. Quantification of plant available toxic metal(loid)s in the amended tailings was accessed with a targeted single extraction of diethylenetriaminepentaactic acid (DTPA). Greenhouse mesocosms (1m dia, 0.4 m deep), run in triplicate, mimicked field treatments with: i) tailings only control (TO), ii) tailings plus 15 wt% compost (TC), iii) TC + quailbush seeds (TCA), and iv) TC + buffalo grass seeds (TCB). Core samples collected at 3-month intervals for 1 year were dissected by depth (10 cm each) for analysis. DTPA results indicated that compost treated samples decreased plant availability of Al, As, Cd, Cu, Fe, and Pb but increased Mn and Zn compared with TO. TCB decreased plant available metal(loid)s at all depths, whereas TCA plant available Al, As, Cd, Cu, Fe, Mn and Zn increased in the deeper 20-30cm and 30-40 cm relative to TCB. Samples from the greenhouse were compared to tailings from both the field site and tailings impacted soils used to grow vegetables. Mineral transformations and metal complexation, in the pre- and post-extracted tailings were analyzed by synchrotron transmission XRD and FTIR spectroscopy. The temporal change in plant available metal(loid)s in response to phytostabilization indicates mineralogical alteration that improves soil quality by reducing plant available metal(loid)s. These results will aid in the understanding and efficacy of phytostabilization as a means of remediating and reducing toxicity on mine tailings as well as providing information on health risk management in the region.

  8. Passive removal of manganese from acid mine drainage

    SciTech Connect

    Brant, D.L.; Ziemkiewicz, P.F.

    1997-12-31

    Removal of manganese (Mn) from mine drainage is difficult due to the abnormal chemistry of the element. The removal requires the oxidation of Mn(II) (the form found in mine drainage) to the more oxidized forms (Mn(III) or Mn(IV)). The more oxidized forms exist only as solids and will not return to Mn(II) spontaneously. Chemical treatment of Mn often requires a pH near 10 to initiate the oxidation quickly. A stabilized pH of 10 normally causes more harm to aquatic organisms than the Mn and is not desirable, making additional steps in the treatment necessary. Biological removal of Mn can be achieved at near neutral pH levels. The Shade Mining site in Somerset County, PA has been treating Mn to discharge limits since the early 1990`s (reducing Mn concentrations from 12 - 25 mg/L in the influent to <2 mg/L in the effluent). The treatment system consists of an anoxic limestone drain discharging into a wetland to remove iron, aluminum, and acidity, while increasing pH and alkalinity. The wetland effluent flows into two limestone beds (Mn removal). The limestone beds developed a black slime coating as the Mn removal increased. This system continues to remove Mn in all weather conditions and has not required chemical treatment since the black coating appeared on the limestone. A laboratory study was conducted using limestone collected from the Shade site to use the same naturally occurring Mn oxidizing microbes. The lab study compared W removal rates of microbial oxidation, MnO{sub 2} catalyzed limestone, and fresh uncoated limestone. The microbial removal performed the best (25 mg/L Mn reduced to <2 mg/L in 72 hours).

  9. LABORATORY EVALUATION OF ZERO-VALENT IRON TO TREAT GROUNDWATER IMPACTED BY ACID MINE DRAINAGE

    EPA Science Inventory

    The generation and release of acidic, metal-rich water from mine wastes continues to be an intractable environmental problem. Although the effects of acid mine drainage (AMD) are most evident in surface waters, there is an obvious need for developing cost-effective approaches fo...

  10. Treatment and prevention systems for acid mine drainage and halogenated contaminants

    DOEpatents

    Jin, Song; Fallgren, Paul H.; Morris, Jeffrey M.

    2012-01-31

    Embodiments include treatments for acid mine drainage generation sources (10 perhaps by injection of at least one substrate (11) and biologically constructing a protective biofilm (13) on acid mine drainage generation source materials (14). Further embodiments include treatments for degradation of contaminated water environments (17) with substrates such as returned milk and the like.

  11. INNOVATIVE, IN SITU TREATMENT OF ACID MINE DRAINAGE USING SULFATE REDUCING BACTERIA

    EPA Science Inventory

    Acid generation in abandoned mines is a widespread problem. There are a numberous quantity of abandoned mines in the west which have no power source, have limited physical accessibility and have limited remediation funds available. Acid is produced chemically, through pyritic min...

  12. 40 CFR Appendix A to Part 434 - Alternate Storm Limitations for Acid or Ferruginous Mine Drainage

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Alternate Storm Limitations for Acid or Ferruginous Mine Drainage A Appendix A to Part 434 Protection of Environment ENVIRONMENTAL... Storm Limitations for Acid or Ferruginous Mine Drainage EC01MY92.113...

  13. 40 CFR Appendix A to Part 434 - Alternate Storm Limitations for Acid or Ferruginous Mine Drainage

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Alternate Storm Limitations for Acid or Ferruginous Mine Drainage A Appendix A to Part 434 Protection of Environment ENVIRONMENTAL...—Alternate Storm Limitations for Acid or Ferruginous Mine Drainage EC01MY92.113...

  14. 40 CFR Appendix A to Part 434 - Alternate Storm Limitations for Acid or Ferruginous Mine Drainage

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Alternate Storm Limitations for Acid or Ferruginous Mine Drainage A Appendix A to Part 434 Protection of Environment ENVIRONMENTAL... Storm Limitations for Acid or Ferruginous Mine Drainage EC01MY92.113...

  15. 40 CFR Appendix A to Part 434 - Alternate Storm Limitations for Acid or Ferruginous Mine Drainage

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Alternate Storm Limitations for Acid or Ferruginous Mine Drainage A Appendix A to Part 434 Protection of Environment ENVIRONMENTAL...—Alternate Storm Limitations for Acid or Ferruginous Mine Drainage EC01MY92.113...

  16. 40 CFR Appendix A to Part 434 - Alternate Storm Limitations for Acid or Ferruginous Mine Drainage

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Alternate Storm Limitations for Acid or Ferruginous Mine Drainage A Appendix A to Part 434 Protection of Environment ENVIRONMENTAL...—Alternate Storm Limitations for Acid or Ferruginous Mine Drainage EC01MY92.113...

  17. Evaluation of acidity estimation methods for mine drainage, Pennsylvania, USA.

    PubMed

    Park, Daeryong; Park, Byungtae; Mendinsky, Justin J; Paksuchon, Benjaphon; Suhataikul, Ratda; Dempsey, Brian A; Cho, Yunchul

    2015-01-01

    Eighteen sites impacted by abandoned mine drainage (AMD) in Pennsylvania were sampled and measured for pH, acidity, alkalinity, metal ions, and sulfate. This study compared the accuracy of four acidity calculation methods with measured hot peroxide acidity and identified the most accurate calculation method for each site as a function of pH and sulfate concentration. Method E1 was the sum of proton and acidity based on total metal concentrations; method E2 added alkalinity; method E3 also accounted for aluminum speciation and temperature effects; and method E4 accounted for sulfate speciation. To evaluate errors between measured and predicted acidity, the Nash-Sutcliffe efficiency (NSE), the coefficient of determination (R (2)), and the root mean square error to standard deviation ratio (RSR) methods were applied. The error evaluation results show that E1, E2, E3, and E4 sites were most accurate at 0, 9, 4, and 5 of the sites, respectively. Sites where E2 was most accurate had pH greater than 4.0 and less than 400 mg/L of sulfate. Sites where E3 was most accurate had pH greater than 4.0 and sulfate greater than 400 mg/L with two exceptions. Sites where E4 was most accurate had pH less than 4.0 and more than 400 mg/L sulfate with one exception. The results indicate that acidity in AMD-affected streams can be accurately predicted by using pH, alkalinity, sulfate, Fe(II), Mn(II), and Al(III) concentrations in one or more of the identified equations, and that the appropriate equation for prediction can be selected based on pH and sulfate concentration. PMID:25399119

  18. Evaluation of acidity estimation methods for mine drainage, Pennsylvania, USA.

    PubMed

    Park, Daeryong; Park, Byungtae; Mendinsky, Justin J; Paksuchon, Benjaphon; Suhataikul, Ratda; Dempsey, Brian A; Cho, Yunchul

    2015-01-01

    Eighteen sites impacted by abandoned mine drainage (AMD) in Pennsylvania were sampled and measured for pH, acidity, alkalinity, metal ions, and sulfate. This study compared the accuracy of four acidity calculation methods with measured hot peroxide acidity and identified the most accurate calculation method for each site as a function of pH and sulfate concentration. Method E1 was the sum of proton and acidity based on total metal concentrations; method E2 added alkalinity; method E3 also accounted for aluminum speciation and temperature effects; and method E4 accounted for sulfate speciation. To evaluate errors between measured and predicted acidity, the Nash-Sutcliffe efficiency (NSE), the coefficient of determination (R (2)), and the root mean square error to standard deviation ratio (RSR) methods were applied. The error evaluation results show that E1, E2, E3, and E4 sites were most accurate at 0, 9, 4, and 5 of the sites, respectively. Sites where E2 was most accurate had pH greater than 4.0 and less than 400 mg/L of sulfate. Sites where E3 was most accurate had pH greater than 4.0 and sulfate greater than 400 mg/L with two exceptions. Sites where E4 was most accurate had pH less than 4.0 and more than 400 mg/L sulfate with one exception. The results indicate that acidity in AMD-affected streams can be accurately predicted by using pH, alkalinity, sulfate, Fe(II), Mn(II), and Al(III) concentrations in one or more of the identified equations, and that the appropriate equation for prediction can be selected based on pH and sulfate concentration.

  19. Microbial diversity and metabolic networks in acid mine drainage habitats

    PubMed Central

    Méndez-García, Celia; Peláez, Ana I.; Mesa, Victoria; Sánchez, Jesús; Golyshina, Olga V.; Ferrer, Manuel

    2015-01-01

    Acid mine drainage (AMD) emplacements are low-complexity natural systems. Low-pH conditions appear to be the main factor underlying the limited diversity of the microbial populations thriving in these environments, although temperature, ionic composition, total organic carbon, and dissolved oxygen are also considered to significantly influence their microbial life. This natural reduction in diversity driven by extreme conditions was reflected in several studies on the microbial populations inhabiting the various micro-environments present in such ecosystems. Early studies based on the physiology of the autochthonous microbiota and the growing success of omics-based methodologies have enabled a better understanding of microbial ecology and function in low-pH mine outflows; however, complementary omics-derived data should be included to completely describe their microbial ecology. Furthermore, recent updates on the distribution of eukaryotes and archaea recovered through sterile filtering (herein referred to as filterable fraction) in these environments demand their inclusion in the microbial characterization of AMD systems. In this review, we present a complete overview of the bacterial, archaeal (including filterable fraction), and eukaryotic diversity in these ecosystems, and include a thorough depiction of the metabolism and element cycling in AMD habitats. We also review different metabolic network structures at the organismal level, which is necessary to disentangle the role of each member of the AMD communities described thus far. PMID:26074887

  20. The effects of season and sand mining activities on thermal regime and water quality in a large shallow tropical lake.

    PubMed

    Sharip, Zati; Zaki, Ahmad Taqiyuddin Ahmad

    2014-08-01

    Thermal structure and water quality in a large and shallow lake in Malaysia were studied between January 2012 and June 2013 in order to understand variations in relation to water level fluctuations and in-stream mining activities. Environmental variables, namely temperature, turbidity, dissolved oxygen, pH, electrical conductivity, chlorophyll-A and transparency, were measured using a multi-parameter probe and a Secchi disk. Measurements of environmental variables were performed at 0.1 m intervals from the surface to the bottom of the lake during the dry and wet seasons. High water level and strong solar radiation increased temperature stratification. River discharges during the wet season, and unsustainable sand mining activities led to an increased turbidity exceeding 100 NTU, and reduced transparency, which changed the temperature variation and subsequently altered the water quality pattern.

  1. Acid Mine Drainage and Metal Sulfate Minerals in the Shasta Mining District, California

    NASA Astrophysics Data System (ADS)

    Livingston, J. D.; Murphy, W. M.; Miller, R. M.; Ayars, E. J.

    2005-12-01

    Metal sulfate minerals were collected at four surface water drainage sites during September and October of 2004 in the Shasta Mining District, southern Klamath Mountains, Shasta County, California and analyzed by X-ray fluorescence, atomic absorption spectroscopy, and X-ray diffraction to determine elements present, quantities of Fe, Cu, and Zn, and mineralogy. The Shasta Mining District produced major quantities of Cu, Zn, and pyrite (S) with minor amounts of Au, Ag, and Fe from massive sulfide bodies (Kinkel et al., 1956). Three study sites are located on Iron Mountain and one study site is at Bully Hill. Although mining occurred during a period of just over 100 years, it is estimated that acid mine drainage (AMD) will continue from Iron Mountain for over 3,200 years (Nordstrom and Alpers, 1998). AMD at the study sites produces blooms of metal sulfates during California's Mediterranean climate summer. The minerals readily dissolve in the "first flush" of seasonal rain creating runoff water of low pH with high amounts of dissolved metals (Bayless and Olyphant, 1993; Jambor et al., 2000). Data were examined for mineralogical changes in time and space and for zoning of minerals on a scale of centimeters. Sulfate mineral samples are complex with some samples composed of over a dozen different minerals. Site 1 is located on Spring Creek downstream from the Iron Mountain superfund remediation site, so levels of Fe, Cu, and Zn in the sulfates at this site are lower than at the other sites. Two site 1 samples from the same location taken a month apart show Ca, Fe, Cu, Sr, Y, and Sn, and the first sample also has detectable Br. The metal sulfates identified from the first visit are celestine, cesanite, chessexite, hectorfloresite, and ungemachite, and the mineralogy of the second visit is bilinite, epsomite, millosevichite, and anhydrite. The Fe bearing sulfate mineral during the first visit is ungemachite, but bilinite was the Fe bearing mineral at the time of the second

  2. Acid precipitation effects on algal productivity and biomass in Adirondack Mountain lakes

    SciTech Connect

    Hendrey, G.R.

    1982-12-01

    Relationships between phytoplankton communities and lake acidity in three Adirondack Mountain lakes were studied at Woods Lake (pH ca. 4.9), Sagamore Lake (pH ca. 5.5), and Panther Lake (pH ca. 7.0). Species numbers decrease with increasing acidity. Patterns of increasing biomass and productivity in Woods Lake may be atypical of similar oligotrophic lakes in that they develop rather slowly to maxima six weeks after ice-out, instead of occurring very close to ice-out. Contributions of netplankton, nannoplankton and ultraplankton to productivity per m/sup 2/ show that the smaller plankton are relatively more important in the more acid lakes. This pattern could be determined by nutrient availability (lake acidification is suspected of leading to decreased availability of phosphorus). This was consistent with a hypothesis that microbial heterotrophic activity is reduced with increasing acidity, but the smaller phytoplankton may be more leaky at low pH. 11 references, 2 tables.

  3. Bioremediation of acid mine drainage coupled with domestic wastewater treatment.

    PubMed

    Sánchez-Andrea, Irene; Triana, David; Sanz, Jose L

    2012-01-01

    Acid mine drainage (AMD) - characterized by high acidity and elevated sulfate and metal concentrations - represents a big environmental concern. Biological sulfate reduction has become an alternative to the classical physicochemical methods. In this study, domestic wastewater (DW) was tested as a cost-effective carbon-source for the remediation of AMD. Sediments from Tinto River, an extreme acidic environment with an elevated concentration of metals, were used as inoculum. Three anaerobic bioreactors with different microbial supports were fed with a 1:10 (v:v) mixture of synthetic AMD:DW. Around 50% of the organic matter present in the DW co-precipitated with the metals from the AMD previous to feeding the reactor. Therefore, the reactors had to be supplemented with an extra carbon-source (acetate) to achieve higher S elimination. Elevated removal efficiencies of chemical oxygen demand (COD) (>88%), sulfate (>75%), Fe (>85%) and other dissolved metals (>99% except for Mn) were achieved. Bacterial communities were examined through denaturing gradient gel electrophoresis and scanning electron microscopy. Higher biodiversity was found in the bioreactors compared with that of the inoculum. Dominant species belong to two metabolic groups: fermentative (Clostridium spp., Delftia spp., Paludibacter spp. and Pelotomaculum spp.) and sulfate-reducing bacteria (Desulfomonile spp., Desulfovibrio spp., Desulfosporosinus spp. and Desulfotomaculum spp.). PMID:23032774

  4. Perfluorinated acids in air, rain, snow, surface runoff, and lakes: relative importance of pathways to contamination of urban lakes.

    PubMed

    Kim, Seung-Kyu; Kannan, Kurunthachalam

    2007-12-15

    Concentrations of perfluorinated acids (PFAs) were measured in various environmental matrices (air, rain, snow, surface runoff water, and lake water) in an urban area, to enable identification of sources and pathways of PFAs to urban water bodies. Total PFA concentrations ranged from 8.28 to 16.0 pg/ m3 (mean 11.3) in bulk air (sum of vapor and particulate phases), 0.91 to 13.2 ng/L (6.19) in rainwater, 0.91 to 23.9 ng/L (7.98) in snow, 1.11-81.8 ng/L (15.1 ng/L) in surface runoff water (SRW), and 9.49 to 35.9 ng/L (21.8) in lake water. Perfluorooctanoic acid (PFOA) was the predominant compound, accounting for > 35% of the total PFA concentrations, in all environmental matrices analyzed. Concentrations and relative compositions of PFAs in SRW were similar to those found for urban lakes. SRW contributes to contamination by PFOA in urban lakes. The measured concentration ratios of FTOH to PFOA in air were 1-2 orders of magnitude lower than the ratios calculated based on an assumption of exclusive atmospheric oxidation of FTOHs. Nevertheless, the mass balance analysis suggested the presence of an unknown input pathway that could contribute to a significant amount of total PFOA loadings to the lake. Flux estimates of PFOA at the air-water interface in the urban lake suggest net volatilization from water.

  5. Assessing aluminium toxicity in streams affected by acid mine drainage.

    PubMed

    Waters, A S; Webster-Brown, J G

    2013-01-01

    Acid mine drainage (AMD) has degraded water quality and ecology in streams on the Stockton Plateau, the site of New Zealand's largest open-cast coal mining operation. This has previously been attributed largely to the effects of acidity and elevated aluminium (Al) concentrations. However, the toxicity of dissolved Al is dependent on speciation, which is influenced by pH which affects Al hydrolysis, as well as the concentrations of organic carbon and sulphate which complex Al. Methods for the assessment of the toxic fraction of Al, by chemical analysis and geochemical modelling, have been investigated in selected streams on the Stockton Plateau, where dissolved Al concentrations ranged from 0.034 to 27 mg L(-1). Modelling using PHREEQC indicated that between 0.2 and 85% of the dissolved Al was present as the free ion Al(3+), the most toxic Al species, which dominated in waters of pH = 3.8-4.8. Al-sulphate complexation reduced the Al(3+) concentration at lower pH, while Al-organic and -hydroxide complexes dominated at higher pH. Macroinvertebrate richness in the streams identified an Al(3+) 'threshold' of approximately 0.42 mg/L, above which taxa declined rapidly. Colorimetric 'Aluminon' analysis on unpreserved, unfiltered waters provided a better estimation of Al(3+) concentrations than inductively couple plasma-mass spectrometry (ICP-MS) on filtered, acidified waters. The Aluminon method does not react with particulate Al or strong Al complexes, often registering as little as 53% of the dissolved Al concentration determined by ICP-MS. PMID:23579831

  6. Assessing aluminium toxicity in streams affected by acid mine drainage.

    PubMed

    Waters, A S; Webster-Brown, J G

    2013-01-01

    Acid mine drainage (AMD) has degraded water quality and ecology in streams on the Stockton Plateau, the site of New Zealand's largest open-cast coal mining operation. This has previously been attributed largely to the effects of acidity and elevated aluminium (Al) concentrations. However, the toxicity of dissolved Al is dependent on speciation, which is influenced by pH which affects Al hydrolysis, as well as the concentrations of organic carbon and sulphate which complex Al. Methods for the assessment of the toxic fraction of Al, by chemical analysis and geochemical modelling, have been investigated in selected streams on the Stockton Plateau, where dissolved Al concentrations ranged from 0.034 to 27 mg L(-1). Modelling using PHREEQC indicated that between 0.2 and 85% of the dissolved Al was present as the free ion Al(3+), the most toxic Al species, which dominated in waters of pH = 3.8-4.8. Al-sulphate complexation reduced the Al(3+) concentration at lower pH, while Al-organic and -hydroxide complexes dominated at higher pH. Macroinvertebrate richness in the streams identified an Al(3+) 'threshold' of approximately 0.42 mg/L, above which taxa declined rapidly. Colorimetric 'Aluminon' analysis on unpreserved, unfiltered waters provided a better estimation of Al(3+) concentrations than inductively couple plasma-mass spectrometry (ICP-MS) on filtered, acidified waters. The Aluminon method does not react with particulate Al or strong Al complexes, often registering as little as 53% of the dissolved Al concentration determined by ICP-MS.

  7. Cycling of iron and trace metals in the sediments of acidic lakes

    SciTech Connect

    Gubala, C.P.

    1988-01-01

    This study focused on four lakes receiving acidic deposition located in the Adirondack Park, New York, U.S.A. The biogeochemistry of sediments and interstitial water along a depth transect in Big Moose, Lake was examined by chemical analysis of sediment and pore water. Solid phases of iron, manganese, aluminum, lead and zinc were quantified, using a sequential chemical extraction process. {sup 210}Pb dating, and equilibrium and diffusion transport modeling were used to assess the degree of post-depositional reprocessing of these metals. The sediment chemistry of Dart Lake, Lake Rondaxe and South Lake, were compared to the sediment processes observed in Big Moose Lake to assess inter-lake variability.

  8. Environmental effects of river sand mining: a case from the river catchments of Vembanad lake, Southwest coast of India

    NASA Astrophysics Data System (ADS)

    Padmalal, D.; Maya, K.; Sreebha, S.; Sreeja, R.

    2008-04-01

    Rivers in the southwest coast of India are under immense pressure due to various kinds of human activities among which indiscriminate extraction of construction grade sand is the most disastrous one. The situation is rather alarming in the rivers draining the Vembanad lake catchments as the area hosts one of the fast developing urban-cum-industrial centre, the Kochi city, otherwise called the Queen of Arabian Sea. The Vembanad lake catchments are drained by seven rivers whose length varies between 78 and 244 km and catchment area between 847 and 5,398 km2. On an average, 11.73 million ty-1 of sand and gravel are being extracted from the active channels and 0.414 million ty-1 of sand from the river floodplains. The quantity of instream mining is about 40 times the higher than the sand input estimated in the gauging stations. As a result of indiscriminate sand mining, the riverbed in the storage zone is getting lowered at a rate of 7-15 cm y-1 over the past two decades. This, in turn, imposes severe damages to the physical and biological environments of these river systems. The present paper deals with the environmental effects of indiscriminate sand mining from the small catchment rivers in the southwest coast of India, taking the case of the rivers draining the Vembanad lake catchments as an example.

  9. Health implications of radionuclide levels in cattle raised near U mining and milling facilities in Ambrosia Lake, New Mexico.

    PubMed

    Lapham, S C; Millard, J B; Samet, J M

    1989-03-01

    This study was conducted to determine radionuclide tissue levels in cattle raised near U mining and milling facilities. Ambrosia Lake, New Mexico, has been the site of extensive U mining for 30 y and contains several underground U mines, a processing mill, and two large U tailings piles. Ten cows were purchased from two grazing areas in Ambrosia Lake and ten control animals were purchased from Crownpoint, New Mexico. Muscle, liver, kidney, and bone tissue taken from these animals, and environmental samples, including water, grasses and soil collected from the animals' grazing areas, were analyzed for 238U, 234U, 230Th, 226Ra, 210Pb, and 210Po. Mean radionuclide levels in cattle tissue and environmental samples from Ambrosia Lake were higher in almost every comparison than those found in respective controls. Liver and kidney tissues were particularly elevated in 226Ra and 210Po. Radiation dose commitments from eating cattle tissue with these radionuclide concentrations were calculated. We concluded that the health risk to the public from eating exposed cattle is minimal, unless large amounts of this tissue, especially liver and kidney, are ingested.

  10. Parent Body Influences on Amino Acids in the Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Callahan, M. P.; Dworkin, J. P.; Elsila, J. E.; Herd, C. D. K.

    2010-01-01

    The Tagish Lake meteorite is a primitive C2 carbonaceous chondrite with a mineralogy, oxygen isotope, and bulk chemical. However, in contrast to many CI and CM carbonaceous chondrites, the Tagish Lake meteorite was reported to have only trace levels of indigenous amino acids, with evidence for terrestrial L-amino acid contamination from the Tagish Lake meltwater. The lack of indigenous amino acids in Tagish Lake suggested that they were either destroyed during parent body alteration processes and/or the Tagish Lake meteorite originated on a chemically distinct parent body from CI and CM meteorites where formation of amino acids was less favorable. We recently measured the amino acid composition of three different lithologies (11h, 5b, and 11i) of pristine Tagish Lake meteorite fragments that represent a range of progressive aqueous alteration in order 11h < 5b < 11i as inferred from the mineralogy, petrology, bulk isotopes, and insoluble organic matter structure. The distribution and enantiomeric abundances of the one- to six-carbon aliphatic amino acids found in hot-water extracts of the Tagish Lake fragments were determined by ultra performance liquid chromatography fluorescence detection and time of flight mass spectrometry coupled with OPA/NAC derivatization. Stable carbon isotope analyses of the most abundant amino acids in 11h were measured with gas chromatography coupled with quadrupole mass spectrometry and isotope ratio mass spectrometry.

  11. Paleolimnological Diatom Studies of Acidification of Lakes by Acid Rain: An Application of Quaternary Science

    NASA Astrophysics Data System (ADS)

    Davis, Ronald B.

    The methods of Quaternary paleoecology have proven useful for understanding the effects of anthropogenic acid deposition on lakes. The pH history of lakes has been inferred from diatom remains in 210Pb dated cores of sediment. In several of these studies, the cores have also been analysed for chrysophyte scales, trace metals (Pb, Zn, V, Cu), soot, and polycyclic aromatic hydrocarbons. Combined with historical studies of watershed vegetation and disturbance, these approaches have produced important insights relating to the effects on lakes of acid deposition: (1) certain clear water lakes with present pH 4.3-5.0 have rapidly acidified in recent decades; (2) these lakes were acidic (pH 5.0-6.4) prior to the acidification; (3) the most likely cause of the acidification is acid deposition; (4) the acidification began decades after high levels of acid deposition had been reached; and (5) in certain lakes acidification may have caused a marked decrease in humics, reducing the availability of organic ligands for 'detoxification' of metal ions (e.g. Al) mobilized by acidification. Diatom analyses have also revealed long term lake acidification in Late-glacial and Holocene time before the Industrial Revolution. This acidification is much slower than the modern acidification. The present pHs in anthropogenically acidified lakes are unprecedentedly low.

  12. Environmental Impact of the Helen, Research, and Chicago Mercury Mines on Water, Sediment, and Biota in the Upper Dry Creek Watershed, Lake County, California

    USGS Publications Warehouse

    Rytuba, James J.; Hothem, Roger L.; May, Jason T.; Kim, Christopher S.; Lawler, David; Goldstein, Daniel; Brussee, Brianne E.

    2009-01-01

    The Helen, Research, and Chicago mercury (Hg) deposits are among the youngest Hg deposits in the Coast Range Hg mineral belt and are located in the southwestern part of the Clear Lake volcanic field in Lake County, California. The mine workings and tailings are located in the headwaters of Dry Creek. The Helen Hg mine is the largest mine in the watershed having produced about 7,600 flasks of Hg. The Chicago and Research Hg mines produced only a small amount of Hg, less than 30 flasks. Waste rock and tailings have eroded from the mines, and mine drainage from the Helen and Research mines contributes Hg-enriched mine wastes to the headwaters of Dry Creek and contaminate the creek further downstream. The mines are located on federal land managed by the U.S. Bureau of Land Management (USBLM). The USBLM requested that the U.S. Geological Survey (USGS) measure and characterize Hg and geochemical constituents in tailings, sediment, water, and biota at the Helen, Research, and Chicago mines and in Dry Creek. This report is made in response to the USBLM request to conduct a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA - Removal Site Investigation (RSI). The RSI applies to removal of Hg-contaminated mine waste from the Helen, Research, and Chicago mines as a means of reducing Hg transport to Dry Creek. This report summarizes data obtained from field sampling of mine tailings, waste rock, sediment, and water at the Helen, Research, and Chicago mines on April 19, 2001, during a storm event. Further sampling of water, sediment, and biota at the Helen mine area and the upper part of Dry Creek was completed on July 15, 2003, during low-flow conditions. Our results permit a preliminary assessment of the mining sources of Hg and associated chemical constituents that could elevate levels of monomethyl Hg (MMeHg) in the water, sediment, and biota that are impacted by historic mining.

  13. Spatial characterization of acid rain stress in Canadian Shield lakes. Progress report, 1 August 1985-1 February 1986

    SciTech Connect

    Tanis, F.J.

    1986-01-01

    The acidification of lake waters from airborne pollutants is of continental proportions both in North America and Europe. A major concern of the acid rain problem is the cumulative ecosystem damage to lakes and forest. The number of lakes affected in northeastern United States and on the Canadian Shield is though to be enormous. The principle objective is to examine how seasonal changes in lake water transparency are related to annual acidic load. Further, the relationship between variations in lake acidification and ecophysical units is being examined. Finally, the utility of Thematic Mapper (TM) based observations to measure seasonal changes in the optical transparency in acid lakes is being investigated.

  14. Geochemistry, mineralogy, and chemical modeling of the acid crater lake of Kawah Ijen Volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Delmelle, Pierre; Bernard, Alain

    1994-06-01

    The Kawah Ijen volcano—with a record of phreatic eruptions—has its 1000 m wide crater filled with a lake that has existed for at least one century. At present, the lake waters are hot ( T ≈ 37° C), strongly mineralized (TDS = 105 g/L) and extremely acidic ( pH ≈ 0.4). By its volume, the Javanese lake is probably the largest accumulation in the world of such acidic waters. Mineralogy of the suspended solids within the lake waters suggests that concentrations of Si, Ca, Ti, and Ba are controlled by precipitation of silica, gypsum, anatase, and barite. Lake sediment is composed of chemical precipitates with composition similar to the suspended solids. Thermodynamic calculations predict that the lake waters have reached equilibrium with respect to α-cristobalite, barite, gypsum, anglesite, celestite, and amorphous silica, in agreement with the analytical observations. Significant concentrations of ferric iron suggest that the current lake waters are fairly oxidized. Sulfides are absent in the water column but are always present in the native S spherules that form porous aggregates which float on the lake. The presence of native S provides direct evidence of more reduced conditions at the lake floor where H 2S is probably being injected into the lake. With progressive addition of H 2S to the acid waters, native S, pyrite, and enargite are theoretically predicted to be saturated. Reactions between upward streaming H 2S-bearing gases discharged by subaqueous fumaroles, and metals dissolved in the acidic waters could initiate precipitation of these sulfides. A model of direct absorption of hot magmatic gases into cool water accounts for the extreme acidity of the crater lake. Results show that strongly acidic, sulfate-rich solutions are formed under oxidizing conditions at high gas/water ratios. Reactions between the acidic fluids and the Ijen andesite were modeled to account for elevated cation concentrations in lake water. Current concentrations of conservative

  15. Chemical composition of organic matter in extremely acid, lignite-containing lake sediments impacted by fly ash contamination.

    PubMed

    Chabbi, A; Rumpel, C

    2004-01-01

    In the Lusatian lignite mining district of eastern Germany, extremely acid lakes developed during ground water rising after exploitation of lignite in open-cast mines. The reasons of plant colonization (Juncus bulbosus L.) of some lakes exhibiting moderate pH values while others remain extremely acid and unvegetated are unknown. Alkalinity gain may be achieved by addition of alkaline materials and/or decomposition of organic matter. Our objective was to examine fly ash deposition and the resulting changes in organic matter composition in the uppermost 0 to 5 cm of the sediment sampled from vegetated and unvegetated lakes. Bulk soil and particle size fractions were analyzed for elemental composition, magnetic susceptibility, and chemical structure of the organic matter by 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. The lignite content of the samples was estimated by 14C activity measurements. The pH values decreased with increasing depth and the changes in pH were found to be correlated with changes in magnetic susceptibility. Carbon and nitrogen contents were found to decrease with increasing depth. The C to N ratios are consistent with the (i) the presence of decomposing plant residues and/or microbial material such as algae in the upper 0 to 5 cm of the sediment and (ii) the dominance of lignite in the layers below this depth as confirmed by 14C activity measurements. The structural analyses of the particle size separates from the 0- to 5-cm depth were consistent with the presence of organic matter derived from plant material. This study confirms that fly ash is an important source of alkalinity in the upper 0 to 5 cm of the sediment that enhanced plant growth and led to enrichment of the sediment with organic matter derived from plant material. PMID:15074815

  16. EVIDENCE FOR METAL ATTENUATION IN ACID MINE WATER BY SULFATE REDUCTION, PENN MINE, CALAVERAS COUNTY, CALIFORNIA

    EPA Science Inventory

    The Penn Mine in Calaveras County, California, produced Cu from massive sulfide ores from 1861 to 1953. Mine wastes were removed to a landfill during the late 1990s, improving surface-water quality, but deep mine workings were not remediated and contain metalliferous water with p...

  17. History of human impact on Lake Kutubu, Papua New Guinea: The geochemical signatures of oil and gas mining activities in sediments.

    PubMed

    Schneider, Larissa; Haberle, Simon G; Maher, William A; Krikowa, Frank; Zawadzki, Atun; Heijnis, Henk

    2016-04-01

    Lake Kutubu, a large tropical lake in Papua New Guinea, is well known for its ecological importance; however, there have been recent changes to the pristine nature of this lake due to activities associated with the largest oil and gas project in PNG. The aim of this study was to determine the geochemical profile of sediment cores of Lake Kutubu and to comprehend the contamination changes undergone in this lake due to mining activities utilising the hydraulic fracturing method. Sediment core profiles of Na, Mg, Al, Si, P, Ca, Ti, Cr, Fe, Mn, Ni, Cu, Zn, As, Se, Sr, Cd, Ba, Ce, Pb and U, grain size and dating analyses were conducted for five sites in the lake. Grain size and dating demonstrated that the northwest side of Lake Kutubu has sediments of allocthonous origin while the southeast sediments are of autochthonous origin. Ba was the element with the largest changes in concentrations since 1990 and the best tracer of mining activities near the lake. Sites KTB 02 and KTB 10 northwest of the lake showed the most distinct changes in element concentrations. Element enrichment factors (EF = 2.8, 4.2 and 3.2 respectively) demonstrated that Mn, Se and Ba have undergone a moderate enrichment in the lake since mining activities started. Ni, Cd and Se concentrations exceed sediment guidelines in some samples. No guideline is available for Ba, and special attention should be given to this element in this lake. This study demonstrated that Lake Kutubu oil/gas extraction activities are significant sources of elements to this lake and highlights the need for studies on the partitioning and speciation of elements to understand organism metal exposure. PMID:26826474

  18. History of human impact on Lake Kutubu, Papua New Guinea: The geochemical signatures of oil and gas mining activities in sediments.

    PubMed

    Schneider, Larissa; Haberle, Simon G; Maher, William A; Krikowa, Frank; Zawadzki, Atun; Heijnis, Henk

    2016-04-01

    Lake Kutubu, a large tropical lake in Papua New Guinea, is well known for its ecological importance; however, there have been recent changes to the pristine nature of this lake due to activities associated with the largest oil and gas project in PNG. The aim of this study was to determine the geochemical profile of sediment cores of Lake Kutubu and to comprehend the contamination changes undergone in this lake due to mining activities utilising the hydraulic fracturing method. Sediment core profiles of Na, Mg, Al, Si, P, Ca, Ti, Cr, Fe, Mn, Ni, Cu, Zn, As, Se, Sr, Cd, Ba, Ce, Pb and U, grain size and dating analyses were conducted for five sites in the lake. Grain size and dating demonstrated that the northwest side of Lake Kutubu has sediments of allocthonous origin while the southeast sediments are of autochthonous origin. Ba was the element with the largest changes in concentrations since 1990 and the best tracer of mining activities near the lake. Sites KTB 02 and KTB 10 northwest of the lake showed the most distinct changes in element concentrations. Element enrichment factors (EF = 2.8, 4.2 and 3.2 respectively) demonstrated that Mn, Se and Ba have undergone a moderate enrichment in the lake since mining activities started. Ni, Cd and Se concentrations exceed sediment guidelines in some samples. No guideline is available for Ba, and special attention should be given to this element in this lake. This study demonstrated that Lake Kutubu oil/gas extraction activities are significant sources of elements to this lake and highlights the need for studies on the partitioning and speciation of elements to understand organism metal exposure.

  19. Major hydrogeochemical processes in an acid mine drainage affected estuary.

    PubMed

    Asta, Maria P; Calleja, Maria Ll; Pérez-López, Rafael; Auqué, Luis F

    2015-02-15

    This study provides geochemical data with the aim of identifying and quantifying the main processes occurring in an Acid Mine Drainage (AMD) affected estuary. With that purpose, water samples of the Huelva estuary were collected during a tidal half-cycle and ion-ion plots and geochemical modeling were performed to obtain a general conceptual model. Modeling results indicated that the main processes responsible for the hydrochemical evolution of the waters are: (i) the mixing of acid fluvial water with alkaline ocean water; (ii) precipitation of Fe oxyhydroxysulfates (schwertmannite) and hydroxides (ferrihydrite); (iii) precipitation of Al hydroxysulfates (jurbanite) and hydroxides (amorphous Al(OH)3); (iv) dissolution of calcite; and (v) dissolution of gypsum. All these processes, thermodynamically feasible in the light of their calculated saturation states, were quantified by mass-balance calculations and validated by reaction-path calculations. In addition, sorption processes were deduced by the non-conservative behavior of some elements (e.g., Cu and Zn). PMID:25530015

  20. Geospeciation of arsenic using MINTEQA2 for a post-mining lake.

    PubMed

    Sari, S A; Ujang, Z; Ahmad, U K

    2006-01-01

    The objective of this study was to investigate the cycling of arsenic in the water column of a post-mining lake. This study is part of a research project to develop health risk assessment for the surrounding population. Inductively Coupled Plasma-Mass Spectrophotometer (ICP-MS) and Capillary Electrophoresis (CE) have been used to analyze the total amount and speciation, respectively. A computer program, called MINTEOA2, which was developed by the United States Environmental Protection Agency (USEPA) was used for predicting arsenic, iron, and manganese as functions of pH and solubility. Studying the pH values and cycle of arsenic shows that the percentage of bound arsenate, As(V) species in the form of HAsO4- increases with range pH from 5 to 7, as well as Fe(II) and Mn(III). As expected phases of arsenic oxides are FeAsO4 and Mn3(AsO4), as a function of solubility, however none of these phases are over saturated and not precipitated. It means that the phases of arsenic oxides have a high solubility.

  1. Effect of atmospheric sulfur pollutants derived from acid precipitation on the benthic dynamics of lakes

    SciTech Connect

    Mitchell, M.J.

    1982-11-01

    Sulfuric acid is a major contributor to acid precipitation in the United States. The relationship of acid precipitation to the sulfur dynamics of three lakes in New York was studied. For South Lake, which has probably been acidified, the sulfur profile in the sediment corresponded to historical changes in anthropogenic sulfur inputs. In all three study lakes, the organic sulfur constituents, which generally have been ignored in limnological investigations, played a major role in sulfur dynamics. The transformations and fluxes of inorganic and organic sulfur differed among the lakes and reflected characteristic abiotic and biotic properties, including productivity parameters. The community structure and secondary production of the invertebrate benthos were ascertained and, for South Lake, were similar to other acidified lakes. The importance of benthic insects on sulfur dynamics was demonstrated. Further studies on sulfur in lakes will enhance the understanding of the role of these anthropogenic inputs on lake systems and permit a more accurate appraisal of the present and future impacts of acidic deposition on water quality. 10 references.

  2. Remediation of acid mine drainage within strip mine spoil by sulfate reduction using waste organic matter

    SciTech Connect

    Stalker, J.; Rose, A.W.; Michaud, L.H.

    1996-12-31

    Many treatment options for AMD, like wetlands and anoxic limestone drains, are limited by acidity, metal loadings, flow rate or areal requirements so as to be inapplicable at many sites. In-situ bacterial sulfate reduction is proposed as a solution for certain settings. Requirements for successful in-situ bacterial sulfate reduction include dissolved sulfate, an organic substrate, permanent anaerobic conditions, a mixed culture of bacteria, appropriate nutrients, and a sufficient AMD contact time. These requirements can be provided within mine spoil by injection of waste organic matter into an extensive zone of saturated spoil. Laboratory experiments on cheese whey, lactate, non-degraded sawdust, partially degraded sawdust, pulped newspaper and mushroom compost have all yielded sulfate reduction, increased alkalinity and iron sulfide precipitate in AMD with pH < 4.0. The addition of a small amount of dolomite to the organic matter creates alkaline microenvironments that facilitate the initiation of sulfate reduction. The rates of sulfate reduction using cellulose materials are slow but the rate for milk products is much more rapid. A field test utilizing partially degraded sawdust is underway. A total of 11.3 tons of sawdust mixed with 5% dolomite, 5% sewage sludge and a mixed bacterial culture was successfully injected into 4 drill holes in mine spoil as 13% w/v suspension, The spoil had enough coarse porosity for injection into the saturated subsurface at about 300 L/min, Data on in-situ SO{sub 4} reduction rates and water quality are being collected in preparation for a full remediation program at the site, which has an extensive zone of saturated spoil 10-20 m thick.

  3. Geochemistry of acid mine contamination-aquifer interactions.

    PubMed

    Conklin, M; Villinski, J; Kay, J

    2001-01-01

    The Pinal Creek Basin near Globe, Arizona, is an example of a groundwater/surface water system contaminated by wastes from historic metal mining practices. Acidic mining wastes that have leached into the regional aquifer have come in contact with alluvial sediments, dissolving manganese oxides and precipitating iron sulfato-hydroxides. Manganese is reoxidized in sediments of a perennial stream (Pinal Creek) formed as the aquifer thins and groundwater is forced to land surface. Iron and manganese in the system are inextricably linked through redox couples. These interactions, which produce reaction rates varying by orders of magnitude and non-stoichiometric release of manganese, are poorly understood. We have designed a flow-through reaction cell to obtain in situ real time X-ray adsorption spectroscopy (XAS) data during geochemical reactions. By coupling solution chemistry data with spectroscopic measurements, we were able to show that the spinel mineral, jacobsite, forms as a metastable intermediate phase during the reductive dissolution of manganese oxide (MnO2) by ferrous iron (Fe(II)). The production of Fe(III) followed by the precipitation of ferric hydroxides and the formation of the jacobsite phase, were responsible for reducing the rate of the reaction as time progressed. Laboratory studies have determined that Mn-oxidation in stream sediments increases Co, Ni, and Zn loading through a variety of processes, including oxidation, co-precipitation, solid solution formation, structural exchange, and/or sorption. This information provides a more complete picture of the controls on metal transport and attenuation in the Pinal Creek Basin.

  4. Reclamation of acidic copper mine tailings using municipal biosolids

    SciTech Connect

    Rogers, M.T.; Thompson, T.L.; Bengson, S.A.

    1998-12-31

    Reclamation of copper mine tailings in a cost effective, successful, and sustainable manner is an ongoing area of evaluation in the arid southwest. A study was initiated in September, 1996 near Hayden, Arizona to evaluate the use of municipal biosolids for reclaiming acidic copper mine tailings (pH of 2.5 to 4.0). The main objectives of the study were to (1) define an appropriate level of biosolids application for optimum plant growth, and (2) evaluate the effects of green waste and lime amendments. The experiment was a randomized complete block design with four biosolid rates of 20, 70, 100 and 135 dry tons/acre, three amendment treatments (none, green waste, and green waste plus lime); with three replications. Non-replicated controls (no treatment, green waste only and lime only) were included for comparison. Shortly after biosolids incorporation to a depth of 10--12 inches, composite soil samples (0--12 inches) of each plot were taken. Biosolids incorporation increased the pH of the tailings (>5.75) and additional increases in pH were noted with lime application. In January 1997, the plots were seeded and sprinkler irrigation was commenced. A total of 4.47 inches of rainfall and 3.8 inches of irrigation were applied until harvest in May 1997. Data from the first growing season indicates optimum growth (>66 lbs/acre) at biosolids rates of 70--100 dry tons/acre. There was a significant positive effect on growth of green waste and lime amendments. Surface NO{sub 3}-N concentrations in biosolids amended plots were greatly reduced (from 23 to 6 mg/kg) by addition of green waste. There was no evidence for NO{sub 3}N leaching below 12 inches.

  5. Evaluation of the effects of coal-mine reclamation on water quality in Big Four Hollow near Lake Hope, southeastern Ohio

    USGS Publications Warehouse

    Nichols, V.E.

    1985-01-01

    A subsurface clay dike and mine-entrance hydraulic seals were constructed from July 1979 through May 1980 by the Ohio Department if Natural Resources, Division of Reclamation to reduce acidic mine drainage from abandoned drift-mine complex 88 into Big Four Hollow Creek. Big Four Hollow Creek flows into Sandy Run--the major tributary to Lake Hope. A data-collection program was established in 1979 by the U.S. Geological Survey to evaluate effects of drift-mine sealing on surface-water systems of the Big Four Hollow Creek and Sandy Run area just below the mine. Data collected by private consultants from 1970 through 1971 near the mouth of Big Four Hollow Creek (U.S. Geological Survey station 03201700) show that pH ranged from 2.7 to 4.8, with a median of 3.1. The calculated iron load was 50 pounds per day. Data collecetd near the mouth of Big Four Hollow Creek (station 03201700) from 1971 through 1979 (before dike construction) show the daily pH ranged from 2.1 to 6.7; the median was 3.6. The daily specific conduction ranged from 72 to 3,500 microsiements per centimeter at 25? Celsius and averaged 770. The estimated loads of chemical constituents were: Sulfate, 1,100 pounds per day: iron, 54 pounds per day: and manganese, 12 pounds per day. All postconstruction data collected at station 03201700 through the end of the project, May 1980 through June 30, 1983, show that the daily pH ranged from 2.4 to 7.7, with a median of 3.7. Daily specific conductance ranged from 87 to 3,200 microsiemens per centimeter and averaged 1,200. The estimated loads of chemical constituents for this period were: Sulfate, 1,000 pounds per day: iron, 44 pounds per day: and manganese, 16 pounds per day. Standard nonparametric statistical tests were performed on the data collected before and after reclamation. Differences at the 95-percent confidence level were found in the before- and after-reclamation data sets for specific conductance, aluminum, and manganese at station 03201700. Data

  6. Geochemistry of acid mine drainage from a coal mining area and processes controlling metal attenuation in stream waters, southern Brazil.

    PubMed

    Campaner, Veridiana P; Luiz-Silva, Wanilson; Machado, Wilson

    2014-05-14

    Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.

  7. Hydrogeologic comparison of an acidic-lake basin with a neutral-lake basin in the West-Central Adirondack Mountains, New York

    USGS Publications Warehouse

    Peters, N.E.; Murdoch, Peter S.

    1985-01-01

    Two small headwater lake basins that receive similar amounts of acidic atmospheric deposition have significantly different lake outflow pH values; pH at Panther Lake (neutral) ranges from about 4.7 to 7; that at Woods Lake (acidic) ranges from about 4.3 to 5. A hydrologic analysis, which included monthly water budgets, hydrograph analysis, examination of flow duration and runoff recession curves, calculation of ground-water storage, and an analysis of lateral flow capacity of the soil, indicates that differences in lakewater pH can be attributed to differences in the ground-water contribution to the lakes. A larger percentage of the water discharged from the neutral lake is derived from ground water than that from the acidic lake. Ground water has a higher pH resulting from a sufficiently long residence time for neutralizing chemical reactions to occur with the till. The difference in ground-water contribution is attributed to a more extensive distribution of thick till (<3m) in the neutral-lake basin than in the acidic-lake basin; average thickness of till in the neutral-lake basin is 24m whereas that in the other is 2.3m. During the snowmelt period, as much as three months of accumulated precipitation may be released within two weeks causing the lateral flow capacity of the deeper mineral soil to be exceeded in the neutral-lake basin. This excess water moves over and through the shallow acidic soil horizons and causes the lakewater pH to decrease during snowmelt.Two small headwater lake basins that receive similar amounts of acidic atmospheric deposition have significantly different lake outflow pH values; pH at Panther Lake (neutral) ranges from about 4. 7 to 7; that at Woods Lake (acidic) ranges from about 4. 3 to 5. A hydrologic analysis, which included monthly water budgets, hydrograph analysis, examination of flow duration and runoff recession curves, calculation of ground-water storage, and an analysis of lateral flow capacity of the soil, indicates that

  8. NRMRL EVALUATES ACTIVE AND SEMI-PASSIVE TECHNOLOGIES FOR TREATING ACID MINE DRAINAGE

    EPA Science Inventory

    Two-page article describing three SITE demonstration projects underway on the Leviathan mine site in California. BiPhasic lime treatment, lime treatment lagoons and compost free BioReactors are being evaluated as innovative technologies for treating acid mine drainage.

  9. VALUING ACID MINE DRAINAGE REMEDIATION IN WEST VIRGINIA: A HEDONIC MODELING APPROACH

    EPA Science Inventory

    States with active and abandoned mines face large private and public costs to remediate damage to streams and rivers from acid mine drainage (AMD). Appalachian states have an especially large number of contaminated streams and rivers, and the USGS places AMD as the primary source...

  10. MECHANISMS OF HEAVY METAL REMOVAL FROM ACID MINE DRAINAGE USING CHITIN

    EPA Science Inventory

    Acid Mine Drainage (AMD) emanating from inactive or active mine sites contains elevated levels of toxic heavy metals, which can have an adverse impact to the surrounding environment. The major pathway involved in generation of AMD is weathering of pyritic mineral ores, where in s...

  11. PRELIMINARY RESULTS: RELEASE OF METALS FROM ACID-MINE DRAINAGE CONTAMINATED STREAMBED SEDIMENTS UNDER ANOXIC CONDITIONS

    EPA Science Inventory

    Many miles of streams are contaminated with acid-mine drainage (AMD) from abandoned metal mines in the western U.S. Treatment of these streams may include dredging of the existing sediments, with subsequent burial. Burial of previously toxic sediments may result in release of met...

  12. Preliminary Results: Release Of Metals From Acid-Mine Drainage Contaminated Streambed Sediments Under Anaerobic Conditions

    EPA Science Inventory

    Many miles of streams in the western U.S. are contaminated with acid-mine drainage (AMD) from abandoned metal mines. Treatment of these streams may include removal of the existing sediments, with subsequent burial (e.g., in a repository). Burial of previously aerobic sediments ma...

  13. VALUING ACID MINE DRAINAGE REMEDIATION IN WEST VIRGINIA: A HEDONIC MODELING APPROACH INCORPORATING GEOGRAPHIC INFORMATION SYSTEMS

    EPA Science Inventory

    States with active and abandoned mines face large private and public costs to remediate damage to streams and rivers from acid mine drainage (AMD). Appalachian states have an especially large number of contaminated streams and rivers, and the USGS places AMD as the primary source...

  14. Inter-species interconnections in acid mine drainage microbial communities

    PubMed Central

    Comolli, Luis R.; Banfield, Jill F.

    2014-01-01

    Metagenomic studies are revolutionizing our understanding of microbes in the biosphere. They have uncovered numerous proteins of unknown function in tens of essentially unstudied lineages that lack cultivated representatives. Notably, few of these microorganisms have been visualized, and even fewer have been described ultra-structurally in their essentially intact, physiologically relevant states. Here, we present cryogenic transmission electron microscope (cryo-TEM) 2D images and 3D tomographic datasets for archaeal species from natural acid mine drainage (AMD) microbial communities. Ultrastructural findings indicate the importance of microbial interconnectedness via a range of mechanisms, including direct cytoplasmic bridges and pervasive pili. The data also suggest a variety of biological structures associated with cell-cell interfaces that lack explanation. Some may play roles in inter-species interactions. Interdependences amongst the archaea may have confounded prior isolation efforts. Overall, the findings underline knowledge gaps related to archaeal cell components and highlight the likely importance of co-evolution in shaping microbial lineages. PMID:25120533

  15. Potential of fly ash for neutralisation of acid mine drainage.

    PubMed

    Qureshi, Asif; Jia, Yu; Maurice, Christian; Öhlander, Björn

    2016-09-01

    Lignite (PK), bituminous (FI) and biomass (SE) fly ashes (FAs) were mineralogically and geochemically characterised, and their element leachability was studied with batch leaching tests. The potential for acid neutralisation (ANP) was quantified by their buffering capacity, reflecting their potential for neutralisation of acid mine drainage. Quartz was the common mineral in FAs detected by XRD with iron oxide, anhydrite, and magnesioferrite in PK, mullite and lime in FI, and calcite and anorthite in SE. All the FAs had high contents of major elements such as Fe, Si, Al and Ca. The Ca content in SE was six and eight times higher compared to PK and FI, respectively. Sulphur content in PK and SE was one magnitude higher than FI. Iron concentrations were higher in PK. The trace element concentrations varied between the FAs. SE had the highest ANP (corresponding to 275 kg CaCO3 tonne(-1)) which was 15 and 10 times higher than PK and FI, respectively. The concentrations of Ca(2+), SO4 (2-), Na(+) and Cl(-) in the leachates were much higher compared to other elements from all FA samples. Iron, Cu and Hg were not detected in any of the FA leachates because of their mild to strong alkaline nature with pH ranging from 9 to 13. Potassium leached in much higher quantity from SE than from the other ashes. Arsenic, Mn and Ni leached from PK only, while Co and Pb from SE only. The concentrations of Zn were higher in the leachates from SE. The FAs used in this study have strong potential for the neutralisation of AMD due to their alkaline nature. However, on the other hand, FAs must be further investigated, with scaled-up experiments before full-scale application, because they might leach pronounced concentrations of elements of concern with decreasing pH while neutralising AMD. PMID:27209637

  16. Sequestration of phosphorus by acid mine drainage floc

    USGS Publications Warehouse

    Adler, P.R.; Sibrell, P.L.

    2003-01-01

    Solubilization and transport of phosphorus (P) to the water environment is a critical environmental issue. Flocs resulting from neutralizing acid mine drainage (AMD) were tested as a possible lowcost amendment to reduce the loss of soluble P from agricultural fields and animal wastewater. Flocs were prepared by neutralizing natural and synthetic solutions of AMD with limestone, lime, ammonium hydroxide, and sodium hydroxide. Phosphorus sequestration was tested in three distinct environments: water, soil, and manure storage basins. In water, flocs prepared from AMD adsorbed 10 to 20 g P kg-1 dry floc in equilibrium with 1 mg L-1 soluble P. Similar results were observed for both Fe-based and A1-based synthetic flocs. A local soil sample adsorbed about 0.1 g P kg-1, about two orders of magnitude less. The AMD-derived flocs were mixed with a highP soil at 5 to 80 g floc kg-1 soil, followed by water and acid (Mehlich1) extractions. All flocs performed similarly. About 70% of the waterextractable P was sequestered by the floc when applied at a rate of 20 g floc kg-1 soil, whereas plant-available P only decreased by about 30%. Under anaerobic conditions simulating manure storage basins, all AMD flocs reduced soluble P by greater than 95% at a rate of 0.2 g floc g-1 rainbow trout (Oncorhynchus mykiss) manure. These findings indicate that AMD flocs could be an effective agent for preventing soluble P losses from soil and manure to the water environment, while at the same time decreasing the costs associated with AMD treatment.

  17. Factors Affecting Elevated Arsenic and Methyl Mercury Concentrations in Small Shield Lakes Surrounding Gold Mines near the Yellowknife, NT, (Canada) Region.

    PubMed

    Houben, Adam James; D'Onofrio, Rebecca; Kokelj, Steven V; Blais, Jules M

    2016-01-01

    Gold mines in the Yellowknife, NT, region--in particular, the Giant Mine--operated from 1949-99, releasing 237,000 tonnes of waste arsenic trioxide (As2O3) dust, among other compounds, from gold ore extraction and roasting processes. For the first time, we show the geospatial distribution of roaster-derived emissions of several chemical species beyond the mine property on otherwise undisturbed taiga shield lakes within a 25 km radius of the mine, 11 years after its closing. Additionally, we demonstrate that underlying bedrock is not a significant source for the elevated concentrations in overlying surface waters. Aquatic arsenic (As) concentrations are well above guidelines for drinking water (10 μg/L) and protection for aquatic life (5 μg/L), ranging up to 136 μg/L in lakes within 4 km from the mine, to 2.0 μg/L in lakes 24 km away. High conversion ratios of methyl mercury were shown in lakes near the roaster stack as well, with MeHg concentrations reaching 44% of total mercury. The risk of elevated exposures by these metals is significant, as many lakes used for recreation and fishing near the City of Yellowknife are within this radius of elevated As and methyl Hg concentrations.

  18. Factors Affecting Elevated Arsenic and Methyl Mercury Concentrations in Small Shield Lakes Surrounding Gold Mines near the Yellowknife, NT, (Canada) Region.

    PubMed

    Houben, Adam James; D'Onofrio, Rebecca; Kokelj, Steven V; Blais, Jules M

    2016-01-01

    Gold mines in the Yellowknife, NT, region--in particular, the Giant Mine--operated from 1949-99, releasing 237,000 tonnes of waste arsenic trioxide (As2O3) dust, among other compounds, from gold ore extraction and roasting processes. For the first time, we show the geospatial distribution of roaster-derived emissions of several chemical species beyond the mine property on otherwise undisturbed taiga shield lakes within a 25 km radius of the mine, 11 years after its closing. Additionally, we demonstrate that underlying bedrock is not a significant source for the elevated concentrations in overlying surface waters. Aquatic arsenic (As) concentrations are well above guidelines for drinking water (10 μg/L) and protection for aquatic life (5 μg/L), ranging up to 136 μg/L in lakes within 4 km from the mine, to 2.0 μg/L in lakes 24 km away. High conversion ratios of methyl mercury were shown in lakes near the roaster stack as well, with MeHg concentrations reaching 44% of total mercury. The risk of elevated exposures by these metals is significant, as many lakes used for recreation and fishing near the City of Yellowknife are within this radius of elevated As and methyl Hg concentrations. PMID:27050658

  19. Selenium Bioaccumulation in Stocked Fish as an Indicator of Fishery Potential in Pit Lakes on Reclaimed Coal Mines in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Miller, L. L.; Rasmussen, J. B.; Palace, V. P.; Sterling, G.; Hontela, A.

    2013-07-01

    Pit lakes are a common reclamation strategy for open pit mines; however, there is a concern about their water quality and suitability as fish habitat because they are often contaminated by metals or metalloids. This study assessed the exposure of fish and invertebrates to selenium (Se) and other metals and metalloids in pit lakes formed by open pit coal mining in Tertiary (thermal coal) and in Cretaceous (metallurgical coal) bedrock. Juvenile hatchery rainbow trout, Oncorhynchus mykiss, and brook trout, Salvelinus fontinalis, were stocked into two thermal coal pit lakes (water Se < 2 μg/L, low water Se) and two metallurgical coal pit lakes (water Se > 15 μg/L, high water Se). Se accumulation in stocked fish and concentrations in invertebrates were characterized over a period of 2 years. In the metallurgical pits, invertebrates had higher Se concentrations and fish accumulated Se to higher levels (exceeding USEPA tissue Se guidelines) than biota in the thermal pits. Rainbow and brook trout accumulated similar concentrations of Se in their muscle and exhibited a similar relationship between whole-body and muscle Se concentrations. These results may be used by resource managers to assess compliance with whole-body tissue Se guidelines and to determine if pit lakes in coal mining areas pose a significant Se risk to wildlife or human health. The high Se exposure in metallurgical coal pits indicates that under the current mining and reclamation strategy, these lakes are not suitable for management as recreational "put and take" fisheries.

  20. STATISTICAL VALIDATION OF SULFATE QUANTIFICATION METHODS USED FOR ANALYSIS OF ACID MINE DRAINAGE

    EPA Science Inventory

    Turbidimetric method (TM), ion chromatography (IC) and inductively coupled plasma atomic emission spectrometry (ICP-AES) with and without acid digestion have been compared and validated for the determination of sulfate in mining wastewater. Analytical methods were chosen to compa...

  1. ADVANCES IN BIOTREATMENT OF ACID MINE DRAINAGE AND BIORECOVERY OF METALS: 1. METAL PRECIPITATION FOR RECOVERY AND RECYCLE

    EPA Science Inventory

    Acid-mine drainage (AMD) is a severe pollution problem attributed to past mining activities. AMD is an acidic, metal-bearing wastewater generated by the oxidation of metal sulfides to sulfates by Thiobacillus bacteria in both active and abandoned mining operations. The wastewater...

  2. ADVANCES IN BIOTREATMENT OF ACID MINE DRAINAGE AND BIORECOVERY OF METALS: 2. MEMBRANE BIOREACTOR SYSTEM FOR SULFATE REDUCTION

    EPA Science Inventory

    Acid-mine drainage (AMD) is a severe pollution problem attributed to past mining activities. AMD is an acidic, metal-bearing wastewater generated by the oxidation of metal sulfides to sulfates by Thiobacillus bacteria in both the active and abandoned mining operations. The wastew...

  3. Integrated acid mine drainage management using fly ash.

    PubMed

    Vadapalli, Viswanath R K; Gitari, Mugera W; Petrik, Leslie F; Etchebers, Olivier; Ellendt, Annabelle

    2012-01-01

    Fly Ash (FA) from a power station in South Africa was investigated to neutralise and remove contaminants from Acid Mine Drainage (AMD). After this primary treatment the insoluble FA residue namely solid residue (SR) was investigated as a suitable mine backfill material by means of strength testing. Moreover, SR was used to synthesise zeolite-P using a two-step synthesis procedure. Furthermore, the zeolite-P was investigated to polish process water from the primary FA-AMD reaction. The main objective of this series of investigations is to achieve zero waste and to propose an integrated AMD management using FA. Fly Ash was mixed with AMD at various predetermined FA-AMD ratios until the mixtures achieved circumneutral pH or higher. The supernatants were then analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Ion Chromatography (IC) for cations and anions respectively. The physical strength testing of SR was carried out by mixing it with 3% Ordinary Portland Cement (OPC) and curing for 410 days. Synthesis of zeolite-P using SR was carried out by two step synthesis procedure: ageing for 24 hours followed by a mild hydrothermal synthesis at 100°C for 4 days. The polishing of process water from primary AMD treatment using FA was ascertained by mixing the process water with zeolite at a liquid to solid ratio of 100:1 for 1 hour. The results indicated that FA can be successfully used to ameliorate AMD. High removal of major AMD contaminants Fe, Al, Mg, Mn and sulphate was achieved with the ash treatment and trace elements such as Zn, Ni, Cu and Pb were also removed by the FA. Strength testing over 410 days indicated that the material gained strength over the testing period. The maximum unconfined compressive strength and elastic modulus was observed to be approximately 0.3 MPa and 150 Mpa respectively. The X-ray diffraction (XRD) analysis of the synthesized product indicated that SR was successfully converted into zeolite-P with some mullite phase

  4. The impact of a catastrophic mine tailings impoundment spill into one of North America's largest fjord lakes: Quesnel Lake, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Petticrew, Ellen L.; Albers, Sam J.; Baldwin, Susan A.; Carmack, Eddy C.; Déry, Stephen J.; Gantner, Nikolaus; Graves, Kelly E.; Laval, Bernard; Morrison, John; Owens, Philip N.; Selbie, Daniel T.; Vagle, Svein

    2015-05-01

    On 4 August 2014, a catastrophic breach of the Mount Polley mine tailings impoundment released ~25 M m3 of tailings and water and scoured an unknown quantity of overburden into the West Basin of Quesnel Lake. We document Quesnel Lake and Quesnel River observations for 2 months postspill. Breach inflows raised Quesnel Lake by 7.7 cm, equivalent to ~21 M m3. The West Basin hypolimnion was modified immediately, exhibiting increased temperature (~5°C to 6-7.5°C), conductivity (110 to 160 μS/cm), and turbidity (<1 to 200-1000 nephelometric turbidity units (NTU)). Cooscillating seiches moved West Basin hypolimnetic water both westward and eastward contaminating the Main Basin. Postspill, high-turbidity water propagated eastward (~1 cm/s), introducing a persistent ~20 m thick layer below the thermocline and an ~30 m thick layer at the bottom. The contaminant introduction, mobilization, and bioaccumulation may pose risks to resident and anadromous fish stocks, which support recreational, commercial, and First Nations fisheries.

  5. Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: Acid mine drainage versus neutral mine drainage

    USGS Publications Warehouse

    Heikkinen, P.M.; Raisanen, M.L.; Johnson, R.H.

    2009-01-01

    Seepage water and drainage water geochemistry (pH, EC, O2, redox, alkalinity, dissolved cations and trace metals, major anions, total element concentrations) were studied at two active sulphide mine tailings impoundments in Finland (the Hitura Ni mine and Luikonlahti Cu mine/talc processing plant). The data were used to assess the factors influencing tailings seepage quality and to identify constraints for water treatment. Changes in seepage water quality after equilibration with atmospheric conditions were evaluated based on geochemical modelling. At Luikonlahti, annual and seasonal changes were also studied. Seepage quality was largely influenced by the tailings mineralogy, and the serpentine-rich, low sulphide Hitura tailings produced neutral mine drainage with high Ni. In contrast, drainage from the high sulphide, multi-metal tailings of Luikonlahti represented typical acid mine drainage with elevated contents of Zn, Ni, Cu, and Co. Other factors affecting the seepage quality included weathering of the tailings along the seepage flow path, process water input, local hydrological settings, and structural changes in the tailings impoundment. Geochemical modelling showed that pH increased and some heavy metals were adsorbed to Fe precipitates after net alkaline waters equilibrated with the atmosphere. In the net acidic waters, pH decreased and no adsorption occurred. A combination of aerobic and anaerobic treatments is proposed for Hitura seepages to decrease the sulphate and metal loading. For Luikonlahti, prolonged monitoring of the seepage quality is suggested instead of treatment, since the water quality is still adjusting to recent modifications to the tailings impoundment.

  6. A Tribal Story Written in Silica: Using Phytoliths to Research the Effects of Mining on Past Wild Rice (Zizania palustris) Abundance in Sandy Lake, Minnesota

    NASA Astrophysics Data System (ADS)

    Clarke, I. R.; Jones, M. A.; Yost, C. L.; Drake, C.; Ladwig, J. L.; Myrbo, A.; Howes, T.

    2014-12-01

    Wild rice (Zizania palustris, manoomin) is an emergent aquatic plant that grows annually in the northern Great Lakes region of North America. This region is also rich in iron ore deposits and correspondingly has an extensive history of mining activities. Wild rice no longer grows in some areas where it was previously abundant. Sandy Lake, located in St. Louis County on federally protected lands that are ceded territory of the Fond du Lac Band of Lake Superior Chippewa in Minnesota and downstream of the nearby U.S. Steel Minntac mine, was selected as a test site. This lake has a history of ricing activities by the Ojibwe (Chippewa) People, for whom manoomin has cultural importance. Lake cores were taken on June 17, 2014 by LacCore and FDLRM staff and samples were obtained. This project used phytolith analysis to answer the question of past wild rice presence and abundance in Sandy Lake. Phytoliths are microscopic opal silica deposits produced in some plants. Zizania palustris produces phytolith morphotypes that are unequivocally diagnostic of this species in this region. Microscopic slides were prepared and analyzed for wild rice phytoliths. Concentration values ranged from 25 to 4379 phytoliths per cm3/year, and wild rice accumulation figures ranged from 7 to 789 phytoliths/cm2/year, the maximum values of which occurred in the 1920s and generally declined to the current lowest levels observed. Mining has likely impacted wild rice populations by causing increased sulfate levels and possibly contributing to higher lake levels.

  7. Aquatic fulvic acids in microbially based ecosystems: results from two desert lakes in Antarctica

    USGS Publications Warehouse

    McKnight, Diane M.; Aiken, G.R.; Smith, R.L.

    1991-01-01

    These lakes receive very limited input of organic material from the surrounding barren desert, but they sustain algal and bacterial populations under permanent ice cover. One lake has an extensive anoxic zone and high salinities; the other is oxic and has low salinities. Despite these differences, fulvic acids from both lakes had similar elemental compositions, carbon distributions, and amino acid contents, indicating that the chemistry of microbially derived fulvic acvids is not strongly influenced by chemical conditions in the water column. Compared to fulvic acids from other natural waters, these fulvic acids have low C:N atomic ratios (19-25) and low contents of aromatic carbons (5-7% of total carbon atoms); they are most similar to marine fulvic acids. -from Authors

  8. Seven thousand years of records on the mining and utilization of metals from lake sediments in central China.

    PubMed

    Lee, Celine S L; Qi, Shi-Hua; Zhang, Gan; Luo, Chun-Ling; Zhao, Lu Y L; Li, Xiang-Dong

    2008-07-01

    A 268 cm section of sediment core from Liangzhi Lake in Hubei province in central China was used to assess the use and accumulation of metals in the lake in the past 7,000 years. The concentrations of trace metals, including Cu, Pb, Ni, and Zn, and major elements, Ca, Fe, and Mg, in a 14C- dated segment of sediment core were analyzed. Historical trends on the input of metals to Liangzhi Lake from around 5000 BC to the present were recorded in the sediments, representing about 7,000 years of history on the mining and utilization of metals in central China. The concentrations of Cu, Ni, Pb, and Zn increased gradually from about 3000 +/- 328 BC, indicating the start of the Bronze Age in ancient China. During the period 467 +/- 257 to 215 +/- 221 AD, there was a rapid increase in the concentrations of these metals in the sediments, indicating enormous inputs of these metals at that time. This era corresponded to China's Warring States Period (475- 221 BC) and the early Han Dynasty (206 BC-220 AD), during which copper and lead were extensively used in making bronze articles such as vessels, tools, and weapons. From 1880 +/- 35 AD to the early 1900s, there was also a significant increase in the concentrations of metals such as Cu, Ni, and Pb, which probably reflected the metal emissions and utilization during the early period of industrial development and weapon manufacture during the wars in China. The Pb isotopic analysis showed that the surface and subsurface sediments had lower 206Pb/207Pb and 208Pb/ 207Pb ratios than the deeper layers, reflecting the additional input of Pb from mining activities that took place during the Bronze Age era and in modern times. This study provides direct evidence of the environmental impact of the mining and utilization of metals in the last 7,000 years in one of the important regions of Chinese civilization.

  9. Changes in the pelagic crustacean zooplankton of high-boreal Island Lake, Saskatchewan, associated with uranium mining.

    PubMed

    Melville, G E

    1995-01-01

    Island Lake, Saskatchewan, has become eutrophic, subsaline (salinity between 0.5 and 3.0 g I(-1)) and contaminated with several metals over the last decade. In this study, the crustacean zooplankton community in the lake in early summer 1989 is compared to the community during the early summers of the baseline years 1978 and 1979, based on archived environmental impact assessment samples. Community composition has changed, probably because of salinization and perhaps, to a lesser extent, eutrophication. Calanoid copepods have disappeared, while the numbers of species of cyclopoid copepods and cladocerans have increased. Ceriodaphnia reticulata, present in 1988 only, was more numerous than any other species during all three years. Densities of all other species were very low in 1989, which has led to lower diversity (Simpsons Index). Predation by Chaoborus probably contributed to the low abundances in 1989. The characteristics of the zooplankton community in 1989 were very similar to those of zooplankton in culturally acidified lakes, and indicate that Island Lake is in poor health. The success of Ceriodaphnia, a standard toxicity bioassay genus, is noteworthy under such contaminated conditions. While the taxonomic changes are obvious, the zooplankton data are limited; therefore causes can only be inferred. The study demonstrates the need for more and better ecosystem-specific biological information in order to do environmental impact assessments, in this case for mining in the north. PMID:24201907

  10. Revegetation of extremely acid mine soils based on aided phytostabilization: A case study from southern China.

    PubMed

    Yang, Sheng-Xiang; Liao, Bin; Yang, Zhi-Hui; Chai, Li-Yuan; Li, Jin-Tian

    2016-08-15

    Acidification is a major constraint for revegetation of sulphidic metal-contaminated soils, as exemplified by the limited literature reporting the successful phytostabilization of mine soils associated with pH<3 and high acidification potential. In this study, a combination of ameliorants (lime and chicken manure) and five acid-tolerant plant species has been employed in order to establish a self-sustaining vegetation cover on an extremely acid (pH<3) polymetallic pyritic mine waste heap in southern China exhibiting high acidification potential. The results from the first two-year data showed that the addition of the amendments and the establishment of a plant cover were effective in preventing soil acidification. Net acid-generating potential of the mine soil decreased steadily, whilst pH and acid neutralization capacity increased over time. All the five acid-tolerant plants colonized successfully in the acidic metal-contaminated soil and developed a good vegetation cover within six months, and subsequent vegetation development enhanced organic matter accumulation and nutrient element status in the mine soil. The two-year remediation program performed on this extremely acid metalliferous soil indicated that aided phytostabilization can be a practical and effective restoration strategy for such extremely acid mine soils. PMID:27100018

  11. Interaction of acid mine drainage with waters and sediments of West Squaw Creek in the West Shasta Mining District, California

    USGS Publications Warehouse

    Filipek, L.H.; Kirk, Nordstrom D.; Ficklin, W.H.

    1987-01-01

    Acid mine drainage has acidified large volumes of water and added high concentrations of dissolved heavy metals to West Squaw Creek, a California stream draining igneous rocks of low acid-neutralizing capacity. During mixing of the acid sulfate stream waters in the South Fork of West Squaw Creek with an almost equal volume of dilute uncontaminated water, Cu, Zn, Mn, and Al remained in solution rather than precipitating or adsorbing on solid phases. Changes in the concentration of these generally conservative metals could be used to determine relative flow volumes of acid tributaries and the main stream. An amorphous orange precipitate (probably ferric hydroxides or a mixture of ferric hydroxides and jarosite) was ubiquitous in the acid stream beds and was intimately associated with algae at the most acid sites. Relative sorption of cations decreased with decreasing water pH. However, arsenic was almost completely scavenged from solution within a short distance from the sulfide sources.

  12. Natural attenuation processes in two water reservoirs receiving acid mine drainage.

    PubMed

    Sarmiento, Aguasanta M; Olías, Manuel; Nieto, José Miguel; Cánovas, Carlos R; Delgado, Joquín

    2009-03-01

    Characteristics of water profiles and sulphide formation processes in sediments were studied in two water reservoirs affected by acid mine drainage in order to investigate the mechanisms controlling the physical and chemical processes that, under favourable conditions, act to reduce the toxicity, mobility and concentration of metals and metalloids in the water column. Water columns and pore-waters from sediments were analysed for Fe species, trace elements (As, Cd, Co, Cu, Mn, Ni, Pb, Zn, Cr), sulphide, sulphate and bicarbonate. Inorganic reduced sulphur compounds (acid volatile sulphur, pyrite sulphur and elemental sulphur) and reactive Fe were determined in the sediments. A sequential extraction was also performed. Both reservoirs behave like holomictic and monomictic lakes, with a summer thermal stratification that disappears during winter. pH values between 4 and 7 can be observed along the water columns. Pore-water concentrations of up to 25 mg/l of Fe, 4 mg/l of Al, 1.3 mg/l of Zn, 170 microg/l of Pb, 11 microg/l of As, etc. have been found. The results suggest that toxic elements such as Cu, Zn, Co, Pb, Cr, As, etc. are mainly found in the bioavailable fraction which is the most hazardous for the environment. The calculated degree of sulphidization (DOS) and degree of pyritization (DOP) values indicates that removal of trace elements from anoxic pore-waters occurs by coprecipitation and/or adsorption on newly formed Fe sulphides (framboidal pyrite), attenuating the contamination. However oxidation of the sediments during turnover periods also occurs, which releases toxic elements back into the water column. PMID:19073338

  13. Disposal of Fluidized Bed Combustion Ash in an Underground Mine to Control Acid Mine Drainage and Subsidence

    SciTech Connect

    1998-08-31

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion (FBC) ash). Success will be measured in terms of technical feasibility of the approach (i.e. YO void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). During Phase Ill the majority of the activity involves completing two full scale demonstration projects. The eleven acre Longridge mine in Preston County will be filled with 53,000 cubic yards of grout during the spring of 1998 and monitored for following year. The second demonstration involves stowing 2000 tons of ash into an abandoned mine to demonstrate the newly redesigned Burnett Ejector. This demonstration is anticipated to take place during the winter of 1997. This document will report on progress made during Phase Ill. The report will be divided into four major sections. The first will be the Hydraulic Injection component. This section of the report will report on progress and milestones associated with the grouting activities of the project. The Phase Ill tasks of Economic Analysis and Regulatory Analysis will be covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The Water Quality component involves background monitoring of water quality and precipitation at the Phase Ill (Longridge) mine site. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

  14. Dating problems with selected mining lakes and the adjacent groundwater body in Lusatia, Germany.

    PubMed

    Seebach, Anne; von Rohden, Christoph; Ilmberger, Johann; Weise, Stephan M; Knoller, Kay

    2010-09-01

    This study presents selected results, applying environmental tracers to investigate lake water-groundwater interactions at two study sites located in Lusatia, Germany. The focus of the investigations were two meromictic pit lakes and their adjacent aquifers. In order to follow hydrodynamic processes between lake and groundwater, mixing patterns within the lakes as well as ages of lake and groundwater, water samples of ground- and lake water were collected at three occasions, representing summer and winter conditions in the aquatic systems. The water samples were analysed for stable isotopes (deuterium, oxygen-18) and tritium and sulphurhexafluoride (SF(6) concentration). Lake water profiles of conductivity and (18)O could validate the permanent stratification pattern of both the lakes. Groundwater data sets showed a heterogeneous local distribution in stable isotope values between rain and lake water. A two-component mixing model had been adopted only from (18)O data to determine lake water proportions in the surrounding groundwater wells in order to correct measured tritium and SF(6) concentrations in groundwater samples. This procedure had been hampered by upstream-located wells indicating strong (18)O enrichment in groundwater samples. However, rough groundwater ages were estimated. For both study sites, Piston flow ages between 12.9 and 27.7 years were calculated. The investigations showed the good agreement between two different environmental dating tools, considering the marginal data sets.

  15. Interaction of trace elements in acid mine drainage solution with humic acid.

    PubMed

    Suteerapataranon, Siripat; Bouby, Muriel; Geckeis, Horst; Fanghänel, Thomas; Grudpan, Kate

    2006-06-01

    The release of metal ions from a coal mining tailing area, Lamphun, Northern Thailand, is studied by leaching tests. Considerable amounts of Mn, Fe, Al, Ni and Co are dissolved in both simulated rain water (pH 4) and 10 mg L(-1) humic acid (HA) solution (Aldrich humic acid, pH 7). Due to the presence of oxidizing pyrite and sulfide minerals, the pH in both leachates decreases down to approximately 3 combined with high sulfate concentrations typical to acid mine drainage (AMD) water composition. Interaction of the acidic leachates upon mixing with ground- and surface water containing natural organic matter is simulated by subsequent dilution (1:100; 1:200; 1:300; 1:500) with a 10 mg L(-1) HA solution (ionic strength: 10(-3) mol L(-1)). Combining asymmetric flow field-flow fractionation (AsFlFFF) with UV/Vis and ICP-MS detection allows for the investigation of metal ion interaction with HA colloid and colloid size evolution. Formation of colloid aggregates is observed by filtration and AsFlFFF depending on the degree of the dilution. While the average HA size is initially found to be 2 nm, metal-HA complexes are always found to be larger. Such observation is attributed to a metal induced HA agglomeration, which is found even at low coverage of HA functional groups with metal ions. Increasing the metal ion to HA ratio, the HA bound metal ions and the HA entities are growing in size from <3 to >450 nm. At high metal ion to HA ratios, precipitation of FeOOH phases and HA agglomeration due to colloid charge neutralization by complete saturation of HA complexing sites are responsible for the fact that most of Fe and Al precipitate and are found in a size fraction >450 nm. In the more diluted solutions, HA is more relevant as a carrier for metal ion mobilization.

  16. DISPOSAL OF FLUIDIZED BED COMBUSTION ASH IN AN UNDERGROUND MINE TO CONTROL ACID MINE DRAINAGE AND SUBSIDENCE

    SciTech Connect

    Unknown

    1999-01-01

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion-FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). This document reports on progress made during Phase III. The report is divided into four major sections. The first deals with the Hydraulic Injection component. This section of the report reports on progress and milestones associated with the grouting activities of the project. The Phase III tasks of Economic Analysis and Regulatory Analysis is covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The Water Quality component involves background monitoring of water quality and precipitation at the Phase III (Longridge) mine site. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

  17. Synthesising acid mine drainage to maintain and exploit indigenous mining micro-algae and microbial assemblies for biotreatment investigations.

    PubMed

    Orandi, Sanaz; Lewis, David M

    2013-02-01

    The stringent regulations for discharging acid mine drainage (AMD) has led to increased attention on traditional or emerging treatment technologies to establish efficient and sustainable management for mine effluents. To assess new technologies, laboratory investigations on AMD treatment are necessary requiring a consistent supply of AMD with a stable composition, thus limiting environmental variability and uncertainty during controlled experiments. Additionally, biotreatment systems using live cells, particularly micro-algae, require appropriate nutrient availability. Synthetic AMD (Syn-AMD) meets these requirements. However, to date, most of the reported Syn-AMDs are composed of only a few selected heavy metals without considering the complexity of actual AMD. In this study, AMD was synthesised based on the typical AMD characteristics from a copper mine where biotreatment is being considered using indigenous AMD algal-microbes. Major cations (Ca, Na, Cu, Zn, Mg, Mn and Ni), trace metals (Al, Fe, Ag, Na, Co, Mo, Pb and Cr), essential nutrients (N, P and C) and high SO(4) were incorporated into the Syn-AMD. This paper presents the preparation of chemically complex Syn-AMD and the challenges associated with combining metal salts of varying solubility that is not restricted to one particular mine site. The general approach reported and the particular reagents used can produce alternative Syn-AMD with varying compositions. The successful growth of indigenous AMD algal-microbes in the Syn-AMD demonstrated its applicability as appropriate generic media for cultivation and maintenance of mining microorganisms for future biotreatment studies.

  18. Processes controlling metal ion attenuation in acid mine drainage streams

    NASA Astrophysics Data System (ADS)

    Chapman, B. M.; Jones, D. R.; Jung, R. F.

    1983-11-01

    Two acid mine drainage streams have been investigated by detailed analysis of their sediments and waters, to obtain an understanding of the dominant processes which control the transport and attenuation of heavy metals under conditions of chronic high-level pollutant input. One of the water-courses has a thick hydrous iron oxide crust on its bed, where biotically mediated oxidation of ferrous iron resulted in precipitation of amorphous ferric hydroxide, along with substantial quantities of adsorbed silica, sulphate and Al and lesser quantities of As. Small amounts of K and Pb (and possibly hydronium) jarosites were also present in the sediments. Changes in pH and in the concentrations of Cu, Zn, and Cd appear to be mainly the result of dilution by seeps and tributaries. Although no sediment was recovered during collection of water samples from the second stream, saturation index calculations imply that precipitation should have been occurring. The observed down-stream loss of a number of elements supported this conclusion. The solids predicted to be precipitating were A1(OH) 3, Cu 2(OH) 2CO 3, and Fe(OH) 3. Observed decreases in the concentrations of Cd, Zn and Mn can be accounted for on the basis of dilution alone. However, the additional mechanism of neutralization by higher pH inflows is required to account for the decrease in hydrogen ion concentration downstream. The basis for a potentially useful new technique (congruent element analysis) which enables the identification of conservative components in streams is presented. Comparison of logarithmic concentration versus distance plots delineates the point where chemical removal mechanisms become important for each element.

  19. Column leaching test to evaluate the use of alkaline industrial wastes to neutralize acid mine tailings

    SciTech Connect

    Doye, I.; Duchesne, J.

    2005-08-01

    Acid mine drainage is a serious environmental problem caused by the oxidation of sulfide minerals that releases highly acidic, sulfate, and metals-rich drainage. In this study, alkaline industrial wastes were mixed with acid mine tailings in order to obtain neutral conditions. A series of column leaching tests were performed to evaluate the behavior of reactive mine tailings amended with alkaline-additions under dynamic conditions. Column tests were conducted of oxidized mine tailings combined with cement kiln dust, red mud bauxite, and mixtures of cement kiln dust with red mud bauxite. The pH results show the addition of 10% of alkaline materials permits the maintenance of near neutral conditions. In the presence of 10% alkaline material, the concentration of toxic metals such as Al, Cu, Fe, Zn are significantly reduced as well as the number of viable cells (Thiobacillus ferrooxidans) compared to control samples.

  20. Impact of mining and refining on the distribution and accumulation of nickel and other heavy metals in sediments of subarctic Lake Kuetsjärvi, Murmansk Region, Russia.

    PubMed

    Dauvalter, Vladimir

    2003-04-01

    Research on the influence of the activities of Pechenganickel Mining and Metallurgical Company on sediment heavy-metal geochemistry of the subarctic Lake Kuetsjärvi (north-western Russia) are described. It is estimated that during 60 years of mining/refining activity, 310 t of Ni, 120 t of Cu, 14 t of Co, 19 t of Zn, 0.087 t of Cd, 0.78 t of Pb and 0.053 t of Hg have accumulated in the lake sediments. The latter can be a source of secondary pollution and represent a danger for the lake ecosystem. The sedimentation rate in the lake is estimated to be within the range of 1.5-3 mm year(-1). The average concentrations of Ni, Cu, Hg and Co in superficial sediments have increased 25, 14, 11 and 5 times, respectively in the last century. PMID:12729256

  1. Biomass and production of amphipods in low alkalinity lakes affected by acid precipitation.

    PubMed

    France, R L

    1996-01-01

    Population biomass and production of the amphipod Hyalella azteca (Saussure) were found to be related to alkalinity (ranging from 0.2 to 58.1 mg liter(-1)) in 10 Canadian Shield lakes in south-central Ontario. Biomass and production of amphipods in the two lakes characterized by spring depressions of pH below 5.0 were found to be lower than those for populations inhabiting lakes that did not experience such acid pulses. The proportional biomass of amphipods in relation to the total littoral zoobenthos community was lower in lakes of low alkalinity than in circumneutral or hardwater lakes. Because production in these amphipod populations is known to depend closely on population abundance, the labour-intensive derivation of production rates yields relatively little information for biomonitoring that cannot be obtained from abundance data alone. PMID:15093505

  2. Biomass and production of amphipods in low alkalinity lakes affected by acid precipitation.

    PubMed

    France, R L

    1996-01-01

    Population biomass and production of the amphipod Hyalella azteca (Saussure) were found to be related to alkalinity (ranging from 0.2 to 58.1 mg liter(-1)) in 10 Canadian Shield lakes in south-central Ontario. Biomass and production of amphipods in the two lakes characterized by spring depressions of pH below 5.0 were found to be lower than those for populations inhabiting lakes that did not experience such acid pulses. The proportional biomass of amphipods in relation to the total littoral zoobenthos community was lower in lakes of low alkalinity than in circumneutral or hardwater lakes. Because production in these amphipod populations is known to depend closely on population abundance, the labour-intensive derivation of production rates yields relatively little information for biomonitoring that cannot be obtained from abundance data alone.

  3. Unusual Nonterrestrial L-proteinogenic Amino Acid excesses in the Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael P.; Dworkin, Jason P.; Hilts, Robert W.; Herd, D. K.

    2012-01-01

    The distribution and isotopic and enantiomeric compositions of amino acids found in three distinct fragments of the Tagish Lake C2-type carbonaceous chondrite were investigated via liquid chromatography with fluorescence detection and time-of-flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. Large L-enantiomeric excesses (L(sub ee) approximately 43-59%) of the alpha-hydrogen aspartic and glutamic amino acids were measured in Tagish Lake, whereas alanine, another alpha hydrogen protein amino acid, was found to be nearly racemic (D much approximately L) using both techniques. Carbon isotope measurements of D- and L-aspartic acid and 1)- and L-alanine in Tagish Lake fall well outside of the terrestrial range and indicate that the measured aspartic acid enantioenrichment is indigenous to the meteorite. Alternate explanations for the L-excesses of aspartic acid such as interference from other compounds present in the sample, analytical biases, or terrestrial amino acid contamination were investigated and rejected. These results can be explained by differences in the solid-solution phase behavior of aspartic acid, which can form conglomerate enantiopure solids during crystallization, and alanine, which can only form racemic crystals. Amplification of a small initial L-enantiomer excess during aqueous alteration on the meteorite parent body could have led to the large L-enrichments observed for aspartic acid and other conglomerate amino acids in Tagish Lake. The detection of non terrestrial L-proteinogenic amino acid excesses in the Tagish Lake meteorite provides support for the hypothesis that significant enantiomeric enrichments for some amino acids could form by abiotic processes prior to the emergence of life.

  4. Comparative Data Mining Analysis for Information Retrieval of MODIS Images: Monitoring Lake Turbidity Changes at Lake Okeechobee, Florida

    EPA Science Inventory

    In the remote sensing field, a frequently recurring question is: Which computational intelligence or data mining algorithms are most suitable for the retrieval of essential information given that most natural systems exhibit very high non-linearity. Among potential candidates mig...

  5. Factors Affecting Elevated Arsenic and Methyl Mercury Concentrations in Small Shield Lakes Surrounding Gold Mines near the Yellowknife, NT, (Canada) Region

    PubMed Central

    Houben, Adam James; D’Onofrio, Rebecca; Kokelj, Steven V; Blais, Jules M

    2016-01-01

    Gold mines in the Yellowknife, NT, region—in particular, the Giant Mine—operated from 1949–99, releasing 237,000 tonnes of waste arsenic trioxide (As2O3) dust, among other compounds, from gold ore extraction and roasting processes. For the first time, we show the geospatial distribution of roaster-derived emissions of several chemical species beyond the mine property on otherwise undisturbed taiga shield lakes within a 25 km radius of the mine, 11 years after its closing. Additionally, we demonstrate that underlying bedrock is not a significant source for the elevated concentrations in overlying surface waters. Aquatic arsenic (As) concentrations are well above guidelines for drinking water (10 μg/L) and protection for aquatic life (5 μg/L), ranging up to 136 μg/L in lakes within 4 km from the mine, to 2.0 μg/L in lakes 24 km away. High conversion ratios of methyl mercury were shown in lakes near the roaster stack as well, with MeHg concentrations reaching 44% of total mercury. The risk of elevated exposures by these metals is significant, as many lakes used for recreation and fishing near the City of Yellowknife are within this radius of elevated As and methyl Hg concentrations. PMID:27050658

  6. "Hairy blobs:" microbial suspects preserved in modern and ancient extremely acid lake evaporites.

    PubMed

    Benison, Kathleen C; Jagniecki, Elliot A; Edwards, Tina B; Mormile, Melanie R; Storrie-Lombardi, Michael C

    2008-08-01

    "Hairy blobs" are unusual clumps of organic bodies and sulfate crystals that have been found in evaporite minerals grown in acid saline lakes. Here, we document modern hairy blobs in halite and gypsum from 5 modern acid saline lakes in southern Western Australia, and Permian hairy blobs trapped in halite from the mid-Permian Opeche Shale in the subsurface of North Dakota. These are among the first microbial remains described from acid saline lake environments. They give clues about the role of microorganisms in the acidity, geochemistry, and mineralogy of these extreme environments. This study also may add to the inventory of life in extreme environments and help predict possible martian life-forms and the method of preservation. PMID:18498219

  7. "Hairy blobs:" microbial suspects preserved in modern and ancient extremely acid lake evaporites.

    PubMed

    Benison, Kathleen C; Jagniecki, Elliot A; Edwards, Tina B; Mormile, Melanie R; Storrie-Lombardi, Michael C

    2008-08-01

    "Hairy blobs" are unusual clumps of organic bodies and sulfate crystals that have been found in evaporite minerals grown in acid saline lakes. Here, we document modern hairy blobs in halite and gypsum from 5 modern acid saline lakes in southern Western Australia, and Permian hairy blobs trapped in halite from the mid-Permian Opeche Shale in the subsurface of North Dakota. These are among the first microbial remains described from acid saline lake environments. They give clues about the role of microorganisms in the acidity, geochemistry, and mineralogy of these extreme environments. This study also may add to the inventory of life in extreme environments and help predict possible martian life-forms and the method of preservation.

  8. Acid mine drainage contaminates groundwater of a Tennessee watershed

    NASA Astrophysics Data System (ADS)

    O'Bara, Christopher J.; Don Estes, R.

    1985-09-01

    Water samples were collected from 18 natural springs within the West Fork of the Obey River watershed. Overton County, Tennessee, to determine if groundwater was adversely affected by runoff from abandoned surface coal mines Six springs were found to be affected severely and deemed unfit as a source of potable water Water quality of the remaining springs was essentially unaffected it appeared that proximity to surface mines, elevation at the outflow, and geology of the surrounding strata determined the quality of the groundwater

  9. Selective transfer of polyunsaturated fatty acids from phytoplankton to planktivorous fish in large boreal lakes.

    PubMed

    Strandberg, Ursula; Hiltunen, Minna; Jelkänen, Elli; Taipale, Sami J; Kainz, Martin J; Brett, Michael T; Kankaala, Paula

    2015-12-01

    Lake size influences various hydrological parameters, such as water retention time, circulation patterns and thermal stratification that can consequently affect the plankton community composition, benthic-pelagic coupling and the function of aquatic food webs. Although the socio-economical (particularly commercial fisheries) and ecological importance of large lakes has been widely acknowledged, little is known about the availability and trophic transfer of polyunsaturated fatty (PUFA) in large lakes. The objective of this study was to investigate trophic trajectories of PUFA in the pelagic food web (seston, zooplankton, and planktivorous fish) of six large boreal lakes in the Finnish Lake District. Docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and α-linolenic acid (ALA) were the most abundant PUFA in pelagic organisms, particularly in the zooplanktivorous fish. Our results show that PUFA from the n-3 family (PUFAn-3), often associated with marine food webs, are also abundant in large lakes. The proportion of DHA increased from ~4±3% in seston to ~32±6% in vendace (Coregonus albula) and smelt (Osmerus eperlanus), whereas ALA showed the opposite trophic transfer pattern with the highest values observed in seston (~11±2%) and the lowest in the opossum shrimp (Mysis relicta) and fish (~2±1%). The dominance of diatoms and cryptophytes at the base of the food web in the study lakes accounted for the high amount of PUFAn-3 in the planktonic consumers. Furthermore, the abundance of copepods in the large lakes explains the effective transfer of DHA to planktivorous fish. The plankton community composition in these lakes supports a fishery resource (vendace) that is very high nutritional quality (in terms of EPA and DHA contents) to humans.

  10. Selective transfer of polyunsaturated fatty acids from phytoplankton to planktivorous fish in large boreal lakes.

    PubMed

    Strandberg, Ursula; Hiltunen, Minna; Jelkänen, Elli; Taipale, Sami J; Kainz, Martin J; Brett, Michael T; Kankaala, Paula

    2015-12-01

    Lake size influences various hydrological parameters, such as water retention time, circulation patterns and thermal stratification that can consequently affect the plankton community composition, benthic-pelagic coupling and the function of aquatic food webs. Although the socio-economical (particularly commercial fisheries) and ecological importance of large lakes has been widely acknowledged, little is known about the availability and trophic transfer of polyunsaturated fatty (PUFA) in large lakes. The objective of this study was to investigate trophic trajectories of PUFA in the pelagic food web (seston, zooplankton, and planktivorous fish) of six large boreal lakes in the Finnish Lake District. Docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and α-linolenic acid (ALA) were the most abundant PUFA in pelagic organisms, particularly in the zooplanktivorous fish. Our results show that PUFA from the n-3 family (PUFAn-3), often associated with marine food webs, are also abundant in large lakes. The proportion of DHA increased from ~4±3% in seston to ~32±6% in vendace (Coregonus albula) and smelt (Osmerus eperlanus), whereas ALA showed the opposite trophic transfer pattern with the highest values observed in seston (~11±2%) and the lowest in the opossum shrimp (Mysis relicta) and fish (~2±1%). The dominance of diatoms and cryptophytes at the base of the food web in the study lakes accounted for the high amount of PUFAn-3 in the planktonic consumers. Furthermore, the abundance of copepods in the large lakes explains the effective transfer of DHA to planktivorous fish. The plankton community composition in these lakes supports a fishery resource (vendace) that is very high nutritional quality (in terms of EPA and DHA contents) to humans. PMID:26282609

  11. Acid mine drainage risks - A modeling approach to siting mine facilities in Northern Minnesota USA

    NASA Astrophysics Data System (ADS)

    Myers, Tom

    2016-02-01

    Most watershed-scale planning for mine-caused contamination concerns remediation of past problems while future planning relies heavily on engineering controls. As an alternative, a watershed scale groundwater fate and transport model for the Rainy Headwaters, a northeastern Minnesota watershed, has been developed to examine the risks of leaks or spills to a pristine downstream watershed. The model shows that the risk depends on the location and whether the source of the leak is on the surface or from deeper underground facilities. Underground sources cause loads that last longer but arrive at rivers after a longer travel time and have lower concentrations due to dilution and attenuation. Surface contaminant sources could cause much more short-term damage to the resource. Because groundwater dominates baseflow, mine contaminant seepage would cause the most damage during low flow periods. Groundwater flow and transport modeling is a useful tool for decreasing the risk to downgradient sources by aiding in the placement of mine facilities. Although mines are located based on the minerals, advance planning and analysis could avoid siting mine facilities where failure or leaks would cause too much natural resource damage. Watershed scale transport modeling could help locate the facilities or decide in advance that the mine should not be constructed due to the risk to downstream resources.

  12. Fieldtrip stop #2-6 Twin Lakes glacial geology and mining history

    USGS Publications Warehouse

    Ruleman, C.A.; Shorba, R.R.; Edited by Simmons, Beth

    2013-01-01

    The area of Twin Lakes has been of interest to geologists going back to the days of the Hayden Survey (1874) and continues to be studied for its spectacular glacial geology. Twin Lakes (2747 m; 9015 ft) was settled in 1879 (Scott, 2003) as the Leadville silver rush began, when prospectors found the first traces and outcrops of the Gordon, Tiger, Little Joe, and other rich lodes west of Twin Lakes. Between 1860 and 1950, the Twin Lakes area produced at least 2.5 million dollars in placer gold, much of which was produced when the official U.S. Government price of gold was $20.67 per troy once.

  13. Evaluation of a surface application of limestone for controlling acid mine discharges from abandoned strip mines, Sewellsville, Ohio. Final report

    SciTech Connect

    Geidel, G.; Caruccio, F.T.

    1984-01-01

    A 150-acre drainage basin in an unreclaimed coal strip mine in east-central Ohio was studied and extensively monitored to determine the effect of a surface application of limestone on the ground water quality. Prior to the limestone treatment the ground and surface water of the basin was acidic due to pyrite oxidation in the spoil. The results of this field study and simultaneous laboratory experiments showed that the maximum amount of alkalinity that can be generated by a surface application of limestone is not sufficient to reduce the ground water acidity generated by pyrite oxidation. Additionally, the amount of limestone applied was not sufficient to significantly decrease the rate of pyrite oxidation nor provide neutralization and thereby produce neutral or alkaline discharges from the abandoned coal strip mine sites.

  14. Lake

    ERIC Educational Resources Information Center

    Wien, Carol Anne

    2008-01-01

    The lake is blue black and deep. It is a glaciated finger lake, clawed out of rock when ice retracted across Nova Scotia in a northerly direction during the last ice age. The lake is narrow, a little over a mile long, and deep, 90 to 190 feet in places according to local lore, off the charts in others. The author loves to swim there, with a sense…

  15. Chemical and biological recovery from acid deposition within the Honnedaga Lake watershed, New York, USA.

    PubMed

    Josephson, Daniel C; Robinson, Jason M; Chiotti, Justin; Jirka, Kurt J; Kraft, Clifford E

    2014-07-01

    Honnedaga Lake in the Adirondack region of New York has sustained a heritage brook trout population despite decades of atmospheric acid deposition. Detrimental impacts from acid deposition were observed from 1920 to 1960 with the sequential loss of acid-sensitive fishes, leaving only brook trout extant in the lake. Open-lake trap net catches of brook trout declined for two decades into the late 1970s, when brook trout were considered extirpated from the lake but persisted in tributary refuges. Amendments to the Clean Air Act in 1990 mandated reductions in sulfate and nitrogen oxide emissions. By 2000, brook trout had re-colonized the lake coincident with reductions in surface-water sulfate, nitrate, and inorganic monomeric aluminum. No changes have been observed in surface-water acid-neutralizing capacity (ANC) or calcium concentration. Observed increases in chlorophyll a and decreases in water clarity reflect an increase in phytoplankton abundance. The zooplankton community exhibits low species richness, with a scarcity of acid-sensitive Daphnia and dominance by acid-tolerant copepods. Trap net surveys indicate that relative abundance of adult brook trout population has significantly increased since the 1970s. Brook trout are absent in 65 % of tributaries that are chronically acidified with ANC of <0 μeq/L and toxic aluminum levels (>2 μmol/L). Given the current conditions, a slow recovery of chemistry and biota is expected in Honnedaga Lake and its tributaries. We are exploring the potential to accelerate the recovery of brook trout abundance in Honnedaga Lake through lime applications to chronically and episodically acidified tributaries. PMID:24671614

  16. Chemical response of lakes in the Adirondack Region of New York to declines in acidic deposition.

    PubMed

    Driscoll, Charles T; Driscoll, Kimberley M; Roy, Karen M; Mitchell, Myron J

    2003-05-15

    Long-term changes in the chemistry of wet deposition and lake water were investigated in the Adirondack Region of New York. Marked decreases in concentrations of SO4(2-) and H+ in wet deposition have occurred at two sites since the late 1970s. These decreases are consistent with long-term declines in emissions of sulfur dioxide (SO2) in the eastern United States. Changes in wet NO3- deposition and nitrogen oxides (NOx) emissions have been minor over the same interval. Virtually all Adirondack Lakes have shown marked decreases in concentrations of SO4(2-), which coincide with decreases in atmospheric S deposition. Concentrations of NO3- have also decreased in several Adirondack lakes. As atmospheric N deposition has not changed over this period, the mechanism contributing to this apparent increase in lake/watershed N retention is not evident. Decreases in concentrations of SO4(2-) + NO3- have resulted in increases in acid-neutralizing capacity (ANC) and pH and resulted in a shift in the speciation of monomeric Al from toxic inorganic species toward less toxic organic forms in some lakes. Nevertheless, many lakes continue to exhibit pH values and concentrations of inorganic monomeric Al that are critical to aquatic biota. Extrapolation of rates of ANC increase suggests that the time frame of chemical recovery of Adirondack Lakes will be several decades if current decreases in acidic deposition are maintained.

  17. Geophysical delineation of acidity and salinity in the Central Manitoba gold mine tailings pile, Manitoba, Canada

    NASA Astrophysics Data System (ADS)

    Tycholiz, C.; Ferguson, I. J.; Sherriff, B. L.; Cordeiro, M.; Sri Ranjan, R.; Pérez-Flores, M. A.

    2016-08-01

    Surface electrical and electromagnetic geophysical methods can map enhanced electrical conductivity caused by acid mine drainage in mine tailings piles. In this case study, we investigate quantitative relationships between geophysical responses and the electrical conductivity, acidity and salinity of tailing samples at the Central Manitoba Mine tailings in Manitoba, Canada. Previous electromagnetic surveys at the site identified zones of enhanced conductivity that were hypothesized to be caused by acid mine drainage. In the present study, high-resolution EM31 and DC-resistivity measurements were made on a profile through a zone of enhanced conductivity and laboratory measurements of salinity and pH were made on saturation paste extracts from an array of tailing samples collected from the upper 2 m of tailings along the profile. Observed spatial correlation of pH and pore-fluid salinity in the tailings samples confirms that the enhanced conductivity in the Central Manitoba Mine tailings is due to acid mine drainage. Contoured cross-sections of the data indicate that the acid mine drainage is concentrated near the base of the oxidized zone in the thicker parts of the tailings pile. The zone of increased acidity extends to the surface on sloping margins causing an increase in apparent conductivity in shallow penetrating geophysical responses. The quantitative relationship between measured pH and salinity shows that the conductivity increase associated with the acid mine drainage is due only in part to conduction by ions produced from dissociation of sulfuric acid. Comparison of the observations with fluid conductivity estimates based on statistical relationships of pH and ion concentrations in water samples from across the tailings pile shows that Ca2 + and Mg2 + ions also make significant contributions to the conductivity at all values of pH and Cu2 +, Al3 + and Fe3 + ions make additional contributions at low pH. Variability in the measured conductivity at constant

  18. Establishment of bryophytes on a reclaimed surface mine site at Goose Lake Prairie State Park, Illinois

    SciTech Connect

    Rastorfer, J.R.

    1980-01-01

    The location of the site at Goose Lake Prairie State Park provided an impetus to revegetate the reclaimed acid minesoil as a demonstration site with prairie floristic species. Because many bryophytes are pioneer plants and because baseline data were needed, surveys were made (1976-1978) to ascertain the natural establishment of mosses and liverworts on the site. Different habitats were surveyed with respect to types of fine-textured mineral soils; namely, abandoned (cultivated) field soil, old minesoil (spoil), and two reclaimed minesoils distinguished by reclamation efforts initiated in 1972 to 1973 and 1975 to 1976. Thirty moss species and one liverwort species were identified from the entire site, and two additional moss species were found in areas adjacent to the site. The role of bryophytes in the development of prairie plant communities on reclaimed minesoil is still uncertain. However, existing research data provide support for the following hypotheses: (1) bryophytes should help reduce soil erosion by binding soil particles via their rhizoidal systems, and by the relatively high water-holding capacity of their gametophytic shoots; (2) bryophytes might reduce heavy-metal toxicity to certain vascular plants at soil surfaces, because they have an ability to accumulate these elements; and (3) bryophytes may enhance nitrogen fixation through their associations with blue-green algae and possibly with nitrogen-fixing bacteria.

  19. Fish population losses from Adirondack Lakes: The role of surface water acidity and acidification

    NASA Astrophysics Data System (ADS)

    Baker, Joan P.; Warren-Hicks, William J.; Gallagher, James; Christensen, Sigurd W.

    1993-04-01

    Changes over time in the species composition of fish communities in Adirondack lakes were assessed to determine (1) the approximate numbers offish populations that have been lost and (2) the degree to which fish population losses may have resulted from surface water acidification and acidic deposition. Information on the present-day status offish communities was obtained by the Adirondack Lakes Survey Corporation, which surveyed 1469 Adirondack lakes in 1984-1987 (53% of the total ponded waters in the Adirondack ecological zone). Two hundred and ninety-five of these lakes had been surveyed in 1929-1934 during the first statewide biological survey; 720 had been surveyed in one or more years prior to 1970. Sixteen to 19% of the lakes with adequate historical data appeared to have lost one or more fish populations as a result of acidification. Brook trout and acid-sensitive minnow species had experienced the most widespread effects. Populations of brook trout and acid-sensitive minnows had been lost apparently as a result of acidification from 11% and 19%, respectively, of the lakes with confirmed historical occurrence of these taxa. By contrast, fish species that tend to occur primarily in lower elevation and larger lakes, such as largemouth and smallmouth bass and brown trout, have experienced little to no documented adverse effects. Lakes that were judged to have lost fish populations as a result of acidification had significantly lower; pH and, in most cases, also had higher estimated concentrations of inorganic aluminum and occurred at higher elevations than did lakes with the fish species still present. No other lake characteristics were consistently associated with fish population losses attributed to acidification. The exact numbers and proportions of fish populations affected could not be determined because of limitations on the quantity and quality of historical data. Lakes for which we had adequate historical data to assess long-term trends in fish

  20. Maxi-Acid{trademark}: In-situ amelioration of acid mine drainage problems. Topical report, February 1, 1995--February 1, 1996

    SciTech Connect

    1997-08-01

    The development of technologies to ameliorate acid mine drainage problems has had few successes. Most often, once acid mine drainage exists, the company responsible develops treatment programs to make sure that water resources and land are not contaminated by the acid mine drainage. These treatments usually result in significant costs and do not result in a cure to the problem. Much effort and money has been spent on the problems associated with acid mine drainage. However, it appears that most of the meaningful breakthroughs have come in the area of treatment of the results of the problem (i.e. water treatment). There have been few breakthroughs in the prevention of acid formation. Most of the work associated with the prevention of acid formation has dealt with the prevention of oxidation using grouting to seal mines, removing oxygen from the system or preventing water flow into the mines, using bactericides to eliminate the catalytic effect of Thiobacillus ferrooxidans, and modifying the mining methods. The Maxi-Acid{trademark} technology takes a different approach to the problem. A site treated using Maxi-Acid won`t be expected to generate acid mine drainage for a number of years, if ever. The application of Maxi-Acid is expected to eliminate continuous treatment of acid waters discharged from applicable mine sites. The work accomplished to date includes characterization of overburden materials that contain large quantities of potential acidity, and preliminary evaluations of the acid-generating capabilities of materials containing high levels of potential acidity (pyritic materials) using humidity cells. This research effort is in the preliminary stages. To date, a number of interesting findings have been made that could be used to contribute to the elimination of acid mine drainage. However, the concepts that are expected to have the most significant impact on the formation of acid mine drainage have not yet been substantiated.

  1. Species diversity of fishes in naturally acidic lakes in New Jersey

    SciTech Connect

    Graham, J.H. )

    1993-11-01

    Fish communities in acidic lakes of New Jersey have fewer species than do those in more alkaline lakes of comparable size. This conclusion is based on a multiple regression analysis of published data on fish communities, area, and pH in 85 lakes. Some interesting patterns emerge, however, when species are partitioned into introduced and native species. As expected, diversity of introduced species declines with increasing acidity. The number of native species in a particular lake, however, is independent of pH (range of 4.1 to 9.1). Although diversity of native species is not influenced by pH, species composition changes. The lack of a significant relationship between species diversity of native species and pH can be attributed to the replacement of acid-intolerant species by tolerant species. The smaller number of introduced species in acidic lakes is attributable to both fewer species stocked and a greater frequency of failure for those that were stocked. Species introduction records for largemouth bass Micropterus salmoides and bluegill Lepomis macrochirus, which are not native to New Jersey, reveal far more failed introduction in acidic waters than in neutral or alkaline waters. 54 refs., 6 figs., 5 tabs.

  2. Assessment of acidity of lakes and precipitation in the Sierra Nevada

    SciTech Connect

    Melack, J.M.

    1983-06-01

    The east central Sierra Nevada received acid precipitation (pH 3.7 to 4.9) during the convective storms interspersed through the dry seasons of 1981 and 1982. In contrast, late autumn, winter and early spring snow (1981-1982) ranged in pH from 5.2 to 6.1 (mean 5.7) and had low ammonium, nitrate and sulfate concentrations. As of 1981 most of the alpine lakes of the Sierra Nevada remain very weakly buffered, bicarbonate lakes that receive a small loading of acid precipitation and a large annual input of snowmelt uncontaminated by strong acids. These lakes contain low concentrations of orthophosphate, nitrate and ammonium and are oligotrophic. The zooplankton communities fall into two major groups, those dominated by large-bodied species in the absence of fish, and those dominated by smaller species where fish are present. If the acidity of the precipitation increases the pH of the lakes will decrease rapidly with adverse biological impacts because the lakes and their basins have extremely low buffer capacity and the biota cannot tolerate acidic water. 65 references, 14 figures, 6 tables.

  3. Changes in acid precipitation-related water chemistry of lakes from southwestern New Brunswick, Canada, 1986-2001.

    PubMed

    Pilgrim, W; Clair, T A; Choate, J; Hughes, R

    2003-01-01

    Between 1986 and 2001, thirty-nine lakes in southwestern New Brunswick in Atlantic Canada were surveyed for acid precipitation-related water quality changes. Most of the study lakes are located on granite bedrock and represent the most acid sensitive lakes in the province. Between 1987 and 1992, hydrogen ion deposition to the lake study area averaged 452 eq ha(-1) yr(-1), compared to 338 eq ha(-1) yr(-1) between 1993 and 2000, a 25% reduction. The lake chemistry data were evaluated by dividing the lakes into four clusters for each survey year based on their acid neutralizing capacity. Twenty percent of the lakes (cluster IV) had an average ANC of 40 microeq L(-1) or greater and maintained an average pH of greater than 6 over the duration of the study period. A pH of 6 or greater is considered a healthy benchmark for maintaining biodiversity. The remaining 31 lakes (clusters I to III) had an average ANC of less than 40 microeq L(-1) and maintained an average pH of less than 6. Other lake chemistry changes included a general decline in lake sulphate and colour over the duration of the survey period, followed by more recent improvements in calcium ion, pH and ANC, and notably higher but declining aluminum levels in lower ANC and pH lakes. Nitrate accounted for 37% of the acid deposition to the study area, however it was not detectable in the lakes. Although acid deposition has declined and these lakes are beginning to show signs of acid recovery, 80% of the study lakes remain acid sensitive having little buffering capacity with low calcium, pH and ANC.

  4. In situ proteo-metabolomics reveals metabolite secretion by the acid mine drainage bio-indicator, Euglena mutabilis

    PubMed Central

    Halter, David; Goulhen-Chollet, Florence; Gallien, Sébastien; Casiot, Corinne; Hamelin, Jérôme; Gilard, Françoise; Heintz, Dimitri; Schaeffer, Christine; Carapito, Christine; Van Dorsselaer, Alain; Tcherkez, Guillaume; Arsène-Ploetze, Florence; Bertin, Philippe N

    2012-01-01

    Euglena mutabilis is a photosynthetic protist found in acidic aquatic environments such as peat bogs, volcanic lakes and acid mine drainages (AMDs). Through its photosynthetic metabolism, this protist is supposed to have an important role in primary production in such oligotrophic ecosystems. Nevertheless, the exact contribution of E. mutabilis in organic matter synthesis remains unclear and no evidence of metabolite secretion by this protist has been established so far. Here we combined in situ proteo-metabolomic approaches to determine the nature of the metabolites accumulated by this protist or potentially secreted into an AMD. Our results revealed that the secreted metabolites are represented by a large number of amino acids, polyamine compounds, urea and some sugars but no fatty acids, suggesting a selective organic matter contribution in this ecosystem. Such a production may have a crucial impact on the bacterial community present on the study site, as it has been suggested previously that prokaryotes transport and recycle in situ most of the metabolites secreted by E. mutabilis. Consequently, this protist may have an indirect but important role in AMD ecosystems but also in other ecological niches often described as nitrogen-limited. PMID:22237547

  5. Polymethylene-interrupted fatty acids: Biomarkers for native and exotic mussels in the Laurentian Great Lakes

    USGS Publications Warehouse

    Mezek, Tadej; Sverko, Ed; Ruddy, Martina D.; Zaruk, Donna; Capretta, Alfredo; Hebert, Craig E.; Fisk, Aaron T.; McGoldrick, Daryl J.; Newton, Teresa J.; Sutton, Trent M.; Koops, Marten A.; Muir, Andrew M.; Johnson, Timothy B.; Ebener, Mark P.; Arts, Michael T.

    2011-01-01

    Freshwater organisms synthesize a wide variety of fatty acids (FAs); however, the ability to synthesize and/or subsequently modify a particular FA is not universal, making it possible to use certain FAs as biomarkers. Herein we document the occurrence of unusual FAs (polymethylene-interrupted fatty acids; PMI-FAs) in select freshwater organisms in the Laurentian Great Lakes. We did not detect PMI-FAs in: (a) natural seston from Lake Erie and Hamilton Harbor (Lake Ontario), (b) various species of laboratory-cultured algae including a green alga (Scenedesmus obliquus), two cyanobacteria (Aphanizomenon flos-aquae and Synechococystis sp.), two diatoms (Asterionella formosa, Diatoma elongatum) and a chrysophyte (Dinobryon cylindricum) or, (c) zooplankton (Daphnia spp., calanoid or cyclopoid copepods) from Lake Ontario, suggesting that PMI-FAs are not substantively incorporated into consumers at the phytoplankton–zooplankton interface. However, these unusual FAs comprised 4-6% of total fatty acids (on a dry tissue weight basis) of native fat mucket (Lampsilis siliquoidea) and plain pocketbook (L. cardium) mussels and in invasive zebra (Dreissena polymorpha) and quagga (D. bugensis) mussels. We were able to clearly partition Great Lakes' mussels into three separate groups (zebra, quagga, and native mussels) based solely on their PMI-FA profiles. We also provide evidence for the trophic transfer of PMI-FAs from mussels to various fishes in Lakes Ontario and Michigan, further underlining the potential usefulness of PMI-FAs for tracking the dietary contribution of mollusks in food web and contaminant-fate studies.

  6. A simplified method for estimation of jarosite and acid-forming sulfates in acid mine wastes.

    PubMed

    Li, Jun; Smart, Roger St C; Schumann, Russell C; Gerson, Andrea R; Levay, George

    2007-02-01

    In acid base accounting (ABA) estimates of acid mine wastes, the acid potential (AP) estimate can be improved by using the net carbonate value (NCV) reactive sulfide S method rather than total S assay methods but this does not give recovery of potentially acid producing ferrous and ferric sulfates present in many wastes. For more accurate estimation of AP, an effective, site-specific method to quantify acid sulfate salts, such as jarosite and melanterite, in waste rocks has been developed and tested on synthetic and real wastes. The SPOCAS (acid sulfate soils) methods have been modified to an effective, rapid method to speciate sulfate forms in different synthetic waste samples. A three-step sequential extraction procedure has been established. These steps are: (1) argon-purged water extraction (3 min) to extract soluble Fe(II) salts (particularly melanterite), epsomite and gypsum (<10 wt.%), (2) roasting at 550 degrees C (1 h) to remove sulfur from pyrite and other reactive sulfides, (3) HCl extraction (4 M, 30 min) for determination of jarosites. Products (solid and aqueous) have been characterized at each step including the jarosite decomposition process in Step 2 where temperature control is critical to avoid S loss. The sequential extraction procedure was used to quantitatively determine melanterite, epsomite, gypsum, pyrite and jarosite concentrations in a synthetic waste sample containing these mineral phases at 5 wt.% in quartz, and also tested using a tailings waste sample to quantitatively determine epsomite, gypsum and jarosite contents. The method is applicable to most waste samples including those with non-pyrite sulfides but for samples containing significant amounts of sulfur (>1 wt.% S) as copper sulfides, the second step of roasting needs to be excluded from the procedure with an increased time of 4 M HCl extraction to 16 h for jarosite determination.

  7. Variation in Lake Michigan alewife (Alosa pseudoharengus) thiaminase and fatty acids composition

    USGS Publications Warehouse

    Honeyfield, D.C.; Tillitt, D.E.; Fitzsimons, J.D.; Brown, S.B.

    2010-01-01

    Thiaminase activity of alewife (Alosa pseudoharengus) is variable across Lake Michigan, yet factors that contribute to the variability in alewife thiaminase activity are unknown. The fatty acid content of Lake Michigan alewife has not been previously reported. Analysis of 53 Lake Michigan alewives found a positive correlation between thiaminase activity and the following fatty acid: C22:ln9, sum of omega-6 fatty acids (Sw6), and sum of the polyunsaturated fatty acids. Thiaminase activity was negatively correlated with C15:0, C16:0, C17:0, C18:0, C20:0, C22:0, C24:0, C18:ln9t, C20:3n3, C22:2, and the sum of all saturated fatty acids (SAFA). Multi-variant regression analysis resulted in three variables (C18:ln9t, Sw6, SAFA) that explained 71% (R2=0.71, P<0.0001) of the variation in thiaminase activity. Because the fatty acid content of an organism is related is food source, diet may be an important factor modulating alewife thiaminase activity. These data suggest there is an association between fatty acids and thiaminase activity in Lake Michigan alewife.

  8. Draft Genome Sequences of Two Novel Acidimicrobiaceae Members from an Acid Mine Drainage Biofilm Metagenome

    PubMed Central

    Pinto, Ameet J.; Sharp, Jonathan O.; Yoder, Michael J.

    2016-01-01

    Bacteria belonging to the family Acidimicrobiaceae are frequently encountered in heavy metal-contaminated acidic environments. However, their phylogenetic and metabolic diversity is poorly resolved. We present draft genome sequences of two novel and phylogenetically distinct Acidimicrobiaceae members assembled from an acid mine drainage biofilm metagenome. PMID:26769942

  9. AMELIORATION OF ACID MINE DRAINAGE USING REACTIVE MIXTURES IN PERMEABLE REACTIVE BARRIERS

    EPA Science Inventory

    The generation and release of acidic drainage from mine wastes is an environmental problem of international scale. The use of zero-valent iron and/or iron mixtures in subsurface Permeable Reactive Barriers (PRB) presents a possible passive alternative for remediating acidic grou...

  10. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    PubMed Central

    Church, Clinton D; Wilkin, Richard T; Alpers, Charles N; Rye, Robert O; McCleskey, R Blaine

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. PMID:17956615

  11. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    USGS Publications Warehouse

    Church, C.D.; Wilkin, R.T.; Alpers, C.N.; Rye, R.O.; Blaine, R.B.

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 ??? heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. ?? 2007 Church et al; licensee BioMed Central Ltd.

  12. Chemical and biological status of lakes and streams in the upper midwest: assessment of acidic deposition effects

    USGS Publications Warehouse

    Wiener, J.G.; Eilers, J.M.

    1987-01-01

    Many lakes in three areas in the Upper Midwest - northeastern Minnesota, northern Wisconsin, and the Upper Peninsula of Michigan - have low acid neutralizing capacity (ANC) and may be susceptible to change by acidic deposition. Northcentral Wisconsin and the Upper Peninsula of Michigan together contain about 150-300 acidic lakes (ANC ≤ 0), whereas none have been found in Minnesota. These acidic lakes are precipitation-dominated, Clearwater seepage lakes having small surface area, shallow depth, and low concentrations of dissolved organic carbon. The spatial distribution of these acidic lakes parallels a west to east gradient of increasing sulfate and hydrogen ion deposition. Several of these acidic lakes exhibit chemical characteristics and biological changes consistent with those observed elsewhere in waters reported to be acidified by acidic deposition. However, an hypothesis of recent lake acidification is not supported by analyses of either historical chemical data or diatom remains in lake sediments, and natural sources of acidity and alternative ecological processes have not been conclusively eliminated as causative factors. Streams in this three-state region have high ANC and appear to be insensitive to acidic deposition. The species richness and composition of lacustrine fish communities in the region are partly related to pH and associated chemical factors. Sport fishes considered acid-sensitive and of primary concern with regard to acidification include walleye, smallmouth bass, and black crappie. The fishery in at least one lake, Morgan Lake in Wisconsin (pH 4.6), may have declined because of acidification. Given the general lack of quantitative fishery data for acidic Wisconsin and Michigan lakes, however, more general conclusions concerning impacts or the absence of impacts of acidification on the region's fishery resources are not possible.

  13. DISPOSAL OF FLUIDIZED BED COMBUSTION ASH IN AN UNDERGROUND MINE TO CONTROL ACID MINE DRAINAGE AND SUBSIDENCE

    SciTech Connect

    Unknown

    1999-04-01

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion-FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). This document reports on progress made during Phase III. The report is divided into three major sections. The first deals with the Hydraulic Injection component. This section of the report describes the progress and milestones associated with the grouting activities of the project. The Phase III tasks of Economic Analysis and Regulatory Analysis is covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

  14. DISPOSAL OF FLUIDIZED BED COMBUSTION ASH IN AN UNDERGROUND MINE TO CONTROL ACID MINE DRAINAGE AND SUBSIDENCE

    SciTech Connect

    Unknown

    1999-07-01

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion-FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). This document reports on progress made during Phase III. The report is divided into three major sections. The first deals with the Hydraulic Injection component. This section of the report describes the progress and milestones associated with the grouting activities of the project. The Phase III tasks of Economic Analysis and Regulatory Analysis is covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

  15. DISPOSAL OF FLUIDIZED BED COMBUSTION ASH IN AN UNDERGROUND MINE TO CONTROL ACID MINE DRAINAGE AND SUBSIDENCE

    SciTech Connect

    Unknown

    2000-04-01

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion-FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). This document reports on progress made during Phase III. The report is divided into three major sections. The first deals with the Hydraulic Injection component. This section of the report describes the progress and milestones associated with the grouting activities of the project. The Phase III tasks of Economic Analysis and Regulatory Analysis is covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

  16. DISPOSAL OF FLUIDIZED BED COMBUSTION ASH IN AN UNDERGROUND MINE TO CONTROL ACID MINE DRAINAGE AND SUBSIDENCE

    SciTech Connect

    Unknown

    2000-01-01

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion-FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). This document reports on progress made during Phase III. The report is divided into three major sections. The first deals with the Hydraulic Injection component. This section of the report describes the progress and milestones associated with the grouting activities of the project. The Phase III tasks of Economic Analysis and Regulatory Analysis is covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

  17. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge

    USGS Publications Warehouse

    Sibrell, Philip L.; Montgomery, Gary A.; Ritenour, Kelsey L.; Tucker, Travis W.

    2009-01-01

    Excess phosphorus in wastewaters promotes eutrophication in receiving waterways. A??cost-effective method for the removal of phosphorus from water would significantly reduce the impact of such wastewaters on the environment. Acid mine drainage sludge is a waste product produced by the neutralization of acid mine drainage, and consists mainly of the same metal hydroxides used in traditional wastewater treatment for the removal of phosphorus. In this paper, we describe a method for the drying and pelletization of acid mine drainage sludge that results in a particulate media, which we have termed Ferroxysorb, for the removal of phosphorus from wastewater in an efficient packed bed contactor. Adsorption capacities are high, and kinetics rapid, such that a contact time of less than 5 min is sufficient for removal of 60-90% of the phosphorus, depending on the feed concentration and time in service. In addition, the adsorption capacity of the Ferroxysorb media was increased dramatically by using two columns in an alternating sequence so that each sludge bed receives alternating rest and adsorption cycles. A stripping procedure based on treatment with dilute sodium hydroxide was also developed that allows for recovery of the P from the media, with the possibility of generating a marketable fertilizer product. These results indicate that acid mine drainage sludges - hitherto thought of as undesirable wastes - can be used to remove phosphorus from wastewater, thus offsetting a portion of acid mine drainage treatment costs while at the same time improving water quality in sensitive watersheds.

  18. Integrated Lake-Watershed Acidification Study (ILWAS): contributions to the international conference on the ecological impact of acid precipitation

    SciTech Connect

    Not Available

    1981-05-01

    The Integrated Lake-Watershed Acidification Study (ILWAS) was initiated to study and detail lake acidification processes for three lake watershed basins in the Adirondack Park region of New York. The three basins (Woods, Sagamore, and Panther), receive similar amounts of acid deposition yet observable pH values for the lakes are very dissimilar indicating unequal acid neutralizing capacities among the watersheds. This volume contains a compilation of seven papers. Relevant topics include: a characterization of the geology, hydrology, limnology and vegetation of the three study sites, an analysis of acid precipitation quality and quantity, the effects of vegetative canopy, the effects of snowmelt, the effects of winter lake stratification, comparison of heavy metal transport, examination of acidic sources other than direct precipitation, assessment of lake acidification during spring thaw and integration of all acidification components with a mathematical model.

  19. Gasified Grass and Wood Biochars Facilitate Plant Establishment in Acid Mine Soils.

    PubMed

    Phillips, Claire L; Trippe, Kristin M; Whittaker, Gerald; Griffith, Stephen M; Johnson, Mark G; Banowetz, Gary M

    2016-05-01

    Heavy metals in exposed mine tailings threaten ecosystems that surround thousands of abandoned mines in the United States. Biochars derived from the pyrolysis or gasification of biomass may serve as a valuable soil amendment to revegetate mine sites. We evaluated the ability of two biochars, produced by gasification of either Kentucky bluegrass seed screenings (KB) or mixed conifer wood (CW), to support the growth of plants in mine spoils from the abandoned Formosa and Almeda Mines in Oregon. To evaluate the potential for plant establishment in mine tailings, wheat was grown in tailings amended with biochar at rates ranging from 0 to 9% (w/w). Both KB and CW biochars promoted plant establishment by increasing soil pH, increasing concentrations of macro- and micronutrients, and decreasing the solubility and plant uptake of heavy metals. Formosa tailings required at least 4% biochar and Almeda soil required at least 2% biochar to promote healthy wheat growth. A complimentary experiment in which mine spoils were leached with simulated precipitation indicated that biochar amendment rates ≥4% were sufficient to neutralize the elution pH and reduce concentrations of potentially toxic elements (Zn, Cu, Ni, Al) to levels near or below concern. These findings support the use of gasified biochar amendments to revegetate acid mine soils. PMID:27136169

  20. Role of organic acids in promoting colloidal transport of mercury from mine tailings

    USGS Publications Warehouse

    Slowey, A.J.; Johnson, S.B.; Rytuba, J.J.; Brown, Gordon E.

    2005-01-01

    A number of factors affect the transport of dissolved and paniculate mercury (Hg) from inoperative Hg mines, including the presence of organic acids in the rooting zone of vegetated mine waste. We examined the role of the two most common organic acids in soils (oxalic and citric acid) on Hg transport from such waste by pumping a mixed organic acid solution (pH 5.7) at 1 mL/min through Hg mine tailings columns. For the two total organic acid concentrations investigated (20 ??M and 1 mM), particle-associated Hg was mobilized, with the onset of paniculate Hg transport occurring later for the lower organic acid concentration. Chemical analyses of column effluent indicate that 98 wt % of Hg mobilized from the column was paniculate. Hg speciation was determined using extended X-ray absorption fine structure spectroscopy and transmission electron microscopy, showing that HgS minerals are dominant in the mobilized particles. Hg adsorbed to colloids is another likely mode of transport due to the abundance of Fe-(oxyhydr)oxides, Fe-sulfides, alunite, and jarosite in the tailings to which Hg(II) adsorbs. Organic acids produced by plants are likely to enhance the transport of colloid-associated Hg from vegetated Hg mine tailings by dissolving cements to enable colloid release. ?? 2005 American Chemical Society.

  1. Role of organic acids in promoting colloidal transport of mercury from mine tailings.

    PubMed

    Slowey, Aaron J; Johnson, Stephen B; Rytuba, James J; Brown, Gordon E

    2005-10-15

    A number of factors affect the transport of dissolved and particulate mercury (Hg) from inoperative Hg mines, including the presence of organic acids in the rooting zone of vegetated mine waste. We examined the role of the two most common organic acids in soils (oxalic and citric acid) on Hg transport from such waste by pumping a mixed organic acid solution (pH 5.7) at 1 mL/min through Hg mine tailings columns. For the two total organic acid concentrations investigated (20 microM and 1 mM), particle-associated Hg was mobilized, with the onset of particulate Hg transport occurring later for the lower organic acid concentration. Chemical analyses of column effluent indicate that 98 wt % of Hg mobilized from the column was particulate. Hg speciation was determined using extended X-ray absorption fine structure spectroscopy and transmission electron microscopy, showing that HgS minerals are dominant in the mobilized particles. Hg adsorbed to colloids is another likely mode of transport due to the abundance of Fe-(oxyhydr)oxides, Fe-sulfides, alunite, and jarosite in the tailings to which Hg(II) adsorbs. Organic acids produced by plants are likely to enhance the transport of colloid-associated Hg from vegetated Hg mine tailings by dissolving cements to enable colloid release.

  2. Study of environmental pollution and mineralogical characterization of sediment rivers from Brazilian coal mining acid drainage.

    PubMed

    Silva, Luis F O; Fdez-Ortiz de Vallejuelo, Silvia; Martinez-Arkarazo, Irantzu; Castro, Kepa; Oliveira, Marcos L S; Sampaio, Carlos H; de Brum, Irineu A S; de Leão, Felipe B; Taffarel, Silvio R; Madariaga, Juan M

    2013-03-01

    Acid drainage from coal mines and metal mining is a major source of underground and surface water contamination in the world. The coal mining acid drainage (CMAD) from mine contains large amount of solids in suspension and a high content of sulphate and dissolved metals (Al, Mn, Zn, Cu, Pb, Fe, etc.) that finally are deposited in the rivers. Since this problem can persist for centuries after mine abandonment, it is necessary to apply multidisciplinary methods to determine the potential risk in a determinate area. These multidisciplinary methods must include molecular and elemental analysis and finally all information must be studied statistically. This methodology was used in the case of coal mining acid drainage from the Tubarao River (Santa Catarina, Brazil). During molecular analysis, Raman Spectroscopy, electron bean, and X-ray diffraction (XRD) have been proven very useful for the study of minerals present in sediment rivers near this CMAD. The obtained spectra allow the precise identification of the minerals as jarosite, quartz, clays, etc. The elemental analysis (Al, As, Fe, K, Na, Ba, Mg, Mn, Ti, V, Zn, Ag, Co, Li, Mo, Ni, Se, Sn, W, B, Cr, Cu, Pb and Sr) was realised by inductively coupled plasma mass spectrometry (ICP-MS). Statistical analysis (Principal Component Analysis) of these dates of concentration reveals the existence of different groups of samples with specific pollution profiles in different areas of the Tubarao River.

  3. Effectivenes of lime kiln flue dust in preventing acid mine drainage at the Kauffman Surface Coal Mine, Clearfield County, Pennsylvania

    SciTech Connect

    Rose, A.W.; Parizek, R.R.; Phelps, L.B.

    1995-09-01

    A careful test of alkaline addition combined with special handling has been performed during mining of 27 acres of coal overlain by slightly to moderately pyritic overburden at the Kauffman Mine. Overburden holes indicate alkaline deficiencies of up to 1090 tons CaCO{sub 3}/acre. Sulfur contents for 1- to 3-foot intervals average 0.26%S and range up to 4.4%. An adjacent min produces severe AMD. Lime kiln flue dust, a waste product, was added in amounts adequate to neutralize maximum potential acidity. High-S zones were special-handled into compacted pods up to 2 ft. thick and covered by about 30% of the total lime requirement. About half the lime was spread on the surface prior to blasting and mixed during subsequent handling; the remaining lime was spread on the pit floor and beneath the topsoil. Over the period up to 1.5 years after mining, water in backfill and monitoring wells has pH of 6 to 7, alkalinity exceeding acidity, and generally low Fe, Al and Mn, indicating that procedure is a success. However, concurrent experiments with 400-ton test cells indicate that prompt addition of lime, and compaction of the material may be crucial for successful results.

  4. COMPARISON OF DATA FROM SYNTHETIC LEACHATE AND DIRECT SAMPLING OF ACID DRAINAGE FROM MINE WASTES: IMPLICATIONS FOR MERCURY TRANSPORT AND WASTE MANAGEMENT

    EPA Science Inventory

    The Sulphur Bank Mercury Mine (SBMM) in Lake County, California operated from the 1860s through the 1950's. Mining for sulfur started with surface operations and progressed to shaft, then open pit techniques to obtain mercury. Mining has resulted in deposition of approximately ...

  5. Geochemical behavior and dissolved species control in acid sand pit lakes, Sepetiba sedimentary basin, Rio de Janeiro, SE - Brazil

    NASA Astrophysics Data System (ADS)

    Marques, Eduardo D.; Sella, Sílvia M.; Bidone, Edison D.; Silva-Filho, Emmanoel V.

    2010-12-01

    This work shows the influence of pluvial waters on dissolved components and mineral equilibrium of four sand pit lakes, located in the Sepetiba sedimentary basin, SE Brazil. The sand mining activities promote sediment oxidation, lowering pH and increasing SO 4 contents. The relatively high acidity of these waters, similar to ore pit lakes environment and associated acid mine drainage, increases weathering rate, especially of silicate minerals, which produces high Al concentrations, the limiting factor for fish aquaculture. During the dry season, basic cations (Ca, Mg, K and Na), SiO 2 and Al show their higher values due to evapoconcentration and pH are buffered. In the beginning of the wet season, the dilution factor by rainwater increases SO 4 and decreases pH values. The aluminum monomeric forms (Al(OH) 2+ and Al(OH) 2+), the most toxic species for aquatic organisms, occur during the dry season, while AlSO 4+ species predominate during the wet season. Gibbsite, allophane, alunite and jurbanite are the reactive mineral phases indicated by PHREEQC modeling. During the dry season, hydroxialuminosilicate allophane is the main phase in equilibrium with the solution, while the sulphate salts alunite and jurbanite predominate in the rainy season due to the increasing of SO 4 values. Gibbsite is also in equilibrium with sand pit lakes waters, pointing out that hydrolysis reaction is a constant process in the system. Comparing to SiO 2, sulphate is the main Al retriever in the pit waters because the most samples (alunite and jurbanite) are in equilibrium with the solution in both seasons. This Al hydrochemical control allied to some precaution, like pH correction and fertilization of these waters, allows the conditions for fishpond culture. Equilibrium of the majority samples with kaolinite (Ca, Mg, Na diagrams) and primary minerals (K diagram) points to moderate weathering rate in sand pit sediments, which cannot be considered for the whole basin due to the anomalous

  6. Evaluating long-term trends in littoral benthic macroinvertebrate communities of lakes recovering from acid deposition.

    PubMed

    Lento, Jennifer; Dillon, Peter J; Somers, Keith M

    2012-12-01

    The Mann-Kendall test has been proposed as a nonparametric method to evaluate trends in long-term water quality datasets with missing values, serial correlation, and non-normality. However, this test has rarely been used to evaluate long-term trends in biological data. In this study, we used the Mann-Kendall test to evaluate trends in 15 years of data on benthic macroinvertebrate communities from 17 Precambrian Shield lakes. We also used the van Belle and Hughes test of trend homogeneity to assess whether common among-lake temporal trends existed. We assumed that evidence of a common regional trend among lakes would support the hypothesis of long-term biological recovery from past acidification. We found decreasing proportions of Chironomidae and increasing proportions of Ephemeroptera, Plecoptera, and Trichoptera (EPT) in both single-lake and multi-lake trend analysis. Moreover, six of the nine lakes with significant trends in more than one benthos metric displayed a significant decrease in Chironomidae and increase in EPT concurrently, indicating a shift towards more acid-sensitive taxa. Weak trends in several of the biological metrics indicated that recovery in these lakes has been impeded. Results of this study indicate that the Mann-Kendall and van Belle and Hughes trend tests are useful statistical tools to evaluate long-term patterns in biological data.

  7. Evaluating long-term trends in littoral benthic macroinvertebrate communities of lakes recovering from acid deposition.

    PubMed

    Lento, Jennifer; Dillon, Peter J; Somers, Keith M

    2012-12-01

    The Mann-Kendall test has been proposed as a nonparametric method to evaluate trends in long-term water quality datasets with missing values, serial correlation, and non-normality. However, this test has rarely been used to evaluate long-term trends in biological data. In this study, we used the Mann-Kendall test to evaluate trends in 15 years of data on benthic macroinvertebrate communities from 17 Precambrian Shield lakes. We also used the van Belle and Hughes test of trend homogeneity to assess whether common among-lake temporal trends existed. We assumed that evidence of a common regional trend among lakes would support the hypothesis of long-term biological recovery from past acidification. We found decreasing proportions of Chironomidae and increasing proportions of Ephemeroptera, Plecoptera, and Trichoptera (EPT) in both single-lake and multi-lake trend analysis. Moreover, six of the nine lakes with significant trends in more than one benthos metric displayed a significant decrease in Chironomidae and increase in EPT concurrently, indicating a shift towards more acid-sensitive taxa. Weak trends in several of the biological metrics indicated that recovery in these lakes has been impeded. Results of this study indicate that the Mann-Kendall and van Belle and Hughes trend tests are useful statistical tools to evaluate long-term patterns in biological data. PMID:22193633

  8. Estimation of critical loads of acidity for lakes in northeastern United States and eastern Canada.

    PubMed

    Dupont, J; Clair, T A; Gagnon, C; Jeffries, D S; Kahl, J S; Nelson, S J; Peckenham, J M

    2005-10-01

    The New England Governors and Eastern Canadian Premiers (NEG/ECP) adopted the Acid Rain Action Plan in June 1998, and issued a series of action items to support its work toward a reduction of sulfur dioxide (SO(2)) and nitrogen oxide (NO(x)) emissions in northeastern North America. One of these action items was the preparation of an updated critical load map using data from lakes in the NEG/ECP area. Critical load maps provide a more complete index of the surface water sensitivity to acidification. Combined sulfur and nitrogen critical loads and deposition exceedances were computed using Henriksen's Steady-State Water Chemistry (SSWC) model. Results show that 28% of all 2053 lakes studied have a critical load of 20 kg/ha/year or less, making them vulnerable to acid deposition. Emission reductions, and more specifically SO(2) emission reductions have proven beneficial because critical loads were exceeded in 2002 for 12.3% of all studied lakes. Those lakes are located in the more sensitive areas where geology is carbonate-poor. Of these lakes, 2.9% will never recover even with a complete removal of SO(4) deposition. Recovery from acidification for the remaining 9.4% of the lakes will require additional emission SO(2) reductions.

  9. WORKSHOP ON THE CHARACTERIZATION, MODELING, REMEDIATION AND MONITORING OF MINING-IMPACTED PIT LAKES, SANDS RGENCY CASINO HOTEL, DOWNTOWN RENO, NV. APRIL 4-6, 2000 (PROGRAM FLYER)

    EPA Science Inventory

    The purpose of this workshop is to provide a forum for the exchange of scientific infomation on current approaches for assessing the characterization, monitoring, treatment and/or remediation of impacts on aquatic ecosystems including pit lakes from mining-related contamination i...

  10. The Effects of Power Production and Strip Mining on Local Navajo Populations. Lake Powell Research Project Bulletin Number 22, June 1976.

    ERIC Educational Resources Information Center

    Callaway, Donald G.; And Others

    In an effort to evaluate the impact of the 1972-73 Navajo Generating Station at Page, Arizona and the strip mine at Black Mesa on the Navajo Reservation, areas adjacent to each of these operations were surveyed (N=134 and 60 respectively) and compared with two control populations (N=60 from the rural area of Red Lake and 58 from the wagework area…

  11. Fate of Fe, As in Acid Mine Drainage (AMD) was created Disused Metal Mine

    NASA Astrophysics Data System (ADS)

    Yu, H.; Kang, D. H.; Kim, S. J.; So, Y.

    2015-12-01

    This study is a natural reduction of Fe and As in AMD. AMD is produced by oxidation of pyrite, the iron, the sulfate mineral dissolution action. It is generated by the sulfide minerals, water, oxygen, the reaction of microorganisms in the underground. AMD is low pH due to dissolved minerals in the mine are different kinds of heavy metals will leach. If the flow out of mines and react with dissolved oxygen (DO) is increased, due to oxidation and microbiological activity of the Fe it is precipitated biomat is produced. This study area is Ilgwng disused mines in the Republic of Korea Busan Gijanggun. March to September 2010 taken by the AMD and biomat analyze Fe and As. The main mineral is Chalcopyrite (Cu2Fe2S4), Arsenopyrite (FeAsS), Pyrite (FeS2), Pyrrhotite (Fe1-xS), Sphalerite (ZnS), Galena (PbS), Scheelite (CaWO4), Wolframite ((Fe, Mn)WO4) and the like. Analysis of the AMD of underground pH 2.4~2.8, DO 1.3~4.8mg/L, Fe 474.3~178.8mg/L, As 0~3.2mg/L. Analysis AMD of the flow out of mine pH 2.3~2.9, DO 6.7~9.5mg/L, Fe 81.9~438.7L, As 0~2.8mg/L. The content of Fe in the biomat is 244.242mg/kg, the content of As is 5647mg/kg in the adsorption reaction of the Fe. AMD of disused metal mine mineral leaching occur in a reducing environment, in an oxidizing environment it caused precipitation and adsorption reactions.

  12. Stable carbon and nitrogen isotopes and amino acids in Holocene sediments of Lake Lonar, central India

    NASA Astrophysics Data System (ADS)

    Menzel, Philip; Gaye, Birgit; Wiesner, Martin; Basavaiah, Nathani; Prasad, Sushma; Stebich, Martina; Anoop, Ambili; Riedel, Nils

    2013-04-01

    Investigations on surface sediments and a sediment core from Lake Lonar in central India were carried out within the framework of the HIMPAC (Himalaya: Modern and Past Climate) programme. The aim was to understand recent productivity, sedimentation, and degradation processes and to reconstruct variations in Holocene lake conditions on the basis of biogeochemical analysis on a 10 m long sediment core retrieved from the centre of Lake Lonar. Located in India's core monsoon zone, Lake Lonar offers valuable information about the climate development of the whole region. The lake is situated at the floor of a meteorite impact structure on the Deccan plateau basalt. The modern lake is characterised by brackish water, high alkalinity, severe eutrophication, and bottom water anoxia. The lake is about 6 m deep and fed by rainfall during the SW monsoon season and three perennial streams. Since no out-flowing stream is present and no seepage loss occurs, the lake level is highly sensitive to the balance of precipitation and evaporation. Here we present C/N, carbon and nitrogen isotope, and amino acid data of bulk organic matter from modern lake and Holocene core sediments. Modern conditions are mainly related to human activity which started to have persistent influence on the biological and chemical lake properties at ~1200 cal a BP. The distribution of δ13C in the modern sediments is driven by the ratio between terrestrial and aquatic organic matter, while δ15N seems to be influenced by redox conditions at the sediment-water-interface with elevated values at shallow oxic stations. Differences in the amino acid assemblages of oxic and anoxic surface sediment samples were used to calculate an Ox/Anox ratio indicating the redox conditions during organic matter degradation. The onset of the monsoon reconstructed from the sediment core occurred at ca. 11450 cal a BP. The early Holocene core sediments are characterised by low sedimentation rate, low aquatic productivity, and

  13. Evaluation of a surface application of limestone for controlling acid mine discharges from abandoned strip mines, Sewellsville, Ohio

    SciTech Connect

    Geidel, G.

    1982-01-01

    A 150 acre drainage basin in an unreclaimed coal strip mine in east-central Ohio was studied and extensively monitored to determine the effect of a surface application of limestone on the ground water quality. Prior to the limestone treatment the ground and surface water of the basin was acidic due to pyrite oxidation in the spoil. In order to assess the effect of limestone application the basin was divided into seven sub-basins, five of which were treated. Various halide salts were also applied in order to ascertain the rate of ground water movement through the spoil. Twenty-six seeps draining the seven basins were monitored on a weekly basis for temperature, pH, acidity, alkalinity, conductivity and the tracers and once a month for sulfate. A recording rain gage was set up in the area and a weekly composite of precipitation was analyzed. The seeps from the sub-basins with low acid concentrations became alkaline due to neutralization but after a long dry period, they returned to their acid condition. The moderately and highly acidic seeps showed a decline in the acid concentrations which could be attributed to a combination of neutralization and a decrease in the rate of pyrite oxidation. The results of this field study and simultaneous laboratory experiments showed that the maximum amount of alkalinity that can be generated by a surface application of limestone is not sufficient to reduce the ground water acidity generated by pyrite oxidation. Additionally, the amount of limestone applied was not sufficient to significantly decrease the rate of pyrite oxidation nor provide neutralization and thereby produce neutral or alkaline discharges from the abandoned coal strip mine sites.

  14. Efficacy assessment of acid mine drainage treatment with coal mining waste using Allium cepa L. as a bioindicator.

    PubMed

    Geremias, Reginaldo; Bortolotto, Tiago; Wilhelm-Filho, Danilo; Pedrosa, Rozangela Curi; de Fávere, Valfredo Tadeu

    2012-05-01

    The aim of this study was to evaluate the efficacy of the treatment of acid mine drainage (AMD) with calcinated coal mining waste using Allium cepa L. as a bioindicator. The pH values and the concentrations of aluminum, iron, manganese, zinc, copper, lead and sulfate were determined before and after the treatment of the AMD with calcinated coal mining waste. Allium cepa L. was exposed to untreated and treated AMD, as well as to mineral water as a negative control (NC). At the end of the exposure period, the inhibition of root growth was measured and the mean effective concentration (EC(50)) was determined. Oxidative stress biomarkers such as lipid peroxidation (TBARS), protein carbonyls (PC), catalase activity (CAT) and reduced glutathione levels (GSH) in the fleshy leaves of the bulb, as well as the DNA damage index (ID) in meristematic cells, were evaluated. The results indicated that the AMD treatment with calcinated coal mining waste resulted in an increase in the pH and an expressive removal of aluminum, iron, manganese and zinc. A high sub-chronic toxicity was observed when Allium cepa L. was exposed to the untreated AMD. However, after the treatment no toxicity was detected. Levels of TBARS and PC, CAT activity and the DNA damage index were significantly increased (P<0.05) in Allium cepa L. exposed to untreated AMD when compared to treated AMD and also to negative controls. No significant alteration in the GSH content was observed. In conclusion, the use of calcinated coal mining waste associated with toxicological tests on Allium cepa L. represents an alternative system for the treatment and biomonitoring of these types of environmental contaminants.

  15. Recovery of calcium carbonate from waste gypsum and utilization for remediation of acid mine drainage from coal mines.

    PubMed

    Mulopo, J; Radebe, V

    2012-01-01

    The recovery of calcium carbonate from waste gypsum (a waste product of the reverse osmosis (RO) desalination process) was tested using sodium carbonate. Batch recovery of calcium carbonate from waste gypsum slurries by reacting with sodium carbonate under ambient conditions was used to assess the technical feasibility of CaCO(3) recovery and its use for pre-treatment of acid mine drainage (AMD) from coal mines. The effect of key process parameters, such as the slurry concentration (%) and the molar ratio of sodium carbonate to gypsum were considered. It was observed that batch waste gypsum conversion significantly increased with decrease in the slurry concentration or increase in the molar ratio of sodium carbonate to gypsum. The CaCO(3) recovered from the bench-scale batch reactor demonstrated effective neutralization ability during AMD pre-treatment compared with commercial laboratory grade CaCO(3).

  16. Effects of acid mine drainage from an abandoned copper mine, Britannia Mines, Howe Sound, British Columbia, Canada, on transplanted blue mussels (Mytilus edulis).

    PubMed

    Grout, J A; Levings, C D

    2001-04-01

    Juvenile mussels (Mytilus edulis) were transplanted to Howe Sound, British Columbia, Canada, along an apparent pollution gradient of acid mine drainage (AMD) from an abandoned copper (Cu) mine. Cages containing 75 mussels each were placed at a total of 15 stations and were exposed to concentrations of dissolved Cu in surface waters ranging from 5 to 1009 micrograms/l for a period of 41 days. Mussels located at stations closer to the source of AMD at the mouth of Britannia Creek bioaccumulated higher concentrations of Cu and zinc (Zn) in their tissues. Mussel growth was adversely affected by Cu tissue concentrations above 20 micrograms/g dry wt., while declines in survival and condition index occurred in mussels that bioaccumulated greater than 40 micrograms/g dry wt. Cu. Tissue Zn concentrations (117-192 micrograms/g dry wt.) were likely not high enough to have a direct impact on mussel health. Reduced survival of transplanted mussels was supported by an absence of natural mussels in contaminated areas. Phytoplankton was also severely reduced in areas contaminated by mine waters. Based on the weight of evidence, AMD from the Britannia mine had a deleterious impact on mussel survival in a zone extending at least 2.1 km to the north and 1.7 km to the south of Britannia Creek on the east shore of Howe Sound.

  17. Analysis of Biogeochemistry of Acid-Mine Drainage at Rowe, Massachusetts

    NASA Astrophysics Data System (ADS)

    Ahlfeld, D. P.; Yuretich, R.; Ergas, S.; Nusslein, K.; Feldman, A.

    2003-12-01

    Acid waters rich in iron and sulfate can support a wide variety of microorganisms that catalyze the oxidation-reduction reactions of these bioactive elements, exemplified by acid-mine drainage (AMD). In order to study the biogeochemistry of natural attenuation a field site has been established at Davis Mine, an abandoned pyrite mine in rural Rowe Massachusetts. This site is of particular interest because of the apparent dynamic equilibrium that has restricted the extent of the AMD in this area since the mine was closed nearly 100 years ago. Initial evidence suggests that sulfate reduction is occurring at the fringes of the site. Multi-level monitoring wells and surface water sampling points have been installed. Soil samples collected from the drilled wells are being used to provide inoculums for cultivating bacteria and identifying DNA. Preliminary data indicate a restricted lens of impacted groundwater that moves rapidly through the mine tailings and shallow bedrock fractures, but is contained by ambient groundwater from uncontaminated recharge areas. Sulfate reduction has been documented at the margins of the acid-generating area, and this has been reproduced in laboratory experiments. Current research is now examining the processes of Fe(III) and SO4 reduction and the roles of acidophilic and acid-tolerant anaerobic microorganisms. K12 teachers are part of the research teams and the effects of research experiences on their higher-level understanding of science are being evaluated.

  18. Analysis of southeastern Canada lake-water chemistry data in relation to acidic deposition

    SciTech Connect

    Olson, R.J.; Cook, R.B.; Ross-Todd, B.M.; Beauchamp, J.J.

    1990-05-01

    Lake-water chemistry data were obtained for lakes in southeastern Canada to study relationships between atmospheric deposition and acid-base chemistry as part of the National Acid Precipitation Assessment Program State of Science and Technology reports. Quality assurance checks were made to ensure that the data used were of sufficient quality and were comparable to data from the United States. Ninety-eight percent of the 8506 sampled lakes had pH, ANC, and SO{sub 4}{sup 2 {minus}} data and were used in our analyses. Of these, we created a subset of 4017 lakes having data for more variable (Ca{sup 2+}, Mg{sup 2+}, Na{sup +}, K{sup +}, DOC, and conductivity) to analyze potential sources of lake-water acidity. The objectives of this work were to determine the geographical extent and number of potentially affected systems and to infer causes of acidification based on ion ratios. 35 refs., 28 figs., 12 tabs.

  19. Spatial characterization of acid rain stress in Canadian Shield Lakes

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1987-01-01

    An analysis was performed to interpret the spatial aspects of lake acidification. Three types of relationships were investigated based upon the August to May seasonal scene pairing. In the first type of analysis ANOVA was used to examine the mean Thematic Mapper band one count by ecophysical strata. The primary difference in the two ecophysical strata is the soil type and depth over the underlying bedrock. Examination of the August to May difference values for TM band one produced similar results. Group A and B strata were the same as above. The third type of analysis examined the relationship between values of the August to May difference from polygons which have similar ecophysical properties with the exception of sulfate deposition. For this case lakes were selected from units with sandy soils over granitic rock types and the sulfate deposition was 1.5 or 2.5 g/sq m/yr.

  20. Prediction of acid mine drainage generation potential of various lithologies using static tests: Etili coal mine (NW Turkey) as a case study.

    PubMed

    Yucel, Deniz Sanliyuksel; Baba, Alper

    2016-08-01

    The Etili neighborhood in Can County (northwestern Turkey) has large reserves of coal and has been the site of many small- to medium-scale mining operations since the 1980s. Some of these have ceased working while others continue to operate. Once activities cease, the mining facilities and fields are usually abandoned without rehabilitation. The most significant environmental problem is acid mine drainage (AMD). This study was carried out to determine the acid generation potential of various lithological units in the Etili coal mine using static test methods. Seventeen samples were selected from areas with high acidic water concentrations: from different alteration zones belonging to volcanic rocks, from sedimentary rocks, and from coals and mine wastes. Static tests (paste pH, standard acid-base accounting, and net acid generation tests) were performed on these samples. The consistency of the static test results showed that oxidation of sulfide minerals, especially pyrite-which is widely found not only in the alteration zones of volcanic rocks but also in the coals and mine wastes-is the main factor controlling the generation of AMD in this mine. Lack of carbonate minerals in the region also increases the occurrence of AMD.

  1. Prediction of acid mine drainage generation potential of various lithologies using static tests: Etili coal mine (NW Turkey) as a case study.

    PubMed

    Yucel, Deniz Sanliyuksel; Baba, Alper

    2016-08-01

    The Etili neighborhood in Can County (northwestern Turkey) has large reserves of coal and has been the site of many small- to medium-scale mining operations since the 1980s. Some of these have ceased working while others continue to operate. Once activities cease, the mining facilities and fields are usually abandoned without rehabilitation. The most significant environmental problem is acid mine drainage (AMD). This study was carried out to determine the acid generation potential of various lithological units in the Etili coal mine using static test methods. Seventeen samples were selected from areas with high acidic water concentrations: from different alteration zones belonging to volcanic rocks, from sedimentary rocks, and from coals and mine wastes. Static tests (paste pH, standard acid-base accounting, and net acid generation tests) were performed on these samples. The consistency of the static test results showed that oxidation of sulfide minerals, especially pyrite-which is widely found not only in the alteration zones of volcanic rocks but also in the coals and mine wastes-is the main factor controlling the generation of AMD in this mine. Lack of carbonate minerals in the region also increases the occurrence of AMD. PMID:27435620

  2. Selenium bioaccumulation in stocked fish as an indicator of fishery potential in pit lakes on reclaimed coal mines in Alberta, Canada.

    PubMed

    Miller, L L; Rasmussen, J B; Palace, V P; Sterling, G; Hontela, A

    2013-07-01

    Pit lakes are a common reclamation strategy for open pit mines; however, there is a concern about their water quality and suitability as fish habitat because they are often contaminated by metals or metalloids. This study assessed the exposure of fish and invertebrates to selenium (Se) and other metals and metalloids in pit lakes formed by open pit coal mining in Tertiary (thermal coal) and in Cretaceous (metallurgical coal) bedrock. Juvenile hatchery rainbow trout, Oncorhynchus mykiss, and brook trout, Salvelinus fontinalis, were stocked into two thermal coal pit lakes (water Se < 2 μg/L, low water Se) and two metallurgical coal pit lakes (water Se > 15 μg/L, high water Se). Se accumulation in stocked fish and concentrations in invertebrates were characterized over a period of 2 years. In the metallurgical pits, invertebrates had higher Se concentrations and fish accumulated Se to higher levels (exceeding USEPA tissue Se guidelines) than biota in the thermal pits. Rainbow and brook trout accumulated similar concentrations of Se in their muscle and exhibited a similar relationship between whole-body and muscle Se concentrations. These results may be used by resource managers to assess compliance with whole-body tissue Se guidelines and to determine if pit lakes in coal mining areas pose a significant Se risk to wildlife or human health. The high Se exposure in metallurgical coal pits indicates that under the current mining and reclamation strategy, these lakes are not suitable for management as recreational "put and take" fisheries. PMID:23665755

  3. Mercury and methylmercury related to historical mercury mining in three tributaries to Lake Berryessa, Putah Creek Watershed, California

    NASA Astrophysics Data System (ADS)

    Sparks, G. C.; Horner, T.; Cornwell, K.; Izzo, V.; Alpers, C. N.

    2014-12-01

    This study examined the relative contribution of total mercury (THg) and mono-methylmercury (MMHg) from upstream historical mercury-mining districts to Lake Berryessa, a reservoir with impaired water quality because of mercury. The third and fourth largest historical mercury-producing mining districts in California are within Lake Berryessa's three largest tributary watersheds: Pope, (Upper) Putah, and Knoxville-Eticuera Creeks. Downstream of the reservoir, Putah Creek drains into the Yolo Bypass, a major source of THg and MMHg to the Sacramento-San Joaquin Delta. Water samples were collected from October 2012 to May 2014 during 37 non-storm and 8 storm events along Pope, (Upper) Putah, and Knoxville-Eticuera Creeks and analyzed for field parameters (temperature, pH, specific conductance, dissolved oxygen, and turbidity). Additionally, water samples collected during five of the non-storm and storm events were analyzed for unfiltered THg and MMHg and total suspended solids (TSS). Discharge was measured during sampling to calculate instantaneous loads. More than 120 streambed sediment samples were collected to determine the spatial variation of THg and organic carbon content (loss on ignition). Across the watersheds, unfiltered THg (in water) samples ranged from 2.3 to 125 ng/L and unfiltered MMHg (in water) samples from 0.12 to 1.0 ng/L. Concentrations of THg ranged from less than 0.0001 to 122 mg/kg in streambed sediment. Tributary reaches with elevated mercury concentrations ("hot spots") are near or downstream of historical mercury mines and have: (1) strong positive correlations between THg (in water) or MMHg (in water) and TSS (R2> 0.88, n=5); (2) higher instantaneous loads of suspended sediment, THg and MMHg than reaches with low THg and MMHg concentrations; and (3) elevated sediment organic carbon content. Tributary reaches with weaker correlations among THg, MMHg, and TSS in unfiltered water may reflect non-mining sources of dissolved THg and MMHg, such as

  4. Assessment of diffuse heavy metal pollution, mass transfer and flows at a gold mining site within the Lake Baikal Basin

    NASA Astrophysics Data System (ADS)

    Thorslund, Josefin; Jarsjö, Jerker; Chalov, Sergey; Belozerova, Ekaterina

    2013-04-01

    The flux, transfer and accumulation of heavy metals in aquatic systems pose a potential danger to the ecosystem at various scales, due to their toxicity and non-destroyable nature. Mining and ore excavation can cause heavy metal pollution of both local and downstream water systems, including groundwater sources. The Zaamar Goldfield, located in the upper Lake Baikal Basin (Mongolia), is an example of an extensive gold mining site, which significantly contributes to downstream increases in riverine concentrations of heavy metals, both in dissolved and suspended phases. However, the placer mining area is large and the pollution is diffuse by nature. Due to lack of detailed monitoring, it is unclear how the pollution is transported from the mine tailings to the river. There are several potentially important pathways, such as mobilization of bank sediments, in-stream dissolution from metal-rich suspended/bottom sediments, and through polluted groundwater. We here aim at estimating diffuse mass flows from the source zone to the river, in addition to riverine mass flows. Additionally, the behaviour of heavy metals under varying geochemical conditions (such as pH) is investigated, to be able to understand the solubility of various heavy metals and their partitioning between particulate and dissolved phase. We base our analysis on on-site hydrogeochemical field campaigns. These include concentration measurements in different media (groundwater, waste ponds, ditches, river water, suspended sediments, and bottom sediments). Runoff estimations from the site as well as solubility calculations are also main analytical methods. Results show a net increase in both dissolved and suspended riverine mass flows over the Zaamar site. Concentrations in the deep groundwater system are generally in the same order of magnitude as river concentrations, which suggest important inputs of dissolved heavy metals to the river through groundwater flows. The input of dissolved concentrations are

  5. Impacts on water quality and biota from natural acid rock drainage in Colorado's Lake Creek watershed

    USGS Publications Warehouse

    Bird, D.A.; Sares, Matthew A.; Policky, Greg A.; Schmidt, Travis S.; Church, Stanley E.

    2006-01-01

    Colorado's Lake Creek watershed hosts natural acid rock drainage that significantly impacts surface water, streambed sediment, and aquatic life. The source of the ARD is a group of iron-rich springs that emerge from intensely hydrothermally altered, unexploited, low-grade porphyry copper mineralization in the Grizzly Peak Caldera. Source water chemistry includes pH of 2.5 and dissolved metal concentrations of up to 277 mg/L aluminum, 498 mg/L iron, and 10 mg/L copper. From the hydrothermally altered area downstream for 27 kilometers to Twin Lakes Reservoir, metal concentrations in streambed sediment are elevated and the watershed experiences locally severe adverse impacts to aquatic life due to the acidic, metal-laden water. The water and sediment quality of Twin Lakes Reservoir is sufficiently improved that the reservoir supports a trout fishery, and remnants of upstream ARD are negligible.

  6. Influence of different forms of acidities on soil microbiological properties and enzyme activities at an acid mine drainage contaminated site.

    PubMed

    Sahoo, Prafulla Kumar; Bhattacharyya, Pradip; Tripathy, Subhasish; Equeenuddin, Sk Md; Panigrahi, M K

    2010-07-15

    Assessment of microbial parameters, viz. microbial biomass, fluorescence diacetate, microbial respiration, acid phosphatase, beta-glucosidase and urease with respect to acidity helps in evaluating the quality of soils. This study was conducted to investigate the effects of different forms of acidities on soil microbial parameters in an acid mine drainage contaminated site around coal deposits in Jainta Hills of India. Total potential and exchangeable acidity, extractable and exchangeable aluminium were significantly higher in contaminated soil compared to the baseline (p<0.01). Different forms of acidity were significantly and positively correlated with each other (p<0.05). Further, all microbial properties were positively and significantly correlated with organic carbon and clay (p<0.05). The ratios of microbial parameters with organic carbon were negatively correlated with different forms of acidity. Principal component analysis and cluster analyses showed that the microbial activities are not directly influenced by the total potential acidity and extractable aluminium. Though acid mine drainage affected soils had higher microbial biomass and activities due to higher organic matter content than those of the baseline soils, the ratios of microbial parameters/organic carbon indicated suppression of microbial growth and activities due to acidity stress. PMID:20417031

  7. Acid-base accounting assessment of mine wastes using the chromium reducible sulfur method.

    PubMed

    Schumann, Russell; Stewart, Warwick; Miller, Stuart; Kawashima, Nobuyuki; Li, Jun; Smart, Roger

    2012-05-01

    The acid base account (ABA), commonly used in assessment of mine waste materials, relies in part on calculation of potential acidity from total sulfur measurements. However, potential acidity is overestimated where organic sulfur, sulfate sulfur and some sulfide compounds make up a substantial portion of the sulfur content. The chromium reducible sulfur (CRS) method has been widely applied to assess reduced inorganic sulfur forms in sediments and acid sulfate soils, but not in ABA assessment of mine wastes. This paper reports the application of the CRS method to measuring forms of sulfur commonly found in mine waste materials. A number of individual sulfur containing minerals and real waste materials were analyzed using both CRS and total S and the potential acidity estimates were compared with actual acidity measured from net acid generation tests and column leach tests. The results of the CRS analysis made on individual minerals demonstrate good assessment of sulfur from a range of sulfides. No sulfur was measured using the CRS method in a number of sulfate salts, including jarosite and melanterite typically found in weathered waste rocks, or from dibenzothiophene characteristic of organic sulfur compounds common to coal wastes. Comparison of ABA values for a number of coal waste samples demonstrated much better agreement of acidity predicted from CRS analysis than total S analysis with actual acidity. It also resulted in reclassification of most samples tested from PAF to NAF. Similar comparisons on base metal sulfide wastes generally resulted in overestimation of the acid potential by total S and underestimation of the acid potential by CRS in comparison to acidity measured during NAG tests, but did not generally result in reclassification. In all the cases examined, the best estimate of potential acidity included acidity calculated from both CRS and jarositic S. PMID:22444067

  8. Acid-base accounting assessment of mine wastes using the chromium reducible sulfur method.

    PubMed

    Schumann, Russell; Stewart, Warwick; Miller, Stuart; Kawashima, Nobuyuki; Li, Jun; Smart, Roger

    2012-05-01

    The acid base account (ABA), commonly used in assessment of mine waste materials, relies in part on calculation of potential acidity from total sulfur measurements. However, potential acidity is overestimated where organic sulfur, sulfate sulfur and some sulfide compounds make up a substantial portion of the sulfur content. The chromium reducible sulfur (CRS) method has been widely applied to assess reduced inorganic sulfur forms in sediments and acid sulfate soils, but not in ABA assessment of mine wastes. This paper reports the application of the CRS method to measuring forms of sulfur commonly found in mine waste materials. A number of individual sulfur containing minerals and real waste materials were analyzed using both CRS and total S and the potential acidity estimates were compared with actual acidity measured from net acid generation tests and column leach tests. The results of the CRS analysis made on individual minerals demonstrate good assessment of sulfur from a range of sulfides. No sulfur was measured using the CRS method in a number of sulfate salts, including jarosite and melanterite typically found in weathered waste rocks, or from dibenzothiophene characteristic of organic sulfur compounds common to coal wastes. Comparison of ABA values for a number of coal waste samples demonstrated much better agreement of acidity predicted from CRS analysis than total S analysis with actual acidity. It also resulted in reclassification of most samples tested from PAF to NAF. Similar comparisons on base metal sulfide wastes generally resulted in overestimation of the acid potential by total S and underestimation of the acid potential by CRS in comparison to acidity measured during NAG tests, but did not generally result in reclassification. In all the cases examined, the best estimate of potential acidity included acidity calculated from both CRS and jarositic S.

  9. Filamentous hydrous ferric oxide biosignatures in a pipeline carrying acid mine drainage at Iron Mountain Mine, California

    USGS Publications Warehouse

    Williams, Amy J.; Alpers, Charles N.; Sumner, Dawn Y.; Campbell, Kate M.

    2016-01-01

    A pipeline carrying acidic mine effluent at Iron Mountain, CA, developed Fe(III)-rich precipitate caused by oxidation of Fe(II)aq. The native microbial community in the pipe included filamentous microbes. The pipe scale consisted of microbial filaments, and schwertmannite (ferric oxyhydroxysulfate, FOHS) mineral spheres and filaments. FOHS filaments contained central lumina with diameters similar to those of microbial filaments. FOHS filament geometry, the geochemical environment, and the presence of filamentous microbes suggest that FOHS filaments are mineralized microbial filaments. This formation of textural biosignatures provides the basis for a conceptual model for the development and preservation of biosignatures in other environments.

  10. Response of DOC in acid-sensitive Maine lakes to decreasing sulfur deposition (1993 - 2009)

    EPA Science Inventory

    In response to the Clean Air Act Amendments of 1990, sulfur deposition has decreased across the northeastern United States. As a result, sulfate concentrations in lakes and streams have also decreased and many surface waters have become less acidic. Over the same time period, th...

  11. Prediction of Coal ash leaching behavior in acid mine water, comparison of laboratory and field studies

    SciTech Connect

    ANNA, KNOX

    2005-01-10

    Strongly alkaline fluidized bed combustion ash is commonly used to control acid mine drainage in West Virginia coal mines. Objectives include acid neutralization and immobilization of the primary AMD pollutants: iron, aluminum and manganese. The process has been successful in controlling AMD though doubts remain regarding mobilization of other toxic elements present in the ash. In addition, AMD contains many toxic elements in low concentrations. And, each mine produces AMD of widely varying quality. So, predicting the effect of a particular ash on a given coal mine's drainage quality is of particular interest. In this chapter we compare the results of a site-specific ash leaching procedure with two large-scale field applications of FBC ash. The results suggested a high degree of predictability for roughly half of the 25 chemical parameters and poor predictability for the remainder. Of these, seven parameters were successfully predicted on both sites: acidity, Al, B, Ba, Fe, Ni and Zn while electrical conductivity, Ca, Cd, SO4, Pb and Sb were not successfully predicted on either site. Trends for the remaining elements: As, Ag, Be, Cu, Cr, Hg, Mg, Mn, pH, Se Tl and V were successfully predicted on one but not both mine sites.

  12. Sedimentary records of δ(13)C, δ(15)N and organic matter accumulation in lakes receiving nutrient-rich mine waters.

    PubMed

    Widerlund, Anders; Chlot, Sara; Öhlander, Björn

    2014-07-01

    Organic C and total N concentrations, C/N ratios, δ(15)N and δ(13)C values in (210)Pb-dated sediment cores were used to reconstruct historical changes in organic matter (OM) accumulation in three Swedish lakes receiving nutrient-rich mine waters. Ammonium-nitrate-based explosives and sodium cyanide (NaCN) used in gold extraction were the major N sources, while lesser amounts of P originated from apatite and flotation chemicals. The software IsoSource was used to model the relative contribution of soil, terrestrial and littoral vegetation, and phytoplankton detritus in the lake sediments. In one lake the IsoSource modelling failed, suggesting the presence of additional, unknown OM sources. In two of the lakes sedimentary detritus of littoral vegetation and phytoplankton had increased by 15-20% and 20-35%, respectively, since ~1950, when N- and P-rich mine waters began to reach the lakes. Today, phytoplankton is the dominating OM component in these lake sediments, which appears to be a eutrophication effect related to mining operations. Changes in the N isotopic composition of biota, lake water, and sediments related to the use of ammonium-nitrate-based explosives and NaCN were evident in the two studied systems. However, N isotope signals in the receiving waters (δ(15)N~+9‰ to +19‰) were clearly shifted from the primary signal in explosives (δ(15)N-NO3=+3.4±0.3‰; δ(15)N-NH4=-8.0±0.3‰) and NaCN (δ(15)N=+1.1±0.5‰), and direct tracing of the primary N isotope signals in mining chemicals was not possible in the receiving waters. Systems where mine waters with a well known discharge history are a major point source of N with well-defined isotopic composition should, however, be suitable for further studies of processes controlling N isotope signatures and their transformation in aquatic systems receiving mine waters. PMID:24727038

  13. Sedimentary records of δ(13)C, δ(15)N and organic matter accumulation in lakes receiving nutrient-rich mine waters.

    PubMed

    Widerlund, Anders; Chlot, Sara; Öhlander, Björn

    2014-07-01

    Organic C and total N concentrations, C/N ratios, δ(15)N and δ(13)C values in (210)Pb-dated sediment cores were used to reconstruct historical changes in organic matter (OM) accumulation in three Swedish lakes receiving nutrient-rich mine waters. Ammonium-nitrate-based explosives and sodium cyanide (NaCN) used in gold extraction were the major N sources, while lesser amounts of P originated from apatite and flotation chemicals. The software IsoSource was used to model the relative contribution of soil, terrestrial and littoral vegetation, and phytoplankton detritus in the lake sediments. In one lake the IsoSource modelling failed, suggesting the presence of additional, unknown OM sources. In two of the lakes sedimentary detritus of littoral vegetation and phytoplankton had increased by 15-20% and 20-35%, respectively, since ~1950, when N- and P-rich mine waters began to reach the lakes. Today, phytoplankton is the dominating OM component in these lake sediments, which appears to be a eutrophication effect related to mining operations. Changes in the N isotopic composition of biota, lake water, and sediments related to the use of ammonium-nitrate-based explosives and NaCN were evident in the two studied systems. However, N isotope signals in the receiving waters (δ(15)N~+9‰ to +19‰) were clearly shifted from the primary signal in explosives (δ(15)N-NO3=+3.4±0.3‰; δ(15)N-NH4=-8.0±0.3‰) and NaCN (δ(15)N=+1.1±0.5‰), and direct tracing of the primary N isotope signals in mining chemicals was not possible in the receiving waters. Systems where mine waters with a well known discharge history are a major point source of N with well-defined isotopic composition should, however, be suitable for further studies of processes controlling N isotope signatures and their transformation in aquatic systems receiving mine waters.

  14. Roles of Benthic Algae in the Structure, Function, and Assessment of Stream Ecosystems Affected by Acid Mine Drainage

    EPA Science Inventory

    Tens of thousands of stream kilometers around the world are degraded by a legacy of environmental impacts and acid mine drainage (AMD) caused by abandoned underground and surface mines, piles of discarded coal wastes, and tailings. Increased acidity, high concentrations of metals...

  15. No nitrification in lakes below pH 3.

    PubMed

    Jeschke, Christina; Falagán, Carmen; Knöller, Kay; Schultze, Martin; Koschorreck, Matthias

    2013-12-17

    Lakes affected by acid mine drainage (AMD) or acid rain often contain elevated concentrations of ammonium, which threatens water quality. It is commonly assumed that this is due to the inhibition of microbial nitrification in acidic water, but nitrification was never directly measured in mine pit lakes. For the first time, we measured nitrification by (15)NH4Cl isotope tracer addition in acidic as well as neutral mine pit lakes in Spain and Germany. Nitrification activity was only detected in neutral lakes. In acidic lakes no conversion of (15)NH4(+) to (15)NO3(-) was observed. This was true both for the water column as well as for biofilms on the surface of macrophytes or dead wood and the oxic surface layer of the sediment. Stable isotope analysis of nitrate showed (18)O values typical for nitrification only in neutral lakes. In a comparison of NH4(+) concentrations in 297 surface waters with different pH, ammonium concentrations higher 10 mg NH4-N L(-1) were only observed in lakes below pH 3. On the basis of the results from stable isotope investigations and the examination of a metadata set we conclude that the lower limit for nitrification in lakes is around pH 3.

  16. In-situ treatment of acid mine waters using fluidized bed ash: Field study

    SciTech Connect

    Everett, J.W.; Canty, G.A.

    1999-07-01

    A slurry of mine water and fluidized bed ash (FBA) was injected into an abandoned coal mine in eastern Oklahoma in July 1997. Oil-field technology was used to inject 1.8 Gg (418 tons) of FBA through five wells in 15 hours. Prior to injection the seep water had a pH of 4.4, was net acidic (acidity over 400 mg/L as CaCO{sub 3}), and had relatively high metal concentrations (in mg/L: Fe-200; Mn-7; and Al-6). After injection, during the period of effective treatment, the seep water had a pH above 6.0, less net acidity, and had lower metals concentrations (in mg/L: Fe-120; Mn-5; and Al-{lt}PQL). When the treated seep water exited the mine, the dissolved metals oxidized and hydrolyzed. As the metals precipitated, the alkalinity introduced by the FBA was consumed and the pH dropped. However, the seep water characteristics upon entering the receiving stream were improved, compared to pre-injection. The resulting seep water quality is such that it is more amenable to further treatment by passive treatment methods, such as anoxic limestone drains or wetlands. Alkaline injection is a finite treatment process. Eventually, the added alkalinity is exhausted, at which time the seep returns to pre-injection conditions, necessitating another injection of ash. For the study discussed in this paper, the treatment lasted approximately 15 months. While the amount of alkalinity added to the mine could have potentially treated much more than a year's volume of seep water, it is believed that much of the injected alkalinity was unavailable in backwater areas in the mine. This alkalinity contributed little, if any, to the treatment of water flowing through the mine. Mine hydrology, especially during injection are crucial to treatment longevity.

  17. Recolonization of acid-damaged lakes by the benthic invertebrates Stenacron interpunctatum, Stenonema femoratum and Hyalella azteca.

    PubMed

    Snucins, Ed

    2003-04-01

    The recolonization of acid-damaged lakes in Killarney Park, Canada is described for 3 species of benthic invertebrates; 2 mayflies (Stenonema femoratum, Stenacron interpunctatum) and an amphipod (Hyalella azteca). Synoptic surveys of 119 lakes for amphipods and 77 lakes for mayflies were conducted between 1995 and 1997 and defined pH thresholds of 5.6 for S. femoratum and H. azteca and pH 5.3 for S. interpunctatum. In an intensive study of 2 acid-damaged lakes and 2 reference lakes from 1997 to 2002, reestablishment of S. interpunctatum, S. femoratum and H. azteca occurred, when timing of the events could be estimated, less than 4-8 years after pH thresholds for specific taxa were reached. Dispersal of S. interpunctatum to all habitat patches within a lake was completed 3 years after recolonization was detected in the smallest lake (11 ha). It is anticipated that dispersal throughout the largest lake (189 ha) will take much longer. The time lag from estimated pH recovery to reestablishment and subsequent dispersal of mayflies to all suitable habitats within a lake was as much as 11 to 22+ years. The density of S. interpunctatum increased in the recovering lakes to levels higher than in reference lakes, but stable endpoints have not yet been reached during 6 years of monitoring.

  18. Decreased acid deposition and the chemical recovery of Killarney, Ontario, lakes.

    PubMed

    Keller, Wendel; Heneberry, Jocelyne H; Dixit, Sushil S

    2003-04-01

    Lakes in Killarney Park near Sudbury, Ontario, Canada, have shown dramatic water quality changes including general increases in pH and alkalinity, and decreases in SO4(2-), base cations and metals. While some lakes have recovered to pH > 6.0, many are still highly acidic despite decades of improvement. Very high historical S deposition related to emissions from the Sudbury metal smelters dominated the acidification process in this region. However, since the implementation of substantial S emission controls (90%) at the smelters, the Sudbury emissions are no longer the major source of S deposition in the Sudbury area. Wet deposition of SO4(2-) and SO4(2-) concentrations in lakewaters at Killarney now approach values in the Dorset, Ontario, area, about 200 km from Sudbury. This suggests that the S deposition to the Killarney area is now primarily from long-range transport, not from local sources. Studies of Killarney lakes are revealing the complex nature of the chemical recovery process. As lake acidity decreases, other changes including decreased Ca2+ concentrations, increased transparency, and altered thermal regimes may potentially affect some of these ecosystems. It is clear that continuing assessments of the recovery of Killarney lakes, within a multiple-stressor framework, are needed.

  19. Negative pH and extremely acidic mine waters from Iron Mountain, California

    SciTech Connect

    Nordstrom, D.K.; Alpers, C.N.; Ptacek, C.J.; Blowes, D.W.

    2000-01-15

    Extremely acidic mine waters with pH values as low as {minus}3.6, total dissolved metal concentrations as high as 200 g/L, and sulfate concentrations as high as 760 g/L, have been encountered underground in the Richmond Mine at Iron Mountain, CA. These are the most acidic waters known. The pH measurements were obtained by using the Pitzer method to define pH for calibration of glass membrane electrodes. The calibration of pH below 0.5 with glass membrane electrodes becomes strongly nonlinear but is reproducible to a pH as low as {minus}4. Numerous efflorescent minerals were found forming from these acid waters. These extreme acid waters were formed primarily by pyrite oxidation and concentration by evaporation with minor effects from aqueous ferrous iron oxidation and efflorescent mineral formation.

  20. Negative pH and extremely acidic mine waters from Iron Mountain, California

    USGS Publications Warehouse

    Nordstrom, D.K.; Alpers, C.N.; Ptacek, C.J.; Blowes, D.W.

    2000-01-01

    Extremely acidic mine waters with pH values as low as -3.6, total dissolved metal concentrations as high as 200 g/L, and sulfate concentrations as high as 760 g/L, have been encountered underground in the Richmond Mine at Iron Mountain, CA. These are the most acidic waters known. The pH measurements were obtained by using the Pitzer method to define pH for calibration of glass membrane electrodes. The calibration of pH below 0.5 with glass membrane electrodes becomes strongly nonlinear but is reproducible to a pH as low as -4. Numerous efflorescent minerals were found forming from these acid waters. These extreme acid waters were formed primarily by pyrite oxidation and concentration by evaporation with minor effects from aqueous ferrous iron oxidation and efflorescent mineral formation.

  1. Effects of acidic lake water on the eye.

    PubMed

    Basu, P K; Avaria, M; Hasany, S M

    1982-04-01

    The normal eyes of 6 men and 21 rabbits were exposed to samples of lake water, one eye to a sample of pH 4.6 and the other to a sample of pH 6.3. The men's eyes were exposed for 5 minutes on four occasions a week apart, whereas the rabbits' eyes were exposed for 15 minutes either on one occasion or once a day for 7 days. In the humans neither sample of water produced symptoms or signs of an adverse effect on the external eye tissues, apart from brief conjunctival congestion after every exposure. In the rabbits the two samples did not appear, in general, to have different effects on the ocular tissues, as judged from the osmolarity and cell count of the tears, conjunctival congestion, corneal staining with fluorescein, corneal permeability and histologic features of the cornea. In a few instances differences were observed, but their pathological significance was not apparent. These data suggest that lake water of a pH as low as 4.6 may not harm healthy eyes, however, larger and broader studies are essential.

  2. Fish communities in lakes in Subregion 2B (Upper Peninsula of Michigan) in relation to lake acidity. Volume 1 and Volume 2: Appendices. Data tape documentation

    SciTech Connect

    Not Available

    1990-10-01

    The research described in the document represents one component of Phase II of the Eastern Lake Survey (ELS-II), a part of the National Surface Water Survey (NSWS). Surveys of fish community status were conducted in summer 1987 in 49 lakes in ELS Subregion 2B, the Upper Peninsula of Michigan. Subregion 2B was selected because of its (1) high proportion of acidic and low-pH lakes, (2) relative lack of existin data on fish communities in lakes, and (3) diverse geological and hydrological conditions allowing optimal evaluation of the association between lake characteristics and fish community status. A companion study dealing with regional patterns in fish mercury content in Subregion 2B was conducted concurrently; results from the study will be presented in a subsequent report.

  3. COMPOST-FREE BIOREACTOR TREATMENT OF ACID ROCK DRAINAGE LEVIATHAN MINE, CALIFORNIA INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    As part of the Superfund Innovative Technology Evaluation (SITE) program, an evaluation of the compost-free bioreactor treatment of acid rock drainage (ARD) from the Aspen Seep was conducted at the Leviathan Mine Superfund site located in a remote, high altitude area of Alpine Co...

  4. Mine Waste Technology Program. In Situ Source Control Of Acid Generation Using Sulfate-Reducing Bacteria

    EPA Science Inventory

    This report summarizes the results of the Mine Waste Technology Program (MWTP) Activity III, Project 3, In Situ Source Control of Acid Generation Using Sulfate-Reducing Bacteria, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S....

  5. LABORATORY EVALUATION OF ZERO-VALENT IRON TO TREAT WATER IMPACTED BY ACID MINE DRAINAGE

    EPA Science Inventory

    This study examines the applicability and limitations of granular zero-valent iron for the treatment of water impacted by mine wastes. Rates of acid neutralization and of metal (Cu, Cd, Ni, Zn, Hg, Al, and Mn) and metalloid (As) uptake were determined in batch systems using simu...

  6. VALUING ACID MINE DRAINAGE REMEDIATION IN WEST VIRGINIA: BENEFIT TRANSFER WITH PREFERENCE CALIBRATION

    EPA Science Inventory

    Several thousand kilometers of West Virginia streams are degraded by acid mine drainage (AMD), and the estimates for cleanup range in the billions of dollars. Not enough money is available to restore all the affected streams, so some way to prioritize those streams is needed. Ben...

  7. PASSIVE TREATMENT OF ACID ROCK DRAINAGE FROM A SUBSURFACE MINE

    EPA Science Inventory

    Acidic, metal-contaminated drainages are a critical problem facing many areas of the world. Acid rock drainage results when metal sulfide minerals, particularly pyrite, are oxidized by exposure to oxygen and water. The deleterious effects of these drainages on receiving streams a...

  8. Biosorption of acidic textile dyestuffs from aqueous solution by Paecilomyces sp. isolated from acidic mine drainage.

    PubMed

    Çabuk, Ahmet; Aytar, Pınar; Gedikli, Serap; Özel, Yasemin Kevser; Kocabıyık, Erçin

    2013-07-01

    Removal of textile dyestuffs from aqueous solution by biosorption onto a dead fungal biomass isolated from acidic mine drainage in the Çanakkale Region of Turkey was investigated. The fungus was found to be a promising biosorbent and identified as Paecilomyces sp. The optimal conditions for bioremediation were as follows: pH, 2.0; initial dyestuff concentration, 50 mg l(-1) for Reactive Yellow 85 and Reactive Orange 12, and 75 mg l(-1) for Reactive Black 8; biomass dosage, 2 g l(-1) for Reactive Yellow 85, 3 g l(-1) for Reactive Orange 12, 4 g l(-1) for Reactive Black 8; temperature, 25 °C; and agitation rate, 100 rpm. Zeta potential measurements indicated an electrostatic interaction between the binding sites and dye anions. Fourier transform infrared spectroscopy showed that amine, hydroxyl, carbonyl, and amide bonds were involved in the dyestuff biosorption. A toxicity investigation was also carried out before and after the biosorption process. These results showed that the toxicities for the reactive dyestuffs in aqueous solutions after biosorption studies decreased. The Freundlich and Langmuir adsorption models were used for the mathematical description of the biosorption equilibrium, and isotherm constants were evaluated for each dyestuff. Equilibrium data of biosorption of RY85 and RO12 dyestuffs fitted well to both models at the studied concentration and temperature.

  9. Acid mine drainage. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-04-01

    The bibliography contains citations concerning laboratory and field analyses of acid mine drainage. Topics include site investigations and characterization, remediation and monitoring programs, contaminant treatment research, and control and abatement studies. Chemical analyses of affected areas, and evaluation of terrestrial and aquatic ecosystem responses to acid drainage are also discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  10. Acid mine drainage. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1997-06-01

    The bibliography contains citations concerning laboratory and field analyses of acid mine drainage. Topics include site investigations and characterization, remediation and monitoring programs, contaminant treatment research, and control and abatement studies. Chemical analyses of affected areas, and evaluation of terrestrial and aquatic ecosystem responses to acid drainage are also discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. 7th international conference on acid rock drainage

    SciTech Connect

    Barnhisel, R.I.

    2006-07-01

    This meeting also serves as the 23rd annual meeting of the American Society of Mining and Reclamation. The papers discussed various aspects of acid mine drainage including its impact, sustainability issues, case studies, lessons learned, characterization, closure/land use issues, emerging technologies, forestry/ecology, abandoned mine lands, modelling, pit lakes/backfill, soils and overburden, and treatment.

  12. Granite weathering and the sensitivity of alpine lakes to acid deposition

    SciTech Connect

    Stauffer, R.E.

    1990-07-01

    Lake chemical data from the National Surface Water Survey (NSWS) were corrected for the effects of regional atmospheric deposition and then used to evaluate the role of weathering in supplying base cations, silica, sulfate, and alkalinity to surface waters in alpine vs. subalpine, and in glaciated vs. unglaciated granitic terrane of the western and southeastern US. Thermodynamic models, idealized reaction stoichiometry, and multivariate regression involving solutes and geographic variables indicate that irreversible weathering can largely account for lake chemistry. By contrast, relatively minor roles are played by reversible ion exchange in soils and sediments, terrestrial bioaccumulation, and transformation in lakes. The regional patterns in lake acidity components (NO{sub 3}, SO{sub 4}, DOC, CO{sub 2}), and statistical relationships between acidity and base cations demonstrate that rock weathering is limited by acid inputs in many alpine catchments prior to fall overturn. The empirical success of the Henriksen alkalinity model depends on a high Ca: Na weathering ration. The latter increase with increasing physical disturbance of the catchment (juvenility), hence under natural circumstances attains a maximum as a result of on-going or recent glaciation. The Henriksen model fails in geochemically old terrane, where cation losses accompanying silicate weathering attain steady state proportions.

  13. Bioactive secondary metabolites from acid mine waste extremophiles.

    PubMed

    Stierle, Andrea A; Stierle, Donald B

    2014-07-01

    The extremophilic microbes of the Berkeley Pit Lake are a valuable source of new and interesting secondary metabolites. It is of particular interest that these acidophilic microbes produce small molecule inhibitors of pathways associated with low pH and high Eh. These same small molecules also inhibit molecular pathways induced by reactive oxygen species (ROS) and inflammation in mammalian cells. Low pH is a hallmark of inflammation and high Eh is one of ROS, so the suitability of this collection as a source of bioactive metabolites is actually quite biorational. Compound isolation was guided by inhibition of caspase-1 and matrix metalloproteinase-3, and active compounds were sent to the National Cancer Institute-Developmental Therapeutics Program and Memorial Sloan Kettering Cancer center for evaluation as either antiproliferative or cytotoxic agents.

  14. Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria.

    PubMed

    Nancucheo, Ivan; Johnson, D Barrie

    2012-01-01

    Two continuous-flow bench-scale bioreactor systems populated by mixed communities of acidophilic sulfate-reducing bacteria were constructed and tested for their abilities to promote the selective precipitation of transition metals (as sulfides) present in synthetic mine waters, using glycerol as electron donor. The objective with the first system (selective precipitation of copper from acidic mine water containing a variety of soluble metals) was achieved by maintaining a bioreactor pH of ≈ 2.2-2.5. The second system was fed with acidic (pH 2.5) synthetic mine water containing 3 mM of both zinc and ferrous iron, and varying concentrations (0.5-30 mM) of aluminium. Selective precipitation of zinc sulfide was possible by operating the bioreactor at pH 4.0 and supplementing the synthetic mine water with 4 mM glycerol. Analysis of the microbial populations in the bioreactors showed that they changed with varying operational parameters, and novel acidophilic bacteria (including one sulfidogen) were isolated from the bioreactors. The acidophilic sulfidogenic bioreactors provided 'proof of principle' that segregation of metals present in mine waters is possible using simple online systems within which controlled pH conditions are maintained. The modular units are versatile and robust, and involve minimum engineering complexity.

  15. Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria

    PubMed Central

    Ňancucheo, Ivan; Johnson, D. Barrie

    2012-01-01

    Summary Two continuous‐flow bench‐scale bioreactor systems populated by mixed communities of acidophilic sulfate‐reducing bacteria were constructed and tested for their abilities to promote the selective precipitation of transition metals (as sulfides) present in synthetic mine waters, using glycerol as electron donor. The objective with the first system (selective precipitation of copper from acidic mine water containing a variety of soluble metals) was achieved by maintaining a bioreactor pH of ∼2.2–2.5. The second system was fed with acidic (pH 2.5) synthetic mine water containing 3 mM of both zinc and ferrous iron, and varying concentrations (0.5–30 mM) of aluminium. Selective precipitation of zinc sulfide was possible by operating the bioreactor at pH 4.0 and supplementing the synthetic mine water with 4 mM glycerol. Analysis of the microbial populations in the bioreactors showed that they changed with varying operational parameters, and novel acidophilic bacteria (including one sulfidogen) were isolated from the bioreactors. The acidophilic sulfidogenic bioreactors provided ‘proof of principle’ that segregation of metals present in mine waters is possible using simple online systems within which controlled pH conditions are maintained. The modular units are versatile and robust, and involve minimum engineering complexity. PMID:21895996

  16. Tracking acid mine-drainage in Southeast Arizona using GIS and sediment delivery models

    USGS Publications Warehouse

    Norman, L.M.; Gray, F.; Guertin, D.P.; Wissler, C.; Bliss, J.D.

    2008-01-01

    This study investigates the application of models traditionally used to estimate erosion and sediment deposition to assess the potential risk of water quality impairment resulting from metal-bearing materials related to mining and mineralization. An integrated watershed analysis using Geographic Information Systems (GIS) based tools was undertaken to examine erosion and sediment transport characteristics within the watersheds. Estimates of stream deposits of sediment from mine tailings were related to the chemistry of surface water to assess the effectiveness of the methodology to assess the risk of acid mine-drainage being dispersed downstream of abandoned tailings and waste rock piles. A watershed analysis was preformed in the Patagonia Mountains in southeastern Arizona which has seen substantial mining and where recent water quality samples have reported acidic surface waters. This research demonstrates an improvement of the ability to predict streams that are likely to have severely degraded water quality as a result of past mining activities. ?? Springer Science+Business Media B.V. 2007.

  17. Geochemical characterization of acidic mine waters in Darrehzar copper deposit, Kerman province, Iran

    NASA Astrophysics Data System (ADS)

    Keshavarzi, B.; Shahabpour, J.; Naseh, R.

    2009-04-01

    Darrehzar porphyry copper deposit is located in the south of Sar Cheshmeh copper mine. There are varieties of geological factors which control the composition of mine drainage waters. Surface samples were collected from the Darrehzar locality for chemical measurements. The measured quantities are: Cl-, Ca, Mg, Na, K, SO42-, Al. Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn, As, Sb, Mo, HCO3-, EC, pH and Eh. Phyllic alteration has the highest influence on the production of acid mine drainage. Mineralogical studies and analysis of water samples indicate a good correlation between sulfide minerals and acid mine drainage. Analysis of water samples showed that samples with low pH values have high concentration of sulfate and heavy metals. Correlation coefficients between different quantities were calculated and binary diagram prepared. Heavy metals increase with a decrease in pH except for Mo. Sulfate and heavy metals are positively related in mine water. The high positive correlation between Fe and Mn with respect to heavy metals indicates their adsorption on Fe and Mn oxides and hydroxides.

  18. Recovery of iron oxides from acid mine drainage and their application as adsorbent or catalyst.

    PubMed

    Flores, Rubia Gomes; Andersen, Silvia Layara Floriani; Maia, Leonardo Kenji Komay; José, Humberto Jorge; Moreira, Regina de Fatima Peralta Muniz

    2012-11-30

    Iron oxide particles recovered from acid mine drainage represent a potential low-cost feedstock to replace reagent-grade chemicals in the production of goethite, ferrihydrite or magnetite with relatively high purity. Also, the properties of iron oxides recovered from acid mine drainage mean that they can be exploited as catalysts and/or adsorbents to remove azo dyes from aqueous solutions. The main aim of this study was to recover iron oxides with relatively high purity from acid mine drainage to act as a catalyst in the oxidation of dye through a Fenton-like mechanism or as an adsorbent to remove dyes from an aqueous solution. Iron oxides (goethite) were recovered from acid mine drainage through a sequential precipitation method. Thermal treatment at temperatures higher than 300 °C produces hematite through a decrease in the BET area and an increase in the point of zero charge. In the absence of hydrogen peroxide, the solids adsorbed the textile dye Procion Red H-E7B according to the Langmuir model, and the maximum amount adsorbed decreased as the temperature of the thermal treatment increased. The decomposition kinetics of hydrogen peroxide is dependent on the H(2)O(2) concentration and iron oxides dosage, but the second-order rate constant normalized to the BET surface area is similar to that for different iron oxides tested in this and others studies. These results indicate that acid mine drainage could be used as a source material for the production of iron oxide catalysts/adsorbents, with comparable quality to those produced using analytical-grade reagents.

  19. Enhancing the Attenuation of Acid-Mine Drainage at Davis Mine, Rowe, Massachusetts via Installation of a Permeable Reactive Barrier.

    NASA Astrophysics Data System (ADS)

    Gillmor, A. M.; Yuretich, R. F.

    2008-12-01

    Acid Mine Drainage affects thousands of streams in the United States, sustaining the need for low-cost passive treatment options. Davis Mine, a 100 years-abandoned FeS2 mine in Western Massachusetts, is representative of the types of mines best suited for passive treatments; fairly remote, abandoned, and discharging moderately affected water (pH <3, Fe >100mg/L, SO42- >500mg/L) and is a good candidate for a 'starting point' of low-cost, low environmental impact remediation. We here report the shifts in pH, SO42-, and Fe following placement of reactive fill (50% CaMg(CO3)2, 25% cow manure, 25% seaweed compost) in a permeable reactive barrier placed below ground mid-way along the acidic effluent's path. Yearlong monitoring of water from 1 multi-level well (with ports in the shallow groundwater, middle groundwater, and bedrock) placed within the tailings pile over a previous year (2003-2004) showed for the three levels, respectively; pH 3.16, 4.24, and 4.04, Fe average concentrations of 4.5 mg/L, 6.5 mg/L, and 3.2 mg/L, and SO42- average concentrations of 235mg/L, 330mg/L, and 292 mg/L. One year (2007-2008) after placement of remediation mix, the three levels now average respectively; pH 4.16, 4.60, and 4.53, Fe concentrations of 0.7 mg/L, 4.8 mg/L, and 1.4 mg/L, and SO42- concentrations of 217 mg/L, 294 mg/L, and 266 mg/L. The most noticeable improvement in pH is seen in the shallow groundwater, consistent with its proximity to the reactive fill depth. Although complex microbial communities have been characterized at the site, uncertainty remains as to whether they are active in this case, and it is possible that these results may be explained solely by neutralization reactions. Results of this study indicate a good likelihood that this low environmental impact remediation could be effective.

  20. Modeling aluminum-silicon chemistries and application to Australian acidic playa lakes as analogues for Mars

    NASA Astrophysics Data System (ADS)

    Marion, G. M.; Crowley, J. K.; Thomson, B. J.; Kargel, J. S.; Bridges, N. T.; Hook, S. J.; Baldridge, A.; Brown, A. J.; Ribeiro da Luz, B.; de Souza Filho, C. R.

    2009-06-01

    Recent Mars missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major relevant findings are the presence in Meridiani Planum sediments of the mineral jarosite (a ferric sulfate salt) and related minerals that require formation from an acid-salt brine and oxidizing environment. Similar mineralogies have been observed in acidic saline lake sediments in Western Australia (WA), and these lakes have been proposed as analogues for acidic sedimentary environments on Mars. The prior version of the equilibrium chemical thermodynamic FREZCHEM model lacked Al and Si chemistries that are needed to appropriately model acidic aqueous geochemistries on Earth and Mars. The objectives of this work were to (1) add Al and Si chemistries to the FREZCHEM model, (2) extend these chemistries to low temperatures (<0 °C), if possible, and (3) use the reformulated model to investigate parallels in the mineral precipitation behavior of acidic Australian lakes and hypothetical Martian brines. FREZCHEM is an equilibrium chemical thermodynamic model parameterized for concentrated electrolyte solutions using the Pitzer approach for the temperature range from <-70 to 25 °C and the pressure range from 1 to 1000 bars. Aluminum chloride and sulfate mineral parameterizations were based on experimental data. Aluminum hydroxide and silicon mineral parameterizations were based on Gibbs free energy and enthalpy data. New aluminum and silicon parameterizations added 12 new aluminum/silicon minerals to this Na-K-Mg-Ca-Fe(II)-Fe(III)-Al-H-Cl-Br-SO 4-NO 3-OH-HCO 3-CO 3-CO 2-O 2-CH 4-Si-H 2O system that now contain 95 solid phases. There were similarities, differences, and uncertainties between Australian acidic, saline playa lakes and waters that likely led to the Burns formation salt accumulations on Mars. Both systems are similar in that they are dominated by (1) acidic, saline ground waters and sediments, (2) Ca and/or Mg sulfates, and (3) iron

  1. Modeling aluminum-silicon chemistries and application to Australian acidic playa lakes as analogues for Mars

    USGS Publications Warehouse

    Marion, G.M.; Crowley, J.K.; Thomson, B.J.; Kargel, J.S.; Bridges, N.T.; Hook, S.J.; Baldridge, A.; Brown, A.J.; Ribeiro da Luz, B.; de Souza, Filho C.R.

    2009-01-01

    Recent Mars missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major relevant findings are the presence in Meridiani Planum sediments of the mineral jarosite (a ferric sulfate salt) and related minerals that require formation from an acid-salt brine and oxidizing environment. Similar mineralogies have been observed in acidic saline lake sediments in Western Australia (WA), and these lakes have been proposed as analogues for acidic sedimentary environments on Mars. The prior version of the equilibrium chemical thermodynamic FREZCHEM model lacked Al and Si chemistries that are needed to appropriately model acidic aqueous geochemistries on Earth and Mars. The objectives of this work were to (1) add Al and Si chemistries to the FREZCHEM model, (2) extend these chemistries to low temperatures (<0 ??C), if possible, and (3) use the reformulated model to investigate parallels in the mineral precipitation behavior of acidic Australian lakes and hypothetical Martian brines. FREZCHEM is an equilibrium chemical thermodynamic model parameterized for concentrated electrolyte solutions using the Pitzer approach for the temperature range from <-70 to 25 ??C and the pressure range from 1 to 1000 bars. Aluminum chloride and sulfate mineral parameterizations were based on experimental data. Aluminum hydroxide and silicon mineral parameterizations were based on Gibbs free energy and enthalpy data. New aluminum and silicon parameterizations added 12 new aluminum/silicon minerals to this Na-K-Mg-Ca-Fe(II)-Fe(III)-Al-H-Cl-Br-SO4-NO3-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system that now contain 95 solid phases. There were similarities, differences, and uncertainties between Australian acidic, saline playa lakes and waters that likely led to the Burns formation salt accumulations on Mars. Both systems are similar in that they are dominated by (1) acidic, saline ground waters and sediments, (2) Ca and/or Mg sulfates, and (3) iron

  2. Analysis of bacterial diversity in acidic pond water and compost after treatment of artificial acid mine drainage for metal removal.

    PubMed

    Morales, Teresita A; Dopson, Mark; Athar, Rana; Herbert, Roger B

    2005-06-01

    The microbial population of a sludge amended leaf compost material utilized for treatment of artificial acid mine drainage was studied by culture-independent molecular methods. Iron-rich and sulfurous wastewater (artificial acid mine drainage) was circulated through a column bioreactor for 16 months. After 12 months the column was inoculated with a mixed culture from an acidic pond receiving acid mine drainage from a tailings impoundment at a decommissioned site in Kristineberg, North Sweden. Hydrogen sulfide odor and the formation of black precipitates indicated that sulfate-reduction occurred in the column. 16S rDNA gene analysis by denaturing gradient gel electrophoresis, cloning, and sequencing as well as fluorescent in situ hybridization confirmed the presence of microorganisms closely related to sulfate-reducing bacteria and microorganisms from the genera Pseudoxanthmonas, Dechlorosoma, Desulfovibrio, Agrobacterium, Methylocapsa, Rhodococcus, Sulfobacillus, and some unidentified bacteria. Sulfate-reducing bacteria were found in the column bioreactor 2 weeks after inoculation, but not thereafter. This suggests they were in low abundance, even though sulfate remediation rates were significant. Instead, the population contained species similar to those previously found to utilize humic substances released from the compost material. PMID:15818559

  3. Integrated satellite data fusion and mining for monitoring lake water quality status of the Albufera de Valencia in Spain.

    PubMed

    Doña, Carolina; Chang, Ni-Bin; Caselles, Vicente; Sánchez, Juan M; Camacho, Antonio; Delegido, Jesús; Vannah, Benjamin W

    2015-03-15

    Lake eutrophication is a critical issue in the interplay of water supply, environmental management, and ecosystem conservation. Integrated sensing, monitoring, and modeling for a holistic lake water quality assessment with respect to multiple constituents is in acute need. The aim of this paper is to develop an integrated algorithm for data fusion and mining of satellite remote sensing images to generate daily estimates of some water quality parameters of interest, such as chlorophyll a concentrations and water transparency, to be applied for the assessment of the hypertrophic Albufera de Valencia. The Albufera de Valencia is the largest freshwater lake in Spain, which can often present values of chlorophyll a concentration over 200 mg m(-3) and values of transparency (Secchi Disk, SD) as low as 20 cm. Remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat Thematic Mapper (TM) and Enhance Thematic Mapper (ETM+) images were fused to carry out an integrative near-real time water quality assessment on a daily basis. Landsat images are useful to study the spatial variability of the water quality parameters, due to its spatial resolution of 30 m, in comparison to the low spatial resolution (250/500 m) of MODIS. While Landsat offers a high spatial resolution, the low temporal resolution of 16 days is a significant drawback to achieve a near real-time monitoring system. This gap may be bridged by using MODIS images that have a high temporal resolution of 1 day, in spite of its low spatial resolution. Synthetic Landsat images were fused for dates with no Landsat overpass over the study area. Finally, with a suite of ground truth data, a few genetic programming (GP) models were derived to estimate the water quality using the fused surface reflectance data as inputs. The GP model for chlorophyll a estimation yielded a R(2) of 0.94, with a Root Mean Square Error (RMSE) = 8 mg m(-3), and the GP model for water transparency estimation using

  4. 2005 Crater Lake Formation, Lahar, Acidic Flood, and Gas Emission From Chiginagak Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Schaefer, J. R.; Scott, W. E.; McGimsey, R. G.; Jorgenson, J.

    2005-12-01

    A 400-m-wide crater lake developed in the formerly snow-and-ice-filled crater of Mount Chiginagak volcano sometime between August 2004 and June 2005, presumably due to increased heat flux from the hydrothermal system. We are also evaluating the possible role of magma intrusion and degassing. In early summer 2005, clay-rich debris and an estimated 5.6 million cubic meters of acidic water from the crater exited through tunnels in the base of a glacier that breaches the south crater rim. Over 27 kilometers downstream, the acidic waters of the flood reached approximately 1.5 meters above current water levels and inundated an important salmon spawning drainage, acidifying at least the surface water of Mother Goose Lake (approximately 1 cubic kilometer in volume) and preventing the annual salmon run. No measurements of pH were taken until late August 2005. At that time the pH of water sampled from the Mother Goose Lake inlet, lake surface, and outlet stream (King Salmon River) was 3.2. Defoliation and leaf damage of vegetation along affected streams, in areas to heights of over 70 meters in elevation above flood level, indicates that a cloud of detrimental gas or aerosol accompanied the flood waters. Analysis of stream water, lake water, and vegetation samples is underway to better determine the agent responsible for the plant damage. This intriguing pattern of gas-damaged vegetation concentrated along and above the flood channels is cause for further investigation into potential hazards associated with Chiginagak's active crater lake. Anecdotal evidence from local lodge owners and aerial photographs from 1953 suggest that similar releases occurred in the mid-1970s and early 1950s.

  5. Geochemical study of acid mine drainage of the Big Lick Tunnel area, Williamstown, PA

    SciTech Connect

    Tollin, S. . Dept. of Geosciences)

    1993-03-01

    Acid mine drainage in the anthracite region of Pennsylvania continues to be a significant environmental problem. This study examines the acid mine outflow from the Big Lick Tunnel, north of Williamstown, Dauphin County, Pennsylvania. The tunnel drains abandoned mines on the north side of the Big Lick Mountain. Mining ceased in the area circa 1940, and the tunnel has been in operation since that time. The water, soil and stream bed sediment geochemistry has been studied to determine their changes in chemistry over distance. The pH, TDS and metal concentrations were the primary focus. Metal concentrations were determined using an ICP unit. Data indicates the pH of the outflow to range between 6.7 and 7.3 Fe and Mn concentrations are as high as 9.7 ppb. Extensive metal precipitation ( yellow boy'') occurs within the tunnel and for several hundred meters from the mouth of the tunnel. The combination of near neutral pH and high metal concentration suggest that the drainage is in contact with highly alkaline materials prior to discharge from the tunnel. The geology of the area does not suggest bedrock as the possible source of alkaline material. One hypothesis is that the acidic water is reacting with the concrete tunnel and being neutralized. Data also suggests that the Fe precipitates much quicker than the Mn, resulting in a zonation between Fe-rich and Mn-rich sediments along the length of the drainage.

  6. Isotope composition of sulphate in acid mine drainage as measure of bacterial oxidation

    USGS Publications Warehouse

    Taylor, B.E.; Wheeler, M.C.; Nordstrom, D.K.

    1984-01-01

    The formation of acid waters by oxidation of pyrite-bearing ore deposits, mine tailing piles, and coal measures is a complex biogeochemical process and is a serious environmental problem. We have studied the oxygen and sulphur isotope geochemistry of sulphides, sulphur, sulphate and water in the field and in experiments to identify sources of oxygen and reaction mechanisms of sulphate formation. Here we report that the oxygen isotope composition of sulphate in acid mine drainage shows a large variation due to differing proportions of atmospheric- and water-derived oxygen from both chemical and bacterially-mediated oxidation. 18O-enrichment of sulphate results from pyrite oxidation facilitated by Thiobacillus ferrooxidans in aerated environments. Oxygen isotope analysis may therefore be useful in monitoring the effectiveness of abatement programmes designed to inhibit bacterial oxidation. Sulphur isotopes show no significant fractionation between pyrite and sulphate, indicating the quantitative insignificance of intermediate oxidation states of sulphur under acid conditions. ?? 1984 Nature Publishing Group.

  7. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    USGS Publications Warehouse

    Verplanck, P.L.; Nordstrom, D.K.; Taylor, H.E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  8. Preserving the distribution of inorganic arsenic species in groundwater and acid mine drainage samples

    USGS Publications Warehouse

    Bednar, A.J.; Garbarino, J.R.; Ranville, J.F.; Wildeman, T.R.

    2002-01-01

    The distribution of inorganic arsenic species must be preserved in the field to eliminate changes caused by metal oxyhydroxide precipitation, photochemical oxidation, and redox reactions. Arsenic species sorb to iron and manganese oxyhydroxide precipitates, and arsenite can be oxidized to arsenate by photolytically produced free radicals in many sample matrices. Several preservatives were evaluated to minimize metal oxyhydroxide precipitation, such as inorganic acids and ethylenediaminetetraacetic acid (EDTA). EDTA was found to work best for all sample matrices tested. Storing samples in opaque polyethylene bottles eliminated the effects of photochemical reactions. The preservation technique was tested on 71 groundwater and six acid mine drainage samples. Concentrations in groundwater samples reached 720 ??g-As/L for arsenite and 1080 ??g-As/L for arsenate, and acid mine drainage samples reached 13 000 ??g-As/L for arsenite and 3700 ??g-As/L for arsenate. The arsenic species distribution in the samples ranged from 0 to 90% arsenite. The stability of the preservation technique was established by comparing laboratory arsenic speciation results for samples preserved in the field to results for subsamples speciated onsite. Statistical analyses indicated that the difference between arsenite and arsenate concentrations for samples preserved with EDTA in opaque bottles and field speciation results were analytically insignificant. The percentage change in arsenite:arsenate ratios for a preserved acid mine drainage sample and groundwater sample during a 3-month period was -5 and +3%, respectively.

  9. Reconstructing the ecological impacts of eight decades of mining, metallurgical, and municipal activities on a small boreal lake in northern Canada.

    PubMed

    Doig, Lorne E; Schiffer, Stephanie T; Liber, Karsten

    2015-07-01

    As a result of long-term metal mining and metallurgical activities, the sediment of Ross Lake (Flin Flon, MB, Canada) is highly contaminated with metals and other elements. Although the effluents likely were discharged into Ross Lake as early as the late 1920s, lake biophysical data were not collected until 1973, more than 4 decades after the onset of mining and municipal activities. The early influence of these activities on the ecology of Ross Lake is unknown, as are the effects of improvements to metallurgical effluent quality and discontinuation of municipal wastewater discharge into the lake's north basin. To address this knowledge gap, analyses typical of paleolimnological investigations were applied to cores of sediment collected in 2009 from the south basin of Ross Lake. Stratigraphic analyses of physicochemical sediment characteristics (e.g., the concentrations of metals and other elements, organic C, total N, and δ(13)C and δ(15)N values) and subfossil remains (diatoms, Chironomidae, Chaoborus, and Cladocera) were used to infer historical biological and chemical changes in Ross Lake. With the onset of mining activities, concentrations of various elements (e.g., As, Cr, Cu, Zn, and Se) increased dramatically in the sediment profile, eventually declining with improved tailings management. Nevertheless, concentrations of metals in recent sediments remain elevated compared with pre-industrial sediments. Constrained cluster analyses demonstrated distinct pre-industrial and postindustrial communities for both the diatoms and chironomids. The biodiversity of the postindustrial diatom assemblages were much reduced compared with the pre-industrial assemblages. The postindustrial chironomid assemblage was dominated by Chironomus and to a lesser extent by Procladius, suggesting that Ross Lake became a degraded environment. Abundances of Cladocera and Chaoborus were severely reduced in the postindustrial era, likely because of metals toxicity. Overall, improvements

  10. Reconstructing the ecological impacts of eight decades of mining, metallurgical, and municipal activities on a small boreal lake in northern Canada.

    PubMed

    Doig, Lorne E; Schiffer, Stephanie T; Liber, Karsten

    2015-07-01

    As a result of long-term metal mining and metallurgical activities, the sediment of Ross Lake (Flin Flon, MB, Canada) is highly contaminated with metals and other elements. Although the effluents likely were discharged into Ross Lake as early as the late 1920s, lake biophysical data were not collected until 1973, more than 4 decades after the onset of mining and municipal activities. The early influence of these activities on the ecology of Ross Lake is unknown, as are the effects of improvements to metallurgical effluent quality and discontinuation of municipal wastewater discharge into the lake's north basin. To address this knowledge gap, analyses typical of paleolimnological investigations were applied to cores of sediment collected in 2009 from the south basin of Ross Lake. Stratigraphic analyses of physicochemical sediment characteristics (e.g., the concentrations of metals and other elements, organic C, total N, and δ(13)C and δ(15)N values) and subfossil remains (diatoms, Chironomidae, Chaoborus, and Cladocera) were used to infer historical biological and chemical changes in Ross Lake. With the onset of mining activities, concentrations of various elements (e.g., As, Cr, Cu, Zn, and Se) increased dramatically in the sediment profile, eventually declining with improved tailings management. Nevertheless, concentrations of metals in recent sediments remain elevated compared with pre-industrial sediments. Constrained cluster analyses demonstrated distinct pre-industrial and postindustrial communities for both the diatoms and chironomids. The biodiversity of the postindustrial diatom assemblages were much reduced compared with the pre-industrial assemblages. The postindustrial chironomid assemblage was dominated by Chironomus and to a lesser extent by Procladius, suggesting that Ross Lake became a degraded environment. Abundances of Cladocera and Chaoborus were severely reduced in the postindustrial era, likely because of metals toxicity. Overall, improvements

  11. Practical applications of sulfate-reducing bacteria to control acid mine drainage at the Lilly/Orphan Boy Mine near Elliston, Montana

    SciTech Connect

    Canty, M.

    1994-12-31

    The overall purpose of this document is to provide a detailed technical description of a technology, biological sulfate reduction, which is being demonstrated under the Mine Waste Technology Pilot Program, and provide the technology evaluation process undertaken to select this technology for demonstration. In addition, this document will link the use of the selected technology to an application at a specific site. The purpose of this project is to develop technical information on the ability of biological sulfate reduction to slow the process of acid generation and, thus, improve water quality at a remote mine site. Several technologies are screened for their potential to treat acid mine water and to function as a source control for a specific acid-generating situation: a mine shaft and associated underground workings flooded with acid mine water and discharging a small flow from a mine opening. The preferred technology is the use of biological sulfate reduction. Sulfate-reducing bacteria are capable of reducing sulfate to sulfide, as well as increasing the pH and alkalinity of water affected by acid generation. Soluble sulfide reacts with the soluble metals in solution to form insoluble metal sulfides. The environment needed for efficient sulfate-reducing bacteria growth decreases acid production by reducing the dissolved oxygen in water and increasing pH. A detailed technical description of the sulfate-reducing bacteria technology, based on an extensive review of the technical literature, is presented. The field demonstration of this technology to be performed at the Lilly/Orphan Boy Mine is also described. Finally, additional in situ applications of biological sulfate reduction are presented.

  12. Survey of duckweed diversity in Lake Chao and total fatty acid, triacylglycerol, profiles of representative strains.

    PubMed

    Tang, J; Li, Y; Ma, J; Cheng, J J

    2015-09-01

    Lemnaceae (duckweeds) are widely distributed aquatic flowering plants. Their high growth rate, starch content and suitability for bioremediation make them potential feedstock for biofuels. However, few natural duckweed resources have been investigated in China, and there is no information about total fatty acid (TFA) and triacylglycerol (TAG) composition of duckweeds from China. Here, the genetic diversity of a natural duckweed population collected from Lake Chao, China, was investigated using multilocus sequence typing (MLST). The 54 strains were categorised into four species in four genera, representing 12 distinct sequence types. Strains representing Lemna aequinoctialis and Spirodela polyrhiza were predominant. Interestingly, a surprisingly high degree of genetic diversification within L. aequinoctialis was observed. The four duckweed species revealed a uniform fatty acid composition, with three fatty acids, palmitic acid, linoleic acid and linolenic acid, accounting for more than 80% of the TFA. The TFA in biomass varied among species, ranging from 1.05% (of dry weight, DW) for L. punctata and S. polyrhiza to 1.62% for Wolffia globosa. The four duckweed species contained similar TAG contents, 0.02% mg · DW(-1). The fatty acid profiles of TAG were different from those of TFA, and also varied among the four species. The survey investigated the genetic diversity of duckweeds from Lake Chao, and provides an initial insight into TFA and TAG of four duckweed species, indicating that intraspecific and interspecific variations exist in the content and composition of both TFA and TAG in comparison with other studies.

  13. [Study on heavy metals in soils contaminated by acid mine drainage from Dabaoshan mine, Guangdong].

    PubMed

    Fu, Shan-Ming; Zhou, Yong-Zhang; Zhao, Yu-Yan; Zeng, Feng; Gao, Quan-Zhou; Peng, Xian-Zhi; Dang, Zhi; Zhang, Cheng-Bo; Yang, Xiao-Qiang; Yang, Zhi-Jun; Dou, Lei; Qiu, Rong-Liang; Ding, Jian

    2007-04-01

    Mining activities in the Dabaoshan area in the upper reach of the Hengshihe River have caused severe environmental changes, the waste water of milling and refining drained directly into the Hengshihe River, which contaminated the soils along the river severely. It is shown that Pb, Zn, Cd and Cu have contaminated the soil, the Cd contamination was more severe, and the contaminated level of Pb, Zn reached moderately to strongly polluted. The pH value of river and soil affected directly the heavy metals concentration of total and exchangeable ions, and presented negative pertinences. The levels of Pb, Zn, Cu and Cd in the surface soil of Shangbacun village in the lower reach of the river were found as high as 257.762, 350.235, 5.083 and 186.901 mg x kg(-1) respectively, which were relatively higher than those of the background values of soil 1.03, 1.75, 16.9 and 3.7 times respectively, and the result on the soil profiles showed that the contaminations have infiltrated into lower layer soil, ecological environment was harmed severely.

  14. MODULAR FIELD-BIOREACTOR FOR ACID MINE DRAINAGE TREATMENT

    EPA Science Inventory

    The presentation focuses on the improvements to engineered features of a passive technology that has been used for remediation of acid rock drainage (ARD). This passive remedial technology, a sulfate-reducing bacteria (SRB) bioreactor, takes advantage of the ability of SRB that,...

  15. Modeling Analysis for Characterizing Sulfate Reduction at an Acid Mine Drainage Site

    NASA Astrophysics Data System (ADS)

    Sengupta, A.; Ahlfeld, D. P.

    2004-05-01

    A field site has been established at Davis Mine, an abandoned pyrite mine in rural Rowe, Massachusetts in the United States. At the site, attenuation restricts the extent of AMD in both the groundwater and surface water of the area. Current research is examining the Fe(III) and sulfate reduction along with a complex community of acidophilic and acid-tolerant anaerobic microorganisms. In an effort to interlink the geochemical reduction with the microbial community existing in the site, the role of the Fe(III) and sulfate reducing bacteria is being investigated. Initial experimental data and column studies have shown the presence of sulfate reducing bacteria at the site. A detailed groundwater flow model for the affected site has been developed. A model is currently being developed of the various geochemical and biological processes at Davis Mine for use in distinguishing between sulfate reduction and dilution as they affect observed sulfate attenuation.

  16. Influence of acid mine drainage on microbial communities in stream and groundwater samples at Guryong Mine, South Korea

    NASA Astrophysics Data System (ADS)

    Kim, Jaisoo; Koo, So-Yeon; Kim, Ji-Young; Lee, Eun-Hee; Lee, Sang-Don; Ko, Kyung-Seok; Ko, Dong-Chan; Cho, Kyung-Suk

    2009-10-01

    The effects of acid mine drainage (AMD) in a stream and groundwater near an abandoned copper mine were characterized by physicochemical properties, bacterial community structure using denaturing gel gradient electrophoresis (DGGE), and microbial activity/diversity using Ecoplate technique. Based on DGGE fingerprints, the eubacterial community structures grouped into the stream water (GRS1, GRS2 and GRS3) and groundwater samples (GW1 and GW2), apparently based on differences in water temperature and the concentrations of dissolved oxygen, nitrate and sulfate. The most highly AMD-contaminated sample (GRS1) had additional α-Proteobacteria whereas the groundwater samples included additional β-Proteobacteria, suggesting the development of populations resistant to AMD toxicity under aerobic and anaerobic conditions, respectively. Community level physiological activities on the 31 Ecoplate substrates suggested that the activities decreased with increasing concentrations of sulfate and heavy metals derived from AMD. The Shannon index showed that microbial diversity was greatest in GRS2, and lowest in GRS1, and was probably related to the level of AMD.

  17. The use of ERTS-1 MSS data for mapping strip mines and acid mine drainage in Pennsyvania

    NASA Technical Reports Server (NTRS)

    Alexander, S. S.; Dein, J. L.; Gold, D. P.

    1973-01-01

    Digital processing of ERTS-I MSS data for areas around the west branch of the Susquehanna River permits identification of stripped areas including ones that are not discernible from visual analysis of ERTS imagery. Underflight data and ground-based observations are used for ground-truth and as a basis for designing more refined operators to make sub-classifications of stripped areas, particularly with regard to manifestations of acid mine drainage; because of associated diagnostic effects on vegetation, seasonal changes in classifiction criteria are being documented as repeated, cloud-free ERTS-I coverage of the same area becomes available. Preliminary results indicate that ERTS data can be used to moniter not only the total extent of stripping in given areas but also the effectiveness of reclamation and pollution abatement procedures.

  18. Australian Acid Playa Lake as a Mars Analog: Results from Sediment Lipid Analysis

    NASA Astrophysics Data System (ADS)

    Graham, H.; Baldridge, A. M.; Stern, J. C.

    2015-12-01

    The ephemeral saline acidic lakes on the Yilgarn Craton of Western Australia have been suggested as geochemical analogues to martian terrains. Both are characterized by interbedded phyllosilicates and hydrated sulfates. On Mars, these areas indicate shifting environmental conditions, from the neutral/alkaline and wet conditions that dominated during the Noachian era to the more familiar dry, acidic conditions that began in the Hesperian. The habitability of such a dynamic environment can be informed by investigation of the Yilgarn Lake system. Previous work has found phospholipid fatty acids (PLFA) evidence of microbial communities in sections of sediment cores taken from Lake Gilmore. These communities include both Gram-positive and -negative bacteria, Actinomycetes, and even methanotrophs. Given recurring detection of methane on the martian surface, evidence of a methane cycling community in an analogous environment is of particular interest. In this study we analyze the carbon isotope composition of bulk organic material as well as extracted lipids from the Lake Gilmore sediment cores at both a near-shore and mid-lake location. These analyses reveal very low accumulations of organic carbon, concentrated primarily in the gypsum-rich near-shore core. The near-shore sediments show a down-core decrease in abundance of organic carbon as well as depletion in the carbon isotope composition (δ13C) with depth. Bulk carbon did not exhibit the unique, highly depleted, diagnostic signature associated with methanotrophic biomass. Compound-specific isotope analysis (CSIA) of carbon in extracted methanotroph PFLAs can confirm the presence of a methane cycling metabolism at depth. Also, additional extractions have isolated lipids associated with lake-edge grasses. These analyses consider both the chain-length distribution and carbon CSIA of these lipids in order to understand the effect of terrestrial detritus on any preserved methanotroph carbon signal, given the very low

  19. Data-driven modeling of background and mine-related acidity and metals in river basins.

    PubMed

    Friedel, Michael J

    2014-01-01

    A novel application of self-organizing map (SOM) and multivariate statistical techniques is used to model the nonlinear interaction among basin mineral-resources, mining activity, and surface-water quality. First, the SOM is trained using sparse measurements from 228 sample sites in the Animas River Basin, Colorado. The model performance is validated by comparing stochastic predictions of basin-alteration assemblages and mining activity at 104 independent sites. The SOM correctly predicts (>98%) the predominant type of basin hydrothermal alteration and presence (or absence) of mining activity. Second, application of the Davies-Bouldin criteria to k-means clustering of SOM neurons identified ten unique environmental groups. Median statistics of these groups define a nonlinear water-quality response along the spatiotemporal hydrothermal alteration-mining gradient. These results reveal that it is possible to differentiate among the continuum between inputs of background and mine-related acidity and metals, and it provides a basis for future research and empirical model development.

  20. Comparative microbial ecology of the water column of an extreme acidic pit lake, Nuestra Señora del Carmen, and the Río Tinto basin (Iberian Pyrite Belt).

    PubMed

    González-Toril, Elena; Santofimia, Esther; López-Pamo, Enrique; García-Moyano, Antonio; Aguilera, Ángeles; Amils, Ricardo

    2014-12-01

    The Iberian Pyrite Belt, located in Southwestern Spain, represents one of the world's largest accumulations of mine wastes and acid mine drainages. This study reports the comparative microbial ecology of the water column of Nuestra Señora del Carmen acid pit lake with the extreme acidic Río Tinto basin. The canonical correspondence analysis identified members of the Leptospirillum, Acidiphilium, Metallibacterium, Acidithiobacillus, Ferrimicrobium and Acidisphaera genera as the most representative microorganisms of both ecosystems. The presence of archaeal members is scarce in both systems. Only sequences clustering with the Thermoplasmata have been retrieved in the bottom layer of Nuestra Señora del Carmen and one station of Río Tinto. Although the photosynthetically active radiation values measured in this lake upper layer were low, they were sufficient to activate photosynthesis in acidophilic microorganisms. All identified photosynthetic microorganisms in Nuestra Señora del Carmen (members of the Chlamydomonas, Zygnemopsis and Klebsormidium genera) are major members of the photosynthetic eukaryotic community characterized in Río Tinto basin. This study demonstrates a close relationship between the microbial diversity of Nuestra Señora del Carmen pit lake and the diversity detected in the Río Tinto basin, which underlain the influence of the shared mineral substrates in the microbial ecology of these ecosystems. PMID:26421738

  1. Vegetative cover grows directly on acidic mine refuse pile

    SciTech Connect

    Nickeson, F.H.

    1984-02-01

    The paper reports how permanent, self-sustaining vegetation has been established on an acidic, 80-year old coal refuse pile without using a soil cover. Tests were carried out on a number of 1-acre plots which were treated with different mixtures of lime, fertiliser and seeds of grasses and legumes. The results of the tests are discussed and the way in which the final treatment was chosen is explained. The work is considered to have been successful.

  2. Suspended spawning cans for channel catfish in a surface-mine lake. [Ictalurus punctatus

    SciTech Connect

    Moy, P.B.; Stickney, R.R.

    1987-01-01

    A technique was developed to enable channel catfish (Ictalurus punctatus) to spawn in lakes where sufficient spawning habitat is not available. Forty-five-liter spawning cans were suspended from styrofoam floats at a depth of 1.25 m below the water surface, in water that was 2-5 m deep. Brood fish successfully utilized the containers for spawning, and the presence of eggs in sunken containers suggests that channel catfish will spawn successfully at depths of up to 5 m if satisfactory nesting sites are available.

  3. Geochemical characterization of acid mine drainage from a waste rock pile, Mine Doyon, Québec, Canada

    NASA Astrophysics Data System (ADS)

    Sracek, O.; Choquette, M.; Gélinas, P.; Lefebvre, R.; Nicholson, R. V.

    2004-03-01

    Water quality in the unsaturated and saturated zones of a waste rock pile containing sulphides was investigated. The main objectives of the project were (1) the evaluation of geochemical trends including the acid mine drainage (AMD)-buffering mechanism and the role of secondary minerals, and (2) the investigation of the use of stable isotopes for the interpretation of physical and geochemical processes in waste rock. Pore water in unsaturated zone was sampled from suction lysimeters and with piezometers in underlying saturated rocks. The investigation revealed strong temporal (dry period vs. recharge period), and spatial (slope vs. central region of pile) variability in the formation of acid mine drainage. The main secondary minerals observed were gypsum and jarosite. There was a higher concentration of gypsum in solid phase at Site TBT than at Site 6, suggesting that part of the gypsum formed at Site 6 in the early stage of AMD has been already dissolved. Formation of secondary minerals contributed to the formation of AMD by opening of foliation planes in waste rock, thus increasing the access of oxidants like O 2 and Fe 3+ to previously encapsulated pyrite. The behavior of several dissolved species such as Mg, Al, and Fe 2+ can be considered as conservative in the leachate. Stable isotopes, deuterium and 18O, indicated internal evaporation within the pile, and were used to trace recharge pulses from snowmelt. Isotope trends for 34S and 18O(SO 4) indicated a lack of sulfate reduction and zones of active oxidation of pyrite, respectively. Results of numerical modeling of pyrite oxidation and gas and water transport were consistent with geochemical and isotopic trends and confirmed zones of high evaporation rate within the rock pile close to the slope. The results indicate that physical and chemical processes within the pile are strongly coupled and cannot be considered separately when oxidation rates are high and influence gas transport as a result of heat

  4. Geochemical characterization of acid mine drainage from a waste rock pile, Mine Doyon, Québec, Canada.

    PubMed

    Sracek, O; Choquette, M; Gélinas, P; Lefebvre, R; Nicholson, R V

    2004-03-01

    Water quality in the unsaturated and saturated zones of a waste rock pile containing sulphides was investigated. The main objectives of the project were (1) the evaluation of geochemical trends including the acid mine drainage (AMD)-buffering mechanism and the role of secondary minerals, and (2) the investigation of the use of stable isotopes for the interpretation of physical and geochemical processes in waste rock. Pore water in unsaturated zone was sampled from suction lysimeters and with piezometers in underlying saturated rocks. The investigation revealed strong temporal (dry period vs. recharge period), and spatial (slope vs. central region of pile) variability in the formation of acid mine drainage. The main secondary minerals observed were gypsum and jarosite. There was a higher concentration of gypsum in solid phase at Site TBT than at Site 6, suggesting that part of the gypsum formed at Site 6 in the early stage of AMD has been already dissolved. Formation of secondary minerals contributed to the formation of AMD by opening of foliation planes in waste rock, thus increasing the access of oxidants like O2 and Fe3+ to previously encapsulated pyrite. The behavior of several dissolved species such as Mg, Al, and Fe2+ can be considered as conservative in the leachate. Stable isotopes, deuterium and 18O, indicated internal evaporation within the pile, and were used to trace recharge pulses from snowmelt. Isotope trends for 34S and 18O(SO4) indicated a lack of sulfate reduction and zones of active oxidation of pyrite, respectively. Results of numerical modeling of pyrite oxidation and gas and water transport were consistent with geochemical and isotopic trends and confirmed zones of high evaporation rate within the rock pile close to the slope. The results indicate that physical and chemical processes within the pile are strongly coupled and cannot be considered separately when oxidation rates are high and influence gas transport as a result of heat generation

  5. Assessing the effectiveness of federal acid rain policy using remote and high elevation lakes in northern New England

    NASA Astrophysics Data System (ADS)

    Baumann, Adam J.

    The 1990 U.S. Clean Air Act Amendments (CAAA) set target reductions for both sulfur and nitrogen emissions to reduce acidic deposition and improve the biologically-relevant chemistry of low ANC surface waters in the United States. The Maine High Elevation Lake Monitoring (HELM) project was designed to complement other acid rain status and trend assessments in the northeast that were known to have underestimated the number of acidic lakes. HELM lakes are more susceptible to the effects of acid deposition than lowland lakes typically included in other surveys because they receive higher amounts of precipitation, and the watersheds are less able to neutralize acidic inputs because of steep slopes, shallow soils, and resistant bedrock. Furthermore, development impacts that affect water quality and cloud our interpretation of recovery from deposition in many lowland lakes are absent in the HELM lakes. Since 1986, HELM surface water SO4-2 concentration has decreased at a rate of 1.6mueq/L/yr.. HELM lake ANC has increased at a rate of 0.58 mueq/L/yr. and hydrogen ion has decreased at a rate of 0.05 mueq/L/yr. since 1986, highlighting the positive effect the CAAA is having on HELM acidity. Over the same time period, HELM DOC has increased at rate of 0.03 mg/L/yr., raising the median DOC in HELM lakes by 21%. Furthermore, we calculate that organic anions (OA-) now contribute 10% to 15% more to total anionic charge while at the same time, the lakes have become 23% more dilute. The increase in DOC has led to a shift in the source of acidity from anthropogenic inorganic (acid rain), to natural organic DOC sources. While this shift appears to complicate the interpretation of acid-base data coming from acid-sensitive lakes, in reality it highlights recovery to a more natural state for these surface waters. A comparison of HELM recovery data to recent data from the New Hampshire Remote Pond (NHRP) project serves to put the NHRP in regional perspective as well as enabling us to

  6. Anthropogenically driven changes in chloride complicate interpretation of base cation trends in lakes recovering from acidic deposition.

    PubMed

    Rosfjord, Catherine H; Webster, Katherine E; Kahl, Jeffrey S; Norton, Stephen A; Fernandez, Ivan J; Herlihy, Alan T

    2007-11-15

    Declines in Ca and Mg in low ANC lakes recovering from acidic deposition are widespread across the northern hemisphere. We report overall increases between 1984 and 2004 in the concentrations of Ca + Mg and Cl in lakes representing the statistical population of nearly 4000 low ANC lakes in the northeast U.S. Increases in Cl occurred in nearly all lakes in urbanized southern New England, but only 18% of lakes in more remote Maine had Cl increases. This spatial pattern implicates road salt application as the major source of the increased Cl salts. Among the 48% of the lake population classified as salt-affected, the median changes in Cl (+133 microeq/L) and Ca + Mg (+47 microeq/ L) were large and positive in direction over the 20 years. However, in the unaffected lakes, Cl remained stable and Ca + Mg decreased (-3 microeq/L), consistent with reported long-term trends in base cations of acid-sensitive lakes. This discrepancy between the Cl groups suggests that changes in ion exchange processes in salt-affected watersheds have altered the geochemical cycling of Ca and Mg. One policy-relevant implication is that waters influenced by Cl salts complicate regional assessments of surface water recovery from "acid rain" related to the passage of the Clean Air Act.

  7. Preliminary Results: Release Of Metals From Acid-Mine Drainage Contaminated Streambed Sediments Under Anaerobic Conditions (Presentation)

    EPA Science Inventory

    Many miles of streams in the western U.S. are contaminated with acid-mine drainage (AMD) from abandoned metal mines. Treatment of these streams may include removal of the existing sediments, with subsequent burial (e.g., in a repository). Burial of previously aerobic sediments ma...

  8. The effect of limestone treatments on the rate of acid generation from pyritic mine gangue.

    PubMed

    Burt, R A; Caruccio, F T

    1986-09-01

    Surface water enters the Haile Gold Mine, Lancaster County, South Carolina by means of a small stream and is ponded behind a dam and in an abandoned pit. This water is affected by acidic drainage. In spite of the large exposures of potentially acid producing pyritic rock, the flux of acid to the water is relatively low. Nevertheless, the resulting pH values of the mine water are low (around 3.5) due to negligible buffering capacity. In view of the observed low release of acidity, the potential for acid drainage abatement by limestone ameliorants appears feasible.This study investigated the effects of limestone treatment on acid generation rates of the Haile mine pyritic rocks through a series of leaching experiments. Below a critical alkalinity threshold value, solutions of dissolved limestone were found consistently to accelerate the rate of pyrite oxidation by varying degrees. The oxidation rates were further accelerated by admixing solid limestone with the pyritic rock. However, after a period of about a month, the pyrite oxidation rate of the admixed samples declined to a level lower than that of untreated pyrite. Leachates produced by the pyrite and limestone mixtures contained little if any iron. Further, in the mixtures, an alteration of the pyrite surface was apparent.The observed behaviour of the treated pyrite appears to be related to the immersion of the pyrite grains within a high alkalinity/high pH environment. The high pH increases the rate of oxidation of ferrous iron which results in a higher concentration of ferric iron at the pyrite surface. This, in turn, increases the rate of pyrite oxidation. Above a threshold alkalinity value, the precipitation of hydrous iron oxides at the pyrite surface eventually outpaces acid generation and coats the pyrite surface, retarding the rate of pyrite oxidation. PMID:24214013

  9. HYDROGEOLOGICAL AND GEOCHEMICAL FACTORS INFLUENCING MERCURY FATE AND TRANSPORT AT THE SULPHUR BANK MERCURY MINE, LAKE COUNTY, CALIFORNIA

    EPA Science Inventory

    Clear Lake, located approximately 150 km north of San Francisco in Lake County, is one of the largest fresh water lakes in the California. Elevated mercury levels were first identified in fish from Clear Lake in the late 1970s and early 1980s. Although naturally occurring mercury...

  10. Long-term recovery of lakes in the Adirondack region of New York to decreases in acidic deposition

    NASA Astrophysics Data System (ADS)

    Waller, Kristin; Driscoll, Charles; Lynch, Jason; Newcomb, Dani; Roy, Karen

    2012-01-01

    After years of adverse impacts to the acid-sensitive ecosystems of the eastern United States, the Acid Rain Program and Nitrogen Budget Program were developed to control sulfur dioxide (SO 2) and nitrogen oxide (NO x) emissions through market-based cap and trade systems. We used data from the National Atmospheric Deposition Program's National Trends Network (NTN) and the U.S. EPA Temporally Integrated Monitoring of Ecosystems (TIME) program to evaluate the response of lake-watersheds in the Adirondack region of New York to changes in emissions of sulfur dioxide and nitrogen oxides resulting from the Acid Rain Program and the Nitrogen Budget Program. TIME is a long-term monitoring program designed to sample statistically selected subpopulations of lakes and streams across the eastern U.S. to quantify regional trends in surface water chemistry due to changes in atmospheric deposition. Decreases in wet sulfate deposition for the TIME lake-watersheds from 1991 to 2007 (-1.04 meq m -2-yr) generally corresponded with decreases in estimated lake sulfate flux (-1.46 ± 0.72 meq m -2-yr), suggesting declines in lake sulfate were largely driven by decreases in atmospheric deposition. Decreases in lake sulfate and to a lesser extent nitrate have generally coincided with increases in acid neutralizing capacity (ANC) resulting in shifts in lakes among ANC sensitivity classes. The percentage of acidic Adirondack lakes (ANC <0 μeq L -1) decreased from 15.5% (284 lakes) to 8.3% (152 lakes) since the implementation of the Acid Rain Program and the Nitrogen Budget Program. Two measures of ANC were considered in our analysis: ANC determined directly by Gran plot analysis (ANC G) and ANC calculated by major ion chemistry (ANC calc = CB - CA). While these two metrics should theoretically show similar responses, ANC calc (+2.03 μeq L -1-yr) increased at more than twice the rate as ANC G (+0.76 μeq L -1-yr). This discrepancy has important implications for assessments of lake recovery

  11. Trends in summer chemistry linked to productivity in lakes recovering from acid deposition in the Adirondack region of New York

    USGS Publications Warehouse

    Momen, B.; Lawrence, G.B.; Nierzwicki-Bauer, S. A.; Sutherland, J.W.; Eichler, L.W.; Harrison, J.P.; Boylen, C.W.

    2006-01-01

    The US Environmental Protection Agency established the Adirondack Effects Assessment Program (AEAP) to evaluate and monitor the status of biological communities in lakes in the Adirondack region of New York that have been adversely affected by acid deposition. This program includes chemical analysis of 30 lakes, sampled two to three times each summer. Results of trends analysis for lake chemistry and chlorophyll a (chlor a) are presented for 1994 to 2003, and a general comparison is made with recent results of the Adirondack Long-Term Monitoring (ALTM) Program, which included chemical analysis of all but two of these lakes (plus an additional 24 lakes) monthly, year-round for 1992-2004. Increases in pH were found in 25 of the 30 AEAP lakes (P < 0.05) and increases in acid-neutralizing capacity (ANC) were found in 12 of the 30 lakes (P < 0.05). Concentrations of both SO 42- and Mg 2+ decreased in 11 lakes (P < 0.05), whereas concentrations of NO 3- decreased in 20 lakes (P < 0.05). Concentrations of NH 4+ decreased in 10 lakes at a significance level of P < 0.05 and in three other lakes based on P < 0.1. Concentrations of inorganic and organic monomeric aluminum generally were below the reporting limit of 1.5 ??mol L-1, but decreases were detected in four and five lakes, respectively (P < 0.1). Concentrations of chlor a increased in seven lakes at a significance level of P < 0.05 and two lakes at a significance level of P < 0.1. A significant inverse correlation was also found between chlor a and NO 3- concentrations in nine lakes at a significance level of P < 0.05 and two lakes at a significance level of P < 0.1. Results of AEAP analysis of lake chemistry were similar to those of the ALTM Program, although decreases in SO 42- concentrations were more evident in the year-round ALTM record. Overall, the results suggest (a) a degree of chemical recovery from acidification during the summer, (b) an increase in phytoplankton productivity, and (c) a decreasing trend in

  12. Influence of elevated temperature and acid mine drainage on mortality of the crayfish Cambarus bartonii

    USGS Publications Warehouse

    Hartman, K.J.; Hom, C.D.; Mazik, P.M.

    2010-01-01

    Effects of elevated temperature and acid mine drainage (AMD) on crayfish mortality were investigated in the Stony River, Grant County, West Virginia. During summers 2003 and 2004, four-week in situ bioassays were performed along a thermal and AMD gradient with the native crayfish Cambarus bartonii. Crayfish mortality was analyzed in conjunction with temperature and AMD related variables (pH, specific conductivity). Mortality was significantly higher (48-88%) at sites with high temperatures during 2003 (max = 33.0??C), but no significant differences were observed in 2004 (max = 32.0??C). Temperatures were higher in 2003 than 2004 due to increased discharge from a cooling reservoir flowing into the river. Additionally, duration of high temperature was approximately four days in 2003 as compared with only one day in 2004. No significant relationship between acid mine drainage variables and crayfish mortality was apparent.

  13. Leaf Associated Microbial Activities in a Stream Affected by Acid Mine Drainage

    NASA Astrophysics Data System (ADS)

    Schlief, Jeanette

    2004-11-01

    Microbial activity was assessed on birch leaves and plastic strips during 140 days of exposure at three sites in an acidic stream of the Lusatian post-mining landscape, Germany. The sites differed in their degrees of ochre deposition and acidification. The aim of the study was (1) to follow the microbial activities during leaf colonization, (2) to compare the effect of different environmental conditions on leaf associated microbial activities, and (3) to test the microbial availability of leaf litter in acidic mining waters. The activity peaked after 49 days and subsequently decreased gradually at all sites. A formation of iron plaques on leaf surfaces influenced associated microbial activity. It seemed that these plaques inhibit the microbial availability of leaf litter and serve as a microbial habitat by itself. (

  14. CHARACTERIZATION AND EH/PH-BASED LEACHING TESTS OF MERCURY-CONTAINING MINING WASTES FROM THE SULFUR BANK MERCURY MINE, LAKE COUNTY, CALIFORNIA

    EPA Science Inventory

    Mine waste rock and roaster tailings were collected from the Sulfur Bank Mercury Mine (SBMM) located in Clearlake Oaks, California. The site has been under investigation as a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) site. Leaching profiles o...

  15. Responses of 20 lake-watersheds in the Adirondack region of New York to historical and potential future acidic deposition.

    PubMed

    Zhou, Qingtao; Driscoll, Charles T; Sullivan, Timothy J

    2015-04-01

    Critical loads (CLs) and dynamic critical loads (DCLs) are important tools to guide the protection of ecosystems from air pollution. In order to quantify decreases in acidic deposition necessary to protect sensitive aquatic species, we calculated CLs and DCLs of sulfate (SO4(2-))+nitrate (NO3-) for 20 lake-watersheds from the Adirondack region of New York using the dynamic model, PnET-BGC. We evaluated lake water chemistry and fish and total zooplankton species richness in response to historical acidic deposition and under future deposition scenarios. The model performed well in simulating measured chemistry of Adirondack lakes. Current deposition of SO4(2-)+NO3-, calcium (Ca2+) weathering rate and lake acid neutralizing capacity (ANC) in 1850 were related to the extent of historical acidification (1850-2008). Changes in lake Al3+ concentrations since the onset of acidic deposition were also related to Ca2+ weathering rate and ANC in 1850. Lake ANC and fish and total zooplankton species richness were projected to increase under hypothetical decreases in future deposition. However, model projections suggest that lake ecosystems will not achieve complete chemical and biological recovery in the future.

  16. The Western Maryland coal combustion by-products/acid mine drainage initiative, the Winding Ridge demonstration project

    SciTech Connect

    Rafalko, L.; Petzrick, P.

    1998-12-31

    The Maryland Department of Natural Resources Power Plant Research Program (PPRP) and the Maryland Department of the Environment Bureau of Mines (MDE) have undertaken the Western Maryland Coal Combustion By-Products (CCB)/Acid Mine Drainage (AMD) Initiative, which is a joint effort with private industry to demonstrate the beneficial application of alkaline CCBs to create flowable grouts to prevent the formation of AMD. The Initiative is a key component of Maryland`s overall ash utilization program to promote and expand the beneficial use of all CCBS. Ultimately, the Initiative is targeting AMD abatement from significant AMD sources in the State, such as the Kempton Mine and Three Forks Run complexes. The Winding Ridge Project is the Initiative`s first demonstration of this technology. The Frazee Mine (a small kitchen mine), in Garrett County, Maryland, was selected for the demonstration. The CCB grout mixing and mine injection phase was performed in October and November 1996. This phase demonstrated the engineering feasibility and logistics of using 100% CCBs and acid mine water to create a grout, which was injected into the Frazee Mine. Approximately 5,600 cubic yards of CCB grout were injected into the mine under both dry and submerged conditions. Observations from borehole camera logging indicated that the grout was capable of flowing at least 100 feet along the mine pavement. Laboratory tests of hardened grout core samples recovered from the mine showed unconfined compressive strengths of over 1,000 pounds per square inch (psi) (28-day strength tests were over 300 psi) and permeabilities of about 10--7 centimeters per second. These observations indicate that the use of CCBs as a grout for mine sealing is a promising technical option for the large-scale beneficial application of these materials. Currently, postinjection water quality monitoring is being performed to better evaluate the long-term effects on the mine discharge. In addition, future work will

  17. Efficient inhibition of heavy metal release from mine tailings against acid rain exposure by triethylenetetramine intercalated montmorillonite (TETA-Mt).

    PubMed

    Gong, Beini; Wu, Pingxiao; Huang, Zhujian; Li, Yuanyuan; Yang, Shanshan; Dang, Zhi; Ruan, Bo; Kang, Chunxi

    2016-11-15

    The potential application of triethylenetetramine intercalated montmorillonite (TETA-Mt) in mine tailings treatment and AMD (acid mine drainage) remediation was investigated with batch experiments. The structural and morphological characteristics of TETA-Mt were analyzed with XRD, FTIR, DTG-TG and SEM. The inhibition efficiencies of TETA-Mt against heavy metal release from mine tailings when exposed to acid rain leaching was examined and compared with that of triethylenetetramine (TETA) and Mt. Results showed that the overall inhibition by TETA-Mt surpassed that by TETA or Mt for various heavy metal ions over an acid rain pH range of 3-5.6 and a temperature range of 25-40°C. When mine tailings were exposed to acid rain of pH 4.8 (the average rain pH of the mining site where the mine tailings were from), TETA-Mt achieved an inhibition efficiency of over 90% for Cu(2+), Zn(2+), Cd(2+) and Mn(2+) release, and 70% for Pb(2+) at 25°C. It was shown that TETA-Mt has a strong buffering capacity. Moreover, TETA-Mt was able to adsorb heavy metal ions and the adsorption process was fast, suggesting that coordination was mainly responsible. These results showed the potential of TETA-Mt in AMD mitigation, especially in acid rain affected mining area. PMID:27450331

  18. Efficient inhibition of heavy metal release from mine tailings against acid rain exposure by triethylenetetramine intercalated montmorillonite (TETA-Mt).

    PubMed

    Gong, Beini; Wu, Pingxiao; Huang, Zhujian; Li, Yuanyuan; Yang, Shanshan; Dang, Zhi; Ruan, Bo; Kang, Chunxi

    2016-11-15

    The potential application of triethylenetetramine intercalated montmorillonite (TETA-Mt) in mine tailings treatment and AMD (acid mine drainage) remediation was investigated with batch experiments. The structural and morphological characteristics of TETA-Mt were analyzed with XRD, FTIR, DTG-TG and SEM. The inhibition efficiencies of TETA-Mt against heavy metal release from mine tailings when exposed to acid rain leaching was examined and compared with that of triethylenetetramine (TETA) and Mt. Results showed that the overall inhibition by TETA-Mt surpassed that by TETA or Mt for various heavy metal ions over an acid rain pH range of 3-5.6 and a temperature range of 25-40°C. When mine tailings were exposed to acid rain of pH 4.8 (the average rain pH of the mining site where the mine tailings were from), TETA-Mt achieved an inhibition efficiency of over 90% for Cu(2+), Zn(2+), Cd(2+) and Mn(2+) release, and 70% for Pb(2+) at 25°C. It was shown that TETA-Mt has a strong buffering capacity. Moreover, TETA-Mt was able to adsorb heavy metal ions and the adsorption process was fast, suggesting that coordination was mainly responsible. These results showed the potential of TETA-Mt in AMD mitigation, especially in acid rain affected mining area.

  19. Assessing the recovery of lakes in southeastern Canada from the effects of acidic deposition.

    PubMed

    Jeffries, Dean S; Clair, Thomas A; Couture, Suzanne; Dillon, Peter J; Dupont, Jacques; Keller, Wendel; McNicol, Donald K; Turner, Michael A; Vet, Robert; Weeber, Russell

    2003-04-01

    Reductions in North American sulfur dioxide (SO2) emissions promoted expectations that aquatic ecosystems in southeastern Canada would soon recover from acidification. Only lakes located near smelters that have dramatically reduced emissions approach this expectation. Lakes in the Atlantic provinces, Quebec and Ontario affected only by long-range sources show a general decline in sulfate (SO4(2-)) concentrations, but with a relatively smaller compensating increase in pH or alkalinity. Several factors may contribute to the constrained (or most likely delayed) acidity response: declining base cation concentrations, drought-induced mobilization of SO4(2-), damaged internal alkalinity generation mechanisms, and perhaps increasing nitrate or organic anion levels. Monitoring to detect biological recovery in southeastern Canada is extremely limited, but where it occurs, there is little evidence of recovery outside of the Sudbury/Killarney area. Both the occurrence of Atlantic salmon in Nova Scotia rivers and the breeding success of Common Loons in Ontario lakes are in fact declining although factors beyond acidification also play a role. Chemical and biological models predict that much greater SO2 emission reductions than those presently required by legislation will be needed to promote widespread chemical and latterly, biological recovery. It may be unrealistic to expect that pre-industrial chemical and biological conditions can ever be reestablished in many lakes of southeastern Canada.

  20. Assessing the recovery of lakes in southeastern Canada from the effects of acidic deposition.

    PubMed

    Jeffries, Dean S; Clair, Thomas A; Couture, Suzanne; Dillon, Peter J; Dupont, Jacques; Keller, Wendel; McNicol, Donald K; Turner, Michael A; Vet, Robert; Weeber, Russell

    2003-04-01

    Reductions in North American sulfur dioxide (SO2) emissions promoted expectations that aquatic ecosystems in southeastern Canada would soon recover from acidification. Only lakes located near smelters that have dramatically reduced emissions approach this expectation. Lakes in the Atlantic provinces, Quebec and Ontario affected only by long-range sources show a general decline in sulfate (SO4(2-)) concentrations, but with a relatively smaller compensating increase in pH or alkalinity. Several factors may contribute to the constrained (or most likely delayed) acidity response: declining base cation concentrations, drought-induced mobilization of SO4(2-), damaged internal alkalinity generation mechanisms, and perhaps increasing nitrate or organic anion levels. Monitoring to detect biological recovery in southeastern Canada is extremely limited, but where it occurs, there is little evidence of recovery outside of the Sudbury/Killarney area. Both the occurrence of Atlantic salmon in Nova Scotia rivers and the breeding success of Common Loons in Ontario lakes are in fact declining although factors beyond acidification also play a role. Chemical and biological models predict that much greater SO2 emission reductions than those presently required by legislation will be needed to promote widespread chemical and latterly, biological recovery. It may be unrealistic to expect that pre-industrial chemical and biological conditions can ever be reestablished in many lakes of southeastern Canada. PMID:12839192

  1. Phytostabilization potential of Jatropha curcas L. in polymetallic acid mine tailings.

    PubMed

    Wu, Qihang; Wang, Shizhong; Thangavel, Palaniswamy; Li, Qingfei; Zheng, Han; Bai, Jun; Qiu, Rongliang

    2011-09-01

    Greenhouse pot experiments were conducted to determine the growth response, metal tolerance, and phytostabilization potential of Jatropha curcas L The plants were grown on different degrees of multi-metal contaminated acid mine soils (T0, control; T1, moderately and T2, highly contaminated soils) with or without limestone amendments. The order of metal accumulation in J. curcas was roots>stems>leaves. The higher tolerance index (>90%) with no phytotoxic symptoms and growth reduction in T1 showed that this plant has the ability to tolerate polymetallic acid mine tailings. Further, various enzymatic and non-enzymatic antioxidants also actively involved in metal defense mechanism in J. curcas. On the other hand, to alleviate the predominant phytoavailable toxic metals such as Al, Cu, and Pb, different rates (0.1, 0.25, 0.50, and 1%) of limestone amendments were added in both T1 and T2 soils. The growth performance of J. curcas was improved due to the increase in soil pH and decrease in phytoavailable soil A1 (95%), Zn (approximately 75%), and Cu (approximately 65%) contents at 0.50% of lime addition. Based on the inherent tolerance ability of J. curcas in existing adverse environmental conditions without liming, it could be used as a suitable candidate for phytostabilization in acid mine tailings. PMID:21972519

  2. Acid mine drainage treatment using by-products from quicklime manufacturing as neutralization chemicals.

    PubMed

    Tolonen, Emma-Tuulia; Sarpola, Arja; Hu, Tao; Rämö, Jaakko; Lassi, Ulla

    2014-12-01

    The aim of this research was to investigate whether by-products from quicklime manufacturing could be used instead of commercial quicklime (CaO) or hydrated lime (Ca(OH)2), which are traditionally used as neutralization chemicals in acid mine drainage treatment. Four by-products were studied and the results were compared with quicklime and hydrated lime. The studied by-products were partly burnt lime stored outdoors, partly burnt lime stored in a silo, kiln dust and a mixture of partly burnt lime stored outdoors and dolomite. Present application options for these by-products are limited and they are largely considered waste. Chemical precipitation experiments were performed with the jar test. All the studied by-products removed over 99% of Al, As, Cd, Co, Cu, Fe, Mn, Ni, Zn and approximately 60% of sulphate from acid mine drainage. However, the neutralization capacity of the by-products and thus the amount of by-product needed as well as the amount of sludge produced varied. The results indicated that two out of the four studied by-products could be used as an alternative to quicklime or hydrated lime for acid mine drainage treatment. PMID:25193795

  3. Impact of acid mine drainage on haematological, histopathological and genotoxic effects in golden mahaseer, Tor putitora.

    PubMed

    Shahi, Neetu; Sarma, Debaji; Pandey, Jyoti; Das, Partha; Sarma, Dandadhar; Mallik, Sumanta Kumar

    2016-07-01

    The present study was carried out to evaluate sub-lethal mechanism of acid mine drainage toxicity in fingerlings (9.5 ± 2.4 cm) of golden mahseer, Tor putitora. Exposed fingerlings showed significant reduction (P < 0.01) in blood erythrocytes, neutrophils, thrombocytes, lymphocytes and leukocytes in contrast to increase in number of immature circulating cells. Hyperplasia, degeneration of glomeruli, presence of inflammatory cells and increased number of melanomacrophage aggregates, vacuolization of cell cytoplasm, hepatocyte swelling were marked in kidney and liver of fish. Ladder in, an increment of 180-200 bp of hepatic and kidney DNA, by electrophoresis were consistent with DNA damage. 10 day exposure to acid mine drainage resulted in reduction of double stranded DNA to 46.0 and 48.0 in hepatocytes and kidney cells respectively. Significant increase (P < 0.01) in tail length and percent tail DNA was evident by comet assay. The results suggest that exposure to acid mine drainage might cause irreversible damage to immune cells, tissue and DNA of fish, and this model of DNA damage may contribute in identifying novel molecular mechanism of interest for bioremediation application. PMID:27498494

  4. Perfluoroalkyl acids in the egg yolk of birds from Lake Shihwa, Korea.

    PubMed

    Yoo, Hoon; Kannan, Kurunthachalam; Kim, Seong Kyu; Lee, Kyu Tae; Newsted, John L; Giesy, John P

    2008-08-01

    Concentrations of perfluoroalkyl acids (PFAs) were measured in egg yolks of three species of birds, the little egret (Egretta garzetta), little ringed plover (Charadrius dubius), and parrot bill (Paradoxornis webbiana), collected in and around Lake Shihwa, Korea, which receives wastewaters from an adjacent industrial complex. Mean concentrations of perfluorooctanesulfonate (PFOS) ranged from 185 to 314 ng/g ww and were similar to those reported for bird eggs from other urban areas. Long-chain perfluorocarboxylic acids (PFCAs) were also found in egg yolks often at great concentrations. Mean concentrations of perfluoroundecanoic acid (PFUnA) ranged from 95 to 201 ng/g ww. Perfluorooctanoic acid was detected in 32 of 44 egg samples, but concentrations were 100-fold less than those of PFOS. Relative concentrations of PFAs in all three species were similar with the predominance of PFOS (45-50%). There was a statistically significant correlation between PFUnA and perfluorodecanoic acid in egg yolks (p < 0.05), suggesting a common source of PFCAs. Using measured egg concentrations and diet concentrations, the ecological risk of the PFOS and PFA mixture to birds in Lake Shihwa was evaluated using two different approaches. Estimated hazard quotients were similar between the two approaches. The concentration of PFOS associated with 90th centile in bird eggs was 100-fold less than the lowest observable adverse effect level determined for birds, and those concentrations were 4-fold less than the suggested toxicity reference values. On the basis of limited toxicological data, current concentrations of PFOS are less than what would be expected to have an adverse effect on birds in the Lake Shihwa region.

  5. Use of natural and applied tracers to guide targeted remediation efforts in an acid mine drainage system, Colorado Rockies, USA

    USGS Publications Warehouse

    Cowie, Rory; Williams, Mark W.; Wireman, Mike; Runkel, Robert L.

    2014-01-01

    Stream water quality in areas of the western United States continues to be degraded by acid mine drainage (AMD), a legacy of hard-rock mining. The Rico-Argentine Mine in southwestern Colorado consists of complex multiple-level mine workings connected to a drainage tunnel discharging AMD to passive treatment ponds that discharge to the Dolores River. The mine workings are excavated into the hillslope on either side of a tributary stream with workings passing directly under the stream channel. There is a need to define hydrologic connections between surface water, groundwater, and mine workings to understand the source of both water and contaminants in the drainage tunnel discharge. Source identification will allow targeted remediation strategies to be developed. To identify hydrologic connections we employed a combination of natural and applied tracers including isotopes, ionic tracers, and fluorescent dyes. Stable water isotopes (δ18O/δD) show a well-mixed hydrological system, while tritium levels in mine waters indicate a fast flow-through system with mean residence times of years not decades or longer. Addition of multiple independent tracers indicated that water is traveling through mine workings with minimal obstructions. The results from a simultaneous salt and dye tracer application demonstrated that both tracer types can be successfully used in acidic mine water conditions.

  6. Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China.

    PubMed

    Chen, Meiqin; Lu, Guining; Guo, Chuling; Yang, Chengfang; Wu, Jingxiong; Huang, Weilin; Yee, Nathan; Dang, Zhi

    2015-01-01

    Sulfate, a major component of acid mine drainage (AMD), its migration in an AMD-affected river which located at the Dabaoshan mine area of South China was investigated to pursue the remediation strategy. The existing factors of relatively low pH values of 2.8-3.9, high concentrations of SO4(2-) (∼1940 mg L(-1)) and Fe(3+) (∼112 mg L(-1)) facilitated the precipitation of schwertmannite (Fe8O8(OH)6SO4·nH2O) in the upstream river. Geochemical model calculations implied the river waters were supersaturated, creating the potential for precipitation of iron oxyhydroxides. These minerals evolved from schwertmannite to goethite with the increasing pH from 2.8 to 5.8 along the river. The concentration of heavy metals in river waters was great reduced as a result of precipitation effects. The large size of the exchangeable sulfate pool suggested that the sediments had a strong capacity to bind SO4(2-). The XRD results indicated that schwertmannite was the predominant form of sulfate-bearing mineral phases, which was likely to act as a major sulfate sink by incorporating water-borne sulfate into its internal structure and adsorbing it onto its surface. The small size of reduced sulfur pools and strong oxidative status in the surface sediments further showed that SO4(2-) shifting from water to sediment in form of sulfate reduction was not activated. In short, precipitation of sulfate-rich iron oxyhydroxides and subsequent SO4(2-) adsorption on these minerals as well as water dilution contributed to the attenuation of SO4(2-) along the river waters. PMID:25189685

  7. Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China.

    PubMed

    Chen, Meiqin; Lu, Guining; Guo, Chuling; Yang, Chengfang; Wu, Jingxiong; Huang, Weilin; Yee, Nathan; Dang, Zhi

    2015-01-01

    Sulfate, a major component of acid mine drainage (AMD), its migration in an AMD-affected river which located at the Dabaoshan mine area of South China was investigated to pursue the remediation strategy. The existing factors of relatively low pH values of 2.8-3.9, high concentrations of SO4(2-) (∼1940 mg L(-1)) and Fe(3+) (∼112 mg L(-1)) facilitated the precipitation of schwertmannite (Fe8O8(OH)6SO4·nH2O) in the upstream river. Geochemical model calculations implied the river waters were supersaturated, creating the potential for precipitation of iron oxyhydroxides. These minerals evolved from schwertmannite to goethite with the increasing pH from 2.8 to 5.8 along the river. The concentration of heavy metals in river waters was great reduced as a result of precipitation effects. The large size of the exchangeable sulfate pool suggested that the sediments had a strong capacity to bind SO4(2-). The XRD results indicated that schwertmannite was the predominant form of sulfate-bearing mineral phases, which was likely to act as a major sulfate sink by incorporating water-borne sulfate into its internal structure and adsorbing it onto its surface. The small size of reduced sulfur pools and strong oxidative status in the surface sediments further showed that SO4(2-) shifting from water to sediment in form of sulfate reduction was not activated. In short, precipitation of sulfate-rich iron oxyhydroxides and subsequent SO4(2-) adsorption on these minerals as well as water dilution contributed to the attenuation of SO4(2-) along the river waters.

  8. Sources of acid and metals from the weathering of the Dinero waste pile, Lake Fork watershed, Leadville, Colorado

    USGS Publications Warehouse

    Diehl, S.F.; Hageman, Phil L.; Smith, Kathleen S.; Herron, J.T.; Desborough, G.A.

    2005-01-01

    Two trenches were dug into the south Dinero mine-waste pile near Leadville, Colorado, to study the weathering of rock fragments and the mineralogic sources of metal contaminants in the surrounding wetland and Lake Fork Watershed. Water seeping from the base of the south Dinero waste-rock pile was pH 2.9, whereas leachate from a composite sample of the rock waste was pH 3.3. The waste pile was mostly devoid of vegetation, open to infiltration of precipitation, and saturated at the base because of placement in the wetland. The south mine-waste pile is composed of poorly sorted material, ranging from boulder-size to fine-grained rock fragments. The trenches showed both matrix-supported and clast-supported zones, with faint horizontal color banding, suggesting zonation of Fe oxides. Secondary minerals such as jarosite and gypsum occurred throughout the depth of the trenches. Infiltration of water and transport of dissolved material through the pile is evidenced by optically continuous secondary mineral deposits that fill or line voids. Iron-sulfate material exhibits microlaminations with shrinkage cracking and preferential dissolution of microlayers that evidence drying and wetting events. In addition to fluids, submicron-sized to very fine-grained particles such as jarosite are transported through channel ways in the pile. Rock fragments are coated with a mixture of clay, jarosite, and manganese oxides. Dissolution of minerals is a primary source of metals. Skeletal remnants of grains, outlined by Fe-oxide minerals, are common. Potassium jarosite is the most abundant jarosite phase, but Pb-and Ag-bearing jarosite are common. Grain-sized clusters of jarosite suggest that entire sulfide grains were replaced by very fine-grained jarosite crystals. The waste piles were removed from the wetland and reclaimed upslope in 2003. This was an opportunity to test methods to identify sources of acid and metals and metal transport processes within a waste pile. A series of

  9. Microbial Communities in Biofilms of an Acid Mine Drainage Site Determined by Phospholipid Analysis

    NASA Astrophysics Data System (ADS)

    Das Gupta, S.; Fang, J.

    2008-12-01

    Phospholipids were extracted to determine the microbial biomass and community structure of biofims from an acid mine drainage (AMD) at the Green Valley coal mine site (GVS) in western Indiana. The distribution of specific biomarkers indicated the presence of a variety of microorganisms. Phototrophic microeukaryotes, which include Euglena mutabilis, algae, and cyanobacteria were the most dominant organisms, as indicated by the presence of polyunsaturated fatty acids. The presence of terminally methyl branched fatty acids suggests the presence of Gram-positive bacteria, and the mid-methyl branched fatty acids indicates the presence of sulfate-reducing bacteria. Fungi appear to also be an important part of the AMD microbial communities as suggested by the presence of 18:2 fatty acid. The acidophilic microeukaryotes Euglena dominated the biofilm microbial communities. These microorganisms appear to play a prominent role in the formation and preservation of stromatolites and in releasing oxygen to the atmosphere by oxygenic photosynthesis. Thus, the AMD environment comprises a host of microorganisms spreading out within the phylogenetic tree of life. Novel insights on the roles of microbial consortia in the formation and preservation of stromatolites and the production of oxygen through photosynthesis in AMD systems may have significance in the understanding of the interaction of Precambrian microbial communities in environments that produced microbially-mediated sedimentary structures and that caused oxygenation of Earth's atmosphere.

  10. Common Loon (Gavia immer) eggshell thickness and egg volume vary with acidity of nest lake in northern Wisconsin

    USGS Publications Warehouse

    Pollentier, C.D.; Kenow, K.P.; Meyer, M.W.

    2007-01-01

    Environmental acidification has been associated with factors that may negatively affect reproduction in many waterbirds. Declines in lake pH can lead to reductions in food availability and quality, or result in the altered availability of toxic metals, such as mercury. A recent laboratory study conducted by the U.S. Geological Survey and the Wisconsin Department of Natural Resources indicated that Common Loon (Gavia immer) chicks hatched from eggs collected on acidic lakes in northern Wisconsin may be less responsive to stimuli and exhibit reduced growth compared to chicks from neutral-pH lakes. Here we report on the relation between Common Loon egg characteristics (eggshell thickness and egg volume) and lake pH, as well as eggshell methylmercury content. Eggs (N = 84) and lake pH measurements were obtained from a four county region of northern Wisconsin. Egg-shells were 3-4% thinner on lakes with pH ??? 6.3 than on neutral-pH lakes and this relation was linear across the pH range investigated (P 0.05, n.s.) or lake pH. Results suggest that low lake pH may be associated with thinner eggshells and reduced egg volume in Common Loons. We speculate on the mechanisms that may lead to this phenomeno.

  11. Evaluation of the water quality related to the acid mine drainage of an abandoned mercury mine (Alaşehir, Turkey).

    PubMed

    Gemici, Unsal

    2008-12-01

    Mobility of metals in water, mine wastes, and stream sediments around the abandoned Alaşehir mercury mine was investigated to evaluate the environmental effects around the area. Mine waters are dominantly acidic with pH values of 2.55 in arid season and 2.70 in wet season and are sulfate rich. Acidity is caused mainly by the oxidation of sulfide minerals. Pyrite is the main acid-producing mineral in the Alaşehir area. Of the major ions, SO(4) shows a notable increase reaching 3981 mg/l, which exceeds the WHO (WHO guidelines for drinking water quality, vol. 2. Health criteria and other supporting information, 1993) and TS (Sular-Içme ve kullanma sulari. Ankara: Türk Standartlari Enstitüsü, 1997) drinking water standard of 250 mg/L. Mine waters have As, Fe, Mn, Ni, and Al with concentrations higher than drinking water standards. Hg concentrations of adit water samples and surface waters draining the mine area are between 0.25 and 0.274 microg/L and are below the WHO (WHO guidelines for drinking water quality, vol. 2. Health criteria and other supporting information, 1993) drinking water standard of 1.0 microg/L. However, the concentrations are above the 0.012 microg/L standard (EPA, Water quality standards. Establishment of numeric criteria for priority toxic pollutants, states' compliance, final rule. Fed. Reg., 40 CFR, Part 131, 57/246, 60847-60916, 1992) used to protect aquatic life. Stream sediment samples have abnormally high values of especially Hg, As, Ni, and Cr metals. Geoaccumulation (Igeo) and pollution index (PI) values are significantly high and denote heavy contamination in stream sediments. The stream sediments derived from the mining area with the surface waters are potentially hazardous to the environment adjacent to the abandoned Hg mine and are in need of remediation.

  12. The status of the passive treatment systems for acid mine drainage in South Korea

    NASA Astrophysics Data System (ADS)

    Ji, Sangwoo; Kim, Sunjoon; Ko, Juin

    2008-09-01

    This study was performed to investigate the operating status, evaluate the problems, and discuss possible improvement methods of passive treatment systems for acid mine drainage (AMD) in South Korea. Thirty-five passive treatment systems in 29 mines have been constructed from 1996 to 2002 using successive alkalinity producing systems (SAPS) as the main treatment process. We investigated 29 systems (two for metal mines), 19 of which revealed various problems. Overflows of drainage from SAPS, wetland, or oxidation ponds were caused by the flow rate exceeding the capacities of the facilities or by the reduced permeability of the organic substance layer. Leakages occurred at various parts of the systems. In some cases, clogged and broken pipes at the mouths of the mine adits made the whole system unusable. Some systems showed very low efficiencies without apparent leakage or overflow. Even though the systems showed fairly good efficiencies in metal removal ratios (mainly iron) and pH control; sulfate removal rates were very poor except in three systems, which may indicate very poor sulfate reductions with sulfate reducing bacteria (SRB) as a means.

  13. Implications for global climate change from microbially-produced acid mine drainage

    NASA Astrophysics Data System (ADS)

    Norlund, K. L.; Hitchcock, A. P.; Warren, L. A.

    2009-05-01

    Microbial catalysis of sulphur cycling in acid mine drainage (AMD) environments is well known but the reaction pathways are poorly characterised. These reaction pathways involve both acid-consuming and acid- generating steps, with important consequences for overall AMD production as well as sulphur and carbon global biogeochemical cycles. Mining-associated sulphuric acid has been implicated in climate change through the weathering of carbonate minerals resulting in the release of 29 Tg C/year as carbon dioxide. Understanding of microbial AMD generation is based predominantly on studies of Acidithiobacillus ferrooxidans despite the knowledge that other environmentally common strains of bacteria are also active sulphur oxidizers and that microbial consortia are likely very important in environmental processes. Using an integrated experimental approach including geochemical experimentation, scanning transmission X-ray microscopy (STXM) and fluorescent in situ hybridization (FISH), we document a novel syntrophic sulphur metabolism involving two common mine bacteria: autotrophic sulphur oxidizing Acidithiobacillus ferrooxidans and heterotrophic Acidiphilium spp. The proposed sulphur geochemistry associated with this bacterial consortium produces 40-90% less acid than expected based on abiotic AMD models, with significant implications for both AMD mitigation and AMD carbon flux modelling. The two bacterial strains are specifically spatially segregated within a macrostructure of extracellular polymeric substance (EPS) that provides the necessary microgeochemical conditions for coupled sulphur oxidation and reduction reactions. STXM results identify multiple sulphur oxidation states associated with the pods, indicating that they are the sites of active sulphur disproportionation and recycling. Recent laboratory experimentation using type culture strains of the bacteria involved in pod-formation suggesting that this phenomenon is likely to be widespread in environments

  14. Buffer capacities of fresh water lakes sensitive to acid rain deposition

    SciTech Connect

    Faust, S.D.; McIntosh, A.

    1983-01-01

    The Van Slyke definition of buffer capacity, the increment of a strong base or strong acid that causes an incremental change in the pH value of water, is better than total alkalinity for defining a water's resistance to acid rain. This Van Slyke value, designated by beta, shows a peak at pH 6.3 for the bicarbonate-carbonate pair, indicating that the effect of acid rain on the pH and alkalinity of natural waters is not deleterious until this peak is traversed. A beta value of zero indicates a dead water with no capacity to neutralize acid. The beta values, pH and total alkalinity of lakes, reservoirs, and streams in New Jersey are given. Data clearly show that pH and alkalinity alone cannot determine buffer capacity. For example: Fairview Lake (pH of 5.5 and alkalinity of 10.2 mg per liter) has a beta value 11 times that of Clyde Potts Reservoir (pH of 7.3, alkalinity of 8.1 mg per liter). 3 references, 1 figure, 1 table.

  15. Enrichment of sulfate-reducing bacteria and resulting mineral formation in media mimicking pore water metal ion concentrations and pH conditions of acidic pit lakes.

    PubMed

    Meier, Jutta; Piva, Angela; Fortin, Danielle

    2012-01-01

    Acid mine drainage sites are extreme environments with high acidity and metal ion concentrations. Under anoxic conditions, microbial sulfate reduction may trigger the formation of secondary minerals as a result of H2S production and pH increase. This process was studied in batch experiments with enrichment cultures from acidic sediments of a pit lake using growth media set at different pH values and containing elevated concentrations of Fe²⁺ and Al³⁺. At initial pH values of 5 and 6, sulfate reduction occurred shortly after inoculation. Sulfate- reducing bacteria affiliated to the genus Desulfosporosinus predominated the microbial communities as shown by 16S rRNA gene analysis performed at the end of the incubation. At initial pH values of 3 and 4, sulfate reduction and cell growth occurred only after an extended lag phase, however, at a higher rate than in the less acidic assays. At the end of the growth phase, enrichments were dominated by Thermodesulfobium spp. suggesting that these sulfate reducers were better adapted to acidic conditions. Iron sulfides in the bulk phase were common in all assays, but specific aluminum precipitates formed in close association with cell surfaces and may function as a detoxification mechanism of dissolved Al species at low pH.

  16. Development of a total maximum daily load (TMDL) for acid-impaired lakes in the Adirondack region of New York

    NASA Astrophysics Data System (ADS)

    Fakhraei, Habibollah; Driscoll, Charles T.; Selvendiran, Pranesh; DePinto, Joseph V.; Bloomfield, Jay; Quinn, Scott; Rowell, H. Chandler

    2014-10-01

    Acidic deposition has impaired acid-sensitive surface waters in the Adirondack region of New York by decreasing pH and acid neutralizing capacity (ANC). In spite of air quality programs over past decades, 128 lakes in the Adirondacks were classified as “impaired” under Section 303(d) of the Clean Water Act in 2010 due to elevated acidity. The biogeochemical model, PnET-BGC, was used to relate decreases in atmospheric sulfur (S) and nitrogen (N) deposition to changes in lake water chemistry. The model was calibrated and confirmed using observed soil and lake water chemistry data and then was applied to calculate the maximum atmospheric deposition that the impaired lakes can receive while still achieving ANC targets. Two targets of ANC were used to characterize the recovery of acid-impaired lakes: 11 and 20 μeq L-1. Of the 128 acid-impaired lakes, 97 currently have ANC values below the target value of 20 μeq L-1 and 83 are below 11 μeq L-1. This study indicates that a moderate control scenario (i.e., 60% decrease from the current atmospheric S load) is projected to recover the ANC of lakes at a mean rate of 0.18 and 0.05 μeq L-1 yr-1 during the periods 2022-2050 and 2050-2200, respectively. The total maximum daily load (TMDL) of acidity corresponding to this moderate control scenario was estimated to be 7.9 meq S m-2 yr-1 which includes a 10% margin of safety.

  17. Spatial characterization of acid rain stress in Canadian Shield Lakes. Progress report, 1 August 1986-1 February 1987

    SciTech Connect

    Tanis, F.J.

    1987-01-01

    The acidification of lake waters from airborne pollution is of continental proportions both in North America and Europe. A major concern of the acid rain problem is the cumulative ecosystem damage to lakes and forest. The number of lakes affected in northeastern U.S. and on the Canadian Shield is though to be enormous. How seasonal changes in lake transparency are related to annual acidic load was examined. The relationship between variations in lake acidification and ecophysical units was also examined. The utility of Thematic Mapper based observations to measure seasonal changes in the optical transparency in acid lakes was investigated. The potential for this optical response is related to a number of local ecophysical factors with bedrock geology being, perhaps, the most important. Other factors include sulfate deposition, vegetative cover, and terrain drainage/relief. The area of southern Ontario contains a wide variety of geologies from the most acid rain sensitive granite quartzite types to the least sensitive limestone dolomite sediments. Annual sulfate deposition ranges from 1.0 to 4.0 grams/sq m.

  18. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage

    PubMed Central

    Chen, Lin-xing; Hu, Min; Huang, Li-nan; Hua, Zheng-shuang; Kuang, Jia-liang; Li, Sheng-jin; Shu, Wen-sheng

    2015-01-01

    The microbial communities in acid mine drainage have been extensively studied to reveal their roles in acid generation and adaption to this environment. Lacking, however, are integrated community- and organism-wide comparative gene transcriptional analyses that could reveal the response and adaptation mechanisms of these extraordinary microorganisms to different environmental conditions. In this study, comparative metagenomics and metatranscriptomics were performed on microbial assemblages collected from four geochemically distinct acid mine drainage (AMD) sites. Taxonomic analysis uncovered unexpectedly high microbial biodiversity of these extremely acidophilic communities, and the abundant taxa of Acidithiobacillus, Leptospirillum and Acidiphilium exhibited high transcriptional activities. Community-wide comparative analyses clearly showed that the AMD microorganisms adapted to the different environmental conditions via regulating the expression of genes involved in multiple in situ functional activities, including low-pH adaptation, carbon, nitrogen and phosphate assimilation, energy generation, environmental stress resistance, and other functions. Organism-wide comparative analyses of the active taxa revealed environment-dependent gene transcriptional profiles, especially the distinct strategies used by Acidithiobacillus ferrivorans and Leptospirillum ferrodiazotrophum in nutrients assimilation and energy generation for survival under different conditions. Overall, these findings demonstrate that the gene transcriptional profiles of AMD microorganisms are closely related to the site physiochemical characteristics, providing clues into the microbial response and adaptation mechanisms in the oligotrophic, extremely acidic environments. PMID:25535937

  19. Biological treatment of heavy metals in acid mine drainage using sulfate reducing bioreactors.

    PubMed

    Sierra-Alvarez, R; Karri, S; Freeman, S; Field, J A

    2006-01-01

    The uncontrolled release of acid mine drainage (AMD) from abandoned mines and tailing piles threatens water resources in many sites worldwide. AMD introduces elevated concentrations of sulfate ions and dissolved heavy metals as well as high acidity levels to groundwater and receiving surface water. Anaerobic biological processes relying on the activity of sulfate reducing bacteria are being considered for the treatment of AMD and other heavy metal containing effluents. Biogenic sulfides form insoluble complexes with heavy metals resulting in their precipitation. The objective of this study was to investigate the remediation of AMD in sulfate reducing bioreactors inoculated with anaerobic granular sludge and fed with an influent containing ethanol. Biological treatment of an acidic (pH 4.0) synthetic AMD containing high concentrations of heavy metals (100 mg Cu(2+)l(-1); 10 mg Ni(2+)l(-1), 10 mg Zn(2+)l(-1)) increased the effluent pH level to 7.0-7.2 and resulted in metal removal efficiencies exceeding 99.2%. The highest metal precipitation rates attained for Cu, Ni and Zn averaged 92.5, 14.6 and 15.8 mg metal l(-1) of reactor d(-1). The results of this work demonstrate that an ethanol-fed sulfidogenic reactor was highly effective to remove heavy metal contamination and neutralized the acidity of the synthetic wastewater.

  20. Chemical, crystallographic and stable isotopic properties of alunite and jarosite from acid-Hypersaline Australian lakes

    USGS Publications Warehouse

    Alpers, C.N.; Rye, R.O.; Nordstrom, D.K.; White, L.D.; King, B.-S.

    1992-01-01

    Chemical, crystallographic and isotopic analyses were made on samples containing alunite and jarosite from the sediments of four acid, hypersaline lakes in southeastern and southwestern Australia. The alunite and jarosite are K-rich with relatively low Na contents based on chemical analysis and determination of unit cell dimensions by powder X-ray diffraction. Correcting the chemical analyses of fine-grained mineral concentrates from Lake Tyrrell, Victoria, for the presence of halite, silica and poorly crystalline aluminosilicates, the following formulas indicate best estimates for solid-solution compositions: for alunite, K0.87Na0.04(H3O)0.09(Al 0.92Fe0.08)3(SO4)2(OH) 6 and for jarosite, K0.89Na0.07(H3O)0.04(Fe 0.80Al0.20)3(SO4)2(OH) 6. The ??D-values of alunite are notably larger than those for jarosite from Lake Tyrrell and it appears that the minerals have closely approached hydrogen isotope equilibrium with the acidic regional groundwaters. The ??D results are consistent with a fractionation ???60-70??? between alunite and jarosite observed in other areas. However, interpretation of ??D results is complicated by large variability in fluid ??DH2O from evaporation, mixing and possible ion hydration effects in the brine. ??D-values of water derived from jarosite by step-wise heating tend to be smaller at 250??C, at which temperature hydronium and other non-hydroxyl water is liberated, than at 550??C, where water is derived from the hydroxyl site, but the differences are not sufficiently different to invalidate measurements of total ??D obtained by conventional, single-step heating methods. ??34S-values for alunite and jarosite from the four lakes (+19.7 to +21.2??? CDT) and for aqueous sulfate from Lake Tyrrell (+18.3 to +19.8???) are close to the values for modern evaporites (+21.5 ??0.3???) and seawater (+20??0.5???) and are probably typical of seawater-derived aerosols in arid coastal environments. ??34-S-values slightly smaller than that for seawater may

  1. Natural pretreatment and passive remediation of highly polluted acid mine drainage.

    PubMed

    Macías, Francisco; Caraballo, Manuel A; Nieto, José Miguel; Rötting, Tobias S; Ayora, Carlos

    2012-08-15

    Acid mine drainage (AMD) from the Iberian Pyrite Belt has high acidity and metal concentrations. Earlier pilot experiments, based on limestone sand dispersed in wood shavings (dispersed alkaline substrate; DAS) have been shown to be an efficient treatment option. However, complete metal removal was not achieved, principally due to the high ferrous iron concentration in the inflow AMD. In order to oxidize and remove iron, a natural Fe-oxidizing lagoon (NFOL) was added prior to treatment with limestone-DAS. The NFOL comprises several pre-existing Fe-stromatolite terraces and cascades, and a lagoon with a volume of 100 m(3) built near the mine shaft. Downstream of the NFOL, the limestone-DAS treatment consists of two reactive tanks of 3 m(3) each filled with limestone-DAS reactive substrate, connected in series with two decantation ponds of 6 m(3) each and several oxidation cascades. The AMD emerging from the mine shaft displayed a pH near 3, a net acidity of 1800 mg/L as CaCO(3) equivalents, and mean concentrations of 440 mg/L Zn; 275 mg/L Fe (99% Fe(II)); 3600 mg/L SO(4); 250 mg/L Ca; 100 mg/L Al; 15 mg/L Mn; 5 mg/L Cu; and 0.1-1 mg/L As, Pb, Cr, Cd, Co, and Ni. The oxidation induced in the NFOL enhanced ferric iron concentration, showing an average of 65% oxidation and 38% retention during the monitoring period. The whole system removed a mean of 1350 mg/L net acidity as CaCO(3) equivalents (71% of inflow); corresponding to 100% of Fe, Al, Cu, Pb and As, and 6% of Zn.

  2. Assessment of the microbial community in a constructed wetland that receives acid coal mine drainage

    SciTech Connect

    Nicomrat, D.; Dick, W.A.; Tuovinen, O.H.

    2006-01-15

    Constructed wetlands are used to treat acid drainage from surface or underground coal mines. However, little is known about the microbial communities in the receiving wetland cells. The purpose of this work was to characterize the microbial population present in a wetland that was receiving acid coal mine drainage (AMD). Samples were collected from the oxic sediment zone of a constructed wetland cell in southeastern Ohio that was treating acid drainage from an underground coal mine seep. Samples comprised Fe(Ill) precipitates and were pretreated with ammonium oxalate to remove interfering iron, and the DNA was extracted and purified by agarose gel electrophoresis prior to amplification of portions of the 16S rRNA gene. Amplified products were separated by denaturing gradient gel electrophoresis and DNA from seven distinct bands was excised from the gel and sequenced. The sequences were matched to sequences in the GenBank bacterial 16S rDNA database. The DNA in two of the bands yielded matches with Acidithiobacillus ferrooxidans and the DNA in each of the remaining five bands was consistent with one of the following microorganisms: Acidithiobacillus thiooxidans, strain TRA3-20 (a eubacterium), strain BEN-4 (an arsenite-oxidizing bacterium), an Alcaligenes sp., and a Bordetella sp. Low bacterial diversity in these samples reflects the highly inorganic nature of the oxic sediment layer where high abundance of iron- and sulfur-oxidizing bacteria would be expected. The results we obtained by molecular methods supported our findings, obtained using culture methods, that the dominant microbial species in an acid receiving, oxic wetland are A. thiooxidans and A. ferrooxidans.

  3. Natural pretreatment and passive remediation of highly polluted acid mine drainage.

    PubMed

    Macías, Francisco; Caraballo, Manuel A; Nieto, José Miguel; Rötting, Tobias S; Ayora, Carlos

    2012-08-15

    Acid mine drainage (AMD) from the Iberian Pyrite Belt has high acidity and metal concentrations. Earlier pilot experiments, based on limestone sand dispersed in wood shavings (dispersed alkaline substrate; DAS) have been shown to be an efficient treatment option. However, complete metal removal was not achieved, principally due to the high ferrous iron concentration in the inflow AMD. In order to oxidize and remove iron, a natural Fe-oxidizing lagoon (NFOL) was added prior to treatment with limestone-DAS. The NFOL comprises several pre-existing Fe-stromatolite terraces and cascades, and a lagoon with a volume of 100 m(3) built near the mine shaft. Downstream of the NFOL, the limestone-DAS treatment consists of two reactive tanks of 3 m(3) each filled with limestone-DAS reactive substrate, connected in series with two decantation ponds of 6 m(3) each and several oxidation cascades. The AMD emerging from the mine shaft displayed a pH near 3, a net acidity of 1800 mg/L as CaCO(3) equivalents, and mean concentrations of 440 mg/L Zn; 275 mg/L Fe (99% Fe(II)); 3600 mg/L SO(4); 250 mg/L Ca; 100 mg/L Al; 15 mg/L Mn; 5 mg/L Cu; and 0.1-1 mg/L As, Pb, Cr, Cd, Co, and Ni. The oxidation induced in the NFOL enhanced ferric iron concentration, showing an average of 65% oxidation and 38% retention during the monitoring period. The whole system removed a mean of 1350 mg/L net acidity as CaCO(3) equivalents (71% of inflow); corresponding to 100% of Fe, Al, Cu, Pb and As, and 6% of Zn. PMID:22484707

  4. The Emerson Lake Body: A link between the Landers and Hector Mine earthquakes, southern California, as inferred from gravity and magnetic anomalies

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, R.C.

    2002-01-01

    Gravity and magnetic data indicate a mafic crustal heterogeneity that lies between the Hector Mine 16 October 1999 (Mw 7.1) and Landers 28 June 1992 (Mw 7.3) epicenters. The aftershocks and ruptures of these two events avoided the interior of the body. Two- and three-dimensional modeling of the potential-field anomalies shows that the source, here named the Emerson Lake body (ELB), extends to a depth of approximately 15 km. The source of the gravity and magnetic anomaly is most likely Jurassic diorite because exposures of these rocks coincide with both gravity and magnetic highs west of Emerson Lake. Seismic tomography also shows higher velocities within the region of the ELB. We propose that the ELB was an important influence on the rupture geometry of the Landers and Hector Mine ruptures and that the ELB may have played a role in transferring of stress from the Landers earthquake to the Hector Mine hypocenter. Seismicity before the Landers earthquake also tended to avoid the ELB, suggesting that the ELB affects how strain is distributed in this part of the Mojave Desert. Thus, faults within the body should have limited rupture sizes and lower seismic hazard than faults bounding or outside this mafic crustal heterogeneity.

  5. Impact of climate change on acid mine drainage generation and contaminant transport in water ecosystems of semi-arid and arid mining areas

    NASA Astrophysics Data System (ADS)

    Anawar, Hossain Md.

    Disposal of untreated and treated mining wastes and tailings exerts a significant threat and hazard for environmental contamination including groundwater, surface water, wetlands, land, food chain and animals. In order to facilitate remediation techniques, it is important to understand the oxidation of sulfidic minerals, and the hydrolysis of the oxidation products that result in production of acid mine drainage (AMD), toxic metals, low pH, SO42- and Fe. This review has summarized the impacts of climate change on geochemical reactions, AMD generation, and water quality in semi-arid/arid mining environments. Besides this, the study included the effects of hydrological, seasonal and climate change on composition of AMD, contaminant transport in watersheds and restoration of mining sites. Different models have different types of limitations and benefits that control their adaptability and suitability of application in various mining environments. This review has made a comparative discussion of a few most potential and widely used reactive transport models that can be applied to simulate the effect of climate change on sulfide oxidation and AMD production from mining waste, and contaminant transport in surface and groundwater systems.

  6. Spatiotemporal Pattern Validation of Chlorophyll-a Concentrations in Lake Okeechobee, Florida using a Comparative MODIS Image Mining Approach

    EPA Science Inventory

    Lake Okeechobee, Florida, is the second largest freshwater lake in the U.S. The lake has been threatened in recent decades by excessive phosphorus loading, harmful high and low water levels, and rapid expansion of exotic plants (Folks, 2005). Environmental impacts of hurricanes o...

  7. Spatial database of mining-related features in 2001 at selected phosphate mines, Bannock, Bear Lake, Bingham, and Caribou Counties, Idaho

    USGS Publications Warehouse

    Moyle, Phillip R.; Kayser, Helen Z.

    2006-01-01

    This report describes the spatial database, PHOSMINE01, and the processes used to delineate mining-related features (active and inactive/historical) in the core of the southeastern Idaho phosphate resource area. The spatial data have varying degrees of accuracy and attribution detail. Classification of areas by type of mining-related activity at active mines is generally detailed; however, for many of the closed or inactive mines the spatial coverage does not differentiate mining-related surface disturbance features. Nineteen phosphate mine sites are included in the study, three active phosphate mines - Enoch Valley (nearing closure), Rasmussen Ridge, and Smoky Canyon - and 16 inactive (or historical) phosphate mines - Ballard, Champ, Conda, Diamond Gulch, Dry Valley, Gay, Georgetown Canyon, Henry, Home Canyon, Lanes Creek, Maybe Canyon, Mountain Fuel, Trail Canyon, Rattlesnake, Waterloo, and Wooley Valley. Approximately 6,000 hc (15,000 ac), or 60 km2 (23 mi2) of phosphate mining-related surface disturbance are documented in the spatial coverage. Spatial data for the inactive mines is current because no major changes have occurred; however, the spatial data for active mines were derived from digital maps prepared in early 2001 and therefore recent activity is not included. The inactive Gay Mine has the largest total area of disturbance, 1,900 hc (4,700 ac) or about 19 km2 (7.4 mi2). It encompasses over three times the disturbance area of the next largest mine, the Conda Mine with 610 hc (1,500 ac), and it is nearly four times the area of the Smoky Canyon Mine, the largest of the active mines with about 550 hc (1,400 ac). The wide range of phosphate mining-related surface disturbance features (141) from various industry maps were reduced to 15 types or features based on a generic classification system used for this study: mine pit; backfilled mine pit; waste rock dump; adit and waste rock dump; ore stockpile; topsoil stockpile; tailings or tailings pond; sediment

  8. Digital database of mining-related features at selected historic and active phosphate mines, Bannock, Bear Lake, Bingham, and Caribou counties, Idaho

    USGS Publications Warehouse

    Causey, J. Douglas; Moyle, Phillip R.

    2001-01-01

    This report provides a description of data and processes used to produce a spatial database that delineates mining-related features in areas of historic and active phosphate mining in the core of the southeastern Idaho phosphate resource area. The data have varying degrees of accuracy and attribution detail. Classification of areas by type of mining-related activity at active mines is generally detailed; however, the spatial coverage does not differentiate mining-related surface disturbance features at many of the closed or inactive mines. Nineteen phosphate mine sites are included in the study. A total of 5,728 hc (14,154 ac), or more than 57 km2 (22 mi2), of phosphate mining-related surface disturbance are documented in the spatial coverage of the core of the southeast Idaho phosphate resource area. The study includes 4 active phosphate mines—Dry Valley, Enoch Valley, Rasmussen Ridge, and Smoky Canyon—and 15 historic phosphate mines—Ballard, Champ, Conda, Diamond Gulch, Gay, Georgetown Canyon, Henry, Home Canyon, Lanes Creek, Maybe Canyon, Mountain Fuel, Trail Canyon, Rattlesnake Canyon, Waterloo, and Wooley Valley. Spatial data on the inactive historic mines is relatively up-to-date; however, spatially described areas for active mines are based on digital maps prepared in early 1999. The inactive Gay mine has the largest total area of disturbance: 1,917 hc (4,736 ac) or about 19 km2 (7.4 mi2). It encompasses over three times the disturbance area of the next largest mine, the Conda mine with 607 hc (1,504 ac), and it is nearly four times the area of the Smoky Canyon mine, the largest of the active mines with 497 hc (1,228 ac). The wide range of phosphate mining-related surface disturbance features (approximately 80) were reduced to 13 types or features used in this study—adit and pit, backfilled mine pit, facilities, mine pit, ore stockpile, railroad, road, sediment catchment, tailings or tailings pond, topsoil stockpile, water reservoir, and disturbed

  9. The effects of phosphorus additions on the sedimentation of contaminants in a uranium mine pit-lake.

    PubMed

    Dessouki, Tarik C E; Hudson, Jeff J; Neal, Brian R; Bogard, Matthew J

    2005-08-01

    We investigated the usefulness of phytoplankton for the removal of surface water contaminants. Nine large mesocosms (92.2m(3)) were suspended in the flooded DJX uranium pit at Cluff Lake (Saskatchewan, Canada), and filled with highly contaminated mine water. Each mesocosm was fertilized with a different amount of phosphorus throughout the 35 day experiment to stimulate phytoplankton growth, and to create a range in phosphorus load (g) to examine how contaminants may be affected by different nutrient regimes. Algal growth was rapid in fertilized mesocosms (as demonstrated by chlorophyll a profiles). As phosphorus loads increased there were significant declines (p<0.05) in the surface water concentrations of As, Co, Cu, Mn, Ni, and Zn. This decline was near significant for uranium (p=0.065). The surface water concentrations of Ra-226, Mo, and Se showed no relationship to phosphorus load. Contaminant concentrations in sediment traps suspended at the bottom of each mesocosm generally showed the opposite trend to that observed in the surface water, with most contaminants (As, Co, Cu, Mn, Ni, Ra-226, U, and Zn) exhibiting a significant positive relationship (p<0.05) with phosphorus load. Selenium and Mo did not respond to nutrient treatments. Our results suggest that phytoremediation has the potential to lower many surface water contaminants through the sedimentation of phytoplankton. Based on our results, we estimate that the Saskatchewan Surface Water Quality Objectives (SSWQO) for DJX pit would be met in approximately 45 weeks for Co, 65 weeks for Ni, 15 weeks for U, and 5 weeks for Zn.

  10. A Novel Treatment for Acid Mine Drainage Utilizing Reclaimed Limestone Residual

    SciTech Connect

    Horace K. Moo-Young; Charles E. Ochola

    2004-08-31

    The viability of utilizing Reclaimed Limestone Residual (RLR) to remediate Acid Mine Drainage (AMD) was investigated. Physical and chemical characterization of RLR showed that it is composed of various minerals that contain significant quantities of limestone or calcium bearing compounds that can be exploited for acid neutralization. Acid Neutralization Potential (ANP) test results showed that RLR has a neutralization potential of approximately 83% as calcium carbonate (CaCO{sub 3}). Neutralization tests with most of the heavy metals associated with AMD showed removal efficiencies of over 99%. An unexpected benefit of utilizing RLR was the removal of hexavalent chromium Cr (VI) from the aqueous phase. Due to an elevation in pH by RLR most AMD heavy metals are removed from solution by precipitation as their metal hydroxides. Cr (VI) however is not removed by pH elevation and therefore subsequent ongoing tests to elucidate the mechanism responsible for this reaction were conducted.

  11. Acid mine drainage potential of raw, retorted, and combusted Eastern oil shale: Final report

    SciTech Connect

    Sullivan, P.J.; Yelton, J.L.; Reddy, K.J.

    1987-09-01

    In order to manage the oxidation of pyritic materials effectively, it is necessary to understand the chemistry of both the waste and its disposal environment. The objective of this two-year study was to characterize the acid production of Eastern oil shale waste products as a function of process conditions, waste properties, and disposal practice. Two Eastern oil shales were selected, a high pyrite shale (unweathered 4.6% pyrite) and a low pyrite shale (weathered 1.5% pyrite). Each shale was retorted and combusted to produce waste products representative of potential mining and energy conversion processes. By using the standard EPA leaching tests (TCLP), each waste was characterized by determining (1) mineralogy, (2) trace element residency, and (3) acid-base account. Characterizing the acid producing potential of each waste and potential trace element hazards was completed with laboratory weathering studies. 32 refs., 21 figs., 12 tabs.

  12. Distribution of thiobacillus ferrooxidans and leptospirillum ferrooxidans: implications for generation of acid mine drainage

    PubMed

    Schrenk; Edwards; Goodman; Hamers; Banfield

    1998-03-01

    Although Thiobacillus ferrooxidans and Leptospirillum ferrooxidans are widely considered to be the microorganisms that control the rate of generation of acid mine drainage, little is known about their natural distribution and abundance. Fluorescence in situ hybridization studies showed that at Iron Mountain, California, T. ferrooxidans occurs in peripheral slime-based communities (at pH over 1.3 and temperature under 30 degreesC) but not in important subsurface acid-forming environments (pH 0.3 to 0.7, temperature 30 degrees to 50 degreesC). Leptospirillum ferrooxidans is abundant in slimes and as a planktonic organism in environments with lower pH. Thiobacillus ferrooxidans affects the precipitation of ferric iron solids but plays a limited role in acid generation, and neither species controls direct catalysis at low pH at this site. PMID:9488647

  13. Bibliography for acid-rock drainage and selected acid-mine drainage issues related to acid-rock drainage from transportation activities

    USGS Publications Warehouse

    Bradley, Michael W.; Worland, Scott C.

    2015-01-01

    Acid-rock drainage occurs through the interaction of rainfall on pyrite-bearing formations. When pyrite (FeS2) is exposed to oxygen and water in mine workings or roadcuts, the mineral decomposes and sulfur may react to form sulfuric acid, which often results in environmental problems and potential damage to the transportation infrastructure. The accelerated oxidation of pyrite and other sulfidic minerals generates low pH water with potentially high concentrations of trace metals. Much attention has been given to contamination arising from acid mine drainage, but studies related to acid-rock drainage from road construction are relatively limited. The U.S. Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to evaluate the occurrence and processes controlling acid-rock drainage and contaminant transport from roadcuts in Tennessee. The basic components of acid-rock drainage resulting from transportation activities are described and a bibliography, organized by relevant categories (remediation, geochemical, microbial, biological impact, and secondary mineralization) is presented.

  14. New method for the direct determination of dissolved Fe(III) concentration in acid mine waters

    USGS Publications Warehouse

    To, T.B.; Nordstrom, D.K.; Cunningham, K.M.; Ball, J.W.; McCleskey, R.B.

    1999-01-01

    A new method for direct determination of dissolved Fe(III) in acid mine water has been developed. In most present methods, Fe(III) is determined by computing the difference between total dissolved Fe and dissolved Fe(II). For acid mine waters, frequently Fe(II) >> Fe(III); thus, accuracy and precision are considerably improved by determining Fe(III) concentration directly. The new method utilizes two selective ligands to stabilize Fe(III) and Fe(II), thereby preventing changes in Fe reduction-oxidation distribution. Complexed Fe(II) is cleanly removed using a silica-based, reversed-phase adsorbent, yielding excellent isolation of the Fe(III) complex. Iron(III) concentration is measured colorimetrically or by graphite furnace atomic absorption spectrometry (GFAAS). The method requires inexpensive commercial reagents and simple procedures that can be used in the field. Calcium(II), Ni(II), Pb(II), AI(III), Zn(II), and Cd(II) cause insignificant colorimetric interferences for most acid mine waters. Waters containing >20 mg of Cu/L could cause a colorimetric interference and should be measured by GFAAS. Cobalt(II) and Cr(III) interfere if their molar ratios to Fe(III) exceed 24 and 5, respectively. Iron(II) interferes when its concentration exceeds the capacity of the complexing ligand (14 mg/L). Because of the GFAAS elemental specificity, only Fe(II) is a potential interferent in the GFAAS technique. The method detection limit is 2 ??g/L (40 nM) using GFAAS and 20 ??g/L (0.4 ??M) by colorimetry.A new method for direct determination of dissolved Fe(III) in acid mine water has been developed. In most present methods, Fe(III) is determined by computing the difference between total dissolved Fe and dissolved Fe(II). For acid mine waters, frequently Fe(II)???Fe(III); thus, accuracy and precision are considerably improved by determining Fe(III) concentration directly. The new method utilizes two selective ligands to stabilize Fe(III) and Fe(II), thereby preventing changes

  15. Recovery of Zn from acid mine water and electric arc furnace dust in an integrated process.

    PubMed

    Carranza, Francisco; Romero, Rafael; Mazuelos, Alfonso; Iglesias, Nieves

    2016-01-01

    In this paper, the purification of acid mine water and the treatment of electric arc furnace dust (EAFD) are integrated into one process with the aim of recovering the Zn content of both effluent and waste. Zinc recovery can reduce the cost of their environmental management: purified acid mine water is discharged after removing all metals; EAFD ceases to be hazardous waste; and Zn is valorised. The process consists of the recovery of Zn as zinc oxide and its purification into commercial products. First, EAFD is leached with acid water and the dissolved metals are selectively precipitated as hydroxides. After EADF leaching, ferrous iron is bio-oxidized and Fe and Al are then precipitated; in the following stage, Cu, Ni, Co and Cd are cemented and finally Zn is precipitated as ZnO. In order to purify water that finally is discharged to a river, lime is used as the neutralizing agent, which results in a precipitate of mainly gypsum, MnO, and ZnO. From the impure zinc oxide produced, various alternatives for the attainment of commercial products, such as basic zinc carbonate and electrolytic zinc, are studied in this work.

  16. Isolation of novel microalgae from acid mine drainage and its potential application for biodiesel production.

    PubMed

    Yun, Hyun-Shik; Lee, Hongkyun; Park, Young-Tae; Ji, Min-Kyu; Kabra, Akhil N; Jeon, Chung; Jeon, Byong-Hun; Choi, Jaeyoung

    2014-08-01

    Microalgae were selected and isolated from acid mine drainage in order to find microalgae species which could be cultivated in low pH condition. In the present investigation, 30 microalgae were isolated from ten locations of acid mine drainage in South Korea. Four microalgae were selected based on their growth rate, morphology, and identified as strains of KGE1, KGE3, KGE4, and KGE7. The dry biomass of microalgae species ranged between 1 and 2 g L(-1) after 21 days of cultivation. The growth kinetics of microalgae was well described by logistic growth model. Among these, KGE7 has the highest biomass production (2.05 ± 0.35 g L(-1)), lipid productivity (0.82 ± 0.14 g L(-1)), and C16-C18 fatty acid contents (97.6 %). These results suggest that Scenedesmus sp. KGE 7 can be utilized for biodiesel production based on its high biomass and lipid productivity.

  17. Recovery of Zn from acid mine water and electric arc furnace dust in an integrated process.

    PubMed

    Carranza, Francisco; Romero, Rafael; Mazuelos, Alfonso; Iglesias, Nieves

    2016-01-01

    In this paper, the purification of acid mine water and the treatment of electric arc furnace dust (EAFD) are integrated into one process with the aim of recovering the Zn content of both effluent and waste. Zinc recovery can reduce the cost of their environmental management: purified acid mine water is discharged after removing all metals; EAFD ceases to be hazardous waste; and Zn is valorised. The process consists of the recovery of Zn as zinc oxide and its purification into commercial products. First, EAFD is leached with acid water and the dissolved metals are selectively precipitated as hydroxides. After EADF leaching, ferrous iron is bio-oxidized and Fe and Al are then precipitated; in the following stage, Cu, Ni, Co and Cd are cemented and finally Zn is precipitated as ZnO. In order to purify water that finally is discharged to a river, lime is used as the neutralizing agent, which results in a precipitate of mainly gypsum, MnO, and ZnO. From the impure zinc oxide produced, various alternatives for the attainment of commercial products, such as basic zinc carbonate and electrolytic zinc, are studied in this work. PMID:26433358

  18. Hydrobiogeochemical interactions in 'anoxic' limestone drains for neutralization of acidic mine drainage

    USGS Publications Warehouse

    Robbins, E.I.; Cravotta, C.A.; Savela, C.E.; Nord, G.L.

    1999-01-01

    Processes affecting neutralization of acidic coal mine drainage were evaluated within 'anoxic' limestone drains (ALDs). Influents had pH???3.5 and dissolved oxygen <2 mg/l. Even though effluents were near neutral (pH 6 and alkalinity acidity), two of the four ALDs were failing due to clogging. Mineral-saturation indices indicated the potential for dissolution of calcite and gypsum, and precipitation of Al3+ and Fe3+ compounds. Cleavage mounts of calcite and gypsum that were suspended within the ALDs and later examined microscopically showed dissolution features despite coatings by numerous bacteria, biofilms, and Fe-Al-Si precipitates. In the drain exhibiting the greatest flow reduction, Al-hydroxysulfates had accumulated on limestone surfaces and calcite etch points, thus causing the decline in transmissivity and dissolution. Therefore, where Al loadings are high and flow rates are low, a pre-treatment step is indicated to promote Al removal before diverting acidic mine water into alkalinity-producing materials. ?? 1998 Elsevier Science Ltd.

  19. Bacterial control on the structure of As-Fe oxy-hydroxides in acid mine drainage.

    NASA Astrophysics Data System (ADS)

    Morin, G.; Lebrun, S.; Juillot, F.; Casiot, C.; Bruneel, O.; Belin, S.; Proux, O.; Brown, G. E.; Guyot, F.; Calas, G.

    2004-12-01

    Nano-crystalline or amorphous iron oxy-hydroxides are kinetically favored with respect to stable crystalline phases in low temperature environments. Therefore, they frequently occur as transient phases in Earth's surface environments. They exhibit very-high surface areas (few 100 cm2/g) and thus play a key role in the geochemical cycles of minor and trace elements, including toxic elements as arsenic. Natural low-temperature iron oxides also potentially host biological signatures since they can form through various biologically driven reactions. In the present communication, we compare the mineralogy and crystal chemistry of biogenic As-rich iron precipitates synthesized using various acidophilic bacterial strain isolated from an exceptionally arsenic-rich acid mine drainage [1]. XAS, XRD, SEM and TEM investigation of these highly reactive nano-minerals obtained in controlled conditions allows to better constrain their mechanisms of formation. Our data show that the enzymatic oxidation of Fe(II) and/or As(III) play a key role in controlling the nature of the mineral species precipitating in acid mine drainage. We show that the nature of mineral species forming from solutions can be directly determined by the metabolic activity of specific bacterial strains. This influence is thought to be primarily indirect, bacteria controlling the rate of Fe(II) and As(III) oxidation reactions, which in turn leads to various Fe(III) and As(V) super-saturation conditions. These latter parameters are crucial in controlling the structure of nano-crystalline As-Fe low temperature minerals. 1- Morin et al. (2003) Bacterial formation of tooeleite and mixed As(III)/(V)-Fe(III) gels in the Carnoulès acid mine drainage, France. A XANES, XRD and SEM study. Environ. Sci. and Technol. 37,1705-1712.

  20. 40 CFR 721.3100 - Oligomeric silicic acid ester compound with a hy-droxyl-al-kyla-mine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Oligomeric silicic acid ester compound with a hy-droxyl-al-kyla-mine. 721.3100 Section 721.3100 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.3100 Oligomeric silicic acid ester compound with...

  1. 40 CFR 721.3100 - Oligomeric silicic acid ester compound with a hy-droxyl-al-kyla-mine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Oligomeric silicic acid ester compound with a hy-droxyl-al-kyla-mine. 721.3100 Section 721.3100 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.3100 Oligomeric silicic acid ester compound with...

  2. 40 CFR 721.3100 - Oligomeric silicic acid ester compound with a hy-droxyl-al-kyla-mine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Oligomeric silicic acid ester compound with a hy-droxyl-al-kyla-mine. 721.3100 Section 721.3100 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.3100 Oligomeric silicic acid ester compound with...

  3. Controlled release bactericide: An innovative system to control acid mine drainage

    SciTech Connect

    Sobek, A.A.; Rastogi, V.

    1986-01-01

    Controlled release systems delivering the required concentration of an effective bactericide over an extended time period have been developed by the BF Goodrich Company's ProMac Systems group. The ProMac system is site-specific and includes a four-step approach to controlling acid mine drainage (AMD): (1) Diagnosing the problem, (2) Prescribing the treatment, (3) Supervising the application of controlled release bactericides, and (4) Monitoring the success of applied treatment. The success of the ProMac system is evidenced by improved water quality, healthy vegetation, a reduction in levels of acidophilic thiobacillus, and a corresponding increase in population of beneficial microorganisms.

  4. Passive treatment of acid mine drainage in down-flow limestone systems

    SciTech Connect

    Watzlaf, G.R.

    1997-12-31

    Passive down-flow systems, consisting of compost and/or limestone layers, may be well suited for treatment of acidic mine drainage containing ferric iron and/or aluminum. Two columns were constructed and operated in the laboratory. The first column simulated a downward, vertical-flow anaerobic wetland, also referred to as successive alkalinity-producing systems (SAPS), and has received mine drainage for 97 weeks. The 0.16-m diameter column was vertically oriented and (from bottom to top) consisted of a 0.30-m thick layer of limestone, a 0.76-m thick layer of spent mushroom compost, and 0.91 m of free standing water. Water flowed vertically downward through the system. A second column, filled with only limestone, received water from the same source as the first column. This limestone column contained a 1.06-m thick layer of limestone and 0.91 m of free standing water and has received water for 55 weeks. Actual acid mine drainage (pH = 3.1, acidity = 200 mg/L (as CaCO{sub 3}), SO{sub 4}{sup 2-} = 600 mg/L, Total Fe = 10 mg/L, Mn = 14 mg/L, and Al = 18 mg/L) was collected every two weeks from a nearby abandoned deep mine and applied to these columns at a rate of 3.8 mL/min. For the compost/limestone column, effluent pH remained above 6.2 (6.2-7.9); however, pH at a depth of 0.38 m in the compost (halfway) dropped to < 4 after 28 weeks (net acidic). At the bottom of the compost pH remained > 4.5 for all 97 weeks. Alkalinity was generated by a combination of limestone dissolution and sulfate reduction. Over the 97 week period, the column generated an average of 330 mg/L of alkalinity, mostly due to limestone dissolution. Bacterial sulfate reduction displayed an ever decreasing trend, initially accounting for more than 200 mg/L of alkalinity and after 40 weeks only accounting for about 50 mg/L.

  5. Effects of acid mine drainage on water, sediment and associated benthic macroinvertebrate communities

    SciTech Connect

    Rutherford, L.G.; Cherry, D.S.; Dobbs, M.G.; Cairns, J. Jr.; Zipper, C.E.

    1995-12-31

    The toxic constituents of abandoned mined land (AML) discharges (acidic pH, heavy metals, total suspended solids) are extremely toxic to aquatic life . Studies were undertaken to ascertain environmental impacts to the upper Powell River, Lee and Wise Counties, Va. These impacts included disruptions in physical water quality, sediment quality, altered benthic macroinvertebrate assemblages, and toxicity of the water column and sediments from short-term impairment bioassays, and the potential to bioaccumulate selected metals (Al, Fe, Mn, P, Zn, Cu, Mg, S, Ni, Cd) by periphyton and resident bivalves. Water chemistry and macroinvertebrate assemblages were collected at upstream control, just below acid mine drainage and other downstream sites. Selected trace metal concentrations (Al, Fe, Mn, P, Zn, Cu, Mg, S, Ni, Cd) were determined for water, sediment and resident bivalves using ICP-AES. Acidic pH ranged from 2.15--3.3 at three AML-influenced seeps and varied from 6.4--8.0 at reference stations. At one AML-influenced creek, acidic pH conditions worsened from summer to fall and eradicated aquatic life throughout a 1.5 km stretch of that creek as it flowed into another creek. An additional dilution of 3.4 km in the second creek was needed to nearly neutralize the acidic pH problem. Conductivity (umhos/cm) ranged from 32--278 at reference sites and from 245--4,180 at AML-impact sites. Benthic macroinvertebrate abundance and taxon richness were essentially eliminated in the seeps or reached numbers of 1 -3 taxa totaling < 10 organisms relative to reference areas where richness values were 12--17 and comprised 300--977 organisms. Concentrations of Fe, Al, Mg and Cu and Zn were highest in the environmentally stressed stations of low pH and high conductivity relative to the reference stations. Iron was, by far, the element in highest concentration followed by Al and Mg.

  6. Study of Lateral Gene Transfer in an Acid Mine Drainage Community Enabled by Comparative Genomics

    NASA Astrophysics Data System (ADS)

    Hugenholtz, P.; Croft, L.; Tyson, G. W.; Baker, B. J.; Detter, C.; Richardson, P. M.; Banfield, J. F.

    2002-12-01

    Lateral gene transfer (LGT) is thought to play a crucial role in the ecology and evolution of prokaryotes. We are investigating the role of LGT in an acid mine drainage community hosted in a pyrite-dominated metal sulfide deposit at the Richmond mine at Iron Mountain, CA. Due to biologically-mediated pyrite dissolution, the prevailing conditions within the mine are extremely low pH (< 1.0), very high ionic concentrations (molar concentrations of iron sulfate and mM concentrations of arsenic, copper and zinc), and moderate to high temperatures (30 to >50 C). These conditions are thought to largely isolate the community from potential external gene donors since naked DNA, phage and prokaryotes native to neutral pH habitats do not persist at pH <1.0 precluding an external influx of genes by transformation, transduction and conjugation, respectively. Microbial communities exist in several distinct habitats within Richmond mine including biofilms (subaqueous slime streamers and subaerial slimes) and cells attached directly to pyrite granules. This, however, belies an unusual simplicity in community composition. All communities investigated to date comprise only a handful of phylogenetically distinct organisms, typically dominated by the iron-oxidizing genera Leptospirillum and Ferroplasma. We have undertaken a community genomics analysis of a subaerial biofilm dominated by a Leptospirillum population to facilitate the study of LGT in this type of environment. The genome of Ferroplasma acidarmanus fer1, a minor component of the target community (but a major component of other Richmond mine communities), has been sequenced. Comparative genome analyses indicate that F. acidarmanus and the ancestor of two acidophilic Thermoplasma species belonging to the Euryarchaeota have traded many genes with phylogenetically remote acidophilic Sulfolobus species (Crenarchaeota). The putatively transferred sets of Sulfolobus genes in Ferroplasma and the Thermoplasma ancestor are distinct

  7. Gas flushing through hyper-acidic crater lakes: the next steps within a reframed monitoring time window

    NASA Astrophysics Data System (ADS)

    Rouwet, Dmitri

    2016-04-01

    Tracking variations in the chemical composition, water temperature and pH of brines from peak-activity crater lakes is the most obvious way to forecast phreatic activity. Volcano monitoring intrinsically implies a time window of observation that should be synchronised with the kinetics of magmatic processes, such as degassing and magma intrusion. To decipher "how much time ago" a variation in degassing regime actually occurred before eventually being detected in a crater lake is key, and depends on the lake water residence time. The above reasoning assumes that gas is preserved as anions in the lake water (SO4, Cl, F anions), in other words, that scrubbing of acid gases is complete and irreversible. Less is true. Recent work has confirmed, by direct MultiGas measurement from evaporative plumes, that even the strongest acid in liquid medium (i.e. SO2) degasses from hyper-acidic crater lakes. The less strong acid HCl has long been recognised as being more volatile than hydrophyle in extremely acidic solutions (pH near 0), through a long-term steady increase in SO4/Cl ratios in the vigorously evaporating crater lake of Poás volcano. We now know that acidic gases flush through hyper-acidic crater lake brines, but we don't know to which extend (completely or partially?), and with which speed. The chemical composition hence only reflects a transient phase of the gas flushing through the lake. In terms of volcanic surveillance this brings the advantage that the monitoring time window is definitely shorter than defined by the water chemistry, but yet, we do not know how much shorter. Empirical experiments by Capaccioni et al. (in press) have tried to tackle this kinetic problem for HCl degassing from a "lab-lake" on the short-term (2 days). With this state of the art in mind, two new monitoring strategies can be proposed to seek for precursory signals of phreatic eruptions from crater lakes: (1) Tracking variations in gas compositions, fluxes and ratios between species in

  8. Disposal of fluidized bed combustion ash in an underground mine to control acid mine drainage and subsidence. Quarterly report, September 1--November 30, 1997

    SciTech Connect

    1997-12-31

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion (FBC) ash). Success will be measured in terms of technical feasibility of the approach (i.e., % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). During Phase 3 the majority of the activity involves completing two full scale demonstration projects. The eleven acre Longridge mine in Preston County will be filled with 53,000 cubic yards of grout during the spring of 1998 and monitored for following year. The second demonstration involves stowing 2,000 tons of ash into an abandoned mine to demonstrate the newly redesigned Burnett Ejector. This demonstration is anticipated to take place during the winter of 1997. This document will report on progress made during Phase 3. The report will be divided into four major sections. The first will be the Hydraulic Injection component. This section of the report will report on progress and milestones associated with the grouting activities