Science.gov

Sample records for acid modified soy

  1. Dietary soy protein isolate modifies hepatic retinoic acid receptor-beta proteins and inhibits their DNA binding activity in rats.

    PubMed

    Xiao, Chao Wu; Mei, Jie; Huang, Wenxin; Wood, Carla; L'abbé, Mary R; Gilani, G Sarwar; Cooke, Gerard M; Curran, Ivan H

    2007-01-01

    Retinoic acid receptors (RAR) belong to the same nuclear receptor superfamily as thyroid hormone receptors (TR) that were previously shown to be modulated by dietary soy protein isolate (SPI). This study has examined the effect of dietary SPI and isoflavones (ISF) on hepatic RAR gene expression and DNA binding activity. In Expt. 1, Sprague-Dawley rats were fed diets containing 20% casein or 20% alcohol-washed SPI in the absence or presence of increasing amounts of ISF (5-1250 mg/kg diet) for 70, 190, or 310 d. In Expt. 2, weanling Sprague-Dawley rats were fed diets containing 20% casein with or without supplemental ISF (50 mg/kg diet) or increasing amounts of alcohol-washed SPI (5, 10, and 20%) for 90 d. Intake of soy proteins significantly elevated hepatic RARbeta2 protein content dose-dependently compared with a casein diet, whereas supplemental ISF had no consistent effect. Neither RARbeta protein in the other tissues measured nor the other RAR (RARalpha and RARgamma) in the liver were affected by dietary SPI, indicating a tissue and isoform-specific effect of SPI. RARbeta2 mRNA abundances were not different between dietary groups except that its expression was markedly suppressed in male rats fed SPI for 310 d. DNA binding activity of nuclear RARbeta was significantly attenuated and the isoelectric points of RARbeta2 were shifted by dietary SPI. Overall, these results show for the first time, to our knowledge, that dietary soy proteins affect hepatic RARbeta2 protein content and RARbeta DNA binding activity, which may contribute to the suppression of retinoid-induced hypertriglyceridemia by SPI as reported.

  2. Adhesives from modified soy protein

    DOEpatents

    Sun, Susan; Wang, Donghai; Zhong, Zhikai; Yang, Guang

    2008-08-26

    The, present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  3. Nutritional and clinical evaluation of a modified soy protein with covalently bound branched-chain amino acids in cirrhotic sprague-dawley rats.

    PubMed

    Rodríguez, M F; Wall, A; Kondrup, J; López-Cervantes, G; Calderón de la Barca, A M

    2003-01-01

    Several studies suggested that branched-chain amino acids (BCAA) improve plasma amino acid imbalance as well as protein metabolism in patients with cirrhosis. However, commercial formulas supplemented with free BCAA have their limitations. We evaluated a modified soy protein diet with covalently bound BCAA (diet M) by comparing it with diets based on casein (diet C) or Hepatic Aid II (diet H; commercial formula) as protein sources. After 3 weeks of bile duct obstruction, 24 Sprague-Dawley rats divided into three groups received diets with 9% (w/w) protein/amino acids for 7 days. Nutritional and clinical parameters were determined. Nitrogen balance and weight gain (g)/protein intake (g) with diet M (0.19 +/- 0.31 and 1.33 +/- 1.43 g, respectively) were significantly higher (p < 0.05) than with diet H (-0.34 +/- 0.20 and -0.34 +/- 1.11 g), but comparable to those with diet C (0.04 +/- 0.38 and 0.20 +/- 0.93 g). Animals on diet M had a significantly (p < 0.05) increased plasma BCAA:aromatic amino acid ratio (1.8 +/- 0.3) as compared with those on diets H (1.3 +/- 0.1) and C (0.8 +/- 0.0). There were no significant differences in organ weight or liver function among the groups. We conclude that the BCAA-modified protein is an attractive option in the nutritional support of patients having cirrhosis.

  4. Soy

    MedlinePlus

    ... remains unclear. Whole soy in products like tofu, soy milk and edamame is preferable to processed soy such ... soybean burgers) Soy flour Whole soybeans Tempeh Tofu Soy milk To find out about protein content in a ...

  5. Structural and Functional Properties of Soy Protein Isolates Modified by Soy Soluble Polysaccharides.

    PubMed

    Xu, Yan-Teng; Liu, Ling-Ling

    2016-09-28

    Aiming to achieve the modification to soy protein isolate (SPI) by soy soluble polysaccharides (SSPS), electrically driven complex systems were first established in the environment of pH 3.0, and then reconstituted SPI particles with different SPI-SSPS ratios were obtained under freeze-drying process. Through this treatment, the structures of SPI particles were partly unfolded and adsorbed SSPS mainly via hydrophobic interactions and hydrogen bonding with larger particle sizes. The adherence of SSPS decreased the surface hydrophobicity of reconstituted SPI particles, but exerted not much influence on the emulsifying and foaming activities and increased the corresponding stabilities due to enhancing the unfolded extent of structure and improving the conformation flexibility. Reconstituted SPI-SSPS particles might rearrange and link each other due to the presence of SSPS on the air-water interface to better stabilize these systems. At SPI-SSPS ratio of 10:1, lower temperature was required to form gels with lower gel intensity and porous structure. The findings provide a further comprehension to the relationship between structures and functional properties of SPI modified by SSPS and the feasibility of applying these reconstituted particles to needed areas. PMID:27608266

  6. Phytic acid reduction in soy protein improves zinc bioavailability

    SciTech Connect

    Zhou, J.R.; Wong, M.S.; Burns, R.A.; Erdman, J.W. Jr. Mead Johnson Research Center, Evansville, IN )

    1991-03-15

    The objective of this study was to confirm previous studies that have suggested that reduction of phytic acid in soy improved zinc bioavailability (BV). Two commercially-produced soybean isolates containing either a normal phytic acid level or a reduced level were formulated into diets so as to provide 6 or 9 ppm zinc. Control diets were egg white protein-based and contained 3, 6 or 9 ppm zinc from zinc carbonate. Weanling male rats were fed these diets for 21 days and food intake and weight gain monitored. Slope ratio analysis of total tibia zinc content compared to total zinc intake revealed that zinc BV from reduced phytic acid soy isolate-containing diets was indistinguishable from control egg white diets. In contrast, zinc BV from normal soy isolate diets was significantly reduced compared to reduced phytic acid and control diets. These results coupled with other results indicate that phytic acid is the inhibitory factor in soybean products that results in reduced zinc BV.

  7. Comparative studies of the quantification of genetically modified organisms in foods processed from maize and soy using trial producing.

    PubMed

    Yoshimura, Tomoaki; Kuribara, Hideo; Kodama, Takashi; Yamata, Seiko; Futo, Satoshi; Watanabe, Satoshi; Aoki, Nobutaro; Iizuka, Tayoshi; Akiyama, Hiroshi; Maitani, Tamio; Naito, Shigehiro; Hino, Akihiro

    2005-03-23

    Seven types of processed foods, namely, cornstarch, cornmeal, corn puffs, corn chips, tofu, soy milk, and boiled beans, were trial produced from 1 and 5% (w/w) genetically modified (GM) mixed raw materials. In this report, insect resistant maize (MON810) and herbicide tolerant soy (Roundup Ready soy, 40-3-2) were used as representatives of GM maize and soy, respectively. Deoxyribonucleic acid (DNA) was extracted from the raw materials and the trial-produced processed food using two types of methods, i.e., the silica membrane method and the anion exchange method. The GM% values of these samples were quantified, and the significant differences between the raw materials and the trial-produced processed foods were statistically confirmed. There were some significant differences in the comparisons of all processed foods. However, our quantitative methods could be applied as a screening assay to tofu and soy milk because the differences in GM% between the trial-produced processed foods and their raw materials were lower than 13 and 23%, respectively. In addition, when quantitating with two primer pairs (SSIIb 3, 114 bp; SSIIb 4, 83 bp for maize and Le1n02, 118 bp; Le1n03, 89 bp for soy), which were targeted within the same taxon specific DNA sequence with different amplicon sizes, the ratios of the copy numbers of the two primer pairs (SSIIb 3/4 and Le1n02/03) decreased with time in a heat-treated processing model using an autoclave. In this report, we suggest that the degradation level of DNA in processed foods could be estimated from these ratios, and the probability of GM quantification could be experimentally predicted from the results of the trial producing. PMID:15769136

  8. Changes in growth and survival of Bifidobacterium by coculture with Propionibacterium in soy milk, cow's milk, and modified MRS medium.

    PubMed

    Wu, Qian Qian; You, Hyun Ju; Ahn, Hyung Jin; Kwon, Bin; Ji, Geun Eog

    2012-06-15

    Bifidobacterium adolescentis Int57 (Int57) and Propionibacterium freudenreichii subsp. shermanii ATCC 13673 (ATCC 13673) were grown either in coculture or as pure cultures in different media, such as cow's milk, soybean milk, and modified MRS medium. The viable cell counts of bacteria, changes in pH, concentrations of organic acids, and contents of various sugars were analyzed during incubation up to 7days. In soy milk, the survival of cocultured Int57 was six times higher than the monocultured cells, and ATCC 13673 cocultured with Int57 consumed 69.4% of lactic acid produced by Int57 at the end of fermentation. In cow's milk, coculture with ATCC 13673 increased the growth of Int57 from 24h until 120h by approximately tenfold and did not affect the survival of Int57 cells. After 96h of fermentation of modified MRS, the survival of ATCC 13673 cells cocultured with Int57 increased by 3.2- to 7.4-folds as compared with ATCC 13673 monoculture, whereas the growth of Int57 cells was unaffected. The growth and metabolic patterns of two strains during coculture showed noticeable differences between food grade media and laboratory media. The consumption of stachyose in soy milk during coculture of Int57 with ATCC 13673 was increased by more than twice compared with Int57 monoculture, and completed within 24h. The combinational use of Bifidobacterium and Propionibacterium could be applied to the development of fermented milk or soy milk products.

  9. Development and application of a selective detection method for genetically modified soy and soy-derived products.

    PubMed

    Hoef, A M; Kok, E J; Bouw, E; Kuiper, H A; Keijer, J

    1998-10-01

    A method has been developed to distinguish between traditional soy beans and transgenic Roundup Ready soy beans, i.e. the glyphosate ('Roundup') resistant soy bean variety developed by Monsanto Company. Glyphosate resistance results from the incorporation of an Agrobacterium-derived 5-enol-pyruvyl-shikimate-3-phosphatesynthase (EPSPS) gene. The detection method developed is based on a nested Polymerase Chain Reaction (PCR) procedure. Ten femtograms of soy bean DNA can be detected, while, starting from whole soy beans, Roundup Ready DNA can be detected at a level of 1 Roundup Ready soy bean in 5000 non-GM soy beans (0.02% Roundup Ready soy bean). The method has been applied to samples of soy bean, soy-meal pellets and soy bean flour, as well as a number of processed complex products such as infant formula based on soy, tofu, tempeh, soy-based desserts, bakery products and complex meat and meat-replacing products. The results obtained are discussed with respect to practical application of the detection method developed.

  10. A sustainable slashing industry using biodegradable sizes from modified soy protein to replace petro-based poly(vinyl alcohol).

    PubMed

    Zhao, Yi; Zhao, Yuzhu; Xu, Helan; Yang, Yiqi

    2015-02-17

    Biodegradable sizing agents from triethanolamine (TEA) modified soy protein could substitute poly(vinyl alcohol)(PVA) sizes for high-speed weaving of polyester and polyester/cotton yarns to substantially decrease environmental pollution and impel sustainability of textile industry. Nonbiodegradable PVA sizes are widely used and mainly contribute to high chemical oxygen demand (COD) in textile effluents. It has not been possible to effectively degrade, reuse or replace PVA sizes so far. Soy protein with good biodegradability showed potential as warp sizes in our previous studies. However, soy protein sizes lacked film flexibility and adhesion for required high-speed weaving. Additives with multiple hydroxyl groups, nonlinear molecule, and electric charge could physically modify secondary structure of soy protein and lead to about 23.6% and 43.3% improvement in size adhesion and ability of hair coverage comparing to unmodified soy protein. Industrial weaving results showed TEA-soy protein had relative weaving efficiency 3% and 10% higher than PVA and chemically modified starch sizes on polyester/cotton fabrics, and had relative weaving efficiency similar to PVA on polyester fabrics, although with 3- 6% lower add-on. In addition, TEA-soy sizes had a BOD5/COD ratio of 0.44, much higher than 0.03 for PVA, indicating that TEA-soy sizes were easily biodegradable in activated sludge.

  11. Response of milk fatty acid composition to dietary supplementation of soy oil, conjugated linoleic acid, or both.

    PubMed

    Huang, Y; Schoonmaker, J P; Bradford, B J; Beitz, D C

    2008-01-01

    Thirty-six Holstein cows were blocked by parity and allotted by stage of lactation to 6 treatments to evaluate the effects of dietary soy oil, conjugated linoleic acid (CLA; free acid or calcium salt), or both, on CLA content of milk. Diets were fed for 4 wk and are as follows: (1) control, (2) control + 5% soy oil, (3) control + 1% CLA, (4) control + 1% Ca(CLA)2, (5) control + 1% CLA + 4% soy oil, and (6) control + 1% Ca(CLA)2 + 4% soy oil. Rumen volatile fatty acid concentrations, blood fatty acid concentrations, milk yield, and milk composition were measured weekly or biweekly. Dry matter intake and milk yield were recorded daily. Dietary supplementation of soy oil or CLA had no effect on daily milk yield, milk protein concentration and production, or milk lactose concentration and production. Supplementation of unsaturated fatty acids as soy oil, CLA, or Ca(CLA)2 increased total fatty acid concentration in plasma, decreased milk fat concentration and production, and had no effect on rumen volatile fatty acid concentrations. The weight percentage of CLA in milk was increased from 0.4 to 0.7% with supplementation of 1% CLA, to 1.2% with supplementation of soy oil, and to 1.3% with supplementation of 1% CLA plus soy oil. Supplementation with Ca(CLA)2 or Ca(CLA)2 + soy oil increased the CLA content of milk fat to 0.9 and 1.4%, respectively. In summary, adding 5% soy oil was as effective as supplementing CLA, Ca(CLA)2, or a combination of 1% CLA (free acid or calcium salt) + 4% soy oil at increasing CLA concentrations in milk fat. Feeding CLA as the calcium salt resulted in greater concentrations of CLA in milk fat than did feeding CLA as the free acid. Dietary supplementation of 5% soy oil or 4% soy oil + 1% CLA as the free acid or the calcium salt increased the yield of CLA in milk.

  12. Soy-Based Multiple Amino Acid Oral Supplementation Increases the Anti-Sarcoma Effect of Cyclophosphamide

    PubMed Central

    Yao, Chien-An; Chen, Chin-Chu; Wang, Nai-Phog; Chien, Chiang-Ting

    2016-01-01

    The use of a mixture of amino acids caused a selective apoptosis induction against a variety of tumor cell lines, reduced the adverse effects of anti-cancer drugs and increased the sensitivity of tumor cells to chemotherapeutic agents. We evaluated the effects and underlying mechanisms of soy-derived multiple amino acids’ oral supplementation on the therapeutic efficacy of low-dose cyclophosphamide (CTX) and on tumor growth, apoptosis, and autophagy in severe combined immunodeficiency (SCID) mice that were injected with sarcoma-180 (S-180) cells. 3-methyladenine or siRNA knockdown of Atg5 was used to evaluate its effect on sarcoma growth. A comparison of mice with implanted sarcoma cells, CTX, and oral saline and mice with implanted sarcoma cells, CTX, and an oral soy-derived multiple amino acid supplement indicated that the soy-derived multiple amino acid supplement significantly decreased overall sarcoma growth, increased the Bax/Bcl-2 ratio, caspase 3 expression, and apoptosis, and depressed LC3 II-mediated autophagy. Treatment with 3-methyladenine or Atg5 siRNA elicited similar responses as CTX plus soy-derived multiple amino acid in downregulating autophagy and upregulating apoptosis. A low dose of CTX combined with an oral soy-derived multiple amino acid supplement had a potent anti-tumor effect mediated through downregulation of autophagy and upregulation of apoptosis. PMID:27043621

  13. Identification and quantitation of new glutamic acid derivatives in soy sauce by UPLC/MS/MS.

    PubMed

    Frerot, Eric; Chen, Ting

    2013-10-01

    Glutamic acid is an abundant amino acid that lends a characteristic umami taste to foods. In fermented foods, glutamic acid can be found as a free amino acid formed by proteolysis or as a non-proteolytic derivative formed by microorganisms. The aim of the present study was to identify different structures of glutamic acid derivatives in a typical fermented protein-based food product, soy sauce. An acidic fraction was prepared with anion-exchange solid-phase extraction (SPE) and analyzed by UPLC/MS/MS and UPLC/TOF-MS. α-Glutamyl, γ-glutamyl, and pyroglutamyl dipeptides, as well as lactoyl amino acids, were identified in the acidic fraction of soy sauce. They were chemically synthesized for confirmation of their occurrence and quantified in the selected reaction monitoring (SRM) mode. Pyroglutamyl dipeptides accounted for 770 mg/kg of soy sauce, followed by lactoyl amino acids (135 mg/kg) and γ-glutamyl dipeptides (70 mg/kg). In addition, N-succinoylglutamic acid was identified for the first time in food as a minor compound in soy sauce (5 mg/kg).

  14. Self-Assembled Modified Soy Protein/Dextran Nanogel Induced by Ultrasonication as a Delivery Vehicle for Riboflavin.

    PubMed

    Jin, Bei; Zhou, Xiaosong; Li, Xiangzhong; Lin, Weiqin; Chen, Guangbin; Qiu, Riji

    2016-01-01

    A simple and green approach was developed to produce a novel nanogel via self-assembly of modified soy protein and dextran, to efficiently deliver riboflavin. First, modified soy protein was prepared by heating denaturation at 60 °C for 30 min or Alcalase hydrolysis for 40 min. Second, modified soy protein was mixed with dextran and ultrasonicated for 70 min so as to assemble nanogels. The modified soy protein-dextran nanogels were characterized by Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) and ζ-potential studies to confirm the formation of NGs. Transmission electron microscopy (TEM) revealed the NGs to be spherical with core-shell structures, in the range of 32-40 nm size. The nanogels were stable against various environmental conditions. Furthermore, the particle size of the nanogels hardly changed with the incorporation of riboflavin. The encapsulation efficiency of nanogels was found to be up to 65.9% at a riboflavin concentration of 250 μg/mL. The nanogels exhibited a faster release in simulated intestine fluid (SIF) compared with simulated gastric fluid (SGF). From the results obtained it can be concluded that modified soy protein-dextran nanogels can be considered a promising carrier for drugs and other bioactive molecule delivery purposes. PMID:26999081

  15. Prevalence of genetically modified rice, maize, and soy in Saudi food products.

    PubMed

    Elsanhoty, Rafaat M; Al-Turki, A I; Ramadan, Mohamed Fawzy

    2013-10-01

    Qualitative and quantitative DNA-based methods were applied to detect genetically modified foods in samples from markets in the Kingdom of Saudi Arabia. Two hundred samples were collected from Al-Qassim, Riyadh, and Mahdina in 2009 and 2010. GMOScreen 35S and NOS test kits for the detection of genetically modified organism varieties in samples were used. The positive results obtained from GMOScreen 35S and NOS were identified using specific primer pairs. The results indicated that all rice samples gave negative results for the presence of 35S and NOS terminator. About 26 % of samples containing soybean were positive for 35S and NOS terminator and 44 % of samples containing maize were positive for the presence of 35S and/or NOS terminator. The results showed that 20.4 % of samples was positive for maize line Bt176, 8.8 % was positive for maize line Bt11, 8.8 % was positive for maize line T25, 5.9 % was positive for maize line MON 810, and 5.9 % was positive for StarLink maize. Twelve samples were shown to contain <3 % of genetically modified (GM) soy and 6 samples >10 % of GM soy. Four samples containing GM maize were shown to contain >5 % of GM maize MON 810. Four samples containing GM maize were shown to contain >1 % of StarLink maize. Establishing strong regulations and certified laboratories to monitor GM foods or crops in Saudi market is recommended.

  16. IUPAC collaborative trial study of a method to detect genetically modified soy beans and maize in dried powder.

    PubMed

    Lipp, M; Brodmann, P; Pietsch, K; Pauwels, J; Anklam, E; Börchers, T; Braunschweiger, G; Busch, U; Eklund, E; Eriksen, F D; Fagan, J; Fellinger, A; Gaugitsch, H; Hayes, D; Hertel, C; Hörtner, H; Joudrier, P; Kruse, L; Meyer, R; Miraglia, M; Müller, W; Phillipp, P; Pöpping, B; Rentsch, R; Wurtz, A

    1999-01-01

    This paper presents results of a collaborative trial study (IUPAC project No. 650/93/97) involving 29 laboratories in 13 countries applying a method for detecting genetically modified organisms (GMOs) in food. The method is based on using the polymerase chain reaction to determine the 35S promotor and the NOS terminator for detection of GMOs. reference materials were produced that were derived from genetically modified soy beans and maize. Correct identification of samples containing 2% GMOs is achievable for both soy beans and maize. For samples containing 0.5% genetically modified soy beans, analysis of the 35S promotor resulted also in a 100% correct classification. However, 3 false-negative results (out of 105 samples analyzed) were reported for analysis of the NOS terminator, which is due to the lower sensitivity of this method. Because of the bigger genomic DNA of maize, the probability of encountering false-negative results for samples containing 0.5% GMOs is greater for maize than for soy beans. For blank samples (0% GMO), only 2 false-positive results for soy beans and one for maize were reported. These results appeared as very weak signals and were most probably due to contamination of laboratory equipment.

  17. Blend-modification of soy protein/lauric acid edible films using polysaccharides.

    PubMed

    Pan, Hongyang; Jiang, Bo; Chen, Jie; Jin, Zhengyu

    2014-05-15

    Different types of polysaccharides (propyleneglycol alginate (PGA), pectin, carrageenan and aloe polysaccharide) were incorporated into soy protein isolate (SPI)/lauric acid (La) films using a co-drying process or by direct addition to form biodegradable composite films with modified water vapour permeability (WVP) and mechanical properties. The WVP of SPI/La/polysaccharide films decreased when polysaccharides were added using the co-drying process, regardless of the type of polysaccharide. The tensile strength of SPI/La film was increased by the addition of polysaccharides, and the percentage elongation at break was increased by incorporating PGA using the co-drying process. Regarding oxygen-barrier performance, no notable differences were observed between the SPI/La and SPI/La/polysaccharide films. The most significant improvement was observed by blending PGA, with the co-dried preparation exhibiting better properties than the direct-addition preparation. Scanning electron microscopy (SEM) revealed that the microstructures of the films are the basis for the differences in the barrier and mechanical properties of the modified blends of SPI, polysaccharides and La.

  18. Development and application of nanoparticles synthesized with folic acid-conjugated soy protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, soy protein isolate (SPI) was conjugated with folic acid (FA) to prepare nanoparticles for target-specific drug delivery. Successful conjugation was evidenced by UV spectrophotometry and primary amino group analysis. An increase in count rate by at least 142% was observed in FA-conjug...

  19. Aggregate structure and effect of phthalic anhydride modified soy protein on the mechanical properties of styrene-butadiene copolymer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aggregate structure of phthalic anhydride (PA) modified soy protein isolate (SPI) was investigated by estimating its fractal dimension from the equilibrated dynamic strain sweep experiments. The estimated fractal dimensions of the filler aggregates were less than 2, indicating that these partic...

  20. Stability and composition of palm, coconut and soy oil fatty acid microemulsion diesel fuels

    SciTech Connect

    Compere, A.L.; Griffith, W.L.; Googin, J.M.

    1985-01-01

    Microemulsions fuels containing fully and partially coconut, palm, and soy fatty acids; varying amounts of C/sub 1/ to C/sub 4/ alcohols; varying amounts of water; and four fuel bases were evaluated between 0 and 60/sup 0/C for stability as a single phase system. In general, ability to form a stable single phase system rose with increasing alcohol chain length, decreasing water, and increasing dispersed phase content. It was possible to form 0 to 60/sup 0/C stable single phase systems in all four fuels tested using 30 to 50% v/v dispersed phase containing 1-butanol and either palm or soy fatty acids. 11 refs., 3 tabs.

  1. Δ6-fatty acid desaturase and fatty acid elongase mRNA expression, phagocytic activity and weight-to-length relationships in channel catfish (Ictalurus punctatus) fed alternative diets with soy oil and a probiotic.

    PubMed

    Santerre, A; Téllez-Bañuelos, M C; Casas-Solís, J; Castro-Félix, P; Huízar-López, M R; Zaitseva, G P; Horta-Fernández, J L; Trujillo-García, E A; de la Mora-Sherer, D; Palafox-Luna, J A; Juárez-Carrillo, E

    2015-09-22

    A time-course feeding trial was conducted for 120 days on juvenile channel catfish (Ictalurus punctatus) to study the effects of diets differing in oil source (fish oil or soy oil) and supplementation with a commercial probiotic. Relative levels of Δ6-fatty acid desaturase (Δ6-FAD) and fatty acid elongase (FAE) expression were assessed in brain and liver tissues. Both genes showed similar expression levels in all groups studied. Fish weight-to-length relationships were evaluated using polynomial regression analyses, which identified a burst in weight and length in the channel catfish on day 105 of treatment; this increase was related to an increase in gene expression. Mid-intestinal lactic acid bacterium (LAB) count was determined according to morphological and biochemical criteria using API strips. There was no indication that intestinal LAB count was affected by the modified diets. The Cunningham glass adherence method was applied to evaluate phagocytic cell activity in peripheral blood. Reactive oxygen species (ROS) generation was assessed through the respiratory burst activity of spleen macrophages by the NBT reduction test. Probiotic-supplemented diets provided a good substrate for innate immune system function; the phagocytic index was significantly enhanced in fish fed soy oil and the probiotic, and at the end of the experimental period, ROS production increased in fish fed soy oil. The substitution of fish oil by soy oil is recommended for food formulation and will contribute to promoting sustainable aquaculture. Probiotics are also recommended for channel catfish farming as they may act as immunonutrients.

  2. Genome-wide DNA methylation modified by soy phytoestrogens: role for epigenetic therapeutics in prostate cancer?

    PubMed

    Karsli-Ceppioglu, Seher; Ngollo, Marjolaine; Adjakly, Mawussi; Dagdemir, Aslihan; Judes, Gaëlle; Lebert, André; Boiteux, Jean-Paul; Penault-LLorca, Frédérique; Bignon, Yves-Jean; Guy, Laurent; Bernard-Gallon, Dominique

    2015-04-01

    In prostate cancer, DNA methylation is significantly associated with tumor initiation, progression, and metastasis. Previous studies have suggested that soy phytoestrogens might regulate DNA methylation at individual candidate gene loci and that they play a crucial role as potential therapeutic agents for prostate cancer. The purpose of our study was to examine the modulation effects of phytoestrogens on a genome-wide scale in regards to DNA methylation in prostate cancer. Prostate cancer cell lines DU-145 and LNCaP were treated with 40 μM of genistein and 110 μM of daidzein. DNMT inhibitor 5-azacytidine (2 μM) and the methylating agent budesonide (2 μM) were used to compare their demethylation/methylation effects with phytoestrogens. The regulatory effects of phytoestrogens on DNA methylation were analyzed by using a methyl-DNA immunoprecipitation method coupled with Human DNA Methylation Microarrays (MeDIP-chip). We observed that the methylation profiles of 58 genes were altered by genistein and daidzein treatments in DU-145 and LNCaP prostate cancer cells. In addition, the methylation frequencies of the MAD1L1, TRAF7, KDM4B, and hTERT genes were remarkably modified by genistein treatment. Our results suggest that the modulation effects of phytoestrogens on DNA methylation essentially lead to inhibition of cell growth and induction of apoptosis. Genome-wide methylation profiling reported here suggests that epigenetic regulation mechanisms and, by extension, epigenetics-driven novel therapeutic candidates warrant further consideration in future "omics" studies of prostate cancer.

  3. Immunoreactivity reduction of soybean meal by fermentation, effect on amino acid composition and antigenicity of commercial soy products.

    PubMed

    Song, Y-S; Frias, J; Martinez-Villaluenga, C; Vidal-Valdeverde, C; de Mejia, E Gonzalez

    2008-05-15

    Food allergy has become a public health problem that continues to challenge both the consumer and the food industry. The objectives of this study were to evaluate the reduction of immunoreactivity by natural and induced fermentation of soybean meal (SBM) with Lactobacillus plantarum, Bifidobacterium lactis, Saccharomyces cereviseae, and to assess the effect on amino acid concentration. Immunoreactivity of commercially available fermented soybean products and ingredients was also evaluated. ELISA and western blot were used to measure IgE immunoreactivity using plasma from soy sensitive individuals. Commercial soy products included tempeh, miso and yogurt. Fermented SBM showed reduced immunoreactivity to human plasma, particularly if proteins were <20kDa. S. cereviseae and naturally fermented SBM showed the highest reduction in IgE immunoreactivity, up to 89% and 88%, respectively, against human pooled plasma. When SBM was subjected to fermentation with different microorganisms, most of the total amino acids increased significantly (p<0.05) and only few of them suffered a decrease depending on the type of fermentation. All commercial soy containing products tested showed very low immunoreactivity. Thus, fermentation can decrease soy immunoreactivity and can be optimized to develop nutritious hypoallergenic soy products. However, the clinical relevance of these findings needs to be determined by human challenge studies.

  4. Performance enhancement of poly(lactic acid)/soy protein concentrate blends by promoting formation of network structure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, the effects of water content in preformulated soy protein concentrate (SPC) and of SPC content on the thermal, rheological and mechanical properties and morphology of poly(lactic acid) (PLA)/SPC blends were studied. The blends were prepared by twin screw compounding and the test specim...

  5. The Synergize effect of Chain extender to Phosporic acid catalyst to the ultimate property of Soy-Polyurethane

    NASA Astrophysics Data System (ADS)

    Elvistia Firdaus, Flora

    2016-04-01

    The polyurethanes (PUs) foam were made from vegetable oil; a soybean based polyol. The foams were categorized into flexible and semi rigid. This research is manufacturally designed polyurethane foams by a process requiring the reaction of mixture of 2, 4- and 2, 6-Toluene di Isocyanate isomers, soy polyol in the presence of other ingredients. The objective of this work was to functionalized soy-polyol using phosporic acid catalyst and chain extender, study their collaborative reaction in producing ultimate property of PU foam. Correlates the foam morphology images in accordance to mechanical properties of foams.

  6. Kinetics of photoirradiation-induced synthesis of soy oil-conjugated linoleic acid isomers.

    PubMed

    Jain, Vishal P; Proctor, Andrew

    2007-02-01

    Photoirradiation of soy oil with UV/visible light has been shown to produce significant amounts of trans,trans conjugated linoleic acid (CLA) isomers through conversion of various synthesized intermediate cis,trans isomers. The objective of this study was to determine the kinetics of CLA isomers synthesis to better understand the production of various isomers. Soy oil was irradiated with UV/visible light for 144 h in the presence of an iodine catalyst and CLA isomers analyzed by gas chromatography (GC). Arrhenius plots were developed for the conversion of soy oil linoleic acid (A) to form cis-, trans/trans-, cis-CLA (B), conversion of cis-, trans/trans-, cis-CLA to form trans,trans-CLA (C) with respect to B, and formation of trans,trans-CLA isomers with respect to C. The kinetics of consumption of linoleic acid (LA) to form cis-, trans/trans-, cis-CLA was found to be of second-order with a rate constant of 9.01 x 10-7 L/mol s. The rate of formation of cis-, trans/trans-, cis-CLA isomers depends on the rate of formation from LA and its rate of consumption to form trans,trans-CLA isomers. The conversion of cis-, trans/trans-, cis-CLA isomers to trans,trans-CLA isomers was found to be of first-order with a rate constant of 2.75 x 10-6 s-1. However, the formation of thermodynamically stable trans,trans-CLA isomers (C) with respect to C was found to be a zero-order reaction with a rate constant of 10.66 x 10-7 mol/L s. The consumption of LA was found to be the rate-determining step in the CLA isomers formation reaction mechanism. The findings provide a better understanding of the mechanism of CLA isomers synthesis by photoirradiation and the factors controlling the ratio of various isomers.

  7. Multi-element determination in acid-digested soy protein formulations by inductively coupled plasma-optical emission spectrometry.

    PubMed

    Morte, Elane S Boa; Costa, Leticia M; Nobrega, Joaquim A; Korn, Maria das Gracas A

    2008-05-01

    The concentrations of major (Ca, K, Mg, Na and P) and trace elements (Al, Cu and Fe) in soy protein formulations sold in Bahia (Brazil) were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). Liquid and powdered soy protein formulation samples, both whole and light, were digested using a conventional heating program on a hot-plate. The powdered samples were prepared according to the label instructions for human consumption. A 5.0-ml aliquot of the soy protein emulsion was transferred to a borosilicate Erlenmeyer and concentrated nitric and sulfuric acid added. After a digestion time of approximately 50 min, hydrogen peroxide was added and heating continued to give a final volume of approximately 5 ml; the colorless digests were then made up to 15.0 ml with deionised water. Residual acid content was determined by acid-base titration. Good agreement between measured and certified values for all analytes in a non-fat milk powder (NIST SRM 1549) indicated that the method was suitable for major and trace elements determination in soy protein formulations. PMID:18473216

  8. Effect of type and content of modified montmorillonite on the structure and properties of bio-nanocomposite films based on soy protein isolate and montmorillonite

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The non-biodegradable and non-renewable nature of plastic packaging has led to a renewed interest in packaging materials based on bio-nanocomposites (biopolymer matrix reinforced with nanoparticles such as layered silicates). Bio-nanocomposite films based on soy protein isolate (SPI) and modified mo...

  9. Δ6-fatty acid desaturase and fatty acid elongase mRNA expression, phagocytic activity and weight-to-length relationships in channel catfish (Ictalurus punctatus) fed alternative diets with soy oil and a probiotic.

    PubMed

    Santerre, A; Téllez-Bañuelos, M C; Casas-Solís, J; Castro-Félix, P; Huízar-López, M R; Zaitseva, G P; Horta-Fernández, J L; Trujillo-García, E A; de la Mora-Sherer, D; Palafox-Luna, J A; Juárez-Carrillo, E

    2015-01-01

    A time-course feeding trial was conducted for 120 days on juvenile channel catfish (Ictalurus punctatus) to study the effects of diets differing in oil source (fish oil or soy oil) and supplementation with a commercial probiotic. Relative levels of Δ6-fatty acid desaturase (Δ6-FAD) and fatty acid elongase (FAE) expression were assessed in brain and liver tissues. Both genes showed similar expression levels in all groups studied. Fish weight-to-length relationships were evaluated using polynomial regression analyses, which identified a burst in weight and length in the channel catfish on day 105 of treatment; this increase was related to an increase in gene expression. Mid-intestinal lactic acid bacterium (LAB) count was determined according to morphological and biochemical criteria using API strips. There was no indication that intestinal LAB count was affected by the modified diets. The Cunningham glass adherence method was applied to evaluate phagocytic cell activity in peripheral blood. Reactive oxygen species (ROS) generation was assessed through the respiratory burst activity of spleen macrophages by the NBT reduction test. Probiotic-supplemented diets provided a good substrate for innate immune system function; the phagocytic index was significantly enhanced in fish fed soy oil and the probiotic, and at the end of the experimental period, ROS production increased in fish fed soy oil. The substitution of fish oil by soy oil is recommended for food formulation and will contribute to promoting sustainable aquaculture. Probiotics are also recommended for channel catfish farming as they may act as immunonutrients. PMID:26400353

  10. Transcriptome and Proteome Expression Analysis of the Metabolism of Amino Acids by the Fungus Aspergillus oryzae in Fermented Soy Sauce

    PubMed Central

    Zhao, Guozhong; Yao, Yunping; Wang, Chunling; Tian, Fengwei; Liu, Xiaoming; Hou, Lihua; Yang, Zhen; Zhao, Jianxin; Zhang, Hao

    2015-01-01

    Amino acids comprise the majority of the flavor compounds in soy sauce. A portion of these amino acids are formed from the biosynthesis and metabolism of the fungus Aspergillus oryzae; however, the metabolic pathways leading to the formation of these amino acids in A. oryzae remain largely unknown. We sequenced the transcriptomes of A. oryzae 100-8 and A. oryzae 3.042 under similar soy sauce fermentation conditions. 2D gel electrophoresis was also used to find some differences in protein expression. We found that many amino acid hydrolases (endopeptidases, aminopeptidases, and X-pro-dipeptidyl aminopeptidase) were expressed at much higher levels (mostly greater than double) in A. oryzae 100-8 than in A. oryzae 3.042. Our results indicated that glutamate dehydrogenase may activate the metabolism of amino acids. We also found that the expression levels of some genes changed simultaneously in the metabolic pathways of tyrosine and leucine and that these conserved genes may modulate the function of the metabolic pathway. Such variation in the metabolic pathways of amino acids is important as it can significantly alter the flavor of fermented soy sauce. PMID:25945335

  11. Effect of amino acid supplementation on protein quality of soy-based infant formulas fed to rats.

    PubMed

    Sarwar, G; Peace, R W; Botting, H G

    1993-05-01

    The powder forms of soy-based infant formulas obtained from four manufacturers were fed to weanling rats for two weeks, as the sole source of protein in diets containing 8% protein, 20% fat, and adequate amounts of minerals and vitamins. The relative protein efficiency ratio (RPER) and the relative net protein ratio (RNPR) values (casein + methionine = 100) of diets containing unsupplemented formulas were 71-81 and 78-85, respectively. Supplementation of the formula diets with lysine (0.2%), methionine (0.2%), threonine (0.1%) or tryptophan (0.05%) increased the level of the supplemental amino acid in rat serum but generally failed to improve the RPER or RNPR values. Addition of all four essential amino acids to the formula diets, however, caused a marked improvement in their protein quality (RPER or RNPR values = 100). The data suggested that proteins in soy-based formulas could be marginally co-limited in several indispensable amino acids.

  12. Citric acid production by Candida species grown on a soy-based crude glycerol.

    PubMed

    West, Thomas P

    2013-01-01

    Citric acid was produced by five species of the yeast Candida after growth on a medium containing soy biodiesel-based crude glycerol. After growth on a medium containing 10 g L(-1) or 60 g L(-1) crude glycerol for 168 hr at 30°C, Candida parapsilosis ATCC 7330 and C. guilliermondii ATCC 9058 produced the highest citric acid levels. On 10 g L(-1) or 60 g L(-1) crude glycerol for 168 hr at 30°C, the citric acid level produced by C. parapsilosis ATCC 7330 was 1.8 g L(-1) or 11.3 g L(-1), respectively, while C. guilliermondii ATCC 9058 produced citric acid concentrations of 3.0 g L(-1) or 10.4 g L(-1), respectively. Biomass production by C. guilliermondii ATCC 9058 on 10 g L(-1) or 60 g L(-1) crude glycerol for 168 hr at 30°C was highest at 1.2 g L(-1) or 6.9 g L(-1), respectively. The citric acid yields observed for C. guilliermondii ATCC 9058 after growth on 10 g L(-1) or 60 g L(-1) crude glycerol (0.35 g g(-1) or 0.21 g g(-1), respectively) were generally higher than for the other Candida species tested. When similar crude glycerol concentrations were present in the culture medium, citric acid yields observed for some of the Candida species utilized in this study were about the same or higher compared to citric acid yields by Yarrowia lipolytica strains. Based on the findings, it appeared that C. guilliermondii ATCC 9058 was the most effective species utilized, with its citric acid production being similar to what has been observed when citric acid-producing strains of Y. lipolytica were grown on crude glycerol under batch conditions that could be of significance to biobased citric acid production.

  13. Engineered soy oils for new value added applications

    NASA Astrophysics Data System (ADS)

    Tran, Phuong T.

    Soybean oil is an abundant annually renewable resource. It is composed of triglycerides with long chain saturated and unsaturated fatty acids. The presence of unsaturated fatty acids allows for chemical modification to introduce new functionalities to soybean oil. A portfolio of chemically modified soy oil with suitable functional groups has been designed and engineered to serve as the starting material in applications such as polyamides, polyesters, polyurethanes, composites, and lubricants. Anhydride, hydroxyl, and silicone functionalities were introduced to soy oil. Anhydride functionality was introduced using a single-step free radical initiated process, and the chemically modified soy oils were evaluated for potential applications as a composite and lubricant. Hydroxyl functionalities were introduced in a single-step catalytic ozonolysis process recently developed in our labs, which proceeds rapidly and efficiently at room temperature without solvent. The transformed soy oil was used to successfully prepare bio-lubricants with good thermal/oxidative stability and bio-plastics such as polyamides, polyesters, and polyurethanes. A new class of organic-inorganic hybrid materials was prepared by curing vinyltrimethoxysilane functionalized soy oil. This hybrid material could have potential as biobased sealant through a moisture initiated room temperature cure. These new classes of soy-based materials are competitive both in cost and performance to petroleum based materials, but offer the advantage of being biobased.

  14. Nanoparticles modified with multiple organic acids

    NASA Technical Reports Server (NTRS)

    Cook, Ronald Lee (Inventor); Luebben, Silvia DeVito (Inventor); Myers, Andrew William (Inventor); Smith, Bryan Matthew (Inventor); Elliott, Brian John (Inventor); Kreutzer, Cory (Inventor); Wilson, Carolina (Inventor); Meiser, Manfred (Inventor)

    2007-01-01

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  15. Nanoparticles modified with multiple organic acids

    DOEpatents

    Cook, Ronald Lee; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew; Elliott, Brian John; Kreutzer, Cory; Wilson, Carolina; Meiser, Manfred

    2007-07-17

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  16. Sensory profile, soluble sugars, organic acids, and mineral content in milk- and soy-juice based beverages.

    PubMed

    Andrés, Víctor; Tenorio, M Dolores; Villanueva, M José

    2015-04-15

    The juice industry has undergone a continuous innovation to satisfy the increasing healthy food demand by developing, among others, beverages based on fruits and milk or soybeans. The comparison among the sensory attributes between nineteen commercial mixed beverages showed significant differences in colour, sweetness, acidity, and consistency. Sucrose and citric acid were found in large proportion due to their natural presence or their addition. Potassium was the major macromineral (148-941 mg/L), especially in soy beverages. The low concentration of sodium in soy drinks is a healthy characteristic. The profile of inorganic anions has been included for the first time. Sulphate (39-278 mg/L) and phosphate (51-428 mg/L) were the predominant anions. High correlations were found between the percentage of fruit and consistency, fructose, malic acid, potassium and phosphate content (r(2)>0.790). Based on the data obtained, these beverages show pleasant organoleptic characteristics and constitute a good source of essential nutrients for regular consumers.

  17. Evaluation of commercial soy sauce koji strains of Aspergillus oryzae for γ-aminobutyric acid (GABA) production.

    PubMed

    Ab Kadir, Safuan; Wan-Mohtar, Wan Abd Al Qadr Imad; Mohammad, Rosfarizan; Abdul Halim Lim, Sarina; Sabo Mohammed, Abdulkarim; Saari, Nazamid

    2016-10-01

    In this study, four selected commercial strains of Aspergillus oryzae were collected from soy sauce koji. These A. oryzae strains designated as NSK, NSZ, NSJ and NST shared similar morphological characteristics with the reference strain (A. oryzae FRR 1675) which confirmed them as A. oryzae species. They were further evaluated for their ability to produce γ-aminobutyric acid (GABA) by cultivating the spore suspension in a broth medium containing 0.4 % (w/v) of glutamic acid as a substrate for GABA production. The results showed that these strains were capable of producing GABA; however, the concentrations differed significantly (P < 0.05) among themselves. Based on the A. oryzae strains, highest GABA concentration was obtained from NSK (194 mg/L) followed by NSZ (63 mg/L), NSJ (51.53 mg/L) and NST (31.66 mg/L). Therefore, A. oryzae NSK was characterized and the sequence was found to be similar to A. oryzae and A. flavus with 99 % similarity. The evolutionary distance (K nuc) between sequences of identical fungal species was calculated and a phylogenetic tree prepared from the K nuc data showed that the isolate belonged to the A. oryzae species. This finding may allow the development of GABA-rich ingredients using A. oryzae NSK as a starter culture for soy sauce production.

  18. Evaluation of commercial soy sauce koji strains of Aspergillus oryzae for γ-aminobutyric acid (GABA) production.

    PubMed

    Ab Kadir, Safuan; Wan-Mohtar, Wan Abd Al Qadr Imad; Mohammad, Rosfarizan; Abdul Halim Lim, Sarina; Sabo Mohammed, Abdulkarim; Saari, Nazamid

    2016-10-01

    In this study, four selected commercial strains of Aspergillus oryzae were collected from soy sauce koji. These A. oryzae strains designated as NSK, NSZ, NSJ and NST shared similar morphological characteristics with the reference strain (A. oryzae FRR 1675) which confirmed them as A. oryzae species. They were further evaluated for their ability to produce γ-aminobutyric acid (GABA) by cultivating the spore suspension in a broth medium containing 0.4 % (w/v) of glutamic acid as a substrate for GABA production. The results showed that these strains were capable of producing GABA; however, the concentrations differed significantly (P < 0.05) among themselves. Based on the A. oryzae strains, highest GABA concentration was obtained from NSK (194 mg/L) followed by NSZ (63 mg/L), NSJ (51.53 mg/L) and NST (31.66 mg/L). Therefore, A. oryzae NSK was characterized and the sequence was found to be similar to A. oryzae and A. flavus with 99 % similarity. The evolutionary distance (K nuc) between sequences of identical fungal species was calculated and a phylogenetic tree prepared from the K nuc data showed that the isolate belonged to the A. oryzae species. This finding may allow the development of GABA-rich ingredients using A. oryzae NSK as a starter culture for soy sauce production. PMID:27541157

  19. Synthesis of isoflavone aglycones and equol in soy milks fermented by food-related lactic acid bacteria and their effect on human intestinal Caco-2 cells.

    PubMed

    Di Cagno, Raffaella; Mazzacane, Francesco; Rizzello, Carlo G; Vincentini, Olimpia; Silano, Marco; Giuliani, Giammaria; De Angelis, Maria; Gobbetti, Marco

    2010-10-13

    One hundred and three strains of lactic acid bacteria, isolated from various food ecosystems, were assayed for β-glucosidase activity toward p-nitrophenyl-β-D-glucopyranoside substrate. Lactobacillus plantarum DPPMA24W and DPPMASL33, Lactobacillus fermentum DPPMA114, and Lactobacillus rhamnosus DPPMAAZ1 showed the highest activities and were selected as the mixed starter to ferment various soy milk preparations, which mainly differed for chemical composition, protein dispersibility index, and size dimension. The soy milk made with organically farmed soybeans (OFS) was selected as the best preparation. All selected strains grew well in OFS soy milk, reaching almost the same values of cell density (ca. 8.5 log cfu/mL). After 96 h of fermentation with the selected mixed starter, OFS soy milk contained 57.0 μM daidzein, 140.3 μM genistein, 20.4 μM glycitein, and 37.3 μM equol. Fermented and nonfermented OFS soy milks were used for the in vitro assays on intestinal human Caco-2/TC7 cells. Fermented OFS soy milk markedly inhibited the inflammatory status of Caco-2/TC7 cells as induced by treatment with interferon-γ (IFN-γ) (1000 U/mL) and lipopolysaccharide (LPS) (100 ng/mL), maintained the integrity of the tight junctions, even if subjected to negative stimulation by IFN-γ, and markedly inhibited the synthesis of IL-8, after treatment with interleukin-1β (2 ng/mL). As shown by using chemical standards, these effects were due to the concomitant activities of isoflavone aglycones and, especially, equol, which were synthesized in the fermented OFS soy milk preparation.

  20. First-pass uptake and oxidation of glucose by the splanchnic tissue in young goats fed soy protein-based milk diets with or without amino acid supplementation: glucose metabolism in goat kids after soy feeding.

    PubMed

    Schönhusen, U; Junghans, P; Flöter, A; Steinhoff-Wagner, J; Görs, S; Schneider, F; Metges, C C; Hammon, H M

    2013-04-01

    The study was designed to examine whether feeding soy protein isolate as partial replacement of casein (CN) affects glucose metabolism in young goats and whether effects may be ameliorated by supplementation of those AA known to be lower concentrated in soy than in CN. Goat kids (d 20 of age) were fed comparable milk protein diets, in which 50% of the crude protein was either CN (control, CON), soy protein isolate (SPI), or soy protein isolate supplemented with AA (SPIA) for 43 d (n=8 per group). On d 62 of age, a single bolus dose of d-[(13)C6]glucose (10mg/kg of BW) was given with the morning diet, and simultaneously, a single bolus dose of d-[6,6-(2)H2]glucose (5mg/kg of BW) was injected into a jugular vein. Blood samples were collected between -30 and +420 min relative to the tracer administration to measure the (13)C and (2)H enrichments of plasma glucose and the (13)C enrichment of blood CO2. Glucose first-pass uptake by the splanchnic tissues was calculated from the rate of appearance of differentially labeled glucose tracer in plasma. Glucose oxidation was calculated from (13)C enrichment in blood CO2. In addition, plasma concentrations of triglycerides, nonesterified fatty acids, glucose, insulin, and glucagon were measured. On d 63 of age, kids were killed and jejunal mucosa and liver samples were collected to measure lactase mRNA levels and lactase and maltase activities in the jejunum and activities of pyruvate carboxylase and phosphoenolpyruvate carboxykinase (PEPCK) in the liver. Basal plasma glucose concentration tended to be higher in the CON than the SPIA group, whereas basal insulin was higher in the CON group than the SPI and SPIA groups, and glucagon was higher in the CON than the SPIA group. Plasma glucose and insulin concentrations increased during the first hour after feeding, whereas plasma glucagon increased immediately after feeding and after 1h of feeding. First-pass uptake and glucose oxidation were not affected by diet. Maltase

  1. Relative gene expression in acid-adapted Escherichia coli O157:H7 during lactoperoxidase and lactic acid challenge in Tryptone Soy Broth.

    PubMed

    Parry-Hanson, Angela A; Jooste, Piet J; Buys, Elna M

    2010-09-20

    Cross-protection of acid-adapted Escherichia coli O157:H7 against inimical stresses is mediated by the glucose-repressed sigma factor RpoS. However, many food systems in which E. coli O157:H7 occurs are complex and contain glucose. This study was aimed at investigating the contribution of acid and lactoperoxidase (LP)-inducible genes to cross-protection of E. coli O157:H7 against LP system and lactic acid (LA) in Tryptone Soy Broth (TSB). Acid-adapted and non-adapted E. coli O157:H7 were challenged to activated LP and LA at pH 4.0 and 5.0 in TSB for 6h at 25°C followed by expression of acid and LP-inducible genes. Acid-adapted E. coli showed cross-protection against activated LP and LA. All the acid-inducible genes tested were repressed at pH 4.0 with or without activated LP system. At pH 7.4, gadA, ompC and ompF were induced in acid-adapted cells. Induction of corA occurred in non-adapted cells but was repressed in acid-adapted cells. Although acid-inducible genes were repressed at pH 4.0, high resistance of acid-adapted cells indicates that expression of acid-inducible genes occurred during acid adaptation and not the actual challenge. Repression of rpoS indicates that RpoS-independent systems contribute to cross-protection in acid-adapted E. coli O157:H7.

  2. Role of dietary soy protein in obesity.

    PubMed

    Velasquez, Manuel T; Bhathena, Sam J

    2007-02-26

    Soy protein is an important component of soybeans and provides an abundant source of dietary protein. Among the dietary proteins, soy protein is considered a complete protein in that it contains ample amounts of all the essential amino acids plus several other macronutrients with a nutritional value roughly equivalent to that of animal protein of high biological value. Soy protein is unique among the plant-based proteins because it is associated with isoflavones, a group of compounds with a variety of biological properties that may potentially benefit human health. An increasing body of literature suggests that soy protein and its isoflavones may have a beneficial role in obesity. Several nutritional intervention studies in animals and humans indicate that consumption of soy protein reduces body weight and fat mass in addition to lowering plasma cholesterol and triglycerides. In animal models of obesity, soy protein ingestion limits or reduces body fat accumulation and improves insulin resistance, the hallmark of human obesity. In obese humans, dietary soy protein also reduces body weight and body fat mass in addition to reducing plasma lipids. Several potential mechanisms whereby soy protein may improve insulin resistance and lower body fat and blood lipids are discussed and include a wide spectrum of biochemical and molecular activities that favorably affect fatty acid metabolism and cholesterol homeostasis. The biologic actions of certain constituents of soy protein, particularly conglycinin, soyasaponins, phospholipids, and isoflavones, that relate to obesity are also discussed. In addition, the potential of soy protein in causing food allergy in humans is briefly discussed.

  3. Fatty acid production in genetically modified cyanobacteria

    PubMed Central

    Liu, Xinyao; Sheng, Jie; Curtiss III, Roy

    2011-01-01

    To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl–acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased to 197 ± 14 mg/L of culture in one improved strain at a cell density of 1.0 × 109 cells/mL by adding codon-optimized thioesterase genes and weakening polar cell wall layers. Although these strains exhibited damaged cell membranes at low cell densities, they grew more rapidly at high cell densities in late exponential and stationary phase and exhibited less cell damage than cells in wild-type cultures. Our results suggest that fatty acid secreting cyanobacteria are a promising technology for renewable biofuel production. PMID:21482809

  4. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for...

  5. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for...

  6. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for...

  7. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for...

  8. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for...

  9. Soy Foods and Health

    MedlinePlus

    ... En Español Making a Change – Your Personal Plan Hot Topics Meningitis Choosing Your Mood Prescription Drug Abuse ... vegetarian products such as soy burgers and soy hot dogs. Whole soy beans (edamame) and foods that ...

  10. Effect of type and content of modified montmorillonite on the structure and properties of bio-nanocomposite films based on soy protein isolate and montmorillonite.

    PubMed

    Kumar, P; Sandeep, K P; Alavi, S; Truong, V D; Gorga, R E

    2010-06-01

    The nonbiodegradable and nonrenewable nature of plastic packaging has led to a renewed interest in packaging materials based on bio-nanocomposites (biopolymer matrix reinforced with nanoparticles such as layered silicates). Bio-nanocomposite films based on soy protein isolate (SPI) and modified montmorillonite (MMT) were prepared using melt extrusion. The effect of different type (Cloisite 20A and Cloisite 30B) and content (0% to 15%) of modified MMT on the structure (degree of intercalation and exfoliation) and properties (color, mechanical, dynamic mechanical, thermal stability, and water vapor permeability) of SPI-MMT bio-nanocomposite films were investigated. Extrusion of SPI and modified MMTs resulted in bio-nanocomposites with exfoliated structures at lower MMT content (5%). At higher MMT content (15%), the structure of bio-nanocomposites ranged from intercalated for Cloisite 20A to disordered intercalated for Cloisite 30B. At an MMT content of 5%, bio-nanocomposite films based on modified MMTs (Cloisite 20A and Cloisite 30B) had better mechanical (tensile strength and percent elongation at break), dynamic mechanical (glass transition temperature and storage modulus), and water barrier properties as compared to those based on natural MMT (Cloisite Na(+)). Bio-nanocomposite films based on 10% Cloisite 30B had mechanical properties comparable to those of some of the plastics that are currently used in food packaging applications. However, much higher WVP values of these films as compared to those of existing plastics might limit the application of these films to packaging of high moisture foods such as fresh fruits and vegetables.

  11. Effect of Soy Sauce on Serum Uric Acid Levels in Hyperuricemic Rats and Identification of Flazin as a Potent Xanthine Oxidase Inhibitor.

    PubMed

    Li, Huipin; Zhao, Mouming; Su, Guowan; Lin, Lianzhu; Wang, Yong

    2016-06-15

    This is the first report on the ability of soy sauce to effectively reduce the serum uric acid levels and xanthine oxidase (XOD) activities of hyperuricemic rats. Soy sauce was partitioned sequentially into ethyl acetate and water fractions. The ethyl acetate fraction with strong XOD inhibition effect was purified further. On the basis of xanthine oxidase inhibitory (XOI) activity-guided purification, nine compounds including 3,4-dihydroxy ethyl cinnamate, diisobutyl terephthalate, harman, daidzein, flazin, catechol, thymine, genistein, and uracil were obtained. It was the first time that 3,4-dihydroxy ethyl cinnamate and diisobutyl terephthalate had been identified from soy sauce. Flazin with hydroxymethyl furan ketone group at C-1 and carboxyl at C-3 exhibited the strongest XOI activity (IC50 = 0.51 ± 0.05 mM). According to fluorescence quenching and molecular docking experiments, flazin could enter into the catalytic center of XOD to interact with Lys1045, Gln1194, and Arg912 mainly by hydrophobic forces and hydrogen bonds. Flazin, catechol, and genistein not only were potent XOD inhibitors but also held certain antioxidant activities. According to ADME (absorption, distribution, metabolism, and excretion) simulation in silico, flazin had good oral bioavailability in vivo. PMID:27181598

  12. Multifunctional properties of soy milk fermented by Enterococcus faecium strains isolated from raw soy milk.

    PubMed

    Martinez-Villaluenga, Cristina; Torino, Maria Ines; Martín, V; Arroyo, Rebeca; Garcia-Mora, Patricia; Estrella Pedrola, Isabel; Vidal-Valverde, Concepcion; Rodriguez, Juan Miguel; Frias, Juana

    2012-10-17

    Lactic acid bacteria (LAB) isolated from soy milk were used to produce a multifunctional fermented food. Seven isolates were screened for their ability to produce peptides and free isoflavones in soy milk. The antihypertensive, antioxidant, and anti-inflammatory properties of the resulting fermented soy milks were evaluated in vitro using biochemical assays. Isolates 1-5 were found to be producers of fermented soy milk with angiotensin I converting enzyme inhibitory activity (ACEI). Isolate 3 was found to be a producer of free isoflavones that increased the antioxidant and anti-inflammatory potential of fermented soy milk. LAB isolates 2-5 were submitted to genetic profiling and a characterization scheme. These isolates were identified as Enterococcus faecium , and none of them contained virulence determinants or resistance to antibiotics. In conclusion, this study shows that the application of E. faecium isolate 3 for multifunctional food production from soy milk could be a promising strategy in the prevention therapy against cardiovascular disease.

  13. Soy milk suppresses cholesterol-induced inflammatory gene expression and improves the fatty acid profile in the skin of SD rats.

    PubMed

    Lee, Seung-Min; Kim, Yunhye; Choi, Hye jung; Choi, Jina; Yi, Yue; Yoon, Sun

    2013-01-01

    Recently, an elevation in skin cholesterol level has been implicated in skin inflammation. Given the potential therapeutic effects of soy on low grade inflammatory diseases, we hypothesized that a CHOL diet could promote an inflammatory response in skin and that soy milk (SM) or fermented soy milk (F.SM) could prevent this cholesterol-induced skin inflammation. To test this hypothesis, freeze-dried SM or F.SM was provided as a protein replacement for 20% of the casein in the diets of Sprague-Dawley (SD) rats. The animals were divided into the following groups: (1) control group (CTRL), AIN76A diet without cholesterol, (2) high cholesterol (CHOL) group, AIN76A with 1% (w/w) cholesterol, (3) SM group, CHOL diet with freeze-dried SM, and (4) F.SM group, CHOL diet with F.SM. In the CHOL group, the expression levels of pro-inflammatory genes, including IL-1β, IL-1α, iNOS, and COX-2, were elevated. In comparison, the SM and F.SM groups displayed the lowered expression of IL-1β, COX-2, F4/80, and Cd68, an increase of a n-3/n-6 ratio, and a reduction in the estimated desaturase activities of delta 5 desaturase (D5D) and steaoryl CoA desaturase (SCD-1). In particular, F.SM significantly increased the proportion of dihomo-γ-linolenic acid (DGLA) in skin fatty acid (FA) composition compared with the CHOL group. Here we present evidence that SM or F.SM could alleviate the inflammatory response in the skin that is triggered by excess dietary cholesterol by reducing the expression of pro-inflammatory genes. This response could be partly associated with a decreased in macrophages in skin and/or by modulation of the skin's FA composition.

  14. In-vitro digestibility and amino acid composition of soy protein isolate cross-linked with microbial transglutaminase followed by heating with ribose.

    PubMed

    Gan, Chee-Yuen; Cheng, Lai-Hoong; Azahari, Baharin; Easa, Azhar Mat

    2009-01-01

    Cross-linked soy protein isolate (SPI) gels were produced via single-treatment of SPI with microbial transglutaminase (MTG) for 5 h or 24 h, or with ribose for 2 h, or via combined-treatments of SPI with MTG followed by heating with ribose. Assessment of gel strength and solubility concluded that measures which increased protein cross-links resulted in improved gel strength; however, in most cases the digestibility and amino acid content of the gels were reduced. The combined treated gel of SPI/MTG for 24 h/ribose was more easily digested by digestive enzymes and retained higher amounts of amino acids compared with the control Maillard gels of SPI with ribose. MTG consumed lysine and glutamine and reduced the availability of amino acids for the Maillard reaction with ribose. MTG was able to preserve the nutritional value of SPI against the destructive effect of the Maillard reaction and cross-links.

  15. Fermentation of soy milk via Lactobacillus plantarum improves dysregulated lipid metabolism in rats on a high cholesterol diet.

    PubMed

    Kim, Yunhye; Yoon, Sun; Lee, Sun Bok; Han, Hye Won; Oh, Hayoun; Lee, Wu Joo; Lee, Seung-Min

    2014-01-01

    We aimed to investigate whether in vitro fermentation of soy with L. plantarum could promote its beneficial effects on lipids at the molecular and physiological levels. Rats were fed an AIN76A diet containing 50% sucrose (w/w) (CTRL), a modified AIN76A diet supplemented with 1% (w/w) cholesterol (CHOL), or a CHOL diet where 20% casein was replaced with soy milk (SOY) or fermented soy milk (FSOY). Dietary isoflavone profiles, serum lipids, hepatic and fecal cholesterol, and tissue gene expression were examined. The FSOY diet had more aglycones than did the SOY diet. Both the SOY and FSOY groups had lower hepatic cholesterol and serum triglyceride (TG) than did the CHOL group. Only FSOY reduced hepatic TG and serum free fatty acids and increased serum HDL-CHOL and fecal cholesterol. Compared to CHOL, FSOY lowered levels of the nuclear forms of SREBP-1c and SREBP-2 and expression of their target genes, including FAS, SCD1, LDLR, and HMGCR. On the other hand, FSOY elevated adipose expression levels of genes involved in TG-rich lipoprotein uptake (ApoE, VLDLR, and Lrp1), fatty acid oxidation (PPARα, CPT1α, LCAD, CYP4A1, UCP2, and UCP3), HDL-biogenesis (ABCA1, ApoA1, and LXRα), and adiponectin signaling (AdipoQ, AdipoR1, and AdipoR2), as well as levels of phosphorylated AMPK and ACC. SOY conferred a similar expression profile in both liver and adipose tissues but failed to reach statistical significance in many of the genes tested, unlike FSOY. Our data indicate that fermentation may be a way to enhance the beneficial effects of soy on lipid metabolism, in part via promoting a reduction of SREBP-dependent cholesterol and TG synthesis in the liver, and enhancing adiponectin signaling and PPARα-induced expression of genes involved in TG-rich lipoprotein clearance, fatty acid oxidation, and reverse cholesterol transport in adipose tissues.

  16. Effect of trans, trans CLA egg enrichment from CLA-rich soy oil on yolk fatty acid composition, viscosity and physical properties.

    PubMed

    Shinn, Sara E; Gilley, Alex D; Proctor, Andrew; Anthony, Nicolas B

    2015-03-11

    CLA egg accumulation studies using cis, trans (c,t) isomers have been effective, but they reported adverse egg quality. trans, trans (t,t) CLA isomers have shown superior nutritional effects in rodent studies, but reports of t,t CLA-rich yolks are limited. The objectives were to determine the effect of t,t CLA-rich soy oil in feed on egg yolk viscosity, and yolk quality during refrigerated storage. Yolk fatty acids, viscosity, weight, index, moisture, pH, and vitelline membrane strength (VMS) were determined at 0, 20, and 30 storage days. CLA had minimal effect on fatty acid profiles, relative to c,t reports. CLA-rich yolk viscosity was greater than controls, and CLA yolks maintained higher viscosities during storage. Yolk weight and index were not affected by t,t CLA-rich soy oil. Yolks with the greatest CLA concentrations had the greatest VMS after 20 days of storage, and yolks containing lower CLA levels maintained greater VMS throughout 30 days of storage, relative to controls.

  17. Improvement of iron nutrition in developing countries: comparison of adding meat, soy protein, ascorbic acid, citric acid, and ferrous sulphate on iron absorption from a simple Latin American-type of meal.

    PubMed

    Hallberg, L; Rossander, L

    1984-04-01

    A study in 49 subjects compared different methods for increasing the absorption of iron from a simple Latin American-type meal composed of maize, rice, and black beans. The addition of meat (75 g) increased the nonheme iron absorption from 0.17 to 0.45 mg; soy protein in an amount corresponding to the protein content of the meat increased the absorption to 0.51 mg (due to the high iron content of soy flour); cauliflower as a source of ascorbic acid (65 mg) increased the absorption to 0.58 mg, pure ascorbic acid (50 mg) to 0.41 mg, and ferrous sulphate mixed into the meal in an amount (6 mg) corresponding to the iron content of the soy flour increased the absorption to 0.64 mg. The addition of citric acid (1 g) reduced the absorption to 0.06 mg (to about one-third). We conclude that several methods are available for increasing iron absorption from a Latin American meal and that the choice of method depends on several factors, particularly cost.

  18. Assessment of epoxidized soy bean oil (ESBO) migrating into foods: comparison with ESBO-like epoxy fatty acids in our normal diet.

    PubMed

    Fankhauser-Noti, Anja; Fiselier, Katell; Biedermann-Brem, Sandra; Grob, Koni

    2006-08-01

    Epoxidized soy bean oil (ESBO) was found to be toxic for rats, but the toxic constituent is unknown. It became an issue as the migration from the gaskets in the lids for jars into oily foods regularly far exceeds the European legal limit (overall migration limit and specific migration limit derived from the tolerable daily intake (TDI)). In the context of risk management it was of interest to determine the epoxidized fatty acids of ESBO in those foods of our normal diet which are expected to contain the highest concentrations, i.e., oxidized edible oils (including degraded frying oils), fried foods, bakery ware and roasted meat. The contribution of epoxy oleic acid from ESBO to our diet turned out to be negligible. If this acid were the toxic component in ESBO, the toxicological assessment would primarily be a warning regarding oxidized fats and oils. The contribution of diepoxy linoleic acid from ESBO might be similar to the exposure from oxidized fats and oils of our diet, whereas the intake of triepoxy linolenic acid from ESBO exceeds that from normal food by around two orders of magnitude. Hence use of an epoxidized edible oil virtually free of linolenic acid would be inconspicuous in our diet.

  19. Nuclear receptors: potential biomarkers for assessing physiological functions of soy proteins and phytoestrogens.

    PubMed

    Xiao, Chao Wu; Wood, Carla; Gilani, G Sarwar

    2006-01-01

    Soy consumption is associated with decreased incidence of chronic diseases, including cardiovascular diseases, atherosclerosis, diabetes, osteoporosis, and certain types of cancers. However, consumption of high amounts of soy isoflavones may adversely influence endocrine functions, such as thyroid function and reproductive performance, because of their structural similarity to endogenous estrogens. Nuclear receptors are a group of transcription factors that play critical roles in the regulation of gene expression and physiological functions through direct interaction with target genes. Modulation of the abundance of these receptors, such as changing their gene expression, alters the sensitivity of the target cells or tissues to the stimulation of ligands, and eventually affects the relevant physiological functions, such as growth, development, osteogenesis, immune response, lipogenesis, reproductive process, and anticarcinogenesis. A number of studies have shown that the bioactive components in soy can modify the expression of these receptors in various tissues and cancer cells, which is believed to be a key intracellular mechanism by which soy components affect physiological functions. This review summarizes the current understanding of the modulation of nuclear receptors by soy proteins and isoflavones, and focuses especially on the receptors for estrogens, progesterone, androgen, vitamin D, retinoic acid, and thyroid hormones as well as the potential impact on physiological functions.

  20. Soy and phytoestrogens: possible side effects.

    PubMed

    Jargin, Sergei V

    2014-01-01

    Phytoestrogens are present in certain edible plants being most abundant in soy; they are structurally and functionally analogous to the estrogens. Phytoestrogens have been applied for compensation of hormone deficiency in the menopause. At the same time, soy products are used in infant food and other foodstuffs. Furthermore, soy is applied as animal fodder, so that residual phytoestrogens and their active metabolites such as equol can remain in meat and influence the hormonal balance of the consumers. There have been only singular reports on modified gender-related behavior or feminization in humans in consequence of soy consumption. In animals, the intake of phytoestrogens was reported to impact fertility, sexual development and behavior. Feminizing effects in humans can be subtle and identifiable only statistically in large populations.

  1. Surface acidity and degree of carburization of modified silver catalysts

    SciTech Connect

    Pestryakov, A.N.; Belousova, V.N.; Roznina, M.I.

    1993-11-10

    The effect has been studied of some compounds as modifying additives on the surface acidity, degree of carburization, aggregation and silver entrainement of silver-pumice catalysts for methanol oxidation. Catalyst samples have been tested in an industrial reactor. The probable mechanism of modifying action of the additives is discussed.

  2. Effects of inulin/oligofructose on the thermal stability and acid-induced gelation of soy proteins.

    PubMed

    Tseng, Y-C; Xiong, Y L; Boatright, W L

    2008-03-01

    Differential scanning calorimetry (DSC) and dynamic oscillatory shear testing were performed to study the influence of inulin (Raftiline HP-gel and Raftiline ST-gel) and oligofructose (Raftilose P95) on the thermal stability and gelation (using glucono-delta-lactone [GDL] as a coagulant) of soy protein isolate (SPI) dispersions. Addition of 10% (w/v) inulin/oligofructose or sucrose increased (P < 0.05) the peak denaturation temperatures (T(m)) of 7S and 11S soy proteins in SPI dispersion (5%[w/v], pH 7.0) by an average of 1.9 and 2.3 degrees C, respectively. GDL induced SPI thermal gelation, and the gel rheology was affected by both the pH decline and the specific temperature of heating. Addition of inulin/oligofructose (8%, w/v) improved the gelling properties of preheated SPI dispersion (8%, w/v) coagulated with GDL, showing 14.4 to 45.6% increase (P < 0.05) in gel rigidity (G' value) at the end of heating (81 degrees C). Microstructural examination revealed a denser protein cross-linking structure and reduced pore sizes in SPI gels containing inulin/oligofructose. In general, inulin was more capable of improving SPI gelation than oligofructose, suggesting that the degree of fructose polymerization in the fructans was of thermal and rheological importance.

  3. Soy Protein Scaffold Biomaterials for Tissue Engineering and Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Chien, Karen B.

    Developing functional biomaterials using highly processable materials with tailorable physical and bioactive properties is an ongoing challenge in tissue engineering. Soy protein is an abundant, natural resource with potential use for regenerative medicine applications. Preliminary studies show that soy protein can be physically modified and fabricated into various biocompatible constructs. However, optimized soy protein structures for tissue regeneration (i.e. 3D porous scaffolds) have not yet been designed. Furthermore, little work has established the in vivo biocompatibility of implanted soy protein and the benefit of using soy over other proteins including FDA-approved bovine collagen. In this work, freeze-drying and 3D printing fabrication processes were developed using commercially available soy protein to create porous scaffolds that improve cell growth and infiltration compared to other soy biomaterials previously reported. Characterization of scaffold structure, porosity, and mechanical/degradation properties was performed. In addition, the behavior of human mesenchymal stem cells seeded on various designed soy scaffolds was analyzed. Biological characterization of the cell-seeded scaffolds was performed to assess feasibility for use in liver tissue regeneration. The acute and humoral response of soy scaffolds implanted in an in vivo mouse subcutaneous model was also investigated. All fabricated soy scaffolds were modified using thermal, chemical, and enzymatic crosslinking to change properties and cell growth behavior. 3D printing allowed for control of scaffold pore size and geometry. Scaffold structure, porosity, and degradation rate significantly altered the in vivo response. Freeze-dried soy scaffolds had similar biocompatibility as freeze-dried collagen scaffolds of the same protein content. However, the soy scaffolds degraded at a much faster rate, minimizing immunogenicity. Interestingly, subcutaneously implanted soy scaffolds affected blood

  4. Acidity characterization of a titanium and sulfate modified vermiculite

    SciTech Connect

    Hernandez, W.Y.; Centeno, M.A.; Odriozola, J.A.; Moreno, S.; Molina, R.

    2008-07-01

    A natural vermiculite has been modified with titanium and sulfated by the intercalation and impregnation method in order to optimize the acidity of the clay mineral, and characterization of samples were analyzed by X-ray fluorescence (XRF), X-ray diffraction (XRD), nitrogen adsorption isotherms, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature programmed desorption with ammonia (TPD-NH{sub 3}). All the modified solids have a significantly higher number of acidic sites with respect to the parent material and in all of these, Broensted as well as Lewis acidity are identified. The presence of sulfate appears not to increase the number of acidic centers in the modified clay. For the materials sulfated with the intercalation method, it is observed that the strength of the acidic sites found in the material increases with the nominal sulfate/metal ratio. Nevertheless, when elevated quantities of sulfur are deposited, diffusion problems in the heptane reaction appear.

  5. Nutritional and health benefits of soy proteins.

    PubMed

    Friedman, M; Brandon, D L

    2001-03-01

    Soy protein is a major component of the diet of food-producing animals and is increasingly important in the human diet. However, soy protein is not an ideal protein because it is deficient in the essential amino acid methionine. Methionine supplementation benefits soy infant formulas, but apparently not food intended for adults with an adequate nitrogen intake. Soy protein content of another essential amino acid, lysine, although higher than that of wheat proteins, is still lower than that of the milk protein casein. Adverse nutritional and other effects following consumption of raw soybean meal have been attributed to the presence of endogenous inhibitors of digestive enzymes and lectins and to poor digestibility. To improve the nutritional quality of soy foods, inhibitors and lectins are generally inactivated by heat treatment or eliminated by fractionation during food processing. Although lectins are heat-labile, the inhibitors are more heat-stable than the lectins. Most commercially heated meals retain up to 20% of the Bowman-Birk (BBI) inhibitor of chymotrypsin and trypsin and the Kunitz inhibitor of trypsin (KTI). To enhance the value of soybeans in human nutrition and health, a better understanding is needed of the factors that impact the nutrition and health-promoting aspects of soy proteins. This paper discusses the composition in relation to properties of soy proteins. Also described are possible beneficial and adverse effects of soy-containing diets. The former include soy-induced lowering of cholesterol, anticarcinogenic effects of BBI, and protective effects against obesity, diabetes, irritants of the digestive tract, bone, and kidney diseases, whereas the latter include poor digestibility and allergy to soy proteins. Approaches to reduce the concentration of soybean inhibitors by rearrangement of protein disulfide bonds, immunoassays of inhibitors in processed soy foods and soybean germplasm, the roles of phytoestrogenic isoflavones and lectins, and

  6. Effect of lauric acid and nisin-impregnated soy-based films on the growth of Listeria monocytogenes on turkey bologna.

    PubMed

    Dawson, P L; Carl, G D; Acton, J C; Han, I Y

    2002-05-01

    Research in development of antimicrobial packaging applications for further processed meats has become more common with recent outbreaks of contamination of these products. In this present study, lauric acid (8%, wt/wt) and 2.5% pure nisin (4%, wt/wt) were incorporated singly and together into thermally compacted soy films. Biocide-impregnated films were compared to control films containing no biocide for inhibition of Listeria monocytogenes in liquid medium and on turkey bologna surface. L. monocytogenes suspended in 1% peptone medium exposed to control films increased from 106 to 10(9) after 48 h exposure at 22 C. Films with nisin alone suppressed cell numbers 1 log cfu/mL after 2 h but cell numbers increased to 10(8) after 24 and 48 h at 22 C. Films containing lauric acid and nisin completely eliminated detectable cells from a 10(6) culture after 8 h of exposure to the liquid medium (22 C). Refrigerated bologna exposed to control films increased by 0.5 log from 10(6) after 21 d at 4 C. Nisin films reduced cell numbers on turkey bologna from 10(6) to 10(5) after 21 d, as did films containing nisin and lauric acid. Films with lauric acid alone reduced L. monocytogenes culture from 10(6) to < 102 after 48 h and by 1 log on turkey bologna after 21 d. PMID:12033424

  7. Solution blowing of soy protein fibers.

    PubMed

    Sinha-Ray, S; Zhang, Y; Yarin, A L; Davis, S C; Pourdeyhimi, B

    2011-06-13

    Solution blowing of soy protein (sp)/polymer blends was used to form monolithic nanofibers. The monolithic fibers were blown from blends of soy protein and nylon-6 in formic acid. The sp/nylon-6 ratio achieved in dry monolithic nanofibers formed using solution blowing of the blend was equal to 40/60. In addition, solution blowing of core-shell nanofibers was realized with soy protein being in the core and the supporting polymer in the shell. The shells were formed from nylon-6. The sp/nylon-6 ratio achieved in dry core-shell fibers was 32/68. The nanofibers developed in the present work contain significant amounts of soy protein and hold great potential in various applications of nonwovens.

  8. Characterization of carbon black modified by maleic acid

    NASA Astrophysics Data System (ADS)

    Asokan, Vijayshankar; Kosinski, Pawel; Skodvin, Tore; Myrseth, Velaug

    2013-09-01

    We present here a method for modifying the surface of carbon black (CB) using a simple heat treatment in the presence of a carboxylic acid as well as water or ethylene glycol as a solvent. CB was mixed with maleic acid and either water or ethylene glycol, and heated at 250°C. Unlike the traditional surface modification processes which use heat treatment of carbon with mineral acids the present modification method using a carboxylic acid proved to be simple and time efficient. CB from two different vendors was used, and the modified samples were characterized by TGA, BET surface area measurement, XRD, particle size and zeta potential measurements, and FTIR. It was found that several material properties, including thermal stability and surface area, of the modified CB are significantly altered relative to the parental carbon samples. This method provides a rapid and simple route to tailor new materials with desired properties.

  9. Soy-based polyols

    DOEpatents

    Suppes, Galen; Lozada, Zueica; Lubguban, Arnold

    2013-06-25

    The invention provides processes for preparing soy-based oligomeric polyols or substituted oligomeric polyols, as well as urethane bioelasteromers comprising the oligomeric polyols or substituted oligomeric polyols.

  10. Dietary conjugated linoleic acid induces lipolysis in adipose tissue of coconut oil-fed mice but not soy oil-fed mice.

    PubMed

    Ippagunta, S; Hadenfeldt, T J; Miner, J L; Hargrave-Barnes, K M

    2011-09-01

    Mice fed diets containing conjugated linoleic acid (CLA) are leaner than mice not fed CLA. This anti-obesity effect is amplified in mice fed coconut oil-containing or fat free diets, compared to soy oil diets. The present objective was to determine if CLA alters lipolysis in mice fed different base oils. Mice were fed diets containing soy oil (SO), coconut oil (CO), or fat free (FF) for 6 weeks, followed by 10 or 12 days of CLA or no CLA supplementation. Body fat, tissue weights, and ex vivo lipolysis were determined. Relative protein abundance and activation of perilipin, hormone sensitive lipase (HSL), adipose triglyceride lipase (ATGL), and adipose differentiation related protein (ADRP) were determined by western blotting. CLA feeding caused mice to have less (P < 0.05) body fat than non-CLA fed mice. This was enhanced in CO and FF-fed mice (CLA × oil source, P < 0.05). There was also a CLA × oil source interaction on lipolysis as CO + CLA and FF + CLA-fed mice had increased (P < 0.05) rates of lipolysis but SO + CLA-fed mice did not. However, after 12 days of CLA consumption, activated perilipin was increased (P < 0.05) only in SO + CLA-fed mice and total HSL and ATGL were decreased (P < 0.05) in CO + CLA-fed mice. Therefore, the enhanced CLA-induced body fat loss in CO and FF-fed mice appears to involve increased lipolysis but this effect may be decreasing by 12 days of CLA consumption.

  11. Isoflavone and protein constituents of lactic acid-fermented soy milk combine to prevent dyslipidemia in rats fed a high cholesterol diet.

    PubMed

    Kobayashi, Maki; Egusa, Shintaro; Fukuda, Mitsuru

    2014-12-10

    A high cholesterol diet induces dyslipidemia. This study investigated whether isoflavone aglycones in lactic acid-fermented soy milk (LFS) improve lipid metabolism in rats fed a high cholesterol diet. Male Sprague-Dawley rats aged seven weeks were fed an AIN-93G diet, a 1% cholesterol diet (a high cholesterol diet), a high-cholesterol diet containing 4% isoflavone extract of LFS (LFS extract diet), a high-cholesterol diet containing 19.4% ethanol-washed LFS (ethanol-washed LFS diet, isoflavone-poor diet), or a high cholesterol diet containing 23.2% intact LFS (intact LFS diet) for five weeks. The plasma total cholesterol (TC) level was increased in the rats fed the LFS extract diet compared with those fed the high cholesterol diet. The TC level was decreased by the intact LFS and ethanol-washed LFS diets. The cholesterol-lowering effect was stronger in the rats fed the intact LFS diet than those fed the ethanol-washed LFS diet. The plasma triglyceride (TG) level was unchanged in the rats fed the LFS extract diet, but it decreased in rats fed the intact LFS and ethanol-washed LFS diets. Although, compared with the high cholesterol diet, the LFS extract and ethanol-washed LFS diets did not reduce hepatic cholesterol and TG, both levels were remarkably lowered by the intact LFS diet. These results suggest that the improvement in lipid metabolism of rats fed a high-cholesterol diet containing LFS isoflavone aglycones is not due to an independent effect but due to a cooperative effect with soy protein.

  12. Isoflavone and Protein Constituents of Lactic Acid-Fermented Soy Milk Combine to Prevent Dyslipidemia in Rats Fed a High Cholesterol Diet

    PubMed Central

    Kobayashi, Maki; Egusa, Shintaro; Fukuda, Mitsuru

    2014-01-01

    A high cholesterol diet induces dyslipidemia. This study investigated whether isoflavone aglycones in lactic acid-fermented soy milk (LFS) improve lipid metabolism in rats fed a high cholesterol diet. Male Sprague-Dawley rats aged seven weeks were fed an AIN-93G diet, a 1% cholesterol diet (a high cholesterol diet), a high-cholesterol diet containing 4% isoflavone extract of LFS (LFS extract diet), a high-cholesterol diet containing 19.4% ethanol-washed LFS (ethanol-washed LFS diet, isoflavone-poor diet), or a high cholesterol diet containing 23.2% intact LFS (intact LFS diet) for five weeks. The plasma total cholesterol (TC) level was increased in the rats fed the LFS extract diet compared with those fed the high cholesterol diet. The TC level was decreased by the intact LFS and ethanol-washed LFS diets. The cholesterol-lowering effect was stronger in the rats fed the intact LFS diet than those fed the ethanol-washed LFS diet. The plasma triglyceride (TG) level was unchanged in the rats fed the LFS extract diet, but it decreased in rats fed the intact LFS and ethanol-washed LFS diets. Although, compared with the high cholesterol diet, the LFS extract and ethanol-washed LFS diets did not reduce hepatic cholesterol and TG, both levels were remarkably lowered by the intact LFS diet. These results suggest that the improvement in lipid metabolism of rats fed a high-cholesterol diet containing LFS isoflavone aglycones is not due to an independent effect but due to a cooperative effect with soy protein. PMID:25514389

  13. White adipose tissue genome wide-expression profiling and adipocyte metabolic functions after soy protein consumption in rats.

    PubMed

    Frigolet, Maria E; Torres, Nimbe; Uribe-Figueroa, Laura; Rangel, Claudia; Jimenez-Sanchez, Gerardo; Tovar, Armando R

    2011-02-01

    Obesity is associated with an increase in adipose tissue mass due to an imbalance between high dietary energy intake and low physical activity; however, the type of dietary protein may contribute to its development. The aim of the present work was to study the effect of soy protein versus casein on white adipose tissue genome profiling, and the metabolic functions of adipocytes in rats with diet-induced obesity. The results showed that rats fed a Soy Protein High-Fat (Soy HF) diet gained less weight and had lower serum leptin concentration than rats fed a Casein High-Fat (Cas HF) diet, despite similar energy intake. Histological studies indicated that rats fed the Soy HF diet had significantly smaller adipocytes than those fed the Cas HF diet, and this was associated with a lower triglyceride/DNA content. Fatty acid synthesis in isolated adipocytes was reduced by the amount of fat consumed but not by the type of protein ingested. Expression of genes of fatty acid oxidation increased in adipose tissue of rats fed Soy diets; microarray analysis revealed that Soy protein consumption modified the expression of 90 genes involved in metabolic functions and inflammatory response in adipose tissue. Network analysis showed that the expression of leptin was regulated by the type of dietary protein and it was identified as a central regulator of the expression of lipid metabolism genes in adipose tissue. Thus, soy maintains the size and metabolic functions of adipose tissue through biochemical adaptations, adipokine secretion, and global changes in gene expression.

  14. [Cellular delivery of modified peptide nucleic acids: a review].

    PubMed

    Liu, Chundong; Wang, Jianhua; Zeng, Fang

    2016-03-01

    Peptide nucleic acid (PNA) is a DNA surrogate in which the phosphate deoxyribose backbone of DNA is replaced by repeating N-(2-aminoethyl)glycine units. PNA can hybridize to the complementary DNA and RNA with higher affinity than their oligonucleotide counterparts. This character of PNA not only makes it a new tool for the studies of molecular biology but also the potential candidate for gene-targeting drugs. The non-ionic backbone of PNA leads to stable hybrids with the nucleic acids, but at the same time, the neutral backbone results in poor cellular uptake. To address this problem, studies on modified PNA progress rapidly in recent years. We reviewed literature reports combined with our study about the delivery methods, including backbone modified PNA and PNA-ligand conjugates, and the cellular uptake of modified PNA. In addition, we summarized the problems and future prospect of the cellular delivery of modified PNA.

  15. Flexible fibers wet-spun from formic acid modified chitosan.

    PubMed

    Li, Jinlei; Liu, Dagang; Hu, Chengming; Sun, Fengxiang; Gustave, Williamson; Tian, Huafeng; Yang, Shuguang

    2016-01-20

    The rigidity and low strain of chitosan fibers hindered their broader utility for biomedical applications. In present work, formic acid was employed as an efficient modifier for chitosan to prepare flexible fibers wet-spun from the formic acid modified chitosan solution. The formation of amide linkages between chitosan and formic acid was confirmed by FTIR, (13)C NMR, (1)H NMR and XRD measurements. The degree of formylation evaluated by (1)H NMR spectra was varied from 14.1% to 37.2% as a function of the reaction temperature. The results of the mechanical properties showed that the as-spun fibers exhibited an enhanced ductility with a maximum elongation at break of 21.7% compared with that spun from the chitosan dissolved in diluted acetic acid. The novel flexible chitosan fibers were anticipated to be used as comfortable wound dressing and bandages in biomedical fields.

  16. Possibility of breast cancer prevention: use of soy isoflavones and fermented soy beverage produced using probiotics.

    PubMed

    Takagi, Akimitsu; Kano, Mitsuyoshi; Kaga, Chiaki

    2015-05-13

    The various beneficial effects of soybeans, which are rich in phytochemicals, have received much attention because of increasing health awareness. Soy milk that has been fermented using lactic acid bacteria has been used to prepare cheese-like products, tofu (bean-curd), and yogurt-type products. However, the distinct odor of soybeans has limited the acceptance of such foods, particularly in Western countries. In Japan, while tofu and soy milk have long been habitually consumed, the development of novel, palatable food products has not been easy. The unpleasant odor of soy milk and the absorption efficiency for isoflavones can be improved using a recently developed fermented soy milk beverage. Cancer has been the leading cause of death, and breast cancer is the most common malignancy among women. The most common type of breast cancer is estrogen-dependent, and the anti-estrogenic effects of isoflavones are known. The present review focuses on the characteristics of soy milk fermented using probiotics, an epidemiological study examining the incidence of breast cancer and soy isoflavone consumption, and a non-clinical study examining breast cancer prevention using fermented soy milk beverage.

  17. Structural and Gel Textural Properties of Soy Protein Isolate When Subjected to Extreme Acid pH-Shifting and Mild Heating Processes.

    PubMed

    Liu, Qian; Geng, Rui; Zhao, Juyang; Chen, Qian; Kong, Baohua

    2015-05-20

    Changes in the structural and gel textural properties were investigated in soy protein isolate (SPI) that was subjected to extreme acid pH-shifting and mild heating processes. The SPI was incubated up to 5 h in pH 1.5 solutions at room temperature or in a heated water bath (50 or 60 °C) to lead to protein structural unfolding, followed by refolding at pH 7.0 for 1 h. The combination of pH-shifting and heating treatments resulted in drastic increases in the SPI gel penetration force (p < 0.05). These treatments also significantly enforced the conversion of sulphydryl groups into disulfides, increased the particle size and hydrophobicity values, reduced the protein solubility (p < 0.05), and strengthened the disulfide-mediated aggregation of SPI. The intrinsic fluorescence spectroscopy results indicated structural unravelling when protein was subjected to acidic pH-shifting in combination with heating processes. The slight loss of secondary structure was observed by circular dichroism. These results suggested that pH-shifting combined with heating treatments provide great potential for the production of functionality-improved SPI, with the improved gelling property highly related to changes in the protein structure and hydrophobic aggregation.

  18. Effects of sonication on the extraction of free-amino acids from moromi and application to the laboratory scale rapid fermentation of soy sauce.

    PubMed

    Goh, Kok Ming; Lai, Oi Ming; Abas, Faridah; Tan, Chin Ping

    2017-01-15

    Soy sauce fermentation was simulated in a laboratory and subjected to 10min of sonication. A full factorial design, including different cycles, probe size, and amplitude was used. The composition of 17 free-amino acids (FAAs) was determined by the AccQ-Tag method with fluorescent detection. Main effect plots showed total FAAs extraction was favoured under continuous sonication at 100% amplitude using a 14mm diameter transducer probe, reaching 1214.2±64.3mg/100ml of total FAAs. Moreover, after 7days of fermentation, sonication treatment caused significantly higher levels (p<0.05) of glutamic acids (343.0±22.09mg/100g), total FAAs (1720.0±70.6mg/100g), and essential FAAs (776.3±7.0mg/100g) 3days sooner than the control. Meanwhile, enzymatic and microbial behaviours remained undisturbed. Collectively, the sonication to moromi resulted in maturation 57% faster than the untreated control. PMID:27542468

  19. Polyglycolic acid microneedles modified with inkjet-deposited antifungal coatings.

    PubMed

    Boehm, Ryan D; Daniels, Justin; Stafslien, Shane; Nasir, Adnan; Lefebvre, Joe; Narayan, Roger J

    2015-01-01

    In this study, the authors examined use of piezoelectric inkjet printing to apply an antifungal agent, voriconazole, to the surfaces of biodegradable polyglycolic acid microneedles. Polyglycolic acid microneedles with sharp tips (average tip radius = 25 ± 3 μm) were prepared using a combination of injection molding and drawing lithography. The elastic modulus (9.9 ± 0.3 GPa) and hardness (588.2 ± 33.8 MPa) values of the polyglycolic acid material were determined using nanoindentation and were found to be suitable for use in transdermal drug delivery devices. Voriconazole was deposited onto the polyglycolic acid microneedles by means of piezoelectric inkjet printing. It should be noted that voriconazole has poor solubility in water; however, it is readily soluble in many organic solvents. Optical imaging, scanning electron microscopy, energy dispersive x-ray spectrometry, and Fourier transform infrared spectroscopy were utilized to examine the microneedle geometries and inkjet-deposited surface coatings. Furthermore, an in vitro agar plating study was performed on the unmodified, vehicle-modified, and voriconazole-modified microneedles. Unlike the unmodified and vehicle-modified microneedles, the voriconazole-modified microneedles showed antifungal activity against Candida albicans. The unmodified, vehicle-modified, and voriconazole-modified microneedles did not show activity against Escherichia coli, Pseudomonas aeruginosa, or Staphylococcus aureus. The results indicate that piezoelectric inkjet printing may be useful for loading transdermal drug delivery devices such as polyglycolic acid microneedles with antifungal pharmacologic agents and other pharmacologic agents with poor solubility in aqueous solutions.

  20. Polyglycolic acid microneedles modified with inkjet-deposited antifungal coatings.

    PubMed

    Boehm, Ryan D; Daniels, Justin; Stafslien, Shane; Nasir, Adnan; Lefebvre, Joe; Narayan, Roger J

    2015-01-01

    In this study, the authors examined use of piezoelectric inkjet printing to apply an antifungal agent, voriconazole, to the surfaces of biodegradable polyglycolic acid microneedles. Polyglycolic acid microneedles with sharp tips (average tip radius = 25 ± 3 μm) were prepared using a combination of injection molding and drawing lithography. The elastic modulus (9.9 ± 0.3 GPa) and hardness (588.2 ± 33.8 MPa) values of the polyglycolic acid material were determined using nanoindentation and were found to be suitable for use in transdermal drug delivery devices. Voriconazole was deposited onto the polyglycolic acid microneedles by means of piezoelectric inkjet printing. It should be noted that voriconazole has poor solubility in water; however, it is readily soluble in many organic solvents. Optical imaging, scanning electron microscopy, energy dispersive x-ray spectrometry, and Fourier transform infrared spectroscopy were utilized to examine the microneedle geometries and inkjet-deposited surface coatings. Furthermore, an in vitro agar plating study was performed on the unmodified, vehicle-modified, and voriconazole-modified microneedles. Unlike the unmodified and vehicle-modified microneedles, the voriconazole-modified microneedles showed antifungal activity against Candida albicans. The unmodified, vehicle-modified, and voriconazole-modified microneedles did not show activity against Escherichia coli, Pseudomonas aeruginosa, or Staphylococcus aureus. The results indicate that piezoelectric inkjet printing may be useful for loading transdermal drug delivery devices such as polyglycolic acid microneedles with antifungal pharmacologic agents and other pharmacologic agents with poor solubility in aqueous solutions. PMID:25732934

  1. Phenylboronic-acid-modified nanoparticles: potential antiviral therapeutics.

    PubMed

    Khanal, Manakamana; Vausselin, Thibaut; Barras, Alexandre; Bande, Omprakash; Turcheniuk, Kostiantyn; Benazza, Mohammed; Zaitsev, Vladimir; Teodorescu, Cristian Mihail; Boukherroub, Rabah; Siriwardena, Aloysius; Dubuisson, Jean; Szunerits, Sabine

    2013-12-11

    Phenylboronic-acid-modified nanoparticles (NPs) are attracting considerable attention for biological and biomedical applications. We describe here a convenient and general protocol for attaching multiple copies of para-substituted phenylboronic acid moieties onto either iron-oxide-, silica- or diamond-derived NPs. The boronic acid functionalized NPs are all fabricated by first modifying the surface of each particle type with 4-azidobenzoic ester functions. These azide-terminated nanostructures were then reacted with 4-[1-oxo-4-pentyn-1-yl) amino]phenylboronic acid units via a Cu(I) catalyzed Huisgen cycloaddition to furnish, conveniently, the corresponding boronic-acid modified NPs (or "borono-lectins") targeted in this work. The potential of these novel "borono-lectins" as antiviral inhibitors was investigated against the Hepatitis C virus (HCV) exploiting a bioassay that measures the potential of drugs to interfere with the ability of cell-culture-derived JFH1 virus particles to infect healthy hepatocytes. As far as we are aware, this is the first report that describes NP-derived viral entry inhibitors and thus serves as a "proof-of-concept" study. The novel viral entry activity demonstrated, and the fact that the described boronic-acid-functionalized NPs all display much reduced cellular toxicities compared with alternate NPs, sets the stage for their further investigation. The data supports that NP-derived borono-lectins should be pursued as a potential therapeutic strategy for blocking viral entry of HCV.

  2. Soy foods, isoflavones, and the health of postmenopausal women.

    PubMed

    Messina, Mark

    2014-07-01

    Over the past 2 decades, soy foods have been the subject of a vast amount of research, primarily because they are uniquely rich sources of isoflavones. Isoflavones are classified as both phytoestrogens and selective estrogen receptor modulators. The phytoestrogenic effects of isoflavones have led some to view soy foods and isoflavone supplements as alternatives to conventional hormone therapy. However, clinical research shows that isoflavones and estrogen exert differing effects on a variety of health outcomes. Nevertheless, there is substantial evidence that soy foods have the potential to address several conditions and diseases associated with the menopausal transition. For example, data suggest that soy foods can potentially reduce ischemic heart disease through multiple mechanisms. Soy protein directly lowers blood low-density lipoprotein-cholesterol concentrations, and the soybean is low in saturated fat and a source of both essential fatty acids, the omega-6 fatty acid linoleic acid and the omega-3 fatty acid alpha-linolenic acid. In addition, soflavones improve endothelial function and possibly slow the progression of subclinical atherosclerosis. Isoflavone supplements also consistently alleviate menopausal hot flashes provided they contain sufficient amounts of the predominant soybean isoflavone genistein. In contrast, the evidence that isoflavones reduce bone loss in postmenopausal women is unimpressive. Whether adult soy food intake reduces breast cancer risk is unclear. Considerable evidence suggests that for soy to reduce risk, consumption during childhood and/or adolescence is required. Although concerns have been raised that soy food consumption may be harmful to breast cancer patients, an analysis in 9514 breast cancer survivors who were followed for 7.4 y found that higher postdiagnosis soy intake was associated with a significant 25% reduction in tumor recurrence. In summary, the clinical and epidemiologic data indicate that adding soy foods to the

  3. Growth performance, carcass traits, physiochemical characteristics and intramuscular fatty acid composition of finishing Japanese black steers fed soybean curd residue and soy sauce cake.

    PubMed

    Yasuda, Kaori; Kitagawa, Masayuki; Oishi, Kazato; Hirooka, Hiroyuki; Tamura, Takemi; Kumagai, Hajime

    2016-07-01

    This study was conducted to determine the effects of dietary soybean curd residue (SCR) and soy sauce cake (SSC) on the growth performance, carcass traits and physiochemical and intramuscular fatty acid (FA) characteristics in Japanese Black steers. Ten steers (29.7 ± 0.3 months old, 856.6 ± 24.4 kg body weight) were assigned to either treatment C, fed a conventional concentrate or T, fed the test diet including dried SCR and SSC for 3 months. In growth performance, dry matter (DM) intake and average daily gain, and carcass traits did not differ significantly between the treatments. Color of beef was affected by the dietary treatments and meat samples from T showed higher a(*) value and chroma than those in C. On FA composition, there was no significant difference between the treatments in neutral lipids, whereas in polar lipids, meat samples from T had higher C16:1 (P < 0.05) and tended to have higher C16:0 (P = 0.05) and C18:1 (P = 0.08), but lower C17:0 (P = 0.098), C18:2 (P = 0.06) and C20:4 (P = 0.07) than those from C. The study suggested that SCR and SSC could be used as a substitute for conventional concentrate and would influence meat color and intramuscular FA composition of polar lipids.

  4. Effect of inclusion of hydroxycinnamic and chlorogenic acids from green coffee bean in β-cyclodextrin on their interactions with whey, egg white and soy protein isolates.

    PubMed

    Budryn, Grażyna; Pałecz, Bartłomiej; Rachwał-Rosiak, Danuta; Oracz, Joanna; Zaczyńska, Donata; Belica, Sylwia; Navarro-González, Inmaculada; Meseguer, Josefina María Vegara; Pérez-Sánchez, Horacio

    2015-02-01

    The aim of the study was to characterise the interactions of hydroxycinnamic and chlorogenic acids (CHAs) from green coffee, with isolates of proteins from egg white (EWP), whey (WPC) and soy (SPI), depending on pH and temperature. The binding degree was determined by liquid chromatography coupled to a diode array detector and an ultrahigh resolution hybrid quadruple-time-of-flight mass spectrometer with ESI source (LC-QTOF-MS/MS). As a result of binding, the concentration of CHAs in proteins ranged from 9.44-12.2, 11.8-13.1 and 12.1-14.4g/100g for SPI, WPC and EWP, respectively. Thermodynamic parameters of protein-ligand interactions were determined by isothermal titration calorimetry (ITC) and energetics of interactions at the atomic level by molecular modelling. The amount of CHAs released during proteolytic digestion was in the range 0.33-2.67g/100g. Inclusion of CHAs with β-cyclodextrin strongly limited these interactions to a level of 0.03-0.06g/100g.

  5. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic). (a... generically as fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (PMN...

  6. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic). (a... generically as fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (PMN...

  7. Barriers to application of genetically modified lactic acid bacteria.

    PubMed

    Verrips, C T; van den Berg, D J

    1996-10-01

    To increase the acceptability of food products containing genetically modified microorganisms it is necessary to provide in an early stage to the consumers that the product is safe and that the product provide a clear benefit to the consumer. To comply with the first requirement a systematic approach to analyze the probability that genetically modified lactic acid bacteria will transform other inhabitants of the gastro- intestinal (G/I) tract or that these lactic acid bacteria will pick up genetic information of these inhabitants has been proposed and worked out to some degree. From this analysis it is clear that reliable data are still missing to carry out complete risk assessment. However, on the basis of present knowledge, lactic acid bacteria containing conjugative plasmids should be avoided. Various studies show that consumers in developed countries will accept these products when they offer to them health or taste benefits or a better keepability. For the developing countries the biggest challenge for scientists is most likely to make indigenous fermented food products with strongly improved microbiological stability due to broad spectra bacteriocins produced by lactic acid bacteria. Moreover, these lactic acid bacteria may contribute to health.

  8. Chromohalobacter is a Causing Agent for the Production of Organic Acids and Putrescine during Fermentation of Ganjang, a Korean Traditional Soy Sauce.

    PubMed

    Jung, Ji Young; Chun, Byung Hee; Jeon, Che Ok

    2015-12-01

    Ganjang, a Korean traditional fermented soy sauce, is prepared by soaking doenjang-meju (fermented soybeans) in approximately 20% (w/v) solar salt solution. The metabolites and bacterial communities during ganjang fermentation were simultaneously investigated to gain a better understanding of the roles of the microbial population. The bacterial community analysis based on denaturing gradient gel electrophoresis of 16S rRNA gene sequences showed that initially, the genus Cobetia was predominant (0 to 10 d), followed by Bacillus (5 to 74 d), and eventually, Chromohalobacter became predominant until the end of the fermentation process (74 to 374 d). Metabolite analysis using (1)H-NMR showed that carbon compounds, such as fructose, galactose, glucose, and glycerol, probably released from doenjang-meju, increased rapidly during the early fermentation period (0 to 42 d). After removal of doenjang-meju from the ganjang solution (42 d), the initial carbon compounds remained nearly constant without the increase of fermentation products. At this point, Bacillus species, which probably originated from doenjang-meju, were predominant, suggesting that Bacillus is not mainly responsible for ganjang fermentation. Fermentation products including acetate, lactate, α-aminobutyrate, γ-aminobutyrate, and putrescine increased quickly with the rapid decrease of the initial carbon compounds, while Chromohalobacter, probably derived from the solar salts, was predominant. Multivariate redundancy analysis indicated that the Chromohalobacter population was closely correlated with the production of the organic acids and putrescine during the ganjang fermentation. These results may suggest that Chromohalobacter is a causing agent responsible for the production of organic acids and putrescine during ganjang fermentation and that the solar salts, not doenjang-meju, is an important microbial source for ganjang fermentation.

  9. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) method extension to quantify simultaneously melamine and cyanuric acid in egg powder and soy protein in addition to milk products.

    PubMed

    Rodriguez Mondal, Ana Mary; Desmarchelier, Aurélien; Konings, Erik; Acheson-Shalom, Ruth; Delatour, Thierry

    2010-11-24

    As a consequence of the adulteration of infant formulas and milk powders with melamine (MEL) in China in 2008, much attention has been devoted to the analysis of MEL [and cyanuric acid (CA)] in dairy products. Several methods based on high-performance liquid chromatography (HPLC), liquid chromatography-tandem mass spectrometry (LC-MS/MS), nuclear magnetic resonance (NMR), or Raman spectroscopy have been described in the literature. However, no method is available for the simultaneous determination of MEL and CA in other raw materials, which are considered as high-risk materials for economically motivated adulteration. The present paper reports the results of an interlaboratory-based performance evaluation conducted with seven laboratories worldwide. The purpose was to demonstrate the ability of a cleanup-free LC-MS/MS method, originally developed for cow's milk and milk-powdered infant formula, to quantify MEL and CA in egg powder and soy protein. Limit of detection (LOD) and limit of quantification (LOQ) were 0.02 and 0.05 mg/kg for MEL in egg powder and soy protein, respectively. For CA, LOD and LOQ were 0.05 and 0.10 mg/kg in egg powder and 1.0 and 1.50 mg/kg in soy protein, respectively. Recoveries ranged within a 97-113% range for both MEL and CA in egg powder and soy protein. Reproducibility values (RSD(R)) from seven laboratories were within a 5.4-11.7% range for both analytes in the considered matrices. Horwitz ratio (HorRat) values between 0.4 and 0.7 indicate acceptable among-laboratory precision for the method described. PMID:21038852

  10. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) method extension to quantify simultaneously melamine and cyanuric acid in egg powder and soy protein in addition to milk products.

    PubMed

    Rodriguez Mondal, Ana Mary; Desmarchelier, Aurélien; Konings, Erik; Acheson-Shalom, Ruth; Delatour, Thierry

    2010-11-24

    As a consequence of the adulteration of infant formulas and milk powders with melamine (MEL) in China in 2008, much attention has been devoted to the analysis of MEL [and cyanuric acid (CA)] in dairy products. Several methods based on high-performance liquid chromatography (HPLC), liquid chromatography-tandem mass spectrometry (LC-MS/MS), nuclear magnetic resonance (NMR), or Raman spectroscopy have been described in the literature. However, no method is available for the simultaneous determination of MEL and CA in other raw materials, which are considered as high-risk materials for economically motivated adulteration. The present paper reports the results of an interlaboratory-based performance evaluation conducted with seven laboratories worldwide. The purpose was to demonstrate the ability of a cleanup-free LC-MS/MS method, originally developed for cow's milk and milk-powdered infant formula, to quantify MEL and CA in egg powder and soy protein. Limit of detection (LOD) and limit of quantification (LOQ) were 0.02 and 0.05 mg/kg for MEL in egg powder and soy protein, respectively. For CA, LOD and LOQ were 0.05 and 0.10 mg/kg in egg powder and 1.0 and 1.50 mg/kg in soy protein, respectively. Recoveries ranged within a 97-113% range for both MEL and CA in egg powder and soy protein. Reproducibility values (RSD(R)) from seven laboratories were within a 5.4-11.7% range for both analytes in the considered matrices. Horwitz ratio (HorRat) values between 0.4 and 0.7 indicate acceptable among-laboratory precision for the method described.

  11. Fermentation of Soy Milk via Lactobacillus plantarum Improves Dysregulated Lipid Metabolism in Rats on a High Cholesterol Diet

    PubMed Central

    Han, Hye Won; Oh, Hayoun; Lee, Wu Joo; Lee, Seung-Min

    2014-01-01

    We aimed to investigate whether in vitro fermentation of soy with L. plantarum could promote its beneficial effects on lipids at the molecular and physiological levels. Rats were fed an AIN76A diet containing 50% sucrose (w/w) (CTRL), a modified AIN76A diet supplemented with 1% (w/w) cholesterol (CHOL), or a CHOL diet where 20% casein was replaced with soy milk (SOY) or fermented soy milk (FSOY). Dietary isoflavone profiles, serum lipids, hepatic and fecal cholesterol, and tissue gene expression were examined. The FSOY diet had more aglycones than did the SOY diet. Both the SOY and FSOY groups had lower hepatic cholesterol and serum triglyceride (TG) than did the CHOL group. Only FSOY reduced hepatic TG and serum free fatty acids and increased serum HDL-CHOL and fecal cholesterol. Compared to CHOL, FSOY lowered levels of the nuclear forms of SREBP-1c and SREBP-2 and expression of their target genes, including FAS, SCD1, LDLR, and HMGCR. On the other hand, FSOY elevated adipose expression levels of genes involved in TG-rich lipoprotein uptake (ApoE, VLDLR, and Lrp1), fatty acid oxidation (PPARα, CPT1α, LCAD, CYP4A1, UCP2, and UCP3), HDL-biogenesis (ABCA1, ApoA1, and LXRα), and adiponectin signaling (AdipoQ, AdipoR1, and AdipoR2), as well as levels of phosphorylated AMPK and ACC. SOY conferred a similar expression profile in both liver and adipose tissues but failed to reach statistical significance in many of the genes tested, unlike FSOY. Our data indicate that fermentation may be a way to enhance the beneficial effects of soy on lipid metabolism, in part via promoting a reduction of SREBP-dependent cholesterol and TG synthesis in the liver, and enhancing adiponectin signaling and PPARα-induced expression of genes involved in TG-rich lipoprotein clearance, fatty acid oxidation, and reverse cholesterol transport in adipose tissues. PMID:24520358

  12. Milk and Soy Allergy

    PubMed Central

    Kattan, Jacob D.; Cocco, Renata R.; Järvinen, Kirsi M.

    2011-01-01

    SYNOPSIS Cow’s milk allergy (CMA) affects 2% to 3% of young children and presents with a wide range of immunoglobulin E (IgE-) and non-IgE-mediated clinical syndromes, which have a significant economic and lifestyle impact. Definitive diagnosis is based on a supervised oral food challenge (OFC), but convincing clinical history, skin prick testing, and measurement of cow’s milk (CM)-specific IgE can aid in the diagnosis of IgE-mediated CMA and occasionally eliminate the need for OFCs. It is logical that a review of CMA would be linked to a review of soy allergy, as soy formula is often an alternative source of nutrition for infants who do not tolerate cow’s milk. The close resemblance between the proteins from soy and other related plants like peanut, and the resulting cross-reactivity and lack of predictive values for clinical reactivity, often make the diagnosis of soy allergy far more challenging. This review examines the epidemiology, pathogenesis, clinical features, natural history and diagnosis of cow’s milk and soy allergy. Cross-reactivity and management of milk allergy are also discussed. PMID:21453810

  13. Nutritional and technological evaluation of an enzymatically methionine-enriched soy protein for infant enteral formulas.

    PubMed

    de Regil, Luz María; de la Barca, Ana María Calderón

    2004-03-01

    Enzymatically modified soy proteins have the amino acid profile and functional properties required for dietary support. The objective of this study was to evaluate the nutritional and technological properties of an enzymatically modified soy protein ultrafiltered fraction with bound methionine (F(1-10)E) to be used as a protein ingredient for infant enteral formulas. F(1-10)E was chemically characterized and biologically evaluated. Thirty-six weaning Wistar rats were fed during 3 weeks with a 4% casein-containing diet. Rats were divided into three groups and recovered for 3 weeks with 18% protein-containing diets based on: (1) F(1-10)E, (2) casein or (3) soy isolate+methionine. Nutritional indicators were weight gain, protein efficiency ratio, plasma proteins, apparent digestibility and protein in the carcass. Additionally, F(1-10)E was added as a protein ingredient of an enteral formula, and its sensory and rheological properties were compared with a hydrolyzed-whey protein commercial formula. F(1-10)E contained 68% protein and 5% sulphur amino acids, with 60% of peptides 0.05) in weight gain (108 g and 118 g, respectively), protein efficiency ratio (2.7), apparent digestibility (93% and 95%), plasma proteins (5.7 mg/100 ml) and carcass protein (61%), and better than soy isolate-based+methionine diet (P<0.05). Viscosity of the commercial formula and our formula was similar during a 24-h period. Sensory acceptability was 8 for our formula and 3.5 for the commercial one, on a scale of 1-10 (P<0.05). Due to its nutritional, sensorial and rheological properties, F(1-10)E could be used as a protein source in infant enteral formulas.

  14. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  15. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  16. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  17. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  18. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  19. Investigation of in-situ poly(lactic acid)/soy protein concentrate composites: Composite preparation, properties and foam application development

    NASA Astrophysics Data System (ADS)

    Liu, Bo

    2011-12-01

    In this study, soy protein (SP), the residue of oil crushing, was used for preparation of value-added thermoplastics. Novel poly(lactic acid) (PLA)/soy protein concentrate (SPC) blends were investigated and foaming of the resulting blends was developed. PLA/SPC blends were prepared by twin-screw extrusion and test specimens by injection molding. Unlike the practice elsewhere SP was used as a filler in mixing with other polymers, SPC was processed as a plastic component in blending process in this work. Processing SPC as plastic component, water played an important role in terms of the deformability and the morphology of SP thus the properties of the blends. Plasticization of SP, compatibilization of the blends and structure-property relationship of the PLA/SPC blends were studied. In the literature water and glycerol were often used together in preparing SP plastics or plastic blends, but this study found that this traditional combination did not provide the best results in terms of morphology and mechanical properties. Water is only recommended in plasticizing SP in the blends. This study showed water as a plasticizer was a domain factor on control of morphology and properties of PLA/SPC blends. The due to the evaporation of water after extrusion, SP domain lost its deformability thus resulted in in-situ composites. Interconnected SPC phase structure was achieved by control water content in the pre-formulated SPC and SPC content in the blends. A novel dual compatibilization method was developed to improve the properties of PLA/SPC blends. Poly(2-ethyl-2-oxazoline) was used to improve the dispersion of SPC in the blending stage, and polymeric methylene diphenyl diisocyanate was used to improve the interfacial adhesion between SPC and PLA in the subsequent processing. The result showed excellent mechanical properties and improved thermal properties of PLA/SPC blends. Using processing aids is an effective way to decrease processing temperature and thermal degradation

  20. Soy-based renoprotection.

    PubMed

    McGraw, Nancy J; Krul, Elaine S; Grunz-Borgmann, Elizabeth; Parrish, Alan R

    2016-05-01

    Chronic kidney disease (CKD) is a significant public health problem as risk factors such as advanced age, obesity, hypertension and diabetes rise in the global population. Currently there are no effective pharmacologic treatments for this disease. The role of diet is important for slowing the progression of CKD and managing symptoms in later stages of renal insufficiency. While low protein diets are generally recommended, maintaining adequate levels of intake is critical for health. There is an increasing appreciation that the source of protein may also be important. Soybean protein has been the most extensively studied plant-based protein in subjects with kidney disease and has demonstrated renal protective properties in a number of clinical studies. Soy protein consumption has been shown to slow the decline in estimated glomerular filtration rate and significantly improve proteinuria in diabetic and non-diabetic patients with nephropathy. Soy's beneficial effects on renal function may also result from its impact on certain physiological risk factors for CKD such as dyslipidemia, hypertension and hyperglycemia. Soy intake is also associated with improvements in antioxidant status and systemic inflammation in early and late stage CKD patients. Studies conducted in animal models have helped to identify the underlying molecular mechanisms that may play a role in the positive effects of soy protein on renal parameters in polycystic kidney disease, metabolically-induced kidney dysfunction and age-associated progressive nephropathy. Despite the established relationship between soy and renoprotection, further studies are needed for a clear understanding of the role of the cellular and molecular target(s) of soy protein in maintaining renal function.

  1. Nitrate removal using natural clays modified by acid thermoactivation

    NASA Astrophysics Data System (ADS)

    Mena-Duran, C. J.; Sun Kou, M. R.; Lopez, T.; Azamar-Barrios, J. A.; Aguilar, D. H.; Domínguez, M. I.; Odriozola, J. A.; Quintana, P.

    2007-04-01

    Groundwater pollution by nitrates is a widespread problem in many locations in the world. The underground aquatic mantle of the Peninsula of Yucatan is highly vulnerable due to its karstic nature. Adsorption methods are a good choice for nitrate elimination. In this work, a natural calcium bentonite was modified by acid thermoactivation with HCl and H 2SO 4, and tested as a media for nitrate removal in an aqueous solution. The nitrate concentration in the solution was measured by FT-IR, using the Lambert-Beer law. Clay characterization was carried out by X-ray diffraction and FT-IR spectroscopy; surface area was measured by the BET method.

  2. Laser instrumentation for express-diagnostics of soy in dairy products

    NASA Astrophysics Data System (ADS)

    Saguitova, Elena A.; Moguilnania, Tatiana Y.; Prokhorov, Kirill A.; Botikov, Andrey

    2004-03-01

    We present the spectroscopic study of milk with soy and discuss using that for express-analysis. In the non-elastic light scattering spectra the luminescence band are found in visible region. A peak of the band is dramatic changed with changing soy concentration in milk. the nature of phenomenon is discussed. The obtained results can be used for instrumental express-analysis soy in milk by modified the laser device have constructed for determining fat and protein in milk.

  3. Soy-based renoprotection

    PubMed Central

    McGraw, Nancy J; Krul, Elaine S; Grunz-Borgmann, Elizabeth; Parrish, Alan R

    2016-01-01

    Chronic kidney disease (CKD) is a significant public health problem as risk factors such as advanced age, obesity, hypertension and diabetes rise in the global population. Currently there are no effective pharmacologic treatments for this disease. The role of diet is important for slowing the progression of CKD and managing symptoms in later stages of renal insufficiency. While low protein diets are generally recommended, maintaining adequate levels of intake is critical for health. There is an increasing appreciation that the source of protein may also be important. Soybean protein has been the most extensively studied plant-based protein in subjects with kidney disease and has demonstrated renal protective properties in a number of clinical studies. Soy protein consumption has been shown to slow the decline in estimated glomerular filtration rate and significantly improve proteinuria in diabetic and non-diabetic patients with nephropathy. Soy’s beneficial effects on renal function may also result from its impact on certain physiological risk factors for CKD such as dyslipidemia, hypertension and hyperglycemia. Soy intake is also associated with improvements in antioxidant status and systemic inflammation in early and late stage CKD patients. Studies conducted in animal models have helped to identify the underlying molecular mechanisms that may play a role in the positive effects of soy protein on renal parameters in polycystic kidney disease, metabolically-induced kidney dysfunction and age-associated progressive nephropathy. Despite the established relationship between soy and renoprotection, further studies are needed for a clear understanding of the role of the cellular and molecular target(s) of soy protein in maintaining renal function. PMID:27152261

  4. Permeability of membranes to amino acids and modified amino acids: mechanisms involved in translocation

    NASA Technical Reports Server (NTRS)

    Chakrabarti, A. C.; Deamer, D. W. (Principal Investigator); Miller, S. L. (Principal Investigator)

    1994-01-01

    The amino acid permeability of membranes is of interest because they are one of the key solutes involved in cell function. Membrane permeability coefficients (P) for amino acid classes, including neutral, polar, hydrophobic, and charged species, have been measured and compared using a variety of techniques. Decreasing lipid chain length increased permeability slightly (5-fold), while variations in pH had only minor effects on the permeability coefficients of the amino acids tested in liposomes. Increasing the membrane surface charge increased the permeability of amino acids of the opposite charge, while increasing the cholesterol content decreased membrane permeability. The permeability coefficients for most amino acids tested were surprisingly similar to those previously measured for monovalent cations such as sodium and potassium (approximately 10(-12)-10(-13) cm s-1). This observation suggests that the permeation rates for the neutral, polar and charged amino acids are controlled by bilayer fluctuations and transient defects, rather than partition coefficients and Born energy barriers. Hydrophobic amino acids were 10(2) more permeable than the hydrophilic forms, reflecting their increased partition coefficient values. External pH had dramatic effects on the permeation rates for the modified amino acid lysine methyl ester in response to transmembrane pH gradients. It was established that lysine methyl ester and other modified short peptides permeate rapidly (P = 10(-2) cm s-1) as neutral (deprotonated) molecules. It was also shown that charge distributions dramatically alter permeation rates for modified di-peptides. These results may relate to the movement of peptides through membranes during protein translocation and to the origin of cellular membrane transport on the early Earth.

  5. [Compatibility of a novel ethylenediamine modified polylactic acid with osteoblasts].

    PubMed

    Su, Aihua; Wang, Yuanliang; Luo, Yanfeng; Wu, Keda

    2005-08-01

    Biocompatibility of a newly developed ethylenediamine modified poly (DL-latic acid) (EMPLA) with osteoblasts was investigated by means of cell morphology and cell proliferation. Films of PLA and EMPLA were made by solvent casting. Osteoblasts obtained from crania of neonatal Wistar rats were cultured on surfaces of PLA and EMPLA, with glass as control. The cell morphology was observed by phase contrast microscope and the cell proliferation was determined by MTT assay. The morphology observations revealed that the osteoblasts cultured on EMPLA spread wider than those on PLA, and much more cells were confluent on EMPLA, compared to those on PLA and glass. The growth curves showed the osteoblasts on EMPLA grew faster than did those on PLA and glass. The results exhibited that the biocompatibility of EMPLA with osteoblasts is better than that of PLA and glass, which suggested wide applications of EMPLA in biomedical area, especially in tissue engineering. PMID:16156255

  6. Effects of oxidative modification on thermal aggregation and gel properties of soy protein by malondialdehyde.

    PubMed

    Wu, Wei; Hua, Yufei; Lin, Qinlu

    2014-03-01

    Malondialdehyde (MDA) was selected as a representative of lipid peroxidation products to investigate the effects of oxidative modification on thermal aggregation and gel properties of soy protein by lipid peroxidation products. Incubation of soy protein with increasing concentration of MDA resulted in gradual decrease of particle size and content of thermal aggregates during heat denaturation. Oxidative modification by MDA resulted in a decrease in water holding capacity, gel hardness, and gel strength of soy protein gel. An increase in coarseness and interstice of MDA modified protein gel network was accompanied by uneven distribution of interstice as MDA concentration increased. The results showed that degree of thermal aggregation of MDA-modified soy protein gradually decreased as MDA concentration increased, which contributed to a decrease in water holding capacity, gel hardness, and gel strength of MDA-modified soy protein gel. PMID:24587523

  7. Soybean bio-refinery platform: enzymatic process for production of soy protein concentrate, soy protein isolate and fermentable sugar syrup.

    PubMed

    Loman, Abdullah Al; Islam, S M Mahfuzul; Li, Qian; Ju, Lu-Kwang

    2016-10-01

    Soybean carbohydrate is often found to limit the use of protein in soy flour as food and animal feed due to its indigestibility to monogastric animal. In the current study, an enzymatic process was developed to produce not only soy protein concentrate and soy protein isolate without indigestible carbohydrate but also soluble reducing sugar as potential fermentation feedstock. For increasing protein content in the product and maximizing protein recovery, the process was optimized to include the following steps: hydrolysis of soy flour using an Aspergillus niger enzyme system; separation of the solid and liquid by centrifugation (10 min at 7500×g); an optional step of washing to remove entrapped hydrolysate from the protein-rich wet solid stream by ethanol (at an ethanol-to-wet-solid ratio (v/w) of 10, resulting in a liquid phase of approximately 60 % ethanol); and a final precipitation of residual protein from the sugar-rich liquid stream by heat treatment (30 min at 95 °C). Starting from 100 g soy flour, this process would produce approximately 54 g soy protein concentrate with 70 % protein (or, including the optional solid wash, 43 g with 80 % protein), 9 g soy protein isolate with 89 % protein, and 280 ml syrup of 60 g/l reducing sugar. The amino acid composition of the soy protein concentrate produced was comparable to that of the starting soy flour. Enzymes produced by three fungal species, A. niger, Trichoderma reesei, and Aspergillus aculeatus, were also evaluated for effectiveness to use in this process. PMID:27207010

  8. Soybean bio-refinery platform: enzymatic process for production of soy protein concentrate, soy protein isolate and fermentable sugar syrup.

    PubMed

    Loman, Abdullah Al; Islam, S M Mahfuzul; Li, Qian; Ju, Lu-Kwang

    2016-10-01

    Soybean carbohydrate is often found to limit the use of protein in soy flour as food and animal feed due to its indigestibility to monogastric animal. In the current study, an enzymatic process was developed to produce not only soy protein concentrate and soy protein isolate without indigestible carbohydrate but also soluble reducing sugar as potential fermentation feedstock. For increasing protein content in the product and maximizing protein recovery, the process was optimized to include the following steps: hydrolysis of soy flour using an Aspergillus niger enzyme system; separation of the solid and liquid by centrifugation (10 min at 7500×g); an optional step of washing to remove entrapped hydrolysate from the protein-rich wet solid stream by ethanol (at an ethanol-to-wet-solid ratio (v/w) of 10, resulting in a liquid phase of approximately 60 % ethanol); and a final precipitation of residual protein from the sugar-rich liquid stream by heat treatment (30 min at 95 °C). Starting from 100 g soy flour, this process would produce approximately 54 g soy protein concentrate with 70 % protein (or, including the optional solid wash, 43 g with 80 % protein), 9 g soy protein isolate with 89 % protein, and 280 ml syrup of 60 g/l reducing sugar. The amino acid composition of the soy protein concentrate produced was comparable to that of the starting soy flour. Enzymes produced by three fungal species, A. niger, Trichoderma reesei, and Aspergillus aculeatus, were also evaluated for effectiveness to use in this process.

  9. Nanostructure Modified Microelectrode for Electrochemical Detection of Dopamine with Ascorbic Acid and Uric Acid.

    PubMed

    Kim, Kyeong-Jun; Choi, Jin-Ha; Pyo, Su-Hyun; Yun, Kwang-Seok; Lee, Ji-Young; Choi, Jeong-Woo; Oh, Byung-Keun

    2016-03-01

    Dopamine (DA) is one kind of neurotransmitter in central nervous system which is indicator of neural disease. For this reason, determination of DA concentration in central nervous system is very important for early diagnosis of neural disease. In this study, we designed micro electrode array and fabricated by MEMS technology. Furthermore, we fabricated 3-D conducting nanostructure on electrode surface for enhanced sensitivity and selectivity due to increased surface area. Compared with macro and normal micro electrode, the 3-D nanostructure modified micro electrode shows better electrical performance. These surface modified pin type electrode was applied to detect low concentration of DA and successfully detect various concentration of DA from 100 μM to 1 μM with linear relationship in the presence of ascorbic acid and uric acid. From these results, our newly designed electrode shows possibility to be applied as brain biosensor for neural disease diagnosis such as Parkinson's diseases. PMID:27455760

  10. Effect of acid concentration and treatment time on acid-alcohol modified jackfruit seed starch properties.

    PubMed

    Dutta, Himjyoti; Paul, Sanjib Kumar; Kalita, Dipankar; Mahanta, Charu Lata

    2011-09-15

    The properties of starch extracted from jackfruit (Artocarpus heterophyllus Lam.) seeds, collected from west Assam after acid-alcohol modification by short term treatment (ST) for 15-30min with concentrated hydrochloric acid and long term treatment (LT) for 1-15days with 1M hydrochloric acid, were investigated. Granule density, freeze thaw stability, solubility and light transmittance of the treated starches increased. A maximum decrease in the degree of polymerisation occurred in ST of 30min (2607.6). Jackfruit starch had 27.1±0.04% amylose content (db), which in ST initially decreased and then increased with the severity of treatment; in LT the effect was irregular. The pasting profile and granule morphology of the treated samples were severely modified. Native starch had the A-type crystalline pattern and crystalline structure increased on treatment. FTIR spectra revealed slight changes in bond stretching and bending. Colour measurement indicated that whiteness increased on treatment. Acid modified jackfruit seed starch can have applications in the food industry.

  11. Effect of acid concentration and treatment time on acid-alcohol modified jackfruit seed starch properties.

    PubMed

    Dutta, Himjyoti; Paul, Sanjib Kumar; Kalita, Dipankar; Mahanta, Charu Lata

    2011-09-15

    The properties of starch extracted from jackfruit (Artocarpus heterophyllus Lam.) seeds, collected from west Assam after acid-alcohol modification by short term treatment (ST) for 15-30min with concentrated hydrochloric acid and long term treatment (LT) for 1-15days with 1M hydrochloric acid, were investigated. Granule density, freeze thaw stability, solubility and light transmittance of the treated starches increased. A maximum decrease in the degree of polymerisation occurred in ST of 30min (2607.6). Jackfruit starch had 27.1±0.04% amylose content (db), which in ST initially decreased and then increased with the severity of treatment; in LT the effect was irregular. The pasting profile and granule morphology of the treated samples were severely modified. Native starch had the A-type crystalline pattern and crystalline structure increased on treatment. FTIR spectra revealed slight changes in bond stretching and bending. Colour measurement indicated that whiteness increased on treatment. Acid modified jackfruit seed starch can have applications in the food industry. PMID:25212133

  12. The selection reaction of homogeneous catalyst in soy-epoxide hydroxylation

    NASA Astrophysics Data System (ADS)

    Elvistia Firdaus, Flora

    2014-04-01

    Hydroxylation reaction of soy-epoxide has resulted soy-polyol; a prepolymeric material for polyurethane. The conversion and selectivity of soy-epoxide butanol based to hydroxylation was found higher than soy-ethylene glycol (EG) based. These reactions were performed by sulfur acid which commonly known as homogeneous catalyst. Conversion and selectivity of homogeneous catalyst compared to bentonite; a heteregeneous catalyst was lower as in fact the mixtures were more viscous. The catalysis were significantly effected to cell morphology. Foams were conducted by heterogeneous catalyst resulted an irregular form of windows while homogeneous catalyst are more ordered.

  13. Factors to Consider in the Association Between Soy Isoflavone Intake and Breast Cancer Risk

    PubMed Central

    Nagata, Chisato

    2010-01-01

    It has been suggested that soy isoflavones have protective effects against breast cancer. However, data from epidemiological studies are not conclusive. A recent meta-analysis showed that soy intake was inversely associated with breast cancer risk in Asian but not Western populations, which indicates that protection against breast cancer may require that women consume levels of soy typical in Asian diets. In addition to the amount of soy isoflavones consumed, the form and food source of isoflavones, timing of isoflavone exposure, estrogen receptor status of tumors, and equol-producer status and hormonal profile of individuals may modify the association between soy isoflavone intake and the risk of breast cancer. These factors might explain the heterogeneity of results from studies. This present report contrasts background data from Japanese and Western women to identify the potential modifying of these factors. PMID:20173308

  14. Surfactants modify the release from tablets made of hydrophobically modified poly (acrylic acid).

    PubMed

    Knöös, Patrik; Onder, Sebla; Pedersen, Lina; Piculell, Lennart; Ulvenlund, Stefan; Wahlgren, Marie

    2013-01-01

    Many novel pharmaceutically active substances are characterized by a high hydrophobicity and a low water solubility, which present challenges for their delivery as drugs. Tablets made from cross-linked hydrophobically modified poly (acrylic acid) (CLHMPAA), commercially available as Pemulen™, have previously shown promising abilities to control the release of hydrophobic model substances. This study further investigates the possibility to use CLHMPAA in tablet formulations using ibuprofen as a model substance. Furthermore, surfactants were added to the dissolution medium in order to simulate the presence of bile salts in the intestine. The release of ibuprofen is strongly affected by the presence of surfactant and/or buffer in the dissolution medium, which affect both the behaviour of CLHMPAA and the swelling of the gel layer that surrounds the disintegrating tablets. Two mechanisms of tablet disintegration were observed under shear, namely conventional dissolution of a soluble tablet matrix and erosion of swollen insoluble gel particles from the tablet. The effects of surfactant in the surrounding medium can be circumvented by addition of surfactant to the tablet. With added surfactant, tablets that may be insusceptible to the differences in bile salt level between fasted or fed states have been produced, thus addressing a central problem in controlled delivery of hydrophobic drugs. In other words CLHMPAA is a potential candidate to be used in tablet formulations for controlled release with poorly soluble drugs.

  15. Soy consumption during menopause.

    PubMed

    Bolca, S; Bracke, M; Depypere, H

    2012-01-01

    In developed countries, the life expectancy of women is currently extending more than 30 years beyond the age of menopause. The menopausal transition is often associated with complaints. The conflicting results on the effectivity of phytoestrogens to alleviate menopausal symptoms. This discrepancy in treatment effect may be due to the large interindividual variation in isoflavone bioavailability in general and equol production in particular. Equol, a microbial metabolite of daidzein, has been hypothesized as a clue to the effectiveness of soy and its isoflavones, but only about 30-50% of the population harbor an intestinal microbial ecosystem supporting the conversion of daidzein into equol. There is much concern on breast cancer, since this incidence of this disease increases with age. There is indication that soy phytoestrogens may decrease this breast cancer incidence. In order to evaluate the estrogenic potential of these exposure levels, we studied the isoflavone-derived E2α- and E2β-equivalents (i.e. 17β-estradiol (E2)-equivalents towards ERα and ERβ, respectively) in human breast tissue. Total isoflavones showed a breast adipose/glandular tissue distribution of 40/60 and their derived E2β-equivalents exceeded on average 21 ± 4 and 40 ± 10 times the endogenous E2 concentrations in corresponding adipose and glandular biopsies, respectively, whereas the E2α/E2 ratios were 0.4 ± 0.1 and 0.8 ± 0.2 in adipose and glandular breast tissue, respectively. These calculations suggest that, at least in this case, soy consumption could elicit partial ERβ agonistic effects in human breast tissue. We are currently characterizing the differential activation of estrogen-responsive genes between dietary isoflavones, the chemopreventive selective ER modulators tamoxifen and raloxifene and exogenous estrogens in a controlled dietary intervention trial that integrates data on the exposure to estrogenically active compounds, expression of isoflavone

  16. Dietary supplementation with soy isoflavones or replacement with soy proteins prevents hepatic lipid droplet accumulation and alters expression of genes involved in lipid metabolism in rats.

    PubMed

    Xiao, Chao Wu; Wood, Carla M; Weber, Dorcas; Aziz, Syed A; Mehta, Rekha; Griffin, Philip; Cockell, Kevin A

    2014-01-01

    Accumulation of hepatic lipid droplet (HLD) is the hallmark pathology of non-alcoholic fatty liver disease (NAFLD). This study examined the effects of soy isoflavones (ISF) and different amounts of soy proteins on the accumulation of HLD, lipid metabolism and related gene expression in rats. Weanling Sprague-Dawley rats were fed diets containing either 20 % casein protein without (D1) or with (D2) supplemental ISF (50 mg/kg diet) or substitution of casein with increasing amounts of alcohol-washed soy protein isolate (SPI, 5, 10, and 20 %; D3, D4, D5) for 90 days. Dietary casein (20 %) induced accumulation of HLD in female, but not in male rats. Both soy proteins and ISF remarkably prevented the formation of HLD. Soy proteins lowered hepatic total cholesterol and triglyceride in a dose-dependent manner. Interestingly, soy proteins but not ISF significantly increased free fatty acids in the liver of the female rats compared to D1. Proteomic analysis showed that at least 3 enzymes involved in lipogenesis were down-regulated and 7 proteins related to fatty acid β-oxidation or lipolysis were up-regulated by soy protein over D1. Additionally, 9 differentially expressed proteins identified were related to amino acid metabolism, 5 to glycolysis and 2 to cholesterol metabolism. Dietary ISF and SPI markedly reduced hepatic-peroxisome-proliferator-activated receptor γ2 (PPARγ2) and fat-specific protein 27 (FSP27) in female rats. Overall, this study has shown that partial or full replacement of dietary casein by soy protein or supplementation with soy ISF can effectively prevent the accumulation of HLD. The potential molecular mechanism(s) involved might be due to suppression of lipogenesis and stimulation of lipolysis and down-regulation of PPARγ2 and FSP27. This suggests that consumption of soy foods or supplements might be a useful strategy for the prevention or treatment of fatty liver diseases.

  17. Soy Foods for Enhancing Women's Health.

    ERIC Educational Resources Information Center

    Fly, Alyce D.

    2002-01-01

    Describes the forms of soy available as food ingredients and foods, the components in soy that may be important to women's health, the FDA health claim permitted for soy foods and ingredients, and research studies examining the role of soy in reducing cholesterol, cancer risk, osteoporosis, and symptoms of menopause. (Contains references.) (SM)

  18. Effects of soy isoflavone and/or estrogen treatments on bone metabolism in ovariectomized rats.

    PubMed

    Kim, Min-Sun; Lee, Yeon-Sook

    2005-01-01

    This study investigated whether soy isoflavone intake, with or without estrogen treatment, can reduce postmenopausal bone loss, and whether soy isoflavones can be an alternative for estrogen replacement therapy using a postmenopausal osteoporotic rat model in which ovariectomized female rats were fed a low calcium, high fat diet. Nine-week-old female Sprague-Dawley rats were ovariectomized and then fed low (0.1%) calcium diets with or without soy isoflavone supplementation (80 or 160 ppm) for 6 weeks. Some ovariectomized rats were fed the same diets but also injected with estrogen (10 microg/kg of body weight) subcutaneously. Serum calcium and phosphate levels were normal in all rats. Serum alkaline phosphatase activities were not affected by the treatments. Serum tartrate-resistant acid phosphatase activities and urinary hydroxyproline levels were not different between experimental groups. Bone mineral (calcium and phosphorus) contents were increased in the rats supplemented with 80 ppm soy isoflavone or the rats treated with only estrogen without soy isoflavone. Therefore, the effect of 80 ppm soy isoflavone supplementation was the same as estrogen injection, but there was no beneficial effect from combining soy isoflavones and estrogen injections. When 160 ppm soy isoflavone was used, the benefits were lessened or disappeared altogether. These results suggest that appropriate soy isoflavone supplementation prevents postmenopausal bone loss without estrogen injection and may have efficacy as an alternative to estrogen therapy. PMID:16379553

  19. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2011-08-23

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  20. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2005-08-30

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  1. Increased Rat Placental Fatty Acid, but Decreased Amino Acid and Glucose Transporters Potentially Modify Intrauterine Programming.

    PubMed

    Nüsken, Eva; Gellhaus, Alexandra; Kühnel, Elisabeth; Swoboda, Isabelle; Wohlfarth, Maria; Vohlen, Christina; Schneider, Holm; Dötsch, Jörg; Nüsken, Kai-Dietrich

    2016-07-01

    Regulation of placental nutrient transport significantly affects fetal development and may modify intrauterine growth restriction (IUGR) and fetal programming. We hypothesized that placental nutrient transporters are differentially affected both by utero-placental insufficiency and prenatal surgical stress. Pregnant rats underwent bilateral uterine artery and vein ligation (LIG), sham operation (SOP) or no operation (controls, C) on gestational day E19. Placentas were obtained by caesarean section 4 h (LIG, n=20 placentas; SOP, n=24; C, n=12), 24 h (LIG, n=28; SOP, n=20; C, n=12) and 72 h (LIG, n=20; SOP, n=20; C, n=24) after surgery. Gene and protein expression of placental nutrient transporters for fatty acids (h-FABP, CD36), amino acids (SNAT1, SNAT2) and glucose (GLUT-1, Connexin 26) were examined by qRT-PCR, western blot and immunohistochemistry. Interestingly, the mean protein expression of h-FABP was doubled in placentas of LIG and SOP animals 4, 24 (SOP significant) and 72 h (SOP significant) after surgery. CD36 protein was significantly increased in LIG after 72 h. SNAT1 and SNAT2 protein and gene expressions were significantly reduced in LIG and SOP after 24 h. Further significantly reduced proteins were GLUT-1 in LIG (4 h, 72 h) and SOP (24 h), and Connexin 26 in LIG (72 h). In conclusion, placental nutrient transporters are differentially affected both by reduced blood flow and stress, probably modifying the already disturbed intrauterine milieu and contributing to IUGR and fetal programming. Increased fatty acid transport capacity may affect energy metabolism and could be a compensatory reaction with positive effects on brain development. J. Cell. Biochem. 117: 1594-1603, 2016. © 2015 Wiley Periodicals, Inc.

  2. Effects of Modifier Type on Properties of in Situ Organo-Montmorillonite Modified Wood Flour/Poly(lactic acid) Composites.

    PubMed

    Liu, Ru; Chen, Yu; Cao, Jinzhen

    2016-01-13

    Wood flour (WF) was modified with sodium-montmorillonite (Na-MMT) and two types of surfactant modifiers, namely, didecyl dimethylammonium chloride (DDAC) and sodium dodecyl sulfonate (SDS) though a two-step process inside WF. The thus-modified WFs were characterized, and the effects of MMT type on physical, mechanical, and thermal properties of their composites with poly(lactic acid) (PLA) were investigated. The results showed: (1) either DDAC or SDS could modified Na-MMT into OMMT, and then uniformly distributed in WF cell walls; (2) OMMT improved the physical properties, most mechanical properties, and thermal properties of the composites except for the impact strength; and (3) compared with SDS, DDAC seemed to perform better in properties of composites. However, DDAC showed some negative effect on the early stage of composite thermal decomposition. PMID:26671464

  3. Serum IGF-1 Concentrations Change With Soy and Seaweed Supplements in Healthy Postmenopausal American Women

    PubMed Central

    Teas, Jane; Irhimeh, Mohammad R.; Druker, Susan; Hurley, Thomas G.; Hébert, James R.; Savarese, Todd M.; Kurzer, Mindy S.

    2011-01-01

    Insulin-like growth factor 1 (IGF-1) is an anabolic hormone important for growth and development. However, high-circulating serum concentrations in adults are associated with increased risk of postmenopausal breast cancer. Nutritional status and specific foods influence serum IGF-1 concentrations. Breast cancer incidence is typically low in Asian countries where soy is commonly consumed. Paradoxically, soy supplement trials in American women have reported significant increases in IGF-1. Seaweed also is consumed regularly in Asian countries where breast cancer risk is low. We investigated the possibility that seaweed could modify soy-associated increases in IGF-1 in American women. Thirty healthy postmenopausal women (mean age 58 yr) participated in this 14-wk double-blinded, randomized, placebo-controlled crossover clinical trial. Participants consumed 5 g/day placebo or seaweed (Alaria esculenta) in capsules for 7 wk. During the 7th wk, a high-soy protein isolate powder was added (2 mg/kg body weight aglycone equivalent isoflavones). Overnight fasting blood samples were collected after each intervention period. Soy significantly increased serum IGF-1 concentrations compared to the placebo (21.2 nmol/L for soy vs. 16.9 nmol/L for placebo; P = 0.0001). The combination of seaweed and soy significantly reduced this increase by about 40% (21.2 nmol/L for soy alone vs. 19.4 nmol/L; P = 0.01). Concurrent seaweed and soy consumption may be important in modifying the effect of soy on IGF-1 serum concentrations. PMID:21711174

  4. Detection of soy DNA in margarines.

    PubMed

    Gryson, N; Messens, K; Dewettinck, K

    2003-01-01

    The method in which to discriminate between genetically modified (GM) versus non-modified foodstuffs is based on the presence of newly introduced genes at the protein or DNA level. Current available methods are almost exclusively based on the polymerase chain reaction (PCR). This procedure consists of three steps: DNA isolation, the amplification of the desired DNA fragment and visualisation of the obtained amplification products. The first and crucial step is the DNA isolation. Due to several processing steps, the quality of the extracted DNA may be damaged, rendering PCR analysis, and therefore GMO detection, impossible. In this study, the DNA quality of soy lecithin in margarines has been evaluated by PCR. For this purpose, DNA was isolated from margarines with different levels of lecithin with two different extraction methods, including the CTAB method proposed by the European Committe for Standardization (CEN). The amplification of soy DNA by PCR resulted to be difficult, which could be explained by the difficult DNA extraction from margarine and the low lecithin content.

  5. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants.

  6. The negative effect of soy extract on erythrocyte membrane fluidity: an electron paramagnetic resonance study.

    PubMed

    Ajdžanović, Vladimir; Spasojević, Ivan; Sošić-Jurjević, Branka; Filipović, Branko; Trifunović, Svetlana; Sekulić, Milka; Milošević, Verica

    2011-02-01

    A decrease of erythrocyte membrane fluidity can contribute to the pathophysiology of hypertension. Soy products, which are used as alternative therapeutics in some cardiovascular conditions, contain various isoflavones (genistein, daidzein, and their glucosides, genistin and daidzin), which can incorporate cellular membrane and change its fluidity. The aim of this study was to examine the effects of soy extract (which generally corresponds to the soy products of isoflavone composition) on erythrocyte membrane fluidity at graded depths. We used electron paramagnetic resonance spectroscopy and fatty acid spin probes (5-DS and 12-DS), the spectra of which are dependent on membrane fluidity. After being treated with soy extract, erythrocytes showed a significant (P = 0.016) decrease of membrane fluidity near the hydrophilic surface, while there were no significant changes of fluidity in deeper hydrophobic membrane regions. These results suggest that soy products containing high levels of genistein and isoflavone glucosides may not be suitable for use in hypertension because they decrease erythrocyte membrane fluidity.

  7. Effect of soy sauce on lipid oxidation of irradiated pork patties

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Wook; Hwang, Ko-Eun; Choi, Yun-Sang; Choi, Ji-Hun; Lee, Mi-Ai; Song, Dong-Heon; Kim, Hack-Youn; Lee, Ju-Woon; Kim, Cheon-Jei

    2013-09-01

    This study was conducted to find out the antioxidant effect of the soy sauce on lipid oxidation of electron beam irradiated pork patties. The pork patties prepared with sodium chloride or soy sauce solution at identical salt concentrations were irradiated at 0 or 5 kGy, and peroxide value, conjugated diene, 2-thiobarbituric acid, and free fatty acid values were evaluated for 10 days (4 °C). The irradiated pork patties treated with soy sauce showed the lowest peroxide value and 2-thiobarbituric acid value at the end of storage compared to those prepared with sodium chloride. The irradiated pork patties formulated with soy sauce and 0.5% ascorbic acid had similar 2-thiobarbituric acid and free fatty acid values compared to those of the non-irradiated pork patties treated with sodium chloride. Our results suggested that the soy sauce can retard the lipid oxidation of irradiated pork patty, and a synergistic effect between soy sauce and ascorbic acid was observed.

  8. Effects of soy containing diet and isoflavones on cytochrome P450 enzyme expression and activity.

    PubMed

    Ronis, Martin J J

    2016-08-01

    Cytochromes P450 (CYPs) play an important role in metabolism and clearance of most clinically utilized drugs and other xenobiotics. They are important in metabolism of endogenous compounds including fatty acids, sterols, steroids and lipid-soluble vitamins. Dietary factors such as phytochemicals are capable of affecting CYP expression and activity, which may be important in diet-drug interactions and in the development of fatty liver disease, cardiovascular disease and cancer. One important diet-CYP interaction is with diets containing plant proteins, particularly soy protein. Soy diets are traditionally consumed in Asian countries and are linked to lower incidence of several cancers and of cardiovascular disease in Asian populations. Soy is also an important protein source in vegetarian and vegan diets and the sole protein source in soy infant formulas. Recent studies suggest that consumption of soy can inhibit induction of CY1 enzymes by polycyclic aromatic hydrocarbons (PAHs) which may contribute to cancer prevention. In addition, there are data to suggest that soy components promiscuously activate several nuclear receptors including PXR, PPAR and LXR resulting in increased expression of CYP3As, CYP4As and CYPs involved in metabolism of cholesterol to bile acids. Such soy-CYP interactions may alter drug pharmacokinetics and therapeutic efficacy and are associated with improved lipid homeostasis and reduced risk of cardiovascular disease. The current review summarizes results from in vitro; in vivo and clinical studies of soy-CYP interactions and examines the evidence linking the effects of soy diets on CYP expression to isoflavone phytoestrogens, particularly, genistein and daidzein that are associated with soy protein.

  9. Effects of soy containing diet and isoflavones on cytochrome P450 enzyme expression and activity.

    PubMed

    Ronis, Martin J J

    2016-08-01

    Cytochromes P450 (CYPs) play an important role in metabolism and clearance of most clinically utilized drugs and other xenobiotics. They are important in metabolism of endogenous compounds including fatty acids, sterols, steroids and lipid-soluble vitamins. Dietary factors such as phytochemicals are capable of affecting CYP expression and activity, which may be important in diet-drug interactions and in the development of fatty liver disease, cardiovascular disease and cancer. One important diet-CYP interaction is with diets containing plant proteins, particularly soy protein. Soy diets are traditionally consumed in Asian countries and are linked to lower incidence of several cancers and of cardiovascular disease in Asian populations. Soy is also an important protein source in vegetarian and vegan diets and the sole protein source in soy infant formulas. Recent studies suggest that consumption of soy can inhibit induction of CY1 enzymes by polycyclic aromatic hydrocarbons (PAHs) which may contribute to cancer prevention. In addition, there are data to suggest that soy components promiscuously activate several nuclear receptors including PXR, PPAR and LXR resulting in increased expression of CYP3As, CYP4As and CYPs involved in metabolism of cholesterol to bile acids. Such soy-CYP interactions may alter drug pharmacokinetics and therapeutic efficacy and are associated with improved lipid homeostasis and reduced risk of cardiovascular disease. The current review summarizes results from in vitro; in vivo and clinical studies of soy-CYP interactions and examines the evidence linking the effects of soy diets on CYP expression to isoflavone phytoestrogens, particularly, genistein and daidzein that are associated with soy protein. PMID:27440109

  10. Chitosan and chemically modified chitosan beads for acid dyes sorption.

    PubMed

    Azlan, Kamari; Wan Saime, Wan Ngah; Lai Ken, Liew

    2009-01-01

    The capabilities of chitosan and chitosan-EGDE (ethylene glycol diglycidyl ether) beads for removing Acid Red 37 (AR 37) and Acid Blue 25 (AB 25) from aqueous solution were examined. Chitosan beads were cross-linked with EGDE to enhance its chemical resistance and mechanical strength. Experiments were performed as a function of pH, agitation period and concentration of AR 37 and AB 25. It was shown that the adsorption capacities of chitosan for both acid dyes were comparatively higher than those of chitosan-EGDE. This is mainly because cross-linking using EGDE reduces the major adsorption sites -NH3+ on chitosan. Langmuir isotherm model showed the best conformity compared to Freundlich and BET. The kinetic experimental data agreed very well to the pseudo second-order kinetic model. The desorption study revealed that after three cycles of adsorption and desorption by NaOH and HCl, both adsorbents retained their promising adsorption abilities. FT-IR analysis proved that the adsorption of acid dyes onto chitosan-based adsorbents was a physical adsorption. Results also showed that chitosan and chitosan-EGDE beads were favourable adsorbers and could be employed as low-cost alternatives for the removal of acid dyes in wastewater treatment. PMID:19634439

  11. [Adsorption of aflatoxin on montmorillonite modified by low-molecular-weight humic acids].

    PubMed

    Yao, Jia-Jia; Kang, Fu-Xing; Gao, Yan-Zheng

    2012-03-01

    The adsorption of a typical biogenic toxin aflatoxin B1 on montmorillonite modified by low-molecular-weight humic acids (M(r) < 3 500) was investigated. The montmorillonite rapidly adsorbed the aflatoxin B1 until amounting to the maximal capacity, and then the adsorbed aflatoxin B1 slowly released into solution and reached the sorption equilibrium state after 12 h. The sorption isotherm of aflatoxin B1 by montmorillonite could be well described by Langmiur model, while the sorption isotherm by humic acid-modified montmorillonite was well fitted by using the Freundlich model. The modification of the montmorillonite with humic acids obviously enhanced its adsorption capacity for aflatoxin B1, and the amounts of aflatoxin adsorbed by modified montmorillonite were obviously higher than those by montmorillonite. The sorption enhancement by humic acid modification was attributed to (1) the enlarged adsorption sites which owed to the surface collapse of crystal layers induced by organic acids, and (2) the binding of aflatoxin with the humic acid sorbed on mineral surface. In addition, the adsorption amounts of aflatoxin by montmorillonite and modified montmorillonite increased with the increase of pH values in solution, and more significant enhancement was observed for the latter than the former, which attributed to the release of humic acids from the modified montmorillonite with the high pH values in solution. This indicates that increasing the pH values resulted in the enhanced hydrophilic property and the release of the organic acids presented in modified montmorillonite, and more sorption sites were available for aflatoxin on the modified montmorillonite. Results of this work would strengthen our understanding of the behavior and fate of biological contaminants in the environment.

  12. Comparative study of electroless nickel film on different organic acids modified cuprammonium fabric (CF)

    NASA Astrophysics Data System (ADS)

    Zhao, Hang; Lu, Yinxiang

    2016-01-01

    Nickel films were grown on citric acid (CA), malic acid (MA) and oxalic acid (OA) modified cuprammonium fabric (CF) substrates via electroless nickel deposition. The nickel films were examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Their individual deposition rate and electromagnetic interference (EMI) shielding effectiveness (SE) were also investigated to compare the properties of electroless nickel films. SEM images illustrated that the nickel film on MA modified CF substrate was smooth and uniform, and the density of nickel nuclei was much higher. Compared with that of CA modified CF, the coverage of nickel nuclei on OA and MA modified CF substrate was very limited and the nickel particles size was too big. XRD analysis showed that the nickel films deposited on the different modified CF substrates had a structure with Ni (1 1 1) preferred orientation. All the nickel coatings via different acid modification were firmly adhered to the CF substrates, as demonstrated by an ultrasonic washing test. The result of tensile test indicated that the electroless nickel plating on CF has ability to strengthen the CF substrate while causes limited effect on tensile elongation. Moreover, the nickel film deposited on MA modified CF substrate showed more predominant in EMI SE than that deposited on CA or OA modified CF.

  13. Mashed potatoes enriched with soy protein isolate and inulin: chemical, rheological and structural basis.

    PubMed

    Alvarez, M D; Olivares, M D; Blanch, M; Canet, W

    2013-10-01

    Soy protein isolate is typical vegetable protein with health-enhancing activities. Inulin, a prebiotic no digestible carbohydrate, has functional properties. A mashed potato serving of 200 g with added soy protein isolate and/or inulin concentrations of 15-60 g/kg provides from 3 to 12 g of soy protein isolate and/or inulin, respectively. Currently, no information is available about the possible texture-modifying effect of this non-ionizable polar carbohydrate in different soy-based food systems. In this study, the effect of the addition of soy protein isolate and inulin blends at different soy protein isolate: inulin ratios on the degree of inulin polymerization and the rheological and structural properties of fresh mashed and frozen/thawed mashed potatoes were evaluated. The inulin chemical structure remained intact throughout the various treatments, and soy protein isolate did not affect inulin composition being a protein compatible with this fructan. Small-strain rheology showed that both ingredients behaved like soft fillers. In the frozen/thawed mashed potatoes samples, addition of 30 : 30 and 15 : 60 blend ratios significantly increased elasticity (G' value) compared with 0 : 0 control, consequently reducing the freeze/thaw stability conferred by the cryoprotectants. Inulin crystallites caused a significant strengthening effect on soy protein isolate gel. Micrographs revealed that soy protein isolate supports the inulin structure by building up a second fine-stranded network. Thereby, possibility of using soy protein isolate and inulin in combination with mashed potatoes to provide a highly nutritious and healthy product is promising.

  14. 40 CFR 721.10529 - Cobalt iron manganese oxide, carboxylic acid-modified (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cobalt iron manganese oxide... Significant New Uses for Specific Chemical Substances § 721.10529 Cobalt iron manganese oxide, carboxylic acid... substance identified generically as cobalt iron manganese oxide, carboxylic acid-modified (PMN P-12-35)...

  15. 40 CFR 721.10529 - Cobalt iron manganese oxide, carboxylic acid-modified (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cobalt iron manganese oxide... Significant New Uses for Specific Chemical Substances § 721.10529 Cobalt iron manganese oxide, carboxylic acid... substance identified generically as cobalt iron manganese oxide, carboxylic acid-modified (PMN P-12-35)...

  16. A Sialylated Glycan Microarray Reveals Novel Interactions of Modified Sialic Acids with Proteins and Viruses*

    PubMed Central

    Song, Xuezheng; Yu, Hai; Chen, Xi; Lasanajak, Yi; Tappert, Mary M.; Air, Gillian M.; Tiwari, Vinod K.; Cao, Hongzhi; Chokhawala, Harshal A.; Zheng, Haojie; Cummings, Richard D.; Smith, David F.

    2011-01-01

    Many glycan-binding proteins in animals and pathogens recognize sialic acid or its modified forms, but their molecular recognition is poorly understood. Here we describe studies on sialic acid recognition using a novel sialylated glycan microarray containing modified sialic acids presented on different glycan backbones. Glycans terminating in β-linked galactose at the non-reducing end and with an alkylamine-containing fluorophore at the reducing end were sialylated by a one-pot three-enzyme system to generate α2–3- and α2–6-linked sialyl glycans with 16 modified sialic acids. The resulting 77 sialyl glycans were purified and quantified, characterized by mass spectrometry, covalently printed on activated slides, and interrogated with a number of key sialic acid-binding proteins and viruses. Sialic acid recognition by the sialic acid-binding lectins Sambucus nigra agglutinin and Maackia amurensis lectin-I, which are routinely used for detecting α2–6- and α2–3-linked sialic acids, are affected by sialic acid modifications, and both lectins bind glycans terminating with 2-keto-3-deoxy-d-glycero-d-galactonononic acid (Kdn) and Kdn derivatives stronger than the derivatives of more common N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Three human parainfluenza viruses bind to glycans terminating with Neu5Ac or Neu5Gc and some of their derivatives but not to Kdn and its derivatives. Influenza A virus also does not bind glycans terminating in Kdn or Kdn derivatives. An especially novel aspect of human influenza A virus binding is its ability to equivalently recognize glycans terminated with either α2–6-linked Neu5Ac9Lt or α2–6-linked Neu5Ac. Our results demonstrate the utility of this sialylated glycan microarray to investigate the biological importance of modified sialic acids in protein-glycan interactions. PMID:21757734

  17. Enhancing aptamer function and stability via in vitro selection using modified nucleic acids.

    PubMed

    Meek, Kirsten N; Rangel, Alexandra E; Heemstra, Jennifer M

    2016-08-15

    Nucleic acid aptamers have emerged as a promising alternative to antibodies for use as recognition elements in therapeutics, bioimaging, and analytical applications. A key benefit that aptamers possess relative to antibodies is their ability to be chemically synthesized. This advantage, coupled with the broad range of modified nucleotide building blocks that can be constructed using chemical synthesis, has enabled the discovery and development of modified aptamers having extraordinary affinity, specificity, and biostability. Early efforts to generate modified aptamers focused on selection of a native DNA or RNA aptamer, followed by post-selection trial-and-error testing of modifications. However, recent advances in polymerase engineering and templated nucleic acid synthesis have enabled the direct selection of aptamers having modified backbones and nucleobases. This review will discuss these technological advances and highlight the improvements in aptamer function that have been realized through in vitro selection of non-natural nucleic acids.

  18. Modified MCM-41 as a drug delivery system for acetylsalicylic acid

    NASA Astrophysics Data System (ADS)

    Vyskočilová, Eliška; Luštická, Ivana; Paterová, Iva; Machová, Libuše; Červený, Libor

    2014-12-01

    The modification of prepared MCM-41 by different groups (amino, chloro and oxo) was studied. Prepared materials were treated by acetylsalicylic acid and hybrid materials were characterized, compared from the point of view of immobilized amount of active substance. The highest amount of acetylsalicylic acid was detected using methyl-tert- butyl ether as a solvent and MCM-41 without modification after 1 h (0.35 g per 1 g of the support) or MCM modified by amino group after 5 h (0.37 g per 1 g of the support) as a support. Using amino modified MCM, the longer treatment by acetylsalicylic acid converged to the equilibrium and after 24 h the immobilized amount was 0.3 g per 1 g. A dissolution in vitro study was carried out, comparing the stability of formed interactions. The slowest dissolution was detected using non-modified MCM-41 and oxo modified material.

  19. Enhancing aptamer function and stability via in vitro selection using modified nucleic acids.

    PubMed

    Meek, Kirsten N; Rangel, Alexandra E; Heemstra, Jennifer M

    2016-08-15

    Nucleic acid aptamers have emerged as a promising alternative to antibodies for use as recognition elements in therapeutics, bioimaging, and analytical applications. A key benefit that aptamers possess relative to antibodies is their ability to be chemically synthesized. This advantage, coupled with the broad range of modified nucleotide building blocks that can be constructed using chemical synthesis, has enabled the discovery and development of modified aptamers having extraordinary affinity, specificity, and biostability. Early efforts to generate modified aptamers focused on selection of a native DNA or RNA aptamer, followed by post-selection trial-and-error testing of modifications. However, recent advances in polymerase engineering and templated nucleic acid synthesis have enabled the direct selection of aptamers having modified backbones and nucleobases. This review will discuss these technological advances and highlight the improvements in aptamer function that have been realized through in vitro selection of non-natural nucleic acids. PMID:27012179

  20. Modified pseudomonas oleovorans phaC1 nucleic acids encoding bispecific polyhydroxyalkanoate polymerase

    DOEpatents

    Srienc, Friedrich; Jackson, John K.; Somers, David A.

    2000-01-01

    A genetically engineered Pseudomonas oleovorans phaC1 polyhydroxyalkanoate (PHA) polymerase having tailored substrate specificity is provided. The modified PHA polymerase is preferably a "bispecific" PHA polymerase capable of copolymerizing a short chain length monomer and a medium chain length monomer is provided. Methods for making the modified PHA polymerase and for making nucleic acids encoding the modified PHA polymerase are also disclosed, as are methods of producing PHA using the modified PHA polymerase. The invention further includes methods to assay for altered substrate specificity.

  1. Structurally modified fatty acids - clinical potential as tracers of metabolism

    SciTech Connect

    Dudczak, R.; Schmoliner, R.; Angelberger, P.; Knapp, F.F.; Goodman, M.M.

    1985-01-01

    Recently 15-p-iodophenyl-betamethyl-pentadecanoic acid (BMPPA) was proposed for myocardial scintigraphy, as possible probe of metabolic processes other than ..beta..-oxidation. In 19 patients myocardial scintigraphy was done after i.v. BMPPA (2 to 4 mCi). Data were collected (LAO 45/sup 0//14; anterior/5) for 100 minutes in the fasted patients. From heart (H) and liver (L) organ to background (BG) ratios were calculated, and the elimination (E) behavior was analyzed from BG (V. cava region) corrected time activity curves. In 10 patients plasma and urine were examined. By CHCl/sub 3//MeOH extraction of plasma samples (90 min. pi) both in water and in organic medium soluble catabolites were found. TLC fractionation showed that those were co-migrating, compared to standards, with benzoic acid, BMPPA and triglycerides. In urine (0 to 2h pi: 4.1% dose) hippuric acid was found. It is concluded that BMPPA is a useful agent for myocardial scintigraphy. Its longer retention in the heart compared to unbranched radioiodinated fatty acids may facilitate SPECT studies. Rate of elimination and plasma analysis indicate the metabolic breakdown of BMPPA. Yet, the complexity of the supposed mechanism may impede curve interpretation in terms of specific metabolic pathways. 19 refs., 5 tabs.

  2. Imprinted zeolite modified carbon paste electrode as a potentiometric sensor for uric acid

    NASA Astrophysics Data System (ADS)

    Khasanah, Miratul; Widati, Alfa Akustia; Fitri, Sarita Aulia

    2016-03-01

    Imprinted zeolite modified carbon paste electrode (carbon paste-IZ) has been developed and applied to determine uric acid by potentiometry. The imprinted zeolite (IZ) was synthesized by the mole ratio of uric acid/Si of 0.0306. The modified electrode was manufactured by mass ratio of carbon, IZ and solid paraffin was 40:25:35. The modified electrode had shown the measurement range of 10-5 M to 10-2 M with Nernst factor of 28.6 mV/decade, the detection limit of 5.86 × 10-6 M and the accuracy of 95.3 - 105.0%. Response time of the electrode for uric acid 10-5 M - 10-2 M was 25 - 44 s. The developed electrode showed the high selectivity toward uric acid in the urea matrix. Life time of the carbon paste-IZ electrode was 10 weeks.

  3. Plants having modified response to ethylene by transformation with an ETR nucleic acid

    DOEpatents

    Meyerowitz, Elliott M.; Chang, Caren; Bleecker, Anthony B.

    2001-01-01

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

  4. Physicochemical and Microbiological Properties of Yogurt-cheese Manufactured with Ultrafiltrated Cow's Milk and Soy Milk Blends.

    PubMed

    Lee, Na-Kyoung; Mok, Bo Ram; Jeewanthi, Renda Kankanamge Chaturika; Yoon, Yoh Chang; Paik, Hyun-Dong

    2015-01-01

    The objective of this study was to develop yogurt-cheese using cow's milk, ultrafiltrated cow's milk, and soy milk. The addition of soy milk and ultrafiltrated milk increased the amount of protein in the yogurt-cheese. Yogurt-cheeses were made using cheese base using 10% and 20% soy milk with raw and ultrafiltrated cow's milk, and stored at 4℃ during 2 wk. The yield of yogurt-cheeses made with added soy milk was decreased and the cutting point was delayed compared to yogurt-cheese made without soy milk. Yogurt-cheese made using ultrafiltrated cow's milk showed the highest yield. However, yogurt-cheese made with added soy milk had higher protein content and titratable acidity than yogurt-cheese made using raw and ultrafiltrated cow's milk. Fat and lactose contents in the yogurt-cheese made with added soy milk were lower. Yogurt-cheeses made with added soy milk contained several soy protein bands corresponding to the sizes of α2-, β-, and κ-casein band. Yogurt-cheese made with added soy milk had similar elasticity to yogurt-cheese made without soy milk but had lower cohesiveness. There was no significant difference in the number of lactic acid bacteria in the different cheeses, as all had over 8.0 Log CFU/g. Considering these data and the fact that proteins and fats of vegetable origin with high biological value were observed as well as unsaturated fats, yogurt-cheese made with added soy milk can be considered to be a functional food.

  5. Physicochemical and Microbiological Properties of Yogurt-cheese Manufactured with Ultrafiltrated Cow's Milk and Soy Milk Blends

    PubMed Central

    Lee, Na-Kyoung; Mok, Bo Ram; Jeewanthi, Renda Kankanamge Chaturika; Yoon, Yoh Chang; Paik, Hyun-Dong

    2015-01-01

    The objective of this study was to develop yogurt-cheese using cow’s milk, ultrafiltrated cow’s milk, and soy milk. The addition of soy milk and ultrafiltrated milk increased the amount of protein in the yogurt-cheese. Yogurt-cheeses were made using cheese base using 10% and 20% soy milk with raw and ultrafiltrated cow’s milk, and stored at 4℃ during 2 wk. The yield of yogurt-cheeses made with added soy milk was decreased and the cutting point was delayed compared to yogurt-cheese made without soy milk. Yogurt-cheese made using ultrafiltrated cow’s milk showed the highest yield. However, yogurt-cheese made with added soy milk had higher protein content and titratable acidity than yogurt-cheese made using raw and ultrafiltrated cow’s milk. Fat and lactose contents in the yogurt-cheese made with added soy milk were lower. Yogurt-cheeses made with added soy milk contained several soy protein bands corresponding to the sizes of α2-, β-, and κ-casein band. Yogurt-cheese made with added soy milk had similar elasticity to yogurt-cheese made without soy milk but had lower cohesiveness. There was no significant difference in the number of lactic acid bacteria in the different cheeses, as all had over 8.0 Log CFU/g. Considering these data and the fact that proteins and fats of vegetable origin with high biological value were observed as well as unsaturated fats, yogurt-cheese made with added soy milk can be considered to be a functional food. PMID:26761829

  6. Forest die-back modified plankton recovery from acidic stress.

    PubMed

    Vrba, Jaroslav; Kopáček, Jiří; Fott, Jan; Nedbalová, Linda

    2014-03-01

    We examined long-term data on water chemistry of Lake Rachelsee (Germany) following the changes in acidic depositions in central Europe since 1980s. Despite gradual chemical recovery of Rachelsee, its biological recovery was delayed. In 1999, lake recovery was abruptly reversed by a coincident forest die-back, which resulted in elevated terrestrial export of nitrate and ionic aluminum lasting ~5 years. This re-acidification episode provided unique opportunity to study plankton recovery in the rapidly recovering lake water after the abrupt decline in nitrate leaching from the catchment. There were sudden changes both in lake water chemistry and in plankton biomass structure, such as decreased bacterial filaments, increased phytoplankton biomass, and rotifer abundance. The shift from dominance of heterotrophic to autotrophic organisms suggested their substantial release from severe phosphorus stress. Such a rapid change in plankton structure in a lake recovering from acidity has, to the best of our knowledge, not been previously documented.

  7. Modified alginate and chitosan for lactic acid bacteria immobilization.

    PubMed

    Le-Tien, Canh; Millette, Mathieu; Mateescu, Mircea-Alexandru; Lacroix, Monique

    2004-06-01

    Beads with enhanced-stability acid media, which were based on alginate and chitosan functionalized by succinylation (increasing the anionic charges able to retain protons) or by acylation (improving matrix hydrophobicity), were developed for immobilization of bacterial cells. Beads (3 mm diameter) formed by ionotropic gelation with CaCl(2) presented good mechanical characteristics. After 30 min incubation of viable free Lactobacillus rhamnosus cells in simulated gastric fluid (pH 1.5), we noticed that the level of viable bacteria was undetectable. Bacterial immobilization in native-alginate-based beads generated a viable-cell count of 22-26%, whereas, when entrapped in succinylated alginate and chitosan beads, the percentage of viable cells was of 60 and 66%, respectively. Best viability (87%) was found for bacteria immobilized in N -palmitoylaminoethyl alginate, which affords a high protective effect, probably due to long alkyl pendants that improve the beads' hydrophobicity, limiting hydration in the acidic environment.

  8. Impact of soy protein from differently processed products of cardiovascular disease risk factors and vascular endothelial function in hypercholesterolemic subjects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The magnitude of the effect of soy protein on lipoprotein concentrations is variable. This discordance is likely attributed to the various forms of soy protein used, as well as subtle unrecognized shifts in dietary fatty acid, cholesterol and/or fiber. Objective: Evaluate the impact o...

  9. Characterisation of aroma profiles of commercial soy sauce by odour activity value and omission test.

    PubMed

    Feng, Yunzi; Su, Guowan; Zhao, Haifeng; Cai, Yu; Cui, Chun; Sun-Waterhouse, Dongxiao; Zhao, Mouming

    2015-01-15

    Twenty-seven commercial soy sauces produced through three different fermentation processes (high-salt liquid-state fermentation soy sauce, HLFSS; low-salt solid-state fermentation soy sauce, LSFSS; Koikuchi soy sauce, KSS) were examined to identify the aroma compounds and the effect of fermentation process on the flavour of the soy sauce was investigated. Results showed that 129 volatiles were identified, of which 41 aroma-active components were quantified. The types of odorants occurring in the three soy sauce groups were similar, although their intensities significantly differed. Many esters and phenols were found at relatively high intensities in KSS, whereas some volatile acids only occurred in LSFSS. Furthermore, 23 aroma compounds had average OAVs>1, among which 3-methylbutanal, ethyl acetate, 4-hydroxy-2-ethyl-5-methyl-3(2H)-furanone, 2-methylbutanal and 3-(methylthio)propanal exhibited the highest average OAVs (>100). In addition, omission tests verified the important contribution of the products resulting from amino acid catabolism to the characteristic aroma of soy sauce.

  10. Chemical and Physical Characteristics of Soy Proteins for New Industrial Applications

    NASA Astrophysics Data System (ADS)

    Arboleda Fernandez, Julio Cesar

    Despite of being environmentally friendly, biocompatible, rich in chemical functionality and abundant as residual materials, soy proteins (SPs) are used for low added value applications. In this work, SPs were studied and used as potentially useful biomacromolecules for different industrial applications with high added value. Initially the effect of acid hydrolysis of soy proteins as a potential route for subsequent surface modification was studied, finding that SP hydrolysates tend to form less aggregates and to adsorb at faster rates compared with unmodified SP; nevertheless, it was also found that the amount of protein adsorbed and water contact angle of the treated surface does not change significantly. Secondly, the gel forming properties of SPs were used to produce aerogels with densities in the order of 0.1 g/cm3. To improve their mechanical properties, the reinforcement of these materials with cellulose nanofibers was studied, obtaining composite aerogels with SP loadings as high as ca. 70% that display a compression modulus of 4.4 MPa, very close to the value obtained from the pure nanofibers aerogels. The composite materials gain moisture (up to 5%) in equilibrium with 50% RH air. Futhermore, their physical integrity is unchanged upon immersion in polar and non-polar solvents, exhibiting sorption rates dependent on the aerogel composition, morphology and swelling abilities. Finally, different soy protein based products and derivatives were used to enhance the dry strength properties of wood fibers in paper production. Experiments using soy flour, soy protein isolate, soy protein isolate hydrolysates, cationized soy flour, and soy flour combined with cationic starch and chitosan were done, obtaining satisfactory results when soy protein flour was utilized in combination with conventional treatments involving cationic polymers. The current results confirm the opportunity to valorize residual soy products that are underutilized today as alternatives to oil

  11. Application of acid-modified Imperata cylindrica powder for latent fingerprint development.

    PubMed

    Low, Wei Zeng; Khoo, Bee Ee; Aziz, Zalina Binti Abdul; Low, Ling Wei; Teng, Tjoon Tow; bin Abdullah, Ahmad Fahmi Lim

    2015-09-01

    A novel powdering material that utilizes acid-modified Imperata cylindrica (IC) powder for the development of fingermarks was studied. Experiments were carried out to determine the suitability, adherence quality and sensitivity of the acid-modified IC powder. Fingermarks of different constituents (eccrine, sebaceous and natural fingermarks) on different types of surfaces were used. Acid-modified IC powder was also used to develop fingermarks of different ages as well as aged fingermarks recovered from the water. From the visual inspection, acid-modified IC powder was able to interact with different fingermark constituents and produced distinct ridge details on the examined surfaces. It was also able to develop aged fingermarks and fingermarks that were submerged in water. A statistical comparison was made against the Sirchie® Hi-Fi black powder in terms of the powders' sensitivity and quality of the developed natural fingermarks. The image quality was analyzed using MITRE's Image Quality of Fingerprint (IQF) software. From the experiments, acid-modified IC powder has the potential as a fingermark development powder, although natural fingermarks developed by Sirchie® black powder showed better quality and sensitivity based on the results of the statistical comparison. PMID:26385718

  12. Application of acid-modified Imperata cylindrica powder for latent fingerprint development.

    PubMed

    Low, Wei Zeng; Khoo, Bee Ee; Aziz, Zalina Binti Abdul; Low, Ling Wei; Teng, Tjoon Tow; bin Abdullah, Ahmad Fahmi Lim

    2015-09-01

    A novel powdering material that utilizes acid-modified Imperata cylindrica (IC) powder for the development of fingermarks was studied. Experiments were carried out to determine the suitability, adherence quality and sensitivity of the acid-modified IC powder. Fingermarks of different constituents (eccrine, sebaceous and natural fingermarks) on different types of surfaces were used. Acid-modified IC powder was also used to develop fingermarks of different ages as well as aged fingermarks recovered from the water. From the visual inspection, acid-modified IC powder was able to interact with different fingermark constituents and produced distinct ridge details on the examined surfaces. It was also able to develop aged fingermarks and fingermarks that were submerged in water. A statistical comparison was made against the Sirchie® Hi-Fi black powder in terms of the powders' sensitivity and quality of the developed natural fingermarks. The image quality was analyzed using MITRE's Image Quality of Fingerprint (IQF) software. From the experiments, acid-modified IC powder has the potential as a fingermark development powder, although natural fingermarks developed by Sirchie® black powder showed better quality and sensitivity based on the results of the statistical comparison.

  13. Determination of electroactive organic acids by anion-exchange chromatography using a copper modified electrode.

    PubMed

    Casella, I G; Gatta, M

    2001-04-01

    An ion-chromatographic method combined with electrochemical detection at a copper-based chemically modified glassy carbon electrode (Cu-GC) has been shown to provide a simple analytical approach for the determination of some common organic acids in alkaline medium. Under the optimized isocratic chromatographic conditions (i.e. 0.1 M NaOH plus 80 mM CH3COONa), organic acids such as gallic, ascorbic, gluconic, lactobionic, galacturonic and glucuronic acid could be separated in less than 20 min. Under constant potential amperometric detection (i.e. 0.55 V vs. Ag-AgCl) the Cu-GC modified electrode allowed detection limits between 2 and 5 pmol for all investigated organic acids while the linear dynamic range spanned generally over three orders of magnitude. Examples of applications included the separation and quantitation of some common organic acids in vinegar, honey and tea samples, are given.

  14. Lactic acid bacterial extract as a biogenic mineral growth modifier

    NASA Astrophysics Data System (ADS)

    Borah, Ballav M.; Singh, Atul K.; Ramesh, Aiyagari; Das, Gopal

    2009-04-01

    The formation of minerals and mechanisms by which bacteria could control their formation in natural habitats is now of current interest for material scientists to have an insight of the mechanism of in vivo mineralization, as well as to seek industrial and technological applications. Crystalline uniform structures of calcium and barium minerals formed micron-sized building blocks when synthesized in the presence of an organic matrix consisting of secreted protein extracts from three different lactic acid bacteria (LAB) viz.: Lactobacillus plantarum MTCC 1325, Lactobacillus acidophilus NRRL B4495 and Pediococcus acidilactici CFR K7. LABs are not known to form organic matrix in biological materialization processes. The influence of these bacterial extracts on the crystallization behavior was investigated in details to test the basic coordination behavior of the acidic protein. In this report, varied architecture of the mineral crystals obtained in presence of high molecular weight protein extracts of three different LAB strains has been discussed. The role of native form of high molecular weight bacterial protein extracts in the generation of nucleation centers for crystal growth was clearly established. A model for the formation of organic matrix-cation complex and the subsequent events leading to crystal growth is proposed.

  15. Dietary soy oil content and soy-derived phytoestrogen genistein increase resistance to alopecia areata onset in C3H/HeJ mice.

    PubMed

    McElwee, K J; Niiyama, S; Freyschmidt-Paul, P; Wenzel, E; Kissling, S; Sundberg, J P; Hoffmann, R

    2003-02-01

    Alopecia areata (AA) is a complex, multi-factorial disease where genes and the environment may affect susceptibility and severity. Diet is an environmental factor with the potential to influence disease susceptibility. We considered dietary soy (soya) oil content and the soy-derived phytoestrogen genistein as potential modifying agents for C3H/HeJ mouse AA. Normal haired C3H/HeJ mice were grafted with skin from spontaneous AA affected mice, a method previously shown to induce AA. Grafted mice were given one of three diets containing 1%, 5% or 20% soy oil and observed for AA development. In a separate study, mice on a 1% soy oil diet were injected with 1 mg of genistein three times per week for 10 weeks or received the vehicle as a control. Of mice on 1%, 5%, and 20% soy oil diets, 43 of 50 mice (86%), 11 of 28 mice (39%), and 2 of 11 mice (18%) developed AA, respectively. Four of 10 mice injected with genistein and 9 of 10 controls developed AA. Mice with AA had hair follicle inflammation consistent with observations for spontaneous mouse AA, but no significant association was observed between the extent of hair loss and diet or genistein injection. Mice that failed to develop AA typically experience white hair regrowth from their skin grafts associated with a moderate macrophage and dendritic cell infiltration. Soy oil and derivatives have previously been reported to modify inflammatory conditions. Hypothetically, soy oil compounds may act on C3H/HeJ mice through modulating estrogen-dependent mechanisms and/or inflammatory activity to modify AA susceptibility. PMID:12631244

  16. Boronic acid-modified magnetic materials for antibody purification

    PubMed Central

    Dhadge, Vijaykumar L.; Hussain, Abid; Azevedo, Ana M.; Aires-Barros, Raquel; Roque, Ana C. A.

    2014-01-01

    Aminophenyl boronic acids can form reversible covalent ester interactions with cis-diol-containing molecules, serving as a selective tool for binding glycoproteins as antibody molecules that possess oligosaccharides in both the Fv and Fc regions. In this study, amino phenyl boronic acid (APBA) magnetic particles (MPs) were applied for the magnetic separation of antibody molecules. Iron oxide MPs were firstly coated with dextran to avoid non-specific binding and then with 3-glycidyloxypropyl trimethoxysilane to allow further covalent coupling of APBA (APBA_MP). When contacted with pure protein solutions of human IgG (hIgG) and bovine serum albumin (BSA), APBA_MP bound 170 ± 10 mg hIgG g−1 MP and eluted 160 ± 5 mg hIgG g−1 MP, while binding only 15 ± 5 mg BSA g−1 MP. The affinity constant for the interaction between hIgG and APBA_MP was estimated as 4.9 × 105 M−1 (Ka) with a theoretical maximum capacity of 492 mg hIgG adsorbed g−1 MP (Qmax), whereas control particles bound a negligible amount of hIgG and presented an estimated theoretical maximum capacity of 3.1 mg hIgG adsorbed g−1 MP (Qmax). APBA_MPs were also tested for antibody purification directly from CHO cell supernatants. The particles were able to bind 98% of IgG loaded and to recover 95% of pure IgG (purity greater than 98%) at extremely mild conditions. PMID:24258155

  17. Boronic acid-modified magnetic materials for antibody purification.

    PubMed

    Dhadge, Vijaykumar L; Hussain, Abid; Azevedo, Ana M; Aires-Barros, Raquel; Roque, Ana C A

    2014-02-01

    Aminophenyl boronic acids can form reversible covalent ester interactions with cis-diol-containing molecules, serving as a selective tool for binding glycoproteins as antibody molecules that possess oligosaccharides in both the Fv and Fc regions. In this study, amino phenyl boronic acid (APBA) magnetic particles (MPs) were applied for the magnetic separation of antibody molecules. Iron oxide MPs were firstly coated with dextran to avoid non-specific binding and then with 3-glycidyloxypropyl trimethoxysilane to allow further covalent coupling of APBA (APBA_MP). When contacted with pure protein solutions of human IgG (hIgG) and bovine serum albumin (BSA), APBA_MP bound 170 ± 10 mg hIgG g(-1) MP and eluted 160 ± 5 mg hIgG g(-1) MP, while binding only 15 ± 5 mg BSA g(-1) MP. The affinity constant for the interaction between hIgG and APBA_MP was estimated as 4.9 × 10(5) M(-1) (Ka) with a theoretical maximum capacity of 492 mg hIgG adsorbed g(-1) MP (Qmax), whereas control particles bound a negligible amount of hIgG and presented an estimated theoretical maximum capacity of 3.1 mg hIgG adsorbed g(-1) MP (Qmax). APBA_MPs were also tested for antibody purification directly from CHO cell supernatants. The particles were able to bind 98% of IgG loaded and to recover 95% of pure IgG (purity greater than 98%) at extremely mild conditions.

  18. Acid-base properties of sorbents based on modified zirconium(IV) phosphates

    SciTech Connect

    Bekrenev, A.V.; Pyartman, A.K.

    1995-11-01

    Modifying and doping syntheses are widely used to improve the reproducibility of ion-exchange properties and to increase the capacity of inorganic ion exchangers. Numerous examples of doping zirconium phosphate ion exchangers with cationic or anionic additives are known. The aim of this work was to investigate the acid-base properties of zirconium phosphates modified with anionic additives (phthalate and sulfosalicylate ions) in comparison with unmodified samples.

  19. Cox-2 inhibitory effects of naturally occurring and modified fatty acids.

    PubMed

    Ringbom, T; Huss, U; Stenholm, A; Flock, S; Skattebøl, L; Perera, P; Bohlin, L

    2001-06-01

    In the search for new cyclooxygenase-2 (COX-2) selective inhibitors, the inhibitory effects of naturally occurring fatty acids and some of their structural derivatives on COX-2-catalyzed prostaglandin biosynthesis were investigated. Among these fatty acids, linoleic acid (LA), alpha-linolenic acid (alpha-LNA), myristic acid, and palmitic acid were isolated from a CH(2)Cl(2) extract of the plant Plantago major by bioassay-guided fractionation. Inhibitory effects of other natural, structurally related fatty acids were also investigated: stearic acid, oleic acid, pentadecanoic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Further, the inhibitory effects of these compounds on COX-2- and COX-1-catalyzed prostaglandin biosynthesis was compared with the inhibition of some synthesized analogues of EPA and DHA with ether or thioether functions. The most potent COX-2-catalyzed prostaglandin biosynthesis inhibitor was all-(Z)-5-thia-8,11,14,17-eicosatetraenoic acid (2), followed by EPA, DHA, alpha-LNA, LA, (7E,11Z,14Z,17Z)-5-thiaeicosa-7,11,14,17-tetraenoic acid, all-(Z)-3-thia-6,9,12,15-octadecatetraenoic acid, and (5E,9Z,12Z,15Z,18Z)-3-oxaheneicosa-5,9,12,15,18-pentaenoic acid, with IC(50) values ranging from 3.9 to180 microM. The modified compound 2 and alpha-LNA were most selective toward COX-2, with COX-2/COX-1 ratios of 0.2 and 0.1, respectively. This study shows that several of the natural fatty acids as well as all of the semisynthetic thioether-containing fatty acids inhibited COX-2-catalyzed prostaglandin biosynthesis, where alpha-LNA and compound 2 showed selectivity toward COX-2. PMID:11421736

  20. Eco-certification and greening the Brazilian soy and corn supply chains

    NASA Astrophysics Data System (ADS)

    VanWey, Leah K.; Richards, Peter D.

    2014-03-01

    Garrett et al’s recent letter (2013 Environ. Res. Lett. 8 044055) shows the trade value of Brazil’s production of non-genetically modified (GM) crops, and argues that production for this niche market laid the foundation for the expansion of a variety of non-GM and eco-certification systems. We argue that the conditions underlying the development and perpetuation of the non-GM certification systems are transient. The expansion of soy production has dampened the conditions that promoted the dominance of non-GM soy in the region. The state at the heart of the production of conventional soy, Mato Grosso, already has transitioned to almost 90% GM soy in the most recent agricultural season. The continued viability of eco-certification systems depends on strengthening institutions on the demand side, and ensuring farm-level costs on the supply side match price premiums reaching the farm level.

  1. (13)C-NMR-Based Metabolomic Profiling of Typical Asian Soy Sauces.

    PubMed

    Kamal, Ghulam Mustafa; Yuan, Bin; Hussain, Abdullah Ijaz; Wang, Jie; Jiang, Bin; Zhang, Xu; Liu, Maili

    2016-01-01

    It has been a strong consumer interest to choose high quality food products with clear information about their origin and composition. In the present study, a total of 22 Asian soy sauce samples have been analyzed in terms of (13)C-NMR spectroscopy. Spectral data were analyzed by multivariate statistical methods in order to find out the important metabolites causing the discrimination among typical soy sauces from different Asian regions. It was found that significantly higher concentrations of glutamate in Chinese red cooking (CR) soy sauce may be the result of the manual addition of monosodium glutamate (MSG) in the final soy sauce product. Whereas lower concentrations of amino acids, like leucine, isoleucine and valine, observed in CR indicate the different fermentation period used in production of CR soy sauce, on the other hand, the concentration of some fermentation cycle metabolites, such as acetate and sucrose, can be divided into two groups. The concentrations of these fermentation cycle metabolites were lower in CR and Singapore Kikkoman (SK), whereas much higher in Japanese shoyu (JS) and Taiwan (China) light (TL), which depict the influence of climatic conditions. Therefore, the results of our study directly indicate the influences of traditional ways of fermentation, climatic conditions and the selection of raw materials and can be helpful for consumers to choose their desired soy sauce products, as well as for researchers in further authentication studies about soy sauce. PMID:27598115

  2. Complete amino acid sequence and structure characterization of the taste-modifying protein, miraculin.

    PubMed

    Theerasilp, S; Hitotsuya, H; Nakajo, S; Nakaya, K; Nakamura, Y; Kurihara, Y

    1989-04-25

    The taste-modifying protein, miraculin, has the unusual property of modifying sour taste into sweet taste. The complete amino acid sequence of miraculin purified from miracle fruits by a newly developed method (Theerasilp, S., and Kurihara, Y. (1988) J. Biol. Chem. 263, 11536-11539) was determined by an automatic Edman degradation method. Miraculin was a single polypeptide with 191 amino acid residues. The calculated molecular weight based on the amino acid sequence and the carbohydrate content (13.9%) was 24,600. Asn-42 and Asn-186 were linked N-glycosidically to carbohydrate chains. High homology was found between the amino acid sequences of miraculin and soybean trypsin inhibitor. PMID:2708331

  3. 21 CFR 139.140 - Wheat and soy macaroni products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Wheat and soy macaroni products. 139.140 Section... Macaroni and Noodle Products § 139.140 Wheat and soy macaroni products. (a) Wheat and soy macaroni products... percent of the combined weight of the wheat and soy ingredients used (the soy flour used is made from...

  4. 21 CFR 139.140 - Wheat and soy macaroni products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Wheat and soy macaroni products. 139.140 Section... Macaroni and Noodle Products § 139.140 Wheat and soy macaroni products. (a) Wheat and soy macaroni products... percent of the combined weight of the wheat and soy ingredients used (the soy flour used is made from...

  5. 21 CFR 139.140 - Wheat and soy macaroni products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Wheat and soy macaroni products. 139.140 Section... Macaroni and Noodle Products § 139.140 Wheat and soy macaroni products. (a) Wheat and soy macaroni products... percent of the combined weight of the wheat and soy ingredients used (the soy flour used is made from...

  6. 21 CFR 139.180 - Wheat and soy noodle products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Wheat and soy noodle products. 139.180 Section 139... and Noodle Products § 139.180 Wheat and soy noodle products. (a) Wheat and soy noodle products are the... wheat and soy ingredients used (the soy flour used is made from heat-processed, dehulled soybeans,...

  7. 21 CFR 139.180 - Wheat and soy noodle products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Wheat and soy noodle products. 139.180 Section 139... and Noodle Products § 139.180 Wheat and soy noodle products. (a) Wheat and soy noodle products are the... wheat and soy ingredients used (the soy flour used is made from heat-processed, dehulled soybeans,...

  8. 21 CFR 139.180 - Wheat and soy noodle products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Wheat and soy noodle products. 139.180 Section 139... and Noodle Products § 139.180 Wheat and soy noodle products. (a) Wheat and soy noodle products are the... wheat and soy ingredients used (the soy flour used is made from heat-processed, dehulled soybeans,...

  9. 21 CFR 139.140 - Wheat and soy macaroni products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Wheat and soy macaroni products. 139.140 Section... Macaroni and Noodle Products § 139.140 Wheat and soy macaroni products. (a) Wheat and soy macaroni products... percent of the combined weight of the wheat and soy ingredients used (the soy flour used is made from...

  10. 21 CFR 139.180 - Wheat and soy noodle products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Wheat and soy noodle products. 139.180 Section 139... and Noodle Products § 139.180 Wheat and soy noodle products. (a) Wheat and soy noodle products are the... wheat and soy ingredients used (the soy flour used is made from heat-processed, dehulled soybeans,...

  11. 21 CFR 139.140 - Wheat and soy macaroni products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Wheat and soy macaroni products. 139.140 Section... Macaroni and Noodle Products § 139.140 Wheat and soy macaroni products. (a) Wheat and soy macaroni products... percent of the combined weight of the wheat and soy ingredients used (the soy flour used is made from...

  12. 21 CFR 139.180 - Wheat and soy noodle products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Wheat and soy noodle products. 139.180 Section 139... and Noodle Products § 139.180 Wheat and soy noodle products. (a) Wheat and soy noodle products are the... wheat and soy ingredients used (the soy flour used is made from heat-processed, dehulled soybeans,...

  13. NIR spectroscopy for determining soy contents in processed meat products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy products such as soy concentrate, soy protein and soy grits are used as a meat extender in processed meat products to improve meat texture. However, soy allergies are one of the common food allergies, especially in infants and young children, and can be mild to life-threatening. The United State...

  14. Possible mechanisms behind the differential effects of soy protein and casein feedings on colon cancer biomarkers in the rat.

    PubMed

    Vis, Eric H; Geerse, Gert-Jan; Klaassens, Eline S; van Boekel, Martinus A J S; Alink, Gerrit M

    2005-01-01

    In the present studies, several hypotheses were tested to explain previously reported differential effects of soy and casein on colon cancer biomarkers like cell proliferation, fecal fat, fecal bile acid, alkaline phosphatase, and magnesium excretion in rats. In Study 1, the effect of methionine, a limiting amino acid in soy protein and an amino acid that is thought to have a marked effect on colonic cell proliferation, was tested. It was concluded that methionine up to 1% in the diet had no effect on cell proliferation, using the 3H-thymidine assay. The same study revealed that fecal alkaline phosphatase excretion is a good marker for colonic epithelial damage and fecal magnesium excretion is not. In Study 2, the hypothesis was tested that soy fractions enriched with isoflavones and saponins may increase fat excretion and so influence colonic cell proliferation in rats. It was indeed shown that soy protein isolate and an ethanolic extract from soy protein isolate slightly increased fecal fat excretion (up to 1.7-fold). However, fecal water bile acid and free fatty acid concentrations were decreased after feeding soy protein-based diets compared with casein, and no difference in fecal alkaline phosphatase excretion was observed. In Study 3, the lytic potential of soy saponins and the interaction between saponins and some lytic bile acids were tested in vitro. Data suggest a protective effect from soy saponins by reducing lytic activity of cholic acid. The overall conclusion is that soy protein compared with casein influences several colon cancer risk parameters, indicating a more protective rather than a stimulating effect on colon cancer risk.

  15. Diglycolamic acid modified silica gel for the separation of hazardous trivalent metal ions from aqueous solution.

    PubMed

    Suneesh, A S; Syamala, K V; Venkatesan, K A; Antony, M P; Vasudeva Rao, P R

    2015-01-15

    The surface of the silica gel was modified with diglycolamic acid moieties and the product (Si-DGAH) was characterized by elemental analysis, TG-DTA, (1)H and (29)Si NMR and scanning electron microscopy (SEM). The adsorption behavior of hazardous americium (III) and europium (III) in Si-DGAH was studied from aqueous nitric acid medium to examine the feasibility using the modified silica for the separation of Am(III) and Eu(III) from aqueous wastes. In this context, the effect of various parameters such as the duration of equilibration, and concentrations of europium, nitric acid, sodium nitrate and diethylenetriaminepentaacetic acid (DTPA) in aqueous phase, on the distribution coefficient (K(d)) of Am(III) and Eu(III) was investigated. The distribution coefficient of ∼10(3) mL/g (>99.9% extraction) was obtained for both Am(III) and Eu(III) at pH 3, and the K(d) values decreased with increase in the concentration of nitric acid. Rapid kinetics of extraction in the initial stages of equilibration, followed by the establishment of equilibrium occurred within 30 min. The extraction data were fitted into Langmuir adsorption model and the apparent europium extraction capacity was determined. Europium loading capacity of the sorbent was determined at various feed pH by column method. The study indicated the possibility of using diglycolamic acid-modified silica for the separation of Eu(III) and Am(III) from aqueous wastes. PMID:25454425

  16. /sup 54/Mn absorption and excretion in rats fed soy protein and casein diets

    SciTech Connect

    Lee, D.Y.; Johnson, P.E.

    1989-02-01

    Rats were fed diets containing either soy protein or casein and different levels of manganese, methionine, phytic acid, or arginine for 7 days and then fed test meals labeled with 2 microCi of 54Mn after an overnight fast. Retention of 54Mn in each rat was measured every other day for 21 days using a whole-body counter. Liver manganese was higher (P less than 0.0001) in soy protein-fed rats (8.8 micrograms/g) than in casein-fed rats (5.2 micrograms/g); manganese superoxide dismutase activity also was higher in soy protein-fed rats than in casein-fed rats (P less than 0.01). There was a significant interaction between manganese and protein which affected manganese absorption and biologic half-life of 54Mn. In a second experiment, rats fed soy protein-test meals retained more 54Mn (P less than 0.001) than casein-fed rats. Liver manganese (8.3 micrograms/g) in the soy protein group was also higher than that (5.7 micrograms/g) in the casein group (P less than 0.0001), but manganese superoxide dismutase activity was unaffected by protein. Supplementation with methionine increased 54Mn retention from both soy and casein diets (P less than 0.06); activity of manganese superoxide dismutase increased (P less than 0.05) but liver manganese did not change. The addition of arginine to casein diets had little effect on manganese bioavailability. Phytic acid affected neither manganese absorption nor biologic half-life in two experiments, but it depressed liver manganese in one experiment. These results suggest that neither arginine nor phytic acid was the component in soy protein which made manganese more available from soy protein diets than casein diets.

  17. Investigation of Fatty Acid Ketohydrazone Modified Liposome's Properties as a Drug Carrier

    PubMed Central

    Hayashi, Keita; Kiriishi, Madoka; Suga, Keishi; Okamoto, Yukihiro; Umakoshi, Hiroshi

    2015-01-01

    pH-responsive liposomes were prepared by modifying the liposome with acid-cleaving amphiphiles. Palmitic ketohydrazone (P-KH) or stearic ketohydrazone (S-KH), composed of hydrophilic sugar headgroup and hydrophobic acyl chain, was used as a modifier of the DMPC liposome. Because the ketohydrazone group of P-KH or S-KH was cleaved at low pH conditions (modified liposomes was observed probably via an endocytic pathway. The membrane properties of these liposomes were characterized, focusing on the variation of both polarity (measured by Laurdan) and membrane fluidity (measured by DPH) at low pH condition. The interface of the P-KH modified liposome at acidic pH was found to become more hydrophobic and less fluidic as compared with that at neutral pH; that is, P-KH modified liposome became more rigid structure. Therefore, it seems that the P-KH modified liposome could protect encapsulated drugs from the enzymes in the lysosome. This study shows the novel approach about design of pH-responsive liposomes based on the membrane properties. PMID:26649201

  18. Nuclease stability of boron-modified nucleic acids: application to label-free mismatch detection.

    PubMed

    Reverte, Maëva; Vasseur, Jean-Jacques; Smietana, Michael

    2015-11-21

    5'-End boronic acid-modified oligonucleotides were evaluated against various nucleases at single and double stranded levels. The results show that these modifications induce a high resistance to degradation by calf-spleen and snake venom phosphodiesterases. More importantly, this eventually led to the development of a new label-free enzyme-assisted fluorescence-based method for single mismatch detection.

  19. Development of α-polyoxometalate-polypyrrole-Au nanoparticles modified sensor applied for detection of folic acid.

    PubMed

    Babakhanian, Arash; Kaki, Samineh; Ahmadi, Mahtab; Ehzari, Hosna; Pashabadi, Afshin

    2014-10-15

    In this work, electrochemically synthesized gold nanoparticles (AuNPs) and α-polyoxometalate (α-POM) (K7PMO2W9O39 · H2O) were simultaneously doped into electropolymerized polypyrrole (PPy) film using the cyclic voltammetry (CV) technique. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and CVs were used to characterize the composite films. The PPy-α-POM-AuNPs modified gold (Au) electrode was used to determine folic acid (FA) using square-wave voltammetry (SWV). The modified electrode exhibited excellent electrocatalytic ability to the reduction of FA at 0.3 V (vs. SCE) with the electron transfer rate constant (ks) of 1.15 × 10(-19)s(-1). The common coexisting substances showed no interferences on the response of modified electrode to FA. The modified electrode indicated reproducible behavior and a high level stability during the experiments, making it particularly suitable for the analytical purposes.

  20. Soy food consumption and breast cancer.

    PubMed

    Mourouti, Niki; Panagiotakos, Demosthenes B

    2013-10-01

    Breast cancer is the most frequently diagnosed cancer in female worldwide and occurs as an interaction of genes and diet. As regards diet numerous studies all over the world have associated the disease with many foods and nutrients including soy and its compounds. Soy food and soy products are rich in phytoestrogens, naturally occurring hormone-like compounds with weak estrogenic effects. Despite inconsistencies in the available data, an inverse association between soy food consumption and breast cancer is likely. However, it seems that this correlation is more obvious in Asian rather than Western populations, where the consumption of soy is already higher. Moreover, the vast majority of studies that demonstrate this inverse association are case-control studies, a fact that should be taken into account. In this review, the current scientific evidence relating breast cancer and soy consumption is reported through a systematic way.

  1. [Evaluation of cookies enriched with corn germ and soy fiber].

    PubMed

    Rebolledo, M A; Sangronis, E; Barbosa-Cánovas, G V

    1999-09-01

    The objective of this study was to evaluate four cookie formulations which wheat flour was partially substituted by free-fat corn germ flour and/or soy fiber. Baking quality, protein, fat, ash, dietary fiber, hardness, color, Protein Efficiency Ratio PER and Apparent Digestibility in vivo were determined. A trained panel evaluated color, hardness and fracturability of cookies. Dietary fiber of cookies varied from 8.2 to 24.9% and protein from 11.3 to 12.7%. The source and amount of dietary fiber modified physical, sensory, and nutritional properties of cookies. Cookies formulated with 20% corn germ flour gave the highest PER, Digestibility Aparente in vivo, and acceptance by consumers. This study demonstrated the potential use of free-fat corn germ and soy fiber as functional ingredients.

  2. The influence of UV-irradiation on chitosan modified by the tannic acid addition.

    PubMed

    Sionkowska, A; Kaczmarek, B; Gnatowska, M; Kowalonek, J

    2015-07-01

    The influence of UV-irradiation with the wavelength 254 nm on the properties of chitosan modified by the tannic acid addition was studied. Tannic acid was added to chitosan solution in different weight ratios and after solvent evaporation thin films were formed. The properties of the films such as thermal stability, Young modulus, ultimate tensile strength, moisture content, swelling behavior before and after UV-irradiation were measured and compared. Moreover, the surface properties were studied by contact angle measurements and by the use of atomic force microscopy. The results showed that UV-irradiation caused both, the degradation of the specimen and its cross-linking. The surface of the films made of chitosan modified by the addition of tannic acid was altered by UV-irradiation.

  3. Assessment of isoflavone aglycones variability in soy food supplements using a validated HPLC-UV method

    PubMed Central

    UIFĂLEAN, ALINA; FARCAŞ, ANCA; ILIEŞ, MARIA; HEGHEŞ, SIMONA CODRUŢA; IONESCU, CORINA; IUGA, CRISTINA ADELA

    2015-01-01

    Background and aims Soy supplements are often recommended in the management of menopause symptoms. The declared content of soy supplements is commonly expressed as total isoflavones per dosage form. Given that soy isoflavones have different estrogenic potencies, pharmacokinetics and metabolism, the aim of this study was to evaluate the total isoflavone content and the aglycone profile of seven soy supplements and one soy seed extract. Label accuracy was assessed, in relation to the precise content and the recommended posology for estimating whether the optimal dose is achieved for alleviating menopause symptoms. Methods A high performance liquid chromatography method was developed for evaluating the aglycone content (genistein, daidzein, glycitein). After extraction and acidic hydrolysis, the aglycones were separated on a C18 column, using 0.1% acetic acid and acetonitrile as mobile phases. The flow rate was 1.5mL min−1 and the UV detector wavelength was set at 260nm. A linear relationship was found in the range 5–80μg mL−1. The method was validated using the accuracy profile methodology. Results The total isoflavone content ranged from 6.07 to 41.68mg dosage form−1. Various aglycone profiles were obtained for each supplement which can result in a different estrogenic activity, bioavailability and finally, in a different efficiency in alleviating menopause symptoms. In most clinical trials where soy isoflavones were evaluated, little attention was paid to determining the exact aglycone profile of the employed soy extracts. Conclusions As clinical outcomes continue to be controversial, this study highlights the need of standardization in genistein, rather than total isoflavones and labeling accuracy for soy supplements. PMID:26609272

  4. Consumption of repeatedly heated soy oil increases the serum parameters related to atherosclerosis in ovariectomized rats.

    PubMed

    Adam, Siti Khadijah; Das, Srijit; Soelaiman, Ima Nirwana; Umar, Nor Aini; Jaarin, Kamsiah

    2008-07-01

    Repeated heating of soy oil may promote lipid peroxidation. Oxidized unsaturated fatty acids may contribute to the pathogenesis of atherosclerosis, especially in estrogen-deficient states. This study was performed to explore the deleterious effects of repeatedly heated soy oil on the development of atherosclerosis using ovariectomized rats, which represent an estrogen-deficient state. Twenty-four female Sprague-Dawley rats were ovariectomized and were divided equally into four groups. The control group was fed with 2% cholesterol diet without any oil. The three treatment groups each received 2% cholesterol diet fortified with fresh, once-heated or five-times-heated (repeatedly heated) soy oil, respectively. Serum thiobarbituric acid reactive substances (TBARS), lipid profile and homocysteine levels were measured prior to ovariectomy and at the end of four months. Ovariectomized rats treated with repeatedly heated soy oil showed significant increases in lipid peroxidation and low-density lipoprotein (LDL) levels. Treatment with once-heated or repeatedly heated soy oil caused a significant increase in total cholesterol, while fresh soy oil caused significant reduction in homocysteine level as compared to other groups. Repeatedly heated soy oil caused significant increases in TBARS and LDL as compared to fresh oil. The higher level of homocysteine in the ovariectomized rats fed with repeatedly heated oil, as compared to those fed with fresh oil, also suggests the repeatedly heated oil contributes to the development of atherosclerosis. Importantly, the protective effect of the soy oil may be lost once it was being repeatedly heated. In conclusion, the consumption of repeatedly heated oil may predispose to atherosclerosis in estrogen-deficient states.

  5. Chemisorptive enantioselectivity of chiral epoxides on tartaric-acid modified Pd(111): three-point bonding.

    PubMed

    Mahapatra, Mausumi; Tysoe, Wilfred T

    2015-02-21

    The chemisorption of two chiral molecules, propylene oxide and glycidol, is studied on tartaric-acid modified Pd(111) surfaces by using temperature-programmed desorption to measure adsorbate coverage. It is found that R-glycidol shows preferential enantioselective chemisorption on (S,S)-tartaric acid modified Pd(111) surfaces, while propylene oxide does not adsorb enantioselectively. The enantioselectivity of glycidol depends on the tartaric acid coverage, and is exhibited for low tartaric acid coverages indicating that the bitartrate phase is responsible for the chiral recognition. The lack of enantioselectivity when using propylene oxide as a chiral probe implies that the enantiospecific interaction between glycidol and bitartate species is due to hydrogen-bonding interactions of the -OH group of glycidol. Scanning tunneling microscopy images were collected for tartaric acid adsorbed on Pd(111) under the same experimental conditions as used for enantioselective experiments. When tartaric acid is dosed at room temperature and immediately cooled to 100 K for imaging, individual bitartrate molecules were found. Density functional theory (DFT) calculations show that bitartrate binds to Pd(111) through its carboxylate groups and the -OH groups are oriented along the long axis of the bitartrate molecule. An enantiospecific interaction is found between glycidol and bitartate species where R-glycidol binds more strongly than S-glycidol to (S,S)-bitartate species by simultaneously forming hydrogen bonds with both the hydroxyl and carboxylate groups, thereby providing three-point bonding.

  6. Adsorption of naphthalene from aqueous solution onto fatty acid modified walnut shells.

    PubMed

    Zhu, Mijia; Yao, Jun; Dong, Lifu; Sun, Jingjing

    2016-02-01

    The removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous solution is challenging to environmental technologists. Agricultural waste is apparently the most attractive materials in removing PAHs because of its abundance, renewability, and economic advantage. The adsorption of PAHs (e.g., naphthalene) onto walnut shell (WNS) and its fatty acid (e.g., capric acid, lauric acid, palmitic acid, and oleic acid)-modified equivalent were investigated in this work to develop low-cost biosorbents for hydrophobic organic compounds. Compared with other modified sorbents, oleic acid graftted walnut shell (OWNS) showed the maximum partition coefficient (4330 ± 8.8 L kg(-1)) because of its lowest polarity and highest aromaticity. The adsorption capacity (7210 μg g(-1)) of OWNS at the temperature of 298 K was observed for an initial naphthalene concentration of 25 mg L(-1) with contact time of 40 h, sorbent dosage of 1 g L(-1), and in neutral condition. Furthermore, the regeneration capability of OWNS implied that it was a promising biosorbent for naphthalene removal.

  7. Adsorption of naphthalene from aqueous solution onto fatty acid modified walnut shells.

    PubMed

    Zhu, Mijia; Yao, Jun; Dong, Lifu; Sun, Jingjing

    2016-02-01

    The removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous solution is challenging to environmental technologists. Agricultural waste is apparently the most attractive materials in removing PAHs because of its abundance, renewability, and economic advantage. The adsorption of PAHs (e.g., naphthalene) onto walnut shell (WNS) and its fatty acid (e.g., capric acid, lauric acid, palmitic acid, and oleic acid)-modified equivalent were investigated in this work to develop low-cost biosorbents for hydrophobic organic compounds. Compared with other modified sorbents, oleic acid graftted walnut shell (OWNS) showed the maximum partition coefficient (4330 ± 8.8 L kg(-1)) because of its lowest polarity and highest aromaticity. The adsorption capacity (7210 μg g(-1)) of OWNS at the temperature of 298 K was observed for an initial naphthalene concentration of 25 mg L(-1) with contact time of 40 h, sorbent dosage of 1 g L(-1), and in neutral condition. Furthermore, the regeneration capability of OWNS implied that it was a promising biosorbent for naphthalene removal. PMID:26517393

  8. Synergism between carvacrol or thymol increases the antimicrobial efficacy of soy sauce with no sensory impact.

    PubMed

    Moon, Hyeree; Rhee, Min Suk

    2016-01-18

    Here, we examined the antimicrobial effects of soy sauce containing essential oils (EOs) against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes at 22°C and 4°C. To screen a variety of combined effects, soy sauce was mixed with six different EOs (carvacrol, thymol, eugenol, trans-cinnamaldehyde, β-resorcylic acid, and vanillin), each at a concentration of 1mM for 10 min. None of the oils showed bactericidal activity when used alone. Soy sauce combined with carvacrol and thymol induced the greatest antibacterial activity against all tested bacteria; therefore, these oils were further tested at 0.25, 0.5, and 1mM (0.0039%, 0.0078%, and 0.0157%) for 1, 5, and 10 min at 4°C and 22°C. In addition, sensory evaluation of soy sauce containing each EO at 0.25, 0.5, 1, and 2mM was performed using the nine point hedonic test. Carvacrol or thymol (1mM) eliminated all the test bacteria (initial population, 7.0-7.5logCFU/ml) in 1-5 min at 22°C and within 10 min at 4°C. L. monocytogenes was slightly more tolerant at 4°C, which may be attributable to the ability of the cell membrane to adapt to low temperatures. The sensory scores for soy sauce containing EOs were not significantly different from that of soy sauce without EOs (P>0.05). The stability of EO efficacy in soy sauce was also verified. These results suggest that carvacrol and thymol act synergistically with other factors present in soy sauce to increase antimicrobial activity against major foodborne pathogens at both 4°C and 22°C. The synergism may be attributable to the combination of factors (mainly high salt concentration and low pH imparted by organic acids) present in soy sauce and the membrane attacking properties of carvacrol and thymol. This method will facilitate the production of microbiologically safe soy sauce, soy sauce-based marinades, and various marinated foods. PMID:26490647

  9. Improvement of the soy formate dehydrogenase properties by rational design.

    PubMed

    Kargov, I S; Kleimenov, S Y; Savin, S S; Tishkov, V I; Alekseeva, A A

    2015-06-01

    Previous experiments on substitution of the residue Phe290 to Asp, Asn and Ser in NAD(+)-dependent formate dehydrogenase from soya Glycine max (SoyFDH) showed important role of the residue in enzyme thermal stability and catalytic properties (Alekseeva et al. Prot. Eng. Des. Sel., 2012a; 25: :781-88). In this work, we continued site-directed mutagenesis experiments of the Phe290 and the residue was changed to Ala, Thr, Tyr, Glu and Gln. All amino acid changes resulted in increase of catalytic constant from 2.9 to 3.5-4.7 s(-1). The substitution Phe290Ala led to KM (NAD+) decrease from 13.3 to 8.6 μM, and substitutions Phe290Tyr and Phe290Glu resulted in decrease and increase of KM (HCOO-) from 1.5 to 0.9 and -2.9 mM, respectively. The highest improvement of catalytic properties was observed for SoyFDH Phe290Ala which showed 2-fold higher catalytic efficiency with both substrates. Stability of mutants was examined by study of thermal inactivation kinetics and differential scanning calorimetry (DSC). All five amino acids provided increase of thermal stability of mutant SoyFDH in comparison with wild-type enzyme. Mutant SoyFDH Phe290Glu showed the highest improvement-the stabilization effect was 43 at 56°C. The DSC data agree with results of thermal inactivation kinetics. Substitutions Phe290Tyr, Phe290Thr, Phe290Gln and Phe290Glu provided Tm value increase 0.6°-6.6°. SoyFDH Phe290Glu and previously prepared SoyFDH Phe290Asp show similar thermal stability as enzymes from Candida boidinii and Mycobacterium vaccae N10 and have higher catalytic efficiency with NAD(+) compared with all described FDHs. Therefore, these mutants are very perspective enzymes for coenzyme regeneration in processes of chiral synthesis with dehydrogenases.

  10. Chemical force titrations of amine- and sulfonic acid-modified poly(dimethylsiloxane).

    PubMed

    Wang, Bin; Oleschuk, Richard D; Horton, J Hugh

    2005-02-15

    Chemical force titrations-measurements of the adhesive interaction between a pair of suitably chemically modified atomic force microscopy (AFM) tip and sample surfaces as a function of pH-have been carried out for various combinations of silanol, amine, carboxylic acid, and sulfonic acid functional groups on both tip and sample. The primary surface material studied was poly(dimethylsiloxane) (PDMS). Surface modification was carried out using a plasma oxidation process to form silanol sites; further modification with amine or sulfonic acid sites was carried out by reaction of the silanol sites with the appropriate trialkoxysilane derivative. AFM tips were also modified using trialkoxysilane compounds. In the cases of tip/sample combinations with the same functional group on each, surface pK(1/2) values could be determined. In several "mixed" tip/sample combinations, a peak appeared in the titration curve midway between the surface pK(1/2) values of the tip and sample, consistent with an ionic H-bonding model for the interactions. The amine/sulfonic acid pair showed more complex behavior; the amine-terminated tip/sulfonic acid-terminated PDMS surface force titration curve consisted of two peaks centered at pH 4 and pH 8. Reversing the tip/sample pair resulted in the peak positions being shifted upward by 1.0 pH unit. The peak appearing at lower pH is assigned to electrostatic interactions between the two oppositely charged surfaces, whereas the higher pH peak is believed to arise due to ionic H-bonding interactions. AFM images show the effects on surface patterning of amine- and sulfonic acid-modified PDMS surfaces that have undergone two different oxidation methods (air plasma oxidation and Tesla coil oxidation). The surface morphologies of freshly prepared and 24 h aged air plasma oxidized PDMS are also discussed in this study.

  11. Highly efficient inverted organic solar cells using amino acid modified indium tin oxide as cathode

    SciTech Connect

    Li, Aiyuan; Nie, Riming; Deng, Xianyu; Wei, Huaixin; Li, Yanqing; Tang, Jianxin; Zheng, Shizhao; Wong, King-Young

    2014-03-24

    In this paper, we report that highly efficient inverted organic solar cells were achieved by modifying the surface of indium tin oxide (ITO) using an amino acid, Serine (Ser). With the modification of the ITO surface, device efficiency was significantly enhanced from 0.63% to 4.17%, accompanied with an open circuit voltage (Voc) that was enhanced from 0.30 V to 0.55 V. Ultraviolet and X-ray photoelectron spectroscopy studies indicate that the work function reduction induced by the amino acid modification resulting in the decreased barrier height at the ITO/organic interface played a crucial role in the enhanced performances.

  12. Oxidation mechanism of formic acid on the bismuth adatom-modified Pt(111) surface.

    PubMed

    Perales-Rondón, Juan Victor; Ferre-Vilaplana, Adolfo; Feliu, Juan M; Herrero, Enrique

    2014-09-24

    In order to improve catalytic processes, elucidation of reaction mechanisms is essential. Here, supported by a combination of experimental and computational results, the oxidation mechanism of formic acid on Pt(111) electrodes modified by the incorporation of bismuth adatoms is revealed. In the proposed model, formic acid is first physisorbed on bismuth and then deprotonated and chemisorbed in formate form, also on bismuth, from which configuration the C-H bond is cleaved, on a neighbor Pt site, yielding CO2. It was found computationally that the activation energy for the C-H bond cleavage step is negligible, which was also verified experimentally. PMID:25188779

  13. Chelation Properties of Modified Humic Acids Toward Some Trivalent Lanthanide Ions

    SciTech Connect

    Yaghmour, Remah N.; Khalili, Fawwaz I.; Mubarak, Mohammad S.

    2007-05-09

    Three kinds of humic acids, Fluka (I), Fluka (II), and Ega-chemie (III) were modified through condensation with formaldehyde to afford polymers I, II, and III, respectively. The chelation behavior of these modified humic acids polymers towards the trivalent lanthanide metal-ions, La3+, Ce3+, Nd3+, Sm3+, and Gd3+ was studied by a batch equilibration technique at 25 deg. C as a function of contact time, pH, counter ion and counter ion concentration. The highest metal-ion uptake of the three polymers was achieved at pH 7.0 and by using perchlorate as a counter ion. Results of the study have revealed that polymer II has the highest metal-ion uptake capacity, and that the metal-ion uptake falls in the order: Gd3+ > Sm3+ > Nd3+ > La3+ {approx_equal} Ce3+.

  14. Preparation and characterization of glycyrrhetinic acid-modified stearic acid-grafted chitosan micelles.

    PubMed

    Chen, Qian; Sun, Yong; Wang, Jiangjun; Yan, Guowen; Cui, Zhaoyuan; Yin, Hongli; Wei, Haitian

    2015-01-01

    Stearic acid-grafted chitosan (CS-SA) and glycyrrhetinic acid-conjugated stearic acid-grafted chitosan (GA-CS-SA) were synthesized and were further used for the preparation of micelles. The substitution degree (SD) of SA and GA on CS was measured. The physicochemical properties of CS-SA and GA-CS-SA micelles such as critical micelle concentration (CMC), aggregation number of hydrophobic micro-domain (AN), particle size, zeta potential, and morphology were also determined. The CMC of GA-CS-SA was about 17.49 μg/mL, which was relatively low. Its AN was 2.09. The GA-CS-SA micelles showed spherical shape with mean diameter of 121.1 nm and had positive charge, which suggested that GA-CS-SA could be a good carrier of cancer drug.

  15. Comparative studies on the chemical and cell-based antioxidant activities and antitumor cell proliferation properties of soy milk manufactured by conventional and commercial UHT methods.

    PubMed

    Xu, Baojun; Chang, Sam K C; Liu, Zhisheng; Yuan, Shaohong; Zou, Yanping; Tan, Yingying

    2010-03-24

    The aims of this work were to compare antiproliferation, antioxidant activities and total phytochemicals and individual isoflavone profiles in soy milk processed by various methods including traditional stove cooking, direct steam injection, direct ultrahigh temperature (UHT), indirect UHT, and a two-stage simulated industry method, and a selected commercial soy milk product. Various processing methods significantly affected total saponin, phytic acid, and total phenolic content and individual isoflavone distribution. The laboratory UHT and the two-stage processed soy milk exhibited relatively higher total phenolic content, total flavonoid content, saponin and phytic acid than those processed by the traditional and steam processed methods. Thermal processing caused obvious intertransformation but did not cause severe degradation except for breaking down of aglycons. Thermal processing significantly increased antioxidant capacities of soy milk determined by chemical analyses, but decreased cellular antioxidant capacities as compared to the raw soy milk. The raw and all processed soy milk exhibited antipoliferative activities against human HL-60 leukemia cells, AGS gastric tumor cells, and DU145 prostate cancer cells in a dose-dependent manner. The raw soy milk, but not the processed soy milk, exhibited a dose-dependent antiproliferative effect against colorectal adenocarcinoma Caco-2 cells. Taken together, these results indicate that various thermal processing methods change not only phytochemcials but also potential health-promoting effects of soy milk.

  16. The study of interaction of modified fatty acid with 99mTc in alcoholic media

    NASA Astrophysics Data System (ADS)

    Skuridin, V. S.; Stasyuk, E. S.; Varlamova, N. V.; Nesterov, E. A.; Sinilkin, I. G.; Sadkin, V. L.; Rogov, A. S.; Ilina, E. A.; Larionova, L. A.; Sazonova, S. I.; Zelchan, R. V.; Villa, N. E.

    2016-08-01

    The paper presents the results of laboratory research aimed at the development of methods of synthesis of new radiodiagnostic agents based on modified fatty acid labelled with technetium-99m intended for scintigraphic evaluation of myocardial metabolism. In particular, the interaction of substance with 99mTc in alcoholic media and the use of ethanol as solvent in the synthesis of the radiopharmaceutical were studied.

  17. Nutritional aspects of second generation soy foods.

    PubMed

    Alezandro, Marcela Roquim; Granato, Daniel; Lajolo, Franco Maria; Genovese, Maria Inés

    2011-05-25

    Samples of 15 second generation soy-based products (n = 3), commercially available, were analyzed for their protein and isoflavone contents and in vitro antioxidant activity, by means of the Folin-Ciocalteu reducing ability, DPPH radical scavenging capacity, and oxygen radical absorbance capacity. Isoflavone identification and quantification were performed by high-performance liquid chromatography. Products containing soy and/or soy-based ingredients represent important sources of protein in addition to the low fat amounts. However, a large variation in isoflavone content and in vitro antioxidant capacity was observed. The isoflavone content varied from 2.4 to 18.1 mg/100 g (FW), and soy kibe and soy sausage presented the highest amounts. Chocolate had the highest antioxidant capacity, but this fact was probably associated with the addition of cocoa liquor, a well-known source of polyphenolics. This study showed that the soy-based foods do not present a significant content of isoflavones when compared with the grain, and their in vitro antioxidant capacity is not related with these compounds but rather to the presence of other phenolics and synthetic antioxidants, such as sodium erythorbate. However, they may represent alternative sources and provide soy protein, isoflavones, and vegetable fat for those who are not ready to eat traditional soy foods.

  18. Antiglycation and antioxidant properties of soy sauces.

    PubMed

    Mashilipa, Changwe; Wang, Qiuyu; Slevin, Mark; Ahmed, Nessar

    2011-12-01

    Diabetes-induced hyperglycemia increases formation of advanced glycation end products (AGEs) and metal-catalyzed production of free radicals. This study compared the antioxidant capacities of dark and light soy sauces of different brands and investigated their abilities to inhibit AGEs and whether their mechanism of action was pre- or post-Amadori or involved chelation of transition metals. The antioxidant capacities of soy sauces were compared using the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) method and by measuring their total phenolic contents. Model proteins (lysozyme, albumin) were glycated using fructose with or without soy sauces with subsequent analysis of cross-linked AGEs by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The effect of soy sauces on pre- and post-Amadori inhibition of AGEs was investigated by measuring fructosamine and AGEs following reincubation of ribose-glycated (ribated) lysozyme, respectively. Dark soy sauces had higher antioxidant capacities and phenolic content and were more effective inhibitors of post-Amadori-derived cross-linked AGEs. However, light soy sauces were more effective at inhibiting fructosamine and had more potent metal chelation properties. This study reports the antiglycation properties of soy sauces, but further studies are required to determine the constituents responsible for this effect and whether soy sauce consumption can reduce oxidative stress and AGEs in diabetic subjects.

  19. In vitro corrosion and biocompatibility study of phytic acid modified WE43 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Ye, C. H.; Zheng, Y. F.; Wang, S. Q.; Xi, T. F.; Li, Y. D.

    2012-02-01

    Phytic acid (PA) conversion coating on WE43 magnesium alloy was prepared by the method of immersion. The influences of phytic acid solution with different pH on the microstructure, properties of the conversion coating and the corrosion resistance were investigated by SEM, FTIR and potentiodynamic polarization method. Furthermore, the biocompatibility of different pH phytic acid solution modified WE43 magnesium alloys was evaluated by MTT and hemolysis test. The results show that PA can enhance the corrosion resistance of WE43 magnesium especially when the pH value of modified solution is 5 and the cytotoxicity of the PA coated WE43 magnesium alloy is much better than that of the bare WE43 magnesium alloy. Moreover, all the hemolysis rates of the PA coated WE43 Mg alloy were lower than 5%, indicating that the modified Mg alloy met the hemolysis standard of biomaterials. Therefore, PA coating is a good candidate to improve the biocompatibility of WE43 magnesium alloy.

  20. Molecular interactions in biomineralized hydroxyapatite amino acid modified nanoclay: in silico design of bone biomaterials.

    PubMed

    Katti, Dinesh R; Sharma, Anurag; Ambre, Avinash H; Katti, Kalpana S

    2015-01-01

    A simulations driven approach to design of a novel biomaterial nanocomposite system is described in this study. Nanoclays modified with amino acids (OMMT) were used to mineralize hydroxyapatite (HAP), mimicking biomineralization. Representative models of organically modified montmorillonite clay (OMMT) and OMMT-hydroxyapatite (OMMT-HAP) were constructed using molecular dynamics and validated using X-ray Diffraction (XRD), Fourier Transforms Infrared (FTIR) spectroscopy and Transmission Electron Microscopy (TEM). Attractive interactions exist between Ca atoms of HAP and C=O group of aminovaleric acid, indicating chelate formation in OMMT-HAP. Interaction energy maps describe molecular interactions among different constituents and their quantitative contributions in the OMMT and OMMT-HAP systems at both parallel and perpendicular orientations. High attractive and high repulsive interactions were found between PO4(3-) and MMT clay as well as aminovaleric molecules in OMMT-HAP perpendicular and parallel models. Large non-bonded interactions in OMMT-HAP indicate influence of neighboring environment on PO4(3-) in in situ HAPclay. Extensive hydrogen bonds were observed between functional hydrogen atoms of modifier and MMT clay in OMMT-HAP as compared to OMMT. Thus, HAP interacts with clay through the aminovaleric acid. This computational study provides a framework for materials design and selection for biomaterials used in tissue engineering and other areas of regenerative medicine. PMID:25491979

  1. Autolysis of Aspergillus oryzae Mycelium and Effect on Volatile Flavor Compounds of Soy Sauce.

    PubMed

    Xu, Ning; Liu, Yaqi; Hu, Yong; Zhou, Mengzhou; Wang, Chao; Li, Dongsheng

    2016-08-01

    The autolyzed mycelia of Aspergillus oryzae are rich in proteins, nucleic acids, sugar, and other biomacromolecules, and are one of the main contributors to the flavor profile of commercially important fermented goods, including soy sauce and miso. We induced autolysis of the mycelia of A. oryzae over 1 to 10 d, and found that the maximum dissolved amounts of total protein and nucleic acid ratio accounted for 28.63% and 88.93%, respectively. The organic acid content, such as citric acid, tartaric acid, succinic acid, lactic acid, and acetic acid, initially increased and then decreased as autolysis progressed, corresponding to changes in pH levels. The main characteristic flavor compounds in soy sauce, namely, ethanol, 2-phenylethanol, and 2-methoxy-4-vinylphenol, were all detected in the autolysate. Subsequently, we tested the effect of adding mycelia of A. oryzae during the fermentation process of soy sauce for 60 d, and found that addition of 1.2‰ A. oryzae mycelia provided the richest flavor. Overall, our findings suggest that compounds found in the autolysate of A. oryzae may promote the flavor compounds of soy sauce, such as alcohols, aldehydes, phenols, and esters.

  2. Autolysis of Aspergillus oryzae Mycelium and Effect on Volatile Flavor Compounds of Soy Sauce.

    PubMed

    Xu, Ning; Liu, Yaqi; Hu, Yong; Zhou, Mengzhou; Wang, Chao; Li, Dongsheng

    2016-08-01

    The autolyzed mycelia of Aspergillus oryzae are rich in proteins, nucleic acids, sugar, and other biomacromolecules, and are one of the main contributors to the flavor profile of commercially important fermented goods, including soy sauce and miso. We induced autolysis of the mycelia of A. oryzae over 1 to 10 d, and found that the maximum dissolved amounts of total protein and nucleic acid ratio accounted for 28.63% and 88.93%, respectively. The organic acid content, such as citric acid, tartaric acid, succinic acid, lactic acid, and acetic acid, initially increased and then decreased as autolysis progressed, corresponding to changes in pH levels. The main characteristic flavor compounds in soy sauce, namely, ethanol, 2-phenylethanol, and 2-methoxy-4-vinylphenol, were all detected in the autolysate. Subsequently, we tested the effect of adding mycelia of A. oryzae during the fermentation process of soy sauce for 60 d, and found that addition of 1.2‰ A. oryzae mycelia provided the richest flavor. Overall, our findings suggest that compounds found in the autolysate of A. oryzae may promote the flavor compounds of soy sauce, such as alcohols, aldehydes, phenols, and esters. PMID:27464006

  3. Gelation of Soy Milk with Hagfish Exudate Creates a Flocculated and Fibrous Emulsion- and Particle Gel

    PubMed Central

    Böni, Lukas; Rühs, Patrick A.; Windhab, Erich J.; Fischer, Peter; Kuster, Simon

    2016-01-01

    Hagfish slime is an ultra dilute, elastic and cohesive hydrogel that deploys within milliseconds in cold seawater from a glandularly secreted exudate. The slime is made of long keratin-like fibers and mucin-like glycoproteins that span a network which entraps water and acts as a defense mechanism against predators. Unlike other hydrogels, the slime only confines water physically and is very susceptible to mechanical stress, which makes it unsuitable for many processing operations and potential applications. Despite its huge potential, little work has been done to improve and functionalize the properties of this hydrogel. To address this shortcoming, hagfish exudate was mixed with a soy protein isolate suspension (4% w/v) and with a soy emulsion (commercial soy milk) to form a more stable structure and combine the functionalities of a suspension and emulsion with those of the hydrogel. Hagfish exudate interacted strongly with the soy systems, showing a markedly increased viscoelasticity and water retention. Hagfish mucin was found to induce a depletion and bridging mechanism, which caused the emulsion and suspension to flocculate, making “soy slime”, a cohesive and cold-set emulsion- and particle gel. The flocculation network increases viscoelasticity and substantially contributes to liquid retention by entrapping liquid in the additional confinements between aggregated particles and protein fibers. Because the mucin-induced flocculation resembles the salt- or acid-induced flocculation in tofu curd production, the soy slime was cooked for comparison. The cooked soy slime was similar to conventional cooked tofu, but possessed a long-range cohesiveness from the fibers. The fibrous, cold-set, and curd-like structure of the soy slime represents a novel way for a cold coagulation and fiber incorporation into a suspension or emulsion. This mechanism could be used to efficiently gel functionalized emulsions or produce novel tofu-like structured food products. PMID

  4. Gelation of Soy Milk with Hagfish Exudate Creates a Flocculated and Fibrous Emulsion- and Particle Gel.

    PubMed

    Böni, Lukas; Rühs, Patrick A; Windhab, Erich J; Fischer, Peter; Kuster, Simon

    2016-01-01

    Hagfish slime is an ultra dilute, elastic and cohesive hydrogel that deploys within milliseconds in cold seawater from a glandularly secreted exudate. The slime is made of long keratin-like fibers and mucin-like glycoproteins that span a network which entraps water and acts as a defense mechanism against predators. Unlike other hydrogels, the slime only confines water physically and is very susceptible to mechanical stress, which makes it unsuitable for many processing operations and potential applications. Despite its huge potential, little work has been done to improve and functionalize the properties of this hydrogel. To address this shortcoming, hagfish exudate was mixed with a soy protein isolate suspension (4% w/v) and with a soy emulsion (commercial soy milk) to form a more stable structure and combine the functionalities of a suspension and emulsion with those of the hydrogel. Hagfish exudate interacted strongly with the soy systems, showing a markedly increased viscoelasticity and water retention. Hagfish mucin was found to induce a depletion and bridging mechanism, which caused the emulsion and suspension to flocculate, making "soy slime", a cohesive and cold-set emulsion- and particle gel. The flocculation network increases viscoelasticity and substantially contributes to liquid retention by entrapping liquid in the additional confinements between aggregated particles and protein fibers. Because the mucin-induced flocculation resembles the salt- or acid-induced flocculation in tofu curd production, the soy slime was cooked for comparison. The cooked soy slime was similar to conventional cooked tofu, but possessed a long-range cohesiveness from the fibers. The fibrous, cold-set, and curd-like structure of the soy slime represents a novel way for a cold coagulation and fiber incorporation into a suspension or emulsion. This mechanism could be used to efficiently gel functionalized emulsions or produce novel tofu-like structured food products.

  5. Gelation of Soy Milk with Hagfish Exudate Creates a Flocculated and Fibrous Emulsion- and Particle Gel.

    PubMed

    Böni, Lukas; Rühs, Patrick A; Windhab, Erich J; Fischer, Peter; Kuster, Simon

    2016-01-01

    Hagfish slime is an ultra dilute, elastic and cohesive hydrogel that deploys within milliseconds in cold seawater from a glandularly secreted exudate. The slime is made of long keratin-like fibers and mucin-like glycoproteins that span a network which entraps water and acts as a defense mechanism against predators. Unlike other hydrogels, the slime only confines water physically and is very susceptible to mechanical stress, which makes it unsuitable for many processing operations and potential applications. Despite its huge potential, little work has been done to improve and functionalize the properties of this hydrogel. To address this shortcoming, hagfish exudate was mixed with a soy protein isolate suspension (4% w/v) and with a soy emulsion (commercial soy milk) to form a more stable structure and combine the functionalities of a suspension and emulsion with those of the hydrogel. Hagfish exudate interacted strongly with the soy systems, showing a markedly increased viscoelasticity and water retention. Hagfish mucin was found to induce a depletion and bridging mechanism, which caused the emulsion and suspension to flocculate, making "soy slime", a cohesive and cold-set emulsion- and particle gel. The flocculation network increases viscoelasticity and substantially contributes to liquid retention by entrapping liquid in the additional confinements between aggregated particles and protein fibers. Because the mucin-induced flocculation resembles the salt- or acid-induced flocculation in tofu curd production, the soy slime was cooked for comparison. The cooked soy slime was similar to conventional cooked tofu, but possessed a long-range cohesiveness from the fibers. The fibrous, cold-set, and curd-like structure of the soy slime represents a novel way for a cold coagulation and fiber incorporation into a suspension or emulsion. This mechanism could be used to efficiently gel functionalized emulsions or produce novel tofu-like structured food products. PMID:26808048

  6. Chlorsulfuron modifies biosynthesis of acyl Acid substituents of sucrose esters secreted by tobacco trichomes.

    PubMed

    Kandra, L; Wagner, G J

    1990-11-01

    Sucrose esters and duvatrienediol diterpenes are principal constituents formed in and secreted outside head cells of trichomes occurring on surfaces of Nicotiana tabacum. Using trichome-bearing epidermal peels prepared from midveins of N. tabacum cv T.I. 1068 leaves, we found that chlorsulfuron reduced and modified radiolabeling of sucrose ester acyl acids derived from branched-chain amino acid metabolism. The herbicide did not effect formation and exudation of diterpenes which are products of isoprenoid metabolism. Treatment with 1.0 micromolar chlorsulfuron affected 8.5- and 6.3-fold reductions in radiolabeling of methylvaleryl and methylbutyryl groups of sucrose esters, respectively, and concomitant increases of 9- and 9.8-fold in radiolabeling of straight chain valeryl and butyryl groups, respectively. These results and others indicate that inhibition of acetolactate synthase causes an accumulation of 2-oxo-butyric acid that is utilized by enzymes common to Leu biosynthesis to form 2-oxo-valeric acid. Coenzyme A (CoA) activation of this keto acid gives rise to butyryl CoA, which is utilized to form butyryl containing sucrose esters. Alternatively, reutilization of 2-oxo-valeric acid by the same enzymes followed by CoA activation leads to valeryl containing sucrose esters. We propose that in trichome secretory cells synthase, isomerase and dehydrogenase enzymes which catalyze Leu synthesis/degredation in most tissues, convert iso-branched, anteiso-branched and straight-chain keto acids in the formation of sucrose ester acyl groups. PMID:16667871

  7. Chlorsulfuron Modifies Biosynthesis of Acyl Acid Substituents of Sucrose Esters Secreted by Tobacco Trichomes

    PubMed Central

    Kandra, Lili; Wagner, George J.

    1990-01-01

    Sucrose esters and duvatrienediol diterpenes are principal constituents formed in and secreted outside head cells of trichomes occurring on surfaces of Nicotiana tabacum. Using trichome-bearing epidermal peels prepared from midveins of N. tabacum cv T.I. 1068 leaves, we found that chlorsulfuron reduced and modified radiolabeling of sucrose ester acyl acids derived from branched-chain amino acid metabolism. The herbicide did not effect formation and exudation of diterpenes which are products of isoprenoid metabolism. Treatment with 1.0 micromolar chlorsulfuron affected 8.5- and 6.3-fold reductions in radiolabeling of methylvaleryl and methylbutyryl groups of sucrose esters, respectively, and concomitant increases of 9- and 9.8-fold in radiolabeling of straight chain valeryl and butyryl groups, respectively. These results and others indicate that inhibition of acetolactate synthase causes an accumulation of 2-oxo-butyric acid that is utilized by enzymes common to Leu biosynthesis to form 2-oxo-valeric acid. Coenzyme A (CoA) activation of this keto acid gives rise to butyryl CoA, which is utilized to form butyryl containing sucrose esters. Alternatively, reutilization of 2-oxo-valeric acid by the same enzymes followed by CoA activation leads to valeryl containing sucrose esters. We propose that in trichome secretory cells synthase, isomerase and dehydrogenase enzymes which catalyze Leu synthesis/degredation in most tissues, convert iso-branched, anteiso-branched and straight-chain keto acids in the formation of sucrose ester acyl groups. PMID:16667871

  8. The health consequences of early soy consumption.

    PubMed

    Badger, Thomas M; Ronis, Martin J J; Hakkak, Reza; Rowlands, J Craig; Korourian, Soheila

    2002-03-01

    Infants fed soy formula are the segment of the U. S. population that consumes the most soy. Before birth and after weaning, most Americans are not exposed to appreciable levels of soyfoods other than foods that have small amounts of processed soy components. The opposite scenario occurs in Asia, because Asians are more likely to consume relatively high levels of soyfoods throughout life, except between birth and weaning, when breastfeeding or milk-based formula are common. Soy formula is made with soy protein isolate containing isoflavones (SPI+) and supports normal growth and development in term infants. Recent data suggest that there are no long-term adverse effects of early exposure to soy formula through young adulthood. It is as yet unknown whether soy formula consumption by infants will result in health problems or benefits upon aging, but multigenerational animal studies with diets made with SPI+ have not revealed any problems. Soy isoflavones can function as estrogen agonists, antagonists or selective estrogen receptor modulators, depending on the conditions, and much research has focused on health effects of purified isoflavones. Results from several studies suggest that the effects of diets made with SPI+ differ significantly from those of diets to which purified soy isoflavones are added. Furthermore, it seems that soy protein processed to contain lower levels of isoflavones also provides significant health benefits. Further research is needed to confirm the results of the few studies that have been conducted and new studies are needed to investigate the more subtle effects that could occur during development or that could surface later in life.

  9. Soy protein affects serum insulin and hepatic SREBP-1 mRNA and reduces fatty liver in rats.

    PubMed

    Ascencio, Claudia; Torres, Nimbe; Isoard-Acosta, Fernando; Gómez-Pérez, Francisco J; Hernández-Pando, Rogelio; Tovar, Armando R

    2004-03-01

    The consumption of soy protein was shown to reduce blood lipids in humans and other animal species. Furthermore, it was shown that the ingestion of soy protein maintains normal insulinemia. Thus, the purpose of the present study was to determine whether soy protein affects the synthesis of lipids in the liver through sterol-regulatory element binding protein-1 (SREBP-1) due to modulation of insulin levels. We first conducted a short-term study in which rats were fed a diet containing 18 g/100 g soy protein or casein for 10 d. Rats fed soy protein had significantly lower serum insulin concentrations than rats fed casein, and this response was accompanied by an elevation in hepatic SREBP-1 mRNA that was 53% lower than that in rats fed casein at d 10. The increase in SREBP-1 mRNA occurred 30 min after consumption of the casein mean, and increased steadily for the next 2 h. We then conducted a second study to assess the long-term effect of soy protein consumption for 150 d on hepatic SREBP-1 expression. Long-term consumption of soy protein maintained normal insulin concentrations compared with rats fed casein, which were hyperinsulinemic. Thus, rats fed the soy protein diet had significantly lower expression of SREBP-1 mRNA than rats fed the casein diet. Soy protein intake also reduced the expression of fatty acid synthase (FAS) and malic enzyme, leading to low hepatic lipid depots of triglycerides and cholesterol, whereas rats fed the casein diet developed fatty liver. These data suggest that soy protein regulates SREBP-1 expression by modulating serum insulin concentration, thus preventing the development of fatty liver.

  10. Characterizing Corrosion Effects of Weak Organic Acids Using a Modified Bono Test

    NASA Astrophysics Data System (ADS)

    Zhou, Yuqin; Turbini, Laura J.; Ramjattan, Deepchand; Christian, Bev; Pritzker, Mark

    2013-12-01

    To meet environmental requirements and achieve benefits of cost-effective manufacturing, no-clean fluxes (NCFs) or low-solids fluxes have become popular in present electronic manufacturing processes. Weak organic acids (WOAs) as the activation ingredients in NCFs play an important role, especially in the current lead-free and halogen-free soldering technology era. However, no standard or uniform method exists to characterize the corrosion effects of WOAs on actual metallic circuits of printed wiring boards (PWBs). Hence, the development of an effective quantitative test method for evaluating the corrosion effects of WOAs on the PWB's metallic circuits is imperative. In this paper, the modified Bono test, which was developed to quantitatively examine the corrosion properties of flux residues, is used to characterize the corrosion effects of five WOAs (i.e., abietic acid, succinic acid, glutaric acid, adipic acid, and malic acid) on PWB metallic circuits. Experiments were performed under three temperature/humidity conditions (85°C/85% RH, 60°C/93% RH, and 40°C/93% RH) using two WOA solution concentrations. The different corrosion effects among the various WOAs were best reflected in the testing results at 40°C and 60°C. Optical microscopy was used to observe the morphology of the corroded copper tracks, and scanning electron microscopy (SEM) energy-dispersive x-ray (EDX) characterization was performed to determine the dendrite composition.

  11. Probiotic administration modifies the milk fatty acid profile, intestinal morphology, and intestinal fatty acid profile of goats.

    PubMed

    Apás, A L; Arena, M E; Colombo, S; González, S N

    2015-01-01

    The effect of a mixture of potentially probiotic bacteria (MPPB; Lactobacillus reuteri DDL 19, Lactobacillus alimentarius DDL 48, Enterococcus faecium DDE 39, and Bifidobacterium bifidum strains) on the milk fatty acid (FA) profile, with emphasis on cis-9,trans-11 conjugated linoleic acid (CLA) in the middle stage of goat lactation, was determined. In addition, the effects of MPPB feeding on the FA profile in intestinal content and intestinal morphology in weaned goats were analyzed. The probiotic supplement was able to modify FA composition of milk and intestinal content. The unsaturated FA concentrations in milk (g of FA/L of milk) increased from 4.49 to 7.86 for oleic (18:1), from 0.70 to 1.39 for linoleic (18:2), from 0.063 to 0.187 for linolenic (18:3) acid, and from 0.093 to 0.232 for CLA. The atherogenicity index diminished 2-fold after MPPB ingestion. In the intestinal content of the weaned goats, no significant difference in saturated FA concentration compared with the control was observed. However, oleic acid, linolenic acid, CLA, and docosahexaenoic acid concentrations increased by 81, 23, 344, and 74%, respectively, after probiotic consumption. The ruminal production of CLA was increased by the MPPB. However, bacterial strains of MPPB were unable to produce CLA in culture media. By histological techniques, it was observed that the treated group had intestinally more conserved morphological structures than the control group. The results obtained in this study indicate that the MPPB administration in lactating and weaned goats allows for the production of milk with improved concentrations of beneficial compounds, and also produces a protective effect in the goat intestine. The results obtained in this study reinforce the strategy of probiotics application to enhance goat health with the production of milk with higher concentrations of polyunsaturated FA.

  12. Hot-compressed water extraction of polysaccharides from soy hulls.

    PubMed

    Liu, Hua-Min; Wang, Fei-Yun; Liu, Yu-Lan

    2016-07-01

    The polysaccharides of soy hulls were extracted by hot-compressed water at temperatures of 110 from 180°C and various treatment times (10-150min) in a batch system. It was determined that a moderate temperature and short time are suitable for the preparation of polysaccharides. The structure of xylan and the inter- and intra-chain hydrogen bonding of cellulose fibrils in the soy hulls were not significantly broken down. The polysaccharides obtained were primarily composed of α-L-arabinofuranosyl units, 4-O-methyl-glucuronic acid units and α-D-galactose units attached with substituted units. A sugar analysis indicated that arabinose was the major component, constituting 35.6-46.9% of the polysaccharide products extracted at 130°C, 140°C, and 150°C. This investigation contributes to the knowledge of the polysaccharides of soy by-products, which can reduce the environmental impact of waste from the food industries. PMID:26920272

  13. Detection of saccharides by reactive desorption electrospray ionization (DESI) using modified phenylboronic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Chen, Hao

    2010-01-01

    We have reported previously a method for the detection of sugars via in-situ derivatization with phenylboronic acid PhB(OH)2 using reactive desorption electrospray ionization (DESI, Chen et al., Chem. Commun. (2006) 597-599). The present study describes an improved method that employs modified phenylboronic acids including 3-nitrophenylboronic acid and N-methyl-4-pyridineboronic acid iodide. In contrast to using PhB(OH)2, enhanced sensitivity of using 3-nitrophenylboronic acid was observed due to the stabilization of the resulting boronate ester anion by the electron-withdrawing nitro group and the limit of detections (LODs) for glucose in water using 3-nitrophenylbornic acid and phenylboronic acid were determined to be 0.11 mM and 0.40 mM, respectively. In the case of N-methyl-4-pyridineboronic acid iodide, the corresponding LOD is 6.9 [mu]M and the higher sensitivity obtained is attributed to the efficient ionization of both the reactive DESI reagent and reaction product since the precursor acid with a quaternary ammonium group is pre-charged. In this case, additional important features are found: (i) unlike using phenylboronic acid or 3-nitrophenylbornic acid, the experiment, performed in the positive ion mode, is applicable to neutral and acidic saccharide solutions, facilitating the analysis of biological fluids without the need to adjust pH; (ii) simply by changing the spray solvent from water to acetonitrile, the method can be used for direct glucose analyses of both urine and serum samples via online desalting, due to the low solubility of salts of these biofluids in the sprayed organic solvent; (iii) in comparison with other sugar derivatizing reagents such as the Girard's reagent T, the N-methyl-4-pyridineboronic acid iodide shows higher reactivity in the reactive DESI; and (iv) the ions of saccharide DESI reaction products undergo extensive ring or glycosidic bond cleavage upon CID, a feature that might be useful in the structure elucidation of

  14. Functionalized-graphene modified graphite electrode for the selective determination of dopamine in presence of uric acid and ascorbic acid.

    PubMed

    Mallesha, Malledevaru; Manjunatha, Revanasiddappa; Nethravathi, C; Suresh, Gurukar Shivappa; Rajamathi, Michael; Melo, Jose Savio; Venkatesha, Thimmappa Venkatarangaiah

    2011-06-01

    Graphene is chemically synthesized by solvothermal reduction of colloidal dispersions of graphite oxide. Graphite electrode is modified with functionalized-graphene for electrochemical applications. Electrochemical characterization of functionalized-graphene modified graphite electrode (FGGE) is carried out by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The behavior of FGGE towards ascorbic acid (AA), dopamine (DA) and uric acid (UA) has been investigated by CV, differential pulse voltammetry (DPV) and chronoamperommetry (CA). The FGGE showed excellent catalytic activity towards electrochemical oxidation of AA, DA and UA compared to that of the bare graphite electrode. The electrochemical oxidation signals of AA, DA and UA are well separated into three distinct peaks with peak potential separation of 193mv, 172mv and 264mV between AA-DA, DA-UA and AA-UA respectively in CV studies and the corresponding peak potential separations in DPV mode are 204mv, 141mv and 345mv. The FGGE is successfully used for the simultaneous detection of AA, DA and UA in their ternary mixture and DA in serum and pharmaceutical samples. The excellent electrocatalytic behavior of FGGE may lead to new applications in electrochemical analysis.

  15. Biosorption of methyl blue onto tartaric acid modified wheat bran from aqueous solution

    PubMed Central

    2012-01-01

    Tartaric acid modified wheat bran was utilized as adsorbent to remove methyl blue, a basic dye from aqueous solution. Batch experiments were carried out to study the effect of various experimental parameters such as initial solution pH, contact time, initial dye concentration and adsorbent dosage, on dye adsorption. The results showed that the modification of wheat bran by tartaric acid significantly improved its adsorption capacity, and made this material a suitable adsorbent to remove methyl blue. The adsorption capacity of modified wheat bran was about 1.6 times higher than that of unmodified one. The amount of methyl blue adsorbed was found to vary with initial solution pH, adsorbent dosage, contact time and initial methyl blue concentration. Kinetics study showed that the overall adsorption rate of methyl blue was illustrated by pseudo-second-order kinetic model. The applicability of the Langmuir and Freundlich models for the data was tested. Both models adequately described the experimental data of the biosorption of methyl blue. The maximum adsorption capacity for methyl blue calculated from Langmuir model was 25.18 mg/g. The study has shown the effectiveness of modified wheat bran in the removal of methyl blue, and that it can be considered as an attractive alternative to the more expensive technologies used in wastewater treatment. PMID:23369295

  16. Enhanced biocompatibility and antibacterial property of polyurethane materials modified with citric acid and chitosan.

    PubMed

    Liu, Tian-Ming; Wu, Xing-Ze; Qiu, Yun-Ren

    2016-08-01

    Citric acid (CA) and chitosan (CS) were covalently immobilized on polyurethane (PU) materials to improve the biocompatibility and antibacterial property. The polyurethane pre-polymer with isocyanate group was synthesized by one pot method, and then grafted with citric acid, followed by blending with polyethersulfone (PES) to prepare the blend membrane by phase-inversion method so that chitosan can be grafted from the membrane via esterification and acylation reactions eventually. The native and modified membranes were characterized by attenuated total reflectance-Fourier transform infrared spectroscope, X-ray photoelectron spectroscopy, scanning electron microscopy, water contact angle measurement, and tensile strength test. Protein adsorption, platelet adhesion, hemolysis assay, activated partial thromboplastin time, prothrombin time, thrombin time, and adsorption of Ca(2+) were executed to evaluate the blood compatibility of the membranes decorated by CA and CS. Particularly, the antibacterial activities on the modified membranes were evaluated based on a vitro antibacterial test. It could be concluded that the modified membrane had good anticoagulant property and antibacterial property. PMID:27102367

  17. Safety of Street-Vended Soy Wara in Nigeria.

    PubMed

    Akanbi, Bolaji O; Usoh, Ekaete A

    2016-01-01

    Soy wara is a common ready-to-eat food whose production and sale are currently unregulated. Microbiological sampling indicated that 21% of the samples had standard plate counts exceeding 100,000 CFU/g, and 14% had Staphylococcus aureus counts higher than 100,000 CFU/g. The occurrence of S. aureus at these levels can result in food poisoning. Listeria monocytogenes was isolated in 14.4% of the samples, although the counts were generally low, typically <1,000 CFU/g. Although counts of L. monocytogenes were low, immunocompromised individuals and children may particularly be at risk of listeriosis. All samples showed low counts of Bacillus cereus (< 10,000 CFU/g). Escherichia coli and Salmonella enterica were detected in 5.6 and 2.2% of all samples, respectively, indicating fecal contamination and possible links to gastroenteritis and enteric fever. Fungal counts were variable, ranging from 6.0 × 10(3) to 2.0 × 10(4) CFU/g, with Alternaria spp., Fusarium spp., and Rhizopus spp. being the predominant species. Aluminum content was as high as 0.776 mg of Al per g in soy wara processed with alum. Significantly higher aluminum contents were observed in alum-processed soy wara compared with those processed with lime or ogi (an acid-fermented gruel of either maize [Zea mays], sorghum [Sorghum bicolor], or millet [Pennisetum glaucum]) (P < 0.05). These results indicate the need to improve personal hygiene and environmental sanitation in the production and preparation of soy wara, and further studies are warranted for the implication of the accumulation of aluminum. PMID:26735046

  18. Adsorption of Acid Red 57 from aqueous solutions onto surfactant-modified sepiolite.

    PubMed

    Ozcan, Adnan; Ozcan, A Safa

    2005-10-17

    The adsorption of Acid Red 57 (AR57) onto surfactant-modified sepiolite was investigated in aqueous solution in a batch system with respect to contact time, pH and temperature. The surface modification of surfactant-modified sepiolite was controlled using the FTIR technique. The pseudo-first-order, pseudo-second-order kinetic models and the intraparticle diffusion model were used to describe the kinetic data and the rate constants were evaluated. The experimental data fitted very well the pseudo-second-order kinetic model and also followed the intraparticle diffusion model up to 90 min, whereas diffusion is not only the rate controlling step. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were also determined. The Freundlich model agrees with experimental data well. The activation energy, change of free energy, enthalpy and entropy of adsorption were also evaluated for the adsorption of AR57 onto surfactant-modified sepiolite. The results indicate that surfactant-modified sepiolite could be employed as low-cost material for the removal of textile dyes from effluents. PMID:16019142

  19. Polyoxometalate-Graphene Nanocomposite Modified Electrode for Electrocatalytic Detection of Ascorbic Acid

    SciTech Connect

    Zhang, Weiying; Du, Dan; Gunaratne, Don; Colby, Robert; Lin, Yuehe; Laskin, Julia

    2013-11-15

    Phosphomolybdate functionalized graphene nanocomposite (PMo12-GS) has been successfully formed on a glassy carbon electrode (GCE) for the detection of ascorbic acid (AA). The obtained PMo12-GS modified GCE, was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy and compared with GCE, GS modified GCE, and PMo12 modified GCE. It shows an increased current and a decrease in over-potential of ~210 mV. The amperometric signals are linearly proportional to the AA concentration in a wide concentration range from 1×10-6 M to 8×10-3 M, with a detection limit of 0.5×10-6 M. Finally, the PMo12-GS modified electrode was employed for the determination of the AA level in vitamin C tablets, with recoveries between 96.3 and 100.8 %.

  20. Au nanoparticles/poly(caffeic acid) composite modified glassy carbon electrode for voltammetric determination of acetaminophen.

    PubMed

    Li, Tianbao; Xu, Juan; Zhao, Lei; Shen, Shaofei; Yuan, Maosen; Liu, Wenming; Tu, Qin; Yu, Ruijin; Wang, Jinyi

    2016-10-01

    An Au nanoparticles/poly(caffeic acid) (AuNPs/PCA) composite modified glassy carbon (GC) electrode was prepared by successively potentiostatic technique in pH 7.4 phosphate buffer solution containing 0.02mM caffeic acid and 1.0mM HAuCl4. Electrochemical characterization of the AuNPs/PCA-GC electrode was investigated by electrochemical impedance spectroscopy and cyclic voltammetry. The electrochemical behavior of acetaminophen (AP) at the AuNPs/PCA-GC electrode was also studied by cyclic voltammetry. Compared with bare GC and poly(caffeic acid) modified GC electrode, the AuNPs/PCA-GC electrode was exhibited excellent electrocatalytic activity toward the oxidation of AP. The plot of catalytic current versus AP concentration showed two linear segments in the concentration ranges 0.2-20µM and 50-1000µM. The detection limit of 14 nM was obtained by using the first range of the calibration plot. The AuNPs/PCA-GC electrode has been successfully applied and validated by analyzing AP in blood, urine and pharmaceutical samples. PMID:27474318

  1. Au nanoparticles/poly(caffeic acid) composite modified glassy carbon electrode for voltammetric determination of acetaminophen.

    PubMed

    Li, Tianbao; Xu, Juan; Zhao, Lei; Shen, Shaofei; Yuan, Maosen; Liu, Wenming; Tu, Qin; Yu, Ruijin; Wang, Jinyi

    2016-10-01

    An Au nanoparticles/poly(caffeic acid) (AuNPs/PCA) composite modified glassy carbon (GC) electrode was prepared by successively potentiostatic technique in pH 7.4 phosphate buffer solution containing 0.02mM caffeic acid and 1.0mM HAuCl4. Electrochemical characterization of the AuNPs/PCA-GC electrode was investigated by electrochemical impedance spectroscopy and cyclic voltammetry. The electrochemical behavior of acetaminophen (AP) at the AuNPs/PCA-GC electrode was also studied by cyclic voltammetry. Compared with bare GC and poly(caffeic acid) modified GC electrode, the AuNPs/PCA-GC electrode was exhibited excellent electrocatalytic activity toward the oxidation of AP. The plot of catalytic current versus AP concentration showed two linear segments in the concentration ranges 0.2-20µM and 50-1000µM. The detection limit of 14 nM was obtained by using the first range of the calibration plot. The AuNPs/PCA-GC electrode has been successfully applied and validated by analyzing AP in blood, urine and pharmaceutical samples.

  2. Hyaluronic Acid Modified Hollow Prussian Blue Nanoparticles Loading 10-hydroxycamptothecin for Targeting Thermochemotherapy of Cancer.

    PubMed

    Jing, Lijia; Shao, Shangmin; Wang, Yang; Yang, Yongbo; Yue, Xiuli; Dai, Zhifei

    2016-01-01

    This paper reported the fabrication of a multifunctional nanoplatform by modifying hollow Prussian blue nanoparticles with hyaluronic acid grafting polyethylene glycol, followed by loading 10-hydroxycamptothecin for tumor-targeted thermochemotherapy. It was found that the surface modification of hollow Prussian blue nanoparticles with hyaluronic acid grafting polyethylene endowed a great colloidal stability, long blood circulation time and the capability for targeting Hela cells over-expressing the CD44 receptor. The obtained nanoagent exhibited efficient photothermal effect and a light triggered and stepwise release behavior of 10-hydroxycamptothecin due to the strong optical absorption in the near-infrared region. The investigations on the body weight change, histological injury and blood biochemical indexes showed that such nanoagent had excellent biocompatibility for medical application. Both in vitro and in vivo experiments proved that the combination of chemotherapy and photothermal therapy through the agent of hyaluronic acid modified Prussian blue nanoparticles loading 10-hydroxycamptothecin could significantly improve the therapeutic efficacy compared with either therapy alone because of a good synergetic effect.

  3. Hyaluronic Acid Modified Hollow Prussian Blue Nanoparticles Loading 10-hydroxycamptothecin for Targeting Thermochemotherapy of Cancer

    PubMed Central

    Jing, Lijia; shao, shangmin; Wang, Yang; Yang, Yongbo; Yue, Xiuli; Dai, Zhifei

    2016-01-01

    This paper reported the fabrication of a multifunctional nanoplatform by modifying hollow Prussian blue nanoparticles with hyaluronic acid grafting polyethylene glycol, followed by loading 10-hydroxycamptothecin for tumor-targeted thermochemotherapy. It was found that the surface modification of hollow Prussian blue nanoparticles with hyaluronic acid grafting polyethylene endowed a great colloidal stability, long blood circulation time and the capability for targeting Hela cells over-expressing the CD44 receptor. The obtained nanoagent exhibited efficient photothermal effect and a light triggered and stepwise release behavior of 10-hydroxycamptothecin due to the strong optical absorption in the near-infrared region. The investigations on the body weight change, histological injury and blood biochemical indexes showed that such nanoagent had excellent biocompatibility for medical application. Both in vitro and in vivo experiments proved that the combination of chemotherapy and photothermal therapy through the agent of hyaluronic acid modified Prussian blue nanoparticles loading 10-hydroxycamptothecin could significantly improve the therapeutic efficacy compared with either therapy alone because of a good synergetic effect. PMID:26722372

  4. Structural resistance of chemically modified 1-D nanostructured titanates in inorganic acid environment

    SciTech Connect

    Marinkovic, Bojan A.; Fredholm, Yann C.; Morgado, Edisson

    2010-10-15

    Sodium containing one-dimensional nanostructured layered titanates (1-D NSLT) were produced both from commercial anatase powder and Brazilian natural rutile mineral sands by alkali hydrothermal process. The 1-D NSLT were chemically modified with proton, cobalt or iron via ionic exchange and all products were additionally submitted to intensive inorganic acid aging (pH = 0.5) for 28 days. The morphology and crystal structure transformations of chemically modified 1-D NSLT were followed by transmission electron microscopy, powder X-ray diffraction, selected area electron diffraction and energy dispersive spectroscopy. It was found that the original sodium rich 1-D NSLT and cobalt substituted 1-D NSLT were completely converted to rutile nanoparticles, while the protonated form was transformed in a 70%-30% (by weight) anatase-rutile nanoparticles mixture, very similar to that of the well-known TiO{sub 2}-photocatalyst P25 (Degussa). The iron substituted 1-D NSLT presented better acid resistance as 13% of the original structure and morphology remained, the rest being converted in rutile. A significant amount of remaining 1-D NSLT was also observed after the acid treatment of the product obtained from rutile sand. The results showed that phase transformation of NSLT into titanium dioxide polymorph in inorganic acid conditions were controllable by varying the exchanged cations. Finally, the possibility to transform, through acid aging, 1-D NSLT obtained from Brazilian natural rutile sand into TiO{sub 2}-polymorphs was demonstrated for the first time to the best of authors' knowledge, opening path for producing TiO{sub 2}-nanoproducts with different morphologies through a simple process and from a low cost precursor.

  5. Separation of modified nucleic acid constituents by micellar electrokinetic capillary chromatography.

    PubMed

    Row, K H; Griest, W H; Maskarinec, M P

    1987-11-13

    Micellar electrokinetic capillary chromatography offers a high-resolution microanalytical technique useful for adducted and modified nucleic acid constituents. A mixture of 14 normal and modified deoxyribonucleosides, deoxyribomononucleotides, a ribonucleoside and a pyrimidine can be resolved in less than 40 min using 10 kV of separating voltage, 0.075 M sodium dodecylsulfate micelles in phosphate-borate buffer, and a 68.5 cm X 60 micron I.D. fused-silica column. Efficiencies up to 370,000 theoretical plates (540,000 plates/m) are achieved, but are highly dependent on solute concentration. The limit of detection for 2'-deoxyguanosine under high-resolution conditions is ca. 18 pg at a signal-to-noise ratio of 4, but the very small injection volumes (ca. 1.5 nl) limit the minimum detectable sample solution concentration to ca. 42 nmol/ml. PMID:3693481

  6. Electrochemical Determination of Glycoalkaloids Using a Carbon Nanotubes-Phenylboronic Acid Modified Glassy Carbon Electrode

    PubMed Central

    Wang, Huiying; Liu, Mingyue; Hu, Xinxi; Li, Mei; Xiong, Xingyao

    2013-01-01

    A versatile strategy for electrochemical determination of glycoalkaloids (GAs) was developed by using a carbon nanotubes-phenylboronic acid (CNTs-PBA) modified glassy carbon electrode. PBA reacts with α-solanine and α-chaconine to form a cyclic ester, which could be utilized to detect GAs. This method allowed GA detection from 1 μM to 28 μM and the detection limit was 0.3 μM. Affinity interaction of GAs and immobilized PBA caused an essential change of the peak current. The CNT-PBA modified electrodes were sensitive for detection of GAs, and the peak current values were in quite good agreement with those measured by the sensors. PMID:24287539

  7. Genetically modified lactic acid bacteria: applications to food or health and risk assessment.

    PubMed

    Renault, Pierre

    2002-11-01

    Lactic acid bacteria have a long history of use in fermented food products. Progress in gene technology allows their modification by introducing new genes or by modifying their metabolic functions. These modifications may lead to improvements in food technology (bacteria better fitted to technological processes, leading to improved organoleptic properties em leader ), or to new applications including bacteria producing therapeutic molecules that could be delivered by mouth. Examples in these two fields will be discussed, at the same time evaluating their potential benefit to society and the possible risks associated with their use. Risk assessment and expected benefits will determine the future use of modified bacteria in the domains of food technology and health.

  8. Semiautomated, Reproducible Batch Processing of Soy

    NASA Technical Reports Server (NTRS)

    Thoerne, Mary; Byford, Ivan W.; Chastain, Jack W.; Swango, Beverly E.

    2005-01-01

    A computer-controlled apparatus processes batches of soybeans into one or more of a variety of food products, under conditions that can be chosen by the user and reproduced from batch to batch. Examples of products include soy milk, tofu, okara (an insoluble protein and fiber byproduct of soy milk), and whey. Most processing steps take place without intervention by the user. This apparatus was developed for use in research on processing of soy. It is also a prototype of other soy-processing apparatuses for research, industrial, and home use. Prior soy-processing equipment includes household devices that automatically produce soy milk but do not automatically produce tofu. The designs of prior soy-processing equipment require users to manually transfer intermediate solid soy products and to press them manually and, hence, under conditions that are not consistent from batch to batch. Prior designs do not afford choices of processing conditions: Users cannot use previously developed soy-processing equipment to investigate the effects of variations of techniques used to produce soy milk (e.g., cold grinding, hot grinding, and pre-cook blanching) and of such process parameters as cooking times and temperatures, grinding times, soaking times and temperatures, rinsing conditions, and sizes of particles generated by grinding. In contrast, the present apparatus is amenable to such investigations. The apparatus (see figure) includes a processing tank and a jacketed holding or coagulation tank. The processing tank can be capped by either of two different heads and can contain either of two different insertable mesh baskets. The first head includes a grinding blade and heating elements. The second head includes an automated press piston. One mesh basket, designated the okara basket, has oblong holes with a size equivalent to about 40 mesh [40 openings per inch (.16 openings per centimeter)]. The second mesh basket, designated the tofu basket, has holes of 70 mesh [70 openings

  9. Potentially synbiotic fermented beverage with aqueous extracts of quinoa (Chenopodium quinoa Willd) and soy.

    PubMed

    Bianchi, F; Rossi, E A; Gomes, R G; Sivieri, K

    2015-09-01

    The aim of this study was to develop a potentially synbiotic beverage fermented with Lactobacillus casei LC-1 based on aqueous extracts of soy and quinoa with added fructooligosaccharides (FOS). Five formulations with differing proportions of soy and quinoa extracts were tested. The viability of the microorganism, the pH, and the acidity of all formulations were monitored until the 28th day of storage at 5 ℃. The chemical composition of the extracts and beverages and the rheological and sensory properties of the final products were analyzed. Although an increase in acidity and a decrease in pH were observed during the 28 days of storage, the viability of the probiotic microorganism was maintained at 10(8) CFU·mL(-1) in all formulated beverages throughout the storage period. An increase in viscosity and consistency in the formulations with higher concentrations of quinoa (F1 and F2) was observed. Formulation F4 (70% soy and 30% quinoa extracts) showed the least hysteresis. Formulations F4 and F5 (100% soy extract) had the best sensory acceptance while F4 resulted in the highest intention to purchase from a group of 80 volunteers. For chemical composition, F3 (50% soy and 50% quinoa extracts) and F4 showed the best results compared to similar fermented beverages. The formulation F4 was considered the best beverage overall.

  10. Formation and reduction of furan in a soy sauce model system.

    PubMed

    Kim, Min Yeop; Her, Jae-Young; Kim, Mina K; Lee, Kwang-Geun

    2015-12-15

    The formation and reduction of furan using a soy sauce model system were investigated in the present study. The concentration of furan fermented up to 30 days increased by 211% after sterilization compared to without sterilization. Regarding fermentation temperature, furan level after 30 days' fermentation was the highest at 30°C (86.21 ng/mL). The furan levels in the soy sauce fermentation at 20°C and 40°C were reduced by 45% and 88%, respectively compared to 30°C fermentation. Five metal ions (iron sulfate, zinc sulfate, manganese sulfate, magnesium sulfate, and calcium sulfate), sodium sulfite, ascorbic acid, dibutyl hydroxyl toluene (BHT), and butylated hydroxyanisole (BHA) were added in a soy sauce model system. The addition of metal ions such as magnesium sulfate and calcium sulfate reduced the furan concentration significantly by 36-90% and 27-91%, respectively in comparison to furan level in the control sample (p<0.05). Iron sulfate and ascorbic acid increased the furan level at 30 days' fermentation in the soy sauce model system by 278% and 87%, respectively. In the case of the BHT and BHA, furan formation generally was reduced in the soy sauce model system by 84%, 56%, respectively. PMID:26190609

  11. Potentially synbiotic fermented beverage with aqueous extracts of quinoa (Chenopodium quinoa Willd) and soy.

    PubMed

    Bianchi, F; Rossi, E A; Gomes, R G; Sivieri, K

    2015-09-01

    The aim of this study was to develop a potentially synbiotic beverage fermented with Lactobacillus casei LC-1 based on aqueous extracts of soy and quinoa with added fructooligosaccharides (FOS). Five formulations with differing proportions of soy and quinoa extracts were tested. The viability of the microorganism, the pH, and the acidity of all formulations were monitored until the 28th day of storage at 5 ℃. The chemical composition of the extracts and beverages and the rheological and sensory properties of the final products were analyzed. Although an increase in acidity and a decrease in pH were observed during the 28 days of storage, the viability of the probiotic microorganism was maintained at 10(8) CFU·mL(-1) in all formulated beverages throughout the storage period. An increase in viscosity and consistency in the formulations with higher concentrations of quinoa (F1 and F2) was observed. Formulation F4 (70% soy and 30% quinoa extracts) showed the least hysteresis. Formulations F4 and F5 (100% soy extract) had the best sensory acceptance while F4 resulted in the highest intention to purchase from a group of 80 volunteers. For chemical composition, F3 (50% soy and 50% quinoa extracts) and F4 showed the best results compared to similar fermented beverages. The formulation F4 was considered the best beverage overall. PMID:24958776

  12. Characterization of modified calcium-silicate cements exposed to acidic environment

    SciTech Connect

    Camilleri, Josette

    2011-01-15

    Portland cement which is used as a binder in concrete in the construction industry has been developed into a biomaterial. It is marketed as mineral trioxide aggregate and is used in dentistry. This material has been reported to be very biocompatible and thus its use has diversified. The extended use of this material has led to developments of newer versions with improved physical properties. The aim of this study was to evaluate the effect of acidic environments found in the oral cavity on fast setting calcium silicate cements with improved physical properties using a combination of techniques. Two fast setting calcium silicate cements (CSA and CFA) and two cement composites (CSAG and CFAG) were assessed by subjecting the materials to lactic acid/sodium lactate buffer gel for a period of 28 days. At weekly intervals the materials were viewed under the tandem scanning confocal microscope (TSM), and scanning electron microscope (SEM). The two prototype cements exhibited changes in their internal chemistry with no changes in surface characteristics. Since the changes observed were mostly sub-surface evaluation of surface characteristics of cement may not be sufficient in the determination of chemical changes occurring. - Research Highlights: {yields} An acidic environment affects modified fast setting calcium silicate-based cements. {yields} No surface changes are observed in acidic environment. {yields} An acidic environment causes sub-surface changes in the material chemistry which are only visible in fractured specimens. {yields} A combination of techniques is necessary in order to evaluate the chemical changes occurring.

  13. Forced swimming and imipramine modify plasma and brain amino acid concentrations in mice.

    PubMed

    Murakami, Tatsuro; Yamane, Haruka; Tomonaga, Shozo; Furuse, Mitsuhiro

    2009-01-01

    The relationships between monoamine metabolism and forced swimming or antidepressants have been well studied, however information is lacking regarding amino acid metabolism under these conditions. Therefore, the aim of the present study was to investigate the effects of forced swimming and imipramine on amino acid concentrations in plasma, the cerebral cortex and the hypothalamus in mice. Forced swimming caused cerebral cortex concentrations of L-glutamine, L-alanine, and taurine to be increased, while imipramine treatment caused decreased concentrations of L-glutamate, L-alanine, L-tyrosine, L-methionine, and L-ornithine. In the hypothalamus, forced swimming decreased the concentration of L-serine while imipramine treatment caused increased concentration of beta-alanine. Forced swimming caused increased plasma concentration of taurine, while concentrations of L-serine, L-asparagine, L-glutamine and beta-alanine were decreased. Imipramine treatment caused increased plasma concentration of all amino acid, except for L-aspartate and taurine. In conclusion, forced swimming and imipramine treatment modify central and peripheral amino acid metabolism. These results may aid in the identification of amino acids that have antidepressant-like effects, or may help to refine the dosages of antidepressant drugs. PMID:19010319

  14. Isolation and purification of a modified phenazine, griseoluteic acid, produced by Streptomyces griseoluteus P510.

    PubMed

    Wang, Ying; Luo, Qin; Zhang, Xuehong; Wang, Wei

    2011-04-01

    Antibiotic phenazine derivatives and their formation pathways were studied in a new Streptomyces strain P510. Culture characteristics and 16S rRNA nucleotide analysis confirmed strain P510 as Streptomyces griseoluteus. The culture medium of this strain showed strong antimicrobial and antifungal activities. Using organic solvent extraction, silica gel column chromatography and HPLC, a modified phenazine, griseoluteic acid, and a shikimic acid-derived metabolite, p-hydroxybenzaldehyde, were separated and purified. In addition, the biological activity of griseoluteic acid (GA), an important intermediate for biosynthesis of phenazine derivatives, was also investigated in this research. It significantly inhibited growth of Bacillus subtilis. The presence of GA and p-hydroxybenzaldehyde implied that the phenazine biosynthesis pathway in S. griseoluteus P510 might be initiated with shikimic acid, using phenazine-1, 6-dicarboxylic acid as the precursor. The discovery of a partial analogical sequence of phenazine biosynthetic genes, sgpC, sgpD and sgpE, in S. griseoluteus P510 further supported this hypothesis.

  15. The immune modifying effects of amino acids on gut-associated lymphoid tissue

    PubMed Central

    2013-01-01

    The intestine and the gut-associated lymphoid tissue (GALT) are essential components of whole body immune defense, protecting the body from foreign antigens and pathogens, while allowing tolerance to commensal bacteria and dietary antigens. The requirement for protein to support the immune system is well established. Less is known regarding the immune modifying properties of individual amino acids, particularly on the GALT. Both oral and parenteral feeding studies have established convincing evidence that not only the total protein intake, but the availability of specific dietary amino acids (in particular glutamine, glutamate, and arginine, and perhaps methionine, cysteine and threonine) are essential to optimizing the immune functions of the intestine and the proximal resident immune cells. These amino acids each have unique properties that include, maintaining the integrity, growth and function of the intestine, as well as normalizing inflammatory cytokine secretion and improving T-lymphocyte numbers, specific T cell functions, and the secretion of IgA by lamina propria cells. Our understanding of this area has come from studies that have supplemented single amino acids to a mixed protein diet and measuring the effect on specific immune parameters. Future studies should be designed using amino acid mixtures that target a number of specific functions of GALT in order to optimize immune function in domestic animals and humans during critical periods of development and various disease states. PMID:23899038

  16. Reduction of polyester resin shrinkage by means of epoxy resin—I. Epoxy resin modified with acids

    NASA Astrophysics Data System (ADS)

    Pietrzak, M.; Brzostowski, A.

    An attempt was made to decrease the shrinkage of unsaturated polyester resin, taking place during radiation-induced curing, by the addition of epoxy resin. In order to combine chemically both resins, the epoxy component was modified with cinnamic and acrylic acids. A composition of 90 parts of polyesster resin, 10 parts of epoxy resin modified with cinnamic acid, and 150 parts of a silica filler showed a volume shrinkage of 1.2%.

  17. Functionalized graphene with polymer toughener as novel interface modifier for property-tailored poly(lactic acid)/graphene nanocomposites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, an effective strategy for engineering the interfacial compatibility between graphene and polylactic acid (PLA) was developed by manipulating the functionalization of graphene and introducing an epoxy-containing elastomer modifier. Curing between the functional groups of the modified gr...

  18. Modification of soy protein hydrolysates by Maillard reaction: Effects of carbohydrate chain length on structural and interfacial properties.

    PubMed

    Li, Weiwei; Zhao, Haibo; He, Zhiyong; Zeng, Maomao; Qin, Fang; Chen, Jie

    2016-02-01

    This study investigated the effects of carbohydrate chain length on the structural and interfacial properties of the Maillard reaction conjugates of soy protein hydrolysates (Mw>30 kDa). The covalent attachment of sugars to soy peptides was confirmed by amino acid analysis and examination of the Fourier-transform infrared spectra. The results suggested that the emulsion stability of the conjugates increased as the length of the carbohydrate chains increased. The surface activity measurement revealed that the soy peptide-dextran conjugates were closely packed and that each molecule occupied a small area of the interface. It was further confirmed that the soy peptide-dextran conjugates formed a thick adsorbed layer at the oil-water interface, as observed in the confocal laser scanning micrographs. The interfacial layer of soy peptides was rheologically complex with broad linear viscoelastic region and strong elastic modulus, and the soy peptide-dextran conjugates might form multilayer adsorption at the interface. This study suggested that the improved surface properties of the soy peptide-dextran conjugates were a result of the strong membrane formed by the closely packed molecular and multilayer adsorption at the interface, which provided steric hindrance to flocculation. PMID:26655794

  19. Soy protein recovery in a solvent-free process using continuous liquid-solid circulating fluidized bed ion exchanger.

    PubMed

    Prince, Andrew; Bassi, Amarjeet S; Haas, Christine; Zhu, Jesse X; Dawe, Jennifer

    2012-01-01

    Soy protein concentrates and soy protein isolates act as ingredients in bakery, meat and dairy products, baby formulas, starting materials for spun textured vegetable products, and other nutritional supplements. In this study, the effectiveness of a liquid-solid circulating fluidized bed (LSCFB) ion exchanger is demonstrated for the recovery of soluble soy proteins from full fat and defatted soy flour. Under steady-state operating conditions, about 50% of the proteins could be recovered from the feed streams entering the ion exchanger. The LSCFB was shown to be a promising system for the recovery of soy protein from both defatted and full fat soy flour solutions. As the ion exchange process captures dissolved proteins, the system may offer a less damaging form of processing compared with the acid precipitation process where soy protein aggregates form and functionality is affected. In addition, the LSCFB allows simultaneous adsorption and desorption of the proteins allowing for a continuous operation. No prefiltration of feed containing suspended particles is required as well, because fluidization is used in place of packed bed technology to improve on current ion exchange processes. PMID:22002948

  20. Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid.

    PubMed

    Tavafoghi, M; Brodusch, N; Gauvin, R; Cerruti, M

    2016-01-01

    Hydroxyapatite (HA, Ca5(PO4)3OH) is the main inorganic component of hard tissues, such as bone and dentine. HA nucleation involves a set of negatively charged phosphorylated proteins known as non-collagenous proteins (NCPs). These proteins attract Ca(2+) and PO4(3-) ions and increase the local supersaturation to a level required for HA precipitation. Polar and charged amino acids (AAs) are highly expressed in NCPs, and seem to be responsible for the mineralizing effect of NCPs; however, the individual effect of these AAs on HA mineralization is still unclear. In this work, we investigate the effect of a negatively charged (Glu) and positively charged (Arg) AA bound to carboxylated graphene oxide (CGO) on HA mineralization in simulated body fluids (SBF). Our results show that Arg induces HA precipitation faster and in larger amounts than Glu. We attribute this to the higher stability of the complexes formed between Arg and Ca(2+) and PO4(3-) ions, and also to the fact that Arg exposes both carboxyl and amino groups on the surface. These can electrostatically attract both Ca(2+) and PO4(3-) ions, thus increasing local supersaturation more than Glu, which exposes carboxyl groups only.

  1. Delivery of siRNA Using Cationic Liposomes Incorporating Stearic Acid-modified Octa-Arginine.

    PubMed

    Yang, Dongsheng; Li, Yuhuan; Qi, Yuhang; Chen, Yongzhen; Yang, Xuewei; Li, Yujing; Liu, Songcai; Lee, Robert J

    2016-07-01

    Cationic liposomes incorporating stearic acid-modified octa-arginine (StA-R8) were evaluated for survivin small interfering RNA (siRNA) delivery. StA-R8 was synthesized and incorporated into liposomes. The composition of liposomes was optimized. Physicochemical properties, cytotoxicity, cellular uptake and gene silencing activity of the liposomes complexed to survivin siRNA were investigated. The results showed that StA-R8-containing liposomes had reduced cytotoxicity and improved delivery efficiency of siRNA into cancer cells compared with StA-R8 by itself.

  2. Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors

    NASA Astrophysics Data System (ADS)

    Almeida, Patrick V.; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Kaasalainen, Martti; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A.

    2014-08-01

    Active targeting of nanoparticles to receptor-overexpressing cancer cells has great potential for enhancing the cellular uptake of nanoparticles and for reducing fast clearance of the nanoparticles from the body. Herein, we present a preparation method of a porous silicon (PSi)-based nanodelivery system for breast cancer targeting, by covalently conjugating a synthesized amide-modified hyaluronic acid (HA+) derived polymer on the surface of undecylenic acid-modified thermally hydrocarbonized PSi (UnTHCPSi) nanoparticles. The resulting UnTHCPSi-HA+ nanoparticles showed relatively small size, reduced polydispersibility, high biocompatibility, improved colloidal and human plasma stability, as well as enhanced cellular interactions and internalization. Moreover, we demonstrated that the enhanced cellular association of UnTHCPSi-HA+ relies on the capability of the conjugated HA+ to bind and consequently target CD44 receptors expressed on the surface of breast cancer cells, thus making the HA+-functionalized UnTHCPSi nanoparticles a suitable and promising nanoplatform for the targeting of CD44-overexpressing breast tumors and for drug delivery.Active targeting of nanoparticles to receptor-overexpressing cancer cells has great potential for enhancing the cellular uptake of nanoparticles and for reducing fast clearance of the nanoparticles from the body. Herein, we present a preparation method of a porous silicon (PSi)-based nanodelivery system for breast cancer targeting, by covalently conjugating a synthesized amide-modified hyaluronic acid (HA+) derived polymer on the surface of undecylenic acid-modified thermally hydrocarbonized PSi (UnTHCPSi) nanoparticles. The resulting UnTHCPSi-HA+ nanoparticles showed relatively small size, reduced polydispersibility, high biocompatibility, improved colloidal and human plasma stability, as well as enhanced cellular interactions and internalization. Moreover, we demonstrated that the enhanced cellular association of Un

  3. Delivery of siRNA Using Cationic Liposomes Incorporating Stearic Acid-modified Octa-Arginine.

    PubMed

    Yang, Dongsheng; Li, Yuhuan; Qi, Yuhang; Chen, Yongzhen; Yang, Xuewei; Li, Yujing; Liu, Songcai; Lee, Robert J

    2016-07-01

    Cationic liposomes incorporating stearic acid-modified octa-arginine (StA-R8) were evaluated for survivin small interfering RNA (siRNA) delivery. StA-R8 was synthesized and incorporated into liposomes. The composition of liposomes was optimized. Physicochemical properties, cytotoxicity, cellular uptake and gene silencing activity of the liposomes complexed to survivin siRNA were investigated. The results showed that StA-R8-containing liposomes had reduced cytotoxicity and improved delivery efficiency of siRNA into cancer cells compared with StA-R8 by itself. PMID:27354583

  4. Soy provides modest benefits on endothelial function without affecting inflammatory biomarkers in adults at cardiometabolic risk

    PubMed Central

    Reverri, Elizabeth J.; LaSalle, Colette D.; Franke, Adrian A.; Steinberg, Francene M.

    2015-01-01

    Scope Systemic inflammation, endothelial dysfunction, and oxidative stress are involved in the pathogenesis of the metabolic syndrome (MetS). Epidemiological evidence supports an association between whole soy food consumption and reduced risk of cardiovascular disease (CVD). The objective of this randomized, controlled, crossover study was to evaluate the effects of soy nut consumption on inflammatory biomarkers and endothelial function and to assess whether isoflavone metabolism to secondary products, equol and/or O-desmethylangolensin (ODMA), modifies these responses. Methods and Results n=17 adults at cardiometabolic risk were randomly assigned to the order of two snack interventions, soy nuts and macronutrient-matched control snack, for four weeks each, separated by a two week washout period. Outcome measures included biomarkers of inflammation, oxidative stress, and glycemic control (ELISA and clinical analyzers), endothelial function and arterial stiffness (peripheral arterial tonometry (PAT)), and isoflavone metabolites (LC-MS/MS). Results revealed that consuming soy nuts improved arterial stiffness as assessed by the augmentation index using PAT (P=0.03), despite lack of improvement in inflammatory biomarkers. Addition of equol and/ODMA production status as covariates did not significantly change these results. Conclusions Soy nuts when added to a usual diet for one month provide some benefit on arterial stiffness in adults at cardiometabolic risk. PMID:25351805

  5. IR spectroscopic study of the surface of TiO/sub 2/ anatase modified with sulfuric acid

    SciTech Connect

    Khadzhiivanov, K.I.; Davydov, A.A.

    1988-10-01

    The elevated activity of anatase modified with sulfuric acid, which is determined by the acidity of the catalyst, has been observed in reactions of acylation, esterification, and isomerization of cyclopropane. It was shown that the formation of surface sulfates in modification of anatase with sulfuric acid causes the appearance of Broensted acid centers which persist up to high dehydration temperatures and an increase in the strength of Lewis acid centers. The symmetry, structure, and sites of the surface sulfates were discussed. The Broensted acid centers are caused by mobile protons bound with sulfate ions.

  6. Voltammetric determination of 6-thioguanine and folic acid using a carbon paste electrode modified with ZnO-CuO nanoplates and modifier.

    PubMed

    Beitollahi, Hadi; Ivari, Susan Ghofrani; Torkzadeh-Mahani, Masoud

    2016-12-01

    ZnO-CuO nanoplates and 2-chlorobenzoyl ferrocene, were synthesized and used to construct a modified carbon paste electrode. The electrooxidation of 6-thioguanine at the surface of the modified electrode was studied. Under the optimized conditions, the square wave voltammetric (SWV) peak current of 6-thioguanine increased linearly in the concentration range 0.05 to 200.0μM and detection limit of 25±2nM was obtained for 6-thioguanine. The prepared modified electrode exhibits a very good resolution between the voltammetric peaks of 6-thioguanine and folic acid which makes it suitable for the detection of 6-thioguanine in the presence of folic acid in real samples. PMID:27612697

  7. Characterisation and expression of fatty acid modifying enzyme produced by Staphylococcus epidermidis.

    PubMed

    Chamberlain, N R; Brueggemann, S A

    1997-08-01

    The production of fatty-acid modifying enzyme (FAME) - first identified as a possible virulence factor in Staphylococcus aureus - has also been identified in S. epidermidis. This extracellular enzyme inactivates bactericidal fatty acids by esterifying them to cholesterol. FAME may provide protection for S. epidermidis by inactivating these lipids present on the skin. Over 88% of 51 randomly collected S. epidermidis isolates produced FAME; 92.2% and 13.7% of the same strains produced lipase and slime, respectively. There appeared to be no correlation of lipase activity or slime production with FAME production. The temperature optimum for FAME was between 20 degrees C and 35 degrees C, and the pH optimum was 6.0. Optimal enzyme activity was present at NaCl concentrations of between 250 and 500 mM. FAME was not detected in culture filtrates until early stationary phase, indicating some regulatory control over enzyme production.

  8. [Drug release properties of sodium alginate hydrophobically modified by star polylactic acid].

    PubMed

    Ma, Fu-Wen; Jin, Yong; Zhang, Wen-Fang; Zhou, Shao-Bing; Ni, Cai-Hua

    2010-11-01

    Inorganic/polymer hybrid star polylactic acid (POSS-PLA) was obtained through ring-opening polymerization of lactide by using polyhydroxyl cage silsesquioxane (POSS-OH) as the core and tin (II) octoate as the catalyst. The star polylactic acid (POSS-PLA) was used to modify sodium alginate hydrophobically and a drug carrier was obtained. The drug release behavior was investigated by using ibuprofen as the model drug. The results showed that the drug loading rate could be improved and the release rate was postponed with an increase of POSS-PLA content in the carries. The release mechanism gradually changed from the first-order to the zero-order pattern after the modification.

  9. Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution.

    PubMed

    Sajab, Mohd Shaiful; Chia, Chin Hua; Zakaria, Sarani; Jani, Saad Mohd; Ayob, Mohd Khan; Chee, Kah Leong; Khiew, Poi Sim; Chiu, Wee Siong

    2011-08-01

    Chemically modified kenaf core fibres were prepared via esterification in the presence of citric acid (CA). The adsorption kinetics and isotherm studies were carried out under different conditions to examine the adsorption efficiency of CA-treated kenaf core fibres towards methylene blue (MB). The adsorption capacity of the kenaf core fibres increased significantly after the citric acid treatment. The values of the correlation coefficients indicated that the Langmuir isotherm fitted the experimental data better than the Freundlich isotherm. The maximum adsorption capacity of the CA-treated kenaf core fibres was found to be 131.6mg/g at 60°C. Kinetic models, pseudo-first-order, pseudo-second-order and intraparticle diffusion, were employed to describe the adsorption mechanism. The kinetic data were found to fit pseudo-second-order model equation as compared to pseudo-first-order model. The adsorption of MB onto the CA-treated kenaf core fibres was spontaneous and endothermic.

  10. The citric acid-modified, enzyme-resistant dextrin from potato starch as a potential prebiotic.

    PubMed

    Sliżewska, Katarzyna

    2013-01-01

    In the present study, enzyme-resistant dextrin, prepared by heating of potato starch in the presence of hydrochloric (0.1% dsb) and citric (0.1% dsb) acid at 130ºC for 3 h (CA-dextrin), was tested as a source of carbon for probiotic lactobacilli and bifidobacteria cultured with intestinal bacteria isolated from feces of three healthy 70-year old volunteers. The dynamics of growth of bacterial monocultures in broth containing citric acid (CA)-modified dextrin were estimated. It was also investigated whether lactobacilli and bifidobacteria cultured with intestinal bacteria in the presence of resistant dextrin would be able to dominate the intestinal isolates. Prebiotic fermentation of resistant dextrin was analyzed using prebiotic index (PI). In co-cultures of intestinal and probiotic bacteria, the environment was found to be dominated by the probiotic strains of Bifidobacterium and Lactobacillus, which is a beneficial effect.

  11. Characterisation and expression of fatty acid modifying enzyme produced by Staphylococcus epidermidis.

    PubMed

    Chamberlain, N R; Brueggemann, S A

    1997-08-01

    The production of fatty-acid modifying enzyme (FAME) - first identified as a possible virulence factor in Staphylococcus aureus - has also been identified in S. epidermidis. This extracellular enzyme inactivates bactericidal fatty acids by esterifying them to cholesterol. FAME may provide protection for S. epidermidis by inactivating these lipids present on the skin. Over 88% of 51 randomly collected S. epidermidis isolates produced FAME; 92.2% and 13.7% of the same strains produced lipase and slime, respectively. There appeared to be no correlation of lipase activity or slime production with FAME production. The temperature optimum for FAME was between 20 degrees C and 35 degrees C, and the pH optimum was 6.0. Optimal enzyme activity was present at NaCl concentrations of between 250 and 500 mM. FAME was not detected in culture filtrates until early stationary phase, indicating some regulatory control over enzyme production. PMID:9511818

  12. Characterization of fatty acid modifying enzyme activity in staphylococcal mastitis isolates and other bacteria

    PubMed Central

    2012-01-01

    Background Fatty acid modifying enzyme (FAME) has been shown to modify free fatty acids to alleviate their bactericidal effect by esterifying fatty acids to cholesterol or alcohols. Although it has been shown in previous studies that FAME is required for Staphylococcus aureus survival in skin abscesses, FAME is poorly studied compared to other virulence factors. FAME activity had also been detected in coagulase-negative staphylococci (CNS). However, FAME activity was only surveyed after a bacterial culture was grown for 24 h. Therefore if FAME activity was earlier in the growth phase, it would not have been detected by the assay and those strains would have been labeled as FAME negative. Results Fifty CNS bovine mastitis isolates and several S. aureus, Escherichia coli, and Streptococcus uberis strains were assayed for FAME activity over 24 h. FAME activity was detected in 54% of CNS and 80% S. aureus strains surveyed but none in E. coli or S. uberis. While some CNS strains produced FAME activity comparable to the lab strain of S. aureus, the pattern of FAME activity varied among strains and across species of staphylococci. All CNS that produced FAME activity also exhibited lipase activity. Lipase activity relative to colony forming units of these CNS decreased over the 24 h growth period. No relationship was observed between somatic cell count in the milk and FAME activity in CNS. Conclusions Some staphylococcal species surveyed produced FAME activity, but E. coli and S. uberis strains did not. All FAME producing CNS exhibited lipase activity which may indicate that both these enzymes work in concert to alter fatty acids in the bacterial environment. PMID:22726316

  13. K+ and Ca2+ modified Na-X zeolites as possible bile acids sequestrant.

    PubMed

    Linares, Carlos F; Valenzuela, Elymar; Ocanto, Freddy; Pérez, Víctor; Valbuena, Oscar; Goldwasser, Mireya R

    2008-05-01

    Modified zeolite X, previously exchanged with K+ and Ca2+ cations were characterized by XRD, FT-IR, chemical analysis and BET techniques. Different masses of these solids were mixed with an ox bile solution at different reaction times. The supernatants obtained by centrifugations were submitted to bile acid and phospholipids quantitative determinations. The amount of bile acids adsorbed was 65, 28 and 77% and for phospholipids was 45, 67 and 98% for KX, NaX and CaX respectively. As expected, as the amount of mass used increases more bile acids and phospholipids are adsorbed due to a larger surface of the solid being available for adsorption. On the other hand, 120 min of reaction time were sufficient for the adsorption of both components. The solids, after incubations with bile solutions were treated with abundant distilled water and dried at room temperature. The FT-IR analysis of these solids did not detect any bile and on the zeolite surface with suggested that the bile acid adsorption on the exchanged zeolites is moderated by weak and non covalent interactions.

  14. [Absorption of Uranium with Tea Oil Tree Sawdust Modified by Succinic Acid].

    PubMed

    Zhang, Xiao-feng; Chen, Di-yun; Peng, Yan; Liu, Yong-sheng; Xiong, Xue-ying

    2015-05-01

    In order to explore how the modification of succinic acid improves the adsorption of tea oil tree sawdust for uranium, the tea oil tree sawdust was modified by succinic acid, after the pretreatments of crushing, screening, alkalization and acidification. Infrared analysis indicated carboxylic acid groups and ester groups were added to the sawdust after modification, and scanning electron microscope demonstrated after modification the appearance of tea oil tree sawdust was transferred from the structure like compact and straight stripped into the structure like loose and wrinkled leaves, which meant modification increased its inner pores. By the static experiments, effects of reaction time between adsorbent and solvent, dosage of adsorbent, temperature, pH value and initial concentration of uranium were investigated. The results showed that after the modification by succinic acid, the absorption rate of tea oil tree sawdust for uranium increased significantly by about 20% in 12.5 mg · L(-1) initial concentration uranium solution. Adsorption equilibrium was achieved within 180 min, and the kinetic data can be well described by the pseudo-second-order kinetic model. The experimental adsorption isotherm followed the Langmuir and Freundlich models. In addition, the maximum adsorption amounts of tea oil tree sawdust after modification calculated from Langmuir equation raised from 21.413 3 to 31.545 7 mg · g(-1) at 35°C and pH 4.0. PMID:26314117

  15. Synthesis and characterization of mercaptoacetic acid-modified ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Song, Rui; Liu, Ying; He, Linghao

    2008-11-01

    Mercaptoacetic acid (MAA)-modified ZnO nanoparticles have been prepared at low temperature by homogeneous precipitation method, using zinc nitrate hexahydrate and hexamethylenetetramine as initial agents. The modified zinc oxide nanorods were characterized using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), thermogravimetric (TG) analysis and photoluminescence (PL) spectroscopy. The XRD revealed the wurtzite structure of zinc oxide. The growth of ZnO crystals into rod shape was found to be closely related to its hexagonal nature. As indicated from SEM, the morphology of the modified ZnO nanorods changes with various MAA addition times. In addition, the results of TG and FT-IR confirmed the conjugation of MAA with ZnO nanorods, and the amount of carboxyl group in the samples' surface was found to be 0.1943-0.3491 mmol/g through the titration experiment. The PL spectra indicated that the optical properties of ZnO nanorods were changed with the insertion of MAA, and showed a significant improvement in intensity. On the basis of these results, one might expect that the conjugate specific biomolecules on the functional ZnO nanorods are very potential to detect the complementary biomolecules by PL detecting.

  16. Determination of modification degree in BDDE-modified hyaluronic acid hydrogel by SEC/MS.

    PubMed

    Yang, Biao; Guo, Xueping; Zang, Hengchang; Liu, Jianjian

    2015-10-20

    Determination of modification degree in BDDE-modified hyaluronic acid (HA) hydrogel is of particular interest. In this paper, three crosslinking parameters (degree of total modification, t-MOD; degree of cross-link modification, c-MOD; degree of pendent modification, p-MOD) are defined and determined by quantification of the modified fragments in hydrogel digestion by size exclusion chromatography combined with mass spectrometry (SEC-MS). The digestion products of a novel hyaluronidase HAase-B produced by Bacillus sp. A50 are studied and only a few modified fragments are identified by (1)H NMR and MS. As a result, Three HA hydrogels prepared in lab have different t-MOD, c-MOD and p-MOD, but the ratio of c-MOD to p-MOD result in the almost same value of 75%. Hydrogel products from Q-Med have nearly same t-MOD about 0.8% and c-MOD about 0.1%, the ratio of c-MOD to p-MOD is about 13%. Hydrogels from ANTEIS S.A all have much higher t-MOD values, the ratio of c-MOD and p-MOD is about 8%. PMID:26256180

  17. Surface-modified hyaluronic acid hydrogels to capture endothelial progenitor cells.

    PubMed

    Camci-Unal, Gulden; Aubin, Hug; Ahari, Amirhossein Farajzadeh; Bae, Hojae; Nichol, Jason William; Khademhosseini, Ali

    2010-10-21

    A major challenge to the effective treatment of injured cardiovascular tissues is the promotion of endothelialization of damaged tissues and implanted devices. For this reason, there is a need for new biomaterials that promote endothelialization to enhance vascular repair. The goal of this work was to develop antibody-modified polysaccharide-based hydrogels that could selectively capture endothelial progenitor cells (EPCs). We showed that CD34 antibody immobilization on hyaluronic acid (HA) hydrogels provides a suitable surface to capture EPCs. The effect of CD34 antibody immobilization on EPC adhesion was found to be dependent on antibody concentration. The highest level of EPC attachment was found to be 52.2 cells per mm(2) on 1% HA gels modified with 25 μg mL(-1) antibody concentration. Macrophages did not exhibit significant attachment on these modified hydrogel surfaces compared to the EPCs, demonstrating the selectivity of the system. Hydrogels containing only HA, with or without immobilized CD34, did not allow for spreading of EPCs 48 h after cell seeding, even though the cells were adhered to the hydrogel surface. To promote spreading of EPCs, 2% (w/v) gelatin methacrylate (GelMA) containing HA hydrogels were synthesized and shown to improve cell spreading and elongation. This strategy could potentially be useful to enhance the biocompatibility of implants such as artificial heart valves or in other tissue engineering applications where formation of vascular structures is required.

  18. Preparation and characterization of silver loaded montmorillonite modified with sulfur amino acid

    NASA Astrophysics Data System (ADS)

    Li, Tian; Lin, Oulian; Lu, Zhiyuan; He, Liuimei; Wang, Xiaosheng

    2014-06-01

    The Na+ montmorillonite (MMT) was modified with sulfur containing amino acid (L-cystine, L-cysteine or L-methionine) and characterized by energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectrum (FT-IR). The results showed the modification was smooth and the surface condition of MMT was changed with sulfur containing groups. Then silver was loaded on the modified MMTs via ion-exchange reaction under microwave irradiation, the spectra of X-ray photoelectron spectroscopy (XPS), EDS and FT-IR confirmed the successful loading of massive silver and the strong interaction between sulfur and silver, the silver loaded L-cystine modified MMT (Ag@AA-MMT-3) with a silver content of 10.93 wt% was the highest of all. Further more, the Ag@AA-MMT-3 was under the irradiation of a UV lamp to turn silver ions to silver nano particles (Ag NPs). The XPS, specific surface area (SSA), transmission electron microscopy (TEM), XRD patterns and UV-vis spectra proved the existence of uniform nano scaled metallic Ag NPs. By contrast, the UV irradiated Ag@AA-MMT-3 (Ag@AA-MMT-UV) showed a much better slow release property than Ag@AA-MMT-3 or Ag@MMT. The Ag@AA-MMT-UV showing a large inhibition zone and high inhibition ratio presented very good antibacterial property.

  19. Separation of macromolecular proteins and removal of humic acid by cellulose acetate modified UF membranes.

    PubMed

    Kanagaraj, P; Nagendran, A; Rana, D; Matsuura, T

    2016-08-01

    Surface modifying macromolecules (SMMs) were synthesized with various polyurethane pre polymers end-capped with different groups and blended into the casting solution of cellulose acetate (CA) to prepare surface modified ultra-filtration (UF) membranes for water filtration applications. The surface modification of the CA membranes was confirmed by the FTIR and static contact angle (SCA) measurements. The membranes so prepared had the typical characteristics of UF membranes as confirmed by scanning electron microscopy (SEM). Membrane properties were studied in terms of membrane compaction, percentage water content (%WC), pure water flux (PWF), membrane hydraulic resistance (Rm), molecular weight cut-off (MWCO), average pore size and porosity. The result showed that PWF, %WC, MWCO and pore size increased whereas the Rm decreased by the addition of SMMs. The significant effect of SMMs on the fouling by humic acid (HA) was also observed. It was found that the cSMM-3 membrane, in which SMM was synthesized with diethylene glycol (DEG) and hydroxyl benzene sulfonate (HBS) was blended, had the highest flux recovery ratio FRR (84.6%), as well as the lowest irreversible fouling (15.4%), confirming their improved antifouling properties. Thus, the SMM modified CA membranes had proven, to play an important role in the water treatment by UF. PMID:27118046

  20. Separation of macromolecular proteins and removal of humic acid by cellulose acetate modified UF membranes.

    PubMed

    Kanagaraj, P; Nagendran, A; Rana, D; Matsuura, T

    2016-08-01

    Surface modifying macromolecules (SMMs) were synthesized with various polyurethane pre polymers end-capped with different groups and blended into the casting solution of cellulose acetate (CA) to prepare surface modified ultra-filtration (UF) membranes for water filtration applications. The surface modification of the CA membranes was confirmed by the FTIR and static contact angle (SCA) measurements. The membranes so prepared had the typical characteristics of UF membranes as confirmed by scanning electron microscopy (SEM). Membrane properties were studied in terms of membrane compaction, percentage water content (%WC), pure water flux (PWF), membrane hydraulic resistance (Rm), molecular weight cut-off (MWCO), average pore size and porosity. The result showed that PWF, %WC, MWCO and pore size increased whereas the Rm decreased by the addition of SMMs. The significant effect of SMMs on the fouling by humic acid (HA) was also observed. It was found that the cSMM-3 membrane, in which SMM was synthesized with diethylene glycol (DEG) and hydroxyl benzene sulfonate (HBS) was blended, had the highest flux recovery ratio FRR (84.6%), as well as the lowest irreversible fouling (15.4%), confirming their improved antifouling properties. Thus, the SMM modified CA membranes had proven, to play an important role in the water treatment by UF.

  1. Determination of modification degree in BDDE-modified hyaluronic acid hydrogel by SEC/MS.

    PubMed

    Yang, Biao; Guo, Xueping; Zang, Hengchang; Liu, Jianjian

    2015-10-20

    Determination of modification degree in BDDE-modified hyaluronic acid (HA) hydrogel is of particular interest. In this paper, three crosslinking parameters (degree of total modification, t-MOD; degree of cross-link modification, c-MOD; degree of pendent modification, p-MOD) are defined and determined by quantification of the modified fragments in hydrogel digestion by size exclusion chromatography combined with mass spectrometry (SEC-MS). The digestion products of a novel hyaluronidase HAase-B produced by Bacillus sp. A50 are studied and only a few modified fragments are identified by (1)H NMR and MS. As a result, Three HA hydrogels prepared in lab have different t-MOD, c-MOD and p-MOD, but the ratio of c-MOD to p-MOD result in the almost same value of 75%. Hydrogel products from Q-Med have nearly same t-MOD about 0.8% and c-MOD about 0.1%, the ratio of c-MOD to p-MOD is about 13%. Hydrogels from ANTEIS S.A all have much higher t-MOD values, the ratio of c-MOD and p-MOD is about 8%.

  2. Neutralizing Aspartate 83 Modifies Substrate Translocation of Excitatory Amino Acid Transporter 3 (EAAT3) Glutamate Transporters*

    PubMed Central

    Hotzy, Jasmin; Machtens, Jan-Philipp; Fahlke, Christoph

    2012-01-01

    Excitatory amino acid transporters (EAATs) terminate glutamatergic synaptic transmission by removing glutamate from the synaptic cleft into neuronal and glial cells. EAATs are not only secondary active glutamate transporters but also function as anion channels. Gating of EAAT anion channels is tightly coupled to transitions within the glutamate uptake cycle, resulting in Na+- and glutamate-dependent anion currents. A point mutation neutralizing a conserved aspartic acid within the intracellular loop close to the end of transmembrane domain 2 was recently shown to modify the substrate dependence of EAAT anion currents. To distinguish whether this mutation affects transitions within the uptake cycle or directly modifies the opening/closing of the anion channel, we used voltage clamp fluorometry. Using three different sites for fluorophore attachment, V120C, M205C, and A430C, we observed time-, voltage-, and substrate-dependent alterations of EAAT3 fluorescence intensities. The voltage and substrate dependence of fluorescence intensities can be described by a 15-state model of the transport cycle in which several states are connected to branching anion channel states. D83A-mediated changes of fluorescence intensities, anion currents, and secondary active transport can be explained by exclusive modifications of substrate translocation rates. In contrast, sole modification of anion channel opening and closing is insufficient to account for all experimental data. We conclude that D83A has direct effects on the glutamate transport cycle and that these effects result in changed anion channel function. PMID:22532568

  3. Controllable Phase Separation by Boc-Modified Lipophilic Acid as a Multifunctional Extractant

    NASA Astrophysics Data System (ADS)

    Tao, Kai; Adler-Abramovich, Lihi; Gazit, Ehud

    2015-12-01

    While phase separation of immiscible liquid-liquid systems has become increasingly significant in diverse areas, the irreversible nature limits their further application in controllable extraction-concentration or capture-release fields. There is a need for the development of simple, efficient and reversible methods for numerous research and industrial extraction and separation applications. We envisioned Boc-modified lipophilic acids as a simple model for such use based on the studies of the multi-phase transitions of Boc-modified supramolecular polymeric systems. Here, we demonstrate that in the presence of Boc-7-aminoheptanoic acid (Boc-7), phase separation occurs in mixtures of miscible organic solvent and water. The separation behavior was confirmed by differential colorimetric development in aqueous and organic phases using methyl orange staining assays. Component substitution experiments verified that the phase separation results from the subtle balance between the aggregation and the solvation forces of Boc-7, and is reversible by adjusting the solution pH. Owing to the intrinsic hydrophobic properties of the organic phase and the hydrogen bonding-forming ability of the carboxyl group of Boc-7, the phase separation system captures and releases Sudan Red, fluorescein, and streptavidin in a controllable manner. Consequently, a reversible and simple phase separation system can be designed as a multifunctional extractant.

  4. Formation of bowl-shaped nanoparticles by self-assembly of cinnamic acid-modified dextran.

    PubMed

    Zhang, Cuige; Yang, Suhan; Zhu, Ye; Zhang, Rongli; Liu, Xiaoya

    2015-11-20

    The self-assembly of amphiphilic copolymers has attracted much attention because of their various morphologies and potential applications. Bowl-shaped nanoparticles could apply in many aspects due to their interior cavity, specific concave structure and high surface area. In this study, dextran (Dex) was hydrophobic modified by cinnamic acid (CINN) via esterification reaction between the hydroxyl group of Dex and the carboxyl group of CINN. The modification degree of CINN could be achieved by changing the feed ratios between Dex, CINN and the coupling agent. The cinnamic acid-modified dextran (Dex-CINN) composed of Dex as hydrophilic segment and CINN as hydrophobic segment could self-assemble into bowl-shaped nanoparticles with a single dimple on the surface. Furthermore, the size of the dimples could be controlled by changing the modification degree of CINN, concentration of Dex-CINN and the rate of water addition. The morphologies of bowl-shaped nanoparticles were characterized by transmission electron microscopy (TEM) and scanning electron microscope (SEM).

  5. Hyaluronic acid-modified multiwalled carbon nanotubes for targeted delivery of doxorubicin into cancer cells.

    PubMed

    Cao, Xueyan; Tao, Lei; Wen, Shihui; Hou, Wenxiu; Shi, Xiangyang

    2015-03-20

    Development of novel drug carriers for targeted cancer therapy with high efficiency and specificity is of paramount importance and has been one of the major topics in current nanomedicine. Here we report a general approach to using multifunctional multiwalled carbon nanotubes (MWCNTs) as a platform to encapsulate an anticancer drug doxorubicin (DOX) for targeted cancer therapy. In this approach, polyethyleneimine (PEI)-modified MWCNTs were covalently conjugated with fluorescein isothiocyanate (FI) and hyaluronic acid (HA). The formed MWCNT/PEI-FI-HA conjugates were characterized via different techniques and were used as a new carrier system to encapsulate the anticancer drug doxorubicin for targeted delivery to cancer cells overexpressing CD44 receptors. We show that the formed MWCNT/PEI-FI-HA/DOX complexes with a drug loading percentage of 72% are water soluble and stable. In vitro release studies show that the drug release rate under an acidic condition (pH 5.8, tumor cell microenvironment) is higher than that under physiological condition (pH 7.4). Cell viability assay demonstrates that the carrier material has good biocompatibility in the tested concentration range, and the MWCNT/PEI-FI-HA/DOX complexes can specifically target cancer cells overexpressing CD44 receptors and exert growth inhibition effect to the cancer cells. The developed HA-modified MWCNTs hold a great promise to be used as an efficient anticancer drug carrier for tumor-targeted chemotherapy.

  6. Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors.

    PubMed

    Almeida, Patrick V; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Kaasalainen, Martti; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-09-01

    Active targeting of nanoparticles to receptor-overexpressing cancer cells has great potential for enhancing the cellular uptake of nanoparticles and for reducing fast clearance of the nanoparticles from the body. Herein, we present a preparation method of a porous silicon (PSi)-based nanodelivery system for breast cancer targeting, by covalently conjugating a synthesized amide-modified hyaluronic acid (HA(+)) derived polymer on the surface of undecylenic acid-modified thermally hydrocarbonized PSi (UnTHCPSi) nanoparticles. The resulting UnTHCPSi-HA(+) nanoparticles showed relatively small size, reduced polydispersibility, high biocompatibility, improved colloidal and human plasma stability, as well as enhanced cellular interactions and internalization. Moreover, we demonstrated that the enhanced cellular association of UnTHCPSi-HA(+) relies on the capability of the conjugated HA(+) to bind and consequently target CD44 receptors expressed on the surface of breast cancer cells, thus making the HA(+)-functionalized UnTHCPSi nanoparticles a suitable and promising nanoplatform for the targeting of CD44-overexpressing breast tumors and for drug delivery.

  7. Controllable Phase Separation by Boc-Modified Lipophilic Acid as a Multifunctional Extractant

    PubMed Central

    Tao, Kai; Adler-Abramovich, Lihi; Gazit, Ehud

    2015-01-01

    While phase separation of immiscible liquid-liquid systems has become increasingly significant in diverse areas, the irreversible nature limits their further application in controllable extraction-concentration or capture-release fields. There is a need for the development of simple, efficient and reversible methods for numerous research and industrial extraction and separation applications. We envisioned Boc-modified lipophilic acids as a simple model for such use based on the studies of the multi-phase transitions of Boc-modified supramolecular polymeric systems. Here, we demonstrate that in the presence of Boc-7-aminoheptanoic acid (Boc-7), phase separation occurs in mixtures of miscible organic solvent and water. The separation behavior was confirmed by differential colorimetric development in aqueous and organic phases using methyl orange staining assays. Component substitution experiments verified that the phase separation results from the subtle balance between the aggregation and the solvation forces of Boc-7, and is reversible by adjusting the solution pH. Owing to the intrinsic hydrophobic properties of the organic phase and the hydrogen bonding-forming ability of the carboxyl group of Boc-7, the phase separation system captures and releases Sudan Red, fluorescein, and streptavidin in a controllable manner. Consequently, a reversible and simple phase separation system can be designed as a multifunctional extractant. PMID:26627307

  8. Chemically modified polymeric resins for separation of cations, organic acids, and small polar moleculea by high performance liquid chromatography

    SciTech Connect

    Morris, J.B.

    1993-07-01

    This thesis is divided into 4 parts: a review, ion chromatography of metal cations on carboxylic resins, separation of hydrophilic organic acids and small polar compounds on macroporous resin columns, and use of eluent modifiers for liquid chromatographic separation of carboxylic acids using conductivity detection.

  9. Gold Electrodes Modified with Self-Assembled Monolayers for Measuring L-Ascorbic Acid: An Undergraduate Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Ito, Takashi; Perera, D. M. Neluni T.; Nagasaka, Shinobu

    2008-01-01

    This article describes an undergraduate electrochemistry laboratory experiment in which the students measure the L-ascorbic acid content of a real sample. Gold electrodes modified with self-assembled monolayers (SAMs) of thioctic acid and cysteamine are prepared to study the effects of surface modification on the electrode reaction of L-ascorbic…

  10. Modified biofunctional p(tannic acid) microgels and their antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Sagbas, Selin; Aktas, Nahit; Sahiner, Nurettin

    2015-11-01

    Crosslinked poly(tannic acid) micro particles, p(TA), were synthesized using trimethylolpropane triglycidyl ether (TMPGDE) as crosslinker in a single step with high yield (73 ± 6%). The obtained p(TA) microgels possessed negative zeta potential, -27 mV, and the surface charge can be tuned by chemical modification using various modifying agents, such as 3-chloro-2-hydroxypropyl ammonium chloride (CHPACl) and chloro sulfonic acid (CSA) to generate microgels with different zeta potentials, e.g., -18 mV and -36 mV, respectively. Modified p(TA) microgels are found to be thermally less stable than bare p(TA) particles. Additionally, upon chemical modification of p(TA) particles, the antioxidant capacity of the p(TA) microgels decreased confirming the utilization of some of the phenolic groups, the main functional groups responsible for the antioxidant property of TA moieties. Moreover, the antimicrobial properties increased approximately four fold against three common bacterial strains; Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 6538, and Bacillus subtilis ATCC 6633. P(TA) microgels as TA molecules have a natural capability to reduce metal ions, allowing in situ reduction of absorbed Ag and Cu ions to the corresponding metal nanoparticles within the p(TA) microgel network. The composite p(TA)-M (M: Ag or Cu) nanoparticle demonstrated superior antimicrobial activity against the mentioned bacteria compared to the bare p(TA) microgels. Moreover, bare and modified p(TA) microgels are shown to be drug carrier materials by loading three model drugs, phenylephrine HCl (PHE), trimethoprim (TMP), and naproxen (NP), and releasing them in phosphate buffer saline PBS (pH 7.4) at 37.5 °C.

  11. Application of palladium-catalyzed carboxyl anhydride-boronic acid cross coupling in the synthesis of novel bile acids analogs with modified side chains.

    PubMed

    Mayorquín-Torres, Martha C; Flores-Álamo, Marcos; Iglesias-Arteaga, Martin A

    2015-09-01

    Palladium-catalyzed cross coupling of 4-methoxycarbonyl phenyboronic acid with acetylated bile acids in which the carboxyl functions was activated by formation of a mixed anhydride with pivalic anhydride afforded the cross coupled compounds, which were converted in novel side chain modified bile acids by one pot carbonyl reduction/removal of the protecting acetyl groups by Wolff-Kishner reduction. Unambiguous assignments of the NMR signals and crystal characterization of the heretofore unknown compounds are provided.

  12. Preparative separation of enantiomers based on functional nucleic acids modified gold nanoparticles.

    PubMed

    Huang, Rong; Wang, Daifang; Liu, Shuzhen; Guo, Longhua; Wang, Fangfang; Lin, Zhenyu; Qiu, Bin; Chen, Guonan

    2013-11-01

    The preparative-scale separation of chiral compounds is vitally important for the pharmaceutical industry and related fields. Herein we report a simple approach for rapid preparative separation of enantiomers using functional nucleic acids modified gold nanoparticles (AuNPs). The separation of DL-tryptophan (DL-Trp) is demonstrated as an example to show the feasibility of the approach. AuNPs modified with enantioselective aptamers were added into a racemic mixture of DL -Trp. The aptamer-specific enantiomer (L-Trp) binds to the AuNPs surface through aptamer-L-Trp interaction. The separation of DL-Trp is then simply accomplished by centrifugation: the precipitate containing L-Trp bounded AuNPs is separated from the solution, while the D-Trp remains in the supernatant. The precipitate is then redispersed in water. The aptamer is denatured under 95 °C and a second centrifugation is then performed, resulting in the separation of AuNPs and L-Trp. The supernatant is finally collected to obtain pure L-Trp in water. The results show that the racemic mixture of DL-Trp is completely separated into D-Trp and L-Trp, respectively, after 5 rounds of repeated addition of fresh aptamer-modified AuNPs to the DL-Trp mixture solution. Additionally, the aptamer-modified AuNPs can be repeatedly used for at least eight times without significant loss of its binding ability because the aptamer can be easily denatured and renatured in relatively mild conditions. The proposed approach could be scaled up and extended to the separation of other enantiomers by the adoption of other enantioselective aptamers.

  13. Proteomic comparison of the probiotic bacterium Lactobacillus casei Zhang cultivated in milk and soy milk.

    PubMed

    Wang, Jicheng; Wu, Rina; Zhang, Wenyi; Sun, Zhihong; Zhao, Wenjing; Zhang, Heping

    2013-09-01

    Soy milk is regarded as a substitute for milk and has become popular in varied diets throughout the world. It has been shown that a newly characterized probiotic bacterium (Lactobacillus casei Zhang) actually grows faster in soy milk than in bovine milk. To elucidate the mechanism involved, we carried out a proteomic analysis to characterize bacterial proteins that varied upon growth in soy milk and bovine milk at 3 different growth phases, and compare their expression under these conditions. A total of 104 differentially expressed spots were identified from different phases using a peptide mass fingerprinting assay. Functional analysis revealed that a major part of these identified proteins is associated with transport and metabolism of carbohydrates, nucleotides, and amino acids as well. The results from our proteomic analysis were clarified by real-time quantitative PCR assay, which showed that Lb. casei Zhang loci involved in purine and pyrimidine biosynthesis were transcriptionally enhanced during growth in soy milk at lag phase (pH 6.4), whereas the loci involved in carbohydrate metabolism were upregulated in bovine milk. Particularly, our results showed that l-glutamine might play an important role in the growth of Lb. casei Zhang in soy milk and bovine milk, perhaps by contributing to purine, pyrimidine, and amino sugar metabolism.

  14. Proteomic comparison of the probiotic bacterium Lactobacillus casei Zhang cultivated in milk and soy milk.

    PubMed

    Wang, Jicheng; Wu, Rina; Zhang, Wenyi; Sun, Zhihong; Zhao, Wenjing; Zhang, Heping

    2013-09-01

    Soy milk is regarded as a substitute for milk and has become popular in varied diets throughout the world. It has been shown that a newly characterized probiotic bacterium (Lactobacillus casei Zhang) actually grows faster in soy milk than in bovine milk. To elucidate the mechanism involved, we carried out a proteomic analysis to characterize bacterial proteins that varied upon growth in soy milk and bovine milk at 3 different growth phases, and compare their expression under these conditions. A total of 104 differentially expressed spots were identified from different phases using a peptide mass fingerprinting assay. Functional analysis revealed that a major part of these identified proteins is associated with transport and metabolism of carbohydrates, nucleotides, and amino acids as well. The results from our proteomic analysis were clarified by real-time quantitative PCR assay, which showed that Lb. casei Zhang loci involved in purine and pyrimidine biosynthesis were transcriptionally enhanced during growth in soy milk at lag phase (pH 6.4), whereas the loci involved in carbohydrate metabolism were upregulated in bovine milk. Particularly, our results showed that l-glutamine might play an important role in the growth of Lb. casei Zhang in soy milk and bovine milk, perhaps by contributing to purine, pyrimidine, and amino sugar metabolism. PMID:23871367

  15. Hypohalous acid-modified human serum albumin induces neutrophil NADPH oxidase activation, degranulation, and shape change.

    PubMed

    Gorudko, Irina V; Grigorieva, Daria V; Shamova, Ekaterina V; Kostevich, Valeria A; Sokolov, Alexey V; Mikhalchik, Elena V; Cherenkevich, Sergey N; Arnhold, Jürgen; Panasenko, Oleg M

    2014-03-01

    Halogenated lipids, proteins, and lipoproteins formed in reactions with myeloperoxidase (MPO)-derived hypochlorous acid (HOCl) and hypobromous acid (HOBr) can contribute to the regulation of functional activity of cells and serve as mediators of inflammation. Human serum albumin (HSA) is the major plasma protein target of hypohalous acids. This study was performed to assess the potency of HSA modified by HOCl (HSA-Cl) and HOBr (HSA-Br) to elicit selected neutrophil responses. HSA-Cl/Br were found to induce neutrophil degranulation, generation of reactive oxygen intermediates, shape change, and actin cytoskeleton reorganization. Thus HSA-Cl/Br can initially act as a switch and then as a feeder of the "inflammatory loop" under oxidative stress. In HSA-Cl/Br-treated neutrophils, monoclonal antibodies against CD18, the β subunit of β2 integrins, reduced the production of superoxide anion radicals and hydrogen peroxide as well as MPO exocytosis, suggesting that CD18 contributed to neutrophil activation. HSA-Cl/Br-induced neutrophil responses were also inhibited by genistein, a broad-specificity tyrosine kinase inhibitor, and wortmannin, a phosphoinositide 3-kinase (PI3K) inhibitor, supporting the notion that activation of both tyrosine kinase and PI3K may play a role in neutrophil activation by HSA modified in MPO-dependent reactions. These results confirm the hypothesis that halogenated molecules formed in vivo via MPO-dependent reactions can be considered as a new class of biologically active substances potentially able to contribute to activation of myeloid cells in sites of inflammation and serve as inflammatory response modulators. PMID:24384524

  16. Effects of soy sauce and packaging method on volatile compounds and lipid oxidation of cooked irradiated beef patties

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Wook; Lee, Soo-Yeon; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Yun-Kyung; Lee, Choong-Hee; Choi, Yun-Sang; Lee, Ju-Woon; Kim, Cheon-Jei

    2014-10-01

    The objective of this study is to determine the effect of soy sauce on volatile compounds and lipid oxidation of cooked irradiated beef patties. Sulfur-containing volatile components, which are produced by irradiation, were not found in all treatments. Volatile components derived from soy sauce, such as 3-hydroxy-2-butanone, acetic acid, 3-methyl-1-butanol and 2-methyl-1-butanol, were detected in beef patties containing soy sauce regardless of irradiation and packaging method. Volatile aldehydes, including hexanal, significantly decreased the irradiated beef patty prepared with soy sauce compared to those of irradiated beef patty made with NaCl at 1 day and 5 days after irradiation. In addition, combined use of vacuum packaging and soy sauce treatments could inhibit the formation of volatile compounds and 2-thiobarbituric acid reactive substances during chilled storage. Therefore, the use of soy sauce in cooked and irradiated beef could reduce the production of volatile components associated with the irradiation-induced off-flavor and lipid oxidation.

  17. Effective Trapping of Fruit Flies with Cultures of Metabolically Modified Acetic Acid Bacteria

    PubMed Central

    Ishii, Yuri; Akasaka, Naoki; Goda, Itsuko; Sakoda, Hisao

    2015-01-01

    Acetoin in vinegar is an attractant to fruit flies when combined with acetic acid. To make vinegar more effective in attracting fruit flies with increased acetoin production, Komagataeibacter europaeus KGMA0119 was modified by specific gene disruption of the acetohydroxyacid isomeroreductase gene (ilvC). A previously constructed mutant lacking the putative ligand-sensing region in the leucine-responsive regulatory protein (KeLrp, encoded by Kelrp) was also used. The ilvC and Kelrp disruptants (KGMA5511 and KGMA7203, respectively) produced greater amounts of acetoin (KGMA5511, 0.11%; KGMA7203, 0.13%) than the wild-type strain KGMA0119 (0.069%). KGMA7203 produced a trace amount of isobutyric acid (0.007%), but the other strains did not. These strains produced approximately equal amounts of acetic acid (0.7%). The efficiency of fruit fly attraction was investigated with cultured Drosophila melanogaster. D. melanogaster flies (approximately 1,500) were released inside a cage (2.5 m by 2.5 m by 1.5 m) and were trapped with a device containing vinegar and a sticky sheet. The flies trapped on the sticky sheet were counted. The cell-free supernatant from KGMA7203 culture captured significantly more flies (19.36 to 36.96% of released flies) than did KGMA0119 (3.25 to 11.40%) and KGMA5511 (6.87 to 21.50%) cultures. Contrastingly, a 0.7% acetic acid solution containing acetoin (0.13%) and isobutyric acid (0.007%), which mimicked the KGMA7203 supernatant, captured significantly fewer flies (0.88 to 4.57%). Furthermore, the KGMA0119 supernatant with additional acetoin (0.13%) and isobutyric acid (0.007%) captured slightly more flies than the original KGMA0119 supernatant but fewer than the KGMA7203 supernatant, suggesting that the synergistic effects of acetic acid, acetoin, isobutyric acid, and unidentified metabolites achieved the efficient fly trapping of the KGMA7203 supernatant. PMID:25595769

  18. XPS and wettability characterization of modified poly(lactic acid) and poly(lactic/glycolic acid) films.

    PubMed

    Kiss, E; Bertóti, I; Vargha-Butler, E I

    2002-01-01

    Poly(lactic acid) (PLA) and poly(lactic/glycolic acid) copolymers (PLGA) are biodegradable drug carriers of great importance, although successful pharmaceutical application requires adjustment of the surface properties of the polymeric drug delivery system to be compatible with the biological environment. For that reason, reduction of the original hydrophobicity of the PLA or PLGA surfaces was performed by applying a hydrophilic polymer poly(ethylene oxide) (PEO) with the aim to improve biocompatibility of the original polymer. PEO-containing surfaces were prepared by incorporation of block copolymeric surfactants, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic), into the hydrophobic surface. Films of polymer blends from PLA or PLGA (with lactic/glycolic acid ratios of 75/25 and 50/50) and from Pluronics (PE6800, PE6400, and PE6100) were obtained by the solvent casting method, applying the Pluronics at different concentrations between 1 and 9.1% w/w. Wettability was measured to monitor the change in surface hydrophobicity, while X-ray photoelectron spectroscopy (XPS) was applied to determine the composition and chemical structure of the polymer surface and its change with surface modification. Substantial reduction of surface hydrophobicity was achieved on both the PLA homopolymer and the PLGA copolymers by applying the Pluronics at various concentrations. In accordance with the wettability changes the accumulation of Pluronics in the surface layer was greatly affected by the initial hydrophobicity of the polymer, namely, by the lactide content of the copolymer. The extent of surface modification was also found to be dependent on the type of blended Pluronics. Surface activity of the modifying Pluronic component was interpreted by using the solubility parameters. PMID:16290340

  19. Degradation of chloro- and methyl-substituted benzoic acids by a genetically modified microorganism

    SciTech Connect

    Mueller, R.; Deckwer, W.D.; Hecht, V.

    1996-09-05

    Degradation of 3-chlorobenzoic acid (3CB), 4-chlorobenzoic acid (4CB), and 4-methylbenzoic acid (4MB) as single substrates (carbon sources) and as a substrate mixture were studied in batch and continuous culture using the genetically modified microorganism Pseudomonas sp. B13 FR1 SN45P. The strain was able to mineralize the single compounds as well as the substrate mixture completely. Conversion of the three compounds in the substrate mixture proceeded simultaneously. Maximum specific substrate conversion rates were calculated to be 0.9 g g{sup {minus}1} h{sup {minus}1} for 3 CB and 4CB and 1.1 g g{sup {minus}1} h{sup {minus}1} for 4MB. Mass balances indicated the transient accumulation of pathway intermediates during batch cultivations. Hence, the rate limiting step in the degradative pathway is not the initial microbial attack of the original substrate or its transport through the cell membrane. Degradation rates on 3CB were comparable to those of the parent strain Pseudomonas sp. B13. The stability of the degradation pathways of strain Pseudomonas sp. B13 FR1 SN45P could be demonstrated in a continuous cultivation over 3.5 months (734 generation times) on 3CB, 4MB, and 4CB, which were used a single carbon sources one after the other.

  20. Soy-based fillers for thermoset composites

    NASA Astrophysics Data System (ADS)

    Watt, Paula

    Considerable work has been done with bio-based fillers in thermoplastics. Wood dust has been used for decades in wood plastic composites in conjunction with recycled high HDPE and PET. In recent years rapidly renewable fillers derived from dried distillery grains and from wood have been introduced commercially for thermoset polymers. These fillers provide bio-content and weight reduction to thermoset molding compounds but issues with moisture absorption and polymerization inhibition have limited their commercial acceptance. The intent of this research was to develop a bio-based filler suitable for thermoset composites. This filler would provide a low density alternative to mined mineral filler, such as CaCO3 or clay. Composites made with these fillers would be lighter in weight, which is desirable for many markets, particularly transportation. Cost parity to the mineral fillers, on a volume basis, was desirable and the use of green chemistry principles was a key objective of the project. This work provides a basis from which further development of modified soy flours as fillers for thermoset composites will continue. Biomass has been evaluated as fillers for thermoset composites since the early 1980s but failed to gain commercial acceptance due to excessive water absorption and inhibition issues with free radical curing. Biomass, with a large percentage of carbohydrates, are very hydrophilic due to their abundance of hydroxyl groups, while biomass, high in lignin, resulted in inhibition of the free radical cure of the unsaturated styrenated polyester matrix systems. Generally protein use as a filler is not desirable due to its food value. Torrefaction has proved to be a good, cost effective, process to reduce hydrophilicity of high cellulose feedstock. Surprising, however, some levels of torrefaction were found to induce the inhibition effect of the filler. Scientific inquiry into this problem proved that aromatics form during the torrefaction process and can

  1. Soy protein polymers: Enhancing the water stability property

    NASA Astrophysics Data System (ADS)

    Srinivasan, Gowrishankar

    Soy protein based plastics have been processed in the past by researchers for various short-term applications; however a common issue is the high water sensitivity of these plastics. This work concentrates on resolving this water sensitivity issue of soy protein polymers by employing chemical and mechanical interaction at the molecular level during extrusion. The primary chemical interactions employed were anhydride chemistries such as maleic anhydride (MA), phthalic anhydride (PTA), and butylated hydroxyanisole (BHA). These were respectively used in conjunction with glycerol as a plasticizer to produce relatively water stable soy protein based plastics. Formulations with varying additive levels of the chemistries were extruded and injection molded to form the samples for characterization. The additive levels of anhydrides were varied between 3-10% tw/tw (total mass). Results indicated that phthalic anhydride formulations resulted in highest water stability. Plastic formulations with concentration up to 10% phthalic anhydride were observed to have water absorption as low as 21.5% after 24 hrs of exposure to water with respect to 250% for the control formulation. Fourier transform infrared spectroscopy (FTIR) was utilized to characterize and confirm the fundamental mechanisms of water stability achieved by phthalic and maleic anhydride chemistries. In addition, the anhydride formulations were modified by inclusion of cotton fibers and pretreated cotton powder in order to improve mechanical properties. The incorporation of cotton fibers improved the dry strength by 18%, but did not significantly improve the wet state strength of the plastics. It was also observed that the butylated-hydroxy anisole (BHA) formulation exhibited high extension values in the dry state and had inferior water absorption properties in comparison with anhydride formulations.

  2. Fat digestion in veal calves fed milk replacers low or high in calcium and containing either casein or soy protein isolate.

    PubMed

    Yuangklang, C; Wensing, Th; Van den Broek, L; Jittakhot, S; Beynen, A C

    2004-04-01

    The hypothesis tested was that the inhibitory effect of dietary soy protein versus casein on fat digestion in veal calves would be smaller when diets were fed with high instead of low calcium content. Male calves, 1 wk of age, were fed 1 of 4 experimental milk replacers in a 2 x 2 factorial design. There were 19 animals per dietary group. The milk replacers contained either casein or soy protein isolate as variable protein source and were either low or high in calcium. Body weight gain was not significantly affected by the experimental diets. Soy protein isolate versus casein significantly reduced apparent fat digestibility. High versus low calcium intake also depressed fat digestion. The protein effect was smaller (2.9% units) for the high than the low calcium diets (3.6% units), but the interaction did not reach statistical significance. Soy protein isolate versus casein raised fecal bile acid excretion and so did high versus low calcium intake. The difference in bile acid excretion between the soy and casein containing diets was significantly greater for the high than low calcium diets. The absorption of phosphorus, calcium, and magnesium was higher for the casein diets than for the soy-containing diets. This study shows for the first time that soy protein isolate versus casein depressed fat digestion and raised fecal bile acid excretion in veal calves.

  3. Novel process of fermenting black soybean [Glycine max (L.) Merrill] yogurt with dramatically reduced flatulence-causing oligosaccharides but enriched soy phytoalexins.

    PubMed

    Feng, Shengbao; Saw, Chin Lee; Lee, Yuan Kun; Huang, Dejian

    2008-11-12

    Black soybeans [Glycine max (L.) Merrill] were germinated under fungal stress with food grade R. oligosporus for 3 days and were homogenized and fermented with lactic acid bacteria (LAB) to produce soy yogurt. Fungal stress led to the generation of oxylipins [oxooctadecadienoic acids (KODES) isomers and their respective glyceryl esters] and glyceollins--a type of phytoalexins unique to soybeans. In soy yogurt, the concentrations of total KODES and total glyceollins were 0.678 mg/g (dry matter) and 0.953 mg/g, respectively. The concentrations of other isoflavones (mainly genistein and daidzein and their derivatives) in soy yogurt remained largely unchanged after the processes compared with the control soy yogurt. Germination of black soybean under fungal stress for 3 days was sufficient to reduce stachyose and raffinose (which cause flatulence) by 92 and 80%, respectively. With a pH value of 4.42, a lactic acid content of 0.262%, and a maximum viable cell count of 2.1 x 10 (8) CFU/mL in the final soy yogurt, soy milk from germinated soybeans under fungal stress was concluded to be a suitable medium for yogurt-making. The resulting soy yogurt had significantly altered micronutrient profiles with significantly reduced oligosaccharides and enriched glyceollins.

  4. Novel process of fermenting black soybean [Glycine max (L.) Merrill] yogurt with dramatically reduced flatulence-causing oligosaccharides but enriched soy phytoalexins.

    PubMed

    Feng, Shengbao; Saw, Chin Lee; Lee, Yuan Kun; Huang, Dejian

    2008-11-12

    Black soybeans [Glycine max (L.) Merrill] were germinated under fungal stress with food grade R. oligosporus for 3 days and were homogenized and fermented with lactic acid bacteria (LAB) to produce soy yogurt. Fungal stress led to the generation of oxylipins [oxooctadecadienoic acids (KODES) isomers and their respective glyceryl esters] and glyceollins--a type of phytoalexins unique to soybeans. In soy yogurt, the concentrations of total KODES and total glyceollins were 0.678 mg/g (dry matter) and 0.953 mg/g, respectively. The concentrations of other isoflavones (mainly genistein and daidzein and their derivatives) in soy yogurt remained largely unchanged after the processes compared with the control soy yogurt. Germination of black soybean under fungal stress for 3 days was sufficient to reduce stachyose and raffinose (which cause flatulence) by 92 and 80%, respectively. With a pH value of 4.42, a lactic acid content of 0.262%, and a maximum viable cell count of 2.1 x 10 (8) CFU/mL in the final soy yogurt, soy milk from germinated soybeans under fungal stress was concluded to be a suitable medium for yogurt-making. The resulting soy yogurt had significantly altered micronutrient profiles with significantly reduced oligosaccharides and enriched glyceollins. PMID:18831591

  5. Multiple organ histopathological changes in broiler chickens fed on genetically modified organism.

    PubMed

    Cîrnatu, Daniela; Jompan, A; Sin, Anca Ileana; Zugravu, Cornelia Aurelia

    2011-01-01

    Diet can influence the structural characteristics of internal organs. An experiment involving 130 meat broilers was conducted during 42 days (life term for a meat broiler) to study the effect of feed with protein from genetically modified soy. The 1-day-old birds were randomly allocated to five study groups, fed with soy, sunflower, wheat, fish flour, PC starter. In the diet of each group, an amount of protein from soy was replaced with genetically modified soy (I - 0%, II - 25%, III - 50%, IV - 75%, V - 100% protein from genetically modified soy). The level of protein in soy, either modified, or non-modified, was the same. Organs and carcass weights were measured at about 42 days of age of the birds and histopathology exams were performed during May-June 2009. No statistically significant differences were observed in mortality, growth performance variables or carcass and organ yields between broilers consuming diets produced with genetically modified soybean fractions and those consuming diets produced with near-isoline control soybean fractions. Inflammatory and degenerative liver lesions, muscle hypertrophy, hemorrhagic necrosis of bursa, kidney focal tubular necrosis, necrosis and superficial ulceration of bowel and pancreatic dystrophies were found in tissues from broilers fed on protein from genetically modified soy. Different types of lesions found in our study might be due to other causes (parasites, viral) superimposed but their presence exclusively in groups fed with modified soy raises some serious questions about the consequences of use of this type of feed.

  6. Enhancement of power production with tartaric acid doped polyaniline nanowire network modified anode in microbial fuel cells.

    PubMed

    Liao, Zhi-Hong; Sun, Jian-Zhong; Sun, De-Zhen; Si, Rong-Wei; Yong, Yang-Chun

    2015-09-01

    The feasibility to use tartaric acid doped PANI for MFC anode modification was determined. Uniform PANI nanowires doped with tartaric acid were synthesized and formed mesoporous networks on the carbon cloth surface. By using this tartaric acid doped PANI modified carbon cloth (PANI-TA) as the anode, the voltage output (435 ± 15 mV) and power output (490 ± 12 mW/m(2)) of MFC were enhanced by 1.6 times and 4.1 times compared to that of MFC with plain carbon cloth anode, respectively. Strikingly, the performance of PANI-TA MFC was superior to that of the MFCs with inorganic acids doped PNAI modified anode. These results substantiated that tartaric acid is a promising PANI dopant for MFC anode modification, and provided new opportunity for MFC performance improvement.

  7. Colorimetric Detection of Cadmium Ions Using DL-Mercaptosuccinic Acid-Modified Gold Nanoparticles.

    PubMed

    Chen, Na; Chen, Jun; Yang, Jing-Hua; Bai, Lian-Yang; Zhang, Yu-Ping

    2016-01-01

    A colorimetric assay has been developed for detection of Cd²⁺ utilizing DL-mercaptosuccinic acid-modified gold nanoparticles (MSA-AuNPs). The method showed good selectivity for Cd²⁺ over other metal ions. As a result, the linear relationships (r > 0.9606) between concentration 0.07 mM and 0.20 mM for cadmium ion were obtained. The detection limit was as low as 0.07 mM by the naked eye. The effect of pH on the aggregation was optimized. The MSA-AuNPs probe could be used to detect Cd²⁺ in an aqueous solution based on the aggregation-induced color change of MSA-AuNPs. PMID:27398533

  8. Properties of baked foams from citric acid modified cassava starch and native cassava starch blends.

    PubMed

    Pornsuksomboon, Kanlaya; Holló, Berta Barta; Szécsényi, Katalin Mészáros; Kaewtatip, Kaewta

    2016-01-20

    Starch foams from native cassava starch (NS) and citric acid modified cassava starch (CNS) were prepared using baking processes with blend ratios of 80/20, 60/40, 50/50, 40/60 and 20/80. The density, thickness, morphology, thermal stability and water absorption of the NS, CNS and blended starch foams were determined. The ratio of the two starch components had a significant influence on the density and thickness of the blended starch foams. All blended starch foams showed good water resistance. Moreover, the morphology of the blended starch foam with the NS/CNS ratio of 50/50 showed a more ordered distribution of cell sizes with thicker cell walls than for the NS and CNS foams. The thermal stability of the blended starch foams was somewhat lower than the stability of the NS foam but not to the extent that it affected any potential practical applications.

  9. Synthesis of ring-C modified oleanolic acid derivatives and their cytotoxic evaluation.

    PubMed

    Pattnaik, Banita; Lakshma Nayak, Vadithe; Ramakrishna, Sistla; Venkata Mallavadhani, Uppuluri

    2016-10-01

    Ring-C of oleanolic acid was chemically modified by treating with NBS under a variety of experimental conditions. The structures of the synthesized compounds were established by spectral analysis ((1)H &(13)C NMR and Mass). All the compounds were evaluated against a panel of five human cancer cell lines by using MTT assay. Among the tested compounds, 2 and 7 showed significant activity against breast cancer cell line, MCF-7. Most significantly, compound 7 showed several folds enhanced activity against MCF-7 cancer cell lines (IC50: 2.96μM) than that of the parent (1) and the intermediate compound (6). Flow cytometric analysis revealed that these compounds arrested the cell cycle in G0/G1 phase and induced mitochondrial mediated apoptosis. PMID:27522460

  10. Immobilization of catalase on chitosan and amino acid- modified chitosan beads.

    PubMed

    Başak, Esra; Aydemir, Tülin

    2013-08-01

    Bovine liver catalase was covalently immobilized onto amino acid-modified chitosan beads. The beads were characterized with SEM, FTIR, TGA and the effects of immobilization on optimum pH and temperature, thermostability, reusability were evaluated. Immobilized catalase showed the maximal enzyme activity at pH 7.0 at 30°C. The kinetic parameters, Km and Vmax, for immobilized catalase on alanine-chitosan beads and lysine-chitosan beads were estimated to be 25.67 mM, 27 mM and 201.39 μmol H2O2/min, 197.50 μmol H2O2/min, respectively. The activity of the immobilized catalase on Ala-CB and Lys-CB retained 40% of its high initial activity after 100 times of reuse. PMID:23316810

  11. Synthesis of ring-C modified oleanolic acid derivatives and their cytotoxic evaluation.

    PubMed

    Pattnaik, Banita; Lakshma Nayak, Vadithe; Ramakrishna, Sistla; Venkata Mallavadhani, Uppuluri

    2016-10-01

    Ring-C of oleanolic acid was chemically modified by treating with NBS under a variety of experimental conditions. The structures of the synthesized compounds were established by spectral analysis ((1)H &(13)C NMR and Mass). All the compounds were evaluated against a panel of five human cancer cell lines by using MTT assay. Among the tested compounds, 2 and 7 showed significant activity against breast cancer cell line, MCF-7. Most significantly, compound 7 showed several folds enhanced activity against MCF-7 cancer cell lines (IC50: 2.96μM) than that of the parent (1) and the intermediate compound (6). Flow cytometric analysis revealed that these compounds arrested the cell cycle in G0/G1 phase and induced mitochondrial mediated apoptosis.

  12. Structure of the fully modified left-handed cyclohexene nucleic acid sequence GTGTACAC.

    PubMed

    Robeyns, Koen; Herdewijn, Piet; Van Meervelt, Luc

    2008-02-13

    CeNA oligonucleotides consist of a phosphorylated backbone where the deoxyribose sugars are replaced by cyclohexene moieties. The X-ray structure determination and analysis of a fully modified octamer sequence GTGTACAC, which is the first crystal structure of a carbocyclic-based nucleic acid, is presented. This particular sequence was built with left-handed building blocks and crystallizes as a left-handed double helix. The helix can be characterized as belonging to the (mirrored) A-type family. Crystallographic data were processed up to 1.53 A, and the octamer sequence crystallizes in the space group R32. The sugar puckering is found to adopt the 3H2 half-chair conformation which mimics the C3'-endo conformation of the ribose sugar. The double helices stack on top of each other to form continuous helices, and static disorder is observed due to this end-to-end stacking.

  13. Multifunctional nanosheets based on folic acid modified manganese oxide for tumor-targeting theranostic application

    NASA Astrophysics Data System (ADS)

    Hao, Yongwei; Wang, Lei; Zhang, Bingxiang; Zhao, Hongjuan; Niu, Mengya; Hu, Yujie; Zheng, Cuixia; Zhang, Hongling; Chang, Junbiao; Zhang, Zhenzhong; Zhang, Yun

    2016-01-01

    It is highly desirable to develop smart nanocarriers with stimuli-responsive drug-releasing and diagnostic-imaging functions for cancer theranostics. Herein, we develop a reduction and pH dual-responsive tumor theranostic platform based on degradable manganese dioxide (MnO2) nanosheets. The MnO2 nanosheets with a size of 20-60 nm were first synthesized and modified with (3-Aminopropyl) trimethoxysilane (APTMS) to get amine-functionalized MnO2, and then functionalized by NH2-PEG2000-COOH (PEG). The tumor-targeting group, folic acid (FA), was finally conjugated with the PEGylated MnO2 nanosheets. Then, doxorubicin (DOX), a chemotherapeutic agent, was loaded onto the modified nanosheets through a physical adsorption, which was designated as MnO2-PEG-FA/DOX. The prepared MnO2-PEG-FA/DOX nanosheets with good biocompatibility can not only efficiently deliver DOX to tumor cells in vitro and in vivo, leading to enhanced anti-tumor efficiency, but can also respond to a slightly acidic environment and high concentration of reduced glutathione (GSH), which caused degradation of MnO2 into manganese ions enabling magnetic resonance imaging (MRI). The longitudinal relaxation rate r 1 was 2.26 mM-1 s-1 at pH 5.0 containing 2 mM GSH. These reduction and pH dual-responsive biodegradable nanosheets combining efficient MRI and chemotherapy provide a novel and promising platform for tumor-targeting theranostic application.

  14. Photocatalytic decomposition of perfluorooctanoic acid by transition-metal modified titanium dioxide.

    PubMed

    Chen, Meng-Jia; Lo, Shang-Lien; Lee, Yu-Chi; Huang, Chang-Chieh

    2015-05-15

    Transition-metal modified TiO₂ was used in a UV reactor to assist in decomposition of perfluorooctanoic acid (PFOA) in aqueous solutions. Comparing TiO₂ and two types of metal-modified TiO₂ (Fe-TiO₂ and Cu-TiO₂), Cu-TiO₂ exhibited the highest catalytic activity during PFOA decomposition and defluorination. After 12 h of reaction, the PFOA decomposition and defluorination efficiencies by the UV/Cu-TiO₂ system reached 91% and 19%, respectively. PFOA was decomposed into fluoride ions (F(-)) and shorter perfluorinated carboxylic acids (PFCAs) such as C₆ F₁₃COOH, C₅F₁₁COOH, C₄F₉COOH, C₃F₇COOH, C₂F₅COOH and CF₃COOH. The pseudo-first-order and pseudo-zero-order kinetics were used to model the decomposition and defluorination of PFOA, respectively. Rate constant values of PFOA decomposition for the UV/TiO₂, UV/Fe-TiO₂, and UV/Cu-TiO₂ systems were 0.0001, 0.0015, and 0.0031 min(-1), respectively, while rate constant values of PFOA defluorination for the UV/Fe-TiO₂, and UV/Cu-TiO₂ systems were 0.0048 and 0.0077 mg/L·min(-1), respectively. The photocatalysts were prepared by a photodeposition synthesis method and were characterized by scanning electron microscopy with energy-dispersive X-ray, X-ray diffraction and UV-vis spectrophotometry. The Fe-TiO₂ and Cu-TiO₂ catalysts exhibited considerably higher activities than that of TiO₂. The experimental results have demonstrated that the UV/Fe-TiO₂ and UV/Cu-TiO₂ systems could produce traps to capture photo-induced electrons, thereby reduce electron-hole recombination during photocatalytic reactions and consequently enhance the PFOA decomposition.

  15. Physicochemical, thermal and computational study of the encapsulation of rumenic acid by natural and modified cyclodextrins.

    PubMed

    Matencio, Adrián; Hernández-Gil, Carlos Javier García; García-Carmona, Francisco; López-Nicolás, José Manuel

    2017-02-01

    In this work the aggregation behavior of Rumenic acid (RA) is presented for the first time. The results point to a c.m.c. of 35μM at pH 8 and 25°C. This behavior can be modified by introducing CDs into the system to encapsulate the RA. The encapsulation process presented a 1:1 stoichiometry in all the cases studied but the complexation constants were strongly dependent on the type of CDs used, the pH and temperature. Firstly, the effect of the type of CD on the encapsulation process was studied. Among the natural and modified CDs analyzed HPβCD was the best for encapsulating RA. The pKa determined for RA was 4.31. The KF showed different behavior below and above 25°C due to changes in the stoichiometry. Finally, molecular docking calculations provided further insights into how the different interactions influence the complexation constant. PMID:27596422

  16. Self-assembly and cytotoxicity study of PEG-modified ursolic acid liposomes.

    PubMed

    Zhao, Tingting; Liu, Yanping; Gao, Zhengrong; Gao, Dawei; Li, Nan; Bian, Yanhong; Dai, Kun; Liu, Zhiwei

    2015-08-01

    While ursolic acid (UA), one of the most broadly known triterpene compounds, has proved to be effective in cancer therapy, the applications of UA is limited due to its poor aqueous solubility and low bioavailability. The aim of our study was to prolong circulation time and enhance uptake of liposomes in tumor tissues through the modification of UA liposomes via water-soluble polyethylene glycol (PEG). In addition, this research also focuses on physicochemical properties of the liposome formulations, including encapsulation efficiency, particle morphology, size, stability, release rate in vitro and cytotoxicity test. The obtained liposomes were spherical particles with mean particle diameters around 100-200 nm. And the Fourier transform infrared spectroscopy (FTIR) indicated that PEG had been anchored successfully to the liposomes. Based on our experimental data achieved, PEG-modified UA liposomes possessed higher stability than conventional liposomes, and the release rate of UA from PEG-modified liposomes was slower when compared with those of UA solution and conventional liposomes. Meanwhile, the liposomal UA showed relatively low cytotoxic effect than UA conventional liposomes within 24h, which was consistent with their release rates. PMID:26042707

  17. Synthesis of porous starch xerogels modified with mercaptosuccinic acid to remove hazardous gardenia yellow.

    PubMed

    Bao, Liping; Zhu, Xinyi; Dai, Hongxia; Tao, Yongxin; Zhou, Xiaoying; Liu, Wenjie; Kong, Yong

    2016-08-01

    Mercaptosuccinic acid (MSA) molecules were inserted into potato starch, leading to the breaking of intrinsic H-bonds within macromolecular chains of starch and the formation of intermolecular H-bonds between MSA and starch, which could be verified by Fourier transform infrared spectroscopy (FT-TR). MSA modified porous starch xerogels (PSX/MSA) were obtained after freeze-drying the MSA modified starch, and they were characterized by field emission scanning electron microscopy (FESEM), exhibiting the intriguing porous structure due to the separation of starch chains by MSA molecules. The PSX/MSA were then used as the adsorbents to remove gardenia yellow (GY), a natural colorant with genotoxicity. Due to the porous structure of PSX and the introduced carboxyl groups from MSA, the adsorption capacity of the PSX/MSA was much higher than that of the starch xerogels alone (SX). The adsorption behaviors of GY by the PSX/MSA fitted both the Freundlich isotherm model and the pseudo-second-order kinetic model, and the efficient adsorption of GY suggested that the PSX/MSA might be potential adsorbents for the removal of dyes from contaminated aquatic systems. PMID:27151673

  18. Silane modified starch for compatible reactive blend with poly(lactic acid).

    PubMed

    Jariyasakoolroj, Piyawanee; Chirachanchai, Suwabun

    2014-06-15

    A reactive blend of poly(lactic acid) (PLA) and a surface modified starch by silane coupling agent to achieve compatibility is proposed. A detailed structural analysis by using (1)H-(1)H TOCSY NMR spectrum clarifies, for the first time, that chloropropyl trimethoxysilane (CPMS) forms covalent bonds with starch during starch modification and consequently forms covalent bonds with PLA in the step of blending to produce a reactive blend of PLA and CP-starch. The CP-starch covalently bound with PLA provides the compatibility between PLA and starch and also plays the role as nucleating agent as identified from a significant increase of degree of crystallinity (as high as 10-15 times), as well as induces chain mobility, as identified from a slight decrease in glass transition temperature (∼5-10°C). The PLA/CP-starch film performed as well as neat PLA with slight increases in tensile strength and elongation at break, as compared to other PLA/silane modified starch films. PMID:24721076

  19. Preparation, cell compatibility and degradability of collagen-modified poly(lactic acid).

    PubMed

    Cui, Miaomiao; Liu, Leili; Guo, Ning; Su, Ruixia; Ma, Feng

    2015-01-01

    Poly(lactic acid) (PLA) was modified using collagen through a grafting method to improve its biocompatibility and degradability. The carboxylic group at the open end of PLA was transferred into the reactive acylchlorided group by a reaction with phosphorus pentachloride. Then, collagen-modified PLA (collagen-PLA) was prepared by the reaction between the reactive acylchlorided group and amino/hydroxyl groups on collagen. Subsequently, the structure of collagen-PLA was confirmed by Fourier transform infrared spectroscopy, fluorescein isothiocyanate-labeled fluorescence spectroscopy, X-ray photoelectron spectroscopy, and DSC analyses. Finally, some properties of collagen-PLA, such as hydrophilicity, cell compatibility and degradability were characterized. Results showed that collagen had been grafted onto the PLA with 5% graft ratio. Water contact angle and water absorption behavior tests indicated that the hydrophilicity of collagen-PLA was significantly higher than that of PLA. The cell compatibility of collagen-PLA with mouse embryonic fibroblasts (3T3) was also significantly better than PLA in terms of cell morphology and cell proliferation, and the degradability of PLA was also improved after introducing collagen. Results suggested that collagen-PLA was a promising candidate for biomedical applications. PMID:25569516

  20. Deep Eutectic Solvents Modified Molecular Imprinted Polymers for Optimized Purification of Chlorogenic Acid from Honeysuckle.

    PubMed

    Li, Guizhen; Wang, Wei; Wang, Qian; Zhu, Tao

    2016-02-01

    Deep eutectic solvents (DES) were synthesized with choline chloride (ChCl), and DES modified molecular imprinted polymers (DES-MIPs), DES modified non-imprinted polymers (DES-NIPs, without template), MIPs and NIPs were prepared in an identical procedure. Fourier transform infrared spectrometer (FT-IR) and field emission scanning electron microscopy (FE-SEM) were used to characterize the obtained polymers. Rebinding experiment and solid-phase extraction (SPE) were used to prove the high selectivity adsorption properties of the polymers. Box-Behnken design (BBD) with three factors was used to optimize the extraction condition of chlorogenic acid (CA) from honeysuckles. The optimum extraction conditions were found to be ultrasonic time optimized (20 min), the volume fraction of ethanol (60%) and ratio of liquid to material (15 mL g(-1)). Under these conditions, the mean extraction yield of CA was 12.57 mg g(-1), which was in good agreement with the predicted BBD model value. Purification of hawthorn extract was achieved by SPE process, and SPE recoveries of CA were 72.56, 64.79, 69.34 and 60.08% by DES-MIPs, DES-NIPs, MIPs and NIPs, respectively. The results showed DES-MIPs had potential for promising functional adsorption material for the purification of bioactive compounds.

  1. Solid lipid nanoparticles modified with stearic acid-octaarginine for oral administration of insulin.

    PubMed

    Zhang, Zhen-Hai; Zhang, Yin-Long; Zhou, Jian-Ping; Lv, Hui-Xia

    2012-01-01

    The aim of this study was to design and characterize solid lipid nanoparticles (SLNs) modified with stearic acid-octaarginine (SA-R₈) as carriers for oral administration of insulin (SA-R₈-Ins-SLNs). The SLNs were prepared by spontaneous emulsion solvent diffusion methods. The mean particle size, zeta potential, drug loading, and encapsulation efficiency of the SA-R₈-Ins-SLNs were 162 nm, 29.87 mV, 3.19%, and 76.54%, respectively. The zeta potential of the SLNs changed dramatically, from -32.13 mV to 29.87 mV, by binding the positively charged SA-R₈. Morphological studies of SA-R₈-Ins-SLNs using transmission electron microscopy showed that they were spherical. In vitro, a degradation experiment by enzymes showed that SLNs and SA-R₈ could partially protect insulin from proteolysis. Compared to the insulin solution, the SA-R₈-Ins-SLNs increased the Caco-2 cell's internalization by up to 18.44 times. In the in vivo studies, a significant hypoglycemic effect in diabetic rats over controls was obtained, with a SA-R₈-Ins-SLN pharmacological availability value of 13.86 ± 0.79. These results demonstrate that SA-R₈-modified SLNs promote the oral absorption of insulin.

  2. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides.

    PubMed

    Kasuya, Takeshi; Hori, Shin-Ichiro; Watanabe, Ayahisa; Nakajima, Mado; Gahara, Yoshinari; Rokushima, Masatomo; Yanagimoto, Toru; Kugimiya, Akira

    2016-01-01

    Gapmer antisense oligonucleotides cleave target RNA effectively in vivo, and is considered as promising therapeutics. Especially, gapmers modified with locked nucleic acid (LNA) shows potent knockdown activity; however, they also cause hepatotoxic side effects. For developing safe and effective gapmer drugs, a deeper understanding of the mechanisms of hepatotoxicity is required. Here, we investigated the cause of hepatotoxicity derived from LNA-modified gapmers. Chemical modification of gapmer's gap region completely suppressed both knockdown activity and hepatotoxicity, indicating that the root cause of hepatotoxicity is related to intracellular gapmer activity. Gene silencing of hepatic ribonuclease H1 (RNaseH1), which catalyses gapmer-mediated RNA knockdown, strongly supressed hepatotoxic effects. Small interfering RNA (siRNA)-mediated knockdown of a target mRNA did not result in any hepatotoxic effects, while the gapmer targeting the same position on mRNA as does the siRNA showed acute toxicity. Microarray analysis revealed that several pre-mRNAs containing a sequence similar to the gapmer target were also knocked down. These results suggest that hepatotoxicity of LNA gapmer is caused by RNAseH1 activity, presumably because of off-target cleavage of RNAs inside nuclei. PMID:27461380

  3. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides

    PubMed Central

    Kasuya, Takeshi; Hori, Shin-ichiro; Watanabe, Ayahisa; Nakajima, Mado; Gahara, Yoshinari; Rokushima, Masatomo; Yanagimoto, Toru; Kugimiya, Akira

    2016-01-01

    Gapmer antisense oligonucleotides cleave target RNA effectively in vivo, and is considered as promising therapeutics. Especially, gapmers modified with locked nucleic acid (LNA) shows potent knockdown activity; however, they also cause hepatotoxic side effects. For developing safe and effective gapmer drugs, a deeper understanding of the mechanisms of hepatotoxicity is required. Here, we investigated the cause of hepatotoxicity derived from LNA-modified gapmers. Chemical modification of gapmer’s gap region completely suppressed both knockdown activity and hepatotoxicity, indicating that the root cause of hepatotoxicity is related to intracellular gapmer activity. Gene silencing of hepatic ribonuclease H1 (RNaseH1), which catalyses gapmer-mediated RNA knockdown, strongly supressed hepatotoxic effects. Small interfering RNA (siRNA)-mediated knockdown of a target mRNA did not result in any hepatotoxic effects, while the gapmer targeting the same position on mRNA as does the siRNA showed acute toxicity. Microarray analysis revealed that several pre-mRNAs containing a sequence similar to the gapmer target were also knocked down. These results suggest that hepatotoxicity of LNA gapmer is caused by RNAseH1 activity, presumably because of off-target cleavage of RNAs inside nuclei. PMID:27461380

  4. Deep Eutectic Solvents Modified Molecular Imprinted Polymers for Optimized Purification of Chlorogenic Acid from Honeysuckle.

    PubMed

    Li, Guizhen; Wang, Wei; Wang, Qian; Zhu, Tao

    2016-02-01

    Deep eutectic solvents (DES) were synthesized with choline chloride (ChCl), and DES modified molecular imprinted polymers (DES-MIPs), DES modified non-imprinted polymers (DES-NIPs, without template), MIPs and NIPs were prepared in an identical procedure. Fourier transform infrared spectrometer (FT-IR) and field emission scanning electron microscopy (FE-SEM) were used to characterize the obtained polymers. Rebinding experiment and solid-phase extraction (SPE) were used to prove the high selectivity adsorption properties of the polymers. Box-Behnken design (BBD) with three factors was used to optimize the extraction condition of chlorogenic acid (CA) from honeysuckles. The optimum extraction conditions were found to be ultrasonic time optimized (20 min), the volume fraction of ethanol (60%) and ratio of liquid to material (15 mL g(-1)). Under these conditions, the mean extraction yield of CA was 12.57 mg g(-1), which was in good agreement with the predicted BBD model value. Purification of hawthorn extract was achieved by SPE process, and SPE recoveries of CA were 72.56, 64.79, 69.34 and 60.08% by DES-MIPs, DES-NIPs, MIPs and NIPs, respectively. The results showed DES-MIPs had potential for promising functional adsorption material for the purification of bioactive compounds. PMID:26347506

  5. Silane modified starch for compatible reactive blend with poly(lactic acid).

    PubMed

    Jariyasakoolroj, Piyawanee; Chirachanchai, Suwabun

    2014-06-15

    A reactive blend of poly(lactic acid) (PLA) and a surface modified starch by silane coupling agent to achieve compatibility is proposed. A detailed structural analysis by using (1)H-(1)H TOCSY NMR spectrum clarifies, for the first time, that chloropropyl trimethoxysilane (CPMS) forms covalent bonds with starch during starch modification and consequently forms covalent bonds with PLA in the step of blending to produce a reactive blend of PLA and CP-starch. The CP-starch covalently bound with PLA provides the compatibility between PLA and starch and also plays the role as nucleating agent as identified from a significant increase of degree of crystallinity (as high as 10-15 times), as well as induces chain mobility, as identified from a slight decrease in glass transition temperature (∼5-10°C). The PLA/CP-starch film performed as well as neat PLA with slight increases in tensile strength and elongation at break, as compared to other PLA/silane modified starch films.

  6. Acid modified diatomaceous earth--a sorbent material for thin layer chromatography.

    PubMed

    Ergül, Soner; Savaşci, Sahin

    2008-04-01

    Natural diatomaceous earth (DE) is modified by flux calcination and refluxing with acid. To characterize natural DE, modified DE's [flux calcinated (FC)DE and FCDE-I] and silica gel 60GF(254) (Si-60GF(254)) are analyzed microscopically, physically, and chemically by various techniques. FCDE-I and Si-60GF(254) are investigated for their usefulness in the stationary phase of thin layer chromatography (TLC) both individually and in composition. Sodium diethyldithiocarbamate (DEDTC) and ammonium pyrrolidinedithiocarbamate (PyDTC) are prepared as Co or Cu (M) complexes [M(DEDTC)(2) and M(PyDTC)(2), respectively]. These complexes and their mixtures are run on thin layers of Si-60GF(254) and FCDE-I individually, and on various FCDE-I and Si-60GF(254) mixtures. Pure toluene and various toluene-cyclohexane mixtures (3:1, 1:1, 1:2, 1:3, v/v) are used as mobile phases for the running the complexes. The best analytical separations of both M(DEDTC)(2) and M(PyDTC)(2) complexes are obtained when using pure toluene and toluene-cyclohexane (3:1, 1:1, v/v) as mobile phases on FCDE-I-Si-60GF(254) (1:3, 1:1, w/w) layers as stationary phases. This study shows that it is possible to qualitatively analyze and to satisfactorily separate a mixture Cu(2+) and Co(2+) cations on cited chromatographic systems. PMID:18402721

  7. The use of the maharanobis and modified distances for the improvement of simulation of glutamic acid production.

    PubMed

    Kishimoto, M; Alfafara, C G; Nakajima, M; Yoshida, T; Taguchi, H

    1989-01-10

    A modified simulation procedure based on a statistical approach was investigated. The procedure predicts the time course of fed-batch culture for glutamic acid production by a temperature-sensitive strain of Brevibacterium flavum. The statistical approach requires only a data base of state points obtained in experiments, and not perfect identification of fermentation models. The simulation procedure is based on regression analysis to estimate specific rate parameters of system equations using the data points selected with reference to the Euclid distance. It was modified in that the data selection procedure included the use of the Maharanobis distance as well as a modified distance defined in this study. Simulation results using the modified procedure allow reasonable prediction of the time course of fed-batch culture for glutamic acid compared to that involving the Euclid distance alone.

  8. The Role of Soy in Vegetarian Diets

    PubMed Central

    Messina, Mark; Messina, Virginia

    2010-01-01

    Soyfoods have long been prized among vegetarians for both their high protein content and versatility. Soybeans differ markedly in macronutrient content from other legumes, being much higher in fat and protein, and lower in carbohydrate. In recent years however, soyfoods and specific soybean constituents, especially isoflavones, have been the subject of an impressive amount of research. Nearly 2,000 soy-related papers are published annually. This research has focused primarily on the benefits that soyfoods may provide independent of their nutrient content. There is particular interest in the role that soyfoods have in reducing risk of heart disease, osteoporosis and certain forms of cancer. However, the estrogen-like effects of isoflavones observed in animal studies have also raised concerns about potential harmful effects of soyfood consumption. This review addresses questions related to soy and chronic disease risk, provides recommendations for optimal intakes, and discusses potential contraindications. As reviewed, the evidence indicates that, with the exception of those individuals allergic to soy protein, soyfoods can play a beneficial role in the diets of vegetarians. Concerns about adverse effects are not supported by the clinical or epidemiologic literature. Based on the soy intake associated with health benefits in the epidemiologic studies and the benefits noted in clinical trials, optimal adult soy intake would appear to be between two and four servings per day. PMID:22254060

  9. SBA-15 mesoporous material modified with APTES as the carrier for 2-(3-benzoylphenyl)propionic acid

    NASA Astrophysics Data System (ADS)

    Moritz, Michał; Łaniecki, Marek

    2012-07-01

    SBA-15 ordered mesoporous silica functionalized with (3-aminopropyl)triethoxysilane (APTES) was used as the carrier for anti-inflammatory drug: 2-(3-benzoylphenyl)propionic acid - ketoprofen. The surface of SBA-15 containing free silanol groups was modified with 3-aminopropyltriethoxysilane via post-synthetic reaction. Functionalization of the carrier with basic aminopropyl groups resulted in an ionic interaction with acidic ketoprofen. The samples of carriers and carrier-drug complexes were characterized by elemental analysis, TG, N2 adsorption, FTIR, DRUV spectroscopies and an in vitro drug release test. The adsorption of ketoprofen on modified mesoporous matrix was proportional to the amount of introduced aminopropyl groups. The maximum content of deposited drug in modified SBA-15 was close to 20 wt.%. After drug adsorption the reduction of BET surface area, pore volume and pore diameter of non-modified SBA-15 and aminopropyl-modified SBA-15 after drug adsorption were observed while the hexagonal array of siliceous matrix was well preserved. The release profiles of the aminopropyl-modified drug-containing SBA-15 exhibited prolonged release of ketoprofen in applied media. Tests performed in acidic solution (pH 1.2) showed the best pharmaceutical availability.

  10. Determination of DNA adducts by combining acid-catalyzed hydrolysis and chromatographic analysis of the carcinogen-modified nucleobases.

    PubMed

    Leung, Elvis M K; Deng, Kailin; Wong, Tin-Yan; Chan, Wan

    2016-01-01

    The commonly used method of analyzing carcinogen-induced DNA adducts involves the hydrolysis of carcinogen-modified DNA samples by using a mixture of enzymes, followed by (32)P-postlabeling or liquid chromatography (LC)-based analyses of carcinogen-modified mononucleotides/nucleosides. In the present study, we report the development and application of a new approach to DNA adduct analysis by combining the H(+)/heat-catalyzed release of carcinogen-modified nucleobases and the use of LC-based methods to analyze DNA adducts. Results showed that heating the carcinogen-modified DNA samples at 70 °C for an extended period of 4 to 6 h in the presence of 0.05% HCl can efficiently induce DNA depurination, releasing the intact carcinogen-modified nucleobases for LC analyses. After optimizing the hydrolysis conditions, DNA samples with C8- and N (2) -modified 2'-deoxyguanosine, as well as N (6) -modified 2'-deoxyadenosine, were synthesized by reacting DNA with 1-nitropyrene, acetaldehyde, and aristolochic acids, respectively. These samples were then hydrolyzed, and the released nucleobase adducts were analyzed using LC-based analytical methods. Analysis results demonstrated a dose-dependent release of target DNA adducts from carcinogen-modified DNA samples, indicating that the developed H(+)/heat-catalyzed hydrolysis method was quantitative. Comparative studies with enzymatic digestion method on carcinogen-modified DNA samples revealed that the two hydrolysis methods did not yield systematically different results.

  11. Carminic acid modified anion exchanger for the removal and preconcentration of Mo(VI) from wastewater.

    PubMed

    El-Moselhy, Medhat Mohamed; Sengupta, Arup K; Smith, Ryan

    2011-01-15

    Removal and preconcentration of Mo(VI) from water and wastewater solutions was investigated using carminic acid modified anion exchanger (IRA743). Various factors influencing the adsorption of Mo(VI), e.g. pH, initial concentration, and coexisting oxyanions were studied. Adsorption reached equilibrium within <10 min and was independent of initial concentration of Mo(VI). Studies were performed at different pH values to find the pH at which maximum adsorption occurred and was determined to be at a pH between 4.0 and 6.0. The Langmuir adsorption capacity (q(max)) was found to be 13.5mg Mo(VI)/g of the adsorbent. The results showed that modification of IRA743 with carminic acid is suitable for the removal of Mo(VI), as molybdate, from water and wastewater samples. The concentration of Mo(VI) was determined spectrophotometrically using bromopyrogallol red as a complexation reagent. This allows the determination of Mo(VI) in the range 1.0-100.0 μg/mL. The obtained material was subjected to efficient regeneration. PMID:20943315

  12. Biodistribution profiling of the chemical modified hyaluronic acid derivatives used for oral delivery system.

    PubMed

    Hsieh, Chien-Ming; Huang, Yu-Wen; Sheu, Ming-Thau; Ho, Hsiu-O

    2014-03-01

    A series of adipic acid dihydrazide (ADH)-modified hyaluronic acid (HA-ADH) compounds were synthesized and conjugated with QDots (QDots-HA conjugates) to assess the effects of the molecular weight (MW) and extent of chemical modification of HA on its biodistribution. Their physicochemical structures were confirmed by complementary application of GPC, (1)H NMR, FTIR, and UV-vis spectroscopic methods. In vivo imaging of QDots-HA conjugates after oral administration was analyzed to investigate their biodistribution in nude mice. Simultaneously, real-time bioimaging was confirmed by an anatomical analysis to investigate the organ-specific accumulation of conjugates. QDot-HA conjugates with a higher MW of HA or high modification presented relatively slow clearance leading to an extension of the retention time for up to 10 days, whereas those with lower MWs of HA or a low modification extent exhibited quick absorption and elimination after oral administration. Taken together, HA derivatives with suitable MWs and chemical modification extents can be used to design new, more-sophisticated, and intelligent HA-based vehicles for oral delivery with diverse characteristics. PMID:24315950

  13. Electrocatalytic oxidation of salicylic acid by a cobalt hydrotalcite-like compound modified Pt electrode.

    PubMed

    Gualandi, Isacco; Scavetta, Erika; Zappoli, Sergio; Tonelli, Domenica

    2011-03-15

    In this paper a study of the electrocatalytic oxidation of salicylic acid (SA) at a Pt electrode coated with a Co/Al hydrotalcite-like compound (Co/Al HTLC coated-Pt) film is presented. The voltammetric behaviour of the modified electrode in 0.1M NaOH shows two different redox couples: Co(II)/Co(III) and Co(III)/Co(IV). The electrocatalysis occurs at the same potential of the latter couple, showing that Co(IV) centers act as the oxidant. The CV investigation demonstrates that the process is controlled both by mass and charge transfer and that the Co(IV) centers involved in the oxidation are two for each SA molecule. The estimated value of the catalytic constant is 4×10(4) M(-1) s(-1). The determination of salicylic acid was performed both by DPV and chronoamperometry. The linearity ranges and the LOD values resulted 1×10(-5) to 5×10(-4), 5×10(-7) to 1×10(-4), 6×10(-6) and 2×10(-7) M, respectively. The Co/Al HTLC electrode has been used for SA determination in BAYER Aspirina® and the obtained results are consistent with an independent HPLC analysis. PMID:21237633

  14. Efficient gene delivery system mediated by cis-aconitate-modified chitosan-g-stearic acid micelles.

    PubMed

    Yao, Jing-Jing; Du, Yong-Zhong; Yuan, Hong; You, Jian; Hu, Fu-Qiang

    2014-01-01

    Cis-aconitate-modified chitosan-g-stearic acid (CA-CSO-SA) micelles were synthesized in this study to improve the gene transfection efficiency of chitosan-g-stearic acid (CSO-SA). The CA-CSO-SA micelles had a similar size, critical micelle concentration, and morphology, but their zeta potential and cytotoxicity were reduced compared with CSO-SA micelles. After modification with cis-aconitate, the CA-CSO-SA micelles could also compact plasmid DNA (pDNA) to form nanocomplexes. However, the DNA binding ability of CA-CSO-SA was slightly reduced compared with that of CSO-SA. The transfection efficiency mediated by CA-CSO-SA/pDNA against HEK-293 cells reached up to 37%, and was much higher than that of CSO-SA/pDNA (16%). Although the cis-aconitate modification reduced cellular uptake kinetics in the initial stages, the total amount of cellular uptake tended to be the same after 24 hours of incubation. An endocytosis inhibition experiment showed that the internalization mechanism of CA-CSO-SA/pDNA in HEK-293 cells was mainly via clathrin-mediated endocytosis, as well as caveolae-mediated endocytosis and macropinocytosis. Observation of intracellular trafficking indicated that the CSO-SA/pDNA complexes were trapped in endolysosomes, but CA-CSO-SA/pDNA was more widely distributed in the cytosol. This study suggests that modification with cis-aconitate improves the transfection efficiency of CSO-SA/pDNA.

  15. Interactions between organic amendments and phosphate fertilizers modify phosphate sorption processes in an acid soil

    SciTech Connect

    Sckefe, C.R.; Patti, A.F.; Clune, T.S.; Jackson, W.R.

    2008-07-15

    To determine how organic amendments and phosphate fertilizers interact to modify P sorption processes, three phosphate fertilizers were applied to lignite- and compost-amended acid soil and incubated for either 3 or 26 days. The fertilizers applied were potassium dihydrogen phosphate, triple superphosphate, and diammonium phosphate (DAP). After 3 days of incubation, sorption of all three P sources was decreased in the lignite-amended treatments, whereas P sorption was increased in the compost-amended treatments. Increased incubation time (26 days) resulted in significantly decreased P sorption when DAP was added to lignite-amended treatments. Addition of triple superphosphate increased P sorption in lignite- and compost-amended treatments and decreased solution pH compared with DAP application. In addition to the effect of P source, differences in P sorption between the lignite- and compost-amended treatments were driven by differences in solution chemistry, predominantly solution pH and cation dynamics. Soil amendment and fertilizer addition also increased microbial activity in the incubation systems, as measured by carbon dioxide respiration. It is proposed that the combination of lignite and DAP may contribute to decreased P sorption in acid soils, with the positive effects likely caused by both chemical and biological processes, including the formation of soluble organic-metal complexes.

  16. DNA immobilization on a polypyrrole nanofiber modified electrode and its interaction with salicylic acid/aspirin.

    PubMed

    Yousef Elahi, M; Bathaie, S Z; Kazemi, S H; Mousavi, M F

    2011-04-15

    A double-stranded calf thymus DNA (dsDNA) was physisorbed onto a polypyrrole (PPy) nanofiber film that had been electrochemically deposited onto a Pt electrode. The surface morphology of the polymeric film was characterized using scanning electron microscopy (SEM). The electrochemical characteristics of the PPy film and the DNA deposited onto the PPy modified electrode were investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Then the interaction of DNA with salicylic acid (SA) and acetylsalicylic acid (ASA), or aspirin, was studied on the electrode surface with DPV. An increase in the DPV current was observed due to the oxidation of guanine, which decreased with the increasing concentrations of the ligands. The interactions of SA and ASA with the DNA follow the saturation isotherm behavior. The binding constants of these interactions were 1.15×10(4)M for SA and 7.46×10(5)M for ASA. The numbers of binding sites of SA and ASA on DNA were approximately 0.8 and 0.6, respectively. The linear dynamic ranges of the sensors were 0.1-2μM (r(2)=0.996) and 0.05-1mM (r(2)=0.996) with limits of detection of 8.62×10(-1) and 5.24×10(-6)μM for SA and ASA, respectively.

  17. Electrocatalytic oxidation of salicylic acid by a cobalt hydrotalcite-like compound modified Pt electrode.

    PubMed

    Gualandi, Isacco; Scavetta, Erika; Zappoli, Sergio; Tonelli, Domenica

    2011-03-15

    In this paper a study of the electrocatalytic oxidation of salicylic acid (SA) at a Pt electrode coated with a Co/Al hydrotalcite-like compound (Co/Al HTLC coated-Pt) film is presented. The voltammetric behaviour of the modified electrode in 0.1M NaOH shows two different redox couples: Co(II)/Co(III) and Co(III)/Co(IV). The electrocatalysis occurs at the same potential of the latter couple, showing that Co(IV) centers act as the oxidant. The CV investigation demonstrates that the process is controlled both by mass and charge transfer and that the Co(IV) centers involved in the oxidation are two for each SA molecule. The estimated value of the catalytic constant is 4×10(4) M(-1) s(-1). The determination of salicylic acid was performed both by DPV and chronoamperometry. The linearity ranges and the LOD values resulted 1×10(-5) to 5×10(-4), 5×10(-7) to 1×10(-4), 6×10(-6) and 2×10(-7) M, respectively. The Co/Al HTLC electrode has been used for SA determination in BAYER Aspirina® and the obtained results are consistent with an independent HPLC analysis.

  18. Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities.

    PubMed

    Ni, Zhihui; Wang, Zhihua; Sun, Lei; Li, Binjie; Zhao, Yanbao

    2014-08-01

    Poly acrylic acid modified silver (Ag/PAA) nanoparticles (NPs) have been successfully synthesized in the aqueous solution by using tannic acid as a reductant. The structure, morphology and composition of Ag/PAA NPs were characterized by various techniques such as X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible absorption spectroscopy (UV-vis) and thermogravimetry analysis (TGA). The results show that PAA/Ag NPs have a quasi-ball shape with an average diameter of 10 nm and exhibit well crystalline, and the reaction conditions have some effect on products morphology and size distribution. In addition, the as-synthesized Ag/PAA NPs antimicrobial activities against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) were evaluated by the methods of broth dilution, cup diffusion, optical density (OD600) and electron microscopy observation. The as-synthesized Ag/PAA NPs exhibit excellent antibacterial activity. The antimicrobial mechanism may be attributed to the damaging of bacterial cell membrane and causing leakage of cytoplasm. PMID:24907758

  19. Formic acid electrooxidation on Bi-modified polyoriented and preferential (111) Pt nanoparticles.

    PubMed

    López-Cudero, Ana; Vidal-Iglesias, Francisco J; Solla-Gullón, José; Herrero, Enrique; Aldaz, Antonio; Feliu, Juan M

    2009-01-14

    Formic acid electrooxidation was studied on Bi modified polyoriented and preferential (111) Pt nanoparticles. For both types of nanoparticles, Bi coverage was progressively increased and its effect on formic acid electrooxidation was evaluated using cyclic voltammetry and chronoamperometric measurements. In both experiments, significant and progressive enhancements on the electrooxidation current densities were obtained in comparison to the bare Pt nanoparticles. In voltammetry, at maximum Bi coverage, higher current densities at peak potential were obtained with the preferential (111) Pt nanoparticles (approximately 42 mA cm(-2)) as compared to the polyoriented Pt nanoparticles (approximately 32 mA cm(-2)) in agreement with previous single crystal studies. Nevertheless, this tendency was not observed in chronoamperometry at 0.4 V where currents obtained at maximum Bi coverage were similar. On the other hand, CO poison formation was also evaluated at open circuit potential. The resulting electrochemical activity has been rationalized using different parameters, such as surface structure, size domains, particle size and Bi coverage. PMID:19088999

  20. Binding of actin to thioglycolic acid modified superparamagnetic nanoparticles for antibody conjugation.

    PubMed

    Maltas, Esra; Ertekin, Betul

    2015-01-01

    Thioglycolic acid modified superparamagnetic iron oxide nanoparticles (TG-APTS-SPION) were synthesized by using (3-aminopropyl) triethoxysilane (APTS) and thioglycolic acid (TG). Actin was immobilized on the nanoparticle surfaces. Binding amount of the actin (Act) on TG-APTS-SPIONs was determined by using a calibration curve equation that was drawn using fluorescence spectra at 280 and 342 nm of excitation and emission wavelengths. Anti-Actin (anti-Act) was interacted with the actin immobilized TG-APTS-SPIONs as primary antibody. Horse radish peroxidase (HRP) was also interacted with antibody conjugated nanoparticles as secondary antibody. The binding capacity of primary and secondary antibodies was also estimated by fluorescence spectroscopy. Scanning electron microscopy (SEM), Infrared spectroscopy (FTIR) and energy dispersive X-ray (EDX) analysis were also clarified binding of the protein and antibodies to the nanoparticles' surfaces. Western blot analysis was also done for actin conjunction with anti Act antibody to confirm binding of the antibody to the protein. PMID:25451750

  1. Glyceollin-elicited soy protein consumption induces distinct transcriptional effects as compared to standard soy protein.

    PubMed

    Wood, Charles E; Boue, Stephen M; Collins-Burow, Bridgette M; Rhodes, Lyndsay V; Register, Thomas C; Cline, J Mark; Dewi, Fitriya N; Burow, Matthew E

    2012-01-11

    Glyceollins are stress-induced compounds in soybeans with bioactive properties distinct from parent soy isoflavones. The goals of this study were to evaluate the effects of dietary glyceollin-enriched and standard soy protein isolates and identify candidate target pathways of glyceollins on transcriptional profiles within mammary gland tissue. Thirty female postmenopausal cynomolgus monkeys were randomized to diets containing one of three protein sources for 3 weeks: (1) control casein/lactalbumin (C/L), (2) standard soy protein containing 194 mg/day isoflavones (SOY), and (3) glyceollin-enriched soy protein containing 189 mg/day isoflavones + 134 mg/day glyceollins (GLY). All diets contained a physiologic dose of estradiol (E2) (1 mg/day). All doses are expressed in human equivalents scaled by caloric intake. Relative to the control C/L diet, the GLY diet resulted in greater numbers of differentially regulated genes, which showed minimal overlap with those of SOY. Effects of GLY related primarily to pathways involved in lipid and carbohydrate metabolism, including peroxisome proliferator-activated receptor (PPAR)-γ and AMP-activated protein kinase (AMPK) signaling, adipocytokine expression, triglyceride synthesis, and lipase activity. Notable genes upregulated by the GLY diet included PPAR-γ, adiponectin, leptin, lipin 1, and lipoprotein lipase. The GLY diet also resulted in lower serum total cholesterol, specifically nonhigh-density lipoprotein cholesterol, and increased serum triglycerides as compared to the C/L diet. No effects of GLY or SOY were seen on serum insulin, adipocytokines, or vascular and bone turnover markers. These preliminary findings suggest that glyceollin-enriched soy protein has divergent effects from standard soy with some specificity for adipocyte activity and nutrient metabolism.

  2. Interstitial granulomatous dermatitis secondary to soy.

    PubMed

    Dyson, Senait W; Hirsch, Ann; Jaworsky, Christine

    2004-08-01

    A healthy 58-year-old woman developed an asymptomatic papular eruption of the neck, cheek, abdomen, arms, and flexures. There was an 8-year history of the lesions, which had erupted when the patient started a strict vegetarian diet. Lesions lasted 3 to 5 days, cleared without scarring, and were associated with burning and increased tearing of the eyes. The biopsy specimen showed an interstitial granulomatous dermatitis without vascular injury, collagen alteration, or mononuclear atypia. The eruption cleared when the patient omitted soy products from her diet. It subsequently recurred with intake of even minimal amounts of soy. Interstitial granulomatous dermatitis is a histologic pattern of inflammation that generates a broad differential diagnosis. No previous reports of interstitial granulomatous dermatitis related to soy products are available in the literature.

  3. Novel Long-Circulating Liposomes Consisting of PEG Modified β-Sitosterol for Gambogic Acid Delivery.

    PubMed

    Yu, Fan; Tang, Xinhui

    2016-03-01

    Long-circulating liposome is an effective formulation in field of cancer treatment. However, high expenditure of formulation and high dose of cholesterol severely restrict its application. In this paper, we developed a method by grafting polyethylene glycol 2000 on β-sitosterol succinic anhydride ester to obtain relatively cheap polyethylene glycol-β-sitosterol conjugates, which were used to prepare long-circulating liposome without cholesterol. Gambogic acid which is an effective antitumor ingredient with very short half-life, was used as a model drug to prepare long-circulating liposome in this research. Meanwhile, the characteristics, pharmacokinetics and distribution of this novel long-circulating liposome were also investigated in comparison with other gambogic acid formulations. Polyethylene glycol-β-sitosterol conjugates were synthesized, different liposomal formulations were also prepared by ethanol injection method, and the obtained nanoparticles were characterized by dynamic light scattering and transmission electron microscope. The long-circulating effect, pharmacokinetics and distribution of gambogic acid in rats were also explored. 1HNMR confirmed that polyethylene glycol-β-sitosterol conjugates were synthesized successfully. Novel long-circulating liposome was successfully prepared by ethanol injection method attaining a entrapment efficiency of 89.4%, exhibiting a homogeneous particle size of 245.2 nm and -24.3 mV zeta potential with smooth continuous surface. This novel long-circulating liposome demonstrated better long-circulating effect than ordinary long-circulating liposome. The novel long-circulating liposome as-prepared not only could reduce cost of grafting polyethylene glycol on macromolecular phospholipid, but also no cholestrol in preparation was applied, expanding the application of liposome as a formulation in the field of lowering blood lipid. Therefore, polyethylene glycol-β-sitosterol conjugates are recommended substitute for

  4. Effect of the eluent pH and acidic modifiers in high-performance liquid chromatography retention of basic analytes.

    PubMed

    LoBrutto, R; Jones, A; Kazakevich, Y V; McNair, H M

    2001-04-13

    The retention of ionogenic bases in liquid chromatography is strongly dependent upon the pH of the mobile phase. Chromatographic behavior of a series of substituted aniline and pyridine basic compounds has been studied on C18 bonded silica using acetonitrile-water (10:90) as the eluent with different pHs and at various concentrations of the acidic modifier counter anions. The effect of different acidic modifiers on solute retention over a pH range from 1.3 to 8.6 was studied. Ionized basic compounds showed increased retention with a decrease of the mobile phase pH. This increase in retention was attributed to the interaction with counter anions of the acidic modifiers. The increase in retention is dependent on the nature of the counter anion and its concentration in the mobile phase. It was shown that altering the concentration of counter anion of the acidic modifier allows the optimization of the selectivity between basic compounds as well as for neutral and acidic compounds. PMID:11355811

  5. Changes in structural characteristics of antioxidative soy protein hydrolysates resulting from scavenging of hydroxyl radicals.

    PubMed

    Zhao, Jing; Xiong, Youling L; McNear, Dave H

    2013-02-01

    Antioxidant activity of soy protein (SP) and its hydrolyzed peptides has been widely reported. During scavenging of radicals, these antioxidative compounds would be oxidatively modified, but their fate is not understood. The objective of this study was to evaluate the structural characteristics of SP hydrolysates (SPHs), compared to intact SP, when used to neutralize hydroxyl radicals (•OH). SPHs with degree of hydrolysis (DH) 1 to 5 were prepared with Alcalase. Antioxidant activity of SPHs was confirmed by lipid oxidation inhibition measured with thiobarbituric acid-reactive substances, ability to scavenge 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radicals, and ferrous ion chelation capability. Oxidation of SPHs was initiated by reaction with •OH generated from 0.1 mM FeCl(3) , 20 mM H(2) O(2) , and 1.0 mM ascorbate. After oxidative stress, carbonyl content of SPHs increased by 2- to 3-fold and sulfhydryl groups decreased by up to 42% compared to nonoxidized samples (P < 0.05). Methionine, histidine, and lysine residues were significantly reduced as a result of inactivating •OH (P < 0.05). Attenuated total reflectance-Fourier transform infrared and circular dichroism spectroscopy suggested the conversion of helical structure to strands and turns. Oxidatively modified SPHs had a lower intrinsic fluorescence intensity but similar solubility when compared to nonoxidized samples. These structural changes due to •OH stress may impact the ingredient interaction and functionality of SPHs in food products. PMID:23331209

  6. Judgment of pure fermented soy sauce by fluorescence resonance energy transfer of OPA-tryptophan adduct.

    PubMed

    Gao, You-Syuan; Hsieh, Bo-Chuan; Cheng, Tzong-Jih; Chen, Richie L C

    2015-07-01

    Tryptophan was detected with a flow-injection manifold after reacting with mM order of fluorogenic o-phthalaldehyde (OPA)/thiol reagent (pH 10.0) in the carrier stream (0.63 mL/min). Based on the intra-molecular fluorescence resonance energy transfer of OPA-tryptophan adduct, the difference in fluorescence intensity obtained at 280 and 300 nm excitation was used to detect tryptophan content with satisfactory precision (CV<6.5% for concentration higher than 0.5 μM), linearity (0.1-10 μM, R(2)=0.9893) and sensitivity (≈10 nM). Since tryptophan will decompose during manufacturing non-fermented soy sauce by acid-hydrolysis procedure, the method was used to discriminate pure fermented soy sauces, adulterated soy sauces and chemical soy sauces in less than 5 min. The ratio of tryptophan to total amino acid content served as the index for the judgment, and the results were validated by capillary electrophoresis.

  7. Enzymatic cross-linking of soy proteins within non-fat set yogurt gel.

    PubMed

    Soleymanpuori, Rana; Madadlou, Ashkan; Zeynali, Fariba; Khosrowshahi, Asghar

    2014-08-01

    Soy proteins as the health-promoting ingredients and candidate fat substitutes in dairy products are good substrates for the cross-linking action of the enzyme transglutaminase. Non-fat set yogurt samples were prepared from the milks enriched with soy protein isolate (SPI) and/or treated with the enzyme transglutaminase. The highest titrable acidity was recorded for the yogurt enriched with SPI and treated with the enzyme throughout the cold storage for 21 d. SPI-enrichment of yogurt milk increased the water holding capacity. Although enrichment with SPI did not influence the count of Streptococcus themophilus, increased that of Lactobacillus bulgaricus ∼3 log cycles. The enzymatic treatment of SPI-enriched milk however, suppressed the bacteria growth-promoting influence of SPI due probably to making the soy proteins inaccessible for Lactobacillus. SPI-enrichment and enzymatic treatment of milk decreased the various organic acids content in yoghurt samples; influence of the former was more significant. The cross-linking of milk proteins to soy proteins was confirmed with the gel electrophoresis results.

  8. Study of mechanical and thermal properties of soy flour elastomers

    NASA Astrophysics Data System (ADS)

    Allen, Kendra Alicia

    Bio-based plastics are becoming viable alternatives to petroleum-based plastics because they decrease dependence on petroleum derivatives and are more environmentally friendly. Raw materials such as soy flour are widely available, low cost, lightweight, stiffness and have high strength characteristics, but weak interfacial adhesion between the soy flour and the polymer poses a challenge. In this study, soy flour was utilized as a filler in thermoplastic elastomer composites. A surface modification called acetylation was investigated at soy flour concentrations of 10 wt%, 15 wt% and 20 wt%. The mechanical properties of the composites were then compared to that of elastomers without a filler. Chemical characterization of the acetylated soy flour was attempted in order to understand what occurs during the reaction and after completion. In the range of tests, soy flour loadings were observed to be inversely proportional to tensile strength for both the untreated and treated soy flour. However, the acetylated soy flour at 10 wt% concentration performed comparable to that of the neat rubber and resulted in an increase in tensile strength. Unexpectedly, the acetylation reaction increased elongation, which reduced stress within the composite and is believed to increase the adhesion of the soy flour to that of the elastomer. In the nuclear magnetic resonance (SS-NMR), the intensity for the treated soy flour was larger than that of the untreated soy flour for the acetyl groups that were attached to the soy flour, particularly, the carbonyl function group next to the deprotonated oxygen and the methyl group next to the carbonyl. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) indicated that the acetylated soy flour is slightly more thermally stable than the untreated soy flour. The treated soy flour also increased the decomposition temperature of the composite.

  9. Dietary n-3 polyunsaturated fatty acids modify fatty acid composition in hepatic and abdominal adipose tissue of sucrose-induced obese rats.

    PubMed

    Alexander-Aguilera, Alfonso; Berruezo, Silvia; Hernández-Diaz, Guillermo; Angulo, Ofelia; Oliart-Ros, Rosamaria

    2011-12-01

    The fatty acid profile of hepatocytes and adipocytes is determined by the composition of the dietary lipids. It remains unclear which fatty acid components contribute to the development or reduction of insulin resistance. The present work examined the fatty acid composition of both tissues in sucrose-induced obese rats receiving fish oil to determine whether the effect of dietary (n-3) polyunsaturated fatty acids (PUFAs) on the reversion of metabolic syndrome in these rats is associated to changes in the fatty acid composition of hepatocyte and adipocyte membrane lipids. Animals with metabolic syndrome were divided into a corn-canola oil diet group and a fish oil diet group, and tissues fatty acids composition were analyzed after 6 weeks of dietary treatment. Fatty acid profiles of the total membrane lipids were modified by the fatty acid composition of the diets fed to rats. N-3 PUFAs levels in animals receiving the fish oil diet plus sucrose in drinking water were significantly higher than in animals under corn-canola oil diets. It is concluded that in sucrose-induced obese rats, consumption of dietary fish oil had beneficial effects on the metabolic syndrome and that such effects would be conditioned by the changes in the n-3 PUFAs composition in hepatic and adipose tissues because they alter membrane properties and modify the type of substrates available for the production of active lipid metabolites acting on insulin resistance and obesity. PMID:21695545

  10. The effectiveness of a modified hydrochloric acid-quartz-pumice abrasion technique on fluorosis stains: a case report.

    PubMed

    Erdogan, G

    1998-02-01

    Endemic dental fluorosis is a form of enamel hypoplasia characterized by moderate-to-severe staining of the tooth surface. Since 1916, numerous investigators have used hydrochloric acid alone on fluorosis stains. More recently, 18% hydrochloric acid-pumice microabrasion has been used to achieve color modification. The main disadvantage of this procedure is the high concentration and low viscosity of hydrochloric acid, which can cause damage to oral and dental tissues. To eliminate this problem, quartz particles can be mixed with the hydrochloric acid. The quartz particles prevent the hydrochloric acid from flowing uncontrollablely by altering it to a gel-like form. A modified 18% hydrochloric acid-quartz-pumice abrasion technique was used to remove fluorine stains from vital teeth in a teenager.

  11. High-efficiency l-lactic acid production by Rhizopus oryzae using a novel modified one-step fermentation strategy.

    PubMed

    Fu, Yong-Qian; Yin, Long-Fei; Zhu, Hua-Yue; Jiang, Ru

    2016-10-01

    In this study, lactic acid fermentation by Rhizopus oryzae was investigated using the two different fermentation strategies of one-step fermentation (OSF) and conventional fermentation (CF). Compared to CF, OSF reduced the demurrage of the production process and increased the production of lactic acid. However, the qp was significantly lower than during CF. Based on analysis of μ, qs and qp, a novel modified OSF strategy was proposed. This strategy aimed to achieve a high final concentration of lactic acid, and a high qp by R. oryzae. In this strategy, the maximum lactic acid concentration and productivity of the lactic acid production stage reached 158g/l and 5.45g/(lh), which were 177% and 366% higher, respectively, than the best results from CF. Importantly, the qp and yield did not decrease. This strategy is a convenient and economical method for l-lactic acid fermentation by R. oryzae.

  12. SMA-SH: Modified Styrene-Maleic Acid Copolymer for Functionalization of Lipid Nanodiscs.

    PubMed

    Lindhoud, Simon; Carvalho, Vanessa; Pronk, Joachim W; Aubin-Tam, Marie-Eve

    2016-04-11

    Challenges in purification and subsequent functionalization of membrane proteins often complicate their biochemical and biophysical characterization. Purification of membrane proteins generally involves replacing the lipids surrounding the protein with detergent molecules, which can affect protein structure and function. Recently, it was shown that styrene-maleic acid copolymers (SMA) can dissolve integral membrane proteins from biological membranes into nanosized discs. Within these nanoparticles, proteins are embedded in a patch of their native lipid bilayer that is stabilized in solution by the amphipathic polymer that wraps the disc like a bracelet. This approach for detergent-free purification of membrane proteins has the potential to greatly simplify purification but does not facilitate conjugation of functional compounds to the membrane proteins. Often, such functionalization involves laborious preparation of protein variants and optimization of labeling procedures to ensure only minimal perturbation of the protein. Here, we present a strategy that circumvents several of these complications through modifying SMA by grafting the polymer with cysteamine. The reaction results in SMA that has solvent-exposed sulfhydrils (SMA-SH) and allows tuning of the coverage with SH groups. Size exclusion chromatography, dynamic light scattering, and transmission electron microscopy demonstrate that SMA-SH dissolves lipid bilayer membranes into lipid nanodiscs, just like SMA. In addition, we demonstrate that, just like SMA, SMA-SH solubilizes proteoliposomes into protein-loaded nanodiscs. We covalently modify SMA-SH-lipid nanodiscs using thiol-reactive derivatives of Alexa Fluor 488 and biotin. Thus, SMA-SH promises to simultaneously tackle challenges in purification and functionalization of membrane proteins. PMID:26974006

  13. Simultaneous electroanalysis of dopamine and ascorbic acid using poly (N,N-dimethylaniline)-modified electrodes.

    PubMed

    Roy, Protiva Rani; Okajima, Takeyoshi; Ohsaka, Takeo

    2003-04-01

    Glassy carbon (GC) electrode is modified with an electropolymerized film of N,N-dimethylaniline (DMA). This polymer (PDMA) film-coated GC electrode is used to electrochemically detect dopamine (DA) in the presence of ascorbic acid (AA). Polymer film has the positive charge in its backbone, and in neutral solution DA exists as the positively charged species whereas AA exists as the negatively charged one. In cyclic voltammetric measurements, favorable ionic interaction (i.e., electrostatic attraction) between AA and PDMA film causes a large negative shift of the oxidation potential for AA compared to that at the bare electrode. Oxidation potential for DA is positively shifted due to the electrostatic repulsion. The PDMA film shows hydrophobicity by incorporating uncharged hydroquinone molecule within the film. DA is also incorporated into the film due to hydrophobic attraction even though DA has a positive charge. The responses of DA and AA at polymer-modified electrodes largely change with the concentration of the monomer (i.e., 0.2, 0.1 and 0.05 M DMA) used in electropolymerization and thus with the film thickness. Hydrophobicity of the polymer film shows great influence on the voltammetric responses of both DA and AA. In square wave voltammetric measurements, the PDMA film-coated electrode can separate the DA and AA oxidation potentials by about 300 mV and can detect DA at its low concentration (e.g., 0.2 microM) in the presence of 1000 times higher concentration of AA, which is close to the physiological level. AA oxidizes at more negative potential than DA. The electrode response is not affected by the oxidized product of AA. So unlike the bare electrode, the fouling effect as well as the catalytic oxidation of AA by the oxidized form of DA are eliminated at the PDMA film-coated GC electrode. The electrode exhibits the stable and sensitive response to DA.

  14. Novel soy protein scaffolds for tissue regeneration: Material characterization and interaction with human mesenchymal stem cells.

    PubMed

    Chien, Karen B; Shah, Ramille N

    2012-02-01

    Soy protein modified with heat treatment and enzyme crosslinking using transglutaminase in maltodextrin was used to fabricate novel, porous three-dimensional scaffolds through lyophilization. Physical properties of scaffolds were characterized using scanning electron microscopy, mercury intrusion porosimetry, moisture content analysis and mechanical testing. Human mesenchymal stem cells (hMSC) were seeded and cultured in vitro on the scaffolds for up to 2 weeks, and changes in stem cell growth and morphology were examined. The resulting scaffolds had rough surfaces, irregular pores with size distributions between 10 and 125 μm, <5% moisture content and compressive moduli ranging between 50 and 100 Pa. Enzyme treatment significantly lowered the moisture content. Increasing amounts of applied enzyme units lowered the median pore size. Although enzyme treatment did not affect the mechanical properties of the scaffolds, it did increase the degradation time by at least 1 week. These changes in scaffold degradation altered the growth and morphology of seeded hMSC. Cell proliferation was observed in scaffolds containing 3% soy protein isolate treated with 1 U of transglutaminase. These results demonstrate that controlling scaffold degradation rates is crucial for optimizing hMSC growth on soy protein scaffolds and that soy protein scaffolds have the potential to be used in tissue engineering applications.

  15. Novel soy protein scaffolds for tissue regeneration: Material characterization and interaction with human mesenchymal stem cells.

    PubMed

    Chien, Karen B; Shah, Ramille N

    2012-02-01

    Soy protein modified with heat treatment and enzyme crosslinking using transglutaminase in maltodextrin was used to fabricate novel, porous three-dimensional scaffolds through lyophilization. Physical properties of scaffolds were characterized using scanning electron microscopy, mercury intrusion porosimetry, moisture content analysis and mechanical testing. Human mesenchymal stem cells (hMSC) were seeded and cultured in vitro on the scaffolds for up to 2 weeks, and changes in stem cell growth and morphology were examined. The resulting scaffolds had rough surfaces, irregular pores with size distributions between 10 and 125 μm, <5% moisture content and compressive moduli ranging between 50 and 100 Pa. Enzyme treatment significantly lowered the moisture content. Increasing amounts of applied enzyme units lowered the median pore size. Although enzyme treatment did not affect the mechanical properties of the scaffolds, it did increase the degradation time by at least 1 week. These changes in scaffold degradation altered the growth and morphology of seeded hMSC. Cell proliferation was observed in scaffolds containing 3% soy protein isolate treated with 1 U of transglutaminase. These results demonstrate that controlling scaffold degradation rates is crucial for optimizing hMSC growth on soy protein scaffolds and that soy protein scaffolds have the potential to be used in tissue engineering applications. PMID:22019761

  16. Comparison of seizure reduction and serum fatty acid levels after receiving the ketogenic and modified Atkins diet.

    PubMed

    Porta, Natacha; Vallée, Louis; Boutry, Elisabeth; Fontaine, Monique; Dessein, Anne-Frédérique; Joriot, Sylvie; Cuisset, Jean-Marie; Cuvellier, Jean-Christophe; Auvin, Stéphane

    2009-06-01

    The ketogenic diet (KD) and the modified Atkins diet are effective therapies for intractable epilepsy. We compared retrospectively the KD and modified Atkins diet in 27 children and also assessed serum long chain fatty acid profiles. After 3 months, using an intent-to-treat analysis, the KD was more successful, with >50% seizure reduction in 11/17 (65%) vs. 2/10 (20%) with the modified Atkins diet, p=0.03. After 6 months, however, the difference was no longer significant: 7/17 (41%) vs. 2/10 (20%) (p=0.24). We observed a preventive effect of both diets on the occurrence of status epilepticus. After 1 and 3 months of either diet, responders experienced a significant decrease in serum arachidonic acid concentration compared to non-responders. The KD and modified Atkins diet led to seizure reduction in this small pilot series, with slightly better results after 3 months with the KD, but not after 6 months. The decrease of serum arachidonic acid levels might be involved in the anticonvulsive effects of KD or modified Atkins diet.

  17. Investigation of modified cottonseed protein adhesives for wood composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several modified cottonseed protein isolates were studied and compared to corresponding soy protein isolates for their adhesive properties when bonded to wood composites. Modifications included treatments with alkali, guanidine hydrochloride, sodium dodecyl sulfate (SDS), and urea. Wood composites...

  18. Chromate adsorption on acid-treated and amines-modified clay

    NASA Astrophysics Data System (ADS)

    Hajjaji, M.; Beraa, A.

    2015-03-01

    Acid-treated montmorillonite-rich clay and amines (methylamine, morpholine, and aniline)-modified clay adsorbents were investigated and their abilities to remove chromate from aqueous solution were studied. For the later purpose, kinetic studies were carried out under different operating conditions (chromate concentration, adsorbent content, and temperature), and adsorption isotherm measurements were performed. It was found that the kinetic of adsorption was fast and the data followed the pseudo-second rate equation. The rate of adsorption was controlled by the intra-particle diffusion and mass transfer through the liquid film, and the relative importance of these limiting steps depended on the operating conditions. Chromate adsorption was an endothermic process and took place spontaneously by physisorption. The free energy at 25 ≤ T ≤ 40 °C varied from -1.5 to -46 kJ/mol. Adsorption isotherms of Na+-saturated clay (AN), acid-treated clay (AA), and methylamine-clay and morpholine-clay (A-Me, A-Mo) were type V, whereas those of aniline-clay (A-An) were type III. The estimated maximum uptakes were 105, 29, 15, 11, and 10 mmol/kg for A-An, AN, A-Mo, AA, and A-Me, respectively. The mechanism of chromate adsorption was discussed based on the shape of the isotherms. Considering for instance the most efficient absorbent (A-An), the isotherm followed the Freundlich equation and hydrogen chromate (the main stable form at working pH) adsorbed to solid particles once aniline species were entirely desorbed.

  19. Soy foods: are they useful for optimal bone health?

    PubMed

    Lanou, Amy J

    2011-12-01

    Numerous studies have investigated the relationship between soy foods, soy protein, or isoflavone extracts and markers of bone health and osteoporosis prevention, and have come to conflicting conclusions. Research on dietary patterns, rather than on specific food ingredients or individual foods, may offer an opportunity for better understanding the role of soy foods in bone health. Evidence is reviewed regarding the question of whether soy foods contribute to a dietary pattern in humans that supports and promotes bone health. Soy foods are associated with improved markers of bone health and improved outcomes, especially among Asian women. Although the optimal amounts and types of soy foods needed to support bone health are not yet clear, dietary pattern evidence suggests that regular consumption of soy foods is likely to be useful for optimal bone health as an integral part of a dietary pattern that is built largely from whole plant foods.

  20. Ulleungamides A and B, Modified α,β-Dehydropipecolic Acid Containing Cyclic Depsipeptides from Streptomyces sp. KCB13F003.

    PubMed

    Son, Sangkeun; Ko, Sung-Kyun; Jang, Mina; Lee, Jae Kyoung; Ryoo, In-Ja; Lee, Jung-Sook; Lee, Kyung Ho; Soung, Nak-Kyun; Oh, Hyuncheol; Hong, Young-Soo; Kim, Bo Yeon; Jang, Jae-Hyuk; Ahn, Jong Seog

    2015-08-21

    Two novel cyclic depsipeptides, ulleungamides A (1) and B (2), were isolated from cultures of terrestrial Streptomyces sp. Their structures were determined by analyses of spectroscopic data and various chemical transformations, including modified Mosher's method, advanced Marfey's method, PGME, GITC derivatizations, and Snatzke's method. Ulleungamides were determined to be a new class of peptides bearing unprecedented units, such as 5-hydroxy-6-methyl-2,3-dehydropipecolic acid, 4,5-dihydroxy-6-methyl-2,3-dehydropipecolic acid, and amino-linked 2-isopropylsuccinic acid. Ulleungamide A displayed growth inhibitory activity against Staphylococcus aureus and Salmonella typhimurium without cytotoxicity. PMID:26262430

  1. Phenylboronic acid modified solid-phase extraction column: Preparation, characterization, and application to the analysis of amino acids in sepia capsule by removing the maltose.

    PubMed

    Guo, Mengzhe; Yin, Dengyang; Han, Jie; Zhang, Liyan; Li, Xiao; He, Dandan; Du, Yan; Tang, Daoquan

    2016-09-01

    Maltose, a common auxiliary material of pharmaceutical preparation, may disturb the analysis of total amino acids in sepia capsule by aldolization. Therefore, it is necessary to remove the maltose through a convenient method. In this work, a phenylboronic acid modified solid-phase extraction column has been synthesized and used to remove the maltose. The materials were synthesized by one step "thiol-ene" reaction and the parameters of the column such as absorption capacity, recovery, and absorption specificity have been investigated. The results showed the column (0.5 cm of length × 0.5 cm of inner diameter) can absorb 4.6 mg maltose with a linear absorption and absorption specificity. Then this technique was applied in the quantification of amino acids in sepia capsule. After the optimization of the method, four kinds of amino acids, which were the most abundant, were quantified by high-performance liquid chromatography with diode array detection. The amounts of the four kinds of amino acids are 1.5∼2 times more than that without the treatment of solid-phase extraction column, which almost overcomes the influence of the maltose. All the results indicate that the phenylboronic acid modified solid-phase extraction column can successfully help to accurately quantify the total amino acids in sepia capsule.

  2. Synthesis and Protein Incorporation of Azido-Modified Unnatural Amino Acids

    PubMed Central

    Tookmanian, Elise M.; Fenlon, Edward E.; Brewer, Scott H.

    2015-01-01

    Two new azidophenylalanine residues (3 and 4) have been synthesized and, in combination with 4-azido-L-phenylalanine (1) and 4-azidomethyl-L-phenylalanine (2), form a series of unnatural amino acids (UAAs) containing the azide vibrational reporter at varying distances from the aromatic ring of phenylalanine. These UAAs were designed to probe protein hydration with high spatial resolution by utilizing the large extinction coefficient and environmental sensitivity of the azide asymmetric stretch vibration. The sensitivity of the azide reporters was investigated in solvents that mimic distinct local protein environments. Three of the four azido-modified phenylalanine residues were successfully genetically incorporated into a surface site in superfolder green fluorescent protein (sfGFP) utilizing an engineered, orthogonal aminoacyl-tRNA synthetase in response to an amber codon with high efficiency and fidelity. SDS-PAGE and ESI-Q-TOF mass analysis verified the site-specific incorporation of these UAAs. The observed azide asymmetric stretch in the linear IR spectra of these UAAs incorporated into sfGFP indicated that the azide groups were hydrated in the protein. PMID:26478813

  3. Synthesis of heterocycle-modified betulinic acid derivatives as antitumor agents.

    PubMed

    Cui, Hai-Wei; He, Yuan; Wang, Jinhua; Gao, Wei; Liu, Ting; Qin, Min; Wang, Xue; Gao, Cheng; Wang, Yan; Liu, Ming-Yao; Yi, Zhengfang; Qiu, Wen-Wei

    2015-05-01

    A series of novel heterocycle-modified betulinic acid (BA) derivatives were synthesized and investigated for their activity against the growth of eight non-drug resistant and one multidrug-resistant tumor cell line using a sulforhodamine B (SRB) assay. The most active compound 17 showed an average IC50 1.19 μM, which was about 20 times more potent than the lead compound BA. It is amazing that for most synthetic saturated N-heterocycle derivatives, MCF-7/ADR was the most sensitive tumor cells, especially 17 showed the most potent antitumor activity (IC50 = 0.33 μM) on this multidrug-resistant tumor cell line, that was 117 times more potent than BA. Most of the tested compounds displayed less toxic on human fibroblasts (HAF) in comparison with the tumor cell lines. The cytometry and transwell migration assays were used to test the ability of 17 to induce apoptosis and inhibit metastasis on tumor cell lines respectively.

  4. Silymarin-Loaded Nanoparticles Based on Stearic Acid-Modified Bletilla striata Polysaccharide for Hepatic Targeting.

    PubMed

    Ma, Yanni; He, Shaolong; Ma, Xueqin; Hong, Tongtong; Li, Zhifang; Park, Kinam; Wang, Wenping

    2016-01-01

    Silymarin has been widely used as a hepatoprotective drug in the treatment of various liver diseases, yet its effectiveness is affected by its poor water solubility and low bioavailability after oral administration, and there is a need for the development of intravenous products, especially for liver-targeting purposes. In this study, silymarin was encapsulated in self-assembled nanoparticles of Bletilla striata polysaccharide (BSP) conjugates modified with stearic acid and the physicochemical properties of the obtained nanoparticles were characterized. The silymarin-loaded micelles appeared as spherical particles with a mean diameter of 200 nm under TEM. The encapsulation of drug molecules was confirmed by DSC thermograms and XRD diffractograms, respectively. The nanoparticles exhibited a sustained-release profile for nearly 1 week with no obvious initial burst. Compared to drug solutions, the drug-loaded nanoparticles showed a lower viability and higher uptake intensity on HepG2 cell lines. After intravenous administration of nanoparticle formulation for 30 min to mice, the liver became the most significant organ enriched with the fluorescent probe. These results suggest that BSP derivative nanoparticles possess hepatic targeting capability and are promising nanocarriers for delivering silymarin to the liver.

  5. Production of resistant starch by extrusion cooking of acid-modified normal-maize starch.

    PubMed

    Hasjim, Jovin; Jane, Jay-Lin

    2009-09-01

    The objective of this study was to utilize extrusion cooking and hydrothermal treatment to produce resistant starch (RS) as an economical alternative to a batch-cooking process. A hydrothermal treatment (110 degrees C, 3 d) of batch-cooked and extruded starch samples facilitated propagation of heat-stable starch crystallites and increased the RS contents from 2.1% to 7.7% up to 17.4% determined using AOAC Method 991.43 for total dietary fiber. When starch samples were batch cooked and hydrothermally treated at a moisture content below 70%, acid-modified normal-maize starch (AMMS) produced a greater RS content than did native normal-maize starch (NMS). This was attributed to the partially hydrolyzed, smaller molecules in the AMMS, which had greater mobility and freedom than the larger molecules in the NMS. The RS contents of the batch-cooked and extruded AMMS products after the hydrothermal treatment were similar. A freezing treatment of the AMMS samples at -20 degrees C prior to the hydrothermal treatment did not increase the RS content. The DSC thermograms and the X-ray diffractograms showed that retrograded amylose and crystalline starch-lipid complex, which had melting temperatures above 100 degrees C, accounted for the RS contents.

  6. Electrochemical biosensing platform using hydrogel prepared from ferrocene modified amino acid as highly efficient immobilization matrix.

    PubMed

    Qu, Fengli; Zhang, Yi; Rasooly, Avraham; Yang, Minghui

    2014-01-21

    To increase the loading of glucose oxidase (GOx) and simplify glucose biosensor fabrication, hydrogel prepared from ferrocene (Fc) modified amino acid phenylalanine (Phe, F) was utilized for the incorporation of GOx. The synthesized hydrogel displays good biocompatibility and contains a significant number of Fc moieties, which can be considered as an ideal matrix to immobilize enzymes for the preparation of mediator-based biosensors. The hydrogel was studied by scanning electron microscopy, which indicated that it was composed of nanofibers with a diameter of around 50-100 nm and length extended to 1 mm. With the addition of GOx into the hydrogel and by directly dropping the resulting biocomposite onto the electrode surface, a glucose biosensor, that displays good performance due to improved enzyme loading and efficient electron transfer, can be simply constructed. The favorable network structure and good biocompatibility of the hydrogel could effectively avoid enzyme leakage and maintain the bioactivity of the enzymes, which resulted in good stability of the biosensor. The biosensor was utilized for the detection of glucose in blood samples with results comparable to those obtained from the hospital. The hydrogel as a functional component of an amperometric biosensor has implications for future development of biosensors and for clinical applications. PMID:24383679

  7. Sulfoacetic acid modifying poly(vinyl alcohol) hydrogel and its electroresponsive behavior under DC electric field

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Liu, Genqi; Zhang, Cheng; Liao, Jiae

    2013-01-01

    A strong electrolyte hydrogel was prepared by modifying poly (vinyl alcohol) hydrogel with sulfoacetic acid (SA-PVA). Its swelling properties, mechanical properties, and electroresponsive behavior in Na2SO4 solutions were studied. The results indicated that the water take-up ability of the hydrogel decreased with the increasing ionic strength of Na2SO4 solution. The Young’s modulus, elongation at break and tensile strength of the hydrogel swollen in deionized water are 1.247 MPa, 187% and 2.2 MPa, respectively. The hydrogel swollen in a Na2SO4 solution bent towards the cathode under non-contact dc electric fields, and its bending speed and equilibrium strain increased with increasing applied voltage. There is a critical ionic strength of 0.03 at which the maximum equilibrium strain of the hydrogel occurs. Also the bending behavior of hydrogel was not affected by the pH changes. By altering the direction of the applied potential cyclically, the hydrogel exhibited good reversible bending behavior. On this basis, a gel-worm was designed. Under a cyclically varying electric field (the period was 8 s, and the voltage ranged from -10 to 10 V), the walking speed was up to 15 cm min-1 in Na2SO4 solution with an ionic strength of 0.03.

  8. Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by methacrylic acid

    NASA Astrophysics Data System (ADS)

    Guo, Baochun; Lei, Yanda; Chen, Feng; Liu, Xiaoliang; Du, Mingliang; Jia, Demin

    2008-12-01

    Methacrylic acid (MAA) was used to improve the performance of styrene-butadiene rubber (SBR)/halloysite nanotubes (HNTs) nanocomposites by direct blending. The detailed interaction mechanisms of MAA and the in situ formed zinc methacrylate (ZDMA) were revealed by X-ray diffraction (XRD), surface area and porosity analysis, X-ray photoelectron spectroscopy (XPS) together with crosslink density determination. The strong interfacial bonding between HNTs and rubber matrix is resulted through ZDMA and MAA intermediated linkages. ZDMA connects SBR and HNTs via grafting/complexation mechanism. MAA bonds SBR and HNTs through grafting/hydrogen bonding mechanism. Significantly improved dispersion of HNTs in virtue of the interactions between HNTs and MAA or ZDMA was achieved. Effects of MAA content on the vulcanization behavior, morphology and mechanical properties of the nanocomposites were investigated. Promising mechanical properties of MAA modified SBR/HNTs nanocomposites were obtained. The changes in vulcanization behavior, mechanical properties and morphology were correlated with the interactions between HNTs and MAA or ZDMA and the largely improved dispersion of HNTs.

  9. Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by sorbic acid

    NASA Astrophysics Data System (ADS)

    Guo, Baochun; Chen, Feng; Lei, Yanda; Liu, Xiaoliang; Wan, Jingjing; Jia, Demin

    2009-05-01

    Sorbic acid (SA) was used to improve the performance of styrene-butadiene rubber (SBR)/halloysite nanotubes (HNTs) nanocomposites by direct blending. The detailed mechanisms for the largely improved performance were studied by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), differential scanning calorimetry (DSC), porosity analysis and crosslink density determination. The strong interfacial bonding between HNTs and rubber matrix is resulted through SA intermediated linkages. SA bonds SBR and HNTs through grafting copolymerization/hydrogen bonding mechanism. Significantly improved dispersion of HNTs in virtue of the interactions between HNTs and SA was achieved. Formation of zinc disorbate (ZDS) was revealed during the vulcanization of the composites. However, in the present systems, the contribution of ZDS to the reinforcement was limited. Effects of SA content on the vulcanization behavior, morphology and mechanical properties of the nanocomposites were investigated. Promising mechanical properties of SA modified SBR/HNTs nanocomposites were obtained. The changes in vulcanization behavior, mechanical properties and morphology were correlated with the interactions between HNTs and SA and the largely improved dispersion of HNTs.

  10. Microencapsulation of stearidonic acid soybean oil in Maillard reaction-modified complex coacervates.

    PubMed

    Ifeduba, Ebenezer A; Akoh, Casimir C

    2016-05-15

    The antioxidant capacity of Maillard reaction (MR)-modified gelatin (GE)-gum arabic (GA) coacervates was optimized to produce microcapsules with superior oxidative stability compared to the unmodified control. MR was used to crosslink GE and GA, with or without maltodextrin (MD), to produce anti-oxidative Maillard reaction products (MRP) which was used to encapsulate stearidonic acid soybean oil (SDASO) by complex coacervation. Biopolymer blends (GE-GA [1:1, w/w] or GE-GA-MD [2:2:1, w/w/w]) were crosslinked by dry-heating at 80°C for 4, 8, or 16h. Relationships between the extent of browning, Trolox equivalent antioxidant capacity (TEAC), and the total oxidation (TOTOX) of encapsulated SDASO were fitted to quadratic models. The [GE-GA-MD] blends exhibited higher browning rates and TEAC values than corresponding [GE-GA] blends. Depending on the type of biopolymer blend and dry-heating time, TOTOX values of SDASO in MRP-derived microcapsules were 29-87% lower than that of the non-crosslinked control after 30 days of storage.

  11. Interaction of immunoglobulin G with N,N,N',N'-ethylenediaminetetramethylenephosphonic acid-modified zirconia.

    PubMed

    Subramanian, Anuradha; Sarkar, Sabyasachi

    2003-03-01

    Zirconia beads (25-38 microm in diameter) were modified with N,N,N'.N'-ethylenediaminetetramethylenephosphonic acid to generate a pseudo-biospecific support, r_PEZ. To better understand the force of interaction between the IgG and the r_PEZ, the equilibrium dissociation constant (Kd) was determined by static binding isotherms, as a function of temperature and by frontal analysis at different linear velocities. Temperature had no significant impact on the maximum static binding capacity (Q(max)) and the equilibrium-binding constant (Kd), whereas pH and the salt concentration had a noticeable impact on both Q(max) and Kd values. Q(max) was found to be in the range of 55-65 mg IgG per ml of beads and unaffected by temperature. The maximum dynamic binding capacity (Qx) was found to be in the range of 20-12 mg IgG per ml of beads. The adsorption rate constant (ka) was determined by a split-peak approach to be between 982 and 32421 mol(-1) s(-1) depending on the linear velocity. Adsorption rate of IgG on r_PEZ was studied as a function of both feed concentration and linear velocity. The standard enthalpy and entropy values were estimated for the interaction of IgG with this novel support. The binding constants were also determined by modeling the batch protein-uptake data. PMID:12641289

  12. Polyacrylic acid modified upconversion nanoparticles for simultaneous pH-triggered drug delivery and release imaging.

    PubMed

    Jia, Xuekun; Yin, Jinjin; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Chen, Mian; Li, Yuhong

    2013-12-01

    A poly(acrylicacid)-modified NaYF4:Yb, Er upconversion nanoparticles (PAA-UCNPs) with dual functions of drug delivery and release imaging have been successfully developed. The PAA polymer coated on the surface of UCNPs serve as a pH-sensitive nanovalve for loading drug molecules via electrostatic interaction. The drug-loading efficiency of the PAA-UCNPs was investigated by using doxorubicin hydrochloride (DOX) as a model anticancer drug to evaluate their potential as a delivery system. Results showed loading and releasing of DOX from PAA-UCNPs were controlled by varying pH, with high encapsulation rate at weak alkaline conditions and an increased drug dissociation rate in acidic environment, which is favorable for construct a pH-responsive controlled drug delivery system. The in vitro cytotoxicity test using HeLa cell line indicated that the DOX loaded PAA-UCNPs (DOX@PAA-UCNPs) were distinctly cytotoxic to HeLa cells, while the PAA-UCNPs were highly biocompatible and suitable to use as drug carriers. Furthermore, the upconversion fluorescence resonance energy transfer (UFRET) imaging through the two-photon laser scanning microscopy (TLSM) revealed the time course of intracellular delivery of DOX from DOX@PAA-UCNPs. Thus, PAA-UCNPs are effective for constructing pH-responsive controlled drug delivery systems for multi-functional cancer therapy and imaging. PMID:24266261

  13. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

    NASA Astrophysics Data System (ADS)

    Yu, Meihua; Jambhrunkar, Siddharth; Thorn, Peter; Chen, Jiezhong; Gu, Wenyi; Yu, Chengzhong

    2012-12-01

    In this paper, a targeted drug delivery system has been developed based on hyaluronic acid (HA) modified mesoporous silica nanoparticles (MSNs). HA-MSNs possess a specific affinity to CD44 over-expressed on the surface of a specific cancer cell line, HCT-116 (human colon cancer cells). The cellular uptake performance of fluorescently labelled MSNs with and without HA modification has been evaluated by confocal microscopy and fluorescence-activated cell sorter (FACS) analysis. Compared to bare MSNs, HA-MSNs exhibit a higher cellular uptake via HA receptor mediated endocytosis. An anticancer drug, doxorubicin hydrochloride (Dox), has been loaded into MSNs and HA-MSNs as drug delivery vehicles. Dox loaded HA-MSNs show greater cytotoxicity to HCT-116 cells than free Dox and Dox-MSNs due to the enhanced cell internalization behavior of HA-MSNs. It is expected that HA-MSNs have a great potential in targeted delivery of anticancer drugs to CD44 over-expressing tumors.

  14. Characterization and immobilization of trypsin on tannic acid modified Fe3O4 nanoparticles.

    PubMed

    Atacan, Keziban; Özacar, Mahmut

    2015-04-01

    Fe3O4 nanoparticles (NPs) were synthesized by co-precipitating Fe2+ and Fe3+ in an ammonia solution. Fe3O4 NPs functionalized with tannic acid were prepared. After functionalization process, trypsin enzyme was immobilized on these Fe3O4 NPs. The influence of pH, temperature, thermal stability, storage time stability and reusability on non-covalent immobilization was studied. The properties of Fe3O4 and its modified forms were examined by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), UV-vis spectrometer (UV) and X-ray diffraction (XRD), magnetization and zeta potential measurements. The immobilized enzyme was slightly more stable than the free enzyme at 45°C. According to the results, the activity of immobilized trypsin was preserved 55% at 45°C after 2 h and 90% after 120 days storage. In addition, the activity of the immobilized trypsin was preserved 40% of its initial activity after eight times of successive reuse. PMID:25686792

  15. Crystalline and structural properties of acid-modified lotus rhizome C-type starch.

    PubMed

    Cai, Jinwen; Cai, Canhui; Man, Jianmin; Yang, Yang; Zhang, Fengmin; Wei, Cunxu

    2014-02-15

    The crystalline and structural properties of acid-modified C-type starch from lotus rhizomes were investigated using a combination of techniques. The degradation of granule during hydrolysis began from the end distant from the hilum and then propagated into the center of granule, accompanied by loss of birefringence. The crystallinity changed from C-type to A-type via CA-type during hydrolysis. At the early stage of hydrolysis, the amylose content substantially reduced, the peak and conclusion gelatinization temperatures increased, and the enthalpy decreased. During hydrolysis, the double helix content gradually increased and the amorphous component decreased, the lamellar peak intensity firstly increased and then decreased accompanied by hydrolysis of amorphous and crystalline regions. This study elucidated that B-type allomorph was mainly arranged in the distal region of eccentric hilum, A-type allomorph was mainly located in the periphery of hilum end, and the center of granule was a mixed distribution of A- and B-type allomorphs. PMID:24507349

  16. Crystalline and structural properties of acid-modified lotus rhizome C-type starch.

    PubMed

    Cai, Jinwen; Cai, Canhui; Man, Jianmin; Yang, Yang; Zhang, Fengmin; Wei, Cunxu

    2014-02-15

    The crystalline and structural properties of acid-modified C-type starch from lotus rhizomes were investigated using a combination of techniques. The degradation of granule during hydrolysis began from the end distant from the hilum and then propagated into the center of granule, accompanied by loss of birefringence. The crystallinity changed from C-type to A-type via CA-type during hydrolysis. At the early stage of hydrolysis, the amylose content substantially reduced, the peak and conclusion gelatinization temperatures increased, and the enthalpy decreased. During hydrolysis, the double helix content gradually increased and the amorphous component decreased, the lamellar peak intensity firstly increased and then decreased accompanied by hydrolysis of amorphous and crystalline regions. This study elucidated that B-type allomorph was mainly arranged in the distal region of eccentric hilum, A-type allomorph was mainly located in the periphery of hilum end, and the center of granule was a mixed distribution of A- and B-type allomorphs.

  17. Phenylboronic acid modified silver nanoparticles for colorimetric dynamic analysis of glucose.

    PubMed

    Cao, Ke; Jiang, Xiaomei; Yan, Suting; Zhang, Laiying; Wu, Weitai

    2014-02-15

    The development of advanced nanostructures that allow dynamic quantification of glucose level can contribute to tight glucose control in diabetes management and other medical/biological fields. In this paper, we demonstrated that the assemblies of the 5-amino-2-fluorophenylboronic acid modified silver nanoparticles (FPBA-AgNPs) can be employed for highly modulating, sensitive, and selective colorimetric sensing of glucose over a physiologically important concentration range of 0-20mM at a physiological pH of 7.4. The glucose-modulated assembly of the FPBA-AgNPs occurred by the regulable formation of interparticle linkages via the bridged binding of 1,2-cis-diols and 5,6-cis-diols (for furanose form; or 4,6-cis-diols for pyranose form), respectively, of a glucose molecule to two FPBA-AgNPs. The detection limit was 89.0 μM. The mean error of glucose detection in a macro-bio-system, blood serum of adult, was smaller than 10%. Furthermore, we show that the glucose level variations associated with a model biological reaction process can be monitored by using the FPBA-AgNPs, whilst with the reaction mechanism remaining nearly unchanged. PMID:24055932

  18. Risk assessment of genetically modified lactic acid bacteria using the concept of substantial equivalence.

    PubMed

    LeBlanc, Jean Guy; Van Sinderen, Douwe; Hugenholtz, Jeroen; Piard, Jean-Christophe; Sesma, Fernando; de Giori, Graciela Savoy

    2010-12-01

    The use of food-grade microorganisms such as lactic acid bacteria (LAB) is one of the most promising methods for delivering health promoting compounds. Since it is not always possible to obtain strains that have the ability to produce specific compounds naturally or that produce them in sufficient quantities to obtain physiological responses, genetic modifications can be performed to improve their output. The objective of this study was to evaluate if previously studied genetically modified LAB (GM-LAB), with proven in vivo beneficial effects, are just as safe as the progenitor strain from which they were derived. Mice received an elevated concentration of different GM-LAB or the native parental strain from which they were derived during a prolonged period of time, and different health parameters were evaluated. Similar growth rates, hematological values, and other physiological parameters were obtained in the animals that received the GM-LAB compared to those that were fed with the native strain. These results demonstrate that the GM-LAB used in this study are just as safe as the native strains from which they were derived and thus merit further studies to include them into the food chain.

  19. Surface properties and early murine pre-osteoblastic cell responses of phosphoric acid modified titanium surface

    PubMed Central

    Osathanon, Thanaphum; Sawangmake, Chenphop; Ruangchainicom, Nanticha; Wutikornwipak, Pavitra; Kantukiti, Panisa; Nowwarote, Nunthawan; Pavasant, Prasit

    2015-01-01

    Aims The present study investigated the surface properties and murine pre-osteoblast cell (MC3T3-E1) responses of phosphoric acid (H3PO4) treated commercially pure titanium. Methods Titanium discs were treated with various concentration of H3PO4 (5%, 10%, and 20%; v/v) at 90 °C for 30 min. Surface properties were evaluated by profilometer, contact angle meter, and scanning electron microscopy (SEM) with energy dispersive X-rays. MC3T3-E1 attachment and spreading were evaluated by SEM and phalloidin immunohistochemistry staining. Results Surface roughness and wettability were not statistically difference among all experimental and control groups. Phosphate and oxygen were detected on H3PO4 treated surfaces. At 20 min, cell attachment was significantly higher in 10% and 20% H3PO4 treated groups compared to the control. Cells exhibited orientated-cytoskeleton fibers on 20% H3PO4 modified titanium surface. Though, there was no difference in cell spreading stage among all treatment groups. Conclusion H3PO4 treatment on titanium may influence early cell response, particularly on attachment and spreading. PMID:26937362

  20. Amperometric sensing of ascorbic acid using a disposable screen-printed electrode modified with electrografted o-aminophenol film.

    PubMed

    Nassef, Hossam M; Civit, Laia; Fragoso, Alex; O'Sullivan, Ciara K

    2008-12-01

    Electrode modification by electrochemical reduction of diazonium salts of different aryl derivatives is useful for catalytic, analytical and biotechnological applications. A simple and sensitive method for the electrocatalytic detection of ascorbic acid using disposable screen-printed carbon electrodes modified with an electrografted o-aminophenol film, via the electrochemical reduction of its in situ prepared diazonium salts in aqueous solution, is presented. The performance of two commercial SPEs as substrates for grafting of diazonium films has been compared and the grafting process optimized with respect to deposition time and diazonium salt concentration, with the modified surfaces being characterised using cyclic voltammetry. The functionalised screen-printed electrodes demonstrated an excellent electrocatalytic activity towards the oxidation of ascorbic acid shifting the overpotential from 298 and 544 mV to 160 and 244 mV, respectively vs. Ag/AgCl. DC amperometric measurements were carried out for the quantitative determination of ascorbic acid using the modified electrodes. The catalytic oxidation peak current was linearly dependent on the ascorbic acid concentration in the range of 2-20 microM, with a correlation coefficient 0.998, and a limit of detection of 0.86 microM was obtained with an excellent reproducibility (RSD% = 1.98, n = 8). The functionalised screen-printed electrodes exhibited notable surface stability, and were used as a simple and precise disposable sensor for the selective determination of ascorbic acid.

  1. Effect of Various Food Additives on the Levels of 4(5)-Methylimidazole in a Soy Sauce Model System.

    PubMed

    Lee, Sumin; Lee, Jung-Bin; Hwang, Junho; Lee, Kwang-Geun

    2016-01-01

    In this study, the effect of food additives such as iron sulfate, magnesium sulfate, zinc sulfate, citric acid, gallic acid, and ascorbic acid on the reduction of 4(5)-methylimidazole (4(5)-MI) was investigated using a soy sauce model system. The concentration of 4(5)-MI in the soy sauce model system with 5% (v/v) caramel colorant III was 1404.13 μg/L. The reduction rate of 4(5)-MI level with the addition of 0.1M additives followed in order: iron sulfate (81%) > zinc sulfate (61%) > citric acid (40%) > gallic acid (38%) > ascorbic acid (24%) > magnesium sulfate (13%). Correlations between 4(5)-MI levels and the physicochemical properties of soy sauce, including the amount of caramel colorant, pH value, and color differences, were determined. The highest correlations were found between 4(5)-MI levels and the amount of caramel colorant and pH values (r(2) = 0.9712, r(2) = 0.9378). The concentration of caramel colorants in 8 commercial soy sauces were estimated, and ranged from 0.01 to 1.34% (v/v). PMID:26661512

  2. Effect of Various Food Additives on the Levels of 4(5)-Methylimidazole in a Soy Sauce Model System.

    PubMed

    Lee, Sumin; Lee, Jung-Bin; Hwang, Junho; Lee, Kwang-Geun

    2016-01-01

    In this study, the effect of food additives such as iron sulfate, magnesium sulfate, zinc sulfate, citric acid, gallic acid, and ascorbic acid on the reduction of 4(5)-methylimidazole (4(5)-MI) was investigated using a soy sauce model system. The concentration of 4(5)-MI in the soy sauce model system with 5% (v/v) caramel colorant III was 1404.13 μg/L. The reduction rate of 4(5)-MI level with the addition of 0.1M additives followed in order: iron sulfate (81%) > zinc sulfate (61%) > citric acid (40%) > gallic acid (38%) > ascorbic acid (24%) > magnesium sulfate (13%). Correlations between 4(5)-MI levels and the physicochemical properties of soy sauce, including the amount of caramel colorant, pH value, and color differences, were determined. The highest correlations were found between 4(5)-MI levels and the amount of caramel colorant and pH values (r(2) = 0.9712, r(2) = 0.9378). The concentration of caramel colorants in 8 commercial soy sauces were estimated, and ranged from 0.01 to 1.34% (v/v).

  3. Soy isoflavones consumption and risk of breast cancer incidence or recurrence: a meta-analysis of prospective studies.

    PubMed

    Dong, Jia-Yi; Qin, Li-Qiang

    2011-01-01

    Numbers of epidemiologic studies assessing soy consumption and risk of breast cancer have yielded inconsistent results. We aimed to examine the association between soy isoflavones consumption and risk of breast cancer incidence or recurrence, by conducting a meta-analysis of prospective studies. We searched for all relevant studies with a prospective design indexed in PUBMED through September 1st, 2010. Summary relative risks (RR) were calculated using fixed- or random-effects models. Pre-specified stratified analyses and dose-response analysis were also performed. We identified 4 studies of breast cancer recurrence and 14 studies of breast cancer incidence. Soy isoflavones consumption was inversely associated with risk of breast cancer incidence (RR = 0.89, 95% CI: 0.79-0.99). However, the protective effect of soy was only observed among studies conducted in Asian populations (RR = 0.76, 95% CI: 0.65-0.86) but not in Western populations (RR = 0.97, 95% CI: 0.87-1.06). Soy isoflavones intake was also inversely associated with risk of breast cancer recurrence (RR = 0.84, 95% CI: 0.70-0.99). Stratified analyses suggested that menopausal status may be an important effect modifier in these associations. We failed to identify a dose-response relationship between total isoflavones intake and risk of breast cancer incidence. Our study suggests soy isoflavones intake is associated with a significant reduced risk of breast cancer incidence in Asian populations, but not in Western populations. Further studies are warranted to confirm the finding of an inverse association of soy consumption with risk of breast cancer recurrence.

  4. Liver fatty acid-binding protein (L-Fabp) modifies intestinal fatty acid composition and adenoma formation in ApcMin/+ mice.

    PubMed

    Dharmarajan, Sekhar; Newberry, Elizabeth P; Montenegro, Grace; Nalbantoglu, Ilke; Davis, Victoria R; Clanahan, Michael J; Blanc, Valerie; Xie, Yan; Luo, Jianyang; Fleshman, James W; Kennedy, Susan; Davidson, Nicholas O

    2013-10-01

    Evidence suggests a relationship between dietary fat intake, obesity, and colorectal cancer, implying a role for fatty acid metabolism in intestinal tumorigenesis that is incompletely understood. Liver fatty acid-binding protein (L-Fabp), a dominant intestinal fatty acid-binding protein, regulates intestinal fatty acid trafficking and metabolism, and L-Fabp deletion attenuates diet-induced obesity. Here, we examined whether changes in intestinal fatty acid metabolism following L-Fabp deletion modify adenoma development in Apc(Min)(/+) mice. Compound L-Fabp(-/-)Apc(Min)(/+) mice were generated and fed a 10% fat diet balanced equally between saturated, monounsaturated, and polyunsaturated fat. L-Fabp(-/-)Apc(Min)(/+) mice displayed significant reductions in adenoma number and total polyp area compared with Apc(Min)(/+)controls, reflecting a significant shift in distribution toward smaller polyps. Adenomas from L-Fabp(-/-)Apc(Min)(/+) mice exhibited reductions in cellular proliferation, high-grade dysplasia, and nuclear β-catenin translocation. Intestinal fatty acid content was increased in L-Fabp(-/-)Apc(Min)(/+) mice, and lipidomic profiling of intestinal mucosa revealed significant shifts to polyunsaturated fatty acid species with reduced saturated fatty acid species. L-Fabp(-/-)Apc(Min)(/+) mice also showed corresponding changes in mRNA expression of enzymes involved in fatty acid elongation and desaturation. Furthermore, adenomas from L-Fabp(-/-)Apc(Min)(/+) mice displayed significant reductions in mRNA abundance of nuclear hormone receptors involved in cellular proliferation and in enzymes involved in lipogenesis. These findings collectively implicate L-Fabp as an important genetic modifier of intestinal tumorigenesis, and identify fatty acid trafficking and metabolic compartmentalization as an important pathway linking dietary fat intake, obesity, and intestinal tumor formation.

  5. Harnessing functional food strategies for the health challenges of space travel—Fermented soy for astronaut nutrition

    NASA Astrophysics Data System (ADS)

    Buckley, Nicole D.; Champagne, Claude P.; Masotti, Adriana I.; Wagar, Lisa E.; Tompkins, Thomas A.; Green-Johnson, Julia M.

    2011-04-01

    Astronauts face numerous health challenges during long-duration space missions, including diminished immunity, bone loss and increased risk of radiation-induced carcinogenesis. Changes in the intestinal flora of astronauts may contribute to these problems. Soy-based fermented food products could provide a nutritional strategy to help alleviate these challenges by incorporating beneficial lactic acid bacteria, while reaping the benefits of soy isoflavones. We carried out strain selection for the development of soy ferments, selecting strains of lactic acid bacteria showing the most effective growth and fermentation ability in soy milk ( Streptococcus thermophilus ST5, Bifidobacterium longum R0175 and Lactobacillus helveticus R0052). Immunomodulatory bioactivity of selected ferments was assessed using an in vitro challenge system with human intestinal epithelial and macrophage cell lines, and selected ferments show the ability to down-regulate production of the pro-inflammatory cytokine interleukin-8 following challenge with tumour necrosis factor-alpha. The impact of fermentation on vitamin B1 and B6 levels and on isoflavone biotransformation to agluconic forms was also assessed, with strain variation-dependent biotransformation ability detected. Overall this suggests that probiotic bacteria can be successfully utilized to develop soy-based fermented products targeted against health problems associated with long-term space travel.

  6. Sodium Taurocholate Modifies the Bile Acid-Independent Fraction of Canalicular Bile Flow in the Rhesus Monkey

    PubMed Central

    Baker, Alfred L.; Wood, R. A. B.; Moossa, A. R.; Boyer, James L.

    1979-01-01

    Bile acid-independent secretion and the choleretic response to taurocholate were determined in rhesus monkeys fitted with indwelling silastic cannulas in the common bile ducts. Bile acids were infused intravenously in random order at 3.5, 7.0, or 10.5 μmol/min for 1.5 h each. When data were analyzed with a single regression line, bile flow increased in proportion to the level of bile acid secretion, although the y-intercepts (the conventional measurement of bile acid-independent secretion) varied widely (77.9±40.9 ml/24 h). The variation in y-intercepts was observed between animals and with repeated studies in the same animal and could not be explained by sex differences or the effects of the indwelling silastic cannulas, but seemed to be related to the order of bile acid infusion. With only two taurocholic acid infusion rates (7.0 and 3.5 μmol/min), [14C]erythritol clearance was greater per mole of secreted bile acid when the initial bile acid infusion was at the high level, but approached zero at low bile acid secretion rates, which suggests that so-called bile acid-independent canalicular flow is closely related to bile acid secretion or is small in size. The augmentation in [14C]erythritol clearance when the high infusion rate was given first was also associated with an increase in biliary clearance of [3H]inulin, which indicates that the premeability to inulin was also enhanced. Identical experiments which substituted equimolar infusions of a nonmicelle-forming bile acid (taurodehydrocholate) for taurocholate failed to demonstrate any difference in choleretic response or biliary clearance of [3H]inulin with the order of bile acid infusion. These experiments demonstrate that a micelleforming bile acid, taurocholate, can increase the permeability of the biliary system to large molecular weight solutes and simultaneously modify the y-intercept and the volume of bile secreted in response to the transported bile acid. Taurocholate may, therefore, modify its own

  7. Monitoring of Yeast Communities and Volatile Flavor Changes During Traditional Korean Soy Sauce Fermentation.

    PubMed

    Song, Young-Ran; Jeong, Do-Youn; Baik, Sang-Ho

    2015-09-01

    Flavor development in soy sauce is significantly related to the diversity of yeast species. Due to its unique fermentation with meju, the process of making Korean soy sauce gives rise to a specific yeast community and, therefore, flavor profile; however, no detailed analysis of the identifying these structure has been performed. Changes in yeast community structure during Korean soy sauce fermentation were examined using both culture-dependent and culture-independent methods with simultaneous analysis of the changes in volatile compounds by GC-MS analysis. During fermentation, Candida, Pichia, and Rhodotorula sp. were the dominant species, whereas Debaryomyces, Torulaspora, and Zygosaccharomyces sp. were detected only at the early stage. In addition, Cryptococcus, Microbotryum, Tetrapisispora, and Wickerhamomyces were detected as minor strains. Among the 62 compounds identified in this study, alcohols, ketones, and pyrazines were present as the major groups during the initial stages, whereas the abundance of acids with aldehydes increased as the fermentation progressed. Finally, the impacts of 10 different yeast strains found to participate in fermentation on the formation of volatile compounds were evaluated under soy-based conditions. It was revealed that specific species produced different profiles of volatile compounds, some of which were significant flavor contributors, especially volatile alcohols, aldehydes, esters, and ketones.

  8. Optimization of HTST process parameters for production of ready-to-eat potato-soy snack.

    PubMed

    Nath, A; Chattopadhyay, P K; Majumdar, G C

    2012-08-01

    Ready-to-eat (RTE) potato-soy snacks were developed using high temperature short time (HTST) air puffing process and the process was found to be very useful for production of highly porous and light texture snack. The process parameters considered viz. puffing temperature (185-255 °C) and puffing time (20-60 s) with constant initial moisture content of 36.74% and air velocity of 3.99 m.s(-1) for potato-soy blend with varying soy flour content from 5% to 25% were investigated using response surface methodology following central composite rotatable design (CCRD). The optimum product in terms of minimum moisture content (11.03% db), maximum expansion ratio (3.71), minimum hardness (2,749.4 g), minimum ascorbic acid loss (9.24% db) and maximum overall acceptability (7.35) were obtained with 10.0% soy flour blend in potato flour at the process conditions of puffing temperature (231.0 °C) and puffing time (25.0 s).

  9. Presence of lunasin in plasma of men after soy protein consumption.

    PubMed

    Dia, Vermont P; Torres, Sofia; De Lumen, Ben O; Erdman, John W; De Mejia, Elvira Gonzalez

    2009-02-25

    Lunasin is a 43-amino acid bioactive peptide from soybean and other plant sources which is reported to possess anti-inflammatory and anticancer properties. The objective of this study was to assess the presence and concentration of lunasin in blood of men fed soy protein products. Five healthy male subjects who were 18-25 years old consumed 50 g of soy protein for 5 days, and blood was taken 30 min and 1 h after soy protein ingestion on day 5. Lunasin was isolated from plasma using strong anion exchange beads in a magnetic particle concentrator and eluted with 20 mM triethanolamine at pH 8.0 with 0.20 M NaCl. The concentration of lunasin in plasma as determined by an enzyme-linked immunosorbent assay ranged in the various subjects from 50.2 to 110.6 ng/mL of plasma (average +/- standard deviation, 66.0 +/- 25.4 ng/mL) for blood taken at 30 min and from 33.5 to 122.7 ng/mL of plasma (71.0 +/- 32.8 ng/mL) for blood withdrawn 1 h after ingestion on day 5. We estimated an average of 4.5% absorption (range of 2.2-7.8%) of lunasin from the total lunasin ingested from 50 g of soy protein. Matrix-assisted laser desorption ionization time-of-flight peptide mass mapping showed that a 5 kDa peptide similar to synthetic lunasin was present in plasma samples of people who consumed soy protein while absent at the baseline plasma samples from the same individuals. Liquid chromatography-tandem mass spectrometry analysis showed the presence of amino acid sequences from lunasin in plasma samples after soy intake for 30 min and 1 h. No peptides from lunasin were present in plasma samples without soy intake. The results of this study suggest that lunasin is bioavailable in humans, an important requirement for its anticancer potential.

  10. Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron.

    PubMed

    Dong, Haoran; Lo, Irene M C

    2013-01-01

    To enhance colloidal stability of nano zero-valent iron (NZVI) used for groundwater remediation, the surfaces of such NZVI can be modified via coating with organic stabilizers. These surface stabilizers can electrostatically, sterically, or electrosterically stabilize NZVI suspensions in water, but their efficacy is affected by the presence of humic acid (HA) in groundwater. In this study, the effect of HA on the colloidal stability of NZVI coated with three types of stabilizers (i.e., polyacrylic acid (PAA), Tween-20 and starch) was evaluated. Differing stability behaviors were observed for different surface-modified NZVIs (SM-NZVI) in the presence of HA. Fluorescence spectroscopic analysis probed the possible interactions at the SM-NZVI-HA interface, providing a better understanding of the effect of HA on SM-NZVI stability. The adsorption of HA on the surface of PAA-modified NZVI via complexation with NZVI (rather than the PAA stabilizer) enhanced the electrosteric repulsion effect, increasing the stability of the particles. However, for NZVI modified with Tween-20 or starch, HA could interact with the surface stabilizer and apparently play a "bridge" role among the particles, which might induce aggregation of the particles. Therefore, the stability behavior of NZVI modified with Tween-20 or starch might have resulted from the combined effect of "bridging" and "electrosteric" exerted by HA. PMID:23123051

  11. Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron.

    PubMed

    Dong, Haoran; Lo, Irene M C

    2013-01-01

    To enhance colloidal stability of nano zero-valent iron (NZVI) used for groundwater remediation, the surfaces of such NZVI can be modified via coating with organic stabilizers. These surface stabilizers can electrostatically, sterically, or electrosterically stabilize NZVI suspensions in water, but their efficacy is affected by the presence of humic acid (HA) in groundwater. In this study, the effect of HA on the colloidal stability of NZVI coated with three types of stabilizers (i.e., polyacrylic acid (PAA), Tween-20 and starch) was evaluated. Differing stability behaviors were observed for different surface-modified NZVIs (SM-NZVI) in the presence of HA. Fluorescence spectroscopic analysis probed the possible interactions at the SM-NZVI-HA interface, providing a better understanding of the effect of HA on SM-NZVI stability. The adsorption of HA on the surface of PAA-modified NZVI via complexation with NZVI (rather than the PAA stabilizer) enhanced the electrosteric repulsion effect, increasing the stability of the particles. However, for NZVI modified with Tween-20 or starch, HA could interact with the surface stabilizer and apparently play a "bridge" role among the particles, which might induce aggregation of the particles. Therefore, the stability behavior of NZVI modified with Tween-20 or starch might have resulted from the combined effect of "bridging" and "electrosteric" exerted by HA.

  12. Insulin-like growth factor-I, soy protein intake, and breast cancer risk.

    PubMed

    Sanderson, Maureen; Shu, Xiao Ou; Yu, Herbert; Dai, Qi; Malin, Alecia S; Gao, Yu-Tang; Zheng, Wei

    2004-01-01

    Previous studies have found that estrogen enhances the effect of insulin-like growth factor-I (IGF-I) levels on breast cancer cell growth. Participants in the Shanghai Breast Cancer Study (SBCS) consumed large amounts of soy that was high in isoflavones, which act as weak estrogens and as anti-estrogens. We assessed whether soy protein intake modified the effect of IGF-I levels on breast cancer risk. The SBCS is a population-based case-control study of breast cancer among women aged 25-64 conducted between 1996 and 1998 in urban Shanghai. In-person interviews were completed with 1,459 incident breast cancer cases ascertained through a population-based cancer registry and 1,556 controls randomly selected from the general population (with respective response rates of 91% and 90%). This analysis is restricted to the 397 cases and 397 matched controls for whom information on IGF-I levels was available. For premenopausal breast cancer, we found nearly significant interactions between soy protein intake and IGF-I levels (P = 0.080) and insulin-like growth factor-binding protein-3 (IGFBP-3) levels (P = 0.057). The direction of the interaction appeared to be negative for IGF-I levels but was positive for IGFBP-3 levels. No interaction was evident between soy protein intake and IGF-I or IGFBP-3 levels among postmenopausal women. Our results suggest that soy protein intake may negatively modulate the effect of IGF-I and may positively modulate the effect of IGFBP-3 levels on premenopausal breast cancer risk. Further studies are needed to confirm our finding and to understand the biological mechanisms of these potential interactions.

  13. Effects of ascorbic acid and high oxygen modified atmosphere packaging during storage of fresh-cut eggplants.

    PubMed

    Li, Xihong; Jiang, Yuqian; Li, Weili; Tang, Yao; Yun, Juan

    2014-03-01

    Ascorbic acid dip and high O2 modified atmosphere packaging were used to alleviate browning and quality loss of fresh-cut eggplants. Fresh-cut eggplants were dipped in water or 0.5% ascorbic acid solution for 2 min before being packed in polyethylene film bags filled with air or high O2. The physiochemical and sensorial attributes of cut eggplants were evaluated during 12 days for storage at 4 . Results demonstrated that high O2 modified atmosphere packaging and ascorbic acid dip improved the preservation of fresh-cut eggplants compared with the control. High O2 showed an ability to reduce the browning and inhibit polyphenol oxidase and peroxidase activities. Higher total phenolic content and lower malondialdehyde content were also observed in ascorbic acid treated samples during storage. Moreover, the combination of ascorbic acid and high O2 was more effective than single treatments. The surface color was protected by ascorbic acid and high O2 packaging, and higher sensory scores were observed after 12 days of storage.

  14. Hydroxyapatite surface modified by L-lactic acid and its subsequent grafting polymerization of L-lactide.

    PubMed

    Qiu, Xueyu; Hong, Zhongkui; Hu, Junli; Chen, Li; Chen, Xuesi; Jing, Xiabin

    2005-01-01

    A new method of surface modification of hydroxyapatite nanoparticles (n-HA) by surface grafting reaction of l-lactic acid and ring-opening polymerization of l-lactide (LLA) was developed. Two modified HA nanoparticles were obtained: HA modified by l-lactic acid (l-HA) and HA grafting with poly(l-lactide) (PLLA; p-HA). The modified surface of n-HA was attested by Fourier transformation infrared, (31)P MAS NMR, and thermal gravimetric analysis. The results showed that l-lactic acid could be easily grafted onto the n-HA surface by forming a Ca carboxylate bond and initiated by the hydroxyl group of the grafted l-lactic acid and LLA could be graft-polymerized onto the n-HA surface in the presence of stannous octanoate. The highest grafting amounts of l-lactic acid and PLLA were about 33 and 22 wt %, respectively. The modified HA/PLLA composites showed good mechanical properties and uniform microstructure. The tensile strength and modulus of the p-HA/PLLA composite containing 15 wt % of p-HA were 67 MPa and 2.1 GPa, respectively, while those of the n-HA/PLLA composites were 45 MPa and 1.7 GPa, respectively. The elongation at the break of the l-HA/PLLA composite containing 15 wt % l-HA could reach 44%, in comparison with 6.5% of the n-HA/PLLA composites containing 15 wt % n-HA. PMID:15877333

  15. Chemical Composition of Defatted Cottonseed and Soy Meal Products

    PubMed Central

    He, Zhongqi; Zhang, Hailin; Olk, Dan C.

    2015-01-01

    Chemical composition is critical information for product quality and exploration of new use. Hence defatted cottonseed meals from both glanded (with gossypol) and glandless (without gossypol) cotton seeds were separated into water soluble and insoluble fractions, or water soluble, alkali soluble as well as total protein isolates. The contents of gossypol, total protein and amino acids, fiber and carbohydrates, and selected macro and trace elements in these products were determined and compared with each other and with those of soy meal products. Data reported in this work improved our understanding on the chemical composition of different cottonseed meal products that is helpful for more economical utilization of these products. These data would also provide a basic reference for product standards and quality control when the production of the cottonseed meal products comes to pilot and industrial scales. PMID:26079931

  16. Optimization of fermentation parameters to study the behavior of selected lactic cultures on soy solid state fermentation.

    PubMed

    Rodríguez de Olmos, A; Bru, E; Garro, M S

    2015-03-01

    The use of solid fermentation substrate (SSF) has been appreciated by the demand for natural and healthy products. Lactic acid bacteria and bifidobacteria play a leading role in the production of novel functional foods and their behavior is practically unknown in these systems. Soy is an excellent substrate for the production of functional foods for their low cost and nutritional value. The aim of this work was to optimize different parameters involved in solid state fermentation (SSF) using selected lactic cultures to improve soybean substrate as a possible strategy for the elaboration of new soy food with enhanced functional and nutritional properties. Soy flour and selected lactic cultures were used under different conditions to optimize the soy SSF. The measured responses were bacterial growth, free amino acids and β-glucosidase activity, which were analyzed by applying response surface methodology. Based on the proposed statistical model, different fermentation conditions were raised by varying the moisture content (50-80%) of the soy substrate and temperature of incubation (31-43°C). The effect of inoculum amount was also investigated. These studies demonstrated the ability of selected strains (Lactobacillus paracasei subsp. paracasei and Bifidobacterium longum) to grow with strain-dependent behavior on the SSF system. β-Glucosidase activity was evident in both strains and L. paracasei subsp. paracasei was able to increase the free amino acids at the end of fermentation under assayed conditions. The used statistical model has allowed the optimization of fermentation parameters on soy SSF by selected lactic strains. Besides, the possibility to work with lower initial bacterial amounts to obtain results with significant technological impact was demonstrated.

  17. Optimization of fermentation parameters to study the behavior of selected lactic cultures on soy solid state fermentation.

    PubMed

    Rodríguez de Olmos, A; Bru, E; Garro, M S

    2015-03-01

    The use of solid fermentation substrate (SSF) has been appreciated by the demand for natural and healthy products. Lactic acid bacteria and bifidobacteria play a leading role in the production of novel functional foods and their behavior is practically unknown in these systems. Soy is an excellent substrate for the production of functional foods for their low cost and nutritional value. The aim of this work was to optimize different parameters involved in solid state fermentation (SSF) using selected lactic cultures to improve soybean substrate as a possible strategy for the elaboration of new soy food with enhanced functional and nutritional properties. Soy flour and selected lactic cultures were used under different conditions to optimize the soy SSF. The measured responses were bacterial growth, free amino acids and β-glucosidase activity, which were analyzed by applying response surface methodology. Based on the proposed statistical model, different fermentation conditions were raised by varying the moisture content (50-80%) of the soy substrate and temperature of incubation (31-43°C). The effect of inoculum amount was also investigated. These studies demonstrated the ability of selected strains (Lactobacillus paracasei subsp. paracasei and Bifidobacterium longum) to grow with strain-dependent behavior on the SSF system. β-Glucosidase activity was evident in both strains and L. paracasei subsp. paracasei was able to increase the free amino acids at the end of fermentation under assayed conditions. The used statistical model has allowed the optimization of fermentation parameters on soy SSF by selected lactic strains. Besides, the possibility to work with lower initial bacterial amounts to obtain results with significant technological impact was demonstrated. PMID:25498472

  18. Determination of Acid Herbicides Using Modified QuEChERS with Fast Switching ESI(+)/ESI(-) LC-MS/MS.

    PubMed

    Sack, Chris; Vonderbrink, John; Smoker, Michael; Smith, Robert E

    2015-11-01

    A method for the determination of 35 acid herbicides in food matrices was developed, validated, and implemented. It utilizes a modified QuEChERS extraction procedure coupled with quantitation by liquid chromatography tandem mass spectrometry (LC-MS/MS). The acid herbicides analyzed are all organic carboxylic acids, including the older chlorophenoxy acid herbicides such as 2,4-dichlorophenoxyacetic acid (2,4-D), dicamba, 4-chlorophenoxyacetic acid (4-CPA), quinclorac, and many of the newer imidazolinone herbicides such as imazethapyr and imazaquin. In the procedure, 10 mL of water is added to 5 g of sample and then extracted with 1% formic acid in acetonitrile for 1 min. The acetonitrile phase is salted out of the extract by adding sodium chloride and magnesium sulfate, followed by centrifugation. The acetonitrile is diluted 1:1 with water to enable quantitation by LC-MS/MS using fast switching between positive and negative electrospray ionization modes. The average recoveries for all the compounds except aminocyclopyrachlor were 95% with a precision of 8%. The method detection limits for all residues were less than 10 ng/g, and the correlation coefficients for the calibration curves was greater than 0.99 for all but two compounds tested. The method was used successfully for the quantitation of acid herbicides in the FDA's total diet study. The procedure proved to be accurate, precise, linear, sensitive, and rugged.

  19. Alimentary proteins, amino acids and cholesterolemia.

    PubMed

    Blachier, François; Lancha, Antonio H; Boutry, Claire; Tomé, Daniel

    2010-01-01

    Numerous data from both epidemiological and experimental origins indicate that some alimentary proteins and amino acids in supplements can modify the blood LDL cholesterol, HDL cholesterol and total cholesterol. After an initial approval of the health claim for soy protein consumption for the prevention of coronary heart disease, more recently it has been concluded from an overall analysis of literature that isolated soy protein with isoflavones only slightly decrease LDL and total cholesterol. Other plant extracts and also some proteins from animal origin have been reported to exert a lowering effect on blood cholesterol when compared with a reference protein (often casein). The underlying mechanisms are still little understood. Individual amino acids and mixture of amino acids have also been tested (mostly in animal studies) for their effects on cholesterol parameters and on cholesterol metabolism. Methionine, lysine, cystine, leucine, aspartate and glutamate have been tested individually and in combination in different models of either normo or hypercholesterolemic animals and found to be able to modify blood cholesterol and/or LDL cholesterol and/or HDL cholesterol. It is however not known if these results are relevant to human nutrition.

  20. The erosion kinetics of conventional and resin-modified glass-ionomer luting cements in acidic buffer solutions.

    PubMed

    Hazar-Yoruc, Binnaz; Bavbek, Andac Barkin; Özcan, Mutlu

    2012-01-01

    This study investigated the erosion kinetics of conventional and resin-modified glass-ionomer luting cements in acidic buffer solutions as a function of time. Disc shaped specimens were prepared from conventional (Ketac-Cem: KTC) and resin-modified glass ionomer cements (Fuji Plus: FP) and immersed in three acidic buffer solutions (0.01 M) namely, acetic acid/sodium acetate (AA(B)), lactic acid/sodium lactate (LA(B)) and citric acid/sodium citrate (CA(B)) with a constant pH of 4.1 and stored for 1, 8, 24, 48, 80, 120 and 168 h. F concentration was determined using ion-specific electrode. Si, Ca and Al concentrations were determined by atomic absorption spectroscopy. Ca, Al, Si and F solubility rates in both FP and KTC were the highest in CA(B) solution. The erosion rates of both FP and KTC in all buffer solutions increased as a function of immersion time. The amount of F eluted from FP was more than that of KTC. The total amount of elements released from FP was less than KTC in all solutions. PMID:23207217

  1. Voltammetric determination of polyphenolic content in pomegranate juice using a poly(gallic acid)/multiwalled carbon nanotube modified electrode

    PubMed Central

    Newair, Emad F

    2016-01-01

    Summary A simple and sensitive poly(gallic acid)/multiwalled carbon nanotube modified glassy carbon electrode (PGA/MWCNT/GCE) electrochemical sensor was prepared for direct determination of the total phenolic content (TPC) as gallic acid equivalent. The GCE working electrode was electrochemically modified and characterized using scanning electron microscope (SEM), cyclic voltammetry (CV), chronoamperometry and chronocoulometry. It was found that gallic acid (GA) exhibits a superior electrochemical response on the PGA/MWCNT/GCE sensor in comparison with bare GCE. The results reveal that a PGA/MWCNT/GCE sensor can remarkably enhance the electro-oxidation signal of GA as well as shift the peak potentials towards less positive potential values. The dependence of peak current on accumulation potential, accumulation time and pH were investigated by square-wave voltammetry (SWV) to optimize the experimental conditions for the determination of GA. Using the optimized conditions, the sensor responded linearly to a GA concentration throughout the range of 4.97 × 10−6 to 3.38 × 10−5 M with a detection limit of 3.22 × 10−6 M (S/N = 3). The fabricated sensor shows good selectivity, stability, repeatability and (101%) recovery. The sensor was successfully utilized for the determination of total phenolic content in fresh pomegranate juice without interference of ascorbic acid, fructose, potassium nitrate and barbituric acid. The obtained data were compared with the standard Folin–Ciocalteu spectrophotometric results. PMID:27547628

  2. Voltammetric determination of polyphenolic content in pomegranate juice using a poly(gallic acid)/multiwalled carbon nanotube modified electrode.

    PubMed

    Abdel-Hamid, Refat; Newair, Emad F

    2016-01-01

    A simple and sensitive poly(gallic acid)/multiwalled carbon nanotube modified glassy carbon electrode (PGA/MWCNT/GCE) electrochemical sensor was prepared for direct determination of the total phenolic content (TPC) as gallic acid equivalent. The GCE working electrode was electrochemically modified and characterized using scanning electron microscope (SEM), cyclic voltammetry (CV), chronoamperometry and chronocoulometry. It was found that gallic acid (GA) exhibits a superior electrochemical response on the PGA/MWCNT/GCE sensor in comparison with bare GCE. The results reveal that a PGA/MWCNT/GCE sensor can remarkably enhance the electro-oxidation signal of GA as well as shift the peak potentials towards less positive potential values. The dependence of peak current on accumulation potential, accumulation time and pH were investigated by square-wave voltammetry (SWV) to optimize the experimental conditions for the determination of GA. Using the optimized conditions, the sensor responded linearly to a GA concentration throughout the range of 4.97 × 10(-6) to 3.38 × 10(-5) M with a detection limit of 3.22 × 10(-6) M (S/N = 3). The fabricated sensor shows good selectivity, stability, repeatability and (101%) recovery. The sensor was successfully utilized for the determination of total phenolic content in fresh pomegranate juice without interference of ascorbic acid, fructose, potassium nitrate and barbituric acid. The obtained data were compared with the standard Folin-Ciocalteu spectrophotometric results.

  3. Simultaneous determination of ofloxacin and gatifloxacin on cysteic acid modified electrode in the presence of sodium dodecyl benzene sulfonate.

    PubMed

    Zhang, Fenfen; Gu, Shuqing; Ding, Yaping; Li, Li; Liu, Xiao

    2013-02-01

    A novel cysteic acid modified carbon paste electrode (cysteic acid/CPE) based on electrochemical oxidation of L-cysteine was developed to simultaneously determine ofloxacin and gatifloxacin in the presence of sodium dodecyl benzene sulfonate (SDBS). Fourier transform infrared spectra (FTIR) indicated that L-cysteine was oxidated to cysteic acid. Electrochemical impedance spectroscopy (EIS) and cyclic voltammograms (CV) indicated that cysteic acid was successfully modified on electrode. The large peak separation (116 mV) between ofloxacin and gatifloxacin was obtained on cysteic acid/CPE while only one oxidation peak was found on bare electrode. And the peak currents increased 5 times compared to bare electrode. Moreover, the current could be further enhanced in the presence of an anionic surfactant, sodium dodecyl benzene sulfonate. The differential pulse voltammograms (DPV) exhibited that the oxidation peak currents were linearly proportional to their concentrations in the range of 0.06-10 μM for ofloxacin and 0.02-200 μM for gatifloxacin, and the detection limits of ofloxacin and gatifloxacin were 0.02 μM and 0.01 μM (S/N=3), respectively. This proposed method was successfully applied to determine ofloxacin and gatifloxacin in pharmaceutical formulations and human serum samples.

  4. Voltammetric determination of polyphenolic content in pomegranate juice using a poly(gallic acid)/multiwalled carbon nanotube modified electrode.

    PubMed

    Abdel-Hamid, Refat; Newair, Emad F

    2016-01-01

    A simple and sensitive poly(gallic acid)/multiwalled carbon nanotube modified glassy carbon electrode (PGA/MWCNT/GCE) electrochemical sensor was prepared for direct determination of the total phenolic content (TPC) as gallic acid equivalent. The GCE working electrode was electrochemically modified and characterized using scanning electron microscope (SEM), cyclic voltammetry (CV), chronoamperometry and chronocoulometry. It was found that gallic acid (GA) exhibits a superior electrochemical response on the PGA/MWCNT/GCE sensor in comparison with bare GCE. The results reveal that a PGA/MWCNT/GCE sensor can remarkably enhance the electro-oxidation signal of GA as well as shift the peak potentials towards less positive potential values. The dependence of peak current on accumulation potential, accumulation time and pH were investigated by square-wave voltammetry (SWV) to optimize the experimental conditions for the determination of GA. Using the optimized conditions, the sensor responded linearly to a GA concentration throughout the range of 4.97 × 10(-6) to 3.38 × 10(-5) M with a detection limit of 3.22 × 10(-6) M (S/N = 3). The fabricated sensor shows good selectivity, stability, repeatability and (101%) recovery. The sensor was successfully utilized for the determination of total phenolic content in fresh pomegranate juice without interference of ascorbic acid, fructose, potassium nitrate and barbituric acid. The obtained data were compared with the standard Folin-Ciocalteu spectrophotometric results. PMID:27547628

  5. Zinc oxide modified with benzylphosphonic acids as transparent electrodes in regular and inverted organic solar cell structures

    SciTech Connect

    Lange, Ilja; Reiter, Sina; Kniepert, Juliane; Piersimoni, Fortunato; Brenner, Thomas; Neher, Dieter; Pätzel, Michael; Hildebrandt, Jana; Hecht, Stefan

    2015-03-16

    An approach is presented to modify the work function of solution-processed sol-gel derived zinc oxide (ZnO) over an exceptionally wide range of more than 2.3 eV. This approach relies on the formation of dense and homogeneous self-assembled monolayers based on phosphonic acids with different dipole moments. This allows us to apply ZnO as charge selective bottom electrodes in either regular or inverted solar cell structures, using poly(3-hexylthiophene):phenyl-C71-butyric acid methyl ester as the active layer. These devices compete with or even surpass the performance of the reference on indium tin oxide/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate. Our findings highlight the potential of properly modified ZnO as electron or hole extracting electrodes in hybrid optoelectronic devices.

  6. Modulation of infant formula fat profile alters the low-density lipoprotein/high-density lipoprotein ratio and plasma fatty acid distribution relative to those with breast-feeding.

    PubMed

    Hayes, K C; Pronczuk, A; Wood, R A; Guy, D G

    1992-04-01

    The effect of breast-feeding was compared with that of two fat-modified milk formulas in 45 infants (15 per group) studied by assessing body weight gain for 4 months and plasma lipids, lipoprotein profiles, fatty acid profiles of plasma and red blood cells, and plasma tocopherol status 3 months after birth. A saturated fat formula with coconut oil/soybean oil (COCO/SOY) had a fatty acid content and polyunsaturated/saturated ratio (P/S, 0.55) comparable with that of human milk fat (P/S, 0.39) and had the same fat energy content (50% kcal). The second formula, with corn oil/soybean oil (CORN/SOY), was highly unsaturated (P/S, 4.6), with only 35% kcal from fat. Energy intake and body weight gain were similar for all groups. Plasma total cholesterol, triglyceride, and phospholipid levels were significantly lower (greater than 20% on average) in infants fed the CORN/SOY formula than in infants fed either the COCO/SOY formula or human milk. Infants fed the CORN/SOY formula also had lower (25% to 35%) plasma low-density lipoprotein cholesterol and apolipoprotein B levels and low-density lipoprotein/high-density lipoprotein and apolipoprotein B/apolipoprotein A-I ratios. Plasma, red blood cell, and cholesteryl ester fatty acids from infants fed COCO/SOY contained less 18:1 and more 18:2; cholesterol esters in plasma from breast-fed infants had the highest 20:4n-6 levels. Plasma tocopherol levels were higher in infants consuming formulas. The presence of cholesterol in human milk appeared to expand the low-density lipoprotein pool and exert an "unfavorable" increase in the low-density lipoprotein/high-density lipoprotein ratio. Thus modulation of infant lipoproteins by changing dietary fat and cholesterol is feasible and in keeping with the known response in adults. PMID:1560323

  7. FLUORIDE CONTENT OF COMMERCIALLY AVAILABLE SOY MILK PRODUCTS IN THAILAND.

    PubMed

    Rirattanapong, Opas; Rirattanapong, Praphasri

    2016-01-01

    Abstract. In Thailand, the consumption of soy milk products is common but there is limited data about their fluoride content. The purpose of this study was to es- timate the fluoride content of soy milk products available in Thailand. Fluoride content was determined for 76 brands of soy milk using a F-ion-specific electrode. The fluoride concentrations ranged from 0.01 to 3.78 μg/ml. The fluoride content was not related to sugar content, soy bean content or the sterilization process. Among 3 brands of soy milk containing tea powder extract, the fluoride content was high (1.25 to 3.78 μg/ml). Most brands of soy milk tested in our study had fluoride content below the optimal daily intake but brands containing tea powder extract if consumed by children may increase their risk for fluorosis.

  8. FLUORIDE CONTENT OF COMMERCIALLY AVAILABLE SOY MILK PRODUCTS IN THAILAND.

    PubMed

    Rirattanapong, Opas; Rirattanapong, Praphasri

    2016-01-01

    Abstract. In Thailand, the consumption of soy milk products is common but there is limited data about their fluoride content. The purpose of this study was to es- timate the fluoride content of soy milk products available in Thailand. Fluoride content was determined for 76 brands of soy milk using a F-ion-specific electrode. The fluoride concentrations ranged from 0.01 to 3.78 μg/ml. The fluoride content was not related to sugar content, soy bean content or the sterilization process. Among 3 brands of soy milk containing tea powder extract, the fluoride content was high (1.25 to 3.78 μg/ml). Most brands of soy milk tested in our study had fluoride content below the optimal daily intake but brands containing tea powder extract if consumed by children may increase their risk for fluorosis. PMID:27086437

  9. "Disease modifying nutricals" for multiple sclerosis.

    PubMed

    Schmitz, Katja; Barthelmes, Julia; Stolz, Leonie; Beyer, Susanne; Diehl, Olaf; Tegeder, Irmgard

    2015-04-01

    The association between vitamin D and multiple sclerosis has (re)-opened new interest in nutrition and natural compounds in the prevention and treatment of this neuroinflammatory disease. The dietary amount and type of fat, probiotics and biologicals, salmon proteoglycans, phytoestrogens and protease inhibitor of soy, sodium chloride and trace elements, and fat soluble vitamins including D, A and E were all considered as disease-modifying nutraceuticals. Studies in experimental autoimmune encephalomyelitis mice suggest that poly-unsaturated fatty acids and their 'inflammation-resolving' metabolites and the gut microflora may reduce auto-aggressive immune cells and reduce progression or risk of relapse, and infection with whipworm eggs may positively change the gut-brain communication. Encouraged by the recent interest in multiple sclerosis-nutrition nature's pharmacy has been searched for novel compounds with anti-inflammatory, immune-modifying and antioxidative properties, the most interesting being the scorpion toxins that inhibit specific potassium channels of T cells and antioxidative compounds including the green tea flavonoid epigallocatechin-3-gallate, curcumin and the mustard oil glycoside from e.g. broccoli and sulforaphane. They mostly also inhibit pro-inflammatory signaling through NF-κB or toll-like receptors and stabilize the blood brain barrier. Disease modifying functions may also complement analgesic and anti-spastic effects of cannabis, its constituents, and of 'endocannabinoid enhancing' drugs or nutricals like inhibitors of fatty acid amide hydrolase. Nutricals will not solve multiple sclerosis therapeutic challenges but possibly support pharmacological interventions or unearth novel structures.

  10. Modified branched-chain amino acid pathways give rise to acyl acids of sucrose esters exuded from tobacco leaf trichomes.

    PubMed

    Kandra, G; Severson, R; Wagner, G J

    1990-03-10

    A major diversion of carbon from branched-chain amino acid biosynthesis/catabolism to form acyl moieties of sucrose esters (6-O-acetyl-2,3,4-tri-O-acyl-alpha-D-glucopyranosyl-beta-D- fructofuranosides) was observed to be associated with specialized trichome head cells which secrete large amounts of sucrose esters. Surface chemistry and acetyl and acyl substituent groups of tobacco (T.I. 1068) sucrose esters were identified and quantified by gas chromatography/mass spectrometry. Sucrose esters were prominent surface constituents and 3-methylvaleric acid, 2- and 3-methylbutyric acid, and methylpropionic acid accounted for 60%, 25% and 9%, respectively, of total C3--C7 acyl substituents. Radiolabeled Thr, Ile, Val, Leu, pyruvate and Asp, metabolites of branched-chain amino acid pathways, were compared with radioactively labeled acetate and sucrose as donors of carbon to sucrose, acetyl and acyl components of sucrose esters using epidermal peels with undisturbed trichomes. Preparations of biosynthetically competent trichome heads (site of sucrose ester formation) were also examined. Results indicate that 3-methylvaleryl and 2-methylbutyryl groups are derived from the Thr pathway of branched-chain amino acid metabolism, 3-methylbutyryl and methylpropionyl groups are formed via the pyruvate pathway, and that acetyl groups are principally formed directly via acetyl-CoA. Arguments are presented which rule out participation of fatty acid synthase in the formation of prominent acyl acids. Results suggest that the shunting of carbon away from the biosynthesis of Val, Leu and Ile may be due to a low level of amino acid utilization in protein synthesis in specialized glandular head cells of trichomes. This would result in the availability of corresponding oxo acids for CoA activation and esterification to form sucrose esters. Preliminary evidence was found for the involvement of cycling reactions in oxo-acid-chain lengthening and for utilization of pyruvate-derived 2

  11. Combined Effects of Soy Isoflavones and β-Carotene on Osteoblast Differentiation

    PubMed Central

    Nishide, Yoriko; Tousen, Yuko; Tadaishi, Miki; Inada, Masaki; Miyaura, Chisato; Kruger, Marlena C.; Ishimi, Yoshiko

    2015-01-01

    Soy isoflavones, genistein, daidzein and its metabolite equol, as well as β-carotene have been reported to be effective for maintaining bone health. However, it remains to be elucidated whether combining soy isoflavones with β-carotene is beneficial to bone formation. This study investigated the combined effect of soy isoflavones and β-carotene on the differentiation of MC3T3-E1 preosteoblastic cells. Daidzein and genistein alone did not affect cell growth but increased alkaline phosphatase (ALP) activity. Beta-carotene alone inhibited cell growth and markedly enhanced ALP activity. Soy isoflavones combined with β-carotene resulted in higher ALP activity than treatment with isoflavones or β-carotene alone. We observed significant main effects of β-carotene on the enhanced expression of Runx2, ALP, and ostepontin mRNA, whereas there was a significant main effect of soy isoflavones on the expression of osterix mRNA. To investigate how β-carotene affected osteoblast differentiation, MC3T3-E1 cells were treated with retinoic acid receptor (RAR) pan-antagonist combined with β-carotene. Osteopontin and ALP mRNA expression levels, which were increased following treatment with β-carotene, were significantly suppressed by the RAR pan-antagonist. This suggests treatment with β-carotene enhanced early osteoblastic differentiation, at least in part via RAR signaling. These results indicate that a combination of isoflavones and β-carotene may be useful for maintaining a positive balance of bone turnover by inducing osteoblast differentiation. PMID:26516892

  12. Combined Effects of Soy Isoflavones and β-Carotene on Osteoblast Differentiation.

    PubMed

    Nishide, Yoriko; Tousen, Yuko; Tadaishi, Miki; Inada, Masaki; Miyaura, Chisato; Kruger, Marlena C; Ishimi, Yoshiko

    2015-11-01

    Soy isoflavones, genistein, daidzein and its metabolite equol, as well as β-carotene have been reported to be effective for maintaining bone health. However, it remains to be elucidated whether combining soy isoflavones with β-carotene is beneficial to bone formation. This study investigated the combined effect of soy isoflavones and β-carotene on the differentiation of MC3T3-E1 preosteoblastic cells. Daidzein and genistein alone did not affect cell growth but increased alkaline phosphatase (ALP) activity. Beta-carotene alone inhibited cell growth and markedly enhanced ALP activity. Soy isoflavones combined with β-carotene resulted in higher ALP activity than treatment with isoflavones or β-carotene alone. We observed significant main effects of β-carotene on the enhanced expression of Runx2, ALP, and ostepontin mRNA, whereas there was a significant main effect of soy isoflavones on the expression of osterix mRNA. To investigate how β-carotene affected osteoblast differentiation, MC3T3-E1 cells were treated with retinoic acid receptor (RAR) pan-antagonist combined with β-carotene. Osteopontin and ALP mRNA expression levels, which were increased following treatment with β-carotene, were significantly suppressed by the RAR pan-antagonist. This suggests treatment with β-carotene enhanced early osteoblastic differentiation, at least in part via RAR signaling. These results indicate that a combination of isoflavones and β-carotene may be useful for maintaining a positive balance of bone turnover by inducing osteoblast differentiation. PMID:26516892

  13. Dietary soy protein isolate attenuates metabolic syndrome in rats via effects on PPAR, LXR and SREBP signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Male and female rats (age 21 days) were fed AIN-93G diets made with casein, soy protein isolate (SPI+), isoflavone reduced SPI+ (SPI-), or casein plus purified genistein or daidzein. After 2 weeks, peroxisome proliferator activated receptor (PPAR) alpha-regulated genes involved in fatty acid degrada...

  14. Structure and properties of soy protein/poly(butylene succinate) blends with improved compatibility.

    PubMed

    Li, Yi-Dong; Zeng, Jian-Bing; Wang, Xiu-Li; Yang, Ke-Ke; Wang, Yu-Zhong

    2008-11-01

    A novel environmentally friendly thermoplastic soy protein/polyester blend was successfully prepared by blending soy protein isolate (SPI) with poly(butylene succinate) (PBS). To improve the compatibility between SPI and PBS, the polyester was pretreated by introducing different amounts of urethane and isocyanate groups before blending. The blends containing pretreated PBS showed much finer phase structures because of good dispersion of polyester in protein. Consequently, the tensile strength and modulus of blends increased obviously. A lower glass transition temperature of protein in the blends than that of the pure SPI, which was caused by the improvement of the compatibility between two phases, was observed by dynamic mechanical analyzer (DMA). The hydrophobicity, water resistance, and moisture absorption at different humidities of the blends were modified significantly due to the incorporation of PBS.

  15. Fabrication of chiral amino acid ionic liquid modified magnetic multifunctional nanospheres for centrifugal chiral chromatography separation of racemates.

    PubMed

    Liu, Yating; Tian, Ailin; Wang, Xiong; Qi, Jing; Wang, Fengkang; Ma, Ying; Ito, Yoichiro; Wei, Yun

    2015-06-26

    As the rapid development of nanotechnology, the magnetic nanospheres modified with special chiral selective ligands show a great potentiality in enantiomeric separation. In this study, magnetic nanospheres modified with task-specific chiral ionic liquid were designed for the separation of chiral amino acids. These modified magnetic nanospheres were effective in a direct chiral separation of five racemic amino acids (D- and L-cysteine, D- and L-arginine, D- and L-leucine, D- and L-glutamine and D- and L-tryptophan). Furthermore, a new online method for complete separation of the enantiomers via the magnetic nanospheres was established with centrifugal chiral chromatography using a spiral tube assembly mounted on a type-J coil planet centrifuge. One kind of chiral compounds, D- and L-tryptophan was resolved well using this method. These results demonstrated that the modified nanospheres display a good chiral recognition ability, and can be used as a potential material for chiral separation of various racemates.

  16. Modified biopolymers as sorbents for the removal of naphthenic acids from oil sands process affected water (OSPW).

    PubMed

    Arshad, Muhammad; Khosa, M A; Siddique, Tariq; Ullah, Aman

    2016-11-01

    Oil sands operations consume large volumes of water in bitumen extraction process and produce tailings that express pore water to the surface of tailings ponds known as oil sands process-affected water (OSPW). The OSPW is toxic and cannot be released into the environment without treatment. In addition to metals, dissolved solids, dissolved gases, hydrocarbons and polyaromatic compounds etc., OSPW also contains a complex mixture of dissolved organic acids, referred to as naphthenic acids (NAs). The NAs are highly toxic and react with metals to develop highly corrosive functionalities which cause corrosion in the oil sands processing and refining processes. We have chemically modified keratin biopolymer using polyhedral oligomeric silsesquioxanes (POSS) nanocages and goethite dopant to unfold keratinous structure for improving functionality. The untreated neat keratin and two modified sorbents were characterized to investigate structural, morphological, dimensional and thermal properties. These sorbents were then tested for the removal of NAs from OSPW. The NAs were selectively extracted and quantified before and after sorption process. The biosorption capacity (Q), rejection percentage (R%) and isotherm models were studied to investigate NAs removal efficiency of POSS modified keratin biopolymer (PMKB) and goethite modified keratin biopolymer (GMKB) from aliquots of OSPW. PMID:27552693

  17. Modified biopolymers as sorbents for the removal of naphthenic acids from oil sands process affected water (OSPW).

    PubMed

    Arshad, Muhammad; Khosa, M A; Siddique, Tariq; Ullah, Aman

    2016-11-01

    Oil sands operations consume large volumes of water in bitumen extraction process and produce tailings that express pore water to the surface of tailings ponds known as oil sands process-affected water (OSPW). The OSPW is toxic and cannot be released into the environment without treatment. In addition to metals, dissolved solids, dissolved gases, hydrocarbons and polyaromatic compounds etc., OSPW also contains a complex mixture of dissolved organic acids, referred to as naphthenic acids (NAs). The NAs are highly toxic and react with metals to develop highly corrosive functionalities which cause corrosion in the oil sands processing and refining processes. We have chemically modified keratin biopolymer using polyhedral oligomeric silsesquioxanes (POSS) nanocages and goethite dopant to unfold keratinous structure for improving functionality. The untreated neat keratin and two modified sorbents were characterized to investigate structural, morphological, dimensional and thermal properties. These sorbents were then tested for the removal of NAs from OSPW. The NAs were selectively extracted and quantified before and after sorption process. The biosorption capacity (Q), rejection percentage (R%) and isotherm models were studied to investigate NAs removal efficiency of POSS modified keratin biopolymer (PMKB) and goethite modified keratin biopolymer (GMKB) from aliquots of OSPW.

  18. Comparative study of quality characteristics of Korean soy sauce made with soybeans germinated under dark and light conditions.

    PubMed

    Choi, Ung-Kyu; Jeong, Yeon-Shin; Kwon, O-Jun; Park, Jong-Dae; Kim, Young-Chan

    2011-01-01

    This study was conducted to evaluate the effects of germinating soybeans under dark and light conditions on the quality characteristics of Korean soy sauce made with germinated soybeans. The germination rate of soybeans germinated under dark conditions (GSD) was higher than that of soybeans germinated under light conditions (GSL), whereas the lengths of sprouts and relative weights of GSL did not differ from those of GSD. The L, a, b, and ΔT values of GSL were significantly lower than GSD. The color of GSD remained yellow, while GSL changed to a green color due to photosynthesis by chlorophyll. The total amino acid contents in soy sauce fermented with soybeans germinated under dark conditions (SSGD) and soy sauce fermented with soybeans germinated under light conditions (SSGL) were lower than in soy sauce fermented with non-germinated soybeans (SNGS). The levels of isoflavone content in SSGD and SSGL were significantly increased compared to the SNGS. In conclusion, the germination of soybeans under dark and light conditions is not only an increasing organoleptic preference, but also has implications for the health benefits of Korean soy sauce.

  19. Optimization of formulation of soy-cakes baked in infrared-microwave combination oven by response surface methodology.

    PubMed

    Şakıyan, Özge

    2015-05-01

    The aim of present work is to optimize the formulation of a functional cake (soy-cake) to be baked in infrared-microwave combination oven. For this optimization process response surface methodology was utilized. It was also aimed to optimize the processing conditions of the combination baking. The independent variables were the baking time (8, 9, 10 min), the soy flour concentration (30, 40, 50 %) and the DATEM (diacetyltartaric acid esters of monoglycerides) concentration (0.4, 0.6 and 0.8 %). The quality parameters that were examined in the study were specific volume, weight loss, total color change and firmness of the cake samples. The results were analyzed by multiple regression; and the significant linear, quadratic, and interaction terms were used in the second order mathematical model. The optimum baking time, soy-flour concentration and DATEM concentration were found as 9.5 min, 30 and 0.72 %, respectively. The corresponding responses of the optimum points were almost comparable with those of conventionally baked soy-cakes. So it may be declared that it is possible to produce high quality soy cakes in a very short time by using infrared-microwave combination oven.

  20. Detection of SEB gene by bilayer lipid membranes nucleic acid biosensor supported by modified patch-clamp pipette electrode.

    PubMed

    Liu, Nan; Gao, Zhixian; Zhou, HuanYing; Yue, Mingxiang

    2007-04-15

    This work reports a kind of novel bilayer lipid membranes (BLMs) nucleic acid biosensor supported by modified patch-clamp pipette electrode was developed to detect staphylococcus enterotoxins B (SEB) gene. BLMs were formed within 15 min and able to be operated at least 24 h. Hydrophobic dodecane tail (C12) modified 18 bp single-stranded DNA (ssDNA) probe was immobilized on BLMs. The electrochemical currents versus the different concentration of ssDNA probe immobilized on BLMs indicated linearly correlation. The BLMs nucleic acid biosensor was fabricated by selecting the ssDNA probe as the signal sensing element with the concentration of 273.65 ng/mL. The electrochemical performance of the biosensor for the detection of SEB was investigated. The result showed that linear relationship was found between the current and ln(concentration) from 20 to 5000 ng/mL and the detection limit was 20 ng/mL. In addition, the biosensor was specific response to SEB gene and showed no significant current alteration in electrolyte which containing no SEB gene. Finally, Atom Force Microscope (AFM) images could be observed and used to evaluate the superficial microstructure of BLMs, ssDNA immobilized on BLMs and BLMs after hybridization. The BLMs nucleic acid biosensor supported by modified patch-clamp pipette electrode will become a highly sensitive, rapid, selective analytical tool for detection of Staphylococcus aureus, which produce SEB. PMID:17092700

  1. Preparation and characterization of acorn starch/poly(lactic acid) composites modified with functionalized vegetable oil derivates.

    PubMed

    Li, Shouhai; Xia, Jianling; Xu, Yuzhi; Yang, Xuejuan; Mao, Wei; Huang, Kun

    2016-05-20

    Composites of acorn starch (AS) and poly(1actic acid) (PLA) modified with dimer fatty acid (DFA) or dimer fatty acid polyamide (DFAPA) were produced by a hot-melt extrusion method. The effects of DFA and DFAPA contents on the mechanical, hydrophobic, thermal properties and melt fluidity of the composites were studied under an invariable AS-to-PLA mass ratio of 40/60. SEM and DMA research results show that the compatibility of AS/PLA composites are determined by the dosage of DFA or DFAPA. The hydrophobicity and melt fluidity of composites are improved with the addition of DFA and DFAPA. The glass transition temperatures of the composites are all reduced remarkably by additives DFA and DFAPA. However, DFA and DFAPA exert different effects on the mechanical properties of AS/PLA composites. In the DFAPA-modified system, the tensile and flexural strength first increase and then decrease with the increase of DFAPA dosage; the mechanical strength is maximized when the dosage of DFAPA is 2 wt% of total weight. In the DFA-modified system, the tensile and flexural strength decrease with the increase of DFA dosage.

  2. Soy protein isolate does not affect ellagitannin bioavailability and urolithin formation when mixed with pomegranate juice in humans.

    PubMed

    Yang, Jieping; Lee, Rupo; Henning, Susanne M; Thames, Gail; Hsu, Mark; ManLam, Hei; Heber, David; Li, Zhaoping

    2016-03-01

    We investigated the effect of mixing soy protein isolate and pomegranate juice (PJ) on the bioavailability and metabolism of ellagitannins (ETs) in healthy volunteers. Eighteen healthy volunteers consumed PJ alone or PJ premixed with soy protein isolate (PJSP). The concentration of plasma ellagic acid (EA) and urine urolithins was measured. There was no significant difference in plasma EA over a 6-h period between the two interventions. While the maximum concentration of plasma EA after PJSP consumption was slightly but significantly lower than after PJ consumption, EA remained in the plasma longer with an elimination half-life t1/2E at 1.36±0.59 versus 1.06±0.47h for PJSP and PJ consumption, respectively. Urinary urolithin A, B and C was not significantly different between the two interventions. In conclusion, premixing soy protein isolate and PJ did not affect the bioavailability or the metabolism of pomegranate ETs in healthy volunteers.

  3. Soy and breast cancer: focus on angiogenesis.

    PubMed

    Varinska, Lenka; Gal, Peter; Mojzisova, Gabriela; Mirossay, Ladislav; Mojzis, Jan

    2015-05-22

    Epidemiological studies have revealed that high consumption of soy products is associated with low incidences of hormone-dependent cancers, including breast and prostate cancer. Soybeans contain large amounts of isoflavones, such as the genistein and daidzain. Previously, it has been demonstrated that genistein, one of the predominant soy isoflavones, can inhibit several steps involved in carcinogenesis. It is suggested that genistein possesses pleiotropic molecular mechanisms of action including inhibition of tyrosine kinases, DNA topoisomerase II, 5α-reductase, galectin-induced G2/M arrest, protein histidine kinase, and cyclin-dependent kinases, modulation of different signaling pathways associated with the growth of cancer cells (e.g., NF-κB, Akt, MAPK), etc. Moreover, genistein is also a potent inhibitor of angiogenesis. Uncontrolled angiogenesis is considered as a key step in cancer growth, invasion, and metastasis. Genistein was found to inhibit angiogenesis through regulation of multiple pathways, such as regulation of VEGF, MMPs, EGFR expressions and NF-κB, PI3-K/Akt, ERK1/2 signaling pathways, thereby causing strong antiangiogenic effects. This review focuses on the antiangiogenic properties of soy isoflavonoids and examines their possible underlying mechanisms.

  4. Soy and Breast Cancer: Focus on Angiogenesis

    PubMed Central

    Varinska, Lenka; Gal, Peter; Mojzisova, Gabriela; Mirossay, Ladislav; Mojzis, Jan

    2015-01-01

    Epidemiological studies have revealed that high consumption of soy products is associated with low incidences of hormone-dependent cancers, including breast and prostate cancer. Soybeans contain large amounts of isoflavones, such as the genistein and daidzain. Previously, it has been demonstrated that genistein, one of the predominant soy isoflavones, can inhibit several steps involved in carcinogenesis. It is suggested that genistein possesses pleiotropic molecular mechanisms of action including inhibition of tyrosine kinases, DNA topoisomerase II, 5α-reductase, galectin-induced G2/M arrest, protein histidine kinase, and cyclin-dependent kinases, modulation of different signaling pathways associated with the growth of cancer cells (e.g., NF-κB, Akt, MAPK), etc. Moreover, genistein is also a potent inhibitor of angiogenesis. Uncontrolled angiogenesis is considered as a key step in cancer growth, invasion, and metastasis. Genistein was found to inhibit angiogenesis through regulation of multiple pathways, such as regulation of VEGF, MMPs, EGFR expressions and NF-κB, PI3-K/Akt, ERK1/2 signaling pathways, thereby causing strong antiangiogenic effects. This review focuses on the antiangiogenic properties of soy isoflavonoids and examines their possible underlying mechanisms. PMID:26006245

  5. Surfactant-modified fatty acid composition of Citrobacter sp. SA01 and its effect on phenanthrene transmembrane transport.

    PubMed

    Li, Feng; Zhu, Lizhong

    2014-07-01

    The effects of the surfactants, Tween 80 and sodium dodecyl benzene sulfonate (SDBS) on a membrane's fatty acid composition and the transmembrane transport of phenanthrene were investigated. The results indicated that both surfactants could modify the composition of fatty acids of Citrobacter sp. Strain SA01 cells, 50 mg L(-1) of both surfactants changed the composition of the fatty acids the most, increasing the amount of unsaturated fatty acids. The comparison of fatty acid profiles with diphenylhexatriene fluorescence anisotropy, a probe for plasma membrane fluidity, suggested that an increased amount of unsaturated fatty acids corresponded to greater membrane fluidity. In addition, increased unsaturated fatty acids promoted phenanthrene to partition from the extracellular matrix to cell debris, which increased reverse partitioning from the cell debris to the cytochylema. The results of this study were expected in that the addition of a surfactant is a simple and effective method for accelerating the rate-limiting step of transmembrane transport of hydrophobic organic compounds (HOCs) in bioremediation.

  6. Wear-resistant and electromagnetic absorbing behaviors of oleic acid post-modified ferrite-filled epoxy resin composite coating

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2015-03-01

    The post-modified Mn-Zn ferrite was prepared by grafting oleic acid on the surface of Mn-Zn ferrite to inhibit magnetic nanoparticle aggregation. Fourier Transform Infrared (FT-IR) spectroscopy was used to characterize the particle surfaces. The friction and electromagnetic absorbing properties of a thin coating fabricated by dispersing ferrite into epoxy resin (EP) were investigated. The roughness of the coating and water contact angle were measured using the VEECO and water contact angle meter. Friction tests were conducted using a stainless-steel bearing ball and a Rockwell diamond tip, respectively. The complex permittivity and complex permeability of the composite coating were studied in the low frequency (10 MHz-1.5 GHz). Surface modified ferrites are found to improve magnetic particles dispersion in EP resulting in significant compatibility between inorganic and organic materials. Results also indicate that modified ferrite/EP coatings have a lower roughness average value and higher water contact angle than original ferrite/EP coatings. The enhanced tribological properties of the modified ferrite/EP coatings can be seen from the increased coefficient value. The composite coatings with modified ferrite are observed to exhibit better reflection loss compared with the coatings with original ferrite.

  7. A Nucleic Acid Biosensor for Detection of Hepatitis C Virus Genotype 1a Using Poly(L-Glutamic Acid)-Modified Electrode.

    PubMed

    Donmez, Soner; Arslan, Fatma; Arslan, Halit

    2015-07-01

    An electrochemical nucleic acid biosensor based on label-free DNA detection method was prepared for the first time by using electropolymerized poly(L-glutamic acid)-modified pencil graphite electrode (PGA/PGE) for detection of hepatitis C virus genotype 1a (HCV1a). Inosine-substituted 20-mer probes related to the HCV1a were immobilized onto PGA/PGE surface by covalent linking with the formation of amide bonds. Square wave voltammetry (SWV) was used to monitor the oxidation signal of guanine in the hybridization events, which gave an oxidation peak at +1.05 V. An increase in the oxidation signal of guanine was showed by hybridization of the probe with the complementary DNA. Noncomplementary oligonucleotides were also used to investigate the selectivity of the biosensor. The proposed nucleic acid biosensor was linear in the range of 50 nM to 1.0 μM, exhibiting a limit of detection of 40.6 nM. Finally, single-stranded synthetic PCR product analogues of HCV1a were performed in optimal condition. This PGA-modified nucleic acid sensor is cost-effective and disposable, and besides, it has superior electrocatalytic effect on the oxidation of guanine. PMID:25947619

  8. Soy Promotes Juvenile Granulosa Cell Tumor Development in Mice and in the Human Granulosa Cell Tumor-Derived COV434 Cell Line1

    PubMed Central

    Mansouri-Attia, Nadéra; James, Rebecca; Ligon, Alysse; Li, Xiaohui; Pangas, Stephanie A.

    2014-01-01

    ABSTRACT Soy attracts attention for its health benefits, such as lowering cholesterol or preventing breast and colon cancer. Soybeans contain isoflavones, which act as phytoestrogens. Even though isoflavones have beneficial health effects, a role for isoflavones in the initiation and progression of diseases including cancer is becoming increasingly recognized. While data from rodent studies suggest that neonatal exposure to genistein (the predominant isoflavone in soy) disrupts normal reproductive function, its role in ovarian cancers, particularly granulosa cell tumors (GCT), is largely unknown. Our study aimed to define the contribution of a soy diet in GCT development using a genetically modified mouse model for juvenile GCTs (JGCT; Smad1 Smad5 conditional double knockout mice) as well as a human JGCT cell line (COV434). While dietary soy cannot initiate JGCT development in mice, we show that it has dramatic effects on GCT growth and tumor progression compared to a soy-free diet. Loss of Smad1 and Smad5 alters estrogen receptor alpha (Esr1) expression in granulosa cells, perhaps sensitizing the cells to the effects of genistein. In addition, we found that genistein modulates estrogen receptor expression in the human JGCT cell line and positively promotes cell growth in part by suppressing caspase-dependent apoptosis. Combined, our work suggests that dietary soy consumption has deleterious effects on GCT development. PMID:25165122

  9. Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres.

    PubMed

    Tao, Xue; Li, Kun; Yan, Han; Yang, Hu; Li, Aimin

    2016-02-01

    In this current work, the magnetic composite microsphere containing glutamine modified chitosan and silica coated Fe3O4 nanoparticles (CS-Gln-MCM) has been successfully prepared and extensively characterized, which is a kind of biodegradable materials. CS-Gln-MCM shows enhanced removal efficiency for both acid green 25 (AG25), an amphoteric dye, and mercury ions (Hg(2+)) from water in the respective while measured pH range compared with chitosan magnetic composite microsphere (CS-MCM) without modification. It is due to the fact that the grafted amino acid provides a variety of additional adsorption active sites and diverse adsorption mechanisms are involved. In AG25 and Hg(2+) aqueous mixture, the modified adsorbents bear preferential adsorption for AG25 over Hg(2+) in strong acidic solutions ascribed to multiple interactions between AG25 and CS-Gln-MCM, such as hydrogen bonding and electrostatic interactions. While, in weak acidic conditions, an efficient simultaneous removal is observed for different adsorption effects involved in aforementioned two pollutants. Besides, CS-Gln-MCM illuminates not only short equilibrium time for adsorption of each pollutant less than 20.0 min but also rapid magnetic separation from water and efficient regeneration after saturated adsorption. Therefore, CS-Gln-MCM bears great application potentials in water treatment. PMID:26618263

  10. Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres.

    PubMed

    Tao, Xue; Li, Kun; Yan, Han; Yang, Hu; Li, Aimin

    2016-02-01

    In this current work, the magnetic composite microsphere containing glutamine modified chitosan and silica coated Fe3O4 nanoparticles (CS-Gln-MCM) has been successfully prepared and extensively characterized, which is a kind of biodegradable materials. CS-Gln-MCM shows enhanced removal efficiency for both acid green 25 (AG25), an amphoteric dye, and mercury ions (Hg(2+)) from water in the respective while measured pH range compared with chitosan magnetic composite microsphere (CS-MCM) without modification. It is due to the fact that the grafted amino acid provides a variety of additional adsorption active sites and diverse adsorption mechanisms are involved. In AG25 and Hg(2+) aqueous mixture, the modified adsorbents bear preferential adsorption for AG25 over Hg(2+) in strong acidic solutions ascribed to multiple interactions between AG25 and CS-Gln-MCM, such as hydrogen bonding and electrostatic interactions. While, in weak acidic conditions, an efficient simultaneous removal is observed for different adsorption effects involved in aforementioned two pollutants. Besides, CS-Gln-MCM illuminates not only short equilibrium time for adsorption of each pollutant less than 20.0 min but also rapid magnetic separation from water and efficient regeneration after saturated adsorption. Therefore, CS-Gln-MCM bears great application potentials in water treatment.

  11. Production of D-lactic acid in a continuous membrane integrated fermentation reactor by genetically modified Saccharomyces cerevisiae: enhancement in D-lactic acid carbon yield.

    PubMed

    Mimitsuka, Takashi; Sawai, Kenji; Kobayashi, Koji; Tsukada, Takeshi; Takeuchi, Norihiro; Yamada, Katsushige; Ogino, Hiroyasu; Yonehara, Tetsu

    2015-01-01

    Poly d-lactic acid is an important polymer because it improves the thermostability of poly l-lactic acid by stereo complex formation. To demonstrate potency of continuous fermentation using a membrane-integrated fermentation reactor (MFR) system, continuous fermentation using genetically modified Saccharomyces cerevisiae which produces d-lactic acid was performed at the low pH and microaerobic conditions. d-Lactic acid continuous fermentation using the MFR system by genetically modified yeast increased production rate by 11-fold compared with batch fermentation. In addition, the carbon yield of d-lactic acid in continuous fermentation was improved to 74.6 ± 2.3% compared to 39.0 ± 1.7% with batch fermentation. This dramatic improvement in carbon yield could not be explained by a reduction in carbon consumption to form cells compared to batch fermentation. Further detailed analysis at batch fermentation revealed that the carbon yield increased to 76.8% at late stationary phase. S. cerevisiae, which exhibits the Crabtree-positive effect, demonstrated significant changes in metabolic activities at low sugar concentrations (Rossignol et al., Yeast, 20, 1369-1385, 2003). Moreover, lactate-producing S. cerevisiae requires ATP supplied not only from the glycolytic pathway but also from the TCA cycle (van Maris et al., Appl. Environ. Microbiol., 70, 2898-2905, 2004). Our finding was revealed that continuous fermentation, which can maintain the conditions of both a low sugar concentration and air supply, results in Crabtree-positive and lactate-producing S. cerevisiae for suitable conditions of d-lactic acid production with respect to redox balance and ATP generation because of releasing the yeast from the Crabtree effect.

  12. Simultaneous extraction and HPLC determination of 3-indole butyric acid and 3-indole acetic acid in pea plant by using ionic liquid-modified silica as sorbent.

    PubMed

    Sheikhian, Leila; Bina, Sedigheh

    2016-01-15

    In this study, ionic liquid-modified silica was used as sorbent for simultaneous extraction and preconcentration of 3-indole butyric acid and 3-indole acetic acid in pea plants. The effect of some parameters such as pH and ionic strength of sample solution, amount of sorbent, flow rate of aqueous sample solution and eluent solution, concentration of eluent solution, and temperature were studied for each hormone solution. Percent extraction of 3-indole butyric acid and 3-indole acetic acid was strongly affected by pH of aqueous sample solution. Ionic strength of aqueous phase and temperature showed no serious effects on extraction efficiency of studied plant hormones. Obtained breakthrough volume was 200mL for each of studied hormones. Preconcentration factor for spectroscopic and chromatographic determination of studied hormones was 100 and 4.0×10(3) respectively. Each solid sorbent phase was reusable for almost 10 times of extraction/stripping procedure. Relative standard deviations of extraction/stripping processes of 3-indole butyric acid and 3-indole acetic acid were 2.79% and 3.66% respectively. The calculated limit of detections for IBA and IAA were 9.1×10(-2)mgL(-1) and 1.6×10(-1)mgL(-1) respectively. PMID:26701202

  13. Simultaneous extraction and HPLC determination of 3-indole butyric acid and 3-indole acetic acid in pea plant by using ionic liquid-modified silica as sorbent.

    PubMed

    Sheikhian, Leila; Bina, Sedigheh

    2016-01-15

    In this study, ionic liquid-modified silica was used as sorbent for simultaneous extraction and preconcentration of 3-indole butyric acid and 3-indole acetic acid in pea plants. The effect of some parameters such as pH and ionic strength of sample solution, amount of sorbent, flow rate of aqueous sample solution and eluent solution, concentration of eluent solution, and temperature were studied for each hormone solution. Percent extraction of 3-indole butyric acid and 3-indole acetic acid was strongly affected by pH of aqueous sample solution. Ionic strength of aqueous phase and temperature showed no serious effects on extraction efficiency of studied plant hormones. Obtained breakthrough volume was 200mL for each of studied hormones. Preconcentration factor for spectroscopic and chromatographic determination of studied hormones was 100 and 4.0×10(3) respectively. Each solid sorbent phase was reusable for almost 10 times of extraction/stripping procedure. Relative standard deviations of extraction/stripping processes of 3-indole butyric acid and 3-indole acetic acid were 2.79% and 3.66% respectively. The calculated limit of detections for IBA and IAA were 9.1×10(-2)mgL(-1) and 1.6×10(-1)mgL(-1) respectively.

  14. Effect of ingestion of soy yogurt on intestinal parameters of rats fed on a beef-based animal diet

    PubMed Central

    Bedani, Raquel; Pauly-Silveira, Nadiége Dourado; Cano, Veridiana Soares Pereira; Valentini, Sandro Roberto; de Rossi, Graciela Font; Valdez, Elizeu Antonio

    2011-01-01

    The aim of this study was to investigate whether the ingestion of soy yogurt fermented with Enterococcus faecium CRL 183 would modify the intestinal count of enterococci, fecal pH and ammonia content in rats fed on a diet containing red meat. The rats were placed in 4 groups: for 60 days, group I was given a standard casein-based rodent feed and groups II-IV, the beef-based feed. From day 30, groups III-IV also received the following products: III) soy yogurt; IV) suspension of E. faecium CRL 183. At the start and on days 30 and 60, feces were collected for the determination of pH, ammonia content, count of enterococci and identification of their species. On day 60, rats were sacrificed and their colons also removed for count of enterococci and identification of their species. Rats that ingested soy yogurt showed no significant change (P<0.05) in fecal counts of Enterococcus spp., but, this rat group showed a higher count of E. faecium than rats that ingested suspension of E. faecium CRL 183. The ingestion of soy yogurt and E. faecium culture caused a significant rise (P < 0.05) in fecal pH and ammonia content. Our results suggest that consumption of soy yogurt fermented with E. faecium CRL 183 and L. helveticus subsp. jugurti could change the species of Enterococcus spp. present in the feces and colon of rats fed on a beef-based diet. However, the fermented soy product and the pure culture of E. faecium CRL 183 also induced undesirable effects such as the increase of fecal pH and ammonia content in the feces of rats fed on a beef-based diet. PMID:24031747

  15. Ion-Exclusion High-Performance Liquid Chromatography of Aliphatic Organic Acids Using a Surfactant-Modified C18 Column.

    PubMed

    Fasciano, Jennifer M; Mansour, Fotouh R; Danielson, Neil D

    2016-07-01

    Ion exclusion chromatography (IELC) of short chain aliphatic carboxylic acids is normally done using a cation exchange column under standard HPLC conditions but not in the ultra-HPLC (UHPLC) mode. A novel IELC method for the separation of this class of carboxylic acids by either HPLC or UHPLC utilizing a C18 column dynamically modified with sodium dodecyl sulfate has been developed. The sample capacity is estimated to be near 10 mM for a 20 µL injection or 0.2 µmol using a 150 × 4.6 mm column. The optimum mobile phase determined for three standard mixtures of organic acids is 1.84 mM sulfuric acid at pH 2.43 and a flow rate of 0.6 mL/min. Under optimized conditions, a HPLC separation of four aliphatic carboxylic acids such as tartaric, malonic, lactic and acetic can be achieved in under 4 min and in <2 min in the UHPLC mode at 2.1 mL/min. A variety of fruit juice and soft drink samples are analyzed. Stability of the column as measured by the retention order of maleic and fumaric acid is estimated to be ∼4,000 column volumes using HPLC and 600 by UHPLC. Reproducible chromatograms are achieved over at least a 2-month period. This study shows that the utility of a C18 column can be easily extended when needed to IELC under either standard or UHPLC conditions.

  16. Citric Acid-Modified Fenton's Reaction for the Oxidation of Chlorinated Ethylenes in Soil Solution Systems

    SciTech Connect

    Seol, Yongkoo; Javandel, Iraj

    2008-03-15

    Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in-situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H{sub 2}O{sub 2} concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H{sub 2}O{sub 2} relative to iron catalysts (Fe{sup 2+}/H{sub 2}O{sub 2} < 1/330) would result in lowering the efficiency of contaminant removal by iron chelations in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.

  17. ADO-phosphonic acid self-assembled monolayer modified dielectrics for organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Zhefeng, Li; Xianye, Luo

    2014-10-01

    This study explores a strategy of using the phosphonic acid derivative (11-((12-(anthracen-2-yl)dodecyl)oxy)-11-oxoundecyl) phosphonic acid (ADO-phosphonic acid) as self-assembled monolayers (SAMs) on a Si/SiO2 surface to induce the crystallization of rubrene in vacuum deposited thin film transistors, which showed a field-effect mobility as high as 0.18 cm2/(V·s). It is found that ADO-phosphonic acid SAMs play a unique role in modulating the morphology of rubrene to form a crystalline film in the thin-film transistors.

  18. Dietary long-chain polyunsaturated fatty acids modify heart, kidney, and lung fatty acid composition in weanling rats.

    PubMed

    Suárez, A; Faus, M J; Gil, A

    1996-03-01

    The fatty acid composition of heart, kidney, and lung was studied in weanling rats fed three diets differing in their polyunsaturated fatty acid content for 0, 2, and 4 wk. The first group had a 10% w/w fat semipurified diet which consisted of a mixture of olive oil (62.5%), soybean oil (11.1%), and refined coconut oil (26.4%) and provided 18:1n-9, 18:2n-6, and 18:3n-3 in similar amounts to a maternal human milk (diet HO). The second group received 7% of HO fat and 3% fish oil (0.4% 20:4n-6 and 5% 22:6n-3 of total fatty acids) (diet FO), and the third group was fed 7% HO fat, 1.5% of the same fish oil, and 1.5% of a purified pig brain phospholipid concentrate (0.6% 20:4n-6 and 3.5% 22:6n-3 of total fatty acids) (diet FO + BPL). The experimental diets increased tissue monounsaturated fatty acids in comparison with rats at weaning. Tissue lipid content of 20:4n-6 was increased and 22:6n-3 decreased in Group HO compared with weanling rats, whereas opposite changes were observed in Group FO. Feeding diet FO + BPL increased 22:6n:3 in tissue lipids compared with diet HO, and increased 20:4n-6 content in relation to diet FO. Our results indicate that rat heart, kidney, and lung are highly responsive to dietary n-3 and n-6 long-chain polyunsaturated fatty acids during postnatal life. PMID:8900466

  19. Glutaminase-producing Meyerozyma (Pichia) guilliermondii isolated from Thai soy sauce fermentation.

    PubMed

    Aryuman, Phichayaphorn; Lertsiri, Sittiwat; Visessanguan, Wonnop; Niamsiri, Nuttawee; Bhumiratana, Amaret; Assavanig, Apinya

    2015-01-01

    In this study, 34 yeast isolates were obtained from koji and moromi samples of Thai soy sauce fermentation. However, the most interesting yeast strain was isolated from the enriched 2 month-old (M2) moromi sample and identified as Meyerozyma (Pichia) guilliermondii EM2Y61. This strain is a salt-tolerant yeast that could tolerate up to 20% (w/v) NaCl and produce extracellular and cell-bound glutaminases. Interestingly, its glutaminases were more active in 18% (w/v) NaCl which is a salt concentration in moromi. The extracellular glutaminase's activity was found to be much higher than that of cell-bound glutaminase. The highest specific activity and stability of the extracellular glutaminase were found in 18% (w/v) NaCl at pH4.5 and 37°C. A challenge test by adding partially-purified extracellular glutaminase from M. guilliermondii EM2Y61 into 1 month-old (M1) moromi sample showed an increased conversion of L-glutamine to L-glutamic acid. This is the first report of glutaminase producing M. guilliermondii isolated from the moromi of Thai soy sauce fermentation. The results suggested the potential application of M. guilliermondii EM2Y61 as starter yeast culture to increase l-glutamic acid during soy sauce fermentation.

  20. d-lactic acid production from renewable lignocellulosic biomass via genetically modified Lactobacillus plantarum.

    PubMed

    Zhang, Yixing; Kumar, Amit; Hardwidge, Philip R; Tanaka, Tsutomu; Kondo, Akihiko; Vadlani, Praveen V

    2016-03-01

    d-lactic acid is of great interest because of increasing demand for biobased poly-lactic acid (PLA). Blending poly-l-lactic acid with poly-d-lactic acid greatly improves PLA's mechanical and physical properties. Corn stover and sorghum stalks treated with 1% sodium hydroxide were investigated as possible substrates for d-lactic acid production by both sequential saccharification and fermentation and simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Cellic CTec2) was used for hydrolysis of lignocellulosic biomass and an l-lactate-deficient mutant strain Lactobacillus plantarum NCIMB 8826 ldhL1 and its derivative harboring a xylose assimilation plasmid (ΔldhL1-pCU-PxylAB) were used for fermentation. The SSCF process demonstrated the advantage of avoiding feedback inhibition of released sugars from lignocellulosic biomass, thus significantly improving d-lactic acid yield and productivity. d-lactic acid (27.3 g L(-1) ) and productivity (0.75 g L(-1) h(-1) ) was obtained from corn stover and d-lactic acid (22.0 g L(-1) ) and productivity (0.65 g L(-1) h(-1) ) was obtained from sorghum stalks using ΔldhL1-pCU-PxylAB via the SSCF process. The recombinant strain produced a higher concentration of d-lactic acid than the mutant strain by using the xylose present in lignocellulosic biomass. Our findings demonstrate the potential of using renewable lignocellulosic biomass as an alternative to conventional feedstocks with metabolically engineered lactic acid bacteria to produce d-lactic acid. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:271-278, 2016. PMID:26700935

  1. Bioavailability of soy isoflavones through placental/lactational transfer and soy food

    SciTech Connect

    Doerge, Daniel R.

    2011-07-15

    Isoflavones are non-nutritive components of soy responsible for estrogenic responses observed in vitro and in experimental animals. Possible beneficial effects (e.g., reduction of serum lipids, increased bone mineral density, relief of hot flashes and other menopausal symptoms, mammary and prostate cancer chemoprevention) in humans have been attributed to consumption of isoflavones but evidence for potential adverse effects (e.g., stimulation of estrogen-dependent mammary tumors and aberrant perinatal development) has also been reported in experimental animal models. Bioavailability from appropriate food matrices and exposure during different life stages are both critical determinants of isoflavone effects. For these reasons, it is important to compare isoflavone bioavailability in adults to that in fetal and neonatal animals for a more complete understanding of potential susceptibility issues. Studies of the major soy isoflavone genistein were conducted in pregnant and lactating Sprague-Dawley rats to quantify placental and lactational transfer to plasma and brain to understand better biological effects observed in multigenerational studies. In addition, studies were conducted with genistein in adult Balb/c mice to define absolute bioavailability from both gavage and soy protein isolate (SPI)-containing food. The information derived from these studies makes it possible to predict internal exposures of children to genistein from soy infant formula, which is manufactured using SPI.

  2. Purification and complete amino acid sequence of a new type of sweet protein taste-modifying activity, curculin.

    PubMed

    Yamashita, H; Theerasilp, S; Aiuchi, T; Nakaya, K; Nakamura, Y; Kurihara, Y

    1990-09-15

    A new taste-modifying protein named curculin was extracted with 0.5 M NaCl from the fruits of Curculigo latifolia and purified by ammonium sulfate fractionation, CM-Sepharose ion-exchange chromatography, and gel filtration. Purified curculin thus obtained gave a single band having a Mr of 12,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of 8 M urea. The molecular weight determined by low-angle laser light scattering was 27,800. These results suggest that native curculin is a dimer of a 12,000-Da polypeptide. The complete amino acid sequence of curculin was determined by automatic Edman degradation. Curculin consists of 114 residues. Curculin itself elicits a sweet taste. After curculin, water elicits a sweet taste, and sour substances induce a stronger sense of sweetness. No protein with both sweet-tasting and taste-modifying activities has ever been found. There are five sets of tripeptides common to miraculin (a taste-modifying protein), six sets of tripeptides common to thaumatin (a sweet protein), and two sets of tripeptides common to monellin (a sweet protein). Anti-miraculin serum was not immunologically reactive with curculin. The mechanism of the taste-modifying action of curculin is discussed. PMID:2394746

  3. n-hydrocarbons conversions over metal-modified solid acid catalysts

    NASA Astrophysics Data System (ADS)

    Zarubica, A.; Ranđelović, M.; Momčilović, M.; Radulović, N.; Putanov, P.

    2013-12-01

    The quality of a straight-run fuel oil can be improved if saturated n-hydrocarbons of low octane number are converted to their branched counterparts. Poor reactivity of traditional catalysts in isomerization reactions imposed the need for the development of new catalysts among which noble metal promoted acid catalysts, liquid and/or solid acid catalysts take a prominent place. Sulfated zirconia and metal promoted sulfated zirconia exhibit high activity for the isomerization of light alkanes at low temperatures. The present paper highlights the original results which indicate that the modification of sulfated zirconia by incorporation of metals (platinum and rhenium) significantly affects catalytic performances in n-hydrocarbon conversion reactions. Favourable activity/selectivity of the promoted sulfated zirconia depends on the crystal phase composition, critical crystallites sizes, platinum dispersion, total acidity and type of acidity. Attention is also paid to the recently developed solid acid catalysts used in other conversion reactions of hydrocarbons.

  4. Low aglycone content in commercial soy drink products.

    PubMed

    Nguyen, Huong Tt; Pourian, Mo; Bystrom, Birgitta; Dahlin, Ingrid; Duc, Pham Tm; Nguyen, Tuan V; von Schoultz, Bo; Hirschberg, Angelica L

    2012-01-01

    The effectiveness of soy isoflavones to prevent bone loss in postmenopausal women is controversial. While consumption of soy in Vietnam is very high, we recently reported a prevalence of osteoporosis comparable to that of many Western populations. In the present study, we analyzed the isoflavone content of soy drink products commercially available in Vietnam and Sweden, and we also compared these products to "home-made" soy drink from beans of different origin. The amounts of the bioactive aglycones (daidzein, glycitein and genistein) and their glycoside isomers were quantified by high-pressure liquid chromatography. We found that the total isoflavone content was low in all preparations, around 70-100 mg/L and of this only 10% were bioactive aglycones. Of these, the Vietnamese products contained significantly lower levels of glycitein than the products from Sweden and "home-made" soy drink preparations. The results show that consumption of several liters of soy drink per day would be needed to achieve threshold levels for a protective effect on bone. There was no significant association between total protein and isoflavone content in different products. Accurate labeling of soy drink and other products eg of aglycone and glycoside content would allow health professionals and researchers to better explore the possible benefits of soy in dietary intervention studies.

  5. Surfactant Modified/Mediated Thin-Layer Chromatographic Systems for the Analysis of Amino Acids

    PubMed Central

    Bhawani, Showkat A.; Albishri, Hassan M.; Mohamad Ibrahim, Mohamad N.; Mohammad, A.

    2013-01-01

    This review incorporates a large number of chromatographic systems modified by the surfactants. A large number of solvent systems and stationary phases are summarized in this paper. Three different kinds of surfactants (anionic, cationic, and nonionic) are used as modifiers for stationary phases as well as solvent systems. Surfactants are used at all the three different concentration levels (below, above, and at critical micelle concentration) where surfactants behave differently. Modifications of both stationary phases and solvent systems by surfactants produced a new generation of chromatographic systems. Microemulsion solvent systems are also incorporated in this paper. Microemulsion thin-layer chromatography is a new approach in the field of chromatography. PMID:24455427

  6. Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids.

    PubMed

    Sun, Lei; Chen, Dongmei; Wan, Shungang; Yu, Zebin

    2015-12-01

    Biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids at low temperatures was utilized as adsorbent to remove methylene blue (MB) from aqueous solutions. Fourier transform infrared spectroscopy analysis showed that the carboxyl group was introduced on the biochar surface. Adsorption experiment data indicated that eucalyptus saw dust modified with citric acid showed higher MB adsorption efficiency than that modified with tartaric and acetic acids. Pseudo-second-order kinetics was the most suitable model for describing MB adsorption on biochar compared with pseudo-first-order, Elovich, and intraparticle diffusion models. The calculated values of ΔG(0) and ΔH(0) indicated the spontaneous and endothermic nature of the adsorption process. MB adsorption on biochar followed the Langmuir isotherm. The maximum adsorption capacities for eucalyptus saw dust modified with citric, tartaric, and acetic acids were 178.57, 99.01, and 29.94 mg g(-1), respectively, at 35°C.

  7. The effect of supplementation of amino acids and taurine to modified KSOM culture medium on rat embryo development.

    PubMed

    Nakamura, Kazuomi; Morimoto, Kayoko; Shima, Kaoru; Yoshimura, Yuki; Kazuki, Yasuhiro; Suzuki, Osamu; Matsuda, Junichiro; Ohbayashi, Tetsuya

    2016-11-01

    The rat is widely used as a laboratory animal for research. In particular, genetically engineered rats are essential for production of animal models of several diseases. Although embryo manipulation techniques are needed to produce them, such technology for rat preimplantation embryos is not as advanced as it is for mouse embryos. One reason is that in vitro culture systems for preimplantation embryos are limited in rats. Therefore, we intended to develop a new culture system for rat preimplantation embryos focusing on supplementation of amino acids as nutrition to the culture media. First, we found that taurine, glycine, glutamate, and alanine were abundant in the oviductal fluid of Wistar rats. The profile of taurine and these three amino acids was unchanged during the estrous cycle and from Days 0 to 3 of pregnancy (Day 0; vaginal plug was confirmed). Second, we assessed the effect of phosphate and phenol red on the development of rat zygotes and confirmed that they caused two-cell block. Third, we examined the effect of changing the medium on zygote development because addition of amino acids into culture medium causes ammonium accumulation, which is detrimental to embryo development. Blastocyst formation was suppressed in cultures with no medium change (P = 0.004; decreased to approximately one-fourth of that with medium change). Fourth, we examined the effect of supplementation of these three amino acids and taurine to modified potassium simplex optimized medium (KSOM). The zygote development rates were increased by the three amino acids and taurine in a concentration-dependent manner at 48, 72, and 96 hours (P = 0.001, 0.005, and 0.009, respectively) in culture. Finally, we confirmed that blastocysts cultured in modified KSOM had the capacity to develop to full term after implantation. These results showed that not only the supply of nutrients but also removal of wastes and toxicants is important for culture of rat preimplantation embryos.

  8. The effect of modified polysialic acid based hydrogels on the adhesion and viability of primary neurons and glial cells.

    PubMed

    Haile, Yohannes; Berski, Silke; Dräger, Gerald; Nobre, Andrè; Stummeyer, Katharina; Gerardy-Schahn, Rita; Grothe, Claudia

    2008-04-01

    In this study we present the enzymatic and biological analysis of polysialic acid (polySia) based hydrogel in terms of its degradation and cytocompatibility. PolySia based hydrogel is completely degradable by endosialidase enzyme which may avoid second surgery after tissue recovery. Viability assay showed that soluble components of polySia hydrogel did not cause any toxic effect on cultured Schwann cells. Moreover, green fluorescence protein transfected neonatal and adult Schwann cells, neural stem cells and dorsal root ganglionic cells (unlabelled) were seeded on polySia hydrogel modified with poly-L-lysine (Pll), poly-L-ornithine-laminin (porn-laminin) or collagen. Water soluble tetrazolium salt assay revealed that modification of the hydrogel significantly improved cell adhesion and viability. These results infer that polySia based scaffolds in combination with cell adhesion molecules and cells genetically modified to express growth factors would potentially be promising alternative in reconstructive therapeutic strategies. PMID:18255143

  9. The effect of modified polysialic acid based hydrogels on the adhesion and viability of primary neurons and glial cells.

    PubMed

    Haile, Yohannes; Berski, Silke; Dräger, Gerald; Nobre, Andrè; Stummeyer, Katharina; Gerardy-Schahn, Rita; Grothe, Claudia

    2008-04-01

    In this study we present the enzymatic and biological analysis of polysialic acid (polySia) based hydrogel in terms of its degradation and cytocompatibility. PolySia based hydrogel is completely degradable by endosialidase enzyme which may avoid second surgery after tissue recovery. Viability assay showed that soluble components of polySia hydrogel did not cause any toxic effect on cultured Schwann cells. Moreover, green fluorescence protein transfected neonatal and adult Schwann cells, neural stem cells and dorsal root ganglionic cells (unlabelled) were seeded on polySia hydrogel modified with poly-L-lysine (Pll), poly-L-ornithine-laminin (porn-laminin) or collagen. Water soluble tetrazolium salt assay revealed that modification of the hydrogel significantly improved cell adhesion and viability. These results infer that polySia based scaffolds in combination with cell adhesion molecules and cells genetically modified to express growth factors would potentially be promising alternative in reconstructive therapeutic strategies.

  10. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid

    PubMed Central

    Wang, Wen-Cheng; Yan, Li-Jun; Shi, Fan; Niu, Xue-Liang; Huang, Guo-Lei; Zheng, Cai-Juan; Sun, Wei

    2015-01-01

    By using the hydrothermal method, carbon microspheres (CMS) were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb) on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working electrode was achieved. The catalytic reduction peak currents of the bioelectrode to trichloroacetic acid was established in the linear range of 2.0~70.0 mmol·L−1 accompanied by a detection limit of 0.30 mmol·L−1 (3σ). The modified electrode displayed favorable sensitivity, good reproducibility and stability, which suggests that CMS is promising for fabricating third-generation bioelectrochemical sensors. PMID:26703621

  11. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid.

    PubMed

    Wang, Wen-Cheng; Yan, Li-Jun; Shi, Fan; Niu, Xue-Liang; Huang, Guo-Lei; Zheng, Cai-Juan; Sun, Wei

    2015-01-01

    By using the hydrothermal method, carbon microspheres (CMS) were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb) on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working electrode was achieved. The catalytic reduction peak currents of the bioelectrode to trichloroacetic acid was established in the linear range of 2.0~70.0 mmol·L(-1) accompanied by a detection limit of 0.30 mmol·L(-1) (3σ). The modified electrode displayed favorable sensitivity, good reproducibility and stability, which suggests that CMS is promising for fabricating third-generation bioelectrochemical sensors. PMID:26703621

  12. Inhibition of non-templated nucleotide addition by DNA polymerases in primer extension using twisted intercalating nucleic acid modified templates.

    PubMed

    Güixens-Gallardo, Pedro; Hocek, Michal; Perlíková, Pavla

    2016-01-15

    A simple and elegant method for inhibition of non-templated nucleotide addition by DNA polymerases and for following DNA 3'-heterogeneity in enzymatic DNA synthesis by primer extension (PEX) is described. When template bearing ortho-twisted intercalating nucleic acid (ortho-TINA) at the 5'-end is used, non-templated nucleotide addition is reduced in both the A- and B-family DNA polymerases (KOD XL, KOD (exo-), Bst 2.0, Therminator, Deep Vent (exo-) and Taq). Formation of a single oligonucleotide product was observed with ortho-TINA modified template and KOD XL, KOD (exo-), Bst 2.0, Deep Vent (exo-) and Taq DNA polymerases. This approach can be applied to the synthesis of both unmodified and base-modified oligonucleotides. PMID:26707394

  13. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid.

    PubMed

    Wang, Wen-Cheng; Yan, Li-Jun; Shi, Fan; Niu, Xue-Liang; Huang, Guo-Lei; Zheng, Cai-Juan; Sun, Wei

    2015-12-23

    By using the hydrothermal method, carbon microspheres (CMS) were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb) on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working electrode was achieved. The catalytic reduction peak currents of the bioelectrode to trichloroacetic acid was established in the linear range of 2.0~70.0 mmol·L(-1) accompanied by a detection limit of 0.30 mmol·L(-1) (3σ). The modified electrode displayed favorable sensitivity, good reproducibility and stability, which suggests that CMS is promising for fabricating third-generation bioelectrochemical sensors.

  14. Dietary soy sphingolipids suppress tumorigenesis and gene expression in 1,2-dimethylhydrazine-treated CF1 mice and ApcMin/+ mice.

    PubMed

    Symolon, Holly; Schmelz, Eva M; Dillehay, Dirck L; Merrill, Alfred H

    2004-05-01

    Dietary supplementation with milk sphingolipids inhibits colon tumorigenesis in CF1 mice treated with a colon carcinogen [1,2-dimethylhydrazine (DMH)] and in multiple intestinal neoplasia (Min) mice, which develop intestinal tumors spontaneously. Plant sphingolipids differ structurally from those of mammals [soy glucosylceramide (GlcCer) consists predominantly of a 4,8-sphingadiene backbone and alpha-hydroxy-palmitic acid], which might affect their bioactivity. Soy GlcCer was added to the AIN-76A diet (which contains <0.005% sphingolipid) to investigate whether it would also suppress tumorigenesis in these mouse models. Soy GlcCer reduced colonic cell proliferation in the upper half of the crypts in mice treated with DMH by 50 and 56% (P < 0.05) at 0.025 and 0.1% of the diet (wt/wt), respectively, and reduced the number of aberrant colonic crypt foci (an early marker of colon carcinogenesis) by 38 and 52% (P < 0.05). Min mice fed diets containing 0.025 and 0.1% (wt/wt) soy GlcCer developed 22 and 37% fewer adenomas (P < 0.05), respectively. The effects of dietary sphingolipids on gene expression in the intestinal mucosal cells of Min mice were analyzed using Affymetrix GeneChip microarrays. Soy GlcCer affected the expression of 96 genes by > or = 2-fold in a dose-dependent manner, increasing 32 and decreasing 64. Decreases in the mRNA expression of two transcription factors associated with cancer, hypoxia-induced factor 1 alpha (HIF1 alpha) and transcription factor 4 (TCF4), were confirmed by quantitative RT-PCR. In conclusion, soy GlcCer suppressed colon tumorigenesis in two mouse models; hence, plant sphingolipids warrant further investigation as inhibitors of colon cancer. Because soy contains relatively high amounts of GlcCer, sphingolipids may partially account for the anticancer benefits attributed to soy-based foods.

  15. Electrochemical Preparation of a Molecularly Imprinted Polypyrrole-modified Pencil Graphite Electrode for Determination of Ascorbic Acid

    PubMed Central

    Özcan, Levent; Şahin, Mutlu; Şahin, Yücel

    2008-01-01

    A molecularly imprinted polymer (MIP) polypyrrole (PPy)-based film was fabricated for the determination of ascorbic acid. The film was prepared by incorporation of a template molecule (ascorbic acid) during the electropolymerization of pyrrole onto a pencil graphite electrode (PGE) in aqueous solution using a cyclic voltammetry method. The performance of the imprinted and non-imprinted (NIP) films was evaluated by differential pulse voltammetry (DPV). The effect of pH, monomer and template concentrations, electropolymerization cycles and interferents on the performance of the MIP electrode was investigated and optimized. The molecularly imprinted film exhibited a high selectivity and sensitivity toward ascorbic acid. The DPV peak current showed a linear dependence on the ascorbic acid concentration and a linear calibration curve was obtained in the range of 0.25 to 7.0 mM of ascorbic acid with a correlation coefficient of 0.9946. The detection limit (3σ) was determined as 7.4×10−5 M (S/N=3). The molecularly-imprinted polypyrrole-modified pencil graphite electrode showed a stable and reproducible response, without any influence of interferents commonly existing in pharmaceutical samples. The proposed method is simple and quick. The PPy electrodes have a low response time, good mechanical stability and are disposable simple to construct.

  16. The Contribution of the Activation Entropy to the Gas-Phase Stability of Modified Nucleic Acid Duplexes

    NASA Astrophysics Data System (ADS)

    Hari, Yvonne; Dugovič, Branislav; Istrate, Alena; Fignolé, Annabel; Leumann, Christian J.; Schürch, Stefan

    2016-07-01

    Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes.

  17. Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium.

    PubMed

    de Oliveira, Fernanda Midori; Segatelli, Mariana Gava; Tarley, César Ricardo Teixeira

    2016-02-01

    In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium(pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers.

  18. Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium.

    PubMed

    de Oliveira, Fernanda Midori; Segatelli, Mariana Gava; Tarley, César Ricardo Teixeira

    2016-02-01

    In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium(pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers. PMID:26652418

  19. Synthesis of selenomethylene-locked nucleic acid (SeLNA)-modified oligonucleotides by polymerases.

    PubMed

    Wheeler, Megan; Chardon, Antoine; Goubet, Astrid; Morihiro, Kunihiko; Tsan, Sze Yee; Edwards, Stacey L; Kodama, Tetsuya; Obika, Satoshi; Veedu, Rakesh N

    2012-11-18

    Enzymatic recognition of SeLNA nucleotides was investigated. KOD XL DNA polymerase was found to be an efficient enzyme in primer extension reactions. Polymerase chain reaction (PCR) amplification of SeLNA-modified DNA templates was also efficiently achieved by Phusion and KOD XL DNA polymerases. PMID:23042489

  20. Detection of folic acid protein in human serum using reduced graphene oxide electrodes modified by folic-acid.

    PubMed

    He, Lijie; Wang, Qian; Mandler, Daniel; Li, Musen; Boukherroub, Rabah; Szunerits, Sabine

    2016-01-15

    The detection of disease markers is considered an important step for early diagnosis of cancer. We design in this work a novel electrochemical sensing platform for the sensitive and selective detection of folic acid protein (FP). The platform is fabricated by electrophoretic deposition (EPD) of reduced graphene oxide (rGO) onto a gold electrode and post-functionalization of rGO with folic acid. Upon FP binding, a significant current decrease can be measured using differential pulse voltammetry (DPV). Using this scheme, a detection limit of 1pM is achieved. Importantly, the method also allows the detection of FP in serum being thus an appealing approach for the sensitive detection of biomarkers in clinical samples.

  1. Obesogenic diets enriched in oleic acid vs saturated fatty acids differentially modify polyunsaturated fatty acid composition in liver and visceral adipose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emerging evidence indicates that the fatty acid composition of obesogenic diets impacts physiologic outcomes. Much attention is focused on the biologic effects of consuming monounsaturated fatty acids (MUFA) vs saturated fatty acids (SFA). We investigated the extent to which an obesogenic diet high ...

  2. Thermal properties of conformationally modified arachidic acid crystals from different solvents

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Debarati; Panicker, L.; Chitra, R.; Abraham, G.; Basu, S.

    2013-02-01

    Crystals of arachidic acid (CH3(CH2)18COOH) were obtained by slow evaporation of as-obtained arachidic acid (AA) dissolved in each of the solvents: chloroform, benzene, cyclohexane and ethanol respectively. They were characterised and compared with as-obtained AA using differential scanning calorimetry (DSC), micro-Raman spectroscopy and X-ray diffraction. A pre-transition observed in DSC suggested the presence of a polymorphic phase probably due to conformational changes commonly observed in such long chain fatty acids. This was supported by reduced d-spacing values acquired from diffraction data of crystallised AA indicating tilted molecular packing.

  3. Anti-inflammatory properties of fermented soy milk with Lactococcus lactis subsp. lactis S-SU2 in murine macrophage RAW264.7 cells and DSS-induced IBD model mice.

    PubMed

    Kawahara, Miho; Nemoto, Maki; Nakata, Toru; Kondo, Saya; Takahashi, Hajime; Kimura, Bon; Kuda, Takashi

    2015-06-01

    Six lactic acid bacteria strains (four Lactobacillus plantarum strains and one each of Lactococcus lactis subsp. lactis and Pediococcus pentosaceus) have been isolated and shown to possess anti-oxidant activity. In this study, we determined their acid, bile, salt resistance, and adhesion activity on human enterocyte-like HT-29-Luc and Caco-2 cells. An isolate Lc. lactis S-SU2 showed highest bile resistance and adhesion activity compared to type strains. S-SU2 could ferment both 10% skimmed milk and soy milk while the type strain could not ferment soy milk. Soy milk fermented with S-SU2 showed an increased nitric oxide (NO) secretion in the mouse macrophage RAW264.7 cells without bacterial lipopolysaccharide (LPS). Furthermore, the inhibitory effects of the fermented soy milk on Escherichia coli O111 LPS-induced NO secretion were higher than those of fresh soy milk. Inflammatory bowel disease (IBD) was induced in mice fed either 5% (w/v) dextran sodium sulfate (DSS) in drinking water or 50% soy milk in drinking water. Shortening of colon length, breaking of epithelial cells, lowering liver and thymus weights, and enlargement of spleen are some of the characteristics observed in the IBD, which were prevented by the use of soy milk fermented with Lc. lactis S-SU2.

  4. Anti-inflammatory properties of fermented soy milk with Lactococcus lactis subsp. lactis S-SU2 in murine macrophage RAW264.7 cells and DSS-induced IBD model mice.

    PubMed

    Kawahara, Miho; Nemoto, Maki; Nakata, Toru; Kondo, Saya; Takahashi, Hajime; Kimura, Bon; Kuda, Takashi

    2015-06-01

    Six lactic acid bacteria strains (four Lactobacillus plantarum strains and one each of Lactococcus lactis subsp. lactis and Pediococcus pentosaceus) have been isolated and shown to possess anti-oxidant activity. In this study, we determined their acid, bile, salt resistance, and adhesion activity on human enterocyte-like HT-29-Luc and Caco-2 cells. An isolate Lc. lactis S-SU2 showed highest bile resistance and adhesion activity compared to type strains. S-SU2 could ferment both 10% skimmed milk and soy milk while the type strain could not ferment soy milk. Soy milk fermented with S-SU2 showed an increased nitric oxide (NO) secretion in the mouse macrophage RAW264.7 cells without bacterial lipopolysaccharide (LPS). Furthermore, the inhibitory effects of the fermented soy milk on Escherichia coli O111 LPS-induced NO secretion were higher than those of fresh soy milk. Inflammatory bowel disease (IBD) was induced in mice fed either 5% (w/v) dextran sodium sulfate (DSS) in drinking water or 50% soy milk in drinking water. Shortening of colon length, breaking of epithelial cells, lowering liver and thymus weights, and enlargement of spleen are some of the characteristics observed in the IBD, which were prevented by the use of soy milk fermented with Lc. lactis S-SU2. PMID:25887264

  5. Is soy consumption good or bad for the breast?

    PubMed

    Hilakivi-Clarke, Leena; Andrade, Juan E; Helferich, William

    2010-12-01

    Genistein in soy activates estrogen receptor (ER)-α and ERβ and acts as an estradiol in multiple target tissues. Because estrogens increase breast cancer risk and genistein promotes the growth of ER-positive human breast cancer cells, it has remained unclear whether this isoflavone or soy is safe. Results reviewed here suggest that women consuming moderate amounts of soy throughout their life have lower breast cancer risk than women who do not consume soy; however, this protective effect may originate from soy intake early in life. We also review the literature regarding potential risks genistein poses for breast cancer survivors. Findings obtained in 2 recent human studies show that a moderate consumption of diet containing this isoflavone does not increase the risk of breast cancer recurrence in Western women, and Asian breast cancer survivors exhibit better prognosis if they continue consuming a soy diet. The mechanisms explaining the breast cancer risk-reducing effect of early soy intake or the protective effect in Asian breast cancer survivors remain to be established. We propose that the reduction in risk involves epigenetic changes that result in alterations in the expression of genes that regulate mammary epithelial cell fate, i.e. cell proliferation and differentiation. Lifetime soy consumption at a moderate level may prevent breast cancer recurrence through mechanisms that change the biology of tumors; e.g. women who consumed soy during childhood develop breast cancers that express significantly reduced Human epidermal growth factor receptor 2 levels. More research is needed to understand why soy intake during early life may both reduce breast cancer risk and risk of recurrence.

  6. Soybean Meal and Soy Protein Concentrate in Early Diet Elicit Different Nutritional Programming Effects on Juvenile Zebrafish.

    PubMed

    Perera, Erick; Yúfera, Manuel

    2016-02-01

    There is now strong evidence that early nutrition plays an important role in shaping later physiology. We assessed here whether soy protein concentrate (SPC) or soybean meal (SBM) in early diet would modify zebrafish responses to these products in later life. We fed zebrafish larvae with SPC-, SBM-, or a control-diet for the first 3 days of feeding and then grew all larvae on the control diet up to juveniles. Finally, we assessed the expression in juveniles of genes involved in inflammation/immunity, the breakdown of extracellular matrix, luminal digestion, and intestinal nutrient absorption/trafficking. First feeding SBM had wider, stronger, and more persistent effects on gene expression with respect to SPC. Juveniles fed with SPC at first feeding were more prone to inflammation after refeeding with SPC than fish that never experienced SPC before. Conversely, zebrafish that faced SBM at first feeding were later less responsive to refeeding with SBM through inflammation and had higher expression of markers of peptide absorption and fatty acid transport. Results indicate that some features of inflammation/remodeling, presumably at the intestine, and nutrient absorption/transport in fish can be programmed by early nutrition. These findings sustain the rationale of using zebrafish for depicting molecular mechanisms involved in nutritional programming.

  7. The Computer Bulletin Board. Modified Gran Plots of Very Weak Acids on a Spreadsheet.

    ERIC Educational Resources Information Center

    Chau, F. T.; And Others

    1990-01-01

    Presented are two applications of computer technology to chemistry instruction: the use of a spreadsheet program to analyze acid-base titration curves and the use of database software to catalog stockroom inventories. (CW)

  8. Determination of boron in blood, urine and bone by electrothermal atomic absorption spectrometry using zirconium and citric acid as modifiers

    NASA Astrophysics Data System (ADS)

    Burguera, Marcela; Burguera, José Luis; Rondón, Carlos; Carrero, Pablo

    2001-10-01

    A comparative study of various potential chemical modifiers (Au, Ba, Be, Ca, Cr, Ir, La, Lu, Mg, Ni, Pd, Pt, Rh, Ru, Sr, V, W, and Zr), and different 'coating' treatments (Zr, W, and W+Rh) of the pyrolytic graphite platform of a longitudinally heated graphite tube atomizer for thermal stabilization and determination of boron was undertaken. The use of Au, Ba, Be, Cr, Ir, Pt, Rh, Ru, Sr and V as modifiers, and of W+Rh coating produced erratic, and noisy signals, while the addition of La, Ni and Pd as modifiers, and the W coating had positive effects, but with too high background absorption signals, rendering their use unsuitable for boron determination even in aqueous solutions. The atomic absorption signal for boron was increased and stabilized when the platform was coated with Zr, and by the addition of Ca, Mg, Lu, W or Zr as modifiers. Only the addition of 10 μg of Zr as a modifier onto Zr-treated platforms allowed the use of a higher pyrolysis temperature without analyte losses. The memory effect was minimized by incorporating a cleaning step with 10 μl of 50 g l -1 NH 4F HF after every three boron measurements. The addition of 10 μl of 15 g l -1 citric acid together with Zr onto Zr-treated platforms significantly improved the characteristic mass to m0=282 pg, which is adequate for biological samples such as urine and bone, although the sensitivity was still inadequate for the determination of boron in blood of subjects without supplementary diet. Under optimized conditions, the detection limit (3σ) was 60 μg l -1. The amount of boron found in whole blood, urine and femur head samples from patients with osteoporosis was in agreement with values previously reported in the literature.

  9. Construction of an optical sensor for the determination of ascorbic acid using ionic liquids as modifier.

    PubMed

    Absalan, Ghodratollah; Arabi, Maryam; Tashkhourian, Javad

    2012-01-01

    An optode was designed for an indirect determination of ascorbic acid by using neocuproine, which has been coated on transparent triacetylcellulose film as a membrane. The proposed method is based on the oxidation of ascorbic acid to dehydroascorbic acid with the Cu(II) and neocuproine reagent. The increase in the absorbance value of the optode at the maximum wavelength of 455 nm was related to the ascorbic acid concentration in aqueous samples. The sensitivity of the method was improved by using room-temperature ionic liquid, [C(8)MIM][PF(6)]. The linear dynamic range for the determination of ascorbic acid was 7.4 × 10(-5) - 3.5 × 10(-3) mol L(-1) with a limit of detection of 2.2 × 10(-5) mol L(-1) (n = 10) and a response time range of 6.0 - 8.0 min. The optode was successfully applied for the determination of ascorbic acid in orange juice.

  10. Decolourization performance in C. I. Vat Yellow 1 aqueous suspension using hydrophobically modified poly(acrylic acid).

    PubMed

    Chen, J; Chen, M C

    2011-01-01

    A series of hydrophobically modified poly(acrylic acid) (PAA), poly(2-phenoxyethyl acrylate-co-acrylic acid) (poly(PHEA-co-AA)), have been synthesized and characterized by Ubbelohde type viscometry, Nuclear Magnetic Resonance (1H NMR) spectrometry and Differential Scanning Calorimetry (DSC). The shear thinning Non-Newtonian fluid behavior of their aqueous solution and the dependence on pH and hydrophobic group contents were found through apparent viscosity and rheological property investigating. Decolourization performance in C. I. Vat Yellow 1 aqueous suspension was evaluated through visible absorbance data. Decolourization performance of hydrophobically associated polymer indicates two times better than that of PAA. The quantitative relationship was mainly studied. PMID:21866762

  11. Formation and catalytic activity of high molecular weight soluble polymers produced by heating amino acids in a modified sea medium

    NASA Astrophysics Data System (ADS)

    Okihana, Hiroyuki

    1982-06-01

    Eighteen protein amino acids with milk casein composition were heated in a modified sea medium. Marigranules were formed in the precipitates and soluble polymers were formed in the supernatant. Time course of the reaction (ultraviolet spectra, the concentration of metal ions, and the concentration of amino acids in the supernatant) were measured. The time course of the formation of the soluble polymers was also studied by Bio-Gel P-2 column. High molecular weight soluble polymers (HMWSP) were separated from low molecular weight ones by dialysis. It was shown that these polymers catalyzed the dehydrogenation of NADH. These polymers also catalyzed the coupled reaction between dehydrogenation of NADH and reduction of resazurin. This coupled reaction was accelerated by the light.

  12. Ultraviolet-B radiation modifies the quantitative and qualitative profile of flavonoids and amino acids in grape berries.

    PubMed

    Martínez-Lüscher, J; Torres, N; Hilbert, G; Richard, T; Sánchez-Díaz, M; Delrot, S; Aguirreolea, J; Pascual, I; Gomès, E

    2014-06-01

    Grapevine cv. Tempranillo fruit-bearing cuttings were exposed to supplemental ultraviolet-B (UV-B) radiation under controlled conditions, in order to study its effect on grape traits, ripening, amino acids and flavonoid profile. The plants were exposed to two doses of UV-B biologically effective (5.98 and 9.66kJm(-2)d(-1)), applied either from fruit set to ripeness or from the onset of veraison to ripeness. A 0kJm(-2)d(-1) treatment was included as a control. UV-B did not significantly modify grape berry size, but increased the relative mass of berry skin. Time to reach ripeness was not affected by UV-B, which may explain the lack of changes in technological maturity. The concentration of must extractable anthocyanins, colour density and skin flavonols were enhanced by UV-B, especially in plants exposed from fruit set. The quantitative and qualitative profile of grape skin flavonols were modified by UV-B radiation. Monosubstituted flavonols relative abundance increased proportionally to the accumulated UV-B doses. Furthermore, trisubstituted forms, which where predominant in non-exposed berries, were less abundant as UV-B exposure increased. Although total free amino acid content remained unaffected by the treatments, the increased levels of gamma-aminobutyric acid (GABA), as well as the decrease in threonine, isoleucine, methionine, serine and glycine, revealed a potential influence of UV-B on the GABA-mediated signalling and amino acid metabolism. UV-B had an overall positive impact on grape berry composition. PMID:24713570

  13. Modified titanium foil's surface by high temperature carbon sintering method as the substrate for bipolar lead-acid battery

    NASA Astrophysics Data System (ADS)

    Lang, Xiaoshi; Wang, Dianlong; Zhu, Junsheng

    2014-12-01

    Titanium foil can be a type of ideal material as the substrate for bipolar lead-acid battery. However, it can't be directly used because it can be oxidized in the high voltage and strong oxidizing conditions. In this paper, we coat the titanium suboxide on the titanium foil surface by means of the high temperature carbon sintering method for the improvement of corrosion resistance of titanium metal and use it as the substrate to bipolar lead-acid battery to study its effect on the battery performances. Modified titanium foils are characterized by SEM, XRD, corrosion resistance test and electronic conductivity test. The electrochemical properties of the bipolar lead-acid battery are investigated by constant current charge/discharge method. The results demonstrate that the titanium foil carbon-sintered at 800 °C for 2 h has the most excellent chemical stability and electronic conductivity. Initial specific capacities of positive active material of bipolar lead-acid battery with modified titanium as the substrate at 0.25C, 0.5C, 1C and 2C discharge rate are 99.29 mAh g-1, 88.93 mAh g-1, 77.54 mAh g-1, and 65.41 mAh g-1. After 50 cycles, the specific capacity of positive active material at 0.5C is 81.36 mAh g-1 and after 100 cycles, the specific capacity at 1C is 61.92 mAh g-1.

  14. BisGMA/TEGDMA dental nanocomposites containing glyoxylic acid modified high-aspect ratio hydroxyapatite nanofibers with enhanced dispersion

    PubMed Central

    Chen, Liang; Xu, Changqi; Wang, Yong; Shi, Jian; Yu, Qingsong

    2012-01-01

    The purpose of this research was to investigate the influence of the glyoxylic acid (GA) modification of hydroxyapatite (HAP) nanofibers on their dispersion in bisphenol A glycidyl methacrylate (BisGMA)/triethylene glycol dimethacrylate (TEGDMA) dental composites and also investigate the mechanical properties, water absorption, and water solubility of the resulting dental resins and composites. Scanning/Transmission electron microscopy (STEM) images showed that microsized HAP nanofiber bundles could be effectively broken down to individual HAP nanofibers with an average length of ~15 μm after the surface modification process. Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis (TGA) characterization confirmed glyoxylic acid was chemically grafted on the HAP nanofiber surface, hypothetically by reacting with the amine group on HAP nanofiber surface. The enhanced dispersion of HAP nanofibers in dental matrix led to increased biaxial flexural strength (BFS) compared with the corresponding dental resins and composites filled with untreated HAP nanofibers. In addition, impregnation of small mass fractions of the glyoxylic acid modified HAP nanofibers into the BisGMA/TEGDMA dental resins (5wt%, 10wt%) or composites (2wt%, 3wt%) could also substantially improve the BFS in comparison with the controls(pure resins or dental composites filled with silica particles alone). Larger mass fractions could not further increase the mechanical property or even degrade the BFS values. Water behavior testing results indicated that the addition of glyoxylic acid modified HAP nanofibers resulted in higher water absorption and water solubility values which is not preferred for clinical application. In summary, well dispersed HAP nanofibers and their dental composites with enhanced mechanical property have been successfully fabricated but the water absorption and water solubility of such dental composites need to be

  15. Saponins from soy and chickpea: stability during beadmaking and in vitro bioaccessibility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the stability of saponins during the making and simulated digestion of soy and soy-chickpea breads and the bioaccessibility of saponins in digested breads. Recovery of saponins in soy bread exceeded that in soy-chickpea breads, and recovery of type A and B saponins was great...

  16. Effect of processing, fermentation, and aging treatment to content and profile of phenolic compounds in soybean seed, soy curd and soy paste.

    PubMed

    Chung, Ill-Min; Seo, Su-Hyun; Ahn, Joung-Kuk; Kim, Seung-Hyun

    2011-08-01

    This study reports the effect of processing, fermentation, and aging treatment on the content and profile of 43 phenolic compounds in soybean seeds, soy curd (tofu), and soy paste (ChungGukJang, CGJ). Mean content of phenolic compounds was ranked as soybean seed=CGJ aged for 3days (CGJ-3D)=CGJ aged for 6days (CGJ-6D)>tofu (P<0.0001). Low percent recovery (47.1%) of phenolic compounds in tofu was due to heating (boiling), leaching in water, filtering, coagulation, and whey exclusion during tofu making. Aging period did not affect the mean contents of 43 phenolic compounds in the CGJ, whereas it affected the phenolic acids contents in the CGJ (P<0.01). Benzoic, ferulic, chlorogenic, gentisic, protocatechuic, or β-Resorculic acid was major phenolic compounds in soybean seeds, tofu, CGJ-3D, or CGJ-6D. Especially, the CGJ-3D contained large amounts of isoflavone aglucons and phenolic acids compared to soybean seeds or tofu.

  17. Electrochemistry of poly(vinylferrocene) modified electrodes in aqueous acidic media

    NASA Astrophysics Data System (ADS)

    Issa, Touma B.; Singh, Pritam; Baker, Murray V.

    A cyclic voltammetric study of the electrochemistry and chemical stability of the poly(vinylferrocene) (PVFc) redox couple, coated on a gold substrate, in aqueous solutions of H 2SO 4, HClO 4 and HCl was carried out. It was found that the anodic peak potential ( Epa) did not depend on the acid concentration in the range (1.0 × 10 -2 to 1.0 × 10 -7 mol L -1). However, the Epa values shifted linearly to less positive potentials when investigated in more concentrated acid solutions in the range 1-5 mol L -1. The slope of the Epa versus acid concentration graph was found to be in the order H 2SO 4 > HCl > HClO 4. In this regard PVFc behaved very similar to 1,1'-bis(11-mercaptoundecyl)ferrocene (Fc(C 11SH) 2) except for its chemical stability. In H 2SO 4 media the PVFc was found to be much less stable than 1,1'-Fc(C 11SH) 2. The dependence of Epa on acid concentration could be used to monitor state of charge of lead-acid batteries. However, for this application Fc(C 11SH) 2 would be a better choice because of its superior chemical stability.

  18. Polydivinylferrocene surface modified electrode for measuring state-of-charge of lead-acid battery

    NASA Astrophysics Data System (ADS)

    Lee, Todd; Singh, Pritam; Baker, Murray V.; Issa, Touma B.

    This paper outlines an investigation of the electrochemical behaviour of polymeric divinylferrocene (PDVF) produced by direct polymerisation of divinylferrocene (DVF) monomer on a glassy carbon substrate. The findings indicate that PDVF undergoes reversible reduction/oxidation in neutral and acidic aqueous media containing perchlorate (ClO 4 -) and sulfhate (SO 4 2-). The anodic peak potential of the PDVF shifts linearly to less positive potentials as the sulfuric acid (H 2SO 4) concentration is increased from 1 to 5 M. The polymer film strongly adheres to the glassy carbon surface and is electrochemically stable when subjected to repeated voltammetric cycling in the potential range of -0.2 to +0.8 V vs. Ag|AgCl. The potential of the partially oxidized film of PVDF on a glassy carbon substrate against a Ag|AgCl/KCl reference electrode in sulfuric acid solution is stable, reproducible and varies linearly with the acid concentration in the range of 1-5 M. This observation may be suitable for potentiometrically measuring the state-of-charge of lead-acid batteries.

  19. Electrocatalytic simultaneous determination of ascorbic acid, uric acid and L-Cysteine in real samples using quercetin silver nanoparticles-graphene nanosheets modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Zare, Hamid R.; Jahangiri-Dehaghani, Fahime; Shekari, Zahra; Benvidi, Ali

    2016-07-01

    By immobilizing of quercetin at the surface of a glassy carbon electrode modified with silver nanoparticles and graphene nanosheets (Q-AgNPs-GNs-GCE) a new sensor has been fabricated. The cyclic voltammogram of Q-AgNPs-GNs-GCE shows a stable redox couple with surface confined characteristics. Q-AgNPs-GNs-GCE demonstrated a high catalytic activity for L-Cysteine (L-Cys) oxidation. Results indicated that L-Cys peak potential at Q-AgNPs-GNs-GCE shifted to less positive values compared to GNs-GCE or AgNPs-GCE. Also, the kinetic parameters such as the electron transfer coefficient,, and the heterogeneous electron transfer rate constant, k‧, for the oxidation of L-Cys at the Q-AgNPs-GNs-GCE surface were estimated. In differential pulse voltammetric determination, the detection limit of L-Cys was obtained 0.28 μM, and the calibration plots were linear within two ranges of 0.9-12.4 μM and 12.4-538.5 μM of L-Cys. Also, the proposed modified electrode is used for the simultaneous determinations of ascorbic acid (AA), uric acid (UA), and L-Cys. Finally, this study has demonstrated the practical analytical utility of the sensor for determination of AA in vitamin C tablet, L-Cys in a milk sample and UA in a human urine sample.

  20. Electroanalysis and simultaneous determination of 6-thioguanine in the presence of uric acid and folic acid using a modified carbon nanotube paste electrode.

    PubMed

    Beitollahi, Hadi; Raoof, Jahan-Bakhsh; Hosseinzadeh, Rahman

    2011-01-01

    The present work describes the preparation and characterization of a carbon nanotube paste electrode modified with 2,7-bis(ferrocenyl ethyl)fluoren-9-one (2,7-BF). This electrode showed an efficient catalytic activity for the electro-oxidation of 6-thioguanine (6-TG), which leads to lowering 6-TG overpotential by more than 610 mV. Also, the values of catalytic rate constant (k = 2.7 × 10(3) mol(-1) L s(-1)), and diffusion coefficient (D = 2.7 × 10(-5) cm(2) s) were calculated. In 0.1 M phosphate buffer solution of pH 7.0, the oxidation current increased linearly with two concentration intervals of 6-TG, one is 0.06 to 10.0 µmol L(-1) and the other is 10.0 to 160.0 µmol L(-1). The detection limit (3σ) obtained by differential pulse voltammetry (DPV) was 22.0 nmol L(-1). DPV was used for simultaneous determination of 6-TG, uric acid (UA) and folic acid (FA) at the modified electrode, and for quantification of 6-TG, UA and FA in some real samples by the standard addition method.

  1. Fast and highly-efficient removal of methylene blue from aqueous solution by poly(styrenesulfonic acid-co-maleic acid)-sodium-modified magnetic colloidal nanocrystal clusters

    NASA Astrophysics Data System (ADS)

    Song, Yu-Bei; Lv, Shao-Nan; Cheng, Chang-Jing; Ni, Guo-Li; Xie, Xiao-Wa; Huang, Wei; Zhao, Zhi-Gang

    2015-01-01

    Magnetic colloidal nanocrystal clusters (MCNCs) modified with different amounts of poly(4-styrenesulfonic acid-co-maleic acid) sodium (PSSMA) have been prepared through simple one-step solvothermal method for removal of methylene blue (MB) from aqueous solution. The prepared MCNCs are characterized by Fourier transform infrared (FT-IR) spectra, scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), nitrogen adsorption-desorption technique and dynamic light scattering (DLS). Moreover, effects of the solution pH, contact time, adsorbent dosage, ionic strength and initial dye concentration on MB adsorption onto the MCNCs are systematically investigated. The PSSMA-modified MCNCs show fast and highly-efficient MB removal capacity, which dramatically depends on the immobilization amounts of PSSMA, solution pH and adsorbent dosage. Their adsorption kinetics and isotherms exhibit that the kinetics and equilibrium adsorptions can be well-described by pseudo-second-order kinetic and Langmuir model, respectively. These magnetic nanocomposites, with high separation efficiency, low production cost and recyclable property, are promising as functional adsorbents for efficient removal of cationic organic pollutants from aqueous solution.

  2. Optimization of modified carbon paste electrode with multiwalled carbon nanotube/ionic liquid/cauliflower-like gold nanostructures for simultaneous determination of ascorbic acid, dopamine and uric acid.

    PubMed

    Afraz, Ahmadreza; Rafati, Amir Abbas; Najafi, Mojgan

    2014-11-01

    We describe the modification of a carbon paste electrode (CPE) with multiwalled carbon nanotubes (MWCNTs) and an ionic liquid (IL). Electrochemical studies by using a D-optimal mixture design in Design-Expert software revealed an optimized composition of 60% graphite, 14.2% paraffin, 10.8% MWCNT and 15% IL. The optimal modified CPE shows good electrochemical properties that are well matched with model prediction parameters. In the next step, the optimized CPE was modified with gold nanostructures by applying a double-pulse electrochemical technique. The resulting electrode was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and electrochemical impedance spectroscopy. It gives three sharp and well-separated oxidation peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA). The sensor enables simultaneous determination of AA, DA and UA with linear responses from 0.3 to 285, 0.08 to 200, and 0.1 to 450 μM, respectively, and with 120, 30 and 30 nM detection limits (at an S/N of 3). The method was successfully applied to the determination of AA, DA, and UA in spiked samples of human serum and urine.

  3. Fabrication of folic acid sensor based on the Cu doped SnO2 nanoparticles modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Lavanya, N.; Radhakrishnan, S.; Sudhan, N.; Sekar, C.; Leonardi, S. G.; Cannilla, C.; Neri, G.

    2014-07-01

    A novel folic acid biosensor has been fabricated using Cu doped SnO2 nanoparticles (NPs) synthesized by a simple microwave irradiation method. Powder XRD and TEM studies confirmed that both the pure and Cu doped SnO2 (Cu: 0, 10, 20wt%) crystallized in tetragonal rutile-type structure with spherical morphology. The average crystallite size of pure SnO2 was estimated to be around 16 nm. Upon doping, the crystallite sizes decreased to 9 nm and 5 nm for 10 and 20wt% Cu doped SnO2 respectively. XPS studies confirmed the electronic state of Sn and Cu to be 4+ and 2+ respectively. Cu (20wt%) doped SnO2 NPs are proved to be a good sensing element for the determination of folic acid (FA). Cu-SnO2 NPs (20wt%) modified glassy carbon electrode (GCE) exhibited the lowest detection limit of 0.024 nM over a wide folic acid concentration range of 1.0 × 10-10 to 6.7 × 10-5 M at physiological pH of 7.0. The fabricated sensor is highly selective towards the determination of FA even in the presence of a 100 fold excess of common interferent ascorbic acid. The sensor proved to be useful for the estimation of FA content in pharmaceutical sample with satisfactory recovery.

  4. Effective Enhancement of Hypoglycemic Effect of Insulin by Liver-Targeted Nanoparticles Containing Cholic Acid-Modified Chitosan Derivative.

    PubMed

    Zhang, Zhe; Cai, Huanxin; Liu, Zhijia; Yao, Ping

    2016-07-01

    Liver is responsible for the balance of blood glucose level. In this study, cholic acid and N-(2-hydroxy)-propyl-3-trimethylammonium chloride modified chitosan (HTCC-CA) was used as a liver-targeted vehicle for insulin delivery. A novel approach was developed to effectively load insulin by mixing insulin and HTCC-CA in 50% ethanol and water mixed solvent at pH 2 and then dialysis against pH 7.4 phosphate buffer subsequently against water. The insulin-loaded HTCC-CA nanoparticles have an average diameter of 86 nm and insulin loading efficiency of 98.7%. Due to random distribution of the hydrophobic cholic acid groups in HTCC-CA, some of the cholic acid groups located on the nanoparticle surface. Compared with free insulin, the nanoparticles increased in vitro cellular uptake of insulin to 466%, and the nanoparticles accumulated in liver for more time after subcutaneous injection into mice. The therapy for diabetic rats displayed that the nanoparticles increased the pharmacological bioavailability of insulin to 475% relative to free insulin, and the nanoparticles could maintain the hypoglycemic effect for more than 24 h. This study demonstrates that the nanoparticles with cholic acid groups on their surface possess liver-targeted property and biocompatible insulin-loaded HTCC-CA nanoparticles can effectively enhance the hypoglycemic effect of insulin. PMID:27266268

  5. Diamond nanowires modified with poly[3-(pyrrolyl)carboxylic acid] for the immobilization of histidine-tagged peptides.

    PubMed

    Subramanian, Palaniappan; Mazurenko, Ievgen; Zaitsev, Vladimir; Coffinier, Yannick; Boukherroub, Rabah; Szunerits, Sabine

    2014-09-01

    Coating boron-doped diamond nanowires (BDD NWs) with a conducting polymer, poly[3-(pyrrolyl)carboxylic acid], has been reported. Polymer coating was achieved through electropolymerization of 3-(pyrrolyl)carboxylic acid at the electrode interface by amperometrically biasing the BDD NWs interface until a predefined charge has passed. The poly[3-(pyrrolyl)carboxylic acid] modified BDD NWs (PPA-BDD NWs) were characterized by scanning electron microscopy (SEM) and cyclic voltammetry (CV). Using a deposition charge of 11 mC cm(-2) resulted in a thin polymer film deposition. The availability of the carboxylic groups of the polymer coated BDD NWs electrode was demonstrated through copper ion (Cu(2+)) chelation. The resulting complex was successfully used for the site-specific immobilization of histidine-tagged peptides. The binding process was followed by electrochemical impedance spectroscopy (EIS). The Cu(2+)-chelated PPA-BDD NWs interface showed peptide loading capability comparable to those of commercially available interfaces and can be easily regenerated several times using ethylenediaminetetraacetic acid (EDTA).

  6. Diamond nanowires modified with poly[3-(pyrrolyl)carboxylic acid] for the immobilization of histidine-tagged peptides.

    PubMed

    Subramanian, Palaniappan; Mazurenko, Ievgen; Zaitsev, Vladimir; Coffinier, Yannick; Boukherroub, Rabah; Szunerits, Sabine

    2014-09-01

    Coating boron-doped diamond nanowires (BDD NWs) with a conducting polymer, poly[3-(pyrrolyl)carboxylic acid], has been reported. Polymer coating was achieved through electropolymerization of 3-(pyrrolyl)carboxylic acid at the electrode interface by amperometrically biasing the BDD NWs interface until a predefined charge has passed. The poly[3-(pyrrolyl)carboxylic acid] modified BDD NWs (PPA-BDD NWs) were characterized by scanning electron microscopy (SEM) and cyclic voltammetry (CV). Using a deposition charge of 11 mC cm(-2) resulted in a thin polymer film deposition. The availability of the carboxylic groups of the polymer coated BDD NWs electrode was demonstrated through copper ion (Cu(2+)) chelation. The resulting complex was successfully used for the site-specific immobilization of histidine-tagged peptides. The binding process was followed by electrochemical impedance spectroscopy (EIS). The Cu(2+)-chelated PPA-BDD NWs interface showed peptide loading capability comparable to those of commercially available interfaces and can be easily regenerated several times using ethylenediaminetetraacetic acid (EDTA). PMID:25009833

  7. Ion-Exclusion High-Performance Liquid Chromatography of Aliphatic Organic Acids Using a Surfactant-Modified C18 Column.

    PubMed

    Fasciano, Jennifer M; Mansour, Fotouh R; Danielson, Neil D

    2016-07-01

    Ion exclusion chromatography (IELC) of short chain aliphatic carboxylic acids is normally done using a cation exchange column under standard HPLC conditions but not in the ultra-HPLC (UHPLC) mode. A novel IELC method for the separation of this class of carboxylic acids by either HPLC or UHPLC utilizing a C18 column dynamically modified with sodium dodecyl sulfate has been developed. The sample capacity is estimated to be near 10 mM for a 20 µL injection or 0.2 µmol using a 150 × 4.6 mm column. The optimum mobile phase determined for three standard mixtures of organic acids is 1.84 mM sulfuric acid at pH 2.43 and a flow rate of 0.6 mL/min. Under optimized conditions, a HPLC separation of four aliphatic carboxylic acids such as tartaric, malonic, lactic and acetic can be achieved in under 4 min and in <2 min in the UHPLC mode at 2.1 mL/min. A variety of fruit juice and soft drink samples are analyzed. Stability of the column as measured by the retention order of maleic and fumaric acid is estimated to be ∼4,000 column volumes using HPLC and 600 by UHPLC. Reproducible chromatograms are achieved over at least a 2-month period. This study shows that the utility of a C18 column can be easily extended when needed to IELC under either standard or UHPLC conditions. PMID:27006111

  8. Characterization and surface properties of amino-acid-modified carbonate-containing hydroxyapatite particles.

    PubMed

    Jack, Kevin S; Vizcarra, Timothy G; Trau, Matt

    2007-11-20

    The surface properties (nature, strength, and stability of interaction of functional groups) and bulk morphologies of a series of amino-acid-functionalized carbonate-containing hydroxyapatite (CHA) particles were investigated. It was found that the amino acids were both occluded in and presented on the surface of the CHA particles. Furthermore, their presence enhanced particle colloidal stability by retardation of Ostwald ripening and in some cases increasing the magnitude of the zeta-potential. Measurements of adsorption isotherms and zeta-potential titrations have shown that the amino-acid-surface interactions are weak and reversible at pH 9 and consistent with a model in which the carboxyl terminus interacts with calcium ions in the CHA lattice. Complexities in adsorption behavior are discussed in terms of different adsorption mechanisms that may be prevalent at different pHs.

  9. SERS spectrum of gallic acid obtained from a modified silver colloid.

    PubMed

    Garrido, C; Diaz-Fleming, G; Campos-Vallette, M M

    2016-06-15

    Two different crystals of the gallic acid were microscopically separated from a p.a. commercial product. The Raman spectra analysis allowed distinguishing monomeric and dimeric structures. The vibrational wave numbers were computed using DFT quantum chemical calculations. The data obtained from wave number calculations are used to assign vibrational bands obtained in the Raman spectrum. The dimer, characterized as ellagic acid, involves the carboxyl and hydroxyl moieties. The Raman spectrum in water solution of each species is dominated by the monomeric form. A low negatively charged Ag colloid allowed obtain to the best of our knowledge, the first surface enhanced Raman scattering (SERS) spectrum of the gallic acid. The possible electrophilic attacking sites of the title molecule are identified using MEP surface plot study and the orientation of the analyte on the metal surface is proposed tilted to the surface.

  10. SERS spectrum of gallic acid obtained from a modified silver colloid

    NASA Astrophysics Data System (ADS)

    Garrido, C.; Diaz-Fleming, G.; Campos-Vallette, M. M.

    2016-06-01

    Two different crystals of the gallic acid were microscopically separated from a p.a. commercial product. The Raman spectra analysis allowed distinguishing monomeric and dimeric structures. The vibrational wave numbers were computed using DFT quantum chemical calculations. The data obtained from wave number calculations are used to assign vibrational bands obtained in the Raman spectrum. The dimer, characterized as ellagic acid, involves the carboxyl and hydroxyl moieties. The Raman spectrum in water solution of each species is dominated by the monomeric form. A low negatively charged Ag colloid allowed obtain to the best of our knowledge, the first surface enhanced Raman scattering (SERS) spectrum of the gallic acid. The possible electrophilic attacking sites of the title molecule are identified using MEP surface plot study and the orientation of the analyte on the metal surface is proposed tilted to the surface.

  11. SERS spectrum of gallic acid obtained from a modified silver colloid.

    PubMed

    Garrido, C; Diaz-Fleming, G; Campos-Vallette, M M

    2016-06-15

    Two different crystals of the gallic acid were microscopically separated from a p.a. commercial product. The Raman spectra analysis allowed distinguishing monomeric and dimeric structures. The vibrational wave numbers were computed using DFT quantum chemical calculations. The data obtained from wave number calculations are used to assign vibrational bands obtained in the Raman spectrum. The dimer, characterized as ellagic acid, involves the carboxyl and hydroxyl moieties. The Raman spectrum in water solution of each species is dominated by the monomeric form. A low negatively charged Ag colloid allowed obtain to the best of our knowledge, the first surface enhanced Raman scattering (SERS) spectrum of the gallic acid. The possible electrophilic attacking sites of the title molecule are identified using MEP surface plot study and the orientation of the analyte on the metal surface is proposed tilted to the surface. PMID:27037765

  12. Dietary counseling and probiotic supplementation during pregnancy modify placental phospholipid fatty acids.

    PubMed

    Kaplas, Niina; Isolauri, Erika; Lampi, Anna-Maija; Ojala, Tiina; Laitinen, Kirsi

    2007-09-01

    It has previously been shown that maternal nutrition affects the fetal environment, with consequences for the infant's health. From early pregnancy onwards participants here received a combination of dietary counseling and probiotics (Lactobacillus GG and Bifidobacterium lactis Bb12; n = 10), dietary counseling with placebo (n = 12), or placebo alone (n = 8). The major differences in placental fatty acids were attributable to a higher concentration of n-3 polyunsaturated fatty acids in both intervention arms than in controls. Further, dietary counseling with probiotics resulted in higher concentrations of linoleic (18:2n-6) and dihomo-gamma-linolenic acids (20:3n-6) compared with dietary counseling with placebo or controls. PMID:17647038

  13. Phosphomolybdic acid functionalized graphene loading copper nanoparticles modified electrodes for non-enzymatic electrochemical sensing of glucose.

    PubMed

    Xu, Jiaoyan; Cao, Xiyue; Xia, Jianfei; Gong, Shida; Wang, Zonghua; Lu, Lin

    2016-08-31

    A sensitive non-enzymatic glucose electrochemical biosensor (Cu/PMo12-GR/GCE) was developed based on the combination of copper nanoparticles (CuNPs) and phosphomolybdic acid functionalized graphene (PMo12-GR). PMo12-GR films were modified on the surface of glassy carbon electrode (GCE) through electrostatic self-assembly with the aid of poly diallyl dimethyl ammonium chloride (PDDA). Then CuNPs were successfully decorated onto the PMo12-GR modified GCE through electrodeposition. The morphology of Cu/PMo12-GR/GCE was characterized by scanning electron microscope (SEM). Cyclic voltammetry (CV) and chronoamperometry were used to investigate the electrochemical performances of the biosensor. The results indicated that the modified electrode displayed a synergistic effect of PMo12-GR sheets and CuNPs towards the electro-oxidation of glucose in the alkaline solution. At the optimal detection potential of 0.50 V, the response towards glucose presented a linear response ranging from 0.10 μM to 1.0 mM with a detection limit of 3.0 × 10(-2) μM (S/N = 3). In addition, Cu/PMo12-GR/GCE possessed a high selectivity, good reproducibility, excellent stability and acceptable recovery, which indicating the potential application in clinical field. PMID:27506342

  14. Poly(amic acid)-modified biomass of baker's yeast for enhancement adsorption of methylene blue and basic magenta.

    PubMed

    Yu, Jun-xia; Li, Bu-hai; Sun, Xiao-mei; Yuan, Jun; Chi, Ru-an

    2010-03-01

    In this study, poly(amic acid)-modified biomass was prepared to improve the adsorption capacities for two cationic dyes, methylene blue and basic magenta. X-ray photoelectron spectroscopy and potentiometric titration demonstrated that a large number of imide, amine, and carboxyl groups were introduced on the biomass surface, and the concentrations of these functional groups were calculated to be 0.27, 1.08, and 1.08 mmol g(-1) by using the first derivative method. According to the Langmuir equation, the maximum uptake capacities (q(m)) for methylene blue and basic magenta were 680.3 and 353.4 mg g(-1), respectively, which were 13- and sevenfold than that obtained on the unmodified biomass. Adsorption kinetics study showed that the completion of the adsorption process needed only 40 min, which is faster than the common sorbent such as activated carbon and resin. Experimental results showed that pH and ionic strength had little effect on the capacity of the modified biomass, indicating that the modified biomass had good potential for practical use.

  15. Titanium dioxide nanoparticles modified by salicylic acid and arginine: Structure, surface properties and photocatalytic decomposition of p-nitrophenol

    NASA Astrophysics Data System (ADS)

    Li, Lei; Feng, Yujie; Liu, Youzhi; Wei, Bing; Guo, Jiaxin; Jiao, Weizhou; Zhang, Zhaohan; Zhang, Qiaoling

    2016-02-01

    In this study, titanium dioxide (TiO2) nanoparticles were surface-modified with salicylic acid (SA) and arginine (Arg) using an environmentally friendly and convenient method, and the bonding structure, surface properties and degradation efficiency of p-nitrophenol (PNP) were investigated. X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR), water contact angle (WCA) measurements, ζ-potentiometric analysis, UV/visible diffuse reflectance spectroscopy (UV-vis DRS), and thermogravimetric analysis (TGA) were performed to evaluate the modification effect. The degradation rates were determined by high-performance liquid chromatography (HPLC). The results show that bidentate or bridging bonds are most likely formed between SA/Arg and TiO2 surface. Surface modification with SA, Arg, or both can improve the lipophilic properties and decrease the zeta potential, and also result in a red shift of the absorption wavelength. TiO2 nanoparticles modified by Arg or both SA and Arg show a large specific surface area and pore volume. Further, degradation experiments under visible light show that Arg modification is most efficient. This simple and versatile synthetic method to produce TiO2 nanoparticles surface-modified with various organic capping agents can be used for novel multifunctional photocatalysts as required for various applications in energy saving and environmental protection.

  16. Desorption and photodegradation of methylene blue from modified sugarcane bagasse surface by acid TiO2 hydrosol

    NASA Astrophysics Data System (ADS)

    Yu, Jun-Xia; Chi, Ru-An; Guo, Jia; Zhang, Yue-Fei; Xu, Zhi-Gao; Xiao, Chun-Qiao

    2012-02-01

    Waste sugarcane bagasse (SCB) was modified by pyromellitic dianhydride to improve its adsorption capacity for cationic dyes. Results showed that the adsorption capacity of the modified SCB for methylene blue was 564 mg g-1, which was about 12 times than that obtained on the unmodified SCB. Methylene blue loaded modified SCB was regenerated by a self-clean eluent: TiO2 hydrosol with pH ranged from 1 to 4, and HNO3 solution with the same pH range was tested at the same time for comparison. Results showed that desorption kinetics of methylene blue in the hydrosol systems fit two-step kinetic model and controlled mainly by the slow step. As a self-clean eluent, acid hydrosol could firstly desorb and then photodegrade methylene blue under sunlight irradiation. After five desorption-photodegradation cycles, 78.3% of the absorbed dyes could be desorbed by using hydrosol (pH 2) as eluent. The hydrosol could be continuously used in desorption and photodegradation process, which would economize large volume of the eluent and moreover it would not bring secondary pollution.

  17. ZnO-CuxO/polypyrrole nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine, and uric acid.

    PubMed

    Ghanbari, Kh; Hajheidari, N

    2015-03-15

    Novel zinc oxide (ZnO) nanosheets and copper oxide (CuxO, CuO, and Cu2O) decorated polypyrrole (PPy) nanofibers (ZnO-CuxO-PPy) have been successfully fabricated for the simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The morphology and structure of ZnO-CuxO-PPy nanocomposites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy. Compared with the bare glassy carbon electrode (GCE), PPy/GCE, CuxO-PPy/GCE, and ZnO-PPy/GCE, ZnO-CuxO-PPy/GCE exhibits much higher electrocatalytic activities toward the oxidation of AA, DA, and UA with increasing peak currents and decreasing oxidation overpotentials. Cyclic voltammetry (CV) results show that AA, DA, and UA could be detected selectively and sensitively at ZnO-CuxO-PPy/GCE with peak-to-peak separation of 150 and 154 mV for AA-DA and DA-UA, respectively. The calibration curves for AA, DA, and UA were obtained in the ranges of 0.2 to 1.0 mM, 0.1 to 130.0 μM, and 0.5 to 70.0 μM, respectively. The lowest detection limits (signal/noise=3) were 25.0, 0.04, and 0.2 μM for AA, DA, and UA, respectively. With good selectivity and sensitivity, the current method was applied to the determination of DA in injectable medicine and UA in urine samples.

  18. ZnO-CuxO/polypyrrole nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine, and uric acid.

    PubMed

    Ghanbari, Kh; Hajheidari, N

    2015-03-15

    Novel zinc oxide (ZnO) nanosheets and copper oxide (CuxO, CuO, and Cu2O) decorated polypyrrole (PPy) nanofibers (ZnO-CuxO-PPy) have been successfully fabricated for the simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The morphology and structure of ZnO-CuxO-PPy nanocomposites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy. Compared with the bare glassy carbon electrode (GCE), PPy/GCE, CuxO-PPy/GCE, and ZnO-PPy/GCE, ZnO-CuxO-PPy/GCE exhibits much higher electrocatalytic activities toward the oxidation of AA, DA, and UA with increasing peak currents and decreasing oxidation overpotentials. Cyclic voltammetry (CV) results show that AA, DA, and UA could be detected selectively and sensitively at ZnO-CuxO-PPy/GCE with peak-to-peak separation of 150 and 154 mV for AA-DA and DA-UA, respectively. The calibration curves for AA, DA, and UA were obtained in the ranges of 0.2 to 1.0 mM, 0.1 to 130.0 μM, and 0.5 to 70.0 μM, respectively. The lowest detection limits (signal/noise=3) were 25.0, 0.04, and 0.2 μM for AA, DA, and UA, respectively. With good selectivity and sensitivity, the current method was applied to the determination of DA in injectable medicine and UA in urine samples. PMID:25576954

  19. Reduction of Phytate in Soy Drink by Fermentation with Lactobacillus casei Expressing Phytases From Bifidobacteria.

    PubMed

    García-Mantrana, Izaskun; Monedero, Vicente; Haros, Monika

    2015-09-01

    Plant-based food products can be modified by fermentation to improve flavour and the concentration of some biologically active compounds, but also to increase the mineral availability by eliminating anti-nutrient substances such as phytates. The objective of this study was to develop a fermented soybean drink with improved nutritional quality and source of probiotic bacteria by including as starter for fermentation Lactobacillus casei strains modified to produce phytase enzymes from bifidobacteria. The L. casei strains showed a good adaptation to develop in the soy drink but they needed the addition of external carbohydrates to give rise to an efficient acidification. The strain expressing the Bifidobacterium pseudocatenulatum phytase was able to degrade more than 90 % phytate during product fermentation, whereas expression of Bifidobacterium longum spp. infantis phytase only led to 65 % hydrolysis. In both cases, accumulation of myo-inositol triphosphates was observed. In addition, the hydrolysis of phytate in soy drink fermented with the L. casei strain expressing the B. pseudocatenulatum phytase resulted in phytate/mineral ratios for Fe (0.35) and Zn (2.4), which were below the critical values for reduced mineral bioavailability in humans. This investigation showed the ability of modified L. casei to produce enzymes with technological relevance in the design of new functional foods.

  20. Electron spin resonance studies on intact cells and isolated lipid droplets from fatty acid-modified L1210 murine leukemia.

    PubMed

    Simon, I; Burns, C P; Spector, A A

    1982-07-01

    It has been suggested that the formation of cytoplasmic lipid droplets may produce an artifact and be responsible for the differences in membrane physical properties detected in lipid-modified cells using fluorescence polarization or spin label probes. To investigate this, the electron spin resonance spectra of lipid droplets isolated from the cytoplasm of L1210 leukemia cells were compared with spectra obtained from the intact cell. Mice bearing the L1210 leukemia were fed diets containing either 16% sunflower oil or 16% coconut oil in order to modify the fatty acid composition of the tumor. A microsome-rich fraction prepared from L1210 cells grown in animals fed the sunflower oil-rich diet contained more polyenoic fatty acids (52 versus 29%), while microsomes from L1210 cells grown in animals fed the coconut oil-rich diets contained more monoenoic fatty acids (37 versus 12%). The order parameter calculated for lipid droplets labeled with the 5-nitroxystearic acid spin probe was only about one-half that of intact cells, whereas it was similar to that obtained for pure triolein droplets suspended in buffer. Order parameters of the inner hyperfine splittings calculated from the spectra of cells grown in the sunflower oil-fed animals [0.543 +/- 0.001 (S.E.)] were lower than those from the cells grown in animals fed the coconut oil diets (0.555 +/- 0.002) (p less than 0.005). In contrast, the order parameters of the lipid droplets isolated from the cells grown in animals fed sunflower oil (0.303 +/- 0.029) or coconut oil (0.295 +/- 0.021) were not significantly different, indicating that motion of a spin label probe in the highly fluid cytoplasmic lipid droplets is not affected by these types of modifications in cellular fatty acid composition. Therefore, the electron spin resonance changes that are observed in the intact cells cannot be due to localization of the probe in cytoplasmic lipid droplets. These results support the conclusion that the electron spin

  1. Enhancement of electrogenerated chemiluminescence of luminol by ascorbic acid at gold nanoparticle/graphene modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Dong, Yongping; Gao, Tingting; Zhou, Ying; Chu, Xiangfeng; Wang, Chengming

    2015-01-01

    Gold nanoparticle/graphene (GNP/GR) nanocomposite was one-pot synthesized from water soluble graphene and HAuCl4 by hydrothermal method and characterized by TEM, Raman spectroscopy, XRD, XPS, UV-vis spectroscopy, and electrochemical impedance spectroscopy (EIS). Electrogenerated chemiluminescence (ECL) of luminol was investigated at the GNP/GR modified glassy carbon electrode (GNP/GR/GCE) and the GNP modified glassy carbon electrode (GNP/GCE) in aqueous solution respectively. The results revealed that one strong anodic ECL peak could be observed at ∼0.8 V at two modified electrodes compared with that at the bare electrode. The intensity of the anodic ECL at the GNP/GR/GCE is weaker than that at the GNP/GCE, which should be due to the synergic effect of the enhancing effect of gold nanoparticles and the inhibiting effect of graphene on anodic luminol ECL. One strong cathodic ECL peak located at ∼-0.8 V could be observed at the GNP/GR/GCE but not at the GNP/GCE, which should be result from the adsorbed oxygen at the graphene film. In the presence of ascorbic acid, the anodic ECL at the GNP/GR/GCE was enhanced more than 8-times, which is more apparent than that at the GNP/GCE. Whereas, the cathodic ECL peak was seriously inhibited at the GNP/GR/GCE. The enhanced ECL intensity at the GNP/GR/GCE varied linearly with the logarithm of ascorbic acid concentration in the range of 1.0 × 10-8 to 1.0 × 10-6 mol L-1 with a detection limit of 1.0 × 10-9 mol L-1. The possible ECL mechanism was also discussed.

  2. The addition of whole soy flour to cafeteria diet reduces metabolic risk markers in wistar rats

    PubMed Central

    2013-01-01

    Background Soybean is termed a functional food because it contains bioactive compounds. However, its effects are not well known under unbalanced diet conditions. This work is aimed at evaluating the effect of adding whole soy flour to a cafeteria diet on intestinal histomorphometry, metabolic risk and toxicity markers in rats. Methods In this study, 30 male adult Wistar rats were used, distributed among three groups (n = 10): AIN-93 M diet, cafeteria diet (CAF) and cafeteria diet with soy flour (CAFS), for 56 days. The following parameters were measured: food intake; weight gain; serum concentrations of triglycerides, total cholesterol, HDL-c, glycated hemoglobin (HbA1c), aspartate (AST) and alanine (ALT) aminotransferases and Thiobarbituric Acid Reactive Substances (TBARS); humidity and lipid fecal content; weight and fat of the liver. The villous height, the crypt depth and the thickness of the duodenal and ileal circular and longitudinal muscle layers of the animals were also measured. Results There was a significant reduction in the food intake in the CAF group. The CAFS showed lower serum concentrations of triglycerides and serum TBARS and a lower percentage of hepatic fat, with a corresponding increase in thickness of the intestinal muscle layers. In the CAF group, an increase in the HbA1c, ALT, lipid excretion, liver TBARS and crypt depth, was observed associated with lower HDL-c and villous height. The addition of soy did not promote any change in these parameters. Conclusions The inclusion of whole soy flour in a high-fat diet may be helpful in reducing some markers of metabolic risk; however, more studies are required to clarify its effects on unbalanced diets. PMID:24119309

  3. Survey of chloropropanols in soy sauces and related products.

    PubMed

    Nyman, P J; Diachenko, G W; Perfetti, G A

    2003-10-01

    A survey of soy sauces and related products available in the USA was conducted to determine the levels of 3-monochloropropane-1,2-diol (3-MCPD) and 1,3-dichloro-2-propanol (1,3-DCP) in these products. Fifty-five retail samples were purchased and analysed for 3-MCPD. 3-MCPD determinations were made according to a gas chromatography/mass spectrometry method validated by a collaborative trial. Eighty-five per cent of the samples analysed contained greater than the detection limit of 0.005 ppm (microg g(-1)) for 3-MCPD. Thirty-three per cent contained greater than 1 ppm; the highest level was 876 ppm 3-MCPD. Thirty-nine of the samples analysed for 3-MCPD also were analysed for 1,3-DCP by using a modified method developed and validated in-house. Fifty-six per cent of the samples analysed for 1,3-DCP contained greater than the detection limit of 0.055 ppb (ng g(-1)) for 1,3-DCP; the highest level was 9.8 ppm 1,3-DCP. Products manufactured in Asia contained the highest chloropropanol levels.

  4. Chemically Modified Fatty Acid Methyl Esters: Potential as Lubricant and Surfactant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Renewable raw materials are going to play a noteworthy role in the development of sustainable green chemistry because of their eco-friendly and non-toxic nature. A novel process was developed for the production of biodegradable lubricant base stocks from epoxidized fatty acid methyl esters and comm...

  5. Quantitative analysis of citric acid/sodium hypophosphite modified cotton by HPLC and conductometric titration.

    PubMed

    Ye, Tao; Wang, Bijia; Liu, Jian; Chen, Jiangang; Yang, Yiqi

    2015-05-01

    Isocratic HPLC was used in conjunction with conductometric titration to quantitatively examine the modification of cotton cellulose by citric acid (CA)/sodium hypophosphite (SHP). CA/SHP had been extensively used as a green crosslinking agent for enhancement of cellulose and other carbohydrate polymers without in-depth understanding of the mechanisms. The current study investigated all identifiable secondary polycarboxylic acids from CA decomposition in the CA/SHP-cellulose system under various curing conditions. It was found that CA decomposition was more sensitive to temperature compared with the desirable esterification reaction. Two crosslinking mechanisms, namely ester crosslinking and SHP crosslinking were responsible for the observed improvement in crease resistance of CA/SHP treated cotton fabrics. An oligomer of citraconic acid (CCA) and/or itaconic acid (IA) was identified as a possible contributor to fabric yellowing. Finally, the crease resistance of fabrics correlated strongly with CA preservation in polyol-added CA/SHP crosslinking systems. The dosage of polyol should be held below an inflexion point to keep the undesirable competition against cellulose minimum. The combination of HPLC and conductometric titration was demonstrated to be useful in studying the CA/SHP-cellulose crosslinking system. The findings have implications for better application of CA/SHP in polysaccharide modifications in general.

  6. Chemoenzymatic synthesis of C8-modified sialic acids and related α2–3- and α2–6-linked sialosides

    PubMed Central

    Yu, Hai; Cao, Hongzhi; Tiwari, Vinod Kumar; Li, Yanhong; Chen, Xi

    2011-01-01

    Naturally occurring 8-O-methylated sialic acids, including 8-O-methyl-N-acetylneuraminic acid and 8-O-methyl-N-glycolylneuraminic acid, along with 8-O-methyl-2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid (Kdn8Me) and 8-deoxy-Kdn were synthesized from corresponding 5-O-modified six-carbon monosaccharides and pyruvate using a sialic acid aldolase cloned from Pasteurella multocida strain P-1059 (PmNanA). In addition, α2–3- and α2–6-linked sialyltrisaccharides containing Neu5Ac8Me and Kdn8Deoxy were also synthesized using a one-pot multienzyme approach. The strategy reported here provides an efficient approach to produce glycans containing various C8-modified sialic acids for biological evaluations. PMID:21592790

  7. Methyl Acetate Synthesis by Esterification on the Modified Ferrierite: Correlation of Acid Sites Measured by Pyridine IR and NH3-TPD for Steady-State Activity.

    PubMed

    Park, Jae Hyun; Pang, Changhyun; Chung, Chan-Hwa; Bae, Jong Wook

    2016-05-01

    The amounts of Brønsted acid sites on K, P, and Zr-modified microporous Ferrierite zeolite were investigated through pyridine FT-IR and NH3-TPD analyses. P-modified Ferrierite showed a superior catalytic activity for methyl acetate synthesis by esterification of methanol and acetic acid. The catalytic activity at steady-state with the acidic properties of as-prepared catalysts was well correlated with the results of pyridine FT-IR (intensity ratio of Brønsted acid sites to total acid sites) compared with that of NH3-TPD. The results can suggest the proper and simple method to estimate the esterification activity at steady-state using the measured acid sites on the as-prepared zeolites. PMID:27483801

  8. Fatty acid modified octa-arginine for delivery of siRNA.

    PubMed

    Li, Yuhuan; Li, Yujing; Wang, Xinmei; Lee, Robert J; Teng, Lesheng

    2015-11-10

    Therapeutic delivery of small interfering RNA (siRNA) is a major challenge that limits its potential clinical application. Four fatty acids derivatives of octa-arginine (R8) were synthesized and evaluated for the delivery of siRNA into hepatocellular carcinoma Hep G2 and human lung adenocarcinoma A549 cells. The results showed that the long chain acid oleic acid or stearic acid derivatives of R8, OA-R8 and StA-R8, were more efficient in siRNA complexation and form nanoparticles with greater stability compared to the native R8. Cellular uptake of fluorescence-labeled siRNA delivered by OA-R8 and StA-R8 in Hep G2 and A549 cells was substantially 40-50 times higher than unmodified R8. A significant reduction in siRNA cellular uptake was observed in the presence of sucrose and cytochalasin D, indicating endocytosis as a primary mechanism of cellular entry. A survivin siRNA was used to prepare nanoparticles with OA-R8 or StA-R8 and evaluated for silencing of survivin mRNA and protein in A549 cells, and the inhibition efficiencies of survivin protein reached to 50.3% and 54.6%, respectively. The results showed greater effectiveness with the derivatized R8. Taken together, these findings showed that long chain fatty acid derivatives of R8 are efficient delivery agents for siRNA and may facilitate its therapeutic application. PMID:26386137

  9. A Doped Polyaniline Modified Electrode Amperometric Biosensor for Gluconic Acid Determination in Grapes

    PubMed Central

    Albanese, Donatella; Malvano, Francesca; Sannini, Adriana; Pilloton, Roberto; Di Matteo, Marisa

    2014-01-01

    In winemaking gluconic acid is an important marker for quantitative evaluation of grape infection by Botrytis cinerea. A screen-printed amperometric bienzymatic sensor for the determination of gluconic acid based on gluconate kinase (GK) and 6-phospho-D-gluconate dehydrogenase (6PGDH) coimmobilized onto polyaniline/poly (2-acrylamido-2-methyl-1-propanesulfonic acid; PANI-PAAMPSA) is reported in this study. The conductive polymer electrodeposed on the working electrode surface allowed the detection of NADH at low potential (0.1 V) with a linear range from 4 × 10−3 to 1 mM (R2 = 0.99) and a sensitivity of 419.44 nA·mM−1. The bienzymatic sensor has been optimized with regard to GK/6PGDH enzymatic unit ratio and ATP/NADP+ molar ratio which resulted equal to 0.33 and 1.2, respectively. Under these conditions a sensitivity of 255.2 nA·mM−1, a limit of detection of 5 μM and a Relative Standard Deviation (RSD) of 4.2% (n = 5) have been observed. Finally, the biosensor has been applied for gluconic acid measurements in must grape samples and the matrix effect has been taken into consideration. The results have been compared with those obtained on the same samples with a commercial kit based on a spectrophotometric enzyme assay and were in good agreement, showing the capability of the bienzymatic PANI-PAAMPSA biosensor for gluconic acid measurements and thus for the evaluation of Botrytis cinerea infection in grapes. PMID:24960084

  10. Process Optimization for Solid Extraction, Flavor Improvement and Fat Removal in the Production of Soymilk From Full Fat Soy Flakes

    SciTech Connect

    Stanley Prawiradjaja

    2003-05-31

    Traditionally soymilk has been made with whole soybeans; however, there are other alternative raw ingredients for making soymilk, such as soy flour or full-fat soy flakes. US markets prefer soymilk with little or no beany flavor. modifying the process or using lipoxygenase-free soybeans can be used to achieve this. Unlike the dairy industry, fat reduction in soymilk has been done through formula modification instead of by conventional fat removal (skimming). This project reports the process optimization for solids and protein extraction, flavor improvement and fat removal in the production of 5, 8 and 12 {sup o}Brix soymilk from full fat soy flakes and whole soybeans using the Takai soymilk machine. Proximate analyses, and color measurement were conducted in 5, 8 and 12 {sup o}Brix soymilk. Descriptive analyses with trained panelists (n = 9) were conducted using 8 and 12 {sup o}Brix lipoxygenase-free and high protein blend soy flake soymilks. Rehydration of soy flakes is necessary to prevent agglomeration during processing and increase extractability. As the rehydration temperature increases from 15 to 50 to 85 C, the hexanal concentration was reduced. Enzyme inactivation in soy flakes milk production (measured by hexanal levels) is similar to previous reports with whole soybeans milk production; however, shorter rehydration times can be achieved with soy flakes (5 to 10 minutes) compared to whole beans (8 to 12 hours). Optimum rehydration conditions for a 5, 8 and 12 {sup o}Brix soymilk are 50 C for 5 minutes, 85 C for 5 minutes and 85 C for 10 minutes, respectively. In the flavor improvement study of soymilk, the hexanal date showed differences between undeodorized HPSF in contrast to triple null soymilk and no differences between deodorized HPSF in contrast to deodorized triple null. The panelists could not differentiate between the beany, cereal, and painty flavors. However, the panelists responded that the overall aroma of deodorized 8 {sup o}Brix triple null

  11. Nucleic Acid Ligands With Protein-like Side Chains: Modified Aptamers and Their Use as Diagnostic and Therapeutic Agents

    PubMed Central

    Rohloff, John C; Gelinas, Amy D; Jarvis, Thale C; Ochsner, Urs A; Schneider, Daniel J; Gold, Larry; Janjic, Nebojsa

    2014-01-01

    Limited chemical diversity of nucleic acid libraries has long been suspected to be a major constraining factor in the overall success of SELEX (Systematic Evolution of Ligands by EXponential enrichment). Despite this constraint, SELEX has enjoyed considerable success over the past quarter of a century as a result of the enormous size of starting libraries and conformational richness of nucleic acids. With judicious introduction of functional groups absent in natural nucleic acids, the “diversity gap” between nucleic acid–based ligands and protein-based ligands can be substantially bridged, to generate a new class of ligands that represent the best of both worlds. We have explored the effect of various functional groups at the 5-position of uracil and found that hydrophobic aromatic side chains have the most profound influence on the success rate of SELEX and allow the identification of ligands with very low dissociation rate constants (named Slow Off-rate Modified Aptamers or SOMAmers). Such modified nucleotides create unique intramolecular motifs and make direct contacts with proteins. Importantly, SOMAmers engage their protein targets with surfaces that have significantly more hydrophobic character compared with conventional aptamers, thereby increasing the range of epitopes that are available for binding. These improvements have enabled us to build a collection of SOMAmers to over 3,000 human proteins encompassing major families such as growth factors, cytokines, enzymes, hormones, and receptors, with additional SOMAmers aimed at pathogen and rodent proteins. Such a large and growing collection of exquisite affinity reagents expands the scope of possible applications in diagnostics and therapeutics. PMID:25291143

  12. Furfural modified asphalt obtained by using a Lewis acid as a catalyst

    SciTech Connect

    Memon, G.M.

    1996-12-31

    Asphalt is solid or semi-solid at room temperature, becomes soft and starts flowing upon heating, and becomes hard and brittle at very low temperatures. States have been facing problems such as cracking, rutting, and asphalt adhesion to aggregates in their asphaltic pavements for years. Many polymer additives have been used in asphalt to reduce these problems, but little work has been done using chemically modified products of asphalt to attempt to solve these serious problems of asphalt pavements. The above mentioned problems decrease the life of the pavements, resulting in an increase of maintenance and/or replacement costs. There are two types of cracking which can occur in asphalt pavement; one related to load, and the other related to thermal stress. The load-related cracking is known as fatigue cracking and is defined as fracture under repeated or cyclic stress having a maximum value of less than the tensile strength of the material. The thermal cracking occurs due to pavement shrinkage at low temperature causing the shrinkage stresses to exceed the tensile strength. FHWA researchers have found furfural to be a suitable candidate for functional group modification of asphalt. The modified product shows improved performance as well as improved rheological properties.

  13. Combined Effects of High Pressure Processing and Addition of Soy Sauce and Olive Oil on Safety and Quality Characteristics of Chicken Breast Meat

    PubMed Central

    Kruk, Zbigniew A.; Kim, Hyun Joo; Kim, Yun Ji; Rutley, David L.; Jung, Samooel; Lee, Soo Kee; Jo, Cheorun

    2014-01-01

    This study was conducted to evaluate the combined effect of high pressure (HP) with the addition of soy sauce and/or olive oil on the quality and safety of chicken breast meats. Samples were cut into 100 g pieces and 10% (w/w) of soy sauce (SS), 10% (w/w) of olive oil (OO), and a mixture of both 5% of soy sauce and 5% olive oil (w/w) (SO) were pressurized into meat with high pressure at 300 or 600 MPa. Cooking loss was lower in OO samples than SS samples. With increased pressure to 600 MPa, the oleic acid content of OO samples increased. The total unsaturated fatty acids were the highest in SO and OO 600 MPa samples. Lipid oxidation was retarded by addition of olive oil combined with HP. The addition of olive oil and soy sauce followed by HP decreased the amount of volatile basic nitrogen during storage and reduced the population of pathogens. Sensory evaluation indicated that the addition of olive oil enhanced the overall acceptance and willingness to buy. In conclusion, the combination of HP with the addition of soy sauce and/or olive oil is an effective technology that can improve chemical, health, sensory qualities and safety of chicken breast. PMID:25049950

  14. Analysis of Glyphosate and Aminomethylphosphonic Acid in Nutritional Ingredients and Milk by Derivatization with Fluorenylmethyloxycarbonyl Chloride and Liquid Chromatography-Mass Spectrometry.

    PubMed

    Ehling, Stefan; Reddy, Todime M

    2015-12-01

    A straightforward analytical method based on derivatization with fluorenylmethyloxycarbonyl chloride and liquid chromatography-mass spectrometry has been developed for the analysis of residues of glyphosate and aminomethylphosphonic acid (AMPA) in a suite of nutritional ingredients derived from soybean, corn, and sugar beet and also in cow's milk and human breast milk. Accuracy and intermediate precision were 91-116% and <10% RSD, respectively, in soy protein isolate. Limits of quantitation were 0.05 and 0.005 μg/g in powdered and liquid samples, respectively. Glyphosate and AMPA were quantified at 0.105 and 0.210 μg/g (soy protein isolate) and 0.850 and 2.71 μg/g (soy protein concentrate, both derived from genetically modified soybean), respectively. Residues were not detected in soy milk, soybean oil, corn oil, maltodextrin, sucrose, cow's milk, whole milk powder, or human breast milk. The method is proposed as a convenient tool for the survey of glyphosate and AMPA in the ingredient supply chain.

  15. Interplay between microbial d-amino acids and host d-amino acid oxidase modifies murine mucosal defence and gut microbiota.

    PubMed

    Sasabe, Jumpei; Miyoshi, Yurika; Rakoff-Nahoum, Seth; Zhang, Ting; Mita, Masashi; Davis, Brigid M; Hamase, Kenji; Waldor, Matthew K

    2016-01-01

    L-Amino acids are the building blocks for proteins synthesized in ribosomes in all kingdoms of life, but d-amino acids (d-aa) have important non-ribosome-based functions(1). Mammals synthesize d-Ser and d-Asp, primarily in the central nervous system, where d-Ser is critical for neurotransmission(2). Bacteria synthesize a largely distinct set of d-aa, which become integral components of the cell wall and are also released as free d-aa(3,4). However, the impact of free microbial d-aa on host physiology at the host-microbial interface has not been explored. Here, we show that the mouse intestine is rich in free d-aa that are derived from the microbiota. Furthermore, the microbiota induces production of d-amino acid oxidase (DAO) by intestinal epithelial cells, including goblet cells, which secrete the enzyme into the lumen. Oxidative deamination of intestinal d-aa by DAO, which yields the antimicrobial product H2O2, protects the mucosal surface in the small intestine from the cholera pathogen. DAO also modifies the composition of the microbiota and is associated with microbial induction of intestinal sIgA. Collectively, these results identify d-aa and DAO as previously unrecognized mediators of microbe-host interplay and homeostasis on the epithelial surface of the small intestine. PMID:27670111

  16. Synthetic oligonucleotide antigens modified with locked nucleic acids detect disease specific antibodies

    PubMed Central

    Samuelsen, Simone V.; Solov’yov, Ilia A.; Balboni, Imelda M.; Mellins, Elizabeth; Nielsen, Christoffer Tandrup; Heegaard, Niels H. H.; Astakhova, Kira

    2016-01-01

    New techniques to detect and quantify antibodies to nucleic acids would provide a significant advance over current methods, which often lack specificity. We investigate the potential of novel antigens containing locked nucleic acids (LNAs) as targets for antibodies. Particularly, employing molecular dynamics we predict optimal nucleotide composition for targeting DNA-binding antibodies. As a proof of concept, we address a problem of detecting anti-DNA antibodies that are characteristic of systemic lupus erythematosus, a chronic autoimmune disease with multiple manifestations. We test the best oligonucleotide binders in surface plasmon resonance studies to analyze binding and kinetic aspects of interactions between antigens and target DNA. These DNA and LNA/DNA sequences showed improved binding in enzyme-linked immunosorbent assay using human samples of pediatric lupus patients. Our results suggest that the novel method is a promising tool to create antigens for research and point-of-care monitoring of anti-DNA antibodies. PMID:27775006

  17. Exploiting protected maleimides to modify oligonucleotides, peptides and peptide nucleic acids.

    PubMed

    Paris, Clément; Brun, Omar; Pedroso, Enrique; Grandas, Anna

    2015-04-10

    This manuscript reviews the possibilities offered by 2,5-dimethylfuran-protected maleimides. Suitably derivatized building blocks incorporating the exo Diels-Alder cycloadduct can be introduced at any position of oligonucleotides, peptide nucleic acids, peptides and peptoids, making use of standard solid-phase procedures. Maleimide deprotection takes place upon heating, which can be followed by either Michael-type or Diels-Alder click conjugation reactions. However, the one-pot procedure in which maleimide deprotection and conjugation are simultaneously carried out provides the target conjugate more quickly and, more importantly, in better yield. This procedure is compatible with conjugates involving oligonucleotides, peptides and peptide nucleic acids. A variety of cyclic peptides and oligonucleotides can be obtained from peptide and oligonucleotide precursors incorporating protected maleimides and thiols.

  18. Amino-modified tetraphenylethene derivatives as nucleic acid stain: relationship between the structure and sensitivity.

    PubMed

    Xu, Li; Zhu, Zece; Wei, Danqing; Zhou, Xiang; Qin, Jingui; Yang, Chuluo

    2014-10-22

    A series of new amino-functionalized tetraphenylethene (TPE) derivatives were designed and synthesized to study the effect of molecular structures on the detection of nucleic acid. Contrastive studies revealed that the number of binding groups, the length of hydrophobic linking arm and the configuration of TPE molecule all play important roles on the sensitivity of the probes in nucleic acid detection. Z-TPE3 with two binding amino groups, long linking arms, and cis configuration was found to be the most sensitive dye in both solution and gel matrix. Z-TPE3 is able to stain dsDNA with the lowest amount of 1 ng and exclusively stain 40 ng of short oligonucleotide with only 10 nt. This work is of important significance for the further design of TPE probes as biosensors with higher sensitivity. PMID:25279446

  19. Nucleic acids encoding modified human immunodeficiency virus type 1 (HIV-1) group M consensus envelope glycoproteins

    DOEpatents

    Haynes, Barton F.; Gao, Feng; Korber, Bette T.; Hahn, Beatrice H.; Shaw, George M.; Kothe, Denise; Li, Ying Ying; Decker, Julie; Liao, Hua-Xin

    2011-12-06

    The present invention relates, in general, to an immunogen and, in particular, to an immunogen for inducing antibodies that neutralizes a wide spectrum of HIV primary isolates and/or to an immunogen that induces a T cell immune response. The invention also relates to a method of inducing anti-HIV antibodies, and/or to a method of inducing a T cell immune response, using such an immunogen. The invention further relates to nucleic acid sequences encoding the present immunogens.

  20. SBA-15 Mesoporous Silica Modified with Gallic Acid and Evaluation of Its Cytotoxic Activity

    PubMed Central

    Lewandowski, Dawid

    2015-01-01

    Gallic acid has been covalently conjugated to SBA-15 mesoporous silica surface through different linkers. Cytotoxic activity of the hybrid organic-inorganic systems against HeLa and KB cell lines has been analyzed. Up to 67% of HeLa or KB tumor cells growth inhibition has been achieved at low silica concentration used (10 μg mL-1). PMID:26151908