Science.gov

Sample records for acid model system

  1. Kinetics of color development of melanoidins formed from fructose/amino acid model systems.

    PubMed

    Echavarría, A P; Pagán, J; Ibarz, A

    2014-03-01

    The formation of soluble melanoidins from a single combination of sugar (fructose) and amino acid model systems were evaluated kinetically. The selected amino acids, commonly found in apple juice and highly reactive in the Maillard reaction, were asparagine, aspartic acid, and glutamic acid. The effect of these reagents and the treatment at different temperatures (50 , 85 , and 100 ) during 96 h on the color intensity of the melanoidin formed was measured by absorbance at different wavelengths (280, 325, 405, and 420 nm). The absorbance of the melanoidin formed from all model systems was located on the wavelength of 405 nm, that is, the area of the visible spectrum close to the UV region. The color of the melanoidins was directly measured using the CIELAB color space system. A first-order kinetic model was applied to the evolution of the ΔE * (color difference) and L * (lightness) of the color. The fructose/aspartic acid model system values of a * (redness) and b * (yellowness) were found in the brown-red zone. Therefore, the color development of the melanoidins was influenced by the type of amino acid and temperature. Especially, it is thought that the a * and b * values can be used to explain the differences among the amino acids in the color development of melanoidins.

  2. Kinetics of browning and correlations between browning degree and pyrazine compounds in l-ascorbic acid/acidic amino acid model systems.

    PubMed

    Yu, Ai-Nong; Zhou, Yong-Yan; Yang, Yi-Ni

    2017-04-15

    The kinetics of browning and the correlation between browning products (BPs) and pyrazine compounds were investigated by heating equimolar l-ascorbic acid (ASA)/acidic amino acids under weak alkaline conditions at 120-150°C for 10-120min. The formations of BPs and pyrazine compounds from the reaction were monitored by UV-vis and SPME-GC-FID, respectively. The formation of BPs in both ASA/l-glutamic acid and ASA/l-aspartic acid model reaction systems followed zero order reaction kinetics with activation energies (Ea) of 90.13 and 93.38kJ/mol, respectively. ASA/l-aspartic acid browned at a slightly higher rate than ASA/l-glutamic acid. The total concentration of pyrazine compounds was highly and positively correlated with that of BPs. Based on the observed kinetic data, the formation mechanisms of BPs and pyrazine compounds were proposed.

  3. Incinerator ash dissolution model for the system: Plutonium, nitric acid and hydrofluoric acid

    SciTech Connect

    Brown, E V

    1988-06-01

    This research accomplished two goals. The first was to develop a computer program to simulate a cascade dissolver system. This program would be used to predict the bulk rate of dissolution in incinerator ash. The other goal was to verify the model in a single-stage dissolver system using Dy/sub 2/O/sub 3/. PuO/sub 2/ (and all of the species in the incinerator ash) was assumed to exist as spherical particles. A model was used to calculate the bulk rate of plutonium oxide dissolution using fluoride as a catalyst. Once the bulk rate of PuO/sub 2/ dissolution and the dissolution rate of all soluble species were calculated, mass and energy balances were written. A computer program simulating the cascade dissolver system was then developed. Tests were conducted on a single-stage dissolver. A simulated incinerator ash mixture was made and added to the dissolver. CaF/sub 2/ was added to the mixture as a catalyst. A 9M HNO/sub 3/ solution was pumped into the dissolver system. Samples of the dissolver effluent were analyzed for dissolved and F concentrations. The computer program proved satisfactory in predicting the F concentrations in the dissolver effluent. The experimental sparge air flow rate was predicted to within 5.5%. The experimental percentage of solids dissolved (51.34%) compared favorably to the percentage of incinerator ash dissolved (47%) in previous work. No general conclusions on model verification could be reached. 56 refs., 11 figs., 24 tabs.

  4. Model Systems of Precursor Cellular Membranes: Long-Chain Alcohols Stabilize Spontaneously Formed Oleic Acid Vesicles

    PubMed Central

    Rendón, Adela; Carton, David Gil; Sot, Jesús; García-Pacios, Marcos; Montes, Ruth; Valle, Mikel; Arrondo, José-Luis R.; Goñi, Felix M.; Ruiz-Mirazo, Kepa

    2012-01-01

    Oleic acid vesicles have been used as model systems to study the properties of membranes that could be the evolutionary precursors of more complex, stable, and impermeable phospholipid biomembranes. Pure fatty acid vesicles in general show high sensitivity to ionic strength and pH variation, but there is growing evidence that this lack of stability can be counterbalanced through mixtures with other amphiphilic or surfactant compounds. Here, we present a systematic experimental analysis of the oleic acid system and explore the spontaneous formation of vesicles under different conditions, as well as the effects that alcohols and alkanes may have in the process. Our results support the hypothesis that alcohols (in particular 10- to 14-C-atom alcohols) contribute to the stability of oleic acid vesicles under a wider range of experimental conditions. Moreover, studies of mixed oleic-acid-alkane and oleic-acid-alcohol systems using infrared spectroscopy and Langmuir trough measurements indicate that precisely those alcohols that increased vesicle stability also decreased the mobility of oleic acid polar headgroups, as well as the area/molecule of lipid. PMID:22339864

  5. Phosphoric acid fuel cell power plant system performance model and computer program

    NASA Technical Reports Server (NTRS)

    Alkasab, K. A.; Lu, C. Y.

    1984-01-01

    A FORTRAN computer program was developed for analyzing the performance of phosphoric acid fuel cell power plant systems. Energy mass and electrochemical analysis in the reformer, the shaft converters, the heat exchangers, and the fuel cell stack were combined to develop a mathematical model for the power plant for both atmospheric and pressurized conditions, and for several commercial fuels.

  6. Identification of hydroxycinnamic acid-maillard reaction products in low-moisture baking model systems.

    PubMed

    Jiang, Deshou; Chiaro, Christopher; Maddali, Pranav; Prabhu, K Sandeep; Peterson, Devin G

    2009-11-11

    The chemistry and fate of hydroxycinnamic acids (ferulic, p-coumeric, caffeic, sinapic, and cinnamic acid) in a glucose/glycine simulated baking model (10% moisture at 200 degrees C for 15 min) were investigated. Liquid chromatography-mass spectrometry analysis of glucose/glycine and glucose/glycine/hydroxycinnamic acid model systems confirmed the phenolics reacted with Maillard intermediates; two main reaction product adducts were reported. On the basis of isotopomeric analysis, LC-MS, and NMR spectroscopy, structures of two ferulic acid-Maillard reaction products were identified as 6-(4-hydroxy-3-methoxyphenyl)-5-(hydroxymethyl)-8-oxabicyclo[3.2.1]oct-3-en-2-one (adduct I) and 2-(6-(furan-2-yl)-7-(4-hydroxy-3-methoxyphenyl)-1-methyl-3-oxo-2,5-diazabicyclo[2.2.2]oct-5-en-2-yl)acetic acid (adduct II). In addition, a pyrazinone-type Maillard product, 2-(5-(furan-2-yl)-6-methyl-2-oxopyrazin-1(2H)-yl) acetic acid (IIa), was identified as an intermediate for reaction product adduct II, whereas 3-deoxy-2-hexosulose was identified as an intermediate of adduct I. Both adducts I and II were suggested to be generated by pericyclic reaction mechanisms. Quantitative gas chromatography (GC) analysis and liquid chromatography (LC) also indicated that the addition of ferulic acid to a glucose/glycine model significantly reduced the generation of select Maillard-type aroma compounds, such as furfurals, methylpyrazines, 2-acetylfuran, 2-acetylpyridine, 2-acetylpyrrole, and cyclotene as well as inhibited color development in these Maillard models. In addition, adducts I and II suppressed the bacterial lipopolysaccharide (LPS)-mediated expression of two prototypical pro-inflammatory genes, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, in an in vitro murine macrophage model; ferulic acid reported negligible activity.

  7. A Systems Model for Ursodeoxycholic Acid Metabolism in Healthy and Patients With Primary Biliary Cirrhosis

    PubMed Central

    Dobbins, RL; O'Connor‐Semmes, RL; Young, MA

    2016-01-01

    A systems model was developed to describe the metabolism and disposition of ursodeoxycholic acid (UDCA) and its conjugates in healthy subjects based on pharmacokinetic (PK) data from published studies in order to study the distribution of oral UDCA and potential interactions influencing therapeutic effects upon interruption of its enterohepatic recirculation. The base model was empirically adapted to patients with primary biliary cirrhosis (PBC) based on current understanding of disease pathophysiology and clinical measurements. Simulations were performed for patients with PBC under two competing hypotheses: one for inhibition of ileal absorption of both UDCA and conjugates and the other only of conjugates. The simulations predicted distinctly different bile acid distribution patterns in plasma and bile. The UDCA model adapted to patients with PBC provides a platform to investigate a complex therapeutic drug interaction among UDCA, UDCA conjugates, and inhibition of ileal bile acid transport in this rare disease population. PMID:27537780

  8. Ultraviolet-induced oxidation of ascorbic acid in a model juice system: identification of degradation products.

    PubMed

    Tikekar, Rohan V; Anantheswaran, Ramaswamy C; Elias, Ryan J; LaBorde, Luke F

    2011-08-10

    Degradation products of ultraviolet (UV-C, 254 nm) treated ascorbic acid (AA) are reported. Analysis by high-performance liquid chromatography-mass spectroscopy (HPLC-MS) conducted in a 0.5% malic acid model juice system (pH 3.3) demonstrated increased degradation of AA above untreated controls with concomitant increases in dehydroascorbic acid (DHA) and 2,3-diketogulonic acid (DKGA) levels. Electron spin resonance (ESR) spectroscopy studies, conducted in phosphate buffer (pH 7.0) to increase detection sensitivity, demonstrated that ascorbyl radical (AA•) formation occurs simultaneously with AA degradation. Consistent with a previous study in which UV treatments were shown to accelerate dark storage degradation, AA• radicals continued to form for up to 200 min after an initial UV treatment. Results from this study suggest that the mechanism for UV-induced degradation is the same as the general mechanism for metal-catalyzed oxidation of AA in juice.

  9. Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights.

    PubMed

    Hines, Daniel J; Kaplan, David L

    2013-01-01

    Poly(lactic-co-glycolic acid) (PLGA) has been the most successful polymeric biomaterial used in controlled drug delivery systems. There are several different chemical and physical properties of PLGA that impact the release behavior of drugs from PLGA delivery devices. These properties must be considered and optimized in the formulation of drug release devices. Mathematical modeling is a useful tool for identifying, characterizing, and predicting mechanisms of controlled release. The advantages and limitations of poly(lactic-co-glycolic acid) for controlled release are reviewed, followed by a review of current approaches in controlled-release technology that utilize PLGA. Mathematical modeling applied toward controlled-release rates from PLGA-based devices also will be discussed to provide a complete picture of a state-of-the-art understanding of the control that can be achieved with this polymeric system, as well as the limitations.

  10. Poly (lactic-co-glycolic acid) controlled release systems: experimental and modeling insights

    PubMed Central

    Hines, Daniel J.; Kaplan, David L.

    2013-01-01

    Poly-lactic-co-glycolic acid (PLGA) has been the most successful polymeric biomaterial for use in controlled drug delivery systems. There are several different chemical and physical properties of PLGA that impact the release behavior of drugs from PLGA delivery devices. These properties must be considered and optimized in drug release device formulation. Mathematical modeling is a useful tool for identifying, characterizing, and predicting the mechanisms of controlled release. The advantages and limitations of poly (lactic-co-glycolic acid) for controlled release are reviewed, followed by a review of current approaches in controlled release technology that utilize PLGA. Mathematical modeling applied towards controlled release rates from PLGA-based devices will also be discussed to provide a complete picture of state of the art understanding of the control achievable with this polymeric system, as well as the limitations. PMID:23614648

  11. Design of an experimental viscoelastic food model system for studying Zygosaccharomyces bailii spoilage in acidic sauces.

    PubMed

    Mertens, L; Geeraerd, A H; Dang, T D T; Vermeulen, A; Serneels, K; Van Derlinden, E; Cappuyns, A M; Moldenaers, P; Debevere, J; Devlieghere, F; Van Impe, J F

    2009-11-01

    Within the field of predictive microbiology, the number of studies that quantify the effect of food structure on microbial behavior is very limited. This is mainly due to impracticalities related to the use of a nonliquid growth medium. In this study, an experimental food model system for studying yeast spoilage in acid sauces was developed by selecting a suitable thickening/gelling agent. In a first step, a variety of thickening/gelling agents was screened, with respect to the main physicochemical (pH, water activity, and acetic acid and sugar concentrations) and rheological (weak gel viscoelastic behavior and presence of a yield stress) characteristics of acid sauces. Second, the rheological behavior of the selected thickening/gelling agent, Carbopol 980, was extensively studied within the following range of conditions: pH 4.0 to 5.0, acetic acid concentration of 0 to 1.0% (vol/vol), glycerol concentration of 0 to 15% (wt/vol), and Carbopol concentration of 1.0 to 1.5% (wt/vol). Finally, the applicability of the model system was illustrated by performing growth experiments in microtiter plates for Zygosaccharomyces bailii at 0, 0.5, 1.0, and 1.5% (wt/vol) Carbopol, 5% (wt/vol) glycerol, 0% (vol/vol) acetic acid, and pH 5.0. A shift from planktonic growth to growth in colonies was observed when the Carbopol concentration increased from 0.5 to 1.0%. The applicability of the model system was illustrated by estimating mu(max) at 0.5% Carbopol from absorbance detection times.

  12. Design of an Experimental Viscoelastic Food Model System for Studying Zygosaccharomyces bailii Spoilage in Acidic Sauces▿

    PubMed Central

    Mertens, L.; Geeraerd, A. H.; Dang, T. D. T.; Vermeulen, A.; Serneels, K.; Van Derlinden, E.; Cappuyns, A. M.; Moldenaers, P.; Debevere, J.; Devlieghere, F.; Van Impe, J. F.

    2009-01-01

    Within the field of predictive microbiology, the number of studies that quantify the effect of food structure on microbial behavior is very limited. This is mainly due to impracticalities related to the use of a nonliquid growth medium. In this study, an experimental food model system for studying yeast spoilage in acid sauces was developed by selecting a suitable thickening/gelling agent. In a first step, a variety of thickening/gelling agents was screened, with respect to the main physicochemical (pH, water activity, and acetic acid and sugar concentrations) and rheological (weak gel viscoelastic behavior and presence of a yield stress) characteristics of acid sauces. Second, the rheological behavior of the selected thickening/gelling agent, Carbopol 980, was extensively studied within the following range of conditions: pH 4.0 to 5.0, acetic acid concentration of 0 to 1.0% (vol/vol), glycerol concentration of 0 to 15% (wt/vol), and Carbopol concentration of 1.0 to 1.5% (wt/vol). Finally, the applicability of the model system was illustrated by performing growth experiments in microtiter plates for Zygosaccharomyces bailii at 0, 0.5, 1.0, and 1.5% (wt/vol) Carbopol, 5% (wt/vol) glycerol, 0% (vol/vol) acetic acid, and pH 5.0. A shift from planktonic growth to growth in colonies was observed when the Carbopol concentration increased from 0.5 to 1.0%. The applicability of the model system was illustrated by estimating μmax at 0.5% Carbopol from absorbance detection times. PMID:19783742

  13. Optimal growth of Lactobacillus casei in a Cheddar cheese ripening model system requires exogenous fatty acids.

    PubMed

    Tan, W S; Budinich, M F; Ward, R; Broadbent, J R; Steele, J L

    2012-04-01

    Flavor development in ripening Cheddar cheese depends on complex microbial and biochemical processes that are difficult to study in natural cheese. Thus, our group has developed Cheddar cheese extract (CCE) as a model system to study these processes. In previous work, we found that CCE supported growth of Lactobacillus casei, one of the most prominent nonstarter lactic acid bacteria (NSLAB) species found in ripening Cheddar cheese, to a final cell density of 10(8) cfu/mL at 37°C. However, when similar growth experiments were performed at 8°C in CCE derived from 4-mo-old cheese (4mCCE), the final cell densities obtained were only about 10(6) cfu/mL, which is at the lower end of the range of the NSLAB population expected in ripening Cheddar cheese. Here, we report that addition of Tween 80 to CCE resulted in a significant increase in the final cell density of L. casei during growth at 8°C and produced concomitant changes in cytoplasmic membrane fatty acid (CMFA) composition. Although the effect was not as dramatic, addition of milk fat or a monoacylglycerol (MAG) mixture based on the MAG profile of milk fat to 4mCCE also led to an increased final cell density of L. casei in CCE at 8°C and changes in CMFA composition. These observations suggest that optimal growth of L. casei in CCE at low temperature requires supplementation with a source of fatty acids (FA). We hypothesize that L. casei incorporates environmental FA into its CMFA, thereby reducing its energy requirement for growth. The exogenous FA may then be modified or supplemented with FA from de novo synthesis to arrive at a CMFA composition that yields the functionality (i.e., viscosity) required for growth in specific conditions. Additional studies utilizing the CCE model to investigate microbial contributions to cheese ripening should be conducted in CCE supplemented with 1% milk fat.

  14. Effects of seasonings on the stability of ascorbic acid in a cooking model system.

    PubMed

    Kishida, Etsu; Maeda, Tomoko; Nishihama, Akiko; Kojo, Shosuke; Masuzawa, Yasuo

    2004-12-01

    The thermolability of ascorbic acid (AA) in aqueous solution at 100 degrees C was assessed in the presence of various seasonings commonly used in Japanese-style cooking. A model system approximated Japanese cooking with regard to the concentrations of AA and seasonings and the heating time. The decrease of AA in the reaction system of this experiment was a first-order reaction with respect to the concentration of AA loss. Although kinetic constants for AA loss decreased with increasing concentrations of AA (25-400 microg/mL), the absolute amounts degraded were almost the same for all AA concentrations, suggesting that dissolved oxygen is one of main factors affecting the stability of AA solutions during heating at 100 degrees C. When each seasoning was added to AA solution, salt stabilized AA and Japanese alcohol-containing admixtures, such as sake and sweet sake (mirin), did not have a significant effect on the stability. Conversely, soy sauce, miso (fermented soybean paste) and broth powder from skipjack accelerated the decrease of AA in a concentration-dependent manner. The kinetic study suggested that oxygen was rapidly consumed and AA loss accelerated by addition of soy sauce or miso to AA solution. Consequently it is likely that a reaction mechanism shifts from aerobic to anaerobic and the forward reactions proceed. Of the constituents of Japanese seasonings, not only iron but also amino acids are involved in the acceleration of AA degradation. The presence of amino acids should be taken into account when considering the levels of AA in soups.

  15. Hydrated arrays of acidic surface groups as model systems for interfacial structure and mechanisms in PEMs.

    PubMed

    Roudgar, A; Narasimachary, S P; Eikerling, M

    2006-10-19

    We utilize ab initio quantum mechanical calculations in order to explore structural conformations and cooperative mechanisms at a minimally hydrated 2D array of flexible acidic surface groups. This system serves as a model for rationalizing interactions and correlations of protons and water with ionized side chains that are affixed to hydrophobic polymer aggregates in polymer electrolyte membranes (PEMs). The model exhibits two basic minimum energy configurations upon varying the separation of surface groups from 5 to 12 A. In the "upright" structure at small separation, surface groups are fully dissociated and oriented perpendicular to the basal plane. Together with hydronium ions (H3O+) they form a highly ordered network with long-range correlations. At larger separations we found the transition to a "tilted" structure with cluster-like conformation of surface groups. This structure retains only short-range correlations. Moreover, we investigated the strength of water binding to the minimally hydrated structures. At small separations between surface groups, an additional water molecule interacts only weakly with the minimally hydrated array (binding energy < 0.1 eV) while the energy needed to remove one water molecule exceeds 1 eV. This shows that the minimally hydrated systems are very stable. Ideally, these studies would expedite the design of cheap, highly performing PEMs for fuel cells, with a major focus on membranes that could operate stably at minimal hydration and elevated temperatures (>120 degrees C).

  16. Growth of Escherichia coli in Model Distribution System Biofilms Exposed to Hypochlorous Acid or Monochloramine

    PubMed Central

    Williams, Margaret M.; Braun-Howland, Ellen B.

    2003-01-01

    Bacteria indigenous to water distribution systems were used to grow multispecies biofilms within continuous-flow slide chambers. Six flow chambers were also inoculated with an Escherichia coli isolate obtained from potable water. The effect of disinfectants on bacterial populations was determined after exposure of established biofilms to 1 ppm of hypochlorous acid (ClOH) for 67 min or 4 ppm of monochloramine (NH2Cl) for 155 min. To test the ability of bacterial populations to initiate biofilm formation in the presence of disinfectants, we assessed the biofilms after 2 weeks of exposure to residual concentrations of 0.2 ppm of ClOH or 4 ppm of NH2Cl. Lastly, to determine the effect of recommended residual concentrations on newly established biofilms, we treated systems with 0.2 ppm of ClOH after 5 days of growth in the absence of disinfectant. Whole-cell in situ hybridizations using fluorescently tagged, 16S rRNA-targeted oligonucleotide probes performed on cryosectioned biofilms permitted the direct observation of metabolically active bacterial populations, including certain phylogenetic groups and species. The results of these studies confirmed the resistance of established bacterial biofilms to treatment with recommended levels of disinfectants. Specifically, Legionella pneumophila, E. coli, and β and δ proteobacteria were identified within biofilms both before and after treatment. Furthermore, although it was undetected using routine monitoring techniques, the observation of rRNA-containing E. coli within biofilms demonstrated not only survival but also metabolic activity of this organism within the model distribution systems. The persistence of diverse bacterial species within disinfectant-treated biofilms suggests that current testing practices underestimate the risk to immunocompromised individuals of contracting waterborne disease. PMID:12957935

  17. Competing mechanisms for perfluoroalkyl acid accumulation in plants revealed using an Arabidopsis model system.

    PubMed

    Müller, Claudia E; LeFevre, Gregory H; Timofte, Anca E; Hussain, Fatima A; Sattely, Elizabeth S; Luthy, Richard G

    2016-05-01

    Perfluoroalkyl acids (PFAAs) bioaccumulate in plants, presenting a human exposure route if present in irrigation water. Curiously, accumulation of PFAAs in plant tissues is greatest for both the short-chain and long-chain PFAAs, generating a U-shaped relationship with chain length. In the present study, the authors decouple competing mechanisms of PFAA accumulation using a hydroponic model plant system (Arabidopsis thaliana) exposed to a suite of 10 PFAAs to determine uptake, depuration, and translocation kinetics. Rapid saturation of root concentrations occurred for all PFAAs except perfluorobutanoate, the least-sorptive (shortest-chain) PFAA. Shoot concentrations increased continuously, indicating that PFAAs are efficiently transported and accumulate in shoots. Tissue concentrations of PFAAs during depuration rapidly declined in roots but remained constant in shoots, demonstrating irreversibility of the translocation process. Root and shoot concentration factors followed the U-shaped trend with perfluoroalkyl chain length; however, when normalized to dead-tissue sorption, this relationship linearized. The authors therefore introduce a novel term, the "sorption normalized concentration factor," to describe PFAA accumulation in plants; because of their hydrophobicity, sorption is the determining factor for long-chain PFAAs, whereas the shortest-chain PFAAs are most effectively transported in the plant. The present study provides a mechanistic explanation for previously unexplained PFAA accumulation trends in plants and suggests that shorter-chained PFAAs may bioaccumulate more readily in edible portions.

  18. Evaluation of the efficacy of four weak acids as antifungal preservatives in low-acid intermediate moisture model food systems.

    PubMed

    Huang, Yang; Wilson, Mark; Chapman, Belinda; Hocking, Ailsa D

    2010-02-01

    The potential efficacy of four weak acids as preservatives in low-acid intermediate moisture foods was assessed using a glycerol based agar medium. The minimum inhibitory concentrations (MIC, % wt./wt.) of each acid was determined at two pH values (pH 5.0, pH 6.0) and two a(w) values (0.85, 0.90) for five food spoilage fungi, Eurotium herbariorum, Eurotium rubrum, Aspergillus niger, Aspergillus flavus and Penicillium roqueforti. Sorbic acid, a preservative commonly used to control fungal growth in low-acid intermediate moisture foods, was included as a reference. The MIC values of the four acids were lower at pH 5.0 than pH 6.0 at equivalent a(w) values, and lower at 0.85 a(w) than 0.90 a(w) at equivalent pH values. By comparison with the MIC values of sorbic acid, those of caprylic acid and dehydroacetic acid were generally lower, whereas those for caproic acid were generally higher. No general observation could be made in the case of capric acid. The antifungal activities of all five weak acids appeared related not only to the undissociated form, but also the dissociated form, of each acid.

  19. Investigation of heat induced reactions between lipid oxidation products and amino acids in lipid rich model systems and hazelnuts.

    PubMed

    Karademir, Yeşim; Göncüoğlu, Neslihan; Gökmen, Vural

    2013-07-01

    This study aimed to investigate the contribution of lipid oxidation to non-enzymatic browning reactions in lipid rich model and actual food systems. Hazelnut oil and model reaction mixtures consisting of different amino acids were heated under certain conditions to determine possible lipid oxidation and non-enzymatic browning reaction products. In model systems, the Schiff base of 2,4-decadienal, its decarboxylated form, and reaction products formed after hydrolytic cleavage of the Schiff base or decarboxylated form were identified by high resolution mass spectrometry. No furosine was detected in hazelnuts after roasting at 160 °C while the concentration of free amino acids significantly decreased. 2,4-Decadienal reacted effectively with all amino acids studied through a Maillard type carbonyl-amine condensation pathway. (2E,4E)-Deca-2,4-dien-1-amine was identified as a typical reaction product in model systems and roasted hazelnuts. In lipid-rich foods like hazelnuts, lipid-derived carbonyls might be responsible for potential modifications of free and protein bound amino acids during heating.

  20. Formation of 4(5)-Methylimidazole in Aqueous d-Glucose-Amino Acids Model System.

    PubMed

    Karim, Faris; Smith, J Scott

    2016-01-01

    The International Agency for Research on Cancer (IRAC) has classified 4(5)-methylimidazole (4-MeI) as a group 2B possible human carcinogen. Thus, how 4-MeI forms in a D-glucose (Glu) amino acids (AA) model system is important, as it is how browning is affected. An aqueous solution of Glu was mixed individually in equimolar amounts at 3 concentrations (0.05, 0.1, and 0.15 M) with aqueous solutions of L-Alanine (Ala), L-Arginine (Arg), Glycine (Gly), L-Lysine (Lys), and L-Serine (Ser). The Glu-AA mixtures were reacted at 60, 120, and 160 °C for 1 h. The 4-MeI levels were measured by gas chromatography-mass spectrometry after derivatization with isobutylchloroformate. No 4-MeI was formed at 60 °C for any treatment combination; however, at 120 °C and 0.05 M, Glu-Arg and Glu-Lys produced 0.13 and 0.14 mg/kg of 4-MeI. At 160 °C and 0.05 M all treatment combinations formed 4-MeI. At 160 °C and 0.15 M, the observed levels of Glu-Ala, Glu-Arg, Glu-Gly, Glu-Lys, and Glu-Ser were 0.21, 1.00, 0.15, 0.22, and 0.16 mg/kg. The AA type, reactant concentrations, and temperature significantly affected (P < 0.001) formation of 4-MeI as well as browning. Glu-Lys treatment in all combinations produced the most browning, but Glu-Arg produced the most 4-MeI. This method showed that foods processed using low temperatures may have reduced levels of 4-MeI.

  1. Emerging model systems for functional genomics analysis of Crassulacean acid metabolism.

    PubMed

    Hartwell, James; Dever, Louisa V; Boxall, Susanna F

    2016-06-01

    Crassulacean acid metabolism (CAM) is one of three main pathways of photosynthetic carbon dioxide fixation found in higher plants. It stands out for its ability to underpin dramatic improvements in plant water use efficiency, which in turn has led to a recent renaissance in CAM research. The current ease with which candidate CAM-associated genes and proteins can be identified through high-throughput sequencing has opened up a new horizon for the development of diverse model CAM species that are amenable to genetic manipulations. The adoption of these model CAM species is underpinning rapid advances in our understanding of the complete gene set for CAM. We highlight recent breakthroughs in the functional characterisation of CAM genes that have been achieved through transgenic approaches.

  2. Modeling and optimizing the design of matrix treatments in carbonate reservoirs with self-diverting acid systems

    NASA Astrophysics Data System (ADS)

    Bulgakova, G. T.; Kharisov, R. Ya; Sharifullin, A. R.; Pestrikov, A. V.

    2015-01-01

    Application of a self-diverting-acid based on viscoelastic surfactant (SDVA) is a promising technology for improving the efficacy of acid treatment in oil and gas-bearing carbonate reservoirs. In this study, we present a mathematical model for assessing SDVA flow and reaction with carbonate rock using the SDVA rheological characteristics. The model calculates the technological parameters for acidizing operations and the prediction of well productivity after acid treatment, in addition to technical and economic optimization of the acidizing process by modeling different acid treatment options with varying volumes, injection rates, process fluids stages and initial economic scenarios.

  3. Evaluation of modeled cloud chemistry mechanism against laboratory irradiation experiments: The HxOy/iron/carboxylic acid chemical system

    NASA Astrophysics Data System (ADS)

    Long, Yoann; Charbouillot, Tiffany; Brigante, Marcello; Mailhot, Gilles; Delort, Anne-Marie; Chaumerliac, Nadine; Deguillaume, Laurent

    2013-10-01

    Currently, cloud chemistry models are including more detailed and explicit multiphase mechanisms based on laboratory experiments that determine such values as kinetic constants, stability constants of complexes and hydration constants. However, these models are still subject to many uncertainties related to the aqueous chemical mechanism they used. Particularly, the role of oxidants such as iron and hydrogen peroxide in the oxidative capacity of the cloud aqueous phase has typically never been validated against laboratory experimental data. To fill this gap, we adapted the M2C2 model (Model of Multiphase Cloud Chemistry) to simulate irradiation experiments on synthetic aqueous solutions under controlled conditions (e.g., pH, temperature, light intensity) and for actual cloud water samples. Various chemical compounds that purportedly contribute to the oxidative budget in cloud water (i.e., iron, oxidants, such as hydrogen peroxide: H2O2) were considered. Organic compounds (oxalic, formic and acetic acids) were taken into account as target species because they have the potential to form iron complexes and are good indicators of the oxidative capacity of the cloud aqueous phase via their oxidation in this medium. The range of concentrations for all of the chemical compounds evaluated was representative of in situ measurements. Numerical outputs were compared with experimental data that consisted of a time evolution of the concentrations of the target species. The chemical mechanism in the model describing the “oxidative engine” of the HxOy/iron (HxOy = H2O2, HO2rad /O2rad - and HOrad ) chemical system was consistent with laboratory measurements. Thus, the degradation of the carboxylic acids evaluated was closely reproduced by the model. However, photolysis of the Fe(C2O4)+ complex needs to be considered in cloud chemistry models for polluted conditions (i.e., acidic pH) to correctly reproduce oxalic acid degradation. We also show that iron and formic acid lead to

  4. Reporter systems for in vivo tracking of lactic acid bacteria in animal model studies

    PubMed Central

    van Zyl, Winschau F; Deane, Shelly M; Dicks, Leon M T

    2015-01-01

    Bioluminescence (BLI) and fluorescence imaging (FI) allow for non-invasive detection of viable microorganisms from within living tissue and are thus ideally suited for in vivo probiotic studies. Highly sensitive optical imaging techniques detect signals from the excitation of fluorescent proteins, or luciferase-catalyzed oxidation reactions. The excellent relation between microbial numbers and photon emission allow for quantification of tagged bacteria in vivo with extreme accuracy. More information is gained over a shorter period compared to traditional pre-clinical animal studies. The review summarizes the latest advances in in vivo bioluminescence and fluorescence imaging and points out the advantages and limitations of different techniques. The practical application of BLI and FI in the tracking of lactic acid bacteria in animal models is addressed. PMID:26516656

  5. Heat-induced formation of mepiquat by decarboxylation of pipecolic acid and its betaine derivative. Part 1: Model system studies.

    PubMed

    Yuan, Yuan; Tarres, Adrienne; Bessaire, Thomas; Stadler, Richard H; Delatour, Thierry

    2017-07-15

    This study describes, for the first time, the role of pipecolic acid betaine and pipecolic acid, naturally present in some foods, in the formation of the plant growth regulator N,N-dimethylpiperidinium (mepiquat) under dry thermal conditions. The formation of mepiquat and intermediate compounds was investigated in model systems using high performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. Mepiquat is released with a yield of up to 0.66mol% after thermal treatment (>150°C) of pipecolic acid betaine. Similar conversion rates are attained with the congener piperidine-2-carboxylic acid (dl-pipecolic acid), albeit in the presence of alkylating agents, such as choline, glycine betaine or trigonelline, that are fairly widespread in food crops. These new pathways to mepiquat indicate that the occurrence of low levels of this thermally induced compound is probably more widespread in processed foods than initially suspected (see Part 2 of this study on the occurrence of mepiquat in selected foodstuffs).

  6. Formation and reduction of 5-hydroxymethylfurfural at frying temperature in model system as a function of amino acid and sugar composition.

    PubMed

    Kavousi, Parviz; Mirhosseini, Hamed; Ghazali, Hasanah; Ariffin, Abdul Azis

    2015-09-01

    5-Hydroxymethylfurfural (HMF) is formed during heat treatment of carbohydrate-containing foods, especially in a deep-fat frying process. This study aimed to investigate the effect of amino acids on the formation and reduction of HMF from glucose, fructose and sucrose at frying temperature in model systems containing binary mixtures of an amino acid and a sugar in equal concentrations (0.3M). The results revealed that the formation of HMF from sugars accelerated in the presence of acidic amino acids (i.e. glutamic and aspartic acids). Conversely, the presence of basic amino acids (i.e. lysine, arginine and histidine) led to reduced concentrations of HMF to non-detectable levels in model systems. The results showed that both pH and heating time significantly affected the formation of HMF from fructose in the presence of glutamic acid. In this regard, a higher amount of HMF was formed at lower pH.

  7. Structure-related aspects on water diffusivity in fatty acid-soap and skin lipid model systems.

    PubMed

    Norlén, L; Engblom, J

    2000-01-03

    Simplified skin barrier models are necessary to get a first hand understanding of the very complex morphology and physical properties of the human skin barrier. In addition, it is of great importance to construct relevant models that will allow for rational testing of barrier perturbing/occlusive effects of a large variety of substances. The primary objective of this work was to study the effect of lipid morphology on water permeation through various lipid mixtures (i.e., partly neutralised free fatty acids, as well as a skin lipid model mixture). In addition, the effects of incorporating Azone((R)) (1-dodecyl-azacycloheptan-2-one) into the skin lipid model mixture was studied. Small- and wide-angle X-ray diffraction was used for structure determinations. It is concluded that: (a) the water flux through a crystalline fatty acid-sodium soap-water mixture (s) is statistically significantly higher than the water flux through the corresponding lamellar (L(alpha)) and reversed hexagonal (H(II)) liquid crystalline phases, which do not differ between themselves; (b) the water flux through mixtures of L(alpha)/s decreases statistically significantly with increasing relative amounts of lamellar (L(alpha)) liquid crystalline phase; (c) the addition of Azone((R)) to a skin lipid model system induces a reduction in water flux. However, further studies are needed to more closely characterise the structural basis for the occlusive effects of Azone((R)) on water flux.

  8. Chlorogenic acid-arabinose hybrid domains in coffee melanoidins: Evidences from a model system.

    PubMed

    Moreira, Ana S P; Coimbra, Manuel A; Nunes, Fernando M; Passos, Cláudia P; Santos, Sónia A O; Silvestre, Armando J D; Silva, André M N; Rangel, Maria; Domingues, M Rosário M

    2015-10-15

    Arabinose from arabinogalactan side chains was hypothesized as a possible binding site for chlorogenic acids in coffee melanoidins. To investigate this hypothesis, a mixture of 5-O-caffeoylquinic acid (5-CQA), the most abundant chlorogenic acid in green coffee beans, and (α1 → 5)-L-arabinotriose, structurally related to arabinogalactan side chains, was submitted to dry thermal treatments. The compounds formed during thermal processing were identified by electrospray ionization mass spectrometry (ESI-MS) and characterized by tandem MS (ESI-MS(n)). Compounds composed by one or two CQAs covalently linked with pentose (Pent) residues (1-12) were identified, along with compounds bearing a sugar moiety but composed exclusively by the quinic or caffeic acid moiety of CQAs. The presence of isomers was demonstrated by liquid chromatography online coupled to ESI-MS and ESI-MS(n). Pent1-2CQA were identified in coffee samples. These results give evidence for a diversity of chlorogenic acid-arabinose hybrids formed during roasting, opening new perspectives for their identification in melanoidin structures.

  9. Comparison of enzymatic and acid hydrolysis of bound flavor compounds in model system and grapes.

    PubMed

    Dziadas, Mariusz; Jeleń, Henryk H

    2016-01-01

    Four synthesized terpenyl-ß-D-glycopyranosides (geranyl, neryl, citronellyl, myrtenyl) were subjected to enzymatic (AR 2000, pH 5.5) and acid (citric buffer, pH 2.5) hydrolysis. Decrease of glycosides was measured by HPLC and the volatiles released--by comprehensive gas chromatography-mass spectrometry (GC × GC-ToF-MS). Enzymatic hydrolysis performed for 21 h yielded 100% degree of hydrolysis for all glycosides but citronellyl (97%). Degree of acid hydrolysis was highly dependent on type of aglycone and the conditions. The highest degree was achieved for geraniol, followed by citronellol and nerol. Myrtenylo-ß-D-glycopyranoside was the most resistant glycoside to hydrolysis. Acid hydrolysis degree was also related to temperature/time combination, the highest being for 100 °C and 2 h. In a result of enzymatic hydrolysis 85-91% of total peak areas was terpene aglycone, whereas for acid hydrolysis the area of released terpene aglycone did not exceed 1.3% of total peak area indicating almost complete decomposition/transformation of terpenyl aglycone.

  10. VALUING ACID MINE DRAINAGE REMEDIATION IN WEST VIRGINIA: A HEDONIC MODELING APPROACH INCORPORATING GEOGRAPHIC INFORMATION SYSTEMS

    EPA Science Inventory

    States with active and abandoned mines face large private and public costs to remediate damage to streams and rivers from acid mine drainage (AMD). Appalachian states have an especially large number of contaminated streams and rivers, and the USGS places AMD as the primary source...

  11. Selective enzymatic hydrolysis of chlorogenic acid lactones in a model system and in a coffee extract. Application to reduction of coffee bitterness.

    PubMed

    Kraehenbuehl, Karin; Page-Zoerkler, Nicole; Mauroux, Olivier; Gartenmann, Karin; Blank, Imre; Bel-Rhlid, Rachid

    2017-03-01

    Chlorogenic acid lactones have been identified as key contributors to coffee bitterness. These compounds are formed during roasting by dehydration and cyclization of their precursors, the chlorogenic acids (CGAs). In the present study, we investigated an approach to decompose these lactones in a selective way without affecting the positive coffee attributes developed during roasting. A model system composed of (3-caffeoylquinic acid lactone (3-CQAL), 4- caffeoyl quinic acid lactone (4-CQAL), and 4-feruloylquinic acid lactone (4-FQAL)) was used for the screening of enzymes before treatment of the coffee extracts. Hog liver esterase (HLE) hydrolyzed chlorogenic acid lactones (CQALs, FQALs) selectively, while chlorogenate esterase hydrolyzed all chlorogenic acids (CQAs, FQAs) and their corresponding lactones (CQALs, FQALs) in a non-selective way. Enzymatically treated coffee samples were evaluated for their bitterness by a trained sensory panel and were found significantly less bitter than the untreated samples.

  12. Mesoscale acid deposition modeling studies

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael L.; Proctor, F. H.; Zack, John W.; Karyampudi, V. Mohan; Price, P. E.; Bousquet, M. D.; Coats, G. D.

    1989-01-01

    The work performed in support of the EPA/DOE MADS (Mesoscale Acid Deposition) Project included the development of meteorological data bases for the initialization of chemistry models, the testing and implementation of new planetary boundary layer parameterization schemes in the MASS model, the simulation of transport and precipitation for MADS case studies employing the MASS model, and the use of the TASS model in the simulation of cloud statistics and the complex transport of conservative tracers within simulated cumuloform clouds. The work performed in support of the NASA/FAA Wind Shear Program included the use of the TASS model in the simulation of the dynamical processes within convective cloud systems, the analyses of the sensitivity of microburst intensity and general characteristics as a function of the atmospheric environment within which they are formed, comparisons of TASS model microburst simulation results to observed data sets, and the generation of simulated wind shear data bases for use by the aviation meteorological community in the evaluation of flight hazards caused by microbursts.

  13. Biomimetic Randall's plaque as an in vitro model system for studying the role of acidic biopolymers in idiopathic stone formation.

    PubMed

    Chidambaram, Archana; Rodriguez, Douglas; Khan, Saeed; Gower, Laurie

    2015-01-01

    Randall's plaque (RP) deposits seem to be consistent among the most common type of kidney stone formers, idiopathic calcium oxalate stone formers. This group forms calcium oxalate renal stones without any systemic symptoms, which contributes to the difficulty of understanding and treating this painful and recurring disease. Thus, the development of an in vitro model system to study idiopathic nephrolithiasis, beginning with RP pathogenesis, can help in identifying how plaques and subsequently stones form. One main theory of RP formation is that calcium phosphate deposits initially form in the basement membrane of the thin loops of Henle, which then fuse and spread into the interstitial tissue, and ultimately make their way across the urothelium, where upon exposure to the urine, the mineralized tissue serves as a nidus for overgrowth with calcium oxalate into a stone. Our group has found that many of the unusual morphologies found in RP and stones, such as concentrically laminated spherulites and mineralized collagenous tissue, can be reproduced in vitro using a polymer-induced liquid precursor (PILP) process, in which acidic polypeptides induce a liquid phase amorphous precursor to the mineral, yielding non-equilibrium crystal morphologies. Given that there are many acidic proteins and polysaccharides present in the renal tissue and urine, we have put forth the hypothesis that the PILP system may be involved in urolithiasis. Therefore, our goal is to develop an in vitro model system of these two stages of composite stone formation to study the role that various acidic macromolecules may play. In our initial experiments presented here, the development of "biomimetic" RP was investigated, which will then serve as a nidus for calcium oxalate overgrowth studies. To mimic the tissue environment, MatriStem(®) (ACell, Inc.), a decellularized porcine urinary bladder matrix was used, because it has both an intact epithelial basement membrane surface and a tunica propria

  14. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation.

    PubMed

    Rocha, Joao; Eduardo-Figueira, Maria; Barateiro, Andreia; Fernandes, Adelaide; Brites, Dora; Bronze, Rosario; Duarte, Catarina M M; Serra, Ana Teresa; Pinto, Rui; Freitas, Marisa; Fernandes, Eduarda; Silva-Lima, Beatriz; Mota-Filipe, Helder; Sepodes, Bruno

    2015-05-01

    Rosmarinic acid is a polyphenolic compound and main constituent of Rosmarinus officinalis and has been shown to possess antioxidant and anti-inflammatory properties. We aimed to evaluate the anti-inflammatory properties of rosmarinic acid and of an extract of R. officinalis in local inflammation (carrageenin-induced paw oedema model in the rat), and further evaluate the protective effect of rosmarinic acid in rat models of systemic inflammation: liver ischaemia-reperfusion (I/R) and thermal injury models. In the local inflammation model, rosmarinic acid was administered at 10, 25 and 50 mg/kg (p.o.), and the extract was administered at 10 and 25 mg/kg (equivalent doses to rosmarinic acid groups) to male Wistar rats. Administration of rosmarinic acid and extract at the dose of 25 mg/kg reduced paw oedema at 6 hr by over 60%, exhibiting a dose-response effect, suggesting that rosmarinic was the main contributor to the anti-inflammatory effect. In the liver I/R model, rosmarinic acid was administered at 25 mg/kg (i.v.) 30 min. prior to the induction of ischaemia and led to the significant reduction in the serum concentration of transaminases (AST and ALT) and LDH. In the thermal injury model, rosmarinic acid was administered at 25 mg/kg (i.v.) 5 min. prior to the induction of injury and significantly reduced multi-organ dysfunction markers (liver, kidney, lung) by modulating NF-κB and metalloproteinase-9. For the first time, the anti-inflammatory potential of rosmarinic acid has been identified, as it causes a substantial reduction in inflammation, and we speculate that it might be useful in the pharmacological modulation of injuries associated to inflammation.

  15. Acid rain: Mesoscale model

    NASA Technical Reports Server (NTRS)

    Hsu, H. M.

    1980-01-01

    A mesoscale numerical model of the Florida peninsula was formulated and applied to a dry, neutral atmosphere. The prospective use of the STAR-100 computer for the submesoscale model is discussed. The numerical model presented is tested under synoptically undisturbed conditions. Two cases, differing only in the direction of the prevailing geostrophic wind, are examined: a prevailing southwest wind and a prevailing southeast wind, both 6 m/sec at all levels initially.

  16. Acid rain: Microphysical model

    NASA Technical Reports Server (NTRS)

    Dingle, A. N.

    1980-01-01

    A microphysical model was used to simulate the case of a ground cloud without dilution by entrainment and without precipitation. The numerical integration techniques of the model are presented. The droplet size spectra versus time and the droplet molalities for each value of time are discussed.

  17. The preservation of ultrastructure in saturated phosphatidyl cholines by tannic acid in model systems and type II pneumocytes

    PubMed Central

    Kalina, M; Pease, DC

    1977-01-01

    The preservation for electron microscopy of saturated phospholipids in general, and phosphatidyl choline (PC)in particular, remains and unsolved problem since OsO(4) and glutaraldehyde are incapable of interacting with PC directly. However, by introducing tannic acid preceding osmication, we were able to demonstrate highly ordered, preserved lamellar structures in model experiments with saturated PC, and in vivo experiments type II pneumocytes of lung tissue. The secretory bodies of the latter are known to contain a high proportion of these saturated phospholipids. In both cases, the repeating periodicity approximated 45 A. It was determined that tannic acid interacts with the choline component of PC to form a "complex," which then could be stabilized by treatment with OsO(4). In the absence of osmication, the PC-tannic acid complex acid did not survive conventional dehydration techniques, but osmication permitted conventional Epon embedment. Sphingomyelin (SPH), which contains choline, behaved similarly in model experiments. But there was no evidence of a comparable reaction with tannic acid using phosphatidyl ethanolamine (PEA), phosphatidyl serine (PS), or phosphstidy inositol (PI). Chemical studies indicted a high pH dependency for the formation of the PC- tannic acid complex. Also, experiments demonstrated its dissociation in various organic solvents. Sharp delineation and great contrast of the polar zones in the ordered lamellar structures was achieved by additional staining with lead citrate thus leading to the conclusion that tannic acid serves as a multivalent agent, capable of simultaneous interaction with saturated PC, OsO(4), and lead citrate stains. PMID:71301

  18. Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway.

    PubMed Central

    Braus, G H

    1991-01-01

    This review focuses on the gene-enzyme relationships and the regulation of different levels of the aromatic amino acid biosynthetic pathway in a simple eukaryotic system, the unicellular yeast Saccharomyces cerevisiae. Most reactions of this branched pathway are common to all organisms which are able to synthesize tryptophan, phenylalanine, and tyrosine. The current knowledge about the two main control mechanisms of the yeast aromatic amino acid biosynthesis is reviewed. (i) At the transcriptional level, most structural genes are regulated by the transcriptional activator GCN4, the regulator of the general amino acid control network, which couples transcriptional derepression to amino acid starvation of numerous structural genes in multiple amino acid biosynthetic pathways. (ii) At the enzyme level, the carbon flow is controlled mainly by modulating the enzyme activities at the first step of the pathway and at the branch points by feedback action of the three aromatic amino acid end products. Implications of these findings for the relationship of S. cerevisiae to prokaryotic as well as to higher eukaryotic organisms and for general regulatory mechanisms occurring in a living cell such as initiation of transcription, enzyme regulation, and the regulation of a metabolic branch point are discussed. PMID:1943992

  19. Effects of Betulinic Acid on the Male Reproductive System of a Streptozotocin-Nicotinamide-Induced Diabetic Mouse Model

    PubMed Central

    Ahangarpour, Akram; Khorsandi, Layasadat; Arzani, Golshan; Afshari, Golshan

    2016-01-01

    Purpose The present study was conducted to evaluate the favorable or harmful effects of betulinic acid (BA) on a diabetic reproductive system. Materials and Methods In this experimental study, 60 male Naval Medical Research Institute mice (20∼25 g) were randomly divided into 6 groups: control, diabetes, diabetes+BA (10, 20, and 40 mg/kg), and diabetes+ metformin (200 mg/kg). A diabetic model was induced by a single dose of streptozotocin (STZ) (65 mg/kg) injection intraperitoneally 15 minutes after an intraperitoneal administration of nicotinamide (NA) (120 mg/kg). BA and metformin were gavaged for 2 weeks after confirmed diabetes induction in the treatment groups. One day after the last treatment, plasma luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone levels were evaluated. The cauda epididymis and testis were removed to analyze the sperm count and testis histopathology. Results LH levels increased in diabetic (p<0.001) and diabetic BA-treated mice (p=0.009). Plasma levels of testosterone (p< 0.001) and sperm count (p=0.04) decreased in these groups when compared to the control group. Furthermore, administration of 10 mg/kg (p=0.001), 20 mg/kg (p=0.004), or 40 mg/kg (p<0.001) of BA led to a greater reduction in plasma testosterone levels compared to the diabetes group. Seminiferous tubule vacuole numbers increased in diabetic and diabetic BA-treated mice, but testis morphology and FSH level assessment revealed no significant differences between the groups. Conclusions STZ-NA can induce diabetic alterations in the male reproductive system and the administration of BA in diabetic treated mice resulted in a worse outcome. PMID:28053951

  20. A gastric acid secretion model.

    PubMed Central

    de Beus, A M; Fabry, T L; Lacker, H M

    1993-01-01

    A theory of gastric acid production and self-protection is formulated mathematically and examined for clinical and experimental correlations, implications, and predictions using analytic and numerical techniques. In our model, gastric acid secretion in the stomach, as represented by an archetypal gastron, consists of two chambers, circulatory and luminal, connected by two different regions of ion exchange. The capillary circulation of the gastric mucosa is arranged in arterial-venous arcades which pass from the gastric glands up to the surface epithelial lining of the lumen; therefore the upstream region of the capillary chamber communicates with oxyntic cells, while the downstream region communicates with epithelial cells. Both cell types abut the gastric lumen. Ion currents across the upstream region are calculated from a steady-state oxyntic cell model with active ion transport, while the downstream ion fluxes are (facilitated) diffusion driven or secondarily active. Water transport is considered iso-osmotic. The steady-state model is solved in closed form for low gastric lumen pH. A wide variety of previously performed static and dynamic experiments on ion and CO2 transport in the gastric lumen and gastric blood supply are for the first time correlated with each other for an (at least) semiquantitative test of current concepts of gastric acid secretion and for the purpose of model verification. Agreement with the data is reported with a few outstanding and instructive exceptions. Model predictions and implications are also discussed. Images FIGURE 1 PMID:8396457

  1. The microstructure of the stratum corneum lipid barrier: mid-infrared spectroscopic studies of hydrated ceramide:palmitic acid:cholesterol model systems.

    PubMed

    Garidel, Patrick; Fölting, Bettina; Schaller, Ingrid; Kerth, Andreas

    2010-08-01

    The current mid-infrared spectroscopic study is a systematic investigation of hydrated stratum corneum lipid barrier model systems composed of an equimolar mixture of a ceramide, free palmitic acid and cholesterol. Four different ceramide molecules (CER NS, CER NP, CER NP-18:1, CER AS) were investigated with regard to their microstructure arrangement in a stratum corneum lipid barrier model system. Ceramide molecules were chosen from the sphingosine and phytosphingosine groups. The main differences in the used ceramide molecules result from their polar head group architecture as well as hydrocarbon chain properties. The mixing properties with cholesterol and palmitic acid are considered. This is feasible by using perdeuterated palmitic acid and proteated ceramides. Both molecules can be monitored separately, within the same experiment, using mid-infrared spectroscopy; no external label is necessary. At physiological relevant temperatures, between 30 and 35 degrees C, orthorhombic as well as hexagonal chain packing of the ceramide molecules is observed. The formation of these chain packings are extremely dependent on lipid hydration, with a decrease in ceramide hydration favouring the formation of orthorhombic hydrocarbon chain packing, as well as temperature. The presented data suggest in specific cases phase segregation in ceramide and palmitic acid rich phases. However, other ceramides like CER NP-18:1 show a rather high miscibility with palmitic acid and cholesterol. For all investigated ternary systems, more or less mixing of palmitic acid with cholesterol is observed. The investigated stratum corneum mixtures exhibit a rich polymorphism from crystalline domains with heterogeneous lipid composition to a "fluid" homogeneous phase. Thus, a single gel phase is not evident for the presented stratum corneum model systems. The study shows, that under skin physiological conditions (pH 5.5, hydrated, 30-35 degrees C) ternary systems composed of an equimolar ratio of

  2. Salt Effect Model for Aqueous Solubility of TBP in a 5 to 100% TBP/n-Dodecane-Nitric Acid-Water Biphasic System at 298.2 K

    SciTech Connect

    Kumar, Shekhar; Koganti, Sudhir Babu

    2000-02-15

    The solubilities of nonelectrolytes in aqueous electrolyte solutions have traditionally been modeled by using the Setschenow equation for salt effect. The aqueous solubility of tri-n-butyl phosphate (TBP) during operating conditions of the Purex process is an important parameter for safety considerations. Use of the Setschenow equation for aqueous solubility of TBP under limited conditions has been reported in the literature. However, there is no general model available to account for the presence of the diluent and for the case of multicomponent electrolyte solutions in which only some electrolytes are solvated and extracted by TBP. An extended salt effect model is proposed for predicting the aqueous solubility of TBP in a 5 to 100% TBP/n-dodecane-nitric acid-water biphasic system at 298.2 K. The literature data on TBP solubility were correlated to aqueous acid concentration, diluent concentration in the solvents, and an interaction parameter for electrolytic solutes (extracted or not extracted by TBP)

  3. Modeling Electrical Transport through Nucleic Acids

    NASA Astrophysics Data System (ADS)

    Qi, Jianqing

    Nucleic acids play a vital role in many biological systems and activities. In recent years, engineers and scientists have been interested in studying their electrical properties. The motivation for these studies stems from the following facts: (1) the bases, which form the building blocks of nucleic acids, have unique ionization potentials. Further, nucleic acids are one of the few nanomaterials that can be reproducibly manufactured with a high degree of accuracy (though admittedly their placement at desired locations remains a challenge). As a result, designed strands with specific sequences may offer unique device properties; (2) electrical methods offer potential for sequencing nucleic acids based on a single molecule; (3) electrical methods for disease detection based on the current flowing through nucleic acids are beginning to be demonstrated. While experiments in the above mentioned areas is promising, a deeper understanding of the electrical current flow through the nucleic acids needs to be developed. The modeling of current flowing in these molecules is complex because: (1) they are based on atomic scale contacts between nucleic acids and metal, which cannot be reproducibly built; (2) the conductivity of nucleic acids is easily influenced by the environment, which is constantly changing; and (3) the nucleic acids by themselves are floppy. This thesis focuses on the modeling of electrical transport through nucleic acids that are connected to two metal electrodes at nanoscale. We first develop a decoherent transport model for the double-stranded helix based on the Landauer-Buttiker framework. This model is rationalized by comparison with an experiment that measured the conductance of four different DNA strands. The developed model is then used to study the: (1) potential to make barriers and wells for quantum transport using specifically engineered sequences; (2) change in the electrical properties of a specific DNA strand with and without methylation; (3

  4. Nucleic acid based logical systems.

    PubMed

    Han, Da; Kang, Huaizhi; Zhang, Tao; Wu, Cuichen; Zhou, Cuisong; You, Mingxu; Chen, Zhuo; Zhang, Xiaobing; Tan, Weihong

    2014-05-12

    Researchers increasingly visualize a significant role for artificial biochemical logical systems in biological engineering, much like digital logic circuits in electrical engineering. Those logical systems could be utilized as a type of servomechanism to control nanodevices in vitro, monitor chemical reactions in situ, or regulate gene expression in vivo. Nucleic acids (NA), as carriers of genetic information with well-regulated and predictable structures, are promising materials for the design and engineering of biochemical circuits. A number of logical devices based on nucleic acids (NA) have been designed to handle various processes for technological or biotechnological purposes. This article focuses on the most recent and important developments in NA-based logical devices and their evolution from in vitro, through cellular, even towards in vivo biological applications.

  5. Boric Acid Reclamation System (BARS)

    SciTech Connect

    Kniazewycz, B.G.; Markind, J.

    1986-03-01

    KLM Technologies' personnel have identified a Boric Acid Reclamation System (BARS) utilizing reverse osmosis and ultrafiltration to produce a recyclable grade of otherwise waste boric acid at PWRs, thus reducing a major source of low-level radwaste. The design of a prototype BARS as a compact volume reduction system was the result of KLM's Phase 1 Program, and based upon a preliminary feasibility program, which assessed the applicability of membrane technology to refurbish and recycle waste boric acid from floor and equipment drain streams. The analysis of the overall program indicated a substantial savings regarding off-site disposal costs. Today's economic scenario indicates that optimization of volume reduction operation procedures could significantly reduce waste management costs, especially where burial penalties have become more severe. As a reaction to the economic burden imposed by final disposal, many nuclear plants are currently modifying their design and operating philosophies concerning liquid radwaste processing systems to meet stricter environmental regulations, and to derive potential economic benefits by reducing the ever-increasing volumes of wastes that are produced. To effect these changes, innovative practices in waste management and more efficient processing technologies are being successfully implemented.

  6. College Chemistry Students' Mental Models of Acids and Acid Strength

    ERIC Educational Resources Information Center

    McClary, LaKeisha; Talanquer, Vicente

    2011-01-01

    The central goal of this study was to characterize the mental models of acids and acid strength expressed by advanced college chemistry students when engaged in prediction, explanation, and justification tasks that asked them to rank chemical compounds based on their relative acid strength. For that purpose we completed a qualitative research…

  7. Advantages and limitations of the use of an extended polyelectrolyte model to describe the proton-binding process in macromolecular systems. Application to a poly(acrylic acid) and a humic acid.

    PubMed

    García-Mina, Jose M

    2007-05-03

    A number of studies have shown the suitability of the polyelectrolyte model to describe the proton-binding behavior of macromolecules. This model, however, has two limitations associated with its theoretical approach: (1) it does not consider the possible heterogeneity of binding sites, and (2) for certain calculations, it involves the need to assume a specific molecular geometry. In this article we describe the theoretical basis of an extension of the polyelectrolyte model that removes the two limitations described above. Likewise, we discuss the advantages and limitations of the extended polyelectrolyte model (EPM) through its application to describe the proton-binding process in a well-characterized macromolecular system (a poly(acrylic acid)) and a complex molecular system (a humic acid). The results obtained showed the suitability of EPM to describe proton-binding processes in complex molecular systems without the need to assume previously a specific molecular geometry and explicitly considering the possible heterogeneity of the binding sites. The results obtained indicated that the field effects associated with the conformational structure corresponding to each ionic strength, even in the discharged state, affect the values of the intrinsic constants defining the proton-binding process using EPM. Likewise, EPM analysis reveals the significant influence of both the surface charge density and the molecular size on the value of the electrostatic effects affecting the values of the intrinsic constants in the proton-binding process.

  8. Water-lactose behavior as a function of concentration and presence of lactic acid in lactose model systems.

    PubMed

    Wijayasinghe, Rangani; Vasiljevic, Todor; Chandrapala, Jayani

    2015-12-01

    The presence of high amounts of lactic acid in acid whey restricts its ability to be further processed because lactose appears to remain in its amorphous form. A systematic study is lacking in this regard especially during the concentration step. Hence, the main aim of the study was to establish the structure and behavior of water molecules surrounding lactose in the presence of 1% (wt/wt) lactic acid at a concentration up to 50% (wt/wt). Furthermore, the crystallization nature of freeze-dried lactose with or without lactic acid was established using differential scanning calorimetry and Fourier transform infrared spectroscopy. Two mechanisms were proposed to describe the behavior of water molecules around lactose molecules during the concentration of pure lactose and lactose solutions with lactic acid. Pure lactose solution exhibited a water evaporation enthalpy of ~679 J·g(-1), whereas lactose+ lactic acid solution resulted in ~965 J·g(-1) at a 50% (wt/wt) concentration. This indicates a greater energy requirement for water removal around lactose in the presence of lactic acid. Higher crystallization temperatures were observed with the presence of lactic acid, indicating a delay in crystallization. Furthermore, less crystalline lactose (~12%) was obtained in the presence of lactic acid, indicating high amorphous nature compared with pure lactose where ~50% crystallinity was obtained. The Fourier transform infrared spectra revealed that the strong hydration layer consisting lactic acid and H3O(+) ions surrounded lactose molecules via strong H bonds, which restricted water mobility, induced a change in structure of lactose, or both, creating unfavorable conditions for lactose crystallization. Thus, partial or complete removal of lactic acid from acid whey may be the first step toward improving the ability of acid whey to be processed.

  9. Synthesis of zinc-crosslinked thiolated alginic acid beads and their in vitro evaluation as potential enteric delivery system with folic acid as model drug.

    PubMed

    Taha, M O; Aiedeh, K M; Al-Hiari, Y; Al-Khatib, H

    2005-10-01

    The aim of this study is to explore the potential of synthetic modifications of alginic acid as a method to enhance the stability of its complexes with divalent cations under physiological conditions. A fraction of algin's carboxylic acid moieties was substituted with thiol groups to different substitution degrees through conjugating alginate to cysteine to produce alginate-cysteine (AC) conjugates. Infrared spectrophotometry and iodometry were used to characterize the resulting polymeric conjugates in terms of structure and degree of substitution. Moreover, zinc ions were used to crosslink the resulting AC polymers. Folic acid loaded beads were prepared from Zinc-crosslinked AC polymers (AC-Zn) of different cysteine substitution degrees. The generated beads were then investigated in vitro for their capacity to modify folic acid release. AC-Zn polymeric beads resisted drug release under acidic conditions (pH 1.0). However, upon transfer to a phosphate buffer solution (pH 7.0) they released most of their contents almost immediately. This change in drug release behavior is most probably due to the sequestering of zinc cations by phosphate ions within the buffer solution to form insoluble chelates and, to a lesser extent, the ionization of the carboxylic acid and thiol moieties. Removal of zinc ions from the polymeric matrix seems to promote polymeric disintegration and subsequent drug release. A similar behavior is expected in vivo due to the presence of natural zinc sequestering agents in the intestinal fluids. AC-Zn polymers provided a novel approach for enteric drug delivery as drug release from these matrices complied with the USP specifications for enteric dosage forms.

  10. Evaluation of anti-allergic properties of caffeic acid phenethyl ester in a murine model of systemic anaphylaxis

    SciTech Connect

    Park, Sae-Gwang; Lee, Da-Young; Seo, Su-Kil; Lee, Soo-Woong; Kim, Se-Kwon; Jung, Won-Kyo; Kang, Mi-Seon; Choi, Yung Hyun; Yea, Sung Su; Choi, Inhak Choi, Il-Whan

    2008-01-01

    Caffeic acid phenethyl ester (CAPE) is an active component of honeybee propolis extracts. It has several positive effects, including anti-inflammatory, anti-oxidation, anti-cancer, anti-bacterial, anti-viral, anti-fungal, and immunomodulatory effects. In particular, the suppressive effect of NF-{kappa}B may disrupt a component of allergic induction. The principal objective of this experimental study was to evaluate the effects of CAPE on the active systemic anaphylaxis induced by ovalbumin (OVA) challenge in mice. Mice were intraperitoneally sensitized and intravenously challenged with OVA. Histopathological analysis, nuclear factor (NF)-{kappa}B activation, and the plasma levels of histamine and total IgE after allergen challenge were evaluated. After challenges, all of the sham-treated mice developed anaphylactic symptoms, increased plasma levels of histamine and OVA-specific IgE, marked vascular leakage, NF-{kappa}B activation, platelet-activating factor (PAF) production, and histological changes including pulmonary edema and hemorrhage in the renal medullae within 20 min. By way of contrast, a reduction in the plasma levels of histamine and OVA-specific IgE and an inhibition of NF-{kappa}B activation and PAF release were observed in the CAPE-treated mice. In addition, a significant prevention of hemoconcentration and OVA-induced pathological changes were noted. These results indicate that CAPE demonstrates an anti-allergic effect, which may be the result of its protective effects against IgE-mediated allergy.

  11. Molecular modeling of nucleic acid structure

    PubMed Central

    Galindo-Murillo, Rodrigo; Bergonzo, Christina

    2013-01-01

    This unit is the first in a series of four units covering the analysis of nucleic acid structure by molecular modeling. This unit provides an overview of computer simulation of nucleic acids. Topics include the static structure model, computational graphics and energy models, generation of an initial model, and characterization of the overall three-dimensional structure. PMID:18428873

  12. Altered TNF-Alpha, Glucose, Insulin and Amino Acids in Islets Langerhans Cultured in a Microgravity Model System

    NASA Technical Reports Server (NTRS)

    Tobin, Brian W.; Leeper-Woodford, Sandra K.; Hashemi, Brian B.; Smith, Scott M.; Sams, Clarence F.

    2001-01-01

    The present studies were designed to determine effects of a microgravity model system upon lipopolysaccharide (LPS) stimulated tumor necrosis factor alpha (TNF-alpha) activity and indices of insulin and fuel homeostasis of pancreatic islets of Langerhans. Islets (1726+/-1 17,150 u IEU) from Wistar Furth rats were treated as: 1) HARV (High Aspect Ratio Vessel cell culture) , 2) HARV plus LPS, 3) static culture, 4) static culture plus LPS. TNF-alpha (L929 cytotoxicity assay) was significantly increased in LPS-induced HARV and static cultures, yet the increase was more pronounced in the static culture group (p<0.05). A decrease in insulin concentration was demonstrated in the LPS stimulated HARV culture (p<0.05). We observed a greater glucose concentration and increased disappearance of arginine in islets cultured in HARVs. While nitrogenous compound analysis indicated a ubiquitous reliance upon glutamine in all experimental groups, arginine was converted to ornithine at a two-fold greater rate in the islets cultured in the HARV microgravity model system (p<0.05). These studies demonstrate alterations in LPS induced TNF-alpha production of pancreatic islets of Langerhans, favoring a lesser TNF activity in the HARV. These alterations in fuel homeostasis may be promulgated by gravity averaged cell culture methods or by three dimensional cell assembly.

  13. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.

    PubMed

    Walczak, Karl; Chen, Yikai; Karp, Christoph; Beeman, Jeffrey W; Shaner, Matthew; Spurgeon, Joshua; Sharp, Ian D; Amashukeli, Xenia; West, William; Jin, Jian; Lewis, Nathan S; Xiang, Chengxiang

    2015-02-01

    A fully integrated solar-driven water-splitting system comprised of WO3 /FTO/p(+) n Si as the photoanode, Pt/TiO2 /Ti/n(+) p Si as the photocathode, and Nafion as the membrane separator, was simulated, assembled, operated in 1.0 M HClO4 , and evaluated for performance and safety characteristics under dual side illumination. A multi-physics model that accounted for the performance of the photoabsorbers and electrocatalysts, ion transport in the solution electrolyte, and gaseous product crossover was first used to define the optimal geometric design space for the system. The photoelectrodes and the membrane separators were then interconnected in a louvered design system configuration, for which the light-absorbing area and the solution-transport pathways were simultaneously optimized. The performance of the photocathode and the photoanode were separately evaluated in a traditional three-electrode photoelectrochemical cell configuration. The photocathode and photoanode were then assembled back-to-back in a tandem configuration to provide sufficient photovoltage to sustain solar-driven unassisted water-splitting. The current-voltage characteristics of the photoelectrodes showed that the low photocurrent density of the photoanode limited the overall solar-to-hydrogen (STH) conversion efficiency due to the large band gap of WO3 . A hydrogen-production rate of 0.17 mL hr(-1) and a STH conversion efficiency of 0.24 % was observed in a full cell configuration for >20 h with minimal product crossover in the fully operational, intrinsically safe, solar-driven water-splitting system. The solar-to-hydrogen conversion efficiency, ηSTH , calculated using the multiphysics numerical simulation was in excellent agreement with the experimental behavior of the system. The value of ηSTH was entirely limited by the performance of the photoelectrochemical assemblies employed in this study. The louvered design provides a robust platform for implementation of various types of

  14. High Systemic Exposure of Pyrazinoic Acid Has Limited Antituberculosis Activity in Murine and Rabbit Models of Tuberculosis

    PubMed Central

    Tasneen, Rokeya; O'Brien, Paul; Sarathy, Jansy; Safi, Hassan; Pinn, Michael; Alland, David; Dartois, Véronique

    2016-01-01

    Pyrazinamide (PZA) is a prodrug requiring conversion to pyrazinoic acid (POA) by an amidase encoded by pncA for in vitro activity. Mutation of pncA is the most common cause of PZA resistance in clinical isolates. To determine whether the systemic delivery of POA or host-mediated conversion of PZA to POA could circumvent such resistance, we evaluated the efficacy of orally administered and host-derived POA in vivo. Dose-ranging plasma and intrapulmonary POA pharmacokinetics and the efficacy of oral POA or PZA treatment against PZA-susceptible tuberculosis were determined in BALB/c and C3HeB/FeJ mice. The activity of host-derived POA was assessed in rabbits infected with a pncA-null mutant and treated with PZA. Median plasma POA values for the area under the concentration-time curve from 0 h to infinity (AUC0–∞) were 139 to 222 μg·h/ml and 178 to 287 μg·h/ml after doses of PZA and POA of 150 mg/kg of body weight, respectively, in mice. Epithelial lining fluid POA concentrations in infected mice were comparable after POA and PZA administration. In chronically infected BALB/c mice, PZA at 150 mg/kg reduced lung CFU counts by >2 log10 after 4 weeks. POA was effective only at 450 mg/kg, which reduced lung CFU counts by ∼0.7 log10. POA had no demonstrable bactericidal activity in C3HeB/FeJ mice, nor did PZA administered to rabbits infected with a PZA-resistant mutant. Oral POA administration and host-mediated conversion of PZA to POA producing plasma POA exposures comparable to PZA administration was significantly less effective than PZA. These results suggest that the intrabacillary delivery of POA and that producing higher POA concentrations at the site of infection will be more effective strategies for maximizing POA efficacy. PMID:27139472

  15. The Effect of Selected Synbiotics on Microbial Composition and Short-Chain Fatty Acid Production in a Model System of the Human Colon

    PubMed Central

    van Zanten, Gabriella C.; Knudsen, Anne; Röytiö, Henna; Forssten, Sofia; Lawther, Mark; Blennow, Andreas; Lahtinen, Sampo J.; Jakobsen, Mogens; Svensson, Birte; Jespersen, Lene

    2012-01-01

    Background Prebiotics, probiotics and synbiotics can be used to modulate both the composition and activity of the gut microbiota and thereby potentially affecting host health beneficially. The aim of this study was to investigate the effects of eight synbiotic combinations on the composition and activity of human fecal microbiota using a four-stage semicontinuous model system of the human colon. Methods and Findings Carbohydrates were selected by their ability to enhance growth of the probiotic bacteria Lactobacillus acidophilus NCFM (NCFM) and Bifidobacterium animalis subsp. lactis Bl-04 (Bl-04) under laboratory conditions. The most effective carbohydrates for each probiotic were further investigated, using the colonic model, for the ability to support growth of the probiotic bacteria, influence the composition of the microbiota and stimulate formation of short-chain fatty acids (SCFA).The following combinations were studied: NCFM with isomaltulose, cellobiose, raffinose and an oat β-glucan hydrolysate (OBGH) and Bl-04 with melibiose, xylobiose, raffinose and maltotriose. All carbohydrates showed capable of increasing levels of NCFM and Bl-04 during fermentations in the colonic model by 103–104 fold and 10–102 fold, respectively. Also the synbiotic combinations decreased the modified ratio of Bacteroidetes/Firmicutes (calculated using qPCR results for Bacteroides-Prevotella-Porphyromonas group, Clostridium perfringens cluster I, Clostridium coccoides - Eubacterium rectale group and Clostridial cluster XIV) as well as significantly increasing SCFA levels, especially acetic and butyric acid, by three to eight fold, as compared to the controls. The decreases in the modified ratio of Bacteroidetes/Firmicutes were found to be correlated to increases in acetic and butyric acid (p = 0.04 and p = 0.03, respectively). Conclusions The results of this study show that all synbiotic combinations investigated are able to shift the predominant bacteria and the

  16. Residue-specific Incorporation of Noncanonical Amino Acids into Model Proteins Using an Escherichia coli Cell-free Transcription-translation System

    PubMed Central

    Worst, Emanuel G.; Exner, Matthias P.; De Simone, Alessandro; Schenkelberger, Marc; Noireaux, Vincent; Budisa, Nediljko; Ott, Albrecht

    2016-01-01

    The canonical set of amino acids leads to an exceptionally wide range of protein functionality. Nevertheless, the set of residues still imposes limitations on potential protein applications. The incorporation of noncanonical amino acids can enlarge this scope. There are two complementary approaches for the incorporation of noncanonical amino acids. For site-specific incorporation, in addition to the endogenous canonical translational machineries, an orthogonal aminoacyl-tRNA-synthetase-tRNA pair must be provided that does not interact with the canonical ones. Consequently, a codon that is not assigned to a canonical amino acid, usually a stop codon, is also required. This genetic code expansion enables the incorporation of a noncanonical amino acid at a single, given site within the protein. The here presented work describes residue-specific incorporation where the genetic code is reassigned within the endogenous translational system. The translation machinery accepts the noncanonical amino acid as a surrogate to incorporate it at canonically prescribed locations, i.e., all occurrences of a canonical amino acid in the protein are replaced by the noncanonical one. The incorporation of noncanonical amino acids can change the protein structure, causing considerably modified physical and chemical properties. Noncanonical amino acid analogs often act as cell growth inhibitors for expression hosts since they modify endogenous proteins, limiting in vivo protein production. In vivo incorporation of toxic noncanonical amino acids into proteins remains particularly challenging. Here, a cell-free approach for a complete replacement of L-arginine by the noncanonical amino acid L-canavanine is presented. It circumvents the inherent difficulties of in vivo expression. Additionally, a protocol to prepare target proteins for mass spectral analysis is included. It is shown that L-lysine can be replaced by L-hydroxy-lysine, albeit with lower efficiency. In principle, any

  17. Whole body acid-base modeling revisited.

    PubMed

    Ring, Troels; Nielsen, Søren

    2017-04-01

    The textbook account of whole body acid-base balance in terms of endogenous acid production, renal net acid excretion, and gastrointestinal alkali absorption, which is the only comprehensive model around, has never been applied in clinical practice or been formally validated. To improve understanding of acid-base modeling, we managed to write up this conventional model as an expression solely on urine chemistry. Renal net acid excretion and endogenous acid production were already formulated in terms of urine chemistry, and we could from the literature also see gastrointestinal alkali absorption in terms of urine excretions. With a few assumptions it was possible to see that this expression of net acid balance was arithmetically identical to minus urine charge, whereby under the development of acidosis, urine was predicted to acquire a net negative charge. The literature already mentions unexplained negative urine charges so we scrutinized a series of seminal papers and confirmed empirically the theoretical prediction that observed urine charge did acquire negative charge as acidosis developed. Hence, we can conclude that the conventional model is problematic since it predicts what is physiologically impossible. Therefore, we need a new model for whole body acid-base balance, which does not have impossible implications. Furthermore, new experimental studies are needed to account for charge imbalance in urine under development of acidosis.

  18. Guanidinium groups act as general-acid catalysts in phosphoryl transfer reactions: a two-proton inventory on a model system.

    PubMed

    Piatek, Anna M; Gray, Mark; Anslyn, Eric V

    2004-08-18

    Cleavage/transesterification of phosphodiesters is catalyzed by various acidic groups in solution and with enzymes. General-acid catalysts can transfer protons to the developing phosphorane intermediate, resulting in a monoprotic-monoanionic intermediate, giving the so-called "triester mechanism". Using a proton inventory on a model compound (1) possessing an intramolecular hydrogen bond between a phosphodiester and a guanidinium group, we find that two protons move in the rate-determining step for cleavage/transesterification. In contrast, HPNP shows a single-proton inventory and is a substrate well accepted to react with the movement of only one proton at the transition state. We therefore propose a mechanism for 1 that involves general-acid catalysis by the guanidinium group. This leads one to conclude that other, more acidic groups, such as ammonium and imidazolium, would also act as general-acid catalysts.

  19. Characterization of covalent addition products of chlorogenic acid quinone with amino acid derivatives in model systems and apple juice by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry.

    PubMed

    Schilling, Susanne; Sigolotto, Constance-Isabelle; Carle, Reinhold; Schieber, Andreas

    2008-01-01

    High-performance liquid chromatography (HPLC) coupled to electrospray ionization tandem mass spectrometry (ESI-MS(n)) was used to study the covalent interactions between chlorogenic acid (CQA) quinone and two amino acid derivatives, tert-butyloxycarbonyl-L-lysine and N-acetyl-L-cysteine. In a model system at pH 7.0, the formation of covalent addition products was demonstrated for both derivatives. The addition product of CQA dimer and tert-butyloxycarbonyl-L-lysine was characterized by LC/MS(n) as a benzacridine structure. For N-acetyl-L-cysteine, mono- and diaddition products at the thiol group with CQA quinone were found. In apple juice at pH 3.6, covalent interactions of CQA quinone were observed only with N-acetyl-L-cysteine. Taking together these results and those reported by other groups it can be concluded that covalent interactions of amino side chains with phenolic compounds could contribute to the reduction of the allergenic potential of certain food proteins.

  20. Acid-base homeostasis in the human system

    NASA Technical Reports Server (NTRS)

    White, R. J.

    1974-01-01

    Acid-base regulation is a cooperative phenomena in vivo with body fluids, extracellular and intracellular buffers, lungs, and kidneys all playing important roles. The present account is much too brief to be considered a review of present knowledge of these regulatory systems, and should be viewed, instead, as a guide to the elements necessary to construct a simple model of the mutual interactions of the acid-base regulatory systems of the body.

  1. Modelling malic acid accumulation in fruits: relationships with organic acids, potassium, and temperature.

    PubMed

    Lobit, Philippe; Genard, Michel; Soing, Patrick; Habib, Robert

    2006-01-01

    Malic acid production, degradation, and storage during fruit development have been modelled. The model assumes that malic acid content is determined essentially by the conditions of its storage in the mesocarp cells, and provides a simplified representation of the mechanisms involved in the accumulation of malate in the vacuole and their regulation by thermodynamic constraints. Solving the corresponding system of equations made it possible to predict the malic acid content of the fruit as a function of organic acids, potassium concentration, and temperature. The model was applied to peach fruit, and parameters were estimated from the data of fruit development monitored over 2 years. The predictions were in good agreement with experimental data. Simulations were performed to analyse the behaviour of the model in response to variations in composition and temperature.

  2. Evolutionary systems biology of amino acid biosynthetic cost in yeast.

    PubMed

    Barton, Michael D; Delneri, Daniela; Oliver, Stephen G; Rattray, Magnus; Bergman, Casey M

    2010-08-17

    Every protein has a biosynthetic cost to the cell based on the synthesis of its constituent amino acids. In order to optimise growth and reproduction, natural selection is expected, where possible, to favour the use of proteins whose constituents are cheaper to produce, as reduced biosynthetic cost may confer a fitness advantage to the organism. Quantifying the cost of amino acid biosynthesis presents challenges, since energetic requirements may change across different cellular and environmental conditions. We developed a systems biology approach to estimate the cost of amino acid synthesis based on genome-scale metabolic models and investigated the effects of the cost of amino acid synthesis on Saccharomyces cerevisiae gene expression and protein evolution. First, we used our two new and six previously reported measures of amino acid cost in conjunction with codon usage bias, tRNA gene number and atomic composition to identify which of these factors best predict transcript and protein levels. Second, we compared amino acid cost with rates of amino acid substitution across four species in the genus Saccharomyces. Regardless of which cost measure is used, amino acid biosynthetic cost is weakly associated with transcript and protein levels. In contrast, we find that biosynthetic cost and amino acid substitution rates show a negative correlation, but for only a subset of cost measures. In the economy of the yeast cell, we find that the cost of amino acid synthesis plays a limited role in shaping transcript and protein expression levels compared to that of translational optimisation. Biosynthetic cost does, however, appear to affect rates of amino acid evolution in Saccharomyces, suggesting that expensive amino acids may only be used when they have specific structural or functional roles in protein sequences. However, as there appears to be no single currency to compute the cost of amino acid synthesis across all cellular and environmental conditions, we conclude that

  3. Acidolysis of p-coumaric acid with omega-3 oils and antioxidant activity of phenolipid products in in vitro and biological model systems.

    PubMed

    Wang, Jiankang; Shahidi, Fereidoon

    2014-01-15

    Lipase-catalyzed acidolysis of p-coumaric acid with seal blubber oil (SBO) and menhaden oil (MHO) was carried out, followed by identification of major phenolipids in the resultant acidolysis mixture using high-performance liquid chromatography/mass spectrometry. Separation of phenolipid components from the resultant acidolysis mixture was achieved using flash column chromatography. The antioxidant activities of the phenolipids were examined in in vitro assays and biological model systems. The major phenolipids identified from acidolysis mixtures with both SBO and MHO included eight phenolic monoacylglycerols and eight phenolic diacylglycerols. Phenolipids derived from SBO and MHO generally showed good antioxidant potential in the systems tested. The prepared phenolipids exhibited high scavenging capacity toward 1,1-diphenyl-2-picrylhydrazyl (DPPH) and peroxyl radicals and displayed reducing power, strong inhibitory effect on bleaching of β-carotene, human low-density lipoprotein (LDL) cholesterol oxidation, as well as radical-induced DNA cleavage, thus suggesting that phenolipids derived from omega-3 oils may be used as potential stable products for health promotion and disease risk reduction.

  4. Effect of tetrahydropyrimidine derivatives on protein-nucleic acids interaction. Type II restriction endonucleases as a model system.

    PubMed

    Malin, G; Iakobashvili, R; Lapidot, A

    1999-03-12

    2-Methyl-4-carboxy,5-hydroxy-3,4,5,6-tetrahydropyri- midine (THP(A) or hydroxyectoine) and 2-methyl,4-carboxy-3,4,5, 6-tetrahydropyrimidine (THP(B) or ectoine) are now recognized as ubiquitous bacterial osmoprotectants. To evaluate the impact of tetrahydropyrimidine derivatives (THPs) on protein-DNA interaction and on restriction-modification systems, we have examined their effect on the cleavage of plasmid DNA by 10 type II restriction endonucleases. THP(A) completely arrested the cleavage of plasmid and bacteriophage lambda DNA by EcoRI endonuclease at 0.4 mM and the oligonucleotide (d(CGCGAATTCGCG))2 at about 4.0 mM. THP(B) was 10-fold less effective than THP(A), whereas for betaine and proline, a notable inhibition was observed only at 100 mM. Similar effects of THP(A) were observed for all tested restriction endonucleases, except for SmaI and PvuII, which were inhibited only partially at 50 mM THP(A). No effect of THP(A) on the activity of DNase I, RNase A, and Taq DNA polymerase was noticed. Gel-shift assays showed that THP(A) inhibited the EcoRI-(d(CGCGAATTCGCG))2 complex formation, whereas facilitated diffusion of EcoRI along the DNA was not affected. Methylation of the carboxy group significantly decreased the activity of THPs, suggesting that their zwitterionic character is essential for the inhibition effect. Possible mechanisms of inhibition, the role of THPs in the modulation of the protein-DNA interaction, and the in vivo relevance of the observed phenomena are discussed.

  5. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lactic acid test system. 862.1450 Section...

  6. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lactic acid test system. 862.1450 Section...

  7. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lactic acid test system. 862.1450 Section...

  8. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lactic acid test system. 862.1450 Section 862.1450....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base...

  9. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactic acid test system. 862.1450 Section 862.1450....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base...

  10. Continuous system modeling

    NASA Technical Reports Server (NTRS)

    Cellier, Francois E.

    1991-01-01

    A comprehensive and systematic introduction is presented for the concepts associated with 'modeling', involving the transition from a physical system down to an abstract description of that system in the form of a set of differential and/or difference equations, and basing its treatment of modeling on the mathematics of dynamical systems. Attention is given to the principles of passive electrical circuit modeling, planar mechanical systems modeling, hierarchical modular modeling of continuous systems, and bond-graph modeling. Also discussed are modeling in equilibrium thermodynamics, population dynamics, and system dynamics, inductive reasoning, artificial neural networks, and automated model synthesis.

  11. Influence of the natural microbial flora on the acid tolerance response of Listeria monocytogenes in a model system of fresh meat decontamination fluids.

    PubMed

    Samelis, J; Sofos, J N; Kendall, P A; Smith, G C

    2001-06-01

    Depending on its composition and metabolic activity, the natural flora that may be established in a meat plant environment can affect the survival, growth, and acid tolerance response (ATR) of bacterial pathogens present in the same niche. To investigate this hypothesis, changes in populations and ATR of inoculated (10(5) CFU/ml) Listeria monocytogenes were evaluated at 35 degrees C in water (10 or 85 degrees C) or acidic (2% lactic or acetic acid) washings of beef with or without prior filter sterilization. The model experiments were performed at 35 degrees C rather than lower (Acid solution washings were free (<1.0 log CFU/ml) of natural flora before inoculation (day 0), and no microbial growth occurred during storage (35 degrees C, 8 days). Inoculated L. monocytogenes died off (negative enrichment) in acid washings within 24 h. In nonacid (water) washings, the pathogen increased (approximately 1.0 to 2.0 log CFU/ml), irrespective of natural flora, which, when present, predominated (>8.0 log CFU/ml) by day 1. The pH of inoculated water washings decreased or increased depending on absence or presence of natural flora, respectively. These microbial and pH changes modulated the ATR of L. monocytogenes at 35 degrees C. In filter-sterilized water washings, inoculated L. monocytogenes increased its ATR by at least 1.0 log CFU/ml from days 1 to 8, while in unfiltered water washings the pathogen was acid tolerant at day 1 (0.3 to 1.4 log CFU/ml reduction) and became acid sensitive (3.0 to >5.0 log CFU/ml reduction) at day 8. These results suggest that the predominant gram-negative flora of an aerobic fresh meat plant environment may sensitize bacterial pathogens to acid.

  12. Sulfuric acid thermoelectrochemical system and method

    DOEpatents

    Ludwig, Frank A.

    1989-01-01

    A thermoelectrochemical system in which an electrical current is generated between a cathode immersed in a concentrated sulfuric acid solution and an anode immersed in an aqueous buffer solution of sodium bisulfate and sodium sulfate. Reactants consumed at the electrodes during the electrochemical reaction are thermochemically regenerated and recycled to the electrodes to provide continuous operation of the system.

  13. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-12-21

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  14. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-08-17

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  15. Acid sensing by the Drosophila olfactory system.

    PubMed

    Ai, Minrong; Min, Soohong; Grosjean, Yael; Leblanc, Charlotte; Bell, Rati; Benton, Richard; Suh, Greg S B

    2010-12-02

    The odour of acids has a distinct quality that is perceived as sharp, pungent and often irritating. How acidity is sensed and translated into an appropriate behavioural response is poorly understood. Here we describe a functionally segregated population of olfactory sensory neurons in the fruitfly, Drosophila melanogaster, that are highly selective for acidity. These olfactory sensory neurons express IR64a, a member of the recently identified ionotropic receptor (IR) family of putative olfactory receptors. In vivo calcium imaging showed that IR64a+ neurons projecting to the DC4 glomerulus in the antennal lobe are specifically activated by acids. Flies in which the function of IR64a+ neurons or the IR64a gene is disrupted had defects in acid-evoked physiological and behavioural responses, but their responses to non-acidic odorants remained unaffected. Furthermore, artificial stimulation of IR64a+ neurons elicited avoidance responses. Taken together, these results identify cellular and molecular substrates for acid detection in the Drosophila olfactory system and support a labelled-line mode of acidity coding at the periphery.

  16. 21 CFR 862.1295 - Folic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Folic acid test system. 862.1295 Section 862.1295....1295 Folic acid test system. (a) Identification. A folic acid test system is a device intended to measure the vitamin folic acid in plasma and serum. Folic acid measurements are used in the diagnosis...

  17. 21 CFR 862.1290 - Fatty acids test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fatty acids test system. 862.1290 Section 862.1290....1290 Fatty acids test system. (a) Identification. A fatty acids test system is a device intended to measure fatty acids in plasma and serum. Measurements of fatty acids are used in the diagnosis...

  18. 21 CFR 862.1295 - Folic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Folic acid test system. 862.1295 Section 862.1295....1295 Folic acid test system. (a) Identification. A folic acid test system is a device intended to measure the vitamin folic acid in plasma and serum. Folic acid measurements are used in the diagnosis...

  19. 21 CFR 862.1290 - Fatty acids test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fatty acids test system. 862.1290 Section 862.1290....1290 Fatty acids test system. (a) Identification. A fatty acids test system is a device intended to measure fatty acids in plasma and serum. Measurements of fatty acids are used in the diagnosis...

  20. 21 CFR 862.1795 - Vanilmandelic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Vanilmandelic acid test system. 862.1795 Section... Systems § 862.1795 Vanilmandelic acid test system. (a) Identification. A vanilmandelic acid test system is a device intended to measure vanilmandelic acid in urine. Measurements of vanilmandelic...

  1. 21 CFR 862.1795 - Vanilmandelic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Vanilmandelic acid test system. 862.1795 Section... Systems § 862.1795 Vanilmandelic acid test system. (a) Identification. A vanilmandelic acid test system is a device intended to measure vanilmandelic acid in urine. Measurements of vanilmandelic...

  2. N-Succinyl-chitosan systems for 5-aminosalicylic acid colon delivery: in vivo study with TNBS-induced colitis model in rats.

    PubMed

    Mura, C; Nácher, A; Merino, V; Merino-Sanjuan, M; Carda, C; Ruiz, A; Manconi, M; Loy, G; Fadda, A M; Diez-Sales, O

    2011-09-15

    5-Aminosalicylic acid (5-ASA) loaded N-Succinyl-chitosan (SucCH) microparticle and freeze-dried system were prepared as potential delivery systems to the colon. Physicochemical characterization and in vitro release and swelling studies were previously assessed and showed that the two formulations appeared to be good candidates to deliver the drug to the colon. In this work the effectiveness of these two systems in the treatment of inflammatory bowel disease was evaluated. In vitro mucoadhesive studies showed excellent mucoadhesive properties of both the systems to the inflamed colonic mucosa. Experimental colitis was induced by rectal instillation of 2,4,6-trinitrobenzene sulfonic acid (TNBS) into male Wistar rats. Colon/body weight ratio, clinical activity score system, myeloperoxidase activity and histological evaluation were determined as inflammatory indices. The two formulations were compared with drug suspension and SucCH suspension. The results showed that the loading of 5-ASA into SucCH polymer markedly improved efficacy in the healing of induced colitis in rats.

  3. Mathematical circulatory system model

    NASA Technical Reports Server (NTRS)

    Lakin, William D. (Inventor); Stevens, Scott A. (Inventor)

    2010-01-01

    A system and method of modeling a circulatory system including a regulatory mechanism parameter. In one embodiment, a regulatory mechanism parameter in a lumped parameter model is represented as a logistic function. In another embodiment, the circulatory system model includes a compliant vessel, the model having a parameter representing a change in pressure due to contraction of smooth muscles of a wall of the vessel.

  4. A new mouse model of mild ornithine transcarbamylase deficiency (spf-j) displays cerebral amino acid perturbations at baseline and upon systemic immune activation.

    PubMed

    Tarasenko, Tatyana N; Rosas, Odrick R; Singh, Larry N; Kristaponis, Kara; Vernon, Hilary; McGuire, Peter J

    2015-01-01

    Ornithine transcarbamylase deficiency (OTCD, OMIM# 311250) is an inherited X-linked urea cycle disorder that is characterized by hyperammonemia and orotic aciduria. In this report, we describe a new animal model of OTCD caused by a spontaneous mutation in the mouse Otc gene (c.240T>A, p.K80N). This transversion in exon 3 of ornithine transcarbamylase leads to normal levels of mRNA with low levels of mature protein and is homologous to a mutation that has also been described in a single patient affected with late-onset OTCD. With higher residual enzyme activity, spf-J were found to have normal plasma ammonia and orotate. Baseline plasma amino acid profiles were consistent with mild OTCD: elevated glutamine, and lower citrulline and arginine. In contrast to WT, spf-J displayed baseline elevations in cerebral amino acids with depletion following immune challenge with polyinosinic:polycytidylic acid. Our results indicate that the mild spf-J mutation constitutes a new mouse model that is suitable for mechanistic studies of mild OTCD and the exploration of cerebral pathophysiology during acute decompensation that characterizes proximal urea cycle dysfunction in humans.

  5. Systems Biology of Lignin Biosynthesis in Populus trichocarpa: Heteromeric 4-Coumaric Acid:Coenzyme A Ligase Protein Complex Formation, Regulation, and Numerical Modeling[W

    PubMed Central

    Chen, Hsi-Chuan; Song, Jina; Wang, Jack P.; Lin, Ying-Chung; Ducoste, Joel; Shuford, Christopher M.; Liu, Jie; Li, Quanzi; Shi, Rui; Nepomuceno, Angelito; Isik, Fikret; Muddiman, David C.; Williams, Cranos; Sederoff, Ronald R.; Chiang, Vincent L.

    2014-01-01

    As a step toward predictive modeling of flux through the pathway of monolignol biosynthesis in stem differentiating xylem of Populus trichocarpa, we discovered that the two 4-coumaric acid:CoA ligase (4CL) isoforms, 4CL3 and 4CL5, interact in vivo and in vitro to form a heterotetrameric protein complex. This conclusion is based on laser microdissection, coimmunoprecipitation, chemical cross-linking, bimolecular fluorescence complementation, and mass spectrometry. The tetramer is composed of three subunits of 4CL3 and one of 4CL5. 4CL5 appears to have a regulatory role. This protein–protein interaction affects the direction and rate of metabolic flux for monolignol biosynthesis in P. trichocarpa. A mathematical model was developed for the behavior of 4CL3 and 4CL5 individually and in mixtures that form the enzyme complex. The model incorporates effects of mixtures of multiple hydroxycinnamic acid substrates, competitive inhibition, uncompetitive inhibition, and self-inhibition, along with characteristic of the substrates, the enzyme isoforms, and the tetrameric complex. Kinetic analysis of different ratios of the enzyme isoforms shows both inhibition and activation components, which are explained by the mathematical model and provide insight into the regulation of metabolic flux for monolignol biosynthesis by protein complex formation. PMID:24619612

  6. Uric Acid Nephrolithiasis: A Systemic Metabolic Disorder

    PubMed Central

    Moe, Orson W.

    2014-01-01

    Uric acid nephrolithiasis is characteristically a manifestation of a systemic metabolic disorder. It has a prevalence of about 10% among all stone formers, the third most common type of kidney stone in the industrialized world. Uric acid stones form primarily due to an unduly acid urine; less deciding factors are hyperuricosuria and a low urine volume. The vast majority of uric acid stone formers have the metabolic syndrome, and not infrequently, clinical gout is present as well. A universal finding is a low baseline urine pH plus insufficient production of urinary ammonium buffer. Persons with gastrointestinal disorders, in particular chronic diarrhea or ostomies, and patients with malignancies with a large tumor mass and high cell turnover comprise a less common but nevertheless important subset. Pure uric acid stones are radiolucent but well visualized on renal ultrasound. A 24 h urine collection for stone risk analysis provides essential insight into the pathophysiology of stone formation and may guide therapy. Management includes a liberal fluid intake and dietary modification. Potassium citrate to alkalinize the urine to a goal pH between 6 and 6.5 is essential, as undissociated uric acid deprotonates into its much more soluble urate form. PMID:25045326

  7. High Level Waste System Impacts from Acid Dissolution of Sludge

    SciTech Connect

    KETUSKY, EDWARD

    2006-04-20

    This research evaluates the ability of OLI{copyright} equilibrium based software to forecast Savannah River Site High Level Waste system impacts from oxalic acid dissolution of Tank 1-15 sludge heels. Without further laboratory and field testing, only the use of oxalic acid can be considered plausible to support sludge heel dissolution on multiple tanks. Using OLI{copyright} and available test results, a dissolution model is constructed and validated. Material and energy balances, coupled with the model, identify potential safety concerns. Overpressurization and overheating are shown to be unlikely. Corrosion induced hydrogen could, however, overwhelm the tank ventilation. While pH adjustment can restore the minimal hydrogen generation, resultant precipitates will notably increase the sludge volume. OLI{copyright} is used to develop a flowsheet such that additional sludge vitrification canisters and other negative system impacts are minimized. Sensitivity analyses are used to assess the processability impacts from variations in the sludge/quantities of acids.

  8. A computational study of ultrafast acid dissociation and acid-base neutralization reactions. I. The model

    NASA Astrophysics Data System (ADS)

    Maurer, Patrick; Thomas, Vibin; Rivard, Ugo; Iftimie, Radu

    2010-07-01

    Ultrafast, time-resolved investigations of acid-base neutralization reactions have recently been performed using systems containing the photoacid 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) and various Brønsted bases. Two conflicting neutralization mechanisms have been formulated by Mohammed et al. [Science 310, 83 (2005)] and Siwick et al. [J. Am. Chem. Soc. 129, 13412 (2007)] for the same acid-base system. Herein an ab initio molecular dynamics based computational model is formulated, which is able to investigate the validity of the proposed mechanisms in the general context of ground-state acid-base neutralization reactions. Our approach consists of using 2,4,6-tricyanophenol (exp. pKa≅1) as a model for excited-state HPTS∗ (pKa≅1.4) and carboxylate ions for the accepting base. We employ our recently proposed dipole-field/quantum mechanics (QM) treatment [P. Maurer and R. Iftimie, J. Chem. Phys. 132, 074112 (2010)] of the proton donor and acceptor molecules. This approach allows one to tune the free energy of neutralization to any desired value as well as model initial nonequilibrium hydration effects caused by a sudden increase in acidity, making it possible to achieve a more realistic comparison with experimental data than could be obtained via a full-QM treatment of the entire system. It is demonstrated that the dipole-field/QM model reproduces correctly key properties of the 2,4,6-tricyanophenol acid molecule including gas-phase proton dissociation energies and dipole moments, and condensed-phase hydration structure and pKa values.

  9. The kainic acid model of temporal lobe epilepsy

    PubMed Central

    Lévesque, Maxime; Avoli, Massimo

    2016-01-01

    The kainic acid model of temporal lobe epilepsy has greatly contributed to the understanding of the molecular, cellular and pharmacological mechanisms underlying epileptogenesis and ictogenesis. This model presents with neuropathological and electroencephalographic features that are seen in patients with temporal lobe epilepsy. It is also characterized by a latent period that follows the initial precipitating injury (i.e., status epilepticus) until the appearance of recurrent seizures, as observed in the human condition. Finally, the kainic acid model can be reproduced in a variety of species using either systemic, intrahippocampal or intra-amygdaloid administrations. In this review, we describe the various methodological procedures and evaluate their differences with respect to the behavioral, electroencephalographic and neuropathological correlates. In addition, we compare the kainic acid model with other animal models of temporal lobe epilepsy such as the pilocarpine and the kindling model. We conclude that the kainic acid model is a reliable tool for understanding temporal lobe epilepsy, provided that the differences existing between methodological procedures are taken into account. PMID:24184743

  10. Acid mine water aeration and treatment system

    DOEpatents

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  11. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pyruvic acid test system. 862.1655 Section 862....1655 Pyruvic acid test system. (a) Identification. A pyruvic acid test system is a device intended to measure pyruvic acid (an intermediate compound in the metabolism of carbohydrate) in plasma....

  12. 21 CFR 862.1095 - Ascorbic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ascorbic acid test system. 862.1095 Section 862....1095 Ascorbic acid test system. (a) Identification. An ascorbic acid test system is a device intended to measure the level of ascorbic acid (vitamin C) in plasma, serum, and urine. Ascorbic...

  13. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Uric acid test system. 862.1775 Section 862.1775....1775 Uric acid test system. (a) Identification. A uric acid test system is a device intended to measure uric acid in serum, plasma, and urine. Measurements obtained by this device are used in the...

  14. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Uric acid test system. 862.1775 Section 862.1775....1775 Uric acid test system. (a) Identification. A uric acid test system is a device intended to measure uric acid in serum, plasma, and urine. Measurements obtained by this device are used in the...

  15. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pyruvic acid test system. 862.1655 Section 862....1655 Pyruvic acid test system. (a) Identification. A pyruvic acid test system is a device intended to measure pyruvic acid (an intermediate compound in the metabolism of carbohydrate) in plasma....

  16. 21 CFR 862.1095 - Ascorbic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ascorbic acid test system. 862.1095 Section 862....1095 Ascorbic acid test system. (a) Identification. An ascorbic acid test system is a device intended to measure the level of ascorbic acid (vitamin C) in plasma, serum, and urine. Ascorbic...

  17. Microbial Nucleic Acid Sensing in Oral and Systemic Diseases.

    PubMed

    Crump, K E; Sahingur, S E

    2016-01-01

    One challenge in studying chronic infectious and inflammatory disorders is understanding how host pattern recognition receptors (PRRs), specifically toll-like receptors (TLRs), sense and respond to pathogen- or damage-associated molecular patterns, their communication with each other and different components of the immune system, and their role in propagating inflammatory stages of disease. The discovery of innate immune activation through nucleic acid recognition by intracellular PRRs such as endosomal TLRs (TLR3, TLR7, TLR8, and TLR9) and cytoplasmic proteins (absent in melanoma 2 and DNA-dependent activator of interferon regulatory factor) opened a new paradigm: Nucleic acid sensing is now implicated in multiple immune and inflammatory conditions (e.g., atherosclerosis, cancer), viral (e.g., human papillomavirus, herpes virus) and bacterial (e.g., Helicobacter pylori, pneumonia) diseases, and autoimmune disorders (e.g., systemic lupus erythematosus, rheumatoid arthritis). Clinical investigations reveal the overexpression of specific nucleic acid sensors in diseased tissues. In vivo animal models show enhanced disease progression associated with receptor activation. The involvement of nucleic acid sensors in various systemic conditions is further supported by studies reporting receptor knockout mice being either protected from or prone to disease. TLR9-mediated inflammation is also implicated in periodontal diseases. Considering that persistent inflammation in the oral cavity is associated with systemic diseases and that oral microbial DNA is isolated at distal sites, nucleic acid sensing may potentially be a link between oral and systemic diseases. In this review, we discuss recent advances in how intracellular PRRs respond to microbial nucleic acids and emerging views on the role of nucleic acid sensors in various systemic diseases. We also highlight new information on the role of intracellular PRRs in the pathogenesis of oral diseases including periodontitis

  18. 21 CFR 862.1509 - Methylmalonic acid (nonquantitative) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... methylmalonic acid (nonquantitative) test system is a device intended to identify methylmalonic acid in urine. The identification of methylmalonic acid in urine is used in the diagnosis and treatment...

  19. MLS: Airplane system modeling

    NASA Technical Reports Server (NTRS)

    Thompson, A. D.; Stapleton, B. P.; Walen, D. B.; Rieder, P. F.; Moss, D. G.

    1981-01-01

    Analysis, modeling, and simulations were conducted as part of a multiyear investigation of the more important airplane-system-related items of the microwave landing system (MLS). Particular emphasis was placed upon the airplane RF system, including the antenna radiation distribution, the cabling options from the antenna to the receiver, and the overall impact of the airborne system gains and losses upon the direct-path signal structure. In addition, effort was expended toward determining the impact of the MLS upon the airplane flight management system and developing the initial stages of a fast-time MLS automatic control system simulation model. Results ot these studies are presented.

  20. Integrated Workforce Modeling System

    NASA Technical Reports Server (NTRS)

    Moynihan, Gary P.

    2000-01-01

    There are several computer-based systems, currently in various phases of development at KSC, which encompass some component, aspect, or function of workforce modeling. These systems may offer redundant capabilities and/or incompatible interfaces. A systems approach to workforce modeling is necessary in order to identify and better address user requirements. This research has consisted of two primary tasks. Task 1 provided an assessment of existing and proposed KSC workforce modeling systems for their functionality and applicability to the workforce planning function. Task 2 resulted in the development of a proof-of-concept design for a systems approach to workforce modeling. The model incorporates critical aspects of workforce planning, including hires, attrition, and employee development.

  1. Organic acid modeling and model validation: Workshop summary. Final report

    SciTech Connect

    Sullivan, T.J.; Eilers, J.M.

    1992-08-14

    A workshop was held in Corvallis, Oregon on April 9--10, 1992 at the offices of E&S Environmental Chemistry, Inc. The purpose of this workshop was to initiate research efforts on the entitled ``Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and testing of the revised model using Independent data sources.`` The workshop was attended by a team of internationally-recognized experts in the fields of surface water acid-bass chemistry, organic acids, and watershed modeling. The rationale for the proposed research is based on the recent comparison between MAGIC model hindcasts and paleolimnological inferences of historical acidification for a set of 33 statistically-selected Adirondack lakes. Agreement between diatom-inferred and MAGIC-hindcast lakewater chemistry in the earlier research had been less than satisfactory. Based on preliminary analyses, it was concluded that incorporation of a reasonable organic acid representation into the version of MAGIC used for hindcasting was the logical next step toward improving model agreement.

  2. Organic acid modeling and model validation: Workshop summary

    SciTech Connect

    Sullivan, T.J.; Eilers, J.M.

    1992-08-14

    A workshop was held in Corvallis, Oregon on April 9--10, 1992 at the offices of E S Environmental Chemistry, Inc. The purpose of this workshop was to initiate research efforts on the entitled Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and testing of the revised model using Independent data sources.'' The workshop was attended by a team of internationally-recognized experts in the fields of surface water acid-bass chemistry, organic acids, and watershed modeling. The rationale for the proposed research is based on the recent comparison between MAGIC model hindcasts and paleolimnological inferences of historical acidification for a set of 33 statistically-selected Adirondack lakes. Agreement between diatom-inferred and MAGIC-hindcast lakewater chemistry in the earlier research had been less than satisfactory. Based on preliminary analyses, it was concluded that incorporation of a reasonable organic acid representation into the version of MAGIC used for hindcasting was the logical next step toward improving model agreement.

  3. Observation and Modeling of Atmospheric Peroxyformic Acid

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Liang, H.; Huang, D.; Huang, L.; Wu, Q.; Wu, H.

    2015-12-01

    The existence and importance of peroxyformic acid (PFA) in the atmosphere has been under controversy. We present here, for the first time, the observation data for PFA from four field measurements carried out in China. These data provided powerful evidence that PFA can stay in the atmosphere, typically in dozens of pptv level. The relationship between PFA and other detected peroxides was examined. The results showed that PFA had a strong positive correlation with its homolog, peroxyacetic acid, due to their similar sources and sinks. Through an evaluation of PFA production and removal rates, we proposed that the reactions between peroxyformyl radical (HC(O)O2) and formaldehyde or the hydroperoxyl radical (HO2) were likely to be the major source and degradation into formic acid (FA) was likely to be the major sink for PFA. Based on a box model evaluation, we proposed that the HC(O)O2 and PFA chemistry was a major source for FA under low NOx conditions. Furthermore, it is found that the impact of the HC(O)O2 and PFA chemistry on radical cycling was dependent on the yield of HC(O)O2 radical from HC(O) + O2 reaction. When this yield exceeded 50%, the HC(O)O2 and PFA chemistry should not be neglected for calculating the radical budget. To make clear the exact importance of HC(O)O2 and PFA chemistry in the atmosphere, further kinetic, field and modeling studies are required.

  4. Coastal Modeling System

    DTIC Science & Technology

    2014-09-04

    Coastal Inlets Research Program Coastal Modeling System The work unit develops the Coastal Modeling System ( CMS ) and conducts basic research to...further understanding of sediment transport under mixed forcing from waves and currents. The CMS is a suite of coupled two- dimensional numerical...models for simulating waves, hydrodynamics, salinity and sediment transport, and morphology change. The CMS was identified by the USACE Hydraulics and

  5. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Uric acid test system. 862.1775 Section 862.1775...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1775 Uric acid test system. (a) Identification. A uric acid test system is a device intended to...

  6. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Uric acid test system. 862.1775 Section 862.1775...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1775 Uric acid test system. (a) Identification. A uric acid test system is a device intended to...

  7. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Uric acid test system. 862.1775 Section 862.1775...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1775 Uric acid test system. (a) Identification. A uric acid test system is a device intended to...

  8. Mathematical modeling of acid-base physiology

    PubMed Central

    Occhipinti, Rossana; Boron, Walter F.

    2015-01-01

    pH is one of the most important parameters in life, influencing virtually every biological process at the cellular, tissue, and whole-body level. Thus, for cells, it is critical to regulate intracellular pH (pHi) and, for multicellular organisms, to regulate extracellular pH (pHo). pHi regulation depends on the opposing actions of plasma-membrane transporters that tend to increase pHi, and others that tend to decrease pHi. In addition, passive fluxes of uncharged species (e.g., CO2, NH3) and charged species (e.g., HCO3− , NH4+) perturb pHi. These movements not only influence one another, but also perturb the equilibria of a multitude of intracellular and extracellular buffers. Thus, even at the level of a single cell, perturbations in acid-base reactions, diffusion, and transport are so complex that it is impossible to understand them without a quantitative model. Here we summarize some mathematical models developed to shed light onto the complex interconnected events triggered by acids-base movements. We then describe a mathematical model of a spherical cell–which to our knowledge is the first one capable of handling a multitude of buffer reaction–that our team has recently developed to simulate changes in pHi and pHo caused by movements of acid-base equivalents across the plasma membrane of a Xenopus oocyte. Finally, we extend our work to a consideration of the effects of simultaneous CO2 and HCO3− influx into a cell, and envision how future models might extend to other cell types (e.g., erythrocytes) or tissues (e.g., renal proximal-tubule epithelium) important for whole-body pH homeostasis. PMID:25617697

  9. The Earth System Model

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  10. Lead/acid batteries in systems to improve power quality

    NASA Astrophysics Data System (ADS)

    Taylor, P.; Butler, P.; Nerbun, W.

    Increasing dependence on computer technology is driving needs for extremely high-quality power to prevent loss of information, material, and workers' time that represent billions of dollars annually. This cost has motivated commercial and Federal research and development of energy storage systems that detect and respond to power-quality failures in milliseconds. Electrochemical batteries are among the storage media under investigation for these systems. Battery energy storage systems that employ either flooded lead/acid or valve-regulated lead/acid battery technologies are becoming commercially available to capture a share of this emerging market. Cooperative research and development between the US Department of Energy and private industry have led to installations of lead/acid-based battery energy storage systems to improve power quality at utility and industrial sites and commercial development of fully integrated, modular battery energy storage system products for power quality. One such system by AC Battery Corporation, called the PQ2000, is installed at a test site at Pacific Gas and Electric Company (San Ramon, CA, USA) and at a customer site at Oglethorpe Power Corporation (Tucker, GA, USA). The PQ2000 employs off-the-shelf power electronics in an integrated methodology to control the factors that affect the performance and service life of production-model, low-maintenance, flooded lead/acid batteries. This system, and other members of this first generation of lead/acid-based energy storage systems, will need to compete vigorously for a share of an expanding, yet very aggressive, power quality market.

  11. Transport of two naphthoic acids and salicylic acid in soil: experimental study and empirical modeling.

    PubMed

    Hanna, K; Lassabatere, L; Bechet, B

    2012-09-15

    In contrast to the parent compounds, the mechanisms responsible for the transport of natural metabolites of polycyclic aromatic hydrocarbons (PAH) in contaminated soils have been scarcely investigated. In this study, the sorption of three aromatic acids (1-naphthoic acid (NA), 1-hydroxy-2-naphthoic acid (HNA) and salicylic acid (SA)) was examined on soil, in a batch equilibrium single-system, with varying pH and acid concentrations. Continuous flow experiments were also carried out under steady-state water flow. The adsorption behavior of naphthoic and benzoic acids was affected by ligand functionality and molecular structure. All modeling options (equilibrium, chemical nonequilibrium, i.e. chemical kinetics, physical nonequilibrium, i.e. surface sites in the immobile water fraction, and both chemical and physical nonequilibrium) were tested in order to describe the breakthrough behavior of organic compounds in homogeneously packed soil columns. Tracer experiments showed a small fractionation of flow into mobile and immobile compartments, and the related hydrodynamic parameters were used for the modeling of reactive transport. In all cases, the isotherm parameters obtained from column tests differed from those derived from the batch experiments. The best accurate modeling was obtained considering nonequilibrium for the three organic compounds. Both chemical and physical nonequilibrium led to appropriate modeling for HNA and NA, while chemical nonequilibrium was the sole option for SA. SA sorption occurs mainly in mobile water and results from the concomitancy of instantaneous and kinetically limited sites. For all organic compounds, retention is contact condition dependent and differs between batch and column experiments. Such results show that preponderant mechanisms are solute dependent and kinetically limited, which has important implications for the fate and transport of carboxylated aromatic compounds in contaminated soils.

  12. Modeling of carbonic acid pretreatment process using ASPEN-Plus.

    PubMed

    Jayawardhana, Kemantha; Van Walsum, G Peter

    2004-01-01

    ASPEN-Plus process modeling software is used to model carbonic acid pretreatment of biomass. ASPEN-Plus was used because of the thorough treatment of thermodynamic interactions and its status as a widely accepted process simulator. Because most of the physical property data for many of the key components used in the simulation of pretreatment processes are not available in the standard ASPEN-Plus property databases, values from an in-house database (INHSPCD) developed by the National Renewable Energy Laboratory were used. The standard non-random-two-liquid (NRTL) or renon route was used as the main property method because of the need to distill ethanol and to handle dissolved gases. The pretreatment reactor was modeled as a "black box" stoichiometric reactor owing to the unavailability of reaction kinetics. The ASPEN-Plus model was used to calculate the process equipment costs, power requirements, and heating and cooling loads. Equipment costs were derived from published modeling studies. Wall thickness calculations were used to predict construction costs for the high-pressure pretreatment reactor. Published laboratory data were used to determine a suitable severity range for the operation of the carbonic acid reactor. The results indicate that combined capital and operating costs of the carbonic acid system are slightly higher than an H2SO4-based system and highly sensitive to reactor pressure and solids concentration.

  13. Model-Based Systems

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    2007-01-01

    Engineers, who design systems using text specification documents, focus their work upon the completed system to meet Performance, time and budget goals. Consistency and integrity is difficult to maintain within text documents for a single complex system and more difficult to maintain as several systems are combined into higher-level systems, are maintained over decades, and evolve technically and in performance through updates. This system design approach frequently results in major changes during the system integration and test phase, and in time and budget overruns. Engineers who build system specification documents within a model-based systems environment go a step further and aggregate all of the data. They interrelate all of the data to insure consistency and integrity. After the model is constructed, the various system specification documents are prepared, all from the same database. The consistency and integrity of the model is assured, therefore the consistency and integrity of the various specification documents is insured. This article attempts to define model-based systems relative to such an environment. The intent is to expose the complexity of the enabling problem by outlining what is needed, why it is needed and how needs are being addressed by international standards writing teams.

  14. Multiscale Cloud System Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncrieff, Mitchell W.

    2009-01-01

    The central theme of this paper is to describe how cloud system resolving models (CRMs) of grid spacing approximately 1 km have been applied to various important problems in atmospheric science across a wide range of spatial and temporal scales and how these applications relate to other modeling approaches. A long-standing problem concerns the representation of organized precipitating convective cloud systems in weather and climate models. Since CRMs resolve the mesoscale to large scales of motion (i.e., 10 km to global) they explicitly address the cloud system problem. By explicitly representing organized convection, CRMs bypass restrictive assumptions associated with convective parameterization such as the scale gap between cumulus and large-scale motion. Dynamical models provide insight into the physical mechanisms involved with scale interaction and convective organization. Multiscale CRMs simulate convective cloud systems in computational domains up to global and have been applied in place of contemporary convective parameterizations in global models. Multiscale CRMs pose a new challenge for model validation, which is met in an integrated approach involving CRMs, operational prediction systems, observational measurements, and dynamical models in a new international project: the Year of Tropical Convection, which has an emphasis on organized tropical convection and its global effects.

  15. Model development for naphthenic acids ozonation process.

    PubMed

    Al Jibouri, Ali Kamel H; Wu, Jiangning

    2015-02-01

    Naphthenic acids (NAs) are toxic constituents of oil sands process-affected water (OSPW) which is generated during the extraction of bitumen from oil sands. NAs consist mainly of carboxylic acids which are generally biorefractory. For the treatment of OSPW, ozonation is a very beneficial method. It can significantly reduce the concentration of NAs and it can also convert NAs from biorefractory to biodegradable. In this study, a factorial design (2(4)) was used for the ozonation of OSPW to study the influences of the operating parameters (ozone concentration, oxygen/ozone flow rate, pH, and mixing) on the removal of a model NAs in a semi-batch reactor. It was found that ozone concentration had the most significant effect on the NAs concentration compared to other parameters. An empirical model was developed to correlate the concentration of NAs with ozone concentration, oxygen/ozone flow rate, and pH. In addition, a theoretical analysis was conducted to gain the insight into the relationship between the removal of NAs and the operating parameters.

  16. Acid preservation systems for food products

    SciTech Connect

    Tiberio, J. E.; Cirigiano, M. C.

    1984-10-16

    Fumaric acid is used in combination with critical amounts of acetic acid to preserve acid containing food products from microbiological spoilage in the absence of or at reduced levels of chemical preservative.

  17. Haze formation in model beer systems.

    PubMed

    Miedl, Michaela; Garcia, Marco A; Bamforth, Charles W

    2005-12-28

    The interaction of a haze-active protein (gliadin) and a haze-active polyphenol (tannic acid) was studied in a model beer system in order to investigate the principle mechanisms of haze formation at low temperatures. Low concentrations (g/L) of tannic acid, high concentrations of gliadin, and comparatively high temperatures lead to maximum haze values. When considered on a molar basis, the greatest haze levels are displayed at an approximate 1:1 equivalence of polyphenol and protein. The greater part of haze formation was completed within 0.5 h, irrespective of the concentration of gliadin, the concentration of tannic acid, and the temperature of the model solution.

  18. Critical Infrastructure Modeling System

    SciTech Connect

    2004-10-01

    The Critical Infrastructure Modeling System (CIMS) is a 3D modeling and simulation environment designed to assist users in the analysis of dependencies within individual infrastructure and also interdependencies between multiple infrastructures. Through visual cuing and textual displays, a use can evaluate the effect of system perturbation and identify the emergent patterns that evolve. These patterns include possible outage areas from a loss of power, denial of service or access, and disruption of operations. Method of Solution: CIMS allows the user to model a system, create an overlay of information, and create 3D representative images to illustrate key infrastructure elements. A geo-referenced scene, satellite, aerial images or technical drawings can be incorporated into the scene. Scenarios of events can be scripted, and the user can also interact during run time to alter system characteristics. CIMS operates as a discrete event simulation engine feeding a 3D visualization.

  19. Modeling Sustainable Food Systems

    NASA Astrophysics Data System (ADS)

    Allen, Thomas; Prosperi, Paolo

    2016-05-01

    The processes underlying environmental, economic, and social unsustainability derive in part from the food system. Building sustainable food systems has become a predominating endeavor aiming to redirect our food systems and policies towards better-adjusted goals and improved societal welfare. Food systems are complex social-ecological systems involving multiple interactions between human and natural components. Policy needs to encourage public perception of humanity and nature as interdependent and interacting. The systemic nature of these interdependencies and interactions calls for systems approaches and integrated assessment tools. Identifying and modeling the intrinsic properties of the food system that will ensure its essential outcomes are maintained or enhanced over time and across generations, will help organizations and governmental institutions to track progress towards sustainability, and set policies that encourage positive transformations. This paper proposes a conceptual model that articulates crucial vulnerability and resilience factors to global environmental and socio-economic changes, postulating specific food and nutrition security issues as priority outcomes of food systems. By acknowledging the systemic nature of sustainability, this approach allows consideration of causal factor dynamics. In a stepwise approach, a logical application is schematized for three Mediterranean countries, namely Spain, France, and Italy.

  20. Modeling acid-gas generation from boiling chloride brines

    SciTech Connect

    Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

    2009-11-16

    This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent

  1. Enantioselective extraction of phenylsuccinic acid in aqueous two-phase systems based on acetone and β-cyclodextrin derivative: Modeling and optimization through response surface methodology.

    PubMed

    Wang, Jun; Liu, Qi; Rong, Liya; Yang, Hua; Jiao, Feipeng; Chen, Xiaoqing

    2016-10-07

    A novel aqueous two-phase system (ATPS) composed of β-cyclodextrin (β-CD) derivative and acetone was developed for enantioselective extraction of racemic phenylsuccinic acid (PSA). Binodal curves, tie-lines, and critical points for the investigated ATPS were determined and the experimental tie-lines data were successfully correlated by Othmer-Tobias, Bancroft, and Setschenow-type equations. ATPS containing sulfobutyl ether-β-CD (SBE-β-CD) exhibited better enantioselectivity than that using carboxymethyl-β-CD (CM-β-CD). To optimize enantioselective partitioning conditions of PSA in acetone/SBE-β-CD ATPS, three factors (PSA concentration, pH, and equilibrium temperature) were analyzed by using central composite design in response surface methodology. The calculated equilibrium constants of inclusion complexation are 1638.64M(-1) for SBE-β-CD-(R)-PSA and 835.84M(-1) for SBE-β-CD-(S)-PSA, respectively. Under the optimized conditions, the separation factor of 3.14 and high enrichment efficiency (ER=98.06%, ES=99.25%) were simultaneously achieved in a single step.

  2. Distributed fuzzy system modeling

    SciTech Connect

    Pedrycz, W.; Chi Fung Lam, P.; Rocha, A.F.

    1995-05-01

    The paper introduces and studies an idea of distributed modeling treating it as a new paradigm of fuzzy system modeling and analysis. This form of modeling is oriented towards developing individual (local) fuzzy models for specific modeling landmarks (expressed as fuzzy sets) and determining the essential logical relationships between these local models. The models themselves are implemented in the form of logic processors being regarded as specialized fuzzy neural networks. The interaction between the processors is developed either in an inhibitory or excitatory way. In more descriptive way, the distributed model can be sought as a collection of fuzzy finite state machines with their individual local first or higher order memories. It is also clarified how the concept of distributed modeling narrows down a gap between purely numerical (quantitative) models and the qualitative ones originated within the realm of Artificial Intelligence. The overall architecture of distributed modeling is discussed along with the detailed learning schemes. The results of extensive simulation experiments are provided as well. 17 refs.

  3. Identifiability of PBPK models with applications to dimethylarsinic acid exposure.

    PubMed

    Garcia, Ramon I; Ibrahim, Joseph G; Wambaugh, John F; Kenyon, Elaina M; Setzer, R Woodrow

    2015-12-01

    Any statistical model should be identifiable in order for estimates and tests using it to be meaningful. We consider statistical analysis of physiologically-based pharmacokinetic (PBPK) models in which parameters cannot be estimated precisely from available data, and discuss different types of identifiability that occur in PBPK models and give reasons why they occur. We particularly focus on how the mathematical structure of a PBPK model and lack of appropriate data can lead to statistical models in which it is impossible to estimate at least some parameters precisely. Methods are reviewed which can determine whether a purely linear PBPK model is globally identifiable. We propose a theorem which determines when identifiability at a set of finite and specific values of the mathematical PBPK model (global discete identifiability) implies identifiability of the statistical model. However, we are unable to establish conditions that imply global discrete identifiability, and conclude that the only safe approach to analysis of PBPK models involves Bayesian analysis with truncated priors. Finally, computational issues regarding posterior simulations of PBPK models are discussed. The methodology is very general and can be applied to numerous PBPK models which can be expressed as linear time-invariant systems. A real data set of a PBPK model for exposure to dimethyl arsinic acid (DMA(V)) is presented to illustrate the proposed methodology.

  4. Distributed generation systems model

    SciTech Connect

    Barklund, C.R.

    1994-12-31

    A slide presentation is given on a distributed generation systems model developed at the Idaho National Engineering Laboratory, and its application to a situation within the Idaho Power Company`s service territory. The objectives of the work were to develop a screening model for distributed generation alternatives, to develop a better understanding of distributed generation as a utility resource, and to further INEL`s understanding of utility concerns in implementing technological change.

  5. Climate system modeling program

    SciTech Connect

    1995-12-31

    The Climate System Modeling Project is a component activity of NSF's Climate Modeling, Analysis and Prediction Program, supported by the Atmospheric Sciences Program, Geosciences Directorate. Its objective is to accelerate progress toward reliable prediction of global and regional climate changes in the decades ahead. CSMP operates through workshops, support for post-docs and graduate students and other collaborative activities designed to promote interdisciplinary and strategic work in support of the overall objective (above) and specifically in three areas, (1) Causes of interdecadal variability in the climate system, (2) Interactions of regional climate forcing with global processes, and (3) Scientific needs of climate assessment.

  6. Modeling the earth system

    SciTech Connect

    Ojima, D.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  7. IR-UV photochemistry of protein-nucleic acid systems

    SciTech Connect

    Kozub, J.; Edwards, G.

    1995-12-31

    UV light has often been used to induce the formation of covalent bonds between DNA (or RNA) and tightly-bound protein molecules. However, the internal photoreactions of nucleic acids and proteins limit the yield and complicate the analysis of intermolecular crosslinks. In an ongoing search for improved reaction specificity or new photoreactions in these systems, we have employed UV photons from a Nd:YAG-pumped dye laser and mid-IR photons from the Vanderbilt FEL. Having crosslinked several protein-nucleic acid systems with nanosecond UV laser pulses, we are currently studying the effect of various IR wavelengths on a model system (gene 32 protein and poly[dT]). We have found that irradiation with sufficiently intense FEL macropulses creates an altered form of gene 32 protein which was not observed with UV-only irradiation. The electrophoretic nobility of the product is consistent with the formation of a specific protein-protein crosslink. No evidence of the non-specific protein damage typically induced by UV light is found. The yield of the new photoproduct is apparently enhanced by exposure to FEL macropulses which are synchronized with UV laser pulses. With ideal exposure parameters, the two-color reaction effectively competes with UV-only reactions. Experiments designed to determine the reaction mechanism and to demonstrate FEL-induced reactions in other protein-nucleic acid systems are currently underway.

  8. Modeling the continuous lactic acid production process from wheat flour.

    PubMed

    Gonzalez, Karen; Tebbani, Sihem; Lopes, Filipa; Thorigné, Aurore; Givry, Sébastien; Dumur, Didier; Pareau, Dominique

    2016-01-01

    A kinetic model of the simultaneous saccharification, protein hydrolysis, and fermentation (SSPHF) process for lactic acid production from wheat flour has been developed. The model describes the bacterial growth, substrate consumption, lactic acid production, and maltose hydrolysis. The model was fitted and validated with data from SSPHF experiments obtained under different dilution rates. The results of the model are in good agreement with the experimental data. Steady state concentrations of biomass, lactic acid, glucose, and maltose as function of the dilution rate were predicted by the model. This steady state analysis is further useful to determine the operating conditions that maximize lactic acid productivity.

  9. Dynamic modeling of lactic acid fermentation metabolism with Lactococcus lactis.

    PubMed

    Oh, Euhlim; Lu, Mingshou; Park, Changhun; Park, Changhun; Oh, Han Bin; Lee, Sang Yup; Lee, Jinwon

    2011-02-01

    A dynamic model of lactic acid fermentation using Lactococcus lactis was constructed, and a metabolic flux analysis (MFA) and metabolic control analysis (MCA) were performed to reveal an intensive metabolic understanding of lactic acid bacteria (LAB). The parameter estimation was conducted with COPASI software to construct a more accurate metabolic model. The experimental data used in the parameter estimation were obtained from an LC-MS/ MS analysis and time-course simulation study. The MFA results were a reasonable explanation of the experimental data. Through the parameter estimation, the metabolic system of lactic acid bacteria can be thoroughly understood through comparisons with the original parameters. The coefficients derived from the MCA indicated that the reaction rate of L-lactate dehydrogenase was activated by fructose 1,6-bisphosphate and pyruvate, and pyruvate appeared to be a stronger activator of L-lactate dehydrogenase than fructose 1,6-bisphosphate. Additionally, pyruvate acted as an inhibitor to pyruvate kinase and the phosphotransferase system. Glucose 6-phosphate and phosphoenolpyruvate showed activation effects on pyruvate kinase. Hexose transporter was the strongest effector on the flux through L-lactate dehydrogenase. The concentration control coefficient (CCC) showed similar results to the flux control coefficient (FCC).

  10. Investigation of the photochemical changes of chlorogenic acids induced by ultraviolet light in model systems and in agricultural practice with Stevia rebaudiana cultivation as an example.

    PubMed

    Karaköse, Hande; Jaiswal, Rakesh; Deshpande, Sagar; Kuhnert, Nikolai

    2015-04-08

    Mono- and diacyl chlorogenic acids undergo photochemical trans-cis isomerization under ultraviolet (UV) irradiation. The photochemical equilibrium composition was established for eight selected derivatives. In contrast to all other dicaffeoylquinic acid derivatives, cynarin (1,3-dicaffeoylquinic acid) undergoes a [2 + 2] photochemical cycloaddition reaction, constituting a first example of Schmidt's law in a natural product family. The relevance of photochemical isomerization in agricultural practice was investigated using 120 samples of Stevia rebaudiana leave samples grown under defined cultivation conditions. Ratios of cis to trans chlorogenic acids were determined in leaf samples and correlated with climatic and harvesting conditions. The data indicate a clear correlation between the formation of cis-caffeoyl derivatives and sunshine hours prior to harvesting and illustrate the relevance of UV exposure to plant material affecting its phytochemical composition.

  11. Hydroxybenzoic acid isomers and the cardiovascular system

    PubMed Central

    2014-01-01

    Today we are beginning to understand how phytochemicals can influence metabolism, cellular signaling and gene expression. The hydroxybenzoic acids are related to salicylic acid and salicin, the first compounds isolated that have a pharmacological activity. In this review we examine how a number of hydroxyphenolics have the potential to ameliorate cardiovascular problems related to aging such as hypertension, atherosclerosis and dyslipidemia. The compounds focused upon include 2,3-dihydroxybenzoic acid (Pyrocatechuic acid), 2,5-dihydroxybenzoic acid (Gentisic acid), 3,4-dihydroxybenzoic acid (Protocatechuic acid), 3,5-dihydroxybenzoic acid (α-Resorcylic acid) and 3-monohydroxybenzoic acid. The latter two compounds activate the hydroxycarboxylic acid receptors with a consequence there is a reduction in adipocyte lipolysis with potential improvements of blood lipid profiles. Several of the other compounds can activate the Nrf2 signaling pathway that increases the expression of antioxidant enzymes, thereby decreasing oxidative stress and associated problems such as endothelial dysfunction that leads to hypertension as well as decreasing generalized inflammation that can lead to problems such as atherosclerosis. It has been known for many years that increased consumption of fruits and vegetables promotes health. We are beginning to understand how specific phytochemicals are responsible for such therapeutic effects. Hippocrates’ dictum of ‘Let food be your medicine and medicine your food’ can now be experimentally tested and the results of such experiments will enhance the ability of nutritionists to devise specific health-promoting diets. PMID:24943896

  12. Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: Eosin yellow, malachite green and crystal violet single component systems.

    PubMed

    Porkodi, K; Vasanth Kumar, K

    2007-05-08

    Batch experiments were carried out for the sorption of eosin yellow, malachite green and crystal violet onto jute fiber carbon (JFC). The operating variables studied are the initial dye concentration, initial solution pH, adsorbent dosage and contact time. Experimental equilibrium data were fitted to Freundlich, Langmuir and Redlich-Peterson isotherm by non-linear regression method. Langmuir isotherm was found to be the optimum isotherm for eosin yellow/JFC system and Freundlich isotherm was found to be the optimum isotherm for malachite green/JFC and crystal violet/JFC system at equilibrium conditions. The sorption capacities of eosin yellow, malachite green and crystal violet onto JFC according to Langmuir isotherm were found to 31.49 mg/g, 136.58 mg/g, 27.99 mg/g, respectively. A single stage batch adsorber was designed for the adsorption of eosin yellow, malachite green and crystal violet onto JFC based on the optimum isotherm. A pseudo second order kinetic model well represented the kinetic uptake of dyes studied onto JFC. The pseudo second order kinetic model successfully simulated the kinetics of dye uptake process. The dye sorption process involves both surface and pore diffusion with predominance of surface diffusion at earlier stages. A Boyd plot confirms the external mass transfer as the rate limiting step in the dye sorption process. The influence of initial dye concentration on the dye sorption process was represented in the form of dimensionless mass transfer numbers (Sh/Sc(0.33)) and was found to be agreeing with the expression:

  13. Modelling robot construction systems

    NASA Technical Reports Server (NTRS)

    Grasso, Chris

    1990-01-01

    TROTER's are small, inexpensive robots that can work together to accomplish sophisticated construction tasks. To understand the issues involved in designing and operating a team of TROTER's, the robots and their components are being modeled. A TROTER system that features standardized component behavior is introduced. An object-oriented model implemented in the Smalltalk programming language is described and the advantages of the object-oriented approach for simulating robot and component interactions are discussed. The presentation includes preliminary results and a discussion of outstanding issues.

  14. NEP systems model

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    1993-01-01

    A new nuclear electric propulsion (NEP) systems analysis code is discussed. The new code is modular and consists of a driver code and various subsystem models. The code models five different subsystems: (1) reactor/shield; (2) power conversion; (3) heat rejection; (4) power management and distribution (PMAD); and (5) thrusters. The code optimizes for the following design criteria: minimum mass; minimum radiator area; and low mass/low area. The code also optimizes the following parameters: separation distance; temperature ratio; pressure ratio; and transmission frequency. The discussion is presented in vugraph form.

  15. 21 CFR 862.1509 - Methylmalonic acid (nonquantitative) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Methylmalonic acid (nonquantitative) test system. 862.1509 Section 862.1509 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Test Systems § 862.1509 Methylmalonic acid (nonquantitative) test system. (a) Identification....

  16. Amino acid isotopic analysis in agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A relatively new approach to stable isotopic analysis—referred to as compound-specific isotopic analysis (CSIA)—has emerged, centering on the measurement of 15N:14N ratios in amino acids (glutamic acid and phenylalanine). CSIA has recently been used to generate trophic position estimates among anima...

  17. A comparative study of short chain and long chain mercapto acids used in biosensor fabrication: A VEGF-R1-based immunosensor as a model system.

    PubMed

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2016-01-01

    A novel impedimetric biosensor utilizing a biological receptor, vascular endothelial growth factor receptor-1 (VEGF-R1), was developed for the determination of vascular endothelial growth factor (VEGF). VEGF-R1 was covalently immobilized by coupling with 11-mercaptoundecanoic acid, which formed a self-assembled monolayer on gold electrodes. Cyclic voltammetry and electrochemical impedance spectroscopy techniques were employed to characterize the immobilization process and to detect VEGF. To successfully construct the biosensor current, the experimental parameters were optimized. A Kramers-Kronig transform was performed on the experimental impedance data. The results obtained provided a linear response range from 1 to 6 ng/mL human VEGF. The applicability of the biosensor developed to determine VEGF in a spiked artificial human serum sample was tested. The important parameters related with the biosensors fabricated by using two different mercapto acids were compared in terms of the self-assembly processes, the activation conditions of -COOH ends, linear ranges obtained for VEGF, repeatabilities and reproducibilities, and cleaning procedures. The results of this study revealed that the length of the mercapto acids used for biosensor fabrication considerably affected the analytical performance and the practicability of the preparation of the biosensor.

  18. Regulation of the plasma amino acid profile by leucine via the system L amino acid transporter.

    PubMed

    Zhen, Hongmin; Nakamura, Koichi; Kitaura, Yasuyuki; Kadota, Yoshihiro; Ishikawa, Takuya; Kondo, Yusuke; Xu, Minjun; Shimomura, Yoshiharu

    2015-01-01

    Plasma concentrations of amino acids reflect the intracellular amino acid pool in mammals. However, the regulatory mechanism requires clarification. In this study, we examined the effect of leucine administration on plasma amino acid profiles in mice with and without the treatment of 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) or rapamycin as an inhibitor of system L or mammalian target of rapamycin complex 1, respectively. The elevation of plasma leucine concentration after leucine administration was associated with a significant decrease in the plasma concentrations of isoleucine, valine, methionine, phenylalanine, and tyrosine; BCH treatment almost completely blocked the leucine-induced decrease in plasma amino acid concentrations. Rapamycin treatment had much less effects on the actions of leucine than BCH treatment. These results suggest that leucine regulates the plasma concentrations of branched-chain amino acids, methionine, phenylalanine, and tyrosine, and that system L amino acid transporters are involved in the leucine action.

  19. Revised reference model for nitric acid

    NASA Technical Reports Server (NTRS)

    Gille, J. C.; Bailey, P. L.; Craig, C. A.

    1989-01-01

    A nearly global set of data on the nitric acid distribution was obtained for seven months by the Limb Infrared Monitor of the Stratosphere (LIMS) experiment on the Nimbus 7 spacecraft. The evaluation of the accuracy, precision, and resolution of these data is described, and a description of the major features of the nitric acid distributions is presented. The zonal mean for nitric acid is distributed in a stratospheric layer that peaks near 30 mb, with the largest mixing ratios occurring in polar regions, especially in winter.

  20. Proposed reference model for nitric acid

    NASA Astrophysics Data System (ADS)

    Gille, John C.; Bailey, Paul L.; Craig, Cheril A.

    A nearly global set of data on the nitric acid distribution was obtained for seven months by the Limb Infrared Monitor of the Stratosphere (LIMS) experiment on the Nimbus 7 spacecraft. The evaluation of the accuracy, precision and resolution of these data is described, and a description of the major features of the nitric acid distributions is presented. The zonal mean for nitric acid is distributed in a stratospheric layer that peaks near 30 mb, with the largest mixing ratios occurring in polar regions, especially in winter.

  1. Revised reference model for nitric acid

    NASA Astrophysics Data System (ADS)

    Gille, J. C.; Bailey, P. L.; Craig, C. A.

    A nearly global set of data on the nitric acid distribution was obtained for seven months by the Limb Infrared Monitor of the Stratosphere (LIMS) experiment on the Nimbus 7 spacecraft. The evaluation of the accuracy, precision and resolution of these data is described, and a description of the major features of the nitric acid distributions is presented. The zonal mean for nitric acid is distributed in a stratospheric layer that peaks near 30 mb, with the largest mixing ratios occurring in polar regions, especially in winter.

  2. Revised reference model for nitric acid

    NASA Astrophysics Data System (ADS)

    Gille, J. C.; Bailey, P. L.; Craig, C. A.

    1993-01-01

    A nearly global set of data on the nitric acid distribution was obtained for seven months by the Limb Infrared Monitor of the Stratosphere (LIMS) experiment on the Nimbus 7 spacecraft. The evaluation of the accuracy, precision, and resolution of these data is described, and a description of the major features of the nitric acid distributions is presented. The zonal mean for nitric acid is distributed in a stratospheric layer that peaks near 30 mb, with the largest mixing ratios occurring in polar regions, especially in winter.

  3. Thoron-tartaric acid systems for spectrophotometric determination of thorium

    USGS Publications Warehouse

    Grimaldi, F.S.; Fletcher, M.H.

    1956-01-01

    Thoron is commonly used for the spectrophotometric determination of thorium. An undesirable feature of its use is its high sensitivity to zirconium. This study describes the use of tartaric acid as a masking reagent for zirconium. Three tartaric acid-thoron systems, developed for the determination of thorium, differ with respect to the concentrations of thoron and tartaric acid. Mesotartaric acid, used in one of the systems, is most effective in masking zirconium. The behavior of rarer elements, usually associated with thorium ores, is determined in two systems, and a dilution method is described for the direct determination of thorium in monazite concentrates.

  4. System of systems modeling and analysis.

    SciTech Connect

    Campbell, James E.; Anderson, Dennis James; Longsine, Dennis E.; Shirah, Donald N.

    2005-01-01

    This report documents the results of an LDRD program entitled 'System of Systems Modeling and Analysis' that was conducted during FY 2003 and FY 2004. Systems that themselves consist of multiple systems (referred to here as System of Systems or SoS) introduce a level of complexity to systems performance analysis and optimization that is not readily addressable by existing capabilities. The objective of the 'System of Systems Modeling and Analysis' project was to develop an integrated modeling and simulation environment that addresses the complex SoS modeling and analysis needs. The approach to meeting this objective involved two key efforts. First, a static analysis approach, called state modeling, has been developed that is useful for analyzing the average performance of systems over defined use conditions. The state modeling capability supports analysis and optimization of multiple systems and multiple performance measures or measures of effectiveness. The second effort involves time simulation which represents every system in the simulation using an encapsulated state model (State Model Object or SMO). The time simulation can analyze any number of systems including cross-platform dependencies and a detailed treatment of the logistics required to support the systems in a defined mission.

  5. Modeling acid transport in chemically amplified resist films

    NASA Astrophysics Data System (ADS)

    Patil, Abhijit A.; Doxastakis, Manolis; Stein, Gila E.

    2014-03-01

    The acid-catalyzed deprotection of glassy poly(4-hydroxystyrene-co-tert butyl acrylate) films was studied with infrared absorbance spectroscopy and stochastic simulations. Experimental data were interpreted with a simple description of subdiffusive acid transport coupled to second-order acid loss. This model predicts key attributes of observed deprotection rates, such as fast reaction at short times, slow reaction at long times, and a non-linear dependence on acid loading. The degree of anomalous character is reduced by increasing the post-exposure bake temperature or adding plasticizing agents to the polymer resin. These findings indicate that the acid mobility and overall deprotection kinetics are coupled to glassy matrix dynamics. Furthermore, the acid diffusion lengths were calculated from the anomalous transport model and compared with nanopattern line widths. The consistent scaling between experiments and simulations suggests that the anomalous diffusion model could be further developed into a predictive lithography tool.

  6. Venus clouds - A dirty hydrochloric acid model.

    NASA Technical Reports Server (NTRS)

    Hapke, B.

    1972-01-01

    The spectral and polarization data for Venus are consistent with micrometer-sized aerosol cloud particles of hydrochloric acid with soluble and insoluble iron compounds, whose source could be volcanic or crustal dust. The yellow color of the clouds could be due to absorption bands in the near UV involving ferric iron and chlorine complexes. It is pointed out that the UV features could arise from variations in the concentrations of iron and hydrochloric acid in the cloud particles.

  7. Tested Demonstrations: Color Oscillations in the Formic Acid-Nitric Acid-Sulfuric Acid System.

    ERIC Educational Resources Information Center

    Raw, C. J. G.; And Others

    1983-01-01

    Presented are procedures for demonstrating the production of color oscillations when nitric acid is added to a formic acid/concentrated sulfuric acid mixture. Because of safety considerations, "Super-8" home movie of the color changes was found to be satisfactory for demonstration purposes. (JN)

  8. Post-Stroke Depression Modulation and in Vivo Antioxidant Activity of Gallic Acid and Its Synthetic Derivatives in a Murine Model System

    PubMed Central

    Nabavi, Seyed Fazel; Habtemariam, Solomon; Di Lorenzo, Arianna; Sureda, Antoni; Khanjani, Sedigheh; Nabavi, Seyed Mohammad; Daglia, Maria

    2016-01-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a plant secondary metabolite, which shows antioxidant activity and is commonly found in many plant-based foods and beverages. Recent evidence suggests that oxidative stress contributes to the development of many human chronic diseases, including cardiovascular and neurodegenerative pathologies, metabolic syndrome, type 2 diabetes and cancer. GA and its derivative, methyl-3-O-methyl gallate (M3OMG), possess physiological and pharmacological activities closely related to their antioxidant properties. This paper describes the antidepressive-like effects of intraperitoneal administration of GA and two synthetic analogues, M3OMG and P3OMG (propyl-3-O-methylgallate), in balb/c mice with post-stroke depression, a secondary form of depression that could be due to oxidative stress occurring during cerebral ischemia and the following reperfusion. Moreover, this study determined the in vivo antioxidant activity of these compounds through the evaluation of superoxide dismutase (SOD) and catalase (Cat) activity, thiobarbituric acid-reactive substances (TBARS) and reduced glutathione (GSH) levels in mouse brain. GA and its synthetic analogues were found to be active (at doses of 25 and 50 mg/kg) in the modulation of depressive symptoms and the reduction of oxidative stress, restoring normal behavior and, at least in part, antioxidant endogenous defenses, with M3OMG being the most active of these compounds. SOD, TBARS, and GSH all showed strong correlation with behavioral parameters, suggesting that oxidative stress is tightly linked to the pathological processes involved in stroke and PSD. As a whole, the obtained results show that the administration of GA, M3OMG and P3OMG induce a reduction in depressive symptoms and oxidative stress. PMID:27136579

  9. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, James E.; Ross, Harley H.

    1981-01-01

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  10. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, J.E.; Ross, H.H.

    1980-01-11

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  11. Organic acids enhanced decoloration of azo dye in gas phase surface discharge plasma system.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-01-25

    A gas phase surface discharge plasma combined with organic acids system was developed to enhance active species mass transfer and dye-containing wastewater treatment efficacy, with Acid Orange II (AO7) as the model pollutant. The effects of discharge voltage and various organic acid additives (acetic acid, lactic acid and nonoic acid) on AO7 decoloration efficiency were evaluated. The experimental results showed that an AO7 decoloration efficiency of approximately 69.0% was obtained within 4 min of discharge plasma treatment without organic acid addition, which was improved to 82.8%, 83.5% and 88.6% within the same treatment time with the addition of acetic acid, lactic acid and nonoic acid, respectively. The enhancement effects on AO7 decoloration efficiency could be attributed to the decrease in aqueous surface tension, improvement in bubble distribution and shape, and increase in ozone equivalent concentration. The AO7 wastewater was biodegradable after discharge plasma treatment with the addition of organic acid. AO7 decomposition intermediates were analyzed by UV-vis spectrometry and GC-MS; 2-naphthol, 1,4-benzoquinone, phthalic anhydride, coumarin, 1,2-naphthoquinone, and 2-formyl-benzoic acid were detected. A possible pathway for AO7 decomposition in this system was proposed.

  12. Sodium heat transfer system modeling

    NASA Astrophysics Data System (ADS)

    Baker, A. F.; Fewell, M. E.

    1983-11-01

    The sodium heat transfer system of the international energy agency (IEA) small solar power systems (SSPS) central receiver system (CRS), which includes the heliostat field, receiver, hot and cold storage vessels, and sodium/water steam generator was modeled. The computer code SOLTES (simulator of large thermal energy systems), was used to model this system. The results from SOLTES are compared to measured data.

  13. Bioluminescence regenerative cycle (BRC) system for nucleic acid quantification assays

    NASA Astrophysics Data System (ADS)

    Hassibi, Arjang; Lee, Thomas H.; Davis, Ronald W.; Pourmand, Nader

    2003-07-01

    A new label-free methodology for nucleic acid quantification has been developed where the number of pyrophosphate molecules (PPi) released during polymerization of the target nucleic acid is counted and correlated to DNA copy number. The technique uses the enzymatic complex of ATP-sulfurylase and firefly luciferase to generate photons from PPi. An enzymatic unity gain positive feedback is also implemented to regenerate the photon generation process and compensate any decay in light intensity by self regulation. Due to this positive feedback, the total number of photons generated by the bioluminescence regenerative cycle (BRC) can potentially be orders of magnitude higher than typical chemiluminescent processes. A system level kinetic model that incorporates the effects of contaminations and detector noise was used to show that the photon generation process is in fact steady and also proportional to the nucleic acid quantity. Here we show that BRC is capable of detecting quantities of DNA as low as 1 amol (10-18 mole) in 40μlit aqueous solutions, and this enzymatic assay has a controllable dynamic range of 5 orders of magnitude. The sensitivity of this technology, due to the excess number of photons generated by the regenerative cycle, is not constrained by detector performance, but rather by possible PPi or ATP (adenosine triphosphate) contamination, or background bioluminescence of the enzymatic complex.

  14. Modeling of free fatty acid dynamics: insulin and nicotinic acid resistance under acute and chronic treatments.

    PubMed

    Andersson, Robert; Kroon, Tobias; Almquist, Joachim; Jirstrand, Mats; Oakes, Nicholas D; Evans, Neil D; Chappel, Michael J; Gabrielsson, Johan

    2017-02-21

    Nicotinic acid (NiAc) is a potent inhibitor of adipose tissue lipolysis. Acute administration results in a rapid reduction of plasma free fatty acid (FFA) concentrations. Sustained NiAc exposure is associated with tolerance development (drug resistance) and complete adaptation (FFA returning to pretreatment levels). We conducted a meta-analysis on a rich pre-clinical data set of the NiAc-FFA interaction to establish the acute and chronic exposure-response relations from a macro perspective. The data were analyzed using a nonlinear mixed-effects framework. We also developed a new turnover model that describes the adaptation seen in plasma FFA concentrations in lean Sprague-Dawley and obese Zucker rats following acute and chronic NiAc exposure. The adaptive mechanisms within the system were described using integral control systems and dynamic efficacies in the traditional [Formula: see text] model. Insulin was incorporated in parallel with NiAc as the main endogenous co-variate of FFA dynamics. The model captured profound insulin resistance and complete drug resistance in obese rats. The efficacy of NiAc as an inhibitor of FFA release went from 1 to approximately 0 during sustained exposure in obese rats. The potency of NiAc as an inhibitor of insulin and of FFA release was estimated to be 0.338 and 0.436 [Formula: see text], respectively, in obese rats. A range of dosing regimens was analyzed and predictions made for optimizing NiAc delivery to minimize FFA exposure. Given the exposure levels of the experiments, the importance of washout periods in-between NiAc infusions was illustrated. The washout periods should be [Formula: see text]2 h longer than the infusions in order to optimize 24 h lowering of FFA in rats. However, the predicted concentration-response relationships suggests that higher AUC reductions might be attained at lower NiAc exposures.

  15. Nucleic acid detection system and method for detecting influenza

    DOEpatents

    Cai, Hong; Song, Jian

    2015-03-17

    The invention provides a rapid, sensitive and specific nucleic acid detection system which utilizes isothermal nucleic acid amplification in combination with a lateral flow chromatographic device, or DNA dipstick, for DNA-hybridization detection. The system of the invention requires no complex instrumentation or electronic hardware, and provides a low cost nucleic acid detection system suitable for highly sensitive pathogen detection. Hybridization to single-stranded DNA amplification products using the system of the invention provides a sensitive and specific means by which assays can be multiplexed for the detection of multiple target sequences.

  16. Prediction of liquid-liquid equilibrium for systems of vegetable oils, fatty acids, and ethanol

    SciTech Connect

    Batista, E.; Monnerat, S.; Stragevitch, L.; Pina, C.G.; Goncalves, C.B.; Meirelles, A.J.A.

    1999-12-01

    Group interaction parameters for the UNIFAC and ASOG models were specially adjusted for predicting liquid-liquid equilibrium (LLE) for systems of vegetable oils, fatty acids, and ethanol at temperatures ranging from 20 to 45 C. Experimental liquid-liquid equilibrium data for systems of triolein, oleic acid, and ethanol and of triolein, stearic acid, and ethanol were measured and utilized in the adjustment. The average percent deviation between experimental and calculated compositions was 0.79% and 0.52% for the UNIFAC and ASOG models, respectively. The prediction of liquid-liquid equilibrium for systems of vegetable oils, fatty acids, and ethanol was quite successful, with an average deviation of 1.31% and 1.32% for the UNIFAC and ASOG models, respectively.

  17. An experimental and modeling study of humic acid concentration effect on H(+) binding: Application of the NICA-Donnan model.

    PubMed

    Vidali, Roza; Remoundaki, Emmanouela; Tsezos, Marios

    2009-11-15

    Humic substances are the most abundant components of the colloidal and the dissolved fraction of natural organic matter (NOM) and they are characterized by a strong binding capacity for both metals and organic pollutants, affecting their mobility and bioavailability. The understanding of the humic acidic character is the first necessary step for the study of the mechanisms of binding of other positively charged soluble metal species by humic molecules. The present work, which constitutes part of the Ph.D. thesis of Roza Vidali, reports results on the influence of the concentration of humic acids on the binding of protons obtained through both an experimental and a modeling approach. A reference purified peat humic acid (PPHA) isolated by the International Humic Substances Society (IHSS) and a humic acid from a Greek soil (GHA) were experimentally studied at various humic acid concentrations, ranging from 20 to 200mgL(-1). The proton binding isotherms obtained at different humic acid concentrations have shown that proton binding is dependent on the concentration of both humic acids. Proton binding experimental data were fitted to the NICA-Donnan model and the model parameter values were calculated for humic acid concentrations of 20 and >or=100mgL(-1). The results obtained for the NICA-Donnan parameters at humic acid concentrations >or=100mgL(-1) are in excellent agreement with those reported in the literature. However, these model parameter values cannot be used for modeling and predicting cation binding in natural aquatic systems, where humic acid concentrations are much lower. Two sets of the NICA-Donnan parameters are reported: one for humic acid concentrations of >or=100mgL(-1) and one for humic acid concentration of 20mgL(-1). The significance of the parameters values for each concentration level is also discussed.

  18. Amino acid auxotrophy as a system of immunological control nodes.

    PubMed

    Murray, Peter J

    2016-02-01

    Cells of the immune system are auxotrophs for most amino acids, including several nonessential ones. Arginine and tryptophan are used within the regulatory immune networks to control proliferation and function through pathways that actively deplete the amino acid from the microenvironment or that create regulatory molecules such as nitric oxide or kynurenines. How immune cells integrate information about essential amino acid supplies and then transfer these signals to growth and activation pathways remains unclear but has potential for pathway discovery about amino sensing. In applied research, strategies to harness amino acid auxotrophy so as to block cancerous lymphocyte growth have been attempted for decades with limited success. Emerging insights about amino acid metabolism may lead to new strategies in clinical medicine whereby both amino acid auxotrophy and the immunoregulatory pathways controlled by amino acids can be manipulated.

  19. An antisense peptide nucleic acid against Pseudomonas aeruginosa inhibiting bacterial-induced inflammatory responses in the cystic fibrosis IB3-1 cellular model system.

    PubMed

    Montagner, Giulia; Bezzerri, Valentino; Cabrini, Giulio; Fabbri, Enrica; Borgatti, Monica; Lampronti, Ilaria; Finotti, Alessia; Nielsen, Peter E; Gambari, Roberto

    2017-02-03

    Discovery of novel antimicrobial agents against Pseudomonas aeruginosa able to inhibit bacterial growth as well as the resulting inflammatory response is a key goal in cystic fibrosis research. We report in this paper that a peptide nucleic acid (PNA3969) targeting the translation initiation region of the essential acpP gene of P. aeruginosa, and previously shown to inhibit bacterial growth, concomitantly also strongly inhibits PAO1 induced up-regulation of the pro-inflammatory markers IL-8, IL-6, G-CSF, IFN-γ, IP-10, MCP-1 and TNF-α in IB3-1 cystic fibrosis cells infected by P. aeruginosa PAO1. Remarkably, no effect on PAO1 induction of VEGF, GM-CSF and IL-17 was observed. Analogous experiments using a two base mis-match control PNA did not show such inhibition. Furthermore, no significant effects of the PNAs were seen on cell growth, apoptosis or secretome profile in uninfected IB3-1 cells (with the exception of a PNA-mediated up-regulation of PDGF, IL-17 and GM-CSF). Thus, we conclude that in cell culture an antimicrobial PNA against Pseudomonas can inhibit the expression of pro-inflammatory cytokines otherwise induced by the infection. In particular, the effects of PNA-3969 on IL-8 gene expression are significant considering the key role of this protein in the cystic fibrosis inflammatory process exacerbated by P. aeruginosa infection.

  20. System for agitating the acid in a lead-acid battery

    DOEpatents

    Weintraub, Alvin; MacCormack, Robert S.

    1987-01-01

    A system and method for agitating the acid in a large lead-sulfuric acid storage battery of the calcium type. An air-lift is utilized to provide the agitation. The air fed to the air-lift is humidified prior to being delivered to the air-lift.

  1. Co-oxidation of the sulfur-containing amino acids in an autoxidizing lipid system

    USGS Publications Warehouse

    Wedemeyer, G.A.; Dollar, A.M.

    1963-01-01

    Oxidation of the sulfur amino acids by autoxidizing lipids was studied in a model system consisting of an amino acid dispersed in cold-pressed, molecularly distilled menhaden oil (20–80% w/w). Under all conditions investigated, cysteine was oxidized completely to cystine. Preliminary results suggest that at 110°C the oxidation follows first-order kinetics for at least the first 8 hr. A specific reaction rate constant of 0.25 per hour was calculated. When fatty acids were added to the system, cystine was oxidized to its thiosulfinate ester. When the fatty acid-cystine ratio was 1:2, oxidation of cystine was a maximum. No oxidation of cystine occurred unless either a fatty acid, volatile organic acid, or ethanol was added. Under the conditions investigated, methionine was not oxidized to either its sulfoxide or its sulfone.

  2. Gas-grain Modeling of Isocyanic Acid (HNCO), Cyanic Acid (HOCN), Fulminic Acid (HCNO), and Isofulminic Acid (HONC) in Assorted Interstellar Environments

    NASA Astrophysics Data System (ADS)

    Quan, Donghui; Herbst, Eric; Osamura, Yoshihiro; Roueff, Evelyne

    2010-12-01

    Isocyanic acid (HNCO) is a well-known interstellar molecule. Evidence also exists for the presence of two of its metastable isomers in the interstellar medium: HCNO (fulminic acid) and HOCN (cyanic acid). Fulminic acid has been detected toward cold and lukewarm sources, while cyanic acid has been detected both in these sources and in warm sources in the Galactic Center. Gas-phase models can reproduce the abundances of the isomers in cold sources, but overproduce HCNO in the Galactic Center. Here we present a detailed study of a gas-grain model that contains these three isomers, plus a fourth isomer, isofulminic acid (HONC), for four types of sources: hot cores, the warm envelopes of hot cores, lukewarm corinos, and cold cores. The current model is partially able to rationalize the abundances of HNCO, HOCN, and HCNO in cold and warm sources. Predictions for HONC in all environments are also made.

  3. Surface complexation modeling or organic acid sorption to goethite

    SciTech Connect

    Evanko, C.R.; Dzombak, D.A.

    1999-06-15

    Surface complexation modeling was performed using the Generalized Two-Layer Model for a series of low molecular weight organic acids. Sorption of these organic acids to goethite was investigated in a previous study to assess the influence of particular structural features on sorption. Here, the ability to describe the observed sorption behavior for compounds with similar structural features using surface complexation modeling was investigated. A set of surface reactions and equilibrium constants yielding optimal data fits was obtained for each organic acid over a range of total sorbate concentrations. Surface complexation modeling successfully described sorption of a number of the simple organic acids, but an additional hydrophobic component was needed to describe sorption behavior of some compounds with significant hydrophobic character. These compounds exhibited sorption behavior of some compounds with significant hydrophobic character. These compounds exhibited sorption behavior that was inconsistent with ligand exchange mechanisms since sorption behavior of some compounds with significant hydrophobic character. These compounds exhibited sorption behavior that was inconsistent with ligand exchange mechanisms since sorption did not decrease with increasing total sorbate concentration and/or exceeded surface site saturation. Hydrophobic interactions appeared to be most significant for the compound containing a 5-carbon aliphatic chain. Comparison of optimized equilibrium constants for similar surface species showed that model results were consistent with observed sorption behavior: equilibrium constants were highest for compounds having adjacent carboxylic groups, lower for compounds with adjacent phenolic groups, and lowest for compounds with phenolic groups in the ortho position relative to a carboxylic group. Surface complexation modeling was also performed to fit sorption data for Suwannee River fulvic acid. The data could be described well using reactions and

  4. Surface Complexation Modeling of Organic Acid Sorption to Goethite.

    PubMed

    Evanko; Dzombak

    1999-06-15

    Surface complexation modeling was performed using the Generalized Two-Layer Model for a series of low molecular weight organic acids. Sorption of these organic acids to goethite was investigated in a previous study to assess the influence of particular structural features on sorption. Here, the ability to describe the observed sorption behavior for compounds with similar structural features using surface complexation modeling was investigated. A set of surface reactions and equilibrium constants yielding optimal data fits was obtained for each organic acid over a range of total sorbate concentrations. Surface complexation modeling successfully described sorption of a number of the simple organic acids, but an additional hydrophobic component was needed to describe sorption behavior of some compounds with significant hydrophobic character. These compounds exhibited sorption behavior that was inconsistent with ligand exchange mechanisms since sorption did not decrease with increasing total sorbate concentration and/or exceeded surface site saturation. Hydrophobic interactions appeared to be most significant for the compound containing a 5-carbon aliphatic chain. Comparison of optimized equilibrium constants for similar surface species showed that model results were consistent with observed sorption behavior: equilibrium constants were highest for compounds having adjacent carboxylic groups, lower for compounds with adjacent phenolic groups, and lowest for compounds with phenolic groups in the ortho position relative to a carboxylic group. Surface complexation modeling was also performed to fit sorption data for Suwannee River fulvic acid. The data could be described well using reactions and constants similar to those for pyromellitic acid. This four-carboxyl group compound may be useful as a model for fulvic acid with respect to sorption. Other simple organic acids having multiple carboxylic and phenolic functional groups were identified as potential models for humic

  5. Oxidative versus Non-oxidative Decarboxylation of Amino Acids: Conditions for the Preferential Formation of Either Strecker Aldehydes or Amines in Amino Acid/Lipid-Derived Reactive Carbonyl Model Systems.

    PubMed

    Zamora, Rosario; León, M Mercedes; Hidalgo, Francisco J

    2015-09-16

    Comparative formation of both 2-phenylethylamine and phenylacetaldehyde as a consequence of phenylalanine degradation by carbonyl compounds was studied in an attempt to understand if the amine/aldehyde ratio can be changed as a function of reaction conditions. The assayed carbonyl compounds were selected because of the presence in the chain of both electron-donating and electron-withdrawing groups and included alkenals, alkadienals, epoxyalkenals, oxoalkenals, and hydroxyalkenals as well as lipid hydroperoxides. The obtained results showed that the 2-phenylethylamine/phenylacetaldehyde ratio depended upon both the carbonyls and the reaction conditions. Thus, it can be increased using electron-donating groups in the chain of the carbonyl compound, small amounts of carbonyl compound, low oxygen content, increasing the pH, or increasing the temperature at pH 6. Opposed conditions (use of electron-withdrawing groups in the chain of the carbonyl compound, large amounts of carbonyl compound, high oxygen contents, low pH values, and increasing temperatures at low pH values) would decrease the 2-phenylethylamine/phenylacetaldehyde ratio, and the formation of aldehydes over amines in amino acid degradations would be favored.

  6. Effect of amino acid supplementation on titer and glycosylation distribution in hybridoma cell cultures-Systems biology-based interpretation using genome-scale metabolic flux balance model and multivariate data analysis.

    PubMed

    Reimonn, Thomas M; Park, Seo-Young; Agarabi, Cyrus D; Brorson, Kurt A; Yoon, Seongkyu

    2016-09-01

    Genome-scale flux balance analysis (FBA) is a powerful systems biology tool to characterize intracellular reaction fluxes during cell cultures. FBA estimates intracellular reaction rates by optimizing an objective function, subject to the constraints of a metabolic model and media uptake/excretion rates. A dynamic extension to FBA, dynamic flux balance analysis (DFBA), can calculate intracellular reaction fluxes as they change during cell cultures. In a previous study by Read et al. (2013), a series of informed amino acid supplementation experiments were performed on twelve parallel murine hybridoma cell cultures, and this data was leveraged for further analysis (Read et al., Biotechnol Prog. 2013;29:745-753). In order to understand the effects of media changes on the model murine hybridoma cell line, a systems biology approach is applied in the current study. Dynamic flux balance analysis was performed using a genome-scale mouse metabolic model, and multivariate data analysis was used for interpretation. The calculated reaction fluxes were examined using partial least squares and partial least squares discriminant analysis. The results indicate media supplementation increases product yield because it raises nutrient levels extending the growth phase, and the increased cell density allows for greater culture performance. At the same time, the directed supplementation does not change the overall metabolism of the cells. This supports the conclusion that product quality, as measured by glycoform assays, remains unchanged because the metabolism remains in a similar state. Additionally, the DFBA shows that metabolic state varies more at the beginning of the culture but less by the middle of the growth phase, possibly due to stress on the cells during inoculation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1163-1173, 2016.

  7. Bilayer Structure and Lipid Dynamics in a Model Stratum Corneum with Oleic Acid

    SciTech Connect

    Hoopes, Matthew I.; Noro, Massimo G.; Longo, Marjorie L.; Faller, Roland

    2011-03-31

    The stratum corneum is the uppermost layer of the skin and acts as a barrier to keep out contaminants and retain moisture. Understanding the molecular structure and behavior of this layer will provide guidance for optimizing its biological function. In this study we use a model mixture comprised of equimolar portions of ceramide NS (24:0), lignoceric acid, and cholesterol to model the effect of the addition of small amounts of oleic acid to the bilayer at 300 and 340 K. Five systems at each temperature have been simulated with concentrations between 0 and 0.1 mol % oleic acid. Our major finding is that subdiffusive behavior over the 200 ns time scale is evident in systems at 340 K, with cholesterol diffusion being enhanced with increased oleic acid. Importantly, cholesterol and other species diffuse faster when radial densities indicate nearest neighbors include more cholesterol. We also find that, with the addition of oleic acid, the bilayer midplane and interfacial densities are reduced and there is a 3% decrease in total thickness occurring mostly near the hydrophilic interface at 300 K with reduced overall density at 340 K. Increased interdigitation occurs independent of oleic acid with a temperature increase. Slight ordering of the long non-hydroxy fatty acid of the ceramide occurs near the hydrophilic interface as a function of the oleic acid concentration, but no significant impact on hydrogen bonding is seen in the chosen oleic acid concentrations.

  8. Complexation and molecular modeling studies of europium(III)-gallic acid-amino acid complexes.

    PubMed

    Taha, Mohamed; Khan, Imran; Coutinho, João A P

    2016-04-01

    With many metal-based drugs extensively used today in the treatment of cancer, attention has focused on the development of new coordination compounds with antitumor activity with europium(III) complexes recently introduced as novel anticancer drugs. The aim of this work is to design new Eu(III) complexes with gallic acid, an antioxida'nt phenolic compound. Gallic acid was chosen because it shows anticancer activity without harming health cells. As antioxidant, it helps to protect human cells against oxidative damage that implicated in DNA damage, cancer, and accelerated cell aging. In this work, the formation of binary and ternary complexes of Eu(III) with gallic acid, primary ligand, and amino acids alanine, leucine, isoleucine, and tryptophan was studied by glass electrode potentiometry in aqueous solution containing 0.1M NaNO3 at (298.2 ± 0.1) K. Their overall stability constants were evaluated and the concentration distributions of the complex species in solution were calculated. The protonation constants of gallic acid and amino acids were also determined at our experimental conditions and compared with those predicted by using conductor-like screening model for realistic solvation (COSMO-RS) model. The geometries of Eu(III)-gallic acid complexes were characterized by the density functional theory (DFT). The spectroscopic UV-visible and photoluminescence measurements are carried out to confirm the formation of Eu(III)-gallic acid complexes in aqueous solutions.

  9. 300 Area waste acid treatment system closure plan. Revision 1

    SciTech Connect

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

  10. Amino acid synthesis in a supercritical carbon dioxide - water system.

    PubMed

    Fujioka, Kouki; Futamura, Yasuhiro; Shiohara, Tomoo; Hoshino, Akiyoshi; Kanaya, Fumihide; Manome, Yoshinobu; Yamamoto, Kenji

    2009-06-15

    Mars is a CO(2)-abundant planet, whereas early Earth is thought to be also CO(2)-abundant. In addition, water was also discovered on Mars in 2008. From the facts and theory, we assumed that soda fountains were present on both planets, and this affected amino acid synthesis. Here, using a supercritical CO(2)/liquid H(2)O (10:1) system which mimicked crust soda fountains, we demonstrate production of amino acids from hydroxylamine (nitrogen source) and keto acids (oxylic acid sources). In this research, several amino acids were detected with an amino acid analyzer. Moreover, alanine polymers were detected with LC-MS. Our research lights up a new pathway in the study of life's origin.

  11. Amino Acid Synthesis in a Supercritical Carbon Dioxide - Water System

    PubMed Central

    Fujioka, Kouki; Futamura, Yasuhiro; Shiohara, Tomoo; Hoshino, Akiyoshi; Kanaya, Fumihide; Manome, Yoshinobu; Yamamoto, Kenji

    2009-01-01

    Mars is a CO2-abundant planet, whereas early Earth is thought to be also CO2-abundant. In addition, water was also discovered on Mars in 2008. From the facts and theory, we assumed that soda fountains were present on both planets, and this affected amino acid synthesis. Here, using a supercritical CO2/liquid H2O (10:1) system which mimicked crust soda fountains, we demonstrate production of amino acids from hydroxylamine (nitrogen source) and keto acids (oxylic acid sources). In this research, several amino acids were detected with an amino acid analyzer. Moreover, alanine polymers were detected with LC-MS. Our research lights up a new pathway in the study of life’s origin. PMID:19582225

  12. Modeling the influence of organic acids on soil weathering

    USGS Publications Warehouse

    Lawrence, Corey R.; Harden, Jennifer W.; Maher, Kate

    2014-01-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  13. Modeling three-dimensional network formation with an atomic lattice model: application to silicic acid polymerization.

    PubMed

    Jin, Lin; Auerbach, Scott M; Monson, Peter A

    2011-04-07

    We present an atomic lattice model for studying the polymerization of silicic acid in sol-gel and related processes for synthesizing silica materials. Our model is based on Si and O atoms occupying the sites of a body-centered-cubic lattice, with all atoms arranged in SiO(4) tetrahedra. This is the simplest model that allows for variation in the Si-O-Si angle, which is largely responsible for the versatility in silica polymorphs. The model describes the assembly of polymerized silica structures starting from a solution of silicic acid in water at a given concentration and pH. This model can simulate related materials-chalcogenides and clays-by assigning energy penalties to particular ring geometries in the polymerized structures. The simplicity of this approach makes it possible to study the polymerization process to higher degrees of polymerization and larger system sizes than has been possible with previous atomistic models. We have performed Monte Carlo simulations of the model at two concentrations: a low density state similar to that used in the clear solution synthesis of silicalite-1, and a high density state relevant to experiments on silica gel synthesis. For the high concentration system where there are NMR data on the temporal evolution of the Q(n) distribution, we find that the model gives good agreement with the experimental data. The model captures the basic mechanism of silica polymerization and provides quantitative structural predictions on ring-size distributions in good agreement with x-ray and neutron diffraction data.

  14. Energy System Modeling with REopt

    SciTech Connect

    Simpkins, Travis; Anderson, Kate; Cutler, Dylan; Olis, Dan; Elgqvist, Emma; DiOrio, Nick; Walker, Andy

    2016-07-15

    This poster details how REopt - NREL's software modeling platform for energy systems integration and optimization - can help to model energy systems. Some benefits of modeling with REopt include optimizing behind the meter storage for cost and resiliency, optimizing lab testing, optimizing dispatch of utility scale storage, and quantifying renewable energy impact on outage survivability.

  15. ASTP ranging system mathematical model

    NASA Technical Reports Server (NTRS)

    Ellis, M. R.; Robinson, L. H.

    1973-01-01

    A mathematical model is presented of the VHF ranging system to analyze the performance of the Apollo-Soyuz test project (ASTP). The system was adapted for use in the ASTP. The ranging system mathematical model is presented in block diagram form, and a brief description of the overall model is also included. A procedure for implementing the math model is presented along with a discussion of the validation of the math model and the overall summary and conclusions of the study effort. Detailed appendices of the five study tasks are presented: early late gate model development, unlock probability development, system error model development, probability of acquisition and model development, and math model validation testing.

  16. Nitric acid: modeling osmotic coefficients and acid-base dissociation using the BIMSA theory.

    PubMed

    Ruas, Alexandre; Pochon, Patrick; Simonin, Jean-Pierre; Moisy, Philippe

    2010-11-14

    This work is aimed at a description of the thermodynamic properties of highly concentrated aqueous solutions of nitric acid salts at 25 °C within the binding mean spherical approximation (BIMSA) theory. The predictive capability of this model was examined. First, Raman spectroscopy was used to study the proportion of associated nitric acid as a function of concentration. The corresponding apparent association constant values were compared with literature values. Besides, the BIMSA model, taking into account complex formation, was used to represent literature experimental osmotic coefficient variation with concentration. This theoretical description led to an assessment of the degree of association. The so calculated amount of associated nitric acid coincides accurately with our Raman experimental results up to a high concentration of acid.

  17. D-Amino Acids in the Nervous and Endocrine Systems

    PubMed Central

    Kiriyama, Yoshimitsu

    2016-01-01

    Amino acids are important components for peptides and proteins and act as signal transmitters. Only L-amino acids have been considered necessary in mammals, including humans. However, diverse D-amino acids, such as D-serine, D-aspartate, D-alanine, and D-cysteine, are found in mammals. Physiological roles of these D-amino acids not only in the nervous system but also in the endocrine system are being gradually revealed. N-Methyl-D-aspartate (NMDA) receptors are associated with learning and memory. D-Serine, D-aspartate, and D-alanine can all bind to NMDA receptors. H2S generated from D-cysteine reduces disulfide bonds in receptors and potentiates their activity. Aberrant receptor activity is related to diseases of the central nervous system (CNS), such as Alzheimer's disease, amyotrophic lateral sclerosis, and schizophrenia. Furthermore, D-amino acids are detected in parts of the endocrine system, such as the pineal gland, hypothalamus, pituitary gland, pancreas, adrenal gland, and testis. D-Aspartate is being investigated for the regulation of hormone release from various endocrine organs. Here we focused on recent findings regarding the synthesis and physiological functions of D-amino acids in the nervous and endocrine systems. PMID:28053803

  18. Dynamic Modeling of ALS Systems

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2002-01-01

    The purpose of dynamic modeling and simulation of Advanced Life Support (ALS) systems is to help design them. Static steady state systems analysis provides basic information and is necessary to guide dynamic modeling, but static analysis is not sufficient to design and compare systems. ALS systems must respond to external input variations and internal off-nominal behavior. Buffer sizing, resupply scheduling, failure response, and control system design are aspects of dynamic system design. We develop two dynamic mass flow models and use them in simulations to evaluate systems issues, optimize designs, and make system design trades. One model is of nitrogen leakage in the space station, the other is of a waste processor failure in a regenerative life support system. Most systems analyses are concerned with optimizing the cost/benefit of a system at its nominal steady-state operating point. ALS analysis must go beyond the static steady state to include dynamic system design. All life support systems exhibit behavior that varies over time. ALS systems must respond to equipment operating cycles, repair schedules, and occasional off-nominal behavior or malfunctions. Biological components, such as bioreactors, composters, and food plant growth chambers, usually have operating cycles or other complex time behavior. Buffer sizes, material stocks, and resupply rates determine dynamic system behavior and directly affect system mass and cost. Dynamic simulation is needed to avoid the extremes of costly over-design of buffers and material reserves or system failure due to insufficient buffers and lack of stored material.

  19. Comparing models for perfluorooctanoic acid pharmacokinetics using Bayesian analysis

    EPA Science Inventory

    Selecting the appropriate pharmacokinetic (PK) model given the available data is investigated for perfluorooctanoic acid (PFOA), which has been widely analyzed with an empirical, one-compartment model. This research examined the results of experiments [Kemper R. A., DuPont Haskel...

  20. Effect of fatty acids on the permeability barrier of model and biological membranes.

    PubMed

    Arouri, Ahmad; Lauritsen, Kira E; Nielsen, Henriette L; Mouritsen, Ole G

    2016-10-01

    Because of the amphipathicity and conical molecular shape of fatty acids, they can efficiently incorporate into lipid membranes and disturb membrane integrity, chain packing, and lateral pressure profile. These phenomena affect both model membranes as well as biological membranes. We investigated the feasibility of exploiting fatty acids as permeability enhancers in drug delivery systems for enhancing drug release from liposomal carriers and drug uptake by target cells. Saturated fatty acids, with acyl chain length from C8 to C20, were tested using model drug delivery liposomes of 1,2- dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and the breast cancer MCF-7 cell line as a model cell. A calcein release assay demonstrated reduction in the membrane permeability barrier of the DPPC liposomes, proportionally to the length of the fatty acid. Differential scanning calorimetry (DSC) and dynamic light scattering (DLS) experiments revealed that C12 to C20 fatty acids can stabilize DPPC liposomal bilayers and induce the formation of large structures, probably due to liposome aggregation and bilayer morphological changes. On the other hand, the short fatty acids C8 and C10 tend to destabilize the bilayers and only moderately cause the formation of large structures. The effect of fatty acids on DPPC liposomes was not completely transferrable to the MCF-7 cell line. Using cytotoxicity assays, the cells were found to be relatively insensitive to the fatty acids at apoptotic sub-millimolar concentrations. Increasing the fatty acid concentration to few millimolar substantially reduced the viability of the cells, most likely via the induction of necrosis and cell lysis. A bioluminescence living-cell-based luciferase assay showed that saturated fatty acids in sub-cytotoxic concentrations cannot reduce the permeability barrier of cell membranes. Our results confirm that the membrane perturbing effect of fatty acids on model membranes cannot simply be carried over to biological

  1. Expert systems help design cementing and acidizing jobs

    SciTech Connect

    Onan, D.D.; Kulakofsky, D.; Van Domelen, M.S.; Ford, W.G.F. )

    1993-04-19

    Knowledge-based expert information systems can help train less-experienced designers and orient seasoned designers at new locations. These systems are playing an increased role in completion and production operations. Expert systems help: design treatments based on an accumulation of knowledge from experts; provide technical information and guidelines on the proper use of additives; and serve as a training tool for less-experienced personnel. The paper describes expert systems design; practical applications; and details about a cement job and acidizing.

  2. Integrated Modeling Systems

    DTIC Science & Technology

    1989-01-01

    Summer 1979). WMSI Working Paper No. 291A. 173 Dyer , J. and R. Sarin. "Measurable Multiattribute Value Functions," Operations Research. 27:4 (July...J. McCall. "Expected Utility Maximizing Job Search," Chapter 7 of Studies in the Economics of Search, 1979, North-Holland. WMSI Working Paper No. 274...model integration, solver integration, and integration of various utilities . Model integration is further divided into four subtypes based on a four-level

  3. 21 CFR 862.1320 - Gastric acidity test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gastric acidity test system. 862.1320 Section 862.1320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  4. 21 CFR 862.1295 - Folic acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Folic acid test system. 862.1295 Section 862.1295 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  5. 21 CFR 862.1295 - Folic acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Folic acid test system. 862.1295 Section 862.1295 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  6. 21 CFR 862.1290 - Fatty acids test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fatty acids test system. 862.1290 Section 862.1290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  7. 21 CFR 862.1290 - Fatty acids test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fatty acids test system. 862.1290 Section 862.1290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  8. 21 CFR 862.1295 - Folic acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Folic acid test system. 862.1295 Section 862.1295 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  9. 21 CFR 862.1095 - Ascorbic acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ascorbic acid test system. 862.1095 Section 862.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  10. 21 CFR 862.1290 - Fatty acids test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fatty acids test system. 862.1290 Section 862.1290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  11. 21 CFR 862.1095 - Ascorbic acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ascorbic acid test system. 862.1095 Section 862.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  12. 21 CFR 862.1095 - Ascorbic acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ascorbic acid test system. 862.1095 Section 862.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  13. 21 CFR 862.1320 - Gastric acidity test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Gastric acidity test system. 862.1320 Section 862.1320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  14. 21 CFR 862.1320 - Gastric acidity test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gastric acidity test system. 862.1320 Section 862.1320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  15. 21 CFR 862.1320 - Gastric acidity test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gastric acidity test system. 862.1320 Section 862.1320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  16. 21 CFR 862.1320 - Gastric acidity test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gastric acidity test system. 862.1320 Section 862.1320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  17. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pyruvic acid test system. 862.1655 Section 862.1655 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  18. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pyruvic acid test system. 862.1655 Section 862.1655 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  19. Solid/liquid phase diagram of the ammonium sulfate/succinic acid/water system.

    PubMed

    Pearson, Christian S; Beyer, Keith D

    2015-05-14

    We have studied the low-temperature phase diagram and water activities of the ammonium sulfate/succinic acid/water system using differential scanning calorimetry and infrared spectroscopy of thin films. Using the results from our experiments, we have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/succinic acid phase boundary as well as the ternary eutectic composition and temperature. We also compared our results to the predictions of the extended AIM aerosol thermodynamics model (E-AIM) and found good agreement for the ice melting points in the ice primary phase field of this system; however, differences were found with respect to succinic acid solubility temperatures. We also compared the results of this study with those of previous studies that we have published on ammonium sulfate/dicarboxylic acid/water systems.

  20. Animal model of acid-reflux esophagitis: pathogenic roles of acid/pepsin, prostaglandins, and amino acids.

    PubMed

    Takeuchi, Koji; Nagahama, Kenji

    2014-01-01

    Esophagitis was induced in rats within 3 h by ligating both the pylorus and transitional region between the forestomach and glandular portion under ether anesthesia. This esophageal injury was prevented by the administration of acid suppressants and antipepsin drug and aggravated by exogenous pepsin. Damage was also aggravated by pretreatment with indomethacin and the selective COX-1 but not COX-2 inhibitor, whereas PGE2 showed a biphasic effect depending on the dose; a protection at low doses, and an aggravation at high doses, with both being mediated by EP1 receptors. Various amino acids also affected this esophagitis in different ways; L-alanine and L-glutamine had a deleterious effect, while L-arginine and glycine were highly protective, both due to yet unidentified mechanisms. It is assumed that acid/pepsin plays a major pathogenic role in this model of esophagitis; PGs derived from COX-1 are involved in mucosal defense of the esophagus; and some amino acids are protective against esophagitis. These findings also suggest a novel therapeutic approach in the treatment of esophagitis, in addition to acid suppressant therapy. The model introduced may be useful to test the protective effects of drugs on esophagitis and investigate the mucosal defense mechanism in the esophagus.

  1. SP-100 control system modeling

    NASA Technical Reports Server (NTRS)

    Meyer, R. A.; Halfen, F. J.; Alley, A. D.

    1987-01-01

    SP-100 Control Systems modeling was done using a thermal hydraulic transient analysis model called ARIES-S. The ARIES-S Computer Simulation provides a basis for design, integration and analysis of the reactor including the control and protection systems. It is a modular digital computer simulation written in FORTRAN that operates interactively in real time on a VAX minicomputer.

  2. Propulsive Reaction Control System Model

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul; Phan, Linh H.; Serricchio, Frederick; San Martin, Alejandro M.

    2011-01-01

    This software models a propulsive reaction control system (RCS) for guidance, navigation, and control simulation purposes. The model includes the drive electronics, the electromechanical valve dynamics, the combustion dynamics, and thrust. This innovation follows the Mars Science Laboratory entry reaction control system design, and has been created to meet the Mars Science Laboratory (MSL) entry, descent, and landing simulation needs. It has been built to be plug-and-play on multiple MSL testbeds [analysis, Monte Carlo, flight software development, hardware-in-the-loop, and ATLO (assembly, test and launch operations) testbeds]. This RCS model is a C language program. It contains two main functions: the RCS electronics model function that models the RCS FPGA (field-programmable-gate-array) processing and commanding of the RCS valve, and the RCS dynamic model function that models the valve and combustion dynamics. In addition, this software provides support functions to initialize the model states, set parameters, access model telemetry, and access calculated thruster forces.

  3. Jasmonic acid and salicylic acid activate a common defense system in rice

    PubMed Central

    Tamaoki, Daisuke; Seo, Shigemi; Yamada, Shoko; Kano, Akihito; Miyamoto, Ayumi; Shishido, Hodaka; Miyoshi, Seika; Taniguchi, Shiduku; Akimitsu, Kazuya; Gomi, Kenji

    2013-01-01

    Jasmonic acid (JA) and salicylic acid (SA) play important roles in plant defense systems. JA and SA signaling pathways interact antagonistically in dicotyledonous plants, but, the status of crosstalk between JA and SA signaling is unknown in monocots. Our rice microarray analysis showed that more than half of the genes upregulated by the SA analog BTH are also upregulated by JA, suggesting that a major portion of the SA-upregulated genes are regulated by JA-dependent signaling in rice. A common defense system that is activated by both JA and SA is thus proposed which plays an important role in pathogen defense responses in rice. PMID:23518581

  4. Expert system for groundwater modeling

    SciTech Connect

    Venoge, T.P. de; Stauffer, T.B.; Medina, M.; Jacobs, T.

    1994-12-31

    Hazardous waste site remedial investigations and feasibility studies generally involve some degree of groundwater modeling. A plethora of models exist and most models are difficult to use. An expert system has been developed to lead the user to the appropriate model(s) based on responses to questions about site conditions and data availability. The system is menu driven, user friendly, and provides assistance in estimating input parameters where field measurements are lacking. The system contains twelve models, both analytical and numerical models, that are in the public domain. Some of the models included in the system are MOC, MODFLOW, BIOPLUME, RESSQ, TDAST and PLUME2D. Preprocessors and post processors have been written to permit easy data input and to provide understandable and interpretable data output. There are two versions of the expert system that are available. One version is a UNIX based system that works through the windows environment and provides excellent graphics capabilities. The other version is DOS based and will run on a 386 processor or higher system with 10 megabytes of available hard disk space.

  5. Phase diagram of a system of adipic, glutaric, and sebacic acids

    NASA Astrophysics Data System (ADS)

    Kolyado, A. V.; Alenova, S. M.; Garkushin, I. K.

    2016-06-01

    Adipic acid-glutaric acid, glutaric acid-sebacic acid, and adipic acid-sebacic acid binary systems are studied, along with an adipic acid-glutaric acid-sebacic acid ternary system. It is shown all of these systems are eutectic. Phase equilibria for the diagram elements of the binary systems and the ternary system are described. It is concluded that the above low-melting compounds can be recommended for use as working bodies in heat accumulators, and for preparing electrolytes used in the thin-layer anodic oxidation of aluminum alloys.

  6. Gas dilution system results and application to acid rain utilities

    SciTech Connect

    Jolley-Souders, K.; Geib, R.; Dunn, C.

    1997-12-31

    In 1997, the United States EPA will remove restrictions preventing acid rain utilities from using gas dilution systems for calibration or linearity studies for continuous emissions monitoring, Test Method 205 in 40CFR51 requires that a gas dilution system must produce calibration gases whose measured values are within {+-}2% of predicted values. This paper presents the evaluation of the Environics/CalMat 2020 Dilution System for use in calibration studies. Internal studies show that concentrations generated by this unit are within {+-}0.5% of predicted values. Studies are being conducted by several acid rain utilities to evaluate the Environics/CalMat system using single minor component calibration standards. In addition, an internally generated study is being performed to demonstrate the system`s accuracy using a multi-component gas mixture. Data from these tests will be presented in the final version of the paper.

  7. Kinetic Modeling of Sunflower Grain Filling and Fatty Acid Biosynthesis.

    PubMed

    Durruty, Ignacio; Aguirrezábal, Luis A N; Echarte, María M

    2016-01-01

    Grain growth and oil biosynthesis are complex processes that involve various enzymes placed in different sub-cellular compartments of the grain. In order to understand the mechanisms controlling grain weight and composition, we need mathematical models capable of simulating the dynamic behavior of the main components of the grain during the grain filling stage. In this paper, we present a non-structured mechanistic kinetic model developed for sunflower grains. The model was first calibrated for sunflower hybrid ACA855. The calibrated model was able to predict the theoretical amount of carbohydrate equivalents allocated to the grain, grain growth and the dynamics of the oil and non-oil fraction, while considering maintenance requirements and leaf senescence. Incorporating into the model the serial-parallel nature of fatty acid biosynthesis permitted a good representation of the kinetics of palmitic, stearic, oleic, and linoleic acids production. A sensitivity analysis showed that the relative influence of input parameters changed along grain development. Grain growth was mostly affected by the specific growth parameter (μ') while fatty acid composition strongly depended on their own maximum specific rate parameters. The model was successfully applied to two additional hybrids (MG2 and DK3820). The proposed model can be the first building block toward the development of a more sophisticated model, capable of predicting the effects of environmental conditions on grain weight and composition, in a comprehensive and quantitative way.

  8. Kinetic Modeling of Sunflower Grain Filling and Fatty Acid Biosynthesis

    PubMed Central

    Durruty, Ignacio; Aguirrezábal, Luis A. N.; Echarte, María M.

    2016-01-01

    Grain growth and oil biosynthesis are complex processes that involve various enzymes placed in different sub-cellular compartments of the grain. In order to understand the mechanisms controlling grain weight and composition, we need mathematical models capable of simulating the dynamic behavior of the main components of the grain during the grain filling stage. In this paper, we present a non-structured mechanistic kinetic model developed for sunflower grains. The model was first calibrated for sunflower hybrid ACA855. The calibrated model was able to predict the theoretical amount of carbohydrate equivalents allocated to the grain, grain growth and the dynamics of the oil and non-oil fraction, while considering maintenance requirements and leaf senescence. Incorporating into the model the serial-parallel nature of fatty acid biosynthesis permitted a good representation of the kinetics of palmitic, stearic, oleic, and linoleic acids production. A sensitivity analysis showed that the relative influence of input parameters changed along grain development. Grain growth was mostly affected by the specific growth parameter (μ′) while fatty acid composition strongly depended on their own maximum specific rate parameters. The model was successfully applied to two additional hybrids (MG2 and DK3820). The proposed model can be the first building block toward the development of a more sophisticated model, capable of predicting the effects of environmental conditions on grain weight and composition, in a comprehensive and quantitative way. PMID:27242809

  9. 300 Area waste acid treatment system closure plan

    SciTech Connect

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

  10. Status of commercial phosphoric acid fuel cell system development

    NASA Technical Reports Server (NTRS)

    Warshay, M.; Prokopius, P. R.; Simons, S. N.; King, R. B.

    1981-01-01

    A review of the current commercial phosphoric acid fuel cell system development efforts is presented. In both the electric utility and on-site integrated energy system applications, reducing cost and increasing reliability are important. The barrier to the attainment of these goals has been materials. The differences in approach among the three major participants are their technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy.

  11. Flight Model Discharge System.

    DTIC Science & Technology

    1987-04-01

    will immediately remove the charge from the front surface of the dielectric and return it to ground. The 2-hour time constant network will then reset the...ATDP programs. NEWT5 permits the digitized input of board and component position data, while ATDP automates certain phases of input and output table...format. 8.5 RESULTS The system-level results are presented as curves of AR (normalized radiator area) versus THOT and as curves of Q (heater

  12. ASN reputation system model

    NASA Astrophysics Data System (ADS)

    Hutchinson, Steve; Erbacher, Robert F.

    2015-05-01

    Network security monitoring is currently challenged by its reliance on human analysts and the inability for tools to generate indications and warnings for previously unknown attacks. We propose a reputation system based on IP address set membership within the Autonomous System Number (ASN) system. Essentially, a metric generated based on the historic behavior, or misbehavior, of nodes within a given ASN can be used to predict future behavior and provide a mechanism to locate network activity requiring inspection. This will provide reinforcement of notifications and warnings and lead to inspection for ASNs known to be problematic even if initial inspection leads to interpretation of the event as innocuous. We developed proof of concept capabilities to generate the IP address to ASN set membership and analyze the impact of the results. These results clearly show that while some ASNs are one-offs with individual or small numbers of misbehaving IP addresses, there are definitive ASNs with a history of long term and wide spread misbehaving IP addresses. These ASNs with long histories are what we are especially interested in and will provide an additional correlation metric for the human analyst and lead to new tools to aid remediation of these IP address blocks.

  13. Homogeneous vs. heterogeneous nucleation in water-dicarboxylic acid systems

    NASA Astrophysics Data System (ADS)

    Hienola, A. I.; Vehkamäki, H.; Riipinen, I.; Kulmala, M.

    2009-03-01

    Binary heterogeneous nucleation of water-succinic/glutaric/malonic/adipic acid on nanometer-sized particles is investigated within the frame of classical heterogeneous nucleation theory. Homogeneous nucleation is also included for comparison. It is found that the nucleation probabilities depend on the contact angle and on the size of the seed particles. New thermodynamical properties, such as saturation vapor pressure, density and surface tension for all the dicarboxylic acid aqueous solutions are included in the calculations. While the new surface tension and density formulations do not bring any significant difference in the computed nucleation rate for homogeneous nucleation for succinic and glutaric acids, the use of the newly derived equations for the vapor pressure decrease the acid concentrations in gas phase by 3 orders of magnitude. According to our calculations, the binary heterogeneous nucleation of succinic acid-water and glutaric acid-water - although it requires a 3-4 orders of magnitude lower vapor concentrations than the homogeneous nucleation - cannot take place under atmospheric conditions. On the other hand binary homogeneous nucleation of adipic acid-water systems might be possible under conditions occuring in upper boundary layer. However, a more detailed characterization of the interaction between the surface and the molecules of the nucleating vapor should be considered in the future.

  14. Benefits and risks of folic acid to the nervous system

    PubMed Central

    Reynolds, E

    2002-01-01

    During three decades of neurological practice I have witnessed a remarkable change in attitudes to the benefits and risks of folic acid therapy in nervous system disorders. In the 1960s all that was known and taught was that folic acid was harmful to the nervous system, especially in precipitating or exacerbating the neurological complications of vitamin B12 deficiency. So deeply held was this view that the possibility of neuropsychological benefits from this vitamin was initially viewed with considerable scepticism.1 PMID:11971038

  15. Simulation of lead-acid battery using model order reduction

    NASA Astrophysics Data System (ADS)

    Esfahanian, Vahid; Ansari, Amir Babak; Torabi, Farschad

    2015-04-01

    In this study, a reduced order model (ROM) based on proper orthogonal decomposition (POD) method has been applied to the coupled one-dimensional electrochemical transport equations in order to efficiently simulate lead-acid batteries, numerically. The governing equations, including conservation of charge in solid and liquid phases and conservation of species are solved simultaneously. The POD-based method for a lead-acid cell is used to simulate a discharge process to show the capability of the present method. The obtained results show that not only the POD-based ROM of lead-acid battery significantly decreases the computational time but also there is an excellent agreement with the results of previous computational fluid dynamics (CFD) models.

  16. A collaborative effort to model plant response to acidic rain

    SciTech Connect

    Jacobson, J.; Irving, P.; Kuja, A.; Lee, J.; Shriner, D.; Troiano, J.; Perrigan, S.; Cullinan, V.

    1989-01-01

    Radish plants were exposed three times per week to simulated acidic rain at pH values of 2.6 to 5.4 over the course of four weeks in trials performed at Argonne, Illinois; Ithaca and Upton, New York; Corvallis, Oregon; Oak Ridge, Tennessee; and Toronto, Canada. Uniform genotype, soil media and planting techniques, treatment procedures, biological measurements, and experimental design were employed. Growth of plants differed among trials as a result of variation in greenhouse environmental conditions according to location and facilities. Larger plants underwent greater absolute but lower relative reductions in biomass after exposure to the higher levels of acidity. A generalized Mitscherlich function was used to model the effects of acidity of simulated rain on dry mass of hypocotyls using data from three laboratories that performed duplicate trials. The remaining data, from three other laboratories that performed only one trial each, were used to test the model. 14 refs., 2 figs., 7 tabs.

  17. Phorbic Acid Biosynthesis in the Latex Vessel System of Euphorbia

    PubMed Central

    Nordal, Arnold; Benson, A. A.

    1969-01-01

    Evidence is presented that phorbic acid is formed in the latex producing cell system, rather than in photosynthetic or chlorophyll-free tissues of Euphorbia resinifera Berg. When a branch of the plant was kept first in a 14CO2 atmosphere with 12 hr light-dark periods for 2 days and then left under natural conditions in the air outside for at least 2 to 3 days, radioactive phorbic acid was found in the latex. Phorbic acid synthesis appeared to be independent of the photosynthetic and respiratory activities of the plant. Besides phorbic acid 2 other major radioactive compounds were recognized in the latex, a glycoside or oligosaccharide, and a lipid belonging to the group of triterpenoid compounds characteristic of the latex in several species of Euphorbia. Images PMID:16657036

  18. Colored petri nets to model gene mutation and amino acids classification.

    PubMed

    Yang, Jinliang; Gao, Rui; Meng, Max Q-H; Tarn, Tzyh-Jong

    2012-05-07

    The genetic code is the triplet code based on the three-letter codons, which determines the specific amino acid sequences in proteins synthesis. Choosing an appropriate model for processing these codons is a useful method to study genetic processes in Molecular Biology. As an effective modeling tool of discrete event dynamic systems (DEDS), colored petri net (CPN) has been used for modeling several biological systems, such as metabolic pathways and genetic regulatory networks. According to the genetic code table, CPN is employed to model the process of genetic information transmission. In this paper, we propose a CPN model of amino acids classification, and further present the improved CPN model. Based on the model mentioned above, we give another CPN model to classify the type of gene mutations via contrasting the bases of DNA strands and the codons of amino acids along the polypeptide chain. This model is helpful in determining whether a certain gene mutation will cause the changes of the structures and functions of protein molecules. The effectiveness and accuracy of the presented model are illustrated by the examples in this paper.

  19. The influence of dietary docosahexaenoic acid and arachidonic acid on central nervous system polyunsaturated fatty acid composition.

    PubMed

    Brenna, J Thomas; Diau, Guan-Yeu

    2007-01-01

    Numerous studies on perinatal long-chain polyunsaturated fatty acid nutrition have clarified the influence of dietary docosahexaenoic acid (DHA) and arachidonic acid (ARA) on central nervous system PUFA concentrations. In humans, omnivorous primates, and piglets, DHA and ARA plasma and red blood cells concentrations rise with dietary preformed DHA and ARA. Brain and retina DHA are responsive to diet while ARA is not. DHA is at highest concentration in cells and tissues associated with high energy consumption, consistent with high DHA levels in mitochondria and synaptosomes. DHA is a substrate for docosanoids, signaling compounds of intense current interest. The high concentration in tissues with high rates of oxidative metabolism may be explained by a critical role related to oxidative metabolism.

  20. The Influence of Dietary Docosahexaenoic Acid and Arachidonic Acid on Central Nervous System Polyunsaturated Fatty Acid Composition

    PubMed Central

    Brenna, J. Thomas; Diau, Guan-Yeu

    2007-01-01

    Numerous studies on perinatal long chain polyunsaturated fatty acid nutrition have clarified the influence of dietary docosahexaenoic acid (DHA) and arachidonic acid (ARA) on central nervous system PUFA concentrations. In humans, omnivorous primates, and piglets, DHA and ARA plasma and red blood cells concentrations rise with dietary preformed DHA and ARA. Brain and retina DHA are responsive to diet while ARA is not. DHA is at highest concentration cells and tissues associated with high energy consumption, consistent with high DHA levels in mitochondria and synaptosomes. DHA is a substrate for docosanoids, signaling compounds of intense current interest. The high concentration in tissues with high rates of oxidative metabolism may be explained by a critical role related to oxidative metabolism. PMID:18023566

  1. Relocatable Coastal Modeling System

    DTIC Science & Technology

    2016-06-07

    These relationships are stored on a variable-resolution grid (illustrated in figure 1b below) with sampling of 1 degree in deep water (and in data...version is referred to as MODAS2.1, which is now operational at NAVO. The NOMADS interface is being replaced by a system-independent, web -based version...inside the user’s web browser plus Perl CGI scripts which ran on a webserver. This permitted the user to run MODAS (and POM and other modules as they are

  2. Generic Distributed Systems Model

    DTIC Science & Technology

    1989-03-01

    networking of microcomputers or work- stations with a distributed system and a clear distinction between the two needs to be made. What is expected in a...INFORM.AT1ON PERTAI NING TO LOCATIONS AND POLICY CAN BE COMBINED WITH THE INITIAL DIAGRAM TO PRODUCE A PARTITIONED DFD. THE BOLD LINES REPRESENT SERVICES WHICH...PRA85] D.K. Pradhan, "Fault-tolerant. mIltiprocessor link and bus network Architectures," IEEE Trans. on Computers, Vol. 34, No. I, Jan. 1985, pp. 33

  3. Flight Model Discharge System.

    DTIC Science & Technology

    1986-02-01

    of adverse space-environmental conditions. Operational .Jrtcr-,tcsof tLe entire, s*ystem are llreseilted, including the electrostatic analyzers, * so... health diagnostics (i.e., temperature, voltages, and currents). The technical discussion which follows presents the results of the second year’s effort on...TIME, s ECLIPSE CHARGING - -2 LU; -J-3 0 Lu -4 O KAPTON TO SPACECRAFTz Lu cr -5 LL SLt -SPACECRAFT a - TO SPACE -7 -8 F 0 200 400 600 800 TIME,s (𔃻

  4. Study of Self Assembly Systems Formed by Malic Acid and Alkyloxy Benzoic Acids

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Vellalapalayam Nallagounder; Madhu Mohan, Mathukumalli Lakshmi Narayana

    2010-12-01

    Self assembly systems formed by malic acid and alkyloxy benzoic acids are characterized. The ferroelectric ingredient malic acid formed double hydrogen bond with p-n-alkyloxy benzoic acids. Various hydrogen bonded complexes have been synthesized with malic acid and pentyl to dodecyloxy benzoic acid, respectively. Fourier transformation infrared (FTIR) studies confirm the hydrogen bond formation. Polarizing optical microscopic (POM) studies revealed the textural information while the transition and enthalpy values are calculated from differential scanning calorimetry (DSC) studies. A phase diagram has been constructed from the POMand DSC studies. A new smectic ordering, smectic X*, has been identified which exhibits a finger print type texture. This phase has been characterized by POM, DSC, helix, and tilt angle studies. The transition from traditional cholesteric to smectic X* phase is observed to be first order. The tilt angle data in this phase has been fitted to a power law and the temperature variation of the tilt angle follows mean field theory predictions. The results of FTIR, POM, DSC, tilt angle, and helicoidal studies are discussed.

  5. Difference between Chitosan Hydrogels via Alkaline and Acidic Solvent Systems

    PubMed Central

    Nie, Jingyi; Wang, Zhengke; Hu, Qiaoling

    2016-01-01

    Chitosan (CS) has generated considerable interest for its desirable properties and wide applications. Hydrogel has been proven to be a major and vital form in the applications of CS materials. Among various types of CS hydrogels, physical cross-linked CS hydrogels are popular, because they avoided the potential toxicity and sacrifice of intrinsic properties caused by cross-linking or reinforcements. Alkaline solvent system and acidic solvent system are two important solvent systems for the preparation of physical cross-linked CS hydrogels, and also lay the foundations of CS hydrogel-based materials in many aspects. As members of physical cross-linked CS hydrogels, gel material via alkaline solvent system showed significant differences from that via acidic solvent system, but the reasons behind are still unexplored. In the present work, we studied the difference between CS hydrogel via alkaline system and acidic system, in terms of gelation process, hydrogel structure and mechanical property. In-situ/pseudo in-situ studies were carried out, including fluorescent imaging of gelation process, which provided dynamic visualization. Finally, the reasons behind the differences were explained, accompanied by the discussion about design strategy based on gelation behavior of the two systems. PMID:27786262

  6. Difference between Chitosan Hydrogels via Alkaline and Acidic Solvent Systems

    NASA Astrophysics Data System (ADS)

    Nie, Jingyi; Wang, Zhengke; Hu, Qiaoling

    2016-10-01

    Chitosan (CS) has generated considerable interest for its desirable properties and wide applications. Hydrogel has been proven to be a major and vital form in the applications of CS materials. Among various types of CS hydrogels, physical cross-linked CS hydrogels are popular, because they avoided the potential toxicity and sacrifice of intrinsic properties caused by cross-linking or reinforcements. Alkaline solvent system and acidic solvent system are two important solvent systems for the preparation of physical cross-linked CS hydrogels, and also lay the foundations of CS hydrogel-based materials in many aspects. As members of physical cross-linked CS hydrogels, gel material via alkaline solvent system showed significant differences from that via acidic solvent system, but the reasons behind are still unexplored. In the present work, we studied the difference between CS hydrogel via alkaline system and acidic system, in terms of gelation process, hydrogel structure and mechanical property. In-situ/pseudo in-situ studies were carried out, including fluorescent imaging of gelation process, which provided dynamic visualization. Finally, the reasons behind the differences were explained, accompanied by the discussion about design strategy based on gelation behavior of the two systems.

  7. Exploring the Validity of Valproic Acid Animal Model of Autism

    PubMed Central

    Mabunga, Darine Froy N.; Gonzales, Edson Luck T.; Kim, Ji-woon; Kim, Ki Chan

    2015-01-01

    The valproic acid (VPA) animal model of autism spectrum disorder (ASD) is one of the most widely used animal model in the field. Like any other disease models, it can't model the totality of the features seen in autism. Then, is it valid to model autism? This model demonstrates many of the structural and behavioral features that can be observed in individuals with autism. These similarities enable the model to define relevant pathways of developmental dysregulation resulting from environmental manipulation. The uncovering of these complex pathways resulted to the growing pool of potential therapeutic candidates addressing the core symptoms of ASD. Here, we summarize the validity points of VPA that may or may not qualify it as a valid animal model of ASD. PMID:26713077

  8. Data management system performance modeling

    NASA Technical Reports Server (NTRS)

    Kiser, Larry M.

    1993-01-01

    This paper discusses analytical techniques that have been used to gain a better understanding of the Space Station Freedom's (SSF's) Data Management System (DMS). The DMS is a complex, distributed, real-time computer system that has been redesigned numerous times. The implications of these redesigns have not been fully analyzed. This paper discusses the advantages and disadvantages for static analytical techniques such as Rate Monotonic Analysis (RMA) and also provides a rationale for dynamic modeling. Factors such as system architecture, processor utilization, bus architecture, queuing, etc. are well suited for analysis with a dynamic model. The significance of performance measures for a real-time system are discussed.

  9. A continuous acetic acid system for polyacrylamide gel electrophoresis of gliadins and other prolamines.

    PubMed

    Clements, R L

    1988-02-01

    A polyacrylamide gel electrophoresis system buffered by acetic acid alone was developed for electrophoresis of prolamines. When applied to gliadin electrophoresis, the acetic acid system produces more bands than does a conventional aluminum lactate-lactic acid system (using 12% acrylamide gels). The acetic acid system is relatively simple, requiring a single buffer component that is universally available in high purity.

  10. 21 CFR 862.3580 - Lysergic acid diethylamide (LSD) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lysergic acid diethylamide (LSD) test system. 862... Test Systems § 862.3580 Lysergic acid diethylamide (LSD) test system. (a) Identification. A lysergic acid diethylamide (LSD) test system is a device intended to measure lysergic acid diethylamide,...

  11. 21 CFR 862.3580 - Lysergic acid diethylamide (LSD) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lysergic acid diethylamide (LSD) test system. 862... Test Systems § 862.3580 Lysergic acid diethylamide (LSD) test system. (a) Identification. A lysergic acid diethylamide (LSD) test system is a device intended to measure lysergic acid diethylamide,...

  12. 21 CFR 862.3580 - Lysergic acid diethylamide (LSD) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lysergic acid diethylamide (LSD) test system. 862... Test Systems § 862.3580 Lysergic acid diethylamide (LSD) test system. (a) Identification. A lysergic acid diethylamide (LSD) test system is a device intended to measure lysergic acid diethylamide,...

  13. 21 CFR 862.3580 - Lysergic acid diethylamide (LSD) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lysergic acid diethylamide (LSD) test system. 862... Test Systems § 862.3580 Lysergic acid diethylamide (LSD) test system. (a) Identification. A lysergic acid diethylamide (LSD) test system is a device intended to measure lysergic acid diethylamide,...

  14. 21 CFR 862.3580 - Lysergic acid diethylamide (LSD) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lysergic acid diethylamide (LSD) test system. 862... Test Systems § 862.3580 Lysergic acid diethylamide (LSD) test system. (a) Identification. A lysergic acid diethylamide (LSD) test system is a device intended to measure lysergic acid diethylamide,...

  15. 21 CFR 862.1305 - Formiminoglutamic acid (FIGLU) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Formiminoglutamic acid (FIGLU) test system. 862.1305 Section 862.1305 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  16. 21 CFR 862.1305 - Formiminoglutamic acid (FIGLU) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Formiminoglutamic acid (FIGLU) test system. 862.1305 Section 862.1305 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  17. Dynamic Buffer Capacity in Acid-Base Systems.

    PubMed

    Michałowska-Kaczmarczyk, Anna M; Michałowski, Tadeusz

    The generalized concept of 'dynamic' buffer capacity βV is related to electrolytic systems of different complexity where acid-base equilibria are involved. The resulting formulas are presented in a uniform and consistent form. The detailed calculations are related to two Britton-Robinson buffers, taken as examples.

  18. Collaborative effort to model plant response to acidic rain

    SciTech Connect

    Jacobson, J.; Kuja, A.; Shriner, D.; Perrigan, S.; Irving, P.; Lee, J.; Troiano, J.; Cullinan, V.

    1988-06-01

    Radish plants were exposed three times per week to simulated acidic rain at pH values of 2.6 to 5.4 over the course of four weeks in trials performed at Argonne, Illinois; Ithaca and Upton, New York; Corvallis, Oregon; Oak Ridge, Tennessee; and Toronto, Canada. Uniform genotype, soil media and planting techniques, treatment procedures, biological measurements, and experimental design were employed. Growth of plants differed among trials as a result of variation in greenhouse environmental conditions according to location and facilities. Larger plants underwent greater absolute but lower relative reductions in biomass after exposure to the higher levels of acidity. A generalized Mitscherlich function was used to model the effects of acidity of simulated rain or dry mass of hypocotyls using data from three laboratories that performed duplicate trials. The remaining data, from three other laboratories that performed only one trial each, were used to test the model. When the laboratory by trial effect was removed, lack of fit to the Mitscherlich function was insignificant. Thus, a single mathematical model satisfactorily characterized the relationship between acidity and mean plant response.

  19. Computational model of abiogenic amino acid condensation to obtain a polar amino acid profile.

    PubMed

    Polanco, Carlos; Buhse, Thomas; Samaniego, José Lino; Castañón González, Jorge Alberto; Arias Estrada, Miguel

    2014-01-01

    In accordance with the second law of thermodynamics, the Universe as a whole tends to higher entropy. However, the sequence of far-from-equilibrium events that led to the emergence of life on Earth could have imposed order and complexity during the course of chemical reactions in the so-called primordial soup of life. Hence, we may expect to find characteristic profiles or biases in the prebiotic product mixtures, as for instance among the first amino acids. Seeking to shed light on this hypothesis, we have designed a high performance computer program that simulates the spontaneous formation of the amino acid monomers in closed environments. The program was designed in reference to a prebiotic scenario proposed by Sydney W. Fox. The amino acid abundances and their polarities as the two principal biases were also taken into consideration. We regarded the computational model as exhaustive since 200,000 amino acid dimers were formed by simulation, subsequently expressed in a vector and compared with the corresponding amino acid dimers that were experimentally obtained by Fox. We found a very high similarity between the experimental results and our simulations.

  20. Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid.

    PubMed

    Girisuta, B; Danon, B; Manurung, R; Janssen, L P B M; Heeres, H J

    2008-11-01

    A comprehensive experimental and modelling study on the acid-catalysed hydrolysis of the water hyacinth plant (Eichhornia crassipes) to optimise the yield of levulinic acid (LA) is reported (T=150-175 degrees CH2SO4 = 0.1-1M, water hyacinth intake=1-5wt%). At high acid concentrations (>0.5M), LA was the major organic acid whereas at low acid concentrations (<0.1M) and high initial intakes of water hyacinth, the formation of propionic acid instead of LA was favoured. The highest yield of LA was 53mol% (35wt%) based on the amount of C6-sugars in the water hyacinth (T=175 degrees CH2SO4 =1M , water hyacinth intake=1wt%). The LA yield as a function of the process conditions was modelled using a kinetic model originally developed for the acid-catalysed hydrolysis of cellulose and good agreement between the experimental and modelled data was obtained.

  1. Coastal Modeling System Advanced Topics

    DTIC Science & Technology

    2012-06-18

    is the CMS? Integrated wave, current, and morphology change model in the Surface-water Modeling System (SMS). Why CMS? Operational at 10...Coupled with spectral wave model (CMS-Wave)  Wave-current interactions  Inline sediment transport and morphology change  Non-equilibrium...Easy to setup  Telescoping grid: Efficient and flexible  Solver options  Implicit: Tidal flow, long-term morphology change. ~10 min

  2. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems.

    PubMed

    Dykstra, J E; Biesheuvel, P M; Bruning, H; Ter Heijne, A

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  3. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems

    NASA Astrophysics Data System (ADS)

    Dykstra, J. E.; Biesheuvel, P. M.; Bruning, H.; Ter Heijne, A.

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  4. Modeling of Embedded Human Systems

    DTIC Science & Technology

    2013-07-01

    reduces to solving an initial value HJ PDE. Let the system dynamics be given by ẋ = f(x, u), where f is bounded and Lipschitz continuous in x. Choose the...Sprinkle, “Synthesizing executable simulations from structural models of component- based systems,” Electronic Communications of the European Association

  5. Photovoltaic Systems Modeling and Analysis

    NASA Astrophysics Data System (ADS)

    Ali, Mir Shahed

    2010-11-01

    This thesis deals with the implementation of generalized photovoltaic model and integration of the same with 7-bus electrical utility system to evaluate the impact that the photovoltaic generator have on the utility system. Among all the impacts that the photovoltaic generator have on the utility system, voltage rise of the power distribution line at the position where the Photovoltaic generator is connected due to reverse power flow from the photovoltaic model has been one of the major problem. Therefore, this thesis proposes the steady-state simulations to evaluate the effectiveness of battery-integrated PV system on avoiding the over voltage problem. Further, fault analysis is done to study the effect of the PV model on the utility network during faults and it is deduced that the impact of the PV model on the utility system voltage during faults is nominal. The photovoltaic model/generator and the 7-bus utility system is developed using Matlab/Simulink software package. The developed photovoltaic model can be represented as PV cell, module or an array. The model is developed with icons that are easy to understand. The developed model takes into consideration cell's working temperature, amount of sunlight (irradiance) available, voltage of the circuit when the circuit is open and current of the circuit when it is shorted. The developed Photovoltaic model is then integrated with a Li-ion battery, over here battery serves two purposes first it will store the excess power from the Photovoltaic generator if any, during the day time and in night the battery acts as an generator and deliver the power to the utility or connected load with the help of an invertors.

  6. Binary nucleation in acid-water systems. II. Sulfuric acid-water and a comparison with methanesulfonic acid-water

    NASA Astrophysics Data System (ADS)

    Wyslouzil, B. E.; Seinfeld, J. H.; Flagan, R. C.; Okuyama, K.

    1991-05-01

    This work presents a systematic investigation of binary nucleation rates for sulfuric acid and water and the effect of temperature on these rates at isothermal, subsaturated conditions. The results from nucleation rate measurements for the sulfuric acid (H2SO4) -water system are discussed and compared to those previously presented for methanesulfonic acid (MSA)-water [B. E. Wyslouzil, J. H. Seinfeld, R. C. Flagan, and K. Okuyama, J. Chem. Phys. (submitted)]. Experiments were conducted at relative humidities (Rh) ranging from 0.006acidities (Ra) in the range of 0.04acid molecules in the critical nucleus for both the H2SO4 -water and MSA-water systems.

  7. Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities

    USGS Publications Warehouse

    Kidd, Haack S.; Garchow, H.; Odelson, D.A.; Forney, L.J.; Klug, M.J.

    1994-01-01

    We determined the accuracy and reproducibility of whole-community fatty acid methyl ester (FAME) analysis with two model bacterial communities differing in composition by using the Microbial ID, Inc. (MIDI), system. The biomass, taxonomic structure, and expected MIDI-FAME profiles under a variety of environmental conditions were known for these model communities a priori. Not all members of each community could be detected in the composite profile because of lack of fatty acid 'signatures' in some isolates or because of variations (approximately fivefold) in fatty acid yield across taxa. MIDI- FAME profiles of replicate subsamples of a given community were similar in terms of fatty acid yield per unit of community dry weight and relative proportions of specific fatty acids. Principal-components analysis (PCA) of MIDI-FAME profiles resulted in a clear separation of the two different communities and a clustering of replicates of each community from two separate experiments on the first PCA axis. The first PCA axis accounted for 57.1% of the variance in the data and was correlated with fatty acids that varied significantly between communities and reflected the underlying community taxonomic structure. On the basis of our data, community fatty acid profiles can be used to assess the relative similarities and differences of microbial communities that differ in taxonomic composition. However, detailed interpretation of community fatty acid profiles in terms of biomass or community taxonomic composition must be viewed with caution until our knowledge of the quantitative and qualitative distribution of fatty acids over a wide variety of taxa and the effects of growth conditions on fatty acid profiles is more extensive.

  8. Mouse models: the ketogenic diet and polyunsaturated fatty acids.

    PubMed

    Borges, Karin

    2008-11-01

    Literature on the anticonvulsant effects of the ketogenic diet (KD) in mouse seizure models is summarized. Recent data show that a KD balanced in vitamin, mineral, and antioxidant content is anticonvulsant in mice, confirming that the KD's effect in mice can be attributed to the composition of the diet and not other dietary factors. Given that the anticonvulsant mechanism of the KD is still unknown, the anticonvulsant profile of the diet in different seizure models may help to decipher this mechanism. The implications of the findings that the KD is anticonvulsant in electrical seizure models are indicated. Further, the potential involvement of polyunsaturated fatty acids (PUFA) in the KD's anticonvulsant mechanism is discussed.

  9. Amino acid transport by prosthecae of Asticcacaulis biprosthecum: evidence for a broad-range transport system.

    PubMed

    Tam, E; Pate, J L

    1985-10-01

    Prosthecae purified from cells of Asticcaulis biprosthecum possess active transport systems that transport all 20 amino acids tested. Using ascorbate-reduced phenazine methosulphate in the presence of oxygen, all 20 amino acids are accumulated against a concentration gradient by isolated prosthecae. Results of experiments testing the inhibition of transport of one amino acid by another, and of experiments testing the exchange of exogenous amino acids with those preloaded in prosthecae, along with characteristics of mutants defective in amino acid transport, suggest the presence in prosthecae of three amino acid transport systems. One, the general or G system, transports at least 18 of the 20 amino acids tested. Another system, referred to as the proline or P system, transports seven amino acids (including proline) that are also transported by the G system. The third system transports only glutamate and aspartate, and is referred to as the acidic amino acid transport system or A system.

  10. The oxidation of linoleic acid in the Udenfriend's system.

    PubMed

    Wakizaka, A; Imai, Y

    1974-11-01

    The autocatalytic oxidation of linoleate was observed in the incubation mixture containing ferrous ion and ascorbic acid as the catalysts (Undenfriend's system). The rate of oxidation of linoleate was estimated wither by the TBA method, iodometry or by the measurement of the absorbance at 235 nm. Reaction products were analyzed by TLC, GLC and UV-, IR-, NMR- and mass spectrometries. The main oxidized products were assumed to have one oxygen atom at the position of carbon 9 or 13 of linoleate or two oxygen atoms at the both positions of the original acid. The conjugated double bond was formed at carbon 10 and 12 of the carbon chain of linoleate.

  11. Dietary docosahexaenoic acid but not arachidonic acid influences central nervous system fatty acid status in baboon neonates.

    PubMed

    Hsieh, Andrea T; Brenna, J Thomas

    2009-01-01

    The influence of dietary docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) on infant central nervous system (CNS) composition has implications for neural development, including vision, cognition, and motor function. We consider here combined results of three published studies of DHA/AA-containing formulas and breastfeeding to evaluate the CNS tissue response of baboon neonates with varied concentration and duration of DHA/AA consumption [G.Y. Diau, A.T. Hsieh, E.A. Sarkadi-Nagy, V. Wijendran, P.W. Nathanielsz, J.T. Brenna, The influence of long chain polyunsaturate supplementation on docosahexaenoic acid and arachidonic acid in baboon neonate central nervous system, BMC Med. 3 (2005) 11; A.T. Hsieh, J.C. Anthony, D.A. Diersen-Schade, et al., The influence of moderate and high dietary long chain polyunsaturated fatty acids (LCPUFA) on baboon neonate tissue fatty acids, Pediatr. Res. 61 (2007) 537-45; E. Sarkadi-Nagy, V. Wijendran, G.Y. Diau, et al., The influence of prematurity and long chain polyunsaturate supplementation in 4-week adjusted age baboon neonate brain and related tissues, Pediatr. Res. 54 (2003) 244-252]. A total of 43 neonates born spontaneously at term, or preterm by Cesarean section, consumed diets with DHA-AA (%w/w) at several levels: none (0,0), moderate (0.3, 0.6), or high (>0.6, 0.67 or 1.2). CNS fatty acids were analyzed at 4 and 12 weeks postpartum for term baboons and 7.5 weeks for preterm neonates. CNS DHA was consistently greater by 5-30% in neonates consuming DHA and nearer 30% for cortex. In contrast, CNS AA was unaffected by dietary AA and decreased in all structures with age. Dietary DHA consistently supports greater CNS DHA and maintenance of cortex DHA concentration with feeding duration, while CNS AA is not related to dietary supply. These data on structure-specific LCPUFA accretion may provide insight into neural mechanisms responsible for suboptimal functional outcomes in infants consuming diets that do not

  12. Advancing polymeric delivery systems amidst a nucleic acid therapy renaissance

    PubMed Central

    Burke, Paul A.; Pun, Suzie H.; Reineke, Theresa M.

    2013-01-01

    Nucleic acid therapeutics are attracting renewed interest due to recent clinical advances and product approvals. Most leading programs use chemical conjugates, or viral vectors in the case of gene therapy, while several use no delivery system at all. Polymer systems, which have been at the periphery of this renaissance, often involve greater molecular complexity than competing approaches, which must be justified by their advantages. Advanced analytical methods, along with biological tools for characterizing biotransformation and intracellular trafficking, are increasingly being applied to nucleic acid delivery systems including those based on polymers. These frontiers of investigation create the opportunity for an era where highly defined polymer compositions are optimized based on mechanistic insights in a way that has not been previously possible, offering the prospect of greater differentiation from alternatives. This will require integrated collaboration between polymer scientists and those from other disciplines. PMID:24683504

  13. Skin delivery of ferulic acid from different vesicular systems.

    PubMed

    Chen, Ming; Liu, Xiangli; Fahr, Alfred

    2010-10-01

    The aim of the present research is to evaluate the skin delivery capabilities of different vesicular systems, including conventional liposomes (CL), Tween 80-based deformable liposomes (DL), invasomes (INS) and ethosomes bearing ferulic acid (FA) being an antioxidant exhibiting a wide range of therapeutic effects against various diseases. All of the test formulations were characterized for particle size distribution, zeta-potential, vesicular shape and surface morphology, in vitro human skin permeation and skin deposition. Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) defined that all of liposomal vesicles were almost spherical, displaying unilamellar structures with low polydispersity (PDI < 0.2) and nanometric size range (z-average no more than 150 nm). In addition, all the vesicular systems except conventional liposomes were negatively charged to a certain extent. In vitro skin permeation and skin deposition experiments demonstrated that the permeation profile of ferulic acid through human stratum corneum epidermis membrane (SCE) and the drug deposition in skin were both improved significantly using these vesicular liposomal systems. Permeation and skin deposition enhancing effect was highlighted by the ethosomal system containing 18.0 mg/ml of ferulic acid with an significantly (P < 0.01) enhanced skin flux (267.8 +/- 16.77 microg/cm2/h) and skin drug deposition (51.67 +/- 1.94 microg/cm2), which was 75 times and 7.3 times higher than those of ferulic acid from saturated PBS (pH 7.4) solution, respectively. This study demonstrated that ethosomes are promising vesicular carriers for delivering ferulic acid into or across the skin.

  14. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms.

    PubMed

    Widdows, Kate L; Panitchob, Nuttanont; Crocker, Ian P; Please, Colin P; Hanson, Mark A; Sibley, Colin P; Johnstone, Edward D; Sengers, Bram G; Lewis, Rohan M; Glazier, Jocelyn D

    2015-06-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [(14)C]L-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [(14)C]L-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with L-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.

  15. Kinetic Modeling of Biological Systems

    PubMed Central

    Petzold, Linda; Pettigrew, Michel F.

    2010-01-01

    The dynamics of how the constituent components of a natural system interact defines the spatio-temporal response of the system to stimuli. Modeling the kinetics of the processes that represent a biophysical system has long been pursued with the aim of improving our understanding of the studied system. Due to the unique properties of biological systems, in addition to the usual difficulties faced in modeling the dynamics of physical or chemical systems, biological simulations encounter difficulties that result from intrinsic multiscale and stochastic nature of the biological processes. This chapter discusses the implications for simulation of models involving interacting species with very low copy numbers, which often occur in biological systems and give rise to significant relative fluctuations. The conditions necessitating the use of stochastic kinetic simulation methods and the mathematical foundations of the stochastic simulation algorithms are presented. How the well-organized structural hierarchies often seen in biological systems can lead to multiscale problems, and possible ways to address the encountered computational difficulties are discussed. We present the details of the existing kinetic simulation methods, and discuss their strengths and shortcomings. A list of the publicly available kinetic simulation tools and our reflections for future prospects are also provided. PMID:19381542

  16. Effects of Ascorbic Acid, Phytic Acid and Tannic Acid on Iron Bioavailability from Reconstituted Ferritin Measured by an In Vitro Digestion/Caco-2 Cell Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of ascorbic acid, phytate and tannic acid on Fe bioavailability from Fe supplied as ferritin was compared to FeSO4 using an in vitro digestion/Caco-2 cell model. Horse spleen ferritin (HSF) was chemically reconstituted into a plant-type ferritin (P-HSF). In the presence of ascorbic acid...

  17. Stirling Engine Dynamic System Modeling

    NASA Technical Reports Server (NTRS)

    Nakis, Christopher G.

    2004-01-01

    The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.

  18. A fully automatic system for acid-base coulometric titrations

    PubMed Central

    Cladera, A.; Caro, A.; Estela, J. M.; Cerdà, V.

    1990-01-01

    An automatic system for acid-base titrations by electrogeneration of H+ and OH- ions, with potentiometric end-point detection, was developed. The system includes a PC-compatible computer for instrumental control, data acquisition and processing, which allows up to 13 samples to be analysed sequentially with no human intervention. The system performance was tested on the titration of standard solutions, which it carried out with low errors and RSD. It was subsequently applied to the analysis of various samples of environmental and nutritional interest, specifically waters, soft drinks and wines. PMID:18925283

  19. Commercial phosphoric acid fuel cell system technology development

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Warshay, M.; Simons, S. N.; King, R. B.

    1979-01-01

    A review of the current commercial phosphoric acid fuel cell system technology development efforts is presented. In both the electric utility and on-site integrated energy system applications, reducing cost and increasing reliability are the technology drivers at this time. The longstanding barrier to the attainment of these goals, which manifests itself in a number of ways, has been materials. The differences in approach among the three major participants (United Technologies Corporation (UTC), Westinghouse Electric Corporation/Energy Research Corporation (ERC), and Engelhard Industries) and their unique technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy are discussed.

  20. A physiologically based pharmacokinetic model for Valproic acid in adults and children.

    PubMed

    Ogungbenro, Kayode; Aarons, Leon

    2014-10-15

    Valproic acid is an anti-convulscant drug that is widely used in the treatment of different types of epilepsy and since its introduction the clinical use has increased rapidly both as a sole agent and in combination therapies. The mechanism of action has been linked to blockade of voltage-dependent sodium channels and potentiation of GABAergic transmission. The most widely used route of administration of Valproic acid is oral, although it can also be given intravenously and rectally and its pharmacokinetics has been studied extensively. The aim of this work was to develop a physiologically based pharmacokinetic model for plasma and tissue/organ prediction in children and adults following intravenous and oral dosing of Valproic acid. The plasma/tissue concentration profile will be used for clinical trial simulation in Dravet syndrome, a rare form of epilepsy in children where the combination of Valproic acid, stiripentol and clobazam has shown remarkable results. A physiologically based pharmacokinetic model was developed with compartments for gut lumen, enterocyte, gut tissue, systemic blood, kidney, liver, brain, spleen, muscle and rest of body. System and drug specific parameters for the model were obtained from the literature from in vitro and in vivo experiments. The model was initially developed for adults and scaled to children using age-dependent changes in anatomical and physiological parameters and ontogeny functions for enzyme maturation assuming the same elimination pathways in adults and children. The results from the model validation showed satisfactory prediction of plasma concentration both in terms of mean prediction and variability in children and adults following intravenous and oral dosing especially after single doses. The model also adequately predicts clearance in children. Due to limited distribution of Valproic acid into tissues, the concentration in plasma is about 8-9 times higher than tissues/organs. The model could help to improve

  1. Generalized Environment for Modeling Systems

    SciTech Connect

    2012-02-07

    -04) created at INL to work inside SharePoint. The GUI tool links slider bars and drop downs to specific inputs and output of the ModelCenter model that is executable from SharePoint. The modeler also creates in SAS, dashboards, graphs and tables that are exposed by links and SAS and ModelCenter Web Parts into the SharePoint system. The user can then log into SharePoint, move slider bars and select drop down lists to configure the model parameters, click to run the model, and then view the output results that are based on their particular input choices. The main point is that GEMS eliminates the need for a programmer to connect and create the web artifacts necessary to implement and deliver an executable model or decision aid to customers.

  2. Systems solutions by lactic acid bacteria: from paradigms to practice

    PubMed Central

    2011-01-01

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications. PMID:21995776

  3. The role of epoxyeicosatrienoic acids in the cardiovascular system.

    PubMed

    Yang, L; Mäki-Petäjä, K; Cheriyan, J; McEniery, C; Wilkinson, I B

    2015-07-01

    There is increasing evidence suggesting that epoxyeicosatrienoic acids (EETs) play an important role in cardioprotective mechanisms. These include regulating vascular tone, modulating inflammatory responses, improving cardiomyocyte function and reducing ischaemic damage, resulting in attenuation of animal models of cardiovascular risk factors. This review discusses the current knowledge on the role of EETs in endothelium-dependent control of vascular tone in the healthy and in subjects with cardiovascular risk factors, and considers the pharmacological potential of targeting this pathway.

  4. Modelling robotic systems with DADS

    NASA Technical Reports Server (NTRS)

    Churchill, L. W.; Sharf, I.

    1993-01-01

    With the appearance of general off-the-shelf software packages for the simulation of mechanical systems, modelling and simulation of mechanisms has become an easier task. The authors have recently used one such package, DADS, to model the dynamics of rigid and flexible-link robotic manipulators. In this paper, we present this overview of our learning experiences with DADS, in the hope that it will shorten the learning process for others interested in this software.

  5. Tunable models in measuring systems

    NASA Astrophysics Data System (ADS)

    Avdeev, V. P. L.; Parparov, Y. G.; Sulman, L. A.; Myshlyaev, L. P.; Polyak, A. V.

    The inclusion of tunable models in technological measuring systems, including those used in the iron and steel industry is considered. A method is proposed for the stable estimation of process parameters that consists of the anti-interference tuning of partial models of signal sources by means of robust isolation and smoothing of the informative regions of data with explicit allowance for the criteria of variability of residues and the estimates themselves.

  6. Stochastic Models of Polymer Systems

    DTIC Science & Technology

    2016-01-01

    algorithms for big data applications . (2) We studied stochastic dynamics of polymer systems in the mean field limit. (3) We studied noisy Hegselmann-Krause...DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 15. SUBJECT TERMS b. ABSTRACT 2. REPORT TYPE 17. LIMITATION...Distribution Unlimited Final Report: Stochastic Models of Polymer Systems The views, opinions and/or findings contained in this report are those of the

  7. Developing nucleic acid-based electrical detection systems

    PubMed Central

    Gabig-Ciminska, Magdalena

    2006-01-01

    Development of nucleic acid-based detection systems is the main focus of many research groups and high technology companies. The enormous work done in this field is particularly due to the broad versatility and variety of these sensing devices. From optical to electrical systems, from label-dependent to label-free approaches, from single to multi-analyte and array formats, this wide range of possibilities makes the research field very diversified and competitive. New challenges and requirements for an ideal detector suitable for nucleic acid analysis include high sensitivity and high specificity protocol that can be completed in a relatively short time offering at the same time low detection limit. Moreover, systems that can be miniaturized and automated present a significant advantage over conventional technology, especially if detection is needed in the field. Electrical system technology for nucleic acid-based detection is an enabling mode for making miniaturized to micro- and nanometer scale bio-monitoring devices via the fusion of modern micro- and nanofabrication technology and molecular biotechnology. The electrical biosensors that rely on the conversion of the Watson-Crick base-pair recognition event into a useful electrical signal are advancing rapidly, and recently are receiving much attention as a valuable tool for microbial pathogen detection. Pathogens may pose a serious threat to humans, animal and plants, thus their detection and analysis is a significant element of public health. Although different conventional methods for detection of pathogenic microorganisms and their toxins exist and are currently being applied, improvements of molecular-based detection methodologies have changed these traditional detection techniques and introduced a new era of rapid, miniaturized and automated electrical chip detection technologies into pathogen identification sector. In this review some developments and current directions in nucleic acid-based electrical

  8. Carotene reactivity in pink grapefruit juice elucidated from model systems and multiresponse modeling.

    PubMed

    Achir, Nawel; Hadjal, Thiziri; Madani, Khodir; Dornier, Manuel; Dhuique-Mayer, Claudie

    2015-04-22

    This study was carried out to assess the impact of pink grapefruit juice composition and structure on the degradation kinetics of lycopene and β-carotene using model systems and multiresponse modeling. Carotenes were heated at four temperatures in their native matrix (juice) or were extracted and incorporated in water/ethanol emulsion systems formulated with or without ascorbic acid or naringin. Kinetic analysis showed that the rate constants and activation energy were lower for lycopene than for β-carotene in the juice, while this trend was inversed in the model system. Multiresponse modeling was used to analyze the role of ascorbic acid and naringin in carotene degradation. Ascorbic acid had a very low impact, while naringin significantly increased the carotene degradation and isomerization rates. We concluded that lycopene was more sensitive to thermal degradation and phytochemical interactions than β-carotene, but this behavior was masked in the fruit juice matrix by better structural protection.

  9. Video distribution system cost model

    NASA Technical Reports Server (NTRS)

    Gershkoff, I.; Haspert, J. K.; Morgenstern, B.

    1980-01-01

    A cost model that can be used to systematically identify the costs of procuring and operating satellite linked communications systems is described. The user defines a network configuration by specifying the location of each participating site, the interconnection requirements, and the transmission paths available for the uplink (studio to satellite), downlink (satellite to audience), and voice talkback (between audience and studio) segments of the network. The model uses this information to calculate the least expensive signal distribution path for each participating site. Cost estimates are broken downy by capital, installation, lease, operations and maintenance. The design of the model permits flexibility in specifying network and cost structure.

  10. Parametric Modeling for Fluid Systems

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Martinez, Jonathan

    2013-01-01

    Fluid Systems involves different projects that require parametric modeling, which is a model that maintains consistent relationships between elements as is manipulated. One of these projects is the Neo Liquid Propellant Testbed, which is part of Rocket U. As part of Rocket U (Rocket University), engineers at NASA's Kennedy Space Center in Florida have the opportunity to develop critical flight skills as they design, build and launch high-powered rockets. To build the Neo testbed; hardware from the Space Shuttle Program was repurposed. Modeling for Neo, included: fittings, valves, frames and tubing, between others. These models help in the review process, to make sure regulations are being followed. Another fluid systems project that required modeling is Plant Habitat's TCUI test project. Plant Habitat is a plan to develop a large growth chamber to learn the effects of long-duration microgravity exposure to plants in space. Work for this project included the design and modeling of a duct vent for flow test. Parametric Modeling for these projects was done using Creo Parametric 2.0.

  11. Solid/Liquid phase diagram of the ammonium sulfate/maleic acid/water system.

    PubMed

    Beyer, Keith D; Schroeder, Jason R; Pearson, Christian S

    2011-12-01

    We have studied the low temperature phase diagram and water activities of the ammonium sulfate/maleic acid/water system using differential scanning calorimetry and infrared spectroscopy of thin films. Using the results from our experiments, we have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/maleic acid phase boundary as well as the ternary eutectic composition and temperature. We also compare our results to the predictions of the extended AIM aerosol thermodynamics model and find good agreement for the ice melting points in the ice primary phase field of this system; however significant differences were found with respect to phase boundaries, maleic acid dissolution, and ammonium sulfate dissolution.

  12. Superabsorbent biphasic system based on poly(lactic acid) and poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Pandini, Stefano; Baldi, Francesco; Bignotti, Fabio

    2016-05-01

    In this research work, biocomposites based on crosslinked particles of poly(acrylic acid), commonly used as superabsorbent polymer (SAP), and poly-L-lactic acid (PLLA) were developed to elucidate the role of the filler (i.e., polymeric crosslinked particles) on the overall physico-mechanical behavior and to obtain superabsorbent thermoplastic products. Samples prepared by melt-blending of components in different ratios showed a biphasic system with a regular distribution of particles, with diameter ranging from 5 to 10 μm, within the PLLA polymeric matrix. The polymeric biphasic system, coded PLASA i.e. superabsorbent poly(lactic acid), showed excellent swelling properties, demonstrating that cross-linked particles retain their superabsorbent ability, as in their free counterparts, even if distributed in a thermoplastic polymeric matrix. The thermal characteristics of the biocomposites evidence enhanced thermal stability in comparison with neat PLLA and also mechanical properties are markedly modified by addition of crosslinked particles which induce regular stiffening effect. Furthermore, in aqueous environments the particles swell and are leached from PLLA matrix generating very high porosity. These new open-pore PLLA foams, produced in absence of organic solvents and chemical foaming agents, with good physico-mechanical properties appear very promising for several applications, for instance in tissue engineering for scaffold production.

  13. Kinetic modeling on batch-cooling crystallization of zinc lactate: The influence of malic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyang; Qian, Gang; Zhou, Xinggui

    2017-04-01

    Influence of malic acid, which acts as an impurity, on the crystallization kinetics of zinc lactate has been investigated in this work. Crystallization of zinc lactate with a linear cooling profile was carried out in a batch crystallizer and a population balance model was used to estimate the crystallization kinetics for each studied system by using the nonlinear optimization method. The predicted results related to the concentration profile of zinc lactate are in good agreement with the experimental data. The influence of malic acid on the crystallization of zinc lactate is discussed herein.

  14. Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model.

    PubMed

    Dimiev, Ayrat M; Alemany, Lawrence B; Tour, James M

    2013-01-22

    The existing structural models of graphene oxide (GO) contradict each other and cannot adequately explain the acidity of its aqueous solutions. Inadequate understanding of chemical structure can lead to a misinterpretation of observed experimental phenomena. Understanding the chemistry and structure of GO should enable new functionalization protocols while explaining GO's limitations due to its water instability. Here we propose an unconventional view of GO chemistry and develop the corresponding "dynamic structural model" (DSM). In contrast to previously proposed models, the DSM considers GO as a system, constantly changing its chemical structure due to interaction with water. Using potentiometric titration, (13)C NMR, FTIR, UV-vis, X-ray photoelectron microscopy, thermogravimetric analysis, and scanning electron microscopy we show that GO does not contain any significant quantity of preexisting acidic functional groups, but gradually generates them through interaction with water. The reaction with water results in C-C bond cleavage, formation of vinylogous carboxylic acids, and the generation of protons. An electrical double layer formed at the GO interface in aqueous solutions plays an important role in the observed GO chemistry. Prolonged exposure to water gradually degrades GO flakes converting them into humic acid-like structures. The proposed DSM provides an explanation for the acidity of GO aqueous solutions and accounts for most of the known spectroscopic and experimental data.

  15. Thermodynamic models in cosmochemical systems.

    NASA Technical Reports Server (NTRS)

    Griffiths, P. R.; Brown, C. W.; Lippincott, E. R.; Dayhoff , M. O.

    1972-01-01

    Generalized computer methods are developed for inferring details of the formation of cosmochemical systems. Compositions of ideal gas mixtures existing in equilibrium with multicomponent solid and liquid phases are calculated. A comparison of computed results with experimental data is made for the ternary system MgO-FeO-SiO2. While the ideal-solution approximation is shown to be inaccurate in dealing with the silicate melts, the stable phases and compositions can be accurately calculated in a system where there are only solids and gas. A model system containing the elements H, O, Si, Mg, S, C, Cl, and F is investigated over a range of compositions involving the gas and ten solid phases, to show the power of the technique in dealing with complex gas-solid equilibria. Systems close to cosmic composition are next considered, both with and without iron.

  16. Understanding atmospheric peroxyformic acid chemistry: observation, modeling and implication

    NASA Astrophysics Data System (ADS)

    Liang, H.; Chen, Z. M.; Huang, D.; Wu, Q. Q.; Huang, L. B.

    2015-01-01

    The existence and importance of peroxyformic acid (PFA) in the atmosphere has been under controversy. We present here, for the first time, the observation data for PFA from four field measurements carried out in China. These data provided powerful evidence that PFA can stay in the atmosphere, typically in dozens of pptv level. The relationship between PFA and other detected peroxides was examined. The results showed that PFA had a strong positive correlation with its homolog, peroxyacetic acid, due to their similar sources and sinks. Through an evaluation of PFA production and removal rates, we proposed that the reactions between peroxyformyl radical (HC(O)O2) and formaldehyde or the hydroperoxyl radical (HO2) were likely to be the major source and degradation into formic acid (FA) was likely to be the major sink for PFA. Based on a box model evaluation, we proposed that the HC(O)O2 and PFA chemistry was a major source for FA under low NOx conditions. Furthermore, it is found that the impact of the HC(O)O2 and PFA chemistry on radical cycling was dependent on the yield of HC(O)O2 radical from HC(O) + O2 reaction. When this yield exceeded 50%, the HC(O)O2 and PFA chemistry should not be neglected for calculating the radical budget. To make clear the exact importance of HC(O)O2 and PFA chemistry in the atmosphere, further kinetic, field and modeling studies are required.

  17. [Linoleic acid and the immune system. Controversies about lipid emulsions].

    PubMed

    García de Lorenzo, A; Culebras, J M

    1992-01-01

    The selection of a given lipidic function for nutritional backup requires not only knowledge of the metabolism of the different existing lipidic emulsions and of their specific therapeutic indications, but also of their contraindications and controversies because, apart from their calorific value, the contribution of liposoluble vitamins and their function in preventing essential fatty acid deficiencies, we know that they are powerful metabolic modulators. This in associated with the fact that manipulation of dietary lipids (enteral or parenteral) can affect and modulate the response to the disease, attack or infection by improving or impairing the different immune functions. This review is focused on the scientific publications which have examined the varying effects of lipidic emulsions, in quantity and in quality (particularly linoleic acid) on the immune system, on the fatty acid composition of the cellular membranes and on the production of and prostaglandins and leukotrienes. An update is given of the known interrelation between lipids and immunity, with appraisal of triglycerides and long-medium -- and short-chain fatty acids, mixtures of medium -- and long-chain triglycerides, the proportions between infinity-3/infinity-6, and structured lipids.

  18. System for portable nucleic acid testing in low resource settings

    NASA Astrophysics Data System (ADS)

    Lu, Hsiang-Wei; Roskos, Kristina; Hickerson, Anna I.; Carey, Thomas; Niemz, Angelika

    2013-03-01

    Our overall goal is to enable timely diagnosis of infectious diseases through nucleic acid testing at the point-of-care and in low resource settings, via a compact system that integrates nucleic acid sample preparation, isothermal DNA amplification, and nucleic acid lateral flow (NALF) detection. We herein present an interim milestone, the design of the amplification and detection subsystem, and the characterization of thermal and fluidic control and assay execution within this system. Using an earlier prototype of the amplification and detection unit, comprised of a disposable cartridge containing flexible pouches, passive valves, and electrolysis-driven pumps, in conjunction with a small heater, we have demonstrated successful execution of an established and clinically validated isothermal loop-mediated amplification (LAMP) reaction targeting Mycobacterium tuberculosis (M.tb) DNA, coupled to NALF detection. The refined design presented herein incorporates miniaturized and integrated electrolytic pumps, novel passive valves, overall design changes to facilitate integration with an upstream sample preparation unit, and a refined instrument design that automates pumping, heating, and timing. Nucleic acid amplification occurs in a two-layer pouch that facilitates fluid handling and appropriate thermal control. The disposable cartridge is manufactured using low-cost and scalable techniques and forms a closed system to prevent workplace contamination by amplicons. In a parallel effort, we are developing a sample preparation unit based on similar design principles, which performs mechanical lysis of mycobacteria and DNA extraction from liquefied and disinfected sputum. Our next step is to combine sample preparation, amplification, and detection in a final integrated cartridge and device, to enable fully automated sample-in to answer-out diagnosis of active tuberculosis in primary care facilities of low-resource and high-burden countries.

  19. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  20. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  1. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  2. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  3. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity

    PubMed Central

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M.; Park, Jin-Byung

    2016-01-01

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass. PMID:27681369

  4. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity.

    PubMed

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M; Park, Jin-Byung

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass.

  5. A coarse-grained model for amorphous and crystalline fatty acids

    PubMed Central

    Hadley, K. R.; McCabe, C.

    2010-01-01

    Fatty acids constitute one of the main components of the lipid lamellae in the top layer of the skin, known as the stratum corneum, which acts as a barrier to foreign substances entering the body and to water leaving the body. To better understand the mechanics of the skin, a molecular-level understanding of the structure of the lamellae needs to be investigated. As a first step toward this goal, the current work involves the development of a coarse-grained model for fatty acids in an amorphous and a crystalline state. In order to retain the structural details of the atomistic molecules, radial distribution functions have been used to provide target data against which the coarse-grained force field is optimized. The optimization was achieved using the method developed by Reith, Pütz, and Müller-Plathe with a damping factor introduced into the updating scheme to facilitate the convergence against the crystalline radial distribution functions. Using this approach, a transferable force field has been developed for both crystalline and amorphous systems that can be used to describe fatty acids of different chain lengths. We are unaware of any other coarse-grained model in the literature that has been developed to study solid phases. Additionally, the amorphous force field has been shown to accurately model mixtures of different free fatty acids based on the potentials derived from pure lipid systems. PMID:20387939

  6. Cotangent Models for Integrable Systems

    NASA Astrophysics Data System (ADS)

    Kiesenhofer, Anna; Miranda, Eva

    2017-03-01

    We associate cotangent models to a neighbourhood of a Liouville torus in symplectic and Poisson manifolds focusing on b-Poisson/ b-symplectic manifolds. The semilocal equivalence with such models uses the corresponding action-angle theorems in these settings: the theorem of Liouville-Mineur-Arnold for symplectic manifolds and an action-angle theorem for regular Liouville tori in Poisson manifolds (Laurent- Gengoux et al., IntMath Res Notices IMRN 8: 1839-1869, 2011). Our models comprise regular Liouville tori of Poisson manifolds but also consider the Liouville tori on the singular locus of a b-Poisson manifold. For this latter class of Poisson structures we define a twisted cotangent model. The equivalence with this twisted cotangent model is given by an action-angle theorem recently proved by the authors and Scott (Math. Pures Appl. (9) 105(1):66-85, 2016). This viewpoint of cotangent models provides a new machinery to construct examples of integrable systems, which are especially valuable in the b-symplectic case where not many sources of examples are known. At the end of the paper we introduce non-degenerate singularities as lifted cotangent models on b-symplectic manifolds and discuss some generalizations of these models to general Poisson manifolds.

  7. Modelling codependence in biological systems.

    PubMed

    Mandel, J J; Palfreyman, N M; Dubitzky, W

    2007-01-01

    A central aim of systems biology is to elucidate the complex dynamic structure of biological systems within which functioning and control occur. The success of this endeavour requires a dialogue between the two quite distinct disciplines of life science and systems theory, and so drives the need for graphical notations which facilitate this dialogue. Several methods have been developed for modelling and simulating biochemical networks, some of which provide notations for graphicall4y constructing a model. Such notations must support the full panoply of mechanisms of systems biology, including metabolic, regulatory, signalling and transport processes. Notations in systems biology tend to fall into two groups. The first group derives its orientation from conventional biochemical pathway diagrams, and so tends to ignore the role of information processing. The second group focuses on the processing of information, incorporating information-processing ideas from other systems-oriented disciplines, such as engineering and business. This, however, can lead to the two crucial and related difficulties of impedance mismatch and conceptual baggage. Impedance mismatch concerns the rift between non-biological notations and biological reality, which forces the researcher to employ awkward workarounds when modelling uniquely biological mechanisms. Conceptual baggage can arise when, for instance, an engineering notation is adapted to cater for these distinctively biological needs, since these adaptations will, typically, never completely free the notation of the conceptual structure of its original engineering motivation. A novel formalism, codependence modelling, which seeks to combine the needs of the biologist with the mathematical rigour required to support computer simulation of dynamics is proposed here. The notion of codependence encompasses the transformation of both chemical substance and information, thus integrating both metabolic and gene regulatory processes within a

  8. Solid/liquid phase diagram of the ammonium sulfate/glutaric acid/water system.

    PubMed

    Beyer, Keith D; Pearson, Christian S; Henningfield, Drew S

    2013-05-02

    We have studied the low temperature phase diagram and water activities of the ammonium sulfate/glutaric acid/water system using differential scanning calorimetry, infrared spectroscopy of thin films, and a new technique: differential scanning calorimetry-video microscopy. Using these techniques, we have determined that there is a temperature-dependent kinetic effect to the dissolution of glutaric acid in aqueous solution. We have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/glutaric acid phase boundary as well as the ternary eutectic composition and temperature. We have also modified our glutaric acid/water binary phase diagram previously published based on these new results. We compare our results for the ternary system to the predictions of the Extended AIM Aerosol Thermodynamics Model (E-AIM), and find good agreement for the ice melting points in the ice primary phase field of this system; however, significant differences were found with respect to phase boundaries, concentration and temperature of the ternary eutectic, and glutaric acid dissolution.

  9. Low- and high-affinity transport systems for citric acid in the yeast Candida utilis.

    PubMed Central

    Cássio, F; Leáo, C

    1991-01-01

    Citric acid-grown cells of the yeast Candida utilis induced two transport systems for citric acid, presumably a proton symport and a facilitated diffusion system for the charged and the undissociated forms of the acid, respectively. Both systems could be observed simultaneously when the transport was measured at 25 degrees C with labelled citric acid at pH 3.5 with the following kinetic parameters: for the low-affinity system, Vmax, 1.14 nmol of undissociated citric acid s-1 mg (dry weight) of cells-1, and Km, 0.59 mM undissociated acid; for the high-affinity system, Vmax, 0.38 nmol of citrate s-1 mg (dry weight) of cells-1, and Km, 0.056 mM citrate. At high pH values (above 5.0), the low-affinity system was absent or not measurable. The two transport systems exhibited different substrate specificities. Isocitric acid was a competitive inhibitor of citric acid for the high-affinity system, suggesting that these tricarboxylic acids used the same transport system, while aconitic, tricarballylic, trimesic, and hemimellitic acids were not competitive inhibitors. With respect to the low-affinity system, isocitric acid, L-lactic acid, and L-malic acid were competitive inhibitors, suggesting that all of these mono-, di-, and tricarboxylic acids used the same low-affinity transport system. The two transport systems were repressed by glucose, and as a consequence diauxic growth was observed. Both systems were inducible, and not only citric acid but also lactic acid and malic acid may induce those transport systems. The induction of both systems was not dependent on the relative concentration of the anionic form(s) and of undissociated citric acid in the culture medium.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1664712

  10. INTEGRATED HYDROGEN STORAGE SYSTEM MODEL

    SciTech Connect

    Hardy, B

    2007-11-16

    Hydrogen storage is recognized as a key technical hurdle that must be overcome for the realization of hydrogen powered vehicles. Metal hydrides and their doped variants have shown great promise as a storage material and significant advances have been made with this technology. In any practical storage system the rate of H2 uptake will be governed by all processes that affect the rate of mass transport through the bed and into the particles. These coupled processes include heat and mass transfer as well as chemical kinetics and equilibrium. However, with few exceptions, studies of metal hydrides have focused primarily on fundamental properties associated with hydrogen storage capacity and kinetics. A full understanding of the complex interplay of physical processes that occur during the charging and discharging of a practical storage system requires models that integrate the salient phenomena. For example, in the case of sodium alanate, the size of NaAlH4 crystals is on the order of 300nm and the size of polycrystalline particles may be approximately 10 times larger ({approx}3,000nm). For the bed volume to be as small as possible, it is necessary to densely pack the hydride particles. Even so, in packed beds composed of NaAlH{sub 4} particles alone, it has been observed that the void fraction is still approximately 50-60%. Because of the large void fraction and particle to particle thermal contact resistance, the thermal conductivity of the hydride is very low, on the order of 0.2 W/m-{sup o}C, Gross, Majzoub, Thomas and Sandrock [2002]. The chemical reaction for hydrogen loading is exothermic. Based on the data in Gross [2003], on the order of 10{sup 8}J of heat of is released for the uptake of 5 kg of H{sub 2}2 and complete conversion of NaH to NaAlH{sub 4}. Since the hydride reaction transitions from hydrogen loading to discharge at elevated temperatures, it is essential to control the temperature of the bed. However, the low thermal conductivity of the hydride

  11. System modelling for LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Diaz-Aguiló, Marc; Grynagier, Adrien; Rais, Boutheina

    LISA Pathfinder is the technology demonstrator for LISA, a space-borne gravitational waves observatory. The goal of the mission is to characterise the dynamics of the LISA Technology Package (LTP) to prove that on-board experimental conditions are compatible with the de-tection of gravitational waves. The LTP is a drag-free dynamics experiment which includes a control loop with sensors (interferometric and capacitive), actuators (capacitive actuators and thrusters), controlled disturbances (magnetic coils, heaters) and which is subject to various endogenous or exogenous noise sources such as infrared pressure or solar wind. The LTP experiment features new hardware which was never flown in space. The mission has a tight operation timeline as it is constrained to about 100 days. It is therefore vital to have efficient and precise means of investigation and diagnostics to be used during the on-orbit operations. These will be conducted using the LTP Data Analysis toolbox (LTPDA) which allows for simulation, parameter identification and various analyses (covariance analysis, state estimation) given an experimental model. The LTPDA toolbox therefore contains a series of models which are state-space representations of each component in the LTP. The State-Space Models (SSM) are objects of a state-space class within the LTPDA toolbox especially designed to address all the requirements of this tool. The user has access to a set of linear models which represent every satellite subsystem; the models are available in different forms representing 1D, 2D and 3D systems, each with settable symbolic and numeric parameters. To limit the possible errors, the models can be automatically linked to produce composite systems and closed-loops of the LTP. Finally, for the sake of completeness, accuracy and maintainability of the tool, the models contain all the physical information they mimic (i.e. variable units, description of parameters, description of inputs/outputs, etc). Models

  12. Systemic regulation of soybean nodulation by acidic growth conditions.

    PubMed

    Lin, Meng-Han; Gresshoff, Peter M; Ferguson, Brett J

    2012-12-01

    Mechanisms inhibiting legume nodulation by low soil pH, although highly prevalent and economically significant, are poorly understood. We addressed this in soybean (Glycine max) using a combination of physiological and genetic approaches. Split-root and grafting studies using an autoregulation-of-nodulation-deficient mutant line, altered in the autoregulation-of-nodulation receptor kinase GmNARK, determined that a systemic, shoot-controlled, and GmNARK-dependent mechanism was critical for facilitating the inhibitory effect. Acid inhibition was independent of aluminum ion concentration and occurred early in nodule development, between 12 and 96 h post inoculation with Bradyrhizobium japonicum. Biological effects were confirmed by measuring transcript numbers of known early nodulation genes. Transcripts decreased on both sides of split-root systems, where only one side was subjected to low-pH conditions. Our findings enhance the present understanding of the innate mechanisms regulating legume nodulation control under acidic conditions, which could benefit future attempts in agriculture to improve nodule development and biological nitrogen fixation in acid-stressed soils.

  13. Graph modeling systems and methods

    DOEpatents

    Neergaard, Mike

    2015-10-13

    An apparatus and a method for vulnerability and reliability modeling are provided. The method generally includes constructing a graph model of a physical network using a computer, the graph model including a plurality of terminating vertices to represent nodes in the physical network, a plurality of edges to represent transmission paths in the physical network, and a non-terminating vertex to represent a non-nodal vulnerability along a transmission path in the physical network. The method additionally includes evaluating the vulnerability and reliability of the physical network using the constructed graph model, wherein the vulnerability and reliability evaluation includes a determination of whether each terminating and non-terminating vertex represents a critical point of failure. The method can be utilized to evaluate wide variety of networks, including power grid infrastructures, communication network topologies, and fluid distribution systems.

  14. Modelling of Rare Earth Elements Complexation With Humic Acid

    NASA Astrophysics Data System (ADS)

    Pourret, O.; Davranche, M.; Gruau, G.; Dia, A.

    2006-12-01

    The binding of rare earth elements (REE) to humic acid (HA) was studied by combining Ultrafiltration and ICP- MS techniques. REE-HA complexation experiments were performed at various pH conditions (ranging from 2 to 10.5) using a standard batch equilibration method. Results show that the amount of REE bound to HA strongly increase with increasing pH. Moreover, a Middle REE (MREE) downward concavity is evidenced by REE distribution patterns at acidic pH. Modelling of the experimental data using Humic Ion Binding Model VI provided a set of log KMA values (i.e. the REE-HA complexation constants specific to Model VI) for the entire REE series. The log KMA pattern obtained displays a MREE downward concavity. Log KMA values range from 2.42 to 2.79. These binding constants are in good agreement with the few existing datasets quantifying the binding of REE with humic substances except a recently published study which evidence a lanthanide contraction effect (i.e. continuous increase of the constant from La to Lu). The MREE downward concavity displayed by REE-HA complexation pattern determined in this study compares well with results from REE-fulvic acid (FA) and REE-acetic acid complexation studies. This similarity in the REE complexation pattern shapes suggests that carboxylic groups are the main binding sites of REE in HA. This conclusion is further supported by a detailed review of published studies for natural, organic-rich, river- and ground-waters which show no evidence of a lanthanide contraction effect in REE pattern shape. Finally, application of Model VI using the new, experimentally determined log KMA values to World Average River Water confirms earlier suggestions that REE occur predominantly as organic complexes (> 60 %) in the pH range between 5-5.5 and 7-8.5 (i.e. in circumneutral pH waters). The only significant difference as compared to earlier model predictions made using estimated log KMA values is that the experimentally determined log KMA values

  15. Manual of phosphoric acid fuel cell power plant optimization model and computer program

    NASA Technical Reports Server (NTRS)

    Lu, C. Y.; Alkasab, K. A.

    1984-01-01

    An optimized cost and performance model for a phosphoric acid fuel cell power plant system was derived and developed into a modular FORTRAN computer code. Cost, energy, mass, and electrochemical analyses were combined to develop a mathematical model for optimizing the steam to methane ratio in the reformer, hydrogen utilization in the PAFC plates per stack. The nonlinear programming code, COMPUTE, was used to solve this model, in which the method of mixed penalty function combined with Hooke and Jeeves pattern search was chosen to evaluate this specific optimization problem.

  16. Extraction of p-coumaric acid and ferulic acid using surfactant-based aqueous two-phase system.

    PubMed

    Dhamole, Pradip B; Demanna, Dhanashree; Desai, S A

    2014-09-01

    Ferulic acid (FA) and p-coumaric acid (pCA) are high-value products that can be obtained by alkaline hydrolysis of lignocellulose. Present work explores the potential of surfactant-based cloud-point extraction (CPE) for FA and pCA extraction from corn cob hydrolysate. More than 90 % (w/w) extraction of both FA and pCA was achieved from model system with L92. The partition coefficient of FA and pCA in L92 aqueous phase system was 35 and 55, respectively. A significant enrichment (8-10-fold) of both FA and pCA was achieved in surfactant-rich phase. Furthermore, the downstream process volume was reduced by 10 to 13 times. Optimized conditions (5 % v/v L92 and pH 3.0) resulted into 85 and 89 % extraction of FA and p-CA, respectively, from alkaline corn cob hydrolysate. Biocompatibility tests were carried out for L92 for ethanol fermentation and found to be biocompatible. Thus, the new surfactant-based CPE system not only concentrated FA and pCA but also reduced the process volume significantly. Further, aqueous phase containing sugars can be used for ethanol fermentation.

  17. The emergent neural modeling system.

    PubMed

    Aisa, Brad; Mingus, Brian; O'Reilly, Randy

    2008-10-01

    Emergent (http://grey.colorado.edu/emergent) is a powerful tool for the simulation of biologically plausible, complex neural systems that was released in August 2007. Inheriting decades of research and experience in network algorithms and modeling principles from its predecessors, PDP++ and PDP, Emergent has been redesigned as an efficient workspace for academic research and an engaging, easy-to-navigate environment for students. The system provides a modern and intuitive interface for programming and visualization centered around hierarchical, tree-based navigation and drag-and-drop reorganization. Emergent contains familiar, high-level simulation constructs such as Layers and Projections, a wide variety of algorithms, general-purpose data handling and analysis facilities and an integrated virtual environment for developing closed-loop cognitive agents. For students, the traditional role of a textbook has been enhanced by wikis embedded in every project that serve to explain, document, and help newcomers engage the interface and step through models using familiar hyperlinks. For advanced users, the software is easily extensible in all respects via runtime plugins, has a powerful shell with an integrated debugger, and a scripting language that is fully symmetric with the interface. Emergent strikes a balance between detailed, computationally expensive spiking neuron models and abstract, Bayesian or symbolic systems. This middle level of detail allows for the rapid development and successful execution of complex cognitive models while maintaining biological plausibility.

  18. Probabilistic models for feedback systems.

    SciTech Connect

    Grace, Matthew D.; Boggs, Paul T.

    2011-02-01

    In previous work, we developed a Bayesian-based methodology to analyze the reliability of hierarchical systems. The output of the procedure is a statistical distribution of the reliability, thus allowing many questions to be answered. The principal advantage of the approach is that along with an estimate of the reliability, we also can provide statements of confidence in the results. The model is quite general in that it allows general representations of all of the distributions involved, it incorporates prior knowledge into the models, it allows errors in the 'engineered' nodes of a system to be determined by the data, and leads to the ability to determine optimal testing strategies. In this report, we provide the preliminary steps necessary to extend this approach to systems with feedback. Feedback is an essential component of 'complexity' and provides interesting challenges in modeling the time-dependent action of a feedback loop. We provide a mechanism for doing this and analyze a simple case. We then consider some extensions to more interesting examples with local control affecting the entire system. Finally, a discussion of the status of the research is also included.

  19. Modeling Advance Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pitts, Marvin; Sager, John; Loader, Coleen; Drysdale, Alan

    1996-01-01

    Activities this summer consisted of two projects that involved computer simulation of bioregenerative life support systems for space habitats. Students in the Space Life Science Training Program (SLSTP) used the simulation, space station, to learn about relationships between humans, fish, plants, and microorganisms in a closed environment. One student complete a six week project to modify the simulation by converting the microbes from anaerobic to aerobic, and then balancing the simulation's life support system. A detailed computer simulation of a closed lunar station using bioregenerative life support was attempted, but there was not enough known about system restraints and constants in plant growth, bioreactor design for space habitats and food preparation to develop an integrated model with any confidence. Instead of a completed detailed model with broad assumptions concerning the unknown system parameters, a framework for an integrated model was outlined and work begun on plant and bioreactor simulations. The NASA sponsors and the summer Fell were satisfied with the progress made during the 10 weeks, and we have planned future cooperative work.

  20. Bioaccumulation of perfluorinated alkyl acids: observations and models.

    PubMed

    Ng, Carla A; Hungerbühler, Konrad

    2014-05-06

    In this review, we consider the two prevailing hypotheses for the mechanisms that control the bioaccumulation of perfluorinated alkyl acids (PFAAs). The first assumes that partitioning to membrane phospholipids, which have a higher affinity for charged species than neutral storage lipids, can explain the high bioaccumulation potential of these compounds. The second assumes that interactions with proteins--including serum albumin, liver fatty acid binding proteins (L-FABP), and organic anion transporters--determine the distribution, accumulation and half-lives of PFAAs. We consider three unique phenomena to evaluate the two models: (1) observed patterns of tissue distribution in the laboratory and field, (2) the relationship between perfluorinated chain length and bioaccumulation, and (3) species- and gender-specific variation in elimination half-lives. Through investigation of these three characteristics of PFAA bioaccumulation, we show the strengths and weaknesses of the two modeling approaches. We conclude that the models need not be mutually exclusive, but that protein interactions are needed to explain some important features of PFAA bioaccumulation. Although open questions remain, further research should include perfluorinated alkyl substances (PFASs) beyond the long-chain PFAAs, as these substances are being phased out and replaced by a wide variety of PFASs with largely unknown properties and bioaccumulation behavior.

  1. Haloacetic acid and trihalomethane formation from the chlorination and bromination of aliphatic beta-dicarbonyl acid model compounds.

    PubMed

    Dickenson, Eric R V; Summers, R Scott; Croué, Jean-Philippe; Gallard, Hervé

    2008-05-01

    While it is known that resorcinol- and phenol-type aromatic structures within natural organic matter (NOM) react during drinking water chlorination to form trihalomethanes (THMs), limited studies have examined aliphatic-type structures as THM and haloacetic acid (HAA) precursors. A suite of aliphatic acid model compounds were chlorinated and brominated separately in controlled laboratory-scale batch experiments. Four and two beta-dicarbonyl acid compounds were found to be important precursors for the formation of THMs (chloroform and bromoform (71-91% mol/mol)), and dihaloacetic acids (DXAAs) (dichloroacetic acid and dibromoacetic acid (5-68% mol/mol)), respectively, after 24 h at pH 8. Based upon adsorbable organic halide formation, THMs and DXAAs, and to a lesser extent mono and trihaloacetic acids, were the majority (> 80%) of the byproducts produced for most of the aliphatic beta-dicarbonyl acid compounds. Aliphatic beta-diketone-acid-type and beta-keto-acid-type structures could be possible fast- and slow-reacting THM precursors, respectively, and aliphatic beta-keto-acid-type structures are possible slow-reacting DXAA precursors. Aliphatic beta-dicarbonyl acid moieties in natural organic matter, particularly in the hydrophilic fraction, could contribute to the significant formation of THMs and DXAAs observed after chlorination of natural waters.

  2. Models for multimegawatt space power systems

    SciTech Connect

    Edenburn, M.W.

    1990-06-01

    This report describes models for multimegawatt, space power systems which Sandia's Advanced Power Systems Division has constructed to help evaluate space power systems for SDI's Space Power Office. Five system models and models for associated components are presented for both open (power system waste products are exhausted into space) and closed (no waste products) systems: open, burst mode, hydrogen cooled nuclear reactor -- turboalternator system; open, hydrogen-oxygen combustion turboalternator system; closed, nuclear reactor powered Brayton cycle system; closed, liquid metal Rankine cycle system; and closed, in-core, reactor therminonic system. The models estimate performance and mass for the components in each of these systems. 17 refs., 8 figs., 15 tabs.

  3. Discrete modelling of drapery systems

    NASA Astrophysics Data System (ADS)

    Thoeni, Klaus; Giacomini, Anna

    2016-04-01

    Drapery systems are an efficient and cost-effective measure in preventing and controlling rockfall hazards on rock slopes. The simplest form consists of a row of ground anchors along the top of the slope connected to a horizontal support cable from which a wire mesh is suspended down the face of the slope. Such systems are generally referred to as simple or unsecured draperies (Badger and Duffy 2012). Variations such as secured draperies, where a pattern of ground anchors is incorporated within the field of the mesh, and hybrid systems, where the upper part of an unsecured drapery is elevated to intercept rockfalls originating upslope of the installation, are becoming more and more popular. This work presents a discrete element framework for simulation of unsecured drapery systems and its variations. The numerical model is based on the classical discrete element method (DEM) and implemented into the open-source framework YADE (Šmilauer et al., 2010). The model takes all relevant interactions between block, drapery and slope into account (Thoeni et al., 2014) and was calibrated and validated based on full-scale experiments (Giacomini et al., 2012).The block is modelled as a rigid clump made of spherical particles which allows any shape to be approximated. The drapery is represented by a set of spherical particle with remote interactions. The behaviour of the remote interactions is governed by the constitutive behaviour of the wire and generally corresponds to a piecewise linear stress-strain relation (Thoeni et al., 2013). The same concept is used to model wire ropes. The rock slope is represented by rigid triangular elements where material properties (e.g., normal coefficient of restitution, friction angle) are assigned to each triangle. The capabilities of the developed model to simulate drapery systems and estimate the residual hazard involved with such systems is shown. References Badger, T.C., Duffy, J.D. (2012) Drapery systems. In: Turner, A.K., Schuster R

  4. Airfoil flutter model suspension system

    NASA Technical Reports Server (NTRS)

    Reed, Wilmer H. (Inventor)

    1987-01-01

    A wind tunnel suspension system for testing flutter models under various loads and at various angles of attack is described. The invention comprises a mounting bracket assembly affixing the suspension system to the wind tunnel, a drag-link assembly and a compound spring arrangement comprises a plunge spring working in opposition to a compressive spring so as to provide a high stiffness to trim out steady state loads and simultaneously a low stiffness to dynamic loads. By this arrangement an airfoil may be tested for oscillatory response in both plunge and pitch modes while being held under high lifting loads in a wind tunnel.

  5. An Integrated Spin-Labeling/Computational-Modeling Approach for Mapping Global Structures of Nucleic Acids.

    PubMed

    Tangprasertchai, Narin S; Zhang, Xiaojun; Ding, Yuan; Tham, Kenneth; Rohs, Remo; Haworth, Ian S; Qin, Peter Z

    2015-01-01

    The technique of site-directed spin labeling (SDSL) provides unique information on biomolecules by monitoring the behavior of a stable radical tag (i.e., spin label) using electron paramagnetic resonance (EPR) spectroscopy. In this chapter, we describe an approach in which SDSL is integrated with computational modeling to map conformations of nucleic acids. This approach builds upon a SDSL tool kit previously developed and validated, which includes three components: (i) a nucleotide-independent nitroxide probe, designated as R5, which can be efficiently attached at defined sites within arbitrary nucleic acid sequences; (ii) inter-R5 distances in the nanometer range, measured via pulsed EPR; and (iii) an efficient program, called NASNOX, that computes inter-R5 distances on given nucleic acid structures. Following a general framework of data mining, our approach uses multiple sets of measured inter-R5 distances to retrieve "correct" all-atom models from a large ensemble of models. The pool of models can be generated independently without relying on the inter-R5 distances, thus allowing a large degree of flexibility in integrating the SDSL-measured distances with a modeling approach best suited for the specific system under investigation. As such, the integrative experimental/computational approach described here represents a hybrid method for determining all-atom models based on experimentally-derived distance measurements.

  6. An Integrated Spin-Labeling/Computational-Modeling Approach for Mapping Global Structures of Nucleic Acids

    PubMed Central

    Tangprasertchai, Narin S.; Zhang, Xiaojun; Ding, Yuan; Tham, Kenneth; Rohs, Remo; Haworth, Ian S.; Qin, Peter Z.

    2015-01-01

    The technique of site-directed spin labeling (SDSL) provides unique information on biomolecules by monitoring the behavior of a stable radical tag (i.e., spin label) using electron paramagnetic resonance (EPR) spectroscopy. In this chapter, we describe an approach in which SDSL is integrated with computational modeling to map conformations of nucleic acids. This approach builds upon a SDSL tool kit previously developed and validated, which includes three components: (i) a nucleotide-independent nitroxide probe, designated as R5, which can be efficiently attached at defined sites within arbitrary nucleic acid sequences; (ii) inter-R5 distances in the nanometer range, measured via pulsed EPR; and (iii) an efficient program, called NASNOX, that computes inter-R5 distances on given nucleic acid structures. Following a general framework of data mining, our approach uses multiple sets of measured inter-R5 distances to retrieve “correct” all-atom models from a large ensemble of models. The pool of models can be generated independently without relying on the inter-R5 distances, thus allowing a large degree of flexibility in integrating the SDSL-measured distances with a modeling approach best suited for the specific system under investigation. As such, the integrative experimental/computational approach described here represents a hybrid method for determining all-atom models based on experimentally-derived distance measurements. PMID:26477260

  7. Modeling of the charge acceptance of lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Thele, M.; Schiffer, J.; Karden, E.; Surewaard, E.; Sauer, D. U.

    This paper presents a model for flooded and VRLA batteries that is parameterized by impedance spectroscopy and includes the overcharging effects to allow charge-acceptance simulations (e.g. for regenerative-braking drive-cycle profiles). The full dynamic behavior and the short-term charge/discharge history is taken into account. This is achieved by a detailed modeling of the sulfate crystal growth and modeling of the internal gas recombination cycle. The model is applicable in the full realistic temperature and current range of automotive applications. For model validation, several load profiles (covering the dynamics and the current range appearing in electrically assisted or hybrid cars) are examined and the charge-acceptance limiting effects are elaborately discussed. The validation measurements have been performed for different types of lead-acid batteries (flooded and VRLA). The model is therefore an important tool for the development of automotive power nets, but it also allows to analyze different charging strategies and energy gains which can be achieved during regenerative-braking.

  8. Availability: A Metric for Nucleic Acid Strand Displacement Systems

    PubMed Central

    2016-01-01

    DNA strand displacement systems have transformative potential in synthetic biology. While powerful examples have been reported in DNA nanotechnology, such systems are plagued by leakage, which limits network stability, sensitivity, and scalability. An approach to mitigate leakage in DNA nanotechnology, which is applicable to synthetic biology, is to introduce mismatches to complementary fuel sequences at key locations. However, this method overlooks nuances in the secondary structure of the fuel and substrate that impact the leakage reaction kinetics in strand displacement systems. In an effort to quantify the impact of secondary structure on leakage, we introduce the concepts of availability and mutual availability and demonstrate their utility for network analysis. Our approach exposes vulnerable locations on the substrate and quantifies the secondary structure of fuel strands. Using these concepts, a 4-fold reduction in leakage has been achieved. The result is a rational design process that efficiently suppresses leakage and provides new insight into dynamic nucleic acid networks. PMID:26875531

  9. Application of a continuous distribution model for proton binding by humic acids extracted from acidic lake sediments

    SciTech Connect

    Rhea, J.R.; Young, T.C. )

    1987-01-01

    The proton binding characteristics of humic acids extracted from the sediments of Cranberry Pond, an acidic water body located in the Adirondack Mountain region of New York State, were explored by the application of a nultiligand distribution model. The model characterizes a class of proton binding sites by mean log K values and the standard deviations of log K values and the mean. Mean log K values and their relative abundances were determined directly from experimental titration data. The model accurately predicts the binding of protons by the humic acids for pH values in the range 3.5 to 10.0.

  10. Application of a continuous distribution model for proton binding by humic acids extracted from acidic lake sediments

    NASA Astrophysics Data System (ADS)

    Rhea, James R.; Young, Thomas C.

    1987-10-01

    The proton binding characteristics of humic acids extracted from the sediments of Cranberry Pond, an acidic water body located in the Adirondack Mountain region of New York State, were explored by the application of a multiligand distribution model. The model characterizes a class of proton binding sites by mean log K values and the standard deviations of log K values about the mean. Mean log K values and their relative abundances were determined directly from experimental titration data. The model accurately predicts the binding of protons by the humic acids for pH values in the range 3.5 to 10.0.

  11. Results of electric-vehicle propulsion system performance on three lead-acid battery systems

    NASA Technical Reports Server (NTRS)

    Ewashinka, J. G.

    1984-01-01

    Three types of state of the art 6 V lead acid batteries were tested. The cycle life of lead acid batteries as a function of the electric vehicle propulsion system design was determined. Cycle life, degradation rate and failure modes with different battery types (baseline versus state of the art tubular and thin plate batteries) were compared. The effects of testing strings of three versus six series connected batteries on overall performance were investigated. All three types do not seem to have an economically feasible battery system for the propulsion systems. The tubular plate batteries on the load leveled profile attained 235 cycles with no signs of degradation and minimal capacity loss.

  12. Results of electric-vehicle propulsion system performance on three lead-acid battery systems

    NASA Technical Reports Server (NTRS)

    Ewashinka, J. G.

    1984-01-01

    Three types of state of the art 6 V lead acid batteries were tested. The cycle life of lead acid batteries as a function of the electric vehicle propulsion system design was determined. Cycle life, degradation rate and failure modes with different battery types (baseline versus state of the art tubular and thin plate batteries were compared. The effects of testing strings of three versus six series connected batteries on overall performance were investigated. All three types do not seem to have an economically feasible battery system for the propulsion systems. The tubular plate batteries on the load leveled profile attained 235 cycles with no signs of degradation and minimal capacity loss.

  13. Observation of the side chain O-methylation of glutamic acid or aspartic acid containing model peptides by electrospray ionization-mass spectrometry.

    PubMed

    Atik, A Emin; Guray, Melda Z; Yalcin, Talat

    2017-03-15

    O-methylation of the side chains of glutamic acid (E) and aspartic acid (D) residues is generally observed modification when an acidified methanol/water (MeOH/dH2O) mixture is used as a solvent system during sample preparation for proteomic research. This chemical modification may result misidentification with endogenous protein methylation; therefore, a special care should be taken during sample handling prior to mass spectrometric analysis. In the current study, we systematically examined the extent of E/D methylation and C-terminus carboxyl group of synthetic model peptides in terms of different incubation temperatures, storage times, and added acid types as well as its percentages. To monitor these effects, C-terminus amidated and free acid forms of synthetic model peptides comprised of E or D residue(s) have been analyzed by electrospray ionization-mass spectrometry (ESI-MS). Additionally, LC-MS/MS experiments were performed to confirm the formation of methylated peptide product. The results showed that the rate of methylation was increased as the temperature increases along with prolong incubation times. Moreover, the extent of methylation was remarkably high when formic acid (FA) used as a protonation agent instead of acetic acid (AA). In addition, it was found that the degree of methylation was significantly decreased by lowering acid percentages in ESI solution. More than one acidic residue containing model peptides have been also used to explore the extent of multiple methylation reaction. Lastly, the ethanol (EtOH) and isopropanol (iPrOH) have been substituted separately with MeOH in sample preparation step to investigate the extent of esterification reaction under the same experimental conditions. However, in the positive perspective of view, this method can be used as a simple, rapid and cheap method for methylation of acidic residues under normal laboratory conditions.

  14. Acid and alkali doped PBI electrolyte in electrochemical system

    NASA Astrophysics Data System (ADS)

    Xing, Baozhong

    In this work the conductivity of blank PBI membrane, acid doped PBI and alkaline doped PBI was systematically studied. A new methodology for sorption kinetics study in electrolyte solution has been established by monitoring the conductivity change during the sorption process. The model of the doping process and mechanism of conductivity are proposed. The performance of PBI (doped under optimum conditions) in fuel cell as PEM was evaluated. The experimental results show that the blank PBI in acid solution is an ionic insulator. It clarified the long time confusion in this area. The acid doped PBI membrane is an ionic conductor. The conductivity increases with the concentration of the acid solution. In high concentration acid solution, the conductivity increases with the type of acid in the order: H2SO 4 > H3PO4 > HClO4 > HNO3 > HCl. The kinetics of the doping process was studied, by a continuous method. The ionic conductivity mechanism was established. The PBI membranes doped with H2SO4 and H3PO4 exhibit better performance than NafionRTM. The doped FBI has more resistance to CO poison. 3% CO in H2 has little effect on the H3PO 4 doped PBI membrane at 185°C. The conductivity of the alkali doped PBI membrane changes with the concentration of the alkaline solution and the type of the alkalis. The conductivity has a maximum in KOH and NaOH solution. The maximum conductivity in KOH is higher than in NaOH and LiOH. It is about 5 times of that of NafionRTM in alkaline solution. The two-step sorption process in alkaline solution was observed. The first step is the permeation process of the alkalis in the PBI membrane. The permeation is the results of diffusion and interaction. It is concluded that the permeation process is controlled by the rate of interaction between the alkali and PBI molecule. The second step is the relaxation process in the membrane. This step contributes more to the conductivity for the membrane than the first step. The ionic conductivity mechanism

  15. Radiolysis of Amino Acids in Outer Solar-System Ice Analogs

    NASA Technical Reports Server (NTRS)

    Gerakines, Perry A.; Hudson, Reggie L.

    2011-01-01

    Amino acids have been found in cometary dust particles and in the organic component of meteorites. These molecules, important for pre-biotic chemistry and for active biological systems, might be formed in cold planetary or interstellar environments and then delivered to H20-rich surfaces in the outer solar system. Many models for the availability of organic species on Earth and elsewhere depend on the ability of these molecules to survive in radiation-rich space environments. This poster presents results of O.8-MeV proton radiolysis of ice films at lS-140K. using infrared spectroscopy, the destruction rates of glycine, alanine, and phenylalanine have been determined for both pure films and those containing amino acids diluted in H2o. our results are discussed in terms of the survivability of these molecules in the icy surfaces present in the outer solar system and the possibility of their detection by instruments on board the New Horizons spacecraft

  16. Quantitative Predictive Models for Systemic Toxicity (SOT)

    EPA Science Inventory

    Models to identify systemic and specific target organ toxicity were developed to help transition the field of toxicology towards computational models. By leveraging multiple data sources to incorporate read-across and machine learning approaches, a quantitative model of systemic ...

  17. Modeling software systems by domains

    NASA Technical Reports Server (NTRS)

    Dippolito, Richard; Lee, Kenneth

    1992-01-01

    The Software Architectures Engineering (SAE) Project at the Software Engineering Institute (SEI) has developed engineering modeling techniques that both reduce the complexity of software for domain-specific computer systems and result in systems that are easier to build and maintain. These techniques allow maximum freedom for system developers to apply their domain expertise to software. We have applied these techniques to several types of applications, including training simulators operating in real time, engineering simulators operating in non-real time, and real-time embedded computer systems. Our modeling techniques result in software that mirrors both the complexity of the application and the domain knowledge requirements. We submit that the proper measure of software complexity reflects neither the number of software component units nor the code count, but the locus of and amount of domain knowledge. As a result of using these techniques, domain knowledge is isolated by fields of engineering expertise and removed from the concern of the software engineer. In this paper, we will describe kinds of domain expertise, describe engineering by domains, and provide relevant examples of software developed for simulator applications using the techniques.

  18. Automated parking garage system model

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1975-01-01

    A one-twenty-fifth scale model of the key components of an automated parking garage system is described. The design of the model required transferring a vehicle from an entry level, vertically (+Z, -Z), to a storage location at any one of four storage positions (+X, -X, +Y, +Y, -Y) on the storage levels. There are three primary subsystems: (1) a screw jack to provide the vertical motion of the elevator, (2) a cam-driven track-switching device to provide X to Y motion, and (3) a transfer cart to provide horizontal travel and a small amount to vertical motion for transfer to the storage location. Motive power is provided by dc permanent magnet gear motors, one each for the elevator and track switching device and two for the transfer cart drive system (one driving the cart horizontally and the other providing the vertical transfer). The control system, through the use of a microprocessor, provides complete automation through a feedback system which utilizes sensing devices.

  19. Modeling methylene blue aggregation in acidic solution to the limits of factor analysis.

    PubMed

    Golz, Emily K; Vander Griend, Douglas A

    2013-01-15

    Methylene blue (MB(+)), a common cationic thiazine dye, aggregates in acidic solutions. Absorbance data for equilibrated solutions of the chloride salt were analyzed over a concentration range of 1.0 × 10(-3) to 2.6 × 10(-5) M, in both 0.1 M HCl and 0.1 M HNO(3). Factor analyses of the raw absorbance data sets (categorically a better choice than effective absorbance) definitively show there are at least three distinct molecular absorbers regardless of acid type. A model with monomer, dimer, and trimer works well, but extensive testing has resulted in several other good models, some with higher order aggregates and some with chloride anions. Good models were frequently indistinguishable from each other by quality of fit or reasonability of molar absorptivity curves. The modeling of simulated data sets demonstrates the cases and degrees to which signal noise in the original data obscure the true model. In particular, the more mathematically similar (less orthogonal) the molar absorptivity curves of the chemical species in a model are, the less signal noise it takes to obscure the true model from other potentially good models. Unfortunately, the molar absorptivity curves in dye aggregation systems like that of methylene blue tend to be sufficiently similar so as to lead to the obscuration of models even at the noise levels (0.0001 ABS) of typical benchtop spectrophotometers.

  20. Oleic acid stimulates system A amino acid transport in primary human trophoblast cells mediated by toll-like receptor 4.

    PubMed

    Lager, Susanne; Gaccioli, Francesca; Ramirez, Vanessa I; Jones, Helen N; Jansson, Thomas; Powell, Theresa L

    2013-03-01

    Obese women have an increased risk to deliver large babies. However, the mechanisms underlying fetal overgrowth in these pregnancies are not well understood. Obese pregnant women typically have elevated circulating lipid levels. We tested the hypothesis that fatty acids stimulate placental amino acid transport, mediated via toll-like receptor 4 (TLR4) and mammalian target of rapamycin (mTOR) signaling pathways. Circulating NEFA levels and placental TLR4 expression were assessed in women with varying prepregnancy body mass index (BMI). The effects of oleic acid on system A and system L amino acid transport, and on the activation of the mTOR (4EBP1, S6K1, rpS6), TLR4 (IĸB, JNK, p38 MAPK), and STAT3 signaling pathways were determined in cultured primary human trophoblast cells. Maternal circulating NEFAs (n = 33), but not placental TLR4 mRNA expression (n = 16), correlated positively with BMI (P < 0.05). Oleic acid increased trophoblast JNK and STAT3 phosphorylation (P < 0.05), whereas mTOR activity was unaffected. Furthermore, oleic acid doubled trophoblast system A activity (P < 0.05), without affecting system L activity. siRNA-mediated silencing of TLR4 expression prevented the stimulatory effect of oleic acid on system A activity. Our data suggest that maternal fatty acids can increase placental nutrient transport via TLR4, thereby potentially affecting fetal growth.

  1. Direct solid surface fluorescence spectroscopy of standard chemicals and humic acid in ternary system.

    PubMed

    Mounier, S; Nicolodelli, G; Redon, R; Milori, D M B P

    2017-04-15

    The front face fluorescence spectroscopy is often used to quantify chemicals in well-known matrices as it is a rapid and powerful technique, with no sample preparation. However it was not used to investigate extracted organic matter like humic substances. This work aims to fully investigate for the first time front face fluorescence spectroscopy response of a ternary system including boric acid, tryptophan and humic substances, and two binaries system containing quinine sulfate or humic substance in boric acid. Pure chemicals, boric acid, tryptophan, quinine sulfate and humic acid were mixed together in solid pellet at different contents from 0 to 100% in mass. The measurement of excitation emission matrix of fluorescence (3D fluorescence) and laser induced fluorescence were then done in the front face mode. Fluorescence matrices were decomposed using the CP/PARAFAC tools after scattering treatments. Results show that for 3D fluorescence there is no specific component for tryptophan and quinine sulfate, and that humic substances lead to a strong extinction effect for mixture containing quinine sulfate. Laser induced fluorescence gives a very good but non-specific related response for both quinine sulfate and tryptophan. No humic substances fluorescence response was found, but extinction effect is observed as for 3D fluorescence. This effect is stronger for quinine sulfate than for tryptophan. These responses were modeled using a simple absorbance versus emission model.

  2. Direct solid surface fluorescence spectroscopy of standard chemicals and humic acid in ternary system

    NASA Astrophysics Data System (ADS)

    Mounier, S.; Nicolodelli, G.; Redon, R.; Milori, D. M. B. P.

    2017-04-01

    The front face fluorescence spectroscopy is often used to quantify chemicals in well-known matrices as it is a rapid and powerful technique, with no sample preparation. However it was not used to investigate extracted organic matter like humic substances. This work aims to fully investigate for the first time front face fluorescence spectroscopy response of a ternary system including boric acid, tryptophan and humic substances, and two binaries system containing quinine sulfate or humic substance in boric acid. Pure chemicals, boric acid, tryptophan, quinine sulfate and humic acid were mixed together in solid pellet at different contents from 0 to 100% in mass. The measurement of excitation emission matrix of fluorescence (3D fluorescence) and laser induced fluorescence were then done in the front face mode. Fluorescence matrices were decomposed using the CP/PARAFAC tools after scattering treatments. Results show that for 3D fluorescence there is no specific component for tryptophan and quinine sulfate, and that humic substances lead to a strong extinction effect for mixture containing quinine sulfate. Laser induced fluorescence gives a very good but non-specific related response for both quinine sulfate and tryptophan. No humic substances fluorescence response was found, but extinction effect is observed as for 3D fluorescence. This effect is stronger for quinine sulfate than for tryptophan. These responses were modeled using a simple absorbance versus emission model.

  3. Modeling Fatty Acid Transfer from Artery to Cardiomyocyte

    PubMed Central

    Arts, Theo; Reneman, Robert S.; Bassingthwaighte, James B.; van der Vusse, Ger J.

    2015-01-01

    Despite the importance of oxidation of blood-borne long-chain fatty acids (Fa) in the cardiomyocytes for contractile energy of the heart, the mechanisms underlying the transfer of Fa from the coronary plasma to the cardiomyocyte is still incompletely understood. To obtain detailed insight into this transfer process, we designed a novel model of Fa transfer dynamics from coronary plasma through the endothelial cells and interstitium to the cardiomyocyte, applying standard physicochemical principles on diffusion and on the chemical equilibrium of Fa binding to carrier proteins Cp, like albumin in plasma and interstitium and Fatty Acid-Binding Proteins within endothelium and cardiomyocytes. Applying these principles, the present model strongly suggests that in the heart, binding and release of Fa to and from Cp in the aqueous border zones on both sides of the cell membranes form the major hindrance to Fa transfer. Although often considered, the membrane itself appears not to be a significant hindrance to diffusion of Fa. Proteins, residing in the cellular membrane, may facilitate transfer of Fa between Cp and membrane. The model is suited to simulate multiple tracer dilution experiments performed on isolated rabbit hearts administrating albumin and Fa as tracer substances into the coronary arterial perfusion line. Using parameter values on myocardial ultrastructure and physicochemical properties of Fa and Cp as reported in literature, simulated washout curves appear to be similar to the experimentally determined ones. We conclude therefore that the model is realistic and, hence, can be considered as a useful tool to better understand Fa transfer by evaluation of experimentally determined tracer washout curves. PMID:26675003

  4. Mathematical modeling of acid deposition due to radiation fog

    SciTech Connect

    Pandis, S.N.; Seinfeld, J.H. )

    1989-09-20

    A Lagrangian model has been developed to study acidic deposition due to radiation fog. The model couples submodels describing the development and dissipation of radiation fog, the gas-phase chemistry and transfer, and the aqueous-phase chemistry. The model is applied to a radiation fog episode in Bakersfield in the San Joaquin Valley of California over the period January 4--5 1985. Model predictions for temperature profile, fog development, liquid water content, gas-phase concentrations of SO{sub 2}, HNO{sub 3}, and NH{sub 3}, {ital p}H, aqueous-phase concentrations of OS{sup 2{minus}}{sub 4}, NH{sup +}{sub 4}, and NO{sup {minus}}{sub 3}, and finally deposition rates of the above ions are compared with the observed values. The deposition rates of the major ions are predicted to increase significantly during the fog episode, the most notable being the increase of sulfate deposition. Pathways for sulfate production that are of secondary importance in a cloud environment may become signficant in a fog. Expressing the mean droplet settling velocity as a function of liquid water content is found to be quite influential in the model's predictions. {copyright} American Geophysical Union 1989

  5. Models of Multiple System Atrophy

    PubMed Central

    Fellner, Lisa; Wenning, Gregor K.; Stefanova, Nadia

    2016-01-01

    Multiple system atrophy (MSA) is a predominantly sporadic, adult-onset, fatal neurodegenerative disease of unknown etiology. MSA is characterized by autonomic failure, levodopa-unresponsive parkinsonism, cerebellar ataxia and pyramidal signs in any combination. MSA belongs to a group of neurodegenerative disorders termed α-synucleinopathies, which also include Parkinson’s disease and dementia with Lewy bodies. Their common pathological feature is the occurrence of abnormal α-synuclein positive inclusions in neurons or glial cells. In MSA, the main cell type presenting aggregates composed of α-synuclein are oligodendroglial cells. This pathological hallmark, also called glial cytoplasmic inclusions (GCIs), is associated with progressive and profound neuronal loss in various regions of the brain. The development of animal models of MSA is justified by the limited understanding of the mechanisms of neurodegeneration and GCIs formation, which is paralleled by a lack of therapeutic strategies. Two main types of rodent models have been generated to replicate different features of MSA neuropathology. On one hand, neurotoxin-based models have been produced to reproduce neuronal loss in substantia nigra pars compacta and striatum. On the other hand, transgenic mouse models with overexpression of α-synuclein in oligodendroglia have been used to reproduce GCIs-related pathology. This chapter gives an overview of the atypical Parkinson’s syndrome MSA and summarizes the currently available MSA animal models and their relevance for pre-clinical testing of disease-modifying therapies. PMID:24338664

  6. 21 CFR 862.1187 - Conjugated sulfolithocholic acid (SLCG) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1187 Conjugated sulfolithocholic acid (SLCG) test system. (a) Identification....

  7. 21 CFR 862.1187 - Conjugated sulfolithocholic acid (SLCG) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1187 Conjugated sulfolithocholic acid (SLCG) test system. (a) Identification....

  8. 21 CFR 862.1187 - Conjugated sulfolithocholic acid (SLCG) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1187 Conjugated sulfolithocholic acid (SLCG) test system. (a) Identification....

  9. 21 CFR 862.1187 - Conjugated sulfolithocholic acid (SLCG) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1187 Conjugated sulfolithocholic acid (SLCG) test system. (a) Identification....

  10. 21 CFR 862.1187 - Conjugated sulfolithocholic acid (SLCG) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1187 Conjugated sulfolithocholic acid (SLCG) test system. (a) Identification....

  11. ISSM: Ice Sheet System Model

    NASA Technical Reports Server (NTRS)

    Larour, Eric; Schiermeier, John E.; Seroussi, Helene; Morlinghem, Mathieu

    2013-01-01

    In order to have the capability to use satellite data from its own missions to inform future sea-level rise projections, JPL needed a full-fledged ice-sheet/iceshelf flow model, capable of modeling the mass balance of Antarctica and Greenland into the near future. ISSM was developed with such a goal in mind, as a massively parallelized, multi-purpose finite-element framework dedicated to ice-sheet modeling. ISSM features unstructured meshes (Tria in 2D, and Penta in 3D) along with corresponding finite elements for both types of meshes. Each finite element can carry out diagnostic, prognostic, transient, thermal 3D, surface, and bed slope simulations. Anisotropic meshing enables adaptation of meshes to a certain metric, and the 2D Shelfy-Stream, 3D Blatter/Pattyn, and 3D Full-Stokes formulations capture the bulk of the ice-flow physics. These elements can be coupled together, based on the Arlequin method, so that on a large scale model such as Antarctica, each type of finite element is used in the most efficient manner. For each finite element referenced above, ISSM implements an adjoint. This adjoint can be used to carry out model inversions of unknown model parameters, typically ice rheology and basal drag at the ice/bedrock interface, using a metric such as the observed InSAR surface velocity. This data assimilation capability is crucial to allow spinning up of ice flow models using available satellite data. ISSM relies on the PETSc library for its vectors, matrices, and solvers. This allows ISSM to run efficiently on any parallel platform, whether shared or distrib- ISSM: Ice Sheet System Model NASA's Jet Propulsion Laboratory, Pasadena, California uted. It can run on the largest clusters, and is fully scalable. This allows ISSM to tackle models the size of continents. ISSM is embedded into MATLAB and Python, both open scientific platforms. This improves its outreach within the science community. It is entirely written in C/C++, which gives it flexibility in its

  12. A Systems Pharmacology Perspective on the Clinical Development of Fatty Acid Amide Hydrolase Inhibitors for Pain

    PubMed Central

    Benson, N; Metelkin, E; Demin, O; Li, G L; Nichols, D; van der Graaf, P H

    2014-01-01

    The level of the endocannabinoid anandamide is controlled by fatty acid amide hydrolase (FAAH). In 2011, PF-04457845, an irreversible inhibitor of FAAH, was progressed to phase II clinical trials for osteoarthritic pain. This article discusses a prospective, integrated systems pharmacology model evaluation of FAAH as a target for pain in humans, using physiologically based pharmacokinetic and systems biology approaches. The model integrated physiological compartments; endocannabinoid production, degradation, and disposition data; PF-04457845 pharmacokinetics and pharmacodynamics, and cannabinoid receptor CB1-binding kinetics. The modeling identified clear gaps in our understanding and highlighted key risks going forward, in particular relating to whether methods are in place to demonstrate target engagement and pharmacological effect. The value of this modeling exercise will be discussed in detail and in the context of the clinical phase II data, together with recommendations to enable optimal future evaluation of FAAH inhibitors. PMID:24429592

  13. Evaluating remedial alternatives for an acid mine drainage stream: Application of a reactive transport model

    USGS Publications Warehouse

    Runkel, R.L.; Kimball, B.A.

    2002-01-01

    A reactive transport model based on one-dimensional transport and equilibrium chemistry is applied to synoptic data from an acid mine drainage stream. Model inputs include streamflow estimates based on tracer dilution, inflow chemistry based on synoptic sampling, and equilibrium constants describing acid/base, complexation, precipitation/dissolution, and sorption reactions. The dominant features of observed spatial profiles in pH and metal concentration are reproduced along the 3.5-km study reach by simulating the precipitation of Fe(III) and Al solid phases and the sorption of Cu, As, and Pb onto freshly precipitated iron-(III) oxides. Given this quantitative description of existing conditions, additional simulations are conducted to estimate the streamwater quality that could result from two hypothetical remediation plans. Both remediation plans involve the addition of CaCO3 to raise the pH of a small, acidic inflow from ???2.4 to ???7.0. This pH increase results in a reduced metal load that is routed downstream by the reactive transport model, thereby providing an estimate of post-remediation water quality. The first remediation plan assumes a closed system wherein inflow Fe(II) is not oxidized by the treatment system; under the second remediation plan, an open system is assumed, and Fe(II) is oxidized within the treatment system. Both plans increase instream pH and substantially reduce total and dissolved concentrations of Al, As, Cu, and Fe(II+III) at the terminus of the study reach. Dissolved Pb concentrations are reduced by ???18% under the first remediation plan due to sorption onto iron-(III) oxides within the treatment system and stream channel. In contrast, iron(III) oxides are limiting under the second remediation plan, and removal of dissolved Pb occurs primarily within the treatment system. This limitation results in an increase in dissolved Pb concentrations over existing conditions as additional downstream sources of Pb are not attenuated by

  14. Kinetics of DNA Strand Displacement Systems with Locked Nucleic Acids.

    PubMed

    Olson, Xiaoping; Kotani, Shohei; Yurke, Bernard; Graugnard, Elton; Hughes, William L

    2017-03-30

    Locked nucleic acids (LNAs) are conformationally restricted RNA nucleotides. Their increased thermal stability and selectivity toward their complements make them well-suited for diagnostic and therapeutic applications. Although the structural and thermodynamic properties of LNA-LNA, LNA-RNA, and LNA-DNA hybridizations are known, the kinetic effects of incorporating LNA nucleotides into DNA strand displacement systems are not. Here, we thoroughly studied the strand displacement kinetics as a function of the number and position of LNA nucleotides in DNA oligonucleotides. When compared to that of an all-DNA control, with an identical sequence, the leakage rate constant was reduced more than 50-fold, to an undetectable level, and the invasion rate was preserved for a hybrid DNA/LNA system. The total performance enhancement ratio also increased more than 70-fold when calculating the ratio of the invading rate to the leakage rate constants for a hybrid system. The rational substitution of LNA nucleotides for DNA nucleotides preserves sequence space while improving the signal-to-noise ratio of strand displacement systems. Hybrid DNA/LNA systems offer great potential for high-performance chemical reaction networks that include catalyzed hairpin assemblies, hairpin chain reactions, motors, walkers, and seesaw gates.

  15. Modeling excitable systems: Reentrant tachycardia

    NASA Astrophysics Data System (ADS)

    Lancaster, Jarrett L.; Hellen, Edward H.; Leise, Esther M.

    2010-01-01

    Excitable membranes are an important type of nonlinear dynamical system, and their study can be used to provide a connection between physical and biological circuits. We discuss two models of excitable membranes important in cardiac and neural tissues. One model is based on the Fitzhugh-Nagumo equations, and the other is based on a three-transistor excitable circuit. We construct a circuit that simulates reentrant tachycardia and its treatment by surgical ablation. This project is appropriate for advanced undergraduates as a laboratory capstone project or as a senior thesis or honors project and can also be a collaborative project, with one student responsible for the computational predictions and another for the circuit construction and measurements.

  16. Modeling Systems of Dependent Components

    DTIC Science & Technology

    2014-09-17

    Ross Sheldon Ross , Babak Haji 611102 c. THIS PAGE The public reporting burden for this collection of information is estimated to average 1 hour per...08/18/2011 Received Paper 3.00 6.00 7.00 5.00 4.00 1.00 2.00 Sheldon Ross . Simulation Analysis of System Life when Component Lives are Determined by...Stochastic Model , Annals of Operations Research (02 2012) Sheldon Ross . A Markov Chai Choice Problem , Probability in the Engineering and

  17. Embryonic exposure to model naphthenic acids delays growth and hatching in the pond snail Lymnaea stagnalis.

    PubMed

    Johnston, Christina U; Clothier, Lindsay N; Quesnel, Dean M; Gieg, Lisa M; Chua, Gordon; Hermann, Petra M; Wildering, Willem C

    2017-02-01

    Naphthenic acids (NAs), a class of structurally diverse carboxylic acids with often complex ring structures and large aliphatic tail groups, are important by-products of many petrochemical processes including the oil sands mining activity of Northern Alberta. While it is evident that NAs have both acute and chronic harmful effects on many organisms, many aspects of their toxicity remain to be clarified. Particularly, while substantive data sets have been collected on NA toxicity in aquatic prokaryote and vertebrate model systems, to date, nothing is known about the toxic effects of these compounds on the embryonic development of aquatic invertebrate taxa, including freshwater mollusks. This study examines under laboratory conditions the toxicity of NAs extracted from oil sands process water (OSPW) and the low-molecular weight model NAs cyclohexylsuccinic acid (CHSA), cyclohexanebutyric acid (CHBA), and 4-tert-butylcyclohexane carboxylic acid (4-TBCA) on embryonic development of the snail Lymnaea stagnalis, a common freshwater gastropod with a broad Palearctic distribution. Evidence is provided for concentration-dependent teratogenic effects of both OSPW-derived and model NAs with remarkably similar nominal threshold concentrations between 15 and 20 mg/L and 28d EC50 of 31 mg/L. In addition, the data provide evidence for substantial toxicokinetic differences between CHSA, CHBA and 4-TBCA. Together, our study introduces Lymnaea stagnalis embryonic development as an effective model to assay NA-toxicity and identifies molecular architecture as a potentially important toxicokinetic parameter in the toxicity of low-molecular weight NA in embryonic development of aquatic gastropods.

  18. A novel kinetic model for polysaccharide dissolution during atmospheric acetic acid pretreatment of sugarcane bagasse.

    PubMed

    Zhao, Xuebing; Morikawa, Yuichi; Qi, Feng; Zeng, Jing; Liu, Dehua

    2014-01-01

    Acetic acid (AcH) pretreatment of sugarcane bagasse with the catalysis of sulfuric acid (SA) could greatly enhance the enzymatic digestibility of cellulose. However, polysaccharide dissolution happened inevitably during the pretreatment. It was found that the simplest model, which assumes that the total polysaccharides were reactive to be dissolved, could not well describe the kinetic behavior of polysaccharide dissolution. A novel pseudo-homogenous kinetic model was thus developed by introducing a parameter termed as "potential dissolution degree" (δ(d)) based on the multilayered structure of cell wall. It was found that solid xylan and glucan dissolutions were a first-order reaction with respect to the dissolvable fraction. Due to the delignification action of AcH, polysaccharide dissolutions were enhanced in AcH media compared with those in aqueous system. Acetylizations of cellulose and sugars were also observed, and AcH concentration showed a significant influence on the degree of acetylization.

  19. Modeling wet deposition of acid substances over the PRD region in China

    NASA Astrophysics Data System (ADS)

    Lu, Xingcheng; Fung, Jimmy Chi Hung; Wu, Dongwei

    2015-12-01

    The Pearl River Delta (PRD) region in southern China has suffered heavily from acid rain in the last 10 years due to the anthropogenic emission of sulfur dioxide and nitrogen dioxide. Several measurement-based studies about this issue have been conducted to analyze the chemical composition of precipitation in this area. However, no detailed, high resolution numerical simulation regarding this topic has ever been done in this region. In this study, the WRF-SMOKE-CMAQ system was applied to simulate the wet deposition of acid substances (SO42- and NO3-) in the PRD region from 2009 to 2011 with a resolution of 3 km. The simulation output agreed well with the observation data. Our results showed that Guangzhou was the city most affected by acid rain in this region. The ratio of non-sea-salt sulfate to nitrate indicated that the acid rain in this region belonged to the sulfate-nitrate mixed type. The source apportionment result suggests that point source and super regional source are the ones that contribute the pollutants most in the rain water over PRD Region. The sulfate and nitrate input to some reservoirs via wet deposition was also estimated based on the model simulation. Our results suggest that further cross-city cooperation and emission reduction are needed to further curb acid rain in this region.

  20. The sugar model: catalysis by amines and amino acid products

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    2001-01-01

    Ammonia and amines (including amino acids) were shown to catalyze the formation of sugars from formaldehyde and glycolaldehyde, and the subsequent conversion of sugars to carbonylcontaining products under the conditions studied (pH 5.5 and 50 degrees C). Sterically unhindered primary amines were better catalysts than ammonia, secondary amines, and sterically hindered primary amines (i.e. alpha-aminoisobutyric acid). Reactions catalyzed by primary amines initially consumed formaldehyde and glycolaldehyde about 15-20 times faster than an uncatalyzed control reaction. The amine-catalyzed reactions yielded aldotriose (glyceraldehyde), ketotriose (dihydroxyacetone), aldotetroses (erythrose and threose), ketotetrose (erythrulose), pyruvaldehyde, acetaldehyde, glyoxal, pyruvate, glyoxylate, and several unindentified carbonyl products. The concentrations of the carbonyl products, except pyruvate and ketotetrose, initially increased and then declined during the reaction, indicating their ultimate conversion to other products (like larger sugars or pyruvate). The uncatalyzed control reaction yielded no pyruvate or glyoxylate, and only trace amounts of pyruvaldehyde, acetaldehyde and glyoxal. In the presence of 15 mM catalytic primary amine, such as alanine, the rates of triose and pyruvaldehyde of synthesis were about 15-times and 1200-times faster, respectively, than the uncatalyzed reaction. Since previous studies established that alanine is synthesized from glycolaldehyde and formaldehyde via pyruvaldehyde as its direct precursor, the demonstration that the alanine catalyzes the conversion of glycolaldehyde and formaldehyde to pyruvaldehyde indicates that this synthetic pathway is capable of autocatalysis. The relevance of this synthetic process, named the Sugar Model, to the origin of life is discussed.

  1. Breathing spiral waves in the chlorine dioxide-iodine-malonic acid reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Berenstein, Igal; Muñuzuri, Alberto P.; Yang, Lingfa; Dolnik, Milos; Zhabotinsky, Anatol M.; Epstein, Irving R.

    2008-08-01

    Breathing spiral waves are observed in the oscillatory chlorine dioxide-iodine-malonic acid reaction-diffusion system. The breathing develops within established patterns of multiple spiral waves after the concentration of polyvinyl alcohol in the feeding chamber of a continuously fed, unstirred reactor is increased. The breathing period is determined by the period of bulk oscillations in the feeding chamber. Similar behavior is obtained in the Lengyel-Epstein model of this system, where small amplitude parametric forcing of spiral waves near the spiral wave frequency leads to the formation of breathing spiral waves in which the period of breathing is equal to the period of forcing.

  2. Modeling and optimization of glutamic acid production using mixed culture of Corynebacterium glutamicum NCIM2168 and Pseudomonas reptilivora NCIM2598.

    PubMed

    Kumar, Rajaram Shyam; Moorthy, Innasi Muthu Ganesh; Baskar, Rajoo

    2013-01-01

    In this study, a hybrid system of response surface methodology followed by genetic algorithm has been adopted to optimize the production medium for L-glutamic acid fermentation with mixed cultures of Corynebacterium glutamicum and Pseudomonas reptilovora. The optimal combination of media components for maximal production of L-glutamic acid was found to be 49.99 g L(-1) of glucose, 10 g L(-1) of urea, 18.06% (v/v) of salt solution, and 4.99% (v/v) of inoculum size. The experimental glutamic acid yield at optimum condition was 19.69 g L(-1), which coincided well to the value predicted by the model (19.61 g L(-1)). Using this methodology, a nonlinear regression model was developed for the glutamic acid production. The model was validated statistically and the determination coefficient (R (2)) was found to be 0.99.

  3. Addition of Amino Acids to Further Stabilize Lyophilized Sucrose-Based Protein Formulations: I. Screening of 15 Amino Acids in Two Model Proteins.

    PubMed

    Forney-Stevens, Kelly M; Bogner, Robin H; Pikal, Michael J

    2016-02-01

    In small amounts, the low molecular weight excipients-sorbitol and glycerol-have been shown to stabilize lyophilized sucrose-based protein formulations. The purpose of this study was to explore the use of amino acids as low molecular weight excipients to similarly enhance stability. Model proteins, recombinant human serum albumin and α-chymotrypsin, were formulated with sucrose in combination with one of 15 amino acid additives. Each formulation was lyophilized at 1:1:0.3 (w/w) protein-sucrose-amino acid. Percent total soluble aggregate was measured by size-exclusion chromatography before and after storage at 50 °C for 2 months. Classical thought might suggest that the addition of the amino acids to the sucrose-protein formulations would be destabilizing because of a decrease in the system's glass transition temperature. However, significant improvement in storage stability was observed for almost all formulations at the ratio of amino acid used. Weak correlations were found between the extent of stabilization and both amino acid molar volume and side-chain charge. The addition of amino acids at a modest level generally improves storage stability, often by more than a 50% increase, for lyophilized sucrose-based protein formulations.

  4. Electromagnetic antenna modeling (EAM) system

    NASA Astrophysics Data System (ADS)

    Packer, Malcolm; Powers, Robert; Tsitsopoulos, Paul

    1994-12-01

    The determination of foreign communications capabilities and intent is an important assessment function performed by the USAF National Air Intelligence Center (NAIC). In this context, Rome Laboratory became the NAIC engineering agent for the development of an NAIC requirement for the rapid analysis and evaluation of antenna structures based on often vague to sometimes detailed dimensional information. To this end, the Rome Laboratory sponsored development of the Electromagnetic Antenna Modeling (EAM) System, a state-of-the-art Pascal program with an MS Windows graphical user interface (GUI) pre- and post-processor. Users of NAIC capabilities initiate antenna analysis efforts that range from simple parametric studies to more complex, detailed antenna design and communication-system evaluations. Accordingly, EAM provides a modeling capability 'matched' to the sophistication of the individual analyst, with features appropriate for users ranging from nontechnical analysts to experienced antenna engineers. This capability is particularly valuable in the military-intelligence environment, in which high-speed assessments are required. In particular, EAM meets the specific antenna-analysis requirements of NAIC with a versatile graphical user interface.

  5. National Energy Modeling System (NEMS)

    DOE Data Explorer

    The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. through 2030. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). NEMS can be used to analyze the effects of existing and proposed government laws and regulations related to energy production and use; the potential impact of new and advanced energy production, conversion, and consumption technologies; the impact and cost of greenhouse gas control; the impact of increased use of renewable energy sources; and the potential savings from increased efficiency of energy use; and the impact of regulations on the use of alternative or reformulated fuels. NEMS has also been used for a number of special analyses at the request of the Administration, U.S. Congress, other offices of DOE and other government agencies, who specify the scenarios and assumptions for the analysis. Modules allow analyses to be conducted in energy topic areas such as residential demand, industrial demand, electricity market, oil and gas supply, renewable fuels, etc.

  6. Modeling aluminum-silicon chemistries and application to Australian acidic playa lakes as analogues for Mars

    USGS Publications Warehouse

    Marion, G.M.; Crowley, J.K.; Thomson, B.J.; Kargel, J.S.; Bridges, N.T.; Hook, S.J.; Baldridge, A.; Brown, A.J.; Ribeiro da Luz, B.; de Souza, Filho C.R.

    2009-01-01

    Recent Mars missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major relevant findings are the presence in Meridiani Planum sediments of the mineral jarosite (a ferric sulfate salt) and related minerals that require formation from an acid-salt brine and oxidizing environment. Similar mineralogies have been observed in acidic saline lake sediments in Western Australia (WA), and these lakes have been proposed as analogues for acidic sedimentary environments on Mars. The prior version of the equilibrium chemical thermodynamic FREZCHEM model lacked Al and Si chemistries that are needed to appropriately model acidic aqueous geochemistries on Earth and Mars. The objectives of this work were to (1) add Al and Si chemistries to the FREZCHEM model, (2) extend these chemistries to low temperatures (<0 ??C), if possible, and (3) use the reformulated model to investigate parallels in the mineral precipitation behavior of acidic Australian lakes and hypothetical Martian brines. FREZCHEM is an equilibrium chemical thermodynamic model parameterized for concentrated electrolyte solutions using the Pitzer approach for the temperature range from <-70 to 25 ??C and the pressure range from 1 to 1000 bars. Aluminum chloride and sulfate mineral parameterizations were based on experimental data. Aluminum hydroxide and silicon mineral parameterizations were based on Gibbs free energy and enthalpy data. New aluminum and silicon parameterizations added 12 new aluminum/silicon minerals to this Na-K-Mg-Ca-Fe(II)-Fe(III)-Al-H-Cl-Br-SO4-NO3-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system that now contain 95 solid phases. There were similarities, differences, and uncertainties between Australian acidic, saline playa lakes and waters that likely led to the Burns formation salt accumulations on Mars. Both systems are similar in that they are dominated by (1) acidic, saline ground waters and sediments, (2) Ca and/or Mg sulfates, and (3) iron

  7. Modeling aluminum-silicon chemistries and application to Australian acidic playa lakes as analogues for Mars

    NASA Astrophysics Data System (ADS)

    Marion, G. M.; Crowley, J. K.; Thomson, B. J.; Kargel, J. S.; Bridges, N. T.; Hook, S. J.; Baldridge, A.; Brown, A. J.; Ribeiro da Luz, B.; de Souza Filho, C. R.

    2009-06-01

    Recent Mars missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major relevant findings are the presence in Meridiani Planum sediments of the mineral jarosite (a ferric sulfate salt) and related minerals that require formation from an acid-salt brine and oxidizing environment. Similar mineralogies have been observed in acidic saline lake sediments in Western Australia (WA), and these lakes have been proposed as analogues for acidic sedimentary environments on Mars. The prior version of the equilibrium chemical thermodynamic FREZCHEM model lacked Al and Si chemistries that are needed to appropriately model acidic aqueous geochemistries on Earth and Mars. The objectives of this work were to (1) add Al and Si chemistries to the FREZCHEM model, (2) extend these chemistries to low temperatures (<0 °C), if possible, and (3) use the reformulated model to investigate parallels in the mineral precipitation behavior of acidic Australian lakes and hypothetical Martian brines. FREZCHEM is an equilibrium chemical thermodynamic model parameterized for concentrated electrolyte solutions using the Pitzer approach for the temperature range from <-70 to 25 °C and the pressure range from 1 to 1000 bars. Aluminum chloride and sulfate mineral parameterizations were based on experimental data. Aluminum hydroxide and silicon mineral parameterizations were based on Gibbs free energy and enthalpy data. New aluminum and silicon parameterizations added 12 new aluminum/silicon minerals to this Na-K-Mg-Ca-Fe(II)-Fe(III)-Al-H-Cl-Br-SO 4-NO 3-OH-HCO 3-CO 3-CO 2-O 2-CH 4-Si-H 2O system that now contain 95 solid phases. There were similarities, differences, and uncertainties between Australian acidic, saline playa lakes and waters that likely led to the Burns formation salt accumulations on Mars. Both systems are similar in that they are dominated by (1) acidic, saline ground waters and sediments, (2) Ca and/or Mg sulfates, and (3) iron

  8. Parallel electrochemical treatment system and application for identifying acid-stable oxygen evolution electrocatalysts.

    PubMed

    Jones, Ryan J R; Shinde, Aniketa; Guevarra, Dan; Xiang, Chengxiang; Haber, Joel A; Jin, Jian; Gregoire, John M

    2015-02-09

    Many energy technologies require electrochemical stability or preactivation of functional materials. Due to the long experiment duration required for either electrochemical preactivation or evaluation of operational stability, parallel screening is required to enable high throughput experimentation. Imposing operational electrochemical conditions to a library of materials in parallel creates several opportunities for experimental artifacts. We discuss the electrochemical engineering principles and operational parameters that mitigate artifacts in the parallel electrochemical treatment system. We also demonstrate the effects of resistive losses within the planar working electrode through a combination of finite element modeling and illustrative experiments. Operation of the parallel-plate, membrane-separated electrochemical treatment system is demonstrated by exposing a composition library of mixed-metal oxides to oxygen evolution conditions in 1 M sulfuric acid for 2 h. This application is particularly important because the electrolysis and photoelectrolysis of water are promising future energy technologies inhibited by the lack of highly active, acid-stable catalysts containing only earth abundant elements.

  9. Modeling lanthanide series binding sites on humic acid.

    PubMed

    Pourret, Olivier; Martinez, Raul E

    2009-02-01

    Lanthanide (Ln) binding to humic acid (HA) has been investigated by combining ultrafiltration and ICP-MS techniques. A Langmuir-sorption-isotherm metal-complexation model was used in conjunction with a linear programming method (LPM) to fit experimental data representing various experimental conditions both in HA/Ln ratio (varying between 5 and 20) and in pH range (from 2 to 10) with an ionic strength of 10(-3) mol L(-1). The LPM approach, not requiring prior knowledge of surface complexation parameters, was used to solve the existing discrepancies in LnHA binding constants and site densities. The application of the LPM to experimental data revealed the presence of two discrete metal binding sites at low humic acid concentrations (5 mg L(-1)), with log metal complexation constants (logK(S,j)) of 2.65+/-0.05 and 7.00 (depending on Ln). The corresponding site densities were 2.71+/-0.57x10(-8) and 0.58+/-0.32x10(-8) mol of Ln(3+)/mg of HA (depending on Ln). Total site densities of 3.28+/-0.28x10(-8), 4.99+/-0.02x10(-8), and 5.01+/-0.01x10(-8) mol mg(-1) were obtained by LPM for humic acid, for humic acid concentrations of 5, 10, and 20 mg L(-1), respectively. These results confirm that lanthanide binding occurs mainly at weak sites (i.e., ca. 80%) and second at strong sites (i.e., ca. 20%). The first group of discrete metal binding sites may be attributed to carboxylic groups (known to be the main binding sites of Ln in HA), and the second metal binding group to phenolic moieties. Moreover, this study evidences heterogeneity in the distribution of the binding sites among Ln. Eventually, the LPM approach produced feasible and reasonable results, but it was less sensitive to error and did not require an a priori assumption of the number and concentration of binding sites.

  10. A fractional order model for lead-acid battery crankability estimation

    NASA Astrophysics Data System (ADS)

    Sabatier, J.; Cugnet, M.; Laruelle, S.; Grugeon, S.; Sahut, B.; Oustaloup, A.; Tarascon, J. M.

    2010-05-01

    With EV and HEV developments, battery monitoring systems have to meet the new requirements of car industry. This paper deals with one of them, the battery ability to start a vehicle, also called battery crankability. A fractional order model obtained by system identification is used to estimate the crankability of lead-acid batteries. Fractional order modelling permits an accurate simulation of the battery electrical behaviour with a low number of parameters. It is demonstrated that battery available power is correlated to the battery crankability and its resistance. Moreover, the high-frequency gain of the fractional model can be used to evaluate the battery resistance. Then, a battery crankability estimator using the battery resistance is proposed. Finally, this technique is validated with various battery experimental data measured on test rigs and vehicles.

  11. Model heterogeneous acid catalysts and metal-support interactions: A combined surface science and catalysis study

    SciTech Connect

    Boszormenyi, I.

    1991-05-01

    This (<100 [Angstrom]) silica-alumina layers were tested as potential model heterogeneous acid catalysts for combined surface science and catalysis studies. Three preparation methods were used: oxidation of r3 [times] r3 R30 Al/Si(111) structure in UHV; deposition on Si(lll) from aqueous solution; and argon ion beam sputter deposition in UHV. The homogeneous thin layers are amorphous, and the chemical environment of surface atoms is similar to that of Si, Al and oxygen atoms on high surface area acid catalysts. Since the ion beam-deposited thin layer of silica-alumina has the same composition as the target zeolite this deposition method is a promising tool to prepare model catalysts using practical catalyst targets. The silica-alumina layers are active in cumene cracking, a typical acid catalyzed reaction. In order to clearly distinguish background reactions and the acid catalyzed reaction at least 20 cm[sup 2] catalyst surface area is needed. Two series of model platinum-alumina catalysts were prepared in a combined UHV -- high pressure reactor cell apparatus by depositing alumina on polycrystalline Pt foil and by vapor depositing Pt on a thin alumina layer on Au. Both model surfaces have been prepared with and without chlorine. AES, CO desorption as well as methyl cyclopentane (MCP) hydrogenolysis studies indicate that the Pt surface area is always higher if a chlorination step is involved. Selectivity patterns in MCP ring opening on Pt-on-alumina'' and on alumina-on-Pt'' are different; only the former is a linear combination of selective and statistical ring opening. Product distribution, however, changes with coverage and reaction time. The properties of the two model catalyst systems and role of chlorine in MCP hydrogenolysis are also discussed.

  12. Model heterogeneous acid catalysts and metal-support interactions: A combined surface science and catalysis study

    SciTech Connect

    Boszormenyi, I.

    1991-05-01

    This (<100 {Angstrom}) silica-alumina layers were tested as potential model heterogeneous acid catalysts for combined surface science and catalysis studies. Three preparation methods were used: oxidation of r3 {times} r3 R30 Al/Si(111) structure in UHV; deposition on Si(lll) from aqueous solution; and argon ion beam sputter deposition in UHV. The homogeneous thin layers are amorphous, and the chemical environment of surface atoms is similar to that of Si, Al and oxygen atoms on high surface area acid catalysts. Since the ion beam-deposited thin layer of silica-alumina has the same composition as the target zeolite this deposition method is a promising tool to prepare model catalysts using practical catalyst targets. The silica-alumina layers are active in cumene cracking, a typical acid catalyzed reaction. In order to clearly distinguish background reactions and the acid catalyzed reaction at least 20 cm{sup 2} catalyst surface area is needed. Two series of model platinum-alumina catalysts were prepared in a combined UHV -- high pressure reactor cell apparatus by depositing alumina on polycrystalline Pt foil and by vapor depositing Pt on a thin alumina layer on Au. Both model surfaces have been prepared with and without chlorine. AES, CO desorption as well as methyl cyclopentane (MCP) hydrogenolysis studies indicate that the Pt surface area is always higher if a chlorination step is involved. Selectivity patterns in MCP ring opening on ``Pt-on-alumina`` and on ``alumina-on-Pt`` are different; only the former is a linear combination of selective and statistical ring opening. Product distribution, however, changes with coverage and reaction time. The properties of the two model catalyst systems and role of chlorine in MCP hydrogenolysis are also discussed.

  13. The evolution of the protein synthesis system. I - A model of a primitive protein synthesis system

    NASA Technical Reports Server (NTRS)

    Mizutani, H.; Ponnamperuma, C.

    1977-01-01

    A model is developed to describe the evolution of the protein synthesis system. The model is comprised of two independent autocatalytic systems, one including one gene (A-gene) and two activated amino acid polymerases (O and A-polymerases), and the other including the addition of another gene (N-gene) and a nucleotide polymerase. Simulation results have suggested that even a small enzymic activity and polymerase specificity could lead the system to the most accurate protein synthesis, as far as permitted by transitions to systems with higher accuracy.

  14. Graphene Oxide-Gallic Acid Nanodelivery System for Cancer Therapy.

    PubMed

    Dorniani, Dena; Saifullah, Bullo; Barahuie, Farahnaz; Arulselvan, Palanisamy; Hussein, Mohd Zobir Bin; Fakurazi, Sharida; Twyman, Lance J

    2016-12-01

    Despite the technological advancement in the biomedical science, cancer remains a life-threatening disease. In this study, we designed an anticancer nanodelivery system using graphene oxide (GO) as nanocarrier for an active anticancer agent gallic acid (GA). The successful formation nanocomposite (GOGA) was characterized using XRD, FTIR, HRTEM, Raman, and UV/Vis spectroscopy. The release study shows that the release of GA from the designed anticancer nanocomposite (GOGA) occurs in a sustained manner in phosphate-buffered saline (PBS) solution at pH 7.4. In in vitro biological studies, normal fibroblast (3T3) and liver cancer cells (HepG2) were treated with different concentrations of GO, GOGA, and GA for 72 h. The GOGA nanocomposite showed the inhibitory effect to cancer cell growth without affecting normal cell growth. The results of this research are highly encouraging to go further for in vivo studies.

  15. Graphene Oxide-Gallic Acid Nanodelivery System for Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Dorniani, Dena; Saifullah, Bullo; Barahuie, Farahnaz; Arulselvan, Palanisamy; Hussein, Mohd Zobir Bin; Fakurazi, Sharida; Twyman, Lance J.

    2016-11-01

    Despite the technological advancement in the biomedical science, cancer remains a life-threatening disease. In this study, we designed an anticancer nanodelivery system using graphene oxide (GO) as nanocarrier for an active anticancer agent gallic acid (GA). The successful formation nanocomposite (GOGA) was characterized using XRD, FTIR, HRTEM, Raman, and UV/Vis spectroscopy. The release study shows that the release of GA from the designed anticancer nanocomposite (GOGA) occurs in a sustained manner in phosphate-buffered saline (PBS) solution at pH 7.4. In in vitro biological studies, normal fibroblast (3T3) and liver cancer cells (HepG2) were treated with different concentrations of GO, GOGA, and GA for 72 h. The GOGA nanocomposite showed the inhibitory effect to cancer cell growth without affecting normal cell growth. The results of this research are highly encouraging to go further for in vivo studies.

  16. Modeling the Earth System, volume 3

    NASA Technical Reports Server (NTRS)

    Ojima, Dennis (Editor)

    1992-01-01

    The topics covered fall under the following headings: critical gaps in the Earth system conceptual framework; development needs for simplified models; and validating Earth system models and their subcomponents.

  17. Discharge Behavior Modeling of Traction lead-Acid Batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Q.; Zhou, D. S.; Feng, N. L.; Wen, N.

    2010-03-01

    In hybrid electric vehicles, one of the key tasks for the battery management system is to maintain the batteries in the proper range which can fulfill the requirement of energy flow. Considering the dynamic operating conditions of traction batteries, an equivalent circuit model is proposed to simulate electro-chemical characteristics of the battery. According to the dynamic equations of the circuit model, internal parameters can be induced through battery response under pulse current test. Different experiments are implemented exploring how the internal parameters vary with the depth of discharge, which is critical for the battery management to determine the energy conversion range.

  18. Energy recovery method and system for combined sulphuric acid and phosphoric acid manufacturing plant

    SciTech Connect

    Cameron, G. M.; Orlando, J. V.

    1985-01-22

    In conventional processes for manufacturing phosphoric acid, sulphuric acid is reacted with phosphate rock to produce weak phosphoric acid which is concentrated using steam from the associated sulphuric acid manufacturing operation. Low grade heat from the absorbers and drier of the sulphuric acid manufacturing plant has been wasted. According to the invention waste heat from the drier and one or more absorbers of the sulphuric acid manufacturing plant is used in all the evaporators of the phosphoric acid plant. The evaporators all operate at low pressures and their heaters are arranged in series, to enable the heat to be used at the relatively low temperatures available. The valuable steam is thus freed for other uses.

  19. Coastal Modeling System (CMS) Users Manuel

    DTIC Science & Technology

    1992-08-01

    AD-A268 830 , INSTRUCTION REPORT CERC-91-1 COASTAL MODELING SYSTEM ( CMS ) USER’S MANUAL by Mary A. Cialone, David J. Mark, Lucia W. Chou, David A...THE COASTAL MODELING SYSTEM USER’S MANUAL Supplement 1 Issued August 1992 Enclosed are additions and corrections to the Coastal Modeling System ( CMS ...COVERED1 August 1992 Supplement I to September 1991 Manual 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Coastal Modeling System ( CMS ) User’s Manual WU

  20. Using the Model Coupling Toolkit to couple earth system models

    USGS Publications Warehouse

    Warner, J.C.; Perlin, N.; Skyllingstad, E.D.

    2008-01-01

    Continued advances in computational resources are providing the opportunity to operate more sophisticated numerical models. Additionally, there is an increasing demand for multidisciplinary studies that include interactions between different physical processes. Therefore there is a strong desire to develop coupled modeling systems that utilize existing models and allow efficient data exchange and model control. The basic system would entail model "1" running on "M" processors and model "2" running on "N" processors, with efficient exchange of model fields at predetermined synchronization intervals. Here we demonstrate two coupled systems: the coupling of the ocean circulation model Regional Ocean Modeling System (ROMS) to the surface wave model Simulating WAves Nearshore (SWAN), and the coupling of ROMS to the atmospheric model Coupled Ocean Atmosphere Prediction System (COAMPS). Both coupled systems use the Model Coupling Toolkit (MCT) as a mechanism for operation control and inter-model distributed memory transfer of model variables. In this paper we describe requirements and other options for model coupling, explain the MCT library, ROMS, SWAN and COAMPS models, methods for grid decomposition and sparse matrix interpolation, and provide an example from each coupled system. Methods presented in this paper are clearly applicable for coupling of other types of models. ?? 2008 Elsevier Ltd. All rights reserved.

  1. Modeling HE systems using DSD

    SciTech Connect

    Aslam, T.D.; Bdzil, J.B.

    1997-12-01

    As a high explosive (HE) ages, those properties of the HE dependent on its global energy-release rate (e.g. shock initiation and detonation propagation speed) are the most likely to be affected. Similarly, any HE replacement will bring with it changes in these same reaction rate dependent characteristics of the HE, in that the new material will not be identical to that being replaced. In this paper the authors describe how detonation shock dynamics (DSD) theory can be used to model how changes in the energy-release rate (as they are embodied in the HE`s detonation speed vs curvature relation) influence the speed of detonation propagation and in turn the performance of a system.

  2. Water system modeling for dispatcher training simulators

    SciTech Connect

    Rajagopal, S.; Sigari, P.G. ); Allen, J.E.; Assadian, M. )

    1993-08-01

    This paper addresses the existing need for training dispatchers in the operation of power systems where it involves managing large water systems. The problem formulation and implementation of water system modeling for the Dispatcher Training Simulators (DTS) are presented in this paper. The method systematically builds the water network descriptions. The model periodically calculates the water system flows, storage values, and currently available hydro generation capacities. The model is controllable by the instructor and provides the simulated telemetry of water system data to the control center functions in the DTS. The water system modeling enhances the power system modeling subsystem of the DTS. The method is validated on a large water system and power system data. The results and the benefits of water system modeling are discussed.

  3. Modeling of Spacecraft Advanced Chemical Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Benfield, Michael P. J.; Belcher, Jeremy A.

    2004-01-01

    This paper outlines the development of the Advanced Chemical Propulsion System (ACPS) model for Earth and Space Storable propellants. This model was developed by the System Technology Operation of SAIC-Huntsville for the NASA MSFC In-Space Propulsion Project Office. Each subsystem of the model is described. Selected model results will also be shown to demonstrate the model's ability to evaluate technology changes in chemical propulsion systems.

  4. Evaluation of polylactic acid nanoparticles safety using Drosophila model.

    PubMed

    Legaz, Sophie; Exposito, Jean-Yves; Lethias, Claire; Viginier, Barbara; Terzian, Christophe; Verrier, Bernard

    2016-10-01

    Cytotoxicity of nanoparticles and their sub-lethal effect on cell behavior and cell fate are a high topic of studies in the nanomaterial field. With an explosion of nanoparticle types (size, shape, polarity, stiffness, composition, etc.), Drosophila has become an attractive animal model for high throughput analysis of these nanocarriers in the drug delivery field with applications in cancer therapy, or simply to generate a fast and complete cytotoxic study of a peculiar nanoparticle. In respect to that, we have conducted an in cellulo study of poly(lactic acid) (PLA) nanoparticle cytotoxicity, and determined that near lethal nanoparticle doses, oxidative stress as well as P53 and ATP pathways may lead to cell cycle arrest at G1, and ultimately to cell death. Neither viability nor the development of Drosophila larvae are affected by the ingestion of PLA nanoparticles at sub-lethal concentrations. Drosophila will be a useful model to study PLA and PLA-modified nanoparticle toxicity, and nanoparticle fate after ingestion.

  5. Mechanistic Study of the Acid Degradation of Lignin Model Compounds

    SciTech Connect

    Sturgeon, M.; Kim, S.; Chmely, S. C.; Foust, T. D.; Beckham, G. T.

    2012-01-01

    Lignin is a major constituent of biomass, which remains underutilized in selective biomass conversion strategies to renewable fuels and chemicals. Here we are interested in understanding the mechanisms related to the acid deconstruction of lignin with a combined theoretical and experimental approach. Two model dimers with a b-O-4 aryl ether linkage (2-phenoxy-1-phenethanol and 2-phenoxy-1-phenyl-1,3 propanediol) and model dimmers with an a-O-4 aryl ether linkage were synthesized and deconstructed in H2SO4. The major products of the acidolysis of the b-O-4 compounds consisted of phenol and two aldehydes, phenylacetaldehyde and benzaldehyde. Quantum mechanical calculations were employed to elucidate possible deconstruction mechanisms with transition state theory. To confirm proposed mechanisms several possible intermediates were studied under similar acidolysis conditions. Although the resonance time for cleavage was on the order several hours, we have shown that the cleavage of the aryl ether linkage affords phenol and aldehydes. We would next like to utilize our mechanism of aryl ether cleavage in actual lignin.

  6. New model systems for experimental evolution.

    PubMed

    Collins, Sinéad

    2013-07-01

    Microbial experimental evolution uses a few well-characterized model systems to answer fundamental questions about how evolution works. This special section highlights novel model systems for experimental evolution, with a focus on marine model systems that can be used to understand evolutionary responses to global change in the oceans.

  7. Interaction of Cytotoxic and Cytoprotective Bile Acids with Model Membranes: Influence of the Membrane Composition.

    PubMed

    Esteves, M; Ferreira, M J; Kozica, A; Fernandes, A C; Gonçalves da Silva, A; Saramago, B

    2015-08-18

    To understand the role of bile acids (BAs) in cell function, many authors have investigated their effect on biomembrane models which are less complex systems, but there are still many open questions. The present study aims to contribute for the deepening of the knowledge of the interaction between BAs and model membranes, in particular, focusing on the effect of BA mixtures. The cytotoxic deoxycholic acid (DCA), the cytoprotective ursodeoxycholic acid (UDCA), and the equimolar mixture (DCA + UDCA) were investigated. Monolayers and liposomes were taken as model membranes with two lipid compositions: an equimolar mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), sphingomyelin (SM), and cholesterol (Chol)) traditionally associated with the formation of lipid rafts and an equimolar POPC/SM binary mixture. The obtained results showed that DCA causes the fluidization of monolayers and bilayers, leading to the eventual rupture of POPC/SM liposomes at high concentration. UDCA may provide a stabilization of POPC/SM membranes but has a negligible effect on the Chol-containing liposomes. In the case of equimolar mixture DCA/UDCA, the interactions depend not only on the lipid composition but also on the design of the experiment. The BA mixture has a greater impact on the monolayers than do pure BAs, suggesting a cooperative DCA-UDCA interaction that enhances the penetration of UDCA in both POPC/SM and POPC/SM/Chol monolayers. For the bilayers, the presence of UDCA in the mixture decreases the disturbing effect of DCA.

  8. Effects of bioactive fatty acid amide derivatives in zebrafish scale model of bone metabolism and disease.

    PubMed

    Carnovali, M; Ottria, R; Pasqualetti, S; Banfi, G; Ciuffreda, P; Mariotti, M

    2016-02-01

    The endocannabinoid system (which includes fatty acid derivatives, receptors, and metabolizing enzymes) is involved in a variety of physiological processes, including bone metabolism in which it regulates the function of osteoblasts and osteoclasts, as well as differentiation of their precursors. The zebrafish (Danio rerio) provides a useful animal model for bone research since zebrafish bones develop rapidly and are anatomically similar to mammalian bones. Putative orthologues and paralogs of endocannabinoid genes have recently been identified in zebrafish, demonstrating the presence of cannabinoid type 1 (CB1) and type 2 (CB2) receptors with affinity to endocannabinoid ligands. To identify therapeutic molecules potentially useful in bone-related diseases, we evaluated the in vivo effects of exposure to long-chain fatty acid amides in adult zebrafish. Using a well-established zebrafish scale model, we found that anandamide and N-linoleoylethanolamine are able to stimulate bone formation by increasing alkaline phosphatase activity in physiological conditions. In addition, they prevent the alteration of bone markers in a prednisolone-induced osteoporosis model in adult zebrafish scales, whereas their esterified forms do not. These data suggest that long-chain fatty acid amides are involved in regulating bone metabolism in zebrafish scales and that the CB2 receptor is a key mediator in this process.

  9. Turing pattern formation in the chlorine dioxide-iodine- malonic acid reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Setayeshgar, Sima

    The formation of localized structures in the chlorine dioxide-idodine-malonic acid (CDIMA) reaction-diffusion system is investigated numerically using a realistic model of this system. We analyze the one-dimensional patterns formed along the gradients imposed by boundary feeds, and study their linear stability to symmetry- breaking perturbations (the Turing instability) in the plane transverse to these gradients. We establish that an often-invoked simple local linear analysis which neglects longitudinal diffusion is inappropriate for predicting the linear stability of these patterns. Using a fully nonuniform analysis, we investigate the structure of the patterns formed along the gradients and their stability to transverse Turing pattern formation as a function of the values of two control parameters: the malonic acid feed concentration and the size of the reactor in the dimension along the gradients. The results from this investigation are compared with existing experimental results. We also verify that the two-variable reduction of the chemical model employed in the linear stability analysis is justified. Finally, we present numerical solution of the CDIMA system in two dimensions which is in qualitative agreement with experiments. This result also confirms our linear stability analysis, while demonstrating the feasibility of numerical exploration of realistic chemical models.

  10. The CICT Earth Science Systems Analysis Model

    NASA Technical Reports Server (NTRS)

    Pell, Barney; Coughlan, Joe; Biegel, Bryan; Stevens, Ken; Hansson, Othar; Hayes, Jordan

    2004-01-01

    Contents include the following: Computing Information and Communications Technology (CICT) Systems Analysis. Our modeling approach: a 3-part schematic investment model of technology change, impact assessment and prioritization. A whirlwind tour of our model. Lessons learned.

  11. Dysregulation of bile acid homeostasis in parenteral nutrition mouse model

    PubMed Central

    Zhan, Le; Yang, Ill; Shen, Jianliang; Gorczyca, Ludwik; Memon, Naureen; Buckley, Brian T.

    2015-01-01

    Long-term parenteral nutrition (PN) administration can lead to PN-associated liver diseases (PNALD). Although multiple risk factors have been identified for PNALD, to date, the roles of bile acids (BAs) and the pathways involved in BA homeostasis in the development and progression of PNALD are still unclear. We have established a mouse PN model with IV infusion of PN solution containing soybean oil-based lipid emulsion (SOLE). Our results showed that PN altered the expression of genes involved in a variety of liver functions at the mRNA levels. PN increased liver gene expression of Cyp7a1 and markedly decreased that of Cyp8b1, Cyp7b1, Bsep, and Shp. CYP7A1 and CYP8B1 are important for synthesizing the total amount of BAs and regulating the hydrophobicity of BAs, respectively. Consistently, both the levels and the percentages of primary BAs as well as total non-12α-OH BAs increased significantly in the serum of PN mice compared with saline controls, whereas liver BA profiles were largely similar. The expression of several key liver-X receptor-α (LXRα) target genes involved in lipid synthesis was also increased in PN mouse livers. Retinoid acid-related orphan receptor-α (RORα) has been shown to induce the expression of Cyp8b1 and Cyp7b1, as well as to suppress LXRα function. Western blot showed significantly reduced nuclear migration of RORα protein in PN mouse livers. This study shows that continuous PN infusion with SOLE in mice leads to dysregulation of BA homeostasis. Alterations of liver RORα signaling in PN mice may be one of the mechanisms implicated in the pathogenesis of PNALD. PMID:26564717

  12. CONTROL SYSTEM IDENTIFICATION THROUGH MODEL MODULATION METHODS

    DTIC Science & Technology

    identification has been achieved by using model modulation techniques to drive dynamic models into correspondence with operating control systems. The system ... identification then proceeded from examination of the model and the adaptive loop. The model modulation techniques applied to adaptive control

  13. Visual computing model for immune system and medical system.

    PubMed

    Gong, Tao; Cao, Xinxue; Xiong, Qin

    2015-01-01

    Natural immune system is an intelligent self-organizing and adaptive system, which has a variety of immune cells with different types of immune mechanisms. The mutual cooperation between the immune cells shows the intelligence of this immune system, and modeling this immune system has an important significance in medical science and engineering. In order to build a comprehensible model of this immune system for better understanding with the visualization method than the traditional mathematic model, a visual computing model of this immune system was proposed and also used to design a medical system with the immune system, in this paper. Some visual simulations of the immune system were made to test the visual effect. The experimental results of the simulations show that the visual modeling approach can provide a more effective way for analyzing this immune system than only the traditional mathematic equations.

  14. Next generation system modeling of NTR systems

    NASA Technical Reports Server (NTRS)

    Buksa, John J.; Rider, William J.

    1993-01-01

    The topics are presented in viewgraph form and include the following: nuclear thermal rocket (NTR) modeling challenges; current approaches; shortcomings of current analysis method; future needs; and present steps to these goals.

  15. Modeling Power Systems as Complex Adaptive Systems

    SciTech Connect

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  16. Model mount system for testing flutter

    NASA Technical Reports Server (NTRS)

    Farmer, M. G. (Inventor)

    1984-01-01

    A wind tunnel model mount system is disclosed for effectively and accurately determining the effects of attack and airstream velocity on a model airfoil or aircraft. The model mount system includes a rigid model attached to a splitter plate which is supported away from the wind tunnel wall several of flexible rods. Conventional instrumentation is employed to effect model rotation through a turntable and to record model flutter data as a function of the angle of attack versus dynamic pressure.

  17. Interaction of metal ions with acid sites of biosorbents peat moss and Vaucheria and model substances alginic and humic acids

    SciTech Connect

    Crist, R.H.; Martin, J.R.; Crist, D.R.

    1999-07-01

    The interaction between added metal ions and acid sites of two biosorbents, peat moss and the alga Vaucheria, was studied. Results were interpreted in terms of two model substances, alginic acid, a copolymer of guluronic and mannuronic acids present in marine algae, and humic acid in peat moss. For peat moss and Vaucheria at pH 4--6, two protons were displaced per Cd sorbed, after correction for sorbed metals also displaced by the heavy metal. The frequent neglect of exchange of heavy metals for metals either sorbed on the native material or added for pH adjustment leads to erroneous conclusions about proton displacement stoichiometry. Proton displacement constants K{sub ex}{sup H} decreased logarithmically with pH and had similar slopes for alginic acid and biosorbents. This pH effect was interpreted as an electrostatic effect of increasing anionic charge making proton removal less favorable. The maximum number of exchangeable acid sites (capacity C{sub H}) decreased with pH for alginic acid but increased with pH for biosorbents. Consistent with titration behavior, this difference was explained in terms of more weak acid sites in the biosorbents.

  18. Genotype, production system and sex effects on fatty acid composition of meat from goat kids.

    PubMed

    Özcan, Mustafa; Demirel, Gulcan; Yakan, Akın; Ekiz, Bülent; Tölü, Cemil; Savaş, Türker

    2015-02-01

    Two trials were performed to assess the meat fatty acid profile of goat kids from different genotypes, production systems and sex. In the first trial, genotype effect was determined in 24 suckling male kids from Turkish Saanen, Maltese and Gokceada breeds. In the second trial, male and female Gokceada Goat kids were used to compare the effect of extensive and semi-intensive production systems on fatty acid composition of meat. Significant genotype effect was observed in the percentages of myristic acid (C14:0), palmitic acid (C16:0), oleic acid (C18:1 n-9), linolenic acid (C18:3 n-3), arachidonic acid (C20:4 n-6) and docosahexaenoic acid (C22:6 n-3), despite no differences on the ratios of polyunsaturated fatty acids to saturated fatty acids (PUFA/SFA) and n-6/n-3 (P > 0.05). The effect of production system had also significant effects on fatty acids, but sex only influenced significantly stearic acid (C18:0), C18:1 n-9 and C18:3 n-3 fatty acids and total PUFA level and PUFA/SFA ratio. This study confirms that dairy breeds are prone to produce higher levels of unsaturated fatty acids in their muscle. Meanwhile, meat from Gokceada goat kids, which is one of the indigenous breeds in Turkey, had similar PUFA/SFA and n-6/n-3 ratios to Turkish Saanen and Maltase.

  19. NASA's SPICE System Models the Solar System

    NASA Technical Reports Server (NTRS)

    Acton, Charles

    1996-01-01

    SPICE is NASA's multimission, multidiscipline information system for assembling, distributing, archiving, and accessing space science geometry and related data used by scientists and engineers for mission design and mission evaluation, detailed observation planning, mission operations, and science data analysis.

  20. Generic CSP Performance Model for NREL's System Advisor Model: Preprint

    SciTech Connect

    Wagner, M. J.; Zhu, G.

    2011-08-01

    The suite of concentrating solar power (CSP) modeling tools in NREL's System Advisor Model (SAM) includes technology performance models for parabolic troughs, power towers, and dish-Stirling systems. Each model provides the user with unique capabilities that are catered to typical design considerations seen in each technology. Since the scope of the various models is generally limited to common plant configurations, new CSP technologies, component geometries, and subsystem combinations can be difficult to model directly in the existing SAM technology models. To overcome the limitations imposed by representative CSP technology models, NREL has developed a 'Generic Solar System' (GSS) performance model for use in SAM. This paper discusses the formulation and performance considerations included in this model and verifies the model by comparing its results with more detailed models.

  1. Combined cycle phosphoric acid fuel cell electric power system

    SciTech Connect

    Mollot, D.J.; Micheli, P.L.

    1995-12-31

    By arranging two or more electric power generation cycles in series, combined cycle systems are able to produce electric power more efficiently than conventional single cycle plants. The high fuel to electricity conversion efficiency results in lower plant operating costs, better environmental performance, and in some cases even lower capital costs. Despite these advantages, combined cycle systems for the 1 - 10 megawatt (MW) industrial market are rare. This paper presents a low noise, low (oxides of nitrogen) NOx, combined cycle alternative for the small industrial user. By combining a commercially available phosphoric acid fuel cell (PAFC) with a low-temperature Rankine cycle (similar to those used in geothermal applications), electric conversion efficiencies between 45 and 47 percent are predicted. While the simple cycle PAFC is competitive on a cost of energy basis with gas turbines and diesel generators in the 1 to 2 MW market, the combined cycle PAFC is competitive, on a cost of energy basis, with simple cycle diesel generators in the 4 to 25 MW market. In addition, the efficiency and low-temperature operation of the combined cycle PAFC results in a significant reduction in carbon dioxide emissions with NO{sub x} concentration on the order of 1 parts per million (per weight) (ppmw).

  2. Particle Tracking Model (PTM) with Coastal Modeling System (CMS)

    DTIC Science & Technology

    2014-10-31

    System ( CMS ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER...www.erdc.usace.army.mil/Missions/WaterResources/CIRP.aspx Coastal Inlets Research Program Particle Tracking Model (PTM) with Coastal Modeling System ( CMS ) The...System ( CMS ), which provides coupled wave and current forcing for PTM simulations. CMS -PTM is implemented in the Surface-water Modeling System, a

  3. Accuracy assessment of the linear Poisson-Boltzmann equation and reparametrization of the OBC generalized Born model for nucleic acids and nucleic acid-protein complexes.

    PubMed

    Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro

    2015-04-05

    The generalized Born model in the Onufriev, Bashford, and Case (Onufriev et al., Proteins: Struct Funct Genet 2004, 55, 383) implementation has emerged as one of the best compromises between accuracy and speed of computation. For simulations of nucleic acids, however, a number of issues should be addressed: (1) the generalized Born model is based on a linear model and the linearization of the reference Poisson-Boltmann equation may be questioned for highly charged systems as nucleic acids; (2) although much attention has been given to potentials, solvation forces could be much less sensitive to linearization than the potentials; and (3) the accuracy of the Onufriev-Bashford-Case (OBC) model for nucleic acids depends on fine tuning of parameters. Here, we show that the linearization of the Poisson Boltzmann equation has mild effects on computed forces, and that with optimal choice of the OBC model parameters, solvation forces, essential for molecular dynamics simulations, agree well with those computed using the reference Poisson-Boltzmann model.

  4. Modeling spray/puddle dissolution processes for deep-ultraviolet acid-hardened resists

    NASA Astrophysics Data System (ADS)

    Hutchinson, John M.; Das, Siddhartha; Qian, Qi-De; Gaw, Henry T.

    1993-10-01

    A study of the dissolution behavior of acid-hardened resists (AHR) was undertaken for spray and spray/puddle development processes. The Site Services DSM-100 end-point detection system is used to measure both spray and puddle dissolution data for a commercially available deep-ultraviolet AHR resist, Shipley SNR-248. The DSM allows in situ measurement of dissolution rate on the wafer chuck and hence allows parameter extraction for modeling spray and puddle processes. The dissolution data for spray and puddle processes was collected across a range of exposure dose and postexposure bake temperature. The development recipe was varied to decouple the contribution of the spray and puddle modes to the overall dissolution characteristics. The mechanisms involved in spray versus puddle dissolution and the impact of spray versus puddle dissolution on process performance metrics has been investigated. We used the effective-dose-modeling approach and the measurement capability of the DSM-100 and developed a lumped parameter model for acid-hardened resists that incorporates the effects of exposure, postexposure bake temperature and time, and development condition. The PARMEX photoresist-modeling program is used to determine parameters for the spray and for the puddle process. The lumped parameter AHR model developed showed good agreement with experimental data.

  5. Coamorphous Loratadine-Citric Acid System with Enhanced Physical Stability and Bioavailability.

    PubMed

    Wang, Jin; Chang, Ruimiao; Zhao, Yanan; Zhang, Jiye; Zhang, Ting; Fu, Qiang; Chang, Chun; Zeng, Aiguo

    2017-02-21

    Coamorphous systems using citric acid as a small molecular excipient were studied for improving physical stability and bioavailability of loratadine, a BCS class II drug with low water solubility and high permeability. Coamorphous loratadine-citric acid systems were prepared by solvent evaporation technique and characterized by differential scanning calorimetry, X-ray powder diffraction, and Fourier transform infrared spectroscopy. Solid-state analysis proofed that coamorphous loratadine-citric acid system (1:1) was amorphous and homogeneous, had a higher T g over amorphous loratadine, and the intermolecular hydrogen bond interactions between loratadine and citric acid exist. The solubility and dissolution of coamorphous loratadine-citric acid system (1:1) were found to be significantly greater than those of crystalline and amorphous form. The pharmacokinetic study in rats proved that coamorphous loratadine-citric acid system (1:1) could significantly improve absorption and bioavailability of loratadine. Coamorphous loratadine-citric acid system (1:1) showed excellently physical stability over a period of 3 months at 25°C under 0% RH and 25°C under 60% RH conditions. The improved stability of coamorphous loratadine-citric acid system (1:1) could be related to an elevated T g over amorphous form and the intermolecular hydrogen bond interactions between loratadine and citric acid. These studies demonstrate that the developed coamorphous loratadine-citric acid system might be a promising oral formulation for improving solubility and bioavailability of loratadine.

  6. Phase equilibria and distribution constants of metal ions in diantipyryl alkane-organic acid-hydrochloric acid-water systems

    NASA Astrophysics Data System (ADS)

    Degtev, M. I.; Popova, O. N.; Yuminova, A. A.

    2014-08-01

    The ability of antipyrine and its derivatives (diantipyryl alkanes) to form separating systems in the presence of salicylic (sulfosalicylic) acid and hydrochloric acid and water is studied. The optimum volume of the organic phase, the composition of complexes, and the mechanism for the distribution of metal ions are determined, depending on the concentrations of the main components and the salting-out agent. The complex distribution and extraction constants are calculated.

  7. Of Mental Models, Assumptions and Heuristics: The Case of Acids and Acid Strength

    ERIC Educational Resources Information Center

    McClary, LaKeisha Michelle

    2010-01-01

    This study explored what cognitive resources (i.e., units of knowledge necessary to learn) first-semester organic chemistry students used to make decisions about acid strength and how those resources guided the prediction, explanation and justification of trends in acid strength. We were specifically interested in the identifying and…

  8. Serum uric acid levels contribute to new renal damage in systemic lupus erythematosus patients.

    PubMed

    Reátegui-Sokolova, C; Ugarte-Gil, Manuel F; Gamboa-Cárdenas, Rocío V; Zevallos, Francisco; Cucho-Venegas, Jorge M; Alfaro-Lozano, José L; Medina, Mariela; Rodriguez-Bellido, Zoila; Pastor-Asurza, Cesar A; Alarcón, Graciela S; Perich-Campos, Risto A

    2017-04-01

    This study aims to determine whether uric acid levels contribute to new renal damage in systemic lupus erythematosus (SLE) patients. This prospective study was conducted in consecutive patients seen since 2012. Patients had a baseline visit and follow-up visits every 6 months. Patients with ≥2 visits were included; those with end-stage renal disease (regardless of dialysis or transplantation) were excluded. Renal damage was ascertained using the SLICC/ACR damage index (SDI). Univariable and multivariable Cox-regression models were performed to determine the risk of new renal damage. Uric acid was included as a continuous and dichotomous (per receiving operating characteristic curve) variable. Multivariable models were adjusted for age at diagnosis, disease duration, socioeconomic status, SLEDAI, SDI, serum creatinine, baseline use of prednisone, antimalarials, and immunosuppressive drugs. One hundred and eighty-six patients were evaluated; their mean (SD) age at diagnosis was 36.8 (13.7) years; nearly all patients were mestizo. Disease duration was 7.7 (6.8) years. Follow-up time was 2.3 (1.1) years. The SLEDAI was 5.2 (4.3) and the SDI 0.8 (1.1). Uric acid levels were 4.5 (1.3) mg/dl. During follow-up, 16 (8.6%) patients developed at least one new point in the renal domain of the SDI. In multivariable analyses, uric acid levels (continuous and dichotomous) at baseline predicted the development of new renal damage (HR 3.21 (1.39-7.42), p 0.006; HR 18.28 (2.80-119.48), p 0.002; respectively). Higher uric acid levels contribute to the development of new renal damage in SLE patients independent of other well-known risk factors for such occurrence.

  9. ESTIMATION OF HYDROLYSIS RATE CONSTANTS OF CARBOXYLIC ACID ESTER AND PHOSPHATE ESTER COMPOUNDS IN AQUEOUS SYSTEMS FROM MOLECULAR STRUCTURE BY SPARC

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...

  10. Analysis hierarchical model for discrete event systems

    NASA Astrophysics Data System (ADS)

    Ciortea, E. M.

    2015-11-01

    The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.

  11. Model-Based Prognostics of Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Roychoudhury, Indranil; Bregon, Anibal

    2015-01-01

    Model-based prognostics has become a popular approach to solving the prognostics problem. However, almost all work has focused on prognostics of systems with continuous dynamics. In this paper, we extend the model-based prognostics framework to hybrid systems models that combine both continuous and discrete dynamics. In general, most systems are hybrid in nature, including those that combine physical processes with software. We generalize the model-based prognostics formulation to hybrid systems, and describe the challenges involved. We present a general approach for modeling hybrid systems, and overview methods for solving estimation and prediction in hybrid systems. As a case study, we consider the problem of conflict (i.e., loss of separation) prediction in the National Airspace System, in which the aircraft models are hybrid dynamical systems.

  12. Linear systems, and ARMA- and Fliess models

    NASA Astrophysics Data System (ADS)

    Lomadze, Vakhtang; Khurram Zafar, M.

    2010-10-01

    Linear (dynamical) systems are central objects of study (in linear system theory), and ARMA- and Fliess models are two very important classes of models that are used to represent them. This article is concerned with the question of what is a relation between them (in case of higher dimensions). It is shown that the category of linear systems, the 'weak' category of ARMA-models and the category of Fliess models are equivalent to each other.

  13. Comparison of Photovoltaic Models in the System Advisor Model: Preprint

    SciTech Connect

    Blair, N. J.; Dobos, A. P.; Gilman, P.

    2013-08-01

    The System Advisor Model (SAM) is free software developed by the National Renewable Energy Laboratory (NREL) for predicting the performance of renewable energy systems and analyzing the financial feasibility of residential, commercial, and utility-scale grid-connected projects. SAM offers several options for predicting the performance of photovoltaic (PV) systems. The model requires that the analyst choose from three PV system models, and depending on that choice, possibly choose from three module and two inverter component models. To obtain meaningful results from SAM, the analyst must be aware of the differences between the model options and their applicability to different modeling scenarios. This paper presents an overview the different PV model options and presents a comparison of results for a 200-kW system using different model options.

  14. Effect of calcium, tannic acid, phytic acid and pectin over iron uptake in an in vitro Caco-2 cell model.

    PubMed

    Andrews, M; Briones, L; Jaramillo, A; Pizarro, F; Arredondo, M

    2014-04-01

    Calcium, phytic acid, polyphenols and fiber are major inhibitors of iron absorption and they could be found in excess in some diets, thereby altering or modifying the iron nutrition status. The purpose of this study is to evaluate the effect of calcium, tannic acid, phytic acid, and pectin over iron uptake, using an in vitro model of epithelial cells (Caco-2 cell line). Caco-2 cells were incubated with iron (10-30 μM) with or without CaCl2 (500 and 1,000 μM) for 24 h. Then, cells were challenged with phytic acid (50-150 μM); pectin (50-150 nM) or tannic acid (100-500 μM) for another 24 h. Finally, (55)Fe (10 μM) uptake was determined. Iron dialyzability was studied using an in vitro digestion method. Iron uptake in cells pre-incubated with 20 and 30 μM Fe was inhibited by CaCl2 (500 μM). Iron uptake decreased in cells cultured with tannic acid (300 μM) and CaCl2 (500-1,000 μM) (two-way ANOVA, p = 0.002). Phytic acid also decreased iron uptake mainly when cells were treated with CaCl2 (1,000 μM) (two-way ANOVA; p < 0.05). Pectin slightly decreased iron uptake (p = NS). Iron dialyzability decreased when iron was mixed with CaCl2 and phytic or tannic acid (T test p < 0.0001, for both) but not when mixed with pectin. Phytic acid combined with calcium is a strong iron uptake inhibitor. Pectin slightly decreased iron uptake with or without calcium. Tannic acid showed an unexpected behavior, inducing an increase on iron uptake, despite its low Fe dialyzability.

  15. Modeling the Acid-Base Properties of Montmorillonite Edge Surfaces.

    PubMed

    Tournassat, Christophe; Davis, James A; Chiaberge, Christophe; Grangeon, Sylvain; Bourg, Ian C

    2016-12-20

    The surface reactivity of clay minerals remains challenging to characterize because of a duality of adsorption surfaces and mechanisms that does not exist in the case of simple oxide surfaces: edge surfaces of clay minerals have a variable proton surface charge arising from hydroxyl functional groups, whereas basal surfaces have a permanent negative charge arising from isomorphic substitutions. Hence, the relationship between surface charge and surface potential on edge surfaces cannot be described using the Gouy-Chapman relation, because of a spillover of negative electrostatic potential from the basal surface onto the edge surface. While surface complexation models can be modified to account for these features, a predictive fit of experimental data was not possible until recently, because of uncertainty regarding the densities and intrinsic pKa values of edge functional groups. Here, we reexamine this problem in light of new knowledge on intrinsic pKa values obtained over the past decade using ab initio molecular dynamics simulations, and we propose a new formalism to describe edge functional groups. Our simulation results yield reasonable predictions of the best available experimental acid-base titration data.

  16. Reduction of acid rock drainage using steel slag in cover systems over sulfide rock waste piles.

    PubMed

    de Almeida, Rodrigo Pereira; Leite, Adilson do Lago; Borghetti Soares, Anderson

    2015-04-01

    The extraction of gold, coal, nickel, uranium, copper and other earth-moving activities almost always leads to environmental damage. In metal and coal extraction, exposure of sulfide minerals to the atmosphere leads to generation of acid rock drainage (ARD) and in underground mining to acid mine drainage (AMD) due to contamination of infiltrating groundwater. This study proposes to develop a reactive cover system that inhibits infiltration of oxygen and also releases alkalinity to increase the pH of generated ARD and attenuate metal contaminants at the same time. The reactive cover system is constructed using steel slag, a waste product generated from steel industries. This study shows that this type of cover system has the potential to reduce some of the adverse effects of sulfide mine waste disposal on land. Geochemical and geotechnical characterization tests were carried out. Different proportions of sulfide mine waste and steel slag were studied in leachate extraction tests. The best proportion was 33% of steel slag in dry weight. Other tests were conducted as follows: soil consolidation, saturated permeability and soil water characteristic curve. The cover system was numerically modeled through unsaturated flux analysis using Vadose/w. The solution proposed is an oxygen transport barrier that allows rain water percolation to treat the ARD in the waste rock pile. The results showed that the waste pile slope is an important factor and the cover system must have 5 m thickness to achieve an acceptable effectiveness.

  17. STANDARDIZING TERMINOLOGY FOR ESTIMATING THE DIET-DEPENDENT NET ACID LOAD TO THE METABOLIC SYSTEM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contemporary Western diets contain acid precursors in excess of base precursors, yielding a daily systemic net acid load of varying amounts, depending on the specific composition of the diet. Increasing evidence suggests that differences in daily net acid load, resulting predominantly from differen...

  18. Enhanced succinic acid production under acidic conditions by introduction of glutamate decarboxylase system in E. coli AFP111.

    PubMed

    Wu, Mingke; Li, Xiaozhan; Guo, Shunfeng; Lemma, Wubliker Dessie; Zhang, Wenming; Ma, Jiangfeng; Jia, Honghua; Wu, Hao; Jiang, Min; Ouyang, Pingkai

    2017-04-01

    Biological synthesis of succinic acid at low pH values was favored since it not only decreased investment cost but also simplified downstream purification process. In this study, the feasibility of using glutamate decarboxylase system to improve succinic acid production of Escherichia coli AFP111, a succinate-producing candidate with mutations in pfl, ldhA, and ptsG, under acidic conditions was investigated. By overexpressing gadBC operon in AFP111, a recombinant named as BA201 (AFP111/pMD19T-gadBC) was constructed. Fermentation at pH 5.6 showed that 30 g L(-1) glucose was consumed and 26.58 g L(-1) succinic acid was produced by BA201, which was 1.22- and 1.32-fold higher than that by the control BA200 (AFP111/pMD19T) containing the empty vector. Analysis of intracellular enzymes activities and ATP concentrations revealed that the activities of key enzymes involved in glucose uptake and products synthesis and intracellular ATP levels were all increased after overexpression of gadBC which were benefit for cell metabolism under weak acidic conditions. To further improve the succinic acid titer by recombinant BA201 at pH 5.6, the extracellular glutamate concentration was optimized and the final succinic acid titer increased 20.4% to 32.01 g L(-1). Besides, the fermentation time was prolonged by repetitive fermentation and additional 15.78 g L(-1) succinic acid was produced by recovering cells into fresh medium. The results here demonstrated a potential strategy of overexpressing gadBC for increased succinic acid production of E. coli AFP111 under weak acidic conditions.

  19. Sialic Acids in the Brain: Gangliosides and Polysialic Acid in Nervous System Development, Stability, Disease, and Regeneration

    PubMed Central

    Gerardy-Schahn, Rita; Hildebrandt, Herbert

    2014-01-01

    Every cell in nature carries a rich surface coat of glycans, its glycocalyx, which constitutes the cell's interface with its environment. In eukaryotes, the glycocalyx is composed of glycolipids, glycoproteins, and proteoglycans, the compositions of which vary among different tissues and cell types. Many of the linear and branched glycans on cell surface glycoproteins and glycolipids of vertebrates are terminated with sialic acids, nine-carbon sugars with a carboxylic acid, a glycerol side-chain, and an N-acyl group that, along with their display at the outmost end of cell surface glycans, provide for varied molecular interactions. Among their functions, sialic acids regulate cell-cell interactions, modulate the activities of their glycoprotein and glycolipid scaffolds as well as other cell surface molecules, and are receptors for pathogens and toxins. In the brain, two families of sialoglycans are of particular interest: gangliosides and polysialic acid. Gangliosides, sialylated glycosphingolipids, are the most abundant sialoglycans of nerve cells. Mouse genetic studies and human disorders of ganglioside metabolism implicate gangliosides in axon-myelin interactions, axon stability, axon regeneration, and the modulation of nerve cell excitability. Polysialic acid is a unique homopolymer that reaches >90 sialic acid residues attached to select glycoproteins, especially the neural cell adhesion molecule in the brain. Molecular, cellular, and genetic studies implicate polysialic acid in the control of cell-cell and cell-matrix interactions, intermolecular interactions at cell surfaces, and interactions with other molecules in the cellular environment. Polysialic acid is essential for appropriate brain development, and polymorphisms in the human genes responsible for polysialic acid biosynthesis are associated with psychiatric disorders including schizophrenia, autism, and bipolar disorder. Polysialic acid also appears to play a role in adult brain plasticity

  20. Progress in nanoparticulate systems for peptide, proteins and nucleic acid drug delivery.

    PubMed

    Slomkowski, Stanislaw; Gosecki, Mateusz

    2011-11-01

    Progress in many therapies, in particular in the therapies based on peptides, proteins and nucleic acids used as bioactive compounds, strongly depends on development of appropriate carriers which would be suitable for controlled delivery of the intact abovementioned compounds to required tissues, cells and intracellular compartments. This review presents last ten years' achievements and problems in development and application of synthetic polymer nanoparticulate carriers for oral, pulmonary and nasal delivery routes of oligopeptides and proteins. Whereas some traditional synthetic polymer carriers are only briefly recalled the main attention is concentrated on nanoparticles produced from functional copolymers mostly with hydroxyl, carboxyl and amino groups, suitable for immobilization of targeting moieties and for assuring prolonged circulation of nanoparticles in blood. Formulations of various nanoparticulate systems are described, including solid particles, polymer micelles, nanovesicles and nanogels, especially systems allowing drug release induced by external stimuli. Discussed are properties of these species, in particular stability in buffers and models of body fluids, loading with drugs and with drug models, drug release processes and results of biological studies. There are also discussed systems for gene delivery with special attention devoted to polymers suitable for compacting nucleic acids into nanoparticles as well as the relations between chemical structure of polymer carriers and ability of the latter for crossing cell membranes and for endosomal escape.

  1. A model for plant lighting system selection

    NASA Technical Reports Server (NTRS)

    Ciolkosz, D. E.; Albright, L. D.; Sager, J. C.; Langhans, R. W.

    2002-01-01

    A decision model is presented that compares lighting systems for a plant growth scenario and chooses the most appropriate system from a given set of possible choices. The model utilizes a Multiple Attribute Utility Theory approach, and incorporates expert input and performance simulations to calculate a utility value for each lighting system being considered. The system with the highest utility is deemed the most appropriate system. The model was applied to a greenhouse scenario, and analyses were conducted to test the model's output for validity. Parameter variation indicates that the model performed as expected. Analysis of model output indicates that differences in utility among the candidate lighting systems were sufficiently large to give confidence that the model's order of selection was valid.

  2. Vectorization of agrochemicals: amino acid carriers are more efficient than sugar carriers to translocate phenylpyrrole conjugates in the Ricinus system.

    PubMed

    Wu, Hanxiang; Marhadour, Sophie; Lei, Zhi-Wei; Yang, Wen; Marivingt-Mounir, Cécile; Bonnemain, Jean-Louis; Chollet, Jean-François

    2016-12-13

    Producing quality food in sufficient quantity while using less agrochemical inputs will be one of the great challenges of the twenty-first century. One way of achieving this goal is to greatly reduce the doses of plant protection compounds by improving the targeting of pests to eradicate. Therefore, we developed a vectorization strategy to confer phloem mobility to fenpiclonil, a contact fungicide from the phenylpyrrole family used as a model molecule. It consists in coupling the antifungal compound to an amino acid or a sugar, so that the resulting conjugates are handled by active nutrient transport systems. The method of click chemistry was used to synthesize three conjugates combining fenpiclonil to glucose or glutamic acid with a spacer containing a triazole ring. Systemicity tests with the Ricinus model have shown that the amino acid promoiety was clearly more favorable to phloem mobility than that of glucose. In addition, the transport of the amino acid conjugate is carrier mediated since the derivative of the L series was about five times more concentrated in the phloem sap than its counterpart of the D series. The systemicity of the L-derivative is pH dependent and almost completely inhibited by the protonophore carbonyl cyanide 3-chlorophenylhydrazone (CCCP). These data suggest that the phloem transport of the L-derivative is governed by a stereospecific amino acid carrier system energized by the proton motive force.

  3. Statistical modeling of ammonia absorption in an acid spray scrubber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of acid spray wet scrubbers for recovering ammonia (NH3) emissions is promising due to its high NH3 removal efficiency, simplicity in design, and minimal pressure drop contribution on fans. An experimental study was conducted to evaluate the performance of a lab-optimised acid spray scrubber...

  4. Multiple system modelling of waste management.

    PubMed

    Eriksson, Ola; Bisaillon, Mattias

    2011-12-01

    Due to increased environmental awareness, planning and performance of waste management has become more and more complex. Therefore waste management has early been subject to different types of modelling. Another field with long experience of modelling and systems perspective is energy systems. The two modelling traditions have developed side by side, but so far there are very few attempts to combine them. Waste management systems can be linked together with energy systems through incineration plants. The models for waste management can be modelled on a quite detailed level whereas surrounding systems are modelled in a more simplistic way. This is a problem, as previous studies have shown that assumptions on the surrounding system often tend to be important for the conclusions. In this paper it is shown how two models, one for the district heating system (MARTES) and another one for the waste management system (ORWARE), can be linked together. The strengths and weaknesses with model linking are discussed when compared to simplistic assumptions on effects in the energy and waste management systems. It is concluded that the linking of models will provide a more complete, correct and credible picture of the consequences of different simultaneous changes in the systems. The linking procedure is easy to perform and also leads to activation of project partners. However, the simulation procedure is a bit more complicated and calls for the ability to run both models.

  5. Pharmacophore model for bile acids recognition by the FPR receptor

    NASA Astrophysics Data System (ADS)

    Ferrari, Cristina; Macchiarulo, Antonio; Costantino, Gabriele; Pellicciari, Roberto

    2006-05-01

    Formyl-peptide receptors (FPRs) belong to the family A of the G-protein coupled receptor superfamily and include three subtypes: FPR, FPR-like-1 and FPR-like-2. They have been involved in the control of␣many inflammatory processes promoting the recruitment and infiltration of leukocytes in regions of inflammation through the molecular recognition of chemotactic factors. A large number of structurally diverse chemotypes modulate the activity of FPRs. Newly identified antagonists include bile acids deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA). The molecular recognition of these compounds at FPR receptor was computationally investigated using both ligand- and structure-based approaches. Our findings suggest that all antagonists bind at the first third of the seven helical bundles. A closer inspection of bile acid interaction reveals a number of unexploited anchor points in the binding site that may be used to aid the design of new potent and selective bile acids derivatives at FPR.

  6. Applying Modeling Tools to Ground System Procedures

    NASA Technical Reports Server (NTRS)

    Di Pasquale, Peter

    2012-01-01

    As part of a long-term effort to revitalize the Ground Systems (GS) Engineering Section practices, Systems Modeling Language (SysML) and Business Process Model and Notation (BPMN) have been used to model existing GS products and the procedures GS engineers use to produce them.

  7. Building a generalized distributed system model

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi

    1991-01-01

    A number of topics related to building a generalized distributed system model are discussed. The effects of distributed database modeling on evaluation of transaction rollbacks, the measurement of effects of distributed database models on transaction availability measures, and a performance analysis of static locking in replicated distributed database systems are covered.

  8. Adaptive System Modeling for Spacecraft Simulation

    NASA Technical Reports Server (NTRS)

    Thomas, Justin

    2011-01-01

    This invention introduces a methodology and associated software tools for automatically learning spacecraft system models without any assumptions regarding system behavior. Data stream mining techniques were used to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). Evaluation on historical ISS telemetry data shows that adaptive system modeling reduces simulation error anywhere from 50 to 90 percent over existing approaches. The purpose of the methodology is to outline how someone can create accurate system models from sensor (telemetry) data. The purpose of the software is to support the methodology. The software provides analysis tools to design the adaptive models. The software also provides the algorithms to initially build system models and continuously update them from the latest streaming sensor data. The main strengths are as follows: Creates accurate spacecraft system models without in-depth system knowledge or any assumptions about system behavior. Automatically updates/calibrates system models using the latest streaming sensor data. Creates device specific models that capture the exact behavior of devices of the same type. Adapts to evolving systems. Can reduce computational complexity (faster simulations).

  9. Tungstate sulfuric acid (TSA)/KMnO4 as a novel heterogeneous system for rapid deoximation.

    PubMed

    Karami, Bahador; Montazerozohori, Morteza

    2006-09-28

    Neat chlorosulfonic acid reacts with anhydrous sodium tungstate to give tungstate sulfuric acid (TSA), a new dibasic inorganic solid acid in which two sulfuric acid molecules connect to a tungstate moiety via a covalent bond. A variety of oximes were oxidized to their parent carbonyl compounds under mild conditions with excellent yields in short times by a heterogeneous wet TSA/KMnO4 in dichloromethane system.

  10. Effect of fatty acids on self-assembly of soybean lecithin systems.

    PubMed

    Godoy, C A; Valiente, M; Pons, R; Montalvo, G

    2015-07-01

    With the increasing interest in natural formulations for drug administration and functional foods, it is desirable a good knowledge of the phase behavior of lecithin/fatty acid formulations. Phase structure and properties of ternary lecithin/fatty acids/water systems are studied at 37°C, making emphasis in regions with relatively low water and fatty acid content. The effect of fatty acid saturation degree on the phase microstructure is studied by comparing a fully saturated (palmitic acid, C16:0), monounsaturated (oleic acid, C18:1), and diunsaturated (linoleic acid, C18:2) fatty acids. Phase determinations are based on a combination of polarized light microscopy and small-angle X-ray scattering measurements. Interestingly, unsaturated (oleic acid and linoleic acid) fatty acid destabilizes the lamellar bilayer. Slight differences are observed between the phase diagrams produced by the unsaturated ones: small lamellar, medium cubic and large hexagonal regions. A narrow isotropic fluid region also appears on the lecithin-fatty acid axis, up to 8wt% water. In contrast, a marked difference in phase microsctructure was observed between unsaturated and saturated systems in which the cubic and isotropic fluid phases are not formed. These differences are, probably, a consequence of the high Krafft point of the C16 saturated chains that imply rather rigid chains. However, unsaturated fatty acids result in more flexible tails. The frequent presence of, at least, one unsaturated chain in phospholipids makes it very likely a better mixing situation than in the case of more rigid chains. This swelling potential favors the formation of reverse hexagonal, cubic, and micellar phases. Both unsaturated fatty acid systems evolve by aging, with a reduction of the extension of reverse hexagonal phase and migration of the cubic phase to lower fatty acid and water contents. The kinetic stability of the systems seems to be controlled by the unsaturation of fatty acids.

  11. Biocompatible water-in-oil emulsion as a model to study ascorbic acid effect on lipid oxidation.

    PubMed

    Mosca, Monica; Ceglie, Andrea; Ambrosone, Luigi

    2008-04-17

    A biocompatible water-in-oil (W/O) emulsion has been used as a model to study the effect of ascorbic acid (AA) on the oxidation of the oil (glycerol trioleate, GTO) continuous phase. The model system consisted of 3 wt % water dispersed in GTO containing 0.5 wt % sodium oleate (NaO)/oleic acid (OA) mixture (NaO/OA = 20/80 mol/mol %) as a stabilizer. To study the ascorbic acid effect on GTO light-promoted oxidation, we added aqueous solutions of ascorbic acid to GTO in place of distilled water. Results obtained as peroxide values show that ascorbic acid activity depends on its concentration and it is affected by the characteristics of the W/O interface. In the presence of ascorbyl palmitate (AP) or sorbitan trioleate (Span 85) in the continuous phase, ascorbic acid activity increases in the first few hours of oxidation. The effect of ascorbic acid has been related to emulsion structure by calculating characteristic parameters of the droplet size distributions by means of optical microscopy.

  12. Modeling Kanban Processes in Systems Engineering

    DTIC Science & Technology

    2012-06-01

    Modeling Kanban Processes in Systems Engineering Richard Turner School of Systems and Enterprises Stevens Institute of Technology Hoboken, NJ...dingold@usc.edu, jolane@usc.edu Abstract—Systems engineering processes using pull scheduling methods ( kanban ) are being evaluated with hybrid...development projects incrementally evolve capabilities of existing systems and/or systems of systems. A kanban -based scheduling system was defined and

  13. Designing control system information models

    NASA Technical Reports Server (NTRS)

    Panin, K. I.; Zinchenko, V. P.

    1973-01-01

    Problems encountered in modeling information models are discussed, Data cover condition, functioning of the object of control, and the environment involved in the control. Other parameters needed for the model include: (1) information for forming an image of the real situation, (2) data for analyzing and evaluating an evolving situation, (3) planning actions, and (4) data for observing and evaluating the results of model realization.

  14. NASA Lewis Wind Tunnel Model Systems Criteria

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.; Haller, Henry C.

    1994-01-01

    This report describes criteria for the design, analysis, quality assurance, and documentation of models or test articles that are to be tested in the aeropropulsion facilities at the NASA Lewis Research Center. The report presents three methods for computing model allowable stresses on the basis of the yield stress or ultimate stress, and it gives quality assurance criteria for models tested in Lewis' aeropropulsion facilities. Both customer-furnished model systems and in-house model systems are discussed. The functions of the facility manager, project engineer, operations engineer, research engineer, and facility electrical engineer are defined. The format for pretest meetings, prerun safety meetings, and the model criteria review are outlined Then, the format for the model systems report (a requirement for each model that is to be tested at NASA Lewis) is described, the engineers that are responsible for developing the model systems report are listed, and the time table for its delivery to the facility manager is given.

  15. Dietary ω-3 fatty acids protect against vasculopathy in a transgenic mouse model of sickle cell disease.

    PubMed

    Kalish, Brian T; Matte, Alessandro; Andolfo, Immacolata; Iolascon, Achille; Weinberg, Olga; Ghigo, Alessandra; Cimino, James; Siciliano, Angela; Hirsch, Emilio; Federti, Enrica; Puder, Mark; Brugnara, Carlo; De Franceschi, Lucia

    2015-07-01

    The anemia of sickle cell disease is associated with a severe inflammatory vasculopathy and endothelial dysfunction, which leads to painful and life-threatening clinical complications. Growing evidence supports the anti-inflammatory properties of ω-3 fatty acids in clinical models of endothelial dysfunction. Promising but limited studies show potential therapeutic effects of ω-3 fatty acid supplementation in sickle cell disease. Here, we treated humanized healthy and sickle cell mice for 6 weeks with ω-3 fatty acid diet (fish-oil diet). We found that a ω-3 fatty acid diet: (i) normalizes red cell membrane ω-6/ω-3 ratio; (ii) reduces neutrophil count; (iii) decreases endothelial activation by targeting endothelin-1 and (iv) improves left ventricular outflow tract dimensions. In a hypoxia-reoxygenation model of acute vaso-occlusive crisis, a ω-3 fatty acid diet reduced systemic and local inflammation and protected against sickle cell-related end-organ injury. Using isolated aortas from sickle cell mice exposed to hypoxia-reoxygenation, we demonstrated a direct impact of a ω-3 fatty acid diet on vascular activation, inflammation, and anti-oxidant systems. Our data provide the rationale for ω-3 dietary supplementation as a therapeutic intervention to reduce vascular dysfunction in sickle cell disease.

  16. Dietary ω-3 fatty acids protect against vasculopathy in a transgenic mouse model of sickle cell disease

    PubMed Central

    Kalish, Brian T.; Matte, Alessandro; Andolfo, Immacolata; Iolascon, Achille; Weinberg, Olga; Ghigo, Alessandra; Cimino, James; Siciliano, Angela; Hirsch, Emilio; Federti, Enrica; Puder, Mark; Brugnara, Carlo; De Franceschi, Lucia

    2015-01-01

    The anemia of sickle cell disease is associated with a severe inflammatory vasculopathy and endothelial dysfunction, which leads to painful and life-threatening clinical complications. Growing evidence supports the anti-inflammatory properties of ω-3 fatty acids in clinical models of endothelial dysfunction. Promising but limited studies show potential therapeutic effects of ω-3 fatty acid supplementation in sickle cell disease. Here, we treated humanized healthy and sickle cell mice for 6 weeks with ω-3 fatty acid diet (fish-oil diet). We found that a ω-3 fatty acid diet: (i) normalizes red cell membrane ω-6/ω-3 ratio; (ii) reduces neutrophil count; (iii) decreases endothelial activation by targeting endothelin-1 and (iv) improves left ventricular outflow tract dimensions. In a hypoxia-reoxygenation model of acute vaso-occlusive crisis, a ω-3 fatty acid diet reduced systemic and local inflammation and protected against sickle cell-related end-organ injury. Using isolated aortas from sickle cell mice exposed to hypoxia-reoxygenation, we demonstrated a direct impact of a ω-3 fatty acid diet on vascular activation, inflammation, and anti-oxidant systems. Our data provide the rationale for ω-3 dietary supplementation as a therapeutic intervention to reduce vascular dysfunction in sickle cell disease. PMID:25934765

  17. Modelling of the nitric acid reduction process: Application to materials behavior in reprocessing plants

    SciTech Connect

    Sicsic, D.; Balbaud-Celerier, F.; Tribollet, B.

    2012-07-01

    In France, the recycling process of nuclear waste fuels involves the use of hot concentrated nitric acid. The understanding and the prediction of the structural materials (mainly austenitic stainless steels) behaviour requires the determination of the nitric acid reduction process. Nitric acid is indirectly reduced by an autocatalytic mechanism depending on the cathodic overpotential and the acid concentration. This mechanism has been widely studied. All the authors agree on its autocatalytic nature, characterized by the predominant role of the reduction products. It is also generally admitted that nitric acid or the nitrate ion are not the electro-active species. However, uncertainties remain concerning the nature of the electro-active species, the place where the catalytic species regenerates and the thermodynamic and kinetic behaviour of the reaction intermediates. The aim of this study is to clarify some of these uncertainties by performing an electrochemical investigation of the 4 mol.L -1 nitric acid reduction process at 40 deg. C occurring on an inert electrode (platinum or gold). An inert electrode was chosen as a working electrode in a first step in order to avoid its oxidation and focus the research on the reduction mechanism. This experimental work enabled to suggest a coherent sequence of electrochemical and chemical reactions. Then, a kinetic modelling of this sequence was carried out for a gold rotating disk system. In this objective, a thermodynamic study at 25 deg. C led to the evaluation of the composition of liquid and gaseous phases for nitric acid solutions from 0.5 to 22 mol.L -1. The kinetics of the reduction process of nitric acid 4 mol.L -1 was investigated by cyclic voltammetry and chrono-amperometry on an inert electrode at 40 deg. C. A coupling of chrono-amperometry and FTIR in gaseous phase led to the identification of the gaseous reduction products as a function of the cathodic overpotential. These different results showed that for

  18. ModelOMatic: fast and automated model selection between RY, nucleotide, amino acid, and codon substitution models.

    PubMed

    Whelan, Simon; Allen, James E; Blackburne, Benjamin P; Talavera, David

    2015-01-01

    Molecular phylogenetics is a powerful tool for inferring both the process and pattern of evolution from genomic sequence data. Statistical approaches, such as maximum likelihood and Bayesian inference, are now established as the preferred methods of inference. The choice of models that a researcher uses for inference is of critical importance, and there are established methods for model selection conditioned on a particular type of data, such as nucleotides, amino acids, or codons. A major limitation of existing model selection approaches is that they can only compare models acting upon a single type of data. Here, we extend model selection to allow comparisons between models describing different types of data by introducing the idea of adapter functions, which project aggregated models onto the originally observed sequence data. These projections are implemented in the program ModelOMatic and used to perform model selection on 3722 families from the PANDIT database, 68 genes from an arthropod phylogenomic data set, and 248 genes from a vertebrate phylogenomic data set. For the PANDIT and arthropod data, we find that amino acid models are selected for the overwhelming majority of alignments; with progressively smaller numbers of alignments selecting codon and nucleotide models, and no families selecting RY-based models. In contrast, nearly all alignments from the vertebrate data set select codon-based models. The sequence divergence, the number of sequences, and the degree of selection acting upon the protein sequences may contribute to explaining this variation in model selection. Our ModelOMatic program is fast, with most families from PANDIT taking fewer than 150 s to complete, and should therefore be easily incorporated into existing phylogenetic pipelines. ModelOMatic is available at https://code.google.com/p/modelomatic/.

  19. Electronic Education System Model-2

    ERIC Educational Resources Information Center

    Güllü, Fatih; Kuusik, Rein; Laanpere, Mart

    2015-01-01

    In this study we presented new EES Model-2 extended from EES model for more productive implementation in e-learning process design and modelling in higher education. The most updates were related to uppermost instructional layer. We updated learning processes object of the layer for adaptation of educational process for young and old people,…

  20. Laser beam modeling in optical storage systems

    NASA Technical Reports Server (NTRS)

    Treptau, J. P.; Milster, T. D.; Flagello, D. G.

    1991-01-01

    A computer model has been developed that simulates light propagating through an optical data storage system. A model of a laser beam that originates at a laser diode, propagates through an optical system, interacts with a optical disk, reflects back from the optical disk into the system, and propagates to data and servo detectors is discussed.

  1. Network and adaptive system of systems modeling and analysis.

    SciTech Connect

    Lawton, Craig R.; Campbell, James E. Dr.; Anderson, Dennis James; Eddy, John P.

    2007-05-01

    This report documents the results of an LDRD program entitled ''Network and Adaptive System of Systems Modeling and Analysis'' that was conducted during FY 2005 and FY 2006. The purpose of this study was to determine and implement ways to incorporate network communications modeling into existing System of Systems (SoS) modeling capabilities. Current SoS modeling, particularly for the Future Combat Systems (FCS) program, is conducted under the assumption that communication between the various systems is always possible and occurs instantaneously. A more realistic representation of these communications allows for better, more accurate simulation results. The current approach to meeting this objective has been to use existing capabilities to model network hardware reliability and adding capabilities to use that information to model the impact on the sustainment supply chain and operational availability.

  2. Science review: quantitative acid-base physiology using the Stewart model.

    PubMed

    Wooten, E Wrenn

    2004-12-01

    There has been renewed interest in quantifying acid-base disorders in the intensive care unit. One of the methods that has become increasingly used to calculate acid-base balance is the Stewart model. This model is briefly discussed in terms of its origin, its relationship to other methods such as the base excess approach, and the information it provides for the assessment and treatment of acid-base disorders in critically ill patients.

  3. Towards Self-Replicating Chemical Systems Based on Cytidylic and Guanylic Acids

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia

    1999-01-01

    This project was aimed towards a better understanding of template-directed reactions and, based on this, towards the development of efficient non-enzymatic RNA replicating systems. These systems could serve as models for the prebiotic synthesis of an RNA world. The major objectives of this project are: (a) To elucidate the mechanistic aspects of template-directed (TD) chemistry and (b) to identify active boundary regions, or conditions, environmental and other, that favor "organized chemistry" and stereo-selective polymerization of nucleotides. "Organized chemistry" may lead to enhanced polymerization efficiency which in turn is expected to facilitate the road towards a self-replicating chemical system based on all four nucleic acid bases.

  4. World Energy Projection System Plus Model Documentation: Main Model

    EIA Publications

    2016-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Main Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  5. World Energy Projection System Plus Model Documentation: Greenhouse Gases Model

    EIA Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Greenhouse Gases Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  6. World Energy Projection System Plus Model Documentation: Refinery Model

    EIA Publications

    2016-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Refinery Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  7. World Energy Projection System Plus Model Documentation: Electricity Model

    EIA Publications

    2017-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Electricity Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  8. World Energy Projection System Plus Model Documentation: Coal Model

    EIA Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Coal Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  9. World Energy Projection System Plus Model Documentation: Industrial Model

    EIA Publications

    2016-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Industrial Model (WIM). It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  10. World Energy Projection System Plus Model Documentation: Residential Model

    EIA Publications

    2016-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Residential Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  11. World Energy Projection System Plus Model Documentation: Transportation Model

    EIA Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) International Transportation model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  12. World Energy Projection System Plus Model Documentation: District Heat Model

    EIA Publications

    2017-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) District Heat Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  13. World Energy Projection System Plus Model Documentation: Natural Gas Model

    EIA Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Natural Gas Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  14. The Wheal Jane wetlands model for bioremediation of acid mine drainage.

    PubMed

    Whitehead, P G; Cosby, B J; Prior, H

    2005-02-01

    Acid mine drainage (AMD) is a widespread environmental problem associated with both working and abandoned mining operations. As part of an overall strategy to determine a long-term treatment option for AMD, a pilot passive treatment plant was constructed in 1994 at Wheal Jane Mine in Cornwall, UK. The plant consists of three separate systems, each containing aerobic reed beds, anaerobic cell and rock filters, and represents the largest European experimental facility of its kind. The systems only differ by the type of pretreatment utilised to increase the pH of the influent minewater (pH <4): lime dosed (LD), anoxic limestone drain (ALD) and lime free (LF), which receives no form of pretreatment. Historical data (1994-1997) indicate median Fe reduction between 55% and 92%, sulphate removal in the range of 3-38% and removal of target metals (cadmium, copper and zinc) below detection limits, depending on pretreatment and flow rates through the system. A new model to simulate the processes and dynamics of the wetlands systems is described, as well as the application of the model to experimental data collected at the pilot plant. The model is process based, and utilises reaction kinetic approaches based on experimental microbial techniques rather than an equilibrium approach to metal precipitation. The model is dynamic and utilises numerical integration routines to solve a set of differential equations that describe the behaviour of 20 variables over the 17 pilot plant cells on a daily basis. The model outputs at each cell boundary are evaluated and compared with the measured data, and the model is demonstrated to provide a good representation of the complex behaviour of the wetland system for a wide range of variables.

  15. Resolution of a Challenge for Solvation Modeling: Calculation of Dicarboxylic Acid Dissociation Constants Using Mixed Discrete-Continuum Solvation Models

    SciTech Connect

    Marenich, Aleksandr; Ding, Wendu; Cramer, Christopher J.; Truhlar, Donald G.

    2012-06-07

    First and second dissociation constants (pKa values) of oxalic acid, malonic acid, and adipic acid were computed by using a number of theoretical protocols based on density functional theory and using both continuum solvation models and mixed discrete-continuum solvation models. We show that fully implicit solvation models (in which the entire solvent is represented by a dielectric continuum) fail badly for dicarboxylic acids with mean unsigned errors averaged over six pKa values) of 2.4-9.0 log units, depending on the particular implicit model used. The use of water-solute clusters and accounting for multiple conformations in solution significantly improve the performance of both generalized Born solvation models and models that solve the nonhomogeneous dielectric Poisson equation for bulk electrostatics. The four most successful models have mean unsigned errors of only 0.6-0.8 log units.

  16. EXPOSURE ANALYSIS MODELING SYSTEM (EXAMS): USER MANUAL AND SYSTEM DOCUMENTATION

    EPA Science Inventory

    The Exposure Analysis Modeling System, first published in 1982 (EPA-600/3-82-023), provides interactive computer software for formulating aquatic ecosystem models and rapidly evaluating the fate, transport, and exposure concentrations of synthetic organic chemicals - pesticides, ...

  17. Riluzole protects from motor deficits and striatal degeneration produced by systemic 3-nitropropionic acid intoxication in rats.

    PubMed

    Guyot, M C; Palfi, S; Stutzmann, J M; Mazière, M; Hantraye, P; Brouillet, E

    1997-11-01

    The putative neuroprotective effect of riluzole was investigated in a rat model of progressive striatal neurodegeneration induced by prolonged treatment (three weeks, intraperitoneal) with 3-nitropropionic acid, an irreversible inhibitor of succinate dehydrogenase. Quantitative analysis of motor behaviour indicated a significant protective effect (60%) of riluzole (8 mg/kg/day) on 3-nitropropionic acid-induced motor deficits as assessed using two independent motor tests. Furthermore, quantitative analysis of 3-nitropropionic acid-induced lesions indicated a significant 84% decrease in the volume of striatal damage produced by 3-nitropropionic acid, the neuroprotective effect apparently being more pronounced in the posterior striatum and pallidum. In addition, it was checked that this neuroprotective effect of riluzole against systemic 3-nitropropionic acid did not result from a decreased bioavailability of the neurotoxin or a direct action of riluzole on 3-nitropropionic acid-induced inhibition of succinate dehydrogenase. We found that riluzole significantly decreased by 48% the size of striatal lesions produced by stereotaxic intrastriatal injection of malonate, a reversible succinate dehydrogenase inhibitor. Furthermore, the inhibition of cortical and striatal succinate dehydrogenase activity induced by systemic 3-nitropropionic acid was left unchanged by riluzole administration. The present results, consistent with a beneficial effect of riluzole in amyotrophic lateral sclerosis, suggest that this compound may be useful in the treatment of chronic neurodegenerative diseases.

  18. Geochemical Modeling of Reactions and Partitioning of Trace Metals and Radionuclides during Titration of Contaminated Acidic Sediments

    SciTech Connect

    Zhang, Fan; Parker, Jack C.; Luo, Wensui; Spalding, Brian Patrick; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua

    2008-01-01

    Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This study was undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cation exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO{sub 4}{sup 2-} for contaminated sediments indicated close agreement, suggesting that the model could potentially be used to predict the acid-base behavior of the sediment-solution system under variable pH conditions.

  19. Geochemical modeling of reactions and partitioning of trace metals and radionuclides during titration of contaminated acidic sediments.

    PubMed

    Zhang, Fan; Luo, Wensui; Parker, Jack C; Spalding, Brian P; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua

    2008-11-01

    Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This studywas undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cation exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/ dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO4(2-) for contaminated sediments indicated close agreement suggesting that the model could potentially be used to predictthe acid-base behavior of the sediment-solution system under variable pH conditions.

  20. Influence of pasture-based feeding systems on fatty acids, organic acids and volatile organic flavour compounds in yoghurt.

    PubMed

    Akbaridoust, Ghazal; Plozza, Tim; Trenerry, V Craige; Wales, William J; Auldist, Martin J; Ajlouni, Said

    2015-08-01

    The influence of different pasture-based feeding systems on fatty acids, organic acids and volatile organic flavour compounds in yoghurt was studied. Pasture is the main source of nutrients for dairy cows in many parts of the world, including southeast Australia. Milk and milk products produced in these systems are known to contain a number of compounds with positive effects on human health. In the current study, 260 cows were fed supplementary grain and forage according to one of 3 different systems; Control (a traditional pasture based diet offered to the cows during milking and in paddock), PMR1 (a partial mixed ration which contained the same supplement as Control but was offered to the cows as a partial mixed ration on a feedpad), PMR 2 (a differently formulated partial mixed ration compared to Control and PMR1 which was offered to the cows on a feedpad). Most of the yoghurt fatty acids were influenced by feeding systems; however, those effects were minor on organic acids. The differences in feeding systems did not lead to the formation of different volatile organic flavour compounds in yoghurt. Yet, it did influence the relative abundance of these components.

  1. A meteorological potential forecast model for acid rain in Fujian Province, China.

    PubMed

    Cai, Yi Yong; Lin, Chang Cheng; Liu, Jing Xiong; Wu, De Hui; Lian, Dong Ying; Chen, Bin Bin

    2010-05-01

    Based on the acid rain and concurrent meteorological observational data during the past 10 years in Fujian Province, China, the dependence of distribution characteristics of acid rain on season, rain rate, weather pattern and dominant airflow in four regions of Fujian Province is analyzed. On the annual average, the acid rain frequency is the highest (above 40%) in the southern and mid-eastern regions, and the lowest (16.2%) in the western region. The acid rain occurs most frequently in spring and winter, and least frequent in summer. The acid rain frequency in general increases with the increase of precipitation. It also depend on the direction of dominant airflows at 850 hPa. In the mid-eastern region, more than 40% acid rains appear when the dominant wind directions are NW, W, SW, S and SE. In the southern region, high acid rain occurrence happens when the dominant wind directions are NW, W, SW and S. In the northern region, 41.8% acid rains occur when the southwesterly is pronounced. In the western region, the southwesterly is associated with a 17% acid rain rate. The examination of meteorological sounding conditions over Fuzhou, Xiamen and Shaowu cities shows that the acid rain frequency increases with increased inversion thickness. Based on the results above, a meteorological potential forecast model for acid rain is established and tested in 2007. The result is encouraging. The model provides an objective basis for the development of acid rain forecasting operation in the province.

  2. Natural abiotic formation of oxalic acid in soils: results from aromatic model compounds and soil samples.

    PubMed

    Studenroth, Sabine; Huber, Stefan G; Kotte, Karsten; Schöler, Heinz F

    2013-02-05

    Oxalic acid is the smallest dicarboxylic acid and plays an important role in soil processes (e.g., mineral weathering and metal detoxification in plants). We have first proven its abiotic formation in soils and investigated natural abiotic degradation processes based on the oxidation of soil organic matter, enhanced by Fe(3+) and H(2)O(2) as hydroxyl radical suppliers. Experiments with the model compound catechol and further hydroxylated benzenes were performed to examine a common degradation pathway and to presume a general formation mechanism of oxalic acid. Two soil samples were tested for the release of oxalic acid and the potential effects of various soil parameters on oxalic acid formation. Additionally, the soil samples were treated with different soil sterilization methods to prove the oxalic acid formation under abiotic soil conditions. Different series of model experiments were conducted to determine a range of factors including Fe(3+), H(2)O(2), reaction time, pH, and chloride concentration on oxalic acid formation. Under certain conditions, catechol is degraded up to 65.6% to oxalic acid referring to carbon. In serial experiments with two soil samples, oxalic acid was produced, and the obtained results are suggestive of an abiotic degradation process. In conclusion, Fenton-like conditions with low Fe(3+) concentrations and an excess of H(2)O(2) as well as acidic conditions were required for an optimal oxalic acid formation. The presence of chloride reduced oxalic acid formation.

  3. Modeling electronic documentation as a communication system.

    PubMed

    Carrington, Jane M; Effken, Judith A

    2007-10-11

    The purpose of this poster is to describe a new research model that describes a novel way to studying the effectiveness of electronic documentation as a communication system. The model, which has been adapted from Gerbner's (1956) General Communication Model and Effken's (2003) Informatics Research Organizing Model (IROM), illustrates both the events that occur during the communication process and their relationships.

  4. Numerical bifurcation diagram for the two-dimensional boundary-fed chlorine-dioxide-iodine-malonic-acid system

    NASA Astrophysics Data System (ADS)

    Setayeshgar, S.; Cross, M. C.

    1999-04-01

    We present a numerical solution of the chlorine-dioxide-iodine-malonic-acid reaction-diffusion system in two dimensions in a boundary-fed system using a realistic model. The bifurcation diagram for the transition from nonsymmetry-breaking structures along boundary feed gradients to transverse symmetry-breaking patterns in a single layer is numerically determined. We find this transition to be discontinuous. We make a connection with earlier results and discuss prospects for future work.

  5. Generic Model Host System Design

    SciTech Connect

    Chu, Chungming; Wu, Juhao; Qiang, Ji; Shen, Guobao; /Brookhaven

    2012-06-22

    There are many simulation codes for accelerator modelling; each one has some strength but not all. A platform which can host multiple modelling tools would be ideal for various purposes. The model platform along with infrastructure support can be used not only for online applications but also for offline purposes. Collaboration is formed for the effort of providing such a platform. In order to achieve such a platform, a set of common physics data structure has to be set. Application Programming Interface (API) for physics applications should also be defined within a model data provider. A preliminary platform design and prototype is discussed.

  6. Modeling noisy resonant system response

    NASA Astrophysics Data System (ADS)

    Weber, Patrick Thomas; Walrath, David Edwin

    2017-02-01

    In this paper, a theory-based model replicating empirical acoustic resonant signals is presented and studied to understand sources of noise present in acoustic signals. Statistical properties of empirical signals are quantified and a noise amplitude parameter, which models frequency and amplitude-based noise, is created, defined, and presented. This theory-driven model isolates each phenomenon and allows for parameters to be independently studied. Using seven independent degrees of freedom, this model will accurately reproduce qualitative and quantitative properties measured from laboratory data. Results are presented and demonstrate success in replicating qualitative and quantitative properties of experimental data.

  7. Systemic Injection of Kainic Acid Differently Affects LTP Magnitude Depending on its Epileptogenic Efficiency

    PubMed Central

    Suárez, Luz M.; Cid, Elena; Gal, Beatriz; Inostroza, Marion; Brotons-Mas, Jorge R.; Gómez-Domínguez, Daniel

    2012-01-01

    Seizures have profound impact on synaptic function and plasticity. While kainic acid is a popular method to induce seizures and to potentially affect synaptic plasticity, it can also produce physiological-like oscillations and trigger some forms of long-term potentiation (LTP). Here, we examine whether induction of LTP is altered in hippocampal slices prepared from rats with different sensitivity to develop status epilepticus (SE) by systemic injection of kainic acid. Rats were treated with multiple low doses of kainic acid (5 mg/kg; i.p.) to develop SE in a majority of animals (72–85% rats). A group of rats were resistant to develop SE (15–28%) after several accumulated doses. Animals were subsequently tested using chronic recordings and object recognition tasks before brain slices were prepared for histological studies and to examine basic features of hippocampal synaptic function and plasticity, including input/output curves, paired-pulse facilitation and theta-burst induced LTP. Consistent with previous reports in kindling and pilocapine models, LTP was reduced in rats that developed SE after kainic acid injection. These animals exhibited signs of hippocampal sclerosis and developed spontaneous seizures. In contrast, resistant rats did not become epileptic and had no signs of cell loss and mossy fiber sprouting. In slices from resistant rats, theta-burst stimulation induced LTP of higher magnitude when compared with control and epileptic rats. Variations on LTP magnitude correlate with animals’ performance in a hippocampal-dependent spatial memory task. Our results suggest dissociable long-term effects of treatment with kainic acid on synaptic function and plasticity depending on its epileptogenic efficiency. PMID:23118939

  8. A model to assess lactic acid bacteria aminopeptidase activities in Parmigiano Reggiano cheese during ripening.

    PubMed

    Gatti, M; De Dea Lindner, J; Gardini, F; Mucchetti, G; Bevacqua, D; Fornasari, M E; Neviani, E

    2008-11-01

    The aim of this work was to investigate in which phases of ripening of Parmigiano Reggiano cheese lactic acid bacteria aminopeptidases present in cheese extract could be involved in release of free amino acids and to better understand the behavior of these enzymes in physical-chemical conditions that are far from their optimum. In particular, we evaluated 6 different substrates to reproduce broad-specificity aminopeptidase N, broad-specificity aminopeptidase C, glutamyl aminopeptidase A, peptidase with high specificity for leucine and alanine, proline iminopeptidase, and X-prolyl dipeptidyl aminopeptidase activities releasing different N-terminal amino acids. The effects of pH, NaCl concentration, and temperature on the enzyme activities of amino acid beta-naphthylamide (betaNA)-substrates were determined by modulating the variables in 19 different runs of an experimental design, which allowed the building of mathematical models able to assess the effect on aminopeptidases activities over a range of values, obtained with bibliographic data, covering different environmental conditions in different zones of the cheese wheel at different aging times. The aminopeptidases tested in this work were present in cell-free Parmigiano Reggiano cheese extract after a 17-mo ripening and were active when tested in model system. The modeling approach shows that to highlight the individual and interactive effects of chemical-physical variables on enzyme activities, it is helpful to determine the true potential of an amino-peptidase in cheese. Our results evidenced that the 6 different lactic acid bacteria peptidases participate in cheese proteolysis and are induced or inhibited by the cheese production parameters that, in turn, depend on the cheese dimension. Generally, temperature and pH exerted the more relevant effects on the enzymatic activities, and in many cases, a relevant interactive effect of these variables was observed. Increasing salt concentration slowed down broad

  9. World Energy Projection System Plus Model Documentation: Commercial Model

    EIA Publications

    2016-01-01

    The Commercial Model of the World Energy Projection System Plus (WEPS ) is an energy demand modeling system of the world commercial end?use sector at a regional level. This report describes the version of the Commercial Model that was used to produce the commercial sector projections published in the International Energy Outlook 2016 (IEO2016). The Commercial Model is one of 13 components of the WEPS system. The WEPS is a modular system, consisting of a number of separate energy models that are communicate and work with each other through an integrated system model. The model components are each developed independently, but are designed with well?defined protocols for system communication and interactivity. The WEPS modeling system uses a shared database (the “restart” file) that allows all the models to communicate with each other when they are run in sequence over a number of iterations. The overall WEPS system uses an iterative solution technique that forces convergence of consumption and supply pressures to solve for an equilibrium price.

  10. Error Propagation in a System Model

    NASA Technical Reports Server (NTRS)

    Schloegel, Kirk (Inventor); Bhatt, Devesh (Inventor); Oglesby, David V. (Inventor); Madl, Gabor (Inventor)

    2015-01-01

    Embodiments of the present subject matter can enable the analysis of signal value errors for system models. In an example, signal value errors can be propagated through the functional blocks of a system model to analyze possible effects as the signal value errors impact incident functional blocks. This propagation of the errors can be applicable to many models of computation including avionics models, synchronous data flow, and Kahn process networks.

  11. Hubble Space Telescope electrical power system model

    NASA Technical Reports Server (NTRS)

    Baggett, Randy; Miller, Jim; Leisgang, Tom

    1988-01-01

    This paper describes one of the most comprehensive models ever developed for a spacecraft electrical power system (EPS). The model was developed for the Hubble Space Telescope (HST) to evaluate vehicle power system performance and to assist in scheduling maintenance and refurbishment missions by providing data needed to forecast EPS power and energy margins for the mission phases being planned. The EPS model requires a specific mission phase description as the input driver and uses a high granularity database to produce a multi-orbit power system performance report. The EPS model accurately predicts the power system response to various mission timelines over the entire operational life of the spacecraft.

  12. Synthesis and evaluation of radioiodinated (E)-18-iodo-17-octadecenoic acid as a model iodoalkenyl fatty acid for myocardial imaging

    SciTech Connect

    Knapp, F.F. Jr.; Goodman, M.M.; Kabalka, G.W.; Sastry, K.A.

    1984-01-01

    /sup 125/I-labeled (E)-18-iodo-17-octadecenoic acid (13) has been prepared and evaluated in rats to determine the myocardial uptake and retention and degree of in vivo deiodination of this model iodovinyl-substituted fatty acid, which contains no structural perturbation to inhibit metabolism. This new agent was prepared by NaI-chloramine-T treatment of (17-carbomethoxyheptadec-1-en-1-yl)boronic acid (11) prepared by catecholborane treatment of methyl 17-octadecynoate (10), followed by basic hydrolysis to the free acid (13). The pivotal substrate, 17-octadecynoic acid (9), was prepared by two new routes. The /sup 125/I-labeled acid 13 showed high myocardial uptake (1 h, 1.90-2.28% dose/g) with 45% washout after 2 h but lower heart/blood ratios in comparison to analogues containing the tellurium heteroatom. Deiodination was low for the first 2 h after injection (2 h, 61% dose/g). Excellent myocardial images were obtained in a dog with the /sup 123/I-labeled agent.

  13. Modeling dichloroacetic acid formation from the reaction of monochloramine with natural organic matter.

    PubMed

    Duirk, Stephen E; Valentine, Richard L

    2006-08-01

    A kinetic model was developed to predict dichloroacetic acid (DCAA) formation in chloraminated systems. Equations describing DCAA formation were incorporated into an established comprehensive monochloramine-natural organic matter (NOM) reaction model. DCAA formation was theorized to be proportional to the amount of NOM oxidized by monochloramine and described by a single dimensionless DCAA formation coefficient, theta(DCAA) (M(DCAA)/M(DOC(ox)). The applicability of the model to describe DCAA formation in the presence of six different NOM sources was evaluated. DCAA formation could be described by considering a single NOM source-specific value for theta(DCAA) over a wide range of experimental conditions (i.e., pH, NOM, free ammonia, and monochloramine concentrations). DCAA formation appears to be directly proportional to the amount of active chlorine (monochloramine and free chlorine) that reacted with the NOM under these experimental conditions. Values of theta(DCAA) for all six NOM sources, determined by nonlinear regression analysis, varied from 6.51 x 10(-3) to 1.15 x 10(-2) and were linearly correlated with specific ultraviolet absorbance at 280 nm (SUVA(280)). The ability to model monochloramine loss and DCAA formation in the presence of NOM provides insight into disinfection by-product (DBP) formation pathways under chloramination conditions. The subsequent model and correlations to SUVA has the potential to aid the water treatment industry as a tool in developing strategies that minimize DBP formation while maintaining the microbial integrity of the water distribution system.

  14. DimaSense™: A Novel Nucleic Acid Detection System

    SciTech Connect

    Stadler, A.

    2011-05-18

    sensors. These sensors operate with very low concentrations of target, can utilize standard instrumentation, produce detection results rapidly, and are robust enough to function in the presence of many competing genetic targets. Many current genetic target detection products/approaches/technologies rely upon methods (such as qPCR) which are more complicated, cumbersome, and costly to perform, and are not well suited to point-of-care diagnostic applications. Several clinical diagnostic applications, particularly point-of-care (POC) diagnostics for infectious diseases, are possible and appear to be a good fit for the technology. In addition, the advent of personalized medicine will create opportunities for molecular diagnostic companies with the capabilities of rapidly and quantitatively detecting nucleic acid sequences. The global POC market was {approx}$7.7B in 2010, with a recent annual growth rate of {approx}7%. A specific disease or disease-class diagnostic would need to be identified before a more meaningful sub-market value could be stated. Additional validation of the technology to show that it displays appropriate performance parameters for a commercial application on 'real world' samples is required for true commercial readiness. In addition, optimization of sensor design parameters, to effect a 10-fold increase in sensitivity, may be required to produce a commercially ready sensor system. These validation and sensor design optimization are estimated to require 3-4 months and {approx}$75k. For an unregulated product to give this sensor system a distinct competitive advantage, 2-3 years of product development and $1.5-3M are likely required. For regulated markets, time to market (through clinic) and cost would depend upon the product.

  15. Modeling the dynamical systems on experimental data

    NASA Astrophysics Data System (ADS)

    Janson, Natalie B.; Anishchenko, Vadim S.

    1996-06-01

    An attempt is made in the work to create qualitative models of some real biological systems, i.e., isolated frog's heart, a human's heart and a blood circulation system of a white rat. Sampled one-dimensional realizations of these systems were taken as the initial data. Correlation dimensions were calculated to evaluate the embedding dimensions of the systems' attractors. The result of the work are the systems of ordinary differential equations which approximately describe the dynamics of the systems under investigation.

  16. Systemic distribution and speciation of diphenylarsinic acid fed to rats

    SciTech Connect

    Naranmandura, Hua Suzuki, Noriyuki; Takano, Juniti; McKnight-Whitford, Tony; Ogra, Yasumitsu; Suzuki, Kazuo T.; Le, X. Chris

    2009-06-01

    Diphenylarsinic acid (DPAA) is an environmental degradation product of diphenylarsine chloride or diphenylarsine cyanide, which were chemical warfare agents produced by Japan during the World War II. DPAA is now considered a dangerous environmental pollutant in Kamisu, Japan, where it is suspected of inducing health effects that include articulation disorders (cerebellar ataxia of the extremities and trunk), involuntary movements (myoclonus and tremor), and sleep disorders. In order to elucidate the toxic mechanism of DPAA, we focused on the distribution and metabolism of DPAA in rats. Systemic distribution of DPAA was determined by administering DPAA orally to rats at a single dose of 5.0 mg As/kg body weight, followed by speciation analysis of selected organs and body fluids. Most of the total arsenic burden was recovered in the urine (23% of the dose) and feces (27%), with the distribution in most other organs/tissues being less than 1%. However, compared with the typical distribution of inorganic dietary arsenic, DPAA administration resulted in elevated levels in the brain, testes and pancreas. In contrast to urine, in which DPAA was found mostly in its unmodified form, the tissues and organs contained arsenic that was mostly bound to non-soluble and soluble high molecular weight proteins. These bound arsenic species could be converted back to DPAA after oxidation with H{sub 2}O{sub 2}, suggesting that the DPAA bound to proteins had been reduced within the body and was in a trivalent oxidation state. Furthermore, we also detected two unknown arsenic metabolites in rat urine, which were assumed to be hydroxylated arsenic metabolites.

  17. Multiple system modelling of waste management

    SciTech Connect

    Eriksson, Ola; Bisaillon, Mattias

    2011-12-15

    Highlights: > Linking of models will provide a more complete, correct and credible picture of the systems. > The linking procedure is easy to perform and also leads to activation of project partners. > The simulation procedure is a bit more complicated and calls for the ability to run both models. - Abstract: Due to increased environmental awareness, planning and performance of waste management has become more and more complex. Therefore waste management has early been subject to different types of modelling. Another field with long experience of modelling and systems perspective is energy systems. The two modelling traditions have developed side by side, but so far there are very few attempts to combine them. Waste management systems can be linked together with energy systems through incineration plants. The models for waste management can be modelled on a quite detailed level whereas surrounding systems are modelled in a more simplistic way. This is a problem, as previous studies have shown that assumptions on the surrounding system often tend to be important for the conclusions. In this paper it is shown how two models, one for the district heating system (MARTES) and another one for the waste management system (ORWARE), can be linked together. The strengths and weaknesses with model linking are discussed when compared to simplistic assumptions on effects in the energy and waste management systems. It is concluded that the linking of models will provide a more complete, correct and credible picture of the consequences of different simultaneous changes in the systems. The linking procedure is easy to perform and also leads to activation of project partners. However, the simulation procedure is a bit more complicated and calls for the ability to run both models.

  18. Modeling of power electronic systems with EMTP

    NASA Technical Reports Server (NTRS)

    Tam, Kwa-Sur; Dravid, Narayan V.

    1989-01-01

    In view of the potential impact of power electronics on power systems, there is need for a computer modeling/analysis tool to perform simulation studies on power systems with power electronic components as well as to educate engineering students about such systems. The modeling of the major power electronic components of the NASA Space Station Freedom Electric Power System is described along with ElectroMagnetic Transients Program (EMTP) and it is demonstrated that EMTP can serve as a very useful tool for teaching, design, analysis, and research in the area of power systems with power electronic components. EMTP modeling of power electronic circuits is described and simulation results are presented.

  19. Analysis of Natural Buffer Systems and the Impact of Acid Rain

    ERIC Educational Resources Information Center

    Powers, David C.; Yoder, Claude H.; Higgs, Andrew T.; Obley, Matt L.; Hess, Kenneth R.; Leber, Phyllis A.

    2005-01-01

    The environmental significance of acid rain on water systems of different buffer capacities is discussed. The most prevalent natural buffer system is created by the equilibrium between carbonate ions and carbon dioxide.

  20. Phase diagrams and water activities of aqueous dicarboxylic acid systems of atmospheric importance.

    PubMed

    Beyer, Keith D; Friesen, Katherine; Bothe, Jameson R; Palet, Benjamin

    2008-11-20

    We have studied liquid/solid phase diagrams and water activities of the dicarboxylic acid/water binary systems for maleic, dl-malic, glutaric, and succinc acids using differential scanning calorimetry, infrared (IR) spectroscopy of thin films, and conductivity analysis of saturated solutions. For each binary system we report the measurements of the ice melting envelope, the acid dissolution envelope, and the ice/acid eutectic temperature and composition. Water activities have been determined by using the freezing point depression of ice. Additionally, an irreversible solid/solid phase transition for maleic acid was observed in both DSC and IR studies likely due to the conversion of a meta-stable crystal form of maleic acid to its most stable crystal form. In general we find good agreement with literature values for temperature-dependent acid solubilities.

  1. Using Acid Number as a Leading Indicator of Refrigeration and Air Conditioning System Performance

    SciTech Connect

    Dennis Cartlidge; Hans Schellhase

    2003-07-31

    This report summarizes a literature review to assess the acidity characteristics of the older mineral oil and newer polyolester (POE) refrigeration systems as well as to evaluate acid measuring techniques used in other non-aqueous systems which may be applicable for refrigeration systems. Failure in the older chlorofluorocarbon/hydrochlorofluorocarbon (CFC/HCFC) / mineral oil systems was primarily due to thermal degradation of the refrigerant which resulted in the formation of hydrochloric and hydrofluoric acids. These are strong mineral acids, which can, over time, severely corrode the system metals and lead to the formation of copper plating on iron surfaces. The oil lubricants used in the older systems were relatively stable and were not prone to hydrolytic degradation due to the low solubility of water in oil. The refrigerants in the newer hydrofluorocarbon (HFC)/POE systems are much more thermally stable than the older CFC/HCFC refrigerants and mineral acid formation is negligible. However, acidity is produced in the new systems by hydrolytic decomposition of the POE lubricants with water to produce the parent organic acids and alcohols used to prepare the POE. The individual acids can therefore vary but they are generally C5 to C9 carboxylic acids. Organic acids are much weaker and far less corrosive to metals than the mineral acids from the older systems but they can, over long time periods, react with metals to form carboxylic metal salts. The salts tend to accumulate in narrow areas such as capillary tubes, particularly if residual hydrocarbon processing chemicals are present in the system, which can lead to plugging. The rate of acid production from POEs varies on a number of factors including chemical structure, moisture levels, temperature, acid concentration and metals. The hydrolysis rate of reaction can be reduced by using driers to reduce the free water concentration and by using scavenging chemicals which react with the system acids. Total acid

  2. Polymerase chain reaction system using magnetic beads for analyzing a sample that includes nucleic acid

    DOEpatents

    Nasarabadi, Shanavaz [Livermore, CA

    2011-01-11

    A polymerase chain reaction system for analyzing a sample containing nucleic acid includes providing magnetic beads; providing a flow channel having a polymerase chain reaction chamber, a pre polymerase chain reaction magnet position adjacent the polymerase chain reaction chamber, and a post pre polymerase magnet position adjacent the polymerase chain reaction chamber. The nucleic acid is bound to the magnetic beads. The magnetic beads with the nucleic acid flow to the pre polymerase chain reaction magnet position in the flow channel. The magnetic beads and the nucleic acid are washed with ethanol. The nucleic acid in the polymerase chain reaction chamber is amplified. The magnetic beads and the nucleic acid are separated into a waste stream containing the magnetic beads and a post polymerase chain reaction mix containing the nucleic acid. The reaction mix containing the nucleic acid flows to an analysis unit in the channel for analysis.

  3. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... measure pyruvic acid (an intermediate compound in the metabolism of carbohydrate) in plasma. Measurements obtained by this device are used in the evaluation of electrolyte metabolism and in the diagnosis...

  4. Corrections Education Evaluation System Model.

    ERIC Educational Resources Information Center

    Nelson, Orville; And Others

    The purpose of this project was to develop an evaluation system for the competency-based vocational program developed by Wisconsin's Division of Corrections, Department of Public Instruction (DPI), and the Vocational, Technical, and Adult Education System (VTAE). Site visits were conducted at five correctional institutions in March and April of…

  5. Materials characterization of phosphoric acid fuel cell system

    NASA Technical Reports Server (NTRS)

    Venkatesh, Srinivasan

    1986-01-01

    The component materials used in the fabrication of phosphoric acid fuel cells (PAFC) must have mechanical, chemical, and electrochemical stability to withstand the moderately high temperature (200 C) and pressure (500 kPa) and highly oxidizing nature of phosphoric acid. This study discusses the chemical and structural stability, performance and corrosion data on certain catalysts, catalyst supports, and electrode support materials used in PAFC applications.

  6. Influence of dissolved organic carbon content on modelling natural organic matter acid-base properties.

    PubMed

    Garnier, Cédric; Mounier, Stéphane; Benaïm, Jean Yves

    2004-10-01

    Natural organic matter (NOM) behaviour towards proton is an important parameter to understand NOM fate in the environment. Moreover, it is necessary to determine NOM acid-base properties before investigating trace metals complexation by natural organic matter. This work focuses on the possibility to determine these acid-base properties by accurate and simple titrations, even at low organic matter concentrations. So, the experiments were conducted on concentrated and diluted solutions of extracted humic and fulvic acid from Laurentian River, on concentrated and diluted model solutions of well-known simple molecules (acetic and phenolic acids), and on natural samples from the Seine river (France) which are not pre-concentrated. Titration experiments were modelled by a 6 acidic-sites discrete model, except for the model solutions. The modelling software used, called PROSECE (Programme d'Optimisation et de SpEciation Chimique dans l'Environnement), has been developed in our laboratory, is based on the mass balance equilibrium resolution. The results obtained on extracted organic matter and model solutions point out a threshold value for a confident determination of the studied organic matter acid-base properties. They also show an aberrant decreasing carboxylic/phenolic ratio with increasing sample dilution. This shift is neither due to any conformational effect, since it is also observed on model solutions, nor to ionic strength variations which is controlled during all experiments. On the other hand, it could be the result of an electrode troubleshooting occurring at basic pH values, which effect is amplified at low total concentration of acidic sites. So, in our conditions, the limit for a correct modelling of NOM acid-base properties is defined as 0.04 meq of total analysed acidic sites concentration. As for the analysed natural samples, due to their high acidic sites content, it is possible to model their behaviour despite the low organic carbon concentration.

  7. Modeling of the DZero data acquisition system

    SciTech Connect

    Angstadt, R.; Johnson, M. Manning, I.L. ); Wightman, J.A. . Dept. of Physics)

    1992-08-01

    A queuing theory model was used in the initial design of the DZero data acquisition system. It was mainly used for the front end electronic systems. Since then the model has been extended to include the entire data path for the tracking system. The tracking system generates the most data so we expect this system to determine the overall transfer rate. The model was developed using both analytical and simulation methods for solving a series of single server queues. This paper describes the model and the methods used to develop it. The authors present results form the original models, updated calculations representing the system as built and comparisons with measurements made with the hardware in place for the cosmic ray test run.

  8. Modeling of the DZero data acquisition system

    SciTech Connect

    Angstadt, R.; Johnson, M.; Manning, I.L. ); Wightman, J.A. . Dept. of Physics Texas Accelerator Center, The Woodlands, TX )

    1991-12-01

    A queuing theory model was used in the initial design of the D0 data acquisition system. It was mainly used for the front end electronic systems. Since then the model has been extended to include the entire data path for the tracking system. The tracking system generates the most data so we expect this system to determine the overall transfer rate. The model was developed using both analytical and simulation methods for solving a series of single server queues. We describe the model and the methods used to develop it. We also present results from the original models, updated calculations representing the system as built and comparisons with measurements made with the hardware in place for the cosmic ray test run. 3 refs.

  9. Modeling of facilitated transport of phenylalanine by emulsion liquid membranes with di(2-ethylhexyl)phosphoric acid as a carrier

    SciTech Connect

    Liu, X.; Liu, D.

    1998-12-01

    A mathematical model is developed in this paper to simulate the facilitated transport of phenylalanine (Phe) in emulsion liquid membrane (ELM) systems with di(2-ethylhexyl)phosphoric acid as a carrier. The model takes into account the mass transfer in both the external aqueous phase and the organic membrane phase interfacial reaction as well as membrane breakage during agitation. The model is tested by comparing theoretical predications with experimental results using Phe extraction by ELM processes. It is found that the model is valid for simulating the facilitated transport of Phe with ELM under various experimental conditions.

  10. Very Large System Dynamics Models - Lessons Learned

    SciTech Connect

    Jacob J. Jacobson; Leonard Malczynski

    2008-10-01

    This paper provides lessons learned from developing several large system dynamics (SD) models. System dynamics modeling practice emphasize the need to keep models small so that they are manageable and understandable. This practice is generally reasonable and prudent; however, there are times that large SD models are necessary. This paper outlines two large SD projects that were done at two Department of Energy National Laboratories, the Idaho National Laboratory and Sandia National Laboratories. This paper summarizes the models and then discusses some of the valuable lessons learned during these two modeling efforts.

  11. Switching model photovoltaic pumping system

    NASA Astrophysics Data System (ADS)

    Anis, Wagdy R.; Abdul-Sadek Nour, M.

    Photovoltaic (PV) pumping systems are widely used due to their simplicity, high reliability and low cost. A directly-coupled PV pumping system is the most reliable and least-cost PV system. The d.c. motor-pump group is not, however, working at its optimum operating point. A battery buffered PV pumping system introduces a battery between the PV array and the d.c. motor-pump group to ensure that the motor-pump group is operating at its optimum point. The size of the battery storage depends on system economics. If the battery is fully charged while solar radiation is available, the battery will discharge through the load while the PV array is disconnected. Hence, a power loss takes place. To overcome the above mentioned difficulty, a switched mode PV pumping is proposed. When solar radiation is available and the battery is fully charged, the battery is disconnected and the d.c. motor-pump group is directly coupled to the PV array. To avoid excessive operating voltage for the motor, a part of the PV array is switched off to reduce the voltage. As a result, the energy loss is significantly eliminated. Detailed analysis of the proposed system shows that the discharged water increases by about 10% when compared with a conventional battery-buffered system. The system transient performance just after the switching moment shows that the system returns to a steady state in short period. The variations in the system parameters lie within 1% of the rated values.

  12. Polyamino acid functionalized membranes for metal capture and nanofiltration of organics: Modeling and experimental verification

    NASA Astrophysics Data System (ADS)

    Hestekin, Jamie Allen

    2000-10-01

    Passive membranes have been used for separations ranging from seawater desalination via reverse osmosis to the separation of particles with microfiltration membranes. However the attachment of macromolecules, with multiple functional sites, to microfiltration membranes allows for more selective separations. For these reasons, we have designed a novel membrane system, consisting of cellulose-based microfiltration membranes functionalized with polyamino acids (2,500--15,000 MW). Because of the high carboxyl content of the polyamino acids, these membranes have been shown to be extremely useful for the separation of heavy metals from aqueous solutions. The primary objective of this research was to establish the sorption mechanisms of functionalized microfiltration membranes and use these mechanisms to predict the rate behavior of metal transport through these membranes. Both cellulose acetate and pure cellulose were used as membrane support materials. Extensive experiments (pH 3--6) were conducted (under convective flow mode) with the derivatized membranes involving the heavy metals: lead, cadmium, nickel, copper, and selected mixtures with calcium in aqueous solutions. Metal sorption results were found to be a function of derivatization (aldehydes) density of membranes and degree of attachment of the polyfunctional groups, number of functional groups per chain, membrane surface area, and the type of metals to be sorbed. We have obtained metal sorption capacities as high as 1.5 g metal/g membrane. As opposed to homogeneous solution systems, the molar sorption capacities of the functional carboxyl sites are significantly enhanced in the membrane pores because of counterion condensation resulting partly from the extremely high charge densities in the membrane pores. This phenomenon was incorporated in a kinetic model for the prediction of sorption behavior. The model studied the effect of pore size, polyamino acid attachment density, pH, and metal type. Finally, in

  13. Wastewater disinfection by peracetic acid: assessment of models for tracking residual measurements and inactivation.

    PubMed

    Santoro, Domenico; Gehr, Ronald; Bartrand, Timothy A; Liberti, Lorenzo; Notarnicola, Michele; Dell'Erba, Adele; Falsanisi, Dario; Haas, Charles N

    2007-07-01

    With its potential for low (if any) disinfection byproduct formation and easy retrofit for chlorine contactors, peracetic acid (PAA) or use of PAA in combination with other disinfectant technologies may be an attractive alternative to chlorine-based disinfection. Examples of systems that might benefit from use of PAA are water reuse schemes or plants discharging to sensitive receiving water bodies. Though PAA is in use in numerous wastewater treatment plants in Europe, its chemical kinetics, microbial inactivation rates, and mode of action against microorganisms are not thoroughly understood. This paper presents results from experimental studies of PAA demand, PAA decay, and microbial inactivation, with a complementary modeling analysis. Model results are used to evaluate techniques for measurement of PAA concentration and to develop hypotheses regarding the mode of action of PAA in bacterial inactivation. Kinetic and microbial inactivation rate data were collected for typical wastewaters and may be useful for engineers in evaluating whether to convert from chlorine to PAA disinfection.

  14. Transient responses of phosphoric acid fuel cell power plant system. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi

    1983-01-01

    An analytical and computerized study of the steady state and transient response of a phosphoric acid fuel cell (PAFC) system was completed. Parametric studies and sensitivity analyses of the PAFC system's operation were accomplished. Four non-linear dynamic models of the fuel cell stack, reformer, shift converters, and heat exchangers were developed based on nonhomogeneous non-linear partial differential equations, which include the material, component, energy balance, and electrochemical kinetic features. Due to a lack of experimental data for the dynamic response of the components only the steady state results were compared with data from other sources, indicating reasonably good agreement. A steady state simulation of the entire system was developed using, nonlinear ordinary differential equations. The finite difference method and trial-and-error procedures were used to obtain a solution. Using the model, a PAFC system, that was developed under NASA Grant, NCC3-17, was improved through the optimization of the heat exchanger network. Three types of cooling configurations for cell plates were evaluated to obtain the best current density and temperature distributions. The steady state solutions were used as the initial conditions in the dynamic model. The transient response of a simplified PAFC system, which included all of the major components, subjected to a load change was obtained. Due to the length of the computation time for the transient response calculations, analysis on a real-time computer was not possible. A simulation of the real-time calculations was developed on a batch type computer. The transient response characteristics are needed for the optimization of the design and control of the whole PAFC system. All of the models, procedures and simulations were programmed in Fortran and run on IBM 370 computers at Cleveland State University and the NASA Lewis Research Center.

  15. Information modeling system for blast furnace control

    NASA Astrophysics Data System (ADS)

    Spirin, N. A.; Gileva, L. Y.; Lavrov, V. V.

    2016-09-01

    Modern Iron & Steel Works as a rule are equipped with powerful distributed control systems (DCS) and databases. Implementation of DSC system solves the problem of storage, control, protection, entry, editing and retrieving of information as well as generation of required reporting data. The most advanced and promising approach is to use decision support information technologies based on a complex of mathematical models. The model decision support system for control of blast furnace smelting is designed and operated. The basis of the model system is a complex of mathematical models created using the principle of natural mathematical modeling. This principle provides for construction of mathematical models of two levels. The first level model is a basic state model which makes it possible to assess the vector of system parameters using field data and blast furnace operation results. It is also used to calculate the adjustment (adaptation) coefficients of the predictive block of the system. The second-level model is a predictive model designed to assess the design parameters of the blast furnace process when there are changes in melting conditions relative to its current state. Tasks for which software is developed are described. Characteristics of the main subsystems of the blast furnace process as an object of modeling and control - thermal state of the furnace, blast, gas dynamic and slag conditions of blast furnace smelting - are presented.

  16. Stirling System Modeling for Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Johnson, Paul K.

    2008-01-01

    A dynamic model of a high-power Stirling convertor has been developed for space nuclear power systems modeling. The model is based on the Component Test Power Convertor (CTPC), a 12.5-kWe free-piston Stirling convertor. The model includes the fluid heat source, the Stirling convertor, output power, and heat rejection. The Stirling convertor model includes the Stirling cycle thermodynamics, heat flow, mechanical mass-spring damper systems, and the linear alternator. The model was validated against test data. Both nonlinear and linear versions of the model were developed. The linear version algebraically couples two separate linear dynamic models; one model of the Stirling cycle and one model of the thermal system, through the pressure factors. Future possible uses of the Stirling system dynamic model are discussed. A pair of commercially available 1-kWe Stirling convertors is being purchased by NASA Glenn Research Center. The specifications of those convertors may eventually be incorporated into the dynamic model and analysis compared to the convertor test data. Subsequent potential testing could include integrating the convertors into a pumped liquid metal hot-end interface. This test would provide more data for comparison to the dynamic model analysis.

  17. Stirling System Modeling for Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Johnson, Paul K.

    2007-01-01

    A dynamic model of a high-power Stirling convertor has been developed for space nuclear power systems modeling. The model is based on the Component Test Power Convertor (CTPC), a 12.5-kWe free-piston Stirling convertor. The model includes the fluid heat source, the Stirling convertor, output power and heat rejection. The Stirling convertor model includes the Stirling cycle thermodynamics, heat flow, mechanical mass-spring damper systems, and the linear alternator. The model was validated against test data. Both nonlinear and linear versions of the model were developed. The linear version algebraically couples two separate linear dynamic models; one model of the Stirling cycle and one model of the thermal system, through the pressure factors. Future possible uses of the Stirling system dynamic model are discussed. A pair of commercially available 1-kWe Stirling convertors is being purchased by NASA Glenn Research Center. The specifications of those convertors may eventually be incorporated into the dynamic model and analysis compared to the convertor test data. Subsequent potential testing could include integrating the convertors into a pumped liquid metal hot-end interface. This test would provide more data for comparison to the dynamic model analysis.

  18. [Association of fatty acid metabolism with systemic inflammatory response in chronic respiratory diseases].

    PubMed

    Denisenko, Y K; Novgorodtseva, T P; Zhukova, N V; Antonuk, M V; Lobanova, E G; Kalinina, E P

    2016-03-01

    We examined composition of plasma non-esterified fatty acids (NFAs), erythrocyte fatty acids, levels of eicosanoids in patients with asthma and chronic obstructive pulmonary disease (COPD) with different type of the inflammatory response. The results of our study show that asthma and COPD in remission are associated with changes in the composition NFAs of plasma, FA of erythrocytes, level eicosanoid despite the difference in the regulation of immunological mechanisms of systemic inflammation. These changes are characterized by excessive production of arachidonic acid (20:4n-6) and cyclooxygenase and lipoxygenase metabolites (thromboxane B2, leukotriene B4) and deficiency of their functional antagonist, eicosapentaenoic acid (20:5n-3). The recognized association between altered fatty acid composition and disorders of the immune mechanisms of regulation of systemic inflammation in COPD and asthma demonstrated the important role of fatty acids and their metabolites in persistence of inflammatory processes in diseases of the respiratory system in the condition of remission.

  19. The acid-base resistant zone in three dentin bonding systems.

    PubMed

    Inoue, Go; Nikaido, Toru; Foxton, Richard M; Tagami, Junji

    2009-11-01

    An acid-base resistant zone has been found to exist after acid-base challenge adjacent to the hybrid layer using SEM. The aim of this study was to examine the acid-base resistant zone using three different bonding systems. Dentin disks were applied with three different bonding systems, and then a resin composite was light-cured to make dentin disk sandwiches. After acid-base challenge, the polished surfaces were observed using SEM. For both one- and two-step self-etching primer systems, an acid-base resistant zone was clearly observed adjacent to the hybrid layer - but with differing appearances. For the wet bonding system, the presence of an acid-base resistant zone was unclear. This was because the self-etching primer systems etched the dentin surface mildly, such that the remaining mineral phase of dentin and the bonding agent yielded clear acid-base resistant zones. In conclusion, the acid-base resistant zone was clearly observed when self-etching primer systems were used, but not so for the wet bonding system.

  20. Adipic acid-enhanced limestone flue gas desulfurization system commercial demonstration. [Missouri

    SciTech Connect

    Hargrove, O.W. Jr.; Colley, J.D.; Mobley, J.D.

    1981-01-01

    A full-scale demonstration carried out at Springfield, Mo City Utilities Southwest Power Plant in 1980-1981 on adipic acid enhanced limestone flue gas desulfurization system is reported. The major process findings during the demonstration are discussed. It is found that adipic acid is a viable means for improving SO/sub 2/ removal in scrubbers which are limited from a dissolved alkalinity standpoint. Dibasic acid (a mixture of glutaric, adipic, and succinic acids) is a technically viable alternative to adipic acid. 6 refs.

  1. NASA Glenn Wind Tunnel Model Systems Criteria

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.; Roeder, James W.; Stark, David E.; Linne, Alan A.

    2004-01-01

    This report describes criteria for the design, analysis, quality assurance, and documentation of models that are to be tested in the wind tunnel facilities at the NASA Glenn Research Center. This report presents two methods for computing model allowable stresses on the basis of the yield stress or ultimate stress, and it defines project procedures to test models in the NASA Glenn aeropropulsion facilities. Both customer-furnished and in-house model systems are discussed. The functions of the facility personnel and customers are defined. The format for the pretest meetings, safety permit process, and model reviews are outlined. The format for the model systems report (a requirement for each model that is to be tested at NASA Glenn) is described, the engineers responsible for developing the model systems report are listed, and the timetable for its delivery to the project engineer is given.

  2. System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report

    SciTech Connect

    Freeman, J.; Whitmore, J.; Kaffine, L.; Blair, N.; Dobos, A. P.

    2013-12-01

    The System Advisor Model (SAM) is a free software tool that performs detailed analysis of both system performance and system financing for a variety of renewable energy technologies. This report provides detailed validation of the SAM flat plate photovoltaic performance model by comparing SAM-modeled PV system generation data to actual measured production data for nine PV systems ranging from 75 kW to greater than 25 MW in size. The results show strong agreement between SAM predictions and field data, with annualized prediction error below 3% for all fixed tilt cases and below 8% for all one axis tracked cases. The analysis concludes that snow cover and system outages are the primary sources of disagreement, and other deviations resulting from seasonal biases in the irradiation models and one axis tracking issues are discussed in detail.

  3. Brain Activity of Thioctic Acid Enantiomers: In Vitro and in Vivo Studies in an Animal Model of Cerebrovascular Injury

    PubMed Central

    Tomassoni, Daniele; Amenta, Francesco; Amantini, Consuelo; Farfariello, Valerio; Di Cesare Mannelli, Lorenzo; Nwankwo, Innocent E.; Marini, Carlotta; Tayebati, Seyed Khosrow

    2013-01-01

    Oxidative stress is an imbalance between the production of free radicals and antioxidant defense mechanisms, potentially leading to tissue damage. Oxidative stress has a key role in the development of cerebrovascular and/or neurodegenerative diseases. This phenomenon is mainly mediated by an enhanced superoxide production by the vascular endothelium with its consequent dysfunction. Thioctic, also known as alpha-lipoic acid (1,2-dithiolane-3-pentanoic acid), is a naturally occurring antioxidant that neutralizes free radicals in the fatty and watery regions of cells. Both the reduced and oxidized forms of the compound possess antioxidant ability. Thioctic acid has two optical isomers designated as (+)- and (−)-thioctic acid. Naturally occurring thioctic acid is the (+)-thioctic acid form, but the synthetic compound largely used in the market for stability reasons is a mixture of (+)- and (−)-thioctic acid. The present study was designed to compare the antioxidant activity of the two enantiomers versus the racemic form of thioctic acid on hydrogen peroxide-induced apoptosis in a rat pheochromocytoma PC12 cell line. Cell viability was evaluated by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and free oxygen radical species (ROS) production was assessed by flow cytometry. Antioxidant activity of the two enantiomers and the racemic form of thioctic acid was also evaluated in spontaneously hypertensive rats (SHR) used as an in vivo model of increased oxidative stress. A 3-h exposure of PC12 cells to hydrogen peroxide (H2O2) significantly decreased cell viability and increased levels of intracellular ROS production. Pre-treatment with racemic thioctic acid or (+)-enantiomer significantly inhibited H2O2-induced decrease in cell viability from the concentration of 50 μmol/L and 20 μmol/L, respectively. Racemic thioctic acid and (+)-salt decreased levels of intracellular ROS, which were unaffected by (−)-thioctic acid. In the brain of SHR

  4. Fuzzy modelling for the state-of-charge estimation of lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Burgos, Claudio; Sáez, Doris; Orchard, Marcos E.; Cárdenas, Roberto

    2015-01-01

    This paper introduces a novel fuzzy model based structure for the characterisation of discharge processes in lead-acid batteries. This structure is based on a fuzzy model that characterises the relationship between the battery open-circuit voltage (Voc), the state of charge (SoC), and the discharge current. The model is identified and validated using experimental data that is obtained from an experimental system designed to test battery banks with several charge/discharge profiles. For model identification purposes, two standard experimental tests are implemented; one of these tests is used to identify the Voc-SoC curve, while the other helps to identify additional parameters of the model. The estimation of SoC is performed using an Extended Kalman Filter (EKF) with a state transition equation that is based on the proposed fuzzy model. Performance of the proposed estimation framework is compared with other parametric approaches that are inspired on electrical equivalents; e.g., Thevenin, Plett, and Copetti.

  5. Systems Modeling in Developmental Toxicity

    EPA Science Inventory

    An individual starts off as a single cell, the progeny of which form complex structures that are themselves integrated into progressively larger systems. Developmental biology is concerned with how this cellular complexity and patterning arises through orchestration of cell divi...

  6. Effects of caffeic acid on learning deficits in a model of Alzheimer's disease.

    PubMed

    Wang, Yunliang; Wang, Yutong; Li, Jinfeng; Hua, Linlin; Han, Bing; Zhang, Yuzhen; Yang, Xiaopeng; Zeng, Zhilei; Bai, Hongying; Yin, Honglei; Lou, Jiyu

    2016-09-01

    Caffeic acid is a type of phenolic acid and organic acid. It is found in food (such as tomatoes, carrots, strawberries, blueberries and wheat), beverages (such as wine, tea, coffee and apple juice) as well as Chinese herbal medicines. In the present study, we examined the effects of caffeic acid on learning deficits in a rat model of Alzheimer's disease (AD). The rats were randomly divided into three groups: i) control group, ii) AD model group and iii) caffeic acid group. Caffeic acid significantly rescued learning deficits and increased cognitive function in the rats with AD as demonstrated by the Morris water maze task. Furthermore, caffeic acid administration resulted in a significant decrease in acetylcholinesterase activity and nitrite generation in the rats with AD compared with the AD model group. Furthermore, caffeic acid suppressed oxidative stress, inflammation, nuclear factor‑κB‑p65 protein expression and caspase‑3 activity as well as regulating the protein expression of p53 and phosphorylated (p-)p38 MAPK expression in the rats with AD. These experimental results indicate that the beneficial effects of caffeic acid on learning deficits in a model of AD were due to the suppression of oxidative stress and inflammation through the p38 MAPK signaling pathway.

  7. The boron oxide{endash}boric acid system: Nanoscale mechanical and wear properties

    SciTech Connect

    Ma, X.; Unertl, W.N.; Erdemir, A.

    1999-08-01

    The film that forms spontaneously when boron oxide (B{sub 2}O{sub 3}) is exposed to humid air is a solid lubricant. This film is usually assumed to be boric acid (H{sub 3}BO{sub 3}), the stable bulk phase. We describe the nanometer-scale surface morphology, mechanical properties, and tribological properties of these films and compare them with crystals precipitated from saturated solutions of boric acid. Scanning force microscopy (SFM) and low-load indentation were the primary experimental tools. Mechanical properties and their variation with depth are reported. In all cases, the surfaces were covered with a layer that has different mechanical properties than the underlying bulk. The films formed on boron oxide showed no evidence of crystalline structure. A thin surface layer was rapidly removed, followed by slower wear of the underlying film. The thickness of this initial layer was sensitive to sample preparation conditions, including humidity. Friction on the worn surface was lower than on the as-formed surface in all cases. In contrast, the SFM tip was unable to cause any wear to the surface film on the precipitated crystals. Indentation pop-in features were common for precipitated crystals but did not occur on the films formed on boron oxide. The surface structures were more complex than assumed in models put forth previously to explain the mechanism of lubricity in the boron oxide{endash}boric acid{endash}water system. {copyright} {ital 1999 Materials Research Society.}

  8. Ab initio transition state searching in complex systems: fatty acid decarboxylation in minerals.

    PubMed

    Geatches, Dawn L; Greenwell, H Christopher; Clark, Stewart J

    2011-03-31

    Because of the importance of mineral catalyzed decarboxylation reactions in both crude oil formation and, increasingly, biofuel production, we present a model study into the decarboxylation of the shortest fatty acid, propionic acid C(2)H(5)COOH, into an alkane and CO(2) catalyzed by a pyrophillite-like, phyllosilicate clay. To identify the decarboxylation pathway, we searched for a transition state between the reactant, comprised of the clay plus interlayer fatty acid, and the product, comprised of the clay plus interlayer alkane and carbon dioxide. Using linear and quadratic synchronous transit mechanisms we searched for a transition state followed by vibrational analysis to verify the intermediate found as a transition state. We employed a periodic cell, planewave, ab initio density functional theory computation to examine total energy differences, Mulliken charges, vibrational frequencies, and the frontier orbitals of the reactants, intermediates, and products. The results show that interpretation of vibrational data, Mulliken charges and Fermi-level orbital occupancies is necessary for the classification of a transition state in this type of mixed bulk surface plus interlayer species, clay-organic system.

  9. Human Systems Modeling and Simulation

    DTIC Science & Technology

    2005-12-01

    individuals, organizations, and other social forms as systems of practices. A rereading of the propositional and system forms shows that they make no... social inter-dependencies that underwrite human behavior: designing, prototyping, testing and delivering extensions to Synergia’s ACCORD technology for...also and primarily the cognitive and social inter-dependencies that underwrite human behavior. • Develop technology for the computational specification

  10. Sinapic Acid Prevents Hypertension and Cardiovascular Remodeling in Pharmacological Model of Nitric Oxide Inhibited Rats

    PubMed Central

    Silambarasan, Thangarasu; Manivannan, Jeganathan; Krishna Priya, Mani; Suganya, Natarajan; Chatterjee, Suvro; Raja, Boobalan

    2014-01-01

    Objectives Hypertensive heart disease is a constellation of abnormalities that includes cardiac fibrosis in response to elevated blood pressure, systolic and diastolic dysfunction. The present study was undertaken to examine the effect of sinapic acid on high blood pressure and cardiovascular remodeling. Methods An experimental hypertensive animal model was induced by L-NAME intake on rats. Sinapic acid (SA) was orally administered at a dose of 10, 20 and 40 mg/kg body weight (b.w.). Blood pressure was measured by tail cuff plethysmography system. Cardiac and vascular function was evaluated by Langendorff isolated heart system and organ bath studies, respectively. Fibrotic remodeling of heart and aorta was assessed by histopathologic analyses. Oxidative stress was measured by biochemical assays. mRNA and protein expressions were assessed by RT-qPCR and western blot, respectively. In order to confirm the protective role of SA on endothelial cells through its antioxidant property, we have utilized the in vitro model of H2O2-induced oxidative stress in EA.hy926 endothelial cells. Results Rats with hypertension showed elevated blood pressure, declined myocardial performance associated with myocardial hypertrophy and fibrosis, diminished vascular response, nitric oxide (NO) metabolites level, elevated markers of oxidative stress (TBARS, LOOH), ACE activity, depleted antioxidant system (SOD, CAT, GPx, reduced GSH), aberrant expression of TGF-β, β-MHC, eNOS mRNAs and eNOS protein. Remarkably, SA attenuated high blood pressure, myocardial, vascular dysfunction, cardiac fibrosis, oxidative stress and ACE activity. Level of NO metabolites, antioxidant system, and altered gene expression were also repaired by SA treatment. Results of in vitro study showed that, SA protects endothelial cells from oxidative stress and enhance the production of NO in a concentration dependent manner. Conclusions Taken together, these results suggest that SA may have beneficial role in the

  11. An amino acid depleted cell-free protein synthesis system for the incorporation of non-canonical amino acid analogs into proteins.

    PubMed

    Singh-Blom, Amrita; Hughes, Randall A; Ellington, Andrew D

    2014-05-20

    Residue-specific incorporation of non-canonical amino acids into proteins is usually performed in vivo using amino acid auxotrophic strains and replacing the natural amino acid with an unnatural amino acid analog. Herein, we present an efficient amino acid depleted cell-free protein synthesis system that can be used to study residue-specific replacement of a natural amino acid by an unnatural amino acid analog. This system combines a simple methodology and high protein expression titers with a high-efficiency analog substitution into a target protein. To demonstrate the productivity and efficacy of a cell-free synthesis system for residue-specific incorporation of unnatural amino acids in vitro, we use this system to show that 5-fluorotryptophan and 6-fluorotryptophan substituted streptavidin retain the ability to bind biotin despite protein-wide replacement of a natural amino acid for the amino acid analog. We envisage this amino acid depleted cell-free synthesis system being an economical and convenient format for the high-throughput screening of a myriad of amino acid analogs with a variety of protein targets for the study and functional characterization of proteins substituted with unnatural amino acids when compared to the currently employed in vivo methodologies.

  12. Calculation of physiological acid-base parameters in multicompartment systems with application to human blood.

    PubMed

    Wooten, E Wrenn

    2003-12-01

    A general formalism for calculating parameters describing physiological acid-base balance in single compartments is extended to multicompartment systems and demonstrated for the multicompartment example of human whole blood. Expressions for total titratable base, strong ion difference, change in total titratable base, change in strong ion difference, and change in Van Slyke standard bicarbonate are derived, giving calculated values in agreement with experimental data. The equations for multicompartment systems are found to have the same mathematical interrelationships as those for single compartments, and the relationship of the present formalism to the traditional form of the Van Slyke equation is also demonstrated. The multicompartment model brings the strong ion difference theory to the same quantitative level as the base excess method.

  13. CONCEPTUAL MODELS FOR THE LASSEN HYDROTHERMAL SYSTEM.

    USGS Publications Warehouse

    Ingebritsen, S.E.; Sorey, M.L.

    1987-01-01

    The Lassen hydrothermal system, like a number of other systems in regions of moderate to great topographic relief, includes steam-heated features at higher elevations and high-chloride springs at lower elevations, connected to and fed by a single circulation system at depth. Two conceptual models for such systems are presented. They are similar in several ways: however, there are basic differences in terms of the nature and extent of vapor-dominated conditions beneath the steam-heated features. For some Lassen-like systems, these differences could have environmental and economic implications. Available data do not make it possible to establish a single preferred model for the Lassen system, and the actual system is complex enough that both models may apply to different parts of the system.

  14. Towards a “Sample-In, Answer-Out” Point-of-Care Platform for Nucleic Acid Extraction and Amplification: Using an HPV E6/E7 mRNA Model System

    PubMed Central

    Gulliksen, Anja; Keegan, Helen; Martin, Cara; O'Leary, John; Solli, Lars A.; Falang, Inger Marie; Grønn, Petter; Karlgård, Aina; Mielnik, Michal M.; Johansen, Ib-Rune; Tofteberg, Terje R.; Baier, Tobias; Gransee, Rainer; Drese, Klaus; Hansen-Hagge, Thomas; Riegger, Lutz; Koltay, Peter; Zengerle, Roland; Karlsen, Frank; Ausen, Dag; Furuberg, Liv

    2012-01-01

    The paper presents the development of a “proof-of-principle” hands-free and self-contained diagnostic platform for detection of human papillomavirus (HPV) E6/E7 mRNA in clinical specimens. The automated platform performs chip-based sample preconcentration, nucleic acid extraction, amplification, and real-time fluorescent detection with minimal user interfacing. It consists of two modular prototypes, one for sample preparation and one for amplification and detection; however, a common interface is available to facilitate later integration into one single module. Nucleic acid extracts (n = 28) from cervical cytology specimens extracted on the sample preparation chip were tested using the PreTect HPV-Proofer and achieved an overall detection rate for HPV across all dilutions of 50%–85.7%. A subset of 6 clinical samples extracted on the sample preparation chip module was chosen for complete validation on the NASBA chip module. For 4 of the samples, a 100% amplification for HPV 16 or 33 was obtained at the 1 : 10 dilution for microfluidic channels that filled correctly. The modules of a “sample-in, answer-out” diagnostic platform have been demonstrated from clinical sample input through sample preparation, amplification and final detection. PMID:22235204

  15. Comprehensive system models: Strategies for evaluation

    NASA Technical Reports Server (NTRS)

    Field, Christopher; Kutzbach, John E.; Ramanathan, V.; Maccracken, Michael C.

    1992-01-01

    The task of evaluating comprehensive earth system models is vast involving validations of every model component at every scale of organization, as well as tests of all the individual linkages. Even the most detailed evaluation of each of the component processes and the individual links among them should not, however, engender confidence in the performance of the whole. The integrated earth system is so rich with complex feedback loops, often involving components of the atmosphere, oceans, biosphere, and cryosphere, that it is certain to exhibit emergent properties very difficult to predict from the perspective of a narrow focus on any individual component of the system. Therefore, a substantial share of the task of evaluating comprehensive earth system models must reside at the level of whole system evaluations. Since complete, integrated atmosphere/ ocean/ biosphere/ hydrology models are not yet operational, questions of evaluation must be addressed at the level of the kinds of earth system processes that the models should be competent to simulate, rather than at the level of specific performance criteria. Here, we have tried to identify examples of earth system processes that are difficult to simulate with existing models and that involve a rich enough suite of feedbacks that they are unlikely to be satisfactorily described by highly simplified or toy models. Our purpose is not to specify a checklist of evaluation criteria but to introduce characteristics of the earth system that may present useful opportunities for model testing and, of course, improvement.

  16. NEMS - National Energy Modeling System: An Overview

    EIA Publications

    2009-01-01

    The National Energy Modeling System: An Overview 2009 a summary description of NEMS and each of its components. NEMS is a computer-based, energy-economy modeling system of energy markets for the midterm period through 2030. The NEMS is used to produce the Annual Energy Outlook.

  17. Modeling Cytoskeletal Active Matter Systems

    NASA Astrophysics Data System (ADS)

    Blackwell, Robert

    Active networks of filamentous proteins and crosslinking motor proteins play a critical role in many important cellular processes. One of the most important microtubule-motor protein assemblies is the mitotic spindle, a self-organized active liquid-crystalline structure that forms during cell division and that ultimately separates chromosomes into two daughter cells. Although the spindle has been intensively studied for decades, the physical principles that govern its self-organization and function remain mysterious. To evolve a better understanding of spindle formation, structure, and dynamics, I investigate course-grained models of active liquid-crystalline networks composed of microtubules, modeled as hard spherocylinders, in diffusive equilibrium with a reservoir of active crosslinks, modeled as hookean springs that can adsorb to microtubules and and translocate at finite velocity along the microtubule axis. This model is investigated using a combination of brownian dynamics and kinetic monte carlo simulation. I have further refined this model to simulate spindle formation and kinetochore capture in the fission yeast S. pombe. I then make predictions for experimentally realizable perturbations in motor protein presence and function in S. pombe.

  18. A novel enzyme-based acidizing system: Matrix acidizing and drilling fluid damage removal

    SciTech Connect

    Harris, R.E.; McKay, D.M.; Moses, V.

    1995-12-31

    A novel acidizing process is used to increase the permeability of carbonate rock cores in the laboratory and to remove drilling fluid damage from cores and wafers. Field results show the benefits of the technology as applied both to injector and producer wells.

  19. Reliability modelling for non-electronic systems

    NASA Astrophysics Data System (ADS)

    Valisena, N.; Demollerat, T.

    An approach for reliability modeling of nonelectronic systems is presented. The need for a specific methodology to be applied in the nonelectronic area is justified because nonelectronic items are generally single point failure of the system, and the classical approach used in electronics cannot be realistically applied to nonelectronic items, due to their particularities. Specific models, depending on both design margins and provisions for realization aspects, are proposed. Examples of such models and rules of combination of the models at system level are given. The results of research conducted on typical probabilities in the space area for human errors and inspection efficiencies are presented.

  20. The solubilization of fatty acids in systems based on block copolymers and nonionic surfactants

    NASA Astrophysics Data System (ADS)

    Mirgorodskaya, A. B.; Yatskevich, E. I.; Zakharova, L. Ya.

    2010-12-01

    The solubilizing action of micellar, microemulsion, and polymer-colloid systems formed on the basis of biologically compatible amphiphilic polymers and nonionic surfactants on capric, lauric, palmitic, and stearic acids was characterized quantitatively. Systems based on micelle forming oxyethyl compounds increased the solubility of fatty acids by more than an order of magnitude. Acid molecules incorporated into micelles increased their size and caused structural changes. Solubilization was accompanied by complete or partial destruction of intrinsic acid associates and an increase in their p K a by 1.5-2 units compared with water.