Science.gov

Sample records for acid mobile phase

  1. ENHANCED MOBILITY OF DENSE NONAQUEOUS-PHASE LIQUIDS (DNAPLs) USING DISSOLVED HUMIC ACIDS

    SciTech Connect

    EDWIN S. OLSON; JOHN R. GALLAGHER; MARC D. KURZ

    1998-10-01

    The specific objectives of this subtask are as follows: � Evaluate the suitability of using humic acids to enhance the solubility and mobility of DNAPL contaminants sorbed to soils. � Evaluate the toxicity and bioavailablity of the DNAPLs to biodegrading microorganisms. To meet the first objective, the Energy & Environmental Research Center (EERC) evaluated a set of humic acids (two) with different chemical compositions and polarities for the following: � Ability of the humates to mobilize/solubilize selected (three) DNAPLs � Mobilization/solubilization in batch soil�water experiments (one soil) � Removal rate via biotreatment with a well-established active microbial culture. The second objective was met by evaluating the inhibiting effects of a leonardite-derived humic acid on active microbial populations.

  2. Task 1.16 - Enhanced Mobility of Dense Nonaqueoius-Phase Liquids (DNAPLs) Using Dissolved Humic Acids

    SciTech Connect

    Marc D. Kurz

    1997-08-01

    Chlorinated solvent contamination is widespread across the U.S. Department of Energy (DOE) complex and other industrial facilities. Because of the physical properties of dense nonaqueous-phase liquids (DNAPLs), current treatment technologies are generally incapable of completely removing contamination from the source area. Incomplete removal means that the residual DNAPL will persist as a long-term source of groundwater contamination. When DNALPs occur in the subsurface, they resist remediation, owing to low water volubility, high viscosity and interracial tension, and microbial recalcitrance. Because of their high density and polarity, they are usually found sorbed to aquifer solids or in pools on impermeable materials. Surfactants have been used with some success to reduce interracial tension between the aqueous and organic phases and improve volubility of DNAPLs. However, surfactants are expensive and toxic and exhibit an oxygen demand. An alternative is the use of dissolved humic acids in improving DNAPL mobilization and solubilization. Humic acids, a. natural form of organic carbon, are abundant, inexpensive, and nontoxic; biodegrade slowly (low oxygen demand); and have excellent mobilization properties. The present work is to establish the feasibility of using humates for enhancing DNAPL remediation.

  3. Task 1.16 - Enhanced Mobility of Dense Nonaqueous-Phase Liquids (DNAPLs) Using Dissolved Humic Acids

    SciTech Connect

    Edwin S. Olson; Marc D. Kurz

    1998-02-01

    Chlorinated solvent contamination is widespread across the U.S. Department of Energy (DOE) complex and other industrial facilities. Because of the physical properties of dense nonaqueous-phase liquids (DNAPLs), current treatment technologies are generally incapable of completely removing contamination from the source area. Incomplete removal means that the residual DNAPL WN persist as a long-term source of groundwater contamination. When DNALPs occur in the subsurface, they resist remediation, owing to low water volubility, high viscosity and interracial tension, and microbial recalcitrance. Because of their high density and polarity, they are usually found sorbed to aquifer solids or in pools on impermeable materials. Surfactants have been used with some success to reduce interracial tension between the aqueous and organic phases and improve volubility of DNAPLs. However, surfactants are expensive and toxic and exhibit an oxygen demand. An alternative is the use of dissolved humic acids in improving DNAPL mobilization and solubilization. Humic acids, a natural form of organic carbon, are abundant, inexpensive, and nontoxic; biodegrade slowly (low oxygen demand); and have excellent mobilization properties. The present work is to establish the feasibility of using hurnates for enhancing DNAPL remediation.

  4. Enantioseparation of mandelic acid derivatives by high performance liquid chromatography with substituted β-cyclodextrin as chiral mobile phase additive and evaluation of inclusion complex formation

    PubMed Central

    Tong, Shengqiang; Zhang, Hu; Shen, Mangmang

    2014-01-01

    The enantioseparation of ten mandelic acid derivatives was performed by reverse phase high performance liquid chromatography with hydroxypropyl-β-cyclodextrin (HP-β-CD) or sulfobutyl ether-β-cyclodextrin (SBE-β-CD) as chiral mobile phase additives, in which inclusion complex formations between cyclodextrins and enantiomers were evaluated. The effects of various factors such as the composition of mobile phase, concentration of cyclodextrins and column temperature on retention and enantioselectivity were studied. The peak resolutions and retention time of the enantiomers were strongly affected by the pH, the organic modifier and the type of β-cyclodextrin in the mobile phase, while the concentration of buffer solution and temperature had a relatively low effect on resolutions. Enantioseparations were successfully achieved on a Shimpack CLC-ODS column (150×4.6 mm i.d., 5 μm). The mobile phase was a mixture of acetonitrile and 0.10 mol L-1 of phosphate buffer at pH 2.68 containing 20 mmol L-1 of HP-β-CD or SBE-β-CD. Semi-preparative enantioseparation of about 10 mg of α-cyclohexylmandelic acid and α-cyclopentylmandelic acid were established individually. Cyclodextrin-enantiomer complex stoichiometries as well as binding constants were investigated. Results showed that stoichiomertries for all the inclusion complex of cyclodextrin-enantiomers were 1:1. PMID:24893270

  5. Formation of Iron Complexes from Trifluoroacetic Acid Based Liquid Chromatography Mobile Phases as Interference Ions in LC-ESI-MS Analysis

    PubMed Central

    Shukla, Anil; Zhang, Rui; Orton, Daniel; Zhao, Rui; Clauss, Therese; Moore, Ronald; Smith, Richard

    2011-01-01

    Two unexpected singly charged ions at m/z 1103 and 944 have been observed in mass spectra obtained from electrospray ionization-mass spectrometric analysis of liquid chromatography effluents with mobile phases containing trifluoroacetic acid that severely interfered with sample analysis. Accurate mass measurement and tandem mass spectrometry studies revealed that these two ions are composed of three components; clusters of trifluoroacetic acid, clusters of mass 159 and iron. Formation of these ions is inhibited by removing trifluoroacetic acid from the mobile phases and using formic acid in its place, replacing the stainless steel union with a titanium union or by adding a small blank fused silica capillary column between the chromatography column and the electrospray tip via a stainless steel union without any adverse effects to chromatographic separation, peak broadening or peptide identifications. PMID:21504012

  6. Membrane-based continuous remover of trifluoroacetic acid in mobile phase for LC-ESI-MS analysis of small molecules and proteins.

    PubMed

    Zhou, Zhigui; Zhang, Jialing; Xing, Jiawei; Bai, Yu; Liao, Yiping; Liu, Huwei

    2012-07-01

    We developed a "continuous" trifluoroacetic acid (TFA) remover based on electrodialysis with bipolar membrane for online coupling of liquid chromatography (LC) and electrospray ionization mass spectrometry (ESI-MS) using TFA containing mobile phase. With the TFA remover as an interface, the TFA anion in the mobile phase was removed based on electrodialysis mechanism, and meanwhile, the anion exchange membrane was self-regenerated by the hydroxide ions produced by the bipolar membrane. So the remover could continuously work without any additional regeneration process. The established LC-TFA remover-MS system has been successfully applied for the qualitative and quantitative analysis of small molecules as well as proteins. PMID:22528206

  7. Membrane-Based Continuous Remover of Trifluoroacetic Acid in Mobile Phase for LC-ESI-MS Analysis of Small Molecules and Proteins

    NASA Astrophysics Data System (ADS)

    Zhou, Zhigui; Zhang, Jialing; Xing, Jiawei; Bai, Yu; Liao, Yiping; Liu, Huwei

    2012-07-01

    We developed a "continuous" trifluoroacetic acid (TFA) remover based on electrodialysis with bipolar membrane for online coupling of liquid chromatography (LC) and electrospray ionization mass spectrometry (ESI-MS) using TFA containing mobile phase. With the TFA remover as an interface, the TFA anion in the mobile phase was removed based on electrodialysis mechanism, and meanwhile, the anion exchange membrane was self-regenerated by the hydroxide ions produced by the bipolar membrane. So the remover could continuously work without any additional regeneration process. The established LC-TFA remover-MS system has been successfully applied for the qualitative and quantitative analysis of small molecules as well as proteins.

  8. Analytical Enantioseparation of β-Substituted-2-Phenylpropionic Acids by High-Performance Liquid Chromatography with Hydroxypropyl-β-Cyclodextrin as Chiral Mobile Phase Additive.

    PubMed

    Tong, Shengqiang; Zhang, Hu; Yan, Jizhong

    2016-04-01

    Analytical enantioseparation of five β-substituted-2-phenylpropionic acids by high-performance liquid chromatography with hydroxypropyl-β-cyclodextrin (HP-β-CD) as chiral mobile phase additive was established in this paper, and chromatographic retention mechanism was studied. The effects of various factors such as the organic modifier, different ODS C18 columns and concentration of HP-β-CD were investigated. The chiral mobile phase was composed of methanol or acetonitrile and 0.5% triethylamine acetate buffer at pH 3.0 added with 25 mmol L(-1) of HP-β-CD, and baseline separations could be reached for all racemates. As for chromatographic retention mechanism, it was found that there was a negative correlation between the concentration of HP-β-CD in mobile phase and the retention factor under constant pH value and column temperature. PMID:26755500

  9. Peak shapes of acids and bases under overloaded conditions in reversed-phase liquid chromatography, with weakly buffered mobile phases of various pH: A thermodynamic interpretation

    SciTech Connect

    Gritti, Fabrice; Guiochon, Georges A

    2009-01-01

    We measured overloaded band profiles for a series of nine compounds (phenol, caffeine, 3-phenyl 1-propanol, 2-phenylbutyric acid, amphetamine, aniline, benzylamine, p-toluidine, and procainamidium chloride) on columns packed with four different C{sub 18}-bonded packing materials: XTerra-C{sub 18}, Gemini-C{sub 18}, Luna-C{sub 18}(2), and Halo-C{sub 18}, using buffered methanol-water mobile phases. The {sub W}{sup S}pH of the mobile phase was increased from 2.6 to 11.3. The buffer concentration (either phosphate, acetate, or carbonate buffers) was set constant at values below the maximum concentration of the sample in the band. The influence of the surface chemistry of the packing material on the retention and the shape of the peaks was investigated. Adsorbents having a hybrid inorganic/organic structure tend to give peaks exhibiting moderate or little tailing. The retention and the shape of the band profiles can easily be interpreted at {sub W}{sup S}pHs that are well above or well below the {sub W}{sup S}pK{sub a} of the compound studied. In contrast, the peak shapes in the intermediary pH range (i.e., close to the compound {sub W}{sup S}pK{sub a}) have rarely been studied. These shapes reveal the complexity of the competitive adsorption behavior of couples of acido-basic conjugated compounds at {sub W}{sup S}pHs that are close to their {sub W}{sup S}pK{sub a}. They also reveal the role of the buffer capacity on the resulting peak shape. With increasing {sub W}{sup S}pH, the overloaded profiles are first langmuirian (isotherm type I) at low {sub W}{sup S}pHs, they become S-shaped (isotherm type II), then anti-langmuirian (isotherm type III), S-shaped again at intermediate {sub W}{sup S}pHs, and finally return to a langmuirian shape at high {sub W}{sup S}pHs. A new general adsorption isotherm model that takes into account the dissociation equilibrium of conjugated acidic and basic species in the bulk mobile phase accounts for these transient band shapes. An

  10. Adsorption mechanism of acids and bases in reversed-phase liquid chromatography in weak buffered mobile phases designed for liquid chromatography/mass spectrometry

    SciTech Connect

    Gritti, Fabrice; Guiochon, Georges A

    2009-01-01

    The overloaded band profiles of five acido-basic compounds were measured, using weakly buffered mobile phases. Low buffer concentrations were selected to provide a better understanding of the band profiles recorded in LC/MS analyses, which are often carried out at low buffer concentrations. In this work, 10 {micro}L samples of a 50 mM probe solution were injected into C{sub 18}-bonded columns using a series of five buffered mobile phases at {sub W}{sup S}pH between 2 and 12. The retention times and the shapes of the bands were analyzed based on thermodynamic arguments. A new adsorption model that takes into account the simultaneous adsorption of the acidic and the basic species onto the endcapped adsorbent, predicts accurately the complex experimental profiles recorded. The adsorption mechanism of acido-basic compounds onto RPLC phases seems to be consistent with the following microscopic model. No matter whether the acid or the base is the neutral or the basic species, the neutral species adsorbs onto a large number of weak adsorption sites (their saturation capacity is several tens g/L and their equilibrium constant of the order of 0.1 L/g). In contrast, the ionic species adsorbs strongly onto fewer active sites (their saturation capacity is about 1 g/L and their equilibrium constant of the order of a few L/g). From a microscopic point of view and in agreement with the adsorption isotherm of the compound measured by frontal analysis (FA) and with the results of Monte-Carlo calculations performed by Schure et al., the first type of adsorption sites are most likely located in between C{sub 18}-bonded chains and the second type of adsorption sites are located deeper in contact with the silica surface. The injected concentration (50 mM) was too low to probe the weakest adsorption sites (saturation capacity of a few hundreds g/L with an equilibrium constant of one hundredth of L/g) that are located at the very interface between the C{sub 18}-bonded layer and the bulk

  11. Analysis of Phenacylester Derivatives of Fatty Acids from Human Skin Surface Sebum by Reversed-Phase HPLC: Chromatographic Mobility as a Function of Physico-Chemical Properties

    PubMed Central

    Bodoprost, Juliana; Rosemeyer, Helmut

    2007-01-01

    A set of 13 fatty acids was transformed into their phenacyl esters by reaction with phenacyl bromide in acetonitrile using 18-crown-6 as phase-transfer catalyst. Conditions for the RP-18 HPL chromatographic separation of most of the esters has been worked out. Using this standard the fatty acid spectra from skin surface sebum lipids of 17 test persons was taken after microwave-assisted hydrolysis, neutralization and extraction with n-hexane. Quantitative evaluation of the chromatograms exhibits that oleic acid predominates in the sebum of all test persons. In the second part of the work the chromatographic mobility (RE values) of fatty acid phenacyl esters is correlated with calculated physico-chemical parameters of the corresponding acids. The best linear correlation was found between the RE and the logP values. This is helpful for the structural elucidation of un-identified fatty acids in a chromatogram.

  12. Enantiomeric separation of dansyl amino acids using macrocyclic antibiotics as chiral mobile phase additives by narrow-bore high-performance liquid chromatography.

    PubMed

    Sharp, V Scott; Letts, Maureen N; Risley, Donald S; Rose, John P

    2004-03-01

    Seven macrocyclic antibiotics were evaluated as chiral selectors for the enantiomeric separation of 11 dansyl amino acids using narrow-bore high-performance liquid chromatography (HPLC). The macrocyclic antibiotics were incorporated as mobile phase additives to determine the enantioselective effects on the chiral analytes. The resolution and capacity factor (k') of each analyte were assessed while varying the structure of macrocyclic antibiotic and the mobile phase buffer pH. The selectivity of the chiral selectors was measured as a function of changes in these parameters. All 11 dansyl amino acids were separated by at least one of the chiral selectors. Three-dimensional computer modeling of the more effective chiral selectors illustrated the importance of macrocyclic antibiotic structure concerning stereospecific analyte interaction. PMID:14770411

  13. Formation of iron complexs from trifluoroacetic acid based liquid chromatography mobile phases as interference ions in liquid chromatography/electrospray ionization mass spectrometric analysis

    SciTech Connect

    Shukla, Anil K.; Zhang, Rui; Orton, Daniel J.; Zhao, Rui; Clauss, Therese RW; Moore, Ronald J.; Smith, Richard D.

    2011-05-30

    Two unexpected singly charged ions at m/z 1103 and 944 have been observed in mass spectra obtained from electrospray ionization-mass spectrometric analysis of liquid chromatography effluents with mobile phases containing trifluoroacetic acid. Accurate mass measurement and tandem mass spectrometry studies revealed that these two ions are not due to any contamination from solvents and chemicals used for mobile and stationary phases or from the laboratory atmospheric environment. Instead these ions are clusters of trifluoroacetic acid formed in association with acetonitrile, water and iron from the stainless steel union used to connect the column with the electrospray tip and to apply high voltage; the molecular formulae are Fe+((OH)(H2O)2)9(CF3COOH)5 and Fe+((OH)(H2O)2)6 (CF3COOH)5.

  14. 47 CFR 54.1008 - Mobility Fund Phase I disbursements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (CONTINUED) UNIVERSAL SERVICE Mobility Fund § 54.1008 Mobility Fund Phase I disbursements. (a) A winning... compliance with all requirements for receipt of Mobility Fund Phase I support at the time that it...

  15. 47 CFR 54.1008 - Mobility Fund Phase I disbursements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (CONTINUED) UNIVERSAL SERVICE Mobility Fund § 54.1008 Mobility Fund Phase I disbursements. (a) A winning... compliance with all requirements for receipt of Mobility Fund Phase I support at the time that it...

  16. Trifluoroethanol-containing RP-HPLC mobile phases for the separation of transmembrane peptides human glycophorin-A, integrin alpha-1, and p24: analysis and prevention of potential side reactions due to formic acid.

    PubMed

    Hara, Toshiaki; Huang, Yue; Ito, Akihiro; Kawakami, Toru; Hojo, Hironobu; Murata, Michio

    2015-02-01

    Reversed-phase high-pressure liquid chromatography analysis and purification of three hydrophobic, aggregation-prone peptides, composed mainly of the transmembrane (TM) sequence, were performed using elution systems containing 2,2,2-trifluoroethanol (TFE). The addition of 10-16% TFE to a common mobile phase, such as a water/acetonitrile/propanol (PrOH) or a water/PrOH/formic acid system, markedly improved the chromatographic separation of these peptides. The superior performance of TFE-containing systems in separating peptides over water/PrOH/formic acid systems [Bollhagen R. et al., J. Chromatogr. A, 1995; 711: 181-186.] clearly demonstrated that adding TFE to the mobile phase is one of best methods for TM-peptide purification. Characterization of the potential side reactions using MALDI and ESI-LIT/Orbitrap mass spectrometry indicated that prolonged incubation of peptides in a mixture of TFE-formic acid possibly induces O-formylation of the Ser residue and N-formylation of the N-terminus of peptides. The conditions for selective removal of the formyl groups from TM peptides were also screened. We believe that these results will expand our ability to analyze and prepare hydrophobic, aggregation-prone TM peptides and proteins. PMID:25504594

  17. 47 CFR 54.1008 - Mobility Fund Phase I disbursements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Mobility Fund Phase I disbursements. 54.1008 Section 54.1008 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) UNIVERSAL SERVICE Mobility Fund § 54.1008 Mobility Fund Phase I disbursements. (a) A winning bidder for Mobility Fund Phase I...

  18. Occurrence and behavior of system peaks in RP HPLC with solely aqueous mobile phases.

    PubMed

    Kalíková, Kveta; Hruska, Vlastimil; Svobodová, Jana; Chudoba, Richard; Gas, Bohuslav; Tesarová, Eva

    2009-09-01

    System peaks are important but often also disturbing phenomena occurring in separation systems. Behavior of system peaks was studied in reversed phase high performance liquid chromatography (RP HPLC) systems consisting of an RP Amide C16 column and aqueous solutions of organic acids with alkaline metal hydroxides as mobile phases. Binary mobile phases, composed of benzoic acid and lithium hydroxide (LiOH) or cesium hydroxide (CsOH), yielded two system peaks. The first peak was stationary and the second one moved with dilution of the mobile phase or with changes of the alkaline metal hydroxide concentration. The latter changes affected dissociation of the benzoic acid present in the mobile phase and thereby its retention. The presumption that the first system peak is not influenced by the type of alkaline metal cation and that it is related to the non-adsorbed component of the mobile phase was confirmed by a cyclic procedure. Three-component mobile phases composed of benzoic acid, tropic acid, and a hydroxide gave rise to three system peaks as expected. The first peak was again stationary and the two others shifted depending on the concentration variation of both acids. Resonance causing a zigzag peak, well described in capillary zone electrophoresis (CZE), was observed if 1-pentanol was injected into a chromatographic system with one-component mobile phase. PMID:19639550

  19. Evaluation of mobile phase composition for enhancing sensitivity of targeted quantification of oligonucleotides using ultra-high performance liquid chromatography and mass spectrometry: application to phosphorothioate deoxyribonucleic acid.

    PubMed

    Chen, Buyun; Bartlett, Michael G

    2013-05-01

    LC-MS based assays are a promising approach for the bioanalysis of oligonucleotide therapeutics due to their selectivity and structure identification capabilities. However, the lack of sensitivity and complicated sample preparation procedures remain a barrier for application of LC-MS based assays to preclinical and clinical studies. Numerous studies have shown that the mobile phase composition, especially organic solvent type, has a significant impact on the MS sensitivity of oligonucleotides. In this study, we systematically investigated the type of organic solvents and concentration of organic modifiers for their effect on electrospray desorption efficiency, chromatographic separation and LC-MS signal intensity and provide mechanisms for these effects. 25mM HFIP, 15mM DIEA and the use of ethanol as an organic solvent were observed to achieve a two order of magnitude increase in LC-MS signal intensity when compared to the most commonly used LC-MS mobile phase composition. Phenol-chloroform LLE in combination with ethanol precipitation was demonstrated to be effective for quantitative bioanalysis of therapeutic oligonucleotides. Various conditions for ethanol precipitation were evaluated and >75% absolute recovery was achieved using an optimized extraction procedure. No increase in column pressure or deterioration of separation was observed for >500 injections of biological samples. The method run time was 5min and the LOQ was 2.5ng/ml. The accuracy (% error) and precision (%RSD) are <5.09% and <10.56%, respectively, over a dynamic range of 2.5-1000ng/ml. The assay was applied to a proof of concept animal study and similar PK parameters to previous studies were obtained. PMID:23528868

  20. An integrated electrophoretic mobility control device with split design for signal improvement in liquid chromatography-electrospray ionization mass spectrometry analysis of aminoglycosides using a heptafluorobutyric acid containing mobile phase.

    PubMed

    Hung, Sih-Hua; Yu, Meng-Ju; Wang, Nan-Hsuan; Hsu, Ren-Yu; Wei, Guor-Jien; Her, Guor-Rong

    2016-08-24

    Electrophoretic mobility control (EMC) was used to alleviate the adverse effect of the ion-pairing agent heptafluorobutyric acid (HFBA) in the liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) analysis of aminoglycosides. Aminoglycosides separated by LC were directed to a connecting column before their detection via ESI. Applying an electric field across the connecting column caused the positively charged aminoglycosides to migrate toward the mass spectrometer whereas the HFBA anions remained in the junction reservoir, thus alleviating the ion suppression caused by HFBA. To accommodate the flow rate of a narrow-bore column, minimize the effect of electrophoretic mobility on separation, and facilitate the operation, an integrated EMC device with a split design was fabricated. With the proposed EMC device, the signals of aminoglycosides were enhanced by a factor of 5-85 without affecting the separation efficiency or elution order. For the analysis of aminoglycosides in bovine milk, the proposed approach demonstrates a sensitivity that is at least 10 times below the maximum residue limits set by most countries. PMID:27497008

  1. Aqueous phase oligomerization of α,β-unsaturated carbonyls and acids investigated using ion mobility spectrometry coupled to mass spectrometry (IMS-MS)

    NASA Astrophysics Data System (ADS)

    Renard, Pascal; Tlili, Sabrine; Ravier, Sylvain; Quivet, Etienne; Monod, Anne

    2016-04-01

    One of the current essential issues to unravel our ability to forecast future climate change and air quality, implies a better understanding of natural processes leading to secondary organic aerosol (SOA) formation, and in particular the formation and fate of oligomers. The difficulty in characterizing macromolecules is to discern between large oxygenated molecules from series of oligomers containing repeated small monomers of diverse structures. In the present study, taking advantage from previously established radical vinyl oligomerization of methyl vinylketone (MVK) in the aqueous phase, where relatively simple oligomers containing up to 14 monomers were observed, we have investigated the same reactivity on several other unsaturated water soluble organic compounds (UWSOCs) and on a few mixtures of these precursor compounds. The technique used to characterize the formed oligomers was a traveling wave ion mobility spectrometry coupled to a hybrid quadrupole - time of flight mass spectrometer (IMS-MS) fitted with an electrospray source and ultra-high performance liquid chromatography (UPLC). The technique allows for an additional separation, especially for large ions, containing long carbon chains. We have shown the efficiency of the IMS-mass spectrometry technique to detect oligomers derived from MVK photooxidation in the aqueous phase. The results were then compared to other oligomers, derived from ten other individual biogenic UWSOCs. The technique allowed distinguishing between different oligomers arising from different precursors. It also clearly showed that compounds bearing a non-conjugated unsaturation did not provide oligomerization. Finally, it was shown that the IMS-mass spectrometry technique, applied to mixtures of unsaturated conjugated precursors, exhibited the ability of these precursors to co-oligomerize, i.e. forming only one complex oligomer system bearing monomers of different structures. The results are discussed in terms of atmospheric

  2. Shift of the high-performance liquid chromatographic retention times of metabolites in relation to the original drug on an RP8 column with acidic mobile phase.

    PubMed

    Herre, S; Pragst, F

    1997-04-25

    The effect of the structural change in the metabolization of drugs on the HPLC retention time with an RP8 column with an acetonitrile-phosphate buffer (pH 2.3) as the mobile phase was investigated at model compound pairs of 29 functionalization reactions. A more or less typical region for T(M)=log(k'M/k'D) was found for each of these reactions (with k'M and k'D being the capacity factors of the metabolite and the drug, respectively), which can be explained by an increase or a decrease of the hydrophilic properties caused by the structural change. This effect is superimposed by an essential influence of the unchanged part of the molecule and in some cases by special intramolecular interactions like the hydrogen bond. Despite the more complicated structure of real drugs the results obtained at the model compound pairs were confirmed for most of the 55 metabolite/drug pairs. The practical use of the T(M) values as a support to distinguish between different metabolites in the HPLC-DAD analysis of intoxications is demonstrated with cases of poisoning with diphenhydramine, propafenone and methaqualone. PMID:9187390

  3. Capillary electrokinetic separations: Influence of mobile phase composition on performance

    SciTech Connect

    Sepaniak, M.J.; Swaile, D.F.; Powell, A.C.; Cole, R.O.

    1990-01-01

    The composition of the mobile phase employed in capillary zone electrophoresis and the related technique, micellar electrokinetic capillary chromatography, is an important factor in determining separation performance. The influences of ionic salt, surfactant, and organic solvent mobile phase additives on separation efficiency, retention, and elution range are discussed and demonstrated. 23 refs., 2 figs., 2 tabs.

  4. The influence of mobile phase demixion on thin-layer chromatographic enantioseparation of ibuprofen and naproxen.

    PubMed

    Sajewicz, Mieczysław; Kaczmarski, Krzysztof; Gontarska, Monika; Kiszka, Sylwia; Kowalska, Teresa

    2007-09-01

    In our earlier article we presented the results of tracing the enantioseparation of the two test analytes (ibuprofen and naproxen) by means of video densitometry and scanning densitometry. In that way we demonstrated an excellent performance of this combined approach to the thin-layer chromatographic detection in the area of enantioseparation. In this paper we study an impact of the four different mobile phases on the enantioseparation of the scalemic mixtures of ibuprofen and naproxen on the silica gel layers impregnated with L-arginine as chiral selector. The main component of all the investigated mobile phases is 2-propanol. Mobile phase 1 consists of pure 2-propanol, while mobile phases 2-4 contain, respectively, ca. 0.66, 1.32, and 1.98 g/L of glacial acetic acid in 2-propanol. Acetic acid is used to protonate L-arginine, as the involved retention mechanism consists of the ion pair formation between L-arginine in the cationic form and the chiral 2-arylpropionic acids (2-APAs), ibuprofen and naproxen, in the anionic form. It is shown that in the absence of glacial acetic acid no enantioseparation can be obtained. Then with adding of 0.66 g/L glacial acetic acid partial enantioseparation of the naproxen and ibuprofen antimers is obtained, with a simultaneous effect of the mobile phase demixion. With the amount of acetic acid increasing, the effect of demixion becomes increasingly perceptible. In that case the displacement effect is observed (and mathematically modeled), which results in compressing of the antimer pairs by the second front of mobile phase. The obtained results allow a deeper insight into the mechanism of enantioseparation with the two test 2-APAs. A combined impact of the crystalline chirality of silica gel and the molecular chirality of L-arginine on the vertical and the horizontal enantioseparation of ibuprofen and naproxen is also discussed. PMID:18019559

  5. MSAT mobile electronically steered phased array antenna development

    NASA Technical Reports Server (NTRS)

    Schmidt, Fred

    1988-01-01

    The Mobile Satellite Experiment (MSAT-X) breadboard antenna design demonstrates the feasibility of using a phased array in a mobile satellite application. An electronically steerable phased array capable of tracking geosynchronous satellites from anywhere in the Continental United States has been developed. The design is reviewed along with the test data. Cost analysis are presented which indicate that this design can be produced at a cost of $1620 per antenna.

  6. Fatty acid mobilization and comparison to milk fatty acid content in northern elephant seals.

    PubMed

    Fowler, Melinda A; Debier, Cathy; Mignolet, Eric; Linard, Clementine; Crocker, Daniel E; Costa, Daniel P

    2014-01-01

    A fundamental feature of the life history of true seals, bears and baleen whales is lactation while fasting. This study examined the mobilization of fatty acids from blubber and their subsequent partitioning into maternal metabolism and milk production in northern elephant seals (Mirounga angustirostris). The fatty acid composition of blubber and milk was measured in both early and late lactation. Proportions of fatty acids in milk and blubber were found to display a high degree of similarity both early and late in lactation. Seals mobilized an enormous amount of lipid (~66 kg in 17 days), but thermoregulatory fatty acids, those that remain fluid at low temperatures, were relatively conserved in the outer blubber layer. Despite the stratification, the pattern of mobilization of specific fatty acids conforms to biochemical predictions. Long chain (>20C) monounsaturated fatty acids (MUFAs) were the least mobilized from blubber and the only class of fatty acids that showed a proportional increase in milk in late lactation. Polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) were more mobilized from the blubber, but neither proportion increased in milk at late lactation. These data suggest that of the long chain MUFA mobilized, the majority is directed to milk synthesis. The mother may preferentially use PUFA and SFA for her own metabolism, decreasing the availability for deposition into milk. The potential impacts of milk fatty acid delivery on pup diving development and thermoregulation are exciting avenues for exploration. PMID:24126964

  7. Microfabricated refractive index gradient based detector for reversed-phase liquid chromatography with mobile phase gradient elution.

    PubMed

    McBrady, Adam D; Synovec, Robert E

    2006-02-10

    Typical refractive index (RI) detectors for liquid chromatography (LC) are not well suited to application with mobile phase gradient elution, due to the difficulty in correcting for the detected baseline shift during the gradient. We report a sensitive, highly reproducible, microfabricated refractive index gradient (micro-RIG) detector that performs well with mobile phase gradient elution LC. Since the micro-RIG signal remains on-scale throughout the mobile phase gradient, one can apply a baseline correction procedure. We demonstrate that by collecting two mobile phase gradient blanks and subtracting one of them from the other, a reproducible, flat baseline is achieved. Therefore, subtracting a blank from a separation provides a baseline corrected chromatogram with reasonably high signal-to-noise ratio for eluting analytes. The micro-RIG detector uses a collimated diode laser beam to optically probe a RIG formed perpendicular to the laminar flow direction within a microfabricated borosilicate glass chip. The chip-based design of the detector is suitable for either traditional bench-top or LC-on-a-chip technologies. We report reversed phase high performance liquid chromatography (RP-HPLC) separations of proteins and polymers, over mobile phase gradient conditions of 67% A:33% B to 3% A:97% B by volume, where A is 96% methanol:3.9% water:0.1% trifluoroacetic acid (TFA), and B is 3.9% methanol:96% water:0.1% TFA. The separations were performed on a Jupiter 5 mu C4 300 A 150 mm x 1.0 mm Phenomenex column at a flow rate of 20 microl/min. Viscosity changes during the mobile phase gradient separation are found to shift the on-chip merge position of the detected concentration gradient (i.e., RIG), in a reproducible fashion. However, this viscosity effect makes detection sensitivity vary throughout the mobile phase gradient, due to moving the optimized position of the probe beam in relation to the analyte concentration gradient being probed. None-the-less, consistent limits

  8. Effect of Mobile Phase on Electrospray Ionization Efficiency

    NASA Astrophysics Data System (ADS)

    Liigand, Jaanus; Kruve, Anneli; Leito, Ivo; Girod, Marion; Antoine, Rodolphe

    2014-08-01

    Electrospray (ESI) ionization efficiencies (IE) of a set of 10 compounds differing by chemical nature, extent of ionization in solution (basicity), and by hydrophobicity (tetrapropylammonium and tetraethylammonium ion, triethylamine, 1-naphthylamine, N,N-dimethylaniline, diphenylphthalate, dimethylphtahalate, piperidine, pyrrolidine, pyridine) have been measured in seven mobile phases (three acetonitrile percentages 20%, 50%, and 80%, and three different pH-adjusting additives, 0.1% formic acid, 1 mM ammonia, pH 5.0 buffer combination) using the relative measurement method. MS parameters were optimized separately for each ion. The resulting relative IE data were converted into comparable logIE values by anchoring them to the logIE of tetrapropylammonium ion taking into account the differences of ionization in different solvents and thereby making the logIE values of the compounds comparable across solvents. The following conclusions were made from analysis of the data. The compounds with pK a values in the range of the solution pH values displayed higher IE at lower pH. The sensitivity of IE towards pH depends on hydrophobicity being very strong with pyridine, weaker with N,N-dimethylaniline, and weakest with 1-naphthylamine. IEs of tetraalkylammonium ions and triethylamine were expectedly insensitive towards solution pH. Surprisingly high IEs of phthalate esters were observed. The differences in solutions with different acetonitrile content and similar pH were smaller compared with the pH effects. These results highlight the importance of hydrophobicity in electrospray and demonstrate that high hydrophobicity can sometimes successfully compensate for low basicity.

  9. Phase transitions in contagion processes mediated by recurrent mobility patterns

    NASA Astrophysics Data System (ADS)

    Balcan, Duygu; Vespignani, Alessandro

    2011-07-01

    Human mobility and activity patterns mediate contagion on many levels, including the spatial spread of infectious diseases, diffusion of rumours, and emergence of consensus. These patterns however are often dominated by specific locations and recurrent flows and poorly modelled by the random diffusive dynamics generally used to study them. Here we develop a theoretical framework to analyse contagion within a network of locations where individuals recall their geographic origins. We find a phase transition between a regime in which the contagion affects a large fraction of the system and one in which only a small fraction is affected. This transition cannot be uncovered by continuous deterministic models because of the stochastic features of the contagion process and defines an invasion threshold that depends on mobility parameters, providing guidance for controlling contagion spread by constraining mobility processes. We recover the threshold behaviour by analysing diffusion processes mediated by real human commuting data.

  10. Regularities of Anthocyanins Retention in RP HPLC for “Water–Acetonitrile–Phosphoric Acid” Mobile Phases

    PubMed Central

    Deineka, V. I.; Deineka, L. A.; Saenko, I. I.

    2015-01-01

    The influence of exchange of HCOOH (System 2) by phosphoric acid (System 1) for acidification of the “acetonitrile–water” mobile phases for reversed-phase HPLC of anthocyanins was investigated in the framework of relative retention analysis. The differences and similarities of anthocyanins separation were revealed. It has been shown that some common features of the quantitative relationships may be used for preliminary anthocyanins structure differentiation, according to the number of OH-groups in anthocyanidin backbone as well as to a number of saccharide molecules in glycoside radicals in position 3 of the anthocyanin without MS detection. PMID:25692073

  11. 77 FR 15369 - Mobility Fund Phase I Auction GIS Data of Potentially Eligible Census Blocks

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... COMMISSION Mobility Fund Phase I Auction GIS Data of Potentially Eligible Census Blocks AGENCY: Federal... information system (GIS) data for the census blocks potentially eligible for Mobility Fund Phase I support to...-0432 (TTY). SUPPLEMENTARY INFORMATION: This is a summary of the Mobility Fund Phase I Auction GIS...

  12. Mobilization of stored triglycerides from macrophages as free fatty acids.

    PubMed

    von Hodenberg, E; Khoo, J C; Jensen, D; Witztum, J L; Steinberg, D

    1984-01-01

    Because many or most lipid-laden foam cells in atheromas and in xanthomas derive from macrophages, it is important to understand how they accumulate lipids and how they can divest themselves of lipids. The mobilization of stored triglycerides from macrophages was studied in cell cultures. Mouse resident peritoneal macrophages and J774 macrophages increased their triglyceride content six- to tenfold during a 24-hour incubation with free fatty acids complexed to albumin. Subsequent incubation in fresh medium containing free fatty acid-poor albumin was accompanied by a fall in cell triglyceride content (50% in 20 hours) and a corresponding increase in medium-free fatty acid. Release of free fatty acid was linear as a function of time, provided fresh medium was added hourly. When medium was not changed, release rates fell off rapidly, probably due to re-uptake of released free fatty acid. Chloroquine did not affect the rate of free fatty acid release. The results suggest that macrophages-foam cells can reduce their triglyceride stores via the action of a nonlysosomal (presumably cytoplasmic) neutral triglyceride lipase. PMID:6508637

  13. Absolute negative mobility induced by potential phase modulation

    NASA Astrophysics Data System (ADS)

    Dandogbessi, Bruno S.; Kenfack, Anatole

    2015-12-01

    We investigate the transport properties of a particle subjected to a deterministic inertial rocking system, under a constant bias, for which the phase of the symmetric spatial potential used is time modulated. We show that this modulated phase, assisted by a periodic driving force, can lead to the occurrence of the so-called absolute negative mobility (ANM), the phenomenon in which the particle surprisingly moves against the bias. Furthermore, we discover that ANM predominantly originates from chaotic-periodic transitions. While a detailed mechanism of ANM remains unclear, we show that one can manipulate the control parameters, i.e., the amplitude and the frequency of the phase, in order to enforce the motion of the particle in a given direction. Finally, for this experimentally realizable system, we devise a two-parameter current plot which may be a good guide for controlling ANM.

  14. Considerations of digital phase modulation for narrowband satellite mobile communication

    NASA Technical Reports Server (NTRS)

    Grythe, Knut

    1990-01-01

    The Inmarsat-M system for mobile satellite communication is specified as a frequency division multiple access (FDMA) system, applying Offset Quadrature Phase Shift Keying (QPSK) for transmitting 8 kbit/sec in 10 kHz user channel bandwidth. We consider Digital Phase Modulation (DPM) as an alternative modulation format for INMARSAT-M. DPM is similar to Continuous Phase Modulation (CPM) except that DPM has a finite memory in the premodular filter with a continuous varying modulation index. It is shown that DPM with 64 states in the VA obtains a lower bit error rate (BER). Results for a 5 kHz system, with the same 8 kbit/sec transmitted bitstream, is also presented.

  15. Microchip electrospray: cone-jet stability analysis for water-acetonitrile and water-methanol mobile phases.

    PubMed

    Jung, Stephanie; Effelsberg, Uwe; Tallarek, Ulrich

    2011-03-25

    Changes in mobile phase composition during high performance liquid chromatography (HPLC) gradient elution coupled to mass spectrometry (MS) sensitively affect electrospray operation modes. In this work, we identify the influences of dynamic changes in bulk conductivity on the cone-jet stability island for aqueous acetonitrile and aqueous methanol mobile phases commonly used in reversed-phase HPLC. Bulk conductivities of the mobile phases were varied by adding different amounts of formic acid. A commercial microchip-HPLC/ESI-MS configuration was modified to enable in situ electrospray diagnostics by frequency analysis of the microchip emitter current and spray imaging. This approach facilitated the detection of different spray modes together with their onset potentials. The established spray modes are described and the differences in onset potentials and stability regions explained by the physicochemical properties of the electrosprayed liquid. PMID:21333298

  16. Gas-Phase Acidities of Phosphorylated Amino Acids.

    PubMed

    Stover, Michele L; Plummer, Chelsea E; Miller, Sean R; Cassady, Carolyn J; Dixon, David A

    2015-11-19

    Gas-phase acidities and heats of formation have been predicted at the G3(MP2)/SCRF-COSMO level of theory for 10 phosphorylated amino acids and their corresponding amides, including phospho-serine (pSer), -threonine (pThr), and -tyrosine (pTyr), providing the first reliable set of these values. The gas-phase acidities (GAs) of the three named phosphorylated amino acids and their amides have been determined using proton transfer reactions in a Fourier transform ion cyclotron mass spectrometer. Excellent agreement was found between the experimental and predicted GAs. The phosphate group is the deprotonation site for pSer and pThr and deprotonation from the carboxylic acid generated the lowest energy anion for pTyr. The infrared spectra were calculated for six low energy anions of pSer, pThr, and pTyr. For deprotonated pSer and pThr, good agreement is found between the experimental IRMPD spectra and the calculated spectra for our lowest energy anion structure. For pTyr, the IR spectra for a higher energy phosphate deprotonated structure is in good agreement with experiment. Additional experiments tested electrospray ionization (ESI) conditions for pTyr and determined that variations in solvent, temperature, and voltage can result in a different experimental GA value, indicating that ESI conditions affect the conformation of the pTyr anion. PMID:26492552

  17. Phased Arrays of Ground and Airborne Mobile Terminals for Satellite Communications

    NASA Technical Reports Server (NTRS)

    Huang, John

    1996-01-01

    Phased array antenna is beginning to play an important in the arena of mobile/satellite communications. Two examples of mobile terminal phased arrays will be shown. Their technical background, challenges, and cost drivers will be discussed. A possible solution to combat some of the deficiencies of the conventional phased array by exploiting the phased reflectarray technology will be briefly presented.

  18. Investigations of mobile phase contributions to enantioselective anion- and zwitterion-exchange modes on quinine-based zwitterionic chiral stationary phases.

    PubMed

    Hoffmann, Christian V; Reischl, Roland; Maier, Norbert M; Lämmerhofer, Michael; Lindner, Wolfgang

    2009-02-13

    Novel chiral stationary phases (CSPs) based on zwitterionic Cinchona alkaloid-type low-molecular mass chiral selectors (SOs), as they have been reported recently, were investigated in HPLC towards effects on their chromatographic behavior by mobile phase composition. Mobile phase characteristics like acid-to-base ratio and type of acidic and basic additives as well as effect of type of bulk solvents in nonaqueous polar organic and aqueous reversed-phase (RP) eluent systems were varied in order to illustrate the variability and applicability of zwitterionic CSPs with regard to mobile phase aspects. Chiral SOs of the five zwitterionic CSPs investigated herein contained weak and strong cation-exchange (WCX, SCX) sites at C9- and C6'-positions of the Cinchona alkaloid scaffold which itself accommodated the weak anion-exchange (WAX) site. The study focused on zwitterion-exchange (ZX) operational mode and chiral amino acids as target analytes. Besides, also the anion-exchange (AX) mode for chiral N-blocked amino acid analytes was considered, because of the intramolecular counterion (IMCI) property available in AX mode. Overall, most general and successful conditions in ZX mode were found to be weakly acidic methanolic mobile phases. In aqueous eluents RP contributions to retention came into play but only at low organic modifier content because of the highly polar character of zwitterionic analytes. At higher acetonitrile content, HILIC-related retention phenomena were observed. When using weakly basic eluent system in AX mode remarkably fast enantiomer separations involving exclusion phenomena were possible with one enantiomer eluting before and the other after void volume. PMID:19144343

  19. The gas-phase acidity of nitrocyclopropane

    NASA Astrophysics Data System (ADS)

    Bartmess, John E.; Wilson, Burton; Sorensen, Daniel N.; Bloor, John E.

    1992-09-01

    Nitrocyclopropane is 10.5 kcal mol-1 weaker as an acid in the gas phase than its open-chain analog, 2-nitropropane. This is attributed to the conflicting hybridization requirements for carbanion stabilization by the cyclopropyl ring and by the nitro group. Based on reactivities, the deprotonated form does not ring-open to either the 2-nitroallyl anion or the 1-nitroallyl anion.

  20. Methylammonium formate as a mobile phase modifier for reversed-phase liquid chromatography

    PubMed Central

    Grossman, Shau; Danielson, Neil D.

    2009-01-01

    Although alkylammonium ionic liquids such as ethylammonium nitrate and ethylammonium formate have been used as mobile phase “solvents” for liquid chromatography (LC), we have shown that methylammonium formate (MAF), in part because of its lower viscosity, can be an effective replacement for methanol (MeOH) in reversed-phase LC. Plots of log retention factor versus the fraction of MeOH and MAF in the mobile phase indicate quite comparable solvent strength slope values of 2.50 and 2.05, respectively. Using a polar endcapped C18 column, furazolidone and nitrofurantoin using 20% MAF-80% water could be separated in 22 min but no baseline separation was possible using MeOH as the modifier, even down to 10%. Suppression of silanol peak broadening effects by MAF is important permitting a baseline separation of pyridoxine, thiamine, and nicotinamide using 5% MAF-95% water at 0.7 mL/min. Using 5% MeOH-95% water, severe peak broadening for thiamine is evident. The compatibility of MAF as a mobile phase modifer for LC with mass spectrometry detection of water soluble vitamins is also shown. PMID:18849044

  1. Adsorption interaction parameter of polyethers in ternary mobile phases: the critical adsorption line.

    PubMed

    Nguyen, V Cuong; Trathnigg, Bernd

    2010-04-01

    It is shown that in LC of polymers, the interaction parameter in ternary mobile phases can be described by a plane, which is determined by the dependencies in binary mobile phases. Instead of a critical adsorption point, critical conditions are observed along a straight line of composition between the two critical points in binary mobile phases. Consequently, a separation of block copolymers under critical conditions for one block by an adsorption mechanism for the other block can be achieved in ternary mobile phases of different compositions, which allows an adjustment of the retention of the adsorbing block. PMID:20222074

  2. Acid rain effects on aluminum mobilization clarified by inclusion of strong organic acids

    USGS Publications Warehouse

    Lawrence, G.B.; Sutherland, J.W.; Boylen, C.W.; Nierzwicki-Bauer, S. W.; Momen, B.; Baldigo, Barry P.; Simonin, H.A.

    2007-01-01

    Assessments of acidic deposition effects on aquatic ecosystems have often been hindered by complications from naturally occurring organic acidity. Measurements of pH and ANCG, the most commonly used indicators of chemical effects, can be substantially influenced by the presence of organic acids. Relationships between pH and inorganic Al, which is toxic to many forms of aquatic biota, are also altered by organic acids. However, when inorganic Al concentrations are plotted against ANC (the sum of Ca2+, Mg 2+, Na+, and K+, minus SO42-, NO3-, and Cl-), a distinct threshold for Al mobilization becomes apparent. If the concentration of strong organic anions is included as a negative component of ANC, the threshold occurs at an ANC value of approximately zero, the value expected from theoretical charge balance constraints. This adjusted ANC is termed the base-cation surplus. The threshold relationship between the base-cation surplus and Al was shown with data from approximately 200 streams in the Adirondack region of New York, during periods with low and high dissolved organic carbon concentrations, and for an additional stream from the Catskill region of New York. These results indicate that (1) strong organic anions can contribute to the mobilization of inorganic Al in combination with SO42- and NO 3-, and (2) the presence of inorganic Al in surface waters is an unambiguous indication of acidic deposition effects. ?? 2007 American Chemical Society.

  3. Nicotinic acid adenine dinucleotide phosphate (NAADP) and Ca2+ mobilization.

    PubMed

    Mándi, Miklós; Bak, Judit

    2008-01-01

    Many physiological processes are controlled by a great diversity of Ca2+ signals that depend on Ca2+ entry into the cell and/or Ca2+ release from internal Ca2+ stores. Ca2+ mobilization from intracellular stores is gated by a family of messengers including inositol-1,4,5-trisphosphate (InsP3), cyclic ADP-ribose (cADPR), and nicotinic acid adenine dinucleotide phosphate (NAADP). There is increasing evidence for a novel intracellular Ca2+ release channel that may be targeted by NAADP and that displays properties distinctly different from the well-characterized InsP3 and ryanodine receptors. These channels appear to localize on a wider range of intracellular organelles, including the acidic Ca2+ stores. Activation of the NAADP-sensitive Ca2+ channels evokes complex changes in cytoplasmic Ca2+ levels by means of channel chatter with other intracellular Ca2+ channels. The recent demonstration of changes in intracellular NAADP levels in response to physiologically relevant extracellular stimuli highlights the significance of NAADP as an important regulator of intracellular Ca2+ signaling. PMID:18569524

  4. Investigations into the separation behaviour of perfluorinated C8 and undecanoic acid modified silica hydride stationary phases.

    PubMed

    Kulsing, Chadin; Yang, Yuanzhong; Sepehrifar, Roshanak; Lim, Michael; Toppete, Joshua; Matyska, Maria T; Pesek, Joseph J; Boysen, Reinhard I; Hearn, Milton T W

    2016-04-15

    In this study, the surface charge properties of perfluorinated C8 (PerfluoroC8) and undecanoic acid (UDA) modified silica hydride stationary phases have been investigated. The zeta potential values of these stationary phases were measured in aqueous/acetonitrile mobile phases of different pH, buffer concentrations and acetonitrile contents. The retention behaviour of several basic, acidic and neutral compounds were then examined with these two stationary phases, with U-shaped retention dependencies evident with regard to the organic solvent content of the mobile phase. Plots of the logarithmic retention factor versus buffer concentration revealed slopes ≥ -0.41 for both stationary phases, indicating the involvement of mixed mode retention mechanisms with contributions from both ionic and non-ionic interactions. Using a linear solvation energy relationship approach, the origins of these interactions under different mobile phase conditions were differentiated and quantified. The PerfluoroC8 stationary phase exhibited stronger retention for basic compounds under high acetonitrile content mobile phase conditions, whilst stronger retention was observed for all compounds with the UDA stationary phase under high aqueous content mobile phase conditions. The more negative zeta potentials of the UDA stationary phase correlated with higher total charge density, surface charge density and charge density at the beta plane (the outer plane of the double layer) compared to the PerfluoroC8 stationary phase. With mobile phases of low buffer concentrations, more negative zeta potential values were unexpectedly observed for the PerfluoroC8 stationary phase with slight increases in the C descriptor value, reflecting also the greater accessibility of the analytes to the stationary phase surface. Comparison of the retention behaviours on these phases with other types of silica hydride stationary phases has revealed different patterns of selectivity. PMID:27016444

  5. Site-Specific Characterization of d-Amino Acid Containing Peptide Epimers by Ion Mobility Spectrometry

    PubMed Central

    2013-01-01

    Traditionally, the d-amino acid containing peptide (DAACP) candidate can be discovered by observing the differences of biological activity and chromatographic retention time between the synthetic peptides and naturally occurring peptides. However, it is difficult to determine the exact position of d-amino acid in the DAACP candidates. Herein, we developed a novel site-specific strategy to rapidly and precisely localize d-amino acids in peptides by ion mobility spectrometry (IMS) analysis of mass spectrometry (MS)-generated epimeric fragment ions. Briefly, the d/l-peptide epimers were separated by online reversed-phase liquid chromatography and fragmented by collision-induced dissociation (CID), followed by IMS analysis. The epimeric fragment ions resulting from d/l-peptide epimers exhibit conformational differences, thus showing different mobilities in IMS. The arrival time shift between the epimeric fragment ions was used as criteria to localize the d-amino acid substitution. The utility of this strategy was demonstrated by analysis of peptide epimers with different molecular sizes, [d-Trp]-melanocyte-stimulating hormone, [d-Ala]-deltorphin, [d-Phe]-achatin-I, and their counterparts that contain all-l amino acids. Furthermore, the crustacean hyperglycemia hormones (CHHs, 8.5 kDa) were isolated from the American lobster Homarus americanus and identified by integration of MS-based bottom-up and top-down sequencing approaches. The IMS data acquired using our novel site-specific strategy localized the site of isomerization of l- to d-Phe at the third residue of the CHHs from the N-terminus. Collectively, this study demonstrates a new method for discovery of DAACPs using IMS technique with the ability to localize d-amino acid residues. PMID:24328107

  6. Poly(L-lactic acid)-modified silica stationary phase for reversed-phase and hydrophilic interaction liquid chromatography.

    PubMed

    Ohyama, Kaname; Takasago, Shizuka; Kishikawa, Naoya; Kuroda, Naotaka

    2015-03-01

    Poly(L-lactic acid) is a linear aliphatic thermoplastic polyester that can be produced from renewable resources. A poly(L-lactic acid)-modified silica stationary phase was newly prepared by amide bond reaction between amino groups on aminopropyl silica and carboxylic acid groups at the end of the poly(L-lactic acid) chain. The poly(L-lactic acid)-silica column was characterized in reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography with the use of different mobile phase compositions. The poly(L-lactic acid)-silica column was found to work in both modes, and the retention of test compounds depending on acetonitrile content exhibited "U-shaped" curves, which was an indicator of reversed-phase liquid chromatography/hydrophilic interaction liquid chromatography mixed-mode retention behavior. In addition, carbonyl groups included into the poly(L-lactic acid) backbone work as an electron-accepting group toward a polycyclic aromatic hydrocarbon and provide π-π interactions. PMID:25546473

  7. High resolution ion mobility measurements for gas phase proteins: correlation between solution phase and gas phase conformations

    NASA Astrophysics Data System (ADS)

    Hudgins, Robert R.; Woenckhaus, Jürgen; Jarrold, Martin F.

    1997-11-01

    Our high resolution ion mobility apparatus has been modified by attaching an electrospray source to perform measurements for biological molecules. While the greater resolving power permits the resolution of more conformations for BPTI and cytochrome c, the resolved features are generally much broader than expected for a single rigid conformation. A major advantage of the new experimental configuration is the much gentler introduction of ions into the drift tube, so that the observed gas phase conformations appear to more closely reflect those present in solution. For example, it is possible to distinguish between the native state of cytochrome c and the methanol-denatured form on the basis of the ion mobility measurements; the mass spectra alone are not sensitive enough to detect this change. Thus this approach may provide a quick and sensitive tool for probing the solution phase conformations of biological molecules.

  8. Phase Behavior of Complex Superprotonic Solid Acids

    NASA Astrophysics Data System (ADS)

    Panithipongwut, Chatr

    Superprotonic phase transitions and thermal behaviors of three complex solid acid systems are presented, namely Rb3H(SO4) 2-RbHSO4 system, Rb3H(SeO4)2-Cs 3H(SeO4)2 solid solution system, and Cs6 (H2SO4)3(H1.5PO4) 4. These material systems present a rich set of phase transition characteristics that set them apart from other, simpler solid acids. A.C. impedance spectroscopy, high-temperature X-ray powder diffraction, and thermal analysis, as well as other characterization techniques, were employed to investigate the phase behavior of these systems. Rb3H(SO4)2 is an atypical member of the M3H(XO4)2 class of compounds (M = alkali metal or NH4+ and X = S or Se) in that a transition to a high-conductivity state involves disproportionation into two phases rather than a simple polymorphic transition [1]. In the present work, investigations of the Rb3H(SO4)2-RbHSO4 system have revealed the disproportionation products to be Rb2SO 4 and the previously unknown compound Rb5H3(SO 4)4. The new compound becomes stable at a temperature between 25 and 140 °C and is isostructural to a recently reported trigonal phase with space group P3m of Cs5H 3(SO4)4 [2]. At 185 °C the compound undergoes an apparently polymorphic transformation with a heat of transition of 23.8 kJ/mol and a slight additional increase in conductivity. The compounds Rb3H(SeO4)2 and Cs 3H(SeO4)2, though not isomorphous at ambient temperatures, are quintessential examples of superprotonic materials. Both adopt monoclinic structures at ambient temperatures and ultimately transform to a trigonal (R3m) superprotonic structure at slightly elevated temperatures, 178 and 183 °C, respectively. The compounds are completely miscible above the superprotonic transition and show extensive solubility below it. Beyond a careful determination of the phase boundaries, we find a remarkable 40-fold increase in the superprotonic conductivity in intermediate compositions rich in Rb as compared to either end-member. The compound Cs6(H2

  9. Multiplicative effects model with internal standard in mobile phase for quantitative liquid chromatography-mass spectrometry.

    PubMed

    Song, Mi; Chen, Zeng-Ping; Chen, Yao; Jin, Jing-Wen

    2014-07-01

    Liquid chromatography-mass spectrometry assays suffer from signal instability caused by the gradual fouling of the ion source, vacuum instability, aging of the ion multiplier, etc. To address this issue, in this contribution, an internal standard was added into the mobile phase. The internal standard was therefore ionized and detected together with the analytes of interest by the mass spectrometer to ensure that variations in measurement conditions and/or instrument have similar effects on the signal contributions of both the analytes of interest and the internal standard. Subsequently, based on the unique strategy of adding internal standard in mobile phase, a multiplicative effects model was developed for quantitative LC-MS assays and tested on a proof of concept model system: the determination of amino acids in water by LC-MS. The experimental results demonstrated that the proposed method could efficiently mitigate the detrimental effects of continuous signal variation, and achieved quantitative results with average relative predictive error values in the range of 8.0-15.0%, which were much more accurate than the corresponding results of conventional internal standard method based on the peak height ratio and partial least squares method (their average relative predictive error values were as high as 66.3% and 64.8%, respectively). Therefore, it is expected that the proposed method can be developed and extended in quantitative LC-MS analysis of more complex systems. PMID:24840455

  10. Polarons and Mobile Impurities Near a Quantum Phase Transition

    NASA Astrophysics Data System (ADS)

    Shadkhoo, Shahriar

    This dissertation aims at improving the current understanding of the physics of mobile impurities in highly correlated liquid-like phases of matter. Impurity problems pose challenging and intricate questions in different realms of many-body physics. For instance, the problem of ''solvation'' of charged solutes in polar solvents, has been the subject of longstanding debates among chemical physicists. The significant role of quantum fluctuations of the solvent, as well as the break down of linear response theory, render the ordinary treatments intractable. Inspired by this complicated problem, we first attempt to understand the role of non-specific quantum fluctuations in the solvation process. To this end, we calculate the dynamic structure factor of a model polar liquid, using the classical Molecular Dynamics (MD) simulations. We verify the failure of linear response approximation in the vicinity of a hydrated electron, by comparing the outcomes of MD simulations with the predictions of linear response theory. This nonlinear behavior is associated with the pronounced peaks of the structure factor, which reflect the strong fluctuations of the local modes. A cavity picture is constructed based on heuristic arguments, which suggests that the electron, along with the surrounding polarization cloud, behave like a frozen sphere, for which the linear response theory is broken inside and valid outside. The inverse radius of the spherical region serves as a UV momentum cutoff for the linear response approximation to be applicable. The problem of mobile impurities in polar liquids can be also addressed in the framework of the ''polaron'' problem. Polaron is a quasiparticle that typically acquires an extended state at weak couplings, and crossovers to a self-trapped state at strong couplings. Using the analytical fits to the numerically obtained charge-charge structure factor, a phenomenological approach is proposed within the Leggett's influence functional formalism, which

  11. The availability and mobility of arsenic and antimony in an acid sulfate soil pasture system.

    PubMed

    Tighe, Matthew; Lockwood, Peter V; Ashley, Paul M; Murison, Robert D; Wilson, Susan C

    2013-10-01

    The Macleay floodplain on the north coast of New South Wales, Australia, has surface soil concentrations of up to 40 mg kg(-1) arsenic (As) and antimony (Sb), due to historical mining practices in the upper catchment. The floodplain also contains areas of active and potential acid sulfate soils (ASS). Some of these areas are purposely re-flooded to halt oxidation processes, but the effect of this management on the metalloid mobility and phytoavailability of the metalloids present is unknown. This study investigated the changes to soil solution As and Sb, associations of metalloids with soil solid phases, and uptake into two common pasture species following 20 weeks of flooding in a controlled environment. The effect of an ASS subsoil was also investigated. The soil solution concentration and availability of the metalloids was in some instances higher in the floodplain soils than would generally be expected in soils with comparable contamination. There appeared to be few changes to soil solution concentrations or phase associations with flooding in this short term study, due to the high acid buffering and poise of the investigated soils. A strong relationship was found between the relative uptake of Sb into pastures and the oxalate extractable Fe in the soil, which was taken as a proxy for non-crystalline iron (Fe) hydroxides. This relationship was dependent on flooding and was absent for As. Further targeted investigations into metalloid speciation kinetics and the stability of soil solid phases with flooding management are recommended. PMID:23792257

  12. Linking molecular models with ion mobility experiments. Illustration with a rigid nucleic acid structure

    PubMed Central

    D'Atri, Valentina; Porrini, Massimiliano; Rosu, Frédéric; Gabelica, Valérie

    2015-01-01

    Ion mobility spectrometry experiments allow the mass spectrometrist to determine an ion's rotationally averaged collision cross section ΩEXP. Molecular modelling is used to visualize what ion three-dimensional structure(s) is(are) compatible with the experiment. The collision cross sections of candidate molecular models have to be calculated, and the resulting ΩCALC are compared with the experimental data. Researchers who want to apply this strategy to a new type of molecule face many questions: (1) What experimental error is associated with ΩEXP determination, and how to estimate it (in particular when using a calibration for traveling wave ion guides)? (2) How to generate plausible 3D models in the gas phase? (3) Different collision cross section calculation models exist, which have been developed for other analytes than mine. Which one(s) can I apply to my systems? To apply ion mobility spectrometry to nucleic acid structural characterization, we explored each of these questions using a rigid structure which we know is preserved in the gas phase: the tetramolecular G-quadruplex [dTGGGGT]4, and we will present these detailed investigation in this tutorial. © 2015 The Authors. Journal of Mass Spectrometry published by John Wiley & Sons Ltd. PMID:26259654

  13. Use of Microfocused X-ray Techniques to Investigate the Mobilization of As by Oxalic Acid

    PubMed Central

    Wovkulich, Karen; Mailloux, Brian J.; Bostick, Benjamin C.; Dong, Hailiang; Bishop, Michael E.; Chillrud, Steven N.

    2012-01-01

    Improved linkages between aqueous phase transport and solid-phase reactions are needed to better predict and model transport of contaminants through the subsurface. Here we develop and apply a new method for measuring As mobilization in situ within soil columns that utilizes synchrotron-based X-ray fluorescence. By performing these measurements in situ during column transport experiments, we simultaneously monitor grain-scale solid phase reactions and column-scale transport. Arsenic may be effectively mobilized by oxalic acid but the geochemical and mineralogical factors that influence the rate and extent of mobilization are not well understood. Column experiments (~4 cm long × 0.635 cm ID) using As contaminated sediments from the Vineland Chemical Company Superfund site were performed on the laboratory bench as well as in the synchrotron beamline. Microfocused synchrotron X-ray fluorescence (μSXRF) maps for As and Fe were collected at the same location in the columns (<1 mm2) before and during treatment with 10 mM oxalic acid. The fraction of As and Fe removed by oxalic acid treatment was calculated from the change in flux-normalized counts for each pixel in the map images, and these data were used to calculate kinetic parameters over the studied area. Between 79% and 83% of the As was removed from the sediments by the oxalic acid treatment based on μSXRF data; these removal percentages agreed well with laboratory data based on column effluent (88–95%). Considerably less Fe was removed by oxalic acid treatment, 14–25% based on μSXRF counts, which is somewhat higher than the 7–9% calculated from laboratory column effluent concentrations. Microfocused X-ray absorption near edge spectroscopy (μXANES) on a subset of points indicates most of the Fe was oxidized and present as a mixture of goethite, hematite, and ferrihydrite on sand grain coatings. Treatment with oxalic acid led to subtle shifts in Fe (III) species following oxalic acid treatment, either

  14. Use of microfocused X-ray techniques to investigate the mobilization of arsenic by oxalic acid

    NASA Astrophysics Data System (ADS)

    Wovkulich, Karen; Mailloux, Brian J.; Bostick, Benjamin C.; Dong, Hailiang; Bishop, Michael E.; Chillrud, Steven N.

    2012-08-01

    Improved linkages between aqueous phase transport and solid-phase reactions are needed to better predict and model transport of contaminants through the subsurface. Here we develop and apply a new method for measuring As mobilization in situ within soil columns that utilizes synchrotron-based X-ray fluorescence. By performing these measurements in situ during column transport experiments, we simultaneously monitor grain-scale solid phase reactions and column-scale transport. Arsenic may be effectively mobilized by oxalic acid but the geochemical and mineralogical factors that influence the rate and extent of mobilization are not well understood. Column experiments (˜4 cm long × 0.635 cm ID) using As contaminated sediments from the Vineland Chemical Company Superfund site were performed on the laboratory bench as well as in the synchrotron beamline. Microfocused synchrotron X-ray fluorescence (μSXRF) maps for As and Fe were collected at the same location in the columns (<1 mm2) before and during treatment with 10 mM oxalic acid. The fraction of As and Fe removed by oxalic acid treatment was calculated from the change in flux-normalized counts for each pixel in the map images, and these data were used to calculate kinetic parameters over the studied area. Between 79% and 83% of the As was removed from the sediments by the oxalic acid treatment based on μSXRF data; these removal percentages agreed well with laboratory data based on column effluent (88-95%). Considerably less Fe was removed by oxalic acid treatment, 14-25% based on μSXRF counts, which is somewhat higher than the 7-9% calculated from laboratory column effluent concentrations. Microfocused X-ray absorption near edge spectroscopy (μXANES) on a subset of points indicates most of the Fe was oxidized and present as a mixture of goethite, hematite, and ferrihydrite on sand grain coatings. Treatment with oxalic acid led to subtle shifts in Fe (III) species following oxalic acid treatment, either removing

  15. Polarons and Mobile Impurities Near a Quantum Phase Transition

    NASA Astrophysics Data System (ADS)

    Shadkhoo, Shahriar

    This dissertation aims at improving the current understanding of the physics of mobile impurities in highly correlated liquid-like phases of matter. Impurity problems pose challenging and intricate questions in different realms of many-body physics. For instance, the problem of ''solvation'' of charged solutes in polar solvents, has been the subject of longstanding debates among chemical physicists. The significant role of quantum fluctuations of the solvent, as well as the break down of linear response theory, render the ordinary treatments intractable. Inspired by this complicated problem, we first attempt to understand the role of non-specific quantum fluctuations in the solvation process. To this end, we calculate the dynamic structure factor of a model polar liquid, using the classical Molecular Dynamics (MD) simulations. We verify the failure of linear response approximation in the vicinity of a hydrated electron, by comparing the outcomes of MD simulations with the predictions of linear response theory. This nonlinear behavior is associated with the pronounced peaks of the structure factor, which reflect the strong fluctuations of the local modes. A cavity picture is constructed based on heuristic arguments, which suggests that the electron, along with the surrounding polarization cloud, behave like a frozen sphere, for which the linear response theory is broken inside and valid outside. The inverse radius of the spherical region serves as a UV momentum cutoff for the linear response approximation to be applicable. The problem of mobile impurities in polar liquids can be also addressed in the framework of the ''polaron'' problem. Polaron is a quasiparticle that typically acquires an extended state at weak couplings, and crossovers to a self-trapped state at strong couplings. Using the analytical fits to the numerically obtained charge-charge structure factor, a phenomenological approach is proposed within the Leggett's influence functional formalism, which

  16. Studying Gas-Phase Interconversion of Tautomers Using Differential Mobility Spectrometry.

    PubMed

    Campbell, J Larry; Yang, Amy Meng-Ci; Melo, Luke R; Hopkins, W Scott

    2016-07-01

    In this study, we report on the use of differential mobility spectrometry (DMS) as a tool for studying tautomeric species, allowing a more in-depth interrogation of these elusive isomers using ion/molecule reactions and tandem mass spectrometry. As an example, we revisit a case study in which gas-phase hydrogen-deuterium exchange (HDX)-a probe of ion structure in mass spectrometry-actually altered analyte ion structure by tautomerization. For the N- and O-protonated tautomers of 4-aminobenzoic acid, when separated using DMS and subjected to subsequent HDX with trace levels of D2O, the anticipated difference between the exchange rates of the two tautomers is observed. However, when using higher levels of D2O or a more basic reagent, equivalent and almost complete exchange of all labile protons is observed. This second observation is a result of the interconversion of the N-protonated tautomer to the O-protonated form during HDX. We can monitor this transformation experimentally, with support from detailed molecular dynamics and electronic structure calculations. In fact, calculations suggest the onset of bulk solution phase properties for 4-aminobenzoic acid upon solvation with eight CH3OH molecules. These findings also underscore the need for choosing HDX reagents and conditions judiciously when separating interconvertible isomers using DMS. Graphical Abstract ᅟ. PMID:27094827

  17. Studying Gas-Phase Interconversion of Tautomers Using Differential Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Campbell, J. Larry; Yang, Amy Meng-Ci; Melo, Luke R.; Hopkins, W. Scott

    2016-04-01

    In this study, we report on the use of differential mobility spectrometry (DMS) as a tool for studying tautomeric species, allowing a more in-depth interrogation of these elusive isomers using ion/molecule reactions and tandem mass spectrometry. As an example, we revisit a case study in which gas-phase hydrogen-deuterium exchange (HDX)—a probe of ion structure in mass spectrometry—actually altered analyte ion structure by tautomerization. For the N- and O-protonated tautomers of 4-aminobenzoic acid, when separated using DMS and subjected to subsequent HDX with trace levels of D2O, the anticipated difference between the exchange rates of the two tautomers is observed. However, when using higher levels of D2O or a more basic reagent, equivalent and almost complete exchange of all labile protons is observed. This second observation is a result of the interconversion of the N-protonated tautomer to the O-protonated form during HDX. We can monitor this transformation experimentally, with support from detailed molecular dynamics and electronic structure calculations. In fact, calculations suggest the onset of bulk solution phase properties for 4-aminobenzoic acid upon solvation with eight CH3OH molecules. These findings also underscore the need for choosing HDX reagents and conditions judiciously when separating interconvertible isomers using DMS.

  18. Studying Gas-Phase Interconversion of Tautomers Using Differential Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Campbell, J. Larry; Yang, Amy Meng-Ci; Melo, Luke R.; Hopkins, W. Scott

    2016-07-01

    In this study, we report on the use of differential mobility spectrometry (DMS) as a tool for studying tautomeric species, allowing a more in-depth interrogation of these elusive isomers using ion/molecule reactions and tandem mass spectrometry. As an example, we revisit a case study in which gas-phase hydrogen-deuterium exchange (HDX)—a probe of ion structure in mass spectrometry—actually altered analyte ion structure by tautomerization. For the N- and O-protonated tautomers of 4-aminobenzoic acid, when separated using DMS and subjected to subsequent HDX with trace levels of D2O, the anticipated difference between the exchange rates of the two tautomers is observed. However, when using higher levels of D2O or a more basic reagent, equivalent and almost complete exchange of all labile protons is observed. This second observation is a result of the interconversion of the N-protonated tautomer to the O-protonated form during HDX. We can monitor this transformation experimentally, with support from detailed molecular dynamics and electronic structure calculations. In fact, calculations suggest the onset of bulk solution phase properties for 4-aminobenzoic acid upon solvation with eight CH3OH molecules. These findings also underscore the need for choosing HDX reagents and conditions judiciously when separating interconvertible isomers using DMS.

  19. High mobility organic field-effect transistor based on water-soluble deoxyribonucleic acid via spray coating

    SciTech Connect

    Shi, Wei; Han, Shijiao; Huang, Wei; Yu, Junsheng

    2015-01-26

    High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm{sup 2}/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role in enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.

  20. Utilization of deep eutectic solvents as novel mobile phase additives for improving the separation of bioactive quaternary alkaloids.

    PubMed

    Tan, Ting; Zhang, Mingliang; Wan, Yiqun; Qiu, Hongdeng

    2016-03-01

    Deep eutectic solvents (DESs) were used as novel mobile phase additives to improve chromatographic separation of four quaternary alkaloids including coptisine chloride, sanguinarine, berberine chloride and chelerythrine on a C18 column. DESs as a new class of ionic liquids are renewably sourced, environmentally benign, low cost and easy to prepare. Seven DESs were obtained by mixing different hydrogen acceptors and hydrogen-bond donors. The effects of organic solvents, the concentration of DESs, the types of DESs and the pH values of the buffer solution on the separation of the analytes were investigated. The composition of acetonitrile and 1.0% deep eutectic solvents aqueous solution (pH 3.3, adjusted with hydrochloric acid) in a 32:68 (v/v) ratio was used as optimized mobile phase, with which four quaternary alkaloids were well separated. When a small amount of DESs was added in the mobile phase for the separation of alkaloids on the C18 column, noticeable improvements were distinctly observed such as decreasing peak tailing and improving resolution. The separation mechanism mediated by DESs as mobile phase additives can be attributed to combined effect of both hydrogen acceptors and hydrogen-bond donors. For example, choline chloride can effectively cover the residual silanols on silica surface and ethylene glycol can reduce the retention time of analytes. The proposed method has been applied to determine BerbC in Lanqin Chinese herbal oral solution and BerbC tablet. Utilization of DESs in mobile phase can efficiently improve separation and selectivity of analytes from complex samples. PMID:26717817

  1. 30 CFR 77.900 - Low- and medium-voltage circuits serving portable or mobile three-phase alternating current...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... portable or mobile three-phase alternating current equipment; circuit breakers. 77.900 Section 77.900... mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage circuits supplying power to portable or mobile three-phase alternating current equipment shall be protected...

  2. Isotherm parameters and intraparticle mass transfer kinetics on molecularly imprinted polymers in acetonitrile/buffer mobile phases

    SciTech Connect

    Kim, Hyunjung; Kaczmarski, Krzysztof; Guiochon, Georges A

    2006-03-01

    The equilibrium isotherm and the intraparticle mass transfer kinetics of the enantiomers of the template were investigated on an Fmoc-L-tryptophan (Fmoc-L-Trp) imprinted polymer at different pHs and water concentrations in acetonitrile/aqueous buffer mobile phases. The equilibrium isotherm data were measured using frontal analysis at 25 {+-} 2 C. The adsorption energy distribution was found to be trimodal, with narrow modes. Consistent with this distribution, the adsorption data were modeled using a tri-Langmuir isotherm equation and the best estimates of the isotherm parameters were determined. The intraparticle mass transfer parameters were derived by comparing the profiles of experimental overloaded bands and the profiles calculated using the isotherm model and the lumped pore diffusion (POR) model of chromatography. These results showed that different adsorption and mass transfer mechanisms exist in mobile phases made of acetonitrile/aqueous buffer and of acetonitrile/acetic acid solutions.

  3. 77 FR 73586 - Further Inquiry Into Issues Related to Mobility Fund Phase II

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ...The Wireless Telecommunications Bureau and Wireline Competition Bureau (collectively, the Bureaus) seek further comment on specific issues relating to the implementation of Phase II of the Mobility Fund. The Bureaus also seek to develop a more comprehensive record on certain issues relating to the award of ongoing support for advanced mobile...

  4. 77 FR 14012 - Eligible Telecommunications Carrier Designation for Participation in Mobility Fund Phase I

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ...In this document, the Commission's Wireless Telecommunications and Wireline Competition Bureaus describe the process and requirements for applicants seeking Eligible Telecommunications Carrier (ETC) Designation from the Commission for participation in Mobility Fund Phase I Auction...

  5. Escherichia coli produces linoleic acid during late stationary phase.

    PubMed Central

    Rabinowitch, H D; Sklan, D; Chace, D H; Stevens, R D; Fridovich, I

    1993-01-01

    Escherichia coli produces linoleic acid in the late stationary phase. This was the case whether the cultures were grown aerobically or anaerobically on a supplemented glucose-salts medium. The linoleic acid was detected by thin-layer chromatography and was measured as the methyl ester by gas chromatography. The linoleic acid methyl ester was identified by its mass spectrum. Lipids extracted from late-stationary-phase cells generated thiobarbituric acid-reactive carbonyl products when incubated with a free radical initiator. In contrast, extracts from log-phase or early-stationary-phase cells failed to do so, in accordance with the presence of polyunsaturated fatty acid only in the stationary-phase cells. PMID:8366020

  6. [Deep eutectic solvent: a new kind of mobile phase modifier for hydrophilic interaction liquid chromatography].

    PubMed

    Tan, Ting; Qiao, Xin; Wan, Yiqun; Qiu, Hongdeng

    2015-09-01

    Deep eutectic solvents (DESs) were used as a new kind of mobile phase modifier in hydrophilic interaction liquid chromatography (HILIC). In our experiment, a SiO2 column (150 mm x 4.6 mm, 3 µm) was selected to separate several nucleobases and nucleosides by using the mixed solution of acetonitrile and DES (choline chloride-ethylene glycol (1:3, mol/mol) ) as mobile phase. Subsequently, the concentrations of DESs in acetonitrile and the column temperature on the effect of separation were investigated. According to the experimental results, better separation of nucleobases and nucleosides was obtained by using acetonitrile and DESs mixed solution as mobile phase than that using traditional water-based solution. For example, a baseline separation between cytosine and cytidine cannot be achieved by HILIC with water-based mobile phase, however, greater improvement was gained by HILIC with modified DES-acetonitrile mobile phase. Meanwhile, the retention times of nucleobases and nucleosides decreased as the proportion of DESs in acetonitrile increased, the most significant decrease of which was with cytidine. Similar retention behavior took place with the effect of column temperature. Decreased retention times of the analytes were observed as column temperature increased. The experimental results indicated that this new method may solve some separation difficulties in traditional water-based HILIC, which also successfully verify the feasibility of DESs as mobile phase modifiers. PMID:26753279

  7. Ionic liquid as a mobile phase additive in high-performance liquid chromatography for the simultaneous determination of eleven fluorescent whitening agents in paper materials.

    PubMed

    Wang, Qing; Chen, Xianbo; Qiu, Bin; Zhou, Liang; Zhang, Hui; Xie, Juan; Luo, Yan; Wang, Bin

    2016-04-01

    In the present study, 11 4,4'-diaminostilbene-2,2'-disulfonic acid based fluorescent whitening agents with different numbers of sulfonic acid groups were separated by using an ionic liquid as a mobile phase additive in high-performance liquid chromatography with fluorescence detection. The effects of ionic liquid concentration, pH of mobile phase B, and composition of mobile phase A on the separation of fluorescent whitening agents were systematically investigated. The ionic liquid tetrabutylammonium tetrafluoroborate is superior to tetrabutylammomnium bromide for the separation of the fluorescent whitening agents. The optimal separation conditions were an ionic liquid concentration at 8 mM and the pH of mobile phase B at 8.5 with methanol as mobile phase A. The established method exhibited low limits of detection (0.04-0.07 ng/mL) and wide linearity ranges (0.30-20 ng/mL) with high linear correlation coefficients from 0.9994 to 0.9998. The optimized procedure was applied to analyze target analytes in paper samples with satisfactory results. Eleven target analytes were quantified, and the recoveries of spiked paper samples were in the range of 85-105% with the relative standard deviations from 2.1 to 5.1%. The obtained results indicated that the method was efficient for detection of 11 fluorescent whitening agents. PMID:26843408

  8. Mobilization of soil-borne arsenic by three common organic acids: Dosage and time effects.

    PubMed

    Onireti, Olaronke O; Lin, Chuxia

    2016-03-01

    A batch experiment was conducted to investigate the mobilization of soil-borne arsenic by three common low-molecular-weight organic acids with a focus on dosage and time effects. The results show that oxalic acid behaved differently from citric acid and malic acid in terms of mobilizing As that was bound to iron compounds. At an equivalent molar concentration, reactions between oxalic acid and soil-borne Fe were kinetically more favourable, as compared to those between either citric acid or malic acid and the soil-borne Fe. It was found that reductive dissolution of soil-borne Fe played a more important role in liberating As, as compared to non-reductive reactions. Prior to the 7th day of the experiment, As mobility increased with increasing dose of oxalic acid while there was no significant difference (P > 0.05) in mobilized As among the treatments with different doses of citric acid or malic acid. The dosage effect on soil-borne As mobilization in the citric acid and malic acid treatments became clear only after the 7th day of the experiment. Soluble Ca present in the soils could cause re-immobilization of As by competing with solution-borne Fe for available organic ligands to form practically insoluble organic compounds of calcium (i.e. calcium oxalate). This resulted in transformation of highly soluble organic complexes of iron (i.e. iron oxalate complexes) into slightly soluble organic compounds of iron (i.e. iron oxalate) or free ferric ion, which then reacted with the solution-borne arsenate ions to form practically insoluble iron arsenates in the latter part of the experiment. PMID:26774299

  9. Description of Gas-Phase Ion/Neutral Interactions in Differential Ion Mobility Spectrometry: CV Prediction Using Calibration Runs

    NASA Astrophysics Data System (ADS)

    Auerbach, David; Aspenleiter, Julia; Volmer, Dietrich A.

    2014-09-01

    Differential ion mobility spectrometry (DMS) coupled to mass spectrometry is increasingly used in both quantitative analyses of biological samples and as a means of removing background interferences for enhanced selectivity and improved quality of mass spectra. However, DMS separation efficiency using dry inert gases often lacks the required selectivity to achieve baseline separation. Polar gas-phase modifiers such as alcohols are therefore frequently employed to improve selectivity via clustering/declustering processes. The choice of an optimal modifier currently relies on trial and error experiments, making method development a tedious activity. It was the goal of this study to establish a means of CV prediction for compounds using a homologous series of alcohols as gas-phase modifiers. This prediction was based on linear regression of compensation voltages of two calibration runs for the alcohols with the lowest and the highest molecular weights and readily available descriptors such as proton affinity and gas phase acidity of the modifier molecules. All experiments were performed on a commercial quadrupole linear ion trap mass spectrometer equipped with a DMS device between electrospray ionization source and entrance quadrupole lens. We evaluated our approach using a homologous series of 4-alkylbenzoic acids and a selection of 23 small molecules of high chemical diversity. Predicted CV values typically deviated from the experimentally determined values by less than 0.5 V. Several test compounds changed their ion mobility behavior for the investigated gas phase modifiers (e.g., from type B to type A) and thus could thus not be evaluated.

  10. Effect of fatty acids on phase behavior of hydrated dipalmitoylphosphatidylcholine bilayer: saturated versus unsaturated fatty acids.

    PubMed

    Inoue, T; Yanagihara, S; Misono, Y; Suzuki, M

    2001-02-01

    The effect of some fatty acids on the phase behavior of hydrated dipalmitoylphosphatidylcholine (DPPC) bilayer was investigated with special interest in possible difference between saturated and unsaturated fatty acids. The phase behavior of hydrated DPPC bilayer was followed by a differential scanning calorimetry and a Fourier transform infrared spectroscopy. The addition of palmitic acid (PA) increased the bilayer phase transition temperature with the increase of the PA content in the mixture. In addition, DPPC molecules in gel phase bilayer became more rigid in the presence of PA compared with those in the absence of PA. This effect of PA on the phase behavior of hydrated DPPC bilayer is common to other saturated fatty acids, stearic acid, myristic acid, and also to unsaturated fatty acid with trans double bond, elaidic acid. Contrary to these fatty acids, oleic acid (OA), the unsaturated fatty acid with cis double bond in the acyl chain, exhibited quite different behavior. The effect of OA on the bilayer phase transition temperature was rather small, although a slight decrease in the temperature was appreciable. Furthermore, the IR spectral results demonstrated that the perturbing effect of OA on the gel phase bilayer of DPPC was quite small. These results mean that OA does not disturb the hydrated DPPC bilayer significantly. PMID:11269932

  11. Characterization and multi-mode liquid chromatographic application of 4-propylaminomethyl benzoic acid bonded silica--a zwitterionic stationary phase.

    PubMed

    Wijekoon, A; Gangoda, M E; Gregory, R B

    2012-12-28

    4-Propylaminomethyl benzoic acid bonded silica (4-PAMBA-silica) was synthesized by reacting aminopropyl modified silica with 4-carboxybenzaldehyde and reducing the resulting Schiff base with sodium cyanoborohydride in situ. The structure of this bonded phase was confirmed by (13)C cross polarization magic angle spinning ((13)C CP MAS) NMR. Elemental analysis indicated a coupling efficiency of about 79%. Chromatographic characterization of a 4-PAMBA-silica stationary phase revealed that at a mobile phase pH of 3.0, basic compounds were unresolved and co-eluted near the void volume, while aromatic sulfonates were retained and were well-resolved. By contrast, at a mobile phase pH of 7.0, the aromatic sulfonates were unresolved and eluted at the void volume, while basic compounds were retained and were well-resolved. To further understand the chromatographic retention mechanism the retention factors for a series of cationic and anionic compounds were measured at pH 7.0 and 3.0 as a function of the charge and concentration of competing ions in the mobile phase. A plot of the logarithm of the retention factor versus the logarithm of the eluent ion concentration was linear with a negative slope that is equal to the ratio of effective charges of the solutes and the eluent ions. This indicates that an ion exchange mechanism contributes to the separation of both cations and anions at pH 7.0 and pH 3.0, respectively. The increase in retention of alkanoic acids with their number of carbons at a mobile phase pH of 7.0 and exclusion of alkanoic acids at a mobile phase pH of 3.0 suggests that an ion exclusion mode and hydrophobic interaction mode are also operational with 4-PAMBA-silica. The amino acids, L-arginine, L-phenylalanine, and L-tyrosine were retained and well-resolved with a mobile phase containing a high concentration of organic solvent. This behavior was further studied by measuring the retention factors of polar and charged compounds as a function of the organic

  12. Electrophoretic Mobility Shift Assay (EMSA) for Detecting Protein-Nucleic Acid Interactions

    PubMed Central

    Hellman, Lance M.; Fried, Michael G.

    2009-01-01

    The gel electrophoresis mobility shift assay (EMSA) is used to detect protein complexes with nucleic acids. It is the core technology underlying a wide range of qualitative and quantitative analyses for the characterization of interacting systems. In the classical assay, solutions of protein and nucleic acid are combined and the resulting mixtures are subjected to electrophoresis under native conditions through polyacrylamide or agarose gel. After electrophoresis, the distribution of species containing nucleic acid is determined, usually by autoradiography of 32P-labeled nucleic acid. In general, protein-nucleic acid complexes migrate more slowly than the corresponding free nucleic acid. In this article, we identify the most important factors that determine the stabilities and electrophoretic mobilities of complexes under assay conditions. A representative protocol is provided and commonly used variants are discussed. Expected outcomes are briefly described. References to extensions of the method and a troubleshooting guide are provided. PMID:17703195

  13. Element mobility during pyrite weathering: implications for acid and heavy metal pollution at mining-impacted sites

    NASA Astrophysics Data System (ADS)

    Lu, Long; Wang, Rucheng; Chen, Fanrong; Xue, Jiyue; Zhang, Peihua; Lu, Jianjun

    2005-11-01

    Based on back scattered electron images and electron micro-probe analysis results, four alteration layers, including a transition layer, a reticulated ferric oxide layer, a nubby ferric oxide layer and a cellular ferric oxide layer, were identified in the naturally weathering products of pyrite. These layers represent a progressive alteration sequence of pyrite under weathering conditions. The cellular ferric oxide layer correlates with the strongest weathering phase and results from the dissolution of nubby ferric oxide by acidic porewater. Leaching coefficient was introduced to better express the response of element mobility to the degree of pyrite weathering. Its variation shows that the mobility of S, Co and Bi is stronger than As, Cu and Zn. Sulfur in pyrite is oxidized to sulfuric acid and sulfate that are basically released into to porewater, and heavy metals Co and Bi are evidently released by acid dissolution. As, Cu and Zn are enriched in ferric oxide by adsorption and by co-precipitation, but they would re-release to the environment via desorption or dissolution when porewater pH becomes low enough. Consequently, Co, Bi, As, Cu and Zn may pose a substantial impact on water quality. Considering that metal mobility and its concentration in mine waste are two important factors influencing heavy metal pollution at mining-impacted sites, Bi and Co are more important pollutants in this case.

  14. Liquid chromatography at critical conditions in ternary mobile phases: gradient elution along the critical line.

    PubMed

    Trathnigg, Bernd; Malik, Muhammad Imran; Pircher, Nicole; Hayden, Stephan

    2010-07-01

    In ternary mobile phases consisting of acetone, methanol, and water, the retention of PEG on reversed-phase columns is independent on molar mass at certain compositions of the mobile phase. Along this critical adsorption line, the retention of polypropylene glycol varies quite strongly, which can be utilized in the separation of block copolymers. Gradient elution along the critical line allows a baseline separation of all oligomers in polypropylene glycol up to approximately 25 propylene oxide units. The same resolution can be achieved in the separation of ethylene oxide-propylene oxide block copolymers, regardless of the length of the ethylene oxide block. PMID:20535754

  15. Boundary of Phase Co-existence in Docosahexaenoic Acid System

    NASA Astrophysics Data System (ADS)

    Lor, Chai; Hirst, Linda S.

    2011-11-01

    Docosahexaenoic acid (DHA) is a highly polyunsaturated fatty acid (PUFA) that exhibits six double bonds in the hydrocarbon tail. It induces phase separation of the membrane into liquid order and liquid disorder in mixtures containing other lipids with more saturation and cholesterol. With the utilization of atomic force microscopy, phase co-existence is observed in lipid mixtures containing DHA on a single supported lipid bilayer. The boundary of phase co-existence with decreasing DHA concentration is explored. The elastic force, thickness, and roughness of the different phases are investigated.

  16. Ultrahigh-pressure liquid chromatography of isoflavones and phenolic acids on different stationary phases.

    PubMed

    Klejdus, B; Vacek, J; Lojková, L; Benesová, L; Kubán, V

    2008-06-27

    Complete separation of aglycones and glucosides of selected isoflavones (genistin, genistein, daidzin, daidzein, glycitin, glycitein, ononin, sissotrin, formononetin, and biochanin A) was possible in 1.5 min using an ultrahigh-pressure liquid chromatography (U-HPLC) on a different particular chemically modified stationary phases with a particle size under 2 microm. In addition, selected separation conditions for simultaneous determination of isoflavones together with a group of phenolic acids (gallic, protocatechuic, p-hydroxybenzoic, vanillic, caffeic, syringic, p-coumaric, ferulic, and sinapic acid) allowed separation of all 19 compounds in 1.9 min. Separations were conducted on a non-polar reversed phase (C(18)) and also on more polar phases with cyanopropyl or phenyl groups using a gradient elution with a mobile phase consisting of 0.3% aqueous acetic acid and methanol. Chromatographic peaks were characterised using parameters such as resolution, symmetry, selectivity, etc. Individual substances were identified and quantified using UV-vis diode array detector at wavelength 270 nm. Limits of detection (3S/N) were in the range 200-400 pg ml(-1). Proposed U-HPLC technique was used for separation of isoflavones and phenolic acids in samples of plant materials (Trifolium pratense, Glycine max, Pisum sativum and Ononis spinosa) after acid hydrolysis of the samples and modified Soxhlet extraction. PMID:18501366

  17. Single-walled carbon nanotubes in strong acids: controlling solubility and the liquid crystal phase.

    NASA Astrophysics Data System (ADS)

    Pasquali, Matteo

    2006-03-01

    Single Walled Nanotubes (SWNTs have remarkable electrical, thermal, and mechanical properties. Neat, well-aligned SWNT fibers and sheets could be the ultimate building blocks of strong, ultra-light multifunctional materials for aerospace applications, and could yield electromechanical actuators and sensors with unprecedented performance. After the achievement of scalable production of SWNTs, the difficulty of processing pristine SWNTs by liquid-phase methods has been the single most important roadblock to manufacturing macroscopic materials composed solely of SWNTs. Here we show that SWNTs dissolve at high concentration in acids; the SWNTs are stabilized because acids protonate their sidewalls, balancing wall-wall van der Waals forces. Acid strength controls the phase behaviour. At low concentration, SWNTs in acids dissolve as individual tubes which behave as Brownian rods. At higher concentration, SWNTs form a highly unusual nematic liquid phase consisting of spaghetti-like self assembled supermolecular strands of mobile, solvated tubes in equilibrium with a dilute isotropic phase. At even higher concentration, the spaghetti strands self-assemble into a polydomain nematic liquid crystal, where the domains are entangled with each other. Under anhydrous condition, the liquid crystalline phase can be processed into continuous highly aligned fibers of pure SWNTs without the aid of surfactants or polymers. By using a new fluorescent staining technique, we measure the rotational diffusivity and persistence length of SWNTs suspended in water with the aid of surfactants, and show that SWNTs behave as Brownian rods.

  18. Aqueous-phase source of formic acid in clouds

    NASA Technical Reports Server (NTRS)

    Chameides, W. L.; Davis, D. D.

    1983-01-01

    The coupled gas- and aqueous-phase cloud chemistry of HCOOH were examined for controlling factors in the acidity of cloud and rainwater. Attention was given to the aqueous OH/HO2 system that yields an OH species that is highly reactive with other species, notably SO2 and the formaldehyde/formic acid complex. A numerical model was developed to simulate the cloud chemistry in the remote troposphere, with considerations given to CH4-CO-NO(x)-O3-H(x)O(y) system. It was determined that aqueous phase OH radicals can produce and destroy formic acid droplets in daylight conditions, as well as control formic acid levels in rainwater. It is sugested that the same types of reactions may be involved in the control of acetic acid and other organic acids.

  19. Extraterrestrial material analysis: loss of amino acids during liquid-phase acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Brault, Amaury; Szopa, Cyril; Freissinet, Caroline

    2015-04-01

    Searching for building blocks of life in extraterrestrial material is a way to learn more about how life could have appeared on Earth. With this aim, liquid-phase acid hydrolysis has been used, since at least 1970 , in order to extract amino acids and other organic molecules from extraterrestrial materials (e.g. meteorites, lunar fines) or Earth analogues (e.g. Atacama desert soil). This procedure involves drastic conditions such as heating samples in 6N HCl for 24 h, either under inert atmosphere/vacuum, or air. Analysis of the hydrolyzed part of the sample should give its total (free plus bound) amino acid content. The present work deals with the influence of the 6N HCl hydrolysis on amino acid degradation. Our experiments have been performed on a standard solution of 17 amino acids. After liquid-phase acid hydrolysis (6N HCl) under argon atmosphere (24 h at 100°C), the liquid phase was evaporated and the dry residue was derivatized with N-Methyl-N-(t-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF), followed by gas chromatography-mass spectrometry analysis. After comparison with derivatized amino acids from the standard solution, a significant reduction of the chromatographic peak areas was observed for most of the amino acids after liquid-phase acid hydrolysis. Furthermore, the same loss pattern was observed when the amino acids were exposed to cold 6N HCl for a short amount of time. The least affected amino acid, i.e. glycine, was found to be 73,93% percent less abundant compared to the non-hydrolyzed standard, while the most affected, i.e. histidine, was not found in the chromatograms after hydrolysis. Our experiments thereby indicate that liquid-phase acid hydrolysis, even under inert atmosphere, leads to a partial or total loss of all of the 17 amino acids present in the standard solution, and that a quick cold contact with 6N HCl is sufficient to lead to a loss of amino acids. Therefore, in the literature, the reported increase

  20. Aqueous Phase Photo-Oxidation of Succinic Acid: Changes in Hygroscopic Properties and Reaction Products

    NASA Astrophysics Data System (ADS)

    Hudson, P. K.; Ninokawa, A.; Hofstra, J.; de Lijser, P.

    2013-12-01

    Atmospheric aerosol particles have been identified as important factors in understanding climate change. The extent to which aerosols affect climate is determined, in part, by hygroscopic properties which can change as a result of atmospheric processing. Dicarboxylic acids, components of atmospheric aerosol, have a wide range of hygroscopic properties and can undergo oxidation and photolysis reactions in the atmosphere. In this study, the hygroscopic properties of succinic acid aerosol, a non-hygroscopic four carbon dicarboxylic acid, were measured with a humidified tandem differential mobility analyzer (HTDMA) and compared to reaction products resulting from the aqueous phase photo-oxidation reaction of hydrogen peroxide and succinic acid. Reaction products were determined and quantified using gas chromatography-flame ionization detection (GC-FID) and GC-mass spectrometry (GC-MS) as a function of hydrogen peroxide:succinic acid concentration ratio and photolysis time. Although reaction products include larger non-hygroscopic dicarboxylic acids (e.g. adipic acid) and smaller hygroscopic dicarboxylic acids (e.g. malonic and oxalic acids), comparison of hygroscopic growth curves to Zdanovskii-Stokes-Robinson (ZSR) predictions suggests that the hygroscopic properties of many of the product mixtures are largely independent of the hygroscopicity of the individual components. This study provides a framework for future investigations to fully understand and predict the role of chemical reactions in altering atmospheric conditions that affect climate.

  1. Anchoring the gas-phase acidity scale: From formic acid to methanethiol

    NASA Astrophysics Data System (ADS)

    Eyet, Nicole; Villano, Stephanie M.; Bierbaum, Veronica M.

    2009-06-01

    We have measured the gas-phase acidities of nine compounds: formic acid, acetic acid, 1,3-propanedithiol, 2-methyl-2-propanethiol, 3-methyl-1-butanethiol, 2-propanethiol, 1-propanethiol, ethanethiol, and methanethiol, with acidities ranging from 338.6 to 351.1 kcal mol-1 using proton transfer kinetics and the resulting equilibrium constants. These acids were anchored to the well-known acidity of hydrogen sulfide; the measured acidities are in good agreement with previous experimental values, but error bars are significantly reduced. The gas-phase acidity of 3-methyl-1-butanethiol was determined to be 347.1 (5) kcal mol-1; there were no previous measurements of this value. Entropies of deprotonation were calculated and enthalpies of deprotonation were determined.

  2. Reversed-phase high-performance liquid chromatography of unsubstituted aminobenzoic acids

    USGS Publications Warehouse

    Abidi, S.L.

    1989-01-01

    High-performance liquid chromatographic (HPLC) characteristics of three position isomers of aminobenzoic acids (potential metabolites of important anesthetic drugs), were delineated with respect to their interactions with various mobile phases and stationary phases. HPLC with five hydrocarbonaceous phase, I?-cyclodextrin silica (CDS), macrophase MP-1 polymer (MP), macroporous polystyrene/divinylbenzene (MPD), octadecylsilica (ODS), and propylphenylsilica (PPS), yielded results explicable in terms of substituent effects derived from the bifunctional amino- and carboxy groups. For cases where mobile phases contained sulfonates or quaternary ammonium salts both having longer chain alkyls, retention of analytes on all but CDS appeared to proceed predominantly via an ion-pairing mechanism. The extent of the corresponding counter-ion effects decreased in the order: MPD > ODS > PPS > MP, while the analyte retention order paralleled thier pH2 values. On the other hand, an inverse relationship between the magnitude of capacity factors (k') and pK1 values of the title compounds was observed in experiments that produced retention data incompatible with ion-pair interaction rationales. The unique HPLC results obtained with the CDS phase are compared with those obtained with other phases.

  3. Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulphate

    NASA Astrophysics Data System (ADS)

    Badger, C. L.; George, I.; Griffiths, P. T.; Braban, C. F.; Cox, R. A.; Abbatt, J. P. D.

    2006-03-01

    The phase transitions and hygroscopic growth of two humic acid aerosols (Aldrich sodium salt and Leonardite Standard (IHSS)) and their mixtures with ammonium sulphate have been investigated using a combination of two techniques, Fourier transform infra-red (FTIR) spectroscopy and tandem differential mobility analysis (TDMA). A growth factor of 1.16 at 85% relative humidity (RH) was found for the Aldrich humic acid which can be regarded as an upper limit for growth factors of humic-like substances (HULIS) found in atmospheric aerosol and is significantly smaller than that of typical atmospheric inorganics. We find that the humic acid aerosols exhibit water uptake over all relative humidities with no apparent phase changes, suggesting that these aerosols readily form supersaturated droplets. In the mixed particles, the humic acid component decreases the deliquescence relative humidity (DRH) and increases the efflorescence relative humidity (ERH) of the ammonium sulphate component, and there is some degree of water uptake prior to ammonium sulphate deliquescence. In addition, at low RH, the FTIR spectra show that the ammonium is present in a different chemical environment in the mixed aerosols than in crystalline ammonium sulphate, perhaps existing as a complex with the humic materials. The growth factors of the mixed aerosols are intermediate between those of the single-component aerosols and can be predicted assuming that the inorganic and organic fractions take up water independently.

  4. Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulphate

    NASA Astrophysics Data System (ADS)

    Badger, C. L.; George, I.; Griffiths, P. T.; Braban, C. F.; Cox, R. A.; Abbatt, J. P. D.

    2005-10-01

    The phase transitions and hygroscopic growth of two humic acid aerosols (Aldrich sodium salt and Leonardite Standard (IHSS)) and their mixtures with ammonium sulphate have been investigated using a combination of two techniques, Fourier transform infra-red (FTIR) spectroscopy and tandem differential mobility analysis (TDMA). A growth factor of 1.16 at 85% relative humdity (RH) was found for the Aldrich humic acid which can be regarded as an upper limit for growth factors of humic-like substances (HULIS) found in atmospheric aerosol and is significantly smaller than that of typical atmospheric inorganics. We find that the humic acid aerosols exhibit water uptake over all relative humidites with no apparent phase changes, suggesting that these aerosols readily form supersaturated droplets. In the mixed particles, the humic acid component decreases the deliquescence relative humidity (DRH) and increases the efflorescence relative humidity (ERH) of the ammonium sulphate component, and there is some degree of water uptake prior to ammonium sulphate deliquescence. In addition, at low RH, the FTIR spectra show that the ammonium is present in a different chemical environment in the mixed aerosols than in crystalline ammonium sulphate, perhaps existing as a complex with the humic materials. The growth factors of the mixed aerosols are intermediate between those of the single component aerosols and can be predicted assuming that the inorganic and organic fractions take up water independently.

  5. Interactive Computer-Assisted Instruction in Acid-Base Physiology for Mobile Computer Platforms

    ERIC Educational Resources Information Center

    Longmuir, Kenneth J.

    2014-01-01

    In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ~20 screens of information, on the subjects…

  6. Micellar versus hydro-organic mobile phases for retention-hydrophobicity relationship studies with ionizable diuretics and an anionic surfactant.

    PubMed

    Ruiz-Angel, M J; Carda-Broch, S; García-Alvarez-Coque, M C; Berthod, A

    2004-03-19

    Logarithm of retention factors (log k) of a group of 14 ionizable diuretics were correlated with the molecular (log P o/w) and apparent (log P(app)) octanol-water partition coefficients. The compounds were chromatographed using aqueous-organic (reversed-phase liquid chromatography, RPLC) and micellar-organic mobile phases (micellar liquid chromatography, MLC) with the anionic surfactant sodium dodecyl sulfate (SDS), in the pH range 3-7, and a conventional octadecylsilane column. Acetonitrile was used as the organic modifier in both modes. The quality of the correlations obtained for log P(app) at varying ionization degree confirms that this correction is required in the aqueous-organic mixtures. The correlation is less improved with SDS micellar media because the acid-base equilibriums are shifted towards higher pH values for acidic compounds. In micellar chromatography, an electrostatic interaction with charged solutes is added to hydrophobic forces; consequently, different correlations should be established for neutral and acidic compounds, and for basic compounds. Correlations between log k and the isocratic descriptors log k(w), log k(wm) (extrapolated retention to pure water in the aqueous-organic and micellar-organic systems, respectively), and psi0 (extrapolated mobile phase composition giving a k = 1 retention factor or twice the dead time), and between these descriptors and log P(app) were also satisfactory, although poorer than those between log k and log P(app) due to the extrapolation. The study shows that, in the particular case of the ionizable diuretics studied, classical RPLC gives better results than MLC with SDS in the retention hydrophobicity correlations. PMID:15043280

  7. Use of basic mobile phase to improve chromatography and boost sensitivity for quantifying tetrahydrocurcumin in human plasma by LC-MS/MS.

    PubMed

    Tan, Aimin; Wu, Yanxin; Wong, Molly; Licollari, Albert; Bolger, Gordon; Fanaras, John C; Shopp, George; Helson, Lawrence

    2016-08-15

    Tetrahydrocurcumin (THC), a major metabolite of curcumin, is often quantified by LC-MS or LC-MS/MS using acidic mobile phases due to the concern of its instability in a basic medium. However, acidic mobile phases often lead to poor chromatography (e.g. split or double peaks) and reduced detection sensitivity in the commonly used negative ionization mode. To overcome these shortcomings, a basic mobile phase was used for the first time in the LC-MS/MS quantification of THC. In comparison with the acidic mobile phases, a single symmetrical chromatographic peak was obtained and the sensitivity increased by 7-fold or more under the equivalent conditions. The new LC-MS/MS method using the basic mobile phase has been successfully validated for the quantification of THC in human EDTA plasma over the concentration range of 5-2500ng/ml. The within-batch accuracy (% nominal concentration) was between 88.7 and 104.9 and the between-batch accuracy ranged from 96.7 to 108.6. The CVs for within- and between-batch precisions were equal to or less than 5.5% and 9.1%, respectively. No significant matrix interference or matrix effect was observed from normal or lipemic and hemolytic plasma matrices. In addition, the common stabilities with adequate durations were established, including up to 5days of post-preparative stability. Furthermore, when the validated method was applied to a clinical study, the passing rate of ISR samples was 83%, indicating the good reproducibility of the method. The success of the unconventional approach presented in this article demonstrates that a mobile phase could be selected based mainly on its merits to facilitate LC separation and/or MS detection. There is no need for excessive concern about the stability of the compound(s) of interest in the selected mobile phase because the run time of modern LC-MS or LC-MS/MS methods is typically only a few minutes. PMID:27327398

  8. 77 FR 9655 - Mobility Fund Phase I Auction Updated List of Potentially Eligible Census Blocks

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ..., 77 FR 7152, February 10, 2012, comments are due on or before February 24, 2012. Reply comments are... Public Notice, 77 FR 7152, February 10, 2012, all filings in response to the notice must refer to AU... program requirements in the Auction 901 (Mobility Fund Phase I) Comment Public Notice, 77 FR...

  9. 77 FR 38061 - Mobility Fund Phase I Auction Supplemental Short-Form Instructions and Other Information

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... Notice, 77 FR 32092, May 31, 2012, the Bureaus provided general instructions for completing FCC Form 180... COMMISSION Mobility Fund Phase I Auction Supplemental Short-Form Instructions and Other Information AGENCY... provide other information regarding Auction 901. DATES: Short-Form applications are due prior to 6 p.m....

  10. Solid phase extraction of petroleum carboxylic acids using a functionalized alumina as stationary phase.

    PubMed

    de Conto, Juliana Faccin; Nascimento, Juciara dos Santos; de Souza, Driele Maiara Borges; da Costa, Luiz Pereira; Egues, Silvia Maria da Silva; Freitas, Lisiane Dos Santos; Benvenutti, Edilson Valmir

    2012-04-01

    Petroleum essentially consists of a mixture of organic compounds, mainly containing carbon and hydrogen, and, in minor quantities, compounds with nitrogen, sulphur, and oxygen. Some of these compounds, such as naphthenic acids, can cause corrosion in pipes and equipment used in processing plants. Considering that the methods of separation or clean up the target compounds in low concentrations and in complex matrix use large amounts of solvents or stationary phases, is necessary to study new methodologies that consume smaller amounts of solvent and stationary phases to identify the acid components present in complex matrix, such as crude oil samples. The proposed study aimed to recover acid compounds using the solid phase extraction method, employing different types of commercial stationary ion exchange phases (SAX and NH(2)) and new phase alumina functionalized with 1,4-bis(n-propyl)diazoniabicyclo[2.2.2]octane chloride silsesquioxane (Dab-Al(2)O(3)), synthesized in this work. Carboxylic acids were used as standard mixture in the solid phase extraction for further calculation of recovery yield. Then, the real sample (petroleum) was fractionated into saturates, aromatics, resins, and asphaltenes, and the resin fraction of petroleum (B1) was eluted through stationary ion exchange phases. The stationary phase synthesized in this work showed an efficiency of ion exchange comparable to that of the commercial stationary phases. PMID:22589166

  11. Acidity-Facilitated Mobilization of Surface Clay Colloid from Natural Sand Medium

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Wang, C.; Mohanty, B. P.

    2010-12-01

    Colloid mobilization and migration in a soil system has attracted increasing scrutiny for its role in facilitating colloid-borne transport of contaminants in the environments. In many previous studies, pH was evoked as a major factor in mobilizing surface colloids through inducing favorable surface charge and electrostatic conditions. The possible direct role of acidity with H+ as a chemical agent has remained largely obscured behind the indirect role of pH. In this study, we demonstrated through column flow-through tests that cyclical elution of natural sand media with weak acid and base solutions can greatly facilitate detachment and transport of surface clay colloids. We found that while elevating pH to an alkaline condition helped release the loosely-attached surface clays, a pretreatment with H+ could facilitate the mobilization of chemically-bonded clay colloids through lysing of labile Ca and Mg ions. A quantitative relation was observed that 1 mmol H+ could lyse about 0.5 mmol Ca2+ and Mg2+ and subsequently resulted in a release of about 1,200 mg clay during base elution when repulsive force between particles dominated. Natural organic acids such as citric acid and acetic acid in environment-relevant low concentrations (<1mM and pH>5.0) were as effective as HCl with a stronger acidic condition. The small mass ratio of Ca and Mg over colloid released and the nature of weak acid used suggest that the mobilization was less likely due to dissolution of cement casing than lysing of labile interstitial Ca and Mg by H+, which severed Ca and Mg bridging bonds between particles. Natural acidity is generated in abundance from various bio- and geochemical processes; e.g., many plants produce citric acid through citric acid cycle metabolism; biodegradation of dead organic matter forms humic acids. We postulate that natural proton dynamics in tendon with pH oscillation accompanied with various soil biogeochemical processes could play a major role in subsurface clay

  12. Influence of mobile phase composition and cross-linking density on the enantiomeric recognition properties of molecularly imprinted polymers.

    PubMed

    Yu, C; Mosbach, K

    2000-08-01

    A series of experiments were conducted to investigate elements which affect the enantiomeric recognition properties of molecularly imprinted polymers (MIPs) in the HPLC mode. Our results show that the recognition properties of MIPs are greatly influenced by the mobile phase used. For a polymer prepared in acetonitrile, a good enantiomeric separation was observed when acetonitrile-based mobile phase was used, when the mobile phase was changed to chloroform-based, no enantiomeric recognition was observed although the sample molecule was retarded. This indicates that the specific co-operative binding interactions between the functional groups at the imprinted polymer's recognition sites and the sample molecule were considerably disrupted and only non-specific interactions remained. When the mobile phase was changed back to acetonitrile-based, the recognition was regained. In contrast, for polymers prepared in chloroform, chloroform-based mobile phase gave much better separation than acetonitrile-based mobile phase. When other solvents were tested, significant solvent effects were generally observed. Based on these observations, the recognition properties of the methacrylic acid (MAA)-co-ethylene glycol dimethacrylate (EGDMA) polymers were reinvestigated, and the results show that by simply using an optimised mobile phase system, significantly improved recognition over previously reported results was observed. For a polymer made against Cbz-L-Trp, 100 microg of Cbz-D,L-Trp was separated with a separation factor (alpha) of 4.23 and a resolution (Rs) of 3.87, whereas in the previous report, 10 microg of Cbz-D,L-Trp was only separated with alpha = 1.67 and Rs = 0.1. It is generally realised that the imprinted polymer's recognition property is also very much influenced by the nature of the polymer network. It was shown that the recognition decreased with a decrease in the apparent degree of cross-linking (molar percentage of cross-linker in the polymerisation mixture

  13. Effect of the mobile phase composition on the adsorption behavior of tryptophan in reversed-phase liquid chromatography

    SciTech Connect

    Ahmad, Tarab; Guiochon, Georges A

    2006-03-01

    Single-component adsorption isotherm data of l-tryptophan on a C{sub 18}-bonded silica column were acquired by frontal analysis (FA), with aqueous mobile phases containing 2.5, 5, and 7.5% of acetonitrile (ACN) or 7, 10, 15, and 20% of methanol (MeOH). Most of these isotherms have two inflection points and three different parts. The low and the high concentration parts exhibit langmuirian behavior. The intermediate part exhibits anti-langmuirian behavior. The inflection points shift toward higher concentrations with increasing mobile phase concentration in ACN or MeOH, which causes the differences in the isotherm profiles. The nature of the organic modifier and its concentration affect only the isotherm profile and the numerical values of its parameters, not the nature of the best model, which is the bi-Moreau model in all cases. The isotherm profiles depend on the experimental conditions because they affect the intensity of the adsorbate-adsorbate interactions. Overloaded band profiles of tryptophan were recorded with the seven mobile phase compositions. They were used to determine the best values of the isotherm coefficients by the inverse method (IM) of chromatography. There is an excellent agreement between the values of these parameters obtained by FA and by IM. Increasing the concentration of either ACN or MeOH in the mobile phase causes a slight decrease in the saturation capacities of the low and the high energy sites, and in the adsorption constant of the low energy sites. The adsorption constant of the high energy sites increases with increasing concentration of either solvent or is little affected. The adsorbate-adsorbate interaction constants of both low and high energy sites increase for both solvents. Saturation capacities of the high energy sites are higher for ACN than for MeOH.

  14. 78 FR 21355 - Tribal Mobility Fund Phase I Auction Scheduled for October 24, 2013; Comment Sought on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ..., 76 FR 73830, November 29, 2011 and 76 FR 81562, December 28, 2011. Auction 902 will award one-time... Mobility Fund Phase I, 77 FR 14012. Petitions for designation as an ETC should be filed in WC Docket No. 09... COMMISSION Tribal Mobility Fund Phase I Auction Scheduled for October 24, 2013; Comment Sought on...

  15. Influence of the Modifier Type and its Concentration on Electroosmotic Flow of the Mobile Phase in Pressurized Planar Electrochromatography.

    PubMed

    Hałka-Grysińska, Aneta; Płocharz, Paweł W; Torbicz, Andrzej; Skwarek, Ewa; Janusz, Władysław; Dzido, Tadeusz H

    2014-01-01

    The aim of this work was to find a relationship between electroosmotic flow (EOF) velocity of the mobile phase in pressurized planar electrochromatography (PPEC) and physicochemical properties like zeta potential, dielectric constant, and viscosity of the mobile phase as well as its composition. The study included different types of organic modifiers (acetonitrile, methanol, ethanol, acetone, formamide, N-methylformamide and N,N-dimethylformamide) in the full concentration range. In all experiments, chromatographic glass plates HPTLC RP-18 W from Merck (Darmstadt) were used as a stationary phase. During the study we found that there is no linear correlation between EOF velocity of the mobile phase and single variables such as zeta potential or dielectric constant or viscosity. However, there is quite strong linear correlation between EOF velocity of the mobile phase and variable obtained by multiplying zeta potential of the stationary phase-mobile phase interface, by dielectric constant of the mobile phase solution and dividing by viscosity of the mobile phase. Therefore, it could be concluded that the PPEC system fulfilled the Helmholtz-Smoluchowski equation. PMID:25067847

  16. Selective mobilization of fatty acids in adipose tissue of heavy pigs.

    PubMed

    Bochicchio, D; Comellini, M; Lambertini, P; Marchetto, G; Della Casa, G

    2015-01-01

    The mobilization of fatty acids during food deprivation is a selective process studied in different species (humans, rodents, birds, viverrids). The aim of this work was to study the effect of fasting on selective mobilization in commercial pigs. A total of 16 barrows (Large White×Landrace (167 kg±12.5 kg live weight) were subdivided into two homogeneous groups, one subjected to 12 h and the other to 60 h of fasting (fasting time) before slaughtering. For each pig inner and outer backfat layer were sampled at slaughter and at ham trimming 24 h later (sampling time). Increasing the fasting time and the sampling time after slaughter caused an increase in the amount of free fatty acids in both layers. Therefore it can be argued that during fasting lipolysis is stimulated and remains active also after slaughtering. The factors that stimulate lipolysis determine a greater mobilization of unsaturated fatty acids than saturated ones. Thus fasting time may influence the suitability of pork for processing and conservation, since free fatty acids are more suitable for oxidation than the esterified ones. PMID:25170962

  17. Investigation of retention on bare silica using reversed-phase mobile phases at elevated temperatures.

    PubMed

    Bidlingmeyer, Brian A; Henderson, John

    2004-12-10

    The use of unbonded silica as a stationary phase in reversed-phase HPLC is described as a useful alternative to bonded phase columns for polar, lipophilic amines. Using four lipophilic amines, the role of temperature is shown to favorably impact both efficiency and selectivity, which is not universally seen when using bonded phases. As temperature is raised, retention drops on the silica column. The temperature behavior appears to support the hypothesis that retention is dependant upon electrostatic and adsorptive forces. PMID:15628161

  18. Substituent effects on the gas-phase acidity of silane

    SciTech Connect

    Gordon, M.S.; Volk, D.E. ); Gano, D.R. )

    1989-12-20

    In a previous paper, the gas-phase acidities of XH{sub n} compounds (X = C, N, O, F, Si, P, S, Cl) were predicted with ab initio wave functions. At the MP4{sup 2} level of theory with extended basis sets acidities for these species were determined to be within 2 kcal/mol of experimental value. In the present work, with 6-31G(d) geometries and full MP4/MC-311++G{sup 6}(3df,2pd) energies, the effects of CH{sub 3}, NH{sub 2}, OH, F, SiH{sub 3}, PH{sub 2}, SH, and Cl on the gas-phase acidity of silane are examined. Only a few related calculations have been carried out. All calculations were performed with Gaussian86, and all structures were verified as minima by diagonalizing the analytically determined hessians. Only the valence electrons were correlated in the perturbation theory calculations.

  19. The mobile phase in coals: Its nature and modes of release: Part 2, Efforts to better define the nature and magnitude of the mobile phase: Final report

    SciTech Connect

    Given, P.H.

    1987-04-01

    Several liquefaction conditions and many extracting solvents were used in attempts to set up conditions such that, as the conditions became more severe, progressively more hexane-solubles, analyzable by GC/MS, would be released. It was hoped to identify a threshold beyond which trapped mobile phase molecules would become evident. A set of 10 hexane-soluble fractions, all obtained under various conditions from the same coal (a sample of Herrin No. 6 seam, Illinois), were subjected to analysis by tandem mass spectrometry (MS/MS). Yields ranged from 0.6 to 16% of the organic matter in the coal. Prominent constituents of all of the fractions were homologous series of alkyl aromatic hydrocarbons, phenols and heterocycles, notably alkylacenaphthenes. Alkyl chains were either unbranched or lightly branched. There was a similarity in the spectra of all of the fractions irrespective of yield. The ease with which a certain homologous series can be released from a coal is highly variable. Thus the data are consistent with the concept of a mobile phase some components of which are trapped in cavities with entrances and exits of restricted size. Release of the various physically held species and the fragments from thermal breakdown of the structure will certainly present a very complex system for kinetic modeling. 30 refs., 10 tabs.

  20. Mobility and speciation of Cd, Cu, and Zn in two acidic soils affected by simulated acid rain.

    PubMed

    Guo, Zhao-hui; Liao, Bo-han; Huang, Chang-yong

    2005-01-01

    Through a batch experiment, the mobility and speciation of heavy metals (Cd, Cu, Zn) in two acidic forest soils from Hunan Province were studied. The results showed that the release and potential active speciation of Cd, Cu, and Zn in the tested contaminated red soil (CRS) and yellow red soil (CYRS) increased significantly with pH decreasing and ion concentrations increasing of simulated acid rain, and these effects were mainly decided by the pH value of simulated acid rain. Cd had the highest potential risk on the environment compared with Cu and Zn. Cd existed mainly in exchangeable form in residual CRS and CYRS, Cu in organically bound and Mn-oxide occluded forms, and Zn in mineral forms due to the high background values. PMID:16295916

  1. Circulating nucleic acids: a new class of physiological mobile genetic elements

    PubMed Central

    Mittra, Indraneel

    2015-01-01

    Mobile genetic elements play a major role in shaping biotic genomes and bringing about evolutionary transformations. Herein, a new class of mobile genetic elements is proposed in the form of circulating nucleic acids (CNAs) derived from the billions of cells that die in the body every day due to normal physiology and that act intra-corporeally. A recent study shows that CNAs can freely enter into healthy cells, integrate into their genomes by a unique mechanism and cause damage to their DNA. Being ubiquitous and continuously arising, CNA-induced DNA damage may be the underlying cause of ageing, ageing-related disabilities and the ultimate demise of the organism. Thus, DNA seems to act in the paradoxical roles of both preserver and destroyer of life. This new class of mobile genetic element may be relevant not only to multi-cellular organisms with established circulatory systems, but also to other multi-cellular organisms in which intra-corporeal mobility of nucleic acids may be mediated via the medium of extra-cellular fluid. PMID:26664710

  2. Supramolecular Adducts of Cucurbit[7]uril and Amino Acids in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Kovalenko, Ekaterina; Vilaseca, Marta; Díaz-Lobo, Mireia; Masliy, A. N.; Vicent, Cristian; Fedin, Vladimir P.

    2016-02-01

    The complexation of the macrocyclic cavitand cucurbit[7]uril (Q7) with a series of amino acids (AA) with different side chains (Asp, Asn, Gln, Ser, Ala, Val, and Ile) is investigated by ESI-MS techniques. The 1:1 [Q7 + AA + 2H]2+ adducts are observed as the base peak when equimolar Q7:AA solutions are electrosprayed, whereas the 1:2 [Q7 + 2AA + 2H]2+ dications are dominant when an excess of the amino acid is used. A combination of ion mobility mass spectrometry (IM-MS) and DFT calculations of the 1:1 [Q7 + AA + 2H]2+ (AA = Tyr, Val, and Ser) adducts is also reported and proven to be unsuccessful at discriminating between exclusion or inclusion-type conformations in the gas phase. Collision induced dissociation (CID) revealed that the preferred dissociation pathways of the 1:1 [Q7 + AA + 2H]2+ dications are strongly influenced by the identity of the amino acid side chain, whereas ion molecule reactions towards N-butylmethylamine displayed a common reactivity pattern comprising AA displacement. Special emphasis is given on the differences between the gas-phase behavior of the supramolecular adducts with amino acids (AA = Asp, Asn, Gln, Ser, Ala, Val, and Ile) and those featuring basic (Lys and Arg) and aromatic (Tyr and Phe) side chains.

  3. Mobility of acid-treated carbon nanotubes in water-saturated porous media.

    PubMed

    Peng, X J; Du, C J; Liang, Z; Wang, J; Luan, Z K; Li, W J

    2011-01-01

    The production, use, and disposal of nanomaterials may inevitably lead to their appearance in water. With the development of new industries around nanomaterials, it seems necessary to be concerned about the transport of nanomaterials in the environment. In this paper, the transport of acid-treated carbon nanotubes (CNTs) in porous media was investigated. Before the mobility investigation, the stability of acid-treated CNT dispersions was studied using ultraviolet-visible spectra and it was indicated that, under the chemical conditions employed in this work, there was no apparent aggregation. The mobility investigation showed that transport of acid-treated CNTs increased with treatment time due to increase in particle zeta potential. Carbon nanotubes treated with nitric acid for 2, 6, and 12 h possessed measured zeta potentials of -30.0, -43.0, and -48.5 mV, respectively. Utilizing clean-bed filtration theory, we showed that acid-treated CNTs have the potential to migrate 3.28, 5.67, and 7.69 m in saturated glass beads, respectively. We showed that solution ionic strength and pH have important effects on the mobility of acid-treated CNTs. Increasing the pH from 6.0 to 7.9 resulted in an increase in migration potential from 2.96 to 10.86 m. Increasing the ionic strength from 0.005 to 0.020 M resulted in a decrease in CNT migration potential from 5.67 to 1.42 m. PMID:22031583

  4. Fundamental studies of gas phase ionic reactions by ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Giles, K.; Knighton, W. B.; Sahlstrom, K. E.; Grimsrud, E. P.

    1995-01-01

    Ion mobility spectrometry (IMS) provides a promising approach to the study of gas phase ionic reactions in buffer gases at unusually high pressures. This point is illustrated here by studies of the Sn2 nucleophilic displacement reaction, Cl(-) + CH3Br yields Br + CH3Br, using IMS at atmospheric pressure. The equilibrium clustering reaction, Cl(-)(CHCI3)(n - 1) + CHCI3 yields Cl(-)(CHCI3)(n), where n = 1 and 2, and the effect of clustering on the Sn2 reaction with CH3Br have also been characterized by this IMS-based kinetic method. Present problems and anticipated improvements in the application of ion mobility spectrometry to studies of other gas phase ionic processes are discussed.

  5. Retention modification of nucleic acid constituents in reversed-phase high-performance liquid chromatography.

    PubMed

    Ramsey, R S; Chan, V W; Dittmar, B M; Row, K H

    1989-05-12

    Secondary equilibria in reversed-phase liquid chromatography have been investigated as a means of enhancing selectivity and optimizing separations of nucleic acid constituents. The retention behavior of various nucleotides, nucleosides and modified compounds has been examined as a function of five different metal ion additives in the mobile phase: K+, Mg2+, Mn2+, Ni2+ and Zn2+. Complexation of the solute molecules with the metal ions changes the electronic structure and alters solute-solvent interactions. Alkali and alkaline earth metals bind primarily to phosphate groups while transition metals also interact with the N7 of purine bases. All nucleotides were found to be eluted very close to the void volume of the high-performance liquid chromatographic column without any metal additive, but retention increased as the concentration of a given cation increased. The transition metals were found to have the greatest effect, with affinities for nucleotide monophosphates on the order of 100 times greater than potassium, and 10 times that of magnesium. Differences in affinity based upon phosphate structure (i.e., cyclic vs. linear), phosphate position (e.g., 2'- vs. 3'-monophosphates), and base modification were also noted. The retention of most nucleosides, unlike the charged compounds, remained relatively constant as the ionic strength or type of cation was varied. Also, improvements were obtained in the resolution of some oligonucleotides with the addition of divalent ions to a potassium buffer mobile phase. PMID:2732287

  6. Chiral stationary phase covalently bound with a chiral pseudo-18-crown-6 ether for enantiomer separation of amino compounds using a normal mobile phase.

    PubMed

    Hirose, Keiji; Yongzhu, Jin; Nakamura, Takashi; Nishioka, Ryota; Ueshige, Tetsuro; Tobe, Yoshito

    2005-03-01

    In order to apply the excellent chiral recognition ability of chiral pseudo-18-crown-6 ethers that we developed to chiral separation, we prepared a chiral stationary phase (CSP) by immobilizing a chiral pseudo-18-crown-6-type host on 3-aminopropyl silica gel. A chiral column was prepared by the slurry-packing method in a stainless steel HPLC column. A liquid chromatography system using this CSP combined with the detection by mass spectrometry was used for enantiomer separation of amino compounds. A normal mobile phase can be used on this CSP as opposed to conventional dynamic coating-type CSPs. Enantiomers of 18 common natural amino acids were efficiently separated. The chiral separation observed for amino acid methyl esters, amino alcohols, and lipophilic amines was fair using this HPLC system. In view of the correlation between the enantiomer selectivity observed in chromatography and the complexion in solution, the chiral recognition in host-guest interactions might contribute to this enantiomer separation. PMID:15704196

  7. 78 FR 45071 - Annual Report for Mobility Fund Phase I Support and Record Retention

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    .... 54.1008(d) and (e), 54.1009(a) through (c) and 54.1010, published at 76 FR 73830, November 29, 2011.... 10-208; FCC 11-161, 76 FR 73830 and FCC 12-52, 77 FR 30904, May 24, 2012. If you have any comments on.... 01-92, 96-45; WT Docket No. 10-208; FCC 11-161; FCC 12-52] Annual Report for Mobility Fund Phase...

  8. Mobile phone imaging module with extended depth of focus based on axial irradiance equalization phase coding

    NASA Astrophysics Data System (ADS)

    Sung, Hsin-Yueh; Chen, Po-Chang; Chang, Chuan-Chung; Chang, Chir-Weei; Yang, Sidney S.; Chang, Horng

    2011-01-01

    This paper presents a mobile phone imaging module with extended depth of focus (EDoF) by using axial irradiance equalization (AIE) phase coding. From radiation energy transfer along optical axis with constant irradiance, the focal depth enhancement solution is acquired. We introduce the axial irradiance equalization phase coding to design a two-element 2-megapixel mobile phone lens for trade off focus-like aberrations such as field curvature, astigmatism and longitudinal chromatic defocus. The design results produce modulation transfer functions (MTF) and phase transfer functions (PTF) with substantially similar characteristics at different field and defocus positions within Nyquist pass band. Besides, the measurement results are shown. Simultaneously, the design results and measurement results are compared. Next, for the EDoF mobile phone camera imaging system, we present a digital decoding design method and calculate a minimum mean square error (MMSE) filter. Then, the filter is applied to correct the substantially similar blur image. Last, the blur and de-blur images are demonstrated.

  9. Liquid chromatographic resolution of amino acid esters of acyclovir including racemic valacyclovir on crown ether-based chiral stationary phases.

    PubMed

    Ahn, Seong Ae; Hyun, Myung Ho

    2015-03-01

    Valacyclovir, a potential prodrug for the treatment of patients with herpes simplex and herpes zoster, and its analogs were resolved on two chiral stationary phases (CSPs) based on (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 covalently bonded to silica gel. In order to find out an appropriate mobile phase condition, various mobile phases consisting of various organic modifiers in water containing various acidic modifiers were applied to the resolution of valacyclovir and its analogs. When 30% acetonitrile in water containing any of 0.05 M, 0.10 M, or 0.15 M perchloric acid was used as a mobile phase, valacyclovir and its analogs were resolved quite well on the two CSPs with the separation factors (α) in the range of 2.49 ~ 6.35 and resolutions (RS ) in the range of 2.95 ~ 12.21. Between the two CSPs, the CSP containing residual silanol protecting n-octyl groups on the silica surface was found to be better than the CSP containing residual silanol groups. PMID:25626672

  10. Computed phase diagrams for the system: Sodium hydroxide-uric acid-hydrochloric acid-water

    NASA Astrophysics Data System (ADS)

    Brown, W. E.; Gregory, T. M.; Füredi-Milhofer, H.

    1987-07-01

    Renal stone formation is made complex by the variety of solid phases that are formed, by the number of components in the aqueous phase, and by the multiplicity of ionic dissociation and association processes that are involved. In the present work we apply phase diagrams calculated by the use of equilibrium constants from the ternary system sodium hydroxide-uric acid-water to simplify and make more rigorous the understanding of the factors governing dissolution and precipitation of uric acid (anhydrous and dihydrate) and sodium urate monohydrate. The system is then examined in terms of four components. Finally, procedures are described for fluids containing more than four components. The isotherms, singular points, and fields of supersaturation and undersaturation are shown in various forms of phase diagrams. This system has two notable features: (1) in the coordinates -log[H 2U] versus -log[NaOH], the solubility isotherms for anhydrous uric acid and uric acid dihydrate approximate straight lines with slopes equal to +1 over a wide range of concentrations. As a result, substantial quantities of sodium acid urate monohydrate can precipitate from solution or dissolve without changing the degree of saturation of uric acid significantly. (2) The solubility isotherm for NaHU·H 2O has a deltoid shape with the low-pH branch having a slope of infinity. As a result of the vertical slope of this isotherm, substantial quantities of uric acid can dissolve or precipitate without changing the degree of saturation of sodium acid urate monohydrate significantly. The H 2U-NaOH singular point has a pH of 6.87 at 310 K in the ternary system.

  11. Method to attenuate U(VI) mobility in acidic waste plumes using humic acids.

    PubMed

    Wan, Jiamin; Dong, Wenming; Tokunaga, Tetsu K

    2011-03-15

    Acidic uranium (U) groundwater plumes have resulted from acid-extraction of plutonium during the Cold War and from U mining and milling operations. A sustainable method for in situ immobilization of U under acidic conditions is not yet available. Here, we propose to use humic acids (HAs) for in situ U immobilization in acidic waste plumes. Our laboratory batch experiments show that HA can adsorb onto aquifer sediments rapidly, strongly and practically irreversibly. Adding HA greatly enhanced U adsorption capacity to sediments at pH below 5.0. Our column experiments using historically contaminated sediments from the Savannah River Site under slow flow rates (120 and 12 m/year) show that desorption of U and HA were nondetectable over 100 pore-volumes of leaching with simulated acidic groundwaters. Upon HA-treatment, 99% of the contaminant [U] was immobilized at pH ≤ 4.5, compared to 5% and 58% immobilized in the control columns at pH 3.5 and 4.5, respectively. These results indicate that HA-treatment is a promising in situ remediation method for acidic U waste plumes. As a remediation reagent, HAs are resistant to biodegradation, cost-effective, nontoxic, and easily introducible to the subsurface. PMID:21319737

  12. A method to attenuate U(VI) mobility in acidic waste plumes using humic acids

    SciTech Connect

    Wan, J.; Dong, W.; Tokunaga, T.K.

    2011-02-01

    Acidic uranium (U) contaminated plumes have resulted from acid-extraction of plutonium during the Cold War and from U mining and milling operations. A sustainable method for in-situ immobilization of U under acidic conditions is not yet available. Here, we propose to use humic acids (HAs) for in-situ U immobilization in acidic waste plumes. Our laboratory batch experiments show that HA can adsorb onto aquifer sediments rapidly, strongly and practically irreversibly. Adding HA greatly enhanced U adsorption capacity to sediments at pH below 5.0. Our column experiments using historically contaminated sediments from the Savannah River Site under slow flow rates (120 and 12 m/y) show that desorption of U and HA were non-detectable over 100 pore-volumes of leaching with simulated acidic groundwaters. Upon HA-treatment, 99% of the contaminant [U] was immobilized at pH < 4.5, compared to 5% and 58% immobilized in the control columns at pH 3.5 and 4.5, respectively. These results demonstrated that HA-treatment is a promising in-situ remediation method for acidic U waste plumes. As a remediation reagent, HAs are resistant to biodegradation, cost effective, nontoxic, and easily introducible to the subsurface.

  13. Effect of HPLC binary mobile phase composition on the analysis of carbonyls.

    PubMed

    Ho, Duy Xuan; Kim, Ki-Hyun

    2011-09-01

    The relative performance of the binary mobile phase in the high-performance liquid chromatography analysis of carbonyl compounds (CCs) was tested using the liquid-phase standards containing 15 aldehyde/ketone-DNPH mixture. The Hichrome column was employed for the analysis of CCs at a flow rate of 1.5 mL min( - 1). The binary mobile phases prepared using both acetonitrile/water (AW) and a possible alternative of methanol:water (MW) mixture were examined by their calibration results. The data derived from these two binary phases were then evaluated in terms of three key variables (i.e., resolution, relative sensitivity, and retention time). The relative water content (or the water to organic solvent ratio (W/A) or (W/M)) of the binary phase was found as the key variable for the performance. The results indicate that the optimal resolution of AW combination was attained consistently for most composition, while MW generally suffered from overpressure problem. The changes of water content in the AW mixture led to the changes of all three variables in the quantitative analysis of CCs. The obtained results confirm that the AW mixture should be the optimal elutant for the CC analysis, as other simple binary compositions like MW are limited in many respects. PMID:21107904

  14. Modulation of phase behaviors and charge carrier mobilities by linkage length in discotic liquid crystal dimers.

    PubMed

    Wang, Yi-Fei; Zhang, Chun-Xiu; Wu, Hao; Zhang, Ao; Wang, Jian-Chuang; Zhang, Shuai-Feng; Pu, Jia-Ling

    2015-01-28

    A clear structure-property relationship was revealed in a series of triphenylene-based dimers, which contained two triphenylene nuclei each bearing five β-OC4H9 substituents and are linked through a flexible O(CH2)nO polymethylene chain (n=6-12). Dimers with the linkage close to twice the length of the free side chains (n=8, 9) exhibited a single Colhp phase, while others with the linkage shorter (n=6, 7) or longer (n=10, 11, 12) showed multiphase behaviors with a transition from the Colhp phase to Colh phase; hole mobilities of Colhp phases reached 1.4×10(-2) cm2 V(-1) s(-1) in the dimer for which the linkage is exactly twice the length of the free side chains (n=8), and decreased regularly both with linkage length becoming shorter or longer. This modulation of phase behaviors and charge carrier mobilities was demonstrated to be generated by various steric perturbations introduced by linkages with different lengths, which result in different degrees of lateral fluctuations of discotic moieties in the columns. PMID:25467212

  15. Gas phase acidity measurement of local acidic groups in multifunctional species: controlling the binding sites in hydroxycinnamic acids.

    PubMed

    Guerrero, Andres; Baer, Tomas; Chana, Antonio; González, Javier; Dávalos, Juan Z

    2013-07-01

    The applicability of the extended kinetic method (EKM) to determine the gas phase acidities (GA) of different deprotonable groups within the same molecule was tested by measuring the acidities of cinnamic, coumaric, and caffeic acids. These molecules differ not only in the number of acidic groups but in their nature, intramolecular distances, and calculated GAs. In order to determine independently the GA of groups within the same molecule using the EKM, it is necessary to selectively prepare pure forms of the hydrogen-bound heterodimer. In this work, the selectivity was achieved by the use of solvents of different vapor pressure (water and acetonitrile), as well as by variation of the drying temperature in the ESI source, which affected the production of heterodimers with different solvation energies and gas-phase dissociation energies. A particularly surprising finding is that the calculated solvation enthalpies of water and the aprotic acetonitrile are essentially identical, and that the different gas-phase products generated are apparently the result of their different vapor pressures, which affects the drying mechanism. This approach for the selective preparation of heterodimers, which is based on the energetics, appears to be quite general and should prove useful for other studies that require the selective production of heterodimers in ESI sources. The experimental results were supported by density functional theory (DFT) calculations of both gas-phase and solvated species. The experimental thermochemical parameters (deprotonation ΔG, ΔH, and ΔS) are in good agreement with the calculated values for the monofunctional cinnamic acid, as well as the multifunctional coumaric and caffeic acids. The measured GA for cinnamic acid is 334.5 ± 2.0 kcal/mol. The measured acidities for the COOH and OH groups of coumaric and caffeic acids are 332.7 ± 2.0, 318.7 ± 2.1, 332.2 ± 2.0, and 317.3 ± 2.2 kcal/mol, respectively. PMID:23799241

  16. Degenerate mobilities in phase field models are insufficient to capture surface diffusion

    NASA Astrophysics Data System (ADS)

    Lee, Alpha A.; Münch, Andreas; Süli, Endre

    2015-08-01

    Phase field models frequently provide insight into phase transitions and are robust numerical tools to solve free boundary problems corresponding to the motion of interfaces. A body of prior literature suggests that interface motion via surface diffusion is the long-time, sharp interface limit of microscopic phase field models such as the Cahn-Hilliard equation with a degenerate mobility function. Contrary to this conventional wisdom, we show that the long-time behaviour of degenerate Cahn-Hilliard equation with a polynomial free energy undergoes coarsening, reflecting the presence of bulk diffusion, rather than pure surface diffusion. This reveals an important limitation of phase field models that are frequently used to model surface diffusion.

  17. Traveling Wave Ion Mobility Mass Spectrometry and Ab Initio Calculations of Phosphoric Acid Clusters

    NASA Astrophysics Data System (ADS)

    Lavanant, Hélène; Tognetti, Vincent; Afonso, Carlos

    2014-04-01

    Positive and negative ion electrospray mass spectra obtained from 50 mM phosphoric acid solutions presented a large number of phosphoric acid clusters: [(H3PO4)n + zH] z+ or [(H3PO4)n - zH] z- , with n up to 200 and z up to 4 for positively charged clusters, and n up to 270 and z up to 7 for negatively charged cluster ions. Ion mobility experiments allowed very explicit separation of the different charge states. Because of the increased pressures involved in ion mobility experiments, dissociation to smaller clusters was observed both in the trap and transfer areas. Voltages along the ion path could be optimized so as to minimize this effect, which can be directly associated with the cleavage of hydrogen bonds. Having excluded the ion mobility times that resulted from dissociated ions, each cluster ion appeared at a single drift time. These drift times showed a linear progression with the number of phosphoric atoms for cluster ions of the same charge state. Cross section calculations were carried out with MOBCAL on DFT optimized geometries with different hydrogen locations and with three types of atomic charges. DFT geometry optimizations yielded roughly spherical structures. Our results for nitrogen gas interaction cross sections showed that values were dependent on the atomic charges definition used in the MOBCAL calculation. This pinpointed the necessity to define a clear theoretical framework before any comparative interpretations can be attempted with uncharacterized compounds.

  18. STTR Phase 1 Final Technical Report for Project Entitled "Developing a Mobile Torrefaction Machine"

    SciTech Connect

    James, Joseph J.

    2014-03-11

    The goal of this project, sponsored by Agri-Tech Producers, LLC (ATP), the small business grantee, was to determine if the torrefaction technology, developed by North Carolina State University (NCSU), which ATP has licensed, could be feasibly deployed in a mobile unit. The study adds to the area investigated, by having ATP’s STTR Phase I team give thoughtful consideration to how to use NCSU’s technology in a mobile unit. The findings by ATP’s team were that NCSU’s technology would best perform in units 30’ by 80’ (See Spec Sheet for the Torre-Tech 5.0 Unit in the Appendix) and the technical effectiveness and economic feasibility investigation suggested that such units were not easily, efficiently or safely utilized in a forest or farm setting. (Note rendering of possible mobile system in the Appendix) Therefore, the findings by ATP’s team were that NCSU’s technology could not feasibly be deployed as a mobile unit.

  19. [Separation of bases, phenols and pharmaceuticals on ionic liquid-modified silica stationary phase with pure water as mobile phase].

    PubMed

    Wang, Xusheng; Qiu, Hongdeng; Liu, Xia; Jiang, Shengxiang

    2011-03-01

    N-methylimidazolium ionic liquid (IL) -modified silica was prepared with the reaction of 3-chloropropyl modified silica and N-methylimidazole using toluene as solvent. Based on the multiple interactions between N-methylimidazolium IL-modified silica and analytes such as hydrophobic interaction, electrostatic attraction, repulsion interaction, hydrogen-bonding, etc., the bases (cytosine, thymine, 2-aminopyrimidine and 6-chloroguanine), phenols (m-aminophenol, resorcinol and m-nitrophenol) and three pharmaceuticals (moroxydine hydrochloride, acyclovir and cephalexin hydrate) were separated successfully with only pure water as the mobile phase. These chromatographic separations are environmental friendly, economical and convenient, without any organic solvent or buffer additive. The retention mechanism of these samples on the stationary phase was also investigated. PMID:21657060

  20. Design and application of an expert system for mobile phase optimisation in reversed-phase liquid chromatography.

    PubMed

    Fell, A F; Bridge, T P; Williams, M H

    1988-01-01

    The selection of the optimum composition for the mobile phase in reversed-phase high-performance liquid chromatography (HPLC) is a complex task; conventional approaches require the expenditure of significant amounts of time by the analyst, particularly for complex mixtures of solutes of biological origin. Some of the existing strategies for the automated optimisation of mobile phase composition (e.g. Simplex), may fail if the elution order of the components changes; or they may require that standards be chromatographed in order to establish the retention behaviour of each component in a mixture (e.g. resolution mapping). These problems may be overcome if the retention behaviour of each individual solute can be established from the chromatogram of the mixture. In this regard, components can be tracked by exploiting the spectral information generated by a rapid scanning photodiode array detector. Unfortunately this information is often insufficiently detailed to allow an unambiguous model of retention behaviour to be constructed. The system developed by the Authors uses these spectral data as a basis for constructing one or more hypothetical retention models, each of which is refined or rejected as further information is obtained during the progress of the experiment. To improve the reliability of the retention models proposed by the system, the spectral data are utilised in a number of tests designed to assess the purity of each chromatographic peak. The information so generated may be used in conjunction with any previously acquired spectral data both to select an appropriate method for extracting spectra for each component from the matrix of (A, lambda, t) data and to establish reliability parameters for the resultant spectra. The development and philosophy of the expert system developed for eluent optimisation in reversed-phase HPLC is discussed. PMID:16867321

  1. The mobility of the amorphous phase in polyethylene as a determining factor for slow crack growth

    NASA Astrophysics Data System (ADS)

    Men, Y. F.; Rieger, J.; Enderle, H.-F.; Lilge, D.

    2004-12-01

    Polyethylene (PE) pipes generally exhibit a limited lifetime, which is considerably shorter than their chemical degradation period. Slow crack growth failure occurs when pipes are used in long-distance water or gas distribution though being exposed to a pressure lower than the corresponding yield stress. This slow crack growth failure is characterized by localized craze growth and craze fibril rupture. In the literature, the lifetime of PE pipes is often considered as being determined by the density of tie chains connecting adjacent crystalline lamellae. But this consideration cannot explain the excellent durability of the recent bimodal grade PE for pipe application. We show in this paper the importance of the craze fibril length as the determining factor for the pipe lifetime. The conclusions are drawn from stress analysis. It is found that longer craze fibrils sustain lower stress and are deformed to a lesser degree. The mobility of the amorphous phase is found to control the amount of material that can be “sucked” in by the craze fibrils and thus the length of the craze fibrils. The mobility of the amorphous phase can be monitored by dynamic mechanical analysis measurements. Excellent agreement between the mobility thus derived and lifetimes of PE materials as derived from FNCT (full notch creep test) is given, thus providing an effective means to estimate the lifetime of PE pipes by considering well-defined physical properties.

  2. The mobility of the amorphous phase in polyethylene as a determining factor for slow crack growth.

    PubMed

    Men, Y F; Rieger, J; Enderle, H-F; Lilge, D

    2004-12-01

    Polyethylene (PE) pipes generally exhibit a limited lifetime, which is considerably shorter than their chemical degradation period. Slow crack growth failure occurs when pipes are used in long-distance water or gas distribution though being exposed to a pressure lower than the corresponding yield stress. This slow crack growth failure is characterized by localized craze growth and craze fibril rupture. In the literature, the lifetime of PE pipes is often considered as being determined by the density of tie chains connecting adjacent crystalline lamellae. But this consideration cannot explain the excellent durability of the recent bimodal grade PE for pipe application. We show in this paper the importance of the craze fibril length as the determining factor for the pipe lifetime. The conclusions are drawn from stress analysis. It is found that longer craze fibrils sustain lower stress and are deformed to a lesser degree. The mobility of the amorphous phase is found to control the amount of material that can be "sucked" in by the craze fibrils and thus the length of the craze fibrils. The mobility of the amorphous phase can be monitored by dynamic mechanical analysis measurements. Excellent agreement between the mobility thus derived and lifetimes of PE materials as derived from FNCT (full notch creep test) is given, thus providing an effective means to estimate the lifetime of PE pipes by considering well-defined physical properties. PMID:15583973

  3. Electrophoretic Mobility of Poly(acrylic acid)-Coated Alumina Particles

    SciTech Connect

    Bhosale, Prasad S.; Chun, Jaehun; Berg, John C.

    2011-06-01

    The effect of poly (acrylic acid) (PAA) adsorption on the electrokinetic behavior of alumina dispersions under high pH conditions was investigated as a function of polymer concentration and molecular weight as well as the presence, concentration and ion type of background electrolyte. Systems of this type are relevant to nuclear waste treatment, in which PAA is known to be an effective rheology modifier. The presence of all but the lowest molecular weight PAA studied (1800) led to decreases in dynamic electrophoretic mobility at low polymer concentrations, attributable to bridging flocculation, as verified by measurements of particle size distribution. Bridging effects increased with polymer molecular weight, and decreased with polymer concentration. Increases in background electrolyte concentration enhanced dynamic electrophoretic mobility as the polymer layers were compressed and bridging was reduced. Such enhancements were reduced as the cation was changed from Na+ to K+ to Cs+.

  4. Gas-Phase Fragmentation Analysis of Nitro-Fatty Acids

    NASA Astrophysics Data System (ADS)

    Bonacci, Gustavo; Asciutto, Eliana K.; Woodcock, Steven R.; Salvatore, Sonia R.; Freeman, Bruce A.; Schopfer, Francisco J.

    2011-09-01

    Nitro-fatty acids are electrophilic signaling mediators formed in increased amounts during inflammation by nitric oxide and nitrite-dependent redox reactions. A more rigorous characterization of endogenously-generated species requires additional understanding of their gas-phase induced fragmentation. Thus, collision induced dissociation (CID) of nitroalkane and nitroalkene groups in fatty acids were studied in the negative ion mode to provide mass spectrometric tools for their structural characterization. Fragmentation of nitroalkanes occurred mainly through loss of the NO{2/-} anion or neutral loss of HNO2. The CID of nitroalkenes proceeds via a more complex cyclization, followed by fragmentation to nitrile and aldehyde products. Gas-phase fragmentation of nitroalkene functional groups with additional γ or δ unsaturation occurred through a multiple step cyclization reaction process, leading to 5 and 6 member ring heterocyclic products and carbon chain fragmentation. Cyclization products were not obtained during nitroalkane fragmentation, highlighting the role of double bond π electrons during NO{2/-} rearrangements, stabilization and heterocycle formation. The proposed structures, mechanisms and products of fragmentation are supported by analysis of 13C and 15N labeled parent molecules, 6 different nitroalkene positional isomers, 6 nitroalkane positional isomers, accurate mass determinations at high resolution and quantum mechanics calculations. Multiple key diagnostic ion fragments were obtained through this analysis, allowing for the precise placement of double bonds and sites of fatty acid nitration, thus supporting an ability to predict nitro positions in biological samples.

  5. Analysis of a series of chlorogenic acid isomers using differential ion mobility and tandem mass spectrometry.

    PubMed

    Willems, Jamie L; Khamis, Mona M; Mohammed Saeid, Waleed; Purves, Randy W; Katselis, George; Low, Nicholas H; El-Aneed, Anas

    2016-08-24

    Chlorogenic acids are among the most abundant phenolics found in the human diet. Of these, the mono-caffeoylquinic acids are the predominant phenolics found in fruits, such as apples and pears, and products derived from them. In this research, a comprehensive study of the electrospray ionization (ESI) tandem mass spectrometric (MS/MS) dissociation behavior of the three most common mono-caffeoylquinic acids, namely 5-O-caffeoylquinic acid (5-CQA), 3-O-caffeoylquinic acid (3-CQA) and 4-O-caffeoylquinic acid (4-CQA), were determined using both positive and negative ionization. All proposed structures of the observed product ions were confirmed with second-generation MS(3) experiments. Similarities and differences between the dissociation pathways in the positive and negative ion modes are discussed, confirming the proposed structures and the established MS/MS fingerprints. MS/MS dissociation was primarily driven via the cleavage of the ester bond linking the quinic acid moiety to the caffeic acid moiety within tested molecules. Despite being structural isomers with the same m/z values and dissociation behaviors, the MS/MS data in the negative ion mode was able to differentiate the three isomers based on ion intensity for the major product ions, observed at m/z 191, 179 and 173. This differentiation was consistent among various MS instruments. In addition, ESI coupled with high-field asymmetric waveform ion mobility spectrometry-mass spectrometry (ESI-FAIMS-MS) was employed for the separation of these compounds for the first time. By combining MS/MS data and differential ion mobility, a method for the separation and identification of mono-caffeoylquinic in apple/pear juice samples was developed with a run time of less than 1 min. It is envisaged that this methodology could be used to identify pure juices based on their chlorogenic acid profile (i.e., metabolomics), and could also be used to detect juice-to-juice adulteration (e.g., apple juice addition to pear juice

  6. Method for the separation of the unconjugates and conjugates of chenodeoxycholic acid and deoxycholic acid by two-dimensional reversed-phase thin layer chromatography with methyl beta-cyclodextrin.

    PubMed

    Momose, T; Mure, M; Iida, T; Goto, J; Nambara, T

    1998-06-19

    A simple and efficient method for the separation of individual unconjugated bile acids and their glycine- and taurine-amidated, 3-sulfated, 3-glucosylated and 3-glucuronidated conjugates is described. The method involves the use of a two-dimensional (2D) reversed-phase (RP) high-performance thin-layer chromatographic (HPTLC) technique with methyl beta-cyclodextrin (Me-beta-CD). Five major unconjugated bile acids, chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), ursodeoxycholic acid and lithocholic acid, and their conjugates were examined as the solutes. A high degree of separation of individual bile acids in each homologous series was achieved on a RP-HPTLC plate by developing with aqueous methanol in the first dimension and the same solvent system containing Me-beta-CD in the second dimension. In particular, all of the six 'difficult-to-separate' pairs, unconjugated CDCA and DCA and their conjugated forms with glycine, taurine, sulfuric acid, D-glucose and D-glucuronic acid, were effectively resolved by adding Me-beta-CD in the aqueous mobile phases with the formers having larger mobilities than the latter. The application of this 2D inclusion RP-HPLC method to the separation of glycine-conjugated bile acids in human bile is also described. The present method would be useful for separating and characterizing these bile acids present in biological materials. PMID:9691303

  7. Acidic deposition, cation mobilization, and biochemical indicators of stress in healthy red spruce

    USGS Publications Warehouse

    Shortle, W.C.; Smith, K.T.; Minocha, R.; Lawrence, G.B.; David, M.B.

    1997-01-01

    Dendrochemical and biochemical markers link stress in apparently healthy red spruce trees (Picea rubens) to acidic deposition. Acidic deposition to spruce forests of the northeastern USA increased sharply during the 1960s. Previous reports related visible damage of trees at high elevations to root and soil processes. In this report, dendrochemical and foliar biochemical markers indicate perturbations in biological processes in healthy red spruce trees across the northeastern USA. Previous research on the dendrochemistry of red spruce stemwood indicated that under uniform environmental conditions, stemwood concentrations of Ca and Mg decreased with increasing radial distance from the pith. For nine forest locations, frequency analysis shows that 28 and 52% of samples of red spruce stemwood formed in the 1960s are enriched in Ca and Mg, respectively, relative to wood formed prior to and after the 1960s. This enrichment in trees throughout the northeastern USA may be interpretable as a signal of increased availability of essential cations in forest soils. Such a temporary increase in the availability of Ca and Mg could be caused by cation mobilization, a consequence of increased acidic deposition. During cation mobilization, essential Ca and Mg as well as potentially harmful Al become more available for interaction with binding sites in the soil and absorbing roots. As conditions which favor cation mobilization continue, Ca and Mg can be leached or displaced from the soil. A measure of the interaction between Ca and Al is the Al/Ca binding ratio (molar charge ratio of exchangeable Al to exchangeable Ca). As the Al/Ca binding ratio in the root zone increased from 0.3 to 1.9, the foliar concentration of the biochemical stress marker putrescine also increased from 45 to 145 nm g-1. The correlation of the putrescine concentration to the Al/Ca binding ratio (adj. r2 = 0.68, P < 0.027) suggests that foliar stress may be linked to soil chemistry.

  8. Mobile terminal equipment design utilising split-loop phase-lock techniques

    NASA Technical Reports Server (NTRS)

    Kenington, P. B.; Mcgeehan, J. P.; Edwards, D. J.

    1990-01-01

    The design and resultant performance of the terminal equipment in a mobile satellite system is vitally important in respect to the overall cost/performance compromise of the whole system. Improvements in system performance which also result in a reduction of the equipment cost are rare. However, this paper details a significant advance in terminal design, utilizing a novel form of 'split-loop' phase locked receiver/downconverter system to enable an accurate, stable and wide coverage terminal to be realized at a reduced cost. The system has the capability of automatically locking onto any carrier within a complete transponder, and can cope with severe amplitude modulation and fading effects.

  9. Use of a Novel Sub-2 µm Silica Hydride Vancomycin Stationary Phase in Nano-Liquid Chromatography. II. Separation of Derivatized Amino Acid Enantiomers.

    PubMed

    Rocchi, Silvia; Fanali, Chiara; Fanali, Salvatore

    2015-11-01

    A novel vancomycin silica hydride stationary phase was synthesized and the particles of 1.8 µm were packed into fused silica capillaries of 75 µm internal diameter (I.D.). The chiral stationary phase (CSP) was tested for the separation of some derivatized amino acid enantiomers by using nano-liquid chromatography (nano-LC). Some experimental parameters such as the type and the content of organic modifier, the pH, and the concentration of the buffer added to the mobile phase were modified and the effect on enantioselectivity, retention time, and enantioresolution factor was studied. The separation of selected dansyl amino acids (Dns-AAs), e.g., Asp, Glu, Leu, and Phe in their enantiomers was initially achieved utilizing a mobile phase containing 85% (v/v) methanol (MeOH) and formate buffer measuring the enantioresolution factor and enantioselectivity in the range 1.74-4.17 and 1.39-1.59, respectively. Better results were obtained employing a more polar organic solvent as acetonitrile (ACN) in the mobile phase. Optimum results (Rs 1.41-6.09 and α 1.28-2.36) were obtained using a mobile phase containing formate buffer pH 2.5/water/MeOH/ACN 6:19:12.5:62.5 (v/v/v/v) in isocratic elution mode at flow rate of 130 nL/min. PMID:26335144

  10. Rheology and molecular mobility of amorphous blends of citric acid and paracetamol.

    PubMed

    Hoppu, Pekka; Hietala, Sami; Schantz, Staffan; Juppo, Anne Mari

    2009-01-01

    The aim of this study was to investigate the rheological properties, molecular mobility and crystallization tendency of pure citric acid and paracetamol or blends of them. Amorphous samples were produced by ethanol-evaporation or by melt-quenching. Enthalpy recovery, glass fragility and heat capacity were determined by differential scanning calorimetry (DSC). Other physical characterization methods were rheology and the crystallization tendency using X-ray powder diffraction (XRPD) and DSC. All the samples behaved as Newtonian liquids and they were fragile glasses. The 50/50 (w/w,%) blend had good physical stability upon consecutive shearing regardless of the preparation method. All the samples were stable for at least one year in dry conditions at -20 degrees C. The melt-produced blends containing 25% or 50% paracetamol were stable at least two years in dry ambient conditions. The good physical stability at ambient temperature cannot be explained by molecular mobility because molecular mobility of the model material is less than 100 s in ambient conditions. Thus other factors, such as the thermodynamic and crystallization driving forces or formation of degradation products, must determine the physical stability of the blends. The composition and processing method have an impact on the physical stability of the sample. PMID:18656536

  11. Selective fatty acid mobilization from adipose tissues of the pheasant (Phasianus colchicus mongolicus) during food deprivation.

    PubMed

    Mustonen, Anne-Mari; Käkelä, Reijo; Asikainen, Juha; Nieminen, Petteri

    2009-01-01

    Avian response to fasting has been examined intensively in penguins (Aptenodytes spp.) adapted to long-term food deprivation but less in species experiencing shorter fasts. Thus, the selectivity in (i) incorporating different fatty acids (FA) from diet into total lipids of white adipose tissue (WAT) and liver and (ii) mobilizing FA from these tissues was examined in pheasants Phasianus colchicus mongolicus fed or fasted for 4 d. Dietary FA were selectively incorporated into intra-abdominal and subcutaneous WAT having a similar composition. The WAT lipids contained higher proportions of saturated and monounsaturated FA and less polyunsaturated FA (PUFA) than the dietary profile. However, the isomers of 20:1 and 22:1 were incorporated inefficiently into the WAT lipids. The essential C18 PUFA precursors having smaller percentages in the pheasant tissues than in the diet were likely converted into longer-chain derivatives probably utilized to a great extent for structural lipids of muscles and organs. During food deprivation, the pheasants preferentially utilized 16:1n-7, 18:3n-3, 18:1n-9, and 16:0 but preserved long-chain saturated and unsaturated FA. Mobilization was more efficient for shorter-chain FA and increased with Delta9-desaturation. The hepatic FA profile was resistant to the 4-d period of food deprivation. The results demonstrate that the incorporation of FA into WAT and their mobilization from lipid stores are selective not only in mammals but also in birds. PMID:19656072

  12. Direct enantioseparation of underivatized aliphatic 3-hydroxyalkanoic acids with a quinine-based zwitterionic chiral stationary phase.

    PubMed

    Ianni, Federica; Pataj, Zoltán; Gross, Harald; Sardella, Roccaldo; Natalini, Benedetto; Lindner, Wolfgang; Lämmerhofer, Michael

    2014-10-10

    While aliphatic 2-hydroxyalkanoic acids have been more or less successfully enantioseparated with various chiral stationary phases by HPLC and GC, analogous applications on underivatized aliphatic 3-hydroxyalkanoic acids are completely absent in the scientific literature. With the aim of closing this gap, the enantioseparation of 3-hydroxybutyric acid, 3-hydroxydecanoic acid and 3-hydroxymyristic acid has been performed with two ion-exchange type chiral stationary phases (CSPs): one containing the anion-exchange type tert-butyl carbamoyl quinine chiral selector motif (Chiralpak QN-AX), and the other carrying the new zwitterionic variant based on trans-(S,S)-2-aminocyclohexanesulfonic acid-derivatized quinine carbamate (Chiralpak ZWIX(+)) as the chiral selector and enantiodiscriminating element, respectively. The zwitterionic enantiorecognition material provided better results in terms of enantioselectivity and resolution compared to the anion-exchanger CSP at reduced retention times due to the intramolecular counterion effect imposed by the sulfonic acid moiety and its competition with the 3-hydroxyalkanoic acid analyte for ionic interaction at the quininium-anion exchanger site. It is thus recommended as the CSP of first choice for enantioseparations of the class of aliphatic 3-hydroxyalkanoic acids. With use of polar organic eluent composed of ACN/MeOH/AcOH - 95/5/0.05 (v/v/v), a good compromise in terms of analysis time and enantioresolution quality was accomplished. The major experimental variables have been investigated for optimization of the resolution and allowed to derive information on the enantiorecognition mechanism. Corresponding Chiralpak ZWIX(-), based on pseudo-enantiomeric selector derived from quinidine and trans-(R,R)-2-aminocyclohexanesulfonic acid with opposite configurations provided reversed enantiomer elution orders. It has further to be stressed that these separations can be obtained with mass spectrometry compatible mobile phases. PMID

  13. Trying to detect gas-phase ions? Understanding Ion Mobility Spectrometry

    PubMed Central

    Cumeras, R.; Figueras, E.; Davis, C.E.; Baumbach, J.I.; Gràcia, I.

    2014-01-01

    Ion Mobility Spectrometry (IMS) is a widely used and ‘well-known’ technique of ion separation in gaseous phase based on the differences of ion mobilities under an electric field. This technique has received increased interest over the last several decades as evidenced by the pace and advances of new IMS devices available. In this review we explore the hyphenated techniques that are used with IMS, especially mass spectrometry as identification approach and multi-capillary column as pre-separation approach. Also, we will pay special attention to the key figures of merit of the ion mobility spectrum and how data is treated, and the influences of the experimental parameters in both a conventional drift time IMS (DTIMS) and a miniaturized IMS also known as high Field Asymmetric IMS (FAIMS) in the planar configuration. The current review article is preceded by a companion review article which details the current instrumentation and to the sections that configures both a conventional DTIMS and FAIMS devices. Those reviews will give the reader an insightful view of the main characteristics and aspects of the IMS technique. PMID:25465248

  14. Measurement of Gas-phase Acids in Diesel Exhaust

    NASA Astrophysics Data System (ADS)

    Wentzell, J. J.; Liggio, J.; Li, S.; Vlasenko, A. L.; Staebler, R. M.; Brook, J.; Lu, G.; Poitras, M.; Chan, T.

    2012-12-01

    Gas-phase acids were measured using chemical ionization mass spectrometry (CIMS) as part of the Diesel Engine Emission Research Experiment (DEERE). The CIMS technique, utilizing acetate ion (CH3COO-) as a reagent ion, proved to be a rapid (measurements on the order of seconds) and sensitive (several counts/pptv) method of quantifying the acid emissions. Diluted diesel exhaust measurements were made from a Constant Volume Sampling dilution tunnel using a light duty (1.9L turbocharged Volkswagen Jetta TDI) diesel engine equipped with an OEM diesel oxidation catalyst and exhaust gas recirculation, mounted on an engine dynamometer. Acids measured included isocyanic, nitrous, nitric, propionic and sum of lactic and oxalic, as well as other unidentified compounds. Complimentary measurements of CO, CO2, Total Hydrocarbon (THC), and NOx, were also performed. Several engine modes (different engine rpm and torque outputs) at steady state were examined to determine their effect on acid emissions. Emission rates with respect to NOx and fuel based emission factors were determined. Measurements of HONO fuel emission factors agree well with real-world measurements within a traffic tunnel.1 The first estimate of isocyanic acid emission factors from a diesel engine is reported, and suggests that the emission of this highly toxic compound in diesel exhaust should not be ignored. 1. Kurtenbach, R., Becker, K. H., Gomes, J. A. G., Kleffmann, J.,Lorzer, J. C., Spittler, M., Wiesen, P., Ackermann, R., Geyer, A.,and Platt, U.: Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel, Atmos. Environ., 35, 3385-3394, doi:10.1016/S1352-2310(01)00138-8, 2001.

  15. Morphology and Composition of Structured, Phase-Separated Behenic Acid-Perfluorotetradecanoic Acid Monolayer Films.

    PubMed

    Rehman, Jeveria; Araghi, Hessamaddin Younesi; He, Anqiang; Paige, Matthew F

    2016-05-31

    The phase separation of immiscible surfactants in mixed monolayer films provides an approach to physically manipulate important properties of thin films, including surface morphology, microscale composition, and mechanical properties. In this work, we predict, based upon existing miscibility studies and their thermodynamic underpinnings described in the literature, the miscibility and film morphology of mixed monolayers comprised of behenic acid (C21H43COOH) and perfluorotetradecanoic acid (C13F27COOH) in various molar ratios. Predictions are tested using a combination of experimental surface characterization methods for probing miscibility and film morphology at the solid/air and air/water interfaces. Film components were immiscible and phase-separated into chemically well-defined domains under a variety of experimental conditions, with monolayer morphology consistent with initial predictions. The extensibility of these basic predictions to other systems is discussed in the context of using these works for different perfluorinated surfactant molecules. PMID:27163482

  16. Acidic deposition, cation mobilization, and biochemical indicators of stress in healthy red spruce

    SciTech Connect

    Shortle, W.C.; Smith, K.T.; Minocha, R.

    1997-05-01

    Dendrochemical and biochemical markers link stress in apparently healthy red spruce trees (Picea rubens) to acidic deposition. Previous reports related visible damage of trees at high elevations to root and soil processes. In this report, dendrochemical and foliar biochemical markers indicate perturbations in biological processes in healthy red spruce trees across the northeastern USA. Previous research on the dendrochemistry of red spruce stemwood indicated that under uniform environmental conditions, stemwood concentrations of Ca and Mg decreased with increasing radial distance from the pith. For nine forest locations, frequency analysis shows that 28 and 52% of samples of red spruce stemwood formed in the 1960s are enriched in Ca and Mg, respectively, relative to wood formed prior to and after the 1960s. This enrichment in trees throughout the northeastern USA may be interpretable as a signal of increased availability of essential cations in forest soils. Such a temporary increase in the availability of Ca and Mg could be caused by cation mobilization, a consequence of increased acidic deposition. During cation mobilization, essential and Ca and Mg as well as potentially harmful Al become more available for interaction with binding sites in the soil and absorbing roots. As conditions which favor cation mobilization continue, Ca and Mg can be leached or displaced from the soil. A measure of the interaction between Ca and Al is the Al/Ca binding ratio (molar charge ratio of exchangeable Al to exchangeable Ca). As the Al/Ca binding ratio in the root zone increased from 0.3 to 1.9, the foliar concentration of the biochemical stress marker putrescine also increased form 45 to 145 nm g{sup {minus}1}. The correlation of the putrescine concentration to the Al/Ca binding ratio (adj. r{sup 2} = 0.68, P <0.027) suggests that foliar stress may be linked to soil chemistry. 32 refs., 2 figs., 1 tab.

  17. Bioreduction of Uranium(VI) Complexed with Citric Acid by Clostridia Affects its Structure and Mobility

    SciTech Connect

    Francis, A.; Dodge, C

    2008-01-01

    Uranium contamination of the environment from mining and milling operations, nuclear-waste disposal, and ammunition use is a widespread global problem. Natural attenuation processes such as bacterial reductive precipitation and immobilization of soluble uranium is gaining much attention. However, the presence of naturally occurring organic ligands can affect the precipitation of uranium. Here, we report that the anaerobic spore-forming bacteria Clostridia, ubiquitous in soils, sediments, and wastes, capable of reduction of Fe(III) to Fe(II), Mn(IV) to Mn(II), U(VI) to U(IV), Pu(IV) to Pu(III), and Tc(VI) to Tc(IV); reduced U(VI) associated with citric acid in a dinuclear 2:2 U(VI):citric acid complex to a biligand mononuclear 1:2 U(IV):citric acid complex, which remained in solution, in contrast to reduction and precipitation of uranium. Our findings show that U(VI) complexed with citric acid is readily accessible as an electron acceptor despite the inability of the bacterium to metabolize the complexed organic ligand. Furthermore, it suggests that the presence of organic ligands at uranium-contaminated sites can affect the mobility of the actinide under both oxic and anoxic conditions by forming such soluble complexes.

  18. Adaptive acid tolerance response of Vibrio parahaemolyticus as affected by acid adaptation conditions, growth phase, and bacterial strains.

    PubMed

    Chiang, Ming-Lun; Chou, Cheng-Chun; Chen, Hsi-Chia; Tseng, Yu-Ting; Chen, Ming-Ju

    2012-08-01

    Vibrio parahaemolyticus strain 690 was isolated from gastroenteritis patients. Its thermal and ethanol stress responses have been reported in our previous studies. In this study, we further investigated the effects of various acid adaptation conditions including pH (5.0-6.0) and time (30-90 min) on the acid tolerance in different growth phases of V. parahaemolyticus 690. Additionally, the adaptive acid tolerance among different V. parahaemolyticus strains was compared. Results indicated that the acid tolerance of V. parahaemolyticus 690 was significantly increased after acid adaptation at pH 5.5 and 6.0 for 30-90 min. Among the various acid adaptation conditions examined, V. parahaemolyticus 690 acid-adapted at pH 5.5 for 90 min exhibited the highest acid tolerance. The acid adaptation also influenced the acid tolerance of V. parahaemolyticus 690 in different growth phases with late-exponential phase demonstrating the greatest acid tolerance response (ATR) than other phases. Additionally, the results also showed that the induction of adaptive ATR varied with different strains of V. parahaemolyticus. An increase in acid tolerance of V. parahaemolyticus was observed after prior acid adaptation in five strains (556, 690, BCRC 13023, BCRC 13025, and BCRC 12864), but not in strains 405 and BCRC 12863. PMID:22827515

  19. Analysis of histidine and urocanic acid isomers by reversed-phase high-performance liquid chromatography.

    PubMed

    Hermann, K; Abeck, D

    2001-01-01

    The qualitative separation performance of a C18, C8 and C4 reversed-phase column was investigated for the separation of histidine and its metabolites histamine, 1-methyihistamine and trans- and cis-urocanic acid. Trans- and cis-urocanic acid were baseline separated from their precursor histidine on all three columns using isocratic elution with a mobile phase composed of 0.01 M aqueous TEAP pH 3.0 and acetonitrile at a ratio of 98:2 (v/v). However, histidine was not separated from histamine and 1-methyihistamine. Selecting the C8 column and introducing 0.005 M of the ion pairing reagent 1-octanesulfonic acid sodium salt into the aqueous solution and acetonitrile at a ratio of 90:10 (v/v), significantly improved the separation. The separation was also followed by a change in the retention times and the order of elution. The sequence of elution was histidine, cis-urocanic acid, trans-urocanic acid, histamine and 1-methylhistamine with retention times of 5.58 +/- 0.07, 7.03 +/- 0.15, 7.92 +/- 0.18, 18.77 +/- 0.24 and 20.79 +/- 0.21 min (mean +/- SD; n=5). The separation on the C8 column in the presence of the ion-pairing reagent was further improved with gradient elution that resulted in a reduction in the retention times and elution volumes of histamine and 1-methylhistamine. The detection limits of histidine and trans-urocanic acid at a wavelength of 210 nm and an injection volume of 0.05 ml were 5 x 10(-8) mol l(-1) (n=3). The kinetic of the in-vitro conversion of trans- into the cis-isomer after UV irradiation was depending on the time of exposure and the energy of the light source. UVB light induced a significantly faster conversion than UVA light. TUCA and cUCA samples kept at -25 degrees C were stable for up to 50 weeks. Samples, eluted from human skin showed various concentrations of histidine and trans- and cis-urocanic acid with an average of 1.69 +/- 0.33 x 10(-5) mol l(-1), 1.17 +/- 0.43 x 10(-5) mol l(-1) and 1.67 +/- 0.33 x 10(-5) mol l(-1), respectively

  20. Calcium mobilization in salicylic acid-induced Salvia miltiorrhiza cell cultures and its effect on the accumulation of rosmarinic acid.

    PubMed

    Guo, Hongbo; Zhu, Nan; Deyholos, Michael K; Liu, Jun; Zhang, Xiaoru; Dong, Juane

    2015-03-01

    Ca(2+) serves as a second messenger in plant responses to different signals, and salicylic acid (SA) has been recognized as a signal mediating plant responses to many stresses. We recently found that SA treatment led to the cytoplasmic acidification of Salvia miltiorrhiza cells and alkalinization of extracellular medium. Here, we demonstrate that SA can rapidly induce Ca(2+) mobilization in protoplasts, but the induction can be blocked with a channel blocker of either plasma or organellar membranes. Following SA, A 23187, or 10 mmol/L Ca(2+) treatment, rosmarinic acid (RA) accumulation reached the highest level at 16 h, whereas the peak was found at 10 h if plasma membrane channel blockers were used. By contrast, the highest accumulation of RA occurred at 16 h when organellar channels were blocked, exhibiting the same tendency with SA-induced cells. In agreement with these observations, both phenylalanine ammonia-lyase (PAL) activity and its gene expression detected by real-time PCR also showed the same patterns. These results indicate that SA treatment firstly results in calcium release from internal stores, which in turn leads to PAL activity increase, RA accumulation, and a large amount of Ca(2+) influx from apoplast after 10 h of SA induction. PMID:25561058

  1. Cryogenic Ion Mobility-Mass Spectrometry: Tracking Ion Structure from Solution to the Gas Phase.

    PubMed

    Servage, Kelly A; Silveira, Joshua A; Fort, Kyle L; Russell, David H

    2016-07-19

    Electrospray ionization (ESI) combined with ion mobility-mass spectrometry (IM-MS) is adding new dimensions, that is, structure and dynamics, to the field of biological mass spectrometry. There is increasing evidence that gas-phase ions produced by ESI can closely resemble their solution-phase structures, but correlating these structures can be complicated owing to the number of competing effects contributing to structural preferences, including both inter- and intramolecular interactions. Ions encounter unique hydration environments during the transition from solution to the gas phase that will likely affect their structure(s), but many of these structural changes will go undetected because ESI-IM-MS analysis is typically performed on solvent-free ions. Cryogenic ion mobility-mass spectrometry (cryo-IM-MS) takes advantage of the freeze-drying capabilities of ESI and a cryogenically cooled IM drift cell (80 K) to preserve extensively solvated ions of the type [M + xH](x+)(H2O)n, where n can vary from zero to several hundred. This affords an experimental approach for tracking the structural evolution of hydrated biomolecules en route to forming solvent-free gas-phase ions. The studies highlighted in this Account illustrate the varying extent to which dehydration can alter ion structure and the overall impact of cryo-IM-MS on structural studies of hydrated biomolecules. Studies of small ions, including protonated water clusters and alkyl diammonium cations, reveal structural transitions associated with the development of the H-bond network of water molecules surrounding the charge carrier(s). For peptide ions, results show that water networks are highly dependent on the charge-carrying species within the cluster. Specifically, hydrated peptide ions containing lysine display specific hydration behavior around the ammonium ion, that is, magic number clusters with enhanced stability, whereas peptides containing arginine do not display specific hydration around the

  2. Rapid Determination of Bile Acids in Bile from Various Mammals by Reversed-Phase Ultra-Fast Liquid Chromatography.

    PubMed

    Si, Gu Leng Ri; Yao, Peng; Shi, Luwen

    2015-08-01

    A valid and efficient reversed-phase ultra-fast liquid chromatography method was developed for the simultaneous determination of 13 bile acids in the bile of three mammal species, including rat, pig and human gallstone patients. Chromatographic separation was performed with a Shim-pack XR-ODS column, and the mobile phase consisted of acetonitrile and potassium phosphate buffer (pH 2.6) at a flow rate of 0.5 mL min(-1). The linear detection range of most bile acids ranged from 2 to 600 ng µL(-1) with a good correlation coefficient (>0.9995). The precision of each bile acid was <1.8% for intraday and <4.8% for interday. All bile acids were separated in 15 min with satisfactory resolution, and the total analysis time was 18 min, including equilibration. The method was successfully applied in rapid screening of bile samples from the three mammals. Significant metabolic frameworks of bile acids among various species were observed, whereas considerable quantitative variations in both inter- and intraspecies were also observed, especially for gallstone patients. Our results suggest that detecting the change of bile acid profiles could be applied for the diagnosis of gallstone disease. PMID:25520305

  3. Effects of twin boundary mobility on domain microstructure evolution in magnetic shape memory alloys: Phase field simulation

    SciTech Connect

    Jin, Yongmei M.

    2009-02-09

    Effects of twin boundary mobility on domain microstructure evolution during magnetic field-induced deformation in magnetic shape memory alloys are studied by phase field micromagnetic microelastic modeling. The simulations show that different twin boundary mobilities lead to drastically different domain microstructures and evolution pathways, yielding very different magnetization and strain responses, even with opposite signs. The study also reveals complex domain phenomena in magnetic shape memory alloys.

  4. Computational study of atomic mobility for the bcc phase of the U-Pu-Zr ternary system

    NASA Astrophysics Data System (ADS)

    Li, Weibang; Hu, Rui; Cui, Y.-W.; Zhong, Hong; Chang, Hui; Li, Jinshan; Zhou, Lian

    2010-12-01

    Experimental diffusion data in literature has been evaluated to assess the atomic mobility for the bcc phase in the U-Pu-Zr system by means of the DICTRA-type (Diffusion Controlled TRAnsformation) phenomenological treatment. The developed mobility database has been validated by comprehensive comparisons made between the experimental and calculated diffusion coefficients, as well as other interesting details resulting from interdiffusion, e.g. the concentration profile and the diffusion path of diffusion couples.

  5. Dynamics of organic and inorganic arsenic in the solution phase of an acidic fen in Germany

    NASA Astrophysics Data System (ADS)

    Huang, J.-H.; Matzner, E.

    2006-04-01

    Wetland soils play a key role for the transformation of heavy metals in forested watersheds, influencing their mobility, and ecotoxicity. Our goal was to investigate the mechanisms of release from solid to solution phase, the mobility, and the transformation of arsenic species in a fen soil. In methanol-water extracts, monomethylarsonic acid, dimethylarsinic acid, trimethylarsine oxide, arsenobetaine, and two unknown organic arsenic species were found with concentrations up to 14 ng As g -1 at the surface horizon. Arsenate is the dominant species at the 0-30 cm depth, whereas arsenite predominated at the 30-70 cm depth. Only up to 2.2% of total arsenic in fen was extractable with methanol-water. In porewaters, depth gradient spatial variation of arsenic species, pH, redox potentials, and the other chemical parameters along the profile was observed in June together with high proportion of organic arsenic species (up to 1.2 μg As L -1, 70% of total arsenic). Tetramethylarsonium ion and an unknown organic arsenic species were additionally detected in porewaters at deeper horizons. In comparison, the arsenic speciation in porewaters in April was homogeneous with depth and no organic arsenic species were found. Thus, the occurrence of microbial methylation of arsenic in fen was demonstrated for the first time. The 10 times elevated total arsenic concentrations in porewaters in June compared to April were accompanied by elevated concentrations of total iron, lower concentrations of sulfate and the presence of ammonium and phosphate. The low proportion of methanol-water extractable total arsenic suggests a generally low mobility of arsenic in fen soils. The release of arsenic from solid to solution phases in fen is dominantly controlled by dissolution of iron oxides, redox transformation, and methylation of arsenic, driven by microbial activity in the growing season. As a result, increased concentrations of total arsenic and potentially toxic arsenic species in fen

  6. Stimulation of phospholipid hydrolysis and arachidonic acid mobilization in human uterine decidua cells by phorbol ester.

    PubMed Central

    Schrey, M P; Read, A M; Steer, P J

    1987-01-01

    Vasopressin and oxytocin both stimulated inositol phosphate accumulation in isolated uterine decidua cells. Pretreatment of cells with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) prevented this agonist-induced phosphoinositide hydrolysis. TPA (0.1 microM) alone had no effect on basal inositol phosphate accumulation, but stimulated phosphoinositide deacylation, as indicated by a 2-fold increase in lysophosphatidylinositol and glycerophosphoinositol. TPA also stimulated a dose-related release of arachidonic acid from decidua-cell phospholipid [phosphatidylcholine (PC) much greater than phosphatidylinositol (PI) greater than phosphatidylethanolamine]. The phorbol ester 4 beta-phorbol 12,13-diacetate (PDA) at 0.1 microM had no effect on arachidonic acid mobilization. The TPA-stimulated increase in arachidonic acid release was apparent by 2 1/2 min (116% of control), maximal after 20 min (283% of control), and remained around this value (306% of control) after 120 min incubation. TPA also stimulated significant increases in 1,2-diacylglycerol and monoacylglycerol production at 20 and 120 min. Although the temporal increases in arachidonic acid and monoacylglycerol accumulation in the presence of TPA continued up to 120 min, that of 1,2-diacylglycerol declined after 20 min. In decidua cells prelabelled with [3H]choline, TPA also stimulated a significant decrease in radiolabelled PC after 20 min, which was accompanied by an increased release of water-soluble metabolites into the medium. Most of the radioactivity in the extracellular pool was associated with choline, whereas the main cellular water-soluble metabolite was phosphorylcholine. TPA stimulated extracellular choline accumulation to 183% and 351% of basal release after 5 and 20 min respectively and cellular phosphorylcholine production to 136% of basal values after 20 min. These results are consistent with a model in which protein kinase C activation by TPA leads to arachidonic acid mobilization

  7. Increased muscle fatty acid oxidation in dairy cows with intensive body fat mobilization during early lactation.

    PubMed

    Schäff, C; Börner, S; Hacke, S; Kautzsch, U; Sauerwein, H; Spachmann, S K; Schweigel-Röntgen, M; Hammon, H M; Kuhla, B

    2013-10-01

    The beginning of lactation requires huge metabolic adaptations to meet increased energy demands for milk production of dairy cows. One of the adaptations is the mobilization of body reserves mainly from adipose tissue as reflected by increased plasma nonesterified fatty acid (NEFA) concentrations. The capacity of the liver for complete oxidation of NEFA is limited, leading to an increased formation of ketone bodies, reesterification, and accumulation of triglycerides in the liver. As the skeletal muscle also may oxidize fatty acids, it may help to decrease the fatty acid load on the liver. To test this hypothesis, 19 German Holstein cows were weekly blood sampled from 7 wk before until 5 wk after parturition to analyze plasma NEFA concentrations. Liver biopsies were obtained at d 3, 18, and 30 after parturition and, based on the mean liver fat content, cows were grouped to the 10 highest (HI) and 9 lowest (LO). In addition, muscle biopsies were obtained at d -17, 3, and 30 relative to parturition and used to quantify mRNA abundance of genes involved in fatty acid degradation. Plasma NEFA concentrations peaked after parturition and were 1.5-fold higher in HI than LO cows. Muscle carnitine palmitoyltransferase 1α and β mRNA was upregulated in early lactation. The mRNA abundance of muscle peroxisome proliferator-activated receptor γ (PPARG) increased in early lactation and was higher in HI than in LO cows, whereas the abundance of PPARA continuously decreased after parturition. The mRNA abundance of muscle PPARD, uncoupling protein 3, and the β-oxidative enzymes 3-hydroxyacyl-coenzyme A (CoA) dehydrogenase, very long-chain acyl-CoA dehydrogenase, and 3-ketoacyl-CoA was greatest at d 3 after parturition, whereas the abundance of PPARγ coactivator 1α decreased after parturition. Our results indicate that around parturition, oxidation of fatty acids in skeletal muscle is highly activated, which may contribute to diminish the fatty acid load on the liver. The

  8. Nucleic Acid-Peptide Complex Phase Controlled by DNA Hybridization

    NASA Astrophysics Data System (ADS)

    Vieregg, Jeffrey; Lueckheide, Michael; Leon, Lorraine; Marciel, Amanda; Tirrell, Matthew

    When polyanions and polycations are mixed, counterion release drives formation of polymer-rich complexes that can either be solid (precipitates) or liquid (coacervates) depending on the properties of the polyelectrolytes. These complexes are important in many fields, from encapsulation of industrial polymers to membrane-free segregation of biomolecules such as nucleic acids and proteins. Condensation of long double-stranded DNA has been studied for several decades, but comparatively little attention has been paid to the polyelectrolyte behavior of oligonucleotides. We report here studies of DNA oligonucleotides (10 - 88 nt) complexed with polylysine (10 - 100 aa). Unexpectedly, we find that the phase of the resulting complexes is controlled by the hybridization state of the nucleic acid, with double-stranded DNA forming precipitates and single-stranded DNA forming coacervates. Stability increases with polyelectrolyte length and decreases with solution salt concentration, with complexes of the longer double-stranded polymers undergoing precipitate/coacervate/soluble transitions as ionic strength is increased. Mixing coacervates formed by complementary single-stranded oligonucleotides results in precipitate formation, raising the possibility of stimulus-responsive material design.

  9. Computational studies of coarsening rates for the Cahn-Hilliard equation with phase-dependent diffusion mobility

    NASA Astrophysics Data System (ADS)

    Dai, Shibin; Du, Qiang

    2016-04-01

    We study computationally coarsening rates of the Cahn-Hilliard equation with a smooth double-well potential, and with phase-dependent diffusion mobilities. The latter is a feature of many materials systems and makes accurate numerical simulations challenging. Our numerical simulations confirm earlier theoretical predictions on the coarsening dynamics based on asymptotic analysis. We demonstrate that the numerical solutions are consistent with the physical Gibbs-Thomson effect, even if the mobility is degenerate in one or both phases. For the two-sided degenerate mobility, we report computational results showing that the coarsening rate is on the order of l ∼ ct 1 / 4, independent of the volume fraction of each phase. For the one-sided degenerate mobility, that is non-degenerate in the positive phase but degenerate in the negative phase, we illustrate that the coarsening rate depends on the volume fraction of the positive phase. For large positive volume fractions, the coarsening rate is on the order of l ∼ ct 1 / 3 and for small positive volume fractions, the coarsening rate becomes l ∼ ct 1 / 4.

  10. Vertical Mobilization of a Residual Oil Phase in a Bead Pack Due to Flow of Discrete Gas Bubbles

    NASA Astrophysics Data System (ADS)

    Pakkala, Konark; Udell, Kent

    2007-11-01

    Mobilization of trapped oil ganglia is of interest in soil and groundwater clean-up and enhanced oil recovery applications. In this work, experiments with glass beads and various oil phase compositions were performed to determine the volumetric fraction of the non-aqueous phase liquid that may be mobilized with rising discrete gas bubbles. Experiments were performed using 6 mm and 2 mm beads. The oil phase liquids included dodecane, perchloroethene, and trichloroethene representing both spreading and non-spreading oil phases. It was found that bubbles were quite effective in mobilizing all three oils including those with densities greater than that of the suspending water. The effectiveness of the mobilization was greater in bead packs with larger beads than in packs comprised of small beads. Volumetric fractional flows of the oil phase were up to 10% of the bubble-droplet volumes, with volumetric fractions decreasing with decreasing oil phase saturations and bead size. The geometry of the oil ganglia/gas bubble combinatory body was also a function of the bead size with smaller beads producing larger, flatter gas bubbles, and the large beads producing bubbles and ganglia of similar size and geometries as the beads themselves.

  11. Modular calibrant sets for the structural analysis of nucleic acids by ion mobility spectrometry mass spectrometry.

    PubMed

    Lippens, Jennifer L; Ranganathan, Srivathsan V; D'Esposito, Rebecca J; Fabris, Daniele

    2016-06-20

    This study explored the use of modular nucleic acid (NA) standards to generate calibration curves capable of translating primary ion mobility readouts into corresponding collision cross section (CCS) data. Putative calibrants consisted of single- (ss) and double-stranded (ds) oligo-deoxynucleotides reaching up to ∼40 kDa in size (i.e., 64 bp) and ∼5700 Å(2) in CCS. To ensure self-consistency among reference CCS values, computational data obtained in house were preferred to any experimental or computational data from disparate sources. Such values were obtained by molecular dynamics (MD) simulations and either the exact hard sphere scattering (EHSS) or the projection superposition approximation (PSA) methods, and then plotted against the corresponding experimental values to generate separate calibration curves. Their performance was evaluated on the basis of their correlation coefficients and ability to provide values that matched the CCS of selected test samples mimicking typical unknowns. The results indicated that the predictive power benefited from the exclusion of higher charged species that were more susceptible to the destabilizing effects of Coulombic repulsion. The results revealed discrepancies between EHSS and PSA data that were ascribable to the different approximations used to describe the ion mobility process. Within the boundaries defined by these approximations and the challenges of modeling NA structure in a solvent-free environment, the calibrant sets enabled the experimental determination of CCS with excellent reproducibility (precision) and error (accuracy), which will support the analysis of progressively larger NA samples of biological significance. PMID:27152369

  12. Site-Specific Mapping of Sialic Acid Linkage Isomers by Ion Mobility Spectrometry.

    PubMed

    Guttman, Miklos; Lee, Kelly K

    2016-05-17

    Detailed structural elucidation of protein glycosylation is a tedious process often involving several techniques. Glycomics and glycoproteomics approaches with mass spectrometry offer a rapid platform for glycan profiling but are limited by the inability to resolve isobaric species such as linkage and positional isomers. Recently, ion mobility spectrometry (IMS) has been shown to effectively resolve isobaric oligosaccharides, but the utility of IMS to obtain glycan structural information on a site-specific level with proteomic analyses has yet to be investigated. Here, we report that the addition of IMS to conventional glycoproteomics platforms adds additional information regarding glycan structure and is particularly useful for differentiation of sialic acid linkage isomers on both N- and O-linked glycopeptides. With further development IMS may hold the potential for rapid and complete structural elucidation of glycan chains at a site-specific level. PMID:27089023

  13. Phase diagram of a system of adipic, glutaric, and sebacic acids

    NASA Astrophysics Data System (ADS)

    Kolyado, A. V.; Alenova, S. M.; Garkushin, I. K.

    2016-06-01

    Adipic acid-glutaric acid, glutaric acid-sebacic acid, and adipic acid-sebacic acid binary systems are studied, along with an adipic acid-glutaric acid-sebacic acid ternary system. It is shown all of these systems are eutectic. Phase equilibria for the diagram elements of the binary systems and the ternary system are described. It is concluded that the above low-melting compounds can be recommended for use as working bodies in heat accumulators, and for preparing electrolytes used in the thin-layer anodic oxidation of aluminum alloys.

  14. The role of pegmatites and acid fluids for REE/HFSE mobilization in the Strange Lake peralkaline granitic pluton, Canada

    NASA Astrophysics Data System (ADS)

    Gysi, A. P.; Williams-Jones, A.

    2012-12-01

    The Strange Lake pluton in Canada is a mid-Proterozoic peralkaline granitic intrusion that is host to a world-class rare earth element (REE), yttrium (Y) and high-field strength element (HFSE) deposit containing more than 50 Mt ore at >1.5 wt.% REE and >3 wt.% Zr. The highest REE/HFSE concentrations are found in pegmatite-rich zones characterized by intense alteration. Previous studies of Strange Lake and other peralkaline and alkaline intrusions, such as Khan Bogd (Mongolia) and Tamazeght (Morocco) plutons have shown that hydrothermal alteration may play an important role in the mobility of the REE/HFSE. However, the fluid chemistry and conditions of alteration (i.e., P, T, pH, fO2, ligand activity) in these systems still need to be constrained to evaluate the importance and scale of such hydrothermal mobilization. We present new data from the B-zone, a pegmatite-rich zone located in NW Strange Lake. The pegmatites are generally zoned and form two main types. The border-type pegmatites consist of quartz, K-feldspar and hematized aegirine, whereas volatile-rich pegmatites consist of hydrothermal quartz and fluorite. Transitions between both types were also observed, with the K-feldspar being partly altered and replaced by Al-Si-rich phyllosilicates. The heavy (H)REE and Zr were primarily concentrated in zirconosilicates such as elpidite, now pseudomorphed by zircon or gittinsite, whereas light (L)REE and Y were concentrated in REE-F-(CO2)-minerals such as fluocerite and bastnäsite. Textural and mineralogical observations indicate that these minerals are primary and were partly to completely leached upon fluid-rock interaction in the pegmatites. Secondary phases include Ca-F-Y-rich minerals, mainly hydrothermal fluorite, that fill vugs and replaced primary REEHFSE minerals. The presence of hydrothermal fluorite veins, micro-veins, vugs and micro-breccia in the most altered parts of the B-zone are interpreted to reflect interaction of the rocks with a F-rich fluid

  15. Determination of opiates and cocaine in urine by high pH mobile phase reversed phase UPLC-MS/MS.

    PubMed

    Berg, Thomas; Lundanes, Elsa; Christophersen, Asbjørg S; Strand, Dag Helge

    2009-02-01

    A fast and selective ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the determination of opiates (morphine, codeine, 6-monoacetylmorphine (6-MAM), pholcodine, oxycodone, ethylmorphine), cocaine and benzoylecgonine in urine has been developed and validated. Sample preparation was performed by solid phase extraction (SPE) on a mixed mode cation exchange (MCX) cartridge. For optimized chromatographic performance with repeatable retention times, narrow and symmetrical peaks, and focusing of all analytes at the column inlet at gradient start, a basic mobile phase consisting of 5mM ammonium bicarbonate, pH 10.2, and methanol (MeOH) was chosen. Positive electrospray ionization (ESI(+)) MS/MS detection was performed with a minimum of two multiple reaction monitoring (MRM) transitions for each analyte. Deuterium labelled-internal standards were used for six of the analytes. Between-assay retention time repeatabilities (n=10 series, 225 injections in total) had relative standard deviation (RSD) values within 0.1-0.6%. Limit of detection (LOD) and limit of quantification (LOQ) values were in the range 0.003-0.05 microM (0.001-0.02 microg/mL) and 0.01-0.16 microM (0.003-0.06 microg/mL), respectively. The RSD values of the between-assay repeatabilities of concentrations were

  16. Gibberellic Acid-induced Phase Change in Hedera helix as Studied by Deoxyribonucleic Acid-Ribonucleic Acid Hybridization 1

    PubMed Central

    Rogler, Charles E.; Dahmus, Michael E.

    1974-01-01

    Applications of gibberellic acid to the mature form of Hedera helix induce morphological reversions to the juvenile form of growth. The juvenile forms produced are stable with time and differ dramatically from the mature in phenotype. DNA-RNA hybridization techniques have been used to study the RNA populations of juvenile, mature and gibberellic acid-treated mature apices. Hybridization competition experiments using RNA extracted by a hot phenol technique and uniformly labeled in vitro with 3H dimethylsulfate show no qualitative differences between the species of RNA present in juvenile and mature apices. However, differences are observed in the frequency distribution of RNA species using both uniformly labeled or pulse-labeled RNA as a reference. RNA extracted from gibberellic acid-treated mature buds was a less effective competitor than control mature RNA and the difference observed was comparable to that observed between mature and juvenile RNA. These results indicate that at least part of the molecular basis of phase change and gibberellic acid action may involve an alteration in the rate of transcription of certain genes in the apices of the mature form. RNA extracted using the hot phenol procedure contained a fraction of rapidly labeled RNA which was not extractable with cold phenol. When RNA extracted only with cold phenol was used in competition experiments sequences unique to the juvenile were detected and sequences unique to the mature were not detected. Implications of these results in relation to possible post-transcriptional control mechanisms are discussed. PMID:16658844

  17. Analysis of carbon functional groups in mobile humic acid and recalcitrant calcium humate extracted from eight US soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solid state 13C nuclear magnetic resonance (NMR) spectroscopy is a common tool to study the structure of soil humic fractions; however, knowledge regarding carbon structural relationships in humic fractions is limited. In this study, mobile humic acid (MHA) and recalcitrant calcium humate (CaHA) fr...

  18. Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein

    SciTech Connect

    Shaikh, AfshanS.; Tang, YinjieJ.; Mukhopadhyay, Aindrila; Martin, Hector Garcia; Gin, Jennifer; Benke, Peter; Keasling, Jay D.

    2009-09-14

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  19. Ratchet Effects, Negative Mobility, and Phase Locking for Skyrmions on Periodic Substrates

    NASA Astrophysics Data System (ADS)

    Reichhardt, Charles; Ray, Dipanjan; Olson Reichhardt, Cynthia

    We examine the dynamics of skyrmions interacting with 1D and 2D periodic substrates in the presence of dc and ac drives. We find that the Magnus term strongly affects the skyrmion dynamics and that new kinds of phenomena can occur which are absent for overdamped ac and dc driven particles interacting with similar substrates. We show that it is possible to realize a Magnus induced ratchet for skyrmions interacting with an asymmetric potential, where the application of an ac drive can produce quantized dc motion of the skyrmions even when the ac force is perpendicular to the substrate asymmetry direction. For symmetric substrates it is also possible to achieve a negative mobility effect where the net skyrmion motion runs counter to an applied dc drive. Here, as a function of increasing dc drive, the velocity-force curves show a series of locking phases that have different features from the classic Shapiro steps found in overdamped systems. In the phase locking and ratcheting states, the skyrmions undergo intricate 2D orbits induced by the Magnus term.

  20. Retention of ionisable compounds on high-performance liquid chromatography. XV. Estimation of the pH variation of aqueous buffers with the change of the acetonitrile fraction of the mobile phase.

    PubMed

    Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí

    2004-12-01

    The most commonly used mobile phases in reversed-phase high-performance liquid chromatography (RP-HPLC) are hydro-organic mixtures of an aqueous buffer and an organic modifier. The addition of this organic solvent to buffered aqueous solutions involves a variation of the buffer properties (pH and buffer capacity). In this paper, the pH variation is studied for acetic acid-acetate, phosphoric acid-dihydrogenphosphate-hydrogenphosphate, citric acid-dihydrogencitrate-citrate, and ammonium-ammonia buffers. The proposed equations allow pH estimation of acetonitrile-water buffered mobile phases up to 60% (v/v) of organic modifier and initial aqueous buffer concentrations between 0.001 and 0.1 mol L(-1), from the initial aqueous pH. The estimated pH variation of the mobile phase and the pKa variation of the analytes allow us to predict the degree of ionisation of the analytes and from this and analyte hydrophobicities, to interpret the relative retention and separation of analyte mixtures. PMID:15628122

  1. Microbial biofilms control economic metal mobility in an acid-sulfate hydrothermal system

    NASA Astrophysics Data System (ADS)

    Phillips-Lander, C. M.; Roberts, J. A.; Hernandez, W.; Mora, M.; Fowle, D. A.

    2012-12-01

    Trace metal cycling in hydrothermal systems has been the subject of a variety of geochemical and economical geology studies. Typically in these settings these elements are sequestered in sulfide and oxide mineral fractions, however in near-surface low-temperature environments organic matter and microorganisms (typically in mats) have been implicated in their mobility through sorption. Here we specifically examine the role of microbial biofilms on metal partitioning in an acid-sulfate hydrothermal system. We studied the influence of microorganisms and microbial biofilms on trace metal adsorption in Pailas de Aguas I, an acid-sulfate hot spring on the southwest flank of Rincon de la Vieja, a composite stratovolcano in the Guanacaste Province, Costa Rica. Spring waters contain high suspended loads, and are characterized by high T (79.6-89.3oC), low pH (2.6-4), and high ionic strengths (I= 0.5-0.8). Waters contain high concentrations of the biogeochemically active elements Fe (4-6 mmol/l) and SO42- (38 mmol/l), but PO43- are below detection limits (bdl). Silver, Ni, and Mo concentrations are bdl; however other trace metals are present in solution in concentrations of 0.1-0.2 mg/l Cd, 0.2-0.4 mg/l Cr and V, 0.04-1 mg/l Cu,. Preliminary 16S rRNA analyses of microorganisms in sediments reveal several species of algae, including Galderia sp., Cyanidium sp, γ-proteobacteria, Acidithiobacillus caldus, Euryarcheota, and methanogens. To evaluate microbial biofilms' impact on trace metal mobility we analyzed a combination of suspended, bulk and biofilm associated sediment samples via X-ray diffraction (XRD) and trace element sequential extractions (SE). XRD analysis indicated all samples were primarily composed of Fe/Al clay minerals (nontronite, kaolinite), 2- and 6-line ferrihydrite, goethite, and hematite, quartz, and opal-α. SE showed the highest concentrations of Cu, Mo, and V were found in the suspended load. Molybdenum was found primarily in the residual and organic

  2. Electric Utility Phase I Acid Rain Compliance Strategies for the Clean Air Act Amendments of 1990

    EIA Publications

    1994-01-01

    The Acid Rain Program is divided into two time periods; Phase I, from 1995 through 1999, and Phase II, starting in 2000. Phase I mostly affects power plants that are the largest sources of SO2 and NOx . Phase II affects virtually all electric power producers, including utilities and nonutilities. This report is a study of the effects of compliance with Phase I regulations on the costs and operations of electric utilities, but does not address any Phase II impacts.

  3. Enhanced extraction yields and mobile phase separations by solvent mixtures for the analysis of metabolites in Annona muricata L. leaves.

    PubMed

    Ribeiro de Souza, Eloana Benassi; da Silva, Renata Reis; Afonso, Sabrina; Scarminio, Ieda Spacino

    2009-12-01

    The effects of five extraction solvents and their mixtures on the yield of metabolites in crude and fractionated extracts of Annona muricata L. leaves were investigated by direct comparison. Extraction media were prepared using simplex centroid mixtures of ethanol, ethyl acetate, dichloromethane, acetone, and chloroform. The effects of the mobile phase solvent strength and the analysis wavelength on the chromatographic separation were also investigated. Solvent mixtures rather than pure solvents were found to be the most efficient extractors for the different fractions. The results indicated that the mobile phase composed of methanol/acetonitrile/water (26:27:47 v/v/v) was most suitable for the basic fraction analysis at 254 nm, whereas the mobile phase composed of methanol/acetonitrile/water (35:35:30 v/v/v) was the most adequate for the organic fraction analysis at 254 nm. The results indicated that the chromatographic profiles and number of peaks were affected by the mobile phase strength and analysis wavelength. PMID:19882621

  4. 77 FR 11115 - Mobility Fund Phase I Auction Limited Extension of Deadlines for Comments and Reply Comments on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... released the Auction 901 Comment Public Notice, 77 FR 7152, February 10, 2012, which seeks comment on... Commission in the USF/ICC Transformation Order, 76 FR 73830, November 29, 2011 and 76 FR 81562, December 28... COMMISSION Mobility Fund Phase I Auction Limited Extension of Deadlines for Comments and Reply Comments...

  5. 30 CFR 77.900 - Low- and medium-voltage circuits serving portable or mobile three-phase alternating current...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Low- and medium-voltage circuits serving... Medium-Voltage Alternating Current Circuits § 77.900 Low- and medium-voltage circuits serving portable or mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage...

  6. 77 FR 32092 - Mobility Fund Phase I Auction Scheduled for September 27, 2012; Notice and Filing Requirements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    ... information system (GIS) data for the census blocks eligible for Mobility Fund Phase I support to be offered... through competitive bidding. The USF/ICC Transformation Order, 76 FR 73830, November 29, 2011 and 76 FR... Public Notice, 77 FR 7152, February 10, 2012, which identified a preliminary list of census...

  7. Hydration of potassiated amino acids in the gas phase.

    PubMed

    Wincel, Henryk

    2007-12-01

    The thermochemistry of stepwise hydration of several potassiated amino acids was studied by measuring the gas-phase equilibria, AAK(+)(H(2)O)(n-1) + H(2)O = AAK(+)(H(2)O)(n) (AA = Gly, AL, Val, Met, Pro, and Phe), using a high-pressure mass spectrometer. The AAK(+) ions were obtained by electrospray and the equilibrium constants K(n-1,n) were measured in a pulsed reaction chamber at 10 mbar bath gas, N(2), containing a known partial pressure of water vapor. Determination of the equilibrium constants at different temperatures was used to obtain the DeltaH(n)(o), DeltaS(n)(o), and DeltaG(n)(o) values. The results indicate that the water binding energy in AAK(+)(H(2)O) decreases as the K(+) affinity to AA increases. This trend in binding energies is explained in terms of changes in the side-chain substituent, which delocalize the positive charge from K(+) to AA in AAK(+) complexes, varying the AAK(+)-H(2)O electrostatic interaction. PMID:17928233

  8. Understanding gas phase modifier interactions in rapid analysis by Differential Mobility-Tandem Mass Spectrometry

    PubMed Central

    Kafle, Amol; Coy, Stephen L.; Wong, Bryan M.; Fornace, Albert J.; Glick, James J.; Vouros, Paul

    2014-01-01

    A systematic study involving the use and optimization of gas phase modifiers in quantitative differential mobility- mass spectrometry (DMS-MS) analysis is presented using mucleoside-adduct biomarkers of DNA damage as an important reference point for analysis in complex matrices. Commonly used polar protic and polar aprotic modifiers have been screened for use against two deoxyguanosine adducts of DNA: N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-4-ABP) and N-(deoxyguanosin-8-y1)-2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP). Particular attention was paid to compensation voltage (CoV) shifts, peak shapes and product ion signal intensities while optimizing the DMS-MS conditions. The optimized parameters were then applied to rapid quantitation of the DNA adducts in calf thymus DNA. After a protein precipitation step, adduct levels corresponding to less than one modification in 106 normal DNA bases were detected using the DMS-MS platform. Based on DMS fundamentals and ab-initio thermochemical results we interpret the complexity of DMS modifier responses in terms of thermal activation and the development of solvent shells. At very high bulk gas temperature, modifier dipole moment may be the most important factor in cluster formation and cluster geometry in mobility differences, but at lower temperatures multi-neutral clusters are important and less predictable. This work provides a useful protocol for targeted DNA adduct quantitation and a basis for future work on DMS modifier effects. PMID:24452298

  9. A low-pH-inducible, stationary-phase acid tolerance response in Salmonella typhimurium.

    PubMed Central

    Lee, I S; Slonczewski, J L; Foster, J W

    1994-01-01

    Acid is an important environmental condition encountered by Salmonella typhimurium during its pathogenesis. Our studies have shown that the organism can actively adapt to survive potentially lethal acid exposures by way of at least three possibly overlapping systems. The first is a two-stage system induced in response to low pH by logarithmic-phase cells called the log-phase acid tolerance response (ATR). It involves a major molecular realignment of the cell including the induction of over 40 proteins. The present data reveal that two additional systems of acid resistance occur in stationary-phase cells. One is a pH-dependent system distinct from log-phase ATR called stationary-phase ATR. It was shown to provide a higher level of acid resistance than log-phase ATR but involved the synthesis of fewer proteins. Maximum induction of stationary-phase ATR occurred at pH 4.3. A third system of acid resistance is not induced by low pH but appears to be part of a general stress resistance induced by stationary phase. This last system requires the alternative sigma factor, RpoS. Regulation of log-phase ATR and stationary-phase ATR remains RpoS independent. Although the three systems are for the most part distinct from each other, together they afford maximum acid resistance for S. typhimurium. Images PMID:8113183

  10. Influence of acid-induced conformational variability on protein separation in reversed phase high performance liquid chromatography.

    PubMed

    Bobály, Balázs; Tóth, Eszter; Drahos, László; Zsila, Ferenc; Visy, Júlia; Fekete, Jenő; Vékey, Károly

    2014-01-17

    Influence of acid concentration in the mobile phase on protein separation was studied in a wide concentration range using trifluoroacetic acid (TFA) and formic acid (FA). At low, 0.001-0.01 (v/v%) TFA concentration and appropriate solvent strength proteins elute before the column's dead time. This is explained by the proteins having a structured, but relatively extended conformation in the eluent; and are excluded from the pores of the stationary phase. Above ca. 0.01-0.05 (v/v%) TFA concentration proteins undergo further conformational change, leading to a compact, molten globule-like structure, likely stabilized by ion pairing. Proteins in this conformation enter the pores and are retained on the column. The results suggest a pore exclusion induced separation related to protein conformation. This effect is influenced by the pH and type of acid used, and is likely to involve ion-pair formation. The TFA concentration needed to result in protein folding (and therefore to observe retention on the column) depends on the protein; and therefore can be utilized to improve chromatographic performance. Conformation change was monitored by circular dichroism spectroscopy and mass spectrometry; and it was shown that not only TFA but FA can also induce molten globule formation. PMID:24373532

  11. Affinity Capillary Electrophoresis for Selective Control of Electrophoretic Mobility of Sialic Acid Using Lanthanide-Hexadentate Macrocyclic Polyazacarboxylate Complexes.

    PubMed

    Goto, Daiki; Ouchi, Kazuki; Shibukawa, Masami; Saito, Shingo

    2015-01-01

    It is difficult to control the electrophoretic mobility in order to obtain high resolution among saccharides in complex samples. We report herein on a new affinity capillary electrophoresis (ACE) method for an anionic monosaccharide, N-acetylneuraminic acid (Neu5Ac), which is important in terms of pathological diagnosis, using lanthanide-hexadentate macrocyclic polyazacarboxylate complexes (Ln-NOTA) as affinity reagents. It was shown that Ln-NOTA complexes increased the anionic mobility of Neu5Ac by approximately 40% through selective complexation with Neu5Ac. The extent of change in the mobility strongly depended on the type of central metal ion of Ln-NOTA. The stability constant (K) of Lu-NOTA with Neu5Ac was determined by ACE to be log Kb = 3.62 ± 0.04, which is the highest value among artificial receptors for Neu5Ac reported so far. Using this ACE, the Neu5Ac content in a glycoprotein sample, α1-acid glycoprotein (AGP), was determined after acid hydrolysis. Complete separation between Neu5Ac and hydrolysis products was successful by controlling the mobility to determine the concentration of Neu5Ac. PMID:26561258

  12. [Determination of oleanic acid and paeoniflorin in Paeonia lactiflora by ultrasound-assisted ionic liquid-reversed phase liquid chromatography].

    PubMed

    Liu, Wei; Li, Dong-dong; Yang, Hong-shuai; Chen, Yuan-yuan; Wei, Jin-feng; Kang, Wen-yi; Guo, Xiu-chun

    2015-02-01

    Four kinds of ionic liquids [BMIM] Br, [BMIM] BF4, [BMIM] PF6, [HMIM] PF6 were used to analyze the content of oleanic acid and paeoniflorin in Paeonia lactiflora with ultrasonic-assisted extraction coupled with HPLC. The chromatographic column, Purospher star RP-C18 (4.6 mm x 250 mm, 5 μm), was used. Acetonitrile and water (90:10) as mobile phase was used to determine the content of oleanic acid with a gradient elution and flow rate at 1.00 mL · min(-1), detection wavelength at 210 nm, chromatographic column temperature at room temperature. Paeoniflorin content was determined using acetonitrile and water (18:82) as mobile phase with a gradient elution and flow rate at 1.00 mL · min(-1), detection wavelength at 250 nm, the chromatographic column temperature at room temperature. The result show that oleanic acid has the highest extraction yield when the conditions are solid-liquid ratio of 1:80 (g · mL(-1)), and the [BMIM] Br methanol solution concentration of 0.6 mol · L(-1). Under the optimal extraction conditions, the content of oleanic acid from 0.24 to 3.76 μg showed a good linearity (r = 0.9999), the average recovery was 97.20%. Paeoniflorin has the highest extraction yield when the conditions are solid-liquid ratio of 1:130 (g · mL(-1)), and the [C4 MIM] PF6 methanol solution concentration of 0.6 mol · L(-1). Under the optimal extraction conditions, paeoniflorin content from 0.42 to 4.20 μg showed a good lin- earity (r = 1.000), the average recovery was 98.84%. This method is simple and reliable, its repeatability is also very good. It has important significance in the study P. lactiflora of ionic liquid microextraction. PMID:26084167

  13. Interactive computer-assisted instruction in acid-base physiology for mobile computer platforms.

    PubMed

    Longmuir, Kenneth J

    2014-03-01

    In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ∼20 screens of information, on the subjects of the CO2-bicarbonate buffer system, other body buffer systems, and acid-base disorders. Five clinical case modules were also developed. For the learning modules, the interactive, active learning activities were primarily step-by-step learner control of explanations of complex physiological concepts, usually presented graphically. For the clinical cases, the active learning activities were primarily question-and-answer exercises that related clinical findings to the relevant basic science concepts. The student response was remarkably positive, with the interactive, active learning aspect of the instruction cited as the most important feature. Also, students cited the self-paced instruction, extensive use of interactive graphics, and side-by-side presentation of text and graphics as positive features. Most students reported that it took less time to study the subject matter with this online instruction compared with subject matter presented in the lecture hall. However, the approach to learning was highly examination driven, with most students delaying the study of the subject matter until a few days before the scheduled examination. Wider implementation of active learning computer-assisted instruction will require that instructors present subject matter interactively, that students fully embrace the responsibilities of independent learning, and that institutional administrations measure instructional effort by criteria other than scheduled hours of instruction. PMID:24585467

  14. Aspirin's Active Metabolite Salicylic Acid Targets High Mobility Group Box 1 to Modulate Inflammatory Responses.

    PubMed

    Choi, Hyong Woo; Tian, Miaoying; Song, Fei; Venereau, Emilie; Preti, Alessandro; Park, Sang-Wook; Hamilton, Keith; Swapna, G V T; Manohar, Murli; Moreau, Magali; Agresti, Alessandra; Gorzanelli, Andrea; De Marchis, Francesco; Wang, Huang; Antonyak, Marc; Micikas, Robert J; Gentile, Daniel R; Cerione, Richard A; Schroeder, Frank C; Montelione, Gaetano T; Bianchi, Marco E; Klessig, Daniel F

    2015-01-01

    Salicylic acid (SA) and its derivatives have been used for millennia to reduce pain, fever and inflammation. In addition, prophylactic use of acetylsalicylic acid, commonly known as aspirin, reduces the risk of heart attack, stroke and certain cancers. Because aspirin is rapidly de-acetylated by esterases in human plasma, much of aspirin's bioactivity can be attributed to its primary metabolite, SA. Here we demonstrate that human high mobility group box 1 (HMGB1) is a novel SA-binding protein. SA-binding sites on HMGB1 were identified in the HMG-box domains by nuclear magnetic resonance (NMR) spectroscopic studies and confirmed by mutational analysis. Extracellular HMGB1 is a damage-associated molecular pattern molecule (DAMP), with multiple redox states. SA suppresses both the chemoattractant activity of fully reduced HMGB1 and the increased expression of proinflammatory cytokine genes and cyclooxygenase 2 (COX-2) induced by disulfide HMGB1. Natural and synthetic SA derivatives with greater potency for inhibition of HMGB1 were identified, providing proof-of-concept that new molecules with high efficacy against sterile inflammation are attainable. An HMGB1 protein mutated in one of the SA-binding sites identified by NMR chemical shift perturbation studies retained chemoattractant activity, but lost binding of and inhibition by SA and its derivatives, thereby firmly establishing that SA binding to HMGB1 directly suppresses its proinflammatory activities. Identification of HMGB1 as a pharmacological target of SA/aspirin provides new insights into the mechanisms of action of one of the world's longest and most used natural and synthetic drugs. It may also provide an explanation for the protective effects of low-dose aspirin usage. PMID:26101955

  15. Phases in development of an interactive mobile phone-based system to support self-management of hypertension.

    PubMed

    Hallberg, Inger; Taft, Charles; Ranerup, Agneta; Bengtsson, Ulrika; Hoffmann, Mikael; Höfer, Stefan; Kasperowski, Dick; Mäkitalo, Asa; Lundin, Mona; Ring, Lena; Rosenqvist, Ulf; Kjellgren, Karin

    2014-01-01

    Hypertension is a significant risk factor for heart disease and stroke worldwide. Effective treatment regimens exist; however, treatment adherence rates are poor (30%-50%). Improving self-management may be a way to increase adherence to treatment. The purpose of this paper is to describe the phases in the development and preliminary evaluation of an interactive mobile phone-based system aimed at supporting patients in self-managing their hypertension. A person-centered and participatory framework emphasizing patient involvement was used. An interdisciplinary group of researchers, patients with hypertension, and health care professionals who were specialized in hypertension care designed and developed a set of questions and motivational messages for use in an interactive mobile phone-based system. Guided by the US Food and Drug Administration framework for the development of patient-reported outcome measures, the development and evaluation process comprised three major development phases (1, defining; 2, adjusting; 3, confirming the conceptual framework and delivery system) and two evaluation and refinement phases (4, collecting, analyzing, interpreting data; 5, evaluating the self-management system in clinical practice). Evaluation of new mobile health systems in a structured manner is important to understand how various factors affect the development process from both a technical and human perspective. Forthcoming analyses will evaluate the effectiveness and utility of the mobile phone-based system in supporting the self-management of hypertension. PMID:24910510

  16. Phases in development of an interactive mobile phone-based system to support self-management of hypertension

    PubMed Central

    Hallberg, Inger; Taft, Charles; Ranerup, Agneta; Bengtsson, Ulrika; Hoffmann, Mikael; Höfer, Stefan; Kasperowski, Dick; Mäkitalo, Åsa; Lundin, Mona; Ring, Lena; Rosenqvist, Ulf; Kjellgren, Karin

    2014-01-01

    Hypertension is a significant risk factor for heart disease and stroke worldwide. Effective treatment regimens exist; however, treatment adherence rates are poor (30%–50%). Improving self-management may be a way to increase adherence to treatment. The purpose of this paper is to describe the phases in the development and preliminary evaluation of an interactive mobile phone-based system aimed at supporting patients in self-managing their hypertension. A person-centered and participatory framework emphasizing patient involvement was used. An interdisciplinary group of researchers, patients with hypertension, and health care professionals who were specialized in hypertension care designed and developed a set of questions and motivational messages for use in an interactive mobile phone-based system. Guided by the US Food and Drug Administration framework for the development of patient-reported outcome measures, the development and evaluation process comprised three major development phases (1, defining; 2, adjusting; 3, confirming the conceptual framework and delivery system) and two evaluation and refinement phases (4, collecting, analyzing, interpreting data; 5, evaluating the self-management system in clinical practice). Evaluation of new mobile health systems in a structured manner is important to understand how various factors affect the development process from both a technical and human perspective. Forthcoming analyses will evaluate the effectiveness and utility of the mobile phone-based system in supporting the self-management of hypertension. PMID:24910510

  17. Effects of Select Anions from the Hofmeister Series on the Gas-Phase Conformations of Protein Ions Measured with Traveling-Wave Ion Mobility Spectrometry/Mass Spectrometry

    PubMed Central

    Merenbloom, Samuel I.; Flick, Tawnya G.; Daly, Michael P.; Williams, Evan R.

    2011-01-01

    The gas-phase conformations of ubiquitin, cytochrome c, lysozyme, and ↦-lactalbumin ions, formed by electrospray ionization (ESI) from aqueous solutions containing 5 mM ammonium perchlorate, ammonium iodide, ammonium sulfate, ammonium chloride, ammonium thiocyanate, or guanidinium chloride, are examined using traveling-wave ion mobility spectrometry (TWIMS) coupled to time-of-flight (TOF) mass spectrometry (MS). For ubiquitin, cytochrome c, and ↦-lactalbumin, adduction of multiple acid molecules results in no significant conformational changes to the highest and lowest charge states formed from aqueous solutions, whereas the intermediate charge states become more compact. The transition to more compact conformers for the intermediate charge states occurs with fewer bound H2SO4 molecules than HClO4 or HI molecules, suggesting ion-ion or salt-bridge interactions are stabilizing more compact forms of the gaseous protein. However, the drift time distributions for protein ions of the same net charge with the highest levels of adduction of each acid are comparable, indicating that these protein ions all adopt similarly compact conformations or families of conformers. No change in conformation is observed upon the adduction of multiple acid molecules to charge states of lysozyme. These results show that the attachment of HClO4, HI, or H2SO4 to multiply protonated proteins can induce compact conformations in the resulting gas-phase protein ions. In contrast, differing Hofmeister effects are observed for the corresponding anions in solution at higher concentrations. PMID:21952780

  18. Lysophosphatidic acid-induced calcium mobilization and proliferation in kidney proximal tubular cells.

    PubMed

    Dixon, R J; Young, K; Brunskill, N J

    1999-02-01

    Patients with proteinuria tend to develop progressive renal disease with proximal tubular cell atrophy and interstitial scarring. It has been suggested that the nephrotoxicity of albuminuric states may be due to the protein molecule itself or by lipids, such as lysophosphatidic acid (LPA), that albumin carries. LPA was found to cause a transient increase in intracytoplasmic free Ca2+ ([Ca2+]i) in opossum kidney proximal tubule cells (OK) that was maximal at 100 microM LPA and was dose dependent with an EC50 of 2.6 x 10(-6) M. This Ca2+ mobilization was from both internal stores and across the plasma membrane and was pertussis toxin (PTX) insensitive. Treatment of OK cells with 100 microM LPA for 5 min was found to cause a twofold increase in [3H]thymidine incorporation and a three- to fivefold increase over control after 24 h. This was highly PTX sensitive and insensitive to pretreatment with the tyrosine kinase inhibitors genistein and herbimycin A. These findings may be of significance in the progression of renal disease and indicate the potential importance of lipids in modulating proximal tubule cell function and growth. PMID:9950949

  19. Gas-Phase Dopant-Induced Conformational Changes Monitored with Transversal Modulation Ion Mobility Spectrometry.

    PubMed

    Meyer, Nicole Andrea; Root, Katharina; Zenobi, Renato; Vidal-de-Miguel, Guillermo

    2016-02-16

    The potential of a Transversal Modulation Ion Mobility Spectrometry (TMIMS) instrument for protein analysis applications has been evaluated. The Collision Cross Section (CCS) of cytochrome c measured with the TMIMS is in agreement with values reported in the literature. Additionally, it enables tandem IMS-IMS prefiltration in dry gas and in vapor doped gas. The chemical specificity of the different dopants enables interesting studies on the structure of proteins as CCS changed strongly depending on the specific dopant. Hexane produced an unexpectedly high CCS shift, which can be utilized to evaluate the exposure of hydrophobic parts of the protein. Alcohols produced higher shifts with a dual behavior: an increase in CCS due to vapor uptake at specific absorption sites, followed by a linear shift typical for unspecific and unstable vapor uptake. The molten globule +8 shows a very specific transition. Initially, its CCS follows the trend of the compact folded states, and then it rapidly increases to the levels of the unfolded states. This strong variation suggests that the +8 charge state undergoes a dopant-induced conformational change. Interestingly, more sterically demanding alcohols seem to unfold the protein more effectively also in the gas phase. This study shows the capabilities of the TMIMS device for protein analysis and how tandem IMS-IMS with dopants could provide better understanding of the conformational changes of proteins. PMID:26845079

  20. Evaluation of ternary mobile phases for the analysis of carbonyl compound derivatives using high-performance liquid chromatography.

    PubMed

    Ho, Duy Xuan; Kim, Ki-Hyun

    2011-01-01

    In this study, the feasibility of ternary mobile phases was examined in a high-performance liquid chromatography (HPLC)-based analysis of carbonyl compounds (CCs). To test the performance of different ternary phases, the liquid phase standards containing a 15 aldehyde/ketone-DNPH(o) mix were analyzed through a series of five-point calibration experiments. For this comparison, three types of ternary mobile phases were prepared initially by mixing water (W) with two of the following three organic solvents: isopropanol (I), methanol (M), and tetrahydrofuran (T). The resulting three types of ternary phases (named as WIM, WTM, and WIT) were tested and evaluated in relation to the water content or in terms of methanol-to-water ratio (M/W). The results derived by the three ternary phases revealed that the optimal resolution was attained near maximum water content, while those of WIT consistently suffered from poor resolution problems. The relative performances of WIM and WTM phases, if assessed by three key operating parameters (sensitivity, retention time, and resolution), were found to be reliable for most selected CCs with the decreasing M/W ratio. PMID:21218260

  1. Microbial mobilization of cesium from illite: Role of organic acids and siderophores

    NASA Astrophysics Data System (ADS)

    Hazotte, Alice; Peron, Olivier; Abdelouas, Abdesselam; Lebeau, Thierry

    2015-04-01

    Understanding the behavior of cesium (Cs) in soils and geological formations is interesting in the context of nuclear accidents and nuclear waste disposals. Indeed, this radionuclide with a 30-years half-life can contaminate crops and more generally the food chain. Cs with properties similar to potassium is known to be strongly accumulated in the clays of upper soil horizons. While excavation of contaminated soil cannot be feasible for the whole contaminated surfaces (huge volumes to be cleaned-up), in situ methods could provide a sustainable and low cost solution. Phytoextraction is one of a few solutions for in situ remediation of soils contaminated by trace elements and it preserves the quality of agricultural soils. However, many improvements are still needed to enhance phytoextraction effectiveness. The combination of bioaugmentation (soil inoculation with exogenous microorganisms) with phytoextraction is likely to increase the bioaccessibility of radionuclides and their accumulation in plants. The role of bacteria on soil-pollutants can be direct (direct metal complexation) and/or indirect (weathering of clays adsorbing Cs). This study aims to provide more specifically a mechanistic understanding of the bacterial mobilization of Cs from soil with the prospect of soil bioremediation. Bacterial metabolites of Pseudomonas fluorescens (ATCC 17400) were supplied to illite spiked with 0.1 and 1 mM of Cs. Purified siderophores including pyoverdine from P. fluorescens, or the whole metabolites from the bacterial culture supernatant were compared to low molecular weight organic acids (LMWOA) (citric and oxalic acids) at 0.04 mM, or synthetic chelants, i.e., acetohydroxamic acid (AHA) and desferrioxamine mesylate (DFOM) ranging from 50 µM up to 250 µM. The release of Cs and the structural alteration of illite (release of Al, Fe and Si) were monitored. When compared to the control, no release of Cs from illite was observed with LMWOA. On the contrary, a slight release

  2. Solid Phase Synthesis of C-Terminal Boronic Acid Peptides.

    PubMed

    Behnam, Mira A M; Sundermann, Tom R; Klein, Christian D

    2016-05-01

    Peptides and peptidomimetics with a C-terminal boronic acid group have prolific applications in numerous fields of research, but their synthetic accessibility remains problematic. A convenient, high yield synthesis of peptide-boronic acids on a solid support is described here, using commercially available 1-glycerol polystyrene resin. The method is compatible with Fmoc chemistry and offers a versatile approach to aryl and alkyl aminoboronic acids without additional purification steps. PMID:27104613

  3. Ultra high performance supercritical fluid chromatography coupled with tandem mass spectrometry for screening of doping agents. I: Investigation of mobile phase and MS conditions.

    PubMed

    Nováková, Lucie; Grand-Guillaume Perrenoud, Alexandre; Nicoli, Raul; Saugy, Martial; Veuthey, Jean-Luc; Guillarme, Davy

    2015-01-01

    The conditions for the analysis of selected doping substances by UHPSFC-MS/MS were optimized to ensure suitable peak shapes and maximized MS responses. A representative mixture of 31 acidic and basic doping agents was analyzed, in both ESI+ and ESI- modes. The best compromise for all compounds in terms of MS sensitivity and chromatographic performance was obtained when adding 2% water and 10mM ammonium formate in the CO2/MeOH mobile phase. Beside mobile phase, the nature of the make-up solvent added for interfacing UHPSFC with MS was also evaluated. Ethanol was found to be the best candidate as it was able to compensate for the negative effect of 2% water addition in ESI- mode and provided a suitable MS response for all doping agents. Sensitivity of the optimized UHPSFC-MS/MS method was finally assessed and compared to the results obtained in conventional UHPLC-MS/MS. Sensitivity was improved by 5-100-fold in UHPSFC-MS/MS vs. UHPLC-MS/MS for 56% of compounds, while only one compound (bumetanide) offered a significantly higher MS response (4-fold) under UHPLC-MS/MS conditions. In the second paper of this series, the optimal conditions for UHPSFC-MS/MS analysis will be employed to screen >100 doping agents in urine matrix and results will be compared to those obtained by conventional UHPLC-MS/MS. PMID:25467513

  4. Quinolones control in milk and eggs samples by liquid chromatography using a surfactant-mediated mobile phase.

    PubMed

    Rambla-Alegre, M; Collado-Sánchez, M A; Esteve-Romero, J; Carda-Broch, S

    2011-05-01

    Four quinolones (danofloxacin, difloxacin, flumequine and marbofloxacin) were determined in milk and egg samples by a simplified high-performance liquid chromatographic procedure using a micellar mobile phase. No extraction was needed to precipitate the proteins from the matrices since they were solubilised in micelles. The only pretreatment steps required were homogenisation, dilution and filtration before injecting the sample into the chromatographic system. An adequate resolution of the quinolones was achieved by a chemometrics approach where retention was modelled as a first step using the retention factors in only five mobile phases. Afterwards, an optimisation criterion was applied to consider the position and shape of the chromatographic peaks. Analytical separation involved a C18 reversed-phase column, a hybrid micellar mobile phase of 0.05 M sodium dodecyl sulphate, 10% (v/v) butanol and 0.5% (v/v) triethylamine buffered at pH 3 and fluorimetric detection. Quinolones were eluted in less than 15 min without the protein band or other endogenous compounds from the food matrices interfering. The calculated relevant validation parameters, e.g., decision limit (CC(α)), detection capability (CC(β)), repeatability, within-laboratory reproducibility, recoveries and robustness, were acceptable and complied with European Commission Decision 2002/657/EC. Finally, the proposed method was successfully employed in quantifying the four quinolones in spiked egg and milk samples. PMID:21085936

  5. Enantioseparation of Citalopram by RP-HPLC, Using Sulfobutyl Ether-β-Cyclodextrin as a Chiral Mobile Phase Additive

    PubMed Central

    Peng, Yangfeng; He, Quan Sophia; Cai, Jiang

    2016-01-01

    Enantiomeric separation of citalopram (CIT) was developed using a reversed phase HPLC (RP-HPLC) with sulfobutylether-β-cyclodextrin (SBE-β-CD) as a chiral mobile phase additive. The effects of the pH value of aqueous buffer, concentration of chiral additive, composition of mobile phase, and column temperature on the enantioseparation of CIT were investigated on the Hedera ODS-2 C18 column (250 mm × 4.6 mm × 5.0 um). A satisfactory resolution was achieved at 25°C using a mobile phase consisting of a mixture of aqueous buffer (pH of 2.5, 5 mM sodium dihydrogen phosphate, and 12 mM SBE-β-CD), methanol, and acetonitrile with a volumetric ratio of 21 : 3 : 1 and flow rate of 1.0 mL/min. This analytical method was evaluated by examining the precision (lower than 3.0%), linearity (regression coefficients close to 1), limit of detection (0.070 µg/mL for (R)-CIT and 0.076 µg/mL for (S)-CIT), and limit of quantitation (0.235 µg/mL for (R)-CIT and 0.254 µg/mL for (S)-CIT). PMID:26880921

  6. Enantioseparation of Citalopram by RP-HPLC, Using Sulfobutyl Ether-β-Cyclodextrin as a Chiral Mobile Phase Additive.

    PubMed

    Peng, Yangfeng; He, Quan Sophia; Cai, Jiang

    2016-01-01

    Enantiomeric separation of citalopram (CIT) was developed using a reversed phase HPLC (RP-HPLC) with sulfobutylether-β-cyclodextrin (SBE-β-CD) as a chiral mobile phase additive. The effects of the pH value of aqueous buffer, concentration of chiral additive, composition of mobile phase, and column temperature on the enantioseparation of CIT were investigated on the Hedera ODS-2 C18 column (250 mm × 4.6 mm × 5.0 um). A satisfactory resolution was achieved at 25°C using a mobile phase consisting of a mixture of aqueous buffer (pH of 2.5, 5 mM sodium dihydrogen phosphate, and 12 mM SBE-β-CD), methanol, and acetonitrile with a volumetric ratio of 21 : 3 : 1 and flow rate of 1.0 mL/min. This analytical method was evaluated by examining the precision (lower than 3.0%), linearity (regression coefficients close to 1), limit of detection (0.070 µg/mL for (R)-CIT and 0.076 µg/mL for (S)-CIT), and limit of quantitation (0.235 µg/mL for (R)-CIT and 0.254 µg/mL for (S)-CIT). PMID:26880921

  7. Phase transfer of oleic acid stabilized rod-shaped anatase TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Wilkerson, Rachel J.; Elder, Theresa; Sowinksi, Olivia; Fostvedt, Jade I.; Hoefelmeyer, James D.

    2016-06-01

    Three methods were evaluated for phase transfer of oleic acid stabilized TiO2 nanorods from non-polar phase to an aqueous phase. Three alkyltrimethylammonium bromide (C6, C8, C12) surfactants were tested and compared with an amphiphilic polymer as interdigitation agents. Ligand substitutions with catechol derivatives with polar functional groups para to the -enediol were evaluated as well. The molecular surfactants were ineffective compared to the amphiphilic polymer in the interdigitation phase transfer approach. Ligand substitution with catechols proceeded efficiently with phase transfer. The ligand substitution reactions were accompanied by gas evolution, which was found to result from decarboxylation of oleic acid in alkaline aqueous conditions.

  8. Decontamination and inspection plan for phase 2 closure of the 300-Area waste acid treatment system

    SciTech Connect

    Hays, C.B.

    1998-02-06

    This decontamination and inspection plan (DIP) describes decontamination and verification activities in support of Phase 2 closure of the 300 Area Waste Acid Treatment System (WATS). Phase 2, the second phase of three proposed phases of closure for WATS, provides for closure of all WATS portions of the 334-A Building and some, but not all, WATS portions of the 333 and 303-F Buildings. Closure of the entire unit will not occur until all three closure phases have been completed. The DIP also describes the designation and management-process for waste and debris generated during Phase 2 closure activities. Information regarding the decontamination and verification methods for Phase 1 closure can be found in Decontamination and Inspection Plan, for Phase 1 closure of the 300 Area Waste Acid Treatment System, 21 WHC-SD-ENV-AP-001. Information regarding Phase 3 closure will be provided in later documents.

  9. Solid phase sequencing of double-stranded nucleic acids

    DOEpatents

    Fu, Dong-Jing; Cantor, Charles R.; Koster, Hubert; Smith, Cassandra L.

    2002-01-01

    This invention relates to methods for detecting and sequencing of target double-stranded nucleic acid sequences, to nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probe comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include nucleic acids in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated determination of molecular weights and identification of the target sequence.

  10. Loss of bonded phase in reversed-phase liquid chromatography in acidic eluents and practical ways to improve column stability.

    PubMed

    Ma, Lianjia; Carr, Peter W

    2007-06-15

    Silica-based, reversed-phase liquid chromatographic (RPLC) stationary phases are very widely used to separate basic compounds in acidic eluents due to their high efficiency, good mechanical strength, and the versatile selectivity offered by different functional groups and the chemistry on the silica surface. However, the stability in acid of most silica-based stationary phases is poor, especially at elevated temperatures, due to hydrolysis of the siloxane bonds, which hold silanes on the silica substrate. This hydrolysis is commonly believed to be solely the result of catalysis by protons. However, we show that various metal cations (principally Fe3+/Fe2+, Ni2+, and Cr3+) released from acid corrosion of the stainless steel inlet frit greatly accelerate the hydrolysis of the siloxane bond. Furthermore, these metal cations, and not the high acidity per se, are mainly responsible for column instability. We show that removing the stainless steel inlet frit, or use of a titanium frit, greatly reduces or totally eliminates corrosion of the inlet frit and radically improves retention stability. The effects of various acids and types of organic modifier were also studied. These observations suggest a number of practical approaches that can significantly extend the lifetime of any RPLC stationary phase in acidic media at elevated temperature. PMID:17506522

  11. Evaluation of mobile phase characteristics on three zwitterionic columns in hydrophilic interaction liquid chromatography mode for liquid chromatography-high resolution mass spectrometry based untargeted metabolite profiling of Leishmania parasites.

    PubMed

    Zhang, Rong; Watson, David G; Wang, Lijie; Westrop, Gareth D; Coombs, Graham H; Zhang, Tong

    2014-10-01

    It has been reported that HILIC column chemistry has a great effect on the number of detected metabolites in LC-HRMS-based untargeted metabolite profiling studies. However, no systematic investigation has been carried out with regard to the optimisation of mobile phase characteristics. In this study using 223 metabolite standards, we explored the retention mechanisms on three zwitterionic columns with varied mobile phase composition, demonstrated the interference from poor chromatographic peak shapes on the output of data extraction, and assessed the quality of chromatographic signals and the separation of isomers under each LC condition. As expected, on the ZIC-cHILIC column the acidic metabolites showed improved chromatographic performance at low pH which can be attributed to the opposite arrangement of the permanently charged groups on this column in comparison with the ZIC-HILIC column. Using extracts from the protozoan parasite Leishmania, we compared the numbers of repeatedly detected LC-HRMS features under different LC conditions with putative identification of metabolites not amongst the standards being based on accurate mass (±3ppm). Besides column chemistry, the pH of the mobile phase plays a key role in not only determining the retention mechanisms of solutes but also the output of the LC-HRMS data processing. Fast evaporation of ammonium carbonate produced less ion suppression in ESI source and consequently improved the detectability of the metabolites in low abundance in comparison with other ammonium salts. Our results show that the combination of a ZIC-pHILIC column with an ammonium carbonate mobile phase, pH 9.2, at 20mM in the aqueous phase or 10mM in both aqueous and organic mobile phase components, provided the most suitable LC conditions for LC-HRMS-based untargeted metabolite profiling of Leishmania parasite extracts. The signal reliability of the mass spectrometer used in this study (Exactive Orbitrap) was also investigated. PMID:25160959

  12. Silica-Based, Hyper-Crosslinked Acid Stable Stationary Phases for High Performance Liquid Chromatography

    PubMed Central

    Zhang, Yu; Luo, Hao; Carr, Peter W.

    2011-01-01

    A new family of Hyper-Crosslinked (HC) phases has been recently introduced for use under very aggressive acid conditions including those encountered in ultra-fast, high temperature Two-Dimensional Liquid Chromatography (2DLC). This type of stationary phase showed significantly enhanced acid and thermal stability compared to the most acid stable, commercial RPLC phases. In addition, the use of “orthogonal” chemistry to make surface-confined polymer networks ensures good reproducibility and high efficiency. One of the most interesting features of the HC phases is the ability to derivatize the surface aromatic groups with various functional groups. This led to the development of a family of hyper-crosslinked phases possessing a wide variety of chromatographic selectivities by attaching hydrophobic (e.g. –C8), ionizable (e.g. -COOH, -SO3H), aromatic (e.g. –toluene) or polar (e.g. -OH) species to the aromatic polymer network. HC reversed phases with various degrees of hydrophobicity and mixed-mode HC phases with added strong and weak cation exchange sites have been synthesized, characterized and applied. These silica-based acid-stable HC phases, with their attractive chromatographic properties, should be very useful in the separations of bases or biological analytes in acidic media, especially at elevated temperatures. This work reviews the prior research on HC phases and introduces a novel HC phase made by alternative chemistry. PMID:21906745

  13. Thermodynamic studies of the solvent effects in chromatography on molecularly imprinted polymers. 3. Nature of the organic mobile phase

    SciTech Connect

    Kim, Hyunjung; Guiochon, Georges A

    2005-04-01

    Experimental isotherm data of the Fmoc-tryptophan (Fmoc-Trp) enantiomers were measured by frontal analysis on a Fmoc-L-Trp imprinted polymer, using different organic mobile phases, in a wide concentration range. The nonlinear regression of the data and the independent calculation of the affinity energy distributions of the two enantiomers allowed the selection of the isotherm model and the determination of the isotherm parameters. The organic solvents studied were acetonitrile (MeCN), methylene chloride, chloroform, and tetrahydrofuran (THF), all in the presence of the same concentration of acetic acid, used as an organic modifier. It was found that the highest overall affinity and enantiomeric selectivity were obtained in MeCN, which is also the solvent used in the polymerization. In the other solvents, the overall affinity decreases with increasing hydrogen-bonding ability of the solvents but not the enantiomer selectivity. In MeCN, three types of adsorption sites coexist for the two enantiomers on the MIP. The highest energy sites for Fmoc-L-Trp in MeCN are inactive in CH{sub 2}Cl{sub 2}, CHCl{sub 3}, and THF, and only two types of sites were identified in these solvents. Increasing the acetic acid concentration from 0.2 to 0.9 M causes a large decrease in the association constant of the highest energy sites in CH{sub 2}Cl{sub 2}, CHCl{sub 3}, and THF but not in MeCN. The overall affinity of Fmoc-L-trp in CH{sub 2}Cl{sub 2}, CHCl{sub 3}, and THF is dominated by adsorption on the lowest energy sites, the most abundant ones. In contrast, in MeCN, the overall affinity of Fmoc-L-Trp is dominated by adsorption on the highest energy sites, the least abundant sites. In CH{sub 2}Cl{sub 2}, CHCl{sub 3}, and THF, the number of each type of sites increases with decreasing hydrogen-bonding ability of the solvents while the association constant of the corresponding sites does not change significantly.

  14. Quantitative determination of usnic acid in Usnea lichen and its products by reversed-phase liquid chromatography with photodiode array detector.

    PubMed

    Ji, Xiuhong; Khan, Ikhlas A

    2005-01-01

    Usnic acid, a lichen substance, has a wide range of pharmaceutical applications, including antibiotic, antimycotic, antifeedant, antitubercular, antitumor, and analgesic activities. Some products containing usnic acid are marketed as weight control supplements; however, hepatotoxicity and acute liver failures were reported as severe side effects. The usnic acid content present in the plant materials and market products was analyzed by reversed-phase high-pressure liquid chromatography with a photodiode array detector at 233 nm. A Waters XTerra RP18 (150 x 4.6 mm; 5 microm particle size) column was the stationary phase; mobile phase was aqueous 0.1% acetic acid and acetonitrile gradient at flow rate of 1.0 mL/min. The temperature was held constant at 30 degrees C. The retention time of usnic acid was approximately 13.3 min. Acetone extraction of the samples took place with sonication. The precision of the method was confirmed by a standard deviation below 3.0% (n=3) and usnic acid recovery was 99.0%. Limit of detection was 0.4 microg/mL and the response was linear from 1.4 to 570.0 microg/mL with a correlation coefficient (R2) of 0.9991. The content of usnic acid in 4 raw materials and 22 finished products was analyzed. PMID:16385974

  15. Use of micellar mobile phases and microbore column switching for the assay of drugs in physiological fluids.

    PubMed

    Koenigbauer, M J; Curtis, M A

    1988-06-01

    The feasibility of directly assaying drugs in physiological fluids using on-line preconcentration and microbore high-performance liquid chromatography has been demonstrated. The untreated sample is injected onto a hydrophobic pre-column, using micellar sodium dodecyl sulfate (SDS) in the case of serum or phosphate buffer in the case of urine, as the load mobile phase. This traps the components of interest which are then backflushed onto a microbore analytical column using a stronger mobile phase. This procedure was then applied to diazepam in serum and phenobarbital in urine. Recovery was linear and quantitative over the range 30-3000 ng/ml for diazepam in serum and 2-200 micrograms/ml for phenobarbital in urine. The diazepam method was specific against caffeine and the three major metabolites of diazepam: oxazepam, temazepam, and nordiazepam. The effects of varying pre-column dimensions, pre-column loading time, and SDS concentration volume were evaluated. PMID:3410911

  16. Improved size exclusion chromatography of coal derived materials using N-methyl-2-pyrolidinone as mobile phase

    SciTech Connect

    Johnson, B.R.; Bartle, K.D.; Mitchell, S.C.

    1995-12-31

    A detailed knowledge of the molecular mass distribution (MMD) in coal and its derived products is essential for a fundamental understanding of coal structure, and of the processes occurring during pyrolyis, liquefaction and combustion. In size exclusion chromatography (SEC) tetrahydrofuran (THF) is commonly employed as the mobile phase. However, THF has limited solvating power and consequently a significant proportion of such materials goes undetected. By comparison, N-methyl-2-pyrolidinone is capable of solvating more of the coal sample and therefore gives the opportunity to determine an improved MMD. In this contribution the extended capabilities of NRP as the mobile phase are demonstrated by analysis of the solutions from solvent fractionation of a coal tar pitch, by SEC using UV/V is absorption, fluorescence and differential refractive index detection. Further application to other coal derived materials appears to indicate that separation is by a substantially size-dependent mechanism.

  17. Understanding Gas Phase Modifier Interactions in Rapid Analysis by Differential Mobility-Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kafle, Amol; Coy, Stephen L.; Wong, Bryan M.; Fornace, Albert J.; Glick, James J.; Vouros, Paul

    2014-07-01

    A systematic study involving the use and optimization of gas-phase modifiers in quantitative differential mobility-mass spectrometry (DMS-MS) analysis is presented using nucleoside-adduct biomarkers of DNA damage as an important reference point for analysis in complex matrices. Commonly used polar protic and polar aprotic modifiers have been screened for use against two deoxyguanosine adducts of DNA: N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-4-ABP) and N-(deoxyguanosin-8-y1)-2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP). Particular attention was paid to compensation voltage (CoV) shifts, peak shapes, and product ion signal intensities while optimizing the DMS-MS conditions. The optimized parameters were then applied to rapid quantitation of the DNA adducts in calf thymus DNA. After a protein precipitation step, adduct levels corresponding to less than one modification in 106 normal DNA bases were detected using the DMS-MS platform. Based on DMS fundamentals and ab initio thermochemical results, we interpret the complexity of DMS modifier responses in terms of thermal activation and the development of solvent shells. At very high bulk gas temperature, modifier dipole moment may be the most important factor in cluster formation and cluster geometry, but at lower temperatures, multi-neutral clusters are important and less predictable. This work provides a useful protocol for targeted DNA adduct quantitation and a basis for future work on DMS modifier effects.

  18. The effect of spontaneous gas expansion and mobilization on the aqueous-phase concentrations above a dense non-aqueous phase liquid pool

    NASA Astrophysics Data System (ADS)

    Mumford, Kevin G.; Smith, James E.; Dickson, Sarah E.

    2010-04-01

    The spontaneous expansion and mobilization of discontinuous gas above dense non-aqueous-phase liquid (DNAPL) pools can affect the aqueous-phase concentrations of the DNAPL constituents above the pool. The results of an intermediate-scale, two-dimensional flow cell experiment showed that the discontinuous gas flow produced by spontaneous expansion, driven by the partitioning of 1,1,1-TCA from the surface of a DNAPL pool, resulted in detectable aqueous-phase concentrations of 1,1,1-TCA well above the pool surface. In comparison to a conventional model for DNAPL pool dissolution in the absence of a discontinuous gas phase, these concentrations were greater than expected, and were present at greater than expected elevations. Additionally, this study showed that the discontinuous gas flow produced transient behavior in the aqueous-phase concentrations, where the elevated concentrations occurred as short-term, pulse-like events. These results suggest that the spontaneous expansion and mobilization of discontinuous gas in DNAPL source zones could lead to the misdiagnosis of source zone architecture using aqueous concentration data, and that the transient nature of the elevated concentrations could further complicate the difficult task of source zone characterization.

  19. Improved size exclusion chromatography of coal derived materials using N-methyl-2-pyrrolidinone as mobile phase

    SciTech Connect

    Johnson, B.R.; Bartle, K.D.; Herod, A.A.; Kandiyoti, R.

    1995-12-31

    A detailed knowledge of the molecular mass distribution (MMD) in coal and its derived products is essential for a fundamental understanding of coal structure, and of the processes occurring during pyrolysis, liquefaction and combustion. Indeed with increased economic and environmental pressure to use natural resources more effectively such knowledge can be applied to gaining more from finite coal reserves. Of the methods available for determining MMDs size exclusion chromatography (SEC) is perhaps the most routinely employed. In SEC tetrahydrofuran (THF) is the most commonly employed mobile phase. However THF has limited solvating power for coal derived materials and consequently a significant proportion of such materials goes undetected. In addition the interpretation of chromatograms with reference to calibration of the column with polystyrene standards is flawed. By comparison, N-methyl-2-pyrrolidinone (NMP) is capable of solvating more of the coal sample and therefore gives the opportunity to determine an improved MMD. In this contribution the extended capabilities of NMP as the mobile phase are demonstrated primarily through the analysis of a coal tar pitch. Both NMP and THF are used as mobile phases for SEC using a number of detection techniques, allowing comparison and evaluation of different chromatographic systems to the analysis of coal derived materials.

  20. An Experimental and Computational Study of the Gas-Phase Acidities of the Common Amino Acid Amides.

    PubMed

    Plummer, Chelsea E; Stover, Michele L; Bokatzian, Samantha S; Davis, John T M; Dixon, David A; Cassady, Carolyn J

    2015-07-30

    Using proton-transfer reactions in a Fourier transform ion cyclotron resonance mass spectrometer and correlated molecular orbital theory at the G3(MP2) level, gas-phase acidities (GAs) and the associated structures for amides corresponding to the common amino acids have been determined for the first time. These values are important because amino acid amides are models for residues in peptides and proteins. For compounds whose most acidic site is the C-terminal amide nitrogen, two ions populations were observed experimentally with GAs that differ by 4-7 kcal/mol. The lower energy, more acidic structure accounts for the majority of the ions formed by electrospray ionization. G3(MP2) calculations predict that the lowest energy anionic conformer has a cis-like orientation of the [-C(═O)NH](-) group whereas the higher energy, less acidic conformer has a trans-like orientation of this group. These two distinct conformers were predicted for compounds with aliphatic, amide, basic, hydroxyl, and thioether side chains. For the most acidic amino acid amides (tyrosine, cysteine, tryptophan, histidine, aspartic acid, and glutamic acid amides) only one conformer was observed experimentally, and its experimental GA correlates with the theoretical GA related to side chain deprotonation. PMID:26196065

  1. Acid-catalytic decomposition of peracetic acid in the liquid phase

    SciTech Connect

    Kharchuk, V.G.; Kolenko, I.P.; Petrov, L.A.

    1985-12-01

    This paper elucidates the kinetic relationships of peracetic acid (PAA) decomposition in the presence of mineral acids and their heterogeneous analogs, polystyrene-di-vinylbenzene cation-exchangers, differing in physicochemical and morphological parameters. It is shown that the thermal decomposition of PAA in acetic acid is an acid-catalyzed reaction. The controlling step of the reaction is protonation of the substrate with formation of an active intermediate form. Sulfonated cation-exchangers are twice as effective as sulfuric acid in this process. Polystyrene-divinylbenzene sulfonated cation-exchangers can be used with success as acid catalysts in oxidation processes involving PAA, because of their high effectiveness, stability, and availability.

  2. Phase equilibria and distribution constants of metal ions in diantipyryl alkane-organic acid-hydrochloric acid-water systems

    NASA Astrophysics Data System (ADS)

    Degtev, M. I.; Popova, O. N.; Yuminova, A. A.

    2014-08-01

    The ability of antipyrine and its derivatives (diantipyryl alkanes) to form separating systems in the presence of salicylic (sulfosalicylic) acid and hydrochloric acid and water is studied. The optimum volume of the organic phase, the composition of complexes, and the mechanism for the distribution of metal ions are determined, depending on the concentrations of the main components and the salting-out agent. The complex distribution and extraction constants are calculated.

  3. Evidence that oleic acid exists in a separate phase within stratum corneum lipids

    SciTech Connect

    Ongpipattanakul, B.; Burnette, R.R.; Potts, R.O.; Francoeur, M.L. )

    1991-03-01

    Oleic acid is known to be a penetration enhancer for polar to moderately polar molecules. A mechanism related to lipid phase separation has been previously proposed by this laboratory to explain the increases in skin transport. In the studies presented here, Fourier transform infrared spectroscopy (FT-IR) was utilized to investigate whether or not oleic acid exists in a separate phase within stratum corneum (SC) lipids. Per-deuterated oleic acid was employed allowing the conformational phase behavior of the exogenously added fatty acid and the endogenous SC lipids to be monitored independently of each other. The results indicated that oleic acid exerts a significant effect on the SC lipids, lowering the lipid transition temperature (Tm) in addition to increasing the conformational freedom or flexibility of the endogenous lipid alkyl chains above their Tm. At temperatures lower than Tm, however, oleic acid did not significantly change the chain disorder of the SC lipids. Similar results were obtained with lipids isolated from the SC by chloroform:methanol extraction. Oleic acid, itself, was almost fully disordered at temperatures both above and below the endogenous lipid Tm in the intact SC and extracted lipid samples. This finding suggested that oleic acid does exist as a liquid within the SC lipids. The coexistence of fluid oleic acid and ordered SC lipids, at physiological temperatures, is consistent with the previously proposed phase-separation transport mechanism for enhanced diffusion.

  4. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results

    NASA Astrophysics Data System (ADS)

    Anupriya; Jones, Chad A.; Dearden, David V.

    2016-08-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy.

  5. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results.

    PubMed

    Anupriya; Jones, Chad A; Dearden, David V

    2016-08-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy. Graphical Abstract ᅟ. PMID:27220844

  6. Involvement of Nitric Oxide on Calcium Mobilization and Arachidonic Acid Pathway Activation during Platelet Aggregation with different aggregating agonists.

    PubMed

    Banerjee, Debipriya; Mazumder, Sahana; Kumar Sinha, Asru

    2016-03-01

    Platelet aggregation by different aggregating agonists is essential in the normal blood coagulation process, the excess of which caused acute coronary syndrome (ACS). In all cases, the activation of arachidonic acid by cycloxygenase was needed for the synthesis of thromboxane A2 (TXA2) but the mechanism of arachidonic acid release in platelets remains obscure. Studies were conducted to determine the role of nitric oxide (NO), if any, on the release of arachidonic acid in platelets. The cytosolic Ca(2+) was visualized and quantitated by fluorescent spectroscopy by using QUIN-2. NO was measured by methemoglobin method. Arachidonic acid was determined by HPLC. TXA2 was measured as ThromboxaneB2 (TXB2) by ELISA. Treatment of platelets in platelet-rich plasma (PRP) with different aggregating agents resulted in the inhibition of nitric oxide synthase (NOS) which inhibited the production of NO synthesis and increased TXA2 synthesis. Furthermore, the treatment of washed PRP with different platelet aggregating agents resulted in the increase of [Ca(2+)] in nM ranges. In contrast, the pre-treatment of washed PRP with aspirin increased platelet NO level and inhibited the Ca(2+) mobilization and TXA2 synthesis. These results indicated that the aggregation of platelets by different aggregating agonists was caused by the cytosolic Ca(2+) mobilization due to the inhibition of NOS. PMID:27127451

  7. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results

    NASA Astrophysics Data System (ADS)

    Anupriya; Jones, Chad A.; Dearden, David V.

    2016-05-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy.

  8. Relation of fatty acid composition in lead-exposed mallards to fat mobilization, lipid peroxidation and alkaline phosphatase activity

    USGS Publications Warehouse

    Mateo, R.; Beyer, W.N.; Spann, J.W.; Hoffman, D.J.

    2003-01-01

    The increase of n-6 polyunsaturated fatty acids (PUFA) in animal tissues has been proposed as a mechanism of Pb poisoning through lipid peroxidation or altered eicosanoids metabolism. We have studied fatty acid (FA) composition in liver and brain of mallards (Anas platyrhynchos) feeding for three weeks on diets containing combinations of low or high levels of vitamin E (20 or 200 UI/kg) and Pb (0 or 2 g/kg). Saturated FA, n-6 PUFA and total concentrations of FA were higher in livers of Pb-exposed mallards, but not in their brains. The percentage of n-6 PUFA in liver and brain was slightly higher in Pb-exposed mallards. The increase of n-6 PUFA in liver was associated with increased triglycerides and cholesterol in plasma, thus could be in part attributed to feed refusal and fat mobilization. The hepatic ratios between adrenic acid (22:4 n-6) and arachidonic acid (20:4 n-6) or between adrenic acid and linoleic acid (18:2 n-6) were higher in Pb exposed birds, supporting the existing hypothesis of increased fatty acid elongation by Pb. Among the possible consequences of increased n-6 PUFA concentration in tissues, we found increased lipid peroxidation in liver without important histopathological changes, and decreased plasma alkaline phosphatase activity that may reflect altered bone metabolism in birds.

  9. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    Component development has resulted in routine molding of 12 in. by 17 in. bipolar plates with 80 percent acceptance. A 5 C per hour post-cure heating cycle for these plates was found to give blister free materials. Lowering the resin in a bipolar plate content from 32 percent to 22 percent decreases the resistivity more than 50 percent. Evaluation of the corrosion resistance of Novolak and Resol resins at 185 C in phosphoric acid indicates a slow etch. aerosol modified phenolics, however, decompose rapidly. Estimates of acid loss by the use of analytical expressions known as Margule, van Laar, and Wilson equations were not satisfactory. Experimental evaluation of the P4O10 vapor concentration of 103 wt percent acid at 191 C provided a value of 2 ppm. This value is based on a single experiment.

  10. Solid/liquid phase diagram of the ammonium sulfate/succinic acid/water system.

    PubMed

    Pearson, Christian S; Beyer, Keith D

    2015-05-14

    We have studied the low-temperature phase diagram and water activities of the ammonium sulfate/succinic acid/water system using differential scanning calorimetry and infrared spectroscopy of thin films. Using the results from our experiments, we have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/succinic acid phase boundary as well as the ternary eutectic composition and temperature. We also compared our results to the predictions of the extended AIM aerosol thermodynamics model (E-AIM) and found good agreement for the ice melting points in the ice primary phase field of this system; however, differences were found with respect to succinic acid solubility temperatures. We also compared the results of this study with those of previous studies that we have published on ammonium sulfate/dicarboxylic acid/water systems. PMID:25431860

  11. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    A technique for producing an acid inventory control member by spraying FEP onto a partially screened carbon paper backing is discussed. Theoretical analysis of the acid management indicates that the vapor composition of 103% H3PO4 is approximately 1.0 ppm P4O10. An SEM evaluation of corrosion resistance of phenolic resins and graphite/phenolic resin composites in H3PO4 at 185 C shows specific surface etching. Carbonization of graphite/phenolic bipolar plates is achieved without blistering.

  12. Technology development for phosphoric acid fuel cell powerplant (phase 2)

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    The status of technology for the manufacturing and testing of 1200 sq. cm cell materials, components, and stacks for on-site integrated energy systems is assessed. Topics covered include: (1) preparation of thin layers of silicon carbide; (2) definition and control schemes for volume changes in phosphoric acid fuel cells; (3) preparation of low resin content graphite phenolic resin composites; (4) chemical corrosion of graphite-phenolic resin composites in hot phosphoric acid; (5) analysis of electrical resistance of composite materials for fuel cells; and (6) fuel cell performance and testing.

  13. Calcium and ascorbic acid affect cellular structure and water mobility in apple tissue during osmotic dehydration in sucrose solutions.

    PubMed

    Mauro, Maria A; Dellarosa, Nicolò; Tylewicz, Urszula; Tappi, Silvia; Laghi, Luca; Rocculi, Pietro; Rosa, Marco Dalla

    2016-03-15

    The effects of the addition of calcium lactate and ascorbic acid to sucrose osmotic solutions on cell viability and microstructure of apple tissue were studied. In addition, water distribution and mobility modification of the different cellular compartments were observed. Fluorescence microscopy, light microscopy and time domain nuclear magnetic resonance (TD-NMR) were respectively used to evaluate cell viability and microstructural changes during osmotic dehydration. Tissues treated in a sucrose-calcium lactate-ascorbic acid solution did not show viability. Calcium lactate had some effects on cell walls and membranes. Sucrose solution visibly preserved the protoplast viability and slightly influenced the water distribution within the apple tissue, as highlighted by TD-NMR, which showed higher proton intensity in the vacuoles and lower intensity in cytoplasm-free spaces compared to other treatments. The presence of ascorbic acid enhanced calcium impregnation, which was associated with permeability changes of the cellular wall and membranes. PMID:26575708

  14. Electron Transport in a High Mobility Free-Standing GaN Substrate Grown by Hydride Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Farina, L.; Kurdak, C.; Yun, F.; Morkoc, H.; Rode, D. L.; Tsen, K. T.; Park, S. S.; Lee, K. Y.

    2001-03-01

    We studied electron transport properties in a high quality free-standing GaN grown by hydride vapor phase epitaxy. The GaN, with a thickness of more than 200 μm, was lifted off the sapphire substrate and mechanically polished. At room temperature the carrier density is 1.3x10^16cm-3 and the Hall mobility is 1200 cm^2/V-s, which is the highest reported electron mobility for GaN with a wurtzite structure. Transport properties are studied using a van der Pauw geometry in a temperature range of 20 to 300 K and in magnetic fields up to 8 Tesla. Electron mobility is found to increase at lower temperatures with a peak mobility of 7400 cm^2/V-s at 48 K. The carrier density decreases exponentially at temperatures below 80 K with an activation energy of 28 meV. The electron transport measurements were used to examine the contributions of different scattering mechanisms. Numerical solution of the Boltzmann transport equation was carried out, including non-parabolic conduction bands and wavefunction admixture, along with lattice scattering and ionized-impurity scattering. LO and TO phonon energies were determined by Raman spectroscopy.

  15. Gas Phase Structure of Amino Acids: La-Mb Studies

    NASA Astrophysics Data System (ADS)

    Mata, I. Pena S.; Sanz, M. E.; Vaquero, V.; Cabezas, C.; Perez, C.; Blanco, S.; López, J. C.; Alonso, J. L.

    2009-06-01

    Recent improvements in our laser ablation molecular beam Fourier transform microwave (LA-MB-FTMW) spectrometer such as using Laval-type nozzles and picoseconds Nd:YAG lasers (30 to 150 ps) have allowed a major step forward in the capabilities of this experimental technique as demonstrated by the last results in serine cysteine and threonine^a for which seven, six and seven conformers have been respectively identified. Taking advantage of these improvements we have investigated the natural amino acids metionine, aspartic and glutamic acids and the γ-aminobutyric acid (GABA) with the aim of identify and characterize their lower energy conformers. Searches in the rotational spectra have lead to the identification of seven conformers of metionine, six and five of aspartic and glutamic acids, respectively, and seven for the γ-aminobutyric. These conformers have been unambiguously identified by their spectroscopic constants. In particular the ^{14}N nuclear quadrupole coupling constants, that depend heavily on the orientation of the amino group with respect to the principal inertial axes of the molecule, prove to be a unique tool to distinguish unambigously between conformations with similar rotational constants. For the γ-aminobutyric acid two of the seven observed structures are stablized by an intramolecular interaction n-π*. Two new conformers of proline have been identified together with the two previously observed. J. L. Alonso, C. Pérez, M. E. Sanz, J. C. López, S. Blanco, Phys.Chem.Chem.Phys., 2009, 11, 617. D. B. Atkinson, M. A. Smith, Rev. Sci. Instrum. 1995, 66, 4434 S. Blanco, M. E. Sanz, J. C. López, J. L. Alonso, Proc. Natl. Acad. Sci. USA2007, 104, 20183. M. E. Sanz, S. Blanco, J. C. López, J. L. Alonso, Angew. Chem. Int. Ed.,2008, 120, 6312. A. Lesarri, S. Mata, E. J. Cocinero, S. Blanco, J.C. López, J. L. Alonso, Angew. Chem. Int. Ed. , 2002, 41, 4673

  16. On-site quantitation of arsenic in drinking water by disk solid-phase extraction/mobile X-ray fluorescence spectrometry.

    PubMed

    Hagiwara, Kenta; Koike, Yuya; Aizawa, Mamoru; Nakamura, Toshihiro

    2015-11-01

    A rapid and simple method was developed for As determination in drinking water by solid-phase extraction (SPE)/mobile X-ray fluorescence (XRF) spectrometry. A 50 mL aqueous sample was adjusted to pH 3 with dilute hydrochloric acid, and then passed through a Ti and Zr-loaded carbon disk (TiZr-CD) to pre-concentrate the As. The SPE disk was adhered to an acrylic plate with cellophane tape, and then examined by mobile XRF spectrometry. The TiZr-CD adsorbed inorganic As (as As(III) and As(V)) and organic As (as methyl, phenyl and aromatic arsenic compounds) from water. The As calibration curve had good linearity over the range of 0.5-5 μg, and the limit of detection was 0.10 μg (2.0 μgL(-1) in As concentration). The concentrations of As in well water samples were determined using the proposed method were similar to results obtained from atomic absorption spectrometry. The proposed method did not require a power supply or a toxic solution and/or gas in any analytical step, therefore it is suitable for the on-site determination of As in drinking water. PMID:26452891

  17. Low-temperature phase behavior of fatty acid methyl esters by differential scanning calorimetry (DSC)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid methyl ester (FAME) mixtures have many uses including biodiesel, lubricants, metal-working fluids, surfactants, polymers, coatings, green solvents and phase-change materials. The physical properties of a FAME mixture depends on the fatty acid concentration (FAC) profile. Some products hav...

  18. Solution-phase secondary-ion mass spectrometry of protonated amino acids.

    PubMed

    Pettit, G R; Cragg, G M; Holzapfel, C W; Tuinman, A A; Gieschen, D P

    1987-04-01

    Although sulfolane proved unexpectedly to be a poor solvent for solution-phase secondary-ion mass spectrometry of underivatized amino acids in the presence of thallium(I) salts, glycerol was somewhat more effective. Also, the addition of trifluoromethanesulfonic acid proved more effective than addition of the metal in generating molecular ion complexes. A convenient and reliable method for rapidly determining amino acid molecular ions is based on these observations. PMID:3037939

  19. Selective transport of amino acids into the gas phase: driving forces for amino acid solubilization in gas-phase reverse micelles.

    PubMed

    Fang, Yigang; Bennett, Andrew; Liu, Jianbo

    2011-01-28

    We report a study on encapsulation of various amino acids into gas-phase sodium bis(2-ethylhexyl) sulfosuccinate (NaAOT) reverse micelles, using electrospray ionization guided-ion-beam tandem mass spectrometry. Collision-induced dissociation of mass-selected reverse micellar ions with Xe was performed to probe structures of gas-phase micellar assemblies, identify solute-surfactant interactions, and determine preferential incorporation sites of amino acids. Integration into gas-phase reverse micelles depends upon amino acid hydrophobicity and charge state. For examples, glycine and protonated amino acids (such as protonated tryptophan) are encapsulated within the micellar core via electrostatic interactions; while neutral tryptophan is adsorbed in the surfactant layer. As verified using model polar hydrophobic compounds, the hydrophobic effect and solute-interface hydrogen-bonding do not provide sufficient driving force needed for interfacial solubilization of neutral tryptophan. Neutral tryptophan, with a zwitterionic structure, is intercalated at the micellar interface between surfactant molecules through complementary effects of electrostatic interactions between tryptophan backbone and AOT polar heads, and hydrophobic interactions between tryptophan side chain and AOT alkyl tails. Protonation of tryptophan could significantly improve its incorporation capacity into gas-phase reverse micelles, and displace its incorporation site from the micellar interfacial zone to the core; protonation of glycine, on the other hand, has little effect on its encapsulation capacity. Another interesting observation is that amino acids of different isoelectric points could be selectively encapsulated into, and transported by, reverse micelles from solution to the gas phase, based upon their competition for protonation and subsequent encapsulation within the micellar core. PMID:21140022

  20. Gas phase studies on terpenes by ion mobility spectrometry using different atmospheric pressure chemical ionization techniques

    NASA Astrophysics Data System (ADS)

    Borsdorf, H.; Stone, J. A.; Eiceman, G. A.

    2005-11-01

    The ionization pathways and drift behavior were determined for sets of constitutional isomeric and stereoisomeric non-polar hydrocarbons (unsaturated monocyclic terpenes, unsaturated and saturated bicyclic terpenes) using ion mobility spectrometry (IMS) with different techniques of atmospheric pressure chemical ionization (APCI) to assess how structural and stereochemical differences influence ion formation. Depending on the structural features, different ions were observed for constitutional isomers using ion mobility spectrometry with photoionization (PI) and corona discharge (CD) ionization. Photoionization provides ion mobility spectra containing one major peak for saturated compounds while at two peaks were observed for unsaturated compounds, which can be assigned to product ions related to monomer and dimer ions. However, differences in relative abundance of product ions were found depending on the position of the double bond. Although IMS using corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra are complex and differ from those obtained using photoionization. Additional cluster ions and fragment ions were detected. Only small differences in ion mobility spectra were observed for the diastereomers while the enantiomers provide identical spectra. The structure of the product ions formed was checked by investigations using the coupling of ion mobility spectrometry with mass spectrometry (IMS-MS).

  1. A Far-Red Emitting Probe for Unambiguous Detection of Mobile Zinc in Acidic Vesicles and Deep Tissue†

    PubMed Central

    Rivera-Fuentes, Pablo; Wrobel, Alexandra T.; Zastrow, Melissa L.; Khan, Mustafa; Georgiou, John; Luyben, Thomas T.; Roder, John C.; Okamoto, Kenichi

    2015-01-01

    Imaging mobile zinc in acidic environments remains challenging because most small-molecule optical probes display pH-dependent fluorescence. Here we report a reaction-based sensor that detects mobile zinc unambiguously at low pH. The sensor responds reversibly and with a large dynamic range to exogenously applied Zn2+ in lysosomes of HeLa cells, endogenous Zn2+ in insulin granules of MIN6 cells, and zinc-rich mossy fiber boutons in hippocampal tissue from mice. This long-wavelength probe is compatible with the green-fluorescent protein, enabling multicolor imaging, and facilitates visualization of mossy fiber boutons at depths of >100 µm, as demonstrated by studies in live tissue employing two-photon microscopy. PMID:25815162

  2. Role of Acid Mobilization in Iron Solubility of Smaller Mineral Dust Aerosols

    NASA Astrophysics Data System (ADS)

    Ito, A.

    2011-12-01

    Iron (Fe) is an essential element for phytoplankton. The majority of iron is transported from arid regions to the open ocean, but is mainly in an insoluble form. Since most aquatic organisms can take up iron only in the dissolved form, the amount of soluble iron is of key importance. Atmospheric processing of mineral aerosols by anthropogenic pollutants may transform insoluble iron into soluble forms. Compared to dust, combustion aerosols often contain iron with higher solubility. This paper discusses the factors that affect the iron solubility in mineral aerosols on a global scale using an aerosol chemistry transport model. Bioavailable iron is derived from atmospheric processing of relatively insoluble iron from desert sources and from direct emissions of soluble iron from combustion sources such as biomass and fossil fuels burning. The iron solubility from onboard cruise measurements over the Atlantic and the Pacific Oceans in 2001 is used to evaluate the model performance in simulating soluble iron. Sensitivity simulations from dust sources with no atmospheric processing by acidic species systematically underestimate the soluble iron concentration in fine particles. Improvement of the agreement between the model results and observations is achieved by the use of a faster iron dissolution rate in fine particles associated with anthropogenic pollutants (e.g., sulphate). Accurate simulation of the abundance of soluble iron in fine aerosols has important implications with regards to ocean fertilization because of the longer residence time of smaller particles, which supply nutrients to more remote ocean biomes. The model reveals a larger deposition of soluble iron for the fine mode than that for the coarse mode in northern oceans due to acid mobilization. The ratio of deposition rate of soluble iron in the fine mode to the total aerosols in the South Atlantic Ocean (40-60%) is less than that in northern oceans (70-100%). These results suggest that Patagonian dust

  3. Determination of complex formation constants by phase sensitive alternating current polarography: Cadmium-polymethacrylic acid and cadmium-polygalacturonic acid.

    PubMed

    Garrigosa, Anna Maria; Gusmão, Rui; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel

    2007-10-15

    The use of phase sensitive alternating current polarography (ACP) for the evaluation of complex formation constants of systems where electrodic adsorption is present has been proposed. The applicability of the technique implies the previous selection of the phase angle where contribution of capacitive current is minimized. This is made using Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) in the analysis of ACP measurements at different phase angles. The method is checked by the study of the complexation of Cd by polymethacrylic (PMA) and polygalacturonic (PGA) acids, and the optimal phase angles have been ca. -10 degrees for Cd-PMA and ca. -15 degrees for Cd-PGA systems. The goodness of phase sensitive ACP has been demonstrated comparing the determined complex formation constants with those obtained by reverse pulse polarography, a technique that minimizes the electrode adsorption effects on the measured currents. PMID:19073101

  4. SEPARATION OF T-MAZ ETHOXYLATED SORBITAN FATTY ACID ESTERS BY REVERSE PHASE CHROMATOGRAPHY

    EPA Science Inventory

    The method for determination of T-MAZ ethoxylated sorbitan fatty acid esters is described. This work demonstrates that with a less retentive C8 alkyl bonded phase packing, reverse phase chromatography can be used to analyze nonionic polymer mixtures with a molecular weight range ...

  5. Structures, Hydration, and Electrical Mobilities of Bisulfate Ion-Sulfuric Acid-Ammonia/Dimethylamine Clusters: A Computational Study.

    PubMed

    Tsona, Narcisse T; Henschel, Henning; Bork, Nicolai; Loukonen, Ville; Vehkamäki, Hanna

    2015-09-17

    Despite the well-established role of small molecular clusters in the very first steps of atmospheric particle formation, their thermochemical data are still not completely available due to limitation of the experimental techniques to treat such small clusters. We have investigated the structures and the thermochemistry of stepwise hydration of clusters containing one bisulfate ion, sulfuric acid, base (ammonia or dimethylamine), and water molecules using quantum chemical methods. We found that water facilitates proton transfer from sulfuric acid or the bisulfate ion to the base or water molecules, and depending on the hydration level, the sulfate ion was formed in most of the base-containing clusters. The calculated hydration energies indicate that water binds more strongly to ammonia-containing clusters than to dimethylamine-containing and base-free clusters, which results in a wider hydrate distribution for ammonia-containing clusters. The electrical mobilities of all clusters were calculated using a particle dynamics model. The results indicate that the effect of humidity is negligible on the electrical mobilities of molecular clusters formed in the very first steps of atmospheric particle formation. The combination of the results of this study with those previously published on the hydration of neutral clusters by our group provides a comprehensive set of thermochemical data on neutral and negatively charged clusters containing sulfuric acid, ammonia, or dimethylamine. PMID:26304742

  6. Influence of sample and mobile phase composition on peptide retention behaviour and sensitivity in reversed-phase liquid chromatography/mass spectrometry.

    PubMed

    Houbart, V; Rozet, E; Matagne, A; Crommen, J; Servais, A-C; Fillet, M

    2013-11-01

    Because the chromatographic behaviour of peptides is totally different from that of small molecules, a good understanding of the mechanisms that occur from injection to detection in reversed-phase LC-MS is strongly recommended to successfully develop not only qualitative but also quantitative methods. In this study, design of experiments was used in order to investigate the influence of the experimental parameters, i.e. sample and mobile phase composition, on a peptide mixture covering a wide range of molecular weights, isoelectric points and hydropathies. First, a screening design was developed to identify the significant factors concerning mobile phase (ion-pairing reagent nature and concentration) and sample composition (organic modifier proportion and ion-pairing reagent nature) on retention and response intensity (sensitivity). Then, after having selected the experimental domain and the significant factors, a full factorial design was used to further investigate the role of the considered factors and their interactions. Interestingly, ion-pairing reagent nature present in the sample had a tremendous effect on retention and response intensity. Optimal conditions leading to good sensitivity and adequate peptide retention without band splitting were selected and could be used as starting point for rapid method development using classical solvents and ion-pairing reagents. PMID:24070623

  7. [Preparation and chromatographic performance of a silica-bonded (4-cyclopentadienyl benzoic acid-iron-toluene) hexafluorophosphoric acid stationary phase].

    PubMed

    Cao, Aijuan; Li, Xiaole; Qiao, Lijun; Zhou, Xiaohua; Yu, Ajuan; Zhang, Shusheng; Wu, Yangjie

    2016-02-01

    Based on the unique molecular structure of ferrocene and its potential as a new liquid chromatography separation medium, a new silica-bonded (4-cyclopentadienyl benzoic acid-iron-toluene) hexafluorophosphoric acid stationary phase was prepared. The structure of this new material was characterized by infrared spectroscopy, elemental analysis, thermogravimetric analysis et al. The chromatographic performance and retention mechanism of this new stationary phase were evaluated using different solute probes, including polycyclic aromatic hydrocarbons (PAHs), positional isomers of naphthylamine, positional isomers of nitro-aniline, nitroimidazoles, organic phosphorus et al. It could provide various action sites for different solutes in normal-phase chromatography such as π electron transfer, π-π electron interactions, dipole-dipole interactions, and electrostatic interactions with the substrates. And the possible separation mechanisms are discussed. PMID:27382719

  8. Effect of Electrospray Ionization Source Conditions on the Tautomer Distribution of Deprotonated p-Hydroxybenzoic Acid in the Gas Phase.

    PubMed

    Xia, Hanxue; Attygalle, Athula B

    2016-06-01

    The deprotonation site of p-hydroxybenzoic acid upon electrospray ionization has been a subject of fervent debate in several articles in the Journal of the American Chemical Society and elsewhere. General consensus is that electrospray ionization mass spectrometry (ESI-MS) experimental results reflect the situation in solution to a considerable extent. Our research, using ion-mobility mass spectrometry, challenges the notion that ESI-MS results directly reflect solution-phase structures and demonstrates that the relative populations of the thermodynamically less favored gaseous carboxylate tautomer or the thermodynamically more favored gaseous phenoxide tautomer, generated from the same aqueous solution of p-hydroxybenzoic acid by ESI, can be varied back and forth by changing the probe position, capillary voltage, desolvation-gas temperature, sample infusion flow rate, and cone voltage. In other words, solvent effects are not the primary criteria that determine the relative population distributions of tautomeric carboxylate (C(-)) and phenoxide (P(-)) ions (m/z 137) generated by electrospray ionization of p-hydroxybenzoic acid. In addition, we propose that the observed ratio of the P(-) and C(-) forms indirectly reflects the relative contribution of the charge-residue or ion-evaporation process that occurs during the electrospray ion generation process. PMID:27164186

  9. A High Omega-3 Fatty Acid Multinutrient Supplement Benefits Cognition and Mobility in Older Women: A Randomized, Double-blind, Placebo-controlled Pilot Study

    PubMed Central

    Strike, Siobhán C.; Carlisle, Alison; Gibson, E. Leigh

    2016-01-01

    Background. Mobility is a key determinant of frailty in older persons, and a variety of dietary factors, such as the omega-3 fatty acid docosahexaenoic acid (DHA), are positively associated with decreased frailty and improved mobility and cognition in older persons. Methods. The effects of a multinutrient supplement on mobility and cognition were assessed in postmenopausal women (60–84 years). Participants received either Efalex Active 50+ (1g DHA, 160mg eicosapentaenoic acid, 240mg Ginkgo biloba, 60mg phosphatidylserine, 20mg d-α tocopherol, 1mg folic acid, and 20 µg vitamin B12 per day; N = 15) or placebo (N = 12) for 6 months. Mobility was assessed by VICON 9 motion capture camera system synchronized with Kistler force plates, cognitive performance by computerized cognitive function tests, and blood fatty acid levels by pin-prick analysis. Results. Significant effects of treatment were seen in two of the four cognitive tests, with shorter mean latencies in a motor screening task (p < .05) and more words remembered (p < .03), and one of the three primary mobility measures with improved habitual walking speed (p < .05). Compared with the placebo group, supplementation also resulted in significantly higher blood DHA levels (p < .02). Conclusions. In this pilot study, multinutrient supplementation improved cognition and mobility in able older females at clinically relevant levels, suggesting a potential role in reducing the decline to frailty. PMID:26265727

  10. Reversed-phase high-performance liquid chromatography of the stereoisomers of some sweetener peptides with a helical nickel(II) chelate in the mobile phase.

    PubMed

    Bazylak, G

    1994-05-13

    The use of a chiral mobile phase additive in the form of the helically distorted, square-planar, chiral nickel(II) chelate dl-[4,4'-(1-methyl-2-propylethane-1,2-diyldiimino)bis(pent-3 -en-2- onato)]nickel(II) was investigated for the resolution of optical isomers of dipeptide-type sweeteners, viz., aspartame, alitame and antiaspartame, and some of their decomposition products, e.g., diketopiperazines. The chiral discrimination mechanism for the solutes was elucidated. The proposed chiral RP-HPLC system was applied to the stereoselective determination of aspartame impurities in samples of its commercial dietetic and pharmaceutical formulations. PMID:8032495

  11. Technology Development for Phosphoric Acid Fuel Cell Powerplant, Phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1980-01-01

    The technology development for materials, cells, and reformers for on site integrated energy systems is described. The carbonization of 25 cu cm, 350 cu cm, and 1200 cu cm cell test hardware was accomplished and the performance of 25 cu cm fuel cells was improved. Electrochemical corrosion rates of graphite/phenolic resin composites in phosphoric acid were determined. Three cells (5 in by 15 in stacks) were operated for longer than 7000 hours. Specified endurance stacks completed a total of 4000 hours. An electrically heated reformer was tested and is to provide hydrogen for 23 cell fuel cell stack.

  12. Organic acids enhanced decoloration of azo dye in gas phase surface discharge plasma system.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-01-25

    A gas phase surface discharge plasma combined with organic acids system was developed to enhance active species mass transfer and dye-containing wastewater treatment efficacy, with Acid Orange II (AO7) as the model pollutant. The effects of discharge voltage and various organic acid additives (acetic acid, lactic acid and nonoic acid) on AO7 decoloration efficiency were evaluated. The experimental results showed that an AO7 decoloration efficiency of approximately 69.0% was obtained within 4 min of discharge plasma treatment without organic acid addition, which was improved to 82.8%, 83.5% and 88.6% within the same treatment time with the addition of acetic acid, lactic acid and nonoic acid, respectively. The enhancement effects on AO7 decoloration efficiency could be attributed to the decrease in aqueous surface tension, improvement in bubble distribution and shape, and increase in ozone equivalent concentration. The AO7 wastewater was biodegradable after discharge plasma treatment with the addition of organic acid. AO7 decomposition intermediates were analyzed by UV-vis spectrometry and GC-MS; 2-naphthol, 1,4-benzoquinone, phthalic anhydride, coumarin, 1,2-naphthoquinone, and 2-formyl-benzoic acid were detected. A possible pathway for AO7 decomposition in this system was proposed. PMID:26444488

  13. Fractionation of humic acids according to their hydrophobicity, size, and charge-dependent mobility by the salting-out method

    NASA Astrophysics Data System (ADS)

    Zavarzina, A. G.; Vanifatova, N. G.; Stepanov, A. A.

    2008-12-01

    Humic acids (HAs) represent heterogeneous and polydisperse mixture of molecules that differ in their chemical structure, composition, and functional properties. Fractionation of HAs is of key importance for understanding their interactions with various organic and inorganic compounds, for studying their physiological activity, and for predicting their behavior in natural environments and agroecosystems. Existing fractionation methods are rather laborious and time consuming, which limits their application in fundamental science and industry. It is shown that fractionation of humic acids with ammonium sulfate ensures their preparative separation with respect to (a) hydrophobicity, (b) molecular size, and (c) charge dependent on the amount of functional groups. Salting out at the lowest and highest degrees of saturation with ammonium sulfate, upon which precipitation of the molecules occurs, makes it possible to separate humic acids into functionally different high-molecular-weight/hydrophobic and low-molecular-weight/hydrophilic fractions. The first fraction is characterized by a lower electrophoretic mobility than the second fraction. The weight percentage of the components coagulated at the lowest degree of salt saturation can be used as a quantitative parameter for comparing hydrophobic properties of humic acids. Salting out is recommended as a fast, simple, and cheap alternative to chromatographic methods for preparative separation of humic acids if large amounts of functionally different fractions need to be obtained.

  14. Gas phase measurements of mono-fluoro-benzoic acids and the dimer of 3-fluoro-benzoic acid.

    PubMed

    Daly, Adam M; Carey, Spencer J; Pejlovas, Aaron M; Li, Kexin; Kang, Lu; Kukolich, Stephen G

    2015-04-14

    The microwave spectrum of the mono-fluoro-benzoic acids, 2-fluoro-, 3-fluoro-, and 4-fluoro-benzoic acid have been measured in the frequency range of 4-14 GHz using a pulsed beam Fourier transform microwave spectrometer. Measured rotational transition lines were assigned and fit using a rigid rotor Hamiltonian. Assignments were made for 3 conformers of 2-fluorobenzoic acid, 2 conformers of 3-fluorobenzoic acid, and 1 conformer of 4-fluorobenzoic acid. Additionally, the gas phase homodimer of 3-fluorobenzoic acid was detected, and the spectra showed evidence of proton tunneling. Experimental rotational constants are A(0(+)) = 1151.8(5), B(0(+)) = 100.3(5), C(0(+)) = 87.64(3) MHz and A(0(-)) = 1152.2(5), B(0(-)) = 100.7(5), C(0(-)) = 88.85(3) MHz for the two ground vibrational states split by the proton tunneling motion. The tunneling splitting (ΔE) is approximately 560 MHz. This homodimer appears to be the largest carboxylic acid dimer observed with F-T microwave spectroscopy. PMID:25877574

  15. Gas phase measurements of mono-fluoro-benzoic acids and the dimer of 3-fluoro-benzoic acid

    NASA Astrophysics Data System (ADS)

    Daly, Adam M.; Carey, Spencer J.; Pejlovas, Aaron M.; Li, Kexin; Kang, Lu; Kukolich, Stephen G.

    2015-04-01

    The microwave spectrum of the mono-fluoro-benzoic acids, 2-fluoro-, 3-fluoro-, and 4-fluoro-benzoic acid have been measured in the frequency range of 4-14 GHz using a pulsed beam Fourier transform microwave spectrometer. Measured rotational transition lines were assigned and fit using a rigid rotor Hamiltonian. Assignments were made for 3 conformers of 2-fluorobenzoic acid, 2 conformers of 3-fluorobenzoic acid, and 1 conformer of 4-fluorobenzoic acid. Additionally, the gas phase homodimer of 3-fluorobenzoic acid was detected, and the spectra showed evidence of proton tunneling. Experimental rotational constants are A(0+) = 1151.8(5), B(0+) = 100.3(5), C(0+) = 87.64(3) MHz and A(0-) = 1152.2(5), B(0-) = 100.7(5), C(0-) = 88.85(3) MHz for the two ground vibrational states split by the proton tunneling motion. The tunneling splitting (ΔE) is approximately 560 MHz. This homodimer appears to be the largest carboxylic acid dimer observed with F-T microwave spectroscopy.

  16. Gas phase measurements of mono-fluoro-benzoic acids and the dimer of 3-fluoro-benzoic acid

    SciTech Connect

    Daly, Adam M.; Carey, Spencer J.; Pejlovas, Aaron M.; Li, Kexin; Kukolich, Stephen G.; Kang, Lu

    2015-04-14

    The microwave spectrum of the mono-fluoro-benzoic acids, 2-fluoro-, 3-fluoro-, and 4-fluoro-benzoic acid have been measured in the frequency range of 4-14 GHz using a pulsed beam Fourier transform microwave spectrometer. Measured rotational transition lines were assigned and fit using a rigid rotor Hamiltonian. Assignments were made for 3 conformers of 2-fluorobenzoic acid, 2 conformers of 3-fluorobenzoic acid, and 1 conformer of 4-fluorobenzoic acid. Additionally, the gas phase homodimer of 3-fluorobenzoic acid was detected, and the spectra showed evidence of proton tunneling. Experimental rotational constants are A(0{sup +}) = 1151.8(5), B(0{sup +}) = 100.3(5), C(0{sup +}) = 87.64(3) MHz and A(0{sup −}) = 1152.2(5), B(0{sup −}) = 100.7(5), C(0{sup −}) = 88.85(3) MHz for the two ground vibrational states split by the proton tunneling motion. The tunneling splitting (ΔE) is approximately 560 MHz. This homodimer appears to be the largest carboxylic acid dimer observed with F-T microwave spectroscopy.

  17. Development of an achiral supercritical fluid chromatography method with ultraviolet absorbance and mass spectrometric detection for impurity profiling of drug candidates. Part I: Optimization of mobile phase composition.

    PubMed

    Lemasson, Elise; Bertin, Sophie; Hennig, Philippe; Boiteux, Hélène; Lesellier, Eric; West, Caroline

    2015-08-21

    Supercritical fluid chromatography (SFC) is a very useful tool in the purpose of impurity profiling of drug candidates, as an adequate selection of stationary phases can provide orthogonal separations so as to maximize the chances to see all impurities. The purpose of the present work is to develop a method for chemical purity assessment. The first part, presented here, focuses on mobile phase selection to ensure adequate elution and detection of drug-like molecules, while the second part focuses on stationary phase selection for optimal separation and orthogonality. The use of additives in the carbon dioxide - solvent mobile phase in SFC is now commonplace, and enables in particular to increase the number of eluted compounds and to improve peak shapes. The objective of this first part was to test different additives (acids, bases, salts and water) for their chromatographic performance assessed in gradient elution with a diode-array detector, but also for the mass responses obtained with a single-quadrupole mass detector, equipped with an electrospray ionization source (Waters ACQUITY QDa). In this project, we used a selection of one hundred and sixty compounds issued from Servier Research Laboratories to screen a set of columns and additives in SFC with a Waters ACQUITY UPC(2) system. The selected columns were all high-performance columns (1.7-1.8μm with totally porous particles or 2.6-2.7μm with superficially porous particles) with a variety of stationary phase chemistries. Initially, eight additives dissolved in the methanol co-solvent were tested on a UPC(2) ACQUITY UPC(2) HSS C18 SB column. A Derringer desirability function was used to classify the additives according to selected criteria: elution capability, peak shapes, UV baseline drift, and UV and mass responses (signal-to-noise ratios). Following these tests, the two best additives (ammonium acetate and ammonium hydroxide) were tested on a larger number of columns (10) where the two additives appeared

  18. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    PubMed

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria. PMID:25575969

  19. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1981-01-01

    The development of materials, cell components, and reformers for on site integrated energy systems is described. Progress includes: (1) heat-treatment of 25 sq cm, 350 sq cm and 1200 sq cm cell test hardware was accomplished. Performance of fuel cells is improved by using this material; (2) electrochemical and chemical corrosion rates of heat-treated and as-molded graphite/phenolic resin composites in phosphoric acid were determined; (3) three cell, 5 in. x 15 in. stacks operated for up to 10,000 hours and 12 in. x 17 in. five cell stacks were tested for 5,000 hours; (4) a three cell 5 in. x 15 in. stack with 0.12 mg Pt/sq cm anodes and 0.25 mg Pt/sq cm cathodes was operated for 4,500 hours; and (5) an ERC proprietary high bubble pressure matrix, MAT-1, was tested for up to 10,000 hours.

  20. High-performance liquid chromatographic determination of ursodeoxycholic acid after solid phase extraction of blood serum and detection-oriented derivatization.

    PubMed

    Nobilis, M; Pour, M; Kunes, J; Kopecký, J; Kvĕtina, J; Svoboda, Z; Sládková, K; Vortel, J

    2001-03-01

    Ursodeoxycholic acid (3 alpha,7 beta-dihydroxy-5 beta-cholanoic acid, UDCA) is a therapeutically applicable bile acid widely used for the dissolution of cholesterol-rich gallstones and in the treatment of chronic liver diseases associated with cholestasis. UDCA is more hydrophilic and less toxic than another therapeutically valuable bile acid, chenodeoxycholic acid (CDCA), the 7 alpha-epimer of UDCA. Procedures for sample preparation and HPLC determination of UDCA in blood serum were developed and validated. A higher homologue of UDCA containing an additional methylene group in the side chain was synthetized and used as an internal standard (IS). Serum samples with IS were diluted with a buffer (pH=7). The bile acids and IS were captured using solid phase extraction (C18 cartridges). The carboxylic group of the analytes was derivatized using 2-bromo-2'-acetonaphthone (a detection-oriented derivatization), and reaction mixtures were analyzed (HPLC with UV 245 nm detection; a 125--4 mm column containing Lichrospher 100 C18, 5 microm; mobile phase: acetonitrile--water, 6:4 (v/v)). Following validation, this method was used for pharmacokinetic studies of UDCA in humans. PMID:11248487

  1. Molecularly imprinted polymer microspheres for solid-phase extraction of protocatechuic acid in Rhizoma homalomenae.

    PubMed

    Chen, Fang-Fang; Wang, Guo-Ying; Shi, Yan-Ping

    2011-10-01

    Molecularly imprinted polymers (MIPs) had been prepared by precipitation polymerization method using acrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, acetonitrile as the porogen solvent and protocatechuic acid (PA), one of phenolic acids, as the template molecule. The MIPs were characterized by scanning electron microscopy and Fourier transform infrared, and their performance relative to non-imprinted polymers was assessed by equilibrium binding experiments. Six structurally similar phenolic acids, including p-hydroxybenzoic acid, gallic acid, salicylic acid, syringic acid, vanillic acid, ferulic acid were selected to assess the selectivity and recognition capability of the MIPs. The MIPs were applied to extract PA from the traditional Chinese medicines as a solid-phase extraction sorbent. The resultant cartridge showed that the MIPs have a good extraction performance and were able to selectively extract almost 82% of PA from the extract of Rhizoma homalomenae. Thus, the proposed molecularly imprinted-solid phase extraction-high performance liquid chromatography method can be successfully used to extract and analyse PA in traditional Chinese medicines. PMID:21809445

  2. The use of phase sequence image sets to reconstruct the total volume occupied by a mobile lung tumor

    SciTech Connect

    Gagne, Isabelle M.; Robinson, Don M.; Halperin, Ross; Roa, Wilson

    2005-07-15

    The use of phase sequence image (PSI) sets to reveal the total volume occupied by a mobile target is presented. Isocontrast composite clinical target volumes (CCTVs) may be constructed from PSI sets in order to reveal the total volume occupied by a mobile target during the course of its travel. The ability of the CCTV technique to properly account for target motion is demonstrated by comparison to contours of the true total volume occupied (TVO) for a number of experimental phantom geometries. Finally, using real patient data, the clinical utility of the CCTV technique to properly account for internal tumor motion while minimizing the volume of healthy lung tissue irradiated is assessed by comparison to the standard approach of applying safety margins. Results of the phantom study reveal that CCTV cross sections constructed at the 20% isocontrast level yield good agreement with the total cross sections (TXO) of mobile targets. These CCTVs conform well to the TVOs of the moving targets examined whereby the addition of small uniform margins ensures complete circumscription of the TVO with the inclusion of minimal amounts of surrounding external volumes. The CCTV technique is seen to be clearly superior to the common practice of the addition of safety margins to individual CTV contours in order to account for internal target motion. Margins required with the CCTV technique are eight to ten times smaller than those required with individual CTVs.

  3. Impact of undissociated volatile fatty acids on acidogenesis in a two-phase anaerobic system.

    PubMed

    Xiao, Keke; Zhou, Yan; Guo, Chenghong; Maspolim, Yogananda; Ng, Wun Jern

    2016-04-01

    This study investigated the degradation and production of volatile fatty acids (VFAs) in the acidogenic phase reactor of a two-phase anaerobic system. 20 mmol/L bromoethanesulfonic acid (BESA) was used to inhibit acidogenic methanogens (which were present in the acidogenic phase reactor) from degrading VFAs. The impact of undissociated volatile fatty acids (unVFAs) on "net" VFAs production in the acidogenic phase reactor was then evaluated, with the exclusion of concurrent VFAs degradation. "Net" VFAs production from glucose degradation was partially inhibited at high unVFAs concentrations, with 59%, 37% and 60% reduction in production rates at 2190 mg chemical oxygen demand (COD)/L undissociated acetic acid (unHAc), 2130 mg COD/L undissociated propionic acid (unHPr) and 2280 mg COD/L undissociated n-butyric acid (unHBu), respectively. The profile of VFAs produced further indicated that while an unVFA can primarily affect its own formation, there were also unVFAs that affected the formation of other VFAs. PMID:27090711

  4. Trellis coding with Continuous Phase Modulation (CPM) for satellite-based land-mobile communications

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This volume of the final report summarizes the results of our studies on the satellite-based mobile communications project. It includes: a detailed analysis, design, and simulations of trellis coded, full/partial response CPM signals with/without interleaving over various Rician fading channels; analysis and simulation of computational cutoff rates for coherent, noncoherent, and differential detection of CPM signals; optimization of the complete transmission system; analysis and simulation of power spectrum of the CPM signals; design and development of a class of Doppler frequency shift estimators; design and development of a symbol timing recovery circuit; and breadboard implementation of the transmission system. Studies prove the suitability of the CPM system for mobile communications.

  5. Novel Ultra Stable Silica-Based Stationary Phases for Reversed Phase Liquid Chromatography-Study of a Hydrophobically Assisted Weak Acid Cation Exchange Phase

    PubMed Central

    Zhang, Yu; Carr, Peter W.

    2010-01-01

    A mixed-mode reversed-phase/weak cation exchange (RP/WCX) phase has been developed by introducing a small amount of carboxylate functionality into a hydrophobic hyper-crosslinked (HC) platform. This silica based HC-platform was designed to form an extensive polystyrene network completely confined to the particle's surface. The fully connected polymer network prevents the loss of bonded phase, which leads to superior hydrolytic stability of the new phase when compared to conventional silica based phases. Compared to previously introduced HC phases the added carboxylic groups impart a new weak cation exchange selectivity to the base hydrophobic HC platform. The phase thus prepared shows a mixed-mode retention mechanism, allowing for both neutral organic compounds and bases of a wide polarity range to be simultaneously separated on the same phase under the same conditions. In addition, the new phase offers the flexibility that gradients in organic modifier, pH or ionic competitors can be used to affect the separation of a wide range of solutes. Moreover, the inherent weak acid cation exchange groups allow formic and acetic acid buffers to be used as eluents thereby avoiding the mass spectrometric ionization suppression problems concomitant to the use of non-volatile additives such as strong amine modifiers (e.g. triethylamine) or salts (e.g. NaCl) to elute basic solutes from the strong cation exchange phase which was previously developed in this lab. The use of the new phase for achieving strong retention of rather hydrophilic neurotransmitters and drugs of abuse without the need for ion pairing agents is demonstrated. PMID:21227426

  6. Syntheses, phase behavior, supramolecular chirality, and field-effect carrier mobility of asymmetrically end-capped mesogenic oligothiophenes.

    PubMed

    Meng, Qingwei; Sun, Xiao-Hua; Lu, Zhengyu; Xia, Ping-Fang; Shi, Zehua; Chen, Dongzhong; Wong, Man Shing; Wakim, Salem; Lu, Jianping; Baribeau, Jean-Marc; Tao, Ye

    2009-01-01

    phase of the single end-capped oligothiophenes can be utilized to improve field-effect charge mobility. C(10)O-Ar-OT(4)-H showed a hole mobility of 0.07 cm(2) V(-1) s(-1) when deposited on octyltrichlorosilane-treated substrates at 140 degrees C and the on/off current ratios reached 5 x 10(5); on the other hand, its mobility was only 8 x 10(-3) cm(2) V(-1) s(-1) on the same substrate when deposited at room temperature. PMID:19219863

  7. Development of a gas phase source for perfluoroalkyl acids to examine atmospheric sampling methods.

    PubMed

    MacInnis, John J; VandenBoer, Trevor C; Young, Cora J

    2016-06-21

    An inability to produce environmentally relevant gaseous mixing ratios of perfluoroalkyl acids (PFAAs), ubiquitous global contaminants, limits the analytical reliability of atmospheric chemists to make accurate gas and particulate measurements that are demonstrably free of interferences due to sampling artefacts. A gas phase source for PFAAs based on the acid displacement mechanism using perfluoropropionate (PFPrA), perfluorobutanoate (PFBA), perfluorohexanoate (PFHxA), and perfluorooctanoate (PFOA) has been constructed. The displacement efficiency of gas phase perfluorocarboxylic acids (PFCAs) is inversely related to chain length. Decreasing displacement efficiencies for PFPrA, PFBA, PFHxA, and PFOA were 90% ± 20%, 40% ± 10%, 40% ± 10%, 9% ± 4%, respectively. Generating detectable amounts of gas phase perfluorosulfonic acids (PFSAs) was not possible. It is likely that lower vapour pressure and much higher acidity play a role in this lack of emission. PFCA emission rates were not elevated by increasing relative humidity (25%-75%), nor flow rate of carrier gas from 33-111 sccm. Overall, reproducible gaseous production of PFCAs was within the error of the production of hydrochloric acid (HCl) as a displacing acid (±20%) and was accomplished using a dry nitrogen flow of 33 ± 2 sccm. A reproducible mass emission rate of 0.97 ± 0.10 ng min(-1) (n = 8) was observed for PFBA. This is equivalent to an atmospheric mixing ratio of 12 ppmv, which is easily diluted to environmentally relevant mixing ratios of PFBA. Conversely, generating gas phase perfluorononanoic acid (PFNA) by sublimating the solid acid under the same conditions produced a mass emission rate of 2800 ng min(-1), which is equivalent to a mixing ratio of 18 ppthv and over a million times higher than suspected atmospheric levels. Thus, for analytical certification of atmospheric sampling methods, generating gas phase standards for PFCAs is best accomplished using acid displacement under dry conditions

  8. Influence of crystallization-induced amorphous phase confinement on α- and β-relaxation molecular mobility in parylene F

    NASA Astrophysics Data System (ADS)

    Diaham, S.; Bechara, M.; Locatelli, M.-L.; Lebey, T.

    2011-09-01

    The molecular mobility of cooperative segmental (α-process) and local (β-process) motions in semicrystalline fluorinated parylene (PA-F) films has been studied using broadband dielectric spectroscopy in a wide temperature range. Particularly, the α-relaxation is, for the first time in a semicrystalline polymer, probed well above the glass transition temperature (˜10Tg) based on the PA-F strong difference between Tg and the crystallization temperature (Tc ˜ 16Tg). The influence of the amorphous phase confinement on the chain dynamics, induced by increasing crystallinity, is also explored. Thus, in the range of Tg, the α-relaxation is described by two crossover Vogel-Fulcher-Tamman characteristics, and the high temperature one presents an exacerbated low fragility. The space confinement of the amorphous regions, as characterized by x-ray diffraction, shows an important mobility restriction of both the α- and β-relaxations. The β-process, which has been related to CF2 group local motions, does not present a modification of its activation energy (Ea ˜ 30.8 kJ mol-1) with confinement, showing that it happens in the pure amorphous regions. The dielectric strength analysis of each process, through the Onsager-Kirkwood-Fröhlich (OKF) theory, has demonstrated that a rigid amorphous phase is strongly involved in the very high temperature range well above Tg. In the range around Tg, a peculiar behavior of the low temperature α-relaxation dielectric strength is reported, in agreement with the OKF temperature decreasing dependency that has been related to cooperative rearranging regions in the pure amorphous phase. The disappearance of the α-relaxation with the amorphous phase confinement leads to a transformation from 2D to 3D crystallite arrangements of the PA-F chains in correlation with the formation of spherulitic structures.

  9. Effect of carbonaceous soil amendments on potential mobility of weak acid herbicides in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of carbonaceous amendments in soil has been proposed to decrease potential offsite transport of weak acid herbicides and metabolites by increasing their sorption to soil. The effects of organic olive mill waste, biochars from different feed stocks, and humic acid bound to clay on sorption of MCP...

  10. Impact of metabolism and growth phase on the hydrogen isotopic composition of microbial fatty acids

    PubMed Central

    Heinzelmann, Sandra M.; Villanueva, Laura; Sinke-Schoen, Danielle; Sinninghe Damsté, Jaap S.; Schouten, Stefan; van der Meer, Marcel T. J.

    2015-01-01

    Microorganisms are involved in all elemental cycles and therefore it is important to study their metabolism in the natural environment. A recent technique to investigate this is the hydrogen isotopic composition of microbial fatty acids, i.e., heterotrophic microorganisms produce fatty acids enriched in deuterium (D) while photoautotrophic and chemoautotrophic microorganisms produce fatty acids depleted in D compared to the water in the culture medium (growth water). However, the impact of factors other than metabolism have not been investigated. Here, we evaluate the impact of growth phase compared to metabolism on the hydrogen isotopic composition of fatty acids of different environmentally relevant microorganisms with heterotrophic, photoautotrophic and chemoautotrophic metabolisms. Fatty acids produced by heterotrophs are enriched in D compared to growth water with εlipid/water between 82 and 359‰ when grown on glucose or acetate, respectively. Photoautotrophs (εlipid/water between −149 and −264‰) and chemoautotrophs (εlipid/water between −217 and −275‰) produce fatty acids depleted in D. Fatty acids become, in general, enriched by between 4 and 46‰ with growth phase which is minor compared to the influence of metabolisms. Therefore, the D/H ratio of fatty acids is a promising tool to investigate community metabolisms in nature. PMID:26005437

  11. Fast online determination of surfactant inhibition in acidic phase bioreactors.

    PubMed

    Feitkenhauer, H

    2004-01-01

    Surfactants have been shown to inhibit the anaerobic digestion process severely, with the methanogenic microorganisms being the most affected. The diverse nature of surfactants used even in one (e.g. textile finishing) plant makes an online determination of surfactants sometimes very difficult and expensive. Therefore a fast online determination of inhibitory effects on the acidogenic microorganisms (first step of the degradation cascade) can help to give an early warning signal or to calculate a "pseudo"-surfactant concentration. In a two-phase system this information can be used to protect the methanogenic reactor against surfactant overloading and its long term negative effects. In this paper it is shown that the inhibition is a consequence of microbial inhibition and is not caused by an inactivation of extracellular hydrolytic enzymes (released by the cells for biopolymer cleavage). A titration technique was successfully employed to measure the surfactant inhibition in a laboratory-scale acidification reactor. Additional experiments demonstrate (using sodium dodecyl sulfate as the model substance) how inhibitory effects (and strategies to overcome inhibitory effects) can be investigated efficiently. PMID:14979534

  12. Electric field increases the phase transition temperature in the bilayer membrane of phosphatidic acid.

    PubMed

    Antonov, V F; Smirnova EYu; Shevchenko, E V

    1990-02-01

    The effect of the electric field on the phase transition temperature (Tc) of acidic 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA) and 1,2-dipalmitoyl-sn-glycero-3-thionphosphate (thion-DPPA) and zwitterion, i.e. 1,2-dipalmitoyl-rac-3-phosphocholine and 1,2-distearoyl-rac-glycero-3-phosphocholine (DPPC and DSPC), lipids has been investigated. The phase transition was detected using the jump-like increase effect in the conductance of the planar bilayer membrane. A voltage increase to 150 mV has been shown to increase the phase transition temperature in a bilayer lipid membrane (BLM) of phosphatidic acids (DPPA and thion-DPPA) by 8-12 degrees C while the transition temperature in the bilayer of zwitterion lipids (DPPC and DSPC) increases insignificantly. The increasing of Tt in BLM of acidic lipids is attributed to the voltage-induced changes in the molecule packing density. PMID:2340602

  13. Features of separation on polymeric reversed phase for two classes of higher saturated fatty acids esters

    NASA Astrophysics Data System (ADS)

    Deineka, V. I.; Lapshova, M. S.; Zakharenko, E. V.; Deineka, L. A.

    2013-11-01

    The principles of sorption on polymeric reversed phase (PRP) YMS C30 for members of the two classes of esters formed by higher saturated fatty acids, i.e., lutein diesters ( I) and triacylglycerols ( II), are investigated. It is shown that the logarithm of the retention factor increases nonlinearly with an increase of the length of the acid radical, although the retention on PRP is higher in the case of I and lower in the case of II, compared to their retention on traditional monomeric reversed phase (MRP) Kromasil-100 5C18; however, the equivalence of the contributions to the retention of I that correspond to an identical change in acids, does not depend on the length of the hydrocarbon radical of the second acid. It is noted that the Van't Hoff plot for PRP contains a curve break, indicating a change in the retention mechanism upon a rise in temperature.

  14. Observations of a high-pressure phase creation in oleic acid

    NASA Astrophysics Data System (ADS)

    Kościesza, R.; Kulisiewicz, L.; Delgado, A.

    2010-03-01

    Oleic acid is one of the unsaturated fatty acids which frequently appears in food products such as edible fats and oils. A molecule of oleic acid possesses a double carbon bond, C=C, which is responsible for a transition to a new phase when pressure is applied. This work presents the results of optical observations of such a transition. The observations were made in two cases, the first being static p-T conditions under 60 MPa at 20°C and the other the dynamic application of the pressure up to 350 MPa. The obtained visualization reveals differences in the creation of the phase and in its further appearance. Some crystal forms may be recognized. These results tend to be of interest for food engineers due to increasing interest in high-pressure food preservation among nutritionists and medical scientists concerned with fatty acids.

  15. Gas-phase acidities of tetrahedral oxyacids from ab initio electronic structure theory

    SciTech Connect

    Rustad, J.R.; Dixon, D.A.; Kubicki, J.D.; Felmy, A.R.

    2000-05-04

    Density functional calculations have been performed on several protonation states of the oxyacids of Si, P, V, As, Cr, and S. Structures and vibrational frequencies are in good agreement with experimental values where these are available. A reasonably well-defined correlation between the calculated gas-phase acidities and the measured pK{sub a} in aqueous solution has been found. The pK{sub a}/gas-phase acidity slopes are consistent with those derived from previous molecular mechanics calculations on ferric hydrolysis and the first two acidity constants for orthosilicic acid. The successive deprotonation of other H{sub n}TO{sub 4} species, for a given tetrahedral anion T are roughly consistent with this slope, but not to the extent that there is a universal correlation among all species.

  16. Phase boundary mobility in naturally deformed, high-grade quartzofeldspathic rocks: evidence for diffusional creep

    NASA Astrophysics Data System (ADS)

    Gower, Robert J. W.; Simpson, Carol

    1992-03-01

    Grain shape fabrics and optical microstructures of some quartzofeldspathic rocks deformed under upper amphibolite facies conditions in the southwestern Grenville Province, Ontario, Canada, suggest that quartz and feldspar have accommodated intracrystalline plastic strains by both diffusional and dislocation creep. In these rocks, quartz and feldspar form polycrystalline domains separated by gently curved and locally cuspate phase boundaries whose morphology is similar in certain respects to the phase boundary morphology of rocks annealed experimentally under hydrostatic stress conditions. In the naturally deformed rocks, however, phase boundary cusps consistently point along the foliation and parallel to the mineral fibre lineation (i.e. in directions of inferred finite extension) which implies that phase boundary motion and cusp formation occurred during deformation. Optical microstructures in feldspar and crystallographic preferred orientations in quartz are consistent with the accommodation of some intracrystalline plastic strains by dislocation creep. However, the morphology of quartz-feldspar phase boundaries cannot be explained by either dislocation creep or static annealing alone. We propose that phase boundary motion resulted from a diffusion-assisted process involving dissolution at foliation-parallel quartz-feldspar phase boundaries, mass transfer over length scales of the order of feldspar domain size (≈200 μm or greater) and precipitation at quartz-feldspar phase boundary cusps. This study extends the range of natural deformation conditions under which diffusional creep has been identified in quartzofeldspathic rocks. It also has important implications for the natural rheological behavior of the mid- and lower-continental crust.

  17. Fatty Acid Chain Length Dependence of Phase Separation Kinetics in Stratum Corneum Models by IR Spectroscopy.

    PubMed

    Mendelsohn, Richard; Rabie, Emann; Walters, Russel M; Flach, Carol R

    2015-07-30

    The main barrier to permeability in human skin resides in the stratum corneum (SC), a layered structure consisting of anucleated, flattened cells (corneocytes) embedded in a heterogeneous lamellar lipid matrix. While lipid structures and packing propensities in the SC and in SC models have been extensively investigated, only limited data are available concerning the kinetics and mechanism of formation of lamellar phases and particular lipid packing motifs. In our prior investigation, kinetic IR spectroscopy measurements probed the temporal sequence of phase separation leading to ordered structures in a three component SC model of equimolar structurally heterogeneous ceramide[NS], chain perdeuterated stearic acid, and cholesterol. In the current work, the phase separation kinetic effects of specific fatty acid chain lengths with a synthetic structurally homogeneous ceramide[NS] in similar ternary mixtures are examined. These are compared with a mixture containing ceramide[NS] with an unsaturated acid chain. The kinetic events are sensitive to the difference in chain lengths between the ceramide acid chain and the fatty acid as well as to the presence of unsaturation in the former. The observed kinetic behaviors span a wide range of phase separation times, ranging from the formation of a solid solution stable for at least 200 h, to a system in which an orthorhombic fatty acid structure is essentially completely formed within the time resolution of the experiment (15 min). The data seem to offer some features of a spinodal phase separation at relatively short times. Overall the approach offers a possible means for addressing several unanswered questions pertinent to skin pharmacology, such as the roles of a wide variety of ceramide and fatty acid species and the design of therapeutic interventions for repair of pathological conditions of the SC. PMID:26131756

  18. Combined effects of potassium chloride and ethanol as mobile phase modulators on hydrophobic interaction and reversed-phase chromatography of three insulin variants.

    PubMed

    Johansson, Karolina; Frederiksen, Søren S; Degerman, Marcus; Breil, Martin P; Mollerup, Jørgen M; Nilsson, Bernt

    2015-02-13

    The two main chromatographic modes based on hydrophobicity, hydrophobic interaction chromatography (HIC) and reversed-phase chromatography (RPC), are widely used for both analytical and preparative chromatography of proteins in the pharmaceutical industry. Despite the extensive application of these separation methods, and the vast amount of studies performed on HIC and RPC over the decades, the underlying phenomena remain elusive. As part of a systematic study of the influence of mobile phase modulators in hydrophobicity-based chromatography, we have investigated the effects of both KCl and ethanol on the retention of three insulin variants on two HIC adsorbents and two RPC adsorbents. The focus was on the linear adsorption range, separating the modulator effects from the capacity effects, but some complementary experiments at higher load were included to further investigate observed phenomena. The results show that the modulators have the same effect on the two RPC adsorbents in the linear range, indicating that the modulator concentration only affects the activity of the solute in the mobile phase, and not that of the solute-ligand complex, or that of the ligand. Unfortunately, the HIC adsorbents did not show the same behavior. However, the insulin variants displayed a strong tendency toward self-association on both HIC adsorbents; on one in particular. Since this causes peak fronting, the retention is affected, and this could probably explain the lack of congruity. This conclusion was supported by the results from the non-linear range experiments which were indicative of double-layer adsorption on the HIC adsorbents, while the RPC adsorbents gave the anticipated increased tailing at higher load. PMID:25595534

  19. Simultaneous determination of phenolic acids and flavonoids in rice using solid-phase extraction and RP-HPLC with photodiode array detection.

    PubMed

    Irakli, Maria N; Samanidou, Victoria F; Biliaderis, Costas G; Papadoyannis, Ioannis N

    2012-07-01

    An analytical method based on an optimized solid-phase extraction procedure and followed by high-performance liquid chromatography (HPLC) separation with diode array detection was developed and validated for the simultaneous determination of phenolic acids (gallic, protocatechuic, 4-hydroxy-benzoic, vanillic, caffeic, syringic, p-coumaric, ferulic, sinapic, and cinnamic acids), flavanols (catechin and epicatechin), flavonols (myricetin, quercetin, kaempferol, quercetin-3-O-glucoside, hyperoside, and rutin), flavones (luteolin and apigenin) and flavanones (naringenin and hesperidin) in rice flour (Oryza sativa L.). Chromatographic separation was carried out on a PerfectSil Target ODS-3 (250 mm × 4.6 mm, 3 μm) column at temperature 25°C using a mobile phase, consisting of 0.5% (v/v) acetic acid in water, methanol, and acetonitrile at a flow rate 1 mL min(-1) , under gradient elution conditions. Application of optimum extraction conditions, elaborated on both Lichrolut C(18) and Oasis HLB cartridges, have led to extraction of phenolic acids and flavonoids from rice flour with mean recoveries 84.3-113.0%. The developed method was validated in terms of linearity, accuracy, precision, stability, and sensitivity. Repeatability (n = 5) and inter-day precision (n = 4) revealed relative standard deviation (RSD) <13%. The optimized method was successfully applied to the analysis of phenolic acids and flavonoids in pigmented (red and black rice) and non-pigmented rice (brown rice) samples. PMID:22761138

  20. High-Resolution Electrospray Ionization/Ion Mobility Spectrometer for Detection of Abiotic Amino Acids

    NASA Technical Reports Server (NTRS)

    Beegle, L. W.; Terrell, C. A.; Kim, H.; Kanik, I.

    2003-01-01

    One of the primary goals of the current NASA thrust in Astrobiology is the detection and identification of organic molecules as part of an in-situ lander platform on the surface of Mars or Europa. The identification of these molecules should help determine whether indigenous organisms exist on the surface of Mars or in an undersea environment on Europa. In addition, a detailed organic chemical inventory of surface and near surface molecules will help elucidate the possibilities of life elsewhere in the Universe. Terrestrial life has, as its backbone, the family of molecules known as the amino acids (AA), and while AA can be found in the terrestrial environments as part of more complex molecules, such as peptides, and proteins, they also exist as individual molecules due to of the hydrolyses of biopolymers. In terrestrial biochemistry, there are 20 principal amino acids which are necessary for life. However, some forms of these molecules can be found in nature synthesized via abiotic process. For example, they are known to exist extraterrestrially as a component of carbonaceous meteorites. The idea that amino acids are readily created by abiotic means has been demonstrated by their positive identification in the Murchison CM2 meteorite, which fell in 1969. This meteorite was analyzed before contamination by terrestrial microbes could result. Three laboratories individually tested parts of the meteorite and concluded that the amino acids present in them were indigenous to the meteorite because, among other reasons, they had equal L- and D- enantiomers. Final identification of the constituents of the Murchison included 33 amino acids which have no known biotic source, 11 amino acids which have limited distribution and 8 (Glycine, Alanine, Valine, Proline, Leucine, Isoleucine, Aspartic Acid, and Glutamic Acid), which readily occur in terrestrial proteins.

  1. Fluoroquinolone antibiotic determination in bovine, ovine and caprine milk using solid-phase extraction and high-performance liquid chromatography-fluorescence detection with ionic liquids as mobile phase additives.

    PubMed

    Herrera-Herrera, Antonio V; Hernández-Borges, Javier; Rodríguez-Delgado, Miguel Angel

    2009-10-23

    This paper describes the use of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIm-BF(4)) as mobile phase additive for the analysis by high-performance liquid chromatography with fluorescence detection of a group of seven basic fluoroquinolone antibiotics (i.e. fleroxacin, ciprofloxacin, lomefloxacin, danofloxacin, enrofloxacin, sarafloxacin and difloxacin) in different milk samples. EMIm-BF(4) was found superior to 1-butyl-3-methylimidazolium tetrafluoroborate for the separation of the analytes from chromatographic interferences of the sample matrix. The optimized method was applied to the analysis of ovine, caprine and bovine milk, in the last case in either skimmed, semi-skimmed and full-cream milk after suitable acidic deproteination followed by a solid-phase extraction procedure. Recovery values between 73% and 113% were obtained for the three types of bovine milk samples, as well as for ovine and caprine milk (RSDs below 16% in all cases), which clearly demonstrates the applicability of the method to the three types of milk irrespective of the fat content of the samples. Limits of detection were in the range of 0.5-8.1 microg/L (approximately 0.5-25.9 microg/kg), well below the maximum residue limits established for these compounds by the current European legislation. A screening study of 24 different milk samples was also developed. In none of the samples, residues of the selected antibiotics were found. PMID:19268960

  2. Controllable Phase Separation by Boc-Modified Lipophilic Acid as a Multifunctional Extractant.

    PubMed

    Tao, Kai; Adler-Abramovich, Lihi; Gazit, Ehud

    2015-01-01

    While phase separation of immiscible liquid-liquid systems has become increasingly significant in diverse areas, the irreversible nature limits their further application in controllable extraction-concentration or capture-release fields. There is a need for the development of simple, efficient and reversible methods for numerous research and industrial extraction and separation applications. We envisioned Boc-modified lipophilic acids as a simple model for such use based on the studies of the multi-phase transitions of Boc-modified supramolecular polymeric systems. Here, we demonstrate that in the presence of Boc-7-aminoheptanoic acid (Boc-7), phase separation occurs in mixtures of miscible organic solvent and water. The separation behavior was confirmed by differential colorimetric development in aqueous and organic phases using methyl orange staining assays. Component substitution experiments verified that the phase separation results from the subtle balance between the aggregation and the solvation forces of Boc-7, and is reversible by adjusting the solution pH. Owing to the intrinsic hydrophobic properties of the organic phase and the hydrogen bonding-forming ability of the carboxyl group of Boc-7, the phase separation system captures and releases Sudan Red, fluorescein, and streptavidin in a controllable manner. Consequently, a reversible and simple phase separation system can be designed as a multifunctional extractant. PMID:26627307

  3. Controllable Phase Separation by Boc-Modified Lipophilic Acid as a Multifunctional Extractant

    PubMed Central

    Tao, Kai; Adler-Abramovich, Lihi; Gazit, Ehud

    2015-01-01

    While phase separation of immiscible liquid-liquid systems has become increasingly significant in diverse areas, the irreversible nature limits their further application in controllable extraction-concentration or capture-release fields. There is a need for the development of simple, efficient and reversible methods for numerous research and industrial extraction and separation applications. We envisioned Boc-modified lipophilic acids as a simple model for such use based on the studies of the multi-phase transitions of Boc-modified supramolecular polymeric systems. Here, we demonstrate that in the presence of Boc-7-aminoheptanoic acid (Boc-7), phase separation occurs in mixtures of miscible organic solvent and water. The separation behavior was confirmed by differential colorimetric development in aqueous and organic phases using methyl orange staining assays. Component substitution experiments verified that the phase separation results from the subtle balance between the aggregation and the solvation forces of Boc-7, and is reversible by adjusting the solution pH. Owing to the intrinsic hydrophobic properties of the organic phase and the hydrogen bonding-forming ability of the carboxyl group of Boc-7, the phase separation system captures and releases Sudan Red, fluorescein, and streptavidin in a controllable manner. Consequently, a reversible and simple phase separation system can be designed as a multifunctional extractant. PMID:26627307

  4. Controllable Phase Separation by Boc-Modified Lipophilic Acid as a Multifunctional Extractant

    NASA Astrophysics Data System (ADS)

    Tao, Kai; Adler-Abramovich, Lihi; Gazit, Ehud

    2015-12-01

    While phase separation of immiscible liquid-liquid systems has become increasingly significant in diverse areas, the irreversible nature limits their further application in controllable extraction-concentration or capture-release fields. There is a need for the development of simple, efficient and reversible methods for numerous research and industrial extraction and separation applications. We envisioned Boc-modified lipophilic acids as a simple model for such use based on the studies of the multi-phase transitions of Boc-modified supramolecular polymeric systems. Here, we demonstrate that in the presence of Boc-7-aminoheptanoic acid (Boc-7), phase separation occurs in mixtures of miscible organic solvent and water. The separation behavior was confirmed by differential colorimetric development in aqueous and organic phases using methyl orange staining assays. Component substitution experiments verified that the phase separation results from the subtle balance between the aggregation and the solvation forces of Boc-7, and is reversible by adjusting the solution pH. Owing to the intrinsic hydrophobic properties of the organic phase and the hydrogen bonding-forming ability of the carboxyl group of Boc-7, the phase separation system captures and releases Sudan Red, fluorescein, and streptavidin in a controllable manner. Consequently, a reversible and simple phase separation system can be designed as a multifunctional extractant.

  5. Discrimination Processes and Shifts in Carboxylation during the Phases of Crassulacean Acid Metabolism.

    PubMed Central

    Roberts, A.; Borland, A. M.; Griffiths, H.

    1997-01-01

    The magnitude and extent of Crassulacean acid metabolism (CAM) activity in two Clusia species was manipulated to investigate the regulation of the distinct CAM phases. First, in response to leaf-air vapor pressure deficit at night, changes in leaf conductance altered on-line carbon-isotope discrimination throughout the theoretical range for dark CO2 uptake during CAM. These ranged from the limit set by phosphoenolpyruvate carboxylase (PEPc) (-6[per mille (thousand) sign], [delta]13C equivalent of -2[per mille (thousand) sign]) to that imposed by diffusion limitation (+4[per mille (thousand) sign], [delta]13C equivalent of -12[per mille (thousand) sign]), but the lowest carbon-isotope discrimination occurred when P[square root]pa was only 0.7. Second, when the availability of external or internal sources of CO2 was reduced for both field- and greenhouse-grown plants, CO2 uptake by day via PEPc during phase II largely compensated. Third, by reducing the dark period, plants accumulated low levels of acidity, and CO2 uptake occurred throughout the subsequent light period. Discrimination switched from being dominated by PEPc (phase II) to ribulose 1,5-bisphosphate carboxylase/oxygenase (phase III), with both enzymes active during phase IV. Under natural conditions, photochemical stability is maintained by extended PEPc activity in phase II, which enhances acid accumulation and delays decarboxylation until temperature and light stress are maximal at midday. PMID:12223674

  6. The investigation of the dynamics of the phase transformation in triolein and oleic acid under pressure

    NASA Astrophysics Data System (ADS)

    Tefelski, D. B.; Siegoczyński, R. M.; Rostocki, A. J.; Kos, A.; Kościesza, R.; Wieja, K.

    2008-07-01

    An aim of our work is the understanding of processes happening during phase transformations under the pressure in triglycerides and unsaturated fatty acids. Particles of investigated liquids possess the double bond between carbon atoms, which causes the bended shape of the particle and makes its free rotation impossible. This property causes low temperatures of melting point and high temperatures of boiling and also investigated by us phase transformations. For study of the dynamics of phase transformation in these liquids we measured light transmission and light scattering at 90 degrees angle, temperature, permittivity and internal pressure versus time. We applied pressure using computer controlled pump with a stepping motor, which makes increase of the pressure steady. The phase transformation in oleic acid lasts several seconds, in triolein it lasts several minutes. We think that the elongated time of phase transformation is caused by a hooked shape of particles of triolein and the dynamics of that process is determined by the tangling of particles. We checked the influence of smaller particles of oleic acid on the phase transformation by investigating the mixture of these liquids.

  7. High-performance liquid chromatographic enantioseparation of fluorinated cyclic β(3) -amino acid derivatives on polysaccharide-based chiral stationary phases. Comparison with nonfluorinated counterparts.

    PubMed

    Lajkó, Gyula; Orosz, Tímea; Kiss, Lóránd; Forró, Enikő; Fülöp, Ferenc; Péter, Antal; Ilisz, István

    2016-09-01

    The stereoisomers of five fluorinated cyclic β(3) -amino acid derivatives and their nonfluorinated counterparts were separated on chiral stationary phases containing as chiral selectors cellulose tris-(3,5-dimethylphenyl carbamate), cellulose tris-(3-chloro-4-methylphenyl carbamate), cellulose tris-(4-methylbenzoate), cellulose tris-(4-chloro-3-methylphenyl carbamate), amylose tris-(3,5-dimethylphenyl carbamate) or amylose tris-(5-chloro-2-methylphenyl carbamate). The enantioseparations were carried out in normal-phase mode with n-hexane/alcohol/alkylamine mobile phases in the temperature range 5-40 °C. The effects of the mobile phase composition, the nature and concentration of the alcohol and alkylamine additives, the structures of the analytes and temperature on the separations were investigated. Thermodynamic parameters were calculated from plots of ln α vs. 1/T. The Δ(ΔH°) values ranged between -5.0 and +1.6 kJ/mol, while Δ(ΔS°) varied between -12.6 and +5.7 J/mol/K. The enantioseparation was enthalpically controlled, the retention factor and the separation factor decreasing with increasing temperature, but entropically controlled separation was also observed. The elution sequence was determined for all of the investigated analytes. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26874335

  8. Vapor Phase Dehydration of Glycerol to Acrolein Over SBA-15 Supported Vanadium Substituted Phosphomolybdic Acid Catalyst.

    PubMed

    Viswanadham, Balaga; Srikanth, Amirineni; Kumar, Vanama Pavan; Chary, Komandur V R

    2015-07-01

    Vapor phase dehydration of glycerol to acrolein was investigated over heteropolyacid (HPA) catalysts containing vanadium substituted phosphomolybdic acid (H4PMo11VO40) supported on mesoporous SBA-15. A series of HPA catalysts with HPA loadings varying from 10-50 wt% were prepared by impregnation method on SBA-15 support. The catalysts were characterized by X-ray diffraction, Raman spectroscopy, Fourier Transform infrared spectroscopy, temperature-programmed desorption of NH3, pyridine adsorbed FT-IR spectroscopy, scanning electron microscopy, pore size distribution and specific surface area measurements. The nature of acidic sites was examined by pyridine adsorbed FT-IR spectroscopy. XRD results suggest that the active phase containing HPA was highly dispersed at lower loadings on the support. FT-IR and Raman spectra results confirm that the presence of primary Keggin ion structure of HPA on the support and it was not affected during the preparation of catalysts. Pore size distribution results reveal that all the samples show unimodel pore size distribution with well depicted mesoporous structure. NH3-TPD results suggest that the acidity of catalysts increased with increase of HPA loading. The findings of acidity measurements by FT-IR spectra of pyridine adsorption reveals that the catalysts consist both the Brønsted and Lewis acidic sites and the amount of Brønsted acidic sites are increasing with HPA loading. SBA-15 supported vanadium substituted phosphomolybdic acid catalysts are found to be highly active during the dehydration reaction and exhibited 100% conversion of glycerol (10 wt% of glycerol) and the acrolein selectivity was appreciably changed with HPA active phase loading. The catalytic functionalities during glycerol dehydration are well correlated with surface acidity of the catalysts. PMID:26373149

  9. Phase diagram involving the mesomorphic behavior of binary mixture of sodium oleate and orthophosphoric acid

    NASA Astrophysics Data System (ADS)

    Govindaiah, T. N.; Sreepad, H. R.

    2015-04-01

    The present investigation deals with the binary mixture of two non-mesogenic compounds, viz. sodium oleate (Naol) and orthophosphoric acid (H3PO4) which exhibits very interesting liquid crystalline smectic phases at large range of concentrations and temperature. The mixtures with concentrations ranging from 10% to 90% Naol in H3PO4 exhibit SmA, SmC, SmE and SmB phases, sequentially when the specimen is cooled from its isotropic phase. Physical properties, such as ultrasonic velocity, adiabatic compressibility and molar compressibility, show anomalous behavior at the isotropic to mesosphase transition.

  10. Towards the Development of a Mobile Phonopneumogram: Automatic Breath-Phase Classification Using Smartphones.

    PubMed

    Reyes, Bersain A; Reljin, Natasa; Kong, Youngsun; Nam, Yunyoung; Ha, Sangho; Chon, Ki H

    2016-09-01

    Correct labeling of breath phases is useful in the automatic analysis of respiratory sounds, where airflow or volume signals are commonly used as temporal reference. However, such signals are not always available. The development of a smartphone-based respiratory sound analysis system has received increased attention. In this study, we propose an optical approach that takes advantage of a smartphone's camera and provides a chest movement signal useful for classification of the breath phases when simultaneously recording tracheal sounds. Spirometer and smartphone-based signals were acquired from N = 13 healthy volunteers breathing at different frequencies, airflow and volume levels. We found that the smartphone-acquired chest movement signal was highly correlated with reference volume (ρ = 0.960 ± 0.025, mean ± SD). A simple linear regression on the chest signal was used to label the breath phases according to the slope between consecutive onsets. 100% accuracy was found for the classification of the analyzed breath phases. We found that the proposed classification scheme can be used to correctly classify breath phases in more challenging breathing patterns, such as those that include non-breath events like swallowing, talking, and coughing, and alternating or irregular breathing. These results show the feasibility of developing a portable and inexpensive phonopneumogram for the analysis of respiratory sounds based on smartphones. PMID:26847825

  11. Decontamination and inspection plan for Phase 3 closure of the 300 area waste acid treatment system

    SciTech Connect

    LUKE, S.N.

    1999-02-01

    This decontamination and inspection plan (DIP) describes decontamination and verification activities in support of Phase 3 closure of the 300 Area Waste Acid Treatment System (WATS). Phase 3 is the third phase of three WATS closure phases. Phase 3 attains clean closure conditions for WATS portions of the 334 and 311 Tank Farms (TF) and the 333 and 303-F Buildings. This DIP also describes designation and management of waste and debris generated during Phase 3 closure activities. Information regarding Phase 1 and Phase 2 for decontamination and verification activities closure can be found in WHC-SD-ENV-AP-001 and HNF-1784, respectively. This DIP is provided as a supplement to the closure plan (DOE/RL-90-11). This DIP provides the documentation for Ecology concurrence with Phase 3 closure methods and activities. This DIP is intended to provide greater detail than is contained in the closure plan to satisfy Ecology Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 requirement that closure documents describe the methods for removing, transporting, storing, and disposing of all dangerous waste at the unit. The decontamination and verification activities described in this DIP are based on the closure plan and on agreements reached between Ecology and the U.S. Department of Energy, Richland Operations Office (DOE-RL) during Phase 3 closure activity workshops and/or project manager meetings (PMMs).

  12. Changes in mobile phase ion distribution when combining pressurized flow and electric field.

    PubMed

    Eriksson, Björn O; Dahl, Magnus; Andersson, Magnus B O; Blomberg, Lars G

    2004-10-01

    The distribution of ions in a capillary with both pressurized flow and an electric field has been studied. We have earlier reported that the overall concentration of ions increase in a capillary with high electric field and a pressurized flow. Now we describe how the ions are distributed in the capillary both along the capillary length and in the radial direction as a result of the parabolic flow profile. We have combined current measurements with finite element techniques in order to get better understanding of the system. We have found that the concentration of the ions that because of the electric mobility moves towards the flow primarily increases at the beginning of the electric field and close to the capillary wall. In view of the results we have proposed an alterative explanation of earlier published results concerning voltage-induced variation in capacity factors. PMID:15472979

  13. Matrix solid-phase dispersion for the liquid chromatographic determination of phenolic acids in Melissa officinalis.

    PubMed

    Ziaková, Alica; Brandsteterová, Eva; Blahová, Eva

    2003-01-01

    Matrix solid-phase dispersion (MSPD) was used for sample preparation of plant material (Melissa officinalis, Lemon Balm) prior to liquid chromatography of rosmarinic, caffeic and protocatechuic acids, phenolic compounds present in this herb. Different MSPD sorbents and various elution agents were tested and the optimal extraction conditions determined with the aim to obtain extraction recoveries greater than 90% for all analytes. PMID:12568390

  14. Relative permittivity behavior and temperature changes in linoleic acid during the phase transition

    NASA Astrophysics Data System (ADS)

    Kościesza, R.; Siegoczyński, R. M.; Rostocki, A. J.; Tefelski, D. B.; Kos, A.; Ejchart, W.

    2008-07-01

    In our earlier works several fatty liquids (edible oils and unsaturated fatty acids) which exhibit existence of a new phase induced by high pressure were presented. Conclusion of those experiments is that C=C bonds existence in these liquids plays a dominant role in a new phase occurrence. Relative permittivity in pure acids investigated till now seems to behave in specific way. That is why we decided to investigate linoleic acid (C18H32O2) under high pressure. In our experiment such quantities as: electric capacity, pressure and temperature were recorded. The experimental setup gives us also a possibility to conduct optical investigations. We observed a transmitted and scattered beams of close infrared light (λ = 800nm) in directions 0° and 90° towards the incident beam. Due to the rapid grow of temperature and the rapid change of transmitted and scattered beams we may say that observed phenomenon is a first order phase transition and a proof for the significant change of liquid structure. This paper contains time dependencies of permittivity, temperature, transmitted and scattered light intensity and also permittivity vs. pressure changes during the phase transition in linoleic acid and first of all measured data analysis which lets us explain the transition reasons.

  15. CHEMICAL TRANSFORMATION MODULES FOR EULERIAN ACID DEPOSITION MODELS. VOLUME 1. THE GAS-PHASE CHEMISTRY

    EPA Science Inventory

    This study focuses on the review and evaluation of mechanistic and kinetic data for the gas-phase reactions that lead to the production of acidic substances in the environment. A master mechanism is designed that treats oxides, sulfur dioxide, ozone, hydrogen peroxide, ammonia, t...

  16. CHEMICAL TRANSFORMATION MODULES FOR EULERIAN ACID DEPOSITION MODELS. VOLUME 2. THE AQUEOUS-PHASE CHEMISTRY

    EPA Science Inventory

    This study focuses on the review and evaluation of mechanistic and kinetic data for aqueous-phase reactions that lead to the production of acidic substances in the environment. The intent of this research is to provide a framework that can be used to develop a state-of-the-art aq...

  17. [Transfer possibilities of the mobile phases between different liquid chromatographic techniques for the analysis and isolation of compounds of biological matrices].

    PubMed

    Nyiredy, S

    1999-01-01

    After the survey and characterisation of the solid/liquid chromatographic methods, the author summarized the features of overpressure layer chromatography; the disturbing zone and the multi-front effect as well as the elimination of their influence. In light of these effects, the strategy of the mobile phase transfer possibilities is demonstrated between the various analytical and preparative liquid chromatographic methods, with the OPLC playing a central role. The main point of this strategy is that the examination of biological matrices is always begun with unsaturated TLC chamber, in which the compounds to be separated are placed between the Rf values of 0.3 and 0.8. The optimized TLC mobile phase is transferred without changes to the OPLC technique where a prerun is applied. For separation of nonpolar compounds, the prerun can be performed with hexane; for separation of polar substances the prerun can be performed with any component of the mobile phase in which the components are unable to migrate. The selection of this solvent might be considered during optimization of the mobile phase. Using HPTLC chromatoplate and analytical OPLC technique, highly effective separation can be achieved. The scaling-up for the various preparative chromatographic systems can be performed on basis of the applied chromatographic circumstances. The dry-filled preparative (FC, LPLC, MPLC) columns can be equilibrated with the solvent used for the prerun in analytical OPLC, while in case of filling with slurry technique, the slurry has to be prepared using the same solvent as was used for the prerun of OPLC. The air bubbles can be eliminated in both cases by pumping over the appropriate quantity of the solvent used for prerun, afterwards the preparative separation can be started with the optimized unsaturated TLC mobile phase. The author deals separately with the mobile phase transfer possibilities between the different analytical and preparative planar (OPLC and RPC with various

  18. Molecular structures of benzoic acid and 2-hydroxybenzoic acid, obtained by gas-phase electron diffraction and theoretical calculations.

    PubMed

    Aarset, Kirsten; Page, Elizabeth M; Rice, David A

    2006-07-20

    The structures of benzoic acid (C6H5COOH) and 2-hydroxybenzoic acid (C6H4OHCOOH) have been determined in the gas phase by electron diffraction using results from quantum chemical calculations to inform restraints used on the structural parameters. Theoretical methods (HF and MP2/6-311+G(d,p)) predict two conformers for benzoic acid, one which is 25.0 kJ mol(-1) (MP2) lower in energy than the other. In the low-energy form, the carboxyl group is coplanar with the phenyl ring and the O-H group eclipses the C=O bond. Theoretical calculations (HF and MP2/6-311+G(d,p)) carried out for 2-hydroxybenzoic acid gave evidence for seven stable conformers but one low-energy form (11.7 kJ mol(-1) lower in energy (MP2)) which again has the carboxyl group coplanar with the phenyl ring, the O-H of the carboxyl group eclipsing the C=O bond and the C=O of the carboxyl group oriented toward the O-H group of the phenyl ring. The effects of internal hydrogen bonding in 2-hydroxybenzoic acid can be clearly observed by comparison of pertinent structural parameters between the two compounds. These differences for 2-hydroxybenzoic acid include a shorter exocyclic C-C bond, a lengthening of the ring C-C bond between the substituents, and a shortening of the carboxylic single C-O bond. PMID:16836466

  19. The effects of molecular collisions between the mobile phase and the solute in gas-solid chromatography.

    PubMed

    Zhang, Dali; Ke, Jiajun; Lu, Lizhu

    2015-10-01

    In chromatographic processes, molecular collisions between the mobile phase and the solute result in the transfer of kinetic energy. Based on these interactions, the relationship between the gauge pressure of the carrier gas at the column inlet and the partition frequency of the solute is derived; consequently, the relationship between the column temperature and partition frequency can be obtained. These relationships have been experimentally validated. The change in the peak shape described herein has been successfully explained using this relationship: the partition frequency was calculated from the theoretical plate number of a tailing peak. We propose a new mechanism for peak tailing using plate theory, which states that as the number of plates increases, the symmetry of the peak increases. PMID:26227076

  20. Observation of a topological 3D Dirac semimetal phase in high-mobility Cd3As2

    NASA Astrophysics Data System (ADS)

    Neupane, M.; Xu, S.-Y.; Sankar, R.; Alidoust, N.; Bian, G.; Liu, Chang; Belopolski, I.; Chang, T.-R.; Jeng, H.-T.; Lin, H.; Bansil, A.; Chou, Fangcheng; Hasan, M. Z.

    2014-03-01

    Experimental identification of three-dimensional (3D) Dirac semimetals in solid state systems is critical for realizing exotic topological phenomena and quantum transport. Using high-resolution angle-resolved photoemission spectroscopy, we performed systematic electronic structure studies on well-known compound Cd3As2. For the first time, we observe a highly linear bulk Dirac cone located at the Brillouin zone center projected onto the (001) surface, which is consistent with a 3D Dirac semimetal phase in Cd3As2. Remarkably, an unusually high Dirac Fermion velocity is seen in samples where the mobility far exceeds 20,000 cm2/V.s suggesting that Cd3As2 can be a promising candidate as a hypercone analog of graphene in many device-applications, which can also incorporate topological quantum phenomena in a large gap setting. This work is primarily supported by U.S. DOE and Princeton University.

  1. An intercomparison of measurement systems for vapor and particulate phase concentrations of formic and acetic acids

    NASA Technical Reports Server (NTRS)

    Keene, William C.; Talbot, Robert W.; Andreae, Meinrat O.; Beecher, Kristene; Berresheim, Harold

    1989-01-01

    During June 1986, eight systems for measuring vapor phase and four for measuring particulate phase concentrations of formic acid (HCOOH) and acetic acid (CH3COOH) were intercompared in central Virginia. HCOOH and CH3COOH vapors were sampled by condensate, mist, Chromosorb 103 GC resin, NaOH-coated annular denuders, NaOH-impregnated quartz filters, K2CO3 and NaCO3-impregnated cellulose filters, and Nylasorb membranes. Atmospheric aerosol was collected on Teflon and Nuclepore filters using both hi-vol and lo-vol systems to measure particulate phase concentrations. Performances of the mist chamber and K2CO3-impregnated filter techniques were evaluated using zero air and ambient air spiked with HCOOH(g) and CH3COOH(g), and formaldehyde from permeation sources. The advantages and drawbacks of these methods are reported and discussed.

  2. Separation of aromatic carboxylic acids using quaternary ammonium salts on reversed-phase HPLC. 1. Separation behavior of aromatic carboxylic acids

    SciTech Connect

    Kawamura, K.; Okuwaki, A.; Verheyen, T.; Perry, G.J.

    2006-02-15

    In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt has been investigated. The retention mechanism of aromatic carboxylic acids was discussed on the basis of both ion-pair partition model and ion-exchange model. The retention behavior of aromatic carboxylic acids possessing one (or two) carboxylic acid group(s) followed the ion-pair partition model, where linear free energy relationship was observed between the capacity factor and the extraction equilibrium constants of benzoic acid and naphthalene carboxylic acid. Besides, the retention behavior followed ion-exchange model with increasing the number of carboxylic acids, where the capacity factor of benzene polycarboxylic acids is proportional to the association constants between aromatic acids and quaternary ammonium ions calculated on the basis of an electrostatic interaction model.

  3. Chemical systems for improved oil recovery: Phase behavior, oil recovery, and mobility control studies

    SciTech Connect

    Llave, F.; Gall, B.; Gao, H., Scott, L., Cook, I.

    1995-09-01

    Selected surfactant systems containing a series of ethoxylated nonionic surfactants in combination with an anionic surfactant system have been studied to evaluate phase behavior as well as oil recovery potential. These experiments were conducted to evaluate possible improved phase behavior and overall oil recovery potential of mixed surfactant systems over a broad range of conditions. Both polyacrylamide polymers and Xanthan biopolymers were evaluated. Studies were initiated to use a chemical flooding simulation program, UTCHEM, to simulate oil recovery for laboratory and field applications and evaluate its use to simulate oil saturation distributions obtained in CT-monitoring of oil recovery experiments. The phase behavior studies focused on evaluating the effect of anionic-nonionic surfactant proportion on overall phase behavior. Two distinct transition behaviors were observed, depending on the dominant surfactant in the overall system. The first type of transition corresponded to more conventional behavior attributed to nonionic-dominant surfactant systems. This behavior is manifested by an oil-water-surfactant system that inverts from a water-external (highly conducting) microemulsion to an oil-external (nonconducting) one, as a function of temperature. The latter type which inverts in an opposite manner can be attributed to the separation of the anionic-nonionic mixtures into water- and oil-soluble surfactants. Both types of transition behavior can still be used to identify relative proximity to optimal areas. Determining these transition ranges provided more insight on how the behavior of these surfactant mixtures was affected by altering component proportions. Efforts to optimize the chemical system for oil displacement experiments were also undertaken. Phase behavior studies with systems formulated with biopolymer in solution were conducted.

  4. The Use of Mobile, Electrochemical Sensor Nodes for the Measurement of Personal Exposure to Gas-Phase Air Pollutants

    NASA Astrophysics Data System (ADS)

    Stewart, G.; Popoola, O. A.; Mead, M. I.; McKeating, S. J.; Calleja, M.; Hayes, M.; Baron, R. P.; Saffell, J.; Jones, R.

    2012-12-01

    , and thus also the potential insufficiency at quantifying the risks to health in the surrounding area. Recent campaigns with mobile sensor nodes have included attempts to probe the differences in personal exposure to gas-phase air pollutants at different heights of breathing zone and between different methods of transport.

  5. Gas phase ion chemistry of an ion mobility spectrometry based explosive trace detector elucidated by tandem mass spectrometry.

    PubMed

    Kozole, Joseph; Levine, Lauren A; Tomlinson-Phillips, Jill; Stairs, Jason R

    2015-08-01

    The gas phase ion chemistry for an ion mobility spectrometer (IMS) based explosive detector has been elucidated using tandem mass spectrometry. The IMS system, which is operated with hexachloroethane and isobutyramide reagent gases and an ion shutter type gating scheme, is connected to the atmospheric pressure interface of a triple quadrupole mass spectrometer (MS/MS). Product ion masses, daughter ion masses, and reduced mobility values for a collection of nitro, nitrate, and peroxide explosives measured with the IMS/MS/MS instrument are reported. The mass and mobility data together with targeted isotopic labeling experiments and information about sample composition and reaction environment are leveraged to propose molecular formulas, structures, and ionization pathways for the various product ions. The major product ions are identified as [DNT-H](-) for DNT, [TNT-H](-) for TNT, [RDX+Cl](-) and [RDX+NO2](-) for RDX, [HMX+Cl](-) and [HMX+NO2](-) for HMX, [NO3](-) for EGDN, [NG+Cl](-) and [NG+NO3](-) for NG, [PETN+Cl](-) and [PETN+NO3](-) for PETN, [HNO3+NO3](-) for NH4NO3, [NO2](-) for DMNB, [HMTD-NC3H6O3+H+Cl](-) and [HMTD+H-CH2O-H2O2](+) for HMTD, and [(CH3)3CO2](+) for TATP. In general, the product ions identified for the IMS system studied here are consistent with the product ions reported previously for an ion trap mobility spectrometer (ITMS) based explosive trace detector, which is operated with dichloromethane and ammonia reagent gases and an ion trap type gating scheme. Differences between the explosive trace detectors include the [NG+Cl](-) and [PETN+Cl](-) product ions being major ions in the IMS system compared to minor ions in the ITMS system as well as the major product ion for TATP being [(CH3)3CO2](+) for the IMS system and [(CH3)2CNH2](+) for the ITMS system. PMID:26048817

  6. 2,6-Diketopiperazines from amino acids, from solution-phase to solid-phase organic synthesis.

    PubMed

    Perrotta, E; Altamura, M; Barani, T; Bindi, S; Giannotti, D; Harmat, N J; Nannicini, R; Maggi, C A

    2001-01-01

    A method to prepare 1,3-disubstituted 2,6-diketopiperazines (2,6-DKP) as useful heterocyclic library scaffolds in the search of new leads for drug discovery is described. The method can be used in solution-phase and solid-phase conditions. In the key step of the synthesis, the imido portion of the new molecule is formed in solution through intramolecular cyclization, under basic conditions, of a secondary amide nitrogen on a benzyl ester. A Wang resin carboxylic ester is used as the acylating agent under solid-phase conditions, allowing the cyclization to take place with simultaneous cleavage of the product from the resin ("cyclocleavage"). The synthetic method worked well with several couples of amino acids, independently from their configuration, and was used for the parallel synthesis of a series of fully characterized compounds. The use of iterative conditions in the solid phase (repeated addition of fresh solvent and potassium carbonate to the resin after filtering out the product-containing solution) allowed us to keep diastereoisomer content below the detection limit by HPLC and (1)H NMR (200 MHz). PMID:11549363

  7. Novel two-phase anaerobic gasification with solid-bed acid digestion in tandem with fixed-film methane fermentation

    SciTech Connect

    Ghosh, S.; Henry, M.P.; Sajjad, A.

    1983-01-01

    The development and performance of a novel solid-bed two-phase anaerobic digestion system are described. The system consists of a bed of organic feed operated in tandem with an acid-phase slurry digester and a methane-phase upflow anaerobic filter. The bed and the acid-phase digesters liquefy and convert the organics to volatile fatty acids (VFA) without gas production, while a high methane-content product gas is collected from the methane-phase filter. With municipal refuse feeds, VFA and ethanol were the major products from acid-phase digestion. A high methane content (up to 88 mol %) gas was the major product from the methane phase filter.

  8. Wireless Roadside Inspection Phase II Tennessee Commercial Mobile Radio Services Pilot Test Final Report

    SciTech Connect

    Franzese, Oscar; Lascurain, Mary Beth; Capps, Gary J; Siekmann, Adam

    2011-05-01

    The Federal Motor Carrier Safety Administration (FMCSA) Wireless Roadside Inspection (WRI) Program is researching the feasibility and value of electronically assessing truck and bus driver and vehicle safety at least 25 times more often than is possible using only roadside physical inspections. The WRI program is evaluating the potential benefits to both the motor carrier industry and to government. These potential benefits include reduction in accidents, fatalities and injuries on our highways and keeping safe and legal drivers and vehicles moving on the highways. WRI Pilot tests were conducted to prototype, test and demonstrate the feasibility and benefits of electronically collecting safety data message sets from in-service commercial vehicles and performing wireless roadside inspections using three different communication methods. This report summarizes the design, conduct and results of the Tennessee CMRS WRI Pilot Test. The purpose of this Pilot test was to demonstrate the implementation of commercial mobile radio services to electronically request and collect safety data message sets from a limited number of commercial vehicles operating in Tennessee. The results of this test have been used in conjunction with the results of the complimentary pilot tests to support an overall assessment of the feasibility and benefits of WRI in enhancing motor carrier safety (reduction in accidents) due to increased compliance (change in motor carrier and driver behavior) caused by conducting frequent safety inspections electronically, at highway speeds, without delay or need to divert into a weigh station

  9. Environmental mobility of cobalt-Influence of solid phase characteristics and groundwater chemistry.

    PubMed

    Payne, T E; Itakura, T; Comarmond, M J; Harrison, J J

    2009-01-01

    The adsorption of cobalt on samples from a potential waste repository site in an arid region was investigated in batch experiments, as a function of various solution phase parameters including the pH and ionic strength. The samples were characterized using a range of techniques, including BET surface area measurements, total clay content and quantitative X-ray diffraction. The statistical relationships between the measured cobalt distribution coefficients (K(d) values) and the solid and liquid phase characteristics were assessed. The sorption of cobalt increased with the pH of the aqueous phase. In experiments with a fixed pH value, the measured K(d) values were strongly correlated to the BET surface area, but not to the amount of individual clay minerals (illite, kaolinite or smectite). A further set of sorption experiments was undertaken with two samples of distinctive mineralogy and surface area, and consequently different sorption properties. A simple surface complexation model (SCM) that conceptualized the surface sites as having equivalent sorption properties to amorphous Fe-oxide was moderately successful in explaining the pH dependence of the sorption data on these samples. Two different methods of quantifying the input parameters for the SCM were assessed. While a full SCM for cobalt sorption on these complex environmental substrates is not yet possible, the basic applicability and predictive capability of this type of modeling is demonstrated. A principal requirement to further develop the modeling approach is adequate models for cobalt sorption on component mineral phases of complex environmental sorbents. PMID:19299159

  10. Comparison of iso-eluotropic mobile phases at different temperatures for the separation of triacylglycerols in Non-Aqueous Reversed Phase Liquid Chromatography.

    PubMed

    Hmida, Dorra; Abderrabba, Manef; Tchapla, Alain; Héron, Sylvie; Moussa, Fathi

    2015-05-15

    Triacylglycerols (TAGs) are a large class of neutral lipids that naturally occur in both plant and animal oils and fats. Their analyses in Non-Aqueous Reversed Phase Liquid Chromatography (NARP) require a mixture of weak solvent (mostly acetonitrile) and strong solvent. In the present work, we have established eluotropic solvent strength scale of several binary mobile phases on C18 bonded silica at different temperatures (acetonitrile/methylene chloride, acetonitrile/acetone, acetonitrile/ethyl acetate, acetonitrile/propan-2-ol, and acetonitrile/butan-1-ol at 25°C, 43°C, 63°C and 85°C); it is based on the methylene selectivity and the use of homologous series. We show that this scale is well suited to the TAGs analysis. The analysis of nine seed oils (Aleurites fordii, Calophyllum inophyllum, Glycina max, Olea europea, Orbignya olifeira, Pinus koraiensis, Pistacia lentiscus, Punica granatum and Ribes nigrum) in iso-eluotropic conditions leads to propose unambiguously the couple MeCN/BuOH at 25°C as the best system to separate TAGs. The use of butanol, as strong solvent, provides very good TAGs congeners separations and avoids the use of chlorinated solvents which gave to this day the best separations. PMID:25855317

  11. The stereochemical resolution of the enantiomers of aspartame on an immobilized alpha-chymotrypsin HPLC chiral stationary phase: the effect of mobile-phase composition and enzyme activity.

    PubMed

    Jadaud, P; Wainer, I W

    1990-01-01

    The enantioselective and diastereoselective resolutions of the stereoisomers of N alpha-aspartyl-phenylalanine 1-methyl ester (APME) have been accomplished on an HPLC chiral stationary phase based upon alpha-chymotrypsin (the ACHT-CSP) with observed enantioselectivities (alpha 1) for the DL-/LD-enantiomer of as high as 29.17 and for the DD-/LL-enantiomers of as high as 28.97. In addition, the effect on the chromatographic retention of the APME stereoisomers of the activity of the ACHT and the composition of the mobile phase--structure of the anionic component, molarity, and pH--have been studied. The results of this study suggest that the aspartyl moiety and/or the aspartyl-phenylalanine amide linkage play key roles in the observed enantioselectivity; the APME stereoisomers containing L-phenylalanine, i.e., DL- and LL-APME, bind at a different site in the ACHT molecule (the L-Phe site) than the APME stereoisomers containing D-phenylalanine (the D-Phe site); and the observed enantioselectivity is a measure of the difference in the binding affinities at the two sites rather than the consequence of differential affinities at a single site. PMID:2400637

  12. Uptake of Gas-Phase Nitric Acid by Water-Ice Surfaces

    NASA Astrophysics Data System (ADS)

    Ullerstam, M.; Abbatt, J. P.

    2004-05-01

    Nitric acid is a widespread molecule found in the atmosphere. It is mainly removed from the troposphere by wet or dry deposition. In colder regions such as the upper troposphere and tropopause where cirrus clouds are formed nitric acid can also be scavenged by cirrus ice particles. The uptake of gas-phase nitric acid by water-ice films has been re-examined with a coated-wall flow tube coupled to a chemical-ionization mass spectrometer (CIMS) at 228K. Previous flow tube studies of this system have shown little dependence of the uptake over the partial pressure regime studied. In these studies the initial, short-term uptake has been the focus and the long term uptake has not been quantified. In this experimental setup it was possible to study the uptake of nitric acid at lower partial pressures resulting in a more atmospherically appropriate determination of the adsorption isotherm and the long term uptake has also been addressed. Measurement of the initial uptake coefficient representing a lower limit will also be presented. Finally, possible burial of nitric acid into the bulk of the ice during continuous growth of the ice film has been studied. In the atmosphere ice particles will be subject to cycles of evaporation and condensation which could cause the nitric acid to be encapsulated into the particle, especially since the major part of the adsorption has been proven to be irreversible. This could enhance the ice particles capacity of scavenging nitric acid.

  13. Comparison of the performance of non-ionic and anionic surfactants as mobile phase additives in the RPLC analysis of basic drugs.

    PubMed

    Ruiz-Ángel, María J; García-Álvarez-Coque, María C

    2011-03-01

    Surfactants added to the mobile phases in reversed-phase liquid chromatography (RPLC) give rise to a modified stationary phase, due to the adsorption of surfactant monomers. Depending on the surfactant nature (ionic or non-ionic), the coated stationary phase can exhibit a positive net charge, or just change its polarity remaining neutral. Also, micelles in the mobile phase introduce new sites for solute interaction. This affects the chromatographic behavior, especially in the case of basic compounds. Two surfactants of different nature, the non-ionic Brij-35 and the anionic sodium dodecyl sulfate (SDS) added to water or aqueous-organic mixtures, are here compared in the separation of basic compounds (β-blockers and tricyclic antidepressants). The reversible/irreversible adsorption of the monomers of both surfactants on the stationary phase was examined. The changes in the nature of the chromatographic system using different columns and chromatographic conditions were followed based on the changes in retention and peak shape. The study revealed that Brij-35 is suitable for analyzing basic compounds of intermediate polarity, using "green chemistry", since the addition of an organic solvent is not needed and Brij-35 is a biodegradable surfactant. In contrast, RPLC with hydro-organic mixtures or mobile phases containing SDS required high concentrations of organic solvents. PMID:21328695

  14. Phase diagrams and water activities of aqueous ammonium salts of malonic acid.

    PubMed

    Beyer, Keith D; Richardson, Michael; Reusch, Breanna

    2011-04-14

    Malonic acid has been observed in the free troposphere and as a component of tropospheric aerosol, among other dicarboxylic acids. These aerosols can uptake ammonia, which partially or completely neutralizes the acids. Therefore, the impact of ammoniated dicarboxylic acids on the phases that can exist in aerosols at atmospheric temperatures needs investigation. To that end, the low temperature, solid/liquid phase diagrams of ammonium hydrogen malonate/water, ammonium malonate/water, and triammonium hydrogen malonate/water have been investigated with differential scanning calorimetry and infrared spectroscopy of thin films. Results show that the order of increasing solubility is triammonium hydrogen malonate, ammonium hydrogen malonate, malonic acid, and ammonium malonate. We have also determined a hydrate may form in the ammonium malonate system and decompose below 240 K. We report water activities at the ice melting points for each system up to the respective eutectic concentrations, and find for a given mole fraction of water, increasing ammonium content leads to decreasing water activity coefficients. PMID:21428389

  15. In-house SIRAS phasing of the polyunsaturated fatty-acid isomerase from Propionibacterium acnes

    SciTech Connect

    Liavonchanka, Alena; Hornung, Ellen; Feussner, Ivo; Rudolph, Markus

    2006-02-01

    Low iodide concentrations were sufficient to allow SAD and SIRAS phasing of cubic crystals of a novel fatty acid isomerase using Cu Kα radiation. The polyenoic fatty-acid isomerase from Propionibacterium acnes (PAI) catalyzes the double-bond isomerization of linoleic acid to conjugated linoleic acid, which is a dairy- or meat-derived fatty acid in the human diet. PAI was overproduced in Escherichia coli and purified to homogeneity as a yellow-coloured protein. The nature of the bound cofactor was analyzed by absorption and fluorescence spectroscopy. Single crystals of PAI were obtained in two crystal forms. Cubic shaped crystals belong to space group I2{sub 1}3, with a unit-cell parameter of 160.4 Å, and plate-like crystals belong to the monoclinic space group C2, with unit-cell parameters a = 133.7, b = 60.8, c = 72.2 Å, β = 115.8°. Both crystal forms contain one molecule per asymmetric unit and diffract to a resolution of better than 2.0 Å. Initial phases were obtained by SIRAS from in-house data from a cubic crystal that was soaked with an unusually low KI concentration of 0.25 M.

  16. Development and validation of a liquid chromatographic method for the stability study of a pharmaceutical formulation containing voriconazole using cellulose tris(4-chloro-3-methylphenylcarbamate) as chiral selector and polar organic mobile phases.

    PubMed

    Servais, Anne-Catherine; Moldovan, Radu; Farcas, Elena; Crommen, Jacques; Roland, Isabelle; Fillet, Marianne

    2014-10-10

    The ophthalmic solution of voriconazole, i.e. (2R,3S)-2-(2,4-difluorophenyl)-3-(5-fluoropyrimidin-4-yl)-1-(1H-1,2,4-triazol-1-yl)butan-2-ol, made from an injection formulation which also contains sulfobutylether-β-cyclodextrin sodium salt as an excipient (Vfend), is used for the treatment of fungal keratitis. A liquid chromatographic (LC) method using polar organic mobile phase and cellulose tris(4-chloro-3-methylphenylcarbamate) coated on silica as chiral stationary phase was successfully developed to evaluate the chiral stability of the ophthalmic solution. The percentage of methanol (MeOH) in the mobile phase containing acetonitrile (ACN) as the main solvent significantly influenced the retention and resolution of voriconazole and its enantiomer ((2S,3R)-2-(2,4-difluorophenyl)-3-(5-fluoropyrimidin-4-yl)-1-(1H-1,2,4-triazol-1-yl)butan-2-ol). The optimized mobile phase consisted of ACN/MeOH/diethylamine/trifluoroacetic acid (80/20/0.1/0.1; v/v/v/v). The method was found to be selective not only regarding the enantiomer of voriconazole but also regarding the specified impurities described in the monograph from the European Pharmacopoeia. The LC method was then fully validated applying the strategy based on total measurement error and accuracy profiles. Under the selected conditions, the determination of 0.1% of voriconazole enantiomer could be performed. Finally, a stability study of the ophthalmic solution was conducted using the validated LC method. PMID:25035235

  17. Structural Collapse of the Hydroquinone-Formic Acid Clathrate: A Pressure-Medium-Dependent Phase Transition.

    PubMed

    Eikeland, Espen; Thomsen, Maja K; Madsen, Solveig R; Overgaard, Jacob; Spackman, Mark A; Iversen, Bo B

    2016-03-14

    The energy landscape governing a new pressure-induced phase transition in the hydroquinone-formic acid clathrate is reported in which the host structure collapses, opening up the cavity channels within which the guest molecules migrate and order. The reversible isosymmetric phase transition causes significant changes in the morphology and the birefringence of the crystal. The subtle intermolecular interaction energies in the clathrate are quantified at varying pressures using novel model energies and energy frameworks. These calculations show that the high-pressure phase forms a more stable host network at the expense of less-stable host-guest interactions. The phase transition can be kinetically hindered using a nonhydrostatic pressure-transmitting medium, enabling the comparison of intermolecular energies in two polymorphic structures in the same pressure range. Overall this study illustrates a need for accurate intermolecular energies when analyzing self-assembly structures and supramolecular aggregates. PMID:26879515

  18. Phase equilibria in a system of aqueous arginine with an octane solution of sulfonic acid

    NASA Astrophysics Data System (ADS)

    Kuvaeva, Z. I.; Koval'chuk, I. V.; Vodop'yanova, L. A.; Soldatov, V. S.

    2013-05-01

    The extraction of arginine (Arg) from aqueous salt (0.1 M NaCl) solutions with a sulfo extractant in a wide range of pH values and amino acid concentrations was studied. The 0.1 M solution of dinonylnaphthalenesulfonic acid (HD) in octane was used as an extractant. The degree of extraction was found to be high at pH 0.8-9.0. This can be explained by the effect of additional intermolecular interactions in the extractant phase involving the guanidine group of Arg.

  19. Combined column-mobile phase mixture statistical design optimization of high-performance liquid chromatographic analysis of multicomponent systems.

    PubMed

    Breitkreitz, Márcia C; Jardim, Isabel C S F; Bruns, Roy E

    2009-02-27

    A statistical approach for the simultaneous optimization of the mobile and stationary phases used in reversed-phase liquid chromatography is presented. Mixture designs using aqueous mixtures of acetonitrile (ACN), methanol (MeOH) and tetrahydrofuran (THF) organic modifiers were performed simultaneously with column type optimization, according to a split-plot design, to achieve the best separation of compounds in two sample sets: one containing 10 neutral compounds with similar retention factors and another containing 11 pesticides. Combined models were obtained by multiplying a linear model for column type, C8 or C18, by quadratic or special cubic mixture models. Instead of using an objective response function, combined models were built for elementary chromatographic criteria (retention factors, resolution and relative retention) of each solute or pair of solutes and, after their validation, the global separation was accomplished by means of Derringer's desirability functions. For neutral compounds a 37:12:8:43 (v/v/v/v) percentage mixture of ACN:MeOH:THF:H2O with the C18 column and for pesticides a 15:15:70 (v/v/v) ACN:THF:H2O mixture with the C8 column provide excellent resolution of all peaks. PMID:19167715

  20. Chromatographic behavior of small organic compounds in low-temperature high-performance liquid chromatography using liquid carbon dioxide as the mobile phase.

    PubMed

    Motono, Tomohiro; Nagai, Takashi; Kitagawa, Shinya; Ohtani, Hajime

    2015-07-01

    Low-temperature high-performance liquid chromatography, in which a loop injector, column, and detection cell were refrigerated at -35ºC, using liquid carbon dioxide as the mobile phase was developed. Small organic compounds (polyaromatic hydrocarbons, alkylbenzenes, and quinones) were separated by low-temperature high-performance liquid chromatography at temperatures from -35 to -5ºC. The combination of liquid carbon dioxide mobile phase with an octadecyl-silica (C18 ) column provided reversed phase mode separation, and a bare silica-gel column resulted in normal phase mode separation. In both the cases, nonlinear behavior at approximately -15ºC was found in the relationship between the temperature and the retention factors of the analytes (van't Hoff plots). In contrast to general trends in high-performance liquid chromatography, the decrease in temperature enhanced the separation efficiency of both the columns. PMID:25917311

  1. Tensor-based classification of an auditory mobile BCI without a subject-specific calibration phase

    NASA Astrophysics Data System (ADS)

    Zink, Rob; Hunyadi, Borbála; Van Huffel, Sabine; De Vos, Maarten

    2016-04-01

    Objective. One of the major drawbacks in EEG brain-computer interfaces (BCI) is the need for subject-specific training of the classifier. By removing the need for a supervised calibration phase, new users could potentially explore a BCI faster. In this work we aim to remove this subject-specific calibration phase and allow direct classification. Approach. We explore canonical polyadic decompositions and block term decompositions of the EEG. These methods exploit structure in higher dimensional data arrays called tensors. The BCI tensors are constructed by concatenating ERP templates from other subjects to a target and non-target trial and the inherent structure guides a decomposition that allows accurate classification. We illustrate the new method on data from a three-class auditory oddball paradigm. Main results. The presented approach leads to a fast and intuitive classification with accuracies competitive with a supervised and cross-validated LDA approach. Significance. The described methods are a promising new way of classifying BCI data with a forthright link to the original P300 ERP signal over the conventional and widely used supervised approaches.

  2. Acidification, heavy metal mobility and nutrient accumulation in the soil-plant system of a revegetated acid mine wasteland.

    PubMed

    Yang, Sheng-Xiang; Liao, Bin; Li, Jin-tian; Guo, Tao; Shu, Wen-Sheng

    2010-08-01

    A revegetation program was established at an extreme acidic and metal-toxic pyrite/copper mine wasteland in Guangdong Province, PR China using a combination of four native grass species and one non-native woody species. It was continued and monitored for 2 y. The emphasis was on acidification, metal mobility and nutrient accumulation in the soil-plant system. Our results showed the following: (i) the acid-forming potential of the mine soils decreased steadily with time, which might be due to plant root-induced changes inhibiting the oxidization of sulphide minerals; (ii) heavy metal extractability (diethylene-triamine-pentaacetic acid-extractable Pb and Zn) in the soils increased with time despite an increase in soil pH, which might be attributed to soil disturbance and plant rhizospheric processes, as well as a consequence of the enhanced metal accumulation in plants over time; and (iii) the vegetation cover increased rapidly with time, and plant development accelerated the accumulation of major nutrients (organic matter, total and ammonium-N, and available P and K). The 2-y field experiment demonstrates that direct seeding/planting of native plant species in combination with lime and manure amelioration is a practical approach to the initial establishment of a self-sustaining vegetation cover on this metalliferous and sulphide-bearing mine wasteland. However, heavy metal accumulation in the soil-plant system should be of great concern, and long-term monitoring of ecological risk must be an integral part of such a restoration scheme. PMID:20580409

  3. Mobility of Transgenic Nucleic Acids and Proteins within Grafted Rootstocks for Agricultural Improvement

    PubMed Central

    Haroldsen, Victor M.; Szczerba, Mark W.; Aktas, Hakan; Lopez-Baltazar, Javier; Odias, Mar Joseph; Chi-Ham, Cecilia L.; Labavitch, John M.; Bennett, Alan B.; Powell, Ann L. T.

    2012-01-01

    Grafting has been used in agriculture for over 2000 years. Disease resistance and environmental tolerance are highly beneficial traits that can be provided through use of grafting, although the mechanisms, in particular for resistance, have frequently been unknown. As information emerges that describes plant disease resistance mechanisms, the proteins, and nucleic acids that play a critical role in disease management can be expressed in genetically engineered (GE) plant lines. Utilizing transgrafting, the combination of a GE rootstock with a wild-type (WT) scion, or the reverse, has the potential to provide pest and pathogen resistance, impart biotic and abiotic stress tolerance, or increase plant vigor and productivity. Of central importance to these potential benefits is the question of to what extent nucleic acids and proteins are transmitted across a graft junction and whether the movement of these molecules will affect the efficacy of the transgrafting approach. Using a variety of specific examples, this review will report on the movement of organellar DNA, RNAs, and proteins across graft unions. Attention will be specifically drawn to the use of small RNAs and gene silencing within transgrafted plants, with a particular focus on pathogen resistance. The use of GE rootstocks or scions has the potential to extend the horticultural utility of grafting by combining this ancient technique with the molecular strategies of the modern era. PMID:22645583

  4. Solid-Phase Spectrophotometric Analysis of 1-Naphthol Using Silica Functionalized with m-Diazophenylarsonic Acid.

    PubMed

    Zaitseva, Nataliya; Alekseev, Sergei; Zaitsev, Vladimir; Raks, Viktoria

    2016-12-01

    The m-aminophenylarsonic acid (m-APAA) was immobilized onto the silica gel surface with covalently grafted quaternary ammonium groups via ion exchange. The diazotization of ion-bonded m-APAA resulted in a new solid-phase spectrophotometric reagent for detection of 1-naphtol in environmental water samples. The procedure of solid-phase spectrophotometric analysis is characterized by 20 μg L(-1) limit of detection (LOD) of 1-naphtol, up to 2000 concentration factor, and insensitivity to the presence of natural water components as well as to 30-fold excess of phenol, resorcinol, and catechol. PMID:26979727

  5. Solid-Phase Spectrophotometric Analysis of 1-Naphthol Using Silica Functionalized with m-Diazophenylarsonic Acid

    NASA Astrophysics Data System (ADS)

    Zaitseva, Nataliya; Alekseev, Sergei; Zaitsev, Vladimir; Raks, Viktoria

    2016-03-01

    The m-aminophenylarsonic acid (m-APAA) was immobilized onto the silica gel surface with covalently grafted quaternary ammonium groups via ion exchange. The diazotization of ion-bonded m-APAA resulted in a new solid-phase spectrophotometric reagent for detection of 1-naphtol in environmental water samples. The procedure of solid-phase spectrophotometric analysis is characterized by 20 μg L-1 limit of detection (LOD) of 1-naphtol, up to 2000 concentration factor, and insensitivity to the presence of natural water components as well as to 30-fold excess of phenol, resorcinol, and catechol.

  6. EnEnvironmental Mobility of Pu(IV) in the Presence of Ethylenediaminetetraacetic Acid: Myth or Reality

    SciTech Connect

    Rai, Dhanpat; Moore, Dean A.; Rosso, Kevin M.; Felmy, Andrew R.; Bolton, Harvey

    2008-07-01

    Ethylenediaminetetracetic acid (EDTA), which was co-disposed with Pu at several U. S. Department of Energy sites, has been reported to enhance the solubility and transport of Pu. It is generally assumed that this enhanced transport of Pu in geologic environments is a result of complexation of Pu(IV) with EDTA. However, the fundamental bases for this assumption have never been fully explored. Whether EDTA can mobilize Pu(IV) in geologic environments is dependent on many factors, chief among them are not only the complexation constants of Pu with EDTA and dominant oxidation state and the nature of Pu solids, but also 1) the complexation constants of environmentally important metal ions (e.g. Fe, Al, Ca, Mg) that compete with Pu for EDTA and 2) EDTA interactions with geomedia (e.g., adsorption, biodegradation) that reduce effective EDTA concentrations available for complexation. Extensive studies over a large range of pH values (1 to 14) and EDTA concentrations (0.0001 to 0.01 M) as a function of time were conducted on the solubility of 2-line ferrihydrite (Fe(OH)3(s)), PuO2(am) in the presence of different concentrations of Ca ions, and mixtures of PuO2(am) and Fe(OH)3(s). The solubility data were interpreted using Pitzer’s ion-interaction approach to determine/validate the solubility product of Fe(OH)3(s), the complexation constants of Pu(IV)-EDTA and Fe(III)-EDTA, and to determine the affect of EDTA in solubilizing Pu(IV) from PuO2(am) in the presence of Fe(III) compounds and aqueous Ca concentrations. Predictions based on these extensive fundamental data show that environmental mobility of Pu as a result of Pu(IV)-EDTA complexation as reported/implied in the literature is a myth rather than the reality.

  7. Calculation of the hole mobilities of the three homopolynucleotides, poly(guanilic acid), poly(adenilic acid), and polythymidine in the presence of water and Na+ ions

    NASA Astrophysics Data System (ADS)

    Bende, Attila; Bogár, Ferenc; Beleznay, Ferenc; Ladik, János

    2008-12-01

    Recent high resolution x-ray diffraction experiments have determined the structure of nucleosomes. In it 147 base pair long DNA B superhelix is wrapped around the eight nucleohistone proteins. They have found that there are many hydrogen-bonds (H-bonds) between the negative sites phosphate ( PO4- ) groups DNA, and first of all there is the positively charged lysine and arginine side chains of the histones. This means that there is a non-negligible charge transfer from DNA to the proteins causing a hole current in DNA and an electronic one in the proteins. If the relative positions of the two macromolecules change due to some external disturbances, the DNA moves away from the protein and can be read. If this happens simultaneously at several nucleosomes and at many places in chromatin (built up from the nucleosomes), undesired genetic information becomes readable. This final end can cause the occurrence of oncoproteins at an undesired time point which most probably disturbs the self-regulation of a differentiated cell. The connection of these chain of events with the initiation of cancer is obvious. To look into the details of these events we have used the detailed band structures of the four homopolynucleotides in the presence of water and natrium ( Na+ ) ions calculated previously with the help of the ab initio Hartree-Fock crystal orbital method. We have found that in the case of three homopolynucleotides the width of their valence band is broad enough ( ˜10 times broader than the thermal energy at 300K ) for the application of the simple deformation potential approximation for transport calculations. With the help of this we have determined the hole mobilities at 300K and 180K of poly(guanilic acid), poly(adenilic acid), and polythimidine (polycytidine has a too narrow valence band for the application of the deformation potential method). The obtained mobilities are large enough to allow Bloch-type conduction in these systems. At the end of the paper we discuss

  8. Ionic liquids as mobile phase additives for the high-performance liquid chromatographic analysis of fluoroquinolone antibiotics in water samples.

    PubMed

    Herrera-Herrera, Antonio V; Hernández-Borges, Javier; Rodríguez-Delgado, Miguel Angel

    2008-12-01

    In this work, four ionic liquids differing in the length of the alkyl chain on the imidazolium cation and one ionic liquid containing tetraethylammonium, all with the same counterion, (i.e. 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIm-BF(4)), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIm-BF(4)), 1-hexyl-3-methylimidazolium tetrafluoroborate (HMIm-BF(4)), 1-methyl-3-octylimidazolium tetrafluoroborate (MOIm-BF(4)), and tetraethylammonium tetrafluroborate (Et(4)N-BF(4))) were tested as mobile phase additives for HPLC separation of a group of seven basic fluoroquinolone (FQ) antibiotics for human and veterinary use (i.e. fleroxacin, ciprofloxacin, lomefloxacin, danofloxacin, enrofloxacin, sarafloxacin, and difloxacin) using a conventional reversed-phase Nova-Pak C(18) column. Fluorescence detection was used. Among the ionic liquids selected, use of BMIm-BF(4) enabled effective separation of these compounds with relatively low analysis time (14 min). The best separation was achieved by isocratic elution at 1 mL min(-1) with 5 mmol L(-1) BMIm-BF(4) and 10 mmol L(-1) ammonium acetate at pH 3.0 with 13% (v/v) acetonitrile. Limits of detection (LODs) for fluorescence detection were in the range 0.5-11 microg L(-1). The method was tested by analyzing several water samples after the optimization of a suitable solid-phase extraction (SPE) procedure using Oasis HLB cartridges. Mean recovery values were above 84% for all analytes with LODs in the range 1-29 ng L(-1). PMID:18854988

  9. Interaction of Gas Phase Oxalic Acid with Ammonia and its Atmospheric Implications

    SciTech Connect

    Peng, Xiu-Qiu; Liu, Yi-Rong; Huang, Teng; Jiang, Shuai; Huang, Wei

    2015-04-14

    Oxalic acid is believed to play an important role in the formation and growth of atmospheric organic aerosols. However, as a common organic acid, the understanding of the larger clusters formed by gas phase oxalic acid with multiple ammonia molecules is incomplete. In this work, the structural characteristics and thermodynamics of oxalic acid clusters with up to six ammonia molecules have been investigated at the PW91PW91/6-311++G(3df,3pd) level of theory. We found that oxalic acid forms relatively stable clusters with ammonia molecules, and that ionization events play a key role. The analyses of the thermodynamics and atmospheric relevance indicate that the heterodimer (H2C2O4)(NH3) shows an obvious relative concentration in the atmosphere, and thus likely participates in new particle formation. However, with increasing number of ammonia molecules, the concentration of clusters decreases gradually. Additionally, clusters of oxalic acid with ammonia molecules are predicted to form favorably in low temperature conditions and show high Rayleigh scattering intensities.

  10. Light quality modulates metabolic synchronization over the diel phases of crassulacean acid metabolism

    PubMed Central

    Ceusters, Johan; Borland, Anne M.; Taybi, Tahar; Frans, Mario; Godts, Christof; De Proft, Maurice P.

    2014-01-01

    Temporal compartmentation of carboxylation processes is a defining feature of crassulacean acid metabolism and involves circadian control of key metabolic and transport steps that regulate the supply and demand for carbon over a 24h cycle. Recent insights on the molecular workings of the circadian clock and its connection with environmental inputs raise new questions on the importance of light quality and, by analogy, certain photoreceptors for synchronizing the metabolic components of CAM. The present work tested the hypothesis that optimal coupling of stomatal conductance, net CO2 uptake, and the reciprocal turnover of carbohydrates and organic acids over the diel CAM cycle requires both blue and red light input signals. Contrasting monochromatic wavelengths of blue, green, and red light (i.e. 475, 530, 630nm) with low fluence rates (10 μmol m–2 s–1) were administered for 16 hours each diel cycle for a total treatment time of 48 hours to the obligate CAM bromeliad, Aechmea ‘Maya’. Of the light treatments imposed, low-fluence blue light was a key determinant in regulating stomatal responses, organic acid mobilization from the vacuole, and daytime decarboxylation. However, the reciprocal relationship between starch and organic acid turnover that is typical for CAM was uncoupled under low-fluence blue light. Under low-fluence red or green light, the diel turnover of storage carbohydrates was orchestrated in line with the requirements of CAM, but a consistent delay in acid consumption at dawn compared with plants under white or low-fluence blue light was noted. Consistent with the acknowledged influences of both red and blue light as input signals for the circadian clock, the data stress the importance of both red and blue-light signalling pathways for synchronizing the metabolic and physiological components of CAM over the day/night cycle. PMID:24803500

  11. Light quality modulates metabolic synchronization over the diel phases of crassulacean acid metabolism.

    PubMed

    Ceusters, Johan; Borland, Anne M; Taybi, Tahar; Frans, Mario; Godts, Christof; De Proft, Maurice P

    2014-07-01

    Temporal compartmentation of carboxylation processes is a defining feature of crassulacean acid metabolism and involves circadian control of key metabolic and transport steps that regulate the supply and demand for carbon over a 24h cycle. Recent insights on the molecular workings of the circadian clock and its connection with environmental inputs raise new questions on the importance of light quality and, by analogy, certain photoreceptors for synchronizing the metabolic components of CAM. The present work tested the hypothesis that optimal coupling of stomatal conductance, net CO2 uptake, and the reciprocal turnover of carbohydrates and organic acids over the diel CAM cycle requires both blue and red light input signals. Contrasting monochromatic wavelengths of blue, green, and red light (i.e. 475, 530, 630nm) with low fluence rates (10 μmol m(-2) s(-1)) were administered for 16 hours each diel cycle for a total treatment time of 48 hours to the obligate CAM bromeliad, Aechmea 'Maya'. Of the light treatments imposed, low-fluence blue light was a key determinant in regulating stomatal responses, organic acid mobilization from the vacuole, and daytime decarboxylation. However, the reciprocal relationship between starch and organic acid turnover that is typical for CAM was uncoupled under low-fluence blue light. Under low-fluence red or green light, the diel turnover of storage carbohydrates was orchestrated in line with the requirements of CAM, but a consistent delay in acid consumption at dawn compared with plants under white or low-fluence blue light was noted. Consistent with the acknowledged influences of both red and blue light as input signals for the circadian clock, the data stress the importance of both red and blue-light signalling pathways for synchronizing the metabolic and physiological components of CAM over the day/night cycle. PMID:24803500

  12. An excellent enzymatic lactic acid biosensor with ZnO nanowires-gated AlGaAs/GaAs high electron mobility transistor.

    PubMed

    Ma, Siwei; Liao, Qingliang; Liu, Hanshuo; Song, Yu; Li, Ping; Huang, Yunhua; Zhang, Yue

    2012-10-21

    An excellent biosensor with ZnO nanowires-gated AlGaAs/GaAs high electron mobility transistor (HEMT) was used to detect lactic acid. Due to the new structure, addition of the Si-doped GaAs cap layer, the HEMT biosensor could detect a wide range of lactic acid concentrations from 0.03 nM to 300 mM. The novel biosensor exhibiting good performance along with fast response, high sensitivity, wide detection range, and long-term stability, can be integrated with a commercially available transmitter to realize lactic acid detection. PMID:22951602

  13. Elusive Sulfurous Acid: Gas-Phase Basicity and IR Signature of the Protonated Species.

    PubMed

    Sinha, Rajeev K; Scuderi, Debora; Maitre, Philippe; Chiavarino, Barbara; Crestoni, Maria Elisa; Fornarini, Simonetta

    2015-05-01

    The ion corresponding to protonated sulfurous acid, H3SO3(+), has been successfully delivered into the gas phase by electrospray ionization of the solution of a suitable precursor and an in-source fragmentation process. The neutral acid is a highly elusive molecule. However, its gas-phase basicity has been ascertained by means of a kinetic study of proton-transfer reactivity. The structure of the H3SO3(+) sampled ion has been probed by IRMPD spectroscopy in two complementary IR frequency ranges in conjunction with density functional theory calculations and found to conform to a trihydroxosulfonium ion. The characteristic IR signatures may aid in deciphering the presence of this species in extraterrestrial atmospheres. PMID:26263321

  14. Calculations of phase equilibria for mixtures of triglycerides, fatty acids, and their esters in lower alcohols

    NASA Astrophysics Data System (ADS)

    Stepanov, D. A.; Ermakova, A.; Anikeev, V. I.

    2011-01-01

    The objects of study were mixtures containing triglycerides and lower alcohols and also the products of the transesterification of triglycerides, glycerol and fatty acid esters. The Redlich-Kwong-Soave equation of state was used as a thermodynamic model for the phase state of the selected mixtures over wide temperature, pressure, and composition ranges. Group methods were applied to determine the critical parameters of pure substances and their acentric factors. The parameters obtained were used to calculate the phase diagrams and critical parameters of mixtures containing triglycerides and lower alcohols and the products of the transesterification of triglycerides, glycerol and fatty acid esters, at various alcohol/oil ratios. The conditions of triglyceride transesterification in various lower alcohols providing the supercritical state of reaction mixtures were selected.

  15. Formation of organic acids from the gas-phase ozonolysis of terpinolene.

    PubMed

    Ma, Yan; Marston, George

    2009-06-01

    Gas-phase ozonolysis of terpinolene was studied in static chamber experiments using gas chromatography coupled to mass spectrometric and flame ionisation detection to separate and detect products. Two isomers of C(7)-diacids and three isomers of C(7)-aldehydic acids were identified in the condensed phase after derivatisation. Possible mechanisms of formation of these acids were investigated using different OH radical scavengers and relative humidities, and were compared to those reported earlier for the ozonolysis of beta-pinene. In addition, branching ratios for some of the individual reaction steps, e.g. the branching ratio between the two hydroperoxide channels of the C(7)-CI, were deduced from the quantitative product yield data. Branching ratios for POZ decomposition and the stabilisation/decomposition of the C(7-)CI were also obtained from measurements of the C(7) primary carbonyl product. PMID:19458821

  16. Parallel transport of an organic acid by solid-phase and macropore diffusion in a weakly basic ion exchanger

    SciTech Connect

    Yoshida, Hiroyuki; Takatsuji; Wataru

    2000-04-01

    The parallel transport of an organic acid by solid-phase and macropore diffusion within a porous ion exchanger was studied by measuring equilibrium isotherms and uptake curves for adsorption of acetic acid and lactic acid on a weakly basic ion exchanger, DIAION WA30. Experimental adsorption isotherms were correlated by the Langmuir equation. The Langmuir equilibrium constant of acetic acid was close to that of lactic acid, and the saturation capacity of acetic acid was about 84% that of lactic acid. Intraparticle effective diffusivity D{sub eff} was determined using the homogeneous Fickian diffusion model. The value of D{sub eff} for acetic acid was about 1.5 times lactic acid. Because D{sub eff} increased with linearly increasing bulk phase concentration C{sub 0}, D{sub eff} was separated to the solid-phase diffusivity D{sub s} and the macropore diffusivity D{sub P} by applying the parallel diffusion model. The model agreed well with the experimental curves. The values of D{sub S} and D{sub P} for acetic acid were about 2 and 1.5 times those of lactic acid, respectively. The acetic acid and the lactic acid may be separated by the difference of the diffusion rates.

  17. Negotiating state and NGO politics in Bangladesh: women mobilize against acid violence.

    PubMed

    Halim Chowdhury, Elora

    2007-08-01

    This note showcases the story of Nurun Nahar, a survivor of acid violence in Bangladesh, to demonstrate that, despite protective measures, state, medical, and legal institutions continually fail to adequately respond to violence against women systematically and deny women rights to state protection, which are affirmatively embodied in law. The failure of state institutions to ensure appropriate care has been somewhat mitigated by nongovernmental organizations (NGOs), particularly women's groups, which are albeit heavily constrained because of the volume of demand yet scarcity of expertise, infrastructure, and funds. In addition, this note offers some thoughts on how nonstate actors, namely, women's NGOs, have created alternative strategies and visions for victimized women's recovery and empowerment. PMID:17699115

  18. Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage.

    PubMed

    Kuznetsova, Alsu; Kuznetsov, Petr; Foght, Julia M; Siddique, Tariq

    2016-11-15

    Froth treatment thickened tailings (TT) are a waste product of bitumen extraction from surface-mined oil sands ores. When incubated in a laboratory under simulated moist oxic environmental conditions for ~450d, two different types of TT (TT1 and TT2) exhibited the potential to generate acid rock drainage (ARD) by producing acid leachate after 250 and 50d, respectively. We report here the release of toxic metals from TT via ARD, which could pose an environmental threat if oil sands TT deposits are not properly managed. Trace metal concentrations in leachate samples collected periodically revealed that Mn and Sr were released immediately even before the onset of ARD. Spikes in Co and Ni concentrations were observed both pre-ARD and during active ARD, particularly in TT1. For most elements measured (Fe, Cr, V, As, Cu, Pb, Zn, Cd, and Se), leaching was associated with ARD production. Though equivalent acidification (pH2) was achieved in leachate from both TT types, greater metal release was observed from TT2 where concentrations reached 10,000ppb for Ni, 5000ppb for Co, 3000ppb for As, 2000ppb for V, and 1000ppb for Cr. Generally, metal concentrations decreased in leachate with time during ARD and became negligible by the end of incubation (~450d) despite appreciable metals remaining in the leached TT. These results suggest that using TT for land reclamation purposes or surface deposition for volume reduction may unfavorably impact the environment, and warrants application of appropriate strategies for management of pyrite-enriched oil sands tailings streams. PMID:27443453

  19. Characterization and Acid-Mobilization Study of Iron-Containing Mineral Dust Source Materials

    SciTech Connect

    Cwiertny, David M.; Baltrusaitis, Jonas; Hunter, Gordon J.; Laskin, Alexander; Scherer, Michelle; Grassian, Vicki H.

    2008-03-04

    Processes that solubilize the iron in mineral dust aerosols may increase the amount of iron supplied to ocean surface waters, and thereby stimulate phytoplankton productivity. It was recently proposed that mixing of mineral dusts with SO2 and HNO3 produces extremely acidic environments that favor the formation of bioavailable Fe(II). Here, four authentic mineral dust source materials (Saudi Beach sand (SB), Inland Saudi sand (IS), Saharan Sand (SS) and China Loess (CL)) and one commercial reference material (Arizona Test Dust (AZTD)) were spectroscopically characterized, and their dissolution at pH 1 was examined in aqueous batch systems. Spectroscopic analyses indicated that the bulk and near-surface region of all samples possessed similar elemental compositions and that iron was unevenly distributed among dust 10 particles. Mössbauer spectroscopy revealed Fe(III) in all samples, although SB, CL and AZTD also contained appreciable Fe(II). Both Fe(II) and Fe(III) were primarily substituted into aluminosilicates, although CL, AZTD and IS also contained Fe(III) oxides. Total iron solubility (defined as the summed concentration of dissolved Fe(II) and Fe(III) measured after 24 h) ranged 14 between 4-12% of the source materials’ iron content, but did not scale with either the surface area or the iron content of the samples. This suggests that other factors such as iron speciation and mineralogy may play a key role in iron solubility. Also, the elevated nitrate concentrations encountered from nitric acid at pH 1 suppressed dissolution of Fe(II) from AZTD, CL and SB particles, which we propose results from the surface-mediated, non-photochemical reduction of nitrate by Fe(II).

  20. Facilitated transport of amino acids across organic phases and the human erythrocyte membrane.

    PubMed Central

    Hider, R C; McCormack, W

    1980-01-01

    1. An artificial facilitated amino-acid-transfer process operating across a chloroform phase is reported. 2. This process utilizes a family of bis(salicylamidato)copper(II) complexes. 3. A mechanism is proposed for this process and for its sensitivity towards cyanide and bathophenanthroline sulphonate. 4. Facilitated transfer of L-leucine in human erythrocytes has been shown to be inhibited by bathophenanthroline sulphonate. PMID:7396879

  1. Synthesis of all nineteen appropriately protected chiral alpha-hydroxy acid equivalents of the alpha-amino acids for Boc solid-phase depsi-peptide synthesis.

    PubMed

    Deechongkit, Songpon; You, Shu-Li; Kelly, Jeffery W

    2004-02-19

    [reaction: see text] The preparation of depsi-peptides, amide-to-ester-substituted peptides used to probe the role of hydrogen bonding in protein folding energetics, is accomplished by replacing specific l-alpha-amino acid residues by their alpha-hydroxy acid counterparts in a solid-phase synthesis employing a t-Boc strategy. Herein we describe the efficient stereoselective synthesis of all 19 appropriately protected alpha-hydroxy acid equivalents of the l-alpha-amino acids, employing commercially available materials, expanding the number of available alpha-hydroxy acids from 9 to 19. PMID:14961607

  2. Brain microsomal fatty acid elongation is increased in abcd1-deficient mouse during active myelination phase.

    PubMed

    Morita, Masashi; Kawamichi, Misato; Shimura, Yusuke; Kawaguchi, Kosuke; Watanabe, Shiro; Imanaka, Tsuneo

    2015-12-01

    The dysfunction of ABCD1, a peroxisomal ABC protein, leads to the perturbation of very long chain fatty acid (VLCFA) metabolism and is the cause of X-linked adrenoleukodystrophy. Abcd1-deficient mice exhibit an accumulation of saturated VLCFAs, such as C26:0, in all tissues, especially the brain. The present study sought to measure microsomal fatty acid elongation activity in the brain of wild-type (WT) and abcd1-deficient mice during the course of development. The fatty acid elongation activity in the microsomal fraction was measured by the incorporation of [2-(14)C]malonyl-CoA into fatty acids in the presence of C16:0-CoA or C20:0-CoA. Cytosolic fatty acid synthesis activity was completely inhibited by the addition of N-ethylmaleimide (NEM). The microsomal fatty acid elongation activity in the brain was significantly high at 3 weeks after birth and decreased substantially at 3 months after birth. Furthermore, we detected two different types of microsomal fatty acid elongation activity by using C16:0-CoA or C20:0-CoA as the substrate and found the activity toward C20:0-CoA in abcd1-deficient mice was higher than the WT 3-week-old animals. These results suggest that during the active myelination phase the microsomal fatty acid elongation activity is stimulated in abcd1-deficient mice, which in turn perturbs the lipid composition in myelin. PMID:26108493

  3. Mobility of Po and U-isotopes under acid mine drainage conditions: an experimental approach with samples from Río Tinto area (SW Spain).

    PubMed

    Barbero, L; Gázquez, M J; Bolívar, J P; Casas-Ruiz, M; Hierro, A; Baskaran, M; Ketterer, M E

    2014-12-01

    Under acid mine drainage (AMD) conditions, the solubilities and mobilities of many elements are vastly different from conditions prevailing in most natural waters. Studies are underway in the Río Tinto area (Iberian Pyrite Belt), in order to understand the behavior and mobility of long-lived U-series radionuclides under AMD conditions. A set of leaching experiments utilizing typical country rocks from the Tinto River basin, waste rock pile composite materials, iron-rich riverbed sediments and gossan (weathered naturally rock) were performed towards this purpose. Initial leaching experiments using distilled water kept in contact with solid material for 300, 100, 50 and 1 h resulted in very low concentrations of U with (234)U/(238)U activity ratios close to equilibrium and activity concentrations of (210)Po < 0.03 mBq/g. Leaching experiments performed with sulfuric acid media (0.1 and 0.01 M), and contact times between the solid and solution for 24 h were conducted to quantify the amount of U-isotopes and (210)Po leached, and the radioactive disequilibria generated between the radionuclides in the leachate. These experiments show that Po mobility in acidic conditions (pH around 1-2) is very low, with (210)Po activity in the leachate to be 6% in average for the solid sample. By contrast, mobility of U-isotopes is higher than that of Po, around 1.2%. PMID:24308958

  4. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    PubMed Central

    Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Abstract Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI‐APi‐TOF (Chemical Ionization‐Atmospheric Pressure interface‐Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI‐APi‐TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4‐H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self‐contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit. PMID:27610289

  5. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Rondo, L.; Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-03-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  6. SIMULTANEOUS QUANTIFICATION OF JASMONIC ACID AND SALICYLIC ACID IN PLANTS BY VAPOR PHASE EXTRACTION AND GAS CHROMATOGRAPHY-CHEMICAL IONIZATION-MASS SPECTROMETRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Jasmonic acid and salicylic acid represent important signaling compounds in plant defensive responses against other organisms. Here, we present a new method for the easy, sensitive and reproducible quantification of both compounds by vapor phase extraction and gas chromatography-positive ion chemic...

  7. Contamination monitoring for ammonia, amines, and acid gases utilizing ion mobility spectroscopy (IMS)

    NASA Astrophysics Data System (ADS)

    Bacon, Tad; Webber, Kurt; Carpio, Ronald A.

    1998-06-01

    The effect of ammonia (NH3) and n-methyl pyrrolidinone (NMP) contamination on chemically amplified DUV resists is well documented. Other amines and related compounds are under suspicion as well. In addition, the concentration levels that are of concern have steadily decreased from approximately 10 ppbv down to levels as low as 0.1 ppbv. While some techniques such as ion chromotagraphy (IC) have been demonstrated to have limits of detection at these levels, the analysis times are rather long and cumbersome. This paper describes the use of IMS to perform these measurements, in a totally automated, continuous instrument. IMS is a simplified time-of-flight technique that requires no liquid reagents and has been demonstrated to be a reliable method for monitoring for ammonia and NMP in cleanrooms. This paper demonstrates the ability of the technique to monitor for amines such as dimethylamine, methylamine, methanolamine, ethanolamine, diethanolamine, butylamine and others. Detection limits of 0.1 ppbv and below are clearly demonstrated. Also discussed are methods of monitoring multiple points with a single analyzer. Ability to detect corrosive gases such as hydrogen fluoride (HF), hydrogen chloride (HCl), sulfur dioxide (SO2), sulfur trioxide (SO3), nitrogen dioxide (NO2), chlorine (Cl2), bromine (Br2), phosphoric acid (H3PO4) are also demonstrated.

  8. Investigation of poly(styrene-divinylbenzene-vinylsulfonic acid) as retentive and electroosmotic flow generating phase in open-tubular electrochromatography.

    PubMed

    De Smet, Seppe; Lynen, Frederic

    2015-07-24

    In this work, a new sulfonated polystyrene based porous layer was synthesized on the wall of a capillary by a single step in situ polymerization process. To obtain a capillary suited for electrochromatography, vinylsulfonic acid (VSA) was, next to divinylbenzene (DVB), copolymerized to induce charges for the electroosmotic flow (EOF) generation. The VSA ratio in the monomer mixture and the polymerization time were optimized while the chromatographic characteristics of the obtained open tubular columns were investigated in electrochromatography. To allow unambiguous study of only chromatographic processes, evaluations were performed with a mixture of sufficiently retained and electrophoretically neutral parabens. Comparison of SEM pictures and chromatograms revealed that the polymerization time had a great influence on the polymer layer morphology and on the chromatographic performance. An increase in the VSA ratio, led to an increase in the mobile phase velocity but simultaneously lowered paraben retention. The novel optimized stationary phase could generate a stable and significant electro-osmotic flow (EOF) of 1.1mm/s over a wide pH range which could be produced in a reproducible manner. Minimal plate heights of 10μm, equivalent to the capillary internal diameter, were obtained. The open-tubular character of this optimized porous layer column allowed successful analyses at elevated temperature, resulting in a maximum efficiency of 85,500 plates for a 75cm capillary and linear velocities up to 1.4mm/s. Finally, a thermal gradient was successfully applied, leading to artificial sharpened peaks with a peak capacity of 55 in a 20min time span. PMID:26065568

  9. Use of oleic-acid functionalized nanoparticles for the magnetic solid-phase microextraction of alkylphenols in fruit juices using liquid chromatography-tandem mass spectrometry.

    PubMed

    Viñas, Pilar; Pastor-Belda, Marta; Torres, Aitor; Campillo, Natalia; Hernández-Córdoba, Manuel

    2016-05-01

    Magnetic nanoparticles of cobalt ferrite with oleic acid as the surfactant (CoFe2O4/oleic acid) were used as sorbent material for the determination of alkylphenols in fruit juices. High sensitivity and specificity were achieved by liquid chromatography and detection using both diode-array (DAD) and electrospray-ion trap-tandem mass spectrometry (ESI-IT-MS/MS) in the selected reaction monitoring (SRM) mode of the negative fragment ions for alkylphenols (APs) and in positive mode for ethoxylate APs (APEOs). The optimized conditions for the different variables influencing the magnetic separation procedure were: mass of magnetic nanoparticles, 50mg, juice volume, 10mL diluted to 25mL with water, pH 6, stirring for 10min at room temperature, separation with an external neodymium magnet, desorption with 3mL of methanol and orbital shaking for 5min. The enriched organic phase was evaporated and reconstituted with 100µL acetonitrile before injecting 30µL into a liquid chromatograph with a mobile phase composed of acetonitrile/0.1% (v/v) formic acid under gradient elution. Quantification limits were in the range 3.6 to 125ngmL(-1). The recoveries obtained were in the 91-119% range, with RSDs lower than 14%. The ESI-MS/MS spectra permitted the correct identification of both APs and APEOs in the fruit juice samples. PMID:26946030

  10. Proton transfer aiding phase transitions in oxalic acid dihydrate under pressure.

    PubMed

    Bhatt, Himal; Mishra, A K; Murli, Chitra; Verma, Ashok K; Garg, Nandini; Deo, M N; Sharma, Surinder M

    2016-03-21

    Oxalic acid dihydrate, an important molecular solid in crystal chemistry, ecology and physiology, has been studied for nearly 100 years now. The most debated issues regarding its proton dynamics have arisen due to an unusually short hydrogen bond between the acid and water molecules. Using combined in situ spectroscopic studies and first-principles simulations at high pressures, we show that the structural modification associated with this hydrogen bond is much more significant than ever assumed. Initially, under pressure, proton migration takes place along this strong hydrogen bond at a very low pressure of 2 GPa. This results in the protonation of water with systematic formation of dianionic oxalate and hydronium ion motifs, thus reversing the hydrogen bond hierarchy in the high pressure phase II. The resulting hydrogen bond between a hydronium ion and a carboxylic group shows remarkable strengthening under pressure, even in the pure ionic phase III. The loss of cooperativity of hydrogen bonds leads to another phase transition at ∼ 9 GPa through reorientation of other hydrogen bonds. The high pressure phase IV is stabilized by a strong hydrogen bond between the dominant CO2 and H2O groups of oxalate and hydronium ions, respectively. These findings suggest that oxalate systems may provide useful insights into proton transfer reactions and assembly of simple molecules under extreme conditions. PMID:26924455

  11. Small interfering ribonucleic acid induces liquid-to-ripple phase transformation in a phospholipid membrane

    SciTech Connect

    Choubey, Amit; Nomura, Ken-ichi; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2014-09-15

    Small interfering ribonucleic acid (siRNA) molecules play a pivotal role in silencing gene expression via the RNA interference mechanism. A key limitation to the widespread implementation of siRNA therapeutics is the difficulty of delivering siRNA-based drugs to cells. Here, we examine changes in the structure and dynamics of a dipalmitoylphosphatidylcholine bilayer in the presence of a siRNA molecule and mechanical barriers to siRNA transfection in the bilayer. Our all-atom molecular dynamics simulation shows that siRNA induces a liquid crystalline-to-ripple phase transformation in the bilayer. The ripple phase consists of a major region of non-interdigitated and a minor region of interdigitated lipid molecules with an intervening kink. In the ripple phase, hydrocarbon chains of lipid molecules have large compressive stresses, which present a considerable barrier to siRNA transfection.

  12. Phase diagram of crystallization of Aspergillus niger acid proteinase A, a non-pepsin-type acid proteinase

    NASA Astrophysics Data System (ADS)

    Kudo, Norio; Ataka, Mitsuo; Sasaki, Hiroshi; Muramatsu, Tomonari; Katsura, Tatsuo; Tanokura, Masaru

    1996-10-01

    Proteinase A from Aspergillus niger var. macrosporus is a non-pepsin-type acid proteinase with an extremely low isoelectric point (pI 3.3). The protein is crystallized from ammonium sulfate solutions of pH lower than 4. The crystallization is affected by the presence of dimethylsulfoxide (DMSO). We have studied the phase diagram of the crystallization of proteinase A in the absence and presence of DMSO, to clarify crystallization at such an extremely low pH and to study the effects of DMSO. The results indicate that the logarithm of protein solubility is a rectilinear function of ammonium sulfate concentration in both the absence and presence of DMSO. DMSO definitely lowers the solubility at relatively low concentrations of ammonium sulfate, but had little effect on protein solubility at higher concentrations of ammonium sulfate.

  13. Applicability of the Remote Mobile Emplacement Package (RMEP) design as a mobility aid for proposed post-84 Mars missions, phase O

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The results of study to determine the applicability of the Remote Mobile Emplacement Package (RMEP) design concept as a mobility aid for the proposed post-'84 Mars missions are presented. The RMEP wheel and mobility subsystem parameters: wheel tire size, weight, stowed volume, and environmental effects; obstacle negotiation; reliability and wear; motor and drive train; and electrical power demand were reviewed. Results indicated that: (1) the basic RMEP wheel design would be satisfactory, with additional attention to heating, side loading, tread wear and ultraviolet radiation protection; (2) motor and drive train power requirements on Mars would be less than on Earth; and (3) the mobility electrical power requirements would be small enough to offer the option of operating the Mars mini rover untethered. Payload power required for certain sampling functions would preclude the use of battery power for these missions. Hazard avoidance and reverse direction maneuvers are discussed. Limited examination of vehicle payload integration and thermal design was made, pending establishment of a baseline vehicle/payload design.

  14. Greening pharmaceutical applications of liquid chromatography through using propylene carbonate-ethanol mixtures instead of acetonitrile as organic modifier in the mobile phases.

    PubMed

    Tache, Florentin; Udrescu, Stefan; Albu, Florin; Micăle, Florina; Medvedovici, Andrei

    2013-03-01

    Substitution of acetonitrile (ACN) as organic modifier in mobile phases for liquid chromatography by mixtures of propylene carbonate (PC) and ethanol (EtOH) may be considered a greener approach for pharmaceutical applications. Such a replacement is achievable without any major compromise in terms of elution order, chromatographic retention, efficiency and peak symmetry. This has been equally demonstrated for reverse phase (RP), ion pair formation (IP) and hydrophilic interaction liquid chromatography (HILIC) separation modes. The impact on the sensitivity induced by the replacement between these organic solvents is discussed for UV-vis and mass spectrometric detection. A comparison between Van Deemter plots obtained under elution conditions based on ACN and PC/EtOH is presented. The alternative elution modes were also compared in terms of thermodynamic parameters, such as standard enthalpy (ΔH⁰) and entropic contributions to the partition between the mobile and the stationary phases, for some model compounds. Van't Hoff plots demonstrated that differences between the thermodynamic parameters are minor when shifting from ACN/water to PC/EtOH/water elution on an octadecyl chemically modified silicagel stationary phase. As long as large volume injection (LVI) of diluents non-miscible with the mobile phase is a recently developed topic having a high potential of greening the sample preparation procedures through elimination of the solvent evaporation stage, this feature was also assessed in the case of ACN replacement by PC/EtOH. PMID:23277155

  15. Amino Acids Involved in Polyphosphate Synthesis and Its Mobilization Are Distinct in Polyphosphate Kinase-1 from Mycobacterium tuberculosis

    PubMed Central

    Mittal, Payal; Karthikeyan, Subramanian; Chakraborti, Pradip K.

    2011-01-01

    Background In bacteria polyphosphates (poly-P) are involved in cellular metabolism and development especially during stress. The enzyme, principally involved in polyphosphate biosynthesis and its mobilization leading to generation of NTPs, is known as polyphosphate kinase (PPK). Principal Findings Among two genes of polyphosphate kinases present in Mycobacterium tuberculosis, we cloned and expressed PPK1 in Escherichia coli as histidine-tagged protein. This ∼86 kDa protein is capable of autophosphorylation and synthesis of poly-P as well as NTP. Among 22 conserved histidine residues, we found only His-491 is autophosphorylated and crucial for any enzymatic activity. Substitution of His-510 caused mPPK1 protein deficient but not defective in autophosphorylation, thereby contrary to earlier reports negating any role of this residue in the process. However, mutation of His-510 with either Ala or Gln affected ATP or poly-P synthesis depending on the substitution; while such effects were severe with H510A but mild with H510Q. Furthermore, mPPK1 also renders auxiliary nucleotide diphosphate kinase function by synthesizing virtually all NTPs/dNTPs from their cognate NDPs/dNDPs by utilizing poly-P as the phosphate donor albeit with varied efficiency. To assess the influence of other catalytic domain residues of mPPK1 towards its functionality, we designed mutations based on E. coli PPK1 crystal structure since it owes 68% amino acid sequence similarity with mPPK1. Interestingly, our results revealed that mutations in mPPK1 affecting poly-P synthesis always affected its ATP synthesizing ability; however, the reverse may not be true. Conclusions/Significance We conclude that amino acid residues involved in poly-P and ATP synthesizing activities of mPPK1 are distinct. Considering conserved nature of PPK1, it seems our observations have broader implications and not solely restricted to M. tuberculosis only. PMID:22110640

  16. Aspirin’s Active Metabolite Salicylic Acid Targets High Mobility Group Box 1 to Modulate Inflammatory Responses

    PubMed Central

    Choi, Hyong Woo; Tian, Miaoying; Song, Fei; Venereau, Emilie; Preti, Alessandro; Park, Sang-Wook; Hamilton, Keith; Swapna, G V T; Manohar, Murli; Moreau, Magali; Agresti, Alessandra; Gorzanelli, Andrea; De Marchis, Francesco; Wang, Huang; Antonyak, Marc; Micikas, Robert J; Gentile, Daniel R; Cerione, Richard A; Schroeder, Frank C; Montelione, Gaetano T; Bianchi, Marco E; Klessig, Daniel F

    2015-01-01

    Salicylic acid (SA) and its derivatives have been used for millennia to reduce pain, fever and inflammation. In addition, prophylactic use of acetylsalicylic acid, commonly known as aspirin, reduces the risk of heart attack, stroke and certain cancers. Because aspirin is rapidly de-acetylated by esterases in human plasma, much of aspirin’s bioactivity can be attributed to its primary metabolite, SA. Here we demonstrate that human high mobility group box 1 (HMGB1) is a novel SA-binding protein. SA-binding sites on HMGB1 were identified in the HMG-box domains by nuclear magnetic resonance (NMR) spectroscopic studies and confirmed by mutational analysis. Extracellular HMGB1 is a damage-associated molecular pattern molecule (DAMP), with multiple redox states. SA suppresses both the chemoattractant activity of fully reduced HMGB1 and the increased expression of proinflammatory cytokine genes and cyclooxygenase 2 (COX-2) induced by disulfide HMGB1. Natural and synthetic SA derivatives with greater potency for inhibition of HMGB1 were identified, providing proof-of-concept that new molecules with high efficacy against sterile inflammation are attainable. An HMGB1 protein mutated in one of the SA-binding sites identified by NMR chemical shift perturbation studies retained chemoattractant activity, but lost binding of and inhibition by SA and its derivatives, thereby firmly establishing that SA binding to HMGB1 directly suppresses its proinflammatory activities. Identification of HMGB1 as a pharmacological target of SA/aspirin provides new insights into the mechanisms of action of one of the world’s longest and most used natural and synthetic drugs. It may also provide an explanation for the protective effects of low-dose aspirin usage. PMID:26101955

  17. Use of hydrochloric acid for determinining solid-phase arsenic partitioning in sulfidic sediments.

    PubMed

    Wilkin, Richard T; Ford, Robert G

    2002-11-15

    We examined the use of room-temperature hydrochloric acid (1-6 M) and salt solutions of magnesium chloride, sodium carbonate, and sodium sulfide for the removal of arsenic from synthetic iron monosulfides and contaminated sediments containing acid-volatile sulfides (AVS). Results indicate that acid-soluble arsenic reacts with H2S released from AVS phases and precipitates at low pH as disordered orpiment or alacranite. Arsenic sulfide precipitation is consistent with geochemical modeling in that conditions during acid extraction are predicted to be oversaturated with respect to orpiment, realgar, or both. Binding of arsenic with sulfide at low pH is sufficiently strong that 6 M HCl will not keep spiked arsenic in the dissolved fraction. Over a wide range of AVS concentrations and molar [As]/[AVS] ratios, acid extraction of arsenic from sulfide-bearing sediments will give biased results that overestimate the stability or underestimate the bioavailability of sediment-bound arsenic. Alkaline solutions of sodium sulfide and sodium carbonate are efficient in removing arsenic from arsenic sulfides and mixed iron-arsenic sulfides because of the high solubility of arsenic at alkaline pH, the formation of stable arsenic complexes with sulfide or carbonate, or both. PMID:12487318

  18. Modulation of Rubisco Activity during the Diurnal Phases of the Crassulacean Acid Metabolism Plant Kalanchoë daigremontiana.

    PubMed

    Maxwell; Borland; Haslam; Helliker; Roberts; Griffiths

    1999-11-01

    The regulation of Rubisco activity was investigated under high, constant photosynthetic photon flux density during the diurnal phases of Crassulacean acid metabolism in Kalanchoë daigremontiana Hamet et Perr. During phase I, a significant period of nocturnal, C(4)-mediated CO(2) fixation was observed, with the generated malic acid being decarboxylated the following day (phase III). Two periods of daytime atmospheric CO(2) fixation occurred at the beginning (phase II, C(4)-C(3) carboxylation) and end (phase IV, C(3)-C(4) carboxylation) of the day. During the 1st h of the photoperiod, when phosphoenolpyruvate carboxylase was still active, the highest rates of atmospheric CO(2) uptake were observed, coincident with the lowest rates of electron transport and minimal Rubisco activity. Over the next 1 to 2 h of phase II, carbamylation increased rapidly during an initial period of decarboxylation. Maximal carbamylation (70%-80%) was reached 2 h into phase III and was maintained under conditions of elevated CO(2) resulting from malic acid decarboxylation. Initial and total Rubisco activity increased throughout phase III, with maximal activity achieved 9 h into the photoperiod at the beginning of phase IV, as atmospheric CO(2) uptake recommenced. We suggest that the increased enzyme activity supports assimilation under CO(2)-limited conditions at the start of phase IV. The data indicate that Rubisco activity is modulated in-line with intracellular CO(2) supply during the daytime phases of Crassulacean acid metabolism. PMID:10557233

  19. Activation of Plant Innate Immunity by Extracellular High Mobility Group Box 3 and Its Inhibition by Salicylic Acid

    PubMed Central

    Choi, Hyong Woo; Manohar, Murli; Manosalva, Patricia; Tian, Miaoying; Moreau, Magali; Klessig, Daniel F.

    2016-01-01

    Damage-associated molecular pattern molecules (DAMPs) signal the presence of tissue damage to induce immune responses in plants and animals. Here, we report that High Mobility Group Box 3 (HMGB3) is a novel plant DAMP. Extracellular HMGB3, through receptor-like kinases BAK1 and BKK1, induced hallmark innate immune responses, including i) MAPK activation, ii) defense-related gene expression, iii) callose deposition, and iv) enhanced resistance to Botrytis cinerea. Infection by necrotrophic B. cinerea released HMGB3 into the extracellular space (apoplast). Silencing HMGBs enhanced susceptibility to B. cinerea, while HMGB3 injection into apoplast restored resistance. Like its human counterpart, HMGB3 binds salicylic acid (SA), which results in inhibition of its DAMP activity. An SA-binding site mutant of HMGB3 retained its DAMP activity, which was no longer inhibited by SA, consistent with its reduced SA-binding activity. These results provide cross-kingdom evidence that HMGB proteins function as DAMPs and that SA is their conserved inhibitor. PMID:27007252

  20. On-column nitrosation of amines observed in liquid chromatography impurity separations employing ammonium hydroxide and acetonitrile as mobile phase.

    PubMed

    Myers, David P; Hetrick, Evan M; Liang, Zhongming; Hadden, Chad E; Bandy, Steven; Kemp, Craig A; Harris, Thomas M; Baertschi, Steven W

    2013-12-01

    The availability of high performance liquid chromatography (HPLC) columns capable of operation at pH values up to 12 has allowed a greater selectivity space to be explored for method development in pharmaceutical analysis. Ammonium hydroxide is of particular value in the mobile phase because it is compatible with direct interfacing to electrospray mass spectrometers. This paper reports an unexpected N-nitrosation reaction that occurs with analytes containing primary and secondary amines when ammonium hydroxide is used to achieve the high pH and acetonitrile is used as the organic modifier. The nitrosation reaction has generality. It has been observed on multiple columns from different vendors and with multiple amine-containing analytes. Ammonia was established to be the source of the nitroso nitrogen. The stainless steel column frit and metal ablated from the frit have been shown to be the sites of the reactions. The process is initiated by removal of the chromium oxide protective film from the stainless steel by acetonitrile. It is hypothesized that the highly active, freshly exposed metals catalyze room temperature oxidation of ammonia to NO but that the actual nitrosating agent is likely N(2)O(3). PMID:24182763

  1. Simultaneous Determination of Diosmin and Hesperidin in Pharmaceuticals by RPLC using Ionic Liquids as Mobile Phase Modifiers

    PubMed Central

    Szymański, Marcin; Młynarek, Daria; Szymański, Arkadiusz; Matławska, Irena

    2016-01-01

    Diosmin and hesperidin are natural flavonoid glycosides found in various plant materials, mainly in citrus fruits in different concentrations. Diosmin for pharmaceutical use is obtained mainly semi-synthetically from hesperidin. Hesperidin often accompanies diosmin as a natural impurity in different pharmaceutical formulations; therefore, a simple, fast and precise method for the simultaneous assay of diosmin and hesperidin in pharmaceutical formulations has been developed to control their contents. Chromatographic resolution was performed using a column with C-18 packing and the following mobile phase: methanol/water (45:55, v/v) with 0.025% added didecyldimethylammonium lactate, which significantly affects retention, shortening analysis time and having a positive impact on the symmetry of resulting chromatographic peaks. The method shows linearity between 2.5 and 100 μg/mL, high repeatability (0.39 and 0.42% for diosmin and hesperidin, respectively) and accuracy of 96 to 102% for both the assayed compounds. Intraday and interday precision of the new method were less than RSD% 1, 2. The limit of detection of the assayed compounds is 2.5 and 1.2 μg/mL for diosmin and hesperidin, respectively. The method was tested on several pharmaceutical products available in Poland. PMID:27610154

  2. Simultaneous Determination of Diosmin and Hesperidin in Pharmaceuticals by RPLC using Ionic Liquids as Mobile Phase Modifiers.

    PubMed

    Szymański, Marcin; Młynarek, Daria; Szymański, Arkadiusz; Matławska, Irena

    2016-01-01

    Diosmin and hesperidin are natural flavonoid glycosides found in various plant materials, mainly in citrus fruits in different concentrations. Diosmin for pharmaceutical use is obtained mainly semi-synthetically from hesperidin. Hesperidin often accompanies diosmin as a natural impurity in different pharmaceutical formulations; therefore, a simple, fast and precise method for the simultaneous assay of diosmin and hesperidin in pharmaceutical formulations has been developed to control their contents. Chromatographic resolution was performed using a column with C-18 packing and the following mobile phase: methanol/water (45:55, v/v) with 0.025% added didecyldimethylammonium lactate, which significantly affects retention, shortening analysis time and having a positive impact on the symmetry of resulting chromatographic peaks. The method shows linearity between 2.5 and 100 μg/mL, high repeatability (0.39 and 0.42% for diosmin and hesperidin, respectively) and accuracy of 96 to 102% for both the assayed compounds. Intraday and interday precision of the new method were less than RSD% 1, 2. The limit of detection of the assayed compounds is 2.5 and 1.2 μg/mL for diosmin and hesperidin, respectively. The method was tested on several pharmaceutical products available in Poland. PMID:27610154

  3. Solvent viscosity mismatch between the solute plug and the mobile phase: Considerations in the applications of two-dimensional HPLC

    SciTech Connect

    Shalliker, R. Andrew; Guiochon, Georges A

    2010-01-01

    Understanding the nature of viscosity contrast induced flow instabilities is an important aspect in the design of two-dimensional HPLC separations. When the viscosity contrast between the sample plug and the mobile phase is sufficiently large, the phenomenon known as viscous fingering can be induced. Viscous fingering is a flow instability phenomenon that occurs at the interface between two fluids with different viscosities. In liquid chromatography, viscous fingering results in the solute band undergoing a change in form as it enters into the chromatography column. Moreover, even in the absence of viscous fingering, band shapes change shape at low viscosity contrasts. These changes can result in a noticeable change in separation performance, with the result depending on whether the solvent pushing the solute plug has a higher or lower viscosity than the solute plug. These viscosity induced changes become more important as the solute injection volume increases and hence understanding the process becomes critical in the implementation of multidimensional HPLC techniques, since in these techniques the sample injection plug into the second dimension is an order of magnitude greater than in one-dimensional HPLC. This review article assesses the current understanding of the viscosity contrast induced processes as they relate to liquid chromatographic separation behaviour.

  4. Reactivity and acidity of Li in LiAlO[sub 2] phases

    SciTech Connect

    Dronskowski, R. )

    1993-01-06

    Nuclear physicists were interested in the [gamma]-modification of LiAlO[sub 2]. Because of its good performance under high neutron and electron radiation, the phase appears to be a promising lithium ceramic suitable as an in situ trituim-breeding material in future fusion reactors. With the help of semiempirical electronic structure calculations, the authors seek to understand why solid [alpha]-LiAlO[sub 2] exchanges Li[sup +] with H[sup +] while in contact with molten benzoic acid but [gamma]-LiAlO[sub 2] does not. After critically examining the structural data for LiAlO[sub 2] modifications, they calculate the binding and both the static and dynamic reactivity and the static and dynamic acidity of [alpha]- and [gamma]-LiAlO[sub 2], with a special interpretative emphasis on the Li ion. The reason for Li being solely extractable in [alpha]-LiAlO[sub 2] is found to arise from (1) a difference in Li electrophilicity between [alpha]- and [gamma]-phase (frontier band argument), (2) a significantly smaller energy for Li binding to its neighboring atoms in [alpha]-compared to [gamma]-phase (thermodynamic argument), and (3) a dramatic difference in energetic behavior upon dislocating a Li atom from its equilibrium position in [alpha]- and [gamma]-phase (kinetic argument). Additionally, the authors show how the movement of a local atomic carrier of reactivity and acidity within a nonequilibrium structure can be easily observed by use of computation. 64 refs., 12 figs., 3 tabs.

  5. Improvement of Nicotinic Acid and Nicotinamide Analysis in Meats and Meat Products by HPLC and LC-MS/MS with Solid-Phase Extraction.

    PubMed

    Hiki, Asako; Yamajima, Yukiko; Uematsu, Yoko

    2016-01-01

    A method for nicotinic acid (NA) and nicotinamide (NAA) analysis in meats was developed. NA and NAA were extracted from meats or meat products with metaphosphate aqueous solution. The extract was cleaned up with an Oasis MCX cartridge. The cartridge was washed with 2% acetic acid (v/v) and acetic acid-methanol solution. NA and NAA were eluted with ammonia-methanol solution. NA and NAA in the eluate were chromatographed on a Scherzo SM-C18 (3.0×150 mm, 3.0 μm) column with 20 mmol/L ammonium acetate containing 0.1% acetic acid-acetonitrile (97 : 3) as a mobile phase and were monitored at 261 nm. Quantification was performed by LC and LC-MS/MS. Calibration curves showed high linearity (correlation coefficient>0.998) between 1-25 μg/mL for LC and LC-MS/MS. Recoveries were 84-108% (CV≦5.8%) by HPLC and 79-105% (CV≦9.0%) by LC-MS/MS. The limit of quantitation for NA was 0.005-0.01 g/kg and that for NAA was 0.01-0.02 g/kg. PMID:27558227

  6. Solid-Phase Formation Of Isovaline, A Non-Biological, Meteoritic Amino Acid

    NASA Astrophysics Data System (ADS)

    Hudson, Reggie L.; Lewis, A. S.; Moore, M. H.; Dworkin, J. P.; Glavin, D. P.

    2007-10-01

    Among the Murchison (CM) meteoritic amino acids, isovaline stands out as being non-biological (nonprotein) and having a high abundance. Approximately equal amounts of D- and L-isovaline have been reported in CM meteorites, but the molecule's structure appears to prohibit racemization in aqueous solutions. While it is possible that isovaline could be made by the oft-studied Strecker reaction, laboratory experiments have seldom been able to produce this molecule from realistic molecular precursors. Recently we have investigated the low-temperature solid-phase chemistry of isovaline with an eye toward the molecule's formation, its stability, and the interconversion of its D- and L-enantiomers. Ion-irradiated isovaline-containing ices were examined by IR spectroscopy and highly-sensitive LC/ToF-MS methods to assess both amino acid destruction and racemization. Samples were studied both in the presence and absence of water-ice, and the destruction of isovaline was measured as a function of radiation dose. In addition, we have continued our earlier work on solid-phase amino acid formation, extending it to cover isovaline. In this presentation we will report the results of these newer investigations. This work was supported by a grant to the Goddard Center for Astrobiology through the NASA Astrobiology Institute. AL was supported by an award from the Summer Undergraduate Internship in Astrobiology program.

  7. Experimental Insights into the Sulfuric Acid/Water Phase Diagram: Implications for Polar Stratospheric Clouds

    NASA Astrophysics Data System (ADS)

    Beyer, K. D.; Hansen, A. R.

    2002-05-01

    We have investigated the H2SO4/H2O binary liquid/solid phase diagram using a highly sensitive differential scanning calorimeter (DSC) and infrared spectroscopy of thin films. In particular we have sought to investigate the region from pure ice to sulfuric acid hemihexahydrate (SAH, H2SO4ú6.5H2O), including a detailed look at the sulfuric acid octahydrate (SAO). Our studies have found that there is a unique, repeatable IR spectra for SAO, which is not merely a combination of spectra of ice and sulfuric acid tetrahydrate (SAT), as has been previously suggested could be the case. From our DSC studies, we have identified the melting, or solid/solid phase transition of the octahydrate. We have also determined from our studies using the energy of fusion for SAO that SAO is a major component of H2SO4 solutions in the range 20 - 40 wt.% when they freeze. Our results indicate that SAO could be a significant portion of solid or partially frozen polar stratospheric cloud particles. As such, key stratospheric reactions should be studied on SAO surfaces.

  8. Phase properties of carbon-supported platinum-gold nanoparticles for formic acid eletro-oxidation

    NASA Astrophysics Data System (ADS)

    Liao, Mengyin; Xiong, Jihai; Fan, Min; Shi, Jinming; Luo, Chenglong; Zhong, Chuan-Jian; Chen, Bing H.

    2015-10-01

    The design of active and robust bimetallic nanocatalysts requires the control of the nanoscale alloying, phase-segregation and the correlation between nanoscale phase-segregation and catalytic properties. To enhance the performance and durability of formic acid oxidation reaction in fuel-cell applications, we prepared a platinum-gold (PtAu) nanocatalyst with controlled morphology and composition. The catalyst is further treated by calcination under controlled temperature and atmosphere. The morphology of the bimetallic nanoparticles is determined by transmission electron microscopy. The nanoscale phase properties and surface composition are carried out by X-ray diffraction and X-ray photoelectron spectroscopy. Cyclic voltammetry measurements demonstrated that the catalytic activity is highly dependent on the nanoscale evolution of alloying and phase segregation. The mass activity of as-prepared Pt50Au50/C with 600 °C treatment temperature is about 11 times higher than that of commercial Pt/C. Stability tests showed no obvious loss of activity after 500 potential cycles. The high activity and stability are attributed to lattice contraction effect as a result of the high thermal treatment condition. Our findings demonstrate the importance of phase segregation at the nanoscale in harnessing the true electrocatalytic potential of bimetallic nanoparticles.

  9. Gas-Phase Amidation of Carboxylic Acids with Woodward's Reagent K Ions

    NASA Astrophysics Data System (ADS)

    Peng, Zhou; Pilo, Alice L.; Luongo, Carl A.; McLuckey, Scott A.

    2015-06-01

    Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward's reagent K (wrk) in both positive and negative mode. Woodward's reagent K, N-ethyl-3-phenylisoxazolium-3'-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the wrk ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide.

  10. Effect of growth phase and acid shock on Helicobacter pylori cagA expression.

    PubMed Central

    Karita, M; Tummuru, M K; Wirth, H P; Blaser, M J

    1996-01-01

    Helicobacter pylori strains possessing cagA are associated with peptic ulceration. To understand the regulation of expression of cagA, picB, associated with interleukin-8 induction, and ureA, encoding the small urease subunit, we created gene fusions of cagA, ureA, and picB of strain 3401, using a promoterless reporter (xylE). Expression of XylE after growth in broth culture revealed that basal levels of expression of cagA and urea in H. pylori were substantially greater than for picB. For cagA expression in stationary-phase cells, brief exposure to acid pH caused a significant increase in xylE expression compared with neutral pH. In contrast, expression of xylE in urea or picB decreased after parallel exposure to acid pH (pH 7 > 6 > 5 > 4), regardless of the growth phase. Expression of the CagA protein varied with growth phase and pH exposure in parallel with the observed transcriptional variation. The concentration of CagA in a cell membrane-enriched fraction after growth at pH 6 was significantly higher than after growth at pH 5 or 7. We conclude that the promoterless reporter xylE is useful for studying the regulation of gene expression in H. pylori and that regulation of CagA production occurs mainly at the transcriptional level. PMID:8890198

  11. Electrons Mediate the Gas-Phase Oxidation of Formic Acid with Ozone.

    PubMed

    van der Linde, Christian; Tang, Wai-Kit; Siu, Chi-Kit; Beyer, Martin K

    2016-08-26

    Gas-phase reactions of CO3 (.-) with formic acid are studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Signal loss indicates the release of a free electron, with the formation of neutral reaction products. This is corroborated by adding traces of SF6 to the reaction gas, which scavenges 38 % of the electrons. Quantum chemical calculations of the reaction potential energy surface provide a reaction path for the formation of neutral carbon dioxide and water as the thermochemically favored products. From the literature, it is known that free electrons in the troposphere attach to O2 , which in turn transfer the electron to O3 . O3 (.-) reacts with CO2 to form CO3 (.-) . The reaction reported here formally closes the catalytic cycle for the oxidation of formic acid with ozone, catalyzed by free electrons. PMID:27400953

  12. Reactivity of D-fructose and D-xylose in acidic media in homogeneous phases.

    PubMed

    Fusaro, Maxime B; Chagnault, Vincent; Postel, Denis

    2015-05-29

    Chemistry development of renewable resources is a real challenge. Carbohydrates from biomass are complex and their use as substitutes for fossil materials remains difficult (European involvement on the incorporation of 20% raw material of plant origin in 2020). Most of the time, the transformation of these polyhydroxylated structures are carried out in acidic conditions. Recent reviews on this subject describe homogeneous catalytic transformations of pentoses, specifically toward furfural, and also the transformation of biomass-derived sugars in heterogeneous conditions. To complete these informations, the objective of this review is to give an overview of the structural variety described during the treatment of two monosaccharides (D-Fructose and D-xylose) in acidic conditions in homogeneous phases. The reaction mechanisms being not always determined with certainty, we will also provide a brief state of the art regarding this. PMID:25889471

  13. A novel positively charged achiral co-monomer for β-cyclodextrin monolithic stationary phase: Improved chiral separation of acidic compounds using capillary electrochromatography coupled to mass spectrometry

    PubMed Central

    Bragg, William; Shamsi, Shahab A.

    2013-01-01

    The work presented here demonstrates the incorporation of vinylbenzyl trimethylammonium (VBTA) as a novel positively charged achiral co-monomer to a glycidyl methacrylate-beta cyclodextrin (GMA/β-CD) based monolith, providing anion exchange sites with reversed electroosmotic flow (EOF) for capillary electrochromatography (CEC). The monolithic phases, GMA/β-CD-VBTA and GMA/β-CD (without co-monomer) were characterized by scanning electron microscopy, optical microscopy, pressure drop/flow-rate curves and nitrogen adsorption analysis. After optimizing the stationary phase and mobile phase parameters, chiral separations of 41 pairs of structurally diverse anionic chiral analytes were compared individually using the GMA/β-CD-VBTA and GMA/β-CD monolithic columns. The GMA/β-CD-VBTA monolith chiral stationary phase separated significantly more acidic compounds compared to the GMA/β-CD column. To-date there has been limited work in the development of chiral monolithic column for CEC-mass spectrometry (MS). Because of good electrodriven flow characteristics, which allow the column to maintain a stable current in the absence of outlet vial, GMA/β-CD-VBTA column was successfully coupled to single quadrupole mass spectrometer for CEC-MS of several chiral test compounds. In addition, the same monolithic CEC column when coupled to a triple quadrupole MS instrument, two orders of magnitude higher sensitivity was observed compared to a single quadrupole MS instrument. PMID:23062876

  14. 77 FR 7152 - Mobility Fund Phase I Auction Scheduled for September 27, 2012; Comment Sought on Competitive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... the Commission in the USF/ICC Transformation Order, 76 FR 73830, November 29, 2011 and 76 FR 81562... current- and next-generation mobile networks in areas where these networks are unavailable. This support... current or next generation mobile networks, the USF/ICC Transformation Order provides that the...

  15. Phase II trial of weekly Docetaxel, Zoledronic acid, and Celecoxib for castration-resistant prostate cancer.

    PubMed

    Kattan, Joseph; Bachour, Marwan; Farhat, Fadi; El Rassy, Elie; Assi, Tarek; Ghosn, Marwan

    2016-08-01

    Background Treatment options for patients with metastatic castration-resistance prostate cancer are unsatisfactory. Docetaxel monotherapy offers promising results with a tolerable toxicity profile. However, enhancing the clinical index of Docetaxel-based therapy remains the ultimate goal. Methods We conducted a phase II, open label, multinational prospective trial to evaluate the efficacy of weekly Docetaxel combined with Zoledronic acid and Celecoxib. Eligible patients received 25 mg/m(2) Docetaxel weekly for 3 consecutive weeks every 4 weeks, 4 mg Zoledronic acid every 4 weeks, and 200 mg oral Celecoxib twice daily. Enrollment was terminated prematurely upon the publication of reports of cardiac toxicity associated with cyclooxygenase (COX) 2 inhibitors. Results Our study enrolled 22 patients with a median of 4.7 cycles per patient. The median overall survival (OS) was 9.8 months (range 0.7 to 24.1 months) with 36 % and 4.5 % survival rates at 1 and 2 years, respectively. Our patients had a biologic response in 40.1 % of cases and a palliative response in 72.7 %. Among the eight patients with measurable disease, three had partial responses, two had stable disease, and three had progressive disease, leading to a response rate (RR) of 62.5 %. The observed toxicities were mild and limited to grade 3 events. Nine patients had anemia (40.1 %), 5 had sensory neuropathy (22.7 %) and 2 had stomatitis (9.1 %). Conclusion The combination of Docetaxel, Celecoxib, and Zoledronic acid failed to improve OS or to offer an acceptable biologic response. We do not believe that there is compelling evidence to include either Celecoxib or Zoledronic acid in further phase II/III trials. PMID:27159981

  16. Nickel-cadmium batteries: effect of electrode phase composition on acid leaching process.

    PubMed

    Nogueira, C A; Margarido, F

    2012-01-01

    At the end of their life, Ni-Cd batteries cause a number of environmental problems because of the heavy metals they contain. Because of this, recycling of Ni-Cd batteries has been carried out by dedicated companies using, normally, pyrometallurgical technologies. As an alternative, hydrometallurgical processes have been developed based on leaching operations using several types of leachants. The effect of factors like temperature, acid concentration, reaction time, stirring speed and grinding of material on the leaching yields of metals contained in anodic and cathodic materials (nickel, cadmium and cobalt) using sulphuric acid, is herein explained based on the structural composition of the electrode materials. The nickel, cobalt and cadmium hydroxide phases, even with a small reaction time (less than 15 minutes) and low temperature (50 degrees C) and acid concentration (1.1 M H2SO4), were efficiently leached. However, leaching of the nickel metallic phase was more difficult, requiring higher values of temperature, acid concentration and reaction time (e.g. 85 degrees C, 1.1 M H2SO4 and 5 h, respectively) in order to obtain a good leaching efficiency for anodic and cathodic materials (70% and 93% respectively). The stirring speed was not significant, whereas the grinding of electrode materials seems to promote the compaction of particles, which appears to be critical in the leaching of Ni degrees. These results allowed the identification and understanding of the relationship between the structural composition of electrode materials and the most important factors that affect the H2SO4 leaching of spent Ni-Cd battery electrodes, in order to obtain better metal-recovery efficiency. PMID:22519122

  17. Rapid Enantiomeric Separation and Quantitation of Levetiracetam on α-Acid Glycoprotein (AGP) Chiral Stationary Phase by High-Performance Liquid Chromatography.

    PubMed

    Heydari, Rouhollah; Shamsipur, Mojtaba

    2015-01-01

    A new, simple, and rapid chiral HPLC method was developed for enantioselective analysis of levetiracetam and its enantiomer [(R)-α-ethyl-2- oxo-pyrrolidine acetamide] in a pharmaceutical formulation and bulk material. Enantiomeric separation was achieved on a chiral-α1-acid glycoprotein (AGP) column (150×4.0 mm, 5 μm) using an isocratic mobile phase of phosphate buffer (pH=7) at a flow rate of 0.7 mL/min. The UV detector was set at 210 nm. Calibration curves were linear in the range of 1-100 μg/mL and 0.4-20 μg/mL for levetiracetam and the (R)-enantiomer, respectively. LOD and LOQ for the (R)-enantiomer were 0.1 and 0.4 μg/mL, respectively. The run time of analysis was less than 5.0 min. PMID:26651564

  18. Potentiodynamic polarization effect on phase and microstructure of SAC305 solder in hydrochloric acid solution

    NASA Astrophysics Data System (ADS)

    Zaini, Nurwahida Binti Mohd; Nazeri, Muhammad Firdaus Bin Mohd

    2016-07-01

    The corrosion analysis of SAC305 lead free solder was investigated in Hydrochloric acid (HCl) solution. Potentiodynamic polarization was used to polarize the SAC305. The effect of polarization on the phase and microstructure were compared to as-prepared SAC305 solder. Potentiodynamic polarization introduces mixed corrosion products on the surface of SAC305 solder. The XRD analysis confirms that the mixed corrosion products emerged on the surface after polarization by formation of SnO and SnO2 of which confirmed that dissolution of Sn was dominant during polarization. Microstructure analysis reveal the presence of gap and porosities produced limits the protection offered by the passivation film.

  19. Raman study of the molecular motions of pivalic acid: the liquid—plastic phase transition

    NASA Astrophysics Data System (ADS)

    Balevičius, V.; Orel, B.; Hadži, D.

    Raman spectra of pivalic acid in the plastic and liquid phase have been measured. The reorientational correlation times have been evaluated from the ν asCH, νCO and νCC bands as a function of temperature. The reorientational correlation time corresponding to ν as CH and νCC bands is τ < 10 -11 s whilst for the νCO band τ = 4ps ( T = 20°C). The calculated activation energy is 26 KJ mol -1. The reorientation of the carboxylic groups which may be assisted by the proton transfer along the hydrogen bonds in dimers is discussed.

  20. Investigation of the gas-phase hydrogen/deuterium exchange behavior of aromatic dicarboxylic acids in a quadrupole ion trap

    NASA Astrophysics Data System (ADS)

    Chipuk, Joseph E.; Brodbelt, Jennifer S.

    2007-11-01

    Gas-phase hydrogen/deuterium (H/D) exchange reactions of four deprotonated aromatic dicarboxylic acids (phthalic acid, isophthalic acid, terephthalic acid and 2,6-naphthalic acid) with D2O were performed in a quadrupole ion trap mass spectrometer. Experimental results showed significant differences in the rate and extent of exchange when the relative position of the carboxylic acid groups varied. Spontaneous and near complete exchange of one aromatic hydrogen atom occurred when the carboxylic acid groups were in the meta-position, whereas no additional exchange was observed for either the ortho- or para-isomers or for the structurally similar naphthalic acid. Computational investigations support the participation of several possible exchange mechanisms with the contribution of each relying heavily on the relative orientation of the acid moieties. A relay mechanism that bridges the deprotonation site and the labile hydrogen site appears to be responsible for the H/D exchange of not only the labile hydrogen atom of isophthalic acid, but also for the formation of a stable carbanion and corresponding subsequent exchange of one aromatic hydrogen atom. The impact of hydrogen bonding on the relay mechanism is demonstrated by the reaction of phthalic acid as the extent and rate of reaction are greatly retarded by the favorable interaction of the two carboxylic acid groups. Finally, a flip-flop mechanism is likely responsible for the exchange of both terephthalic acid and 2,6-naphthalic acid where the reactive sites are too remote for exchange via relay.

  1. Equilibrium phase diagrams and water absorption properties of aqueous mixtures of malonic acid and inorganic salts.

    NASA Astrophysics Data System (ADS)

    Salcedo, D.; Salgado-Olea, G.

    2006-12-01

    Tropospheric aerosols are usually complex mixtures of inorganic and organic components. Although the thermodynamic properties of inorganic aerosols have been widely studied, the effect of organics on such properties is still under discussion. Solubility in water, water activity of aqueous solutions, deliquescence relative humidity (DRH), eutonic composition, and eutonic DRH were determined for bulk mixtures of malonic acid with ammonium sulfate, ammonium bisulfate, and ammonium nitrate at 25oC over the full range of composition (from 0 wt% to the solubility limit of the mixture components). The data was used to construct equilibrium phase diagrams, which show the phase of the mixtures as a function of total composition, dry mixture composition, water content, and ambient relative humidity. Measured water activity of liquid solutions was compared with an extended Zdanovskii-Stokes-Robinson (ZSR) expression, which then was used to predict water absorption of the mixtures.

  2. Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production.

    PubMed

    Lian, Jieni; Garcia-Perez, Manuel; Coates, Ralph; Wu, Hongwei; Chen, Shulin

    2012-08-01

    The presence of very reactive C1-C4 molecules adversely affects the quality bio-oils produced from the pyrolysis of lignocellulosic materials. In this paper a scheme to produce lipids with Cryptococcus curvatus from the carboxylic acids in the pyrolytic aqueous phase collected in fractional condensers is proposed. The capacities of three oleaginous yeasts C. curvatus, Rhodotorula glutinis, Lipomyces starkeyi to ferment acetate, formate, hydroxylacat-aldehyde, phenol and acetol were investigated. While acetate could be a good carbon source for lipid production, formate provides additional energy and contributes to yeast growth and lipid production as auxiliary energy resource. Acetol could slightly support yeast growth, but it inhibits lipid accumulation. Hydroxyacetaldehyde and phenols showed high yeast growth and lipid accumulation inhibition. A pyrolytic aqueous phase with 20 g/L acetate was fermented with C. curvatus, after neutralization and detoxification to produce 6.9 g/L dry biomass and 2.2 g/L lipid. PMID:22705522

  3. Evolution of the phase content of zirconia powders prepared by sol-gel acid hydrolysis

    SciTech Connect

    Rivas, P.C.; Martinez, J.A.; Caracoche, M.C.; Rodriguez, A.M.; Lopez Garcia, A.R.; Pavlik, R.S. Jr.; Klein, L.C.

    1998-01-01

    The evolution of the phase content in zirconia powders that have been prepared by sol-gel acid hydrolysis has been investigated using the perturbed-angular-correlation (PAC) technique and X-ray diffractometry. As a consequence of performing annealing treatments at increasing temperatures between room temperature and 1,000 C, the amorphous starting material transforms to the tetragonal form and then to the monoclinic form. The metastable tetragonal phase exhibits two hyperfine components, one of which describes very defective zirconium surroundings. The evolution of PAC relative fractions is in agreement with the diffraction results. The durability of the samples in sodium hydroxide seems to increase as the relative amount of the most-defective zirconium surroundings of the tetragonal form increases.

  4. The study of aluminum loss and consequent phase transformation in heat-treated acid-leached kaolin

    SciTech Connect

    Foo, Choo Thye; Mahmood, Che Seman; Mohd Salleh, Mohamad Amran

    2011-04-15

    This study investigates the effect of Al leaching during Fe removal from kaolin to mullite. Heat-treated kaolin was obtained by heating natural kaolin at 400, 500, 600, 700, 800 and 900 deg. C. The heat-treated kaolin was then leached at 100 deg. C with 4 M, 3 M, 2 M, 1 M, 0.2 M solution of H{sub 2}SO{sub 4} and 0.2 M solution of oxalic acid. The dried samples were sintered to 1300 deg. C for 4 h at a heating rate of 10 deg. C min{sup -1}. X-ray diffractometry and differential thermal analysis were used to study the phase transformation of kaolin to mullite. It was found that 700 deg. C is the optimum preheat-treatment temperature to leach out Fe and also Al for both types of the acids used. The majority of the 4 M sulfuric acid-treated kaolins formed the cristobalite phase when sintered. On the other hand, 1 M, 0.2 M sulfuric acid and 0.2 M oxalic acid leached heat-treated kaolin formed mullite and quartz phase after sintering. - Research Highlights: {yields} Preheat-treatment of kaolin improves the leachability of unwanted iron. {yields} The optimum preheat-treatment temperature is 700 deg. C. {yields} Sintered 4 M sulfuric acid-treated kaolin majorly formed the cristobalite phase. {yields} Sintered 0.2 M oxalic acid-treated kaolin formed lesser amorphous silicate phase.

  5. Defect-mediated relaxation in the random tiling phase of a binary mixture: Birth, death and mobility of an atomic zipper

    NASA Astrophysics Data System (ADS)

    Tondl, Elisabeth; Ramsay, Malcolm; Harrowell, Peter; Widmer-Cooper, Asaph

    2014-03-01

    This paper describes the mechanism of defect-mediated relaxation in a dodecagonal square-triangle random tiling phase exhibited by a simulated binary mixture of soft discs in 2D. We examine the internal transitions within the elementary mobile defect (christened the "zipper") that allow it to move, as well as the mechanisms by which the zipper is created and annihilated. The structural relaxation of the random tiling phase is quantified and we show that this relaxation is well described by a model based on the distribution of waiting times for each atom to be visited by the diffusing zipper. This system, representing one of the few instances where a well defined mobile defect is capable of structural relaxation, can provide a valuable test case for general theories of relaxation in complex and disordered materials.

  6. Defect-mediated relaxation in the random tiling phase of a binary mixture: Birth, death and mobility of an atomic zipper

    SciTech Connect

    Tondl, Elisabeth; Ramsay, Malcolm; Harrowell, Peter; Widmer-Cooper, Asaph

    2014-03-14

    This paper describes the mechanism of defect-mediated relaxation in a dodecagonal square-triangle random tiling phase exhibited by a simulated binary mixture of soft discs in 2D. We examine the internal transitions within the elementary mobile defect (christened the “zipper”) that allow it to move, as well as the mechanisms by which the zipper is created and annihilated. The structural relaxation of the random tiling phase is quantified and we show that this relaxation is well described by a model based on the distribution of waiting times for each atom to be visited by the diffusing zipper. This system, representing one of the few instances where a well defined mobile defect is capable of structural relaxation, can provide a valuable test case for general theories of relaxation in complex and disordered materials.

  7. [The resolution of racemic sec-phenethyl alcohol on cellulose tribenzoate-based CSP: influence of different alcohols in the mobile phase].

    PubMed

    Wang, L; Lü, S; Gao, P; Li, S

    1999-07-01

    Several primary and secondary alcohols (ethanol, 1-propanol, 2-propanol, 1-butanol) were used as the mobile phase components separately, to investigate their effects on the capacity factor and stereoselectivity of sec-phenethyl alcohol enantiomers on cellulose tribenzoate-based CSP. The chiral recognition mechanism for the enantiomeric aromatic alcohols studied may involve: (1) the aromatic portion of the solute may insert into a chiral cavity of the CSP through a hydrogen bonding interaction between the solute's alcoholic hydrogen and the ester carbonyl group on the CSP; (2) the mobile phase modifiers (various alcohols) compete with the solutes for chiral, as well as achiral, binding sites on the CSP; (3) the structure of the modifier has some effect on stereoselectivity through an alteration of the steric environment of the chiral cavity. PMID:12552849

  8. Oleic- and Docosahexaenoic Acid-Containing Phosphatidylethanolamines Differentially Phase Separate from Sphingomyelin

    PubMed Central

    Shaikh, Saame Raza; LoCascio, Daniel S.; Soni, Smita P.; Wassall, Stephen R.; Stillwell, William

    2009-01-01

    A central tenet of the lipid raft model is the existence of non-raft domains. In support of this view, we have established in model membranes that a phosphatidylethanolamine (PE)-containing docosahexaenoic acid (DHA) forms organizationally distinct non-raft domains in the presence of sphingomyelin (SM) and cholesterol (Chol). We have shown that formation of DHA-rich domains is driven by unfavorable molecular interactions between the rigid Chol molecule and the highly flexible DHA acyl chain. However, the molecular interactions between SM and the DHA-containing PE, which could also contribute to the formation of DHA-rich non-raft domains, have not been sufficiently investigated. To address this issue, we use differential scanning calorimetry (DSC) to study the phase behavior of mixtures of SM with either 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (16:0-22:6PE) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (16:0-18:1PE), an oleic acid (OA)-containing control, over a wide range of concentrations. Deconvolution of binary DSC scans shows that both 16:0-22:6PE and 16:0-18:1PE phase separate from SM. Analysis of transition temperatures and partial phase diagrams, constructed from the DSC scans for the first time, show that 16:0-22:6PE displays greater non-ideal mixing with SM compared to 16:0-18:1PE. Our findings support a model in which DHA- and OA-containing PEs differentially phase separate from SM over a wide range of molar ratios to initiate the formation of non-raft domains, which is greatly enhanced by DHA, but not OA, in the presence of cholesterol. PMID:19735642

  9. Experimental and computational thermochemical study and solid-phase structure of 5,5-dimethylbarbituric acid.

    PubMed

    Roux, María Victoria; Notario, Rafael; Foces-Foces, Concepción; Temprado, Manuel; Ros, Francisco; Emel'yanenko, Vladimir N; Verevkin, Sergey P

    2010-03-18

    This paper reports an experimental and computational thermochemical study on 5,5-dimethylbarbituric acid and the solid-phase structure of the compound. The value of the standard (p(o) = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.15 K has been determined. The energy of combustion was measured by static bomb combustion calorimetry, and from the result obtained, the standard molar enthalpy of formation in the crystalline state at T = 298.15 K was calculated as -(706.4 +/- 2.2) kJ x mol(-1). The enthalpy of sublimation was determined using a transference (transpiration) method in a saturated NB(2) stream, and a value of the enthalpy of sublimation at T = 298.15 K was derived as (115.8 +/- 0.5) kJ x mol(-1). From these results a value of -(590.6 +/- 2.3) kJ x mol(-1) for the gas-phase enthalpy of formation at T = 298.15 K was determined. Theoretical calculations at the G3 level were performed, and a study on molecular and electronic structure of the compound has been carried out. Calculated enthalpies of formation are in reasonable agreement with the experimental value. 5,5-Dimethylbarbituric acid was characterized by single crystal X-ray diffraction analysis. In the crystal structure, N-H...O=C hydrogen bonds lead to the formation of ribbons connected further by weak C-H...O=C hydrogen bonds into a three-dimensional network. The molecular and supramolecular structures observed in the solid state were also investigated in the gas phase by DFT calculations. PMID:20180529

  10. Preparation, characterization, and thermal properties of starch microencapsulated fatty acids as phase change materials thermal energy storage applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable starch-oil composites can be prepared from renewable resources by excess steam jet-cooking aqueous slurries of starch and vegetable oils or other hydrophobic materials. Fatty acids such as stearic acid are promising phase change materials (PCMs) for latent heat thermal energy storage applica...

  11. Determination of the gas-phase acidities of cysteine-polyalanine peptides using the extended kinetic method.

    PubMed

    Tan, John P; Ren, Jianhua

    2007-02-01

    We determined the gas-phase acidities of two cysteine-polyalanine peptides, HSCA3 and HSCA4, using a triple-quadrupole mass spectrometer through application of the extended kinetic method with full entropy analysis. Five halogenated carboxylic acids were used as the reference acids. The negatively charged proton-bound dimers of the deprotonated peptides with the conjugate bases of the reference acids were generated by electrospray ionization. Collision-induced dissociation (CID) experiments were carried out at three collision energies. The enthalpies of deprotonation (Delta(acid)H) of the peptides were derived according to the linear relationship between the logarithms of the CID product ion branching ratios and the differences of the gas-phase acidities. The values were determined to be Delta(acid)H(HSCA3) = 317.3 +/- 2.4 kcal/mol and Delta(acid)H (HSCA4) = 316.2 +/- 3.9 kcal/mol. Large entropy effects (Delta(DeltaS) = 13-16 cal/mol K) were observed for these systems. Combining the enthalpies of deprotonation with the entropy term yielded the apparent gas-phase acidities (Delta(acid)G(app)) of 322.1 +/- 2.4 kcal/mol (HSCA3) and 320.1 +/- 3.9 kcal/mol (HSCA4), in agreement with the results obtained from the CID-bracketing experiments. Compared with that in the isolated cysteine residue, the thiol group in HSCA3,4 has a stronger gas-phase acidity by about 20 kcal/mol. This increased acidity is likely due to the stabilization of the negatively charged thiolate group through internal solvation. PMID:17067812

  12. High mobility of flap endonuclease 1 and DNA polymerase eta associated with replication foci in mammalian S-phase nucleus.

    PubMed

    Solovjeva, Lioudmila; Svetlova, Maria; Sasina, Lioudmila; Tanaka, Kyoji; Saijo, Masafumi; Nazarov, Igor; Bradbury, Morton; Tomilin, Nikolai

    2005-05-01

    Originally detected in fixed cells, DNA replication foci (RFi) were later visualized in living cells by using green fluorescent protein (GFP)-tagged proliferating cell nuclear antigen (PCNA) and DNA ligase I. It was shown using fluorescence redistribution after photobleaching (FRAP) assay that focal GFP-PCNA slowly exchanged, suggesting the existence of a stable replication holocomplex. Here, we used the FRAP assay to study the dynamics of the GFP-tagged PCNA-binding proteins: Flap endonuclease 1 (Fen1) and DNA polymerase eta (Pol eta). We also used the GFP-Cockayne syndrome group A (CSA) protein, which does associate with transcription foci after DNA damage. In normal cells, GFP-Pol eta and GFP-Fen1 are mobile with residence times at RFi (t(m)) approximately 2 and approximately 0.8 s, respectively. GFP-CSA is also mobile but does not concentrate at discrete foci. After methyl methanesulfonate (MMS) damage, the mobile fraction of focal GFP-Fen1 decreased and t(m) increased, but it then recovered. The mobilities of focal GFP-Pol eta and GFP-PCNA did not change after MMS. The mobility of GFP-CSA did not change after UV-irradiation. These data indicate that the normal replication complex contains at least two mobile subunits. The decrease of the mobile fraction of focal GFP-Fen1 after DNA damage suggests that Fen1 exchange depends on the rate of movement of replication forks. PMID:15758026

  13. High-performance liquid chromatographic enantioseparation of cyclic β-aminohydroxamic acids on zwitterionic chiral stationary phases based on Cinchona alkaloids.

    PubMed

    Lajkó, Gyula; Orosz, Tímea; Grecsó, Nóra; Fekete, Beáta; Palkó, Márta; Fülöp, Ferenc; Lindner, Wolfgang; Péter, Antal; Ilisz, István

    2016-05-19

    Cyclic β-aminohydroxamic acid enantiomer pairs were stereoselectively separated by high-performance liquid chromatography on the recently developed Cinchona alkaloid-based zwitterionic chiral stationary phases Chiralpak ZWIX(+)™, ZWIX(-)™, ZWIX(+A) and ZWIX(-A). The results of variation of the applied chromatographic conditions, such as the bulk solvent composition, the concentrations and ratio of the acid and base additives, the presence of water as mobile phase additive and the counter-ion concentration furnished a better understanding of the retention mechanism. A thermodynamic study in the temperature range 5-50 °C revealed enthalpy-controlled enantiodiscrimination in all cases. The structure-selectivity relationships clearly indicated the importance of the strereochemistry of the functional groups. From an enantiorecognition aspect, the diexo position of the functional groups always proved more favorable than the diendo position. The elution sequence was determined in all cases and was found to reversed when ZWIX(+)™ was changed to ZWIX(-)™ or ZWIX(+A) to ZWIX(-A). PMID:27126793

  14. Simultaneous determination of fangchinoline and tetrandrine in Stephania tetrandra S. Moore by using 1-alkyl-3-methylimidazolium-based ionic liquids as the RP-HPLC mobile phase additives.

    PubMed

    Tang, Yan; Sun, Ailing; Liu, Renmin; Zhang, Yongqing

    2013-03-12

    A reversed phase high performance liquid chromatography (RP-HPLC) method for simultaneous determination of fangchinoline (FAN) and tetrandrine (TET) in Stephania tetrandra S. Moore was established by using 1-hexyl-3-methylimidazolium tetrafluoroborate as the mobile phase additives in this paper. Four types of 1-alkyl-3-methylimidazolium-based ionic liquids (ILs) were used as additives of the mobile phase to separate FAN and TET by RP-HPLC. The effects of the length of the alkyl group on the imidazolium ring and its counterion, the concentrations of IL and the pH of the mobile phase, which influenced the chromatographic behaviors of FAN and TET, were investigated in detail. The linearity, sensitivity, accuracy and repeatability of the proposed method were also investigated. The probable mechanism of the separation with ILs as the mobile phase additives was explored and discussed. PMID:23452799

  15. The effects of environmental factors on acid-phase digestion of sewage sludge

    SciTech Connect

    Henry, M.P.; Sajjad, A.; Ghosh, S.

    1987-01-01

    The two-phase anaerobic digestion process consists of two fermenters operated in series, wherein the acidification and gasification reactions are optimized in separate reactors to improve the overall system conversion efficiency. This paper discusses the results of tests conducted with bench-scale complete-mix acid-phase digesters to determine the effects of culture pH, temperature, and hydraulic retention time (HRT) on the efficiency of sewage sludge digestion. Tests were conducted at culture pH's of 5, 5.5, 6, and 7 at mesophilic (35/degree/C) and thermophilic (55/degree/C) temperatures and at HRT's of 1.3 and 2 days. Digestion efficiencies were determined on the basis of volatile acid production, gas production, and the reduction of the major particulate components of the feed sludge (crude protein, carbohydrates, and lipids). Efficiencies were highly dependent on each of the three control factors and were generally optimized at the higher extremes of pH, temperature, and HRT tested. 9 refs., 2 figs., 10 tabs.

  16. The Lipid domain Phase diagram in a Dipalmitoyl-PC/Docosahaexnoic Acid-PE/Cholesterol System

    NASA Astrophysics Data System (ADS)

    Lor, Chai; Hirst, Linda

    2011-03-01

    Lipid domains in bilayer membrane and polyunsaturated fatty acids (PUFAs) are thought to play an important role in cellular activities. In particular, lipids containing docosahaexnoic acid are an interesting class of PUFAs due to their health benefits. In this project, we perform oxidation measurements of DHA-PE to determine the rate of oxidation in combination with antioxidants. A ternary diagram of DPPC/DHA-PE/cholesterol is mapped out to identify phase separation phenomena using atomic force microscope (AFM). Fluorescence microscopy is also used to image lipid domains in a flat bilayer with fluorescent labels. As expected, we observe the phase, shape, and size of lipid domains changes with varying composition. Moreover, we find that the roughness of the domains changes possibly due to overpacking of cholesterol in domains. This model study provides further understanding of the role of cholesterol in the bilayer membrane leading towards a better understanding of cell membranes. NSF award # DMR 0852791, ``CAREER: Self-Assembly of Polyunsaturated Lipids and Cholesterol In The Cell Membrane.''

  17. The antidepressant role of dietary long-chain polyunsaturated n-3 fatty acids in two phases in the developing brain.

    PubMed

    Ferraz, Anete Curte; Kiss, Agata; Araújo, Renata Lins Fuentes; Salles, Hélidy Maria Rossi; Naliwaiko, Katya; Pamplona, Juliana; Matheussi, Francesca

    2008-03-01

    In this work we investigated the effect from fish oil (FO) supplementation, rich in n-3 fatty acids, on an antidepressant effect on adult rats in Phase A (supplementation during pregnancy and lactation) and phase B (supplementation during post-weaning until adulthood). During Phase A, female rats, used as matrix to obtain male rats, were divided in three groups: FO (daily supplemented), CF (coconut fat daily supplemented) and control (not supplemented). Our results showed that adult rats whose mothers were supplemented with FO during Phase A and rats supplemented during phase B demonstrated a significantly decreased immobility time when compared to control and CF groups. There was no difference in neither motor activity nor anxiety behavior in the three groups excluding false positive results. Our results suggest that n-3 fatty acids supplementation during Phases A and B had a beneficial effect on preventing the development of depression-like behavior in adult rats. PMID:18378130

  18. α-Azido Acids in Solid-Phase Peptide Synthesis: Compatibility with Fmoc Chemistry and an Alternative Approach to the Solid Phase Synthesis of Daptomycin Analogs.

    PubMed

    Lohani, Chuda Raj; Rasera, Benjamin; Scott, Bradley; Palmer, Michael; Taylor, Scott D

    2016-03-18

    α-Azido acids have been used in solid phase peptide synthesis (SPPS) for almost 20 years. Here we report that peptides bearing an N-terminal α-azidoaspartate residue undergo elimination of an azide ion when treated with reagents that are commonly used for removing the Fmoc group during SPPS. We also report an alternative solid-phase route to the synthesis of an analog of daptomycin that uses a reduced number of α-azido amino acids and without elimination of an azide ion. PMID:26938305

  19. Effect of solvent strength and temperature on retention for a polar-endcapped, octadecylsiloxane-bonded silica stationary phase with methanol-water mobile phases.

    PubMed

    Kiridena, Waruna; Poole, Colin F; Koziol, Wladyslaw W

    2004-12-10

    Synergi Hydro-RP is a new type of polar-endcapped, octadecylsiloxane-bonded silica packing for reversed-phase liquid chromatography. Its retention properties as a function of solvent strength and temperature are evaluated from the change in retention factors over the composition range (0-70% v/v methanol) and temperature range (25-65 degrees C) using the solvation parameter model and response surface methodologies. The main factors that affect retention are solute size and hydrogen-bond basicity, with minor contributions from solute hydrogen-bond acidity, dipole-type and electron lone pair interactions. Within the easily accessible range for both temperature and solvent strength, the ability to change selectivity is much greater for solvent strength than temperature. Also, a significant portion of the effect of increasing temperature is to reduce retention without changing selectivity. Response surfaces for the system constants are smooth and non-linear, except for cavity formation and dispersion interactions (v system constant), which is linear. Modeling of the response surfaces suggests that solvent strength and temperature are not independent factors for the b, s and e system constants and for the model intercept (c term). PMID:15628160

  20. Ordering of p-n-alkoxybenzoic acids at phase transition temperatures: a comparative computational analysis.

    PubMed

    Ajeetha, Narayanan; Ojha, Durga Prasad; Pisipati, Venkata Gopala Krishna Murthy

    2006-01-01

    A comparative analysis of molecular ordering of nematogenic p-n-alkoxybenzoic acids has been carried out with respect to translatory and orientational motions for the acids with seven (7OBAC), eight (8OBAC), nine (9OBAC) and 10 (10OBAC) carbon atoms in the alkyl chain. The CNDO/2 method has been used to compute the net atomic charge and dipole moment components at each atomic center. Modified Rayleigh-Schrodinger perturbation theory with multicentered-multipole expansion method has been used to evaluate long-range intermolecular interactions while a '6-exp' potential function has been assumed for short-range interactions. The total interaction-energy values obtained by these computations were used to calculate the probability of each configuration at the phase-transition temperature using the Maxwell-Boltzmann formula. The flexibility of various configurations has been studied in terms of variation of probability due to small departures from the most probable configuration. A comparative picture of molecular parameters like total energy, binding energy and total dipole moment has been given. An attempt has been made to explain the nematogenicity of these acids in terms of their relative order with the molecular parameter introduced in this paper. PMID:16311756

  1. Measurements of gas phase acids in diesel exhaust: a relevant source of HNCO?

    PubMed

    Wentzell, Jeremy J B; Liggio, John; Li, Shao-Meng; Vlasenko, A; Staebler, Ralf; Lu, Gang; Poitras, Marie-Josée; Chan, Tak; Brook, Jeffrey R

    2013-07-16

    Gas-phase acids in light duty diesel (LDD) vehicle exhaust were measured using chemical ionization mass spectrometry (CIMS). Fuel based emission factors (EF) and NOx ratios for these species were determined under differing steady state engine operating conditions. The derived HONO and HNO3 EFs agree well with literature values, with HONO being the single most important acidic emission. Of particular importance is the quantification of the EF for the toxic species, isocyanic acid (HNCO). The emission factors for HNCO ranged from 0.69 to 3.96 mg kgfuel(-1), and were significantly higher than previous biomass burning emission estimates. Further ambient urban measurements of HNCO demonstrated a clear relationship with the known traffic markers of benzene and toluene, demonstrating for the first time that urban commuter traffic is a source of HNCO. Estimates based upon the HNCO-benzene relationship indicate that upward of 23 tonnes of HNCO are released annually from commuter traffic in the Greater Toronto Area, far exceeding the amount possible from LDD alone. Nationally, 250 to 770 tonnes of HNCO may be emitted annually from on-road vehicles, likely representing the dominant source of exposure in urban areas, and with emissions comparable to that of biomass burning. PMID:23781923

  2. Hydrothermal hexagonal SrFe12O19 ferrite powders: Phase composition, microstructure and acid washing

    NASA Astrophysics Data System (ADS)

    Xia, Ailin; Hu, Xuzhao; Li, Diankai; Chen, Lu; Jin, Chuangui; Zuo, Conghua; Su, Shubing

    2014-03-01

    A series of hexagonal m-type SrFe12O19 ferrite powders were hydrothermally synthesized, and their phase composition, microstructure and magnetic properties before/after acid washing were studied. In the synthesis of these specimens, the atomic ratio of Fe/Sr ( R F/S ) in starting materials was set to 4, 5 and 12, respectively. When R F/S = 12, the specimen has morphology of round flat cakes, not typical hexagonal plate-like structure. The results of SEM images and XRD patterns indicate that the specimen with R F/S = 12 was mostly composed of Fe2O3. When R F/S = 4 or 5, the hexagonal plate-like SrFe12O19 ferrite powders were successfully synthesized with only a small quantity of Fe2O3 and SrCO3 impurities. It is also found that acid washing can eliminate the impurities in as-synthesized specimens effectively, and also change their topography, which enhances the saturation magnetization. However, the coercivity changed irregularly after acid washing, which is ascribed to the combination of the changed morphology, introduced stress and lattice defects.

  3. Formation of Small Gas Phase Carbonyls from Heterogeneous Oxidation of Polyunsaturated Fatty Acids (PUFA)

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Zhao, R.; Lee, A.; Gao, S.; Abbatt, J.

    2011-12-01

    Fatty acids (FAs) are emitted into the atmosphere from gas and diesel powered vehicles, cooking, plants, and marine biota. Field measurements have suggested that FAs, including polyunsaturated fatty acids (PUFA), could make up an important contribution to the organic fraction of atmospheric aerosols. Due to the existence of carbon-carbon double bonds in their molecules, PUFA are believed to be highly reactive towards atmospheric oxidants such as OH and NO3 radicals and ozone, which will contribute to aerosol hygroscopicity and cloud condensation nuclei activity. Previous work from our group has shown that small carbonyls formed from the heterogeneous reaction of linoleic acid (LA) thin films with gas-phase O3. It is known that the formation of small carbonyls in the atmosphere is not only relevant to the atmospheric budget of volatile organic compounds but also to secondary organic aerosol formation. In the present study, using an online proton transfer reaction mass spectrometry (PTR-MS) and off-line gas chromatography-mass spectrometry (GC-MS) we again investigated carbonyl formation from the same reaction system, i.e. the heterogeneous ozonolysis of LA film. In addition to the previously reported carbonyls, malondialdehyde (MDA), a source of reactive oxygen species that is mutagenic, has been identified as a product for the first time. Small dicarbonyls, e.g. glyoxal, are expected to be formed from the further oxidation of MDA. In this presentation, the gas-phase chemistry of MDA with OH radicals using a newly built Teflon chamber in our group will also be presented.

  4. Phase Variation in the Helicobacter pylori Phospholipase A Gene and Its Role in Acid Adaptation

    PubMed Central

    Tannæs, Tone; Dekker, Niek; Bukholm, Geir; Bijlsma, Jetta J. E.; Appelmelk, Ben J.

    2001-01-01

    Previously, we have shown that Helicobacter pylori can spontaneously and reversibly change its membrane lipid composition, producing variants with low or high content of lysophospholipids. The “lyso” variant contains a high percentage of lysophospholipids, adheres better to epithelial cells, and releases more proteins such as urease and VacA, compared to the “normal” variant, which has a low content of lysophospholipids. Prolonged growth of the normal variant at pH 3.5, but not under neutral conditions, leads to enrichment of lyso variant colonies, suggesting that the colony switch is relevant to acid adaptation. In this study we show that the change in membrane lipid composition is due to phase variation in the pldA gene. A change in the (C) tract length of this gene results in reversible frameshifts, translation of a full-length or truncated pldA, and the production of active or inactive outer membrane phospholipase A (OMPLA). The role of OMPLA in determining the colony morphology was confirmed by the construction of an OMPLA-negative mutant. Furthermore, variants with an active OMPLA were able to survive acidic conditions better than variants with the inactive form. This explains why the lyso variant is selected at low pH. Our studies demonstrate that phase variation in the pldA gene, resulting in an active form of OMPLA, is important for survival under acidic conditions. We also demonstrated the active OMPLA genotype in fresh isolates of H. pylori from patients referred to gastroscopy for dyspepsia. PMID:11705905

  5. Arsenic removal from contaminated brackish sea water by sorption onto Al hydroxides and Fe phases mobilized by land-use.

    PubMed

    Yu, Changxun; Peltola, Pasi; Nystrand, Miriam I; Virtasalo, Joonas J; Österholm, Peter; Ojala, Antti E K; Hogmalm, Johan K; Åström, Mats E

    2016-01-15

    This study examines the spatial and temporal distribution patterns of arsenic (As) in solid and aqueous materials along the mixing zone of an estuary, located in the south-eastern part of the Bothnian Bay and fed by a creek running through an acid sulfate (AS) soil landscape. The concentrations of As in solution form (<1 kDa) increase steadily from the creek mouth to the outer estuary, suggesting that inflowing seawater, rather than AS soil, is the major As source in the estuary. In sediments at the outer estuary, As was accumulated and diagenetically cycled in the surficial layers, as throughout much of the Bothnian Bay. In contrast, in sediments in the inner estuary, As concentrations and accumulation rates showed systematical peaks at greater depths. These peaks were overall consistent with the temporal trend of past As discharges from the Rönnskär smelter and the accompanied As concentrations in past sea-water of the Bothnian Bay, pointing to a connection between the historical smelter activities and the sediment-bound As in the inner estuary. However, the concentrations and accumulation rates of As peaked at depths where the smelter activities had already declined, but a large increase in the deposition of Al hydroxides and Fe phases occurred in response to intensified land-use in the mid 1960's and early 1970's. This correspondence suggests that, apart from the inflowing As-contaminated seawater, capture by Al hydroxides, Fe hydroxides and Fe-organic complexes is another important factor for As deposition in the inner estuary. After accumulating in the sediment, the solid-phase As was partly remobilized, as reflected by increased pore-water As concentrations, a process favored by As(V) reduction and high concentrations of dissolved organic matter. PMID:26558848

  6. Recent Selected Ion Flow Tube (SIFT) Studies Concerning the Formation of Amino Acids in the Gas Phase

    NASA Technical Reports Server (NTRS)

    Jackson, Douglas M.; Adams, Nigel G.; Babcock, Lucia M.

    2006-01-01

    Recently the simplest amino acid, glycine, has been detected in interstellar clouds, ISC, although this has since been contested. In order to substantiate either of these claims, plausible routes to amino acids need to be investigated. For gas phase synthesis, the SIFT technique has been employed to study simple amino acids via ion-molecule reactions of several ions of interstellar interest with methylamine, ethylamine, formic acid, acetic acid, and methyl formate. Carboxylic acid type ions were considered in the reactions involving the amines. In reactions where the carboxylic acid and methyl formate neutrals were studied, the reactant ions were primarily amine ion fragments. It was observed that the amines and acids preferentially fragment or accept a proton whenever energetically possible. NH3(+), however, uniquely reacted with the neutrals via atom abstraction to form NH4(+). These studies yielded a body of data relevant to astrochemistry, supplementing the available literature. However, the search for gas phase routes to amino acids using conventional molecules has been frustrated. Our most recent research investigates the fragmentation patterns of several amino acids and several possible routes have been suggested for future study.

  7. Phase equilibria in four-component system consisting of water, a nonionic surfactant mixture, and oleic acid

    SciTech Connect

    Matveenko, V.N.; Drovetskii, B.Yu.; Kirasanov, E.A.

    1994-05-01

    The phase diagram of the system consisting of water, Tween 20, Span 80, and oleic acid has been obtained; the coexisting phases have been identified; and the character of the equilibrium of microemulsion, liquid crystal, and molecular solution has been described. In the water-Tween 20-oleic acid system, the ratio of the water volume to the surfactant volume is identical in all of the coexisting phases; this proves the existence of a corresponding field variable in a system with a nonionic surfactant.

  8. UV-visible spectral identification of the solution-phase and solid-phase permanganate oxidation reactions of thymine acetic acid.

    PubMed

    Bui, Chinh T; Sam, Lien A; Cotton, Richard G H

    2004-03-01

    Solution-phase and solid-phase permanganate oxidation reactions of thymine acetic acid were investigated by spectroscopy. The spectral data showed the formation of a stable organomanganese intermediate, which was responsible for the rise in the absorbance at 420 nm. This result enables unambiguous interpretation of the absorbance change at 420 nm, as the intermediate permanganate ions could be isolated on the solid supports. PMID:14980689

  9. Community mobilization and social marketing to promote weekly iron-folic acid supplementation: a new approach toward controlling anemia among women of reproductive age in Vietnam.

    PubMed

    Khan, Nguyen Cong; Thanh, Hoang Thi Kim; Berger, Jacques; Hoa, Pham Thuy; Quang, Nguyen Dinh; Smitasiri, Suttilak; Cavalli-Sforza, Tommaso

    2005-12-01

    Community-based social marketing and mobilization increased knowledge and participation in preventive weekly iron-folic acid supplementation among women of reproductive age in Vietnam. Rates of buying and taking the weekly supplement containing 60 mg elemental iron and 3.5 mg folic acid among non-pregnant women of reproductive age was between 55% and 92%. Free distribution to pregnant women of the weekly supplement containing 120 mg iron and 3.5 mg folic acid covered almost all pregnant women during the project. In developing countries where community women's groups and health networks are strong, preventive supplementation can be successfully promoted to encourage active participation in the prevention and control of iron-deficiency anemia. PMID:16466084

  10. Ion mobility spectrometry-mass spectrometry examination of the structures, stabilities, and extents of hydration of dimethylamine-sulfuric acid clusters.

    PubMed

    Thomas, Jikku M; He, Siqin; Larriba-Andaluz, Carlos; DePalma, Joseph W; Johnston, Murray V; Hogan, Christopher J

    2016-08-17

    We applied an atmospheric pressure differential mobility analyzer (DMA) coupled to a time-of-flight mass spectrometer to examine the stability, mass-mobility relationship, and extent of hydration of dimethylamine-sulfuric acid cluster ions, which are of relevance to nucleation in ambient air. Cluster ions were generated by electrospray ionization and were of the form: [H((CH3)2NH)x(H2SO4)y](+) and [(HSO4)((CH3)2NH)x(H2SO4)y](-), where 4 ≤ x ≤ 8, and 5 ≤ y ≤ 12. Under dry conditions, we find that positively charged cluster ions dissociated via loss of both multiple dimethylamine and sulfuric acid molecules after mobility analysis but prior to mass analysis, and few parent ions were detected in the mass spectrometer. Dissociation also occurred for negative ions, but to a lesser extent than for positive ions for the same mass spectrometer inlet conditions. Under humidified conditions (relative humidities up to 30% in the DMA), positively charged cluster ion dissociation in the mass spectrometer inlet was mitigated and occurred primarily by H2SO4 loss from ions containing excess acid molecules. DMA measurements were used to infer collision cross sections (CCSs) for all identifiable cluster ions. Stokes-Millikan equation and diffuse/inelastic gas molecule scattering predicted CCSs overestimate measured CCSs by more than 15%, while elastic-specular collision model predictions are in good agreement with measurements. Finally, cluster ion hydration was examined by monitoring changes in CCSs with increasing relative humidity. All examined cluster ions showed a modest amount of water molecule adsorption, with percentage increases in CCS smaller than 10%. The extent of hydration correlates directly with cluster ion acidity for positive ions. PMID:27485283

  11. Advantages of the AlGaN spacer in InAlN high-electron-mobility transistors grown using metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yamada, Atsushi; Ishiguro, Tetsuro; Kotani, Junji; Tomabechi, Shuichi; Nakamura, Norikazu; Watanabe, Keiji

    2016-05-01

    We demonstrate the advantages of an AlGaN spacer layer in an InAlN high-electron-mobility transistor (HEMT). We investigated the effects of the growth parameters of the spacer layer on electron mobility in InAlN HEMTs grown by metalorganic vapor phase epitaxy, focusing on the surface roughness of the spacer layer and sharpness of the interface with the GaN channel layer. The electron mobility degraded, as evidenced by the formation of a graded AlGaN layer at the top of the GaN channel layer and the surface roughness of the AlN spacer layer. We believe that the short migration length of aluminum atoms is responsible for the observed degradation. An AlGaN spacer layer was employed to suppress the formation of the graded AlGaN layer and improve surface morphology. A high electron mobility of 1550 cm2 V‑1 s‑1 and a low sheet resistance of 211 Ω/sq were achieved for an InAlN HEMT with an AlGaN spacer layer.

  12. Accessing structure and dynamics of mobile phase in organic solids by real-time T1C filter PISEMA NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Chen, Yuzhu; Chen, Tiehong; Sun, Pingchuan; Li, Baohui; Ding, Datong

    2012-01-26

    The structure and dynamic behavior of mobile components play a significant role in determining properties of solid materials. Herein, we propose a novel real-time spectrum-editing method to extract signals of mobile components in organic solids on the basis of the polarization inversion spin exchange at magic angle (PISEMA) pulse sequence and the difference in (13)C T(1) values of rigid and mobile components. From the dipolar splitting spectrum sliced along the heteronuclear dipolar coupling dimension of the 2D spectrum, the structural and dynamic information can be obtained, such as the distances between atoms, the dipolar coupling strength, the order parameter of the polymer backbone chain, and so on. Furthermore, our proposed method can be used to achieve the separation of overlapped NMR signals of mobile and rigid phases in the PISEMA experiment. The high efficacy of this 2D NMR method is demonstrated on organic solids, including crystalline L-alanine, semicrystalline polyamide-6, and the natural abundant silk fibroin. PMID:22185485

  13. Simulation of elution profiles in liquid chromatography-I: Gradient elution conditions, and with mismatched injection and mobile phase solvents.

    PubMed

    Jeong, Lena N; Sajulga, Ray; Forte, Steven G; Stoll, Dwight R; Rutan, Sarah C

    2016-07-29

    High-performance liquid chromatography (HPLC) simulators are effective method development tools. The goal of the present work was to design and implement a simple algorithm for simulation of liquid chromatographic separations that allows for characterization of the effect of injection solvent mismatch and injection solvent volume overload. The simulations yield full analyte profiles during solute migration and at elution, which enable a thorough physical understanding of the effects of method variables on chromatographic performance. The Craig counter-current distribution model (the plate model) is used as the basis for simulation, where a local retention factor is assigned for each spatial and temporal element within the simulation. The algorithm, which is an adaptation of an approach originally described by Czok and Guiochon (Ref. [10]), is sufficiently flexible to allow the use of either linear (e.g., Linear Solvent Strength Theory) or non-linear models of solute retention (e.g., Neue-Kuss (Ref. [36])). In this study, both types of models were used, one for simulating separations of a homologous series of alkylbenzenes, and the other for separations of selected amphetamines. The simulation program was validated first by comparison of simulated retention times and peak widths for five amphetamines to predictions obtained using linear solvent strength (LSS) theory, and to results from experimental separations of these compounds. The simulated retention times for the amphetamines agreed within 0.02% and 2.5% compared to theory and experiment, respectively. Secondly, the program was evaluated for simulating the case where there is a compositional mismatch between the mobile phase at the column inlet and the injection solvent (i.e., the sample matrix). This work involved alkylbenzenes, and retention time and peak width predictions from simulations were within 1.5 and 6.0% of experimental values, respectively, even without correction for extra-column dispersion. The

  14. Understanding the importance of the viscosity contrast between the sample solvent plug and the mobile phase and its potential consequences in two-dimensional high-performance liquid chromatography

    SciTech Connect

    Shalliker, R. Andrew; Guiochon, Georges A

    2009-01-01

    The effect of solvent viscosity mismatch on elution performance in reversed-phase HPLC was studied using moment analysis. Two conditions were tested: (1) the mobile phase viscosity was less than the injection plug viscosity, and (2) the mobile phase viscosity was greater than the injection plug viscosity. Under the first condition, retention time and elution performance decreased as the viscosity contrast between the mobile phase and injection plug increased. The effect on performance was more marked as the injection volume increased. A decrease in performance of 12% for compounds with retention factors up to 2.8 was apparent even when the viscosity contrast was only 0.165 cP. In the second set of conditions, elution performance was actually observed to increase, by as much as 25% for a 40 {micro}L injection, as the viscosity contrast between the mobile phase and the solute plug increased. No change in the retention factor was observed. This behaviour was attributed to the shape of an injection plug as it enters into the column, whereby a low viscosity plug permeates away from the wall when the column contains a higher viscosity mobile phase, and vice a versa for a high viscosity plug entering a low viscosity mobile phase. At no stage was either a band splitting or shoulders observed with viscosity contrasts up to 1.283 cP, as could have been expected.

  15. Liquid phase separation of proteins based on electrophoretic effects in an electrospray setup during sample introduction into a gas-phase electrophoretic mobility molecular analyzer (CE–GEMMA/CE–ES–DMA)

    PubMed Central

    Weiss, Victor U.; Kerul, Lukas; Kallinger, Peter; Szymanski, Wladyslaw W.; Marchetti-Deschmann, Martina; Allmaier, Günter

    2014-01-01

    Nanoparticle characterization is gaining importance in food technology, biotechnology, medicine, and pharmaceutical industry. An instrument to determine particle electrophoretic mobility (EM) diameters in the single-digit to double-digit nanometer range receiving increased attention is the gas-phase electrophoretic mobility molecular analyzer (GEMMA) separating electrophoretically single charged analytes in the gas-phase at ambient pressure. A fused-silica capillary is used for analyte transfer to the gas-phase by means of a nano electrospray (ES) unit. The potential of this capillary to separate analytes electrophoretically in the liquid phase due to different mobilities is, at measurement conditions recommended by the manufacturer, eliminated due to elevated pressure applied for sample introduction. Measurements are carried out upon constant feeding of analytes to the system. Under these conditions, aggregate formation is observed for samples including high amounts of non-volatile components or complex samples. This makes the EM determination of individual species sometimes difficult, if not impossible. With the current study we demonstrate that liquid phase electrophoretic separation of proteins (as exemplary analytes) occurs in the capillary (capillary zone electrophoresis, CE) of the nano ES unit of the GEMMA. This finding was consecutively applied for on-line desalting allowing EM diameter determination of analytes despite a high salt concentration within samples. The present study is to our knowledge the first report on the use of the GEMMA to determine EM diameters of analytes solubilized in the ES incompatible electrolyte solutions by the intended use of electrophoresis (in the liquid phase) during sample delivery. Results demonstrate the proof of concept of such an approach and additionally illustrate the high potential of a future on-line coupling of a capillary electrophoresis to a GEMMA instrument. PMID:25109866

  16. The hydrophilicity vs. ion interaction selectivity plot revisited: The effect of mobile phase pH and buffer concentration on hydrophilic interaction liquid chromatography selectivity behavior.

    PubMed

    Iverson, Chad D; Gu, Xinyun; Lucy, Charles A

    2016-08-01

    This work systematically investigates the selectivity changes on many HILIC phases from w(w)pH 3.7-6.8, at 5 and 25mM buffer concentrations. Hydrophilicity (kcytosine/kuracil) vs. ion interaction (kBTMA/kuracil) selectivity plots developed by Ibrahim et al. (J. Chromatogr. A 1260 (2012) 126-131) are used to investigate the effect of mobile phase changes on the selectivity of 18 HILIC columns from various classes. "Selectivity change plots" focus on the change in hydrophilicity and ion interaction that the columns exhibit upon changing mobile phase conditions. In general, the selectivity behavior of most HILIC columns is dominated by silanol activity. Minimal changes in selectivity are observed upon changing pH between w(w)pH 5 and 6.8. However, a reduction in ionic interaction is observed when the buffer concentration is increased at w(w)pH≥5.0 due to ionic shielding. Reduction of the w(w)pH to<5.0 results in decreasing cation exchange activity due to silanol protonation. Under all eluent conditions, the majority of phases show little change in their hydrophilicity. PMID:27388658

  17. Gas chromatography with tandem differential mobility spectrometry of fatty acid alkyl esters and the selective detection of methyl linolenate in biodiesels by dual-stage ion filtering.

    PubMed

    Pasupuleti, D; Pierce, K; Eiceman, G A

    2015-11-20

    Alkyl esters of fatty acids (FAAEs) with carbon numbers from 8 to 20 formed protonated monomers and proton bound dimers through atmospheric pressure chemical ionization reactions and these gas ions were characterized for their field dependent mobility coefficients using differential mobility spectrometry (DMS). Separation of ion peaks with a vapor modifier was achieved for ions with masses of 317-1033 Da though the differences in these coefficients and the resolution of ion peaks decreased proportionally with increased ion mass. Differences in dispersion curves were sufficient to isolate ions from specific FAAEs in the effluent of a gas chromatograph by dual stage ion filtering using a tandem DMS detector. Methyl linolenate was isolated from nearby eluting methyl oleate, methyl stearate and methyl linoleate within analysis times of 10s without measureable complications from charge suppression in the ion source or leakage in filtering of ions with close proximity of dispersion behavior. PMID:26427321

  18. Analysis of nine food additives in red wine by ion-suppression reversed-phase high-performance liquid chromatography using trifluoroacetic acid and ammonium acetate as ion-suppressors.

    PubMed

    Zhao, Yong-Gang; Chen, Xiao-Hong; Yao, Shan-Shan; Pan, Sheng-Dong; Li, Xiao-Ping; Jin, Mi-Cong

    2012-01-01

    A reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed for the simultaneous determination of nine food additives, i.e., acesulfame, saccharin, caffeine, aspartame, benzoic acid, sorbic acid, stevioside, dehydroacetic acid and neotame in red wine. The effects of ion-suppressors, i.e., trifluoroacetic acid (TFA) and ammonium acetate (AmAc) on retention behavior of nine food additives in RP-HPLC separation were discussed in detail. The relationships between retention factors of solutes and volume percent of ion-suppressors in the mobile-phase systems of acetonitrile-TFA aqueous solution and acetonitrile-TFA-AmAc aqueous solution were quantitatively established, respectively. The results showed that the ion suppressors had not only an ion suppression effect, but also an organic modification effect on the acidic analytes. The baseline separation of nine food additives was completed by a gradient elution with acetonitrile-TFA(0.01%, v/v)-AmAc(2.5 mmol L(-1)) aqueous solution as the mobile phase. The recoveries were between 80.2 - 99.5% for all analytes with RSDs in the range of 1.5 - 8.9%. The linearities were in the range of 0.2 - 100.0 mg L(-1) with determination coefficients (r(2)) higher than 0.9991 for all analytes. The limits of quantification (LOQs) were between 0.53 - 0.99 mg L(-1). The applicability of the proposed method to detect and quantify food additives has been demonstrated in the analysis of 30 real samples. PMID:23059992

  19. Formation of 3-methyl-1,2,3-butanetricarboxylic acid via gas phase oxidation of pinonic acid - a mass spectrometric study of SOA aging

    NASA Astrophysics Data System (ADS)

    Müller, L.; Reinnig, M. C.; Naumann, K. H.; Saathoff, H.; Mentel, T. F.; Donahue, N. M.; Hoffmann, T.

    2011-07-01

    This paper presents the results of mass spectrometric investigations of the OH-initiated oxidative aging of α-pinene SOA under simulated tropospheric conditions at the large aerosol chamber facility AIDA, Karlsruhe Institute of Technology. In particular, the OH-initiated oxidation of pure pinic and pinonic acid, two well-known oxidation products of α-pinene, was investigated. Two complementary analytical techniques were used, on-line atmospheric pressure chemical ionization/mass spectrometry (APCI/MS) and filter sampling followed by liquid chromatography/mass spectrometry (LC/ESI-MS). The results show that 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known and very low volatile α-pinene SOA product, is formed from the oxidation of pinonic acid and that this oxidation takes place in the gas phase. This finding is confirmed by temperature-dependent aging experiments on whole SOA formed from α-pinene, in which the yield of MBTCA scales with the pinonic acid fraction in the gas phase. Based on the results, several feasible gas-phase radical mechanisms are discussed to explain the formation of MBTCA from OH-initiated pinonic acid oxidation.

  20. Formation of 3-methyl-1,2,3-butanetricarboxylic acid via gas phase oxidation of pinonic acid - a mass spectrometric study of SOA aging

    NASA Astrophysics Data System (ADS)

    Müller, L.; Reinnig, M.-C.; Naumann, K. H.; Saathoff, H.; Mentel, T. F.; Donahue, N. M.; Hoffmann, T.

    2012-02-01

    This paper presents the results of mass spectrometric investigations of the OH-initiated oxidative aging of α-pinene SOA under simulated tropospheric conditions at the large aerosol chamber facility AIDA, Karlsruhe Institute of Technology. In particular, the OH-initiated oxidation of pure pinic and pinonic acid, two well-known oxidation products of α-pinene, was investigated. Two complementary analytical techniques were used, on-line atmospheric pressure chemical ionization/mass spectrometry (APCI/MS) and filter sampling followed by liquid chromatography/mass spectrometry (LC/ESI-MS). The results show that 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a very low volatile α-pinene SOA product and a tracer compound for terpene SOA, is formed from the oxidation of pinonic acid and that this oxidation takes place in the gas phase. This finding is confirmed by temperature-dependent aging experiments on whole SOA formed from α-pinene, in which the yield of MBTCA scales with the pinonic acid fraction in the gas phase. Based on the results, several feasible gas-phase radical mechanisms are discussed to explain the formation of MBTCA from OH-initiated pinonic acid oxidation.

  1. Enantioselective separation of chiral arylcarboxylic acids on an immobilized human serum albumin chiral stationary phase.

    PubMed

    Andrisano, V; Booth, T D; Cavrini, V; Wainer, I W

    1997-01-01

    A series of 12 chiral arylcarboxylic acids were chromatographed on an immobilized human serum albumin chiral stationary phase (HSA-CSP). The effects of solute structure on chromatographic retentions and enantioselective separations were examined by linear regression analysis and the construction of quantitative structure-enantioselective retention relationships. Competitive displacement studies were also conducted using R-ibuprofen as the displacing agent. The results indicate that the enantioselective retention of the solutes takes place at the indole-benzodiazepine site (site II) on the HSA molecule and that chiral recognition is affected by the hydrophobicity and steric volume of the solutes. The displacement studies also identified a cooperative allosteric interaction induced by the binding of R-ibuprofen to site II. PMID:9134695

  2. Microfluidic study on CNT dispersion during breakup of aqueous alginic acid drop in continuous PDMS phase

    NASA Astrophysics Data System (ADS)

    Choi, Jae Hong; Nam, Young Woo; Hong, Joung Sook

    2013-02-01

    Microfluidic study is performed to investigate how multi-walled carbon nanotube (CNTs) aggregates disperse in blend system during morphology evolution. As the dispersed phase, a drop containing CNT is generated at the flow focusing and it deforms through a contraction channel (gap and width of contraction ˜ 100 μm). When an aqueous polymeric drop (2 wt% alginic acid) with CNT (0.05 wt% or 0.5 wt%) is stretched through a 4:1 contraction channel, CNT aggregates enhances breakup of the stretched drop. Also, small droplets including CNTs are pinched off during relaxation of the stretched drop. Based on these observations, it is found that CNTs disperse in a multiphase system by repetitive breakup process during mixing rather than migration driven by chemical affinity.

  3. Tailored host-guest lipidic cubic phases: a protocell model exhibiting nucleic acid recognition.

    PubMed

    Komisarski, Marek; Osornio, Yazmin M; Siegel, Jay S; Landau, Ehud M

    2013-01-21

    A classical conundrum in origin-of-life studies relates to the nature of the first chemical system: was it a carrier of genetic information or a facilitator of cellular compartmentalization? Here we present a system composed of tailor-made nucleolipids and hydrated monoolein, which assemble at ambient temperatures to form host-guest lipidic cubic phase (LCP) materials that are stable in bulk water and can perform both functions. As such, they may represent a molecular model for a protocell in origin-of-life studies. Nucleolipids within the lipidic material sequester and bind selectively complementary oligonucleotide sequences from solution by virtue of base-pairing; noncomplementary sequences diffuse freely between the LCP material and the bulk aqueous environment. Sequence specific enrichment of nucleic acids within the LCP material demonstrates an effective mechanism for selection of genetic material in these cell-mimetic systems. PMID:23239006

  4. Vapor phase ketonization of acetic acid on ceria based metal oxides

    SciTech Connect

    Liu, Changjun; Karim, Ayman M.; Lebarbier, Vanessa MC; Mei, Donghai; Wang, Yong

    2013-12-01

    The activities of CeO2, Mn2O3-CeO2 and ZrO2-CeO2 were measured for acetic acid ketonization under reaction conditions relevant to pyrolysis vapor upgrading. We show that the catalyst ranking changed depending on the reaction conditions. Mn2O3-CeO2 was the most active catalyst at 350 oC, while ZrO2 - CeO2 was the most active catalyst at 450 oC. Under high CO2 and steam concentration in the reactants, Mn2O3-CeO2 was the most active catalyst at 350 and 450 °C. The binding energies of steam and CO2 with the active phase were calculated to provide the insight into the tolerance of Mn2O3-CeO2 to steam and CO2.

  5. An attempt to theoretically predict third-phase formation in the dimethyldibutyltetradecylmalonamide (DMDBTDMA)/dodecane/water/nitric acid extraction system

    SciTech Connect

    LeFrancois, L.; Tondre, C.; Belnet, F.; Noel, D.

    1999-03-01

    The formation of a third phase in solvent extraction (due to splitting of the organic phase into two layers) often occurs when the aqueous phase is highly concentrated in acids. This has been reported with the extraction system dimethyldibutyltetradecylmalonamide (DMDBTDMA)/n-dodecane/water/nitric acid, both in the presence and absence of metal ions. Whereas many experimental efforts have been made to investigate the effects of different parameters on third-phase formation, very few attempts have been made to predict this phenomenon on theoretical grounds. Because the part played by aggregation of the extractant molecules is recognized, the authors propose a new predictive approach based on the use of the Flory-Huggins theory of polymer solutions, which had been successfully applied for the prediction of phase separation phenomena in nonionic surfactant solutions. The authors show that this model can provide an excellent prediction of the demixing curve (in the absence of metal ions) when establishing the relation between the interaction parameter {chi}{sub 12} calculated from this theory and the nitric acid content of the aqueous phase. Apparent values of the solubility parameter {delta}{sub 2} of the diamide extractant at different acid loadings have been calculated, from which the effect of the nature of the diluent can also be very nicely predicted.

  6. Perfluorosulfonic acid membrane catalysts for optical sensing of anhydrides in the gas phase.

    PubMed

    Ayyadurai, Subasri M; Worrall, Adam D; Bernstein, Jonathan A; Angelopoulos, Anastasios P

    2010-07-15

    Continuous, on-site monitoring of personal exposure levels to occupational chemical hazards in ambient air is a long-standing analytical challenge. Such monitoring is required to institute appropriate health measures but is often limited by the time delays associated with batch air sampling and the need for off-site instrumental analyses. In this work, we report on the first attempt to use the catalytic properties of perfluorosulfonic acid (PSA) membranes to obtain a rapid, selective, and highly sensitive optical response to trimellitic anhydride (TMA) in the gas phase for portable sensor device application. TMA is used as starting material for various organic products and is recognized to be an extremely toxic agent by the National Institute for Occupational Safety and Health (NIOSH). Resorcinol dye is shown to become immobilized in PSA membranes and diffusionally constrain an orange brown product that results from acid-catalyzed reaction with more rapidly diffusing TMA molecules. FTIR, UV/vis, reaction selectivity to TMA versus trimellitic acid (TMLA), and homogeneous synthesis are used to infer 5,7- dihydroxyanthraquinone-2-carboxylic acid as the acylation product of the reaction. The color response has a sensitivity to at least 3 parts per billion (ppb) TMA exposure and, in addition to TMLA, excludes maleic anhydride (MA) and phthalic anhydride (PA). Solvent extraction at long times is used to determine that the resorcinol extinction coefficient in 1100 EW PSA membrane has a value of 1210 m(2)/g at 271.01 nm versus a value of 2010 m(2)/g at 275.22 nm in 50 vol% ethanol/water solution. The hypsochromic wavelength shift and reduced extinction coefficient suggest that the polar perfluorosulfonic acid groups in the membrane provide the thermodynamic driving force for diffusion and immobilization. At a resorcinol concentration of 0.376 g/L in the membrane, a partition coefficient of nearly unity is obtained between the membrane and solution concentrations and a

  7. Portable Solid Phase Micro-Extraction Coupled with Ion Mobility Spectrometry System for On-Site Analysis of Chemical Warfare Agents and Simulants in Water Samples

    PubMed Central

    Yang, Liu; Han, Qiang; Cao, Shuya; Yang, Jie; Yang, Junchao; Ding, Mingyu

    2014-01-01

    On-site analysis is an efficient approach to facilitate analysis at the location of the system under investigation as it can result in more accurate, more precise and quickly available analytical data. In our work, a novel self-made thermal desorption based interface was fabricated to couple solid-phase microextraction with ion mobility spectrometry for on-site water analysis. The portable interface can be connected with the front-end of an ion mobility spectrometer directly without other modifications. The analytical performance was evaluated via the extraction of chemical warfare agents and simulants in water samples. Several parameters including ionic strength and extraction time have been investigated in detail. The application of the developed method afforded satisfactory recoveries ranging from 72.9% to 114.4% when applied to the analysis of real water samples. PMID:25384006

  8. Portable solid phase micro-extraction coupled with ion mobility spectrometry system for on-site analysis of chemical warfare agents and simulants in water samples.

    PubMed

    Yang, Liu; Han, Qiang; Cao, Shuya; Yang, Jie; Yang, Junchao; Ding, Mingyu

    2014-01-01

    On-site analysis is an efficient approach to facilitate analysis at the location of the system under investigation as it can result in more accurate, more precise and quickly available analytical data. In our work, a novel self-made thermal desorption based interface was fabricated to couple solid-phase microextraction with ion mobility spectrometry for on-site water analysis. The portable interface can be connected with the front-end of an ion mobility spectrometer directly without other modifications. The analytical performance was evaluated via the extraction of chemical warfare agents and simulants in water samples. Several parameters including ionic strength and extraction time have been investigated in detail. The application of the developed method afforded satisfactory recoveries ranging from 72.9% to 114.4% when applied to the analysis of real water samples. PMID:25384006

  9. Structure of thermotoga maritima stationary phase survival protein SurE : a novel acid phosphatase.

    SciTech Connect

    Zhang, R.-G; Skarina, T.; Katz, J. E.; Khachatryan, A; Vyas, S.; Arrowsmith, C. H.; Clarke, S.; Edwards, A.; Joachimiak, A.; Savchenko, A.; Biosciences Division; Univ. of Toronto; Univ. of California; Clinical Genomics Centre /Proteomics, Univ. Health Network

    2001-11-01

    Background: The rpoS, nlpD, pcm, and surE genes are among many whose expression is induced during the stationary phase of bacterial growth. rpoS codes for the stationary-phase RNA polymerase {sigma} subunit, and nlpD codes for a lipoprotein. The pcm gene product repairs damaged proteins by converting the atypical isoaspartyl residues back to L-aspartyls. The physiological and biochemical functions of surE are unknown, but its importance in stress is supported by the duplication of the surE gene in E. coli subjected to high-temperature growth. The pcm and surE genes are highly conserved in bacteria, archaea, and plants. Results: The structure of SurE from Thermotoga maritima was determined at 2.0 Angstroms. The SurE monomer is composed of two domains; a conserved N-terminal domain, a Rossman fold, and a C-terminal oligomerization domain, a new fold. Monomers form a dimer that assembles into a tetramer. Biochemical analysis suggests that SurE is an acid phosphatase, with an optimum pH of 5.5-6.2. The active site was identified in the N-terminal domain through analysis of conserved residues. Structure-based site-directed point mutations abolished phosphatase activity. T. maritima SurE intra- and intersubunit salt bridges were identified that may explain the SurE thermostability. Conclusions: The structure of SurE provided information about the protein's fold, oligomeric state, and active site. The protein possessed magnesium-dependent acid phosphatase activity, but the physiologically relevant substrate(s) remains to be identified. The importance of three of the assigned active site residues in catalysis was confirmed by site-directed mutagenesis.

  10. Structure of aldehyde cluster ions in the gas phase, according to data from ion mobility spectrometry and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Lantsuzskaya (Krisilova), E. V.; Krisilov, A. V.; Levina, A. M.

    2015-09-01

    Ion-mobility spectra of a set of aliphatic linear aldehydes with the number of carbon atoms from 3 to 7 are obtained. Values of the mobility corresponding to two most intense peaks, considered to be those of a monomer and dimer, are determined according the spectra. Based on mobility, collision cross sections are calculated using the Mason-Schamp equation. The linear increase in the collision cross sections upon an increase in molecular weight is determined. According to the experimental results, the contribution to the cross section that has no dependence on molecular weight diminishes with the formation of dimers. It is established using quantum chemical calculations that this is associated with a reduction in the dipole moment upon the formation of dimers.

  11. Effects of three low-molecular-weight organic acids (LMWOAs) and pH on the mobilization of arsenic and heavy metals (Cu, Pb, and Zn) from mine tailings.

    PubMed

    Wang, Suiling; Mulligan, Catherine N

    2013-02-01

    Natural organic acids may play an important role in influencing the mobility of toxic contaminants in the environment. The mobilization of arsenic (As) and heavy metals from an oxidized Pb-Zn mine tailings sample in the presence of three low-molecular-weight organic acids, aspartic acid, cysteine, and succinic acid, was investigated at a mass ratio of 10 mg organic additive/g mine tailings in this study. The effect of pH was also evaluated. The mine tailings sample, containing elevated levels of As (2,180 mg/kg), copper (Cu, 1,100 mg/kg), lead (Pb, 12,860 mg/kg), and zinc (Zn, 5,075 mg/kg), was collected from Bathurst, New Brunswick, Canada. It was found that the organic additives inhibited As and heavy metal mobilization under acidic conditions (at pH 3 or 5), but enhanced it under neutral to alkaline conditions (at pH above 7) through forming aqueous organic complexes. At pH 11, As, Cu, Pb, and Zn were mobilized mostly by the organic additives, 45, 46, 1,660, and 128 mg/kg by aspartic acid, 31, 28, 1,040, and 112 mg/kg by succinic acid, and 53, 38, 2,020, and 150 mg/kg by cysteine, respectively, whereas those by distilled water were 6, 16, 260, and 52 mg/kg, respectively. It was also found that the mobilization of As and the heavy metals was closely correlated, and both were closely correlated to Fe mobilization. Arsenic mobilization by the three LMWOAs was found to be consistent with the order of the stability of Fe-, Cu-, Pb-, and Zn-organic ligand complexes. The organic acids might be used potentially in the natural attenuation and remediation of As and heavy metal-contaminated sites. PMID:22648854

  12. Molecularly imprinted polymer cartridges coupled to liquid chromatography for simple and selective analysis of penicilloic acid and penilloic acid in milk by matrix solid-phase dispersion.

    PubMed

    Luo, Zhimin; Du, Wei; Zheng, Penglei; Guo, Pengqi; Wu, Ningli; Tang, Weili; Zeng, Aiguo; Chang, Chun; Fu, Qiang

    2015-09-01

    A simple, fast and sensitive method for determination of the degradation products of penicillin (penicilloic acid and penilloic acid) in milk samples has been developed by combining selective surface molecularly imprinted matrix solid-phase dispersion and high performance liquid chromatography (SMIPs-MSPD-HPLC). The selected dispersant SMIPs had high affinity for penicilloic acid and penilloic acid in milk matrix and the obtained extract was sufficiently clean for direct injection for HPLC analysis without any interference from the matrix. The proposed SMIPs-MSPD-HPLC method was validated for linearity, precision, accuracy, limit of detection and limit of quantitation. Linearity ranged from 0.04 to 4 μg g(-1) (correlation coefficient r(2) > 0.999). Recoveries of penicilloic acid from milk samples at different spiked levels were between 79.8 and 90.3%, with RSD values within 5.2-7.4%, and the limit of detection and limit of quantitation values were 0.04 and 0.13 μg g(-1), respectively. Recoveries of penilloic acid from milk samples at different spiked levels were between 77.4 and 86.2%, with RSD values within 3.1-6.4%, and the limit of detection and limit of quantitation values were 0.05 and 0.17 μg g(-1), respectively. The developed SMIPs-MSPD-HPLC method was successfully applied to direct determination of penicilloic acid and penilloic acid in milk samples. PMID:26028582

  13. Condensed-Phase Nitric Acid in a Tropical Subvisible Cirrus Cloud

    NASA Technical Reports Server (NTRS)

    Popp, P. J.; Marcy, T. P.; Watts, O. A.; Gao, R. S.; Fahey, D. W.; Weinstock, E. M.; Smith, J. B.; Herman, R. L.; Tropy, R. F.; Webster, C. r.; Christensen, L. E.; Baumgardner, D. G.; Voigt, C.; Kaercher, B.; Wilson, J. C.; Mahoney, M. J.; Jensen, E. J.; Bui, T. P.

    2007-01-01

    In situ observations in a tropical subvisible cirrus cloud during the Costa Rica Aura Validation Experiment on 2 February 2006 show the presence of condensed-phase nitric acid. The cloud was observed near the tropopause at altitudes of 16.3-17.7 km in an extremely cold (183-191 K) and dry 5 ppm H2O) air mass. Relative humidities with respect to ice ranged from 150-250% throughout most of the cloud. Optical particle measurements indicate the presence of ice crystals as large as 90 microns in diameter. Condensed RN031H20 molar ratios observed in the cloud particles were 1-2 orders of magnitude greater than ratios observed previously in cirrus clouds at similar RN03 partial pressures. Nitric acid trihydrate saturation ratios were 10 or greater during much of the cloud encounter, indicating that RN03 may be present in the cloud particles as a stable condensate and not simply physically adsorbed on or trapped in the particles.

  14. Analysis of phenolic acids as chloroformate derivatives using solid phase microextraction-gas chromatography.

    PubMed

    Citová, Ivana; Sladkovský, Radek; Solich, Petr

    2006-07-28

    In the presented study, a simple and original procedure of phenolic acids derivatization treated by ethyl and methyl chloroformate performed in an aqueous media consisting of acetonitrile, water, methanol/ethanol and pyridine has been modified and optimized. Seven phenolic acid standards-caffeic, ferulic, gallic, p-coumaric, protocatechuic, syringic and vanillic were derivatized into corresponding methyl/ethyl esters and subsequently determined by the means of gas chromatography connected to the flame-ionisation detector (FID). Some selected validation parameters as linearity, detection and quantitation limits and peak area repeatability were valued. The total time of gas chromatography (GC) analysis was 24 min for methyl chloroformate and 30 min for ethyl chloroformate derivatization. The more suitable methyl chloroformate derivatization was used for further experiments on the possibility of multiple pre-concentration by the direct solid phase microextraction technique (SPME). For this purpose, polyacrylate (PA), polydimethylsiloxane (PDMS), carboxen/polydimethylsiloxane (CAR/PDMS) and polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibres were tested and the extraction conditions concerning time of extraction, temperature and time of desorption were optimized. The most polar PA fibre gave the best results under optimal extraction conditions (50 min extraction time, 25 degrees C extraction temperature and 10 min desorption time). As a result, the total time of SPME-GC analysis was 74 min and an increase in method sensitivity was reached. The limits of quantitation (LOQ) of p-coumaric, ferulic, syringic and vanillic acid esters after SPME pre-concentration were 0.02, 0.17, 0.2 and 0.2 microg mL(-1), respectively, showing approximately 10 times higher sensitivity in comparison with the original GC method. PMID:17723529

  15. ''Pulling'' Nanoparticles into Water: Phase Transfer of Oleic Acid Stabilized Monodisperse Nanoparticles into Aqueous Solutions of alpha-Cyclodextrin

    SciTech Connect

    Wang, Y.; Wong, J.F.; Teng, X.; Lin, X.Z.; Yang, H.

    2003-10-18

    (B204)This paper describes a general method to drastically improve the disparity of oleic acid stabilized nanoparticles in aqueous solutions. We use oleic acid stabilized monodisperse nanoparticles of iron oxides and silver as model systems, and have modified the surface properties of these nanoparticles through the formation of an inclusion complex between surface-bound surfactant molecules and alpha-cyclodextrin (alpha-CD). After the modification, the nanoparticles of both iron oxide and Ag can transfer from hydrophobic solvents, such as hexane, to alpha-CD aqueous phase. The efficiency of the phase transfer to the aqueous solutions depend son the initial alpha-CD concentration. The alpha-CD/oleic acid complex stabilized nanoparticles can be stable for long periods of time in aqueous phase under ambient atmospheric conditions. Transmission electron microscopy (TME), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform-infrared (FT-IR) spectroscopy, and colorimetric methods have been used in the characterization of these nanoparticles.

  16. Toxicity of Fatty Acid autoxidation products: highest anti-microbial toxicity in the initial oxidative phase.

    PubMed

    Matikainen, Jorma; Lehtinen, Markku; Pelttari, Eila; Elo, Hannu

    2015-01-01

    The autoxidation-degradation processes of polyunsaturated fatty acids give rise to toxic products, and the relative toxicity at different stages of the process is of great interest. We report here that when methyl α-linolenate is exposed to sunlight and air, its antimicrobial activity against yeasts and bacteria (as measured by agar diffusion) reaches its maximum during the early oxidative phase when addition of oxygen occurs and the mass increases drastically. Before exposure, the activity is minimal or zero, but it increases rapidly during the first days of the test, simultaneously with the increase of the mass of the material, and begins to decrease while the mass is still increasing and before the mass begins to decrease due to degradation and formation of volatile compounds. Thus, the products formed during the degradation phase of the process are far less toxic to the test organisms than the compounds formed at the early stages when addition of oxygen occurs with maximal rate. PMID:25546619

  17. Observations of gas phase hydrochloric acid in the polluted marine boundary layer

    NASA Astrophysics Data System (ADS)

    Crisp, Timia A.; Lerner, Brian M.; Williams, Eric J.; Quinn, Patricia K.; Bates, Timothy S.; Bertram, Timothy H.

    2014-06-01

    Ship-based measurements of gas phase hydrochloric acid (HCl), particulate chloride (pCl-), and reactive nitrogen oxides (NOy) were made in the polluted marine boundary layer along the California coastline during spring 2010. These observations are used to assess both the rate of Cl atom production from HCl and the role of direct HCl emissions and subsequent partitioning as a source for pCl-. Observations of HCl made in coastal Southern California are broadly correlated with NOz (NOz ≡ NOy - NOx), peaking at 11 A.M. The observed median HCl mixing ratio in Southern California is 1.3 ppb (interquartile range: 0.53-2.7 ppb), as compared to 0.19 ppb (interquartile range: 0.10-0.38 ppb) measured along the Sacramento River between San Francisco and Sacramento. Concurrent measurements of aerosol ion chemistry indicate that aerosol particles sampled in Northern California are heavily depleted in Cl-, corresponding to a mean pCl- deficit of 0.05 ± 0.03 (1σ) ppb for sub-10 µm aerosol particles. In comparison, aerosols measured in Southern California indicate that over 25% of particles showed an addition of Cl- to the particle population. Observations presented here suggest that primary sources of HCl, or gas phase chlorine precursors to HCl, are likely underestimated in the California Air Resource Board emissions inventory. These results highlight the need for future field observations designed to better constrain direct reactive halogen emissions.

  18. A novel multi-phase bioreactor for fermentations to produce organic acids from dairy wastes

    SciTech Connect

    Yang, S.T.; Zhu, H.; Li, Y.; Silva, E.M.

    1993-12-31

    A novel, fibrous bed bioreactor is developed for multi-phase fermentation processes. The microbial cells are immobilized in a spiral-wound, fibrous matrix packed in the bioreactor. This innovative, structured packing design allows good contact between two different moving phases (e.g., gas-liquid or liquid-solid) and has many advantages over conventional immobilized cell bioreactors. Because the reactor bed is not completely filled with the solid matrix, the bioreactor can be operated for a long period without developing problems such as clogging and high pressure drop usually associated with conventional packed bed and membrane bioreactors. This novel bioreactor was studied for its use in several organic acid fermentations. Production of propionate, acetate, and lactate from whey permeate was studied. In all cases studied, use of the fibrous bioreactor resulted in superior reactor performance-indicated by a more than tenfold increase in productivity, reduction or elimination of the requirement for nutrient supplementation to whey permeate, and resistance to contamination-as compared to conventional batch fermentation processes. Also, the reactor maintained high productivity throughout long-term continuous operation. No contamination, degeneration, or clogging problems were experienced during a 10-month period of continuous operation. This new bioreactor is thus suitable for industrial uses to improve fermentation processes which currently use conventional bioreactors.

  19. Gas-Phase Thermal Tautomerization of Imidazole-Acetic Acid: Theoretical and Computational Investigations

    PubMed Central

    Aziz, Saadullah G.; Osman, Osman I.; Elroby, Shaaban A.; Hilal, Rifaat H.

    2015-01-01

    The gas-phase thermal tautomerization reaction between imidazole-4-acetic (I) and imidazole-5-acetic (II) acids was monitored using the traditional hybrid functional (B3LYP) and the long-range corrected functionals (CAM-B3LYP and ωB97XD) with 6-311++G** and aug-cc-pvdz basis sets. The roles of the long-range and dispersion corrections on their geometrical parameters, thermodynamic functions, kinetics, dipole moments, Highest Occupied Molecular Orbital–Lowest Unoccupied Molecular Orbital (HOMO–LUMO) energy gaps and total hyperpolarizability were investigated. All tested levels of theory predicted the preference of I over II by 0.750–0.877 kcal/mol. The origin of predilection of I is assigned to the H-bonding interaction (nN8→σ*O14–H15). This interaction stabilized I by 15.07 kcal/mol. The gas-phase interconversion between the two tautomers assumed a 1,2-proton shift mechanism, with two transition states (TS), TS1 and TS2, having energy barriers of 47.67–49.92 and 49.55–52.69 kcal/mol, respectively, and an sp3-type intermediate. A water-assisted 1,3-proton shift route brought the barrier height down to less than 20 kcal/mol in gas-phase and less than 12 kcal/mol in solution. The relatively high values of total hyperpolarizability of I compared to II were interpreted and discussed. PMID:26556336

  20. Electronic structure calculations of mercury mobilization from mineral phases and photocatalytic removal from water and the atmosphere.

    PubMed

    Da Pieve, Fabiana; Stankowski, Martin; Hogan, Conor

    2014-09-15

    Mercury is a hazardous environmental pollutant mobilized from natural sources, and anthropogenically contaminated and disturbed areas. Current methods to assess mobility and environmental impact are mainly based on field measurements, soil monitoring, and kinetic modelling. In order to understand in detail the extent to which different mineral sources can give rise to mercury release it is necessary to investigate the complexity at the microscopic level and the possible degradation/dissolution processes. In this work, we investigated the potential for mobilization of mercury structurally trapped in three relevant minerals occurring in hot spring environments and mining areas, namely, cinnabar (α-HgS), corderoite (α-Hg3S2Cl2), and mercuric chloride (HgCl2). Quantum chemical methods based on density functional theory as well as more sophisticated approaches are used to assess the possibility of a) direct photoreduction and formation of elemental Hg at the surface of the minerals, providing a path for ready release in the environment; and b) reductive dissolution of the minerals in the presence of solutions containing halogens. Furthermore, we study the use of TiO2 as a potential photocatalyst for decontamination of polluted waters (mainly Hg(2+)-containing species) and air (atmospheric Hg(0)). Our results partially explain the observed pathways of Hg mobilization from relevant minerals and the microscopic mechanisms behind photocatalytic removal of Hg-based pollutants. Possible sources of disagreement with observations are discussed and further improvements to our approach are suggested. PMID:24982025

  1. 78 FR 56875 - Tribal Mobility Fund Phase I Auction Rescheduled for December 19, 2013; Notice and Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... service support through reverse competitive bidding. The USF/ICC Transformation Order, 76 FR 73830, November 29, 2011 and 76 FR 81562, December 28, 2011, established the Mobility Fund as a universal service... program details. On March 29, 2013, the Bureaus released the Auction 902 Comment Public Notice, 78...

  2. Socio-Technical Dimensions of an Outdoor Mobile Learning Environment: A Three-Phase Design-Based Research Investigation

    ERIC Educational Resources Information Center

    Land, Susan M.; Zimmerman, Heather Toomey

    2015-01-01

    This design-based research project examines three iterations of Tree Investigators, a learning environment designed to support science learning outdoors at an arboretum and nature center using mobile devices (iPads). Researchers coded videorecords and artifacts created by children and parents (n = 53) to understand how both social and…

  3. Phase and Size Controllable Synthesis of NaYbF4 Nanocrystals in Oleic Acid/ Ionic Liquid Two-Phase System for Targeted Fluorescent Imaging of Gastric Cancer

    PubMed Central

    Pan, Liyuan; He, Meng; Ma, Jiebing; Tang, Wei; Gao, Guo; He, Rong; Su, Haichuan; Cui, Daxiang

    2013-01-01

    Upconversion nanocrystals with small size and strong fluorescent signals own great potential in applications such as biomolecule-labeling, in vivo tracking and molecular imaging. Herein we reported that NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals with small size and strong fluorescent signals were controllably synthesized by oleic acid (OA)/ ionic liquid (IL) two-phase system for targeted fluorescent imaging of gastric cancer in vivo. The optimal synthesis condition of NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals by OA/IL two-phase system was established, adding more metal ion such as Na+ ion could facilitate the size control and crystal-phase transition, more importantly, markedly enhancing fluorescent intensity of beta-phase nanocrystals compared with traditional methods. Alpha-phase NaYbF4, 2%Tm upconversion nanocrystals with less than 10nm in diameter and beta-phase NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals with 30 nm or so in diameter and strong fluorescent signals were obtained, these synthesized nanocrystals exhibited very low cytotoxicity. Folic acid-conjugated silica-modified beta-phase NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals were prepared, could actively target gastric cancer tissues implanted into nude mice in vivo, and realized targeted fluorescent imaging. Folic acid-conjugated silica-modified NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals show great potential in applications such as targeted near infared radiation fluorescent imaging, magnetic resonance imaging and targeted therapy of gastric cancer in the near future. PMID:23471455

  4. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties.

    PubMed

    Stoumpos, Constantinos C; Malliakas, Christos D; Kanatzidis, Mercouri G

    2013-08-01

    A broad organic-inorganic series of hybrid metal iodide perovskites with the general formulation AMI3, where A is the methylammonium (CH3NH3(+)) or formamidinium (HC(NH2)2(+)) cation and M is Sn (1 and 2) or Pb (3 and 4) are reported. The compounds have been prepared through a variety of synthetic approaches, and the nature of the resulting materials is discussed in terms of their thermal stability and optical and electronic properties. We find that the chemical and physical properties of these materials strongly depend on the preparation method. Single crystal X-ray diffraction analysis of 1-4 classifies the compounds in the perovskite structural family. Structural phase transitions were observed and investigated by temperature-dependent single crystal X-ray diffraction in the 100-400 K range. The charge transport properties of the materials are discussed in conjunction with diffuse reflectance studies in the mid-IR region that display characteristic absorption features. Temperature-dependent studies show a strong dependence of the resistivity as a function of the crystal structure. Optical absorption measurements indicate that 1-4 behave as direct-gap semiconductors with energy band gaps distributed in the range of 1.25-1.75 eV. The compounds exhibit an intense near-IR photoluminescence (PL) emission in the 700-1000 nm range (1.1-1.7 eV) at room temperature. We show that solid solutions between the Sn and Pb compounds are readily accessible throughout the composition range. The optical properties such as energy band gap, emission intensity, and wavelength can be readily controlled as we show for the isostructural series of solid solutions CH3NH3Sn(1-x)Pb(x)I3 (5). The charge transport type in these materials was characterized by Seebeck coefficient and Hall-effect measurements. The compounds behave as p- or n-type semiconductors depending on the preparation method. The samples with the lowest carrier concentration are prepared from solution and are n-type; p

  5. The influence of a non-aqueous phase liquid (NAPL) and chemical oxidant application on perfluoroalkyl acid (PFAA) fate and transport.

    PubMed

    McKenzie, Erica R; Siegrist, Robert L; McCray, John E; Higgins, Christopher P

    2016-04-01

    One dimensional column experiments were conducted using saturated porous media containing residual trichloroethylene (TCE) to understand the effects of non-aqueous phase liquids (NAPLs) and chemical oxidation on perfluoroalkyl acid (PFAA) fate and transport. Observed retardation factors and data from supporting batch studies suggested that TCE provides additional sorption capacity that can increase PFAA retardation (i.e., decreased mobility), though the mechanisms remain unclear. Treatment with persulfate activated with FeCl2 and citric acid, catalyzed hydrogen peroxide (CHP), or permanganate did not result in oxidative transformations of PFAAs. However, impacts on PFAA sorption were apparent, and enhanced sorption was substantial in the persulfate-treated columns. In contrast, PFAA transport was accelerated in permanganate- and CHP-treated columns. Ultimately, PFAA transport in NAPL contaminated groundwater is likely influenced by porous media properties, NAPL characteristics, and water quality properties, each of which can change due to chemical oxidant treatment. For contaminated sites for which ISCO is a viable treatment option, changes to PFAA transport and the implications thereof should be included as a component of the remediation evaluation and selection process. PMID:26854608

  6. Sequence-specific nucleic acid mobility using a reversible block copolymer gel matrix and DNA amphiphiles (lipid-DNA) in capillary and microfluidic electrophoretic separations.

    PubMed

    Wagler, Patrick; Minero, Gabriel Antonio S; Tangen, Uwe; de Vries, Jan Willem; Prusty, Deepak; Kwak, Minseok; Herrmann, Andreas; McCaskill, John S

    2015-10-01

    Reversible noncovalent but sequence-dependent attachment of DNA to gels is shown to allow programmable mobility processing of DNA populations. The covalent attachment of DNA oligomers to polyacrylamide gels using acrydite-modified oligonucleotides has enabled sequence-specific mobility assays for DNA in gel electrophoresis: sequences binding to the immobilized DNA are delayed in their migration. Such a system has been used for example to construct complex DNA filters facilitating DNA computations. However, these gels are formed irreversibly and the choice of immobilized sequences is made once off during fabrication. In this work, we demonstrate the reversible self-assembly of gels combined with amphiphilic DNA molecules, which exhibit hydrophobic hydrocarbon chains attached to the nucleobase. This amphiphilic DNA, which we term lipid-DNA, is synthesized in advance and is blended into a block copolymer gel to induce sequence-dependent DNA retention during electrophoresis. Furthermore, we demonstrate and characterize the programmable mobility shift of matching DNA in such reversible gels both in thin films and microchannels using microelectrode arrays. Such sequence selective separation may be employed to select nucleic acid sequences of similar length from a mixture via local electronics, a basic functionality that can be employed in novel electronic chemical cell designs and other DNA information-processing systems. PMID:26095642

  7. A rapid and non-invasive method to determine toxic levels of alcohols and γ-hydroxybutyric acid in saliva samples by gas chromatography-differential mobility spectrometry.

    PubMed

    Criado-García, L; Ruszkiewicz, D M; Eiceman, G A; Thomas, C L P

    2016-03-01

    A polydimethylsiloxane oral sampler was used to extract methanol, ethanol, ethylene glycol, 1,3-propandiol and γ-hydroxybutyric acid from samples of human saliva obtained using a passive drool approach. The extracted compounds were recovered by thermal desorption, isolated by gas chromatography and detected with differential mobility spectrometry, operating with a programmed dispersion field. Complex signal behaviours were also observed that were consistent with hitherto unobserved fragmentation behaviours in differential mobility spectrometry. These yielded high-mobility fragments obscured within the envelope of the water-based reactant ion peak. Further, compensation field maxima shifts were also observed which were attributable to transport gas modification phenomena. Nevertheless, the responses obtained indicated that in vivo saliva sampling with thermal desorption gas chromatography may be used to provide a semi-quantitative diagnostic screen over the toxicity threshold concentration ranges of 100 mg dm(-3) to 3 g dm(-3). A candidate method suitable for use in low resource settings for the non-invasive screening of patients intoxicated by alcohols and volatile sedatives has been demonstrated. PMID:26744364

  8. Gas phase C{sub 2}-C{sub 10} organic acids concentrations in the Los Angeles atmosphere

    SciTech Connect

    Nolte, C.G.; Fraser, M.P.; Cass, G.R.

    1999-02-15

    The atmospheric concentrations of gas-phase C{sub 2}--C{sub 10} monocarboxylic and benzoic acids are reported in samples collected during a severe Los Angeles area photochemical smog episode. Average urban concentrations are 10--50 {times} greater than concentrations observed at a remote background location, indicating an anthropogenic origin for these compounds. Average urban concentrations during the episode were 16.1 {micro}g m{sup {minus}3} (6.6 ppb) for acetic acid and 1.67 {micro}g m{sup {minus}3} (0.55 ppb) for propionic acid, with progressively lesser amounts as the carbon chain length of the acids is increased. Spatial and diurnal variations in atmospheric organic acids concentrations point to the importance of both direct emissions from primary sources and formation by photochemical reaction of precursor compounds.

  9. Simultaneous determination of chromium(III), aluminum(III), and iron(II) in tannery sludge acid extracts by reversed-phase high-performance liquid chromatography

    SciTech Connect

    Lopez, A.; Passino, R.; Tiravanti, G. ); Rotunno, T.; Palmisano, F.; Zambonin, P.G. )

    1991-07-01

    A new chromatographic method for the simultaneous determination of Cu(II), Zn(II), Cr(III), Al(III), and Fe(III) or Fe(II) has been developed. The method is based on precolumn formation of stable metal-8-hydroxyquinoline chelates, their separation on a C-18 reversed-phase column by HPLC, and their UV-vis detection at 400 nm. The experimental conditions giving the highest chelate yields resulted: pH 4.2; T = 90C; reaction time 30 min; reaction mixture composition methanol (66.7%)/acetonitrile (13.3%)/water (20%) (v/v/v) plus 10 mM 8-hydroxyquinoline. The mobile-phase composition giving the best resolution of Cr(III)- and Al(III)-8-hydroxyquinoline chromatographic peaks has been optimized by the simplex algorithm: acetonitrile (13.5%)/methanol (29%)/0.1 acetate buffer pH 6.8 (13.5%) (v/v/v) plus 100 mM 8-hydroxyquinoline. The method has been applied to synthetic solutions as well as, after sample pretreatment on XAD-7 resin, to real sulfuric acid extracts of tannery sludges. As for this latter matrix, additional information on Cr and Fe oxidation states has been obtained, combining the proposed method with atomic absorption spectroscopy and ion chromatography.

  10. Theoretical studies of fundamental pathways for alkaline hydrolysis of carboxylic acid esters in gas phase

    SciTech Connect

    Zhan, C.G.; Landry, D.W.; Ornstein, R.L.

    2000-02-23

    Fundamental reaction pathways for the alkaline hydrolysis of carboxylic acid esters, RCOOR{prime}, were examined through a series of first-principle calculations. The reactions of six representative esters with hydroxide ion were studied in the gas phase. A total of three competing reaction pathways were found and theoretically confirmed for each of the esters examined: bimolecular base-catalyzed acyl-oxygen cleavage (B{sub AC}2), bimolecular base-catalyzed alkyl-oxygen cleavage (B{sub AL}2), and carbonyl oxygen exchange with hydroxide. For the two-step B{sub AC}2 process, this is the first theoretical study to consider the individual sub-steps of the reaction process and to consider substituent effects. For the carbonyl oxygen exchange with hydroxide and for the one-step B{sub AL}2 process, the authors report here the first quantitative theoretical results for the reaction pathways and for the energy barriers. The energy barrier calculated for the second step of the B{sub AC}2 process, that is, the decomposition of the tetrahedral intermediate, is larger in the gas phase than that of the first step, that is, the formation of the tetrahedral intermediate, for all but one of the esters examined. The exception, CH{sub 3}COOC(CH{sub 3}){sub 3}, does not have an {alpha} hydrogen in the leaving group. The highest energy barrier calculated for the B{sub AC}2 process is always lower than the barriers for the oxygen exchange and for the B{sub AL}2 process. The difference between the barrier for the B{sub AL}2 process and the highest barrier for the B{sub AC}2 process is only {approximately}1--3 kcal/mol for the methyl esters, but becomes much larger for the others. Substitution of an {alpha} hydrogen in R{prime} with a methyl group considerably increases the energy barrier for the B{sub AL}2 process, and significantly decreases the energy barrier for the second step of the B{sub AC}2 process. The calculated substituent shifts of the energy barrier for the first step of the

  11. Phosphatidic acid mobilized by phospholipase D is involved in the phorbol 12-myristate 13-acetate-induced G2 delay of A431 cells.

    PubMed Central

    Kaszkin, M; Richards, J; Kinzel, V

    1996-01-01

    This study was aimed at gaining an understanding of metabolic events responsible for the inhibition of cells in G2 phase, a known physiological restriction site in the cell cycle of multicellular organisms. In an earlier study, phosphatidic acid was proposed as an inhibitory mediator in the epidermal growth factor (EGF)-induced inhibition of A431 cells in G2 phase via the phospholipase C pathway [Kaszkin, Richards and Kinzel (1992) Cancer Res. 52, 5627-5634]. We show here that the phorbol ester phorbol 12-myristate 13-acetate (PMA) induces a reversible inhibition of the G2/M transition in A431 cells under conditions of phospholipase D-catalysed phosphatidic acid formation. Such PMA-induced inhibition in G2 phase is largely attenuated in the presence of 1-propanol (but not of 2-propanol). In this case the amount of phosphatidic acid is reduced to almost control levels, and instead phosphatidylpropanol is formed. In the case of EGF-induced activation of a phospholipase D the amount of phosphatidic acid is only slightly decreased in the presence of a primary alcohol. Under these conditions the EGF-induced G2 delay was not affected. The correlation between the formation of phosphatidic acid and the G2 delay induced by PMA, as well as by an exogenous bacterial phospholipase D (from Streptomyces chromofuscus), could be supported by using synchronized cells in order to increase the population of cells in G2 phase. This study indicates that the formation of substantial amounts of phosphatidic acid immediately before entry into mitosis seems to be important for establishing a delay in the cell cycle at the G2/M border by exogenous ligands. PMID:8660273

  12. Ion Mobility-Mass Spectrometry Analysis of Cross-Linked Intact Multiprotein Complexes: Enhanced Gas-Phase Stabilities and Altered Dissociation Pathways.

    PubMed

    Samulak, Billy M; Niu, Shuai; Andrews, Philip C; Ruotolo, Brandon T

    2016-05-17

    Analysis of protein complexes by ion mobility-mass spectrometry is a valuable method for the rapid assessment of complex composition, binding stoichiometries, and structures. However, capturing labile, unknown protein assemblies directly from cells remains a challenge for the technology. Furthermore, ion mobility-mass spectrometry measurements of complexes, subcomplexes, and subunits are necessary to build complete models of intact assemblies, and such data can be difficult to acquire in a comprehensive fashion. Here, we present the use of novel mass spectrometry cleavable cross-linkers and tags to stabilize intact protein complexes for ion mobility-mass spectrometry. Our data reveal that tags and linkers bearing permanent charges are superior stabilizers relative to neutral cross-linkers, especially in the context of retaining compact forms of the assembly under a wide array of activating conditions. In addition, when cross-linked protein complexes are collisionally activated in the gas phase, a larger proportion of the product ions produced are often more compact and reflect native protein subcomplexes when compared with unmodified complexes activated in the same fashion, greatly enabling applications in structural biology. PMID:27078797

  13. Modelling the transition between fixed and mobile bed conditions in two-phase free-surface flows: The Composite Riemann Problem and its numerical solution

    NASA Astrophysics Data System (ADS)

    Rosatti, Giorgio; Zugliani, Daniel

    2015-03-01

    In a two-phase free-surface flow, the transition from a mobile-bed condition to a fixed-bed one (and vice versa) occurs at a sharp interface across which the relevant system of partial differential equations changes abruptly. This leads to the possibility of conceiving a new type of Riemann Problem (RP), which we have called Composite Riemann Problem (CRP), where not only the initial constant values of the variables but also the system of equations change from left to right of a discontinuity. In this paper, we present a strategy for solving a CRP by reducing it to a standard RP of a single, composite system of equations. This can be obtained by combining the two original systems by means of a suitable weighting function, namely the erodibility variable, and the introduction of an appropriate differential equation for this quantity. In this way, the CRP problem can be analyzed theoretically with standard methods, and the features of the solutions can be clearly identified. In particular, a stationary contact wave is able to correctly describe the sharp transition between mobile- and fixed-bed conditions. A finite volume scheme based on the Multiple Averages Generalized Roe approach (Rosatti and Begnudelli (2013) [22]) was used to numerically solve the fixed-mobile CRP. Several test cases demonstrate the effectiveness, exact well balanceness and high accuracy of the scheme when applied to problems that fall within the physical range of applicability of the relevant mathematical model.

  14. Atmospheric pressure ionization and gas phase ion mobility studies of isomeric dihalogenated benzenes using different ionization techniques

    NASA Astrophysics Data System (ADS)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2004-03-01

    Ion mobility spectrometry (IMS) featuring different ionization techniques was used to analyze isomeric ortho-, meta- and para-dihalogenated benzenes in order to assess how structural features affect ion formation and drift behavior. The structure of the product ions formed was investigated by atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and IMS-MS coupling. Photoionization provided [M]+ ions for chlorinated and fluorinated compounds while bromine was cleaved from isomers of dibromobenzene and bromofluorobenzene. This ionization technique does not permit the different isomers to be distinguished. Comparable ions and additional clustered ions were obtained using 63Ni ionization. Depending on the chemical constitution, different clustered ions were observed in ion mobility spectra for the separate isomers of dichlorobenzene and dibromobenzene. Corona discharge ionization permits the most sensitive detection of dihalogenated compounds. Only clustered product ions were obtained. Corona discharge ionization enables the classification of different structural isomers of dichlorobenzene, dibromobenzene and bromofluorobenzene.

  15. Investigating the Weak to Evaluate the Strong: An Experimental Determination of the Electron Binding Energy of Carborane Anions and the Gas phase Acidity of Carborane Acids

    SciTech Connect

    Meyer, Matthew M; Wang, Xue B; Reed, Christopher A; Wang, Lai S; Kass, Steven R

    2009-12-23

    Five CHB11X6Y5- carborane anions from the series X = Br, Cl, I and Y = H, Cl, CH3 were generated by electrospray ionization, and their reactivity with a series of Brønsted acids and electron transfer reagents were examined in the gas phase. The undecachlorocarborane acid, H(CHB11Cl11), was found to be far more acidic than the former record holder, (1-C4F9SO2)2NH (i.e., ΔH°acid = 241 ± 29 vs 291.1 ± 2.2 kcal mol-1) and bridges the gas-phase acidity and basicity scales for the first time. Its conjugate base, CHB11Cl11-, was found by photoelectron spectroscopy to have a remarkably large electron binding energy (6.35 ± 0.02 eV) but the value for the (1-C4F9SO2)2N- anion is even larger (6.5 ± 0.1 eV). Consequently, it is the weak H-(CHB11Cl11) BDE (70.0 kcal mol-1, G3(MP2)) compared to the strong BDE of (1-C4F9SO2)2N-H (127.4 ± 3.2 kcal mol-1) that accounts for the greater acidity of carborane acids.

  16. Structural Properties, Order-Disorder Phenomena, and Phase Stability of Orotic Acid Crystal Forms.

    PubMed

    Braun, Doris E; Nartowski, Karol P; Khimyak, Yaroslav Z; Morris, Kenneth R; Byrn, Stephen R; Griesser, Ulrich J

    2016-03-01

    Orotic acid (OTA) is reported to exist in the anhydrous (AH), monohydrate (Hy1), and dimethyl sulfoxide monosolvate (SDMSO) forms. In this study we investigate the (de)hydration/desolvation behavior, aiming at an understanding of the elusive structural features of anhydrous OTA by a combination of experimental and computational techniques, namely, thermal analytical methods, gravimetric moisture (de)sorption studies, water activity measurements, X-ray powder diffraction, spectroscopy (vibrational, solid-state NMR), crystal energy landscape, and chemical shift calculations. The Hy1 is a highly stable hydrate, which dissociates above 135 °C and loses only a small part of the water when stored over desiccants (25 °C) for more than one year. In Hy1, orotic acid and water molecules are linked by strong hydrogen bonds in nearly perfectly planar arranged stacked layers. The layers are spaced by 3.1 Å and not linked via hydrogen bonds. Upon dehydration the X-ray powder diffraction and solid-state NMR peaks become broader, indicating some disorder in the anhydrous form. The Hy1 stacking reflection (122) is maintained, suggesting that the OTA molecules are still arranged in stacked layers in the dehydration product. Desolvation of SDMSO, a nonlayer structure, results in the same AH phase as observed upon dehydrating Hy1. Depending on the desolvation conditions, different levels of order-disorder of layers present in anhydrous OTA are observed, which is also suggested by the computed low energy crystal structures. These structures provide models for stacking faults as intergrowth of different layers is possible. The variability in anhydrate crystals is of practical concern as it affects the moisture dependent stability of AH with respect to hydration. PMID:26741914

  17. Micro-solid phase extraction of perfluorinated carboxylic acids from human plasma.

    PubMed

    Lashgari, Maryam; Lee, Hian Kee

    2016-02-01

    Micro-solid phase extraction (μ-SPE), with liquid chromatography-tandem mass spectrometry has been developed for the determination of trace levels of perfluorinated carboxylic acids (PFCAs) in human plasma. The μ-SPE sorbent was surfactant-templated mesoporous silica. Extraction time, desorption time and salt concentration were chosen as the most effective parameters and were optimized simultaneously by use of central composite design. Under the optimized extraction conditions, good linearity in the range of 100 and 5000ngL(-1) was obtained with coefficients of determination of between 0.986 and 0.995. The limits of detection (at a signal to noise ratio of 3) were measured to be in the range of between 21.23 and 65.07ngL(-1), and limits of quantification (at a signal to noise ratio of 10) were in the range of between 70.77 and 216.92ngL(-1). The relative recoveries of spiked PFCAs in different samples were in the range of between 87.58 and 102.45%. As expected from the global distribution of PFCs, contaminations at low levels (less than 200ngL(-1)) were detected (with the highest concentration recorded for perfluorooctanoic acid (PFOA)). Considering the complex nature of biological samples and the issue of matrix effects in the analysis of PFCAs, μ-SPE as an extraction method was shown to be advantageous; it combined extraction and concentration in one single step with no additional sample clean-up, and was able to remove significant matrix interferences. PMID:26795278

  18. Structural Properties, Order–Disorder Phenomena, and Phase Stability of Orotic Acid Crystal Forms

    PubMed Central

    2016-01-01

    Orotic acid (OTA) is reported to exist in the anhydrous (AH), monohydrate (Hy1), and dimethyl sulfoxide monosolvate (SDMSO) forms. In this study we investigate the (de)hydration/desolvation behavior, aiming at an understanding of the elusive structural features of anhydrous OTA by a combination of experimental and computational techniques, namely, thermal analytical methods, gravimetric moisture (de)sorption studies, water activity measurements, X-ray powder diffraction, spectroscopy (vibrational, solid-state NMR), crystal energy landscape, and chemical shift calculations. The Hy1 is a highly stable hydrate, which dissociates above 135 °C and loses only a small part of the water when stored over desiccants (25 °C) for more than one year. In Hy1, orotic acid and water molecules are linked by strong hydrogen bonds in nearly perfectly planar arranged stacked layers. The layers are spaced by 3.1 Å and not linked via hydrogen bonds. Upon dehydration the X-ray powder diffraction and solid-state NMR peaks become broader, indicating some disorder in the anhydrous form. The Hy1 stacking reflection (122) is maintained, suggesting that the OTA molecules are still arranged in stacked layers in the dehydration product. Desolvation of SDMSO, a nonlayer structure, results in the same AH phase as observed upon dehydrating Hy1. Depending on the desolvation conditions, different levels of order–disorder of layers present in anhydrous OTA are observed, which is also suggested by the computed low energy crystal structures. These structures provide models for stacking faults as intergrowth of different layers is possible. The variability in anhydrate crystals is of practical concern as it affects the moisture dependent stability of AH with respect to hydration. PMID:26741914

  19. Eddy covariance captures four-phase crassulacean acid metabolism (CAM) gas exchange signature in Agave.

    PubMed

    Owen, Nick A; Choncubhair, Órlaith Ní; Males, Jamie; Del Real Laborde, José Ignacio; Rubio-Cortés, Ramón; Griffiths, Howard; Lanigan, Gary

    2016-02-01

    Mass and energy fluxes were measured over a field of Agave tequilana in Mexico using eddy covariance (EC) methodology. Data were gathered over 252 d, including the transition from wet to dry periods. Net ecosystem exchanges (FN,EC ) displayed a crassulacean acid metabolism (CAM) rhythm that alternated from CO2 sink at night to CO2 source during the day, and partitioned canopy fluxes (FA,EC ) showed a characteristic four-phase CO2 exchange pattern. Results were cross-validated against diel changes in titratable acidity, leaf-unfurling rates, energy exchange fluxes and reported biomass yields. Projected carbon balance (g C m(-2)  year(-1) , mean ± 95% confidence interval) indicated the site was a net sink of -333 ± 24, of which contributions from soil respiration were +692 ± 7, and FA,EC was -1025 ± 25. EC estimated biomass yield was 20.1 Mg (dry) ha(-1)  year(-1) . Average integrated daily FA,EC was -234 ± 5 mmol CO2  m(-2)  d(-1) and persisted almost unchanged after 70 d of drought conditions. Regression analyses were performed on the EC data to identify the best environmental predictors of FA . Results suggest that the carbon acquisition strategy of Agave offers productivity and drought resilience advantages over conventional semi-arid C3 and C4 bioenergy candidates. PMID:26177873

  20. Final Report Nucleic Acid System - Hybrid PCR and Multiplex Assay Project Phase 2

    SciTech Connect

    Koopman, R P; Langlois, R G; Nasarabadi, S; Benett, W J; Colston, B W; Johnson, D C; Brown, S B; Stratton, P L; Milanovich, F P

    2002-04-17

    This report covers phase 2 (year 2) of the Nucleic Acid System--Hybrid PCR and Multiplex Assay project. The objective of the project is to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction) in a multiplex mode using flow cytometry. The Hybrid instrument consists of a flow-through PCR module capable of handling a multiplexed PCR assay, a hybridizing module capable of hybridizing multiplexed PCR amplicons and beads, and a flow cytometer module for bead-based identification, all controlled by a single computer. Multiplex immunoassay using bead-based Luminex flow cytometry is available, allowing rapid screening for many agents. PCR is highly specific and complements and verifies immunoassay. It can also be multiplexed and detection provided using the bead-based Luminex flow cytometer. This approach allows full access to the speed and 100-fold multiplex capability of flow cytometry for rapid screening as well as the accuracy and specificity of PCR. This project has two principal activities: (1) Design, build and test a prototype hybrid PCR/flow cytometer with the basic capabilities for rapid, broad spectrum detection and identification, and (2) Develop and evaluate multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products. This project requires not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This involves development and evaluation of multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products.

  1. Solid phase epitaxial growth of high mobility La:BaSnO3 thin films co-doped with interstitial hydrogen

    NASA Astrophysics Data System (ADS)

    Niedermeier, Christian A.; Rhode, Sneha; Fearn, Sarah; Ide, Keisuke; Moram, Michelle A.; Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio

    2016-04-01

    This work presents the solid phase epitaxial growth of high mobility La:BaSnO3 thin films on SrTiO3 single crystal substrates by crystallization through thermal annealing of nanocrystalline thin films prepared by pulsed laser deposition at room temperature. The La:BaSnO3 thin films show high epitaxial quality and Hall mobilities up to 26 ± 1 cm2/Vs. Secondary ion mass spectroscopy is used to determine the La concentration profile in the La:BaSnO3 thin films, and a 9%-16% La doping activation efficiency is obtained. An investigation of H doping to BaSnO3 thin films is presented employing H plasma treatment at room temperature. Carrier concentrations in previously insulating BaSnO3 thin films were increased to 3 × 1019 cm-3 and in La:BaSnO3 thin films from 6 × 1019 cm-3 to 1.5 × 1020 cm-3, supporting a theoretical prediction that interstitial H serves as an excellent n-type dopant. An analysis of the free electron absorption by infrared spectroscopy yields a small (H,La):BaSnO3 electron effective mass of 0.27 ± 0.05 m0 and an optical mobility of 26 ± 7 cm2/Vs. As compared to La:BaSnO3 single crystals, the smaller electron mobility in epitaxial thin films grown on SrTiO3 substrates is ascribed to threading dislocations as observed in high resolution transmission electron micrographs.

  2. Multiple headspace solid-phase microextraction for quantifying volatile free fatty acids in cheeses.

    PubMed

    Rincón, Arturo A; Pino, Verónica; Ayala, Juan H; Afonso, Ana M

    2014-11-01

    Multiple headspace solid-phase microextraction (MHS-SPME) has been utilized for the quantitative determination of 9 volatile free fatty acids (FFAs) in cheeses, in combination with gas-chromatography and flame-ionization detection (GC-FID). Variables affecting HS-SPME and MHS-SPME were optimized to attain adequate sensitivity while allowing correct application of the MHS method. Thus, the MHS-SPME method was successfully performed when using 0.3g of cheese and 1 mL of NaCl (sat. solution), which is subjected to four consecutive extractions using the carboxen-polydimethylsyloxane (CAR-PDMS) as the commercial SPME coating, 40 min of HS extraction time at 45°C, and 6 min of desorption time in the GC injector at 290°C. The MHS-SPME permitted the calculation of β values, which range from 0.72±0.01-0.95±0.02, depending on the cheese studied. Later, this β parameter is used to perform quantitation for the 9 volatile FFAs after just a single HS-SPME extraction, using an external solvent calibration curve. The validity of the utilization of an external solvent calibration was tested with aqueous standards of volatile FFAs, getting average recoveries higher than 81.2%. Quantitation by MHS-SPME was free of matrix interferences despite measuring a complex cheese sample. The optimized method was validated, presenting inter-day reproducibility values (as RSD in %) lower than 13%, and limits of detection down to 7 µg kg(-1). The method was also compared with a conventional extraction method such as solid-phase extraction for the studied cheeses elaborated with goat milk, generating comparable results. To our knowledge, this is the first time that MHS-SPME has been applied to volatiles in cheeses. PMID:25127582

  3. Conformational preferences of γ-aminobutyric acid in the gas phase and in water

    NASA Astrophysics Data System (ADS)

    Song, Il Keun; Kang, Young Kee

    2012-09-01

    The conformational study of γ-aminobutyric acid (GABA) has been carried out at the M06-2X/cc-pVTZ level of theory in the gas phase and the SMD M06-2X/cc-pVTZ level of theory in water. In the gas phase, the folded conformation gG1 with gauche- and gauche+ conformations for the Cβsbnd Cα and Cγsbnd Cβ bonds, respectively, is found to be lowest in energy and enthalpy, which can be ascribed to the favored hyperconjugative n → π* interaction between the lone electron pair of the amine nitrogen atom and the Cdbnd O bond of the carboxylic group and the favored antiparallel dipole-dipole interaction between the Nsbnd H bond and the Cdbnd O bond. In addition, the intramolecular hydrogen bonds between the carboxylic group and the amine Nsbnd H group have contributed to stabilize some low-energy conformers. However, the most preferred conformation is found to be tG1 and more stable by 0.4 kcal/mol in ΔG than the conformer gG1, in which the favored entropic term due to the conformational flexibility and the other favored n → σ*, σ → σ*, and π → σ* interactions seem to play a role. The conformational preferences of the neutral GABA calculated by ΔG's are reasonably consistent with the populations deduced from FT microwave spectroscopy in supersonic jets combined with laser ablation. In water, the two folded conformers Gg and gG of the zwitterionic GABA are dominantly populated, each of which has the population of 47%, and the hydrogen bond between the ammonium Nsbnd H group and the lone electron pair of the Csbnd O- group seems to be crucial in stabilizing these conformers. Our calculated result that the folded conformers preferentially exist in water is consistent with the 1H NMR experiments in D2O.

  4. Measuring Gas-Phase Basicities of Amino Acids Using an Ion Trap Mass Spectrometer: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Sunderlin, Lee S.; Ryzhov, Victor; Keller, Lanea M. M.; Gaillard, Elizabeth R.

    2005-01-01

    An experiment is performed to measure the relative gas-phase basicities of a series of five amino acids to compare the results to literature values. The experiments use the kinetic method for deriving ion thermochemistry and allow students to perform accurate measurements of thermodynamics in a relatively short time.

  5. Phase and extraction equilibria in water-polyethyleneglycol ethers of monoethanolamides of synthetic fatty acid-ammonium chloride systems

    NASA Astrophysics Data System (ADS)

    Lesnov, A. E.; Golovkina, A. V.; Kudryashova, O. S.; Denisova, S. A.

    2016-08-01

    Phase equilibria in layering systems of water, polyethyleneglycol ethers of monoethanolamides of synthetic fatty acids (SFAs) (synthamide-5), and ammonium chloride are studied. The possibility of using such systems for the liquid extraction of metal ions is evaluated. The effect the nature of salting-out agents has on the processes of segregation of the systems has been considered.

  6. Characterizing the gas phase ion chemistry of an ion trap mobility spectrometry based explosive trace detector using a tandem mass spectrometer.

    PubMed

    Kozole, Joseph; Tomlinson-Phillips, Jill; Stairs, Jason R; Harper, Jason D; Lukow, Stefan R; Lareau, Richard T; Boudries, Hacene; Lai, Hanh; Brauer, Carolyn S

    2012-09-15

    A commercial-off-the-shelf (COTS) ion trap mobility spectrometry (ITMS) based explosive trace detector (ETD) has been interfaced to a triple quadrupole mass spectrometer (MS/MS) for the purpose of characterizing the gas phase ion chemistry intrinsic to the ITMS instrument. The overall objective of the research is to develop a fundamental understanding of the gas phase ionization processes in the ITMS based ETD to facilitate the advancement of its operational effectiveness as well as guide the development of next generation ETDs. Product ion masses, daughter ion masses, and reduced mobility values measured by the ITMS/MS/MS configuration for a suite of nitro, nitrate, and peroxide containing explosives are reported. Molecular formulas, molecular structures, and ionization pathways for the various product ions are inferred using the mass and mobility data in conjunction with density functional theory. The predominant product ions are identified as follows: [TNT-H](-) for trinitrotoluene (TNT), [RDX+Cl](-) for cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX), [NO(3)](-) for ethylene glycol dinitrate (EGDN), [NG+NO(3)](-) for nitroglycerine (NG), [PETN+NO(3)](-) for pentaerythritol tetranitrate (PETN), [HNO(3)+NO(3)](-) for ammonium nitrate (NH(4)NO(3)), [HMTD-NC(3)H(6)O(3)+H+Cl](-) for hexamethylene triperoxide diamine (HMTD), and [(CH(3))(2)CNH(2)](+) for triacetone triperoxide (TATP). The predominant ionization pathways for the formation of the various product ions are determined to include proton abstraction, ion-molecule attachment, autoionization, first-order and multi-order thermolysis, and nucleophilic substitution. The ion trapping scheme in the reaction region of the ITMS instrument is shown to increase predominant ion intensities relative to the secondary ion intensities when compared to non-ion trap operation. PMID:22967626

  7. Injury Risk Assessment of Extravehicular Mobility Unit (EMU) Phase VI and Series 4000 Gloves During Extravehicular Activity (EVA) Hand Manipulation Tasks

    NASA Technical Reports Server (NTRS)

    Kilby, Melissa

    2015-01-01

    Functional Extravehicular Mobility Units (EMUs) with high precision gloves are essential for the success of Extravehicular Activity (EVA). Previous research done at NASA has shown that total strength capabilities and performance are reduced when wearing a pressurized EMU. The goal of this project was to characterize the human-space suit glove interaction and assess the risk of injury during common EVA hand manipulation tasks, including pushing, pinching and gripping objects. A custom third generation sensor garment was designed to incorporate a combination of sensors, including force sensitive resistors, strain gauge sensors, and shear force sensors. The combination of sensors was used to measure the forces acting on the finger nails, finger pads, finger tips, as well as the knuckle joints. In addition to measuring the forces, data was collected on the temperature, humidity, skin conductance, and blood perfusion of the hands. Testing compared both the Phase VI and Series 4000 glove against an ungloved condition. The ungloved test was performed wearing the sensor garment only. The project outcomes identified critical landmarks that experienced higher workloads and are more likely to suffer injuries. These critical landmarks varied as a function of space suit glove and task performed. The results showed that less forces were acting on the hands while wearing the Phase VI glove as compared to wearing the Series 4000 glove. Based on our findings, the engineering division can utilize these methods for optimizing the current space suit glove and designing next generation gloves to prevent injuries and optimize hand mobility and comfort.

  8. Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer.

    PubMed

    May, Jody C; Goodwin, Cody R; Lareau, Nichole M; Leaptrot, Katrina L; Morris, Caleb B; Kurulugama, Ruwan T; Mordehai, Alex; Klein, Christian; Barry, William; Darland, Ed; Overney, Gregor; Imatani, Kenneth; Stafford, George C; Fjeldsted, John C; McLean, John A

    2014-02-18

    Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid "omni-omic" characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field. PMID:24446877

  9. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer

    PubMed Central

    2014-01-01

    Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid “omni-omic” characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field. PMID:24446877

  10. Optical and thermal studies on viscous lamellar smectic phases in binary mixture of DTAC and ortho-phosphoric acid

    NASA Astrophysics Data System (ADS)

    Govindaiah, T. N.; Sreepad, H. R.

    2015-01-01

    The binary mixture of two non-mesogenic compounds, namely, dodecyl trimethylammonium chloride (DTAC) and ortho-phosphoric acid (H3PO4) exhibits very interesting liquid crystalline smectic phases at large range of concentrations and temperature. The mixture with lower and higher concentrations of DTAC exhibits SmA, SmD, SmB and SmE phases, sequentially when the specimen is cooled from its isotropic phase. Different liquid crystalline phases observed in the mixture were studied using optical microscopic techniques. The temperature variations of optical anisotropy and electrical conductivity have also been discussed. Helfrich potential and elastic moduli have also been estimated in the smectic phase using the Helfrich model.

  11. Gas-phase hydrolysis of triplet SO2: A possible direct route to atmospheric acid formation.

    PubMed

    Donaldson, D James; Kroll, Jay A; Vaida, Veronica

    2016-01-01

    Sulfur chemistry is of great interest to the atmospheric chemistry of several planets. In the presence of water, oxidized sulfur can lead to new particle formation, influencing climate in significant ways. Observations of sulfur compounds in planetary atmospheres when compared with model results suggest that there are missing chemical mechanisms. Here we propose a novel mechanism for the formation of sulfurous acid, which may act as a seed for new particle formation. In this proposed mechanism, the lowest triplet state of SO2 ((3)B1), which may be accessed by near-UV solar excitation of SO2 to its excited (1)B1 state followed by rapid intersystem crossing, reacts directly with water to form H2SO3 in the gas phase. For ground state SO2, this reaction is endothermic and has a very high activation barrier; our quantum chemical calculations point to a facile reaction being possible in the triplet state of SO2. This hygroscopic H2SO3 molecule may act as a condensation nucleus for water, giving rise to facile new particle formation (NPF). PMID:27417675

  12. Hydration energies of sodiated amino acids from gas-phase equilibria determinations.

    PubMed

    Wincel, Henryk

    2007-07-01

    The sequential hydration of a number of sodiated amino acids is investigated using a high-pressure mass spectrometer. Ions produced continuously by electrospray are injected into the reaction chamber in the pulsed mode where the hydration equilibria, AANa+(H2O)n-1+H2O=AANa+(H2O)n (AA=Val, Pro, Met, Phe, and Gln), and the temperature dependence of the equilibrium constants are measured in the gas phase at 10 mbar (N2 bath gas and known pressure of H2O). The thermochemical properties, DeltaH degrees n, DeltaS degrees n, and DeltaG degrees n, for the hydrated systems are determined and discussed in conjunction with the structural forms. The results show that the binding energies of water to the AANa+ complexes decrease with the increasing number of water molecules. The present results from equilibrium measurements are compared to those from earlier studies obtained by other techniques. A correlation between the free energy changes for the addition of the first and second water molecules to AANa+, and the corresponding sodium ion affinities, is observed. Generally, the hydration free energy becomes weaker as the AA-Na+ bond strength increases. PMID:17559201

  13. Evaluation of the potentials of humic acid removal in water by gas phase surface discharge plasma.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Yan, Qiuhe; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-02-01

    Degradation of humic acid (HA), a predominant type of natural organic matter in ground water and surface waters, was conducted using a gas phase surface discharge plasma system. HA standard and two surface waters (Wetland, and Weihe River) were selected as the targets. The experimental results showed that about 90.9% of standard HA was smoothly removed within 40 min's discharge plasma treatment at discharge voltage 23.0 kV, and the removal process fitted the first-order kinetic model. Roles of some active species in HA removal were studied by evaluating the effects of solution pH and OH radical scavenger; and the results presented that O3 and OH radical played significant roles in HA removal. Scanning electron microscope (SEM) and FTIR analysis showed that HA surface topography and molecular structure were changed during discharge plasma process. The mineralization of HA was analyzed by UV-Vis spectrum, dissolved organic carbon (DOC), specific UV absorbance (SUVA), UV absorption ratios, and excitation-emission matrix (EEM) fluorescence. The formation of disinfection by-products during HA sample chlorination was also identified, and CHCl3 was detected as the main disinfection by-product, but discharge plasma treatment could suppress its formation to a certain extent. In addition, approximately 82.3% and 67.9% of UV254 were removed for the Weihe River water and the Wetland water after 40 min of discharge plasma treatment. PMID:26624519

  14. Nuclear dynamics in the metastable phase of the solid acid caesium hydrogen sulfate.

    PubMed

    Krzystyniak, Maciej; Drużbicki, Kacper; Fernandez-Alonso, Felix

    2015-12-14

    High-resolution spectroscopic measurements using thermal and epithermal neutrons and first-principles calculations within the framework of density-functional theory are used to investigate the nuclear dynamics of light and heavy species in the metastable phase of caesium hydrogen sulfate. Within the generalised-gradient approximation, extensive calculations show that both 'standard' and 'hard' formulations of the Perdew-Burke-Ernzerhof functional supplemented by Tkatchenko-Scheffler dispersion corrections provide an excellent description of the known structure, underlying vibrational density of states, and nuclear momentum distributions measured at 10 and 300 K. Encouraged by the agreement between experiment and computational predictions, we provide a quantitative appraisal of the quantum contributions to nuclear motions in this solid acid. From this analysis, we find that only the heavier caesium atoms reach the classical limit at room temperature. Contrary to naïve expectation, sulfur exhibits a more pronounced quantum character relative to classical predictions than the lighter oxygen atom. We interpret this hitherto unexplored nuclear quantum effect as arising from the tighter binding environment of this species in this technologically relevant material. PMID:26549527

  15. Gas-phase hydrolysis of triplet SO2: A possible direct route to atmospheric acid formation

    NASA Astrophysics Data System (ADS)

    Donaldson, D. James; Kroll, Jay A.; Vaida, Veronica

    2016-07-01

    Sulfur chemistry is of great interest to the atmospheric chemistry of several planets. In the presence of water, oxidized sulfur can lead to new particle formation, influencing climate in significant ways. Observations of sulfur compounds in planetary atmospheres when compared with model results suggest that there are missing chemical mechanisms. Here we propose a novel mechanism for the formation of sulfurous acid, which may act as a seed for new particle formation. In this proposed mechanism, the lowest triplet state of SO2 (3B1), which may be accessed by near-UV solar excitation of SO2 to its excited 1B1 state followed by rapid intersystem crossing, reacts directly with water to form H2SO3 in the gas phase. For ground state SO2, this reaction is endothermic and has a very high activation barrier; our quantum chemical calculations point to a facile reaction being possible in the triplet state of SO2. This hygroscopic H2SO3 molecule may act as a condensation nucleus for water, giving rise to facile new particle formation (NPF).

  16. Aqueous phase hydration and hydrate acidity of perfluoroalkyl and n:2 fluorotelomer aldehydes.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2016-01-01

    The SPARC software program and comparative density functional theory (DFT) calculations were used to investigate the aqueous phase hydration equilibrium constants (Khyd) of perfluoroalkyl aldehydes (PFAlds) and n:2 fluorotelomer aldehydes (FTAlds). Both classes are degradation products of known industrial compounds and environmental contaminants such as fluorotelomer alcohols, iodides, acrylates, phosphate esters, and other derivatives, as well as hydrofluorocarbons and hydrochlorofluorocarbons. Prior studies have generally failed to consider the hydration, and subsequent potential hydrate acidity, of these compounds, resulting in incomplete and erroneous predictions as to their environmental behavior. In the current work, DFT calculations suggest that all PFAlds will be dominantly present as the hydrated form in aqueous solution. Both SPARC and DFT calculations suggest that FTAlds will not likely be substantially hydrated in aquatic systems or in vivo. PFAld hydrates are expected to have pKa values in the range of phenols (ca. 9 to 10), whereas n:2 FTAld hydrates are expected to have pKa values ca. 2 to 3 units higher (ca. 12 to 13). In order to avoid spurious modeling predictions and a fundamental misunderstanding of their fate, the molecular and/or dissociated hydrate forms of PFAlds and FTAlds need to be explicitly considered in environmental, toxicological, and waste treatment investigations. The results of the current study will facilitate a more complete examination of the environmental fate of PFAlds and FTAlds. PMID:26980678

  17. Phase I Metabolic Stability and Electrophilic Reactivity of 2-Phenylaminophenylacetic Acid Derived Compounds.

    PubMed

    Pang, Yi Yun; Tan, Yee Min; Chan, Eric Chun Yong; Ho, Han Kiat

    2016-07-18

    Diclofenac and lumiracoxib are two highly analogous 2-phenylaminophenylacetic acid anti-inflammatory drugs exhibiting occasional dose-limiting hepatotoxicities. Prior data indicate that bioactivation and reactive metabolite formation play roles in the observed toxicity, but the exact chemical influence of the substituents remains elusive. In order to elucidate the role of chemical influence on metabolism related toxicity, metabolic stability and electrophilic reactivity were investigated for a series of structurally related analogues and their resulting metabolites. The resulting analogues embody progressive physiochemical changes through varying halogeno- and aliphatic substituents at two positions and were subjected to in vitro human liver microsomal metabolic stability and cell-based GSH depletion assays (to measure electrophilic reactivity). LC-MS/MS analysis of the GSH trapped reactive intermediates derived from the analogues was then used to identify the putative structures of reactive metabolites. We found that chemical modifications of the structural backbone led to noticeable perturbations of metabolic stability, electrophilic reactivity, and structures and composition of reactive metabolites. With the acquired data, the relationships between stability, reactivity, and toxicity were investigated in an attempt to correlate between Phase I metabolism and in vitro toxicity. A positive correlation was identified between reactivity and in vitro toxicity, indicating that electrophilic reactivity can be an indicator for in vitro toxicity. All in all, the effect of substituents on the structures and reactivity of the metabolites, however subtle the changes, should be taken into consideration during future drug design involving similar chemical features. PMID:27245204

  18. Gas-phase hydrolysis of triplet SO2: A possible direct route to atmospheric acid formation

    PubMed Central

    Donaldson, D. James; Kroll, Jay A.; Vaida, Veronica

    2016-01-01

    Sulfur chemistry is of great interest to the atmospheric chemistry of several planets. In the presence of water, oxidized sulfur can lead to new particle formation, influencing climate in significant ways. Observations of sulfur compounds in planetary atmospheres when compared with model results suggest that there are missing chemical mechanisms. Here we propose a novel mechanism for the formation of sulfurous acid, which may act as a seed for new particle formation. In this proposed mechanism, the lowest triplet state of SO2 (3B1), which may be accessed by near-UV solar excitation of SO2 to its excited 1B1 state followed by rapid intersystem crossing, reacts directly with water to form H2SO3 in the gas phase. For ground state SO2, this reaction is endothermic and has a very high activation barrier; our quantum chemical calculations point to a facile reaction being possible in the triplet state of SO2. This hygroscopic H2SO3 molecule may act as a condensation nucleus for water, giving rise to facile new particle formation (NPF). PMID:27417675

  19. Synthesis, structure and phase transition property of acrylic acid grafted paraffin

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaowen; Liu, Pengfei; Ye, Lin

    2014-05-01

    Polar monomer acrylic acid (AA) was used to modify paraffin in order to improve the latent heat of paraffin as phase change materials. The composition and sequence structure of the grafted products were characterized by FTIR, 13C NMR, 1H NMR and GPC analysis, and the thermal properties of paraffin-g-AA were investigated. It was found that AA was confirmed to be grafted onto the molecular chain of paraffin successfully. The mechanism of free radical grafting of AA may be only monomeric grafts. At low grafting ratio, the structure B can be mainly formed as a result of the radical coupling termination; while at the high grafting ratio, structure A was the primary structure as a result of the radical chain growth process. The number-average molecular weight of the grafted samples increased at first but leveled off with increasing grafting ratio, while the weight-average molecular weight increased gradually. The latent heat capacity of the grafted paraffin can be improved obviously at low grafting ratio due to the formation of structure B.

  20. Doxycycline plus tauroursodeoxycholic acid for transthyretin amyloidosis: a phase II study.

    PubMed

    Obici, Laura; Cortese, Andrea; Lozza, Alessandro; Lucchetti, J; Gobbi, Marco; Palladini, Giovanni; Perlini, Stefano; Saraiva, Maria J; Merlini, Giampaolo

    2012-06-01

    We designed a phase II, open-label study to evaluate the efficacy, tolerability, safety, and pharmacokinetics of orally doxycycline (100 mg BID) and tauroursodeoxycholic acid (TUDCA) (250 mg three times/day) administered continuously for 12 months. Primary endpoint is response rate defined as nonprogression of the neuropathy and of the cardiomyopathy. Since July 2010, we enrolled 20 patients. Seventeen patients have hereditary ATTR, two patients have senile systemic amyloidosis, and one is a domino recipient. Seven patients completed 12-month treatment, 10 completed 6-month treatment, two discontinued because of poor tolerability, and one is lost at follow-up. No serious adverse events were registered. No clinical progression of cardiac involvement was observed. The neuropathy (Neuropathy Impairment Score in the Lower Limbs [NIS-LL] and Kumamoto score) remained substantially stable over 1 year. These preliminary data indicate that the combination of Doxy-TUDCA stabilizes the disease for at least 1 year in the majority of patients with an acceptable toxicity profile. PMID:22551192

  1. Health Services Mobility Study. First Progress Report for Phase Four for the Period April 1, 1972 to March 15, 1973.

    ERIC Educational Resources Information Center

    City Univ. of New York, NY.

    This report describes the overall work of the project and the first 10 months of its current demonstration phase, Phase IV. It presents an overview of the project's history and objectives, a description of the methodologies involved, the steps taken in applying the methodologies in task analysis and curriculum design, the approach to…

  2. Acid-Base Electronic Properties in the Gas Phase: Permanent Electric Dipole Moments of a Photoacidic Substrate.

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Morgan, Philip J.; Pratt, David W.

    2009-06-01

    The permanent electric dipole moments of two conformers of 2-naphthol (2HN) in their ground and electronically excited states have been experimentally determined by Stark-effect measurements in a molecular beam. When in solution, 2HN is a weak base in the S{_0} state and a strong acid in the S{_1} state. Using sequential solvation of the cis-2HN photoacid with the base ammonia, we have begun to approach condensed phase acid-base interactions with gas phase rotational resolution. Our study, void of bulk solvent perturbations, is of importance to the larger community currently describing aromatic biomolecule and "super" photoacid behavior via theoretical modeling and condensed phase solvatochromism. [2] A. Weller. Prog. React. Kinet. 5, 273 (1970). [3] D. F. Plusquellic, X. -Q. Tan, and D. W. Pratt. J. Chem. Phys. 96, 8026 (1992).

  3. Chirped-Pulsed Ftmw Spectrum of Valeric Acid and 5-AMINOVALERIC Acid. a Study of Amino Acid Mimics in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Bird, Ryan G.; Vaquero, Vanesa; Pratt, David W.; Neill, Justin L.; Pate, Brooks H.

    2011-06-01

    Microwave studies of the structural and dynamical properties of several organic acids and their water complexes have been described by a number of research groups. Here we continue this theme by the study of valeric acid and 5-aminovaleric acid, using chirped-pulsed Fourier transform microwave spectroscopy (CP-FTMW). The rotational spectrum from 6.5 to 18 GHz was collected using a compilation of 250 MHz chirped pulses and pieced together. Their structures and water complexes were determined and will be compared to other amino acids.

  4. Direct tandem mass spectrometric analysis of amino acids in plasma using fluorous derivatization and monolithic solid-phase purification.

    PubMed

    Tamashima, Erina; Hayama, Tadashi; Yoshida, Hideyuki; Imakyure, Osamu; Yamaguchi, Masatoshi; Nohta, Hitoshi

    2015-11-10

    In this study, we developed a novel direct tandem mass spectrometric method for rapid and accurate analysis of amino acids utilizing a fluorous derivatization and purification technique. Amino acids were perfluoroalkylated with 2H,2H,3H,3H-perfluoroundecan-1-al in the presence of 2-picoline borane via reductive amination. The derivatives were purified by perfluoroalkyl-modified silica-based monolithic solid-phase extraction (monolithic F-SPE), and directly analyzed by tandem mass spectrometry using electrospray ionization without liquid chromatographic separation. The perfluoroalkyl derivatives could be sufficiently distinguished from non-fluorous compounds, i.e. the biological matrix, due to their fluorous interaction. Thus, rapid and accurate determination of amino acids was accomplished. The method was validated with human plasma samples and applied to the analysis of amino acids in the plasma of mice with maple syrup urine disease or phenylketonuria. PMID:26222276

  5. Low-Molecular Weight Carboxylic Acids in Gas Phase in a Developing Megacity

    NASA Astrophysics Data System (ADS)

    Khwaja, H. A.; Saied, S.; Hussain, M. M.; Siddique, A.; Butts, C.; Kamran, S. S.; Khan, M. K.

    2013-12-01

    Carboxylic acids are amongst the plethora of pollutants that are currently ubiquitous in the environment. Molecular distributions of carboxylic acids have been studied in the atmosphere of the developing mega city Karachi, Pakistan. As a region the city is experiencing industrial and population growth at an unparallel rate. Karachi served as a great focal point to observe the effects of industrial development on a growing city and how it contributes to the progression of environmental pollution. Results indicate that acetic and formic acids are important components of the Karachi atmosphere. The most abundant acids, by a substantial margin, were acetic acid and formic acid, with concentrations of 0.70 - 14.2 ppb and 0.82 - 11.0 ppb, respectively. On the average acetic acid levels exceeded those of formic acid. Concentrations of propionic acid, pyruvic acid, and glyoxalic acid ranged 0.03 - 1.41, 0.01 - 0.28, and 0.02 - 0.14 ppb, respectively. The gaseous acids showed diurnal cycles, with higher mixing ratios during nighttime. Compared with other metropolitans in the world, the level of acetic and formic acid concentration of Karachi is much higher. The ratio of formic to acetic acid was used to distinguish primary sources from secondary sources. A mean ratio of 0.85 was found. A positive correlation (r = 0.65 - 0.94) was observed between the acid concentrations suggesting that they have similar sources. Carboxylic acid concentrations appear to arise both from direct emissions and from atmospheric oxidation of hydrocarbons.

  6. Incorporating Novel Mobile Health Technologies Into Management of Knee Osteoarthritis in Patients Treated With Intra-Articular Hyaluronic Acid: Rationale and Protocol of a Randomized Controlled Trial

    PubMed Central

    Skrepnik, Nebojsa; Toselli, Richard M; Leroy, Bruno

    2016-01-01

    Background Osteoarthritis (OA) of the knee is one of the leading causes of disability in the United States. One relatively new strategy that could be helpful in the management of OA is the use of mHealth technologies, as they can be used to increase physical activity and promote exercise, which are key components of knee OA management. Objective Currently, no published data on the use of a mHealth approach to comprehensively monitor physical activity in patients with OA are available, and similarly, no data on whether mHealth technologies can impact outcomes are available. Our objective is to evaluate the effectiveness of mHealth technology as part of a tailored, comprehensive management strategy for patients with knee OA. Methods The study will assess the impact of a smartphone app that integrates data from a wearable activity monitor (thereby both encouraging changes in mobility as well as tracking them) combined with education about the benefits of walking on patient mobility. The results from the intervention group will be compared with data from a control group of individuals who are given the same Arthritis Foundation literature regarding the benefits of walking and wearable activity monitors but who do not have access to the data from those monitors. Activity monitors will capture step count estimates and will compare those with patients’ step goals, calories burned, and distance walked. Patients using the novel smartphone app will be able to enter information on their daily pain, mood, and sleep quality. The relationships among activity and pain, activity and mood, and sleep will be assessed, as will patient satisfaction with and adherence to the mobile app. Results We present information on an upcoming trial that will prospectively assess the ability of a mobile app to improve mobility for knee OA patients who are treated with intra-articular hyaluronic acid. Conclusions We anticipate the results of this study will support the concept that m

  7. Simultaneous determination of B-vitamins and ascorbic acid in multi-vitamin preparations by reversed-phase HPLC.

    PubMed

    Tee, E S; Khor, S

    1996-09-01

    The tedious and time consuming methods employed for the analysis of individual B-vitamins can now be replaced by ion-pair reversed-phase high-performance liquid chromatographic (HPLC) methods. This laboratory has previously reported the simultaneous determination of eight water-soluble vitamin standards that is, B1, B2, B6, B12, C, niacin, niacinamide and folic acid. The proposed isocratic HPLC method, employing 3 channels of detection, adequately separated all eight vitamins in less than 20 minutes. This study reports another phase of the project whereby the method was employed for the analysis of pharmaceutical preparations. Different extraction procedures were first evaluated, namely acid, acid plus enzyme and alkaline hydrolysis methods, using vitamin standards, individual vitamin tablets and multivitamin preparations. The amounts obtained from the analysis were compared with the declared values. Recovery studies were also carried out. The method of acid hydrolysis with 0.1N sulphuric acid was found suitable for use and was thus adopted as the extraction procedure for the analysis of 10 multivitamin preparations obtained from various pharmaceutical outlets. For most of these preparations, the amount obtained were close to the declared values, except for folic acid and cyanocobalamin. Further trials on folic acid showed that the problem could be resolved by omitting the filtration step in the final extract after acid hydrolysis and diluting with 0.01N sodium hydroxide before processing for chromatography. Vitamin B12 was not detectable using the present chromatography system probably because of its low concentration in the samples studied. PMID:22692140

  8. Analysis of a Common Cold Virus and Its Subviral Particles by Gas-Phase Electrophoretic Mobility Molecular Analysis and Native Mass Spectrometry

    PubMed Central

    2015-01-01

    Gas-phase electrophoretic mobility molecular analysis (GEMMA) separates nanometer-sized, single-charged particles according to their electrophoretic mobility (EM) diameter after transition to the gas-phase via a nano electrospray process. Electrospraying as a soft desorption/ionization technique preserves noncovalent biospecific interactions. GEMMA is therefore well suited for the analysis of intact viruses and subviral particles targeting questions related to particle size, bioaffinity, and purity of preparations. By correlating the EM diameter to the molecular mass (Mr) of standards, the Mr of analytes can be determined. Here, we demonstrate (i) the use of GEMMA in purity assessment of a preparation of a common cold virus (human rhinovirus serotype 2, HRV-A2) and (ii) the analysis of subviral HRV-A2 particles derived from such a preparation. (iii) Likewise, native mass spectrometry was employed to obtain spectra of intact HRV-A2 virions and empty viral capsids (B-particles). Charge state resolution for the latter allowed its Mr determination. (iv) Cumulatively, the data measured and published earlier were used to establish a correlation between the Mr and EM diameter for a range of globular proteins and the intact virions. Although a good correlation resulted from this analysis, we noticed a discrepancy especially for the empty and subviral particles. This demonstrates the influence of genome encapsulation (preventing analytes from shrinking upon transition into the gas-phase) on the measured analyte EM diameter. To conclude, GEMMA is useful for the determination of the Mr of intact viruses but needs to be employed with caution when subviral particles or even empty viral capsids are targeted. The latter could be analyzed by native MS. PMID:26221912

  9. The CGC enantiomer separation of 2-arylcarboxylic acid esters by using β-cyclodextrin derivatives as chiral stationary phases.

    PubMed

    Shi, Xueyan; Liu, Feipeng; Mao, Jianyou

    2016-03-17

    Chiral 2-arylcarboxylic acid esters are important intermediates in preparation of enantioenriched 2-arylpropionic acids type Non-steroidal anti-inflammatory drugs (NSAIDs). Enantiomer separation of 2-arylcarboxylic acid esters is crucial for evaluation of the asymmetric synthesis efficiency and the enantiomer excess of chiral 2-arylcarboxylic acid derivatives. The capillary gas chromatography (CGC) enantiomer separation of 17 pairs of 2-arylcarboxylic acid esters enantiomers was conducted by using seven different β-cyclodextrin derivatives (CDs) as chiral stationary phases. It was found that for the 7 pairs of 2-phenylpropionates enantiomers, CDs with both alkyl and acyl substituents especially 2,6-di-O-pentyl-3-O-butyryl-β-cyclodextrin exhibited better enantiomer separation abilities than the other CDs examined. For the 7 pairs of 2-(4-substituted phenyl)propionates enantiomers, 2,3,6-tri-O-methyl-β-cyclodextrin possessed better enantiomer separation abilities than the other CDs. Among the 3 pairs of 2-phenylbutyrates enantiomers examined, only methyl 2-phenylbutyrate enantiomers could be separated by three CDs among the 7 CDs tested, while enantiomers of ethyl 2-phenylbutyrate and isopropyl 2-phenylbutyrate couldn't be separated by any of the 7 CDs tested. Besides the structures of CDs, the structures of 2-arylcarboxylic acid esters including different ester moieties, substituents of phenyl, and different carboxylic acids moieties in 2-arylcarboxylic acid esters also affected the enantiomer separation results greatly. The CGC enantiomer separation results of 2-arylcarboxylic acid esters on different CDs are useful for solving the enantiomer separation problem of 2-arylcarboxylic acid esters. PMID:26920785

  10. Investigations of acidity and nucleophilicity of diphenyldithiophosphinate ligands using theory and gas-phase dissociation reactions

    SciTech Connect

    Christopher M. Leavitt; Garold L. Gresham; Michael T. Benson; Jean-Jaques Gaumet; Dean Peterman; John Klaehn; Megan Moser; Frederic Aubriet; Michael J. Van Stipdonk; Gary S. Groenewold

    2008-04-01

    Diphenyldithiophosphinate (DTP) ligands modified with electron-withdrawing trifluoromethyl (TFM) substitutents are of high interest because they have demonstrated potential for exceptional separation of Am3+ from lanthanide3+ cations. Specifically, the bis(ortho-TFM) (L1-) and (ortho-TFM)(meta-TFM) (L2-) derivatives have shown excellent separation selectivity, while the bis(meta-TFM) (L3)- and unmodified DTP (Lu-) did not. Factors responsible for selective coordination have been investigated using density functional theory (DFT) calculations in concert with competitive dissociation reactions in the gas phase. To evaluate the role of (DTP+H) acidity, density functional calculations were used to predict pKa values, which followed the trend of L3 < L2 < L1 < Lu. The order of the TFM-modified (DTP+H) acids was opposite of what would be expected based on the e--withdrawing effects of the TFM group, suggesting that secondary factors are influencing the pKa and nucleophilicity. The relative nucleophilicities of the DTP anions were evaluated by forming metal-mixed ligand complexes in a trapped ion mass spectrometer, and then fragmenting them using competitive collision induced dissociation. Relative to Na+, the unmodified Lu- anion was the strongest nucleophile. Comparing the TFM derivatives, the bis(ortho-TFM) derivative L1- was found to be the strongest nucleophile, while the bis(meta-TFM) L3- was the weakest, a trend consistent with the pKa calculations. DFT modeling of the Na+ complexes suggested that the elevated cation affinity of the L1- and L2- anions was due to donation of electron density from fluorine atoms to the metal center, which was occurring in rotational conformers where the TFM moiety was proximate to the Na+-dithiophosphinate group. Competitive dissociation experiments were performed with the dithiophosphinate anions complexed with europium nitrate species; ionic dissociation of these complexes always produced the TFM-modified dithiophosphinate anions

  11. Gas chromatographic separation of stereoisomers of non-protein amino acids on modified γ-cyclodextrin stationary phase.

    PubMed

    Fox, Stefan; Strasdeit, Henry; Haasmann, Stephan; Brückner, Hans

    2015-09-11

    Stereoisomers (enantiomers and diastereoisomers) of synthetic, non-protein amino acids comprising α-, β-, and γ-amino acids, including α,α-dialkyl amino acids, were converted into the respective N-trifluoroacetyl-O-methyl esters and analyzed and resolved by gas chromatography (GC) on a commercial fused silica capillary column coated with the chiral stationary phase octakis(3-O-butyryl-2,6-di-O-pentyl)-γ-cyclodextrin. This column is marketed under the trade name Lipodex(®) E. Chromatograms, retention times, and a chart displaying the retention times of approximately 40 stereoisomers of amino acids are presented. With few exceptions, baseline or almost baseline resolution was achieved for enantiomers and diastereoisomers. The chromatographic method presented is considered to be highly suitable for the elucidation of the stereochemistry of non-protein amino acids, for example in natural products, and for evaluating the enantiopurity of genetically non-coded amino acids used for the synthesis and design of conformationally tailored peptides. The method is applicable to extraterrestrial materials or can be used in experimental work related to abiotic syntheses or enantioselective destruction and amplification of amino acids. PMID:26278360

  12. Simultaneous determination of sorbic and benzoic acids in food dressing by headspace solid-phase microextraction and gas chromatography.

    PubMed

    Dong, Chunzhou; Mei, Yong; Chen, Lin

    2006-06-01

    A facile headspace solid-phase microextraction (HS-SPME) procedure using 85 microm polyacrylate (PA) fiber is presented for the simultaneous determination of preservatives (sorbic and benzoic acids) in food dressing, including Thousand Island Dressing, HellMANN'S Salad Dressing and Tomato Ketchup, by gas chromatography (GC) with flame ionization detector (FID). The method presented preserves the advantages typical of HS-SPME such as simplicity, low intensity of labor, low cost and solvent free. The main factors affecting the HS-SPME process, such as extraction temperature and time, desorption temperature and time, the acidity and salt concentration of the solution, were optimized. Limits of detection (LODs) of the method were 2.00 microg/L for sorbic acid and 1.22 microg/L for benzoic acid. Relative standard deviations (RSDs) for quintuplicate analyses at three concentration levels of 0.10, 2.0 and 20 mg/L ranged between 3.86 and 14.8%. The method also showed good linearity n a range from 0.02 to 40 mg/L with correlation coefficients (R2) of 0.9986 for sorbic acid and 0.9994 for benzoic acid. Recoveries for the two analytes in all the samples tested ranged from 83.44 to 113.2%. Practical applicability was demonstrated through the simultaneous determination of sorbic and benzoic acids in the three complex samples. PMID:16650850

  13. Equilibrium phase diagrams of aqueous mixtures of malonic acid and sulfate/ammonium salts.

    PubMed

    Salcedo, Dara

    2006-11-01

    Tropospheric aerosols are usually complex mixtures of inorganic and organic components. Although the thermodynamic properties of inorganic aerosols have been widely studied, the effect of organics on such properties is still under discussion. In this study, solubility in water, water activity (a(w)) of aqueous solutions, deliquescence relative humidity (DRH), eutonic composition, and eutonic DRH were determined for bulk mixtures of malonic acid (MA) with ammonium sulfate (AS) and ammonium bisulfate (ABS) at 25 degrees C over the full range of composition (from 0 wt % to the solubility limit of the mixture components). The data were used to construct equilibrium phase diagrams, which show the phase of the mixtures as a function of total composition, dry mixture composition, water content, and ambient relative humidity (RH). This work complements previous reports on the thermodynamic properties of AS/MA mixtures because the range of concentrations investigated is larger than in any other published single study. On the other hand, this is the first report on the a(w), deliquescence, and water absorption of ABS/MA mixtures. The eutonic composition for AS/MA mixtures was found to be 66.8 MA dry wt % (MA dry wt % = MA mass x 100/(AS mass + MA mass) with a DRH of 0.437. The eutonic composition for the ABS/MA mixtures was lower than for the AS/MA mixtures: 20.9 MA dry wt % with a DRH of 0.327. Measured a(w) of liquid AS/MA and ABS/MA solutions is compared with an extended Zdanovskii-Stokes-Robinson expression, obtaining a good agreement (error < 5-6%). The expression was used to predict water uptake of mixtures and might be useful to interpret particle hygroscopic growth experiments. Comparison of the AS/MA and ABS/MA systems indicates that ABS reduces the DRH and enhances water uptake, relative to mixtures with AS. The results confirm that ambient particles containing sulfate and water-soluble organic compounds can remain liquid or partially liquid at very low ambient RH

  14. Thermal phase diagram of acetamide-benzoic acid and benzoic acid-phthalimide binary systems for solar thermal applications

    NASA Astrophysics Data System (ADS)

    Kumar, Rohitash; Kumar, Ravindra; Dixit, Ambesh

    2016-05-01

    Thermal properties of Acetamide (AM) - Benzoic acid (BA) and Benzoic acid (BA) - Phthalimide (PM) binary eutectic systems are theoretically calculated using thermodynamic principles. We found that the binary systems of AM-BA at 67.6 : 32.4 molar ratio, BA-PM at 89.7 : 10.3 molar ratio form eutectic mixtures with melting temperatures ~ 54.5 °C and 114.3 °C respectively. Calculated latent heat of fusion for these eutectic mixtures are 191 kJ/kg and 146.5 kJ/kg respectively. These melting temperatures and heat of fusions of these eutectic mixtures make them suitable for thermal energy storage applications in solar water heating and solar cooking systems.

  15. Advances in the application of food emulsifier α-gel phases: Saturated monoglycerides, polyglycerol fatty acid esters, and their derivatives.

    PubMed

    Wang, Fan C; Marangoni, Alejandro G

    2016-12-01

    Emulsifiers form complex structures in colloidal systems. One of these structures, the α-gel phase, has drawn much research interest. α-gel phases are formed by emulsifiers that are stable in the α-crystalline structure in the presence of water. The α-gel phase has shown superior functionality in a variety of applications because it has a water-rich lamellar structure. Even though studies on emulsifier α-gel phases emerged over half a century ago, there is still a knowledge gap on fundamental properties of α-gel phases formed by a variety of emulsifiers. This article summarizes recent studies on the physical and chemical properties of α-gel phases formed by several food emulsifiers, specifically saturated monoglycerides, polyglycerol monoester and diesters of fatty acid, and sodium stearoyl lactylate. Recent research has advanced the understanding of factors affecting the stability and foamability of the α-gel phases. Current and potential applications of α-gel phases in baked food products and in personal care products are also reviewed here. PMID:27554171

  16. Analysis of acidic endogenous phytohormones in grapes by using online solid-phase extraction coupled with LC-MS/MS.

    PubMed

    Yu, Jian-Na; Meng, Qing-Yan; Liu, Wen-Jie; Lu, Ya-Ling; Ren, Xiao-Lin

    2014-10-01

    Phytohormones play important roles in regulating numerous plant physiological and developmental processes, even during the postharvest storage period. In order to determine the functions and changes of gibberellins acid (GA3), indoleacetic acid (IAA), abscisic acid (ABA), indolebutyric acid (IBA) and jasmonic acid (JA) in grape berries during storage, an ultrasensitive method based on direct injection online solid-phase extraction coupled with high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed. Grape berries were extracted with cold methanol. After centrifugation, the supernatants were concentrated with a vacuum centrifugal concentrator and injected into an online solid-phase extraction column. After the cleanup procedure, the analytes were determined by LC-MS/MS. The results showed that the linearity of the proposed method was 10-210 µg kg(-1) for ABA, 20-200 µg kg(-1) for IBA, 15-320 µg kg(-1) for IAA, 20-320 µg kg(-1) for GA3 and 3.0-90.0 µg kg(-1) for JA. The limits of detection of the method were 0.71, 2.79, 0.94, 0.39 and 0.57 µg kg(-1), respectively. The proposed method was successfully applied to the analysis of endogenous phytohormones in grape berries during the postharvest storage period. PMID:24200641

  17. Prostate Hypofractionated Radiation Therapy With Injection of Hyaluronic Acid: Acute Toxicities in a Phase 2 Study

    SciTech Connect

    Chapet, Olivier; Decullier, Evelyne; Bin, Sylvie; Faix, Antoine; Ruffion, Alain; Jalade, Patrice; Fenoglietto, Pascal; Udrescu, Corina; Enachescu, Ciprian; Azria, David

    2015-03-15

    Purpose: Hypofractionated radiation therapy (RT) in prostate cancer can be developed only if the risk of rectal toxicity is controlled. In a multicenter phase 2 trial, hypofractionated irradiation was combined with an injection of hyaluronic acid (HA) to preserve the rectal wall. Tolerance of the injection and acute toxicity rates are reported. Methods and Materials: The study was designed to assess late grade 2 toxicity rates. The results described here correspond to the secondary objectives. Acute toxicity was defined as occurring during RT or within 3 months after RT and graded according to the Common Terminology Criteria for Adverse Events version 4.0. HA tolerance was evaluated with a visual analog scale during the injection and 30 minutes after injection and then by use of the Common Terminology Criteria at each visit. Results: From 2010 to 2012, 36 patients with low-risk to intermediate-risk prostate cancer were included. The HA injection induced a mean pain score of 4.6/10 ± 2.3. Thirty minutes after the injection, 2 patients still reported pain (2/10 and 3/10), which persisted after the intervention. Thirty-three patients experienced at least 1 acute genitourinary toxicity and 20 patients at least 1 acute gastrointestinal toxicity. Grade 2 toxicities were reported for 19 patients with urinary obstruction, frequency, or both and for 1 patient with proctitis. No grade 3 or 4 toxicities were reported. At the 3-month visit, 4 patients described grade 2 obstruction or frequency, and no patients had any grade 2 gastrointestinal toxicities. Conclusions: The injection of HA makes it possible to deliver hypofractionated irradiation over 4 weeks with a dose per fraction of > 3 Gy, with limited acute rectal toxicity.

  18. Evidence for 13-carbon enrichment in oxalic acid via iron catalyzed photolysis in aqueous phase

    NASA Astrophysics Data System (ADS)

    Pavuluri, Chandra Mouli; Kawamura, Kimitaka

    2012-02-01

    To investigate the effect of photochemical aging on the stable carbon isotopic ratio (δ13C) of oxalic acid (OxA), a dominant organic species in atmospheric aerosols, we conducted a laboratory photolysis of OxA under H2O2-Fe3+(Fe2+)-UV system in aqueous phase and measured δ13C of remaining OxA. Our results showed that a significant photolysis of OxA occurred with OH radical but the isotopic fractionation of OxA was insignificant. In contrast, in the presence of Fe3+ (Fe2+), we found a significant enrichment of 13C in remaining OxA. We also found that kinetic isotope effect (KIE) of OxA largely depends on photochemical age (irradiation time) and concentration ratios of OxA to iron; 3.20 ± 0.49‰ (2.18 ± 1.18‰) and 21.62 ± 5.41‰ in 90 min and 180 min irradiation, in which OxA and Fe3+ (Fe2+) ratios were 50:1 and 200:1, respectively. The enrichment of 13C in remaining OxA was more significant during the photolysis catalyzed by Fe3+ (7‰) than by Fe2+ (3‰) in 90 min irradiation when OxA and iron ratios are the same (50:1). This study provides a laboratory evidence for the isotopic enrichment of 13C in OxA with photochemical aging. This approach is useful for better interpretation of atmospheric isotopic measurements in terms of the extent of atmospheric processing of aerosols.

  19. CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions.

    PubMed

    Chung, In; Song, Jung-Hwan; Im, Jino; Androulakis, John; Malliakas, Christos D; Li, Hao; Freeman, Arthur J; Kenney, John T; Kanatzidis, Mercouri G

    2012-05-23

    CsSnI(3) is an unusual perovskite that undergoes complex displacive and reconstructive phase transitions and exhibits near-infrared emission at room temperature. Experimental and theoretical studies of CsSnI(3) have been limited by the lack of detailed crystal structure characterization and chemical instability. Here we describe the synthesis of pure polymorphic crystals, the preparation of large crack-/bubble-free ingots, the refined single-crystal structures, and temperature-dependent charge transport and optical properties of CsSnI(3), coupled with ab initio first-principles density functional theory (DFT) calculations. In situ temperature-dependent single-crystal and synchrotron powder X-ray diffraction studies reveal the origin of polymorphous phase transitions of CsSnI(3). The black orthorhombic form of CsSnI(3) demonstrates one of the largest volumetric thermal expansion coefficients for inorganic solids. Electrical conductivity, Hall effect, and thermopower measurements on it show p-type metallic behavior with low carrier density, despite the optical band gap of 1.3 eV. Hall effect measurements of the black orthorhombic perovskite phase of CsSnI(3) indicate that it is a p-type direct band gap semiconductor with carrier concentration at room temperature of ∼ 10(17) cm(-3) and a hole mobility of ∼585 cm(2) V(-1) s(-1). The hole mobility is one of the highest observed among p-type semiconductors with comparable band gaps. Its powders exhibit a strong room-temperature near-IR emission spectrum at 950 nm. Remarkably, the values of the electrical conductivity and photoluminescence intensity increase with heat treatment. The DFT calculations show that the screened-exchange local density approximation-derived band gap agrees well with the experimentally measured band gap. Calculations of the formation energy of defects strongly suggest that the electrical and light emission properties possibly result from Sn defects in the crystal structure, which arise

  20. p-Nitromandelic acid as a highly acid-stable safety-catch linker for solid-phase synthesis of peptide and depsipeptide acids.

    PubMed

    Isidro-Llobet, Albert; Alvarez, Mercedes; Burger, Klaus; Spengler, Jan; Albericio, Fernando

    2007-04-12

    [reaction: see text] p-Nitromandelic acid as a safety-catch linker for Boc/Bzl-SPPS of base-labile compounds like peptides and depsipeptides is described. This linker permits acidic removal of side-chain protection groups from the resin. For cleavage from the solid support, the p-nitro group was reduced with tin(II) chloride. After washing off the reducing agents, the (depsi)peptide acids with or without the side-chain protection schemes were obtained by microwave irradiation at 50 degrees C with 5% TFA in dioxane. PMID:17367151

  1. Equilibrium aluminium hydroxo-oxalate phases during initial clay formation; H +-Al 3+-oxalic acid-Na + system

    NASA Astrophysics Data System (ADS)

    Bilinski, Halka; Horvath, Laszlo; Ingri, Nils; Sjöberg, Staffan

    1986-09-01

    The conditions necessary for initial clay formation have been studied in different model systems comprising different organic acids besides Si and Al. In the present paper the solid phases and the precipitation boundary characterizing the subsystem H +-Al 3+-oxalic acid (H 2L) are discussed. pH and tyndallometric measurements were performed in an ionic medium of 0.6 M Na(Cl) at 25 °C. The two phases Al 3(OH) 7(C 2O 4) · 3H 2O (phase I) and NaAl(OH) 2(C 2O 4) · 3H 2O (phase II) determine the precipitation boundary. The following formation constants for the two phases were deduced: lgβ1 = lg([ Al3+] -3[ H2C2O4] -1[ H+] 9 = -21.87 ± 0.08 and lgβ11 = lg([ Al3+] -1[ H2C2O4] -1[ H+] 4 = -5.61 ± 0.06. Phase I exists in the range [ Al] tot≥ 10 -4.4moldm-3,[ H2C2O4] tot ≥ 10 -4.9moldm-3 and at pH < 6.8, thus being a possible precipitate in oxalic-rich natural waters. The more soluble sodium phase is unlikely to exist in natural waters. The two phases are metastable relative to crystalline gibbsite and may be considered as the first precipitation step in the transition from aqueous Al oxalates down to stable Al hydroxide. Model calculations illustrating these competing hydrolysis-complexation reactions are discussed in terms of predominance and speciation diagrams. The solid phases have been characterized by X-ray analysis of powders, TGA and IR spectra, and tentative structures are proposed. Phase I seems to be an octahedral layer structure, in which 3/5 of the octahedral sites between two close packed oxygen sheets are occupied by Al 3+ and the oxalate ion acts as a bridge ligand between two aluminium atoms. Phase II forms a more open sheet structure and has ion exchange properties. Powder data for a phase crystallized from the studied solution after a year are also presented. This phase, Na 4Al 2(OH) 2(C 2O 4) 4 · 10H 2O, supports the results from the equilibrium analysis of recent solution data by SJöBERG and ÖHMAN (1985), who have found the dinuclear

  2. Analysis of testosterone in human urine using molecularly imprinted solid-phase extraction and corona discharge ion mobility spectrometry.

    PubMed

    Mirmahdieh, Shiva; Mardihallaj, Azam; Hashemian, Zahra; Razavizadeh, Jalal; Ghaziaskar, Hassan; Khayamian, Taghi

    2011-01-01

    Analysis of testosterone was accomplished using corona discharge ion mobility spectrometry. Molecular imprinted polymer was used for the extraction and pre-concentration of testosterone. Analytical parameters including precision, dynamic range and detection limit were obtained. The linear dynamic range was from 10 to 250 ng/mL and the limit of detection was 0.9 ng/mL. The proposed method was used for analysis of testosterone in urine samples. A urine sample from a 3-year-old girl was used as the blank. The RSD was below 10%. The obtained results from the method were also compared with the standard method for analysis of testosterone using SPE-HPLC analysis. The results demonstrate the accuracy of the method. PMID:21171183

  3. On the reactions of perfluoroisobutene with some anions in the gas phase: studies in an ion mobility spectrometer

    NASA Astrophysics Data System (ADS)

    Bell, A. J.; Hayhurst, C. J.; Mayhew, C. A.; Watts, P.

    1994-12-01

    An ion mobility spectrometer (IMS), operating in air in the negative ion mode, has been shown to have potential for detecting and monitoring perfluoroisobutene (PFIB), a toxic perfluorocarbon and potential industrial hazard. Complex spectra with a variety of product ions are observed. Most of these ions result from reactions of PFIB with the negative reactant ions although some important product ions (particularly at high PFIB concentrations) are attributed to reactions with reactive transient species (including electrons) in the ionization region of the IMS system. The ions have been identified using mass spectrometry and a wide variety of isotopic tracers. The results of our parallel studies using a selected ion flow tube have been included where appropriate.

  4. Acid-base chemistry in the formation of Mackay-type icosahedral clusters: μ3-acidity analysis of Sc-rich phases of the Sc-Ir system.

    PubMed

    Guo, Yiming; Stacey, Timothy E; Fredrickson, Daniel C

    2014-05-19

    The crystal structures of intermetallic phases offer a wealth of geometrical features (helices, multishelled clusters, and host-guest motifs) whose formation has yet to be explained or predicted by chemical theory. A recently developed extension of the acid-base concept to metallic systems, the μ3-acidity model, provides an avenue for developing this understanding for intermetallics formed from transition metals. In this Article, we illustrate how this approach can be used to understand one of the most striking geometrical entities to emerge in intermetallic chemistry, the Mackay cluster of icosahedral quasicrystals. We present μ3-acidity analyses, based on DFT-calibrated Hückel calculations, for a series of Sc-Ir intermetallics: ScIr (CsCl-type), Sc2Ir (Ti2Ni-type), Sc11Ir4, and the Mackay cluster containing phases Sc57Ir13 and Sc44Ir7. We begin by illustrating that a μ3-acidity model correctly predicts that each of these phases is stable relative to disproportionation into their neighboring compounds when a common set of Hückel parameters and d-orbital occupancies is used. Next, we explain these results by developing a relationship between the distance distribution of homoatomic contacts within an atom's coordination sphere and the μ3-neutralization it experiences. For a given average homoatomic distance, the role of heteroatomic contacts is higher when the distribution of homoatomic contacts is narrower. This effect is key to the strength of the acid-base neutralization of the Sc-rich phases, where the Sc atoms find a scarcity of Ir atoms from which to obtain neutralization. Under these circumstances, Sc-Ir contacts should be maximized, whereas the number and distance variations of the Sc-Sc contacts should be minimized. These expectations are borne out by the observed crystal structures. In particular, the Mackay clusters of Sc57Ir13 and Sc44Ir7, in which a central Ir atom is icosahedrally coordinated by a pentagonal dodecahedral array of face-sharing Sc

  5. Phase impact factor: a novel parameter for determining optimal CT phase in 4D radiation therapy treatment planning for mobile lung cancer

    NASA Astrophysics Data System (ADS)

    Song, Yulin; Huang, Xiaolei; Mueller, Boris; Mychalczak, Borys

    2008-03-01

    Due to respiratory motion, lung tumor can move up to several centimeters. If respiratory motion is not carefully considered during the radiation treatment planning, the highly conformal dose distribution with steep gradients could miss the target. To address this issue, the common strategy is to add a population-derived safety margin to the gross tumor volume (GTV). However, during a free breathing CT simulation, the images could be acquired at any phase of a breathing cycle. With such a generalized uniform margin, the planning target volume (PTV) may either include more normal lung tissue than required or miss the GTV at certain phases of a breathing cycle. Recently, respiration correlated CT (4DCT) has been developed and implemented. With 4DCT, it is now possible to trace the tumor 3D trajectories during a breathing cycle and to define the tumor volume as the union of these 3D trajectories. The tumor volume defined in this way is called the internal target volume (ITV). In this study, we introduced a novel parameter, the phase impact factor (PIF), to determine the optimal CT phase for intensity modulated radiation therapy (IMRT) treatment planning for lung cancer. A minimum PIF yields a minimum probability for the GTV to move out of the ITV during the course of an IMRT treatment, providing a minimum probability of a geometric miss. Once the CT images with the optimal phase were determined, an IMRT plan with three to five co-planner beams was computed and optimized using the inverse treatment planning technique.

  6. Energetics and structural characterization of isomers using ion mobility and gas-phase H/D exchange: Learning from lasso peptides.

    PubMed

    Hanozin, Emeline; Morsa, Denis; De Pauw, Edwin

    2015-08-01

    State-of-the-art characterization of proteins using MS namely relies on fragmentation methods that allow exploring featured dissociative reaction pathways. These pathways are often initiated by a series of potentially informative mass-constant conformational changes that are nonetheless frequently overlooked by lack of