Science.gov

Sample records for acid modified wheat

  1. Biosorption of methyl blue onto tartaric acid modified wheat bran from aqueous solution.

    PubMed

    Yao, Shuhua; Lai, Hong; Shi, Zhongliang

    2012-12-05

    Tartaric acid modified wheat bran was utilized as adsorbent to remove methyl blue, a basic dye from aqueous solution. Batch experiments were carried out to study the effect of various experimental parameters such as initial solution pH, contact time, initial dye concentration and adsorbent dosage, on dye adsorption. The results showed that the modification of wheat bran by tartaric acid significantly improved its adsorption capacity, and made this material a suitable adsorbent to remove methyl blue. The adsorption capacity of modified wheat bran was about 1.6 times higher than that of unmodified one. The amount of methyl blue adsorbed was found to vary with initial solution pH, adsorbent dosage, contact time and initial methyl blue concentration. Kinetics study showed that the overall adsorption rate of methyl blue was illustrated by pseudo-second-order kinetic model. The applicability of the Langmuir and Freundlich models for the data was tested. Both models adequately described the experimental data of the biosorption of methyl blue. The maximum adsorption capacity for methyl blue calculated from Langmuir model was 25.18 mg/g. The study has shown the effectiveness of modified wheat bran in the removal of methyl blue, and that it can be considered as an attractive alternative to the more expensive technologies used in wastewater treatment.

  2. Biosorption of methyl blue onto tartaric acid modified wheat bran from aqueous solution

    PubMed Central

    2012-01-01

    Tartaric acid modified wheat bran was utilized as adsorbent to remove methyl blue, a basic dye from aqueous solution. Batch experiments were carried out to study the effect of various experimental parameters such as initial solution pH, contact time, initial dye concentration and adsorbent dosage, on dye adsorption. The results showed that the modification of wheat bran by tartaric acid significantly improved its adsorption capacity, and made this material a suitable adsorbent to remove methyl blue. The adsorption capacity of modified wheat bran was about 1.6 times higher than that of unmodified one. The amount of methyl blue adsorbed was found to vary with initial solution pH, adsorbent dosage, contact time and initial methyl blue concentration. Kinetics study showed that the overall adsorption rate of methyl blue was illustrated by pseudo-second-order kinetic model. The applicability of the Langmuir and Freundlich models for the data was tested. Both models adequately described the experimental data of the biosorption of methyl blue. The maximum adsorption capacity for methyl blue calculated from Langmuir model was 25.18 mg/g. The study has shown the effectiveness of modified wheat bran in the removal of methyl blue, and that it can be considered as an attractive alternative to the more expensive technologies used in wastewater treatment. PMID:23369295

  3. New Uses for Wheat and Modified Wheat Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hard wheat from the Great Plains historically has been used as a source of flour for the production of leavened bakery products. However, potentially applications of wheat in both new markets and new products has necessitated the need to develop wheats with novel processing attributes. The most lo...

  4. Cold plasma: A new technology to modify wheat flour functionality.

    PubMed

    Bahrami, Niloufar; Bayliss, Danny; Chope, Gemma; Penson, Simon; Perehinec, Tania; Fisk, Ian D

    2016-07-01

    Atmospheric pressure cold plasma has the potential to modify biological chemistry and modulate physical surface properties. Wheat flour was treated by low levels of cold plasma (air, 15V and 20V) for 60 or 120s. There was no change in the total aerobic bacterial count or total mould count as a result of treatment. Treatment did not impact the concentration of total non-starch lipids, or non-polar and glycolipids. However, treatment did reduce total free fatty acids and phospholipids and was dose dependent. Oxidation markers (hydroperoxide value and head space n-hexanal) increased with treatment time and voltage, which confirmed the acceleration of lipid oxidation. Total proteins were not significantly influenced by treatment although there was a trend towards higher molecular weight fractions which indicated protein oxidation and treated flour did produce a stronger dough. This study confirms the potential of cold plasma as a tool to modify flour functionality.

  5. Cold plasma: A new technology to modify wheat flour functionality

    PubMed Central

    Bahrami, Niloufar; Bayliss, Danny; Chope, Gemma; Penson, Simon; Perehinec, Tania; Fisk, Ian D.

    2016-01-01

    Atmospheric pressure cold plasma has the potential to modify biological chemistry and modulate physical surface properties. Wheat flour was treated by low levels of cold plasma (air, 15 V and 20 V) for 60 or 120 s. There was no change in the total aerobic bacterial count or total mould count as a result of treatment. Treatment did not impact the concentration of total non-starch lipids, or non-polar and glycolipids. However, treatment did reduce total free fatty acids and phospholipids and was dose dependent. Oxidation markers (hydroperoxide value and head space n-hexanal) increased with treatment time and voltage, which confirmed the acceleration of lipid oxidation. Total proteins were not significantly influenced by treatment although there was a trend towards higher molecular weight fractions which indicated protein oxidation and treated flour did produce a stronger dough. This study confirms the potential of cold plasma as a tool to modify flour functionality. PMID:26920291

  6. NUTRITIONAL AND BAKING QUALITY OF LOW PHYTIC ACID WHEAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytic acid is the major storage form of phosphorus in wheat grain. Non-ruminant animals cannot utilize phytic acid phosphorus, and phytic acid reduces the nutritional availability of important minerals. We have identified a wheat mutant (Lpa1-1) with reduced phytic acid P and increased inorganic ...

  7. Wheat flour based propionic acid fermentation: an economic approach.

    PubMed

    Kagliwal, Lalit D; Survase, Shrikant A; Singhal, Rekha S; Granström, Tom

    2013-02-01

    A process for the fermentative production of propionic acid from whole wheat flour using starch and gluten as nutrients is presented. Hydrolysis of wheat flour starch using amylases was optimized. A batch fermentation of hydrolysate supplemented with various nitrogen sources using Propionibacterium acidipropionici NRRL B 3569 was performed. The maximum production of 48.61, 9.40, and 11.06 g of propionic acid, acetic acid and succinic acid, respectively, was found with wheat flour hydrolysate equivalent to 90 g/l glucose and supplemented with 15 g/l yeast extract. Further, replacement of yeast extract with wheat gluten hydrolysate showed utilization of gluten hydrolysate without compromising the yields and also improving the economics of the process. The process so developed could be useful for production of animal feed from whole wheat with in situ production of preservatives, and also suggest utilization of sprouted or germinated wheat for the production of organic acids.

  8. Development of taxon-specific sequences of common wheat for the detection of genetically modified wheat.

    PubMed

    Iida, Mayu; Yamashiro, Satomi; Yamakawa, Hirohito; Hayakawa, Katsuyuki; Kuribara, Hideo; Kodama, Takashi; Furui, Satoshi; Akiyama, Hiroshi; Maitani, Tamio; Hino, Akihiro

    2005-08-10

    Qualitative and quantitative Polymerase Chain Reaction (PCR) systems aimed at the specific detection and quantification of common wheat DNA are described. Many countries have issued regulations to label foods that include genetically modified organisms (GMOs). PCR technology is widely recognized as a reliable and useful technique for the qualitative and quantitative detection of GMOs. Detection methods are needed to amplify a target GM gene, and the amplified results should be compared with those of the corresponding taxon-specific reference gene to obtain reliable results. This paper describes the development of a specific DNA sequence in the waxy-D1 gene for common wheat (Triticum aestivum L.) and the design of a specific primer pair and TaqMan probe on the waxy-D1 gene for PCR analysis. The primers amplified a product (Wx012) of 102 bp. It is indicated that the Wx012 DNA sequence is specific to common wheat, showing homogeneity in qualitative PCR results and very similar quantification accuracy along 19 distantly related common wheat varieties. In Southern blot and real-time PCR analyses, this sequence showed either a single or a low number of copy genes. In addition, by qualitative and quantitative PCR using wx012 primers and a wx012-T probe, the limits of detection of the common wheat genome were found to be about 15 copies, and the reproducibility was reliable. In consequence, the PCR system using wx012 primers and wx012-T probe is considered to be suitable for use as a common wheat-specific taxon-specific reference gene in DNA analyses, including GMO tests.

  9. Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.).

    PubMed

    Rico, Cyren M; Lee, Sang Chul; Rubenecia, Rosnah; Mukherjee, Arnab; Hong, Jie; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2014-10-08

    The implications of engineered nanomaterials on crop productivity and food quality are not yet well understood. The impact of cerium oxide nanoparticles (nCeO2) on growth and yield attributes and nutritional composition in wheat (Triticum aestivum L.) was examined. Wheat was cultivated to grain production in soil amended with 0, 125, 250, and 500 mg of nCeO2/kg (control, nCeO2-L, nCeO2-M, and nCeO2-H, respectively). At harvest, grains and tissues were analyzed for mineral, fatty acid, and amino acid content. Results showed that, relative to the control, nCeO2-H improved plant growth, shoot biomass, and grain yield by 9.0%, 12.7%, and 36.6%, respectively. Ce accumulation in roots increased at increased nCeO2 concentration but did not change across treatments in leaves, hull, and grains, indicating a lack of Ce transport to the above-ground tissues. nCeO2 modified S and Mn storage in grains. nCeO2-L modified the amino acid composition and increased linolenic acid by up to 6.17% but decreased linoleic acid by up to 1.63%, compared to the other treatments. The findings suggest the potential of nanoceria to modify crop physiology and food quality with unknown consequences for living organisms.

  10. Modification of wheat gluten with citric acid to produce superabsorbent materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten was reacted with citric acid to produce natural superabsorbent materials able to absorb up to 78 times its weight in water. The properties of the modified gluten samples were characterized using Fourier Transform Infra-red (FTIR) spectroscopy, thermogravimetric analysis, and water uptak...

  11. Wheat Allergy

    MedlinePlus

    ... Wheat (bran, durum, germ, gluten, grass, malt, sprouts, starch) Wheat bran hydrolysate Wheat germ oil Wheat grass ... in the following: Glucose syrup Surimi Soy sauce Starch (gelatinized starch, modified starch, modified food starch, vegetable ...

  12. Modification of wheat starch with succinic acid/acetanhydride and azelaic acid/acetanhydride mixtures. II. Chemical and physical properties.

    PubMed

    Ačkar, Durđica; Subarić, Drago; Babić, Jurislav; Miličević, Borislav; Jozinović, Antun

    2014-08-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetanhydride and azelaic acid/acetanhydride mixtures on chemical and physical properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetanhydride and azelaic acid and acetanhydride in 4, 6 and 8% (w/w). Total starch content, resistant starch content, degree of modification, changes in FT-IR spectra, colour, gel texture and freeze-thaw stability were determined. Results showed that resistant starch content increased by both investigated modifications, and degree of modification increased proportionally to amount of reagents used. FT-IR analysis of modified starches showed peak around 1,740 cm(-1), characteristic for carbonyl group of ester. Total colour difference caused by modifications was detectable by trained people. Adhesiveness significantly increased, while freeze-thaw stability decreased by both investigated modifications.

  13. Assessment of the nutritional values of genetically modified wheat, corn, and tomato crops.

    PubMed

    Venneria, Eugenia; Fanasca, Simone; Monastra, Giovanni; Finotti, Enrico; Ambra, Roberto; Azzini, Elena; Durazzo, Alessandra; Foddai, Maria Stella; Maiani, Giuseppe

    2008-10-08

    The genetic modification in fruit and vegetables could lead to changes in metabolic pathways and, therefore, to the variation of the molecular pattern, with particular attention to antioxidant compounds not well-described in the literature. The aim of the present study was to compare the quality composition of transgenic wheat ( Triticum durum L.), corn ( Zea mays L.), and tomato ( Lycopersicum esculentum Mill.) to the nontransgenic control with a similar genetic background. In the first experiment, Ofanto wheat cultivar containing the tobacco rab1 gene and nontransgenic Ofanto were used. The second experiment compared two transgenic lines of corn containing Bacillus thuringiensis "Cry toxin" gene (PR33P67 and Pegaso Bt) to their nontransgenic forms. The third experiment was conducted on transgenic tomato ( Lycopersicum esculentum Mill.) containing the Agrobacterium rhizogenes rolD gene and its nontransgenic control (cv. Tondino). Conventional and genetically modified crops were compared in terms of fatty acids content, unsaponifiable fraction of antioxidants, total phenols, polyphenols, carotenoids, vitamin C, total antioxidant activity, and mineral composition. No significant differences were observed for qualitative traits analyzed in wheat and corn samples. In tomato samples, the total antioxidant activity (TAA), measured by FRAP assay, and the naringenin content showed a lower value in genetically modified organism (GMO) samples (0.35 mmol of Fe (2+) 100 g (-1) and 2.82 mg 100 g (-1), respectively), in comparison to its nontransgenic control (0.41 mmol of Fe (2+) 100 g (-1) and 4.17 mg 100 g (-1), respectively). On the basis of the principle of substantial equivalence, as articulated by the World Health Organization, the Organization for Economic Cooperation and Development, and the United Nations Food and Agriculture Organization, these data support the conclusion that GM events are nutritionally similar to conventional varieties of wheat, corn, and tomato on

  14. Transgene × Environment Interactions in Genetically Modified Wheat

    PubMed Central

    Zeller, Simon L.; Kalinina, Olena; Brunner, Susanne; Keller, Beat; Schmid, Bernhard

    2010-01-01

    Background The introduction of transgenes into plants may cause unintended phenotypic effects which could have an impact on the plant itself and the environment. Little is published in the scientific literature about the interrelation of environmental factors and possible unintended effects in genetically modified (GM) plants. Methods and Findings We studied transgenic bread wheat Triticum aestivum lines expressing the wheat Pm3b gene against the fungus powdery mildew Blumeria graminis f.sp. tritici. Four independent offspring pairs, each consisting of a GM line and its corresponding non-GM control line, were grown under different soil nutrient conditions and with and without fungicide treatment in the glasshouse. Furthermore, we performed a field experiment with a similar design to validate our glasshouse results. The transgene increased the resistance to powdery mildew in all environments. However, GM plants reacted sensitive to fungicide spraying in the glasshouse. Without fungicide treatment, in the glasshouse GM lines had increased vegetative biomass and seed number and a twofold yield compared with control lines. In the field these results were reversed. Fertilization generally increased GM/control differences in the glasshouse but not in the field. Two of four GM lines showed up to 56% yield reduction and a 40-fold increase of infection with ergot disease Claviceps purpurea compared with their control lines in the field experiment; one GM line was very similar to its control. Conclusions Our results demonstrate that, depending on the insertion event, a particular transgene can have large effects on the entire phenotype of a plant and that these effects can sometimes be reversed when plants are moved from the glasshouse to the field. However, it remains unclear which mechanisms underlie these effects and how they may affect concepts in molecular plant breeding and plant evolutionary ecology. PMID:20635001

  15. Stress-induced accumulation of wheat germ agglutinin and abscisic acid in roots of wheat seedlings

    SciTech Connect

    Cammue, B.P.A.; Broekaert, W.F.; Kellens, J.T.C.; Peumans, W.J. ); Raikhel, N.V. )

    1989-12-01

    Wheat germ agglutinin (WGA) levels in roots of 2-day-old wheat seedlings increased up to three-fold when stressed by air-drying. Similar results were obtained when seedling roots were incubated either in 0.5 molar mannitol or 180 grams per liter polyethylene glycol 6,000, with a peak level of WGA after 5 hours of stress. Longer periods of osmotic treatment resulted in a gradual decline of WGA in the roots. Since excised wheat roots incorporate more ({sup 35}S)cysteine into WGA under stress conditions, the observed increase of lectin levels is due to de novo synthesis. Measurement of abscisic acid (ABA) levels in roots of control and stressed seedlings indicated a 10-fold increase upon air-drying. Similarly, a five- and seven-fold increase of ABA content of seedling roots was found after 2 hours of osmotic stress by polyethylene glycol 6,000 and mannitol, respectively. Finally, the stress-induced increase of WGA in wheat roots could be inhibited by growing seedlings in the presence of fluridone, an inhibitor of ABA synthesis. These results indicate that roots of water-stressed wheat seedlings (a) contain more WGA as a result of an increased de novo synthesis of this lectin, and (b) exhibit higher ABA levels. The stress-induced increase of lectin accumulation seems to be under control of ABA.

  16. Changes of nucleic acids of wheat seedlings under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Sytnyk, K. M.; Musatenko, L. I.

    1983-01-01

    The effects of space flight on the growth of wheat seedlings and their nucleic acid content were studied. It was shown that both space and ground seedlings have almost the same appearance, dry weight and nucleic acid content in the root, coleoptile and leaves. The only difference found is in the RNA and DNA content, which is twice as much in the ground seedling apices as in the space-grown seedlings.

  17. Use of modified wheat bran for the removal of chromium(VI) from aqueous solutions.

    PubMed

    Kaya, K; Pehlivan, E; Schmidt, C; Bahadir, M

    2014-09-01

    Novel adsorbents, wheat bran (WB) and modified wheat bran (M-WB) with tartaric acid were developed and Cr(VI) adsorption was investigated by changing various parameters. The adsorption increased with contact time and become optimum at 180 min for WB and 200 min for M-WB. When the pH of the solution phase increased, some of toxic Cr(VI) reduced into less toxic Cr(III) on the WB surface. The maximum removal of Cr(VI) from the solution having an initial Cr(VI) concentration of 200 mg L(-1) was obtained at pH 2.0 as 51.0% and 90.0% for WB and M-WB, respectively. Isotherm data of Cr(VI) adsorption on WB and M-WB was described by the Freundlich adsorption model. The adsorption capacity of 4.53 mg of Cr(VI)/g for WB and 5.28 mg of Cr(VI)/g for M-WB was obtained at pH 2 and 2.2 respectively.

  18. Influence of gelatinization on the extraction of phenolic acids from wheat fractions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of gelatinization on the analysis of phenolic acids from wheat bran, whole-wheat, and refined flour samples was investigated using two extraction procedures, namely, ultrasonic (UAE) and microwave (MAE). The total phenolic acid (TPA) concentration quantity in wheat bran (2711-2913 µg/g) w...

  19. Modeling the continuous lactic acid production process from wheat flour.

    PubMed

    Gonzalez, Karen; Tebbani, Sihem; Lopes, Filipa; Thorigné, Aurore; Givry, Sébastien; Dumur, Didier; Pareau, Dominique

    2016-01-01

    A kinetic model of the simultaneous saccharification, protein hydrolysis, and fermentation (SSPHF) process for lactic acid production from wheat flour has been developed. The model describes the bacterial growth, substrate consumption, lactic acid production, and maltose hydrolysis. The model was fitted and validated with data from SSPHF experiments obtained under different dilution rates. The results of the model are in good agreement with the experimental data. Steady state concentrations of biomass, lactic acid, glucose, and maltose as function of the dilution rate were predicted by the model. This steady state analysis is further useful to determine the operating conditions that maximize lactic acid productivity.

  20. Optimization of the dilute maleic acid pretreatment of wheat straw

    PubMed Central

    2009-01-01

    Background In this study, the dilute maleic acid pretreatment of wheat straw is optimized, using pretreatment time, temperature and maleic acid concentration as design variables. A central composite design was applied to the experimental set up. The response factors used in this study are: (1) glucose benefits from improved enzymatic digestibility of wheat straw solids; (2) xylose benefits from the solubilization of xylan to the liquid phase during the pretreatment; (3) maleic acid replenishment costs; (4) neutralization costs of pretreated material; (5) costs due to furfural production; and (6) heating costs of the input materials. For each response factor, experimental data were fitted mathematically. After data translation to €/Mg dry straw, determining the relative contribution of each response factor, an economic optimization was calculated within the limits of the design variables. Results When costs are disregarded, an almost complete glucan conversion to glucose can be reached (90% from solids, 7%-10% in liquid), after enzymatic hydrolysis. During the pretreatment, up to 90% of all xylan is converted to monomeric xylose. Taking cost factors into account, the optimal process conditions are: 50 min at 170°C, with 46 mM maleic acid, resulting in a yield of 65 €/Mg (megagram = metric ton) dry straw, consisting of 68 €/Mg glucose benefits (from solids: 85% of all glucan), 17 €/Mg xylose benefits (from liquid: 80% of all xylan), 17 €/Mg maleic acid costs, 2.0 €/Mg heating costs and 0.68 €/Mg NaOH costs. In all but the most severe of the studied conditions, furfural formation was so limited that associated costs are considered negligible. Conclusions After the dilute maleic acid pretreatment and subsequent enzymatic hydrolysis, almost complete conversion of wheat straw glucan and xylan is possible. Taking maleic acid replenishment, heating, neutralization and furfural formation into account, the optimum in the dilute maleic acid pretreatment of

  1. Nanoparticles modified with multiple organic acids

    NASA Technical Reports Server (NTRS)

    Cook, Ronald Lee (Inventor); Luebben, Silvia DeVito (Inventor); Myers, Andrew William (Inventor); Smith, Bryan Matthew (Inventor); Elliott, Brian John (Inventor); Kreutzer, Cory (Inventor); Wilson, Carolina (Inventor); Meiser, Manfred (Inventor)

    2007-01-01

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  2. Nanoparticles modified with multiple organic acids

    DOEpatents

    Cook, Ronald Lee; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew; Elliott, Brian John; Kreutzer, Cory; Wilson, Carolina; Meiser, Manfred

    2007-07-17

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  3. Cytokinin producing bacteria stimulate amino acid deposition by wheat roots.

    PubMed

    Kudoyarova, Guzel R; Melentiev, Alexander I; Martynenko, Elena V; Timergalina, Leila N; Arkhipova, Tatiana N; Shendel, Galina V; Kuz'mina, Ludmila Yu; Dodd, Ian C; Veselov, Stanislav Yu

    2014-10-01

    Phytohormone production is one mechanism by which rhizobacteria can stimulate plant growth, but it is not clear whether the bacteria gain from this mechanism. The hypothesis that microbial-derived cytokinin phytohormones stimulate root exudation of amino acids was tested. The rhizosphere of wheat plants was drenched with the synthetic cytokinin trans-zeatin or inoculated with Bacillus subtilis IB-22 (which produces zeatin type cytokinins) or B. subtilis IB-21 (which failed to accumulate cytokinins). Growing plants in a split root system allowed spatial separation of zeatin application or rhizobacterial inoculation to one compartment and analyses of amino acid release from roots (rhizodeposition) into the other compartment (without either microbial inoculation or treatment with exogenous hormone). Supplying B. subtilis IB-22 or zeatin to either the whole root system or half of the roots increased concentrations of amino acids in the soil solution although the magnitude of the increase was greater when whole roots were treated. There was some similarity in amino acid concentrations induced by either bacterial or zeatin treatment. Thus B. subtilis IB-22 increased amino acid rhizodeposition, likely due to its ability to produce cytokinins. Furthermore, B. subtilis strain IB-21, which failed to accumulate cytokinins in culture media, did not significantly affect amino acid concentrations in the wheat rhizosphere. The ability of rhizobacteria to produce cytokinins and thereby stimulate rhizodeposition may be important in enhancing rhizobacterial colonization of the rhizoplane.

  4. Effect of Processing on phenolic acid composition of dough and bread fractions made from refined and whole-wheat flour of three wheat varieties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we investigated the effect of bread-making on the assay of phenolic acids of whole and refined wheat from three wheat varieties, comparing refined (RF) and whole wheat (WW) flour, dough, and bread fractions. The efficacy of two common base hydrolysis methods for phenolic acid analysis...

  5. Biohydrogen and carboxylic acids production from wheat straw hydrolysate.

    PubMed

    Chandolias, Konstantinos; Pardaev, Sindor; Taherzadeh, Mohammad J

    2016-09-01

    Hydrolyzed wheat straw was converted into carboxylic acids and biohydrogen using digesting bacteria. The fermentations were carried out using both free and membrane-encased thermophilic bacteria (55°C) at various OLRs (4.42-17.95g COD/L.d), in semi-continuous conditions using one or two bioreactors in a series. The highest production of biohydrogen and acetic acid was achieved at an OLR of 4.42g COD/L.d, whilst the highest lactic acid production occurred at an OLR of 9.33g COD/L.d. Furthermore, the bioreactor with both free and membrane-encased cells produced 60% more lactic acid compared to the conventional, free-cell bioreactor. In addition, an increase of 121% and 100% in the production of acetic and isobutyric acid, respectively, was achieved in the 2nd-stage bioreactor compared to the 1st-stage bioreactor.

  6. Effect of acetic acid on physical properties of pregelatinized wheat and corn starch gels.

    PubMed

    Majzoobi, Mahsa; Kaveh, Zahra; Farahnaky, Asgar

    2016-04-01

    Pregelatinized starches are physically modified starches with ability to absorb water and increase viscosity at ambient temperature. The main purpose of this study was to determine how different concentrations of acetic acid (0, 500, 1000, 10,000 mg/kg) can affect functional properties of pregelatinized wheat and corn starches (PGWS and PGCS, respectively) produced by a twin drum drier. With increasing acetic acid following changes occurred for both samples; cold water solubility (at 25 °C) increased, water absorption and apparent cold water viscosity (at 25 °C) reduced, the smooth surface of the starch particles converted to an uneven surface as confirmed by scanning electron microscopy, cohesiveness, consistency and turbidity of the starch gels reduced while their syneresis increased. It was found that in presence of acetic acid, PGWS resulted in higher water absorption and apparent cold water viscosity and produced more cohesive and turbid gels with less syneresis compared to PGCS.

  7. Wheat rolls fortified with microencapsulated L-5-methyltetrahydrofolic acid or equimolar folic acid increase blood folate concentrations to a similar extent in healthy men and women.

    PubMed

    Green, Timothy J; Liu, Yazheng; Dadgar, Samira; Li, Wangyang; Böhni, Ruth; Kitts, David D

    2013-06-01

    Mandatory folic acid fortification of grains such as wheat flour has been introduced in several countries to reduce the incidence of neural tube defects. There are concerns, however, that folic acid could mask the hematologic signs of vitamin B-12 deficiency and lead to other adverse health outcomes in the population. Calcium L-5-methyltetrahydrofolic acid (L-5-MTHF), a synthetic form of reduced folate, should not mask vitamin B-12 deficiency and may be safer than folic acid. Unfortunately, L-5-MTHF is not stable in most food matrices such as bread. Microencapsulation of L-5-MTHF with sodium ascorbate and a modified starch is effective at preventing loss of the vitamin during baking and storage. Our aim was to assess the efficacy of wheat rolls fortified with microencapsulated L-5-MTHF or equimolar folic acid compared with wheat rolls containing no added folate (placebo) at increasing blood folate concentrations during 16 wk. Healthy men and women aged 18-45 y (n = 45) were randomly assigned to consume wheat rolls that contained L-5-MTHF (452 μg/d), the molar equivalent of folic acid (400 μg/d), or placebo. At 16 wk, the mean (95% CI) erythrocyte folate was 0.48 (0.27, 0.71) and 0.37 (0.17, 0.57) μmol/L higher in the L-5-MTHF (P < 0.001) and folic acid wheat roll (P = 0.001) groups, respectively, than in the placebo group. Likewise, the mean plasma folate was 23 (12, 34) and 23 (12, 34) nmol/L higher in the L-5-MTHF (P < 0.001) and folic acid wheat roll (P < 0.001) groups, respectively, than in the placebo group. There were no significant differences in blood folate concentrations between the L-5-MTHF and folic acid wheat roll groups. Both microencapsulated L-5-MTHF and folic acid-fortified wheat rolls increased blood folate concentrations compared with placebo.

  8. Effect of Genetically Modified Pseudomonas putida WCS358r on the Fungal Rhizosphere Microflora of Field-Grown Wheat

    PubMed Central

    Glandorf, Debora C. M.; Verheggen, Patrick; Jansen, Timo; Jorritsma, Jan-Willem; Smit, Eric; Leeflang, Paula; Wernars, Karel; Thomashow, Linda S.; Laureijs, Eric; Thomas-Oates, Jane E.; Bakker, Peter A. H. M.; van Loon, Leendert C.

    2001-01-01

    We released genetically modified Pseudomonas putida WCS358r into the rhizospheres of wheat plants. The two genetically modified derivatives, genetically modified microorganism (GMM) 2 and GMM 8, carried the phz biosynthetic gene locus of strain P. fluorescens 2-79 and constitutively produced the antifungal compound phenazine-1-carboxylic acid (PCA). In the springs of 1997 and 1998 we sowed wheat seeds treated with either GMM 2, GMM 8, or WCS358r (approximately 107 CFU per seed), and measured the numbers, composition, and activities of the rhizosphere microbial populations. During both growing seasons, all three bacterial strains decreased from 107 CFU per g of rhizosphere sample to below the limit of detection (102 CFU per g) 1 month after harvest of the wheat plants. The phz genes were stably maintained, and PCA was detected in rhizosphere extracts of GMM-treated plants. In 1997, but not in 1998, fungal numbers in the rhizosphere, quantified on 2% malt extract agar (total filamentous fungi) and on Komada's medium (mainly Fusarium spp.), were transiently suppressed in GMM 8-treated plants. We also analyzed the effects of the GMMs on the rhizosphere fungi by using amplified ribosomal DNA restriction analysis. Introduction of any of the three bacterial strains transiently changed the composition of the rhizosphere fungal microflora. However, in both 1997 and 1998, GMM-induced effects were distinct from those of WCS358r and lasted for 40 days in 1997 and for 89 days after sowing in 1998, whereas effects induced by WCS358r were detectable for 12 (1997) or 40 (1998) days. None of the strains affected the metabolic activity of the soil microbial population (substrate-induced respiration), soil nitrification potential, cellulose decomposition, plant height, or plant yield. The results indicate that application of GMMs engineered to have improved antifungal activity can exert nontarget effects on the natural fungal microflora. PMID:11472906

  9. Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field-grown wheat.

    PubMed

    Glandorf, D C; Verheggen, P; Jansen, T; Jorritsma, J W; Smit, E; Leeflang, P; Wernars, K; Thomashow, L S; Laureijs, E; Thomas-Oates, J E; Bakker, P A; van Loon, L C

    2001-08-01

    We released genetically modified Pseudomonas putida WCS358r into the rhizospheres of wheat plants. The two genetically modified derivatives, genetically modified microorganism (GMM) 2 and GMM 8, carried the phz biosynthetic gene locus of strain P. fluorescens 2-79 and constitutively produced the antifungal compound phenazine-1-carboxylic acid (PCA). In the springs of 1997 and 1998 we sowed wheat seeds treated with either GMM 2, GMM 8, or WCS358r (approximately 10(7) CFU per seed), and measured the numbers, composition, and activities of the rhizosphere microbial populations. During both growing seasons, all three bacterial strains decreased from 10(7) CFU per g of rhizosphere sample to below the limit of detection (10(2) CFU per g) 1 month after harvest of the wheat plants. The phz genes were stably maintained, and PCA was detected in rhizosphere extracts of GMM-treated plants. In 1997, but not in 1998, fungal numbers in the rhizosphere, quantified on 2% malt extract agar (total filamentous fungi) and on Komada's medium (mainly Fusarium spp.), were transiently suppressed in GMM 8-treated plants. We also analyzed the effects of the GMMs on the rhizosphere fungi by using amplified ribosomal DNA restriction analysis. Introduction of any of the three bacterial strains transiently changed the composition of the rhizosphere fungal microflora. However, in both 1997 and 1998, GMM-induced effects were distinct from those of WCS358r and lasted for 40 days in 1997 and for 89 days after sowing in 1998, whereas effects induced by WCS358r were detectable for 12 (1997) or 40 (1998) days. None of the strains affected the metabolic activity of the soil microbial population (substrate-induced respiration), soil nitrification potential, cellulose decomposition, plant height, or plant yield. The results indicate that application of GMMs engineered to have improved antifungal activity can exert nontarget effects on the natural fungal microflora.

  10. The effects of modified versus unmodified wheat gluten administration in patients with celiac disease.

    PubMed

    Marino, Mariacatia; Casale, Rossella; Borghini, Raffaele; Di Nardi, Sara; Donato, Giuseppe; Angeloni, Antonio; Moscaritolo, Salvatore; Grasso, Lorenza; Mazzarella, Giuseppe; Di Tola, Marco; Rossi, Mauro; Picarelli, Antonio

    2017-03-23

    Celiac disease (CD) treatment requires a gluten-free diet (GFD), although alternative approaches have been proposed. Modification of gliadin peptides using microbial transglutaminase (mTG) inhibits their ability to induce immune response in vitro. Our aim was to evaluate the safety of mTG-modified wheat flour ingestion in CD patients. Twenty-one CD patients in remission were randomized to receive mTG-modified (n=11) or unmodified (n=10) wheat flour rusks, in double-blind fashion. Monthly, patients completed a symptom questionnaire. Serum anti-tTG, EMA and creatinine levels were monitored. At baseline and after 90days, serum anti-actin antibodies (AAA) were measured and upper endoscopy was performed. Data were analyzed by non-parametric tests. 7/11 patients eating modified rusks and 7/10 patients receiving unmodified rusks completed the study. At baseline, all patients showed negative serum anti-tTG and EMA results. At the end, 2/7 (28.6%) patients ingesting modified and 4/7 (57.1%) patients taking unmodified rusks presented positive serum anti-tTG and EMA results. Creatinine results were unmodified. Moreover, 1/7 (14.3%) patients ingesting modified and 4/7 (57.1%) patients taking unmodified rusks presented villous atrophy. In patients who received unmodified rusks, the AAA levels increased significantly and duodenal anti-tTG levels appeared higher than those measured in patients who ate modified rusks. Abdominal swelling, bloating and nausea were more severe in patients ingesting unmodified rusks than those taking modified rusks. Our results may support larger clinical trials to confirm the enzymatic treatment of wheat flour as an alternative to GFD. Clinicaltrials.gov registration no: NCT02472119.

  11. Comparing the performance of Miscanthus x giganteus and wheat straw biomass in sulfuric acid based pretreatment.

    PubMed

    Kärcher, M A; Iqbal, Y; Lewandowski, I; Senn, T

    2015-03-01

    The objective of this study was to assess and compare the suitability of Miscanthus x giganteus and wheat straw biomass in dilute acid catalyzed pretreatment. Miscanthus and wheat straw were treated in a dilute sulfuric acid/steam explosion pretreatment. As a result of combining dilute sulfuric acid- and steam explosion pretreatment the hemicellulose hydrolysis yields (96% in wheat straw and 90% in miscanthus) in both substrates were higher than reported in literature. The combined severity factor (=CSF) for optimal hemicellulose hydrolysis was 1.9 and 1.5 in for miscanthus and wheat straw respectively. Because of the higher CSF value more furfural, furfuryl alcohol, 5-hydroxymethylfurfural and acetic acid was formed in miscanthus than in wheat straw pretreatment.

  12. Modification of wheat starch with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures I. Thermophysical and pasting properties.

    PubMed

    Subarić, Drago; Ačkar, Durđica; Babić, Jurislav; Sakač, Nikola; Jozinović, Antun

    2014-10-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications.

  13. Biosynthesis of Essential Polyunsaturated Fatty Acids in Wheat Triggered by Expression of Artificial Gene

    PubMed Central

    Mihálik, Daniel; Klčová, Lenka; Ondreičková, Katarína; Hudcovicová, Martina; Gubišová, Marcela; Klempová, Tatiana; Čertík, Milan; Pauk, János; Kraic, Ján

    2015-01-01

    The artificial gene D6D encoding the enzyme ∆6desaturase was designed and synthesized using the sequence of the same gene from the fungus Thamnidium elegans. The original start codon was replaced by the signal sequence derived from the wheat gene for high-molecular-weight glutenin subunit and the codon usage was completely changed for optimal expression in wheat. Synthesized artificial D6D gene was delivered into plants of the spring wheat line CY-45 and the gene itself, as well as transcribed D6D mRNA were confirmed in plants of T0 and T1 generations. The desired product of the wheat genetic modification by artificial D6D gene was the γ-linolenic acid. Its presence was confirmed in mature grains of transgenic wheat plants in the amount 0.04%–0.32% (v/v) of the total amount of fatty acids. Both newly synthesized γ-linolenic acid and stearidonic acid have been detected also in leaves, stems, roots, awns, paleas, rachillas, and immature grains of the T1 generation as well as in immature and mature grains of the T2 generation. Contents of γ-linolenic acid and stearidonic acid varied in range 0%–1.40% (v/v) and 0%–1.53% (v/v) from the total amount of fatty acids, respectively. This approach has opened the pathway of desaturation of fatty acids and production of essential polyunsaturated fatty acids in wheat. PMID:26694368

  14. Microstructural, textural, and sensory properties of whole-wheat noodle modified by enzymes and emulsifiers.

    PubMed

    Niu, Meng; Hou, Gary G; Kindelspire, Julie; Krishnan, Padmanaban; Zhao, Siming

    2017-05-15

    With the utilization of enzymes including endoxylanase, glucose oxidase (GOX) and transglutaminase (TG), and emulsifiers comprising sodium stearoyl lactate (SSL) and soy lecithin, the microstructural, textural, and sensory properties of whole-wheat noodle (WWN) were modified. The development time and stability of whole-wheat dough (WWD) were enhanced by TG due to the formation of a more compact gluten network, and by SSL resulting from the enhanced gluten strength. Microstructure graphs by scanning electron microscopy (SEM) verified that TG and SSL promoted the connectivity of gluten network and the coverage of starch granules in WWN. TG increased the hardness and elasticity of cooked WWN, while two emulsifiers increased the noodle cohesiveness. Additionally, TG and SSL improved the sensory properties of noodle such as bite, springiness, and mouth-feel. The results suggest that TG and SSL are effective ingredients in enhancing the gluten strength of WWD and improving the qualities of WWN.

  15. Beneficial effects of humic acid on micronutrient availability to wheat

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Grossl, P. R.; Bugbee, B. G.

    2001-01-01

    Humic acid (HA) is a relatively stable product of organic matter decomposition and thus accumulates in environmental systems. Humic acid might benefit plant growth by chelating unavailable nutrients and buffering pH. We examined the effect of HA on growth and micronutrient uptake in wheat (Triticum aestivum L.) grown hydroponically. Four root-zone treatments were compared: (i) 25 micromoles synthetic chelate N-(4-hydroxyethyl)ethylenediaminetriacetic acid (C10H18N2O7) (HEDTA at 0.25 mM C); (ii) 25 micromoles synthetic chelate with 4-morpholineethanesulfonic acid (C6H13N4S) (MES at 5 mM C) pH buffer; (iii) HA at 1 mM C without synthetic chelate or buffer; and (iv) no synthetic chelate or buffer. Ample inorganic Fe (35 micromoles Fe3+) was supplied in all treatments. There was no statistically significant difference in total biomass or seed yield among treatments, but HA was effective at ameliorating the leaf interveinal chlorosis that occurred during early growth of the nonchelated treatment. Leaf-tissue Cu and Zn concentrations were lower in the HEDTA treatment relative to no chelate (NC), indicating HEDTA strongly complexed these nutrients, thus reducing their free ion activities and hence, bioavailability. Humic acid did not complex Zn as strongly and chemical equilibrium modeling supported these results. Titration tests indicated that HA was not an effective pH buffer at 1 mM C, and higher levels resulted in HA-Ca and HA-Mg flocculation in the nutrient solution.

  16. Trends in wheat-flour fortification with folic acid and iron--worldwide, 2004 and 2007.

    PubMed

    2008-01-11

    Consumption of adequate amounts of folic acid by women before pregnancy and during early pregnancy decreases their risk for having a pregnancy affected by neural tube defects (NTDs), the most common preventable type of birth defects worldwide. Consumption of iron ameliorates iron deficiency, the most prevalent nutritional deficiency in the world, affecting approximately 2 billion persons. Although certain populations consume substantial amounts of rice and corn, worldwide, the consumption of wheat flour is greater than that of any other cereal grain. Fortification of wheat flour is an effective, simple, and inexpensive strategy for supplying folic acid, iron, and other vitamins and minerals to large segments of the world population. To assess the global change from 2004 to 2007 in 1) the percentage of wheat flour being fortified with folic acid and iron; 2) the total number of persons overall and women in particular with access to fortified wheat flour; and 3) the total number of newborns whose mothers had access to fortified wheat flour during pregnancy, CDC analyzed data from the Flour Fortification Initiative (FFI). This report summarizes the results of that assessment, which indicated that the worldwide percentage of wheat-flour fortification increased from 18% in 2004 to 27% in 2007. The estimated number of persons with access to fortified wheat flour increased by approximately 540 million, and the annual number of newborns whose mothers had access to fortified wheat flour during pregnancy increased by approximately 14 million. Nonetheless, approximately two thirds of the world population lacks access to fortified wheat flour. Programs should continue to expand coverage of wheat-flour fortification as a strategy to increase folic acid and iron consumption.

  17. A simplified and accurate detection of the genetically modified wheat MON71800 with one calibrator plasmid.

    PubMed

    Kim, Jae-Hwan; Park, Saet-Byul; Roh, Hyo-Jeong; Park, Sunghoon; Shin, Min-Ki; Moon, Gui Im; Hong, Jin-Hwan; Kim, Hae-Yeong

    2015-06-01

    With the increasing number of genetically modified (GM) events, unauthorized GMO releases into the food market have increased dramatically, and many countries have developed detection tools for them. This study described the qualitative and quantitative detection methods of unauthorized the GM wheat MON71800 with a reference plasmid (pGEM-M71800). The wheat acetyl-CoA carboxylase (acc) gene was used as the endogenous gene. The plasmid pGEM-M71800, which contains both the acc gene and the event-specific target MON71800, was constructed as a positive control for the qualitative and quantitative analyses. The limit of detection in the qualitative PCR assay was approximately 10 copies. In the quantitative PCR assay, the standard deviation and relative standard deviation repeatability values ranged from 0.06 to 0.25 and from 0.23% to 1.12%, respectively. This study supplies a powerful and very simple but accurate detection strategy for unauthorized GM wheat MON71800 that utilizes a single calibrator plasmid.

  18. Effects of acetic acid and lactic acid on physicochemical characteristics of native and cross-linked wheat starches.

    PubMed

    Majzoobi, Mahsa; Beparva, Paniz

    2014-03-15

    The effects of two common organic acids; lactic and acetic acids (150 mg/kg) on physicochemical properties of native and cross-linked wheat starches were investigated prior and after gelatinization. These acids caused formation of some cracks and spots on the granules. The intrinsic viscosity of both starches decreased in the presence of the acids particularly after gelatinization. Water solubility increased while water absorption reduced after addition of the acids. The acids caused reduction in gelatinization temperature and enthalpy of gelatinization of both starches. The starch gels became softer, less cohesive, elastic and gummy when acids were added. These changes may indicate the degradation of the starch molecules by the acids. Cross-linked wheat starch was more resistant to the acids. However, both starches became more susceptible to the acids after gelatinization. The effect of lactic acid on physicochemical properties of both starches before and after gelatinization was greater than acetic acid.

  19. Effect of citric acid deamidation on in vitro digestibility and antioxidant properties of wheat gluten.

    PubMed

    Qiu, Chaoying; Sun, Weizheng; Cui, Chun; Zhao, Mouming

    2013-12-01

    The effects of citric acid deamidation on the physiochemical properties of wheat gluten were investigated. In vitro digestion was carried out to determine changes of molecular weight distribution, amino acids composition and antioxidant efficacy of wheat gluten hydrolysates. Results indicated that citric acid deamidation significantly increased gluten solubility and surface hydrophobicity, at a neutral pH. Deamidation induced molecular weight distribution change of gluten with little proteolysis. Results from FTIR indicated that the α-helix and β-turn of deamidated gluten increased accompanied by a decrease of the β-sheet structure. After deamidation, in vitro pepsin digestibility of wheat gluten decreased, while in vitro pancreatin digestibility increased. The oxygen radical absorbance capacity (ORAC) activity of the in vitro digests decreased with increase of deamidation time. The high Lys and total essential AAs amounts in the final digests suggested that the nutritional values of wheat gluten after deamidation might be enhanced.

  20. Fatty acid production in genetically modified cyanobacteria

    PubMed Central

    Liu, Xinyao; Sheng, Jie; Curtiss III, Roy

    2011-01-01

    To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl–acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased to 197 ± 14 mg/L of culture in one improved strain at a cell density of 1.0 × 109 cells/mL by adding codon-optimized thioesterase genes and weakening polar cell wall layers. Although these strains exhibited damaged cell membranes at low cell densities, they grew more rapidly at high cell densities in late exponential and stationary phase and exhibited less cell damage than cells in wild-type cultures. Our results suggest that fatty acid secreting cyanobacteria are a promising technology for renewable biofuel production. PMID:21482809

  1. Comparative degradation of [14C]-2,4-dichlorophenoxyacetic acid in wheat and potato after Foliar application and in wheat, radish, lettuce, and apple after soil application.

    PubMed

    Hamburg, A; Puvanesarajah, V; Burnett, T J; Barnekow, D E; Premkumar, N D; Smith, G A

    2001-01-01

    The fate of 2,4-dichlorophenoxyacetic acid (2,4-D) applied foliarly as the 2-ethylhexyl ester (EHE) to wheat and potatoes, to the soil as the dimethylamine (DMA) salt under apple tree canopies, and preplant as the free acid for wheat, lettuce, and radish was studied to evaluate metabolic pathways. Crop fractions analyzed for (14)C residues included wheat forage, straw, and grain; potato vine and tubers; and apple fruit. The primary metabolic pathway for foliar application in wheat is ester hydrolysis followed by the formation of base-labile 2,4-D conjugates. A less significant pathway for 2,4-D in wheat was ring hydroxylation to give NIH-shift products 2,5-dichloro-4-hydroxyphenoxyacetic acid (4-OH-2,5-D), 4-OH-2,3-D, and 5-OH-2,4-D both free and as acid-labile conjugates. The primary metabolic pathway in potato was again ester hydrolysis. 2,4-D acid was further transformed to 4-chlorophenoxyacetic acid and 4-OH-2,5-D. For the soil applications, (14)C residues in the crops were low, and characterization of the (14)C residues indicated association with or incorporation into the biochemical matrix of the tissue. The degradative pathways observed in wheat are similar to those characterized in other intact plant studies but differ from those in studies in wheat cell suspension culture in that no amino acid conjugates were observed.

  2. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for...

  3. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for...

  4. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for...

  5. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for...

  6. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for...

  7. Application of a modified Haug and Lantzsch method for the rapid and accurate photometrical phytate determination in soybean, wheat, and maize meals.

    PubMed

    Reichwald, Kirsten; Hatzack, Frank

    2008-05-14

    A modified version of the Haug and Lantzsch method for rapid photometrical phytate determination was applied for the analysis of phytate in soybean, wheat, and maize meals. In comparison to the original protocol, the amount of the toxic reagent thioglycolic acid is reduced substantially to minimize potential health risks for laboratory personnel. Different extraction conditions for soybean meal were tested, and boiling for at least 30 min was found to be necessary to remove an interfering compound in soybean meal extracts. Phytate contents determined according to the modified Haug and Lantzsch method did not differ from those obtained by measuring total precipitated phosphorus or by sensitive and specific high-performance ion chromatography. Applicability and accuracy of the modified method for phytate analysis in major feed substrates, including soy-based textured vegetable protein, were demonstrated.

  8. Enhanced degradation of Herbicide Isoproturon in wheat rhizosphere by salicylic acid.

    PubMed

    Lu, Yi Chen; Zhang, Shuang; Miao, Shan Shan; Jiang, Chen; Huang, Meng Tian; Liu, Ying; Yang, Hong

    2015-01-14

    This study investigated the herbicide isoproturon (IPU) residues in soil, where wheat was cultivated and sprayed with salicylic acid (SA). Provision of SA led to a lower level of IPU residues in rhizosphere soil compared to IPU treatment alone. Root exudation of tartaric acid, malic acid, and oxalic acids was enhanced in rhizosphere soil with SA-treated wheat. We examined the microbial population (e.g., biomass and phospholipid fatty acid), microbial structure, and soil enzyme (catalase, phenol oxidase, and dehydrogenase) activities, all of which are associated with soil activity and were activated in rhizosphere soil of SA-treated wheat roots. We further assessed the correlation matrix and principal component to figure out the association between the IPU degradation and soil activity. Finally, six IPU degraded products (derivatives) in rhizosphere soil were characterized using ultraperformance liquid chromatography with a quadrupole-time-of-flight tandem mass spectrometer (UPLC/Q-TOF-MS/MS). A relatively higher level of IPU derivatives was identified in soil with SA-treated wheat than in soil without SA-treated wheat plants.

  9. Exogenous salicylic acid alleviates the toxicity of chlorpyrifos in wheat plants (Triticum aestivum).

    PubMed

    Wang, Caixia; Zhang, Qingming

    2017-03-01

    The role of exogenous salicylic acid (SA) in protecting wheat plants (Triticum aestivum) from contamination by the insecticide chlorpyrifos was investigated in this study. The wheat plants were grown in soils with different concentrations (5, 10, 20, and 40mgkg(-1)) of chlorpyrifos. When the third leaf emerged, the wheat leaves were sprayed with 1, 2, 4, 8, and 16mgL(-1) of SA once a day for 6 days. The results showed that wheat exposed to higher concentrations of chlorpyrifos (≥20mgkg(-1)) caused declines in growth and chlorophyll content and altered the activities of a series of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX). Interestingly, treatments with different concentrations of SA mitigated the stress generated by chlorpyrifos and improved the measured parameters to varying degrees. Furthermore, a reverse transcription and quantitative PCR experiment revealed that the activities of SOD and CAT can be regulated by their target gene in wheat when treated with SA. We also found that SA is able to block the accumulation of chlorpyrifos in wheat. However, the effect of SA was related to its concentration. In this study, the application of 2mgL(-1) of SA had the greatest ameliorating effect on chlorpyrifos toxicity in wheat plants.

  10. Effects of wheat maturation stage and cooking method on dietary fiber and phytic acid contents of firik, a wheat-based local food.

    PubMed

    Ozboy, O; Ozkaya, B; Ozkaya, H; Köksel, H

    2001-10-01

    Samples of two durum wheat cultivars (cvs. Duraking and Ege 88) at different maturation stages (13, 16, 19, 22, 25 days post anthesis) were processed into firik (a wheat-based specialty food) using two different cooking methods: roasting (scorching) on flames and boiling at atmospheric pressure. Both the acid detergent and neutral detergent fiber contents of the firiks produced from two durum wheat samples decreased significantly (p < 0.01) with maturation. Total P contents of the firiks of both cultivars produced by both methods showed a significant downward trend within the period of maturation while their phytic acid contents showed a significant upward trend (p < 0.01). It was possible to obtain a reduced phytic acid, high fiber product from the wheats harvested at early stages of maturation (13 and 16 days after anthesis).

  11. Biocompatible, hyaluronic acid modified silicone elastomers.

    PubMed

    Alauzun, Johan G; Young, Stuart; D'Souza, Renita; Liu, Lina; Brook, Michael A; Sheardown, Heather D

    2010-05-01

    Although silicones possess many useful properties as biomaterials, their hydrophobicity can be problematic. To a degree, this issue can be addressed by surface modification with hydrophilic polymers such as poly(ethylene glycol), but the resulting structures are usually not conducive to cell growth. In the present work, we describe the synthesis and characterization of covalently linked hyaluronic acid (HA) (35 kDa) to poly(dimethylsiloxane) (PDMS) elastomer surfaces. HA is of interest because of its known biological properties; its presence on a surface was expected to improve the biocompatibility of silicone materials for a wide range of bioapplications. HA was introduced with a coupling agent in two steps from high-density, tosyl-modified, poly(ethylene glycol) tethered silicone surfaces. All materials synthesized were characterized by water contact angle, ATR-FTIR, XPS and (13)C solid state NMR spectroscopy. Biological interactions with these modified silicone surfaces were assessed by examining interactions with fibrinogen as a model protein as well as determining the in vitro response of fibroblast (3T3) and human corneal epithelial cells relative to unmodified poly(dimethylsiloxane) controls. The results suggest that HA modification significantly enhances cell interactions while decreasing protein adsorption and may therefore be effective for improving biocompatibility of PDMS and other materials.

  12. Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice.

    PubMed

    Dionisio, Giuseppe; Madsen, Claus K; Holm, Preben B; Welinder, Karen G; Jørgensen, Malene; Stoger, Eva; Arcalis, Elsa; Brinch-Pedersen, Henrik

    2011-07-01

    Barley (Hordeum vulgare) and wheat (Triticum aestivum) possess significant phytase activity in the mature grains. Maize (Zea mays) and rice (Oryza sativa) possess little or virtually no preformed phytase activity in the mature grain and depend fully on de novo synthesis during germination. Here, it is demonstrated that wheat, barley, maize, and rice all possess purple acid phosphatase (PAP) genes that, expressed in Pichia pastoris, give fully functional phytases (PAPhys) with very similar enzyme kinetics. Preformed wheat PAPhy was localized to the protein crystalloid of the aleurone vacuole. Phylogenetic analyses indicated that PAPhys possess four conserved domains unique to the PAPhys. In barley and wheat, the PAPhy genes can be grouped as PAPhy_a or PAPhy_b isogenes (barley, HvPAPhy_a, HvPAPhy_b1, and HvPAPhy_b2; wheat, TaPAPhy_a1, TaPAPhy_a2, TaPAPhy_b1, and TaPAPhy_b2). In rice and maize, only the b type (OsPAPhy_b and ZmPAPhy_b, respectively) were identified. HvPAPhy_a and HvPAPhy_b1/b2 share 86% and TaPAPhya1/a2 and TaPAPhyb1/b2 share up to 90% (TaPAPhy_a2 and TaPAPhy_b2) identical amino acid sequences. despite of this, PAPhy_a and PAPhy_b isogenes are differentially expressed during grain development and germination. In wheat, it was demonstrated that a and b isogene expression is driven by different promoters (approximately 31% identity). TaPAPhy_a/b promoter reporter gene expression in transgenic grains and peptide mapping of TaPAPhy purified from wheat bran and germinating grains confirmed that the PAPhy_a isogene set present in wheat/barley but not in rice/maize is the origin of high phytase activity in mature grains.

  13. Toughness of natural rubber composites reinforced with hydrolyzed and modified wheat gluten aggregates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The toughness of natural rubber can be improved by using fillers for various rubber applications. Dry wheat gluten is a protein from wheat flour and is sufficiently rigid for rubber reinforcement. The wheat gluten was hydrolyzed to reduce its particle size and microfluidized to reduce and homogenize...

  14. Effect of Modified Wheat Gluten on Boiling Resistance Capacity of Pork Meatballs.

    PubMed

    Wang, Kai-Qiang; Luo, Shui-Zhong; Zhong, Xi-Yang; Cai, Ke-Zhou; Cai, Jing; Jiang, Shao-Tong; Zheng, Zhi

    2016-02-01

    The effect of the modified wheat gluten (MWG) extender, prepared by alcalase-based hydrolysis and transglutaminase cross-linking, on meatballs was analyzed in this study. Here, we studied the effect of MWG addition on the boiling resistance capacity of pork meatballs (MB-MWG) at high temperature (100 °C) and increasing cooking time; meatballs with added soy protein isolates (MB-SPI) and raw wheat gluten (MB-WG) were used as references. The cooking loss, water-holding capacity (WHC), and textural properties of meatballs were investigated. The results revealed that MB-MWG showed lower cooking loss, which decreased by 49.16% compared to meatballs without added extenders when treated for 30 min. The WHC of MB-MWG significantly increased from 80.68% to 95.42%. The hardness, springiness, and chewiness (textural properties) of MB-MWG were also significantly increased by 97.05%, 6.68%, and 121.96%, respectively. The addition of MWG increased the cross-linking in meatballs during the cooking process, as indicated by the higher G'. SDS-PAGE indicated an obvious decrease in myosin heavy chain in MB-MWG cooked for 30 min at 100 °C, which was attributed to the interaction of myofibrillar proteins in pork meat with MWG. The nuclear magnetic resonance T2 relaxation time patterns indicated that MWG addition caused an increase in the bound water content, and decrease in the free water content, of meatballs. An analysis of the microstructures revealed that the MB-MWG formed the most regular and compact network. Therefore, MWG could be used as an ingredient to facilitate the processing of meat products.

  15. Modification of vital wheat gluten with phosphoric acid to produce high free-solution capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten reacts with phosphoric acid to produce natural superabsorbent gels. The gel properties are defined by Fourier Transform Infra-red (FTIR) spectroscopy, 2-dimensional gel electrophoresis (2DE), and uptake of water, salt solutions, and aqueous ethanol. Temperatures above 120'C and dry cond...

  16. Modification of vital wheat gluten with phosphoric acid to produce high free solution capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten reacts with phosphoric acid in the presence of urea to produce natural superabsorbent gels. Fourier Transform Infra-red (FT-IR) spectroscopy and two-dimensional gel electrophoresis (2DE) reveal chemical changes from the reaction. Temperatures above 120°C and dry conditions create the op...

  17. Effects of L-ascorbic acid on physicochemical characteristics of wheat starch.

    PubMed

    Majzoobi, Mahsa; Radi, Mohsen; Farahnaky, Asgar; Tongdang, Tawee

    2012-03-01

    The main objective of this study was to determine the effects of l-ascorbic acid, as a permitted additive in bakery products, on characteristics of wheat starch. Suspensions of wheat starch (30%, w/w) in water containing 140 mg/kg ascorbic acid before and after gelatinization were prepared and studied using different techniques. The results of scanning electron microscopy showed that some spots appeared on the surface of the starch granules as a result of the addition of ascorbic acid. However, no changes in the starch crystalline pattern and its degree of crystallinity were observed by X-ray diffraction technique. For ungelatinized samples, no difference in the pasting properties of the samples was determined by the rapid visco analyzer, whereas for the gelatinized samples, peak and final viscosities decreased for the samples contained ascorbic acid. Determination of the intrinsic viscosities of the samples showed that addition of ascorbic acid to the gelatinized samples reduced the intrinsic viscosity. In general, it was found that ascorbic acid had some degradation effects on wheat starch molecules particularly after gelatinization.

  18. Production of hydrophobic amino acids from biobased resources: wheat gluten and rubber seed proteins.

    PubMed

    Widyarani; Sari, Yessie W; Ratnaningsih, Enny; Sanders, Johan P M; Bruins, Marieke E

    2016-09-01

    Protein hydrolysis enables production of peptides and free amino acids that are suitable for usage in food and feed or can be used as precursors for bulk chemicals. Several essential amino acids for food and feed have hydrophobic side chains; this property may also be exploited for subsequent separation. Here, we present methods for selective production of hydrophobic amino acids from proteins. Selectivity can be achieved by selection of starting material, selection of hydrolysis conditions, and separation of achieved hydrolysate. Several protease combinations were applied for hydrolysis of rubber seed protein concentrate, wheat gluten, and bovine serum albumin (BSA). High degree of hydrolysis (>50 %) could be achieved. Hydrophobic selectivity was influenced by the combination of proteases and by the extent of hydrolysis. Combination of Pronase and Peptidase R showed the highest selectivity towards hydrophobic amino acids, roughly doubling the content of hydrophobic amino acids in the products compared to the original substrates. Hydrophobic selectivity of 0.6 mol-hydrophobic/mol-total free amino acids was observed after 6 h hydrolysis of wheat gluten and 24 h hydrolysis of rubber seed proteins and BSA. The results of experiments with rubber seed proteins and wheat gluten suggest that this process can be applied to agro-industrial residues.

  19. Toxic effect of perfluorooctanoic acid (PFOA) on germination and seedling growth of wheat (Triticum aestivum L.).

    PubMed

    Zhou, Lina; Xia, Mengjie; Wang, Li; Mao, Hui

    2016-09-01

    As a persistent organic pollutant in the environment, perfluorooctanoic acid (PFOA) has been extensively investigated. It can accumulate in food chains and in the human body. This work investigated the effect of PFOA on wheat (Triticum aestivum L.) germination and seedling growth by conducting a germination trial and a pot trial. A stimulatory effect of PFOA on seedling growth and root length of wheat was found at <0.2 mg kg(-1), while >800 mg kg(-1) PFOA inhibited germination rate, index, and root and shoot growth. In the pot trial, PFOA concentration in root was double that in the shoot. Soil and plant analyzer development (SPAD) and plant height of wheat seedling were inhibited by adding 200 mg kg(-1) PFOA. Proline content and POD activity in wheat seedlings increased as PFOA increased, while CAT activity decreased. Using logarithmic equations, proline content was selected as the most sensitive index by concentration for 50% of maximal effect (EC50). Hence, the tolerance of wheat seedlings to PFOA levels could be evaluated on the basis of the physiological index.

  20. No Adverse Effect of Genetically Modified Antifungal Wheat on Decomposition Dynamics and the Soil Fauna Community – A Field Study

    PubMed Central

    Duc, Caroline; Nentwig, Wolfgang; Lindfeld, Andreas

    2011-01-01

    The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C∶N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the

  1. No adverse effect of genetically modified antifungal wheat on decomposition dynamics and the soil fauna community--a field study.

    PubMed

    Duc, Caroline; Nentwig, Wolfgang; Lindfeld, Andreas

    2011-01-01

    The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C∶N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the

  2. Effects of Fungicide Treatment on Free Amino Acid Concentration and Acrylamide-Forming Potential in Wheat.

    PubMed

    Curtis, Tanya Y; Powers, Stephen J; Halford, Nigel G

    2016-12-28

    Acrylamide forms from free asparagine and reducing sugars during frying, baking, roasting, or high-temperature processing, and cereal products are major contributors to dietary acrylamide intake. Free asparagine concentration is the determining factor for acrylamide-forming potential in cereals, and this study investigated the effect of fungicide application on free asparagine accumulation in wheat grain. Free amino acid concentrations were measured in flour from 47 varieties of wheat grown in a field trial in 2011-2012. The wheat had been supplied with nitrogen and sulfur and treated with growth regulators and fungicides. Acrylamide formation was measured after the flour had been heated at 180 °C for 20 min. Flour was also analyzed from 24 (of the 47) varieties grown in adjacent plots that were treated in identical fashion except that no fungicide was applied, resulting in visible infection by Septoria tritici, yellow rust, and brown rust. Free asparagine concentration in the fungicide-treated wheat ranged from 1.596 to 3.987 mmol kg(-1), with a significant (p < 0.001 to p = 0.006, F test) effect of variety for not only free asparagine but all of the free amino acids apart from cysteine and ornithine. There was also a significant (p < 0.001, F test) effect of variety on acrylamide formation, which ranged from 134 to 992 μg kg(-1). There was a significant (p < 0.001, F test) correlation between free asparagine concentration and acrylamide formation. Both free asparagine concentration and acrylamide formation increased in response to a lack of fungicide treatment, the increases in acrylamide ranging from 2.7 to 370%. Free aspartic acid concentration also increased, whereas free glutamic acid concentration increased in some varieties but decreased in others, and free proline concentration decreased. The study showed disease control by fungicide application to be an important crop management measure for mitigating the problem of acrylamide formation in wheat

  3. Characterization of chemically modified waxy, partially waxy, and wild type tetraploid wheat starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Durum wheats (Triticum turgidum L. var. durum) contain two Granule Bound Starch Synthase (GBSS) genes (wx-A1and wx-B1) controlling amylose synthesis; the other major starch polymer in durum wheat is amylopectin. Starches with little or no amylose are “waxy.” A GBSS null (non-producing) gene results ...

  4. Functionality of maize, wheat, teff and cassava starches with stearic acid and xanthan gum.

    PubMed

    Maphalla, Thabelang Gladys; Emmambux, Mohammad Naushad

    2016-01-20

    Consumer concerns to synthetic chemicals have led to strong preference for 'clean' label starches. Lipid and hydrocolloids are food friendly chemicals. This study determines the effects of stearic acid and xanthan gum alone and in combination on the functionality of maize, wheat, teff and cassava starches. An increase in viscosity was observed for all starches with stearic acid and xanthan gum compared to the controls with cassava having the least increase. A further increase in viscosity was observed for the cereal starches with combination of stearic acid and xanthan gum. Stearic acid reduced retrogradation, resulting in soft textured pastes. Combination of stearic acid and xanthan gum reduced the formation of type IIb amylose-lipid complexes, syneresis, and hysteresis in cereal starches compared to stearic acid alone. A combination of stearic acid and xanthan gum produce higher viscosity non-gelling starches and xanthan gum addition increases physical stability to freezing and better structural recovery after shear.

  5. Improved enzymatic hydrolysis of wheat straw by combined use of gamma ray and dilute acid for bioethanol production

    NASA Astrophysics Data System (ADS)

    Hyun Hong, Sung; Taek Lee, Jae; Lee, Sungbeom; Gon Wi, Seung; Ju Cho, Eun; Singh, Sudhir; Sik Lee, Seung; Yeoup Chung, Byung

    2014-01-01

    Pretreating wheat straw with a combination of dilute acid and gamma irradiation was performed in an attempt to enhance the enzymatic hydrolysis for bioethanol production. The glucose yield was significantly affected by combined pretreatment (3% sulfuric acid-gamma irradiation), compared with untreated wheat straw and individual pretreatment. The increasing enzymatic hydrolysis after combined pretreatment is resulting from decrease in crystallinity of cellulose, loss of hemicelluloses, and removal or modification of lignin. Therefore, combined pretreatment is one of the most effective methods for enhancing the enzymatic hydrolysis of wheat straw biomass.

  6. [Effects of simulated acid rain on leaf photosynthate, growth, and yield of wheat].

    PubMed

    Mai, Bo-Rui; Zheng, You-Fei; Liang, Jun; Liu, Xia; Li, Lu; Zhong, Yan-Chuan

    2008-10-01

    With winter wheat variety Yamgmai 12 as test object, a field experiment was conducted to study the stress of simulated acid rain on its growth and development. The results showed that simulated acid rain had considerable effect on wheat growth and yield. When the pH of acid rain was < or = 3.5, the growth of leaf area as well as the mass of fresh leaf per unit area declined greatly, and the yield was significantly lower than CK. When pH was < or = 2.5, the plant height was obviously lowered, and the visible injury on leaf surface was observed. Under acid rain stress, the contents of leaf chlorophyll a, chlorophyll b, and carotenoid, especially chlorophyll a, decreased obviously. Acid rain also suppressed the synthesis of soluble sugar and reduced sugar, and the suppression was stronger at pH < or = 3.5, and became much stronger with increasing acidity. The total free amino acid and soluble protein contents in leaves decreased with increasing acidity, and were significantly lower than CK when the pH was < or = 3.5 and < or = 4.5, respectively.

  7. Surface acidity and degree of carburization of modified silver catalysts

    SciTech Connect

    Pestryakov, A.N.; Belousova, V.N.; Roznina, M.I.

    1993-11-10

    The effect has been studied of some compounds as modifying additives on the surface acidity, degree of carburization, aggregation and silver entrainement of silver-pumice catalysts for methanol oxidation. Catalyst samples have been tested in an industrial reactor. The probable mechanism of modifying action of the additives is discussed.

  8. Rhizosheaths on wheat grown in acid soils: phosphorus acquisition efficiency and genetic control

    PubMed Central

    James, Richard A.; Weligama, Chandrakumara; Verbyla, Klara; Ryan, Peter R.; Rebetzke, Gregory J.; Rattey, Allan; Richardson, Alan E.; Delhaize, Emmanuel

    2016-01-01

    Rhizosheaths comprise soil bound to roots, and in wheat (Triticum aestivum L.) rhizosheath size correlates with root hair length. The aims of this study were to determine the effect that a large rhizosheath has on the phosphorus (P) acquisition by wheat and to investigate the genetic control of rhizosheath size in wheat grown on acid soil. Near-isogenic wheat lines differing in rhizosheath size were evaluated on two acid soils. The soils were fertilized with mineral nutrients and included treatments with either low or high P. The same soils were treated with CaCO3 to raise the pH and detoxify Al3+. Genotypic differences in rhizosheath size were apparent only when soil pH was low and Al3+ was present. On acid soils, a large rhizosheath increased shoot biomass compared with a small rhizosheath regardless of P supply. At low P supply, increased shoot biomass could be attributed to a greater uptake of soil P, but at high P supply the increased biomass was due to some other factor. Generation means analysis indicated that rhizosheath size on acid soil was controlled by multiple, additive loci. Subsequently, a quantitative trait loci (QTL) analysis of an F6 population of recombinant inbred lines identified five major loci contributing to the phenotype together accounting for over 60% of the total genetic variance. One locus on chromosome 1D accounted for 34% of the genotypic variation. Genetic control of rhizosheath size appears to be relatively simple and markers based on the QTL provide valuable tools for marker assisted breeding. PMID:26873980

  9. Proteomic analysis on salicylic acid-induced salt tolerance in common wheat seedlings (Triticum aestivum L.).

    PubMed

    Kang, Guozhang; Li, Gezi; Zheng, Beibei; Han, Qiaoxia; Wang, Chenyang; Zhu, Yunji; Guo, Tiancai

    2012-12-01

    The influence of salicylic acid (SA) on the salt tolerance mechanism in seedlings of common wheat (Triticum aestivum L.) was investigated using physiological measurements combined with global expression profiling (proteomics). In the present study, 0.5mM SA significantly reduced NaCl-induced growth inhibition in wheat seedlings, manifesting as increased fresh weights, dry weights, and photosynthetic pigments, but decreased lipid peroxidation. Two-week-old wheat seedlings treated with 0.5mM SA, 250 mM NaCl and 250 mM NaCl+0.5mM SA for 3 days were used for the proteomic analyses. In total, 39 proteins differentially regulated by both salt and SA were revealed by 2D PAGE, and 38 proteins were identified by MALDI-TOF/TOF MS. The identified proteins were involved in various cellular responses and metabolic processes including signal transduction, stress defense, energy, metabolism, photosynthesis, and others of unknown function. All protein spots involved in signal transduction and the defense response were significantly upregulated by SA under salt stress, suggesting that these proteins could play a role in the SA-induced salt resistance in wheat seedlings.

  10. Acidity characterization of a titanium and sulfate modified vermiculite

    SciTech Connect

    Hernandez, W.Y.; Centeno, M.A.; Odriozola, J.A.; Moreno, S.; Molina, R.

    2008-07-01

    A natural vermiculite has been modified with titanium and sulfated by the intercalation and impregnation method in order to optimize the acidity of the clay mineral, and characterization of samples were analyzed by X-ray fluorescence (XRF), X-ray diffraction (XRD), nitrogen adsorption isotherms, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature programmed desorption with ammonia (TPD-NH{sub 3}). All the modified solids have a significantly higher number of acidic sites with respect to the parent material and in all of these, Broensted as well as Lewis acidity are identified. The presence of sulfate appears not to increase the number of acidic centers in the modified clay. For the materials sulfated with the intercalation method, it is observed that the strength of the acidic sites found in the material increases with the nominal sulfate/metal ratio. Nevertheless, when elevated quantities of sulfur are deposited, diffusion problems in the heptane reaction appear.

  11. Effects of exogenous salicylic acid on growth characteristics and biochemical content of wheat seeds under arsenic stress.

    PubMed

    Zengin, Fikriye

    2015-01-01

    The present study illustrates the phytotoxic effect of As on wheat seedlings and pre-application of salicylic acid in alleviating toxic effect of arsenic. Wheat seedlings treated with different concentrations (50-400 μM) of arsenic decreased the germination rate (34.7% and 86.9%), root and coleptile length, fresh and dry weight of roots and coleoptile, chlorophyll (67%) and protein content (27.1%), while increased proline and MDA content. However, pretreatment with 1mM saliycilic acid partially alleviated the toxic effect of arsenic on germination parameters and significantly reduced the proline (181.2%) and MDA (80%) content thereby increasing chlorophyll and protein content in As stressed wheat plants (p < 0.01 or p < 0.05). The data suggests that saliycilic acid reduced the damaging effects generated by As and enhanced the tolerance of wheat plants to arsenic toxicity.

  12. Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(VI) using modified wheat residue.

    PubMed

    Chen, Suhong; Yue, Qinyan; Gao, Baoyu; Xu, Xing

    2010-09-01

    A new adsorbent modified from wheat residue was synthesized after reaction with epichlorohydrin and triethylamine by using the modifying agents of diethylenetriamine in the presence of organic medium of N,N-dimethylformamide. The performance of the modified wheat straw (MWS) was characterized by Fourier transform infrared spectroscopy and point of zero charge analysis. The adsorption was investigated in a batch adsorption system, including both equilibrium adsorption isotherms and kinetics. Results showed that MWR had great anion-adsorbing capacity, due to the existence of a large number of introduced amino groups, and the value of pH(PZC) was around 5.0. Equilibrium data were analyzed using the Langmuir, Freundlich, and Temkin isotherm models and were found to be best represented by the Freundlich isotherm model. Evaluation of the adsorption process identified its endothermic nature. The maximum adsorption capacity of MWS for the removal of Cr(VI) was 322.58mg/g at 328K, indicating that MWS has high chromium removal efficiency, compared to other adsorbents reported. The kinetics of adsorption followed the pseudo-second-order kinetic equation. The mechanism of adsorption was investigated using the intraparticle diffusion model. Thermodynamic parameters (free energy change, enthalpy change, and entropy change) revealed that the adsorption of Cr(VI) onto MWS was endothermic and spontaneous; additionally, the adsorption can be characterized as an ion-exchange process. The results suggest that MWS is an inexpensive and efficient adsorbent for removing Cr(VI) ions from aqueous solution.

  13. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress.

    PubMed

    Qiu, ZongBo; Guo, JunLi; Zhu, AiJing; Zhang, Liang; Zhang, ManMan

    2014-06-01

    Jasmonic acid (JA) is regarded as endogenous regulator that plays an important role in regulating stress responses, plant growth and development. To investigate the physiological mechanisms of salt stress mitigated by exogenous JA, foliar application of 2mM JA was done to wheat seedlings for 3days and then they were subjected to 150mM NaCl. Our results showed that 150mM NaCl treatment significantly decreased plant height, root length, shoot dry weight, root dry weight, the concentration of glutathione (GSH), chlorophyll b (Chl b) and carotenoid (Car), the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), enhanced the concentration of malondialdehyde (MDA), hydrogen peroxide (H2O2) and the rate of superoxide radical (O2•-) generation in the wheat seedlings when compared with the control. However, treatments with exogenous JA for 3 days significantly enhanced salt stress tolerance in wheat seedlings by decreasing the concentration of MDA and H2O2, the production rate of O2•- and increasing the transcript levels and activities of SOD, POD, CAT and APX and the contents of GSH, Chl b and Car, which, in turn, enhanced the growth of salt stressed seedlings. These results suggested that JA could effectively protect wheat seedlings from salt stress damage by enhancing activities of antioxidant enzymes and the concentration of antioxidative compounds to quench the excessive reactive oxygen species caused by salt stress and presented a practical implication for wheat cultivation in salt-affected soils.

  14. Evaluation of the Doraiswamy-Thompson winter wheat crop calendar model incorporating a modified spring restart sequence

    NASA Technical Reports Server (NTRS)

    Taylor, T. W.; Ravet, F. W.; Smika, D. (Principal Investigator)

    1981-01-01

    The Robertson phenology was used to provide growth stage information to a wheat stress indicator mode. A stress indicator model demands two acurate predictions from a crop calendar: date of spring growth initiation; and crop calendar stage at growth initiation. Several approaches for restarting the Robertson phenology model at spring growth initiation were studied. Although best results were obtained with a solar thermal unit method, an alternate approach which indicates soil temperature as the controlling parameter for spring growth initiation was selected and tested. The modified model (Doraiswamy-Thompson) is compared to LACIE-Robertson model predictions.

  15. Translation of satellite tobacco necrosis virus ribonucleic acid by an in vitro system from wheat germ.

    PubMed

    Leung, D W; Gilbert, C W; Smith, R E; Sasavage, N L; Clark, J M

    1976-11-02

    The RNA of satellite tobacco necrosis virus (STNV) is an effective messenger RNA when translated in an in vitro system from wheat germ. This RNA codes for only STNV coat protein, as indicated (1) by coincidence of the tryptic fingerprints of the translation product and of STNV coat protein, (2) by equivalent size of the translation product and STNV coat protein, and (3) by isolation of an initial peptide of the in vitro product containing the amino acid sequence of the N terminus of STNV coat protein. STNV RNA does not contain a 5'-terminal m7G(5')ppp(5')Np---group and translation of STNV RNA by the wheat germ system does not involve prior formation of 5'-terminal m7G(5')ppp(5') nP---groups on STNV RNA. STNV RNA and 125I-labeled STNV RNA form a specific initiation complex when incubated with initiator tRNA, GTP, initiation factors, and wheat germ ribosomes. Treatment of this specific initiation complex with ribonuclease A allows isolation of an 125I-labeled oligonucleotide protected from ribonuclease A by the initiation complex. This specific oligonucleotide contains approximately 38 nucleotides, including nucleotide sequences that coincide with the codons of the N-terminal amino acids of STNV coat proteins.

  16. Optimization and kinetic analysis on the sulfuric acid - Catalyzed depolymerization of wheat straw.

    PubMed

    Wu, Qian-Qian; Ma, Yu-Long; Chang, Xuan; Sun, Yong-Gang

    2015-09-20

    The objectives of this work were to optimize the experimental condition and to study the kinetic behavior of wheat straw depolymerization with sulfuric acid (2 wt%, 3 wt%, and 4 wt%) at different temperatures (120°C, 130°C, and 140°C). The two-fraction kinetic model was obtained for the prediction of the generations of product and by-product during depolymerization. The kinetic parameters of the two-fraction model were analyzed using an Arrhenius-type equation. Applying the kinetic two-fraction model, the optimum condition for wheat straw depolymerization was 3 wt% H2SO4 at 130°C for 75 min, which yielded a high concentration of fermentable sugars (xylose 8.934 g/L, glucose 1.363 g/L, and arabinose 1.203 g/L) and low concentrations of microbial inhibitors (furfural 0.526 g/L and acetic acid 1.192 g/L). These results suggest that the model obtained in this study can satisfactorily describe the formation of degradation products and the depolymerization mechanism of wheat straw.

  17. The adsorption of Cr(VI) on sulphuric acid-treated wheat bran.

    PubMed

    Ozer, A; Ozer, D

    2004-06-01

    Wheat bran, a by-product of wheat milling industries, was converted into a cheap and efficient material by treating with sulphuric acid and used for the adsorption of Cr(VI) from aqueous solution. Effects of various parameters such as initial pH of solution, contact time, initial Cr(VI) concentration and temperature were studied. The sulphuric acid-treated wheat bran (STWB) gave the highest adsorption efficiency at pH 1.5. The equilibrium data were fitted better to Langmuir isotherm model compared to Freundlich model at all the temperatures studied. The adsorption capacity increased from 91 to 133 mg gl(-1) with an increase in temperature from 20 degrees C to 50 degrees C. The adsorption process was found to be endothermic and Langmuir isotherm data were evaluated to determine the thermodynamic parameters for the process. Thermodynamic parameters showed that the process was feasible. The results indicated that the chromium removal process by STWB followed first-order rate expression and adsorption rate constants increased with increasing temperature.

  18. Effects of jasmonic acid signalling on the wheat microbiome differ between body sites

    PubMed Central

    Liu, Hongwei; Carvalhais, Lilia C.; Schenk, Peer M.; Dennis, Paul G.

    2017-01-01

    Jasmonic acid (JA) signalling helps plants to defend themselves against necrotrophic pathogens and herbivorous insects and has been shown to influence the root microbiome of Arabidopsis thaliana. In this study, we determined whether JA signalling influences the diversity and functioning of the wheat (Triticum aestivum) microbiome and whether these effects are specific to particular parts of the plant. Activation of the JA pathway was achieved via exogenous application of methyl jasmonate and was confirmed by significant increases in the abundance of 10 JA-signalling-related gene transcripts. Phylogenetic marker gene sequencing revealed that JA signalling reduced the diversity and changed the composition of root endophytic but not shoot endophytic or rhizosphere bacterial communities. The total enzymatic activity and substrate utilisation profiles of rhizosphere bacterial communities were not affected by JA signalling. Our findings indicate that the effects of JA signalling on the wheat microbiome are specific to individual plant compartments. PMID:28134326

  19. Determination of hydrophobicity of dry-heated wheat starch granules using sucrose fatty acid esters (SFAE).

    PubMed

    Tabara, Aya; Oneda, Hiroshi; Murayama, Ryuji; Matsui, Yuko; Hirano, Akira; Seguchi, Masaharu

    2014-01-01

    Sucrose fatty acid esters (SFAE) were adsorbed onto dry-heated (120 °C for 10, 20, 40, 60, and 120 min) wheat starch granules and extracted with ethyl ether in a Soxhlet apparatus without gelatinization of the starch granules. The amount of sucrose in the extracted SFAE was determined by the phenol sulfate method. A gradual increase of the sucrose from 159 to 712 μg, in SFAE per gram of starch, occurred with increasing dry-heating time and demonstrated the increased hydrophobicity of the starch granules. Increase of the SFAE was highly correlated (r = 0.9816) to increase of the oil-binding capacity of the dry-heated wheat starch granules. Non-waxy rice, waxy rice, sweet potato, and potato starch granules also showed higher hydrophobicity after dry-heating by this method.

  20. Isolation and characterization of a homogeneous isoenzyme of wheat germ acid phosphatase.

    PubMed

    Waymack, P P; Van Etten, R L

    1991-08-01

    An acid phosphatase (orthophosphoric monoester phosphohydrolase, acid optimum; EC 3.1.3.2) isoenzyme from wheat germ was purified 7000-fold to homogeneity. The effect of wheat germ sources and their relationship to the isoenzyme content and purification behavior of acid phosphatases was investigated. Extensive information about the purification and stabilization of the enzyme is provided. The instability of isoenzymes in the latter stages of purification appeared to be the result of surface inactivation together with a sensitivity to dilution that could be partially offset by addition of Triton X-100 during chromatographic procedures. Added sulfhydryl protecting reagents had no effect on activity or stability, which was greatest in the pH range 4-7. The purified isoenzyme was homogeneous by polyacrylamide gel electrophoresis and exhibited the highest specific activity and turnover number reported for any acid phosphatase. The molecular weights of the pure isoenzyme and of related isoenzymes from wheat germ were found to be identical (58,000). The pure isoenzyme contained a single polypeptide chain and had a negligible carbohydrate content. The amino acid composition was determined. Of the various reasons that were considered to explain isoenzyme occurrence, a genetic basis was considered most likely. The enzyme was found to exhibit substrate inhibition with some substrates below pH 6, while above pH 8 it exhibited downwardly curving Lineweaver-Burk plots of the type that are generally described as "substrate activation". The observation of a phosphotransferase activity was consistent with the formation of a covalent phosphoenzyme intermediate, while inactivation by diethyl pyrocarbonate was consistent with the presence of an active site histidine.

  1. Low irradiances affect abscisic acid, indole-3-acidic acid, and cytokinin levels of wheat (Triticum aestivum L.) tissues

    NASA Technical Reports Server (NTRS)

    Nan, R.; Carman, J. G.; Salisbury, F. B.

    1999-01-01

    Wheat (Triticum aestivum L.) plants were grown under four irradiance levels: 1,400, 400, 200, and 100 micromol m-2 s-1. Leaves and roots were sampled before, during, and after the boot stage, and levels of abscisic acid (ABA), indole-3-acetic acid (IAA), zeatin, zeatin riboside, dihydrozeatin, dihydrozeatin riboside, isopentenyl adenine, and isopentenyl adenosine were quantified using noncompetitive indirect ELISA systems. Levels of IAA in leaves and roots of plants exposed to 100 micromol m-2 s-1 of irradiance were 0.7 and 2.9 micromol kg-1 dry mass (DM), respectively. These levels were 0.2 and 1.0 micromol kg-1 DM, respectively, when plants were exposed to 1,400 micromol m-2 s-1. Levels of ABA in leaves and roots of plants exposed to 100 micromol m-2 s-1 were 0.65 and 0.55 micromol kg-1 DM, respectively. They were 0.24 micromol kg-1 DM (both leaves and roots) when plants were exposed to 1,400 micromol m-2 s-1. Levels of isopentenyl adenosine in leaves (24.3 nmol kg-1 DM) and roots (29.9 nmol kg-1 DM) were not affected by differences in the irradiance regime. Similar values were obtained in a second experiment. Other cytokinins could not be detected (<10 nmol kg 1 DM) in either experiment with the sample sizes used (150-600 mg DM for roots and shoots, respectively).

  2. Effects of environment and genotype on phenolic acids in wheat in the HEALTHGRAIN diversity screen.

    PubMed

    Fernandez-Orozco, Rebeca; Li, Li; Harflett, Claudia; Shewry, Peter R; Ward, Jane L

    2010-09-08

    Phenolic acid content and composition have been determined in 26 wheat genotypes grown in Hungary over three consecutive years and at three additional locations (France, United Kingdom, and Poland) during the third year. Fractions comprising free, soluble conjugated, and bound phenolic acids were analyzed using HPLC with measurements being made for individual phenolic acids in each fraction. Statistically significant differences in phenolic acid content occurred across the different growing locations with the average total phenolic acid content being highest in the genotypes grown in Hungary. The growth year in Hungary also had a large impact, especially on the free and conjugated phenolic acid contents. Certain genotypes were more resistant to environmental impacts than others. Of the genotypes with high levels of total phenolic acids, Lynx, Riband, Tommi, and Cadenza were most stable with respect to their total contents, whereas Valoris, Herzog, and Malacca, also high in phenolic acid content, were least stable. Of the three fractions analyzed, the free and conjugated phenolic acids were most variable and were also susceptible to the effect of environment, whereas bound phenolic acids, which comprised the greatest proportion of the total phenolic acids, were the most stable.

  3. Cereal-based biorefinery development: utilisation of wheat milling by-products for the production of succinic acid.

    PubMed

    Dorado, M Pilar; Lin, Sze Ki Carol; Koutinas, Apostolis; Du, Chenyu; Wang, Ruohang; Webb, Colin

    2009-08-10

    A novel wheat-based bioprocess for the production of a nutrient-complete feedstock for the fermentative succinic acid production by Actinobacillus succinogenes has been developed. Wheat was fractionated into bran, middlings and flour. The bran fraction, which would normally be a waste product of the wheat milling industry, was used as the sole medium in two solid-state fermentations (SSF) of Aspergillus awamori and Aspergillus oryzae that produce enzyme complexes rich in amylolytic and proteolytic enzymes, respectively. The resulting fermentation solids were then used as crude enzyme sources, by adding directly to an aqueous suspension of milled bran and middlings fractions (wheat flour milling by-products) to generate a hydrolysate containing over 95g/L glucose, 25g/L maltose and 300mg/L free amino nitrogen (FAN). This hydrolysate was then used as the sole medium for A. succinogenes fermentations, which led to the production of 50.6g/L succinic acid. Supplementation of the medium with yeast extract did not significantly improve succinic acid production though increasing the inoculum concentration to 20% did result in the production of 62.1g/L succinic acid. Results indicated that A. succinogenes cells were able to utilise glucose and maltose in the wheat hydrolysate for cell growth and succinic acid production. The proposed process could be potentially integrated into a wheat-milling process to upgrade the wheat flour milling by-products (WFMB) into succinic acid, one of the future platform chemicals of a sustainable chemical industry.

  4. Adsorption behavior of light green anionic dye using cationic surfactant-modified wheat straw in batch and column mode.

    PubMed

    Su, Yinyin; Zhao, Binglu; Xiao, Wei; Han, Runping

    2013-08-01

    An agricultural by-product, natural wheat straw (NWS), was soaked in 1 % cationic surfactant (hexadecylpyridinium bromide, CPB) solution for 24 h (at 293 K), and modified wheat straw (MWS) was obtained. Analysis of FTIR, XFR, and nitrogen element showed that CPB was adsorbed onto surface of NWS. Then, MWS was used as adsorbent for the removal of light green dye (LG, anionic dye) from aqueous solution. The experiment was performed in batch and column mode at room temperature (293 K). Sodium chloride (up to 0.1 mol/L) existed in solution was not favor of LG dye adsorption. The equilibrium data were better described by Langmuir isotherm, and adsorption capacity of q m from Langmuir model was 70.01 ± 3.39 mg/g. In fixed-bed column adsorption mode, the effects of initial LG concentration (30, 50, 70 mg/L) and flow rate (6.5, 9.0, 14.5 mL/min) on adsorption were presented. Thomas and modified dose-response models were used to predict the breakthrough curves using nonlinear analysis method, and both models can fit the breakthrough curves. Theoretical and experimental breakthrough curves were drawn and compared. The results implied that MWS can be used as adsorbent material to remove LG from aqueous solution.

  5. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat.

    PubMed

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation.

  6. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat

    PubMed Central

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation. PMID:27148345

  7. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance.

    PubMed

    Kovács, Viktória; Gondor, Orsolya K; Szalai, Gabriella; Darkó, Eva; Majláth, Imre; Janda, Tibor; Pál, Magda

    2014-09-15

    Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress.

  8. Acceleration of the herbicide isoproturon degradation in wheat by glycosyltransferases and salicylic acid.

    PubMed

    Lu, Yi Chen; Zhang, Shuang; Yang, Hong

    2015-01-01

    Isoproturon (IPU) is a herbicide widely used to prevent weeds in cereal production. Due to its extensive use in agriculture, residues of IPU are often detected in soils and crops. Overload of IPU to crops is associated with human health risks. Hence, there is an urgent need to develop an approach to mitigate its accumulation in crops. In this study, the IPU residues and its degradation products in wheat were characterized using ultra performance liquid chromatography-time of fight tandem-mass spectrometer/mass spectrometer (UPLC-TOF-MS/MS). Most detected IPU-derivatives were sugar-conjugated. Degradation and glycosylation of IPU-derivatives could be enhanced by applying salicylic acid (SA). While more sugar-conjugated IPU-derivatives were identified in wheat with SA application, lower levels of IPU were detected, indicating that SA is able to accelerate intracellular IPU catabolism. All structures of IPU-derivatives and sugar-conjugated products were characterized. Comparative data were provided with specific activities and gene expression of certain glucosyltransferases. A pathway with IPU degradation and glucosylation was discussed. Our work indicates that SA-accelerated degradation is practically useful for wheat crops growing in IPU-contaminated soils because such crops with SA application can potentially lower or minimize IPU accumulation in levels below the threshold for adverse effects.

  9. Improvement of Functional Properties of Wheat Gluten Using Acid Protease from Aspergillus usamii

    PubMed Central

    Deng, Lingli; Wang, Zhaoxia; Yang, Sheng; Song, Junmei; Que, Fei; Zhang, Hui; Feng, Fengqin

    2016-01-01

    Hydrolysis parameters (temperature, E/S ratio, pH, and time) for acid protease (from Aspergillus usamii) hydrolysis of wheat gluten were optimized by response surface methodology (RSM) using emulsifying activity index (EAI) as the response factor. A temperature of 48.9°C, E/S ratio of 1.60%, pH 3.0, hydrolysis time of 2.5 h was found to be the optimum condition to obtain wheat gluten hydrolysate with higher EAI. The solubility of wheat gluten was greatly improved by hydrolysis and became independent of pH over the studied range. Enzymatic hydrolysis resulted in dramatically increase in EAI, water and oil holding capacity. Molecular weight distribution results showed that most of the peptides above 10 kDa have been hydrolyzed into smaller peptides. The results of FTIR spectra and disulfide bond (SS) and sulfhydryl (SH) content suggested that a more extensional conformation was formed after hydrolysis, which could account for the improved functional properties. PMID:27467884

  10. Fusarium head blight control and prevention of mycotoxin contamination in wheat with botanicals and tannic acid.

    PubMed

    Forrer, Hans-Rudolf; Musa, Tomke; Schwab, Fabienne; Jenny, Eveline; Bucheli, Thomas D; Wettstein, Felix E; Vogelgsang, Susanne

    2014-02-26

    Suspensions or solutions with 1% of Chinese galls (Galla chinensis, GC) or 1% of tannic acid (TA), inhibited germination of conidia or mycelium growth of Fusarium graminearum (FG) by 98%-100% or by 75%-80%, respectively, whereas dried bark from buckthorn (Frangula alnus, FA) showed no effect at this concentration. In climate chamber experiments where the wheat variety "Apogee" was artificially inoculated with FG and F. crookwellense (FCr) and treated with 5% suspensions of TA, GC and FA, the deoxynivalenol (DON) content in grains was reduced by 81%, 67% and 33%, respectively. In field experiments with two commercial wheat varieties and artificial or semi-natural inoculations, mean DON reductions of 66% (TA) and 58% (FA), respectively, were obtained. Antifungal toxicity can explain the high efficacies of TA and GC but not those of FA. The Fusarium head blight (FHB) and mycotoxin reducing effect of FA is probably due to elicitation of resistance in wheat plants. With semi-natural inoculation, a single FA application in the first half of the flowering period performed best. However, we assume that applications of FA at the end of ear emergence and a treatment, triggered by an infection period, with TA or GC during flowering, might perform better than synthetic fungicides.

  11. Salicylic Acid Induction of Flavonoid Biosynthesis Pathways in Wheat Varies by Treatment

    PubMed Central

    Gondor, Orsolya K.; Janda, Tibor; Soós, Vilmos; Pál, Magda; Majláth, Imre; Adak, Malay K.; Balázs, Ervin; Szalai, Gabriella

    2016-01-01

    Salicylic acid is a promising compound for the reduction of stress sensitivity in plants. Although several biochemical and physiological changes have been described in plants treated with salicylic acid, the mode of action of the various treatments has not yet been clarified. The present work reports a detailed comparative study on the effects of different modes of salicylic acid application at the physiological, metabolomic, and transcriptomic levels. Seed soaking and hydroponic treatments were found to induce various changes in the protective mechanisms of wheat plants. The possible involvement of the flavonoid metabolism in salicylic acid-related stress signaling was also demonstrated. Different salicylic acid treatments were shown to induce different physiological and biochemical processes, with varying responses in the leaves and roots. Hydroponic treatment enhanced the level of oxidative stress, the expression of genes involved in the flavonoid metabolism and the amount of non-enzymatic antioxidant compounds, namely ortho-hydroxycinnamic acid and the flavonol quercetin in the leaves, while it decreased the ortho-hydroxycinnamic acid and flavonol contents and enhanced ascorbate peroxidase activity in the roots. In contrast, seed soaking only elevated the gene expression level of phenylalanine ammonia lyase in the roots and caused a slight increase in the amount of flavonols. These results draw attention to the fact that the effects of exogenous salicylic acid application cannot be generalized in different experimental systems and that the flavonoid metabolism may be an important part of the action mechanisms induced by salicylic acid. PMID:27733857

  12. Salicylic Acid Induction of Flavonoid Biosynthesis Pathways in Wheat Varies by Treatment.

    PubMed

    Gondor, Orsolya K; Janda, Tibor; Soós, Vilmos; Pál, Magda; Majláth, Imre; Adak, Malay K; Balázs, Ervin; Szalai, Gabriella

    2016-01-01

    Salicylic acid is a promising compound for the reduction of stress sensitivity in plants. Although several biochemical and physiological changes have been described in plants treated with salicylic acid, the mode of action of the various treatments has not yet been clarified. The present work reports a detailed comparative study on the effects of different modes of salicylic acid application at the physiological, metabolomic, and transcriptomic levels. Seed soaking and hydroponic treatments were found to induce various changes in the protective mechanisms of wheat plants. The possible involvement of the flavonoid metabolism in salicylic acid-related stress signaling was also demonstrated. Different salicylic acid treatments were shown to induce different physiological and biochemical processes, with varying responses in the leaves and roots. Hydroponic treatment enhanced the level of oxidative stress, the expression of genes involved in the flavonoid metabolism and the amount of non-enzymatic antioxidant compounds, namely ortho-hydroxycinnamic acid and the flavonol quercetin in the leaves, while it decreased the ortho-hydroxycinnamic acid and flavonol contents and enhanced ascorbate peroxidase activity in the roots. In contrast, seed soaking only elevated the gene expression level of phenylalanine ammonia lyase in the roots and caused a slight increase in the amount of flavonols. These results draw attention to the fact that the effects of exogenous salicylic acid application cannot be generalized in different experimental systems and that the flavonoid metabolism may be an important part of the action mechanisms induced by salicylic acid.

  13. Acid-catalyzed autohydrolysis of wheat straw to improve sugar recovery.

    PubMed

    Ertas, Murat; Han, Qiang; Jameel, Hasan

    2014-10-01

    A comparison study of autohydrolysis and acid-catalyzed autohydrolysis of wheat straw was performed to understand the impact of acid addition on overall sugar recovery. Autohydrolysis combined with refining is capable of achieving sugar recoveries in the mid 70s. If the addition of a small amount of acid is capable of increasing the sugar recovery even higher it may be economically attractive. Acetic, sulfuric, hydrochloric and sulfurous acids were selected for acid-catalyzed autohydrolysis pretreatments. Autohydrolysis with no acid at 190 °C showed the highest total sugar in the prehydrolyzate. Enzymatic hydrolysis was performed for all the post-treated solids with and without refining at enzyme loadings of 4 and 10 FPU/g for 96 h. Acid-catalyzed autohydrolysis at 190 °C with sulfurous acid showed the highest total sugar recovery of 81.2% at 4 FPU/g enzyme charge compared with 64.3% at 190 °C autohydrolysis without acid.

  14. Fatty acid composition of lymphocytes and macrophages from rats fed fiber-rich diets: a comparison between oat bran- and wheat bran-enriched diets.

    PubMed

    Felippe, C R; Calder, P C; Vecchia, M G; Campos, M R; Mancini-Filho, J; Newsholme, E A; Curi, R

    1997-06-01

    The effect of oat bran- (OBD) and wheat bran-enriched diets (WBD) on fatty acid composition of neutral lipids and phospholipids of rat lymphocytes and macrophages was investigated. In neutral lipids of lymphocytes, OBD reduced the proportion of palmitoleic acid (48%), whereas WBD reduced by 43% palmitoleic acid and raised oleic (18%), linoleic (52%), and arachidonic (2.5-fold) acids. In neutral lipids of macrophages, OBD increased palmitic (16%) and linoleic (29%) acids and slightly decreased oleic acid (15%). The effect of WBD, however, was more pronounced: It reduced myristic (60%), stearic (24%) and arachidonic (63%) acids, and it raised palmitic (30%) and linoleic (2.3-fold) acids. Neither OBD nor WBD modified the composition of fatty acids in phospholipids of lymphocytes. In contrast, both diets had a marked effect on composition of fatty acids in macrophage phospholipids. OBD raised the proportion of myristic (42%) and linoleic (2.4-fold) acids and decreased that of lauric (31%), palmitoleic (43%), and arachidonic (29%) acids. WBD increased palmitic (18%) and stearic (23%) acids and lowered palmitoleic (35%) and arachidonic (78%) acids. Of both cells, macrophages were more responsive to the effect of the fiber-rich diets on fatty acid composition of phospholipids. The high turnover of fatty acids in macrophage membranes may explain the differences between both cells. The modifications observed due to the effects of both diets were similar in few cases: an increase in palmitic and linoleic acids of total neutral lipids occurred and a decrease in palmitoleic and arachidonic acids of phospholipid. Therefore, the mechanism involved in the effect of both diets might be different.

  15. Effect of perfluorooctane sulfonate on the conformation of wheat germ acid phosphatase.

    PubMed

    Xu, Dongmei; Jin, Jianchang; Shen, Tong; Wang, Yanhua

    2013-11-01

    Fluorescence spectroscopy was used to study the quenching mechanism, the type of force and the binding sites of perfluorooctane sulfonate (PFOS) on wheat germ acid phosphatase (ACPase). The results showed that the quenching effect of PFOS on ACPase was mainly due to a static quenching mechanism that occurred via the formation of hydrogen bonds and van der Waals forces. The results from synchronous fluorescence spectroscopy demonstrated that PFOS interacts with ACPase close to the tryptophan residues. In addition, synchronous fluorescence spectroscopy also showed that PFOS increases the hydrophobicity of the microenvironment of the tyrosine residues, hence decreasing the local polarity.

  16. Substrate specificity and pH dependence of homogeneous wheat germ acid phosphatase.

    PubMed

    Van Etten, R L; Waymack, P P

    1991-08-01

    The broad substrate specificity of a homogeneous isoenzyme of wheat germ acid phosphatase (WGAP) was extensively investigated by chromatographic, electrophoretic, NMR, and kinetic procedures. WGAP exhibited no divalent metal ion requirement and was unaffected upon incubation with EDTA or o-phenanthroline. A comparison of two catalytically homogeneous isoenzymes revealed little difference in substrate specificity. The specificity of WGAP was established by determining the Michaelis constants for a wide variety of substrates. p-Nitrophenyl phosphate, pyrophosphate, tripolyphosphate, and ATP were preferred substrates while lesser activities were seen toward sugar phosphates, trimetaphosphate, phosphoproteins, and (much less) phosphodiesters. An extensive table of Km and Vmax values is given. The pathway for the hydrolysis of trimetaphosphate was examined by colorimetric and 31P NMR methods and it was found that linear tripolyphosphate is not a free intermediate in the enzymatic reaction. In contrast to literature reports, homogeneous wheat germ acid phosphatase exhibits no measurable carboxylesterase activity, nor does it hydrolyze phenyl phosphonothioate esters or phytic acid at significant rates.

  17. One step conversion of wheat straw to sugars by simultaneous ball milling, mild acid, and fungus Penicillium simplicissimum treatment.

    PubMed

    Yuan, Li; Chen, Zhenhua; Zhu, Yonghua; Liu, Xuanming; Liao, Hongdong; Chen, Ding

    2012-05-01

    Wheat straw is one of the major lignocellulosic plant residues in many countries including China. An attractive alternative is the utilization of wheat straw for bioethanol production. This article mainly studies a simple one-step wet milling with Penicillium simplicissimum and weak acid to hydrolysis of wheat straw. The optimal condition for hydrolysis was ball milling 48 h in citrate solvent (pH = 4) with P. simplicissimum H5 at the speed of 500 rpm and the yield of sugar increased with increased milling time. Corresponding structure transformations before and after milling analyzed by X-ray diffraction, transmission Fourier transform infrared spectroscopy, and environmental scanning electron microscopy clearly indicated that this combined treatment could be attributed to the crystalline and chemical structure changes of cellulose in wheat straw during ball milling. This combined treatment of ball milling, mild acid, and fungus hydrolysis enabled the conversion of the wheat straw. Compared with traditional method of ball milling, this work showed a more simple, novel, and environmentally friendly way in mechanochemical treatment of wheat straw.

  18. Wheat straw hemicelluloses added with cellulose nanocrystals and citric acid. Effect on film physical properties.

    PubMed

    Pereira, Paulo H F; Waldron, Keith W; Wilson, David R; Cunha, Arcelina P; Brito, Edy S de; Rodrigues, Tigressa H S; Rosa, Morsyleide F; Azeredo, Henriette M C

    2017-05-15

    Wheat straw has been used as a source of hemicelluloses (WSH) and cellulose nanocrystals (CNC) for the elaboration of biodegradable films. Different films have been formed by using WSH as a matrix and different contents of CNC and citric acid. The predominant hemicelluloses were arabinoxylans. CNC reinforced the films, improving tensile strength and modulus, water resistance and water vapor barrier. Citric acid, on the other hand, presented concomitant plasticizing and crosslinking effects (the latter also evidenced by FTIR), probably due to a crosslinking extension by glycerol. The use of 5.9wt% CNC and 30wt% citric acid was defined as optimal conditions, resulting in minimum water sensitivity and permeability, while maintaining a good combination of tensile properties. Under those conditions, the films presented enhanced modulus, elongation, water resistance, and barrier to water vapor when compared to the control WSH film, and might be used for wrapping or coating a variety of foods.

  19. Nucleic acid (cDNA) and amino acid sequences of alpha-type gliadins from wheat (Triticum aestivum).

    PubMed Central

    Kasarda, D D; Okita, T W; Bernardin, J E; Baecker, P A; Nimmo, C C; Lew, E J; Dietler, M D; Greene, F C

    1984-01-01

    The complete amino acid sequence for an alpha-type gliadin protein of wheat (Triticum aestivum Linnaeus) endosperm has been derived from a cloned cDNA sequence. An additional cDNA clone that corresponds to about 75% of a similar alpha-type gliadin has been sequenced and shows some important differences. About 97% of the composite sequence of A-gliadin (an alpha-type gliadin fraction) has also been obtained by direct amino acid sequencing. This sequence shows a high degree of similarity with amino acid sequences derived from both cDNA clones and is virtually identical to one of them. On the basis of sequence information, after loss of the signal sequence, the mature alpha-type gliadins may be divided into five different domains, two of which may have evolved from an ancestral gliadin gene, whereas the remaining three contain repeating sequences that may have developed independently. Images PMID:6589619

  20. Natural Lactic Acid Bacteria Population and Silage Fermentation of Whole-crop Wheat

    PubMed Central

    Ni, Kuikui; Wang, Yanping; Cai, Yimin; Pang, Huili

    2015-01-01

    Winter wheat is a suitable crop to be ensiled for animal feed and China has the largest planting area of this crop in the world. During the ensiling process, lactic acid bacteria (LAB) play the most important role in the fermentation. We investigated the natural population of LAB in whole-crop wheat (WCW) and examined the quality of whole-crop wheat silage (WCWS) with and without LAB inoculants. Two Lactobacillus plantarum subsp. plantarum strains, Zhengzhou University 1 (ZZU 1) selected from corn and forage and grass 1 (FG 1) from a commercial inoculant, were used as additives. The silages inoculated with LAB strains (ZZU 1 and FG 1) were better preserved than the control, with lower pH values (3.5 and 3.6, respectively) (p<0.05) and higher contents of lactic acid (37.5 and 34.0 g/kg of fresh matter (FM), respectively) (p<0.05) than the control. Sixty LAB strains were isolated from fresh material and WCWS without any LAB inoculation. These LAB strains were divided into the following four genera and six species based on their phenotypic, biochemical and phylogenetic characteristics: Leuconostoc pseudomesenteroides, Leuconostoc citreum, Weissella cibaria, Lactococcus lactis subsp. lactis, Lactobacillus buchneri, and Lactobacillus plantarum subsp. plantarum. However, the prevalent LAB, which was predominantly heterofermentative (66.7%), consisted of Leuconostoc pseudomesenteroides, Leuconostoc citreum, Weissella cibaria, and Lactobacillus buchneri. This study revealed that most of isolated LAB strains from control WCWS were heterofermentative and could not grow well at low pH condition; the selective inoculants of Lactobacillus strains, especially ZZU 1, could improve WCWS quality significantly. PMID:26104520

  1. Effect of baking process on added folic acid and endogenous folates stability in wheat and rye breads.

    PubMed

    Gujska, Elzbieta; Majewska, Katarzyna

    2005-06-01

    In Poland bread as a staple food both made from wheat and rye flour can be a potential product for future fortification with folic acid. The objective of the study was to examine the effect of fermentation and baking on added folic acid and some endogenous folates stability during breadmaking of rye and wheat breads. Breads were produced using the formulation containing enriched flour with 0.2 mg folic acid/100 g product, baker's yeast and additionally ascorbic acid for wheat bread and lactic acid for rye bread. Folates were extracted with Hepes/Ches buffer (pH = 7.85) followed by destruction of matrix by amylase and protease and deconjugation with rat serum conjugase. Affinity chromatography (FBP bovine milk) was used to purify and concentrate samples. The folates were separated by HPLC with C18 column and with a combination of fluorescence and UV detection. For both rye and wheat breads there was a decrease of folic acid from flour to bread stage. The total losses depend on baking process and ranged from 12 to 21%. Some changes in the level of different native folate forms during the stage of baking process were also observed.

  2. Salicylic Acid and Calcium Treatments Improves Wheat Vigor, Lipids and Phenolics Under High Salinity.

    PubMed

    Yücel Candan, Nilgün; Heybet Elif, Haklı

    2016-12-01

    Seed vigor is a complex physiological trait required to ensure the rapid and uniform emergence of plants in the field under different environmental conditions. Therefore, salicylic acid (SA, 0.5 mM) and calcium (Ca2+, 50 mM) priming were used as exogenous growth enhancers to stimulate wheat (Triticum durum Desf. cv. Yelken) seed vigor under high salinity. The main aim was to address whether priming of wheat with SA, Ca2+ and SA+Ca (SA, 0.5 mM + Ca2+, 50 mM; their combination) could bring about supplementary agronomic benefits particularly under stressful environments such as salinity. Exogenous application of SA or Ca2+ alone improved plant behavior in the presence of salinity stress. Nevertheless, the best results in terms of growth, seed vigor and total phenolic - flavonoids, chlorophyll - carotenoids contents and phenylalanine ammonia-lyase (PAL), ascorbic acide oxidase (AAO) activities and lipid peroxidation levels (LPO) were obtained in response to the combined SA+Ca treatment.

  3. Butyric acid fermentation from pretreated and hydrolysed wheat straw by an adapted Clostridium tyrobutyricum strain

    PubMed Central

    Baroi, G N; Baumann, I; Westermann, P; Gavala, H N

    2015-01-01

    Butyric acid is a valuable building-block for the production of chemicals and materials and nowadays it is produced exclusively from petroleum. The aim of this study was to develop a suitable and robust strain of Clostridium tyrobutyricum that produces butyric acid at a high yield and selectivity from lignocellulosic biomasses. Pretreated (by wet explosion) and enzymatically hydrolysed wheat straw (PHWS), rich in C6 and C5 sugars (71.6 and 55.4 g l−1 of glucose and xylose respectively), was used as substrate. After one year of serial selections, an adapted strain of C. tyrobutyricum was developed. The adapted strain was able to grow in 80% (v v−1) PHWS without addition of yeast extract compared with an initial tolerance to less than 10% PHWS and was able to ferment both glucose and xylose. It is noticeable that the adapted C. tyrobutyricum strain was characterized by a high yield and selectivity to butyric acid. Specifically, the butyric acid yield at 60–80% PHWS lie between 0.37 and 0.46 g g−1 of sugar, while the selectivity for butyric acid was as high as 0.9–1.0 g g−1 of acid. Moreover, the strain exhibited a robust response in regards to growth and product profile at pH 6 and 7. PMID:26230610

  4. Determination of critical pH and Al concentration of acidic Ultisols for wheat and canola crops

    NASA Astrophysics Data System (ADS)

    Abdulaha-Al Baquy, M.; Li, Jiu-Yu; Xu, Chen-Yang; Mehmood, Khalid; Xu, Ren-Kou

    2017-02-01

    Soil acidity has become a principal constraint in dry land crop production systems of acidic Ultisols in tropical and subtropical regions of southern China, where winter wheat and canola are cultivated as important rotational crops. There is little information on the determination of critical soil pH as well as aluminium (Al) concentration for wheat and canola crops. The objective of this study is to determine the critical soil pH and exchangeable aluminium concentration (AlKCl) for wheat and canola production. Two pot cultures with two Ultisols from Hunan and Anhui (SE China) were conducted for wheat and canola crops in a controlled growth chamber. Aluminium sulfate (Al2(SO4)3) and hydrated lime (Ca(OH)2) were used to obtain the target soil pH levels from 3.7 (Hunan) and 3.97 (Anhui) to 6.5. Plant height, shoot dry weight, root dry weight, and chlorophyll content (SPAD value) of wheat and canola were adversely affected by soil acidity in both locations. The critical soil pH and AlKCl of the Ultisol from Hunan for wheat were 5.29 and 0.56 cmol kg-1, respectively. At Anhui, the threshold soil pH and AlKCl for wheat were 4.66 and 1.72 cmol kg-1, respectively. On the other hand, the critical soil pH for canola was 5.65 and 4.87 for the Ultisols from Hunan and Anhui, respectively. The critical soil exchangeable Al for canola cannot be determined from the experiment of this study. The results suggested that the critical soil pH and AlKCl varied between different locations for the same variety of crop, due to the different soil types and their other soil chemical properties. The critical soil pH for canola was higher than that for wheat for both Ultisols, and thus canola was more sensitive to soil acidity. Therefore, we recommend that liming should be undertaken to increase soil pH if it falls below these critical soil pH levels for wheat and canola production.

  5. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic). (a... generically as fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (PMN...

  6. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic). (a... generically as fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (PMN...

  7. Alleviation of salt-induced oxidative damage by 5-aminolevulinic acid in wheat seedlings

    NASA Astrophysics Data System (ADS)

    Genişel, Mucip; Erdal, Serkan

    2016-04-01

    The aim of this study was to elucidate how 5-aminolevulinic acid (ALA), the precursor of chlorophyll compounds, affects the defence mechanisms of wheat seedlings induced by salt stress. To determine the possible stimulative effects of ALA against salinity, 11-day old wheat seedlings were sprayed with ALA at two different concentrations (10 and 20 mg.l-1) and then stressed by exposure to salt (150 mM NaCl). The salt stress led to significant changes in the antioxidant activity. While guaiacol peroxidase activity decreased, the activities of superoxide dismutase, catalase, and ascorbate peroxidase markedly increased under salt stress. Compared to the salt stress alone, the application of ALA beforehand further increased the activity of these enzymes. This study is the first time the effects of ALA have been monitored with regard to protein content and the isoenzyme profiles of the antioxidant enzymes. Although the salt stress reduced both the soluble protein content and protein band intensities, pre-treating with ALA significantly mitigated these stress-induced reductions. The data for the isoenzyme profiles of the antioxidant enzymes paralleled that of the ALA-induced increases in antioxidant activity. As a consequence of the high antioxidant activity in the seedlings pre-treated with ALA, the stress-induced elevations in the reactive oxygen species, superoxide anion, and hydrogen peroxide contents and lipid peroxidation levels were markedly diminished. Taken together, this data demonstrated that pre-treating with ALA confers resistance to salt stress by modulating the protein synthesis and antioxidant activity in wheat seedlings.

  8. Rheological and functional properties of composite sweet potato - wheat dough as affected by transglutaminase and ascorbic acid.

    PubMed

    Ndayishimiye, Jean Bernard; Huang, Wei-Ning; Wang, Feng; Chen, Yong-Zheng; Letsididi, Rebaone; Rayas-Duarte, Patricia; Ndahetuye, Jean Baptiste; Tang, Xiao-Juan

    2016-02-01

    Effect of transglutaminase (TGM) and ascorbic acid (AA) on composite sweet potato - wheat dough functional and rheological properties was studied. Partial substitution of wheat flour with sweet potato flour at the level of 20 % significantly (P ≤ 0.05) reduced glutenin, gliadin, dough stability, protein weakening, storage modulus (G') and viscous modulus (G″). Mixolab revealed that both TGM and AA treated dough had stability and protein weakening closed to wheat dough (control), with TGM treated dough having the highest values. TGM Introduced new cross-link bonds as shown by the change of amino acid concentration, leading to an increase in storage modulus (G') and viscous modulus (G″), with G' being higher at all levels of TGM concentration. The opposite was observed for composite dough treated with AA as measured by controlled - stress rheometer. TGM treatment increased glutenin and gliadin content. Compared with the control, dough treated with AA exhibited high molecular weight of polymers than TGM treated dough. The results indicate that the TGM and AA modification of the mixolab and dynamic rheological characteristics (G' and G″) dependent on the changes of GMP, glutenin, gliadin and protein weakening in the composite dough. TGM and AA treatment could improve functional and rheological properties of sweet potato - wheat dough to levels that might be achieved with normal wheat bread. However, it's extremely important to optimize the concentrations of both additives to obtain the optimum response.

  9. Effect of the structural features of hydrochloric acid-deamidated wheat gluten on its susceptibility to enzymatic hydrolysis.

    PubMed

    Cui, Chun; Hu, Qingling; Ren, Jiaoyan; Zhao, Haifeng; You, Lijun; Zhao, Mouming

    2013-06-19

    The effect of the structural features of hydrochloric acid-deamidated wheat gluten with different degrees of deamidation (DDs) on the susceptibility to enzymatic hydrolysis by pancreatin was investigated. The wheat gluten deamidated by hydrochloric acid with a DD of 55% revealed the highest susceptibility to enzymatic hydrolysis as evaluated by the hydrolysis degree and nitrogen solubility index of the hydrolysates. An increase of peptides with MW below 3000 Da was observed as the DD increased. Raman spectra in the 1740-1800 cm⁻¹ and 521-530 cm⁻¹ range suggested that wheat gluten had taken off the deamidation with different DDs and that the disulfide bond had disrupted the sulfhydryl groups with different intensities, respectively. Results from the deconvolution of the amide I region of FTIR spectra in the 1600-1700 cm⁻¹ range showed that the content of the α-helix decreased and that the content of the β-turn and β-sheet increased with increasing DDs, which improved the molecular structure and flexibility of wheat gluten. A scanning electron microscope (SEM) revealed that the image of HDG-55% presented the smoothest surface and the least uniform pore, enabling the sample to be more susceptible to enzymatic hydrolysis. The above information will enable us to better understand the effect of structure on the susceptibility of deamidated wheat gluten.

  10. [Spectroscopic analysis of the interaction of ethanol and acid phosphatase from wheat germ].

    PubMed

    Xu, Dong-mei; Liu, Guang-shen; Wang, Li-ming; Liu, Wei-ping

    2004-11-01

    Conformational and activity changes of acid phosphatase from wheat germ in ethanol solutions of different concentrations were measured by fluorescence spectra and differential UV-absorption spectra. The effect of ethanol on kinetics of acid phosphatase was determined by using the double reciprocal plot. The results indicate the ethanol has a significant effect on the activity and conformation of acid phosphatase. The activity of acid phosphatase decreased linearly with increasing the concentration of ethanol. Differential UV-absorption spectra of the enzyme denatured in ethanol solutions showed two positive peaks at 213 and 234 nm, respectively. The peaks on the differential UV-absorption spectra suggested that the conformation of enzyme molecule changed from orderly structure to out-of-order crispation. The fluorescence emission peak intensity of the enzyme gradually strengthened with increasing ethanol concentration, which is in concordance with the conformational change of the microenvironments of tyrosine and tryptophan residues. The results indicate that the expression of the enzyme activity correlates with the stability and integrity of the enzyme conformation to a great degree. Ethanol is uncompetitive inhibitor of acid phosphatase.

  11. Effects of light condition after simulated acid snow stress on leaves of winter wheat.

    PubMed

    Inada, Hidetoshi; Fujikawa, Seizo; Saito, Hideyuki; Arakawa, Keita

    2007-01-01

    Winter plants regrow after freeze-thawing in acidic meltwater from the acid-snow layer in early winter or early spring. In this study, the responses of cold-acclimated wheat seedlings to different light conditions during the regrowth period after simulated acid snow (SAS) stress were investigated. After freeze-thawing in sulfuric acid (SAS stress) of pH 2.0, dry weight and the maximal quantum yield of photosystem II (PSII) decreased more in mature leaves than in young leaves. In a subsequent regrowth period under light condition, dry weight, relative water content, and the maximal quantum yield of PSII were severely affected in mature leaves but were only slightly affected in SAS (pH 2.0)-stressed young leaves. The levels of membrane lipid peroxidation and hydrogen peroxide in mature leaves of SAS (pH 2.0)-stressed seedlings were significantly higher than those in young leaves during the regrowth period under light condition. The superoxide dismutase activity in young leaves was higher than that in mature leaves during the regrowth period. These results indicate that mature leaves of seedlings during the snow melt season are more sensitive than young leaves to photooxidative stress because of their low acid snow stress tolerance and low capacity for the detoxification of superoxide.

  12. Exogenous salicylic acid enhances the resistance of wheat seedlings to hessian fly (Diptera: Cecidomyiidae) infestation under heat stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat stress exerts significant impact on plant-parasite interactions. Phytohormones, such as salicylic acid (SA) play important roles in plant defense against parasite attacks. Here we studied the impact of a combination of heat stress and exogenous SA on wheat (Triticum aestivum L.) plant resistanc...

  13. Wheat bran promotes enrichment within the human colonic microbiota of butyrate‐producing bacteria that release ferulic acid

    PubMed Central

    Duncan, Sylvia H.; Russell, Wendy R.; Quartieri, Andrea; Rossi, Maddalena; Parkhill, Julian; Flint, Harry J.

    2016-01-01

    Summary Cereal fibres such as wheat bran are considered to offer human health benefits via their impact on the intestinal microbiota. We show here by 16S rRNA gene‐based community analysis that providing amylase‐pretreated wheat bran as the sole added energy source to human intestinal microbial communities in anaerobic fermentors leads to the selective and progressive enrichment of a small number of bacterial species. In particular, OTUs corresponding to uncultured Lachnospiraceae (Firmicutes) related to E ubacterium xylanophilum and B utyrivibrio spp. were strongly enriched (by five to 160 fold) over 48 h in four independent experiments performed with different faecal inocula, while nine other Firmicutes OTUs showed > 5‐fold enrichment in at least one experiment. Ferulic acid was released from the wheat bran during degradation but was rapidly converted to phenylpropionic acid derivatives via hydrogenation, demethylation and dehydroxylation to give metabolites that are detected in human faecal samples. Pure culture work using bacterial isolates related to the enriched OTUs, including several butyrate‐producers, demonstrated that the strains caused substrate weight loss and released ferulic acid, but with limited further conversion. We conclude that breakdown of wheat bran involves specialist primary degraders while the conversion of released ferulic acid is likely to involve a multi‐species pathway. PMID:26636660

  14. Regulation of ion homeostasis by aminolevulinic acid in salt-stressed wheat seedlings

    NASA Astrophysics Data System (ADS)

    Türk, Hülya; Genişel, Mucip; Erdal, Serkan

    2016-04-01

    Salinity is regarded as a worldwide agricultural threat, as it seriously limits plant development and productivity. Salt stress reduces water uptake in plants by disrupting the osmotic balance of soil solution. In addition, it creates a damaged metabolic process by causing ion imbalance in cells. In this study, we aim to examine the negative effects of 5-aminolevulinic acid (ALA) (20 mg/l) on the ion balance in wheat seedling leaves exposed to salt stress (150 mM). Sodium is known to be highly toxic for plant cells at high concentrations, and is significantly increased by salt stress. However, it can be reduced by combined application of ALA and salt, compared to salt application alone. On the other hand, while the K+/Na+ ratio was reduced by salt stress, ALA application changed this ratio in favor of K+. Manganese, iron, and copper were also able to reduce stress. However, ALA pre-treatment resulted in mineral level increments. Conversely, the stress-induced rise in magnesium, potassium, calcium, phosphorus, zinc, and molybdenum were further improved by ALA application. These data clearly show that ALA has an important regulatory effect of ion balance in wheat leaves.

  15. Ferulic acid dehydrodimers from wheat bran: isolation, purification and antioxidant properties of 8-O-4-diferulic acid.

    PubMed

    Garcia-Conesa, M T; Plumb, G W; Waldron, K W; Ralph, J; Williamson, G

    1997-01-01

    Wheat bran contains several ester-linked dehydrodimers of ferulic acid, which were detected and quantified after sequential alkaline hydrolysis. The major dimers released were: trans-5-[(E)-2-carboxyvinyl]-2-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-2, 3- dihydrobenzofuran-3-carboxylic acid (5-8-BendiFA), (Z)-beta-[4-[(E)-2-carboxyvinyl]-2-methoxyphenoxy]-4-hydroxy-3-methox ycinnamic acid (8-O-4-diFA) and (E,E)-4,4'-dihydroxy-5,5'-dimethoxy-3,3'-bicinnamic acid (5-5-diFA). trans-7-hydroxy-1-(4-hydroxy-3methoxyphenyl)-6-methoxy-1,2-dihydro - naphthalene-2,3-dicarboxylic acid (8-8-diFA cyclic form) and 4,4'-dihydroxy-3,3'-dimethoxy-beta,beta'-bicinnamic acid (8-8-diFA non cyclic form) were not detected. One of the most abundant dimers, 8-O-4-diFA, was purified from de-starched wheat bran after alkaline hydrolysis and preparative HPLC. The resultant product was identical to the chemically synthesised 8-O-4-dimer by TLC and HPLC as confirmed by 1H-NMR and mass spectrometry. The absorption maxima and absorption coefficients for the synthetic compound in ethanol were: lambda max: 323 nm, lambda min: 258 nm, epsilon lambda max (M-1 cm-1): 24,800 +/- 2100 and epsilon 280 (M-1 cm-1): 19,700 +/- 1100. The antioxidant properties of 8-O-4-diFA were assessed using: (a) inhibition of ascorbate/iron-induced peroxidation of phosphatidylcholine liposomes and; (b) scavenging of the radical cation of 2,2'-azinobis (3-ethyl-benzothiazoline-6-sulphonate) (ABTS) relative to the water-soluble vitamin E analogue, Trolox C. The 8-O-4-diFA was a better antioxidant than ferulic acid in both lipid and aqueous phases. This is the first report of the antioxidant activity of a natural diferulate obtained from a plant.

  16. Alleviation of Osmotic Stress Effects by Exogenous Application of Salicylic or Abscisic Acid on Wheat Seedlings

    PubMed Central

    Marcińska, Izabela; Czyczyło-Mysza, Ilona; Skrzypek, Edyta; Grzesiak, Maciej T.; Janowiak, Franciszek; Filek, Maria; Dziurka, Michał; Dziurka, Kinga; Waligórski, Piotr; Juzoń, Katarzyna; Cyganek, Katarzyna; Grzesiak, Stanisław

    2013-01-01

    The aim of the study was to assess the role of salicylic acid (SA) and abscisic acid (ABA) in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1) and drought resistant (CS) wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM) or ABA (0.1 μM) to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa). The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA) was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant activity

  17. Combination of extrusion and cyclodextrin glucanotransferase treatment to modify wheat flours functionality.

    PubMed

    Román, Laura; Dura, Ángela; Martínez, Mario M; Rosell, Cristina M; Gómez, Manuel

    2016-05-15

    This research aims to vary functional properties of native and extruded wheat flours combining cyclodextrin glucanotransferase and extrusion treatments. The level of released cyclodextrins (CD) was assessed, besides the microstructure, crystallinity, pasting properties and starch hydrolysis of the flours. Photomicrographs of enzymatically treated flours suggested the production of fragile structures that broke easily. Enzymatic hydrolysis was significantly higher in extruded flours, as confirmed the CD levels, being predominant the γ-CD followed by α-CD, whereas very low β-CD values were obtained probably due to the formation of CD-lipid complexes, as suggested X-ray diffractometry results. Both extruded and native samples showed very low viscosity and flat pasting profile consequence of the enzyme hydrolytic activity on the starch chains. Enzymatically treated flours (native and extruded) showed higher hydrolysis rates at the early hydrolysis stage, and extruded flours exhibited higher fractal exponent h in agreement with the extended crystalline structures resulting from enzymatic treatment.

  18. Accelerated hydrolysis method to estimate the amino acid content of wheat (Triticum durum Desf.) flour using microwave irradiation.

    PubMed

    Kabaha, Khaled; Taralp, Alpay; Cakmak, Ismail; Ozturk, Levent

    2011-04-13

    The technique of microwave-assisted acid hydrolysis was applied to wholegrain wheat (Triticum durum Desf. cv. Balcali 2000) flour in order to speed the preparation of samples for analysis. The resultant hydrolysates were chromatographed and quantified in an automated amino acid analyzer. The effect of different hydrolysis temperatures, times and sample weights was examined using flour dispersed in 6 N HCl. Within the range of values tested, the highest amino acid recoveries were generally obtained by setting the hydrolysis parameters to 150 °C, 3 h and 200 mg sample weight. These conditions struck an optimal balance between liberating amino acid residues from the wheat matrix and limiting their subsequent degradation or transformation. Compared to the traditional 24 h reflux method, the hydrolysates were prepared in dramatically less time, yet afforded comparable ninhydrin color yields. Under optimal hydrolysis conditions, the total amino acid recovery corresponded to at least 85.1% of the total protein content, indicating the efficient extraction of amino acids from the flour matrix. The findings suggest that this microwave-assisted method can be used to rapidly profile the amino acids of numerous wheat grain samples, and can be extended to the grain analysis of other cereal crops.

  19. Removal of elemental Mercury from flue gas using wheat straw chars modified by K2FeO4 reagent.

    PubMed

    Zhou, Jianfei; Liu, Yangxian; Pan, Jianfeng

    2017-02-17

    In this article, wheat straw (WS) char, a common agricultural waste and renewable biomass, was pyrolyzed and then modified by K2FeO4 reagent to develop an efficient sorbent for removal of Hg(0) from flue gas. Brunauer-Emmett-Teller, scanning electron microscopy with energy spectrum and X-ray diffraction (XRD) were employed to characterize the sorbents. The effects of K2FeO4 loading, reaction temperature, Hg(0) inlet concentration and concentrations of gas mixtures O2, NO and SO2 in flue gas on Hg(0) removal were investigated in a fixed-bed reactor. The results show that K2FeO4-impregnation can improve pore structure of WS char and produce new active sites, which significantly enhance Hg(0) removal. Increasing Hg(0) inlet concentration significantly decreases Hg(0) removal efficiency. O2 in flue gas promotes Hg(0) oxidation by replenishing the oxygen groups on the surface of modified chars. The presence of NO obviously promotes Hg(0) removal since it can oxidize Hg(0) to Hg(NO3)2. SO2 in flue gas significantly decreases Hg(0) removal efficiency due to the competition adsorption between SO2 and Hg(0). The increase in reaction temperature has a dual impact on Hg(0) removal.

  20. Recycling cellulase from enzymatic hydrolyzate of acid treated wheat straw by electroultrafiltration.

    PubMed

    Chen, Guoqiang; Song, Weijie; Qi, Benkun; Lu, Jianren; Wan, Yinhua

    2013-09-01

    This work explores the feasibility of recycling cellulase by electroultrafiltration (EUF), an ultrafiltration process enhanced by an electric field, to reduce the cost of enzymatic transformation of cellulose. The effect of electric field under different operating conditions (buffer concentration, acid treated wheat straw concentration, current and temperature) on flux during EUF was examined. The results showed that EUF was effective to reduce concentration polarization (CP) and enhance filtration flux in recycling cellulase. The flux improvement by the electric field could be strengthened at low buffer concentration (5 mM) and relatively low temperature (room temperature) and high current (150 mA). The flux for 2% (substrate concentration, w/v) lignocellulosic hydrolyzate increased by a factor of 4.4 at 836 V/m and room temperature, compared to that without electric field. This work shows that under appropriate operating conditions EUF can efficiently recycle cellulase from lignocellulosic hydrolyzate and thus substantially reduce hydrolysis cost.

  1. Enrichment of wheat chips with omega-3 fatty acid by flaxseed addition: textural and some physicochemical properties.

    PubMed

    Yuksel, Ferhat; Karaman, Safa; Kayacier, Ahmed

    2014-02-15

    In the present study, wheat chips enriched with flaxseed flour were produced and response surface methodology was used for the studying the simultaneous effects of flaxseed level (10-20%), frying temperature (160-180 °C) and frying time (40-60 s) on some physicochemical, textural and sensorial properties and fatty acid composition of wheat chips. Ridge analysis was conducted to determine the optimum levels of processing variables. Predictive regression equations with adequate coefficients of determination (R² ≥ 0.705) to explain the effect of processing variables were constructed. Addition of flaxseed flour increased the dry matter and protein content of samples and increase of frying temperature decreased the hardness values of wheat chips samples. Increment in flaxseed level provided an increase in unsaturated fatty acid content namely omega-3 fatty acids of wheat chips samples. Overall acceptability of chips increased with the increase of frying temperature. Ridge analysis showed that maximum taste score would be at flaxseed level = 10%, frying temperature = 180 °C and frying time = 50 s.

  2. [Response of POD and CAT during seeds of rice, wheat and rape germination on acid rain stress].

    PubMed

    Wang, Li-hong; Huang, Xiao-hua; Zhou, Qing

    2005-11-01

    The effects of simulated acid rain (pH 2.5 - 5.0) on the activities of POD and CAT were investigated during germination of rice (O. sativa), wheat (T. aestivum) and rape (B. chinensis var. oleifera) seeds. Compared with the control (CK), the amplitude of the change in the activity of CAT and POD is that rice (28.8%, 31.7%) < wheat (34.7%, 48.3%) < rape (79.3%, 50.0%), respectively. The pH significantly different (p < 0.05) from CK follows the order: rice (3.5) > wheat (4.0) > rape (5.0). All of these revealed that the ability of resisting acid rain stress is that rice is stronger than wheat and rape is the worst. Under the same condition, the amplitude of the change in the activity of CAT is more sensitivity toward acid rain stress than that of POD. The difference in free radicals removed by these 3 species is one of the reasons why the germinating indexes behaved differently.

  3. Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat.

    PubMed

    Kang, Guozhang; Li, Gezi; Xu, Wei; Peng, Xiaoqi; Han, Qiaoxia; Zhu, Yunji; Guo, Tiancai

    2012-12-07

    Pretreatment with 0.5 mM salicylic acid (SA) for 3 days significantly enhanced the growth and tolerance to subsequent drought stress (PEG-6000, 15%) in wheat seedlings, manifesting as increased shoot and root dry weights, and decreased lipid peroxidation. Total proteins from wheat leaves exposed to (i) 0.5 mM SA pretreatment, (ii) drought stress, and (iii) 0.5 mM SA treatment plus drought-stress treatments were analyzed using a proteomics method. Eighty-two stress-responsive protein spots showed significant changes, of which 76 were successfully identified by MALDI-TOF-TOF. Analysis of protein expression patterns revealed that proteins associated with signal transduction, stress defense, photosynthesis, carbohydrate metabolism, protein metabolism, and energy production could by involved in SA-induced growth and drought tolerance in wheat seedlings. Furthermore, the SA-responsive protein interaction network revealed 35 key proteins, suggesting that these proteins are critical for SA-induced tolerance.

  4. Impact of acid and alkaline pretreatments on the molecular network of wheat gluten and on the mechanical properties of compression-molded glassy wheat gluten bioplastics.

    PubMed

    Jansens, Koen J A; Lagrain, Bert; Brijs, Kristof; Goderis, Bart; Smet, Mario; Delcour, Jan A

    2013-10-02

    Wheat gluten can be converted into rigid biobased materials by high-temperature compression molding at low moisture contents. During molding, a cross-linked protein network is formed. This study investigated the effect of mixing gluten with acid/alkali in 70% ethanol at ambient temperature for 16 h followed by ethanol removal, freeze-drying, and compression molding at 130 and 150 °C on network formation and on types of cross-links formed. Alkaline pretreatment (0-100 mmol/L sodium hydroxide or 25 mmol/L potassium hydroxide) strongly affected gluten cross-linking, whereas acid pretreatment (0-25 mmol/L sulfuric acid or 25 mmol/L hydrochloric acid) had limited effect on the gluten network. Molded alkaline-treated gluten showed enhanced cross-linking but also degradation when treated with high alkali concentrations, whereas acid treatment reduced gluten cross-linking. β-Elimination of cystine and lanthionine formation occurred more pronouncedly at higher alkali concentrations. In contrast, formation of disulfide and nondisulfide cross-links during molding was hindered in acid-pretreated gluten. Bioplastic strength was higher for alkali than for acid-pretreated samples, whereas the flexural modulus was only slightly affected by either alkaline or acid pretreatment. Apparently, the ratio of disulfide to nondisulfide cross-links did not affect the mechanical properties of rigid gluten materials.

  5. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  6. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  7. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  8. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  9. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  10. Functional properties of bioplastics made from wheat gliadins modified with cinnamaldehyde.

    PubMed

    Balaguer, M Pau; Gómez-Estaca, Joaquín; Gavara, Rafael; Hernandez-Munoz, Pilar

    2011-06-22

    Cinnamaldehyde is a naturally occurring α,β-unsaturated aldehyde. Its potential as a natural cross-linker to improve the physical performance of cast wheat gliadin films was evaluated. The cross-linking reaction was found to be dependent on the pH of the reaction medium, with pH 2 as the optimum. The water resistance (weight loss after immersion), mechanical properties (Young's modulus, tensile strength and elongation at break), thermal properties (T(g) and decomposition behavior), optical properties and morphology of films were evaluated. Cross-linked films showed high transparency, maintained their integrity after immersion, and displayed significant improvements in tensile strength and Young's modulus without impairment of their elongation properties. These effects, which were proportional to the amount of cinnamaldehyde added, highlight the possible formation of intermolecular covalent bonds between "monomeric" gliadins, leading to a polymerized network. Thus, this treatment could provide a new alternative to the toxic cross-linkers commonly employed and so extend the use of gliadin films.

  11. Nitrate removal using natural clays modified by acid thermoactivation

    NASA Astrophysics Data System (ADS)

    Mena-Duran, C. J.; Sun Kou, M. R.; Lopez, T.; Azamar-Barrios, J. A.; Aguilar, D. H.; Domínguez, M. I.; Odriozola, J. A.; Quintana, P.

    2007-04-01

    Groundwater pollution by nitrates is a widespread problem in many locations in the world. The underground aquatic mantle of the Peninsula of Yucatan is highly vulnerable due to its karstic nature. Adsorption methods are a good choice for nitrate elimination. In this work, a natural calcium bentonite was modified by acid thermoactivation with HCl and H 2SO 4, and tested as a media for nitrate removal in an aqueous solution. The nitrate concentration in the solution was measured by FT-IR, using the Lambert-Beer law. Clay characterization was carried out by X-ray diffraction and FT-IR spectroscopy; surface area was measured by the BET method.

  12. Monitoring of wheat lactic acid bacteria from the field until the first step of dough fermentation.

    PubMed

    Alfonzo, Antonio; Miceli, Claudia; Nasca, Anna; Franciosi, Elena; Ventimiglia, Giusi; Di Gerlando, Rosalia; Tuohy, Kieran; Francesca, Nicola; Moschetti, Giancarlo; Settanni, Luca

    2017-04-01

    The present work was carried out to retrieve the origin of lactic acid bacteria (LAB) in sourdough. To this purpose, wheat LAB were monitored from ear harvest until the first step of fermentation for sourdough development. The influence of the geographical area and variety on LAB species/strain composition was also determined. The ears of four Triticum durum varieties (Duilio, Iride, Saragolla and Simeto) were collected from several fields located within the Palermo province (Sicily, Italy) and microbiologically investigated. In order to trace the transfer of LAB during the consecutive steps of manipulation, ears were transformed aseptically and, after threshing, milling and fermentation, samples of kernels, semolinas and doughs, respectively, were analysed. LAB were not found to dominate the microbial communities of the raw materials. In general, kernels harboured lower levels of microorganisms than ears and ears than semolinas. Several samples showing no development of LAB colonies acidified the enrichment broth suggesting the presence of LAB below the detection limit. After fermentation, LAB loads increased consistently for all doughs, reaching levels of 7.0-7.5 Log CFU/g on M17. The values of pH (5.0) and TTA (5.6 mL NaOH/10 g of dough) indicated the occurrence of the acidification process for several doughs. LAB were phenotypically and genotypically differentiated by randomly amplified polymorphic DNA (RAPD)-PCR into eight groups including 51 strains belonging to the species Lactobacillus brevis, Lactobacillus coryniformis, Lactobacillus plantarum, Lactococcus lactis, Lactococcus garvieae, Enterococcus casseliflavus, Enterococcus faecium, Leuconostoc citreum, and Pediococcus pentosaceus. Lactobacilli constituted a minority the LAB community, while lactococci represented more than 50% of strains. Lower LAB complexity was found on kernels, while a richer biodiversity was observed in semolinas and fermented doughs. For broader microbiota characterisation in

  13. Ruthenium oxide modified nickel electrode for ascorbic acid detection.

    PubMed

    Lee, Yuan-Gee; Liao, Bo-Xuan; Weng, Yu-Ching

    2017-04-01

    Electrodes of ruthenium oxide modified nickel were prepared by a thermal decomposition method. The stoichiometry of the modifier, RuOx, was quantitatively determined to be a meta-stable phase, RuO5. The electrodes were employed to sense ascorbic acid in alkaline solution with a high sensitivity, 296 μAcm(-2) mM(-1), and good selectivity for eight kinds of disturbing reagents. We found that the ascorbic acid was oxidized irreversibly in solution. To match with the variation of the morphology, the sensitivity reached a maximum when the RuOx segregated with a nano-crystalline feature. We find that the substrate oxidized as the deposited RuOx grew thicker. The feature of the deposited RuOx changed from nano-particles to small islands resulting from the wetting effect of the substrate oxide, NiO; meanwhile the sensitivity decreased dramatically. The endurance of the RuOx/Ni electrode also showed a good performance after 38 days of successive test.

  14. Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil.

    PubMed

    Delhaize, Emmanuel; James, Richard A; Ryan, Peter R

    2012-08-01

    We found significant genetic variation in the ability of wheat (Triticum aestivum) to form rhizosheaths on acid soil and assessed whether differences in aluminium (Al(3+) ) tolerance of root hairs between genotypes was the physiological basis for this genetic variation. A method was developed to rapidly screen rhizosheath size in a range of wheat genotypes. Backcrossed populations were generated from cv Fronteira (large rhizosheath) using cv EGA-Burke (small rhizosheath) as the recurrent parent. A positive correlation existed between rhizosheath size on acid soil and root hair length. In hydroponic experiments, root hairs of the backcrossed lines with large rhizosheaths were more tolerant of Al(3+) toxicity than the backcrossed lines with small rhizosheaths. We conclude that greater Al(3+) tolerance of root hairs underlies the larger rhizosheath of wheat grown on acid soil. Tolerance of the root hairs to Al(3+) was largely independent of the TaALMT1 gene which suggests that different genes encode the Al(3+) tolerance of root hairs. The maintenance of longer root hairs in acid soils is important for the efficient uptake of water and nutrients.

  15. Diversity and technological potential of lactic acid bacteria of wheat flours.

    PubMed

    Alfonzo, Antonio; Ventimiglia, Giusi; Corona, Onofrio; Di Gerlando, Rosalia; Gaglio, Raimondo; Francesca, Nicola; Moschetti, Giancarlo; Settanni, Luca

    2013-12-01

    Lactic acid bacteria (LAB) were analysed from wheat flours used in traditional bread making throughout Sicily (southern Italy). Plate counts, carried out in three different media commonly used to detect food and sourdough LAB, revealed a maximal LAB concentration of approximately 4.75 Log CFU g(-1). Colonies representing various morphological appearances were isolated and differentiated based on phenotypic characteristics and genetic analysis by randomly amplified polymorphic DNA (RAPD)-PCR. Fifty unique strains were identified. Analysis by 16S rRNA gene sequencing grouped the strains into 11 LAB species, which belonged to six genera: Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus and Weissella. Weissella cibaria, Lactobacillus plantarum, Leuconostoc pseudomesenteroides and Leuconostoc citreum were the most prevalent species. The strains were not geographically related. Denaturing gradient gel electrophoresis (DGGE) analysis of total DNA of flour was used to provide a more complete understanding of the LAB population; it confirmed the presence of species identified with the culture-dependent approach, but did not reveal the presence of any additional LAB species. Finally, the technological characteristics (acidifying capacity, antimicrobial production, proteolytic activity, organic acid, and volatile organic compound generation) of the 50 LAB strains were investigated. Eleven strains were selected for future in situ applications.

  16. Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation

    PubMed Central

    Bhati, Kaushal Kumar; Alok, Anshu; Kumar, Anil; Kaur, Jagdeep; Tiwari, Siddharth; Pandey, Ajay Kumar

    2016-01-01

    Low phytic acid is a trait desired in cereal crops and can be achieved by manipulating the genes involved either in its biosynthesis or its transport in the vacuoles. Previously, we have demonstrated that the wheat TaABCC13 protein is a functional transporter, primarily involved in heavy metal tolerance, and a probable candidate gene to achieve low phytate wheat. In the current study, RNA silencing was used to knockdown the expression of TaABCC13 in order to evaluate its functional importance in wheat. Transgenic plants with significantly reduced TaABCC13 transcripts in either seeds or roots were selected for further studies. Homozygous RNAi lines K1B4 and K4G7 exhibited 34–22% reduction of the phytic acid content in the mature grains (T4 seeds). These transgenic lines were defective for spike development, as characterized by reduced grain filling and numbers of spikelets. The seeds of transgenic wheat had delayed germination, but the viability of the seedlings was unaffected. Interestingly, early emergence of lateral roots was observed in TaABCC13-silenced lines as compared to non-transgenic lines. In addition, these lines also had defects in metal uptake and development of lateral roots in the presence of cadmium stress. Our results suggest roles of TaABCC13 in lateral root initiation and enhanced sensitivity towards heavy metals. Taken together, these data demonstrate that wheat ABCC13 is functionally important for grain development and plays an important role during detoxification of heavy metals. PMID:27342224

  17. Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation.

    PubMed

    Bhati, Kaushal Kumar; Alok, Anshu; Kumar, Anil; Kaur, Jagdeep; Tiwari, Siddharth; Pandey, Ajay Kumar

    2016-07-01

    Low phytic acid is a trait desired in cereal crops and can be achieved by manipulating the genes involved either in its biosynthesis or its transport in the vacuoles. Previously, we have demonstrated that the wheat TaABCC13 protein is a functional transporter, primarily involved in heavy metal tolerance, and a probable candidate gene to achieve low phytate wheat. In the current study, RNA silencing was used to knockdown the expression of TaABCC13 in order to evaluate its functional importance in wheat. Transgenic plants with significantly reduced TaABCC13 transcripts in either seeds or roots were selected for further studies. Homozygous RNAi lines K1B4 and K4G7 exhibited 34-22% reduction of the phytic acid content in the mature grains (T4 seeds). These transgenic lines were defective for spike development, as characterized by reduced grain filling and numbers of spikelets. The seeds of transgenic wheat had delayed germination, but the viability of the seedlings was unaffected. Interestingly, early emergence of lateral roots was observed in TaABCC13-silenced lines as compared to non-transgenic lines. In addition, these lines also had defects in metal uptake and development of lateral roots in the presence of cadmium stress. Our results suggest roles of TaABCC13 in lateral root initiation and enhanced sensitivity towards heavy metals. Taken together, these data demonstrate that wheat ABCC13 is functionally important for grain development and plays an important role during detoxification of heavy metals.

  18. An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22.

    PubMed

    Zhang, Yuming; Chen, Xiangrong; Luo, Jianquan; Qi, Benkun; Wan, Yinhua

    2014-04-01

    A thermophilic lactic acid (LA) producer was isolated and identified as Bacillus coagulans strain IPE22. The strain showed remarkable capability to ferment pentose, hexose and cellobiose, and was also resistant to inhibitors from lignocellulosic hydrolysates. Based on the strain's promising features, an efficient process was developed to produce LA from wheat straw. The process consisted of biomass pretreatment by dilute sulfuric acid and subsequent SSCF (simultaneous saccharification and co-fermentation), while the operations of solid-liquid separation and detoxification were avoided. Using this process, 46.12 g LA could be produced from 100g dry wheat straw with a supplement of 10 g/L corn steep liquid powder at the cellulase loading of 20 FPU (filter paper activity units)/g cellulose. The process by B. coagulans IPE22 provides an economical route to produce LA from lignocellulose.

  19. Permeability of membranes to amino acids and modified amino acids: mechanisms involved in translocation

    NASA Technical Reports Server (NTRS)

    Chakrabarti, A. C.; Deamer, D. W. (Principal Investigator); Miller, S. L. (Principal Investigator)

    1994-01-01

    The amino acid permeability of membranes is of interest because they are one of the key solutes involved in cell function. Membrane permeability coefficients (P) for amino acid classes, including neutral, polar, hydrophobic, and charged species, have been measured and compared using a variety of techniques. Decreasing lipid chain length increased permeability slightly (5-fold), while variations in pH had only minor effects on the permeability coefficients of the amino acids tested in liposomes. Increasing the membrane surface charge increased the permeability of amino acids of the opposite charge, while increasing the cholesterol content decreased membrane permeability. The permeability coefficients for most amino acids tested were surprisingly similar to those previously measured for monovalent cations such as sodium and potassium (approximately 10(-12)-10(-13) cm s-1). This observation suggests that the permeation rates for the neutral, polar and charged amino acids are controlled by bilayer fluctuations and transient defects, rather than partition coefficients and Born energy barriers. Hydrophobic amino acids were 10(2) more permeable than the hydrophilic forms, reflecting their increased partition coefficient values. External pH had dramatic effects on the permeation rates for the modified amino acid lysine methyl ester in response to transmembrane pH gradients. It was established that lysine methyl ester and other modified short peptides permeate rapidly (P = 10(-2) cm s-1) as neutral (deprotonated) molecules. It was also shown that charge distributions dramatically alter permeation rates for modified di-peptides. These results may relate to the movement of peptides through membranes during protein translocation and to the origin of cellular membrane transport on the early Earth.

  20. Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle.

    PubMed

    Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; Tedone, Luigi; De Mastro, Giuseppe; Gobbetti, Marco; De Angelis, Maria

    2015-10-01

    This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors.

  1. Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle

    PubMed Central

    Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; Tedone, Luigi; De Mastro, Giuseppe; De Angelis, Maria

    2015-01-01

    This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors. PMID:26187970

  2. Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.

    PubMed

    Gopinath, Vipin; Meiswinkel, Tobias M; Wendisch, Volker F; Nampoothiri, K Madhavan

    2011-12-01

    Corynebacterium glutamicum wild type lacks the ability to utilize the pentose fractions of lignocellulosic hydrolysates, but it is known that recombinants expressing the araBAD operon and/or the xylA gene from Escherichia coli are able to grow with the pentoses xylose and arabinose as sole carbon sources. Recombinant pentose-utilizing strains derived from C. glutamicum wild type or from the L-lysine-producing C. glutamicum strain DM1729 utilized arabinose and/or xylose when these were added as pure chemicals to glucose-based minimal medium or when they were present in acid hydrolysates of rice straw or wheat bran. The recombinants grew to higher biomass concentrations and produced more L-glutamate and L-lysine, respectively, than the empty vector control strains, which utilized the glucose fraction. Typically, arabinose and xylose were co-utilized by the recombinant strains along with glucose either when acid rice straw and wheat bran hydrolysates were used or when blends of pure arabinose, xylose, and glucose were used. With acid hydrolysates growth, amino acid production and sugar consumption were delayed and slower as compared to media with blends of pure arabinose, xylose, and glucose. The ethambutol-triggered production of up to 93 ± 4 mM L-glutamate by the wild type-derived pentose-utilizing recombinant and the production of up to 42 ± 2 mM L-lysine by the recombinant pentose-utilizing lysine producer on media containing acid rice straw or wheat bran hydrolysate as carbon and energy source revealed that acid hydrolysates of agricultural waste materials may provide an alternative feedstock for large-scale amino acid production.

  3. Prebiotic Content of Bread Prepared with Flour from Immature Wheat Grain and Selected Dextran-Producing Lactic Acid Bacteria

    PubMed Central

    Ventorino, Valeria; Cavella, Silvana; Fagnano, Massimo; Brugno, Rachele

    2013-01-01

    In the last few years the need to produce food with added value has fueled the search for new ingredients and health-promoting compounds. In particular, to improve the quality of bakery products with distinct nutritional properties, the identification of new raw materials, appropriate technologies, and specific microbial strains is necessary. In this study, different doughs were prepared, with 10% and 20% flour from immature wheat grain blended with type “0 America” wheat flour. Immature flour was obtained from durum wheat grains harvested 1 to 2 weeks after anthesis. Doughs were obtained by both the straight-dough and sourdough processes. Two selected exopolysaccharide-producing strains of lactic acid bacteria (LAB), Leuconostoc lactis A95 and Lactobacillus curvatus 69B2, were used as starters. Immature flour contained 2.21 g/100 g (dry weight) of fructo-oligosaccharides. Twenty percent immature flour in dough resulted in a shorter leavening time (4.23 ± 0.03 h) than with the control and dough with 10% immature flour. The total titratable acidity of sourdough with 20% immature flour was higher (12.75 ± 0.15 ml 0.1 N NaOH) than in the control and sourdough with 10% immature wheat flour (9.20 ml 0.1 N NaOH). Molecular analysis showed that all samples contained three LAB species identified as L. lactis, L. curvatus, and Pediococcus acidilactici. A larger amount of exopolysaccharide was found in sourdough obtained with 20% immature flour (5.33 ± 0.032 g/kg), positively influencing the exopolysaccharide content of the bread prepared by the sourdough process (1.70 ± 0.03 g/kg). The addition of 20% immature flour also led to a greater presence of fructo-oligosaccharides in the bread (900 mg/100 g dry weight), which improved its nutritional characteristics. While bread volume decreased as the concentration of immature wheat flour increased, its mechanical characteristics (stress at a strain of 30%) were the same in all samples obtained with different percentages

  4. Prebiotic content of bread prepared with flour from immature wheat grain and selected dextran-producing lactic acid bacteria.

    PubMed

    Pepe, Olimpia; Ventorino, Valeria; Cavella, Silvana; Fagnano, Massimo; Brugno, Rachele

    2013-06-01

    In the last few years the need to produce food with added value has fueled the search for new ingredients and health-promoting compounds. In particular, to improve the quality of bakery products with distinct nutritional properties, the identification of new raw materials, appropriate technologies, and specific microbial strains is necessary. In this study, different doughs were prepared, with 10% and 20% flour from immature wheat grain blended with type "0 America" wheat flour. Immature flour was obtained from durum wheat grains harvested 1 to 2 weeks after anthesis. Doughs were obtained by both the straight-dough and sourdough processes. Two selected exopolysaccharide-producing strains of lactic acid bacteria (LAB), Leuconostoc lactis A95 and Lactobacillus curvatus 69B2, were used as starters. Immature flour contained 2.21 g/100 g (dry weight) of fructo-oligosaccharides. Twenty percent immature flour in dough resulted in a shorter leavening time (4.23 ± 0.03 h) than with the control and dough with 10% immature flour. The total titratable acidity of sourdough with 20% immature flour was higher (12.75 ± 0.15 ml 0.1 N NaOH) than in the control and sourdough with 10% immature wheat flour (9.20 ml 0.1 N NaOH). Molecular analysis showed that all samples contained three LAB species identified as L. lactis, L. curvatus, and Pediococcus acidilactici. A larger amount of exopolysaccharide was found in sourdough obtained with 20% immature flour (5.33 ± 0.032 g/kg), positively influencing the exopolysaccharide content of the bread prepared by the sourdough process (1.70 ± 0.03 g/kg). The addition of 20% immature flour also led to a greater presence of fructo-oligosaccharides in the bread (900 mg/100 g dry weight), which improved its nutritional characteristics. While bread volume decreased as the concentration of immature wheat flour increased, its mechanical characteristics (stress at a strain of 30%) were the same in all samples obtained with different percentages of

  5. Label Distribution in Tissues of Wheat Seedlings Cultivated with Tritium-Labeled Leonardite Humic Acid

    PubMed Central

    Kulikova, Natalia A.; Abroskin, Dmitry P.; Badun, Gennady A.; Chernysheva, Maria G.; Korobkov, Viktor I.; Beer, Anton S.; Tsvetkova, Eugenia A.; Senik, Svetlana V.; Klein, Olga I.; Perminova, Irina V.

    2016-01-01

    Humic substances (HS) play important roles in the biotic-abiotic interactions of the root plant and soil contributing to plant adaptation to external environments. However, their mode of action on plants remains largely unknown. In this study the HS distribution in tissues of wheat seedlings was examined using tritium-labeled humic acid (HA) derived from leonardite (a variety of lignites) and microautoradiography (MAR). Preferential accumulation of labeled products from tritiated HA was found in the roots as compared to the shoots, and endodermis was shown to be the major control point for radial transport of label into vascular system of plant. Tritium was also found in the stele and xylem tissues indicating that labeled products from tritiated HA could be transported to shoot tissues via the transpiration stream. Treatment with HA lead to an increase in the content of polar lipids of photosynthetic membranes. The observed accumulation of labeled HA products in root endodermis and positive impact on lipid synthesis are consistent with prior reported observations on physiological effects of HS on plants such as enhanced growth and development of lateral roots and improvement/repairs of the photosynthetic status of plants under stress conditions. PMID:27350412

  6. Preparation and characterization of succinic acid deamidated wheat gluten microspheres for encapsulation of fish oil.

    PubMed

    Liao, Lan; Luo, Yangchao; Zhao, Mouming; Wang, Qin

    2012-04-01

    Succinic acid deamidated wheat gluten (SDWG) microspheres for encapsulation of fish oil (FO) via O/W/O double-emulsion followed by heat-polymerization of emulsified SDWG was reported. Different SWDG concentrations (16.8-67.2 mg/ml) and FO/SDWG ratios (1:3-4:3, w/w) were studied. To optimize the process, particle size and Zeta potential of SDWG-FO emulsion and encapsulation efficiency (EE) of FO were analyzed. The most efficient condition was obtained at 50.4 mg/ml for SDWG and 3:3 (w/w) for FO/SDWG ratio, with an EE of 81.8%. In this condition, confocal microscopy showed FO well encapsulated in SDWG microspheres. Scanning electron microscope (SEM) showed sunken pores and fractures inside microspheres after FO was extracted, confirming the presence of FO in microspheres. FTIR and electrophoresis showed during microspheres formation dramatically elevated SWDG aggregation resulted in intermolecular-crosslinking and enhanced interactions (hydrogen bonds and hydrophobic interactions) between SDWG and FO. In the evaluations of in vitro experiments in simulated gastric fluid and oxidation stability during storage, results indicated that SDWG matrix protected it from both oxygen and gastric fluid, resulting in improved storage stability and release property. Therefore, it is foreseen that SDWG can be used to encapsulate FO or other sensitive nutraceuticals in the applications of supplementation and functional foods.

  7. Effect of environment on the free and peptide amino acids in rice, wheat, and soybeans.

    PubMed

    Ahn, D J; Adeola, O; Nielsen, S S

    2001-01-01

    Controlled environments (CE) in which light, carbon dioxide, and nutrients are regulated are known to affect the chemical composition of plants. Controlled Ecological Life Support System (CELSS) environments are required for a Mars or lunar base where food resupply is both impractical and risky. Astronauts in a CELSS would need to grow and process edible biomass into foods. The complete nature of the changes in chemical composition of CE-grown plants is unknown but must be determined to ensure a safe and nutritionally adequate diet. In this article, we report the changes that occur in free and peptide-bound amino acids (AA) of select CELSS crops (rice, wheat, and soybean) grown in the field or in CE. The nonnitrate nonprotein nitrogen fraction was extracted and then analyzed for free and peptide AA. For grain or seeds, AA levels tended to increase from field to CE conditions; however, for vegetative material, AA levels remained the same or decreased from field to CE conditions. As such compositional changes are identified, researchers will be better able to design safe and nutritious diets for astronauts while minimizing needed energy and other resources.

  8. Label Distribution in Tissues of Wheat Seedlings Cultivated with Tritium-Labeled Leonardite Humic Acid

    NASA Astrophysics Data System (ADS)

    Kulikova, Natalia A.; Abroskin, Dmitry P.; Badun, Gennady A.; Chernysheva, Maria G.; Korobkov, Viktor I.; Beer, Anton S.; Tsvetkova, Eugenia A.; Senik, Svetlana V.; Klein, Olga I.; Perminova, Irina V.

    2016-06-01

    Humic substances (HS) play important roles in the biotic-abiotic interactions of the root plant and soil contributing to plant adaptation to external environments. However, their mode of action on plants remains largely unknown. In this study the HS distribution in tissues of wheat seedlings was examined using tritium-labeled humic acid (HA) derived from leonardite (a variety of lignites) and microautoradiography (MAR). Preferential accumulation of labeled products from tritiated HA was found in the roots as compared to the shoots, and endodermis was shown to be the major control point for radial transport of label into vascular system of plant. Tritium was also found in the stele and xylem tissues indicating that labeled products from tritiated HA could be transported to shoot tissues via the transpiration stream. Treatment with HA lead to an increase in the content of polar lipids of photosynthetic membranes. The observed accumulation of labeled HA products in root endodermis and positive impact on lipid synthesis are consistent with prior reported observations on physiological effects of HS on plants such as enhanced growth and development of lateral roots and improvement/repairs of the photosynthetic status of plants under stress conditions.

  9. Radiation-induced lipid peroxidation in whole grain of rye, wheat and rice: Effects on linoleic and linolenic acid

    NASA Astrophysics Data System (ADS)

    Vaca, C. E.; Harms-Ringdahl, M.

    Changes in the fatty acid composition in lipids after γ-irradation of whole grain of wheat, rye and rice were examined. The radiosensitivity of linoleic acid (18:2) and linolenic acid (18:3) was studied up to a dose of 63 kGy in seeds with different water content and after a post-irradiation storage time of 2 months. At doses in the range recommended for grain desinfestation, i.e. 0.1-1.0 kGy, no detectable degradation of 18:2 and 18:3 was found, but at the highest dose applied, 63 kGy, a degradation in the range from a few percent up to 40% was observed. Under extreme conditions, i.e. pre- and post-irradation treatment with oxygen, or when the flour prepared from the seeds was mixed with water and heated before the extraction of the lipids, a more pronounced degradation of the unsaturated fatty acids was noticed. Lipid peroxidation induced by γ-irradation was estimated using the thiobarbituric acid (TBA) method. High yields of the TBA-reactive material were formed in the three types of grain investigated corresponding to G-values in the range of 12-18. The influence on peroxidation yields of the water content of the seeds was studied in wheat. The origin of the TBA-reactive material formed in the seeds is not yet known, but could only to a minor extent be due to fatty acid peroxidation.

  10. Effects of Branched-chain Amino Acids on In vitro Ruminal Fermentation of Wheat Straw

    PubMed Central

    Zhang, Hui Ling; Chen, Yong; Xu, Xiao Li; Yang, Yu Xia

    2013-01-01

    This study investigates the effects of three branched-chain amino acids (BCAA; valine, leucine, and isoleucine) on the in vitro ruminal fermentation of wheat straw using batch cultures of mixed ruminal microorganisms. BCAA were added to the buffered ruminal fluid at a concentration of 0, 2, 4, 7, or 10 mmol/L. After 72 h of anaerobic incubation, pH, volatile fatty acids (VFA), and ammonia nitrogen (NH3-N) in the ruminal fluid were determined. Dry matter (DM) and neutral detergent fiber (NDF) degradability were calculated after determining the DM and NDF in the original material and in the residue after incubation. The addition of valine, leucine, or isoleucine increased the total VFA yields (p≤0.001). However, the total VFA yields did not increase with the increase of BCAA supplement level. Total branched-chain VFA yields linearly increased as the supplemental amount of BCAA increased (p<0.001). The molar proportions of acetate and propionate decreased, whereas that of butyrate increased with the addition of valine and isoleucine (p<0.05). Moreover, the proportions of propionate and butyrate decreased (p<0.01) with the addition of leucine. Meanwhile, the molar proportions of isobutyrate were increased and linearly decreased (p<0.001) by valine and leucine, respectively. The addition of leucine or isoleucine resulted in a linear (p<0.001) increase in the molar proportions of isovalerate. The degradability of NDF achieved the maximum when valine or isoleucine was added at 2 mmol/L. The results suggest that low concentrations of BCAA (2 mmol/L) allow more efficient regulation of ruminal fermentation in vitro, as indicated by higher VFA yield and NDF degradability. Therefore, the optimum initial dose of BCAA for in vitro ruminal fermentation is 2 mmol/L. PMID:25049818

  11. Anaphylactic augmentation by epicutaneous sensitization to acid-hydrolyzed wheat protein in a guinea pig model.

    PubMed

    Matsunaga, Kayoko; Kuroda, Yasutaka; Sakai, Shinobu; Adachi, Reiko; Teshima, Reiko; Yagami, Akiko; Itagaki, Hiroshi

    2015-12-01

    Recent reports suggest that hydrolyzed wheat protein (HWP) variants such as Glupearl® 19S (GP19S) induce immediate-type hypersensitivity via epicutaneous (EC) sensitization. The identification of strong allergens is a key step in product assessment before commercial launch. However, few reports have described the estimation of actual and potential anaphylactic sensitizing capacity. In this study we assessed the strength of both the actual and potential anaphylactic sensitizing capacity by investigating the immediate-type hypersensitivity inducing potential of HWP compared with gluten. We assessed these strengths via the EC route using an EC or intradermal (ID) sensitization method. We quantified the strength of immediate-type hypersensitivity by evaluating the titer of serum antibodies isolated from sensitized subjects using passive cutaneous anaphylaxis (PCA) reactions. We also evaluated the cross-reactivity between GP19S and gluten. GP19S and gluten applied by both the sensitization methods induced obvious IgG1-mediated PCA reactions. GP19S had stronger sensitizing potential than gluten, according to the serum titers and dye spot diameters. The difference in antibody titers between GP19S and gluten was 16-fold for the EC method versus 2-fold for the ID method. GP19S cross-reacted with gluten. Acid hydrolysis of gluten increased anaphylactic sensitizing capacity in the EC method. To our knowledge, our study is the first to quantitatively confirm that HWP and gluten can induce immediate-type hypersensitivity through an intact skin. These findings suggest that acid-HWP imposes a higher risk of EC sensitization than gluten because of the ease with which the former confers a sensitizing effect through the intact skin.

  12. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil.

    PubMed

    Delhaize, Emmanuel; Taylor, Phillip; Hocking, Peter J; Simpson, Richard J; Ryan, Peter R; Richardson, Alan E

    2009-06-01

    Barley (Hordeum vulgare L.), genetically modified with the Al(3+) resistance gene of wheat (TaALMT1), was compared with a non-transformed sibling line when grown on an acidic and highly phosphate-fixing ferrosol supplied with a range of phosphorus concentrations. In short-term pot trials (26 days), transgenic barley expressing TaALMT1 (GP-ALMT1) was more efficient than a non-transformed sibling line (GP) at taking up phosphorus on acid soil, but the genotypes did not differ when the soil was limed. Differences in phosphorus uptake efficiency on acid soil could be attributed not only to the differential effects of aluminium toxicity on root growth between the genotypes, but also to differences in phosphorus uptake per unit root length. Although GP-ALMT1 out-performed GP on acid soil, it was still not as efficient at taking up phosphorus as plants grown on limed soil. GP-ALMT1 plants grown in acid soil possessed substantially smaller rhizosheaths than those grown in limed soil, suggesting that root hairs were shorter. This is a probable reason for the lower phosphorus uptake efficiency. When grown to maturity in large pots, GP-ALMT1 plants produced more than twice the grain as GP plants grown on acid soil and 80% of the grain produced by limed controls. Expression of TaALMT1 in barley was not associated with a penalty in either total shoot or grain production in the absence of Al(3+), with both genotypes showing equivalent yields in limed soil. These findings demonstrate that an important crop species can be genetically engineered to successfully increase grain production on an acid soil.

  13. Optically Pure Abscisic Acid Analogs—Tools for Relating Germination Inhibition and Gene Expression in Wheat Embryos 1

    PubMed Central

    Walker-Simmons, M. K.; Anderberg, Robert J.; Rose, Patricia A.; Abrams, Suzanne R.

    1992-01-01

    We report an examination of the structural requirements of the abscisic acid (ABA) recognition response in wheat dormant seed embryos using optically pure isomers of ABA analogs. These compounds include permutations to the ABA structure with either an acetylene or a trans bond at C-4 C-5, and either a single or double bond at the C-2′ C-3′ double bond. (R)-ABA and the three isomers with the same configuration at C-1′ as natural ABA were found to be effective germination inhibitors. The biologically active ABA analogs exhibited differential effects on ABA-responsive gene expression. All the ABA analogs that inhibited germination induced two ABA-responsive genes, wheat group 3 lea and dhn (rab). However, (R)-ABA and (S)-dihydroABA were less effective in inducing the ABA-responsive gene Em within the time that embryonic germination was inhibited. ImagesFigure 3Figure 4 PMID:16668914

  14. Phytase activity of lactic acid bacteria and their impact on the solubility of minerals from wholemeal wheat bread.

    PubMed

    Cizeikiene, Dalia; Juodeikiene, Grazina; Bartkiene, Elena; Damasius, Jonas; Paskevicius, Algimantas

    2015-01-01

    The objective of this study was to determinate phytase activity of bacteriocins producing lactic acid bacteria previously isolated from spontaneous rye sourdough. The results show that the highest extracellular phytase activity produces Pediococcus pentosaceus KTU05-8 and KTU05-9 strains with a volumetric phytase activity of 32 and 54 U/ml, respectively, under conditions similar to leavening of bread dough (pH 5.5 and 30 °C). In vitro studies in simulated gastrointestinal tract media pH provide that bioproducts prepared with P. pentosaceus strains used in wholemeal wheat bread preparation increase solubility of iron, zinc, manganese, calcium and phosphorus average 30%. Therefore, P. pentosaceus KTU05-9 and KTU05-8 strains could be recommended to use as a starter for sourdough preparation for increasing of mineral bioavailability from wholemeal wheat bread.

  15. Salicylic acid changes the properties of extracellular peroxidase activity secreted from wounded wheat (Triticum aestivum L.) roots.

    PubMed

    Minibayeva, F; Mika, A; Lüthje, S

    2003-05-01

    Wheat ( Triticum aestivum L.) roots released proteins showing peroxidase activity in the apoplastic solution in response to wound stress. Preincubation of excised roots with 1 mM salicylic acid at pH 7.0 enhanced the guaiacol peroxidase activity of the extracellular solution (so-called extracellular peroxidase). The soluble enzymes were partially purified by precipitation with ammonium sulfate followed by size exclusion and ion exchange chromatography. Despite an increase in the total activity of secreted peroxidase induced by pretreatment of excised roots with salicylic acid, the specific activity of the partially purified protein was significantly lower compared to that of the control. Purification of the corresponding proteins by ion exchange chromatography indicates that several isoforms of peroxidase occurred in both control and salicylic acid-treated samples. The activities of the extracellular peroxidases secreted by the salicylic acid-treated roots responded differently to calcium and lectins compared with those from untreated roots. Taken together, our data suggest that salicylic acid changes the isoforms of peroxidase secreted by wounded wheat roots.

  16. Interactions of CO2, temperature and management practices: simulations with a modified version of CERES-Wheat

    NASA Technical Reports Server (NTRS)

    Tubiello, F. N.; Rosenzweig, C.; Volk, T.

    1995-01-01

    A new growth subroutine was developed for CERES-Wheat, a computer model of wheat (Triticum aestivum) growth and development. The new subroutine simulates canopy photosynthetic response to CO2 concentrations and light levels, and includes the effects of temperature on canopy light-use efficiency. Its performance was compared to the original CERES-Wheat V-2 10 in 30 different cases. Biomass and yield predictions of the two models were well correlated (correlation coefficient r > 0.95). As an application, summer growth of spring wheat was simulated at one site. Modeled crop responses to higher mean temperatures, different amounts of minimum and maximum warming, and doubled CO2 concentrations were compared to observations. The importance of irrigation and nitrogen fertilization in modulating the wheat crop climatic responses were also analyzed. Specifically, in agreement with observations, rainfed crops were found to be more sensitive to CO2 increases than irrigated ones. On the other hand, low nitrogen applications depressed the ability of the wheat crop to respond positively to CO2 increases. In general, the positive effects of high CO2 on grain yield were found to be almost completely counterbalanced by the negative effects of high temperatures. Depending on how temperature minima and maxima were increased, yield changes averaged across management practices ranged from -4% to 8%.

  17. Effect of acid concentration and treatment time on acid-alcohol modified jackfruit seed starch properties.

    PubMed

    Dutta, Himjyoti; Paul, Sanjib Kumar; Kalita, Dipankar; Mahanta, Charu Lata

    2011-09-15

    The properties of starch extracted from jackfruit (Artocarpus heterophyllus Lam.) seeds, collected from west Assam after acid-alcohol modification by short term treatment (ST) for 15-30min with concentrated hydrochloric acid and long term treatment (LT) for 1-15days with 1M hydrochloric acid, were investigated. Granule density, freeze thaw stability, solubility and light transmittance of the treated starches increased. A maximum decrease in the degree of polymerisation occurred in ST of 30min (2607.6). Jackfruit starch had 27.1±0.04% amylose content (db), which in ST initially decreased and then increased with the severity of treatment; in LT the effect was irregular. The pasting profile and granule morphology of the treated samples were severely modified. Native starch had the A-type crystalline pattern and crystalline structure increased on treatment. FTIR spectra revealed slight changes in bond stretching and bending. Colour measurement indicated that whiteness increased on treatment. Acid modified jackfruit seed starch can have applications in the food industry.

  18. Lactic acid bacteria community dynamics and metabolite production of rye sourdough fermentations share characteristics of wheat and spelt sourdough fermentations.

    PubMed

    Weckx, Stefan; Van der Meulen, Roel; Maes, Dominique; Scheirlinck, Ilse; Huys, Geert; Vandamme, Peter; De Vuyst, Luc

    2010-12-01

    Four spontaneous rye sourdough fermentations were performed over a period of ten days with daily back-slopping. Samples taken at all refreshment steps were used for culture-dependent and culture-independent characterization of the microbiota present. Furthermore, an extensive metabolite target analysis was performed through a combination of various chromatographic methods, including liquid chromatography coupled to mass spectrometry (LC/MS) and gas chromatography coupled to mass spectrometry (GC/MS). Spearman's rank correlation coefficients were calculated and a principal component analysis (PCA) was performed on the data obtained in this study combined with data obtained previously for wheat and spelt sourdoughs. In general, the establishment of a stable microbial ecosystem occurred through a three-phase evolution, with mainly Lactobacillus plantarum and Lactobacillus fermentum dominating the rye sourdough ecosystems. PCA revealed that ornithine and mannitol were positively correlated with rye sourdoughs, contributing to bacterial competitiveness at the onset of sourdough production. Wheat and spelt sourdoughs showed a high degree of similarity, although certain compounds (e.g. indolelactic acid) appeared to be specific for spelt sourdoughs. The production of amino acid metabolites, mainly hydroxy acids (e.g. phenyllactic acid) and alcohols (e.g. 3-methyl-1-butanol), contributed to the equilibration of the redox balance and further enhanced the competitiveness of dominant species in stable sourdoughs.

  19. Removal of Pb(II) ions from aqueous solutions by sulphuric acid-treated wheat bran.

    PubMed

    Ozer, A

    2007-03-22

    Sulphuric acid-treated wheat bran (STWB) was used as an adsorbent to remove Pb(II) ions from aqueous solution. It was observed that the adsorption yield of Pb(II) ions was found to be pH dependent. The equilibrium time for the process was determined as 2h. STWB gave the highest adsorption yield at around pH 6.0. At this pH, adsorption percentage for an initial Pb(II) ions concentration of 100mg/L was found to be 82.8 at 25 degrees C for contact time of 2h. The equilibrium data obtained at different temperatures fitted to the non-linear form of Langmuir, Freundlich and Redlich-Peterson and linear form of Langmuir and Freundlich models. Isotherm constants were calculated and compared for the models used. The maximum adsorption capacity (q(max)) which was obtained linear form of Langmuir model increased from 55.56 to 79.37mg/g with increasing temperature from 25 to 60 degrees C. Similar trend was observed for other isotherm constants related to the adsorption capacity. Linear form of Langmuir isotherm data was evaluated to determine the thermodynamic parameters for the process. Thermodynamic parameters show that adsorption process of Pb(II) ions is an endothermic and more effective process at high temperatures. The pseudo nth order kinetic model was successfully applied to the kinetic data and the order (n) of adsorption reaction was calculated at the range from 1.711 to 1.929. The values of k(ad) were found to be 5.82x10(-4) and 21.81x10(-4)(min(-1))(mg/g)(1-n) at 25 and 60 degrees C, respectively. Activation energy was determined as 29.65kJ/mol for the process. This suggest that the adsorption Pb(II) ions by STWB is chemically controlled.

  20. The adsorption of Cd(II) ions on sulphuric acid-treated wheat bran.

    PubMed

    Ozer, A; Pirinççi, H B

    2006-09-21

    The adsorption of Cd(II) ions which is one of the most important toxic metals by using sulphuric acid-treated wheat bran (STWB) was investigated. The effects of solution pH and temperature, contact time and initial Cd(II) concentration on the adsorption yield were studied. The equilibrium time for the adsorption process was determined as 4 h. The adsorbent used in this study gave the highest adsorption capacity at around pH 5.4. At this pH, adsorption capacity for an initial Cd(II) ions concentration of 100 mg/L was found to be 43.1 mg/g at 25 degrees C for contact time of 4 h. The equilibrium data were analysed using Langmuir and Freundlich isotherm models to calculate isotherm constants. The maximum adsorption capacity (qmax) which is a Langmuir constant decreased from 101.0 to 62.5 mg/g with increasing temperature from 25 to 70 degrees C. Langmuir isotherm data were evaluated to determine the thermodynamic parameters for the adsorption process. The enthalpy change (deltaH(o)) for the process was found to be exothermic. The free energy change (deltaG(o)) showed that the process was feasible. The kinetic results indicated that the adsorption process of Cd(II) ions by STWB followed first-order rate expression and adsorption rate constant was calculated as 0.0081 l/min at 25 degrees C. It was observed that the desorption yield of Cd(II) was highly pH dependent.

  1. Population dynamics and metabolite target analysis of lactic acid bacteria during laboratory fermentations of wheat and spelt sourdoughs.

    PubMed

    Van der Meulen, Roel; Scheirlinck, Ilse; Van Schoor, Ann; Huys, Geert; Vancanneyt, Marc; Vandamme, Peter; De Vuyst, Luc

    2007-08-01

    Four laboratory sourdough fermentations, initiated with wheat or spelt flour and without the addition of a starter culture, were prepared over a period of 10 days with daily back-slopping. Samples taken at all refreshment steps were used for determination of the present microbiota. Furthermore, an extensive metabolite target analysis of more than 100 different compounds was performed through a combination of various chromatographic methods including liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. The establishment of a stable microbial ecosystem occurred through a three-phase evolution within a week, as revealed by both microbiological and metabolite analyses. Strains of Lactobacillus plantarum, Lactobacillus fermentum, Lactobacillus rossiae, Lactobacillus brevis, and Lactobacillus paraplantarum were dominating some of the sourdough ecosystems. Although the heterofermentative L. fermentum was dominating one of the wheat sourdoughs, all other sourdoughs were dominated by a combination of obligate and facultative heterofermentative taxa. Strains of homofermentative species were not retrieved in the stable sourdough ecosystems. Concentrations of sugar and amino acid metabolites hardly changed during the last days of fermentation. Besides lactic acid, ethanol, and mannitol, the production of succinic acid, erythritol, and various amino acid metabolites, such as phenyllactic acid, hydroxyphenyllactic acid, and indolelactic acid, was shown during fermentation. Physiologically, they contributed to the equilibration of the redox balance. The biphasic approach of the present study allowed us to map some of the interactions taking place during sourdough fermentation and helped us to understand the fine-tuned metabolism of lactic acid bacteria, which allows them to dominate a food ecosystem.

  2. Strains of lactic acid bacteria isolated from sour doughs degrade phytic acid and improve calcium and magnesium solubility from whole wheat flour.

    PubMed

    Lopez, H W; Ouvry, A; Bervas, E; Guy, C; Messager, A; Demigne, C; Remesy, C

    2000-06-01

    Five strains of lactic bacteria have been isolated from sour doughs and examined for their ability to degrade phytic acid. In white flour medium in which phytic acid was the only source of phosphorus, the disappearance of phytate and an elevation of inorganic phosphate were observed after only 2 h of incubation in all strains tested (-30 and +60%, respectively). Both phenomena correspond to phytate breakdown. No difference was observed in the levels of phytic acid hydrolysis among strains, suggesting that phytase enzymes are similar among these bacteria. Using whole wheat flour medium naturally rich in phytic acid in the presence of Leuconostoc mesenteroides strain 38, a 9 h fermentation established that the degradation of PA and the production of lactic acid lead to greater Ca and Mg solubility than in control medium.

  3. Surfactants modify the release from tablets made of hydrophobically modified poly (acrylic acid)☆

    PubMed Central

    Knöös, Patrik; Onder, Sebla; Pedersen, Lina; Piculell, Lennart; Ulvenlund, Stefan; Wahlgren, Marie

    2013-01-01

    Many novel pharmaceutically active substances are characterized by a high hydrophobicity and a low water solubility, which present challenges for their delivery as drugs. Tablets made from cross-linked hydrophobically modified poly (acrylic acid) (CLHMPAA), commercially available as Pemulen™, have previously shown promising abilities to control the release of hydrophobic model substances. This study further investigates the possibility to use CLHMPAA in tablet formulations using ibuprofen as a model substance. Furthermore, surfactants were added to the dissolution medium in order to simulate the presence of bile salts in the intestine. The release of ibuprofen is strongly affected by the presence of surfactant and/or buffer in the dissolution medium, which affect both the behaviour of CLHMPAA and the swelling of the gel layer that surrounds the disintegrating tablets. Two mechanisms of tablet disintegration were observed under shear, namely conventional dissolution of a soluble tablet matrix and erosion of swollen insoluble gel particles from the tablet. The effects of surfactant in the surrounding medium can be circumvented by addition of surfactant to the tablet. With added surfactant, tablets that may be insusceptible to the differences in bile salt level between fasted or fed states have been produced, thus addressing a central problem in controlled delivery of hydrophobic drugs. In other words CLHMPAA is a potential candidate to be used in tablet formulations for controlled release with poorly soluble drugs. PMID:25755999

  4. Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism.

    PubMed

    Woodrow, Pasqualina; Ciarmiello, Loredana F; Annunziata, Maria Grazia; Pacifico, Severina; Iannuzzi, Federica; Mirto, Antonio; D'Amelia, Luisa; Dell'Aversana, Emilia; Piccolella, Simona; Fuggi, Amodio; Carillo, Petronia

    2017-03-01

    Durum wheat plants are extremely sensitive to drought and salinity during seedling and early development stages. Their responses to stresses have been extensively studied to provide new metabolic targets and improving the tolerance to adverse environments. Most of these studies have been performed in growth chambers under low light [300-350 µmol m(-2) s(-1) photosynthetically active radiation (PAR), LL]. However, in nature plants have to face frequent fluctuations of light intensities that often exceed their photosynthetic capacity (900-2000 µmol m(-2) s(-1) ). In this study we investigated the physiological and metabolic changes potentially involved in osmotic adjustment and antioxidant defense in durum wheat seedlings under high light (HL) and salinity. The combined application of the two stresses decreased the water potential and stomatal conductance without reducing the photosynthetic efficiency of the plants. Glycine betaine (GB) synthesis was inhibited, proline and glutamate content decreased, while γ-aminobutyric acid (GABA), amides and minor amino acids increased. The expression level and enzymatic activities of Δ1-pyrroline-5-carboxylate synthetase, asparagine synthetase and glutamate decarboxylase, as well as other enzymatic activities of nitrogen and carbon metabolism, were analyzed. Antioxidant enzymes and metabolites were also considered. The results showed that the complex interplay seen in durum wheat plants under salinity at LL was simplified: GB and antioxidants did not play a main role. On the contrary, the fine tuning of few specific primary metabolites (GABA, amides, minor amino acids and hexoses) remodeled metabolism and defense processes, playing a key role in the response to simultaneous stresses.

  5. Optimization of the treatment of wheat samples for the determination of phytic acid by HPLC with refractive index detection.

    PubMed

    Amaro, Rosa; Murillo, Miguel; González, Zurima; Escalona, Andrés; Hernández, Luís

    2009-01-01

    The treatment of wheat samples was optimized before the determination of phytic acid by high-performance liquid chromatography with refractive index detection. Drying by lyophilization and oven drying were studied; drying by lyophilization gave better results, confirming that this step is critical in preventing significant loss of analyte. In the extraction step, washing of the residue and collection of this water before retention of the phytates in the NH2 Sep-Pak cartridge were important. The retention of phytates in the NH2 Sep-Pak cartridge and elimination of the HCI did not produce significant loss (P = 0.05) in the phytic acid content of the sample. Recoveries of phytic acid averaged 91%, which is a substantial improvement with respect to values reported by others using this methodology.

  6. Structural and molecular basis of starch viscosity in hexaploid wheat.

    PubMed

    Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K

    2008-06-11

    Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties.

  7. Molecular Analysis of the Polymeric Glutenins with Gliadin-Like Characteristics That Were Produced by Acid Dispersion of Wheat Gluten.

    PubMed

    Murakami, Tetsuya; Nishimura, Takahisa; Kitabatake, Naofumi; Tani, Fumito

    2016-03-01

    We had earlier shown that the dispersion of wheat gluten in acetic acid solution conferred gliadin-like characteristics to the polymeric glutenins. To elucidate the molecular behavior of its polymeric glutenins, the characteristics of gluten powder prepared from dispersions with various types of acid were investigated in this study. Mixograph measurements showed that the acid-treated gluten powders, regardless of the type of acid, had dough properties markedly weakened in both resistance and elasticity properties, as though gliadin was supplemented. The polymeric glutenins extracted with 70% ethanol increased greatly in all acid-treated gluten powders. Size exclusion HPLC and SDS-PAGE indicated that the behavior of polymeric glutenins due to acid treatment was attributed to their subunit composition rich in high molecular weight glutenin subunit (HMW-GS) and not their molecular size. The gluten prepared with the addition of NaCl in acid dispersion had properties similar to those of the control gluten. The results suggest that ionic repulsion induced by acid dispersion made the polymeric glutenins rich in HMW-GS disaggregate, and therefore, act like gliadins.

  8. Lipid metabolism is differentially modulated by salicylic acid and heptanoyl salicylic acid during the induction of resistance in wheat against powdery mildew.

    PubMed

    Tayeh, Christine; Randoux, Béatrice; Bourdon, Natacha; Reignault, Philippe

    2013-12-15

    Heptanoyl salicylic acid (HSA) is a salicylic acid (SA) derivative obtained by esterification of 2-OH benzoic acid with heptanoic acid. In wheat, the protection levels obtained against Blumeria graminis f. sp. tritici (Bgt) increased from 50% with SA to 95% with HSA. Using molecular, biochemical and cytological approaches, we investigated here how wheat lipid metabolism is differentially activated by SA and HSA in both infectious and non-infectious conditions, and how Bgt infectious process is altered by both inducers. First, in the absence of Bgt, continuous lipoxygenase (LOX)-encoding gene expression and corresponding activity were specifically induced by HSA. Moreover, compared to SA, HSA treatment resulted in earlier up-regulations of the phospholipase C2-encoding gene expression and it specifically affected the expression of a lipid transfer protein-encoding gene. In infectious context, both HSA and SA sprayings impaired penetration events and therefore haustorium formation, leading to less frequent fungal colonies. While this alteration only slowed down the evolution of Bgt infectious process in SA-sprayed leaves, it completely impaired the establishment of successful infectious events in HSA-sprayed leaves. In addition, HSA induced continuous increases of a LOX-encoding gene expression and of the corresponding LOX activity when compared to SA-sprayed leaves. Lipid metabolism is therefore overall highly responsive to HSA spraying and could represent effective defence mechanism triggered during the induction of resistance in wheat toward Bgt. The concepts of priming and energy costs of the defences induced by SA and HSA are also discussed.

  9. A mutant of Azospirillum brasilense Sp7 impaired in flocculation with a modified colonization pattern and superior nitrogen fixation in association with wheat.

    PubMed Central

    Katupitiya, S; Millet, J; Vesk, M; Viccars, L; Zeman, A; Lidong, Z; Elmerich, C; Kennedy, I R

    1995-01-01

    We report here significant phenotypic and genetic differences between Azospirillum brasilense Sp7 and spontaneous mutant Sp7-S and their related properties in association with wheat. In contrast to the wild-type strain of Sp7, colonies of Sp7-S stained weakly with Congo red when grown on agar media containing the dye and did not flocculate in the presence of fructose and nitrate. Scanning and transmission electron micrographs showed clearly that the Sp7-S strain lacked surface materials present as a thick layer on the surface of the wild-type Sp7 strain. Different patterns of colonization on wheat roots between Sp7 and Sp7-S, revealed by in situ studies using nifA-lacZ as a reporter gene, were related to a large increase in nitrogenase activity (acetylene reduction) with Sp7-S in association with normal and 2,4-dichlorophenoxyacetic acid-treated wheat for assays conducted under conditions in which the nitrogenase activity of free-living Azospirillum organisms was inhibited by an excess of oxygen. Randomly amplified polymorphic DNA analysis indicated the close genetic relationship of Sp7-S to several other sources of Sp7, by comparison to other recognized strains of A. brasilense. Genetic complementation of Sp7-S was achieved with a 9.4-kb fragment of DNA cloned from wild-type Sp7, restoring Congo red staining and flocculation. PMID:7646034

  10. A metabolic-based approach to improve xylose utilization for fumaric acid production from acid pretreated wheat bran by Rhizopus oryzae.

    PubMed

    Wang, Guanyi; Huang, Di; Li, Yong; Wen, Jianping; Jia, Xiaoqiang

    2015-03-01

    In this work, wheat bran (WB) was utilized as feedstock to synthesize fumaric acid by Rhizopus oryzae. Firstly, the pretreatment process of WB by dilute sulfuric acid hydrolysis undertaken at 100°C for 30min offered the best performance for fumaric acid production. Subsequently, through optimizing the seed culture medium, a suitable morphology (0.55mm pellets diameter) of R. oryzae was obtained. Furthermore, a metabolic-based approach was developed to profile the differences of intracellular metabolites concentration of R. oryzae between xylose (the abundant sugar in wheat bran hydrolysate (WBH)) and glucose metabolism. The xylitol, sedoheptulose 7-phosphate, ribulose 5-phosphate, glucose 6-phosphate, proline and serine were responsible for fumaric acid biosynthesis limitation in xylose fermentation. Consequently, regulation strategies were proposed, leading to a 149% increase in titer (up to 15.4g/L). Finally, by combinatorial regulation strategies the highest production was 20.2g/L from WBH, 477% higher than that of initial medium.

  11. The oxygen isotope composition of phosphate released from phytic acid by the activity of wheat and Aspergillus niger phytase

    NASA Astrophysics Data System (ADS)

    Sperber, C. v.; Tamburini, F.; Brunner, B.; Bernasconi, S. M.; Frossard, E.

    2015-03-01

    Phosphorus (P) is an essential nutrient for living organisms. Under P-limiting conditions plants and microorganisms can exude extracellular phosphatases that release inorganic phosphate (Pi) from organic phosphorus compounds (Porg). Phytic acid (IP6) is an important form of Porg in many soils. The enzymatic hydrolysis of IP6 by phytase yields plant available inorganic phosphate (Pi) and less phosphorylated inositol derivates as products. The hydrolysis of organic P-compounds by phosphatases leaves an isotopic imprint on the oxygen isotope composition (δ18O) of released Pi, which might be used to trace P in the environment. This study aims at determining the effect of phytase on the oxygen isotope composition of released Pi. For this purpose, enzymatic assays with histidine acid phytases from wheat and Aspergillus niger were prepared using IP6, adenosine 5'monophosphate (AMP) and glycerophosphate (GPO4) as substrates. For a comparison to the δ18O of Pi released by other extracellular enzymes, enzymatic assays with acid phosphatases from potato and wheat germ with IP6 as substrate were prepared. During the hydrolysis of IP6 by phytase, four Pi are released, and one oxygen atom from water is incorporated into each Pi. This incorporation of oxygen from water into Pi is subject to an apparent inverse isotopic fractionation (ϵ ∼ 6 to 10‰), which is similar to that imparted by acid phosphatase from potato during the hydrolysis of IP6 (ϵ ∼ 7‰) where less than three Pi are released. The incorporation of oxygen from water into Pi during the hydrolysis of AMP and GPO4 by phytase yielded a normal isotopic fractionation (ϵ ∼ -12‰), again similar to values reported for acid phosphatases from potato and wheat germ. We attribute this similarity in ɛ to the same amino acid sequence motif (RHGXRXP) at the active site of these enzymes, which leads to similar reaction mechanisms. We suggest that the striking substrate-dependency of

  12. The oxygen isotope composition of phosphate released from phytic acid by the activity of wheat and Aspergillus niger phytase

    NASA Astrophysics Data System (ADS)

    von Sperber, C.; Tamburini, F.; Brunner, B.; Bernasconi, S. M.; Frossard, E.

    2015-07-01

    Phosphorus (P) is an essential nutrient for living organisms. Under P-limiting conditions plants and microorganisms can exude extracellular phosphatases that release inorganic phosphate (Pi) from organic phosphorus compounds (Porg). Phytic acid (myo-inositol hexakisphosphate, IP6) is an important form of Porg in many soils. The enzymatic hydrolysis of IP6 by phytase yields available Pi and less phosphorylated inositol derivates as products. The hydrolysis of organic P compounds by phosphatases leaves an isotopic imprint on the oxygen isotope composition (δ18O) of released Pi, which might be used to trace P in the environment. This study aims at determining the effect of phytase on the oxygen isotope composition of released Pi. For this purpose, enzymatic assays with histidine acid phytases from wheat and Aspergillus niger were prepared using IP6, adenosine 5'-monophosphate (AMP) and glycerophosphate (GPO4) as substrates. For a comparison to the δ18O of Pi released by other extracellular enzymes, enzymatic assays with acid phosphatases from potato and wheat germ with IP6 as a substrate were prepared. During the hydrolysis of IP6 by phytase, four of the six Pi were released, and one oxygen atom from water was incorporated into each Pi. This incorporation of oxygen from water into Pi was subject to an apparent inverse isotopic fractionation (ϵ ~ 6 to 10 ‰), which was similar to that imparted by acid phosphatase from potato during the hydrolysis of IP6 (ϵ ~ 7 ‰), where less than three Pi were released. The incorporation of oxygen from water into Pi during the hydrolysis of AMP and GPO4 by phytase yielded a normal isotopic fractionation (ϵ ~ -12 ‰), similar to values reported for acid phosphatases from potato and wheat germ. We attribute this similarity in ϵ to the same amino acid sequence motif (RHGXRXP) at the active site of these enzymes, which leads to similar reaction mechanisms. We suggest that the striking

  13. Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance.

    PubMed

    Shingaki-Wells, Rachel N; Huang, Shaobai; Taylor, Nicolas L; Carroll, Adam J; Zhou, Wenxu; Millar, A Harvey

    2011-08-01

    Rice (Oryza sativa) and wheat (Triticum aestivum) are the most important starch crops in world agriculture. While both germinate with an anatomically similar coleoptile, this tissue defines the early anoxia tolerance of rice and the anoxia intolerance of wheat seedlings. We combined protein and metabolite profiling analysis to compare the differences in response to anoxia between the rice and wheat coleoptiles. Rice coleoptiles responded to anoxia dramatically, not only at the level of protein synthesis but also at the level of altered metabolite pools, while the wheat response to anoxia was slight in comparison. We found significant increases in the abundance of proteins in rice coleoptiles related to protein translation and antioxidant defense and an accumulation of a set of enzymes involved in serine, glycine, and alanine biosynthesis from glyceraldehyde-3-phosphate or pyruvate, which correlates with an observed accumulation of these amino acids in anoxic rice. We show a positive effect on wheat root anoxia tolerance by exogenous addition of these amino acids, indicating that their synthesis could be linked to rice anoxia tolerance. The potential role of amino acid biosynthesis contributing to anoxia tolerance in cells is discussed.

  14. Effect of β-glucan-fatty acid esters on microstructure and physical properties of wheat straw arabinoxylan films.

    PubMed

    Ali, Usman; Bijalwan, Vandana; Basu, Santanu; Kesarwani, Atul Kumar; Mazumder, Koushik

    2017-04-01

    Arabinoxylans (AX) was isolated from wheat straw, whereas β-glucan (BG) was extracted from oat flour. The compositional analysis indicated wheat straw AX contained arabinose and xylose as major constituent sugars whereas higher β-glucan content (77%) was found in the extracted material from oat flour. The BG was conjugated with lauric (LA), myristic (MA), palmitic (PA), stearic (SA) and oleic (OA) acid to prepare corresponding β-glucan-fatty acid esters (BGFAs) with nearly similar degree of substitution. The effect of BGFAs to AX films on the water barrier, optical and mechanical properties were investigated. The addition of LABG and MABG to AX formed laminar structures in the composite films which limited water vapor permeability, giving rise to more opacity. Films prepared by blending AX with SABG and OABG were less effective as water vapor barrier due to their non-layer film microstructures; however they were less opaque. The laminar structures also imparted less mechanical strength and flexibility in the composite films. Furthermore, thermogravimetric analysis (TGA) revealed that all AX-BGFAs composite films were thermally more stable than pure AX and AX-BG films.

  15. GC-MS Analysis of Membrane-Graded Fulvic Acid and Its Activity on Promoting Wheat Seed Germination.

    PubMed

    Qin, Yi; Zhu, Hui; Zhang, Mi; Zhang, Huifen; Xiang, Cheng; Li, Baocai

    2016-10-13

    The chemical composition of fulvic acid (FA) with a molecular weight below 500 (FA-500) was analyzed, and its activity on promoting the seed germination of wheat was studied in this paper. The FA-500 was obtained by membrane separation technology and qualitatively and quantitatively analyzed by using gas chromatography-mass spectrometry combined with the retention index. Forty-seven constituents were identified, including structures with ester, acid and alcohol groups, which accounted for 95% of the total composition. The highest relative content of compounds was diethyl succinate and diethyl malonate, accounting for 29% and 17% of the total, respectively. Yannong 19 and Luyuan 301 wheat seeds were steeped with the FA-500 solution of different concentration respectively for two hours. Several markers were assessed: germination rate, coleoptile and radicle length, germination index, vitality index and the activity of α-amylase and (α+β) amylase. The results indicated that FA-500 had a significant effect on promoting seed germination within an appropriate concentration range. The best concentration was 0.5‰, and an inhibiting effect would appear with the increase of concentration. In the process of seed germination, FA-500 may affect the growth of the seed through influencing the amylase activity, which was related to respiration.

  16. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2011-08-23

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  17. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2005-08-30

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  18. Increased Rat Placental Fatty Acid, but Decreased Amino Acid and Glucose Transporters Potentially Modify Intrauterine Programming.

    PubMed

    Nüsken, Eva; Gellhaus, Alexandra; Kühnel, Elisabeth; Swoboda, Isabelle; Wohlfarth, Maria; Vohlen, Christina; Schneider, Holm; Dötsch, Jörg; Nüsken, Kai-Dietrich

    2016-07-01

    Regulation of placental nutrient transport significantly affects fetal development and may modify intrauterine growth restriction (IUGR) and fetal programming. We hypothesized that placental nutrient transporters are differentially affected both by utero-placental insufficiency and prenatal surgical stress. Pregnant rats underwent bilateral uterine artery and vein ligation (LIG), sham operation (SOP) or no operation (controls, C) on gestational day E19. Placentas were obtained by caesarean section 4 h (LIG, n=20 placentas; SOP, n=24; C, n=12), 24 h (LIG, n=28; SOP, n=20; C, n=12) and 72 h (LIG, n=20; SOP, n=20; C, n=24) after surgery. Gene and protein expression of placental nutrient transporters for fatty acids (h-FABP, CD36), amino acids (SNAT1, SNAT2) and glucose (GLUT-1, Connexin 26) were examined by qRT-PCR, western blot and immunohistochemistry. Interestingly, the mean protein expression of h-FABP was doubled in placentas of LIG and SOP animals 4, 24 (SOP significant) and 72 h (SOP significant) after surgery. CD36 protein was significantly increased in LIG after 72 h. SNAT1 and SNAT2 protein and gene expressions were significantly reduced in LIG and SOP after 24 h. Further significantly reduced proteins were GLUT-1 in LIG (4 h, 72 h) and SOP (24 h), and Connexin 26 in LIG (72 h). In conclusion, placental nutrient transporters are differentially affected both by reduced blood flow and stress, probably modifying the already disturbed intrauterine milieu and contributing to IUGR and fetal programming. Increased fatty acid transport capacity may affect energy metabolism and could be a compensatory reaction with positive effects on brain development. J. Cell. Biochem. 117: 1594-1603, 2016. © 2015 Wiley Periodicals, Inc.

  19. Effects of Modifier Type on Properties of in Situ Organo-Montmorillonite Modified Wood Flour/Poly(lactic acid) Composites.

    PubMed

    Liu, Ru; Chen, Yu; Cao, Jinzhen

    2016-01-13

    Wood flour (WF) was modified with sodium-montmorillonite (Na-MMT) and two types of surfactant modifiers, namely, didecyl dimethylammonium chloride (DDAC) and sodium dodecyl sulfonate (SDS) though a two-step process inside WF. The thus-modified WFs were characterized, and the effects of MMT type on physical, mechanical, and thermal properties of their composites with poly(lactic acid) (PLA) were investigated. The results showed: (1) either DDAC or SDS could modified Na-MMT into OMMT, and then uniformly distributed in WF cell walls; (2) OMMT improved the physical properties, most mechanical properties, and thermal properties of the composites except for the impact strength; and (3) compared with SDS, DDAC seemed to perform better in properties of composites. However, DDAC showed some negative effect on the early stage of composite thermal decomposition.

  20. Routine sample preparation and HPLC analysis for ascorbic acid (vitamin C) determination in wheat plants and Arabidopsis leaf tissues.

    PubMed

    Szalai, Gabriella; Janda, T; Pál, Magda

    2014-06-01

    Plants have developed various mechanisms to protect themselves against oxidative stress. One of the most important non-enzymatic antioxidants is ascorbic acid. There is thus a need for a rapid, sensitive method for the analysis of the reduced and oxidised forms of ascorbic acid in crop plants. In this paper a simple, economic, selective, precise and stable HPLC method is presented for the detection of ascorbate in plant tissue. The sensitivity, the short retention time and the simple isocratic elution mean that the method is suitable for the routine quantification of ascorbate in a high daily sample number. The method has been found to be better than previously reported methods, because of the use of an economical, readily available mobile phase, UV detection and the lack of complicated extraction procedures. The method has been tested on Arabidopsis plants with different ascorbate levels and on wheat plants during Cd stress.

  1. Lactic acid production from lime-treated wheat straw by Bacillus coagulans: neutralization of acid by fed-batch addition of alkaline substrate

    PubMed Central

    Maas, Ronald H. W.; Bakker, Robert R.; Jansen, Mickel L. A.; Visser, Diana; de Jong, Ed; Eggink, Gerrit

    2008-01-01

    Conventional processes for lignocellulose-to-organic acid conversion requires pretreatment, enzymatic hydrolysis, and microbial fermentation. In this study, lime-treated wheat straw was hydrolyzed and fermented simultaneously to lactic acid by an enzyme preparation and Bacillus coagulans DSM 2314. Decrease in pH because of lactic acid formation was partially adjusted by automatic addition of the alkaline substrate. After 55 h of incubation, the polymeric glucan, xylan, and arabinan present in the lime-treated straw were hydrolyzed for 55%, 75%, and 80%, respectively. Lactic acid (40.7 g/l) indicated a fermentation efficiency of 81% and a chiral l(+)-lactic acid purity of 97.2%. In total, 711 g lactic acid was produced out of 2,706 g lime-treated straw, representing 43% of the overall theoretical maximum yield. Approximately half of the lactic acid produced was neutralized by fed-batch feeding of lime-treated straw, whereas the remaining half was neutralized during the batch phase with a Ca(OH)2 suspension. Of the lime added during the pretreatment of straw, 61% was used for the neutralization of lactic acid. This is the first demonstration of a process having a combined alkaline pretreatment of lignocellulosic biomass and pH control in fermentation resulting in a significant saving of lime consumption and avoiding the necessity to recycle lime. PMID:18247027

  2. Lactic acid production from lime-treated wheat straw by Bacillus coagulans: neutralization of acid by fed-batch addition of alkaline substrate.

    PubMed

    Maas, Ronald H W; Bakker, Robert R; Jansen, Mickel L A; Visser, Diana; de Jong, Ed; Eggink, Gerrit; Weusthuis, Ruud A

    2008-04-01

    Conventional processes for lignocellulose-to-organic acid conversion requires pretreatment, enzymatic hydrolysis, and microbial fermentation. In this study, lime-treated wheat straw was hydrolyzed and fermented simultaneously to lactic acid by an enzyme preparation and Bacillus coagulans DSM 2314. Decrease in pH because of lactic acid formation was partially adjusted by automatic addition of the alkaline substrate. After 55 h of incubation, the polymeric glucan, xylan, and arabinan present in the lime-treated straw were hydrolyzed for 55%, 75%, and 80%, respectively. Lactic acid (40.7 g/l) indicated a fermentation efficiency of 81% and a chiral L(+)-lactic acid purity of 97.2%. In total, 711 g lactic acid was produced out of 2,706 g lime-treated straw, representing 43% of the overall theoretical maximum yield. Approximately half of the lactic acid produced was neutralized by fed-batch feeding of lime-treated straw, whereas the remaining half was neutralized during the batch phase with a Ca(OH)2 suspension. Of the lime added during the pretreatment of straw, 61% was used for the neutralization of lactic acid. This is the first demonstration of a process having a combined alkaline pretreatment of lignocellulosic biomass and pH control in fermentation resulting in a significant saving of lime consumption and avoiding the necessity to recycle lime.

  3. Improvement of Fatty Acid Profile and Studio of Rheological and Technological Characteristics in Breads Supplemented with Flaxseed, Soybean, and Wheat Bran Flours

    PubMed Central

    Osuna, Mariana B.; Judis, María A.; Romero, Ana M.; Avallone, Carmen M.; Bertola, Nora C.

    2014-01-01

    Functional breads constitute an interesting alternative as vehicle of new essential fatty acids sources. The aim of this study was to improve the fatty acids (FA) profile of bakery products, producing breads with low saturated fatty acid (SFA) content and with high polyunsaturated fatty acid (PUFA) content, through partial substitution of wheat flour by other ingredients (soy flour, flax flour, and wheat bran) and to analyze the effect of this change on the technological, rheological, and sensorial characteristics of breads. Flaxseed flour (FF), soybeans flour (SF), or wheat bran (WB) was used to replace 50, 100, and 150 g kg−1 of wheat flour (WF) in breads. FF or SF produced a decrease in monounsaturated and SFA and an increase of PUFA in these breads. Furthermore, breads replaced with FF presented considerable increase in the content of n3 FA, while, SF or WB contributed to rise of linoleic and oleic FA, respectively. The substitution percentage increase of FF, SF, or WB to formulation produced changes in the colour, rheological, textural, and technological characteristics of breads. This replacement resulted in improved lipid profile, being breads with 50 g kg−1 SF, the better acceptance, baking features, and enhanced fatty acid profile. PMID:25478592

  4. Improvement of fatty acid profile and studio of rheological and technological characteristics in breads supplemented with flaxseed, soybean, and wheat bran flours.

    PubMed

    Osuna, Mariana B; Judis, María A; Romero, Ana M; Avallone, Carmen M; Bertola, Nora C

    2014-01-01

    Functional breads constitute an interesting alternative as vehicle of new essential fatty acids sources. The aim of this study was to improve the fatty acids (FA) profile of bakery products, producing breads with low saturated fatty acid (SFA) content and with high polyunsaturated fatty acid (PUFA) content, through partial substitution of wheat flour by other ingredients (soy flour, flax flour, and wheat bran) and to analyze the effect of this change on the technological, rheological, and sensorial characteristics of breads. Flaxseed flour (FF), soybeans flour (SF), or wheat bran (WB) was used to replace 50, 100, and 150 g kg(-1) of wheat flour (WF) in breads. FF or SF produced a decrease in monounsaturated and SFA and an increase of PUFA in these breads. Furthermore, breads replaced with FF presented considerable increase in the content of n3 FA, while, SF or WB contributed to rise of linoleic and oleic FA, respectively. The substitution percentage increase of FF, SF, or WB to formulation produced changes in the colour, rheological, textural, and technological characteristics of breads. This replacement resulted in improved lipid profile, being breads with 50 g kg(-1) SF, the better acceptance, baking features, and enhanced fatty acid profile.

  5. Synthesis of 2-methoxy benzoquinone and 2,6-dimethoxybenzoquinone by selected lactic acid bacteria during sourdough fermentation of wheat germ

    PubMed Central

    2013-01-01

    Background In the last decade, several studies described the promising cytotoxic activity of fermented wheat germ towards cancer cell lines and during in vivo clinical trials. Recent data suggested that the antiproliferative, antimetastatic and immunological effects of this preparation are mainly attributed to quinones. This study aimed at exploiting the potential of sourdough lactic acid bacteria fermentation to release 2-methoxy benzoquinone, and 2,6-dimethoxybenzoquinone, which are naturally present in wheat germ as glycosylated and non-physiologically active form. Results Preliminarily, forty strains of lactic acid bacteria, previously isolated from wheat germ, were in vitro screened based on β-glucosidase activity. Lactobacillus plantarum LB1 and Lactobacillus rossiae LB5 were selected based on the highest enzyme activity and on technology features. These strains were used in combination to ferment wheat germ. Raw wheat germ, without bacterial inoculum, was subjected to the same incubation and used as the control. The sourdough fermented wheat germ was characterized based on microbiological, physico-chemical and biochemical features. During incubation, the release of the non-glycosylated and physiologically active 2-methoxy benzoquinone, and 2,6-dimethoxybenzoquinone was almost completed during 24 h. Compared to the control, the concentration of the above bioactive compounds increased almost 4 and 6-folds. Both raw wheat germ (control) and sourdough fermented wheat germ were ex vivo assayed for the anti-proliferative activity towards various cell lines of germ cell tumor, colon carcinoma and ovarian carcinoma. While no effect was found for the raw wheat germ, the sourdough fermented preparation markedly and variously affected the human tumor cell lines. The values of IC50 ranged from 0.105 ± 0.005 to 0.556 ± 0.071 mg/ml, with a median value of IC50 of 0.302 mg/ml. Conclusions These results are comparable to those found for other well

  6. High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the mountaintop aerosols over the North China Plain during wheat burning season

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Tachibana, E.; Okuzawa, K.; Aggarwal, S. G.; Kanaya, Y.; Wang, Z. F.

    2013-08-01

    Aerosol (TSP) samples were collected at the summit of Mount Tai (elevation: 1534 m a.s.l., 36.25° N, 117.10° E) located in the North China Plain using a high-volume air sampler and pre-combusted quartz filters. Sampling was conducted on day/night or 3 h basis in the period from 29 May to 28 June 2006 during the field burning of wheat straw residue and the post-burning season. The filter samples were analyzed for low-molecular-weight dicarboxylic acids, ketoacids and α-dicarbonyls using capillary gas chromatography (GC) and GC-MS employing water extraction and butyl ester derivatization. Molecular distributions of dicarboxylic acids (C2-C11, 220-6070 ng m-3) were characterized by a predominance of oxalic (C2) acid (105-3920 ng m-3) followed by succinic (C4) or malonic (C3) acid. Unsaturated aliphatic diacids, including maleic (M), isomaleic (iM) and fumaric (F) acids, were also detected together with aromatic diacids (phthalic, isophthalic and terephthalic acids). ω-oxocarboxylic acids (C2-C9, 24-610 ng m-3) were detected as the second most abundant compound class with the predominance of glyoxylic acid (11-360 ng m-3), followed by α-ketoacid (pyruvic acid, 3-140 ng m-3) and α-dicarbonyls (glyoxal, 1-230 ng m-3 and methylglyoxal, 2-120 ng m-3). We found that these levels (>6000 ng m-3 for diacids) are several times higher than those reported in Chinese megacities at ground levels. The concentrations of diacids increased from late May to early June, showing a maximum on 7 June, and then significantly decreased during the period 8-11 June, when the wind direction shifted from southerly to northerly. Similar temporal trends were found for ketocarboxylic acids and α-dicarbonyls as well as total carbon (TC) and water-soluble organic carbon (WSOC). The temporal variations of water-soluble organics were interpreted by the direct emission from the field burning of agricultural wastes (wheat straw) in the North China Plain and the subsequent photochemical oxidation of

  7. [Adsorption of acid orange II from aqueous solution onto modified peat-resin particles].

    PubMed

    Sun, Qing-Ye; Yang, Lin-Zhang

    2007-06-01

    The adsorption of acid orange II onto modified peat-resin particles was examined in aqueous solution in a batch system. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. The pseudo-first-order, pseudo-second-order kinetic and the intraparticle diffusion models were used to describe the kinetic data. The results showed that both Langmuir and Freundlich adsorption models could be used to describe the adsorption of acid orange II onto modified peat-resin particles. The maximum adsorption capacity was 71.43 mg x g(-1). The data analysis indicated that the intraparticle diffusion model could fit the results of kinetic experiment well. The adsorption rate of acid orange II onto modified peat-resin particles is affected by the initial dye concentrations, sizes and doses of modified peat-resin particles and agitation rates. The surface of modified peat-resin particle is the major adsorption area.

  8. Generation of transgenic wheat (Triticum aestivum L.) accumulating heterologous endo-xylanase or ferulic acid esterase in the endosperm.

    PubMed

    Harholt, Jesper; Bach, Inga C; Lind-Bouquin, Solveig; Nunan, Kylie J; Madrid, Susan M; Brinch-Pedersen, Henrik; Holm, Preben B; Scheller, Henrik V

    2010-04-01

    Endo-xylanase (from Bacillus subtilis) or ferulic acid esterase (from Aspergillus niger) were expressed in wheat under the control of the endosperm-specific 1DX5 glutenin promoter. Constructs both with and without the endoplasmic reticulum retention signal (Lys-Asp-Glu-Leu) KDEL were used. Transgenic plants were recovered in all four cases but no qualitative differences could be observed whether KDEL was added or not. Endo-xylanase activity in transgenic grains was increased between two and threefold relative to wild type. The grains were shrivelled and had a 25%-33% decrease in mass. Extensive analysis of the cell walls showed a 10%-15% increase in arabinose to xylose ratio, a 50% increase in the proportion of water-extractable arabinoxylan, and a shift in the MW of the water-extractable arabinoxylan from being mainly larger than 85 kD to being between 2 and 85 kD. Ferulic acid esterase-expressing grains were also shrivelled, and the seed weight was decreased by 20%-50%. No ferulic acid esterase activity could be detected in wild-type grains whereas ferulic acid esterase activity was detected in transgenic lines. The grain cell walls had 15%-40% increase in water-unextractable arabinoxylan and a decrease in monomeric ferulic acid between 13% and 34%. In all the plants, the observed changes are consistent with a plant response that serves to minimize the effect of the heterologously expressed enzymes by increasing arabinoxylan biosynthesis and cross-linking.

  9. Generation of transgenic wheat (Triticum aestivum L.) accumulating heterologous endo-xylanase or ferulic acid esterase in the endosperm

    SciTech Connect

    Harholt, Jesper; Bach, Inga C; Lind-Bouquin, Solveig; Nunan, Kylie J.; Madrid, Susan M.; Brinch-Pedersen, Henrik; Holm, Preben B.; Scheller, Henrik V.

    2009-12-08

    Endo-xylanase (from Bacillus subtilis) or ferulic acid esterase (from Aspergillus niger) were expressed in wheat under the control of the endosperm specific 1DX5 glutenin promoter. Constructs both with and without the endoplasmic reticulum retention signal KDEL were used. Transgenic plants were recovered in all four cases but no qualitative differences could be observed whether KDEL was added or not. Endo-xylanase activity in transgenic grains was increased between two and three fold relative to wild type. The grains were shriveled and had a 25-33% decrease in mass. Extensive analysis of the cell walls showed a 10-15% increase in arabinose to xylose ratio, a 50% increase in the proportion of water extractable arabinoxylan, and a shift in the MW of the water extractable arabinoxylan from being mainly larger than 85 kD to being between 2 kD and 85 kD. Ferulic acid esterase expressing grains were also shriveled and the seed weight was decreased by 20-50%. No ferulic acid esterase activity could be detected in wild type grains whereas ferulic acid esterase activity was detected in transgenic lines. The grain cell walls had 15-40% increase in water unextractable arabinoxylan and a decrease in monomeric ferulic acid between 13 and 34%. In all the plants the observed changes are consistent with a plant response that serves to minimize the effect of the heterologously expressed enzymes by increasing arabinoxylan biosynthesis and cross-linking.

  10. Surfactant-enhanced spectrofluorimetric determination of total aflatoxins from wheat samples after magnetic solid-phase extraction using modified Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Manafi, Mohammad Hanif; Allahyari, Mehdi; Pourghazi, Kamyar; Amoli-Diva, Mitra; Taherimaslak, Zohreh

    2015-07-01

    The extraction and preconcentration of total aflatoxins (including aflatoxin B1, B2, G1, and G2) using magnetic nanoparticles based solid phase extraction (MSPE) followed by surfactant-enhanced spectrofluorimetric detection was proposed. Ethylene glycol bis-mercaptoacetate modified silica coated Fe3O4 nanoparticles as an efficient antibody-free adsorbent was successfully applied to extract aflatoxins from wheat samples. High surface area and strong magnetization properties of magnetic nanoparticles were utilized to achieve high enrichment factor (97), and satisfactory recoveries (92-105%) using only 100 mg of the adsorbent. Furthermore, the fast separation time (less than 10 min) avoids many time-consuming cartridge loading or column-passing procedures accompany with the conventional SPE. In determination step, signal enhancement was performed by formation of Triton X-100 micelles around the analytes in 15% (v/v) acetonitrile-water which dramatically increase the sensitivity of the method. Main factors affecting the extraction efficiency and signal enhancement of the analytes including pH of sample solution, desorption conditions, extraction time, sample volume, adsorbent amount, surfactant concentration and volume and time of micelle formation were evaluated and optimized. Under the optimum conditions, wide linear range of 0.1-50 ng mL-1 with low detection limit of 0.03 ng mL-1 were obtained. The developed method was successfully applied to the extraction and preconcentration of aflatoxins in three commercially available wheat samples and the results were compared with the official AOAC method.

  11. Molecular composition and size distribution of sugars, sugar-alcohols and carboxylic acids in airborne particles during a severe urban haze event caused by wheat straw burning

    NASA Astrophysics Data System (ADS)

    Wang, Gehui; Chen, Chunlei; Li, Jianjun; Zhou, Bianhong; Xie, Mingjie; Hu, Shuyuan; Kawamura, Kimitaka; Chen, Yan

    2011-05-01

    Molecular compositions and size distributions of water-soluble organic compounds (WSOC, i.e., sugars, sugar-alcohols and carboxylic acids) in particles from urban air of Nanjing, China during a severe haze event caused by field burning of wheat straw were characterized and compared with those in the summer and autumn non-haze periods. During the haze event levoglucosan (4030 ng m -3) was the most abundant compound among the measured WSOC, followed by succinic acid, malic acid, glycerol, arabitol and glucose, being different from those in the non-haze samples, in which sucrose or azelaic acid showed a second highest concentration, although levoglucosan was the highest. The measured WSOC in the haze event were 2-20 times more than those in the non-hazy days. Size distribution results showed that there was no significant change in the compound peaks in coarse mode (>2.1 μm) with respect to the haze and non-haze samples, but a large difference in the fine fraction (<2.1 μm) was found with a sharp increase during the hazy days mostly due to the increased emissions of wheat straw burning. Molecular compositions of organic compounds in the fresh smoke particles from wheat straw burning demonstrate that sharply increased concentrations of glycerol and succinic and malic acids in the fine particles during the haze event were mainly derived from the field burning of wheat straw, although the sources of glucose and related sugar-alcohols whose concentrations significantly increased in the fine haze samples are unclear. Compared to that in the fresh smoke particles of wheat straw burning an increase in relative abundance of succinic acid to levoglucosan during the haze event suggests a significant production of secondary organic aerosols during transport of the smoke plumes.

  12. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants.

  13. Exploitation of Albanian wheat cultivars: characterization of the flours and lactic acid bacteria microbiota, and selection of starters for sourdough fermentation.

    PubMed

    Nionelli, Luana; Curri, Nertila; Curiel, José Antonio; Di Cagno, Raffaella; Pontonio, Erica; Cavoski, Ivana; Gobbetti, Marco; Rizzello, Carlo Giuseppe

    2014-12-01

    Six Albanian soft and durum wheat cultivars were characterized based on chemical and technological features, showing different attitudes for bread making. Gliadin and glutenin fractions were selectively extracted from flours, and subjected to two-dimensional electrophoresis. Linja 7 and LVS flours showed the best characteristics, and abundance of high molecular weight (HMW)-glutenins. Type I sourdoughs were prepared through back slopping procedure, and the lactic acid bacteria were typed and identified. Lactobacillus plantarum and Leuconostoc mesenteroides were the predominant species. Thirty-eight representative isolates were singly used for sourdough fermentation of soft and durum wheat Albanian flours and their selection was carried out based on growth and acidification, quotient of fermentation, and proteolytic activity. Two different pools of lactic acid bacteria were designed to ferment soft or durum wheat flours. Sourdough fermentation with mixed and selected starters positively affected the quotient of fermentation, concentration of free amino acids, profile of phenolic acids, and antioxidant and phytase activities. This study provided the basis to exploit the potential of wheat Albanian flours based on an integrated approach, which considered the characterization of the flours and the processing conditions.

  14. Complete amino acid sequence and structure characterization of the taste-modifying protein, miraculin.

    PubMed

    Theerasilp, S; Hitotsuya, H; Nakajo, S; Nakaya, K; Nakamura, Y; Kurihara, Y

    1989-04-25

    The taste-modifying protein, miraculin, has the unusual property of modifying sour taste into sweet taste. The complete amino acid sequence of miraculin purified from miracle fruits by a newly developed method (Theerasilp, S., and Kurihara, Y. (1988) J. Biol. Chem. 263, 11536-11539) was determined by an automatic Edman degradation method. Miraculin was a single polypeptide with 191 amino acid residues. The calculated molecular weight based on the amino acid sequence and the carbohydrate content (13.9%) was 24,600. Asn-42 and Asn-186 were linked N-glycosidically to carbohydrate chains. High homology was found between the amino acid sequences of miraculin and soybean trypsin inhibitor.

  15. The biodiversity of lactic acid bacteria in Greek traditional wheat sourdoughs is reflected in both composition and metabolite formation.

    PubMed

    De Vuyst, Luc; Schrijvers, Vincent; Paramithiotis, Spiros; Hoste, Bart; Vancanneyt, Marc; Swings, Jean; Kalantzopoulos, George; Tsakalidou, Effie; Messens, Winy

    2002-12-01

    Lactic acid bacteria (LAB) were isolated from Greek traditional wheat sourdoughs manufactured without the addition of baker's yeast. Application of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total cell protein, randomly amplified polymorphic DNA-PCR, DNA-DNA hybridization, and 16S ribosomal DNA sequence analysis, in combination with physiological traits such as fructose fermentation and mannitol production, allowed us to classify the isolated bacteria into the species Lactobacillus sanfranciscensis, Lactobacillus brevis, Lactobacillus paralimentarius, and Weissella cibaria. This consortium seems to be unique for the Greek traditional wheat sourdoughs studied. Strains of the species W. cibaria have not been isolated from sourdoughs previously. No Lactobacillus pontis or Lactobacillus panis strains were found. An L. brevis-like isolate (ACA-DC 3411 t1) could not be identified properly and might be a new sourdough LAB species. In addition, fermentation capabilities associated with the LAB detected have been studied. During laboratory fermentations, all heterofermentative sourdough LAB strains produced lactic acid, acetic acid, and ethanol. Mannitol was produced from fructose that served as an additional electron acceptor. In addition to glucose, almost all of the LAB isolates fermented maltose, while fructose as the sole carbohydrate source was fermented by all sourdough LAB tested except L. sanfranciscensis. Two of the L. paralimentarius isolates tested did not ferment maltose; all strains were homofermentative. In the presence of both maltose and fructose in the medium, induction of hexokinase activity occurred in all sourdough LAB species mentioned above, explaining why no glucose accumulation was found extracellularly. No maltose phosphorylase activity was found either. These data produced a variable fermentation coefficient and a unique sourdough metabolite composition.

  16. The Biodiversity of Lactic Acid Bacteria in Greek Traditional Wheat Sourdoughs Is Reflected in Both Composition and Metabolite Formation

    PubMed Central

    De Vuyst, Luc; Schrijvers, Vincent; Paramithiotis, Spiros; Hoste, Bart; Vancanneyt, Marc; Swings, Jean; Kalantzopoulos, George; Tsakalidou, Effie; Messens, Winy

    2002-01-01

    Lactic acid bacteria (LAB) were isolated from Greek traditional wheat sourdoughs manufactured without the addition of baker's yeast. Application of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total cell protein, randomly amplified polymorphic DNA-PCR, DNA-DNA hybridization, and 16S ribosomal DNA sequence analysis, in combination with physiological traits such as fructose fermentation and mannitol production, allowed us to classify the isolated bacteria into the species Lactobacillus sanfranciscensis, Lactobacillus brevis, Lactobacillus paralimentarius, and Weissella cibaria. This consortium seems to be unique for the Greek traditional wheat sourdoughs studied. Strains of the species W. cibaria have not been isolated from sourdoughs previously. No Lactobacillus pontis or Lactobacillus panis strains were found. An L. brevis-like isolate (ACA-DC 3411 t1) could not be identified properly and might be a new sourdough LAB species. In addition, fermentation capabilities associated with the LAB detected have been studied. During laboratory fermentations, all heterofermentative sourdough LAB strains produced lactic acid, acetic acid, and ethanol. Mannitol was produced from fructose that served as an additional electron acceptor. In addition to glucose, almost all of the LAB isolates fermented maltose, while fructose as the sole carbohydrate source was fermented by all sourdough LAB tested except L. sanfranciscensis. Two of the L. paralimentarius isolates tested did not ferment maltose; all strains were homofermentative. In the presence of both maltose and fructose in the medium, induction of hexokinase activity occurred in all sourdough LAB species mentioned above, explaining why no glucose accumulation was found extracellularly. No maltose phosphorylase activity was found either. These data produced a variable fermentation coefficient and a unique sourdough metabolite composition. PMID:12450829

  17. Improving the fermentation quality of wheat straw silage stored at low temperature by psychrotrophic lactic acid bacteria.

    PubMed

    Zhang, Miao; Lv, Haoxin; Tan, Zhongfang; Li, Ya; Wang, Yanping; Pang, Huili; Li, Zongwei; Jiao, Zhen; Jin, Qingsheng

    2017-02-01

    This study aimed to explore the feasible approaches to develop a silage production technique in regions with low temperatures. An effective low-temperature silage technology system was constructed and two frigostable Lactobacillus (L.) strains isolated from alpine pastures were selected and proved to be available for wheat straw silage at 5°C. The strains QZ227 and QZ887 were both identified as L. plantarum according to the phenotype, 16S rRNA, and RecA gene analysis. QZ227, QZ887 and a commercial inoculant FG1 consisting of L. plantarum were effective for improving the fermentation quality of wheat straws silage at 5°C for 30 days as indicated by the higher content of lactic acid and for 60 days by lower pH values, while the control with sterile water instead conferred reduced benefits. Additionally, silages fermented at low temperature proved to be acceptable for feeding livestock after being placed in a simulated environmental temperature of 20°C for 14 days to detect its edibility during the early spring when the temperature begins to rise. Both QZ227 and QZ887 showed potential applications of silage making in frigid areas and were effective inoculants in a low-temperature silage technology system.

  18. Optimizing Phosphoric Acid plus Hydrogen Peroxide (PHP) Pretreatment on Wheat Straw by Response Surface Method for Enzymatic Saccharification.

    PubMed

    Qiu, Jingwen; Wang, Qing; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Song, Chun

    2017-03-01

    Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP), in which temperature, time, and H3PO4 proportion for pretreatment were investigated by using response surface method. Results indicated that hemicellulose and lignin removal positively responded to the increase of pretreatment temperature, H3PO4 proportion, and time. H3PO4 proportion was the most important variable to control cellulose recovery, followed by pretreatment temperature and time. Moreover, these three variables all negatively related to cellulose recovery. Increasing H3PO4 proportion can improve enzymatic hydrolysis; however, reduction on cellulose recovery results in decrease of glucose yield. Extra high temperature or long time for pretreatment was not beneficial to enzymatic hydrolysis and glucose yield. Based on the criterion for minimizing H3PO4 usage and maximizing glucose yield, the optimized pretreatment conditions was 40 °C, 2.0 h, and H3PO4 proportion of 70.2 % (H2O2 proportion of 5.2 %), by which glucose yielded 299 mg/g wheat straw (946.2 mg/g cellulose) after 72-h enzymatic hydrolysis.

  19. Effect of lactic acid fermentation of lupine wholemeal on acrylamide content and quality characteristics of wheat-lupine bread.

    PubMed

    Bartkiene, Elena; Jakobsone, Ida; Juodeikiene, Grazina; Vidmantiene, Daiva; Pugajeva, Iveta; Bartkevics, Vadims

    2013-11-01

    The effect of supplementing wheat flour at a level of 15% with lupine (Lupinus angustifolius L.) wholemeal fermented by different lactic acid bacteria on acrylamide content in bread crumb as well as on bread texture and sensory characteristics was analysed. The use of fermented lupine resulted in a lower specific volume and crumb porosity of bread on an average by 14.1% and 10.5%, respectively, while untreated lupine lowered the latter parameters at a higher level (30.8% and 20.7%, respectively). The addition of lupine resulted in a higher by 43.3% acrylamide content compared to wheat bread (19.4 µg/kg dry weight (d.w.)). Results showed that acrylamide was significantly reduced using proteolytic Lactobacillus sakei and Pediococcus pentosaceus 10 strains for lupine fermentation. Although the bread supplemented with lupine spontaneous sourdough had the lowest level of acrylamide (15.6 µg/kg d.w.), it had the malodorous flavour and was unacceptable to the consumers. The lactofermentation could increase the potential use of lupine as a food ingredient while reducing acrylamide formation and enriching bread with high quality proteins.

  20. Effects of Abscisic Acid and Ethylene on the Gibberellic Acid-Induced Synthesis of α-Amylase by Isolated Wheat Aleurone Layers 1

    PubMed Central

    Varty, Keith; Arreguín, Barbarín L.; Gómez, Miguel T.; López, Pablo Jaime T.; Gómez, Miguel Angel L.

    1983-01-01

    Gibberellic acid-induced α-amylase synthesis in wheat aleurone layers (Triticum aestivum L. var Potam S-70) escaped from transcriptional control 30 h after addition of the hormone, as evidenced by the tissue's loss of susceptibility to cordycepin. Abscisic acid inhibited the accumulation of α-amylase activity when added to the tissue during this cordycepin-insensitive phase of enzyme induction. α-Amylase synthesis was not restored by the addition of cordycepin, indicating that the response to abscisic acid was not dependent upon the continuous synthesis of a short lived RNA. When ethylene was added simultaneously or some time after abscisic acid, the accumulation of α-amylase activity was sustained or quickly restored. The loss of susceptibility to cordycepin was completely prevented when aleurone layers were incubated with a combination of gibberellic and abscisic acids from the start of the induction period. This effect of abscisic acid was not reversed by ethylene. On the basis of these observations, it is suggested that abscisic acid inhibits both the transcription and translation of α-amylase mRNA, and that only the latter site of action is susceptible to reversal by ethylene. The rate of incorporation of [methyl-14C]choline into phospholipids was also inhibited by abscisic acid. Ethylene reversed this effect. The effects of abscisic acid and ethylene on phospholipid synthesis were not dependent upon the presence of gibberellic acid. No direct relationship was found between the control of α-amylase synthesis and membrane formation by abscisic acid and ethylene. PMID:16663284

  1. Regulation of acetic acid production by homo- and heterofermentative lactobacilli in whole-wheat sour-doughs.

    PubMed

    Martínez-Anaya, M A; Llin, M L; Pilar Macías, M; Collar, C

    1994-09-01

    The efficiency of sour-dough as a possible preservative agent of microbial spoilage of bread depends on its acetic acid content. As a secondary metabolite of sugar fermentation by lactic acid bacteria, acetic acid may be promoted in the presence of O2 or H+ acceptors. This paper studies the influence of O2 and high fructose content products (pure sugar, invert sugar, fructose syrup) addition on acetic acid production by hetero- (Lactobacillus brevis 25a, B-21, L-62; L. sanfrancisco L-99) and homofermentative (L. plantarum B-39) lactobacilli in whole-wheat sour-doughs [280 and 250 dough yield (DY)]. The pH and total titratable acidity (TTA) of sour-doughs after 44 h fermentation varied with DY and strain. As expected, the addition of O2 promoted greater increases in TTA with heterofermentative lactobacilli (15-42%) than with L. plantarum (15%). Fructose addition was only effective for heterofermentative strains, but the overall effects were smaller than those observed for oxygenation. The ability of lactobacilli to produce acetic acid in sour-doughs without treatment varied from 0.16 g/100 g flour at 44 h (B-39, 280, 350 DY) to 0.47-0.65% (L-62, 280, 350 DY). The production of acetic acid was positively promoted by all treatments. Oxygenation was again the most effective way of inducing acetic acid production; increases ranged from 54% (B-21) to 269% (L-99, 350 DY). The addition of H+ acceptors had variable effects.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid.

    PubMed

    Du, Jiao; Yue, Ruirui; Ren, Fangfang; Yao, Zhangquan; Jiang, Fengxing; Yang, Ping; Du, Yukou

    2014-03-15

    A novel and sensitive carbon fiber electrode (CFE) modified by graphene flowers was prepared and used to simultaneously determine ascorbic acid (AA), dopamine (DA) and uric acid (UA). SEM images showed that beautiful and layer-petal graphene flowers homogeneously bloomed on the surface of CFE. Moreover, sharp and obvious oxidation peaks were found at the obtained electrode when compared with CFE and glassy carbon electrode (GCE) for the oxidation of AA, DA and UA. Also, the linear calibration plots for AA, DA and UA were observed, respectively, in the ranges of 45.4-1489.23 μM, 0.7-45.21 μM and 3.78-183.87 μM in the individual detection of each component. By simultaneously changing the concentrations of AA, DA and UA, their oxidation peaks appeared at -0.05 V, 0.16 V and 2.6 V, and the good linear responses ranges were 73.52-2305.53 μM, 1.36-125.69 μM and 3.98-371.49 μM, respectively. In addition, the obtained electrode showed satisfactory results when applied to the determination of AA, DA and UA in urine and serum samples.

  3. Wheat germ oil enrichment in broiler feed with α-lipoic acid to enhance the antioxidant potential and lipid stability of meat

    PubMed Central

    2013-01-01

    Background Lipid peroxidation is the cause of declining the meat quality. Natural antioxidants plays a vital role in enhancing the stability and quality of meat. The supplementation of natural antioxidants in feed decreases lipid peroxidation and improves the stability of meat. Methods The present research was conducted to determine the effect of α-lipoic acid, α-tocopherol and wheat germ oil on the status of antioxidants, quality and lipid stability of broiler meat. One day old male broilers were fed with different feeds containing antioxidants i.e. natural (wheat germ oil) and synthetic α-tocopherol and α-lipoic acid during the two experimental years. Results The feed treatments have significant variation on the body weight and feed conversion ratio (FCR) while having no influence on the feed intake. The broilers fed on wheat germ oil (natural α-tocopherol) gained maximum body weight (2451.97 g & 2466.07 g) in the experimental years 2010–11 & 2011–12, respectively. The higher total phenolic contents were found in the broilers fed on wheat germ oil plus α-lipoic acid in breast (162.73±4.8 mg Gallic acid equivalent/100 g & 162.18±4.5 mg Gallic acid equivalent/100 g) and leg (149.67±3.3 mg Gallic acid equivalent/100 g & 146.07±3.2 mg Gallic acid equivalent/100 g) meat during both experimental years. Similar trend was observed for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power assay (FRAP). The production of malondialdehydes in the breast and leg meat increased with progressive increase in the time period. The deposition of α-tocopherol (AT) and α-lipoic acid (ALA) contents were found to be higher in the broilers fed on wheat germ oil plus α-lipoic acid in breast and leg meat during the both experimental years. Conclusion In conclusion, the combination of wheat germ oil and α-lipoic acid has more beneficial for stability and the quality of the broiler meat and more work should be needed in future for the bio

  4. The role of calcium in improving photosynthesis and related physiological and biochemical attributes of spring wheat subjected to simulated acid rain.

    PubMed

    Dolatabadian, Aria; Sanavy, Seyed Ali Mohammad Modarres; Gholamhoseini, Majid; Joghan, Aydin Khodaei; Majdi, Mohammad; Kashkooli, Arman Beyraghdar

    2013-04-01

    The response of photosynthesis parameters, catalase, superoxide dismutase and peroxidase activity, malondialdehyde, proline, chlorophyll, yield and yield components to foliar application of calcium and simulated acid rain in wheat were investigated. Foliar treatment of calcium led to significant increases in the photosynthesis rate, transpiration rate, stomatal conductance, proline, chlorophyll, yield and yield components in plants subjected to acid rain. Antioxidant enzyme activity and lipid peroxidation in the wheat leaves decreased because of calcium foliar application. Calcium hindered degradation of the rubisco subunits under acid rain treatment compared with water-treated plants. Results suggest that acid rain induces the production of free radicals resulting in lipid peroxidation of the cell membrane so that significant increase in antioxidant enzyme activity was observed. In addition, photosynthetic parameters i.e. photosynthesis rate, transpiration rate and stomatal conductance were drastically suppressed by acid rain. The cellular damage caused by free radicals might be reduced or prevented by a protective metabolism including antioxidative enzymes and calcium. We report that foliar application of calcium before acid rain may ameliorate the adverse effects of acid rain in wheat plants.

  5. A modified extraction protocol enables detection and quantification of celiac disease-related gluten proteins from wheat.

    PubMed

    van den Broeck, Hetty C; America, Antoine H P; Smulders, Marinus J M; Bosch, Dirk; Hamer, Rob J; Gilissen, Ludovicus J W J; van der Meer, Ingrid M

    2009-04-01

    The detection, analysis, and quantification of individual celiac disease (CD) immune responsive gluten proteins in wheat and related cereals (barley, rye) require an adequate and reliable extraction protocol. Because different types of gluten proteins behave differently in terms of solubility, currently different extraction protocols exist. The performance of various documented gluten extraction protocols is evaluated for specificity and completeness by gel electrophoresis (SDS-PAGE), immunoblotting and RIDASCREEN Gliadin competitive ELISA. Based on these results, an optimized, two-step extraction protocol has been developed.

  6. Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide.

    PubMed

    Reza, M Toufiq; Rottler, Erwin; Herklotz, Laureen; Wirth, Benjamin

    2015-04-01

    In this study, influence of feedwater pH (2-12) was studied for hydrothermal carbonization (HTC) of wheat straw at 200 and 260°C. Acetic acid and KOH were used as acidic and basic medium, respectively. Hydrochars were characterized by elemental and fiber analyses, SEM, surface area, pore volume and size, and ATR-FTIR, while HTC process liquids were analyzed by HPLC and GC. Both hydrochar and HTC process liquid qualities vary with feedwater pH. At acidic pH, cellulose and elemental carbon increase in hydrochar, while hemicellulose and pseudo-lignin decrease. Hydrochars produced at pH 2 feedwater has 2.7 times larger surface area than that produced at pH 12. It also has the largest pore volume (1.1 × 10(-1) ml g(-1)) and pore size (20.2 nm). Organic acids were increasing, while sugars were decreasing in case of basic feedwater, however, phenolic compounds were present only at 260°C and their concentrations were increasing in basic feedwater.

  7. A genome-wide analysis of the auxin/indole-3-acetic acid gene family in hexaploid bread wheat (Triticum aestivum L.).

    PubMed

    Qiao, Linyi; Zhang, Xiaojun; Han, Xiao; Zhang, Lei; Li, Xin; Zhan, Haixian; Ma, Jian; Luo, Peigao; Zhang, Wenping; Cui, Lei; Li, Xiaoyan; Chang, Zhijian

    2015-01-01

    The Auxin/indole-3-acetic acid (Aux/IAA) gene family plays key roles in the primary auxin-response process and controls a number of important traits in plants. However, the characteristics of the Aux/IAA gene family in hexaploid bread wheat (Triticum aestivum L.) have long been unknown. In this study, a comprehensive identification of the Aux/IAA gene family was performed using the latest draft genome sequence of the bread wheat "Chinese Spring." Thirty-four Aux/IAA genes were identified, 30 of which have duplicated genes on the A, B or D sub-genome, with a total of 84 Aux/IAA sequences. These predicted Aux/IAA genes were non-randomly distributed in all the wheat chromosomes except for chromosome 2D. The information of wheat Aux/IAA proteins is also described. Based on an analysis of phylogeny, expression and adaptive evolution, we prove that the Aux/IAA family in wheat has been replicated twice in the two allopolyploidization events of bread wheat, when the tandem duplication also occurred. The duplicated genes have undergone an evolutionary process of purifying selection, resulting in the high conservation of copy genes among sub-genomes and functional redundancy among several members of the TaIAA family. However, functional divergence probably existed in most TaIAA members due to the diversity of the functional domain and expression pattern. Our research provides useful information for further research into the function of Aux/IAA genes in wheat.

  8. [Adsorption of aflatoxin on montmorillonite modified by low-molecular-weight humic acids].

    PubMed

    Yao, Jia-Jia; Kang, Fu-Xing; Gao, Yan-Zheng

    2012-03-01

    The adsorption of a typical biogenic toxin aflatoxin B1 on montmorillonite modified by low-molecular-weight humic acids (M(r) < 3 500) was investigated. The montmorillonite rapidly adsorbed the aflatoxin B1 until amounting to the maximal capacity, and then the adsorbed aflatoxin B1 slowly released into solution and reached the sorption equilibrium state after 12 h. The sorption isotherm of aflatoxin B1 by montmorillonite could be well described by Langmiur model, while the sorption isotherm by humic acid-modified montmorillonite was well fitted by using the Freundlich model. The modification of the montmorillonite with humic acids obviously enhanced its adsorption capacity for aflatoxin B1, and the amounts of aflatoxin adsorbed by modified montmorillonite were obviously higher than those by montmorillonite. The sorption enhancement by humic acid modification was attributed to (1) the enlarged adsorption sites which owed to the surface collapse of crystal layers induced by organic acids, and (2) the binding of aflatoxin with the humic acid sorbed on mineral surface. In addition, the adsorption amounts of aflatoxin by montmorillonite and modified montmorillonite increased with the increase of pH values in solution, and more significant enhancement was observed for the latter than the former, which attributed to the release of humic acids from the modified montmorillonite with the high pH values in solution. This indicates that increasing the pH values resulted in the enhanced hydrophilic property and the release of the organic acids presented in modified montmorillonite, and more sorption sites were available for aflatoxin on the modified montmorillonite. Results of this work would strengthen our understanding of the behavior and fate of biological contaminants in the environment.

  9. Changes in abundance of an abscisic acid-responsive, early cysteine-labeled metallothionein transcript during pollen embryogenesis in bread wheat (Triticum aestivum).

    PubMed

    Reynolds, T L; Crawford, R L

    1996-12-01

    A clone for an embryoid-abundant, early cysteine-labeled metallothionein (EcMt) gene has been isolated from a wheat pollen embryoid cDNA library. The transcript of this gene was only expressed in embryogenic microspores, pollen embryoids, and developing zygotic embryos of wheat. Accumulation of the EcMt mRNA showed a direct and positive correlation with an increase of the plant hormone, abscisic acid (ABA) in developing pollen embryoids. Treating cultures with an inhibitor of ABA biosynthesis, fluridone, suppressed not only ABA accumulation but also the appearance of the EcMt gene transcript and the ability of microspores to form embryoids. These results suggest that the EcMt gene may act as a molecular marker for pollen embryogenesis because ABA biosynthesis is accompanied by the increased expression of the EcMt transcript that coincides with the differentiation of pollen embryoids in wheat anther cultures.

  10. Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat.

    PubMed

    Qi, Peng-Fei; Johnston, Anne; Balcerzak, Margaret; Rocheleau, Hélène; Harris, Linda J; Long, Xiang-Yu; Wei, Yu-Ming; Zheng, You-Liang; Ouellet, Thérèse

    2012-03-01

    Salicylic acid (SA) is one of the key signal molecules in regulating plant resistance to diverse pathogens. In Arabidopsis thaliana, it is predominantly associated with resistance against biotrophic and hemibiotrophic pathogens, and triggering systemic acquired resistance. In contrast, the effect of SA on the defence efficiency of wheat against fusarium head blight (FHB) and its causal agent, Fusarium graminearum, is still poorly understood. Here we show that the F. graminearum mycelial growth and conidia germination were significantly inhibited, and eventually halted in the presence of increasing concentration of SA in both liquid and solid media. Addition of SA also significantly reduced the production of the mycotoxin deoxynivalenol (DON). However the inhibitory effect of SA required acidic growth conditions to be observed while basic conditions allowed F. graminearum to use SA as a carbon source. High performance liquid chromatography (HPLC) analysis confirmed the capacity of F. graminearum to metabolize SA. To better understand the effect of SA on F. graminearum mycelial growth, we have compared the expression profiles of SA-treated and untreated F. graminearum liquid cultures after 8 and 24 h of treatment, using an F. graminearum custom-commercial microarray. The microarray analysis suggested that F. graminearum can metabolize SA through either the catechol or gentisate pathways that are present in some fungal species. Inoculation of F. graminearum conidia in a SA-containing solution has led to reduced FHB symptoms in the very susceptible Triticum aestivum cv. Roblin. In contrast, no inhibition was observed when SA and conidia were inoculated sequentially. The expression patterns for the wheat PR1, NPR1, Pdf1.2, and PR4 genes, a group of indicator genes for the defence response, suggested that SA-induced resistance contributed little to the reduction of symptoms in our assay conditions. Our results demonstrate that, although F. graminearum has the capacity to

  11. Foliar Abscisic Acid-To-Ethylene Accumulation and Response Regulate Shoot Growth Sensitivity to Mild Drought in Wheat

    PubMed Central

    Valluru, Ravi; Davies, William J.; Reynolds, Matthew P.; Dodd, Ian C.

    2016-01-01

    Although, plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA) and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT) group maintained or increased shoot dry weight (SDW) while the drought-susceptible (DS) group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous ABA and ethylene concentrations under mild drought compared to control. The DT and DS groups exhibited different SDW response trends, whereby the DS group decreased while the DT group increased SDW, to increased concentrations of ABA and ethylene under mild drought, although both groups decreased ABA/ethylene ratio under mild drought albeit at different levels. We concluded that SDW of the DT and DS groups might be distinctly regulated by specific ABA:ethylene ratio. Further, a foliar-spray of low concentrations (0.1 μM) of ABA increased shoot relative growth rate (RGR) in the DS group while ACC (1-aminocyclopropane-1-carboxylic acid, ethylene precursor) spray increased RGR in both groups compared to control. Furthermore, the DT group accumulated a significantly higher galactose while a significantly lower maltose in the shoot compared to the DS group. Taken all together, these results suggest an impact of ABA, ethylene, and ABA:ethylene ratio on SDW of wheat seedlings that may partly underlie a genotypic variability of different shoot growth sensitivities to drought among crop species under field conditions. We propose that phenotyping based on hormone accumulation, response and hormonal ratio would be a viable, rapid, and an early–stage selection tool aiding genotype selection for stress tolerance. PMID:27148292

  12. Using acid insoluble ash marker ratios (diet:digesta) to predict digestibility of wheat and barley metabolizable energy and nitrogen retention in broiler chicks.

    PubMed

    Scott, T A; Hall, J W

    1998-05-01

    Routine bioassay measurements of AME or N retention of broiler diets require measurements of gross energy (GE) or N and an acid insoluble ash marker in diet, excreta, or ileal digesta. These measurements of GE and N are time-consuming and expensive in comparison to measurements of added or natural occurring levels of acid insoluble ash. Data from bioassay measurements of AME and N retention of 138 wheat and 97 barley samples (with or without enzyme) were used to develop prediction equations relying on measurements of one that uses acid insoluble ash of diet, excreta or ileal digesta and GE and N of diet only; and a second equation using only acid insoluble ash of diet, excreta, or ileal digesta. The prediction equations demonstrate that part of or all of routine bomb calorimetry measurements for GE used to determine AME of wheat- or barley-based diets could be eliminated if a prediction error of 80 kcal/kg ME or less were acceptable. The prediction of N retention as compared to AME, based in part or totally on acid insoluble ash measurements, was less accurate; the prediction errors were equal to 2.3 and 6.5% for wheat- and barley-based diets, respectively. Ongoing research to improve the determination (speed, ease, and accuracy) of acid insoluble ash could provide a useful method to assess feeding value of ingredients and commercial poultry diets.

  13. Comparative study of electroless nickel film on different organic acids modified cuprammonium fabric (CF)

    NASA Astrophysics Data System (ADS)

    Zhao, Hang; Lu, Yinxiang

    2016-01-01

    Nickel films were grown on citric acid (CA), malic acid (MA) and oxalic acid (OA) modified cuprammonium fabric (CF) substrates via electroless nickel deposition. The nickel films were examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Their individual deposition rate and electromagnetic interference (EMI) shielding effectiveness (SE) were also investigated to compare the properties of electroless nickel films. SEM images illustrated that the nickel film on MA modified CF substrate was smooth and uniform, and the density of nickel nuclei was much higher. Compared with that of CA modified CF, the coverage of nickel nuclei on OA and MA modified CF substrate was very limited and the nickel particles size was too big. XRD analysis showed that the nickel films deposited on the different modified CF substrates had a structure with Ni (1 1 1) preferred orientation. All the nickel coatings via different acid modification were firmly adhered to the CF substrates, as demonstrated by an ultrasonic washing test. The result of tensile test indicated that the electroless nickel plating on CF has ability to strengthen the CF substrate while causes limited effect on tensile elongation. Moreover, the nickel film deposited on MA modified CF substrate showed more predominant in EMI SE than that deposited on CA or OA modified CF.

  14. 40 CFR 721.10529 - Cobalt iron manganese oxide, carboxylic acid-modified (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cobalt iron manganese oxide... Significant New Uses for Specific Chemical Substances § 721.10529 Cobalt iron manganese oxide, carboxylic acid... substance identified generically as cobalt iron manganese oxide, carboxylic acid-modified (PMN P-12-35)...

  15. 40 CFR 721.10529 - Cobalt iron manganese oxide, carboxylic acid-modified (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cobalt iron manganese oxide... Significant New Uses for Specific Chemical Substances § 721.10529 Cobalt iron manganese oxide, carboxylic acid... substance identified generically as cobalt iron manganese oxide, carboxylic acid-modified (PMN P-12-35)...

  16. Physicochemical and Mechanical Properties of Bambara Groundnut Starch Films Modified with Stearic Acid.

    PubMed

    Oyeyinka, Samson A; Singh, Suren; Amonsou, Eric O

    2017-01-01

    The physicochemical and mechanical properties of biofilm prepared from bambara starch modified with varying concentrations of stearic acid (0%, 2.5%, 3.5%, 5%, 7%, and 10%) were studied. By scanning electron microscopy, bambara starch films modified with stearic acid (≥3.5%) showed a progressively rough surface compared to those with 2.5% stearic acid and the control. Fourier transform infrared spectroscopy spectra revealed a peak shift of approximately 31 cm(-1) , suggesting the promotion of hydrogen bond formation between hydroxyl groups of starch and stearic acid. The addition of 2.5% stearic acid to bambara starch film reduced water vapor permeability by approximately 17%. Bambara starch films modified with higher concentration of stearic acid were more opaque and showed significantly high melting temperatures. However, mechanical properties of starch films were generally negatively affected by stearic acid. Bambara starch film may be modified with 2.5% stearic acid for improved water vapor permeability and thermal stability with minimal effect on tensile strength.

  17. Modified MCM-41 as a drug delivery system for acetylsalicylic acid

    NASA Astrophysics Data System (ADS)

    Vyskočilová, Eliška; Luštická, Ivana; Paterová, Iva; Machová, Libuše; Červený, Libor

    2014-12-01

    The modification of prepared MCM-41 by different groups (amino, chloro and oxo) was studied. Prepared materials were treated by acetylsalicylic acid and hybrid materials were characterized, compared from the point of view of immobilized amount of active substance. The highest amount of acetylsalicylic acid was detected using methyl-tert- butyl ether as a solvent and MCM-41 without modification after 1 h (0.35 g per 1 g of the support) or MCM modified by amino group after 5 h (0.37 g per 1 g of the support) as a support. Using amino modified MCM, the longer treatment by acetylsalicylic acid converged to the equilibrium and after 24 h the immobilized amount was 0.3 g per 1 g. A dissolution in vitro study was carried out, comparing the stability of formed interactions. The slowest dissolution was detected using non-modified MCM-41 and oxo modified material.

  18. Modified pseudomonas oleovorans phaC1 nucleic acids encoding bispecific polyhydroxyalkanoate polymerase

    DOEpatents

    Srienc, Friedrich; Jackson, John K.; Somers, David A.

    2000-01-01

    A genetically engineered Pseudomonas oleovorans phaC1 polyhydroxyalkanoate (PHA) polymerase having tailored substrate specificity is provided. The modified PHA polymerase is preferably a "bispecific" PHA polymerase capable of copolymerizing a short chain length monomer and a medium chain length monomer is provided. Methods for making the modified PHA polymerase and for making nucleic acids encoding the modified PHA polymerase are also disclosed, as are methods of producing PHA using the modified PHA polymerase. The invention further includes methods to assay for altered substrate specificity.

  19. Studies on the Simultaneous Formation of Aroma-Active and Toxicologically Relevant Vinyl Aromatics from Free Phenolic Acids during Wheat Beer Brewing.

    PubMed

    Langos, Daniel; Granvogl, Michael

    2016-03-23

    During the brewing process of wheat beer, the desired aroma-active vinyl aromatics 2-methoxy-4-vinylphenol and 4-vinylphenol as well as the undesired and toxicologically relevant styrene are formed from their respective precursors, free ferulic acid, p-coumaric acid, and cinnamic acid, deriving from the malts. Analysis of eight commercial wheat beers revealed high concentrations of 2-methoxy-4-vinylphenol and 4-vinylphenol always in parallel with high concentrations of styrene or low concentrations of the odorants in parallel with low styrene concentrations, suggesting a similar pathway. To better understand the formation of these vinyl aromatics, each process step of wheat beer brewing and the use of different strains of Saccharomyces cerevisiae were evaluated. During wort boiling, only a moderate decarboxylation of free phenolic acids and formation of desired and undesired vinyl aromatics were monitored due to the thermal treatment. In contrast, this reaction mainly occurred enzymatically catalyzed during fermentation with S. cerevisiae strain W68 with normal Pof(+) activity (phenolic off-flavor) resulting in a wheat beer eliciting the typical aroma requested by consumers due to high concentrations of 2-methoxy-4-vinylphenol (1790 μg/L) and 4-vinylphenol (937 μg/L). Unfortunately, also a high concentration of undesired styrene (28.3 μg/L) was observed. Using a special S. cerevisiae strain without Pof(+) activity resulted in a significant styrene reduction (wheat beer aroma.

  20. Plants having modified response to ethylene by transformation with an ETR nucleic acid

    DOEpatents

    Meyerowitz, Elliott M.; Chang, Caren; Bleecker, Anthony B.

    2001-01-01

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

  1. Native and enzymatically modified wheat (Triticum aestivum L.) endogenous lipids in bread making: a focus on gas cell stabilization mechanisms.

    PubMed

    Gerits, Lien R; Pareyt, Bram; Masure, Hanne G; Delcour, Jan A

    2015-04-01

    Lipopan F and Lecitase Ultra lipases were used in straight dough bread making to study how wheat lipids affect bread loaf volume (LV) and crumb structure setting. Lipase effects on LV were dose and dough piece weight dependent. The bread quality improving mechanisms exerted by endogenous lipids were studied in terms of gluten network strengthening, which indirectly stabilizes gas cells, and in terms of direct interfacial gas cell stabilization. Unlike diacetyl tartaric esters of mono- and diacylglycerols (DATEM, used as control), lipase use did not impact dough extensibility. The effect on dough extensibility was therefore related to its lipid composition at the start of mixing. Both lipases and DATEM strongly increase the levels of polar lipids in dough liquor and their availability for and potential accumulation at gas cell interfaces. Lipases form lysolipids that emulsify other lipids. We speculate that DATEM competes with (endogenous) polar lipids for interacting with gluten proteins.

  2. A modified acid digestion procedure for extraction of tungsten from soil.

    PubMed

    Bednar, A J; Jones, W T; Chappell, M A; Johnson, D R; Ringelberg, D B

    2010-01-15

    Interest in tungsten occurrence and geochemistry is increasing due to increased use of tungsten compounds and its unknown biochemical effects. Tungsten has a complex geochemistry, existing in most environmental matrices as the soluble and mobile tungstate anion, as well as poly- and heteropolytungstates. Because the geochemistry of tungsten is substantially different than most trace metals, including the formation of insoluble species under acidic conditions, it is not extracted from soil matrices using standard acid digestion procedures. Therefore, the current work describes a modification to a commonly used acid digestion procedure to facilitate quantification of tungsten in soil matrices. Traditional soil digestion procedures, using nitric and hydrochloric acids with hydrogen peroxide yield <1 up to 50% recovery on soil matrix spike samples, whereas the modified method reported here, which includes the addition of phosphoric acid, yields spike recoveries in the 76-98% range. Comparison of the standard and modified digestion procedures on National Institute of Standards and Technology Standard Reference Materials yielded significantly improved tungsten recoveries for the phosphoric acid modified method. The modified method also produces comparable results for other acid extractable metals as the standard methods, and therefore can be used simultaneously for tungsten and other metals of interest.

  3. Forest die-back modified plankton recovery from acidic stress.

    PubMed

    Vrba, Jaroslav; Kopáček, Jiří; Fott, Jan; Nedbalová, Linda

    2014-03-01

    We examined long-term data on water chemistry of Lake Rachelsee (Germany) following the changes in acidic depositions in central Europe since 1980s. Despite gradual chemical recovery of Rachelsee, its biological recovery was delayed. In 1999, lake recovery was abruptly reversed by a coincident forest die-back, which resulted in elevated terrestrial export of nitrate and ionic aluminum lasting ~5 years. This re-acidification episode provided unique opportunity to study plankton recovery in the rapidly recovering lake water after the abrupt decline in nitrate leaching from the catchment. There were sudden changes both in lake water chemistry and in plankton biomass structure, such as decreased bacterial filaments, increased phytoplankton biomass, and rotifer abundance. The shift from dominance of heterotrophic to autotrophic organisms suggested their substantial release from severe phosphorus stress. Such a rapid change in plankton structure in a lake recovering from acidity has, to the best of our knowledge, not been previously documented.

  4. Adding wheat middlings, microbial phytase, and citric acid to corn-soybean meal diets for growing pigs may replace inorganic phosphorus supplementation.

    PubMed

    Han, Y M; Roneker, K R; Pond, W G; Lei, X G

    1998-10-01

    Three experiments were conducted with 96 growing Landrace x Yorkshire x Duroc crossbreds to determine the collective effectiveness of cereal phytase from wheat middlings, microbial phytase, and citric acid in improving phytate-P bioavailability in corn-soy diets. In Exp. 1, 40 gilts (7 wk old) were fed five diets for 8 wk. Diets 1, 2, and 3 were low-P, corn-soybean meal diets (CSB) + 0, .1, or .2% inorganic P (Pi) as calcium phosphate, respectively. Diet 4 was a similar corn-soy diet that included 15% wheat middlings (461 cereal phytase U/kg). Diet 5 was the CSB + microbial phytase (1,200 U/kg; Natuphos, BASF, Mount Olive, NJ). In Exp. 2, 16 barrows (8 wk old) were fed two diets for 6 wk. Diet 1 was the same as Diet 3 of Exp. 1 (.2% Pi). Diet 2 was Diet 4 of Exp. 1 + microbial phytase (300 U/kg). In Exp. 3, 40 barrows and gilts (6 wk old) were fed four diets for 6 wk. Diets 1 and 2 were the same as those in Exp. 2. Diet 3 was Diet 2 of Exp. 2 + 1.5% citric acid. Diet 4 was similar to Diet 3 but contained 10 instead of 15% wheat middlings. In Exp. 1, pigs fed the low-P, CSB (Diet 1) had lower (P < .05) ADG, ADFI, plasma Pi concentration, bone strength, and mobility score than pigs of the other four treatments. Measurements for pigs fed the 15% wheat middlings diet were not significantly different from those of pigs fed the CSB + .1% Pi or microbial phytase. In Exp. 2, ADG (P=.06) during wk 1 to 3 and gain:feed ratio (P < .02) and plasma Pi concentration (P < .005) during all weeks favored pigs fed the CSB + .2% Pi compared with the other diet including 15% wheat middlings. In Exp. 3, identical ADG during all weeks and similar plasma Pi concentrations at wk 4 and 6 were observed between pigs fed the two citric acid diets (Diets 3 and 4) and the CSB + .2% Pi (Diet 1). Pigs fed Diet 4 (10% wheat middlings) had even higher (P < .02) gain:feed ratio during wk 1 to 3 than those fed Diet 1. It seems feasible to completely replace calcium phosphate with 10 to 15% wheat

  5. Visualisation of plastids in endosperm, pollen and roots of transgenic wheat expressing modified GFP fused to transit peptides from wheat SSU RubisCO, rice FtsZ and maize ferredoxin III proteins.

    PubMed

    Primavesi, Lucia F; Wu, Huixia; Mudd, Elisabeth A; Day, Anil; Jones, Huw D

    2008-08-01

    The ability to target marker proteins to specific subcellular compartments is a powerful research tool to study the structure and development of organelles. Here transit sequences from nuclear-encoded, plastid proteins, namely rice FtsZ, maize non-photosynthetic ferredoxin III (FdIII) and the small subunit of RubisCO were used to target a modified synthetic GFP (S65G, S72A) to plastids. The localisations of the fusion proteins expressed in transgenic wheat plants and under the control of the rice actin promoter were compared to an untargeted GFP control. GFP fluorescence was localised to non-green plastids in pollen, roots and seed endosperm and detected in isolated leaf chloroplasts using a GFP-specific antibody. Transit peptides appeared to influence the relative fluorescence intensities of plastids in different tissues. This is consistent with differential targeting and/or turnover of GFP fusion proteins in different plastid types. Replacement of GFP sequences with alternative coding regions enables immediate applications of our vectors for academic research and commercial applications.

  6. Co-ordinated expression of amino acid metabolism in response to N and S deficiency during wheat grain filling.

    PubMed

    Howarth, Jonathan R; Parmar, Saroj; Jones, Janina; Shepherd, Caroline E; Corol, Delia-Irina; Galster, Aimee M; Hawkins, Nathan D; Miller, Sonia J; Baker, John M; Verrier, Paul J; Ward, Jane L; Beale, Michael H; Barraclough, Peter B; Hawkesford, Malcolm J

    2008-01-01

    Increasing demands for productivity together with environmental concerns about fertilizer use dictate that the future sustainability of agricultural systems will depend on improving fertilizer use efficiency. Characterization of the biological processes responsible for efficient fertilizer use will provide tools for crop improvement under reduced inputs. Transcriptomic and metabolomic approaches were used to study the impact of nitrogen (N) and sulphur (S) deficiency on N and S remobilization from senescing canopy tissues during grain filling in winter wheat (Triticum aestivum). Canopy tissue N was remobilized effectively to the grain after anthesis. S was less readily remobilized. Nuclear magnetic resonance (NMR) metabolite profiling revealed significant effects of suboptimal N or S supply in leaves but not in developing grain. Analysis of amino acid pools in the grain and leaves revealed a strategy whereby amino acid biosynthesis switches to the production of glutamine during grain filling. Glutamine accumulated in the first 7 d of grain development, prior to conversion to other amino acids and protein in the subsequent 21 d. Transcriptome analysis indicated that a down-regulation of the terminal steps in many amino acid biosynthetic pathways occurs to control pools of amino acids during leaf senescence. Grain N and S contents increased in parallel after anthesis and were not significantly affected by S deficiency, despite a suboptimal N:S ratio at final harvest. N deficiency resulted in much slower accumulation of grain N and S and lower final concentrations, indicating that vegetative tissue N has a greater control of the timing and extent of nutrient remobilization than S.

  7. Adsorptive removal of trace oxytetracycline from water by acid-modified zeolite: influencing factors.

    PubMed

    An, Wenhao; Xiao, Hua; Yu, Man; Chen, Xiaoyang; Xu, Yuxin; Zhou, Wenmin

    2013-01-01

    Because of the wide use of antibiotics in the livestock industry, trace tetracycline antibiotics are frequently detected in swine wastewater and water bodies near pig farms. Based on natural zeolite, modified zeolite was synthesized by treatment with nitric acid. As one kind of typical tetracyclines, oxytetracycline (OTC) was chosen as the target adsorbate. Removal of trace OTC by modified zeolite and the effects of several main water matrices on OTC adsorption were studied in detail. OTC removal efficiency by acid-modified zeolite was about 90%, compared to less than 20% by natural zeolite. In general, in acidic conditions the removal efficiency of OTC by modified zeolite was about 90%, which was much higher than 20-35% in alkaline conditions. An increase in ionic strength from 0.01 to 1.0 M led to a decrease in adsorption efficiency from 90 to 27%. The presence of 10.0 mg L(-1) dissolved humic acid accelerated sorption of OTC on modified zeolite, while 100.0 mg L(-1) humic acid resulted in the opposite effect. An increase in temperature contributed to enhancing the adsorption efficiency.

  8. Application of acid-modified Imperata cylindrica powder for latent fingerprint development.

    PubMed

    Low, Wei Zeng; Khoo, Bee Ee; Aziz, Zalina Binti Abdul; Low, Ling Wei; Teng, Tjoon Tow; bin Abdullah, Ahmad Fahmi Lim

    2015-09-01

    A novel powdering material that utilizes acid-modified Imperata cylindrica (IC) powder for the development of fingermarks was studied. Experiments were carried out to determine the suitability, adherence quality and sensitivity of the acid-modified IC powder. Fingermarks of different constituents (eccrine, sebaceous and natural fingermarks) on different types of surfaces were used. Acid-modified IC powder was also used to develop fingermarks of different ages as well as aged fingermarks recovered from the water. From the visual inspection, acid-modified IC powder was able to interact with different fingermark constituents and produced distinct ridge details on the examined surfaces. It was also able to develop aged fingermarks and fingermarks that were submerged in water. A statistical comparison was made against the Sirchie® Hi-Fi black powder in terms of the powders' sensitivity and quality of the developed natural fingermarks. The image quality was analyzed using MITRE's Image Quality of Fingerprint (IQF) software. From the experiments, acid-modified IC powder has the potential as a fingermark development powder, although natural fingermarks developed by Sirchie® black powder showed better quality and sensitivity based on the results of the statistical comparison.

  9. Toxicity of tannic acid-modified silver nanoparticles in keratinocytes: potential for immunomodulatory applications.

    PubMed

    Orlowski, Piotr; Soliwoda, Katarzyna; Tomaszewska, Emilia; Bien, Karolina; Fruba, Aleksandra; Gniadek, Marianna; Labedz, Olga; Nowak, Zuzanna; Celichowski, Grzegorz; Grobelny, Jarosław; Krzyzowska, Malgorzata

    2016-09-01

    Hydrolyzable tannins are known to exhibit anti-inflammatory activity, which can be used in combination with silver nanoparticles (AgNPs) for dermal uses. In this study, we investigated the effects of tannic acid-modified 13, 33, 46nm and unmodified 10-65nm AgNPs using the human-derived keratinocyte HaCaT and VK2-E6/E7 cell lines in the form of stationary and spheroids cultures. After exposition to tannic acid-modified AgNPs, VK2-E6/E7 cells showed higher toxicity, increased production of reactive oxygen species (ROS) and activity of JNK stress kinase, while HaCaT cell line demonstrated less ROS production and activation of ERK kinase. AgNPs internalization was detected both in the superficial and internal layers of spheroids prepared from both cell lines. Tannic acid modified AgNPs sized above 30nm did not induce DNA breaks in comet assay performed in both cell lines. Tannic acid-modified but not unmodified AgNPs down-regulated TNF-α and LPS-triggered production of IL-8 in VK2-E6/E7 but not in HaCaT cells. In summary, tannic acid-modified AgNPs sized above 30nm show good toxicological profile both in vitro and possess immunomodulatory properties useful for potential dermal applications in humans.

  10. Heat, Acid and Chemically Induced Unfolding Pathways, Conformational Stability and Structure-Function Relationship in Wheat α-Amylase.

    PubMed

    Singh, Kritika; Shandilya, Manish; Kundu, Suman; Kayastha, Arvind M

    2015-01-01

    Wheat α-amylase, a multi-domain protein with immense industrial applications, belongs to α+β class of proteins with native molecular mass of 32 kDa. In the present study, the pathways leading to denaturation and the relevant unfolded states of this multi-domain, robust enzyme from wheat were discerned under the influence of temperature, pH and chemical denaturants. The structural and functional aspects along with thermodynamic parameters for α-amylase unfolding were probed and analyzed using fluorescence, circular dichroism and enzyme assay methods. The enzyme exhibited remarkable stability up to 70°C with tendency to aggregate at higher temperature. Acid induced unfolding was also incomplete with respect to the structural content of the enzyme. Strong ANS binding at pH 2.0 suggested the existence of a partially unfolded intermediate state. The enzyme was structurally and functionally stable in the pH range 4.0-9.0 with 88% recovery of hydrolytic activity. Careful examination of biophysical properties of intermediate states populated in urea and GdHCl induced denaturation suggests that α-amylase unfolding undergoes irreversible and non-coincidental cooperative transitions, as opposed to previous reports of two-state unfolding. Our investigation highlights several structural features of the enzyme in relation to its catalytic activity. Since, α-amylase has been comprehensively exploited for use in a range of starch-based industries, in addition to its physiological significance in plants and animals, knowledge regarding its stability and folding aspects will promote its biotechnological applications.

  11. Heat, Acid and Chemically Induced Unfolding Pathways, Conformational Stability and Structure-Function Relationship in Wheat α-Amylase

    PubMed Central

    Singh, Kritika; Shandilya, Manish; Kundu, Suman; Kayastha, Arvind M.

    2015-01-01

    Wheat α-amylase, a multi-domain protein with immense industrial applications, belongs to α+β class of proteins with native molecular mass of 32 kDa. In the present study, the pathways leading to denaturation and the relevant unfolded states of this multi-domain, robust enzyme from wheat were discerned under the influence of temperature, pH and chemical denaturants. The structural and functional aspects along with thermodynamic parameters for α-amylase unfolding were probed and analyzed using fluorescence, circular dichroism and enzyme assay methods. The enzyme exhibited remarkable stability up to 70°C with tendency to aggregate at higher temperature. Acid induced unfolding was also incomplete with respect to the structural content of the enzyme. Strong ANS binding at pH 2.0 suggested the existence of a partially unfolded intermediate state. The enzyme was structurally and functionally stable in the pH range 4.0–9.0 with 88% recovery of hydrolytic activity. Careful examination of biophysical properties of intermediate states populated in urea and GdHCl induced denaturation suggests that α-amylase unfolding undergoes irreversible and non-coincidental cooperative transitions, as opposed to previous reports of two-state unfolding. Our investigation highlights several structural features of the enzyme in relation to its catalytic activity. Since, α-amylase has been comprehensively exploited for use in a range of starch-based industries, in addition to its physiological significance in plants and animals, knowledge regarding its stability and folding aspects will promote its biotechnological applications. PMID:26053142

  12. Alleviation of Drought Stress by Hydrogen Sulfide Is Partially Related to the Abscisic Acid Signaling Pathway in Wheat

    PubMed Central

    Wang, Chenyang; Qin, Haixia; Han, Qiaoxia; Hou, Junfeng; Lu, Hongfang; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Little information is available describing the effects of exogenous H2S on the ABA pathway in the acquisition of drought tolerance in wheat. In this study, we investigated the physiological parameters, the transcription levels of several genes involved in the abscisic acid (ABA) metabolism pathway, and the ABA and H2S contents in wheat leaves and roots under drought stress in response to exogenous NaHS treatment. The results showed that pretreatment with NaHS significantly increased plant height and the leaf relative water content of seedlings under drought stress. Compared with drought stress treatment alone, H2S application increased antioxidant enzyme activities and reduced MDA and H2O2 contents in both leaves and roots. NaHS pretreatment increased the expression levels of ABA biosynthesis and ABA reactivation genes in leaves; whereas the expression levels of ABA biosynthesis and ABA catabolism genes were up-regulated in roots. These results indicated that ABA participates in drought tolerance induced by exogenous H2S, and that the responses in leaves and roots are different. The transcription levels of genes encoding ABA receptors were up-regulated in response to NaHS pretreatment under drought conditions in both leaves and roots. Correspondingly, the H2S contents in leaves and roots were increased by NaHS pretreatment, while the ABA contents of leaves and roots decreased. This implied that there is complex crosstalk between these two signal molecules, and that the alleviation of drought stress by H2S, at least in part, involves the ABA signaling pathway. PMID:27649534

  13. Lactic acid bacterial extract as a biogenic mineral growth modifier

    NASA Astrophysics Data System (ADS)

    Borah, Ballav M.; Singh, Atul K.; Ramesh, Aiyagari; Das, Gopal

    2009-04-01

    The formation of minerals and mechanisms by which bacteria could control their formation in natural habitats is now of current interest for material scientists to have an insight of the mechanism of in vivo mineralization, as well as to seek industrial and technological applications. Crystalline uniform structures of calcium and barium minerals formed micron-sized building blocks when synthesized in the presence of an organic matrix consisting of secreted protein extracts from three different lactic acid bacteria (LAB) viz.: Lactobacillus plantarum MTCC 1325, Lactobacillus acidophilus NRRL B4495 and Pediococcus acidilactici CFR K7. LABs are not known to form organic matrix in biological materialization processes. The influence of these bacterial extracts on the crystallization behavior was investigated in details to test the basic coordination behavior of the acidic protein. In this report, varied architecture of the mineral crystals obtained in presence of high molecular weight protein extracts of three different LAB strains has been discussed. The role of native form of high molecular weight bacterial protein extracts in the generation of nucleation centers for crystal growth was clearly established. A model for the formation of organic matrix-cation complex and the subsequent events leading to crystal growth is proposed.

  14. Differential expression of structural genes for the late phase of phytic acid biosynthesis in developing seeds of wheat (Triticum aestivum L.).

    PubMed

    Bhati, Kaushal Kumar; Aggarwal, Sipla; Sharma, Shivani; Mantri, Shrikant; Singh, Sudhir P; Bhalla, Sherry; Kaur, Jagdeep; Tiwari, Siddharth; Roy, Joy K; Tuli, Rakesh; Pandey, Ajay K

    2014-07-01

    In cereals, phytic acid (PA) or inositol hexakisphosphate (IP6) is a well-known phosphate storage compound as well as major chelator of important micronutrients (iron, zinc, calcium, etc.). Genes involved in the late phases of PA biosynthesis pathway are known in crops like maize, soybeans and barley but none have been reported from wheat. Our in silico analysis identified six wheat genes that might be involved in the biosynthesis of inositol phosphates. Four of the genes were inositol tetraphosphate kinases (TaITPK1, TaITPK2, TaITPK3, and TaITPK4), and the other two genes encode for inositol triphosphate kinase (TaIPK2) and inositol pentakisphosphate kinase (TaIPK1). Additionally, we identified a homolog of Zmlpa-1, an ABCC subclass multidrug resistance-associated transporter protein (TaMRP3) that is putatively involved in PA transport. Analyses of the mRNA expression levels of these seven genes showed that they are differentially expressed during seed development, and that some are preferentially expressed in aleurone tissue. These results suggest selective roles during PA biosynthesis, and that both lipid-independent and -dependent pathways are active in developing wheat grains. TaIPK1 and TaMRP3 were able to complement the yeast ScΔipk1 and ScΔycf1 mutants, respectively, providing evidence that the wheat genes have the expected biochemical functions. This is the first comprehensive study of the wheat genes involved in the late phase of PA biosynthesis. Knowledge generated from these studies could be utilized to develop strategies for generating low phyate wheat.

  15. Simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid using polybromothymol blue film-modified glassy carbon electrode.

    PubMed

    Xu, Xiongwei; Lin, Qihuang; Liu, Ailin; Chen, Wei; Weng, Xiuhua; Wang, Changlian; Lin, Xinhua

    2010-06-01

    A sensitive and selective electrochemical method for simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA) using an electropolymerized bromothymol blue (BTB)-modified glassy carbon electrode (GCE) was developed. The electrochemically synthesized film was investigated using electrochemical impedance spectroscopy and voltammetric methods. The electrochemical behavior of the polymer-modified electrode depends on film thickness, i.e., the electropolymyerization time. The poly-BTB-modified GCE shows excellent electrocatalytic activity toward the oxidation of AA, DA, and UA in phosphate buffer solution (pH 5.0). The voltametric peak separations of AA/DA, DA/UA, and AA/UA on this modified electrode are 118 mV, 298 mV, and 455 mV, respectively. Therefore the voltammetric responses of these three compounds can be resolved well on the polymer-modified electrode, and simultaneous determination of these three compounds can be achieved. In addition, this modified electrode can be successfully applied to determine AA and DA in injection and UA in urine samples without interference.

  16. Application of poly(lactic acid) modified by radiation crosslinking

    NASA Astrophysics Data System (ADS)

    Nagasawa, Naotsugu; Kaneda, Ayako; Kanazawa, Shinichi; Yagi, Toshiaki; Mitomo, Hiroshi; Yoshii, Fumio; Tamada, Masao

    2005-07-01

    Poly(L-lactic acid), PLLA was irradiated using electron beam (EB) in the presence of polyfunctional monomers (PFM) as crosslinking agent. Among the PFMs, triallyl isocyanurate (TAIC) at 3% concentration was found to be the most effective for crosslinking of PLLA by irradiation technique. The crosslinked PLLA obtained has heat resistance higher than 200 °C. From this fact, the crosslinked PLLA is applied on heat-shrinkable tube, cup and plate. The shrinkable tube has several advantages such as high heat resistance and transparency. In addition, the unirradiated cup deformed and changed to milky-like transparency but the crosslinked one retained its original shape and transparency after boiling water was poured into the cups. The heat resistance is attributed to the protection of crystallization of crosslinking structure. It is therefore proven that crosslinking technology is beneficial to expanding the application of PLLA.

  17. Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid.

    PubMed

    Yu, Xiaochen; Zheng, Yubin; Dorgan, Kathleen M; Chen, Shulin

    2011-05-01

    This paper explores the use of the hydrolysate from the dilute sulfuric acid pretreatment of wheat straw for microbial oil production. The resulting hydrolysate was composed of pentoses (24.3g/L) and hexoses (4.9 g/L), along with some other degradation products, such as acetic acid, furfural, and hydroxymethylfurfural (HMF). Five oleaginous yeast strains, Cryptococcus curvatus, Rhodotorula glutinis, Rhodosporidium toruloides, Lipomyces starkeyi, and Yarrowia lipolytica, were evaluated by using this hydrolysate as substrates. The results showed that all of these strains could use the detoxified hydrolysate to produce lipids while except R. toruloides non-detoxified hydrolysate could also be used for the growth of all of the selective yeast strains. C. curvatus showed the highest lipid concentrations in medium on both the detoxified (4.2g/L) and non-detoxified (5.8 g/L) hydrolysates. And the inhibitory effect studies on C. curvatus indicated HMF had insignificant impacts at a concentration of up to 3g/L while furfural inhibited cell growth and lipid content by 72.0% and 62.0% at 1g/L, respectively. Our work demonstrates that lipid production is a promising alternative to utilize hemicellulosic sugars obtained during pretreatment of lignocellulosic materials.

  18. Profibrinolytic Effect of the Epigenetic Modifier Valproic Acid in Man

    PubMed Central

    Saluveer, Ott; Larsson, Pia; Ridderstråle, Wilhelm; Hrafnkelsdóttir, Thórdís J.; Jern, Sverker; Bergh, Niklas

    2014-01-01

    Aims The aim of the study was to test if pharmacological intervention by valproic acid (VPA) treatment can modulate the fibrinolytic system in man, by means of increased acute release capacity of tissue plasminogen activator (t-PA) as well as an altered t-PA/Plasminogen activator inhibitor -1 (PAI-1) balance. Recent data from in vitro research demonstrate that the fibrinolytic system is epigenetically regulated mainly by histone deacetylase (HDAC) inhibitors. HDAC inhibitors, including VPA markedly upregulate t-PA gene expression in vitro. Methods and Results The trial had a cross-over design where healthy men (n = 10), were treated with VPA (Ergenyl Retard) 500 mg depot tablets twice daily for 2 weeks. Capacity for stimulated t-PA release was assessed in the perfused-forearm model using intra-brachial Substance P infusion and venous occlusion plethysmography. Each subject was investigated twice, untreated and after VPA treatment, with 5 weeks wash-out in-between. VPA treatment resulted in considerably decreased levels of circulating PAI-1 antigen from 22.2 (4.6) to 10.8 (2.1) ng/ml (p<0.05). It slightly decreased the levels of circulating venous t-PA antigen (p<0.05), and the t-PA:PAI-1 antigen ratio increased (p<0.01). Substance P infusion resulted in an increase in forearm blood flow (FBF) on both occasions (p<0.0001 for both). The acute t-PA release in response to Substance P was not affected by VPA (p = ns). Conclusion Valproic acid treatment lowers plasma PAI-1 antigen levels and changes the fibrinolytic balance measured as t-PA/PAI-1 ratio in a profibrinolytic direction. This may in part explain the reduction in incidence of myocardial infarctions by VPA treatment observed in recent pharmacoepidemiological studies. Trial Registration The EU Clinical Trials Register 2009-011723-31 PMID:25295869

  19. Chemical composition, silage fermentation characteristics, and in vitro ruminal fermentation parameters of potato-wheat straw silage treated with molasses and lactic acid bacteria and corn silage.

    PubMed

    Babaeinasab, Y; Rouzbehan, Y; Fazaeli, H; Rezaei, J

    2015-09-01

    The aim of this study was to determine the effect of molasses and lactic acid bacteria (LAB) on the chemical composition, silage fermentation characteristics, and in vitro ruminal fermentation parameters of an ensiled potato-wheat straw mixture in a completely randomized design with 4 replicates. Wheat straw was harvested at full maturity and potato tuber when the leaves turned yellowish. The potato-wheat straw (57:43 ratio, DM basis) mixture was treated with molasses, LAB, or a combination. Lalsil Fresh LB (Lallemand, France; containing NCIMB 40788) or Lalsil MS01 (Lallemand, France; containing MA18/5U and MA126/4U) were each applied at a rate of 3 × 10 cfu/g of fresh material. Treatments were mixed potato-wheat straw silage (PWSS) without additive, PWSS inoculated with Lalsil Fresh LB, PWSS inoculated with Lalsil MS01, PWSS + 5% molasses, PWSS inoculated with Lalsil Fresh LB + 5% molasses, PWSS inoculated with Lalsil MS01 + 5% molasses, and corn silage (CS). The compaction densities of PWSS treatments and CS were approximately 850 and 980 kg wet matter/m, respectively. After anaerobic storage for 90 d, chemical composition, silage fermentation characteristics, in vitro gas production (GP), estimated OM disappearance (OMD), ammonia-N, VFA, microbial CP (MCP) production, and cellulolytic bacteria count were determined. Compared to CS, PWSS had greater ( < 0.001) values of DM, ADL, water-soluble carbohydrates, pH, and ammonia-N but lower ( < 0.05) values of CP, ash free-NDF (NDFom), ash, nitrate, and lactic, acetic, propionic, and butyric acids concentrations. When PWSS was treated with molasses, LAB, or both, the contents of CP and lactic and acetic acids increased, whereas NDFom, ammonia-N, and butyric acid decreased ( < 0.05). Based on in vitro ruminal experiments, PWSS had greater ( < 0.05) values of GP, OMD, and MCP but lower ( < 0.05) VFA and acetic acid compared to CS. With adding molasses alone or in combination with LAB inoculants to PWSS, the values of GP

  20. Effect of particle size reduction, hydrothermal and fermentation treatments on phytic acid content and some physicochemical properties of wheat bran.

    PubMed

    Majzoobi, Mahsa; Pashangeh, Safoora; Farahnaky, Asgar; Eskandari, Mohammad Hadi; Jamalian, Jalal

    2014-10-01

    With the aim of reducing phytic acid content of wheat bran, particle size reduction (from 1,200 to 90 μm), hydrothermal (wet steeping in acetate buffer at pH 4.8 at 55 °C for 60 min) and fermentation (using bakery yeast for 8 h at 30 °C) and combination of these treatments with particle size reduction were applied and their effects on some properties of the bran were studied. Phytic acid content decreased from 50.1 to 21.6, 32.8 and 43.9 mg/g after particle size reduction, hydrothermal and fermentation, respectively. Particle size reduction along with these treatments further reduced phytic acid content up to 76.4 % and 57.3 %, respectively. Hydrothermal and fermentation decreased, while particle size reduction alone or in combination increased bran lightness. With reducing particle size, total, soluble and insoluble fiber content decreased from 69.7 to 32.1 %, 12.2 to 7.9 % and 57.4 to 24.3 %, respectively. The highest total (74.4 %) and soluble (21.4 %) and the lowest insoluble fiber (52.1 %) content were determined for the hydrothermaled bran. Particle size reduction decreased swelling power, water solubility and water holding capacity. Swelling power and water holding capacity of the hydrothermaled and fermented brans were lower, while water solubility was higher than the control. The amount of Fe(+2), Zn(+2) and Ca(+2) decreased with reducing particle size. Fermentation had no effect on Fe(+2)and Zn(+2) but slightly reduced Ca(+2). The hydrothermal treatment slightly decreased these elements. Amongst all, hydrothermal treatment along with particle size reduction resulted in the lowest phytic acid and highest fiber content.

  1. Effect of addition of thermally modified cowpea protein on sensory acceptability and textural properties of wheat bread and sponge cake.

    PubMed

    Campbell, Lydia; Euston, Stephen R; Ahmed, Mohamed A

    2016-03-01

    This paper investigates the sensory acceptability and textural properties of leavened wheat bread and sponge cake fortified with cow protein isolates that had been denatured and glycated by thermal treatment. Defatted cowpea flour was prepared from cow pea beans and the protein isolate was prepared (CPI) and thermally denatured (DCPI). To prepare glycated cowpea protein isolate (GCPI) the cowpea flour slurry was heat treated before isolation of the protein. CPI was more susceptible to thermal denaturation than GCPI as determined by turbidity and sulphydryl groups resulting in greater loss of solubility. This is attributed to the higher glycation degree and higher carbohydrate content of GCPI as demonstrated by glycoprotein staining of SDS PAGE gels. Water absorption of bread dough was significantly enhanced by DCPI and to a larger extent GCPI compared to the control, resulting in softer texture. CPI resulted in significantly increased crumb hardness in baked bread than the control whereas DCPI or GCPI resulted in significantly softer crumb. Bread fortified with 4% DCPI or GCPI was similar to control as regards sensory and textural properties whereas 4% CPI was significantly different, limiting its inclusion level to 2%. There was a trend for higher sensory acceptability scores for GCPI containing bread compared DCPI. Whole egg was replaced by 20% by GCPI (3.5%) in sponge cake without affecting the sensory acceptability, whereas CPI and DCPI supplemented cakes were significantly different than the control.

  2. Characterization of Triticum aestivum Abscisic Acid Receptors and a Possible Role for These in Mediating Fusairum Head Blight Susceptibility in Wheat

    PubMed Central

    Gordon, Cameron S.; Rajagopalan, Nandhakishore; Risseeuw, Eddy P.; Surpin, Marci; Ball, Fraser J.; Barber, Carla J.; Buhrow, Leann M.; Clark, Shawn M.; Page, Jonathan E.; Todd, Chris D.; Abrams, Suzanne R.; Loewen, Michele C.

    2016-01-01

    Abscisic acid (ABA) is a well-characterized plant hormone, known to mediate developmental aspects as well as both abiotic and biotic stress responses. Notably, the exogenous application of ABA has recently been shown to increase susceptibility to the fungal pathogen Fusarium graminearum, the causative agent of Fusarium head blight (FHB) in wheat and other cereals. However roles and mechanisms associated with ABA’s modulation of pathogen responses remain enigmatic. Here the identification of putative ABA receptors from available genomic databases for Triticum aestivum (bread wheat) and Brachypodium distachyon (a model cereal) are reported. A number of these were cloned for recombinant expression and their functionality as ABA receptors confirmed by in vitro assays against protein phosphatases Type 2Cs. Ligand selectivity profiling of one of the wheat receptors (Ta_PYL2DS_FL) highlighted unique activities compared to Arabidopsis AtPYL5. Mutagenic analysis showed Ta_PYL2DS_FL amino acid D180 as being a critical contributor to this selectivity. Subsequently, a virus induced gene silencing (VIGS) approach was used to knockdown wheat Ta_PYL4AS_A (and similar) in planta, yielding plants with increased early stage resistance to FHB progression and decreased mycotoxin accumulation. Together these results confirm the existence of a family of ABA receptors in wheat and Brachypodium and present insight into factors modulating receptor function at the molecular level. That knockdown of Ta_PYL4AS_A (and similar) leads to early stage FHB resistance highlights novel targets for investigation in the future development of disease resistant crops. PMID:27755583

  3. After-ripening induced transcriptional changes of hormonal genes in wheat seeds: the cases of brassinosteroids, ethylene, cytokinin and salicylic acid.

    PubMed

    Chitnis, Vijaya R; Gao, Feng; Yao, Zhen; Jordan, Mark C; Park, Seokhoon; Ayele, Belay T

    2014-01-01

    Maintenance and release of seed dormancy is regulated by plant hormones; their levels and seed sensitivity being the critical factors. This study reports transcriptional regulation of brassinosteroids (BR), ethylene (ET), cytokinin (CK) and salicylic acid (SA) related wheat genes by after-ripening, a period of dry storage that decays dormancy. Changes in the expression of hormonal genes due to seed after-ripening did not occur in the anhydrobiotic state but rather in the hydrated state. After-ripening induced dormancy decay appears to be associated with imbibition mediated increase in the synthesis and signalling of BR, via transcriptional activation of de-etiolated2, dwarf4 and brassinosteroid signaling kinase, and repression of brassinosteroid insensitive 2. Our analysis is also suggestive of the significance of increased ET production, as reflected by enhanced transcription of 1-aminocyclopropane-1-carboxylic acid oxidase in after-ripened seeds, and tight regulation of seed response to ET in regulating dormancy decay. Differential transcriptions of lonely guy, zeatin O-glucosyltransferases and cytokinin oxidases, and pseudo-response regulator between dormant and after-ripened seeds implicate CK in the regulation of seed dormancy in wheat. Our analysis also reflects the association of dormancy decay in wheat with seed SA level and NPR independent SA signaling that appear to be regulated transcriptionally by phenylalanine ammonia lyase, and whirly and suppressor of npr1 inducible1 genes, respectively. Co-expression clustering of the hormonal genes implies the significance of synergistic and antagonistic interaction between the different plant hormones in regulating wheat seed dormancy. These results contribute to further our understanding of the molecular features controlling seed dormancy in wheat.

  4. Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection.

    PubMed

    Orlowski, Piotr; Tomaszewska, Emilia; Gniadek, Marianna; Baska, Piotr; Nowakowska, Julita; Sokolowska, Justyna; Nowak, Zuzanna; Donten, Mikolaj; Celichowski, Grzegorz; Grobelny, Jaroslaw; Krzyzowska, Malgorzata

    2014-01-01

    The interaction between silver nanoparticles and herpesviruses is attracting great interest due to their antiviral activity and possibility to use as microbicides for oral and anogenital herpes. In this work, we demonstrate that tannic acid modified silver nanoparticles sized 13 nm, 33 nm and 46 nm are capable of reducing HSV-2 infectivity both in vitro and in vivo. The antiviral activity of tannic acid modified silver nanoparticles was size-related, required direct interaction and blocked virus attachment, penetration and further spread. All tested tannic acid modified silver nanoparticles reduced both infection and inflammatory reaction in the mouse model of HSV-2 infection when used at infection or for a post-infection treatment. Smaller-sized nanoparticles induced production of cytokines and chemokines important for anti-viral response. The corresponding control buffers with tannic acid showed inferior antiviral effects in vitro and were ineffective in blocking in vivo infection. Our results show that tannic acid modified silver nanoparticles are good candidates for microbicides used in treatment of herpesvirus infections.

  5. Tannic Acid Modified Silver Nanoparticles Show Antiviral Activity in Herpes Simplex Virus Type 2 Infection

    PubMed Central

    Orlowski, Piotr; Tomaszewska, Emilia; Gniadek, Marianna; Baska, Piotr; Nowakowska, Julita; Sokolowska, Justyna; Nowak, Zuzanna; Donten, Mikolaj; Celichowski, Grzegorz; Grobelny, Jaroslaw; Krzyzowska, Malgorzata

    2014-01-01

    The interaction between silver nanoparticles and herpesviruses is attracting great interest due to their antiviral activity and possibility to use as microbicides for oral and anogenital herpes. In this work, we demonstrate that tannic acid modified silver nanoparticles sized 13 nm, 33 nm and 46 nm are capable of reducing HSV-2 infectivity both in vitro and in vivo. The antiviral activity of tannic acid modified silver nanoparticles was size-related, required direct interaction and blocked virus attachment, penetration and further spread. All tested tannic acid modified silver nanoparticles reduced both infection and inflammatory reaction in the mouse model of HSV-2 infection when used at infection or for a post-infection treatment. Smaller-sized nanoparticles induced production of cytokines and chemokines important for anti-viral response. The corresponding control buffers with tannic acid showed inferior antiviral effects in vitro and were ineffective in blocking in vivo infection. Our results show that tannic acid modified silver nanoparticles are good candidates for microbicides used in treatment of herpesvirus infections. PMID:25117537

  6. Lactic acid bacteria isolated from poultry protect the intestinal epithelial cells of chickens from in vitro wheat germ agglutinin-induced cytotoxicity.

    PubMed

    Babot, J D; Argañaraz Martínez, E; Lorenzo-Pisarello, M J; Apella, M C; Perez Chaia, A

    2017-02-01

    Poultry fed on wheat-based diets regularly ingest wheat germ agglutinin (WGA) that has toxic effects in vitro on intestinal epithelial cells (IEC) obtained from 14-d-old broilers. Cytotoxicity and the potential role of 14 intestinal bacterial strains in the removal of bound lectins in epithelial cell cultures were investigated. Cytotoxicity was dependent on time and lectin concentration; the lethal dose (LD50) was 8.36 µg/ml for IEC exposed for 2 h to WGA. Complementary sugars to WGA were detected on the surface of one Enterococcus and 9 Lactobacillus strains isolated from poultry. These strains were evaluated as a lectin removal tool for cytotoxicity prevention. Incubation of lactic acid bacteria with WGA before IEC-lectin interaction caused a substantial reduction in the percentage of cell deaths. The protection was attributed to the amount of lectin bound to the bacterial surfaces and was strain-dependent. L. salivarius LET 201 and L. reuteri LET 210 were more efficient than the other lactic acid bacteria assayed. These results provide a basis for the development of probiotic supplements or cell-wall preparations of selected lactic acid bacteria intended to avoid harmful effects of a natural constituent of the grain in wheat-based diets.

  7. 40 CFR 721.10295 - IPDI modified isophthalic acid, neopentyl glycol and adipic acid (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., neopentyl glycol and adipic acid (generic). 721.10295 Section 721.10295 Protection of Environment..., neopentyl glycol and adipic acid (generic). (a) Chemical substances and significant new uses subject to... glycol and adipic acid (PMN P-11-591) is subject to reporting under this section for the significant...

  8. 40 CFR 721.10295 - IPDI modified isophthalic acid, neopentyl glycol and adipic acid (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., neopentyl glycol and adipic acid (generic). 721.10295 Section 721.10295 Protection of Environment..., neopentyl glycol and adipic acid (generic). (a) Chemical substances and significant new uses subject to... glycol and adipic acid (PMN P-11-591) is subject to reporting under this section for the significant...

  9. 40 CFR 721.10295 - IPDI modified isophthalic acid, neopentyl glycol and adipic acid (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., neopentyl glycol and adipic acid (generic). 721.10295 Section 721.10295 Protection of Environment..., neopentyl glycol and adipic acid (generic). (a) Chemical substances and significant new uses subject to... glycol and adipic acid (PMN P-11-591) is subject to reporting under this section for the significant...

  10. Translation of satellite tobacco necrosis virus RNA modified by (not equal to)-r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene is inhibited in a wheat germ cell-free system

    SciTech Connect

    Haas, R.; Pulkrabek, P.; Takanami, Y.; Grunberger, D.

    1983-01-01

    It has been shown that (not equal to)-r-7-,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (BPDE) modification of rabbit globin mRNA results in inhibition of translational initiation. In order to explore the possibility that modification of the 5' cap structure was responsible for this inhibition, the naturally non-capped mRNA from satellite tobacco necrosis virus (STNV) was reacted with BPDE and translated in a wheat germ cell-free system. The extent of modification was 1.3 and 2.9 BPDE residues/molecule. High performance liquid chromatography of the modified nucleosides from enzymatically hydrolyzed STNV RNA revealed that greater than 90% of the nucleoside adducts were substituted at the exocyclic amino group of guanosine. The translational ability of the lower and higher modified STNV, measured by incorporation of (/sup 14/C)amino acids into acid-precipitable polypeptides is inhibited by 55% and 63%, respectively. Polyacrylamide gel electrophoretic analyses of the translation products indicate that predominantly full-length coat proteins are synthesized but with the carcinogen-modified STNV the amount is reduced. On the other hand, 80S initiation complex formation is not inhibited as measured by binding of the BPDE-modified STNV to ribosomes and followed by glycerol gradient centrifugation. Under these conditions, aurintricarboxylic acid completely inhibits 80S initiation complex formation in the presence of either modified or native STNV. These results suggest that inhibition of in vitro translation of BPDE-modified STNV, in contrast to that of globin mRNA, is not at the level of initiation complex formation but possibly by premature termination of growing polypeptides.

  11. Removal of humic acid from aqueous solution by cetylpyridinium bromide modified zeolite.

    PubMed

    Zhan, Yanhui; Zhu, Zhiliang; Lin, Jianwei; Qiu, Yanling; Zhao, Jianfu

    2010-01-01

    Natural zeolite was modified by loading cetylpyridinium bromide (CPB) to create more efficient sites for humic acid (HA) adsorption. The natural and CPB modified zeolites were characterized with X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and elemental analysis. The effects of various experimental parameters such as contact time, initial HA concentration, solution pH and coexistent Ca2+, upon HA adsorption onto CPB modified zeolites were evaluated. The results showed that natural zeolite had negligible affinity for HA in aqueous solutions, but CPB modified zeolites exhibited high adsorption efficiency for HA. A higher CPB loading on natural zeolites exhibited a larger HA adsorption capacity. Acidic pH and coexistent Ca2+ were proved to be favorable for HA adsorption onto CPB modified zeolite. The kinetic process was well described by pseudo second-order model. The experimental isotherm data fitted well to Langmuir and Sips models. The maximum monolayer adsorption capacity of CPB modified zeolite with surfactant bilayer coverage was found to be 92.0 mg/g.

  12. Nuclease stability of boron-modified nucleic acids: application to label-free mismatch detection.

    PubMed

    Reverte, Maëva; Vasseur, Jean-Jacques; Smietana, Michael

    2015-11-21

    5'-End boronic acid-modified oligonucleotides were evaluated against various nucleases at single and double stranded levels. The results show that these modifications induce a high resistance to degradation by calf-spleen and snake venom phosphodiesterases. More importantly, this eventually led to the development of a new label-free enzyme-assisted fluorescence-based method for single mismatch detection.

  13. Insights on chiral, backbone modified peptide nucleic acids: Properties and biological activity

    PubMed Central

    Moccia, Maria; Adamo, Mauro F A; Saviano, Michele

    2014-01-01

    PNAs are emerging as useful synthetic devices targeting natural miRNAs. In particular 3 classes of structurally modified PNAs analogs are herein described, namely α, β and γ, which differ by their backbone modification. Their mode and binding affinity for natural nucleic acids and their use in medicinal chemistry as potential miRNA binders is discussed. PMID:26752710

  14. Effect of microfluidized and stearic acid modified soy protein in natural rubber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microfluidized and stearic acid modified soy protein aggregates were used to reinforced natural rubber. The size of soy protein particles was reduced with a microfluidizing and ball milling process. Filler size reduction with longer ball milling time tends to increase tensile strength of the rubber ...

  15. Synthesis of Abscisic Acid-Responsive, Heat-Stable Proteins in Embryonic Axes of Dormant Wheat Grain 1

    PubMed Central

    Ried, Jeffrey L.; Walker-Simmons, Mary K.

    1990-01-01

    Germination of embryonic axes from dormant grain is inhibited by low concentrations of abscisic acid (ABA) compared with axes from nondormant grain. Incubation of dormant grain axes in 0.05 to 50 micromolar ABA caused the prolonged synthesis of a set of heat-stable proteins. Two of these proteins were identified as dehydrins. In nondormant grain axes, 100- to 1000-fold greater ABA concentrations were required to produce similar results. When embryonic axes of dormant wheat (Triticum aestivum) grain were imbibed without ABA, endogenous ABA levels increased 2.5-fold by 4 hours and then gradually declined. Heat-stable proteins were continuously synthesized for at least 18 hours. No increase in endogenous ABA was observed when nondormant grain axes were imbibed. Endogenous ABA levels in nondormant grain axes remained constant at 4 hours and then declined. The nondormant grain axes initially synthesized the heat-stable proteins, but that synthesis disappeared between 8 and 12 hours. These results showing the prolonged synthesis of ABA-responsive, heat-stable proteins by dormant grain axes, demonstrate that biochemical differences occur when axes from dormant compared with nondormant grains are imbibed. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:16667520

  16. Multifunctional magnetic nanoparticles modified with polyethylenimine and folic acid for biomedical theranostics.

    PubMed

    Yoo, Hyunhee; Moon, Seung-Kwan; Hwang, Taewon; Kim, Yong Seok; Kim, Joo-Hwan; Choi, Sung-Wook; Kim, Jung Hyun

    2013-05-21

    This paper describes the preparation of magnetic nanoparticles modified with polyethylenimine (PEI)-folic acid (PF) conjugate and their potential biomedical applications. Magnetic nanoparticles modified with (3-(2-aminoethylamino)propyltrimethoxysilane) (AEAPS) were first prepared using a ligand exchange method to provide biocompatibility and hydrophilicity, and further conjugated with PF to carry gene and enhance specific uptake into cancer cells. We demonstrated the feasibility of the multifunctional magnetic nanoparticles as contrast agents in magnetic resonance imaging (MRI) and as gene carriers for gene delivery. In vitro results revealed that the cytotoxicity of the multifunctional magnetic nanoparticles was lower compared to that of pristine magnetic nanoparticles. Furthermore, we demonstrated the specific uptake of the magnetic nanoparticles modified with PF to KB cells using WI-38 cells as comparison by confocal microscopy. The PF-modified magnetic nanoparticles can potentially be employed as theranostic nanoplatforms for targeted gene delivery to cancer cells and simultaneous magnetic resonance imaging.

  17. Impact of phenazine-1-carboxylic acid upon iron speciation and microbial biomass in the rhizosphere of wheat

    NASA Astrophysics Data System (ADS)

    LeTourneau, M.; Marshall, M.; Grant, M.; Freeze, P.; Cliff, J. B.; Lai, B.; Strawn, D. G.; Thomashow, L. S.; Weller, D. M.; Harsh, J. B.

    2015-12-01

    Phenazine-1-carboxylic acid (PCA) is a redox-active antibiotic produced by diverse bacterial taxa, and has been shown to facilitate interactions between biofilms and iron (hydr)oxides in culture systems (Wang et al. 2011, J Bacteriol 192: 365). Because rhizobacterial biofilms are a major sink for plant-derived carbon and source for soil organic matter (SOM), and Fe (hydr)oxides have reactive surfaces that influence the stability of microbial biomass and SOM, PCA-producing rhizobacteria could influence soil carbon fluxes. Large populations of Pseudomonas fluorescens strains producing PCA in concentrations up to 1 μg/g root have been observed in the rhizosphere of non-irrigated wheat fields covering 1.56 million hectares of central Washington state. This is one of the highest concentrations ever reported for a natural antibiotic in a terrestrial ecosystem (Mavrodi et al. 2012, Appl Environ Microb 78: 804). Microscopic comparisons of PCA-producing (PCA+) and non-PCA-producing (PCA-) rhizobacterial colony morphologies, and comparisons of Fe extractions from rhizosphere soil inoculated with PCA+ and PCA- strains suggest that PCA promotes biofilm development as well as dramatic Fe transformations throughout the rhizosphere (unpublished data). In order to illustrate PCA-mediated interactions between biofilms and Fe (hydr)oxides in the rhizosphere, identify the specific Fe phases favored by PCA, and establish the ramifications for stability and distribution of microbial biomass and SOM, we have collected electron micrographs, X-ray fluorescence images, X-ray absorption near-edge spectra, and secondary-ion mass spectrometry images of wheat root sections inoculated with 15N-labelled PCA+ or PCA- rhizobacteria. These images and spectra allow us to assess the accumulation, turnover, and distribution of microbial biomass, the associations between Fe and other nutrients such as phosphorus, and the redox status and speciation of iron in the presence and absence of PCA. This

  18. Seasonal Variation of the Effect of Extremely Diluted Agitated Gibberellic Acid (10e-30) on Wheat Stalk Growth: A Multiresearcher Study

    PubMed Central

    Endler, Peter Christian; Matzer, Wolfgang; Reich, Christian; Reischl, Thomas; Hartmann, Anna Maria; Thieves, Karin; Pfleger, Andrea; Hofäcker, Jürgen; Lothaller, Harald; Scherer-Pongratz, Waltraud

    2011-01-01

    The influence of a homeopathic high dilution of gibberellic acid on wheat growth was studied at different seasons of the year. Seedlings were allowed to develop under standardized conditions for 7 days; plants were harvested and stalk lengths were measured. The data obtained confirm previous findings, that ultrahigh diluted potentized gibberellic acid affects stalk growth. Furthermore, the outcome of the study suggests that experiments utilizing the bioassay presented should best be performed in autumn season. In winter and spring, respectively, no reliable effects were found. PMID:22125426

  19. The influence of UV-irradiation on chitosan modified by the tannic acid addition.

    PubMed

    Sionkowska, A; Kaczmarek, B; Gnatowska, M; Kowalonek, J

    2015-07-01

    The influence of UV-irradiation with the wavelength 254 nm on the properties of chitosan modified by the tannic acid addition was studied. Tannic acid was added to chitosan solution in different weight ratios and after solvent evaporation thin films were formed. The properties of the films such as thermal stability, Young modulus, ultimate tensile strength, moisture content, swelling behavior before and after UV-irradiation were measured and compared. Moreover, the surface properties were studied by contact angle measurements and by the use of atomic force microscopy. The results showed that UV-irradiation caused both, the degradation of the specimen and its cross-linking. The surface of the films made of chitosan modified by the addition of tannic acid was altered by UV-irradiation.

  20. Phytic acid/graphene oxide nanocomposites modified electrode for electrochemical sensing of dopamine.

    PubMed

    Wang, Donglei; Xu, Fei; Hu, Jiajie; Lin, Meng

    2017-02-01

    An electrochemical sensor for determining dopamine was developed by modifying phytic acid/graphene oxide (PA/GO) nanocomposites onto a glassy carbon electrode (GCE). PA functionalized GO was prepared by an ultra-sonication method. Subsequently, the PA/GO nanocomposites were drop-casted on a glassy carbon substrate. The structural feature of the PA/GO modified GCE was confirmed by attenuated total reflection infrared (ATR-IR) spectroscopy. The proposed electrochemical sensor was applied to detect various concentrations of DA by differential pulse voltammetry (DPV). The PA/GO/GCE was considered to be highly sensitive to DA in the range of 0.05-10μM. In addition, the PA/GO/GCE demonstrated high electrochemical selectivity toward DA in the presence of ascorbic acid (AA) and uric acid (UA). The prepared electrochemical DA sensor was applied for detection of DA in dopamine hydrochloride injection and spiked samples of human urine with satisfactory results.

  1. Biodiversity of lactic acid bacteria in French wheat sourdough as determined by molecular characterization using species-specific PCR.

    PubMed

    Robert, Hervé; Gabriel, Valérie; Fontagné-Faucher, Catherine

    2009-09-30

    The lactic acid microflora of nine traditional wheat sourdoughs from the Midi-Pyrénées area (South western France) was previously isolated and preliminary characterized using conventional morphological and biochemical analysis. However, such phenotypic methods alone are not always reliable and have a low taxonomic resolution for identification of lactic acid bacteria species. In the present study, a total of 290 LAB isolates were identified by PCR amplification using different sets of specific primers in order to provide a thorough characterization of the lactic flora from these traditional French sourdoughs. Overall, the LAB isolates belonged to 6 genera: Lactobacillus (39%, 8 species), Pediococcus (38%, 1 species), Leuconostoc (17%, 2 species), Weissella (4%, 2 species), Lactococcus (1%, 1 species) and Enterococcus (<1%, 1 species) and 15 different species were detected: L. plantarum, L. curvatus, L. paracasei, L. sanfranciscensis, L. pentosus, L. paraplantarum, L. sakei, L. brevis, P. pentosaceus, L. mesenteroides, L. citreum, W. cibaria, W. confusa, L. lactis and E. hirae. Facultative heterofermentative LAB represent more than 76% of the total isolates, the main species isolated herein correspond to L. plantarum and P. pentosaceus. Obligate heterofermentative lactobacilli (L. sanfranciscencis, L. brevis) represent less than 3% of the total isolates whereas Leuconostoc and Weissella species represent 21% of the total isolates and have been detected in eight of the nine samples. Detection of some LAB species was preferentially observed depending on the isolation culture medium. The number of different species within a sourdough varies from 3 to 7 and original associations of hetero- and homofermentative LAB species have been revealed. Results from this study clearly confirm the diversity encountered in the microbial community of traditional sourdough and highlight the importance of LAB cocci in the sourdough ecosystem, along with lactobacilli.

  2. Mapping of amino acid substitutions conferring herbicide resistance in wheat glutathione transferase.

    PubMed

    Govindarajan, Sridhar; Mannervik, Bengt; Silverman, Joshua A; Wright, Kathy; Regitsky, Drew; Hegazy, Usama; Purcell, Thomas J; Welch, Mark; Minshull, Jeremy; Gustafsson, Claes

    2015-03-20

    We have used design of experiments (DOE) and systematic variance to efficiently explore glutathione transferase substrate specificities caused by amino acid substitutions. Amino acid substitutions selected using phylogenetic analysis were synthetically combined using a DOE design to create an information-rich set of gene variants, termed infologs. We used machine learning to identify and quantify protein sequence-function relationships against 14 different substrates. The resulting models were quantitative and predictive, serving as a guide for engineering of glutathione transferase activity toward a diverse set of herbicides. Predictive quantitative models like those presented here have broad applicability for bioengineering.

  3. Aging properties of films of plasticized vital wheat gluten cast from acidic and basic solutions.

    PubMed

    Olabarrieta, Idoia; Cho, Sung-Woo; Gällstedt, Mikael; Sarasua, Jose-Ramon; Johansson, Eva; Hedenqvist, Mikael S

    2006-05-01

    In order to understand the mechanisms behind the undesired aging of films based on vital wheat gluten plasticized with glycerol, films cast from water/ethanol solutions were investigated. The effect of pH was studied by casting from solutions at pH 4 and pH 11. The films were aged for 120 days at 50% relative humidity and 23 degrees C, and the tensile properties and oxygen and water vapor permeabilities were measured as a function of aging time. The changes in the protein structure were determined by infrared spectroscopy and size-exclusion and reverse-phase high-performance liquid chromatography, and the film structure was revealed by optical and scanning electron microscopy. The pH 11 film was mechanically more stable with time than the pH 4 film, the latter being initially very ductile but turning brittle toward the end of the aging period. The protein solubility and infrared spectroscopy measurements indicated that the protein structure of the pH 4 film was initially significantly less polymerized/aggregated than that of the pH 11 film. The polymerization of the pH 4 film increased during storage but it did not reach the degree of aggregation of the pH 11 film. Reverse-phase chromatography indicated that the pH 11 films were to some extent deamidated and that this increased with aging. At the same time a large fraction of the aged pH 11 film was unaffected by reducing agents, suggesting that a time-induced isopeptide cross-linking had occurred. This isopeptide formation did not, however, change the overall degree of aggregation and consequently the mechanical properties of the film. During aging, the pH 4 films lost more mass than the pH 11 films mainly due to migration of glycerol but also due to some loss of volatile mass. Scanning electron and optical microscopy showed that the pH 11 film was more uniform in thickness and that the film structure was more homogeneous than that of the pH 4 film. The oxygen permeability was also lower for the pH 11 film. The

  4. N-methylimidazolium modified magnetic particles as adsorbents for solid phase extraction of genomic deoxyribonucleic acid from genetically modified soybeans.

    PubMed

    Deng, Manchen; Jiang, Cheng; Jia, Li

    2013-04-10

    N-Methylimidazolium modified magnetic particles (MIm-MPs) were prepared and applied in the solid phase extraction of genomic deoxyribonucleic acid (DNA) from genetically modified soybeans. The adsorption of MIm-MPs for DNA mainly resulted from the strong electrostatic interaction between the positively charged MPs and the negatively charged DNA. The elution of DNA from MPs-DNA conjugates using phosphate buffer resulted from the stronger electrostatic interaction of phosphate ions with MPs than DNA. In the extraction procedure, no harmful reagents (e.g. phenol, chloroform and isopropanol, etc.) used, high yield (10.4 μg DNA per 30 mg sample) and high quality (A260/A280=1.82) of DNA can be realized. The as-prepared DNA was used as template for duplex-polymerase chain reaction (PCR) and the PCR products were analyzed by a sieving capillary electrophoresis method. Quick and high quality extraction of DNA template, and fast and high resolution detection of duplex PCR products can be realized using the developed method. No toxic reagents are used throughout the method.

  5. Near-infrared reflectance spectroscopy (NIRS) enables the fast and accurate prediction of essential amino acid contents. 2. Results for wheat, barley, corn, triticale, wheat bran/middlings, rice bran, and sorghum.

    PubMed

    Fontaine, Johannes; Schirmer, Barbara; Hörr, Jutta

    2002-07-03

    Further NIRS calibrations were developed for the accurate and fast prediction of the total contents of methionine, cystine, lysine, threonine, tryptophan, and other essential amino acids, protein, and moisture in the most important cereals and brans or middlings for animal feed production. More than 1100 samples of global origin collected over five years were analyzed for amino acids following the Official Methods of the United States and European Union. Detailed data and graphics are given to characterize the obtained calibration equations. NIRS was validated with 98 independent samples for wheat and 78 samples for corn and compared to amino acid predictions using linear crude protein regression equations. With a few exceptions, validation showed that 70-98% of the amino acid variance in the samples could be explained using NIRS. Especially for lysine and methionine, the most limiting amino acids for farm animals, NIRS can predict contents in cereals much better than crude protein regressions. Through low cost and high speed of analysis NIRS enables the amino acid analysis of many samples in order to improve the accuracy of feed formulation and obtain better quality and lower production costs.

  6. Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid.

    PubMed

    Salsbury, Freddie R; Knutson, Stacy T; Poole, Leslie B; Fetrow, Jacquelyn S

    2008-02-01

    Cysteine sulfenic acid (Cys-SOH), a reversible modification, is a catalytic intermediate at enzyme active sites, a sensor for oxidative stress, a regulator of some transcription factors, and a redox-signaling intermediate. This post-translational modification is not random: specific features near the cysteine control its reactivity. To identify features responsible for the propensity of cysteines to be modified to sulfenic acid, a list of 47 proteins (containing 49 known Cys-SOH sites) was compiled. Modifiable cysteines are found in proteins from most structural classes and many functional classes, but have no propensity for any one type of protein secondary structure. To identify features affecting cysteine reactivity, these sites were analyzed using both functional site profiling and electrostatic analysis. Overall, the solvent exposure of modifiable cysteines is not different from the average cysteine. The combined sequence, structure, and electrostatic approaches reveal mechanistic determinants not obvious from overall sequence comparison, including: (1) pKaS of some modifiable cysteines are affected by backbone features only; (2) charged residues are underrepresented in the structure near modifiable sites; (3) threonine and other polar residues can exert a large influence on the cysteine pKa; and (4) hydrogen bonding patterns are suggested to be important. This compilation of Cys-SOH modification sites and their features provides a quantitative assessment of previous observations and a basis for further analysis and prediction of these sites. Agreement with known experimental data indicates the utility of this combined approach for identifying mechanistic determinants at protein functional sites.

  7. Surface activity and molecular characteristics of cuttlefish skin gelatin modified by oxidized linoleic acid.

    PubMed

    Aewsiri, Tanong; Benjakul, Soottawat; Visessanguan, Wonnop; Wierenga, Peter A; Gruppen, Harry

    2011-05-01

    Surface activity and molecular changes of cuttlefish skin gelatin modified with oxidized linoleic acid (OLA) prepared at 60, 70 and 80 °C at different times were investigated. Modification of gelatin with OLA could improve surface activity of resulting gelatin as evidenced by the decreased surface tension and the increased foaming and emulsifying properties. Interaction between OLA and gelatin led to the generation of carbonyl groups, loss of free amino content and the increase in particle size of resulting gelatin. Emulsion stabilized by modified gelatin had the smaller mean particle diameter with higher stability, compared with that stabilized by gelatin without modification.

  8. Spectroscopic characterization of genetically modified flax fibres enhanced with poly-3-hydroxybutyric acid

    NASA Astrophysics Data System (ADS)

    Wróbel-Kwiatkowska, Magdalena; Szopa, Jan; Dymińska, Lucyna; Mączka, Mirosław; Hanuza, Jerzy

    2009-02-01

    Genetically modified flax fibres, derived from transgenic flax with expression of three bacterial genes necessary for synthesis of poly-3-hydroxybutyric acid (PHB), have been analysed. These transgenic flaxes, enhanced with different amount of the PHB, have been studied by FT-IR spectroscopy. The integral intensities of the IR bands have been used for estimation of the chemical content of the normal and transgenic flaxes as well as the differences between the natural and genetically modified flax fibres. The spectroscopic data were compared to those obtained from chemical analysis of flax fibres.

  9. Assessment of in vitro cellular responses of monocytes and keratinocytes to tannic acid modified silver nanoparticles.

    PubMed

    Orlowski, Piotr; Krzyzowska, Malgorzata; Zdanowski, Robert; Winnicka, Anna; Nowakowska, Julita; Stankiewicz, Wanda; Tomaszewska, Emilia; Celichowski, Grzegorz; Grobelny, Jaroslaw

    2013-09-01

    Hydrolyzable tannins are known to exhibit diverse biological effects, which can be used in combination with silver nanoparticles (AgNPs). In this study, we tested toxic and inflammatory properties of tannic-acid modified 13, 33, 46 nm and unmodified 10-65 nm AgNPs using murine 291.03C keratinocyte and RAW 264.7 monocyte cell lines. Both cell lines exposed for 24h to 1-10 μg/ml of 13 nm, 33 nm, 46 nm and unmodified AgNPs showed dose-dependent toxicity and decreased cell proliferation. Only small-sized AgNPs induced production of ROS by monocytes, but not keratinocytes. Monocytes internalized large aggregates of 33, 46 nm and 10-65 nm AgNPs in cytoplasmic vacuoles, whereas keratinocytes accumulated less particles. AgNPs of 13 nm were localized ubiquitously within both cell types. The tested AgNPs strongly down-regulated production of tumor necrosis factor-α (TNF-α) by monocytes, whereas keratinocytes exposed to AgNPs showed an opposite effect. Unmodified but not tannic acid-modified AgNPs increased production of the pro-inflammatory MCP-1 by monocytes and keratinocytes. In summary, low inflammatory potential and lack of ROS production by tannic-acid modified AgNPs sized above 30 nm suggests that tannic acid modification of large silver nanoparticles may help to increase AgNPs biosafety.

  10. Standardized ileal digestibility of amino acids in alfalfa meal, sugar beet pulp, and wheat bran compared to wheat and protein ingredients for growing pigs.

    PubMed

    Eklund, M; Rademacher, M; Sauer, W C; Blank, R; Mosenthin, R

    2014-03-01

    A total of 11 (8 + 3 for replacement) barrows with an initial BW of 23 kg and fitted with a simple T-cannula at the distal ileum were used in 2 consecutive experiments (Exp. 1 and Exp. 2) to determine the standardized ileal digestibility (SID) of AA in 7 assay feed ingredients according to 2 consecutive duplicated 4 × 4 Latin square designs. In Exp. 1, 3 corn starch-based assay diets were formulated to contain 170 g CP/kg (as-fed basis) from either soybean meal (SBM), canola meal (CM), or meat-and-bone meal (MBM) and 1 assay diet that contained 136 g CP/kg (as-fed basis) from wheat as commonly used feed ingredients for pigs. In Exp. 2, the pigs were fed 4 assay diets formulated to contain 170 g CP/kg (as-fed basis) from either the same SBM as in Exp. 1 or a combination of this SBM and alfalfa meal (AM), sugar beet pulp (SB), or wheat bran (WB) to compare the SID of AA in these feed ingredients with those used in Exp. 1. The SID of AA in CM was lower compared to SBM (P < 0.05) with intermediate values for MBM and wheat. Among fiber rich feed ingredients, SID values were lower in SB compared to WB (P < 0.05) with intermediate values for AM. In AM, SID values ranged between 29 and 45% for Lys, Cys, Thr, and Phe and between 51 and 71% for Arg, His, Ile, Leu, Met, and Val. In SB, SID values ranged between -21 and 46% for Cys, Thr, Phe, and Val and between 51 and 61% for Arg, His, Ile, Leu, Lys, and Met. In WB, SID values were between 55 and 64% for Lys, Cys, Phe, Thr, and Val and between 68 and 80% for Arg, His, Ile, Leu, and Met. The SID values in WB, SB, and AM provided in the present study may improve diet formulation when these feed ingredients are used in diet formulation for pigs.

  11. Reduced by-product formation and modified oxygen availability improve itaconic acid production in Aspergillus niger.

    PubMed

    Li, An; Pfelzer, Nina; Zuijderwijk, Robbert; Brickwedde, Anja; van Zeijl, Cora; Punt, Peter

    2013-05-01

    Aspergillus niger has an extraordinary potential to produce organic acids as proven by its application in industrial citric acid production. Previously, it was shown that expression of the cis-aconitate decarboxylase gene (cadA) from Aspergillus terreus converted A. niger into an itaconic acid producer (Li et al., Fungal Genet Bio 48: 602-611, 2011). After some initial steps in production optimization in the previous research (Li et al., BMC biotechnol 12: 57, 2012), this research aims at modifying host strains and fermentation conditions to further improve itaconic acid production. Expression of two previously identified A. terreus genes encoding putative organic acid transporters (mttA, mfsA) increased itaconic acid production in an A. niger cis-aconitate decarboxylase expressing strain. Surprisingly, the production did not increase further when both transporters were expressed together. Meanwhile, oxalic acid was accumulated as a by-product in the culture of mfsA transformants. In order to further increase itaconic acid production and eliminate by-product formation, the non-acidifying strain D15#26 and the oxaloacetate acetylhydrolase (oahA) deletion strain AB 1.13 ∆oahA #76 have been analyzed for itaconic acid production. Whereas cadA expression in AB 1.13 ∆oahA #76 resulted in higher itaconic acid production than strain CAD 10.1, this was not the case in strain D15#26. As expected, oxalic acid production was eliminated in both strains. In a further attempt to increase itaconic acid levels, an improved basal citric acid-producing strain, N201, was used for cadA expression. A selected transformant (N201CAD) produced more itaconic acid than strain CAD 10.1, derived from A. niger strain AB1.13. Subsequently, we have focused on the influence of dissolved oxygen (D.O.) on itaconic acid production. Interestingly, reduced D.O. levels (10-25 %) increased itaconic acid production using strain N201 CAD. Similar results were obtained in strain AB 1.13 CAD + HBD2

  12. Enantioseparation of Mandelic Acid Enantiomers With Magnetic Nano-Sorbent Modified by a Chiral Selector.

    PubMed

    Tarhan, Tuba; Tural, Bilsen; Tural, Servet; Topal, Giray

    2015-11-01

    In this study, R(+)-α-methylbenzylamine-modified magnetic chiral sorbent was synthesized and assessed as a new enantioselective solid phase sorbent for separation of mandelic acid enantiomers from aqueous solutions. The chemical structures and magnetic properties of the new sorbent were characterized by vibrating sample magnetometry, transmission electron microscopy, Fourier transform infrared spectroscopy, and dynamic light scattering. The effects of different variables such as the initial concentration of racemic mandelic acid, dosage of sorbent, and contact time upon sorption characteristics of mandelic acid enantiomers on magnetic chiral sorbent were investigated. The sorption of mandelic acid enantiomers followed a pseudo-second-order reaction and equilibrium experiments were well fitted to a Langmuir isotherm model. The maximum adsorption capacity of racemic mandelic acid on to the magnetic chiral sorbent was found to be 405 mg g(-1). The magnetic chiral sorbent has a greater affinity for (S)-(+)-mandelic acid compared to (R)-(-)-mandelic acid. The optimum resolution was achieved with 10 mL 30 mM of racemic mandelic acid and 110 mg of magnetic chiral sorbent. The best percent enantiomeric excess values (up to 64%) were obtained by use of a chiralpak AD-H column.

  13. Rope-producing strains of Bacillus spp. from wheat bread and strategy for their control by lactic acid bacteria.

    PubMed

    Pepe, Olimpia; Blaiotta, Giuseppe; Moschetti, Giancarlo; Greco, Teresa; Villani, Francesco

    2003-04-01

    Two types of white wheat bread (high- and low-type loaves) were investigated for rope spoilage. Thirty of the 56 breads tested developed rope spoilage within 5 days; the high-type loaves were affected by rope spoilage more than the low-type loaves. Sixty-one Bacillus strains were isolated from ropy breads and were characterized on the basis of their phenotypic and genotypic traits. All of the isolates were identified as Bacillus subtilis by biochemical tests, but molecular assays (randomly amplified polymorphic DNA PCR assay, denaturing gradient gel electrophoresis analysis, and sequencing of the V3 region of 16S ribosomal DNA) revealed greater Bacillus species variety in ropy breads. In fact, besides strains of B. subtilis, Bacillus licheniformis, Bacillus cereus, and isolates of Bacillus clausii and Bacillus firmus were also identified. All of the ropy Bacillus isolates exhibited amylase activity, whereas only 32.4% of these isolates were able to produce ropiness in bread slices after treatment at 96 degrees C for 10 min. Strains of lactic acid bacteria previously isolated from sourdough were first selected for antirope activity on bread slices and then used as starters for bread-making experiments. Prevention of growth of approximately 10(4) rope-producing B. subtilis G1 spores per cm(2) on bread slices for more than 15 days was observed when heat-treated cultures of Lactobacillus plantarum E5 and Leuconostoc mesenteroides A27 were added. Growth of B. subtilis G1 occurred after 7 days in breads started with Saccharomyces cerevisiae T22, L. plantarum E5, and L. mesenteroides A27.

  14. Ethylene limits abscisic acid- or soil drying-induced stomatal closure in aged wheat leaves.

    PubMed

    Chen, Lin; Dodd, Ian C; Davies, William J; Wilkinson, Sally

    2013-10-01

    The mechanism of age-induced decreased stomatal sensitivity to abscisic acid (ABA) and soil drying has been explored here. Older, fully expanded leaves partly lost their ability to close stomata in response to foliar ABA sprays, and soil drying which stimulated endogenous ABA production, while young fully expanded leaves closed their stomata more fully. However, ABA- or soil drying-induced stomatal closure of older leaves was partly restored by pretreating plants with 1-methylcyclopropene (1-MCP), which can antagonize ethylene receptors, or by inoculating soil around the roots with the rhizobacterium Variovorax paradoxus 5C-2, which contains 1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase. ACC (the immediate biosynthetic precursor of ethylene) sprays revealed higher sensitivity of stomata to ethylene in older leaves than younger leaves, despite no differences in endogenous ACC concentrations or ethylene emission. Taken together, these results indicate that the relative insensitivity of stomatal closure to ABA and soil drying in older leaves is likely due to altered stomatal sensitivity to ethylene, rather than ethylene production. To our knowledge, this is the first study to mechanistically explain diminished stomatal responses to soil moisture deficit in older leaves, and the associated reduction in leaf water-use efficiency.

  15. Ion exchange properties of monolithic and particle type iminodiacetic acid modified silica.

    PubMed

    Sugrue, Edel; Nesterenko, Pavel; Paull, Brett

    2004-07-01

    A 10 cm silica monolith has been modified with iminodiacetic acid (IDA) groups and characterised for its selectivity toward alkali, alkaline earth, and selected transition metal cations. Physical characterisation of the modified monolith found non-homogeneous modification along the length of the monolith, although sufficient capacity was achieved to facilitate significant retention of alkaline earth and transition/heavy metal ions over a range of eluent pH and ionic strength conditions. For alkaline earth and transition/heavy metal ions, selectivity of the 10 cm IDA monolith closely matched that seen with a 25 cm IDA modified silica gel particle packed column, although the separation of alkali metal ions was noticeably poorer on the monolithic column. Peak efficiencies for most metal ions were of a similar order for both column types, except for Zn(II), which showed significant peak broadening on the IDA monolithic column.

  16. A gene encoding a protein modified by the phytohormone indoleacetic acid

    PubMed Central

    Walz, Alexander; Park, Seijin; Slovin, Janet P.; Ludwig-Müller, Jutta; Momonoki, Yoshie S.; Cohen, Jerry D.

    2002-01-01

    We show that the expression of an indole-3-acetic acid (IAA)-modified protein from bean seed, IAP1, is correlated to the developmental period of rapid growth during seed development. Moreover, this protein undergoes rapid degradation during germination. The gene for IAP1, the most abundant protein covalently modified by IAA (iap1, GenBank accession no. AF293023) was isolated and cloned from bush bean (Phaseolus vulgaris) seeds. The 957-bp sequence encodes a 35-kDa polypeptide. IAA-modified proteins represent a distinct class of conjugated phytohormones and appear in bean to be the major form of auxin in seeds. IAA proteins also are found at other stages of development in bean plants. Our immunological and analytical data suggest that auxin modification of a small class of proteins may be a feature common to many plants. PMID:11830675

  17. Behaviors and mechanism of acid dyes sorption onto diethylenetriamine-modified native and enzymatic hydrolysis starch.

    PubMed

    Wang, Zuohua; Xiang, Bo; Cheng, Rumei; Li, Yijiu

    2010-11-15

    In this paper, different starches were modified by diethylenetriamine. The native starch reacted with diethylenetriamine giving CAS, whereas the enzymatic hydrolysis starch was modified by diethylenetriamine producing CAES. Adsorption capacities of CAES for four acid dyes, namely, Acid orange 7 (AO7), Acid orange 10 (AO10), Acid green 25 (AG25) and Acid red 18 (AR18) have been determined to be 2.521, 1.242, 1.798 and 1.570 mmol g(-1), respectively. In all cases, CAES has exhibited higher sorption ability than CAS, and the increment for these dyes took the sequence of AO7 (0.944 mmol g(-1))>AO10 (0.592 mmol g(-1))>AR18 (0.411 mmol g(-1))>AG25 (0.047 mmol g(-1)). Sorption kinetics and isotherms analysis showed that these sorption processes were better fitted to pseudo-second-order equation and Langmuir equation. Chemical sorption mechanisms were confirmed by studying the effects of pH, ionic strength and hydrogen bonding. Thermodynamic parameters of these dyes onto CAES and CAS were also observed and it indicated that these sorption processes were exothermic and spontaneous in nature.

  18. Oxidation mechanism of formic acid on the bismuth adatom-modified Pt(111) surface.

    PubMed

    Perales-Rondón, Juan Victor; Ferre-Vilaplana, Adolfo; Feliu, Juan M; Herrero, Enrique

    2014-09-24

    In order to improve catalytic processes, elucidation of reaction mechanisms is essential. Here, supported by a combination of experimental and computational results, the oxidation mechanism of formic acid on Pt(111) electrodes modified by the incorporation of bismuth adatoms is revealed. In the proposed model, formic acid is first physisorbed on bismuth and then deprotonated and chemisorbed in formate form, also on bismuth, from which configuration the C-H bond is cleaved, on a neighbor Pt site, yielding CO2. It was found computationally that the activation energy for the C-H bond cleavage step is negligible, which was also verified experimentally.

  19. The study of interaction of modified fatty acid with 99mTc in alcoholic media

    NASA Astrophysics Data System (ADS)

    Skuridin, V. S.; Stasyuk, E. S.; Varlamova, N. V.; Nesterov, E. A.; Sinilkin, I. G.; Sadkin, V. L.; Rogov, A. S.; Ilina, E. A.; Larionova, L. A.; Sazonova, S. I.; Zelchan, R. V.; Villa, N. E.

    2016-08-01

    The paper presents the results of laboratory research aimed at the development of methods of synthesis of new radiodiagnostic agents based on modified fatty acid labelled with technetium-99m intended for scintigraphic evaluation of myocardial metabolism. In particular, the interaction of substance with 99mTc in alcoholic media and the use of ethanol as solvent in the synthesis of the radiopharmaceutical were studied.

  20. Wheat Bran Does Not Affect Postprandial Plasma Short-Chain Fatty Acids from 13C-inulin Fermentation in Healthy Subjects

    PubMed Central

    Deroover, Lise; Verspreet, Joran; Luypaerts, Anja; Vandermeulen, Greet; Courtin, Christophe M.; Verbeke, Kristin

    2017-01-01

    Wheat bran (WB) is a constituent of whole grain products with beneficial effects for human health. Within the human colon, such insoluble particles may be colonized by specific microbial teams which can stimulate cross-feeding, leading to a more efficient carbohydrate fermentation and an increased butyrate production. We investigated the extent to which WB fractions with different properties affect the fermentation of other carbohydrates in the colon. Ten healthy subjects performed four test days, during which they consumed a standard breakfast supplemented with 10 g 13C-inulin. A total of 20 g of a WB fraction (unmodified WB, wheat bran with a reduced particle size (WB RPS), or de-starched pericarp-enriched wheat bran (PE WB)) was also added to the breakfast, except for one test day, which served as a control. Blood samples were collected at regular time points for 14 h, in order to measure 13C-labeled short-chain fatty acid (SCFA; acetate, propionate and butyrate) concentrations. Fermentation of 13C-inulin resulted in increased plasma SCFA for about 8 h, suggesting that a sustained increase in plasma SCFA can be achieved by administering a moderate dose of carbohydrates, three times per day. However, the addition of a single dose of a WB fraction did not further increase the 13C-SCFA concentrations in plasma, nor did it stimulate cross-feeding (Wilcoxon signed ranks test). PMID:28117694

  1. Impact of wheat bran derived arabinoxylanoligosaccharides and associated ferulic acid on dough and bread properties.

    PubMed

    Snelders, Jeroen; Dornez, Emmie; Delcour, Jan A; Courtin, Christophe M

    2014-07-23

    The impact of arabinoxylanoligosaccharides (AXOS) with varying bound or free ferulic acid (FA) content on dough and bread properties was studied in view of their prebiotic and antioxidant properties. AXOS with an FA content of 0.1-1.7% caused an increase in dough firmness with increasing AXOS concentration. AXOS with a high FA content (7.2%), on the contrary, resulted in an increase in dough extensibility and a decrease in resistance to extension, similar to that for free FA, when added in levels up to 2%. Higher levels resulted in unmanageable dough. A limited impact on dough gluten network formation was observed. These results suggest that for highly feruloylated AXOS, the FA-mediated dough softening supersedes the firming effect displayed by the carbohydrate moiety of AXOS. The impact of the different AXOS on bread volume, however, was minimal. Furthermore, AXOS in bread were not engaged in covalent cross-linking and significantly increased its antioxidant capacity.

  2. β-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying

    PubMed Central

    Li, Feng-Min

    2012-01-01

    A pot experiment was conducted to investigate the effect of the non-protein amino acid, β-aminobutyric acid (BABA), on the homeostasis between reactive oxygen species (ROS) and antioxidant defence during progressive soil drying, and its relationship with the accumulation of abscisic acid (ABA), water use, grain yield, and desiccation tolerance in two spring wheat (Triticum aestivum L.) cultivars released in different decades and with different yields under drought. Drenching the soil with 100 µM BABA increased drought-induced ABA production, leading to a decrease in the lethal leaf water potential (Ψ) used to measure desiccation tolerance, decreased water use, and increased water use efficiency for grain (WUEG) under moderate water stress. In addition, at severe water stress levels, drenching the soil with BABA reduced ROS production, increased antioxidant enzyme activity, and reduced the oxidative damage to lipid membranes. The data suggest that the addition of BABA triggers ABA accumulation that acts as a non-hydraulic root signal, thereby closing stomata, and reducing water use at moderate stress levels, and also reduces the production of ROS and increases the antioxidant defence enzymes at severe stress levels, thus increasing the desiccation tolerance. However, BABA treatment had no effect on grain yield of wheat when water availability was limited. The results suggest that there are ways of effectively priming the pre-existing defence pathways, in addition to genetic means, to improve the desiccation tolerance and WUEG of wheat. PMID:22859677

  3. In vitro corrosion and biocompatibility study of phytic acid modified WE43 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Ye, C. H.; Zheng, Y. F.; Wang, S. Q.; Xi, T. F.; Li, Y. D.

    2012-02-01

    Phytic acid (PA) conversion coating on WE43 magnesium alloy was prepared by the method of immersion. The influences of phytic acid solution with different pH on the microstructure, properties of the conversion coating and the corrosion resistance were investigated by SEM, FTIR and potentiodynamic polarization method. Furthermore, the biocompatibility of different pH phytic acid solution modified WE43 magnesium alloys was evaluated by MTT and hemolysis test. The results show that PA can enhance the corrosion resistance of WE43 magnesium especially when the pH value of modified solution is 5 and the cytotoxicity of the PA coated WE43 magnesium alloy is much better than that of the bare WE43 magnesium alloy. Moreover, all the hemolysis rates of the PA coated WE43 Mg alloy were lower than 5%, indicating that the modified Mg alloy met the hemolysis standard of biomaterials. Therefore, PA coating is a good candidate to improve the biocompatibility of WE43 magnesium alloy.

  4. A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw.

    PubMed

    Pensupa, Nattha; Jin, Meng; Kokolski, Matt; Archer, David B; Du, Chenyu

    2013-12-01

    This paper reports a solid-state fungal fermentation-based pre-treatment strategy to convert wheat straw into a fermentable hydrolysate. Aspergillus niger was firstly cultured on wheat straw for production of cellulolytic enzymes and then the wheat straw was hydrolyzed by the enzyme solution into a fermentable hydrolysate. The optimum moisture content and three wheat straw modification methods were explored to improve cellulase production. At a moisture content of 89.5%, 10.2 ± 0.13 U/g cellulase activity was obtained using dilute acid modified wheat straw. The addition of yeast extract (0.5% w/v) and minerals significantly improved the cellulase production, to 24.0 ± 1.76 U/g. The hydrolysis of the fermented wheat straw using the fungal culture filtrate or commercial cellulase Ctec2 was performed, resulting in 4.34 and 3.13 g/L glucose respectively. It indicated that the fungal filtrate harvested from the fungal fermentation of wheat straw contained a more suitable enzyme mixture than the commercial cellulase.

  5. On-site cellulase production by Trichoderma reesei 3EMS35 mutant and same vessel saccharification and fermentation of acid treated wheat straw for ethanol production

    PubMed Central

    Khokhar, Zia-ullah; Syed, Qurat-ul-Ain; Wu, Jing; Athar, Muhammad Amin

    2014-01-01

    Bioethanol production from lignocellulosic raw materials involves process steps like pre-treatment, enzymatic hydrolysis, fermentation and distillation. In this study, wheat straw was explored as feedstock for on-site cellulase production by T. reesei 3EMS35 mutant, and as a substrate for second generation bioethanol production from baker yeast. Scanning electron microscopy (SEM) and X-ray diffractography (XRD) of untreated wheat straw (UWS) and acid treated wheat straw (TWS) were done to understand the structural organization and changes in the cellulase accessibility and reactivity. The effect of delignification and structural modification for on-site cellulase enzyme production was comparably studied. The efficiency of crude cellulase enzyme for digestion of UWS and TWS and then production of ethanol from TWS was studied using same-vessel saccharification and fermentation (SVSF) technique, both in shaking flasks as well as in fermenters. Two different methods of operation were tested, i.e. the UWSEnz method, where UWS was used for on-site enzyme production, and TWSEnz method where TWS was applied as substrate for cellullase production. Results obtained showed structural modifications in cellulose of TWS due to delignification, removal of wax and change of crystallinity. UWS was better substrate than TWS for cellulase production due to the fact that lignin did not hinder the enzyme production by fungus but acted as a booster. On-site cellulase enzyme produced by T. reesei 3EMS35 mutant hydrolyzed most of cellulose (91 %) in TWS within first 24 hrs. Shake flasks experiments showed that ethanol titers and yields with UWSEnz were 2.9 times higher compared to those obtained with TWSEnz method respectively. Comparatively, titer of ethanol in shake flask experiments was 10 % higher than this obtained in 3 L fermenter with UWSEnz. Outcomes from this investigation clearly demonstrated the potential of on-site cellulase enzyme production and SVSF for ethanol production

  6. On-site cellulase production by Trichoderma reesei 3EMS35 mutant and same vessel saccharification and fermentation of acid treated wheat straw for ethanol production.

    PubMed

    Khokhar, Zia-Ullah; Syed, Qurat-Ul-Ain; Wu, Jing; Athar, Muhammad Amin

    2014-01-01

    Bioethanol production from lignocellulosic raw materials involves process steps like pre-treatment, enzymatic hydrolysis, fermentation and distillation. In this study, wheat straw was explored as feedstock for on-site cellulase production by T. reesei 3EMS35 mutant, and as a substrate for second generation bioethanol production from baker yeast. Scanning electron microscopy (SEM) and X-ray diffractography (XRD) of untreated wheat straw (UWS) and acid treated wheat straw (TWS) were done to understand the structural organization and changes in the cellulase accessibility and reactivity. The effect of delignification and structural modification for on-site cellulase enzyme production was comparably studied. The efficiency of crude cellulase enzyme for digestion of UWS and TWS and then production of ethanol from TWS was studied using same-vessel saccharification and fermentation (SVSF) technique, both in shaking flasks as well as in fermenters. Two different methods of operation were tested, i.e. the UWSEnz method, where UWS was used for on-site enzyme production, and TWSEnz method where TWS was applied as substrate for cellullase production. Results obtained showed structural modifications in cellulose of TWS due to delignification, removal of wax and change of crystallinity. UWS was better substrate than TWS for cellulase production due to the fact that lignin did not hinder the enzyme production by fungus but acted as a booster. On-site cellulase enzyme produced by T. reesei 3EMS35 mutant hydrolyzed most of cellulose (91 %) in TWS within first 24 hrs. Shake flasks experiments showed that ethanol titers and yields with UWSEnz were 2.9 times higher compared to those obtained with TWSEnz method respectively. Comparatively, titer of ethanol in shake flask experiments was 10 % higher than this obtained in 3 L fermenter with UWSEnz. Outcomes from this investigation clearly demonstrated the potential of on-site cellulase enzyme production and SVSF for ethanol production

  7. Wheat germ extract decreases glucose uptake and RNA ribose formation but increases fatty acid synthesis in MIA pancreatic adenocarcinoma cells.

    PubMed

    Boros, L G; Lapis, K; Szende, B; Tömösközi-Farkas, R; Balogh, A; Boren, J; Marin, S; Cascante, M; Hidvégi, M

    2001-08-01

    The fermented wheat germ extract with standardized benzoquinone composition has potent tumor propagation inhibitory properties. The authors show that this extract induces profound metabolic changes in cultured MIA pancreatic adenocarcinoma cells when the [1,2-13C2]glucose isotope is used as the single tracer with biologic gas chromatography-mass spectrometry. MIA cells treated with 0.1, 1, and 10 mg/mL wheat germ extract showed a dose-dependent decrease in cell glucose consumption. uptake of isotope into ribosomal RNA (2.4%, 9.4%, and 28.0%), and release of 13CO2. Conversely, direct glucose oxidation and ribose recycling in the pentose cycle showed a dose-dependent increase of 1.2%, 20.7%, and 93.4%. The newly synthesized fraction of cell palmitate and the 13C enrichment of acetyl units were also significantly increased with all doses of wheat germ extract. The fermented wheat germ extract controls tumor propagation primarily by regulating glucose carbon redistribution between cell proliferation-related and cell differentiation-related macromolecules. Wheat germ extract treatment is likely associated with the phosphorylation and transcriptional regulation of metabolic enzymes that are involved in glucose carbon redistribution between cell proliferation-related structural and functional macromolecules (RNA, DNA) and the direct oxidative degradation of glucose, which have devastating consequences for the proliferation and survival of pancreatic adenocarcinoma cells in culture.

  8. Salicylic acid and calcium-induced protection of wheat against salinity.

    PubMed

    Al-Whaibi, Mohamed H; Siddiqui, Manzer H; Basalah, Mohammed O

    2012-07-01

    Soil salinity is one of the important environmental factors that produce serious agricultural problems. The objective of the present study was to determine the interactive effect of salicylic acid (SA) and calcium (Ca) on plant growth, photosynthetic pigments, proline (Pro) concentration, carbonic anhydrase (CA) activity and activities of antioxidant enzymes of Triticum aestivum L. (cv. Samma) under salt stress. Application of 90 mM of NaCl reduced plant growth (plant height, fresh weight (FW) and dry weight (DW), chlorophyll (Chl) a, Chl b, CA activity) and enhanced malondialdehyde (MDA) and Pro concentration. However, the application of SA or Ca alone as well as in combination markedly improved plant growth, photosynthetic pigments, Pro concentration, CA activity and activities of antioxidant enzymes peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX) under salt stress. It was, therefore, concluded that application of SA and Ca alone as well as in combination ameliorated the adverse effect of salinity, while combined application proved more effective to reduce the oxidative stress generated by NaCl through reduced MDA accumulation, Chl a/b ratio and Chls degradation and enhanced activities of antioxidant enzymes.

  9. Discovery and Synthesis of Amino Acids Modified Deoxycholic Acid Derivatives and in Vitro Antiproliferative Evaluation.

    PubMed

    Zhao, Chunhui; Zhao, Peizhe; Feng, Bin; Hou, Xiyan; Zhao, Longxuan

    2017-03-01

    A series of deoxycholic acid (DCA) derivatives bearing amino acid moiety has been synthesized and investigated for their potential antiproliferative activities. DCA derivative compounds were synthesized by a two or three step synthetic approach. Their bioactivities were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and Western blotting analysis on three tumor cell lines A549 (human lung cancer cell line), MCF-7 (human breast cancer cell line) and HeLa (human cervical carcinoma cell). The novel derivatives DCA3d, DCA5a, DCA5b, DCA5c, and DCA5d were found to be promising antiproliferative agents. Furthermore, DCA5b showed the greatest cytotoxic activity by induction of apoptosis. These compounds show potentiality for further optimization as antitumor drugs.

  10. Application of Chiral Ionic Liquid-Modified Gold Nanoparticles in the Chiral Recognition of Amino Acid Enantiomers.

    PubMed

    Huang, Lu; Chen, Yi-Ting; Li, Yan-Xia; Yu, Li-Shuang

    2016-07-14

    Two chiral ionic liquids (ILs), namely 1-ethyl-3-methylimidazole l-tartrate (EMIML-Tar) and 1-ethyl-3-methylimidazole l-lactate (EMIML-Lac), were used to modify gold nanoparticles (AuNPs) for chiral recognition of amino acid enantiomers. Transmission electron microscopy, infrared spectroscopy, ultraviolet-visible spectroscopy, and capillary electrophoresis were used for the characterization of chiral IL-modified AuNPs. Meanwhile, the performance of l-tartaric acid and l-lactic acid as modifiers was investigated to make a comparison. The chiral recognition mechanism is further discussed.

  11. Voltammetric Determination of Ferulic Acid Using Polypyrrole-Multiwalled Carbon Nanotubes Modified Electrode with Sample Application

    PubMed Central

    Abdel-Hamid, Refat; Newair, Emad F.

    2015-01-01

    A polypyrrole-multiwalled carbon nanotubes modified glassy carbon electrode-based sensor was devised for determination of ferulic acid (FA). The fabricated sensor was prepared electrochemically using cyclic voltammetry (CV) and characterized using CV and scanning electron microscope (SEM). The electrode shows an excellent electrochemical catalytic activity towards FA oxidation. Under optimal conditions, the anodic peak current correlates linearly to the FA concentration throughout the range of 3.32 × 10−6 to 2.59 × 10−5 M with a detection limit of 1.17 × 10−6 M (S/N = 3). The prepared sensor is highly selective towards ferulic acid without the interference of ascorbic acid. The sensor applicability was tested for total content determination of FA in a commercial popcorn sample and showed a robust functionality.

  12. SO2 gas adsorption by modified kaolin clays: influence of previous heating and time acid treatments.

    PubMed

    Volzone, Cristina; Ortiga, Jose

    2011-10-01

    Modified kaolin clays were used as adsorbents for SO(2) gas adsorptions. The clays were heated up to 900 °C previous to acid treatments with 0.5 N sulfuric acid solutions at boiling temperature during different times up to 1440 min. Equilibrium adsorption at 25 °C and 0.1 MPa was carried out by using a volumetric apparatus. The samples were characterized by chemical analysis, X-ray diffraction and infrared analysis. The heating of the clays followed by acid treatment improved the adsorption capacity of the kaolin clays. The presence of amorphous silica and hydroxyl in the final products improved SO(2) adsorption capacity. Better properties for SO(2) adsorption were found in kaolin rich in not well ordered kaolinite clay mineral.

  13. Characterizing Corrosion Effects of Weak Organic Acids Using a Modified Bono Test

    NASA Astrophysics Data System (ADS)

    Zhou, Yuqin; Turbini, Laura J.; Ramjattan, Deepchand; Christian, Bev; Pritzker, Mark

    2013-12-01

    To meet environmental requirements and achieve benefits of cost-effective manufacturing, no-clean fluxes (NCFs) or low-solids fluxes have become popular in present electronic manufacturing processes. Weak organic acids (WOAs) as the activation ingredients in NCFs play an important role, especially in the current lead-free and halogen-free soldering technology era. However, no standard or uniform method exists to characterize the corrosion effects of WOAs on actual metallic circuits of printed wiring boards (PWBs). Hence, the development of an effective quantitative test method for evaluating the corrosion effects of WOAs on the PWB's metallic circuits is imperative. In this paper, the modified Bono test, which was developed to quantitatively examine the corrosion properties of flux residues, is used to characterize the corrosion effects of five WOAs (i.e., abietic acid, succinic acid, glutaric acid, adipic acid, and malic acid) on PWB metallic circuits. Experiments were performed under three temperature/humidity conditions (85°C/85% RH, 60°C/93% RH, and 40°C/93% RH) using two WOA solution concentrations. The different corrosion effects among the various WOAs were best reflected in the testing results at 40°C and 60°C. Optical microscopy was used to observe the morphology of the corroded copper tracks, and scanning electron microscopy (SEM) energy-dispersive x-ray (EDX) characterization was performed to determine the dendrite composition.

  14. Translation of globin messenger RNA modified by benzo(a)pyrene 7,8-dihydrodiol 9,10-oxide in a wheat germ cell-free system

    SciTech Connect

    Grunberger, D.; Pergolizzi, R.G.; Jones, R.E.

    1980-01-25

    Poly(U/sub 3/G) and rabbit globin mRNA were modified with the active carcinogenic metabolite of benzo(a)pyrene, (+-)-7..beta..,8..cap alpha..-dihydroxy-9..cap alpha..,10..cap alpha..-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene, and the effects of modification on translation in a cell-free protein synthesizing system were studied. High performance liquid chromatography of modified nucleosides from enzymatically hydrolyzed globin mRNA reveals that the active carcinogen formed two adducts with guanosine, four adducts with adenosine, and one adduct probably with cytidine residues. When globin mRNA with 0.4 carcinogen residues/molecule is used as a template, incorporation of amino acids into proteins is inhibited by 50%, and mRNA with 2.4 residues has only 10% of the template activity compared to unmodified molecules. On the other hand, modification of poly(U/sub 3/G) has no effect on its template activity. Since no significant formation of smaller peptides in the protein synthesizing system programmed with modified mRNA is detected, it is suggested that the carcinogen does not block the elongation step in mRNA translation. However, glycerol gradient centrifugation of initiation complexes reveals that modified globin mRNA does not form initiation complexes with ribosomes as effectively as does the unmodified globin mRNA. These results suggest that modification significantly reduces the ability of mRNA to be translated by affecting the initiation step in protein synthesis.

  15. Preparation of trimethylchlorosilane-modified acid vermiculites for removing diethyl phthalate from water.

    PubMed

    Yu, Xu-biao; Wei, Chao-hai; Ke, Lin; Wu, Hai-zhen; Chai, Xin-sheng; Hu, Yun

    2012-03-01

    A hybrid organic-inorganic material based on vermiculite was prepared to remove diethyl phthalate (DEP) from aqueous solution. Natural vermiculite was activated with HCl to improve the specific surface area and was then modified by silanization using trimethylchlorosilane. Organovermiculite prepared by ion exchange with hexadecyl trimethylammonium bromide (HDTMAB) was also tested for comparison. The leaching of 2 mol L(-1) HCl at 80°C increased the specific surface area of vermiculite from 14.4 to 500.0m(2)g(-1), and the average pore-diameter was decreased from 7.90 nm to 2.75 nm. Fourier transform infrared spectroscopy (FTIR) spectra indicated that trimethysilyl groups were grafted covalently on the surface of acid vermiculites. The specific surface area of trimethylchlorosilane-modified acid vermiculites (TMAVs) (355.4 m(2) g(-1)) was much larger than that of organovermiculite (6.0 m(2) g(-1)). The isotherm adsorption experiments of DEP showed that TMAVs exhibited linear isotherms, suggesting that the uptake of DEP was controlled by partitioning mechanism. The maximal partition coefficient (K(d)) of TMAVs was 3.1 times higher than that of organovermiculite, implying that TMAVs had stronger organic affinity than organovermiculite. The results demonstrate that the adsorption capacity and mechanism of organoclays were controlled by the specific surface area and organic loading, whereas the length of alkyl chain of organic modifier was not the key factor.

  16. Enhanced biocompatibility and antibacterial property of polyurethane materials modified with citric acid and chitosan.

    PubMed

    Liu, Tian-Ming; Wu, Xing-Ze; Qiu, Yun-Ren

    2016-08-01

    Citric acid (CA) and chitosan (CS) were covalently immobilized on polyurethane (PU) materials to improve the biocompatibility and antibacterial property. The polyurethane pre-polymer with isocyanate group was synthesized by one pot method, and then grafted with citric acid, followed by blending with polyethersulfone (PES) to prepare the blend membrane by phase-inversion method so that chitosan can be grafted from the membrane via esterification and acylation reactions eventually. The native and modified membranes were characterized by attenuated total reflectance-Fourier transform infrared spectroscope, X-ray photoelectron spectroscopy, scanning electron microscopy, water contact angle measurement, and tensile strength test. Protein adsorption, platelet adhesion, hemolysis assay, activated partial thromboplastin time, prothrombin time, thrombin time, and adsorption of Ca(2+) were executed to evaluate the blood compatibility of the membranes decorated by CA and CS. Particularly, the antibacterial activities on the modified membranes were evaluated based on a vitro antibacterial test. It could be concluded that the modified membrane had good anticoagulant property and antibacterial property.

  17. Detection of saccharides by reactive desorption electrospray ionization (DESI) using modified phenylboronic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Chen, Hao

    2010-01-01

    We have reported previously a method for the detection of sugars via in-situ derivatization with phenylboronic acid PhB(OH)2 using reactive desorption electrospray ionization (DESI, Chen et al., Chem. Commun. (2006) 597-599). The present study describes an improved method that employs modified phenylboronic acids including 3-nitrophenylboronic acid and N-methyl-4-pyridineboronic acid iodide. In contrast to using PhB(OH)2, enhanced sensitivity of using 3-nitrophenylboronic acid was observed due to the stabilization of the resulting boronate ester anion by the electron-withdrawing nitro group and the limit of detections (LODs) for glucose in water using 3-nitrophenylbornic acid and phenylboronic acid were determined to be 0.11 mM and 0.40 mM, respectively. In the case of N-methyl-4-pyridineboronic acid iodide, the corresponding LOD is 6.9 [mu]M and the higher sensitivity obtained is attributed to the efficient ionization of both the reactive DESI reagent and reaction product since the precursor acid with a quaternary ammonium group is pre-charged. In this case, additional important features are found: (i) unlike using phenylboronic acid or 3-nitrophenylbornic acid, the experiment, performed in the positive ion mode, is applicable to neutral and acidic saccharide solutions, facilitating the analysis of biological fluids without the need to adjust pH; (ii) simply by changing the spray solvent from water to acetonitrile, the method can be used for direct glucose analyses of both urine and serum samples via online desalting, due to the low solubility of salts of these biofluids in the sprayed organic solvent; (iii) in comparison with other sugar derivatizing reagents such as the Girard's reagent T, the N-methyl-4-pyridineboronic acid iodide shows higher reactivity in the reactive DESI; and (iv) the ions of saccharide DESI reaction products undergo extensive ring or glycosidic bond cleavage upon CID, a feature that might be useful in the structure elucidation of

  18. Determination of dopamine in presence of ascorbic acid and uric acid using poly (Spands Reagent) modified carbon paste electrode.

    PubMed

    Veera Manohara Reddy, Y; Prabhakara Rao, V; Vijaya Bhaskar Reddy, A; Lavanya, M; Venu, M; Lavanya, M; Madhavi, G

    2015-12-01

    In this paper, we have fabricated a modified carbon paste electrode (CPE) by electropolymerisation of spands reagent (SR) onto surface of CPE using cyclic voltammetry (CV). The developed electrode was abbreviated as poly(SR)/CPE and the surface morphology of the modified electrode was studied by using scanning electron microscopy (SEM). The developed electrode showed higher electrocatalytic properties towards the detection of dopamine (DA) in 0.1M phosphate buffer solution (PBS) at pH7.0. The effect of pH, scan rate, accumulation time and concentration of dopamine was studied at poly(SR)/CPE. The poly(SR)/CPE was successfully used as a sensor for the selective determination of DA in presence of ascorbic acid (AA) and uric acid (UA) without any interference. The poly(SR)/CPE showed a good detection limit of 0.7 μM over the linear dynamic range of 1.6 μM to 16 μM, which is extremely lower than the reported methods. The prepared poly(SR)/CPE exhibited good stability, high sensitivity, better reproducibility, low detection limit towards the determination of DA. The developed method was also applied for the determination of DA in real samples.

  19. Functionalized-graphene modified graphite electrode for the selective determination of dopamine in presence of uric acid and ascorbic acid.

    PubMed

    Mallesha, Malledevaru; Manjunatha, Revanasiddappa; Nethravathi, C; Suresh, Gurukar Shivappa; Rajamathi, Michael; Melo, Jose Savio; Venkatesha, Thimmappa Venkatarangaiah

    2011-06-01

    Graphene is chemically synthesized by solvothermal reduction of colloidal dispersions of graphite oxide. Graphite electrode is modified with functionalized-graphene for electrochemical applications. Electrochemical characterization of functionalized-graphene modified graphite electrode (FGGE) is carried out by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The behavior of FGGE towards ascorbic acid (AA), dopamine (DA) and uric acid (UA) has been investigated by CV, differential pulse voltammetry (DPV) and chronoamperommetry (CA). The FGGE showed excellent catalytic activity towards electrochemical oxidation of AA, DA and UA compared to that of the bare graphite electrode. The electrochemical oxidation signals of AA, DA and UA are well separated into three distinct peaks with peak potential separation of 193mv, 172mv and 264mV between AA-DA, DA-UA and AA-UA respectively in CV studies and the corresponding peak potential separations in DPV mode are 204mv, 141mv and 345mv. The FGGE is successfully used for the simultaneous detection of AA, DA and UA in their ternary mixture and DA in serum and pharmaceutical samples. The excellent electrocatalytic behavior of FGGE may lead to new applications in electrochemical analysis.

  20. Enhanced biofouling resistance of polyethersulfone membrane surface modified with capsaicin derivative and itaconic acid

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Gao, Xueli; Wang, Qun; Sun, Haijing; Wang, Xiaojuan; Gao, Congjie

    2015-11-01

    The culprit of biofouling is the reproduction of viable microorganisms on the membrane surface. Recently, functionalization of membrane surface with natural antibacterial agents has drawn great attention. This work presents the fabrication of antibiofouling polyethersulfone (PES) ultrafiltration (UF) membranes by UV-assisted photo grafting of capsaicin derivative (N-(4-hydroxy-3-methoxy-benzyl)-acrylamide, HMBA) and itaconic acid (IA) on the surface of PES membrane. Results of FTIR-ATR, water static contact angle (WSCA) and atomic force microscopy (AFM) analysis confirmed the successful grafting of HMBA and IA on the membrane surface. We investigated the antifouling and antibacterial properties of these membranes using BSA and Escherichia coli as the test model, respectively. During a 150-min test, the modified membranes show much lower flux decline (42.7% for PES-g-1H0I, 22.2% for PES-g-1H1I and 7.7% for PES-g-1H5I) when compared with the pristine membrane (flux declined by 77%). The modified membranes exhibit excellent antibacterial activity (nearly 100%) when UV irradiation time was 6 min. The morphological study suggested that the E. coli on the pristine membrane showed a regular and smooth surface while that on the modified membrane was disrupted, which validated the antibacterial activity of the modified membranes.

  1. Non-enzymatic oxalic acid sensor using platinum nanoparticles modified on graphene nanosheets.

    PubMed

    Chen, Xiaomei; Cai, Zhixiong; Huang, Zhiyong; Oyama, Munetaka; Jiang, Yaqi; Chen, Xi

    2013-07-07

    An enzyme-free oxalic acid (OA) electrochemical sensor was assembled using a platinum nanoparticle-loaded graphene nanosheets (PtNPGNs)-modified electrode. The PtNPGNs, with a high yield of PtNPs dispersed on the graphene nanosheets, were successfully achieved by a green, rapid, one-step and template-free method. The resulting PtNPGNs were characterized by transmission electron microscopy (TEM), high-resolution TEM, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and an X-ray diffraction technique. Electrochemical oxidation of OA on the PtNPGNs-modified electrode was investigated by cyclic voltammetry and differential pulse voltammetry methods. Based on the results, the modified electrode exhibited high electrochemical activity with well-defined peaks of OA oxidation and a notably decreased overpotential compared to the bare or even the GNs-modified electrode. Under optimized conditions, a good linear response was observed for the concentration of OA and its current response was in the range of 0.1-15 mM and 15-50 mM with a detection limit (S/N = 3) of 10 μM. Furthermore, the electrochemical sensor presented good characteristics in terms of stability and reproducibility, promising the applicability of the sensor in practical analysis.

  2. Polyoxometalate-Graphene Nanocomposite Modified Electrode for Electrocatalytic Detection of Ascorbic Acid

    SciTech Connect

    Zhang, Weiying; Du, Dan; Gunaratne, Don; Colby, Robert; Lin, Yuehe; Laskin, Julia

    2013-11-15

    Phosphomolybdate functionalized graphene nanocomposite (PMo12-GS) has been successfully formed on a glassy carbon electrode (GCE) for the detection of ascorbic acid (AA). The obtained PMo12-GS modified GCE, was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy and compared with GCE, GS modified GCE, and PMo12 modified GCE. It shows an increased current and a decrease in over-potential of ~210 mV. The amperometric signals are linearly proportional to the AA concentration in a wide concentration range from 1×10-6 M to 8×10-3 M, with a detection limit of 0.5×10-6 M. Finally, the PMo12-GS modified electrode was employed for the determination of the AA level in vitamin C tablets, with recoveries between 96.3 and 100.8 %.

  3. Preparation and tribological properties of stearic acid-modified hierarchical anatase TiO 2 microcrystals

    NASA Astrophysics Data System (ADS)

    Qian, Jianhua; Yin, Xiangyu; Wang, Ning; Liu, Lin; Xing, Jinjuan

    2012-01-01

    Hierarchical TiO2 microcrystals were synthesized through a facile solvothermal method. X-ray diffraction (XRD) and scanning electron microscope (SEM) measurements were used to characterize the structure of the as-prepared samples. The results indicated that the synthesized hierarchical titania (TiO2) microspheres were composed of numerous anatase phase TiO2 particles. The as-prepared samples were chemically modified with stearic acid to improve their dispersion in oil. Fourier transmission infrared spectroscopy (FT-IR) and thermogravimetry analysis (TGA) were carried out to evaluate the characteristics of the modified TiO2 microcrystals. The tribological properties of the modified TiO2 microcrystals as additives of liquid paraffin were studied by a four-ball tester, and the results showed that they could significantly improve anti-wear performance, friction-reduction property and load-carrying capacity of liquid paraffin. These advantages make the modified TiO2 microcrystals promising for green lubricating oil additives.

  4. Characterizing Nitrous Oxide (N2O) Emissions over a Wheat-based Cropping System in the Northwest United States Using the Modified Bowen Ratio Technique and Static Chambers

    NASA Astrophysics Data System (ADS)

    Waldo, Sarah; Kostyanovsky, Kirill; O'Keeffe, Patrick; Pressley, Shelley; Huggins, Dave; Stockle, Claudio; Lamb, Brian

    2015-04-01

    Nitrous oxide (N2O) is a potent greenhouse gas and ozone depleting substance. Agricultural soils are the primary source of N2O, which is created as a by-product of soil microbial processes. The production and emission of N2O is characterized by high spatial and temporal variability, or "hot spots" and "hot moments". These behaviors, along with limitations in instrument sensitivity to N2O, are challenges in characterizing emissions. Many studies have monitored N2O emissions using either static chambers or micrometeorological measurements or the two methods together. The two techniques are complementary: chamber methods have a lower detection limit and are more reliable as their operation does not depend on atmospheric conditions, but may not capture spatial variability even with multiple chambers. Tower-based methods are subject to relatively high data loss due to non-ideal conditions and to less sensitive detection limits, but have a larger measurement footprint and can characterize field-scale emissions. This study aims to characterize a long-term, field-scale N2O budget over two winter wheat fields located in the Inland Pacific Northwest of the United States, both in terms of an annual emission budget and in terms of understanding what causes hot moments. We combined continuous measurements of N2O emissions from a system of sixteen automated, static chambers with tower-based measurements of N2O fluxes. We used the modified Bowen ratio (MBR) technique with temperature as a tracer. Preliminary results indicate that freeze-thaw cycles in the winter make up a higher percentage of annual emissions than previously thought. Furthermore, comparison of the chamber results to the tower-based measurements imply that the chambers may be underestimating field-scale N2O fluxes because they are not adequately capturing hot spots of emissions. We are conducting ongoing work on how to integrate the two measurement techniques, as well as how the empirical measurements compare with

  5. Wheat Newsletter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review was written for readers of the Annual Wheat Newsletter, Volume 53. It summarizes activities on wheat research during 2006 at the U.S. Grain Marketing Research Laboratory (USGMRL). The article includes technical abstracts of research accomplishments from the Grain Quality and Structure ...

  6. Eat Wheat!

    ERIC Educational Resources Information Center

    Idaho Wheat Commission, Boise.

    This pamphlet contains puzzles, games, and a recipe designed to teach elementary school pupils about wheat. It includes word games based on the U.S. Department of Agriculture Food Guide Pyramid and on foods made from wheat. The Food Guide Pyramid can be cut out of the pamphlet and assembled as a three-dimensional information source and food guide.…

  7. Pretreating wheat straw by the concentrated phosphoric acid plus hydrogen peroxide (PHP): Investigations on pretreatment conditions and structure changes.

    PubMed

    Wang, Qing; Hu, Jinguang; Shen, Fei; Mei, Zili; Yang, Gang; Zhang, Yanzong; Hu, Yaodong; Zhang, Jing; Deng, Shihuai

    2016-01-01

    Wheat straw was pretreated by PHP (the concentrated H3PO4 plus H2O2) to clarify effects of temperature, time and H3PO4 proportion on hemicellulose removal, delignification, cellulose recovery and enzymatic digestibility. Overall, hemicellulose removal was intensified by PHP comparing to the concentrated H3PO4. Moreover, efficient delignification specially happened in PHP pretreatment. Hemicellulose removal and delignification by PHP positively responded to temperature and time. Increasing H3PO4 proportion in PHP can promote hemicellulose removal, however, decrease the delignification. Maximum hemicellulose removal and delignification were achieved at 100% and 83.7% by PHP. Enzymatic digestibility of PHP-pretreated wheat straw was greatly improved by increasing temperature, time and H3PO4 proportion, and complete hydrolysis can be achieved consequently. As temperature of 30-40°C, time of 2.0 h and H3PO4 proportion of 60% were employed, more than 92% cellulose was retained in the pretreated wheat straw, and 29.1-32.6g glucose can be harvested from 100g wheat straw.

  8. Hyaluronic Acid Modified Hollow Prussian Blue Nanoparticles Loading 10-hydroxycamptothecin for Targeting Thermochemotherapy of Cancer

    PubMed Central

    Jing, Lijia; shao, shangmin; Wang, Yang; Yang, Yongbo; Yue, Xiuli; Dai, Zhifei

    2016-01-01

    This paper reported the fabrication of a multifunctional nanoplatform by modifying hollow Prussian blue nanoparticles with hyaluronic acid grafting polyethylene glycol, followed by loading 10-hydroxycamptothecin for tumor-targeted thermochemotherapy. It was found that the surface modification of hollow Prussian blue nanoparticles with hyaluronic acid grafting polyethylene endowed a great colloidal stability, long blood circulation time and the capability for targeting Hela cells over-expressing the CD44 receptor. The obtained nanoagent exhibited efficient photothermal effect and a light triggered and stepwise release behavior of 10-hydroxycamptothecin due to the strong optical absorption in the near-infrared region. The investigations on the body weight change, histological injury and blood biochemical indexes showed that such nanoagent had excellent biocompatibility for medical application. Both in vitro and in vivo experiments proved that the combination of chemotherapy and photothermal therapy through the agent of hyaluronic acid modified Prussian blue nanoparticles loading 10-hydroxycamptothecin could significantly improve the therapeutic efficacy compared with either therapy alone because of a good synergetic effect. PMID:26722372

  9. Hyaluronic Acid Modified Hollow Prussian Blue Nanoparticles Loading 10-hydroxycamptothecin for Targeting Thermochemotherapy of Cancer.

    PubMed

    Jing, Lijia; Shao, Shangmin; Wang, Yang; Yang, Yongbo; Yue, Xiuli; Dai, Zhifei

    2016-01-01

    This paper reported the fabrication of a multifunctional nanoplatform by modifying hollow Prussian blue nanoparticles with hyaluronic acid grafting polyethylene glycol, followed by loading 10-hydroxycamptothecin for tumor-targeted thermochemotherapy. It was found that the surface modification of hollow Prussian blue nanoparticles with hyaluronic acid grafting polyethylene endowed a great colloidal stability, long blood circulation time and the capability for targeting Hela cells over-expressing the CD44 receptor. The obtained nanoagent exhibited efficient photothermal effect and a light triggered and stepwise release behavior of 10-hydroxycamptothecin due to the strong optical absorption in the near-infrared region. The investigations on the body weight change, histological injury and blood biochemical indexes showed that such nanoagent had excellent biocompatibility for medical application. Both in vitro and in vivo experiments proved that the combination of chemotherapy and photothermal therapy through the agent of hyaluronic acid modified Prussian blue nanoparticles loading 10-hydroxycamptothecin could significantly improve the therapeutic efficacy compared with either therapy alone because of a good synergetic effect.

  10. Structural resistance of chemically modified 1-D nanostructured titanates in inorganic acid environment

    SciTech Connect

    Marinkovic, Bojan A.; Fredholm, Yann C.; Morgado, Edisson

    2010-10-15

    Sodium containing one-dimensional nanostructured layered titanates (1-D NSLT) were produced both from commercial anatase powder and Brazilian natural rutile mineral sands by alkali hydrothermal process. The 1-D NSLT were chemically modified with proton, cobalt or iron via ionic exchange and all products were additionally submitted to intensive inorganic acid aging (pH = 0.5) for 28 days. The morphology and crystal structure transformations of chemically modified 1-D NSLT were followed by transmission electron microscopy, powder X-ray diffraction, selected area electron diffraction and energy dispersive spectroscopy. It was found that the original sodium rich 1-D NSLT and cobalt substituted 1-D NSLT were completely converted to rutile nanoparticles, while the protonated form was transformed in a 70%-30% (by weight) anatase-rutile nanoparticles mixture, very similar to that of the well-known TiO{sub 2}-photocatalyst P25 (Degussa). The iron substituted 1-D NSLT presented better acid resistance as 13% of the original structure and morphology remained, the rest being converted in rutile. A significant amount of remaining 1-D NSLT was also observed after the acid treatment of the product obtained from rutile sand. The results showed that phase transformation of NSLT into titanium dioxide polymorph in inorganic acid conditions were controllable by varying the exchanged cations. Finally, the possibility to transform, through acid aging, 1-D NSLT obtained from Brazilian natural rutile sand into TiO{sub 2}-polymorphs was demonstrated for the first time to the best of authors' knowledge, opening path for producing TiO{sub 2}-nanoproducts with different morphologies through a simple process and from a low cost precursor.

  11. Electrochemical determination of glycoalkaloids using a carbon nanotubes-phenylboronic acid modified glassy carbon electrode.

    PubMed

    Wang, Huiying; Liu, Mingyue; Hu, Xinxi; Li, Mei; Xiong, Xingyao

    2013-11-27

    A versatile strategy for electrochemical determination of glycoalkaloids (GAs) was developed by using a carbon nanotubes-phenylboronic acid (CNTs-PBA) modified glassy carbon electrode. PBA reacts with α-solanine and α-chaconine to form a cyclic ester, which could be utilized to detect GAs. This method allowed GA detection from 1 μM to 28 μM and the detection limit was 0.3 μM. Affinity interaction of GAs and immobilized PBA caused an essential change of the peak current. The CNT-PBA modified electrodes were sensitive for detection of GAs, and the peak current values were in quite good agreement with those measured by the sensors.

  12. Interaction between dimethyldioctadecylammonium bromide-modified PLGA microspheres and hyaluronic acid

    NASA Astrophysics Data System (ADS)

    Mulia, Kamarza; Devi, Krisanti, Elsa

    2017-02-01

    In application of intravitreal injection, an extended drug delivery system is desired so that the frequency of injection to treat diabetic retinopathy may be reduced. Poly(lactic-co-glycolic acid) polymer (PLGA) was used to encapsulate a model drug in the form of microspheres. The zeta potential of dimethyldioctadecylammonium bromide (DDAB)-modified PLGA microspheres in water was proportional to the DDAB concentration used in the preparation step, up to +57.8 mV. The scanning electron microscope pictures and the zeta potential data (SEM) confirmed that the surface of the PLGA has been modified by the cationic surfactant and that electrostatic interaction between the positively charged microspheres and the negatively charged vitreous were present.

  13. Modified Carbon Nanotube Paste Electrode for Voltammetric Determination of Carbidopa, Folic Acid, and Tryptophan

    PubMed Central

    Esfandiari Baghbamidi, Sakineh; Beitollahi, Hadi; Karimi-Maleh, Hassan; Soltani-Nejad, Somayeh; Soltani-Nejad, Vahhab; Roodsaz, Sara

    2012-01-01

    A simple and convenient method is described for voltammetric determination of carbidopa (CD), based on its electrochemical oxidation at a modified multiwall carbon nanotube paste electrode. Under optimized conditions, the proposed method exhibited acceptable analytical performances in terms of linearity (over the concentration range from 0.1 to 700.0 μM), detection limit (65.0 nM), and reproducibility (RSD = 2.5%) for a solution containing CD. Also, square wave voltammetry (SWV) was used for simultaneous determination of CD, folic acid (FA), and tryptophan (TRP) at the modified electrode. To further validate its possible application, the method was used for the quantification of CD, FA, and TRP in urine samples. PMID:22666634

  14. Electrochemical Determination of Glycoalkaloids Using a Carbon Nanotubes-Phenylboronic Acid Modified Glassy Carbon Electrode

    PubMed Central

    Wang, Huiying; Liu, Mingyue; Hu, Xinxi; Li, Mei; Xiong, Xingyao

    2013-01-01

    A versatile strategy for electrochemical determination of glycoalkaloids (GAs) was developed by using a carbon nanotubes-phenylboronic acid (CNTs-PBA) modified glassy carbon electrode. PBA reacts with α-solanine and α-chaconine to form a cyclic ester, which could be utilized to detect GAs. This method allowed GA detection from 1 μM to 28 μM and the detection limit was 0.3 μM. Affinity interaction of GAs and immobilized PBA caused an essential change of the peak current. The CNT-PBA modified electrodes were sensitive for detection of GAs, and the peak current values were in quite good agreement with those measured by the sensors. PMID:24287539

  15. Direct determination of creatinine based on poly(ethyleneimine)/phosphotungstic acid multilayer modified electrode.

    PubMed

    Han, Ping; Xu, Shimei; Feng, Shun; Hao, Yanjun; Wang, Jide

    2016-05-01

    In this work, the direct determination of creatinine was achieved using a poly(ethyleneimine)/phosphotungstic acid multilayer modified electrode with the assistance of Copper(II) ions by cyclic voltammetry. The quantity of creatinine were determined by measuring the redox peak current of Cu(II)-creatinine complex/Cu(I)-creatinine complex. Factors affecting the response current of creatinine at the modified electrode were optimized. A linear relationship between the response current and the concentration of creatinine ranging from 0.125 to 62.5μM was obtained with a detection limit of 0.06μM. The proposed method was applied to determine creatinine in human urine, and satisfied results were gotten which was validated in accordance with high performance liquid chromatography. The proposed electrode provided a promising alternative in routine sensing for creatinine without enzymatic assistance.

  16. Physicochemical, thermal and computational study of the encapsulation of rumenic acid by natural and modified cyclodextrins.

    PubMed

    Matencio, Adrián; Hernández-Gil, Carlos Javier García; García-Carmona, Francisco; López-Nicolás, José Manuel

    2017-02-01

    In this work the aggregation behavior of Rumenic acid (RA) is presented for the first time. The results point to a c.m.c. of 35μM at pH 8 and 25°C. This behavior can be modified by introducing CDs into the system to encapsulate the RA. The encapsulation process presented a 1:1 stoichiometry in all the cases studied but the complexation constants were strongly dependent on the type of CDs used, the pH and temperature. Firstly, the effect of the type of CD on the encapsulation process was studied. Among the natural and modified CDs analyzed HPβCD was the best for encapsulating RA. The pKa determined for RA was 4.31. The KF showed different behavior below and above 25°C due to changes in the stoichiometry. Finally, molecular docking calculations provided further insights into how the different interactions influence the complexation constant.

  17. Preparation of All-Trans Retinoic Acid nanosuspensions using a modified precipitation method.

    PubMed

    Zhang, X; Xia, Q; Gu, N

    2006-08-01

    All-Trans Retinoic Acid (ATRA) nanosuspensions were prepared with a modified precipitation method. The ATRA solution in acetone was injected into pure water by an air compressor under the action of ultrasonication. Photon correlation spectroscopy results showed that the mean particle size of ATRA nanoparticles in nanosuspensions reduced from 337 nm to 155 nm as the injection velocity increased and the polydispersity index was 0.45-0.50. The morphology of ATRA nanoparticles varied with the different concentration of ATRA solution in acetone. ATRA nanoparticles showed an amorphous state and stable in 6 months. It could be concluded that this modified precipitation method could produce stable and controllable ATRA nanosuspension to a certain extent, thus benefit for higher saturation solubility.

  18. Characterization of modified calcium-silicate cements exposed to acidic environment

    SciTech Connect

    Camilleri, Josette

    2011-01-15

    Portland cement which is used as a binder in concrete in the construction industry has been developed into a biomaterial. It is marketed as mineral trioxide aggregate and is used in dentistry. This material has been reported to be very biocompatible and thus its use has diversified. The extended use of this material has led to developments of newer versions with improved physical properties. The aim of this study was to evaluate the effect of acidic environments found in the oral cavity on fast setting calcium silicate cements with improved physical properties using a combination of techniques. Two fast setting calcium silicate cements (CSA and CFA) and two cement composites (CSAG and CFAG) were assessed by subjecting the materials to lactic acid/sodium lactate buffer gel for a period of 28 days. At weekly intervals the materials were viewed under the tandem scanning confocal microscope (TSM), and scanning electron microscope (SEM). The two prototype cements exhibited changes in their internal chemistry with no changes in surface characteristics. Since the changes observed were mostly sub-surface evaluation of surface characteristics of cement may not be sufficient in the determination of chemical changes occurring. - Research Highlights: {yields} An acidic environment affects modified fast setting calcium silicate-based cements. {yields} No surface changes are observed in acidic environment. {yields} An acidic environment causes sub-surface changes in the material chemistry which are only visible in fractured specimens. {yields} A combination of techniques is necessary in order to evaluate the chemical changes occurring.

  19. Fibrates modify rat hepatic fatty acid chain elongation and desaturation in vitro.

    PubMed

    Sánchez, R M; Viñals, M; Alegret, M; Vázquez, M; Adzet, T; Merlos, M; Laguna, J C

    1993-11-17

    Three fibric acid derivatives, clofibric acid (CFB), bezafibrate (BFB), and gemfibrozil (GFB), mainly used in the treatment of hypertriglyceridaemic or mixed hyperlipidaemic states, have been tested for their ability to modify fatty acid chain elongation and desaturation in vitro. Both endogenous and exogenous (saturated, monounsaturated and polyunsaturated) fatty acid elongations were inhibited by fibrates at concentrations well within the physiological range (IC50 values for GFB were between 0.1 and 0.3 mM). The potency order was GFB > BFB > CFB. Inhibition was not due to an impairment of the activation step from free fatty acids to acyl-CoAs, as palmitoyl-CoA synthetase was only slightly inhibited (IC50 value for GFB = 2.8 mM). Fibrates (GFB) appeared to behave as mixed non-competitive inhibitors with respect to malonyl-CoA when the rate limiting step of elongation, the condensing enzyme, is assayed. Further, delta 6 and delta 5 desaturates were inhibited by the three drugs (GFB > BFB > CFB), although not to the same extent as the elongation system. In contrast, delta 9 desaturase activity was not affected by fibrates.

  20. Functionalized graphene with polymer toughener as novel interface modifier for property-tailored poly(lactic acid)/graphene nanocomposites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, an effective strategy for engineering the interfacial compatibility between graphene and polylactic acid (PLA) was developed by manipulating the functionalization of graphene and introducing an epoxy-containing elastomer modifier. Curing between the functional groups of the modified gr...

  1. Modification of wheat flour with bromelain and baking hypoallergenic bread with added ingredients.

    PubMed

    Tanabe, S; Arai, S; Watanabe, M

    1996-08-01

    Based on the wheat glutenin IgE-binding epitope, Gln-Gln-Gln-Pro-Pro, a practical method is proposed for the production of hypoallergenic wheat flour. Bromelain was found effective for decomposing the epitope structure. In practice, soft flour was mixed with water dissolving bromelain and the mixture was incubated at 37 degrees C for 4 h. The result of IgE-ELISA (enzyme-linked immunosorbent assay) suggested negative allergenicity. A mixture of bromelain-modified flour, glucose, citric, acid, a surfactant and sodium hydrogen carbonate was baked to produce hypoallergenic bread, resembling English muffins.

  2. Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid.

    PubMed

    Tavafoghi, M; Brodusch, N; Gauvin, R; Cerruti, M

    2016-01-01

    Hydroxyapatite (HA, Ca5(PO4)3OH) is the main inorganic component of hard tissues, such as bone and dentine. HA nucleation involves a set of negatively charged phosphorylated proteins known as non-collagenous proteins (NCPs). These proteins attract Ca(2+) and PO4(3-) ions and increase the local supersaturation to a level required for HA precipitation. Polar and charged amino acids (AAs) are highly expressed in NCPs, and seem to be responsible for the mineralizing effect of NCPs; however, the individual effect of these AAs on HA mineralization is still unclear. In this work, we investigate the effect of a negatively charged (Glu) and positively charged (Arg) AA bound to carboxylated graphene oxide (CGO) on HA mineralization in simulated body fluids (SBF). Our results show that Arg induces HA precipitation faster and in larger amounts than Glu. We attribute this to the higher stability of the complexes formed between Arg and Ca(2+) and PO4(3-) ions, and also to the fact that Arg exposes both carboxyl and amino groups on the surface. These can electrostatically attract both Ca(2+) and PO4(3-) ions, thus increasing local supersaturation more than Glu, which exposes carboxyl groups only.

  3. Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid

    PubMed Central

    Tavafoghi, M.; Brodusch, N.; Gauvin, R.; Cerruti, M.

    2016-01-01

    Hydroxyapatite (HA, Ca5(PO4)3OH) is the main inorganic component of hard tissues, such as bone and dentine. HA nucleation involves a set of negatively charged phosphorylated proteins known as non-collagenous proteins (NCPs). These proteins attract Ca2+ and PO43− ions and increase the local supersaturation to a level required for HA precipitation. Polar and charged amino acids (AAs) are highly expressed in NCPs, and seem to be responsible for the mineralizing effect of NCPs; however, the individual effect of these AAs on HA mineralization is still unclear. In this work, we investigate the effect of a negatively charged (Glu) and positively charged (Arg) AA bound to carboxylated graphene oxide (CGO) on HA mineralization in simulated body fluids (SBF). Our results show that Arg induces HA precipitation faster and in larger amounts than Glu. We attribute this to the higher stability of the complexes formed between Arg and Ca2+ and PO43− ions, and also to the fact that Arg exposes both carboxyl and amino groups on the surface. These can electrostatically attract both Ca2+ and PO43− ions, thus increasing local supersaturation more than Glu, which exposes carboxyl groups only. PMID:26791001

  4. Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors

    NASA Astrophysics Data System (ADS)

    Almeida, Patrick V.; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Kaasalainen, Martti; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A.

    2014-08-01

    Active targeting of nanoparticles to receptor-overexpressing cancer cells has great potential for enhancing the cellular uptake of nanoparticles and for reducing fast clearance of the nanoparticles from the body. Herein, we present a preparation method of a porous silicon (PSi)-based nanodelivery system for breast cancer targeting, by covalently conjugating a synthesized amide-modified hyaluronic acid (HA+) derived polymer on the surface of undecylenic acid-modified thermally hydrocarbonized PSi (UnTHCPSi) nanoparticles. The resulting UnTHCPSi-HA+ nanoparticles showed relatively small size, reduced polydispersibility, high biocompatibility, improved colloidal and human plasma stability, as well as enhanced cellular interactions and internalization. Moreover, we demonstrated that the enhanced cellular association of UnTHCPSi-HA+ relies on the capability of the conjugated HA+ to bind and consequently target CD44 receptors expressed on the surface of breast cancer cells, thus making the HA+-functionalized UnTHCPSi nanoparticles a suitable and promising nanoplatform for the targeting of CD44-overexpressing breast tumors and for drug delivery.Active targeting of nanoparticles to receptor-overexpressing cancer cells has great potential for enhancing the cellular uptake of nanoparticles and for reducing fast clearance of the nanoparticles from the body. Herein, we present a preparation method of a porous silicon (PSi)-based nanodelivery system for breast cancer targeting, by covalently conjugating a synthesized amide-modified hyaluronic acid (HA+) derived polymer on the surface of undecylenic acid-modified thermally hydrocarbonized PSi (UnTHCPSi) nanoparticles. The resulting UnTHCPSi-HA+ nanoparticles showed relatively small size, reduced polydispersibility, high biocompatibility, improved colloidal and human plasma stability, as well as enhanced cellular interactions and internalization. Moreover, we demonstrated that the enhanced cellular association of Un

  5. Amperometric ascorbic acid sensor based on doped ferrites nanoparticles modified glassy carbon paste electrode.

    PubMed

    Dimitrijević, Teodora; Vulić, Predrag; Manojlović, Dragan; Nikolić, Aleksandar S; Stanković, Dalibor M

    2016-07-01

    In this study, a novel electrochemical sensor for quantification of ascorbic acid with amperometric detection in physiological conditions was constructed. For this purpose, cobalt and nickel ferrites were synthesized using microwave and ultrasound assistance, characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray powder diffraction (XRPD), and used for modification of glassy carbon paste electrode (GCPE). It was shown that introducing these nanoparticles to the structure of GCPE led to increasing analytical performance. Co ferrite modified GCPE (CoFeGCPE) showed better characteristics toward ascorbic acid sensing. The limit of detection (LOD) obtained by sensor was calculated to be 0.0270 mg/L, with linear range from 0.1758 to 2.6010 mg/L. This sensor was successfully applied for practical analysis, and the obtained results demonstrated that the proposed procedure could be a promising replacement for the conventional electrode materials and time-consuming and expensive separation methods.

  6. Binding of actin to thioglycolic acid modified superparamagnetic nanoparticles for antibody conjugation.

    PubMed

    Maltas, Esra; Ertekin, Betul

    2015-01-01

    Thioglycolic acid modified superparamagnetic iron oxide nanoparticles (TG-APTS-SPION) were synthesized by using (3-aminopropyl) triethoxysilane (APTS) and thioglycolic acid (TG). Actin was immobilized on the nanoparticle surfaces. Binding amount of the actin (Act) on TG-APTS-SPIONs was determined by using a calibration curve equation that was drawn using fluorescence spectra at 280 and 342 nm of excitation and emission wavelengths. Anti-Actin (anti-Act) was interacted with the actin immobilized TG-APTS-SPIONs as primary antibody. Horse radish peroxidase (HRP) was also interacted with antibody conjugated nanoparticles as secondary antibody. The binding capacity of primary and secondary antibodies was also estimated by fluorescence spectroscopy. Scanning electron microscopy (SEM), Infrared spectroscopy (FTIR) and energy dispersive X-ray (EDX) analysis were also clarified binding of the protein and antibodies to the nanoparticles' surfaces. Western blot analysis was also done for actin conjunction with anti Act antibody to confirm binding of the antibody to the protein.

  7. The citric acid-modified, enzyme-resistant dextrin from potato starch as a potential prebiotic.

    PubMed

    Sliżewska, Katarzyna

    2013-01-01

    In the present study, enzyme-resistant dextrin, prepared by heating of potato starch in the presence of hydrochloric (0.1% dsb) and citric (0.1% dsb) acid at 130ºC for 3 h (CA-dextrin), was tested as a source of carbon for probiotic lactobacilli and bifidobacteria cultured with intestinal bacteria isolated from feces of three healthy 70-year old volunteers. The dynamics of growth of bacterial monocultures in broth containing citric acid (CA)-modified dextrin were estimated. It was also investigated whether lactobacilli and bifidobacteria cultured with intestinal bacteria in the presence of resistant dextrin would be able to dominate the intestinal isolates. Prebiotic fermentation of resistant dextrin was analyzed using prebiotic index (PI). In co-cultures of intestinal and probiotic bacteria, the environment was found to be dominated by the probiotic strains of Bifidobacterium and Lactobacillus, which is a beneficial effect.

  8. Sorption of As(V) from aqueous solution using acid modified carbon black.

    PubMed

    Borah, Dipu; Satokawa, Shigeo; Kato, Shigeru; Kojima, Toshinori

    2009-03-15

    The sorption performance of a modified carbon black was explored with respect to arsenic removal following batch equilibrium technique. Modification was accomplished by refluxing the commercial carbon black with an acid mixture comprising HNO(3) and H(2)SO(4). Modification resulted in the substantial changes to the inherent properties like surface chemistry and morphology of the commercial carbon black to explore its potential as sorbent. The suspension pH as well as the point of zero charge (pH(pzc)) of the material was found to be highly acidic. The material showed excellent sorption performance for the removal of arsenic from a synthetic aqueous solution. It removed approximately 93% arsenic from a 50mg/L solution at equilibration time. The modified carbon black is capable of removing arsenic in a relatively broad pH range of 3-6, invariably in the acidic region. Both pseudo-first-order and second-order kinetics were applied to search for the best fitted kinetic model to the sorption results. The sorption process is best described by the pseudo-second-order kinetic. It has also been found that intra-particle diffusion is the rate-controlling step for the initial phases of the reaction. Modelling of the equilibrium data with Freundlich and Langmuir isotherms revealed that the correlation coefficient is more satisfactory with the Langmuir model although Freundlich model predicted a good sorption process. The sorption performance has been found to be strongly dependent on the solution pH with a maximum display at pH of 5.0. The temperature has a positive effect on sorption increasing the extent of removal with temperature up to the optimum temperature. The sorption process has been found to be spontaneous and endothermic in nature, and proceeds with the increase in randomness at the solid-solution interface. The spent sorbent was desorbed with various acidic and basic extracting solutions with KOH demonstrating the best result ( approximately 85% desorption).

  9. Protein adsorption from flowing solutions on pure and maleic acid copolymer modified glass particles.

    PubMed

    Klose, Theresia; Welzel, Petra B; Werner, Carsten

    2006-08-01

    The adsorption of human serum albumin (HSA) and lysozyme (LSZ) on pure as well as maleic acid (MA) copolymer coated spherical soda lime glass particles was investigated under flowing conditions. Coating the glass particles with two different maleic acid copolymers alters the properties of the particle surface concerning its charge and hydrophobicity in a well-defined gradation. Frontal chromatography was used to determine the surface concentration of the adsorbed proteins and to establish adsorption isotherms. The introduced methodology was demonstrated to provide a powerful means to study protein adsorption at solid/liquid interfaces. Investigations with virginal and protein-preadsorbed glass particles revealed that even under streaming conditions HSA is irreversibly adsorbed, whereas LSZ partially desorbs. For LSZ and HSA the adsorbed amounts and the isotherms strongly depend on the surface "history", i.e. the presence or absence of preadsorbed protein layers, and the kind of surface modification of the glass. Compared to the soda lime glass surface the adsorption of HSA was strongly increased on surfaces modified with a hydrophobic maleic acid copolymer indicating a strong hydrophobic protein-surface interaction. By coating the surface with a hydrophilic and more negatively charged maleic acid copolymer the adsorption of HSA to that surface was lower and comparable to the adsorption onto plain glass due to the electrostatic repulsion between HSA and the modified surface. In contrast the affinity to any of the investigated particle surfaces was generally higher for LSZ than for HSA which can be mainly attributed to the electrostatic attraction between LZS and the surface. The adsorbed amount of LSZ on the copolymer coated particle surfaces was much higher than on the pure soda lime glass particles indicating superposed hydrophobic interactions in the case of the hydrophobic MA copolymer layer and an increased density of anionic sites as well as interactions of

  10. [Absorption of Uranium with Tea Oil Tree Sawdust Modified by Succinic Acid].

    PubMed

    Zhang, Xiao-feng; Chen, Di-yun; Peng, Yan; Liu, Yong-sheng; Xiong, Xue-ying

    2015-05-01

    In order to explore how the modification of succinic acid improves the adsorption of tea oil tree sawdust for uranium, the tea oil tree sawdust was modified by succinic acid, after the pretreatments of crushing, screening, alkalization and acidification. Infrared analysis indicated carboxylic acid groups and ester groups were added to the sawdust after modification, and scanning electron microscope demonstrated after modification the appearance of tea oil tree sawdust was transferred from the structure like compact and straight stripped into the structure like loose and wrinkled leaves, which meant modification increased its inner pores. By the static experiments, effects of reaction time between adsorbent and solvent, dosage of adsorbent, temperature, pH value and initial concentration of uranium were investigated. The results showed that after the modification by succinic acid, the absorption rate of tea oil tree sawdust for uranium increased significantly by about 20% in 12.5 mg · L(-1) initial concentration uranium solution. Adsorption equilibrium was achieved within 180 min, and the kinetic data can be well described by the pseudo-second-order kinetic model. The experimental adsorption isotherm followed the Langmuir and Freundlich models. In addition, the maximum adsorption amounts of tea oil tree sawdust after modification calculated from Langmuir equation raised from 21.413 3 to 31.545 7 mg · g(-1) at 35°C and pH 4.0.

  11. Adsorption of copper ions from aqueous solution by citric acid modified soybean straw.

    PubMed

    Zhu, Bo; Fan, Tongxiang; Zhang, Di

    2008-05-01

    The objectives of the present study were to convert soybean straw to a metal ion adsorbent and further to investigate the potential of using the adsorbent for the removal of Cu(2+) from aqueous solution. The soybean straw was water or base washed and citric acid (CA) modified to enhance its nature adsorption capacity. The morphological and chemical characteristics of the adsorbent were evaluated by spectroscopy and N(2)-adsorption techniques. The porous structure, as well as high amounts of introduced free carboxyl groups of CA modified soybean straw makes the adsorbent be good to retain Cu(2+). The adsorption capacities increased when the solution pH increased from 2 to 6 and reached the maximum value at pH 6 (0.64 mmol g(-1) for the base washed, CA modified soybean straw (CA-BWSS)). The Cu(2+) uptake increased and percentage adsorption of the Cu(2+) decreased with the increase in initial Cu(2+) concentration from 1 mM to 20 mM. Both the Langmuir and Freundlich adsorption isotherms were tested, and the Freundlich model fited much better than the Langmuir model. It was found that CA-BWSS have the highest adsorption capacity of the four kinds of pretreated soybean straw.

  12. Determination of modification degree in BDDE-modified hyaluronic acid hydrogel by SEC/MS.

    PubMed

    Yang, Biao; Guo, Xueping; Zang, Hengchang; Liu, Jianjian

    2015-10-20

    Determination of modification degree in BDDE-modified hyaluronic acid (HA) hydrogel is of particular interest. In this paper, three crosslinking parameters (degree of total modification, t-MOD; degree of cross-link modification, c-MOD; degree of pendent modification, p-MOD) are defined and determined by quantification of the modified fragments in hydrogel digestion by size exclusion chromatography combined with mass spectrometry (SEC-MS). The digestion products of a novel hyaluronidase HAase-B produced by Bacillus sp. A50 are studied and only a few modified fragments are identified by (1)H NMR and MS. As a result, Three HA hydrogels prepared in lab have different t-MOD, c-MOD and p-MOD, but the ratio of c-MOD to p-MOD result in the almost same value of 75%. Hydrogel products from Q-Med have nearly same t-MOD about 0.8% and c-MOD about 0.1%, the ratio of c-MOD to p-MOD is about 13%. Hydrogels from ANTEIS S.A all have much higher t-MOD values, the ratio of c-MOD and p-MOD is about 8%.

  13. Separation of macromolecular proteins and removal of humic acid by cellulose acetate modified UF membranes.

    PubMed

    Kanagaraj, P; Nagendran, A; Rana, D; Matsuura, T

    2016-08-01

    Surface modifying macromolecules (SMMs) were synthesized with various polyurethane pre polymers end-capped with different groups and blended into the casting solution of cellulose acetate (CA) to prepare surface modified ultra-filtration (UF) membranes for water filtration applications. The surface modification of the CA membranes was confirmed by the FTIR and static contact angle (SCA) measurements. The membranes so prepared had the typical characteristics of UF membranes as confirmed by scanning electron microscopy (SEM). Membrane properties were studied in terms of membrane compaction, percentage water content (%WC), pure water flux (PWF), membrane hydraulic resistance (Rm), molecular weight cut-off (MWCO), average pore size and porosity. The result showed that PWF, %WC, MWCO and pore size increased whereas the Rm decreased by the addition of SMMs. The significant effect of SMMs on the fouling by humic acid (HA) was also observed. It was found that the cSMM-3 membrane, in which SMM was synthesized with diethylene glycol (DEG) and hydroxyl benzene sulfonate (HBS) was blended, had the highest flux recovery ratio FRR (84.6%), as well as the lowest irreversible fouling (15.4%), confirming their improved antifouling properties. Thus, the SMM modified CA membranes had proven, to play an important role in the water treatment by UF.

  14. Preparation and characterization of silver loaded montmorillonite modified with sulfur amino acid

    NASA Astrophysics Data System (ADS)

    Li, Tian; Lin, Oulian; Lu, Zhiyuan; He, Liuimei; Wang, Xiaosheng

    2014-06-01

    The Na+ montmorillonite (MMT) was modified with sulfur containing amino acid (L-cystine, L-cysteine or L-methionine) and characterized by energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectrum (FT-IR). The results showed the modification was smooth and the surface condition of MMT was changed with sulfur containing groups. Then silver was loaded on the modified MMTs via ion-exchange reaction under microwave irradiation, the spectra of X-ray photoelectron spectroscopy (XPS), EDS and FT-IR confirmed the successful loading of massive silver and the strong interaction between sulfur and silver, the silver loaded L-cystine modified MMT (Ag@AA-MMT-3) with a silver content of 10.93 wt% was the highest of all. Further more, the Ag@AA-MMT-3 was under the irradiation of a UV lamp to turn silver ions to silver nano particles (Ag NPs). The XPS, specific surface area (SSA), transmission electron microscopy (TEM), XRD patterns and UV-vis spectra proved the existence of uniform nano scaled metallic Ag NPs. By contrast, the UV irradiated Ag@AA-MMT-3 (Ag@AA-MMT-UV) showed a much better slow release property than Ag@AA-MMT-3 or Ag@MMT. The Ag@AA-MMT-UV showing a large inhibition zone and high inhibition ratio presented very good antibacterial property.

  15. Controllable Phase Separation by Boc-Modified Lipophilic Acid as a Multifunctional Extractant

    NASA Astrophysics Data System (ADS)

    Tao, Kai; Adler-Abramovich, Lihi; Gazit, Ehud

    2015-12-01

    While phase separation of immiscible liquid-liquid systems has become increasingly significant in diverse areas, the irreversible nature limits their further application in controllable extraction-concentration or capture-release fields. There is a need for the development of simple, efficient and reversible methods for numerous research and industrial extraction and separation applications. We envisioned Boc-modified lipophilic acids as a simple model for such use based on the studies of the multi-phase transitions of Boc-modified supramolecular polymeric systems. Here, we demonstrate that in the presence of Boc-7-aminoheptanoic acid (Boc-7), phase separation occurs in mixtures of miscible organic solvent and water. The separation behavior was confirmed by differential colorimetric development in aqueous and organic phases using methyl orange staining assays. Component substitution experiments verified that the phase separation results from the subtle balance between the aggregation and the solvation forces of Boc-7, and is reversible by adjusting the solution pH. Owing to the intrinsic hydrophobic properties of the organic phase and the hydrogen bonding-forming ability of the carboxyl group of Boc-7, the phase separation system captures and releases Sudan Red, fluorescein, and streptavidin in a controllable manner. Consequently, a reversible and simple phase separation system can be designed as a multifunctional extractant.

  16. Neutralizing aspartate 83 modifies substrate translocation of excitatory amino acid transporter 3 (EAAT3) glutamate transporters.

    PubMed

    Hotzy, Jasmin; Machtens, Jan-Philipp; Fahlke, Christoph

    2012-06-08

    Excitatory amino acid transporters (EAATs) terminate glutamatergic synaptic transmission by removing glutamate from the synaptic cleft into neuronal and glial cells. EAATs are not only secondary active glutamate transporters but also function as anion channels. Gating of EAAT anion channels is tightly coupled to transitions within the glutamate uptake cycle, resulting in Na(+)- and glutamate-dependent anion currents. A point mutation neutralizing a conserved aspartic acid within the intracellular loop close to the end of transmembrane domain 2 was recently shown to modify the substrate dependence of EAAT anion currents. To distinguish whether this mutation affects transitions within the uptake cycle or directly modifies the opening/closing of the anion channel, we used voltage clamp fluorometry. Using three different sites for fluorophore attachment, V120C, M205C, and A430C, we observed time-, voltage-, and substrate-dependent alterations of EAAT3 fluorescence intensities. The voltage and substrate dependence of fluorescence intensities can be described by a 15-state model of the transport cycle in which several states are connected to branching anion channel states. D83A-mediated changes of fluorescence intensities, anion currents, and secondary active transport can be explained by exclusive modifications of substrate translocation rates. In contrast, sole modification of anion channel opening and closing is insufficient to account for all experimental data. We conclude that D83A has direct effects on the glutamate transport cycle and that these effects result in changed anion channel function.

  17. Controllable Phase Separation by Boc-Modified Lipophilic Acid as a Multifunctional Extractant

    PubMed Central

    Tao, Kai; Adler-Abramovich, Lihi; Gazit, Ehud

    2015-01-01

    While phase separation of immiscible liquid-liquid systems has become increasingly significant in diverse areas, the irreversible nature limits their further application in controllable extraction-concentration or capture-release fields. There is a need for the development of simple, efficient and reversible methods for numerous research and industrial extraction and separation applications. We envisioned Boc-modified lipophilic acids as a simple model for such use based on the studies of the multi-phase transitions of Boc-modified supramolecular polymeric systems. Here, we demonstrate that in the presence of Boc-7-aminoheptanoic acid (Boc-7), phase separation occurs in mixtures of miscible organic solvent and water. The separation behavior was confirmed by differential colorimetric development in aqueous and organic phases using methyl orange staining assays. Component substitution experiments verified that the phase separation results from the subtle balance between the aggregation and the solvation forces of Boc-7, and is reversible by adjusting the solution pH. Owing to the intrinsic hydrophobic properties of the organic phase and the hydrogen bonding-forming ability of the carboxyl group of Boc-7, the phase separation system captures and releases Sudan Red, fluorescein, and streptavidin in a controllable manner. Consequently, a reversible and simple phase separation system can be designed as a multifunctional extractant. PMID:26627307

  18. Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors

    PubMed Central

    Almeida, Patrick V.; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Kaasalainen, Martti; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A.

    2014-01-01

    Active targeting of nanoparticles to receptor-overexpressing cancer cells has great potential for enhancing the cellular uptake of nanoparticles and for reducing fast clearance of the nanoparticles from the body. Herein, we present a preparation method of a porous silicon (PSi)-based nanodelivery system for breast cancer targeting, by covalently conjugating a synthesized amide-modified hyaluronic acid (HA+) derived polymer on the surface of undecylenic acid-modified thermally hydrocarbonized PSi (UnTHCPSi) nanoparticles. The resulting UnTHCPSi–HA+ nanoparticles showed relatively small size, reduced polydispersibility, high biocompatibility, improved colloidal and human plasma stability, as well as enhanced cellular interactions and internalization. Moreover, we demonstrated that the enhanced cellular association of UnTHCPSi–HA+ relies on the capability of the conjugated HA+ to bind and consequently target CD44 receptors expressed on the surface of breast cancer cells, thus making the HA+-functionalized UnTHCPSi nanoparticles a suitable and promising nanoplatform for the targeting of CD44-overexpressing breast tumors and for drug delivery. PMID:25074521

  19. Mechanism of hepatic targeting via oral administration of DSPE–PEG–cholic acid-modified nanoliposomes

    PubMed Central

    Li, Ying; Zhu, Chunyan

    2017-01-01

    In oral administration, gastrointestinal physiological environment, gastrointestinal epithelial cell membranes, and blood circulation are typical biological barriers to hepatic delivery of ligand-modified nanoparticle drug delivery systems. To elucidate the mechanism of oral hepatic targeting of cholic acid receptor-mediated nanoliposomes (LPs) (distearoyl phosphatidylethanolamine–polyethylene glycol–cholic acid-modified LPs, CA-LPs), evaluations were performed on colon cancer Caco-2 cell monolayers, liver cancer HepG2 cells, and a rat intestinal perfusion model. CA-LPs, ~100 nm in diameter, exhibited sustained-release behavior and had the greatest stability in rat gastrointestinal fluid and serum for both size and entrapment efficiency. CA-LPs demonstrated highest transport across Caco-2 cells and highest cellular uptake by HepG2 cells. The enhanced endocytosis of CA-LPs was found to be mediated by Na+/taurocholate cotransporting polypeptide and involved the caveolin-mediated endocytosis pathway. Further, we used fluorescence resonance energy transfer (FRET) technology to show that the CA-LPs maintained their structural integrity in part during the transport across the Caco-2 cell monolayer and uptake by HepG2 cells. PMID:28280334

  20. Hyaluronic acid-modified multiwalled carbon nanotubes for targeted delivery of doxorubicin into cancer cells.

    PubMed

    Cao, Xueyan; Tao, Lei; Wen, Shihui; Hou, Wenxiu; Shi, Xiangyang

    2015-03-20

    Development of novel drug carriers for targeted cancer therapy with high efficiency and specificity is of paramount importance and has been one of the major topics in current nanomedicine. Here we report a general approach to using multifunctional multiwalled carbon nanotubes (MWCNTs) as a platform to encapsulate an anticancer drug doxorubicin (DOX) for targeted cancer therapy. In this approach, polyethyleneimine (PEI)-modified MWCNTs were covalently conjugated with fluorescein isothiocyanate (FI) and hyaluronic acid (HA). The formed MWCNT/PEI-FI-HA conjugates were characterized via different techniques and were used as a new carrier system to encapsulate the anticancer drug doxorubicin for targeted delivery to cancer cells overexpressing CD44 receptors. We show that the formed MWCNT/PEI-FI-HA/DOX complexes with a drug loading percentage of 72% are water soluble and stable. In vitro release studies show that the drug release rate under an acidic condition (pH 5.8, tumor cell microenvironment) is higher than that under physiological condition (pH 7.4). Cell viability assay demonstrates that the carrier material has good biocompatibility in the tested concentration range, and the MWCNT/PEI-FI-HA/DOX complexes can specifically target cancer cells overexpressing CD44 receptors and exert growth inhibition effect to the cancer cells. The developed HA-modified MWCNTs hold a great promise to be used as an efficient anticancer drug carrier for tumor-targeted chemotherapy.

  1. Iron oxide nanoparticles modified with oleic acid: Vibrational and phase determination

    NASA Astrophysics Data System (ADS)

    Soares, Paula P.; Barcellos, Geórgia S.; Petzhold, Cesar L.; Lavayen, Vladimir

    2016-12-01

    A simple path methodology to detect the phase composition of iron oxide nanoparticles modified with oleic acid based on vibrational spectroscopy is present here and applied on three different nanoparticles prepared by co-precipitation method. Firstly, the phase composition, magnetite, maghemite, and hematite, is determined using a reference intensity ratio methodology on X-ray diffraction pattern. Also, the size of each sample was calculated by Scherrer equation. Scanning, transmission electron microscopy, microanalysis and electron diffraction show a core magnetite particles size of around 10 nm for all particles. Based on lattice vibrations, we find a concentration of around 80% of magnetite and a hematite phase lower than 5%. Whereas, the magnetite composition from X-ray diffraction shows 76%. We also investigate the metal-organic interaction and disorder degree of organic molecule conformation by infrared and Raman spectroscopy analysis. Hematite lattice vibrations show more alterations as it interacts with the organic acid. Finally, magnetic measurements at room temperature of the modified particles, suggest a superparamagnetic behavior and high saturation magnetization.

  2. Chemically modified polymeric resins for separation of cations, organic acids, and small polar moleculea by high performance liquid chromatography

    SciTech Connect

    Morris, John B.

    1993-07-01

    This thesis is divided into 4 parts: a review, ion chromatography of metal cations on carboxylic resins, separation of hydrophilic organic acids and small polar compounds on macroporous resin columns, and use of eluent modifiers for liquid chromatographic separation of carboxylic acids using conductivity detection.

  3. Gold Electrodes Modified with Self-Assembled Monolayers for Measuring L-Ascorbic Acid: An Undergraduate Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Ito, Takashi; Perera, D. M. Neluni T.; Nagasaka, Shinobu

    2008-01-01

    This article describes an undergraduate electrochemistry laboratory experiment in which the students measure the L-ascorbic acid content of a real sample. Gold electrodes modified with self-assembled monolayers (SAMs) of thioctic acid and cysteamine are prepared to study the effects of surface modification on the electrode reaction of L-ascorbic…

  4. In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies.

    PubMed

    Lipi, Farhana; Chen, Suxiang; Chakravarthy, Madhuri; Rakesh, Shilpa; Veedu, Rakesh N

    2016-12-01

    Nucleic acid aptamers are single-stranded DNA or RNA oligonucleotide sequences that bind to a specific target molecule with high affinity and specificity through their ability to adopt 3-dimensional structure in solution. Aptamers have huge potential as targeted therapeutics, diagnostics, delivery agents and as biosensors. However, aptamers composed of natural nucleotide monomers are quickly degraded in vivo and show poor pharmacodynamic properties. To overcome this, chemically-modified nucleic acid aptamers are developed by incorporating modified nucleotides after or during the selection process by Systematic Evolution of Ligands by EXponential enrichment (SELEX). This review will discuss the development of chemically-modified aptamers and provide the pros and cons, and new insights on in vitro aptamer selection strategies by using chemically-modified nucleic acid libraries.

  5. In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies

    PubMed Central

    Chen, Suxiang; Chakravarthy, Madhuri; Rakesh, Shilpa; Veedu, Rakesh N.

    2016-01-01

    ABSTRACT Nucleic acid aptamers are single-stranded DNA or RNA oligonucleotide sequences that bind to a specific target molecule with high affinity and specificity through their ability to adopt 3-dimensional structure in solution. Aptamers have huge potential as targeted therapeutics, diagnostics, delivery agents and as biosensors. However, aptamers composed of natural nucleotide monomers are quickly degraded in vivo and show poor pharmacodynamic properties. To overcome this, chemically-modified nucleic acid aptamers are developed by incorporating modified nucleotides after or during the selection process by Systematic Evolution of Ligands by EXponential enrichment (SELEX). This review will discuss the development of chemically-modified aptamers and provide the pros and cons, and new insights on in vitro aptamer selection strategies by using chemically-modified nucleic acid libraries. PMID:27715478

  6. Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials.

    PubMed

    Tao, Kai; Levin, Aviad; Adler-Abramovich, Lihi; Gazit, Ehud

    2016-07-11

    Amino acids and short peptides modified with the 9-fluorenylmethyloxycarbonyl (Fmoc) group possess eminent self-assembly features and show distinct potential for applications due to the inherent hydrophobicity and aromaticity of the Fmoc moiety which can promote the association of building blocks. Given the extensive study and numerous publications in this field, it is necessary to summarize the recent progress concerning these important bio-inspired building blocks. Therefore, in this review, we explore the self-organization of this class of functional molecules from three aspects, i.e., Fmoc-modified individual amino acids, Fmoc-modified di- and tripeptides, and Fmoc-modified tetra- and pentapeptides. The relevant properties and applications related to cell cultivation, bio-templating, optical, drug delivery, catalytic, therapeutic and antibiotic properties are subsequently summarized. Finally, some existing questions impeding the development of Fmoc-modified simple biomolecules are discussed, and corresponding strategies and outlooks are suggested.

  7. Modified biofunctional p(tannic acid) microgels and their antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Sagbas, Selin; Aktas, Nahit; Sahiner, Nurettin

    2015-11-01

    Crosslinked poly(tannic acid) micro particles, p(TA), were synthesized using trimethylolpropane triglycidyl ether (TMPGDE) as crosslinker in a single step with high yield (73 ± 6%). The obtained p(TA) microgels possessed negative zeta potential, -27 mV, and the surface charge can be tuned by chemical modification using various modifying agents, such as 3-chloro-2-hydroxypropyl ammonium chloride (CHPACl) and chloro sulfonic acid (CSA) to generate microgels with different zeta potentials, e.g., -18 mV and -36 mV, respectively. Modified p(TA) microgels are found to be thermally less stable than bare p(TA) particles. Additionally, upon chemical modification of p(TA) particles, the antioxidant capacity of the p(TA) microgels decreased confirming the utilization of some of the phenolic groups, the main functional groups responsible for the antioxidant property of TA moieties. Moreover, the antimicrobial properties increased approximately four fold against three common bacterial strains; Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 6538, and Bacillus subtilis ATCC 6633. P(TA) microgels as TA molecules have a natural capability to reduce metal ions, allowing in situ reduction of absorbed Ag and Cu ions to the corresponding metal nanoparticles within the p(TA) microgel network. The composite p(TA)-M (M: Ag or Cu) nanoparticle demonstrated superior antimicrobial activity against the mentioned bacteria compared to the bare p(TA) microgels. Moreover, bare and modified p(TA) microgels are shown to be drug carrier materials by loading three model drugs, phenylephrine HCl (PHE), trimethoprim (TMP), and naproxen (NP), and releasing them in phosphate buffer saline PBS (pH 7.4) at 37.5 °C.

  8. Concerted action of endogenous and heterologous phytase on phytic acid degradation in seed of transgenic wheat (Triticum aestivum L.).

    PubMed

    Brinch-Pedersen, Henrik; Hatzack, Frank; Sørensen, Lisbeth D; Holm, Preben B

    2003-12-01

    Expression of heterologous phytases in crops offers a great potential for improving phosphate and mineral bioavailability in food and feed. In this context it is of relevance to describe the concerted action of endogenous and hetrologous phytases on the transgenic seed inositol phosphate profile. Here we report metal-dye detection HPLC analysis of inositol phosphate degradation in flour from transgenic wheat materials possessing wheat endogenous 6-phytase [EC 3.1.3.26] and Aspergillus 3-phytase [EC 3.1.3.8] activities under the control of the maize ubiquitin-1 promoter and the wheat high molecular weight glutenin subunit 1DX5 promoter respectively. During 50 min incubation there is an accumulation of InsP5 to InsP2 breakdown products in non-transgenic material. Aspergillus niger phytase specific breakdown products are transiently detected in transgenic material but after 50 min incubation virtually all InsP5, InsP4 and InsP3 isomers are hydrolysed.

  9. Application of palladium-catalyzed carboxyl anhydride-boronic acid cross coupling in the synthesis of novel bile acids analogs with modified side chains.

    PubMed

    Mayorquín-Torres, Martha C; Flores-Álamo, Marcos; Iglesias-Arteaga, Martin A

    2015-09-01

    Palladium-catalyzed cross coupling of 4-methoxycarbonyl phenyboronic acid with acetylated bile acids in which the carboxyl functions was activated by formation of a mixed anhydride with pivalic anhydride afforded the cross coupled compounds, which were converted in novel side chain modified bile acids by one pot carbonyl reduction/removal of the protecting acetyl groups by Wolff-Kishner reduction. Unambiguous assignments of the NMR signals and crystal characterization of the heretofore unknown compounds are provided.

  10. Phosphomolybdic acid and ferric iron as efficient electron mediators for coupling biomass pretreatment to produce bioethanol and electricity generation from wheat straw.

    PubMed

    Ding, Yi; Du, Bo; Zhao, Xuebing; Zhu, J Y; Liu, Dehua

    2017-03-01

    Phosphomolybdic acid (PMo12) was used as an electron mediator and proton carrier to mediate biomass pretreatment for ethanol production and electricity generation from wheat straw. In the pretreatment, lignin was oxidized anaerobically by PMo12 with solubilization of a fraction of hemicelluloses, and the PMo12 was simultaneously reduced. In an external liquid flow cell, the reduced PMo12 was re-oxidized with generation of electricity. The effects of several factors on pretreatment were investigated for optimizing the conditions. Enzymatic conversion of cellulose and xylan were about 80% and 45%, respectively, after pretreatment of wheat straw with 0.25M PMo12, at 95°C for 45min. FeCl3 was found to be an effective liquid mediator to transfer electrons to air, the terminal electron acceptor. By investigating the effects of various operation parameters and cell structural factors, the highest output power density of about 11mW/cm(2) was obtained for discharging of the reduced PMo12.

  11. Transcriptional coordination and abscisic acid mediated regulation of sucrose transport and sucrose-to-starch metabolism related genes during grain filling in wheat (Triticum aestivum L.).

    PubMed

    Mukherjee, Shalini; Liu, Aihua; Deol, Kirandeep K; Kulichikhin, Konstanin; Stasolla, Claudio; Brûlé-Babel, Anita; Ayele, Belay T

    2015-11-01

    Combining physiological, molecular and biochemical approaches, this study investigated the transcriptional coordination and abscisic acid (ABA) mediated regulation of genes involved in sucrose import and its conversion to starch during grain filling in wheat. Sucrose import appears to be mediated by seed localized TaSUT1, mainly TaSUT1D, while sucrose cleavage by TaSuSy2. Temporal overlapping of the transcriptional activation of AGPL1 and AGPS1a that encode AGPase with that of the above genes suggests their significance in the synthesis of ADP-glucose; TaAGPL1A and TaAGPL1D contributing the majority of AGPL1 transcripts. ABA induced repressions of TaSUT1, TaSuSy2, TaAGPL1 and TaAGPS1a imply that ABA negatively regulates sucrose import into the endosperm and its subsequent metabolism to ADP-glucose, the substrate for starch synthesis. The formations of amyloses and amylopectin from ADP-glucose appear to be mediated by specific members of GBSS, and SS, SBE and DBE gene families, and the ABA-induced transcriptional change in most of these genes implies that ABA regulates amylose and amylopectin synthesis. The findings provide insights into the molecular mechanisms underlying the coordination and ABA mediated regulation of sucrose transport into the developing endosperm and its subsequent metabolism to starch during grain filling in wheat.

  12. Biodegradation of 2,4-dichlorophenoxyacetic acid by bacteria with highly antibiotic-resistant pattern isolated from wheat field soils in Kurdistan, Iran.

    PubMed

    Karami, Solmaz; Maleki, Afshin; Karimi, Ebrahim; Poormazaheri, Helen; Zandi, Shiva; Davari, Behrooz; Salimi, Yahya Zand; Gharibi, Fardin; Kalantar, Enayatollah

    2016-12-01

    Recently, there has been increasing interest to clean up the soils contaminated with herbicide. Our aim was to determine the bioremediation of 2,4-dichlorophenoxyacetic acid (2,4-D) from wheat fields which have a long history of herbicide in Sanandaj. Based on our literature survey, this study is the first report to isolate and identify antimicrobial resistant bacteria from polluted wheat field soils in Sanandaj which has the capacity to degrade 2,4-D. From 150 2,4-D-exposed soil samples, five different bacteria were isolated and identified based on biochemical tests and 16S ribosomal RNA (rRNA). Pseudomonas has been the most frequently isolated genus. By sequencing the 16S rRNA gene of the isolated bacteria, the strains were detected and identified as a member of the genus Pseudomonas sp, Entrobacter sp, Bacillus sp, Seratia sp, and Staphylococcus sp. The sequence of Sanandaj 1 isolate displayed 87% similarity with the 16S rRNA gene of a Pseudomonas sp (HE995788). Similarly, all the isolates were compared to standard strains based on 16S rRNA. Small amounts of 2,4-D could be transmitted to a depth of 10-20 cm; however, in the depth of 20-40 cm, we could not detect the 2,4-D. The isolates were resistant to various antibiotics particularly, penicillin, ampicillin, and amoxicillin.

  13. Nanoparticles of deoxycholic acid, polyethylene glycol and folic acid-modified chitosan for targeted delivery of doxorubicin.

    PubMed

    Shi, Zhonggen; Guo, Rui; Li, Weichang; Zhang, Yi; Xue, Wei; Tang, Yu; Zhang, Yuanming

    2014-03-01

    Chitosan (CS) was first modified hydrophobically with deoxycholic acid (DCA) and then with polyethylene glycol (PEG) to obtain a novel amphiphilic polymer (CS-DCA-PEG). This was covalently bound to folic acid (FA) to develop nanoparticles (CS-DCA-PEG-FA) with tumor cell targeting property. The structure of the conjugates was characterised using Fourier transform infrared and (1)H nuclear magnetic resonance spectroscopy and X-ray diffraction. Based on self-aggregation, the conjugates formed nanoparticles with a low critical aggregation concentration of 0.035 mg/ml. The anti-cancer drug doxorubicin (DOX) was encapsulated into the nanoparticles with a drug-loading capacity of 30.2 wt%. The mean diameter of the DOX-loaded nanoparticles was about 200 nm, with a narrow size distribution. Transmission electron microscopy images showed that the DOX-loaded nanoparticles were spherical. The drug release was studied under different conditions. Furthermore, the cytotoxic activities of DOX in CS-DCA-PEG-FA nanoparticles against folate receptor (FR)-positive HeLa cells and FR-negative fibroblast 3T3 cells were evaluated. These results suggested that the CS-DCA-PEG-FA nanoparticles may be a promising vehicle for the targeting anticancer drug to tumor cells.

  14. Effective Trapping of Fruit Flies with Cultures of Metabolically Modified Acetic Acid Bacteria

    PubMed Central

    Ishii, Yuri; Akasaka, Naoki; Goda, Itsuko; Sakoda, Hisao

    2015-01-01

    Acetoin in vinegar is an attractant to fruit flies when combined with acetic acid. To make vinegar more effective in attracting fruit flies with increased acetoin production, Komagataeibacter europaeus KGMA0119 was modified by specific gene disruption of the acetohydroxyacid isomeroreductase gene (ilvC). A previously constructed mutant lacking the putative ligand-sensing region in the leucine-responsive regulatory protein (KeLrp, encoded by Kelrp) was also used. The ilvC and Kelrp disruptants (KGMA5511 and KGMA7203, respectively) produced greater amounts of acetoin (KGMA5511, 0.11%; KGMA7203, 0.13%) than the wild-type strain KGMA0119 (0.069%). KGMA7203 produced a trace amount of isobutyric acid (0.007%), but the other strains did not. These strains produced approximately equal amounts of acetic acid (0.7%). The efficiency of fruit fly attraction was investigated with cultured Drosophila melanogaster. D. melanogaster flies (approximately 1,500) were released inside a cage (2.5 m by 2.5 m by 1.5 m) and were trapped with a device containing vinegar and a sticky sheet. The flies trapped on the sticky sheet were counted. The cell-free supernatant from KGMA7203 culture captured significantly more flies (19.36 to 36.96% of released flies) than did KGMA0119 (3.25 to 11.40%) and KGMA5511 (6.87 to 21.50%) cultures. Contrastingly, a 0.7% acetic acid solution containing acetoin (0.13%) and isobutyric acid (0.007%), which mimicked the KGMA7203 supernatant, captured significantly fewer flies (0.88 to 4.57%). Furthermore, the KGMA0119 supernatant with additional acetoin (0.13%) and isobutyric acid (0.007%) captured slightly more flies than the original KGMA0119 supernatant but fewer than the KGMA7203 supernatant, suggesting that the synergistic effects of acetic acid, acetoin, isobutyric acid, and unidentified metabolites achieved the efficient fly trapping of the KGMA7203 supernatant. PMID:25595769

  15. Gut microbiota of mice putatively modifies amino acid metabolism in the host brain.

    PubMed

    Kawase, Takahiro; Nagasawa, Mao; Ikeda, Hiromi; Yasuo, Shinobu; Koga, Yasuhiro; Furuse, Mitsuhiro

    2017-04-10

    Recently, it has been found that the gut microbiota influences functions of the host brain by affecting monoamine metabolism. The present study focused on the relationship between the gut microbiota and the brain amino acids. Specific pathogen-free (SPF) and germ-free (GF) mice were used as experimental models. Plasma and brain regions were sampled from mice at 7 and 16 weeks of age, and analysed for free d- and l-amino acids, which are believed to affect many physiological functions. At 7 weeks of age, plasma concentrations of d-aspartic acid (d-Asp), l-alanine (l-Ala), l-glutamine (l-Gln) and taurine were higher in SPF mice than in GF mice, but no differences were found at 16 weeks of age. Similar patterns were observed for the concentrations of l-Asp in striatum, cerebral cortex and hippocampus, and l-arginine (l-Arg), l-Ala and l-valine (l-Val) in striatum. In addition, the concentrations of l-Asp, d-Ala, l-histidine, l-isoleucine (l-Ile), l-leucine (l-Leu), l-phenylalanine and l-Val were significantly higher in plasma of SPF mice when compared with those of GF mice. The concentrations of l-Arg, l-Gln, l-Ile and l-Leu were significantly higher in SPF than in GF mice, but those of d-Asp, d-serine and l-serine were higher in some brain regions of GF mice than in those of SPF mice. In conclusion, the concentration of amino acids in the host brain seems to be dependent on presence of the gut microbiota. Amino acid metabolism in the host brain may be modified by manipulating microbiota communities.

  16. Dietary lipids modify the fatty acid composition of cartilage, isolated chondrocytes and matrix vesicles.

    PubMed

    Xu, H; Watkins, B A; Adkisson, H D

    1994-09-01

    The effects of dietary lipids on the fatty acid composition of hyaline cartilage, epiphyseal chondrocytes (EC) and matrix vesicles (MV) were evaluated in chicks. A basal semipurified diet was fed to chicks containing one of the following lipid sources at 70 g/kg: soybean oil, butter+corn oil, margarine+corn oil or menhaden oil+corn oil (MEC). Articular and epiphyseal growth cartilage were isolated from the proximal tibiotarsus; EC and MV were subsequently released by trypsin (EC 3.4.21.4) and collagenase (EC 3.4.24.3) digestion followed by ultracentrifugation. The fatty acid composition of polar lipids in chick epiphyseal cartilage at three and six weeks, as well as articular cartilage, EC and MV at eight weeks of age revealed the presence of high levels of saturated and monounsaturated fatty acids (up to 85.5%) but low levels of n-6 polyunsaturated fatty acids (PUFA) (2.6-10.2%). Mead acid (20:3n-9, > 3%) was also present in cartilage, EC and MV lipids, and was unaffected by the dietary lipid treatments. Total n-3 PUFA concentrations were the highest in cartilage, EC and MV of chicks consuming MEC. Feeding MEC lowered the levels of 20:4n-6 in cartilage, but increased 20:5n-3 levels. The data are consistent with those reported previously which showed that cartilage tissues are low in n-6 PUFA and that they contain 20:3n-9. We furthermore demonstrated that the PUFA composition of cartilage can be modified by dietary lipids.

  17. Wheat: The Whole Story.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    This publication presents information on wheat. Wheat was originally a wild grass and not native to the United States. Wheat was not planted there until 1777 (and then only as a hobby crop). Wheat is grown on more acres than any other grain in this country. Soft wheats are grown east of the Mississippi River, and hard wheats are grown west of the…

  18. Dienophile-Modified Mannosamine Derivatives for Metabolic Labeling of Sialic Acids: A Comparative Study.

    PubMed

    Dold, Jeremias E G A; Pfotzer, Jessica; Späte, Anne-Katrin; Wittmann, Valentin

    2017-03-20

    Sialic acids play an important role in numerous cell adhesion processes and sialylation levels are known to be altered under certain pathogenic conditions such as cancer. Metabolic glycoengineering with mannosamine derivatives is a convenient way to introduce non-natural chemical reporter groups into sialylated glycoconjugates offering the opportunity to label sialic acids using bioorthogonal ligation chemistry. The labeling intensity not only depends on the rate of the ligation reaction but also on the extent to which the natural sialic acids are replaced by the modified ones, i.e. the incorporation efficiency. Here we present a comparative study of eight mannosamine derivatives featuring terminal alkenes as chemical reporter groups that can be labeled by an inverse-electron-demand Diels-Alder (DAinv) reaction. The derivatives differ in chain length as well as the type of linkage (comprising carbamates, amides, and a urea) that connects the terminal alkene to the sugar. As a general trend, increasing chain lengths result in higher DAinv reactivity and at the same time reduced incorporation efficiency. Carbamates are better accepted than amides with the same chain length; nevertheless do the latter result in more intense cell-surface staining visible in life-cell fluorescence microscopy. Finally, a urea derivative was shown to be accepted.

  19. Indomethacin and retinoic acid modify mouse intestinal inflammation and fibrosis: a role for SPARC.

    PubMed

    Klopcic, Borut; Appelbee, Amber; Raye, Warren; Lloyd, Frances; Jooste, James C I; Forrest, Cynthia Heather; Lawrance, Ian Craig

    2008-06-01

    The mouse model of 2,4,6-Trinitrobenzene Sulfonic Acid (TNBS)-induced intestinal fibrosis allows for detailed study of the extracellular matrix changes that complicate Crohn's disease. Indomethacin induces intestinal fibrosis, while retinoic acid (RA) reduces liver fibrosis. Secreted protein acidic and rich in cysteine (SPARC), an extracellular matrix-modifying agent, may potentially link these opposing effects. Our aim was to determine the effects of indomethacin and RA and to evaluate their correlation to SPARC expression in the TNBS mouse model. CD-1 mice were randomised to TNBS enemas weekly for 2 or 8 weeks with or without indomethacin (0.2 mg/kg per day) or RA (100 microg/kg per day). At 2 weeks, indomethacin/TNBS enhanced and RA reduced inflammation, tissue destruction and fibrosis. The expression of SPARC was inversely related to fibrosis, but not to inflammation, in the TNBS-alone groups at 2 weeks; these differences were lost by 8 weeks. The results demonstrate that indomethacin increases TNBS-induced fibrosis in mice, while RA reduces it, and that SPARC may link these opposing effects.

  20. Myristic acid-modified thymopentin for enhanced plasma stability and immune-modulating activity.

    PubMed

    Tan, Yuanyan; Wang, Wei; Wu, Chunlei; Pan, Zhengyin; Yao, Guiyang; Fang, Lijing; Su, Wu

    2017-03-30

    Natural albumin ligand (fatty acids)-conjugated peptides can rapidly bind to circulating albumin and form complexes to control the release of peptides. The purpose of this study was to prolong the half-life and immune-modulating effects of thymopentin (TP5) by using the albumin binding strategy. We synthesized myristic acid-modified TP5 (TP5-MA) by conjugating a myristic acid-acylated lysine to a permissive site of TP5, which improved the albumin binding affinity of TP5-MA and dramatically enhanced its stability in human plasma. We observed well-preserved bioactivities of TP5-MA in RAW264.7 macrophages using a tumor necrosis factor (TNF)-α stimulation assay. Moreover, the prolonged immune-modulating effect of TP5-MA was confirmed by the normalized CD4(+)/CD8(+) ratio in immune-depressed rat models, which resulted in a reduced administration frequency (twice per week). In general, the enhanced pharmacokinetic and pharmacodynamic properties of TP5-MA make it a promising product for the treatment of immunodeficiency diseases.

  1. An Aspergillus niger esterase (ferulic acid esterase III) and a recombinant Pseudomonas fluorescens subsp. cellulosa esterase (Xy1D) release a 5-5' ferulic dehydrodimer (diferulic acid) from barley and wheat cell walls.

    PubMed Central

    Bartolomé, B; Faulds, C B; Kroon, P A; Waldron, K; Gilbert, H J; Hazlewood, G; Williamson, G

    1997-01-01

    Diferulate esters strengthen and cross-link primary plant cell walls and help to defend the plant from invading microbes. Phenolics also limit the degradation of plant cell walls by saprophytic microbes and by anaerobic microorganisms in the rumen. We show that incubation of wheat and barley cell walls with ferulic acid esterase from Aspergillus niger (FAE-III) or Pseudomonas fluorescens (Xy1D), together with either xylanase I from Aspergillus niger, Trichoderma viride xylanase, or xylanase from Pseudomonas fluorescens (XylA), leads to release of the ferulate dimer 5-5' diFA [(E,E)-4,4'-dihydroxy-5,5'-dimethoxy-3,3'-bicinnamic acid]. Direct saponification of the cell walls without enzyme treatment released the following five identifiable ferulate dimers (in order of abundance): (Z)-beta-(4-[(E)-2-carboxyvinyl]-2-methoxyphenoxy)-4-hydroxy-3-methoxycinnamic acid, trans-5-[(E)-2-carboxyvinyl]-2-(4-hydroxy-3-methoxy-phenyl) -7-methoxy-2, 3-dihydrobenzofuran-3-carboxylic acid, 5-5' diFA, (E,E)-4, 4'-dihydroxy-3, 5'-dimethoxy-beta, 3'-bicinnamic acid, and trans-7-hydroxy-1-(4-hydroxy-3-methoxyphenyl) -6-methoxy-1, 2-dihydronaphthalene-2, 3-dicarboxylic acid. Incubation of the wheat or barley cell walls with xylanase, followed by saponification of the solubilized fraction, yielded 5-5'diFA and, in some cases, certain of the above dimers, depending on the xylanase used. These experiments demonstrate that FAE-III and XYLD specifically release only esters of 5-5'diFA from either xylanase-treated or insoluble fractions of cell walls, even though other esterified dimers were solubilized by preincubation with xylanase. It is also concluded that the esterified dimer content of the xylanase-solubilized fraction depends on the source of the xylanase. PMID:8979352

  2. Simultaneous determination of gibberellic acid, indole-3-acetic acid and abscisic acid in wheat extracts by solid-phase extraction and liquid chromatography-electrospray tandem mass spectrometry.

    PubMed

    Hou, Shengjie; Zhu, Jiang; Ding, Mingyu; Lv, Guohua

    2008-08-15

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for simultaneous determination of three representative phytohormones in plant samples: gibberellic acid (GA(3)), indole-3-acetic acid (IAA) and abscisic acid (ABA). A solid-phase extraction (SPE) pretreatment method was used to concentrate and purify the three phytohormones of different groups from plant samples. The separation was carried out on a C(18) reversed-phase column, using methanol/water containing 0.2% formic acid (50:50, v/v) as the isocratic mobile phase at the flow-rate of 1.0 mL min(-1), and the three phytohormones were eluted within 7 min. A linear ion trap mass spectrometer equipped with electrospray ionization source was operated in negative ion mode. Selective reaction monitoring (SRM) was employed for quantitative measurement. The SRM transitions monitored were as 345-->239, 301 for GA(3), 174-->130 for IAA and 263-->153, 219 for ABA. Good linearities were found within the ranges of 5-200 microg mL(-1) for IAA and 0.005-10 microg mL(-1) for ABA and GA(3). Their detection limits based on a signal-to-noise ratio of three were 0.005 microg mL(-1), 2.2 microg mL(-1) and 0.003 microg mL(-1) for GA(3), IAA and ABA, respectively. Good recoveries from 95.5% to 102.4% for the three phytohormones were obtained. The results demonstrated that the SPE-LC-MS/MS method developed is highly effective for analyzing trace amounts of the three phytohormones in plant samples.

  3. Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticum aestivum L.)

    NASA Astrophysics Data System (ADS)

    Neu, Silke; Schaller, Jörg; Dudel, E. Gert

    2017-01-01

    Silicon (Si) is known as beneficial element for graminaceous plants. The importance of Si for plant functioning of cereals was recently emphasized. However, about the effect of Si availability on biomass production, grain yield, nutrient status and nutrient use efficiency for wheat (Triticum aestivum L.), as one of the most important crop plants worldwide, less is known so far. Consequently, we assessed the effect of a broad range of supply levels of amorphous SiO2 on wheat plant performance. Our results revealed that Si is readily taken up and accumulated basically in aboveground vegetative organs. Carbon (C) and phosphorus (P) status of plants were altered in response to varying Si supply. In bulk straw biomass C concentration decreased with increasing Si supply, while P concentration increased from slight limitation towards optimal nutrition. Thereby, aboveground biomass production increased at low to medium supply levels of silica whereas grain yield increased at medium supply level only. Nutrient use efficiency was improved by Si insofar that biomass production was enhanced at constant nitrogen (N) status of substrate and plants. Consequently, our findings imply fundamental influences of Si on C turnover, P availability and nitrogen use efficiency for wheat as a major staple crop.

  4. Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticum aestivum L.)

    PubMed Central

    Neu, Silke; Schaller, Jörg; Dudel, E. Gert

    2017-01-01

    Silicon (Si) is known as beneficial element for graminaceous plants. The importance of Si for plant functioning of cereals was recently emphasized. However, about the effect of Si availability on biomass production, grain yield, nutrient status and nutrient use efficiency for wheat (Triticum aestivum L.), as one of the most important crop plants worldwide, less is known so far. Consequently, we assessed the effect of a broad range of supply levels of amorphous SiO2 on wheat plant performance. Our results revealed that Si is readily taken up and accumulated basically in aboveground vegetative organs. Carbon (C) and phosphorus (P) status of plants were altered in response to varying Si supply. In bulk straw biomass C concentration decreased with increasing Si supply, while P concentration increased from slight limitation towards optimal nutrition. Thereby, aboveground biomass production increased at low to medium supply levels of silica whereas grain yield increased at medium supply level only. Nutrient use efficiency was improved by Si insofar that biomass production was enhanced at constant nitrogen (N) status of substrate and plants. Consequently, our findings imply fundamental influences of Si on C turnover, P availability and nitrogen use efficiency for wheat as a major staple crop. PMID:28094308

  5. Improving wheat to remove coeliac epitopes but retain functionality.

    PubMed

    Shewry, Peter R; Tatham, Arthur S

    2016-01-01

    Coeliac disease is an intolerance triggered by the ingestion of wheat gluten proteins. It is of increasing concern to consumers and health professionals as its incidence appears to be increasing. The amino acid sequences in gluten proteins that are responsible for triggering responses in sensitive individuals have been identified showing that they vary in distribution among and between different groups of gluten proteins. Conventional breeding may therefore be used to select for gluten protein fractions with lower contents of coeliac epitopes. Molecular breeding approaches can also be used to specifically down-regulate coeliac-toxic proteins or mutate coeliac epitopes within individual proteins. A combination of these approaches may therefore be used to develop a "coeliac-safe" wheat. However, this remains a formidable challenge due to the complex multigenic control of gluten protein composition. Furthermore, any modified wheats must retain acceptable properties for making bread and other processed foods. Not surprisingly, such coeliac-safe wheats have not yet been developed despite over a decade of research.

  6. Improving wheat to remove coeliac epitopes but retain functionality

    PubMed Central

    Shewry, Peter R.; Tatham, Arthur S.

    2016-01-01

    Coeliac disease is an intolerance triggered by the ingestion of wheat gluten proteins. It is of increasing concern to consumers and health professionals as its incidence appears to be increasing. The amino acid sequences in gluten proteins that are responsible for triggering responses in sensitive individuals have been identified showing that they vary in distribution among and between different groups of gluten proteins. Conventional breeding may therefore be used to select for gluten protein fractions with lower contents of coeliac epitopes. Molecular breeding approaches can also be used to specifically down-regulate coeliac-toxic proteins or mutate coeliac epitopes within individual proteins. A combination of these approaches may therefore be used to develop a “coeliac-safe” wheat. However, this remains a formidable challenge due to the complex multigenic control of gluten protein composition. Furthermore, any modified wheats must retain acceptable properties for making bread and other processed foods. Not surprisingly, such coeliac-safe wheats have not yet been developed despite over a decade of research. PMID:26937068

  7. Lanthanide(III) and Yttrium(III) Complexes of Benzimidazole-2-Acetic Acid: Synthesis, Characterisation and Effect of La(III) Complex on Germination of Wheat

    PubMed Central

    Gudasi, Kalagouda B.; Shenoy, Rashmi V.; Vadavi, Ramesh S.; Patil, Manjula S.; Patil, Siddappa A.; Hanchinal, Rayappa R.; Desai, Srinivas A.; Lohithaswa, H.

    2006-01-01

    The synthesis and characterisation of lanthanide(III) and yttrium(III) nitrate complexes of benzimidazole-2-acetic acid (HBIA) are reported. The complexes have been characterised by elemental analysis, molar conductance, magnetic studies, IR, 1H NMR, UV-visible, EPR, and TG/DTA studies. They have the stoichiometry [Ln3(BIA)2(NO3)7(H2O)4] · 3H2O where Ln=La(III), Pr(III), Nd(II), Sm(III), Eu(III), Gd(III), Tb(III), Dy(III), and Y(III). The effect of La(III) complex on germination, coleoptile, and root length of two local varieties of wheat DWR-195 and GW-349 for different treatment periods has been investigated. The complex was found to exhibit enhanced activity, compared to HBIA or metal salt alone at lower treatment periods. PMID:17497017

  8. Voltammetric determination of ferulic acid by didodecyldimethylammonium bromide/nafion composite film-modified carbon paste electrode.

    PubMed

    Luo, Liqiang; Wang, Xia; Li, Qiuxia; Ding, Yaping; Jia, Jianbo; Deng, Dongmei

    2010-01-01

    A simple and rapid method for the determination of ferulic acid in pharmaceutical formulations by didodecyldimethylammonium bromide (DDAB)/Nafion composite film-modified carbon paste electrode is presented. The electrochemical behavior of ferulic acid at the proposed electrode was investigated by cyclic voltammetry and a well-defined oxidation peak was observed at +0.44 V versus saturated calomel electrode in 0.1 M acetate buffer (pH 5.5) solutions. Some experimental parameters affecting the electrochemical response of the modified electrode were optimized. Under optimal conditions, the oxidation peak currents of ferulic acid increase linearly with the concentration of ferulic acid in the range from 2.0 x 10(-6) to 1.2 x 10(-4) M with a detection limit of 3.9 x 10(-7) M (S/N = 3). The proposed method was successfully applied to the determination of ferulic acid in pharmaceutical tablets.

  9. Immobilization of catalase on chitosan and amino acid- modified chitosan beads.

    PubMed

    Başak, Esra; Aydemir, Tülin

    2013-08-01

    Bovine liver catalase was covalently immobilized onto amino acid-modified chitosan beads. The beads were characterized with SEM, FTIR, TGA and the effects of immobilization on optimum pH and temperature, thermostability, reusability were evaluated. Immobilized catalase showed the maximal enzyme activity at pH 7.0 at 30°C. The kinetic parameters, Km and Vmax, for immobilized catalase on alanine-chitosan beads and lysine-chitosan beads were estimated to be 25.67 mM, 27 mM and 201.39 μmol H2O2/min, 197.50 μmol H2O2/min, respectively. The activity of the immobilized catalase on Ala-CB and Lys-CB retained 40% of its high initial activity after 100 times of reuse.

  10. Properties of baked foams from citric acid modified cassava starch and native cassava starch blends.

    PubMed

    Pornsuksomboon, Kanlaya; Holló, Berta Barta; Szécsényi, Katalin Mészáros; Kaewtatip, Kaewta

    2016-01-20

    Starch foams from native cassava starch (NS) and citric acid modified cassava starch (CNS) were prepared using baking processes with blend ratios of 80/20, 60/40, 50/50, 40/60 and 20/80. The density, thickness, morphology, thermal stability and water absorption of the NS, CNS and blended starch foams were determined. The ratio of the two starch components had a significant influence on the density and thickness of the blended starch foams. All blended starch foams showed good water resistance. Moreover, the morphology of the blended starch foam with the NS/CNS ratio of 50/50 showed a more ordered distribution of cell sizes with thicker cell walls than for the NS and CNS foams. The thermal stability of the blended starch foams was somewhat lower than the stability of the NS foam but not to the extent that it affected any potential practical applications.

  11. Characterization of polylactic co-glycolic acid nanospheres modified with PVA and DDAB

    NASA Astrophysics Data System (ADS)

    Mulia, Kamarza; Satyapertiwi, Dwiantari; Devina, Ranee; Krisanti, Elsa

    2017-02-01

    The common treatment for diabetic retinopathy is corticosteroids intravitreal injection that sometimes lead to complications. Dexamethasone-loaded polylactic co-glycolic acid (PLGA) nanospheres, modified with dioctadecyldimethylammonium bromide (DDAB) as the cationic surfactant, is expected to prolong drug retention time. Zeta potential of the PLGA nanospheres prepared using non-ionic surfactant PVA and DDAB confirmed the cationic surfactant increase the surface charge of the PLGA nanospheres. The optimal formulation based on the particle size and high positive surface charge was the PLGA-DDAB nanospheres. SEM analysis showed spherical morphology of the nanospheres having diameter 626.9 ± 98.01 nm positive zeta potential of +22.5 mV.

  12. Positron annihilation study on free volume of amino acid modified, starch-grafted acrylamide copolymer

    NASA Astrophysics Data System (ADS)

    Mahmoud, K. R.; Al-Sigeny, S.; Sharshar, T.; El-Hamshary, H.

    2006-05-01

    Free volume measurements using positron annihilation lifetime spectroscopy was performed for uncrosslinked and crosslinked starch-grafted polyacrylamide, and their modified amino acid samples including some of their iron(III) complexes. The measurements were performed at room temperature. The analysis of lifetime spectra yielded mostly three lifetime components. It was observed that the values of the short lifetime component τ1 are slightly higher than the lifetime associated with the self-decay of para-positronium atoms in polymers. The free volume was probed using ortho-positronium pick-off annihilation lifetime parameters. The mean free volume has also been calculated from the lifetime data. The avrage value of this parameter of the crosslinked polymer were found to be higher than those of the uncrosslinked polymer.

  13. Influence of sulfur fertilization on the amounts of free amino acids in wheat. correlation with baking properties as well as with 3-aminopropionamide and acrylamide generation during baking.

    PubMed

    Granvogl, Michael; Wieser, Herbert; Koehler, Peter; Tucher, Sabine Von; Schieberle, Peter

    2007-05-16

    Sulfur (S) fertilization has been long-known to influence the amounts of total free amino acids in plants. To determine the impact of S deficiency in wheat on the concentration of, in particular, free asparagine, the spring wheat cultivar 'Star' was grown in a laboratory scale (5 L pot) at five different levels of S fertilization. After maturity, the kernels were milled into white flours (1-5) and analyzed for their contents of total S and total nitrogen as well as for free amino acids and glucose, fructose, maltose, and sucrose. Extremely high concentrations of free asparagine (Asn; 3.9-5.7 g/kg) were determined in flours 1 and 2 (30 and 60 mg of S), whereas much lower amounts (0.03-0.4 g/kg) were present in flours grown at higher S levels. The amounts of the reducing carbohydrates were, however, scarcely affected by S fertilization. In agreement with the high amount of Asn in flours 1 and 2, heating of both flours led to the generation of very high amounts of acrylamide (1.7-3.1 mg/kg) as well as of 3-aminopropionamide (40-76 mg/kg). Similar concentrations were measured in crispbread prepared from both flours. Application of rheological measurements on doughs prepared from each flour and a determination of the loaf volume of bread baked therefrom clearly indicated that flours 1 and 2 would be excluded from commercial bread processing due to their poor technological properties. Two commercial flours showed relatively low concentrations of acrylamide after a thermal treatment.

  14. [Effects of long-term rotation on the nutritional quality of wheat grain protein on dryland of Loess Plateau, Northwest China].

    PubMed

    Cai, Yan; Hao, Ming-De

    2013-05-01

    A long-term experiment was conducted on the dryland of Loess Plateau to study the effects of three typical rotation systems, including wheat-sainfoin rotation, wheat-pea rotation, and wheat-maize rotation, on the nutritional quality of wheat grain protein. Rotation system and the cropping years of rotated plants affected the nutritional quality of wheat grain protein in varying degrees. As compared with continuous wheat cropping, wheat-sainfoin rotation made the nutritional quality of wheat grain protein relatively stable, and the essential amino acid content, amino acid score, amino acid ratio coefficient, chemical score, and amino acid index of the protein all relatively high, being able to be adopted as a cropping system to product high quality protein wheat in Loess Plateau. Under wheat-pea rotation, the nutritional quality of wheat grain protein after 1-year pea cropping was relatively high, but the essential amino acid content of wheat grain protein after 2-year pea cropping was relatively low, and several essential amino acid scores and chemical score of the grain protein were lower than those under continuous wheat cropping. Furthermore, the essential amino acid index was 12.2% lower than that under continuous wheat cropping. Therefore, wheat-pea rotation showed a relatively low nutritional quality of wheat grain protein. Under wheat-maize rotation, the nutritional quality of wheat grain protein was also relatively stable, but the crude protein and essential amino acid contents and amino acid balance level were lower than those under continuous wheat cropping.

  15. Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo.

    PubMed

    Mook, Olaf R; Baas, Frank; de Wissel, Marit B; Fluiter, Kees

    2007-03-01

    RNA interference has become widely used as an experimental tool to study gene function. In addition, small interfering RNA (siRNA) may have great potential for the treatment of diseases. Recently, it was shown that siRNA can be used to mediate gene silencing in mouse models. Locally administered siRNAs entered the first clinical trials, but strategies for successful systemic delivery of siRNA are still under development. Challenges still exist about the stability, delivery, and therapeutic efficacy of siRNA. In the present study, we compare the efficacy of two methods of systemic siRNA delivery and the effects of siRNA modifications using locked nucleic acids (LNA) in a xenograft cancer model. Low volume tail vein bolus injections and continuous s.c. delivery using osmotic minipumps yielded similar uptake levels of unmodified siRNA by tumor xenografts. Both routes of administration mediated sequence-specific inhibition of two unrelated targets inside tumor xenografts. Previous studies have shown that LNA can be incorporated into the sense strand of siRNA while the efficacy is retained. Modification of siRNA targeting green fluorescent protein with LNA results in a significant increase in serum stability and thus may be beneficial for clinical applications. We show that minimal 3' end LNA modifications of siRNA are effective in stabilization of siRNA. Multiple LNA modifications in the accompanying strand further increase the stability but negate the efficacy in vitro and in vivo. In vivo, LNA-modified siRNA reduced off-target gene regulation compared with nonmodified siRNA. End-modified siRNA targeting green fluorescent protein provides a good trade-off between stability and efficacy in vivo using the two methods of systemic delivery in the nude mouse model. Therefore, LNA-modified siRNA should be preferred over unmodified siRNA.

  16. Photocatalytic decomposition of perfluorooctanoic acid by transition-metal modified titanium dioxide.

    PubMed

    Chen, Meng-Jia; Lo, Shang-Lien; Lee, Yu-Chi; Huang, Chang-Chieh

    2015-05-15

    Transition-metal modified TiO₂ was used in a UV reactor to assist in decomposition of perfluorooctanoic acid (PFOA) in aqueous solutions. Comparing TiO₂ and two types of metal-modified TiO₂ (Fe-TiO₂ and Cu-TiO₂), Cu-TiO₂ exhibited the highest catalytic activity during PFOA decomposition and defluorination. After 12 h of reaction, the PFOA decomposition and defluorination efficiencies by the UV/Cu-TiO₂ system reached 91% and 19%, respectively. PFOA was decomposed into fluoride ions (F(-)) and shorter perfluorinated carboxylic acids (PFCAs) such as C₆ F₁₃COOH, C₅F₁₁COOH, C₄F₉COOH, C₃F₇COOH, C₂F₅COOH and CF₃COOH. The pseudo-first-order and pseudo-zero-order kinetics were used to model the decomposition and defluorination of PFOA, respectively. Rate constant values of PFOA decomposition for the UV/TiO₂, UV/Fe-TiO₂, and UV/Cu-TiO₂ systems were 0.0001, 0.0015, and 0.0031 min(-1), respectively, while rate constant values of PFOA defluorination for the UV/Fe-TiO₂, and UV/Cu-TiO₂ systems were 0.0048 and 0.0077 mg/L·min(-1), respectively. The photocatalysts were prepared by a photodeposition synthesis method and were characterized by scanning electron microscopy with energy-dispersive X-ray, X-ray diffraction and UV-vis spectrophotometry. The Fe-TiO₂ and Cu-TiO₂ catalysts exhibited considerably higher activities than that of TiO₂. The experimental results have demonstrated that the UV/Fe-TiO₂ and UV/Cu-TiO₂ systems could produce traps to capture photo-induced electrons, thereby reduce electron-hole recombination during photocatalytic reactions and consequently enhance the PFOA decomposition.

  17. New propanoyloxy derivatives of 5β-cholan-24-oic acid as drug absorption modifiers.

    PubMed

    Coufalová, Lenka; Mrózek, Lech; Rárová, Lucie; Plaček, Lukáš; Opatřilová, Radka; Dohnal, Jiří; Král'ová, Katarína; Paleta, Oldřich; Král, Vladimír; Drašar, Pavel; Jampílek, Josef

    2013-05-01

    A series of final twelve propanoyloxy derivatives of 5β-cholan-24-oic acid (O-propanoyl derivatives of cholic acid) as potential drug absorption modifiers (skin penetration enhancers, intestinal absorption promoters) was generated by multistep synthesis. Structure confirmation of all generated compounds was accomplished by 1H NMR, 13C NMR, IR and MS spectroscopy methods. All the prepared compounds were analyzed using RP-TLC, and their lipophilicity (RM) was determined. The hydrophobicity (log P), solubility (log S), polar surface area (PSA) and molar volume (MV) of the studied compounds were also calculated. All the target compounds were tested for their in vitro transdermal penetration effect and as potential intestinal absorption enhancers. The cytotoxicity of all the evaluated compounds was evaluated against normal human skin fibroblast cells. Their anti-proliferative activity was also assessed against human cancer cell lines: T-lymphoblastic leukemia cell line and breast adenocarcinoma cell line. One compound showed selective cytotoxicity against human skin fibroblast cells and another compound possessed the highest cytotoxicity against all the tested cell lines. Only one compound expressed anti-proliferative effect on leukemia cancer cells without affecting the growth of normal cells, which should be promising in potential development of new drugs. Most of the target compounds showed minimal anti-proliferative activity (IC50>37 μM), indicating they would have moderate cytotoxicity when administered as chemical absorption modifiers. The relationships between the lipophilicity/polarity and the chemical structure of the studied compounds as well as the relationships between their chemical structure and enhancement effect are discussed in this article.

  18. Multifunctional nanosheets based on folic acid modified manganese oxide for tumor-targeting theranostic application

    NASA Astrophysics Data System (ADS)

    Hao, Yongwei; Wang, Lei; Zhang, Bingxiang; Zhao, Hongjuan; Niu, Mengya; Hu, Yujie; Zheng, Cuixia; Zhang, Hongling; Chang, Junbiao; Zhang, Zhenzhong; Zhang, Yun

    2016-01-01

    It is highly desirable to develop smart nanocarriers with stimuli-responsive drug-releasing and diagnostic-imaging functions for cancer theranostics. Herein, we develop a reduction and pH dual-responsive tumor theranostic platform based on degradable manganese dioxide (MnO2) nanosheets. The MnO2 nanosheets with a size of 20-60 nm were first synthesized and modified with (3-Aminopropyl) trimethoxysilane (APTMS) to get amine-functionalized MnO2, and then functionalized by NH2-PEG2000-COOH (PEG). The tumor-targeting group, folic acid (FA), was finally conjugated with the PEGylated MnO2 nanosheets. Then, doxorubicin (DOX), a chemotherapeutic agent, was loaded onto the modified nanosheets through a physical adsorption, which was designated as MnO2-PEG-FA/DOX. The prepared MnO2-PEG-FA/DOX nanosheets with good biocompatibility can not only efficiently deliver DOX to tumor cells in vitro and in vivo, leading to enhanced anti-tumor efficiency, but can also respond to a slightly acidic environment and high concentration of reduced glutathione (GSH), which caused degradation of MnO2 into manganese ions enabling magnetic resonance imaging (MRI). The longitudinal relaxation rate r 1 was 2.26 mM-1 s-1 at pH 5.0 containing 2 mM GSH. These reduction and pH dual-responsive biodegradable nanosheets combining efficient MRI and chemotherapy provide a novel and promising platform for tumor-targeting theranostic application.

  19. Ghrelin O-acyltransferase (GOAT), a specific enzyme that modifies ghrelin with a medium-chain fatty acid.

    PubMed

    Kojima, Masayasu; Hamamoto, Akie; Sato, Takahiro

    2016-10-01

    In the gastric peptide hormone ghrelin, serine 3 (threonine 3 in frogs) is modified, primarily by n-octanoic acid; this modification is essential for ghrelin's activity. The enzyme that transfers n-octanoic acid to Ser3 of ghrelin is ghrelin O-acyltransferase (GOAT). GOAT, the only enzyme known to catalyze acyl modification of ghrelin, specifically modifies serine (or threonine) at the third position and does not modify other serine residues in ghrelin peptides. GOAT prefers n-hexanoyl-CoA over n-octanoyl-CoA as the acyl donor, although in the stomach the n-octanoyl form is the predominant form of acyl-modified ghrelin. GOAT is a promising target for drug development to treat metabolic diseases and eating disorders.

  20. The use of the maharanobis and modified distances for the improvement of simulation of glutamic acid production.

    PubMed

    Kishimoto, M; Alfafara, C G; Nakajima, M; Yoshida, T; Taguchi, H

    1989-01-10

    A modified simulation procedure based on a statistical approach was investigated. The procedure predicts the time course of fed-batch culture for glutamic acid production by a temperature-sensitive strain of Brevibacterium flavum. The statistical approach requires only a data base of state points obtained in experiments, and not perfect identification of fermentation models. The simulation procedure is based on regression analysis to estimate specific rate parameters of system equations using the data points selected with reference to the Euclid distance. It was modified in that the data selection procedure included the use of the Maharanobis distance as well as a modified distance defined in this study. Simulation results using the modified procedure allow reasonable prediction of the time course of fed-batch culture for glutamic acid compared to that involving the Euclid distance alone.

  1. Lactic acid bacteria in marinades used for modified atmosphere packaged broiler chicken meat products.

    PubMed

    Lundström, Hanna-Saara; Björkroth, Johanna

    2007-03-01

    Lactic acid bacteria (LAB) in some marinades commonly used in Finland for modified atmosphere packaged poultry meat products were enumerated and identified to determine whether the marinades contained LAB species that cause meat spoilage. The concentrations of LAB in 51 marinade samples ranged from less than 100 to 8.0 x 10(5) CFU/ml. Seventeen of the samples produced LAB growth only after enrichment, and in five samples no growth was detected either by direct culturing or enrichment. Eighty-eight randomly selected isolates, 51 from the enumerated plates and 37 from enriched samples, were identified using a database of 16S and 23S rRNA gene HindIII restriction fragment length polymorphism patterns of over 300 type and references LAB strains as operational taxonomic units in numerical analyses. The predominating LAB in the enumerated samples was Lactobacillus plantarum (25 of 51 isolates). Eleven isolates were identified as Lactobacillus paracasei subsp. paracasei, and nine were Lactobacillus parabuchneri. None of these species are considered specific spoilage LAB in marinated modified atmosphere packaged poultry meat products nor have they been reported to dominate in unspoiled late-shelf-life products. These results indicate that even though marinades may contain high numbers of LAB, they are not necessarily sources of specific meat spoilage LAB. Therefore, risks associated with meat quality are not predicted by quantitative enumeration of LAB in marinades.

  2. Evaluating the reproducibility of quantifying modified nucleosides from ribonucleic acids by LC–UV–MS

    PubMed Central

    Russell, Susan P.; Limbach, Patrick A.

    2013-01-01

    Post-transcriptional chemical covalent modification of adenosine, guanosine, uridine and cytidine occurs frequently in all types of ribonucleic acids (RNAs). In ribosomal RNA (rRNA) and transfer RNA (tRNA) these modifications make important contributions to RNA structure and stability and to the accuracy and efficiency of protein translation. The functional dynamics, synergistic nature and regulatory roles of these posttranscriptional nucleoside modifications within the cell are not well characterized. These modifications are present at very low levels and isolation of individual nucleosides for analysis requires a complex multi-step approach. The focus of this study is to characterize the reproducibility of a liquid chromatography method used to isolate and quantitatively characterize modified nucleosides in tRNA and rRNA when nucleoside detection is performed using ultraviolet and mass spectrometric detection (UV and MS, respectively). Despite the analytical challenges of sample isolation and dynamic range, quantitative profiling of modified nucleosides obtained from bacterial tRNAs and rRNAs is feasible at relative standard deviations of 5% RSD or less. PMID:23500350

  3. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides

    PubMed Central

    Kasuya, Takeshi; Hori, Shin-ichiro; Watanabe, Ayahisa; Nakajima, Mado; Gahara, Yoshinari; Rokushima, Masatomo; Yanagimoto, Toru; Kugimiya, Akira

    2016-01-01

    Gapmer antisense oligonucleotides cleave target RNA effectively in vivo, and is considered as promising therapeutics. Especially, gapmers modified with locked nucleic acid (LNA) shows potent knockdown activity; however, they also cause hepatotoxic side effects. For developing safe and effective gapmer drugs, a deeper understanding of the mechanisms of hepatotoxicity is required. Here, we investigated the cause of hepatotoxicity derived from LNA-modified gapmers. Chemical modification of gapmer’s gap region completely suppressed both knockdown activity and hepatotoxicity, indicating that the root cause of hepatotoxicity is related to intracellular gapmer activity. Gene silencing of hepatic ribonuclease H1 (RNaseH1), which catalyses gapmer-mediated RNA knockdown, strongly supressed hepatotoxic effects. Small interfering RNA (siRNA)-mediated knockdown of a target mRNA did not result in any hepatotoxic effects, while the gapmer targeting the same position on mRNA as does the siRNA showed acute toxicity. Microarray analysis revealed that several pre-mRNAs containing a sequence similar to the gapmer target were also knocked down. These results suggest that hepatotoxicity of LNA gapmer is caused by RNAseH1 activity, presumably because of off-target cleavage of RNAs inside nuclei. PMID:27461380

  4. Preparation, cell compatibility and degradability of collagen-modified poly(lactic acid).

    PubMed

    Cui, Miaomiao; Liu, Leili; Guo, Ning; Su, Ruixia; Ma, Feng

    2015-01-05

    Poly(lactic acid) (PLA) was modified using collagen through a grafting method to improve its biocompatibility and degradability. The carboxylic group at the open end of PLA was transferred into the reactive acylchlorided group by a reaction with phosphorus pentachloride. Then, collagen-modified PLA (collagen-PLA) was prepared by the reaction between the reactive acylchlorided group and amino/hydroxyl groups on collagen. Subsequently, the structure of collagen-PLA was confirmed by Fourier transform infrared spectroscopy, fluorescein isothiocyanate-labeled fluorescence spectroscopy, X-ray photoelectron spectroscopy, and DSC analyses. Finally, some properties of collagen-PLA, such as hydrophilicity, cell compatibility and degradability were characterized. Results showed that collagen had been grafted onto the PLA with 5% graft ratio. Water contact angle and water absorption behavior tests indicated that the hydrophilicity of collagen-PLA was significantly higher than that of PLA. The cell compatibility of collagen-PLA with mouse embryonic fibroblasts (3T3) was also significantly better than PLA in terms of cell morphology and cell proliferation, and the degradability of PLA was also improved after introducing collagen. Results suggested that collagen-PLA was a promising candidate for biomedical applications.

  5. Deep Eutectic Solvents Modified Molecular Imprinted Polymers for Optimized Purification of Chlorogenic Acid from Honeysuckle.

    PubMed

    Li, Guizhen; Wang, Wei; Wang, Qian; Zhu, Tao

    2016-02-01

    Deep eutectic solvents (DES) were synthesized with choline chloride (ChCl), and DES modified molecular imprinted polymers (DES-MIPs), DES modified non-imprinted polymers (DES-NIPs, without template), MIPs and NIPs were prepared in an identical procedure. Fourier transform infrared spectrometer (FT-IR) and field emission scanning electron microscopy (FE-SEM) were used to characterize the obtained polymers. Rebinding experiment and solid-phase extraction (SPE) were used to prove the high selectivity adsorption properties of the polymers. Box-Behnken design (BBD) with three factors was used to optimize the extraction condition of chlorogenic acid (CA) from honeysuckles. The optimum extraction conditions were found to be ultrasonic time optimized (20 min), the volume fraction of ethanol (60%) and ratio of liquid to material (15 mL g(-1)). Under these conditions, the mean extraction yield of CA was 12.57 mg g(-1), which was in good agreement with the predicted BBD model value. Purification of hawthorn extract was achieved by SPE process, and SPE recoveries of CA were 72.56, 64.79, 69.34 and 60.08% by DES-MIPs, DES-NIPs, MIPs and NIPs, respectively. The results showed DES-MIPs had potential for promising functional adsorption material for the purification of bioactive compounds.

  6. Synthesis of porous starch xerogels modified with mercaptosuccinic acid to remove hazardous gardenia yellow.

    PubMed

    Bao, Liping; Zhu, Xinyi; Dai, Hongxia; Tao, Yongxin; Zhou, Xiaoying; Liu, Wenjie; Kong, Yong

    2016-08-01

    Mercaptosuccinic acid (MSA) molecules were inserted into potato starch, leading to the breaking of intrinsic H-bonds within macromolecular chains of starch and the formation of intermolecular H-bonds between MSA and starch, which could be verified by Fourier transform infrared spectroscopy (FT-TR). MSA modified porous starch xerogels (PSX/MSA) were obtained after freeze-drying the MSA modified starch, and they were characterized by field emission scanning electron microscopy (FESEM), exhibiting the intriguing porous structure due to the separation of starch chains by MSA molecules. The PSX/MSA were then used as the adsorbents to remove gardenia yellow (GY), a natural colorant with genotoxicity. Due to the porous structure of PSX and the introduced carboxyl groups from MSA, the adsorption capacity of the PSX/MSA was much higher than that of the starch xerogels alone (SX). The adsorption behaviors of GY by the PSX/MSA fitted both the Freundlich isotherm model and the pseudo-second-order kinetic model, and the efficient adsorption of GY suggested that the PSX/MSA might be potential adsorbents for the removal of dyes from contaminated aquatic systems.

  7. The visualisation of vitreous using surface modified poly(lactic-co-glycolic acid) microparticles.

    PubMed

    Chau, David Y S; Tint, Naing L; Collighan, Russell J; Griffin, Martin; Dua, Harminder S; Shakesheff, Kevin M; Rose, Felicity R A J

    2010-05-01

    AIMS To demonstrate the potential use of in vitro poly(lactic-co-glycolic acid) (PLGA) microparticles in comparison with triamcinolone suspension to aid visualisation of vitreous during anterior and posterior vitrectomy. METHODS PLGA microparticles (diameter 10-60 microm) were fabricated using single and/or double emulsion technique(s) and used untreated or following the surface adsorption of a protein (transglutaminase). Particle size, shape, morphology and surface topography were assessed using scanning electron microscopy (SEM) and compared with a standard triamcinolone suspension. The efficacy of these microparticles to enhance visualisation of vitreous against the triamcinolone suspension was assessed using an in vitro set-up exploiting porcine vitreous. RESULTS Unmodified PLGA microparticles failed to adequately adhere to porcine vitreous and were readily washed out by irrigation. In contrast, modified transglutaminase-coated PLGA microparticles demonstrated a significant improvement in adhesiveness and were comparable to a triamcinolone suspension in their ability to enhance the visualisation of vitreous. This adhesive behaviour also demonstrated selectivity by not binding to the corneal endothelium. CONCLUSION The use of transglutaminase-modified biodegradable PLGA microparticles represents a novel method of visualising vitreous and aiding vitrectomy. This method may provide a distinct alternative for the visualisation of vitreous whilst eliminating the pharmacological effects of triamcinolone acetonide suspension.

  8. [Enhanced reductive decoloration of methylene blue by polyacrylic acid modified zero-valent iron nanoparticles].

    PubMed

    He, Jing; Wang, Xiang-Yu; Wang, Pei; Liu, Kun-Qian

    2015-03-01

    Nano zerovalent iron ( NZVI) technology has attracted tremendous amount of interests for degrading a number of environmental contaminants found both in surface water and underground water. However, these nanoscale particles are prone to aggregate, which may result in the decrease of its reactivity in liquid phase. Iron nanoparticles (Fe NPs) modified with polyacrylic acid (PAA) has enhanced the dispersion of NZVI and reduced its agglomeration. For the first time, PAA modified NPs (PAA-Fe NPs) were used for degradation of methylene blue in water phase. The PAA-Fe NPs prepared were characterized in terms of TEM, SEM, XRD and specific surface area. The results indicated that, the surface area of PAA-Fe NPs was increased, compared with unmodified pristine zero-valent iron NPs, and PAA-Fe NPs were smoother with smaller particle size. With addition of 0.1 g x L(-1) of PAA, the decolorization efficiency of methylene blue by PAA-Fe NPs was 98.84% in 60 min, which was 27.32% higher than that of pristine Fe NPs. Decolorization efficiencies were also affected by initial pH value, initial concentration of methylene blue, dosage of PAA-Fe NPs, and degradation temperature. Kinetic analyses based on the experimental data illustrated that the decolorization reaction of methylene blue fitted well to the pseudo first-order kinetics model.

  9. Modified poly(lactic-co-glycolic acid) nanoparticles for enhanced cellular uptake and gene editing in the lung.

    PubMed

    Fields, Rachel J; Quijano, Elias; McNeer, Nicole Ali; Caputo, Christina; Bahal, Raman; Anandalingam, Kavi; Egan, Marie E; Glazer, Peter M; Saltzman, W Mark

    2015-02-18

    Surface-modified poly(lactic-co-glycolic acid) (PLGA)/poly(β-aminoester)(PBAE)nanoparticles (NPs) have shown great promise in gene delivery. In this work, the pulmonary cellular uptake of these NPs is evaluated and surface-modified PLGA/PBAE NPs are shown to achieve higher cellular association and gene editing than traditional NPs composed of PLGA or PLGA/PBAE blends alone.

  10. SBA-15 mesoporous material modified with APTES as the carrier for 2-(3-benzoylphenyl)propionic acid

    NASA Astrophysics Data System (ADS)

    Moritz, Michał; Łaniecki, Marek

    2012-07-01

    SBA-15 ordered mesoporous silica functionalized with (3-aminopropyl)triethoxysilane (APTES) was used as the carrier for anti-inflammatory drug: 2-(3-benzoylphenyl)propionic acid - ketoprofen. The surface of SBA-15 containing free silanol groups was modified with 3-aminopropyltriethoxysilane via post-synthetic reaction. Functionalization of the carrier with basic aminopropyl groups resulted in an ionic interaction with acidic ketoprofen. The samples of carriers and carrier-drug complexes were characterized by elemental analysis, TG, N2 adsorption, FTIR, DRUV spectroscopies and an in vitro drug release test. The adsorption of ketoprofen on modified mesoporous matrix was proportional to the amount of introduced aminopropyl groups. The maximum content of deposited drug in modified SBA-15 was close to 20 wt.%. After drug adsorption the reduction of BET surface area, pore volume and pore diameter of non-modified SBA-15 and aminopropyl-modified SBA-15 after drug adsorption were observed while the hexagonal array of siliceous matrix was well preserved. The release profiles of the aminopropyl-modified drug-containing SBA-15 exhibited prolonged release of ketoprofen in applied media. Tests performed in acidic solution (pH 1.2) showed the best pharmaceutical availability.

  11. Determination of DNA adducts by combining acid-catalyzed hydrolysis and chromatographic analysis of the carcinogen-modified nucleobases.

    PubMed

    Leung, Elvis M K; Deng, Kailin; Wong, Tin-Yan; Chan, Wan

    2016-01-01

    The commonly used method of analyzing carcinogen-induced DNA adducts involves the hydrolysis of carcinogen-modified DNA samples by using a mixture of enzymes, followed by (32)P-postlabeling or liquid chromatography (LC)-based analyses of carcinogen-modified mononucleotides/nucleosides. In the present study, we report the development and application of a new approach to DNA adduct analysis by combining the H(+)/heat-catalyzed release of carcinogen-modified nucleobases and the use of LC-based methods to analyze DNA adducts. Results showed that heating the carcinogen-modified DNA samples at 70 °C for an extended period of 4 to 6 h in the presence of 0.05% HCl can efficiently induce DNA depurination, releasing the intact carcinogen-modified nucleobases for LC analyses. After optimizing the hydrolysis conditions, DNA samples with C8- and N (2) -modified 2'-deoxyguanosine, as well as N (6) -modified 2'-deoxyadenosine, were synthesized by reacting DNA with 1-nitropyrene, acetaldehyde, and aristolochic acids, respectively. These samples were then hydrolyzed, and the released nucleobase adducts were analyzed using LC-based analytical methods. Analysis results demonstrated a dose-dependent release of target DNA adducts from carcinogen-modified DNA samples, indicating that the developed H(+)/heat-catalyzed hydrolysis method was quantitative. Comparative studies with enzymatic digestion method on carcinogen-modified DNA samples revealed that the two hydrolysis methods did not yield systematically different results.

  12. Registration of Vision 45 Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Vision 45’ (Reg. No. CV-1110, PI 667642), is a hard red winter (HRW) wheat (Triticum aestivum L.) cultivar that was developed and tested as VA07HRW-45 and released by the Virginia Agricultural Experiment Station in 2012. Vision 45 was derived from the cross ‘Provinciale’/‘Vision 10’ using a modifie...

  13. Formic acid electrooxidation on Bi-modified polyoriented and preferential (111) Pt nanoparticles.

    PubMed

    López-Cudero, Ana; Vidal-Iglesias, Francisco J; Solla-Gullón, José; Herrero, Enrique; Aldaz, Antonio; Feliu, Juan M

    2009-01-14

    Formic acid electrooxidation was studied on Bi modified polyoriented and preferential (111) Pt nanoparticles. For both types of nanoparticles, Bi coverage was progressively increased and its effect on formic acid electrooxidation was evaluated using cyclic voltammetry and chronoamperometric measurements. In both experiments, significant and progressive enhancements on the electrooxidation current densities were obtained in comparison to the bare Pt nanoparticles. In voltammetry, at maximum Bi coverage, higher current densities at peak potential were obtained with the preferential (111) Pt nanoparticles (approximately 42 mA cm(-2)) as compared to the polyoriented Pt nanoparticles (approximately 32 mA cm(-2)) in agreement with previous single crystal studies. Nevertheless, this tendency was not observed in chronoamperometry at 0.4 V where currents obtained at maximum Bi coverage were similar. On the other hand, CO poison formation was also evaluated at open circuit potential. The resulting electrochemical activity has been rationalized using different parameters, such as surface structure, size domains, particle size and Bi coverage.

  14. A Glycyrrhetinic Acid-Modified Curcumin Supramolecular Hydrogel for liver tumor targeting therapy.

    PubMed

    Chen, Guoqin; Li, Jinliang; Cai, Yanbin; Zhan, Jie; Gao, Jie; Song, Mingcai; Shi, Yang; Yang, Zhimou

    2017-03-10

    Curcumin (Cur), a phenolic anti-oxidant compound obtained from Curcuma longa plant, possesses a variety of therapeutic properties. However, it is suffered from its low water solubility and low bioavailability property, which seriously restricts its clinical application. In this study, we developed a glycyrrhetinic acid (GA) modified curcumin supramolecular pro-gelator (GA-Cur) and a control compound Nap-Cur by replacing GA with the naphthylacetic acid (Nap). Both compounds showed good water solubility and could form supramolecular gels by disulfide bond reduction triggered by glutathione (GSH) in vitro. Both formed gels could sustainedly release Cur in buffer solutions. We also investigated the cytotoxicity of pro-gelators to HepG2 cells by a MTT assay and determined the cellular uptake behaviours of them by fluorescence microscopy and LC-MS. Due to the over expression of GA receptor in liver cancer cells, our pro-gelator of GA-Cur showed an enhanced cellular uptake and better inhibition capacity to liver tumor cells than Nap-Cur. Therefore, the GA-Cur could significantly inhibit HepG2 cell growth. Our study provides a novel nanomaterial for liver tumor chemotherapy.

  15. Application of acid modified polyurethane foam surface for detection and removing of organochlorine pesticides from wastewater.

    PubMed

    Moawed, E A; Radwan, A M

    2017-02-15

    The commercial polyurethane foam was acid modified to get an inexpensive adsorbent (AM-PUF) has highly surface polarity and sorption capacity. The elemental analysis, scanning electron microscopy, thermal analysis, ultraviolet/visible/infrared spectroscopies and X-ray diffraction were used for characterization of AM-PUF. The surface of AM-PUF has amorphous character (broadband at 2θ, 21.75°) and contains several active sites e.g. NH, OH, CO, CC and COC groups. The electrical conductivity (σ), iodine value and methylene blue index of AM-PUF are 1.7×10(-5)Ω(-1)m(-1), 208mg/g and 107mg/g. The AM-PUF has a high efficiency for completely removing (99-100%) of Aldrin, DDT, Endrin, Heptachlor, Heptachlor epoxide and Lindane pesticides in both acidic and alkaline solutions. The removing rates of the organochlorine pesticides from wastewater are very rapid (t1/2=22s). The negative value of ΔG (-10.9kJ/mol) for removing of OCPs using AM-PUF showed that the feasibility of the removing process and its spontaneous nature.

  16. Nanosized silica modified with carboxylic acid as support for controlled release of herbicides.

    PubMed

    Prado, Alexandre G S; Moura, Aline O; Nunes, Alecio R

    2011-08-24

    Hexagonal mesoporous silica modified with carboxylic acid (SiAc) has been obtained by reaction between chloroacetic acid and 3-aminopropyltrimethoxysilane, which was immobilized on porous material by a sol-gel process in the presence of an n-dodecylamine template. SiAc was characterized by TG, FT-IR, (29)Si NMR, (13)C NMR, SEM, surface charge density, surface area and porous diameter, which proved that the carboxylic group was chemically bonded to an inorganic structure, and the material presented a nanometric structure with spheres <50 nm and porous diameter of 10 nm. Herbicides 2,4-D and picloram were anchored on SiAc porous gel to produce the materials named SiD and SiPi, respectively. The controlled release of picloram from the SiAc was less than that of 2,4-D. After 26 days of releasing, 4.43 × 10(-5) mol L(-1) of picloram was delivered by SiPi, and 5.0 × 10(-5) L(-1) was released from the SiD in 30 days.

  17. Poly(acrylic acid) modifying bentonite with in-situ polymerization for removing lead ions.

    PubMed

    He, Y F; Zhang, L; Yan, D Z; Liu, S L; Wang, H; Li, H R; Wang, R M

    2012-01-01

    In this paper, a new kind of poly(acrylic acid) modified clay adsorbent, the poly(acrylic acid)/bentonite composite (PAA/HB) was prepared by in-situ polymerization, and utilized to remove lead(II) ions from solutions. The maximum adsorption of adsorbent is at pH 5 for metal ions, whereas the adsorption starts at pH 2. The effects of contact time (5-60 min), initial concentration of metal ions (200-1,000 mg/L) and adsorbent dosage (0.04-0.12 g/100 mL) have been reported in this article. The experimental data were investigated by means of kinetic and equilibrium adsorption isotherms. The kinetic data were analyzed by the pseudo-first-order and pseudo-second-order equation. The experimental data fitted the pseudo-second-order kinetic model very well. Langmuir and Freundlich isotherms were tried for the system to better understand the adsorption isotherm process. The maximal adsorption capacity of the lead(II) ions on the PAA/HB, as calculated from the Langmuir model, was 769.2 mg/g. The results in this study indicated that PAA/HB was an attractive candidate for removing lead(II) (99%).

  18. Decomposition of perfluorooctanoic acid by ultraviolet light irradiation with Pb-modified titanium dioxide.

    PubMed

    Chen, Meng-Jia; Lo, Shang-Lien; Lee, Yu-Chi; Kuo, Jeff; Wu, Chung-Hsin

    2016-02-13

    Perfluorooctanoic acid (PFOA, C7H15COOH) is widely used in industrial and commercial applications. It has become a global concern due to its widespread occurrence in water bodies and adverse environmental impact. PFOA could not be effectively removed by the conventional UV/TiO2 system. This study synthesized Pb-modified TiO2 catalyst and used it as a catalyst with light irradiation for PFOA decomposition. It was found that the Pb-TiO2 catalyst could produce traps to capture photo-induced electrons or holes that lead to better photocatalytic efficiencies. Rate constant values for PFOA decomposition by the UV/TiO2 and UV/Pb-TiO2 systems were determined to be 0.0158 and 0.5136 h(-1), respectively. The PFOA decomposition in the UV/Pb-TiO2 system is 32.5 times faster than that in the UV/TiO2 system. The UV/Pb-TiO2 system yielded a better performance than those of the UV/Fe-TiO2 and UV/Cu-TiO2 systems. During the reaction, PFOA decomposed stepwisely into shorter-chain perfluorocarboxylic acids and F(-).

  19. Nanostructured polymeric coatings based on chitosan and dopamine-modified hyaluronic acid for biomedical applications.

    PubMed

    Neto, Ana I; Cibrão, Ana C; Correia, Clara R; Carvalho, Rita R; Luz, Gisela M; Ferrer, Gloria G; Botelho, Gabriela; Picart, Catherine; Alves, Natália M; Mano, João F

    2014-06-25

    In a marine environment, specific proteins are secreted by mussels and used as a bioglue to stick to a surface. These mussel proteins present an unusual amino acid 3,4-dihydroxyphenylalanine (known as DOPA). The outstanding adhesive properties of these materials in the sea harsh conditions have been attributed to the presence of the catechol groups present in DOPA. Inspired by the structure and composition of these adhesive proteins, dopamine-modified hyaluronic acid (HA-DN) prepared by carbodiimide chemistry is used to form thin and surface-adherent dopamine films. This conjugate was characterized by distinct techniques, such as nuclear magnetic resonance and ultraviolet spectrophotometry. Multilayer films are developed based on chitosan and HA-DN to form polymeric coatings using the layer-by-layer methodology. The nanostructured films formation is monitored by quartz crystal microbalance. The film surface is characterized by atomic force microscopy and scanning electron microscopy. Water contact angle measurements are also conducted. The adhesion properties are analyzed showing that the nanostructured films with dopamine promote an improved adhesion. In vitro tests show an enhanced cell adhesion, proliferation and viability for the biomimetic films with catechol groups, demonstrating their potential to be used in distinct biomedical applications.

  20. Cadmium chloride exposure modifies amino acid daily pattern in the mediobasal hypothalamus in adult male rat.

    PubMed

    Caride, A; Fernández-Pérez, B; Cabaleiro, T; Bernárdez, G; Lafuente, A

    2010-01-01

    The present study was conducted to investigate the possible effects of cadmium exposure on the daily pattern of aspartate, glutamate, glutamine, gamma-aminobutyric acid (GABA) and taurine levels in the mediobasal hypothalamus of adult male rats. For this purpose, animals were treated with cadmium at two different exposure doses (25 and 50 mg l(-1) of cadmium chloride, CdCl(2)) in the drinking water for 30 days. Control age-matched rats received CdCl(2)-free water. After the treatment, rats were killed at six different time intervals throughout a 24 h cycle. CdCl(2) exposure modified the amino acid daily pattern, as it decreased aspartate, glutamate, GABA and taurine levels at 12:00 h with both exposure doses employed. In addition, the treatment with 25 mg l(-1) of CdCl(2) induced the appearance of minimal values at 16:00 h and maximal values between 04:00 and 08:00 h for glutamate, and a peak of glutamine content at 20:00 h. The heavy metal also decreased GABA medium levels around the clock in the mediobasal hypothalamus. However, CdCl(2) did not alter the metabolic correlation between glutamate, aspartate, glutamine and GABA observed in control animals. These results suggest that CdCl(2) induced several alterations in aspartate, glutamate, glutamine, GABA and taurine daily pattern in the mediobasal hypothalamus and those changes may be related to alterations in hypothalamic function.

  1. A Glycyrrhetinic Acid-Modified Curcumin Supramolecular Hydrogel for liver tumor targeting therapy

    PubMed Central

    Chen, Guoqin; Li, Jinliang; Cai, Yanbin; Zhan, Jie; Gao, Jie; Song, Mingcai; Shi, Yang; Yang, Zhimou

    2017-01-01

    Curcumin (Cur), a phenolic anti-oxidant compound obtained from Curcuma longa plant, possesses a variety of therapeutic properties. However, it is suffered from its low water solubility and low bioavailability property, which seriously restricts its clinical application. In this study, we developed a glycyrrhetinic acid (GA) modified curcumin supramolecular pro-gelator (GA-Cur) and a control compound Nap-Cur by replacing GA with the naphthylacetic acid (Nap). Both compounds showed good water solubility and could form supramolecular gels by disulfide bond reduction triggered by glutathione (GSH) in vitro. Both formed gels could sustainedly release Cur in buffer solutions. We also investigated the cytotoxicity of pro-gelators to HepG2 cells by a MTT assay and determined the cellular uptake behaviours of them by fluorescence microscopy and LC-MS. Due to the over expression of GA receptor in liver cancer cells, our pro-gelator of GA-Cur showed an enhanced cellular uptake and better inhibition capacity to liver tumor cells than Nap-Cur. Therefore, the GA-Cur could significantly inhibit HepG2 cell growth. Our study provides a novel nanomaterial for liver tumor chemotherapy. PMID:28281678

  2. Electrocatalytic oxidation of salicylic acid by a cobalt hydrotalcite-like compound modified Pt electrode.

    PubMed

    Gualandi, Isacco; Scavetta, Erika; Zappoli, Sergio; Tonelli, Domenica

    2011-03-15

    In this paper a study of the electrocatalytic oxidation of salicylic acid (SA) at a Pt electrode coated with a Co/Al hydrotalcite-like compound (Co/Al HTLC coated-Pt) film is presented. The voltammetric behaviour of the modified electrode in 0.1M NaOH shows two different redox couples: Co(II)/Co(III) and Co(III)/Co(IV). The electrocatalysis occurs at the same potential of the latter couple, showing that Co(IV) centers act as the oxidant. The CV investigation demonstrates that the process is controlled both by mass and charge transfer and that the Co(IV) centers involved in the oxidation are two for each SA molecule. The estimated value of the catalytic constant is 4×10(4) M(-1) s(-1). The determination of salicylic acid was performed both by DPV and chronoamperometry. The linearity ranges and the LOD values resulted 1×10(-5) to 5×10(-4), 5×10(-7) to 1×10(-4), 6×10(-6) and 2×10(-7) M, respectively. The Co/Al HTLC electrode has been used for SA determination in BAYER Aspirina® and the obtained results are consistent with an independent HPLC analysis.

  3. Preparation and Electrochemical Characterization of a Carbon Ceramic Electrode Modified with Ferrocenecarboxylic Acid

    PubMed Central

    Skeika, Tatiane; Zuconelli, Cristiane R.; Fujiwara, Sergio T.; Pessoa, Christiana A.

    2011-01-01

    The present paper describes the characterization of a carbon ceramic electrode modified with ferrocenecarboxylic acid (designated as CCE/Fc) by electrochemical techniques and its detection ability for dopamine. From cyclic voltammetric experiments, it was observed that the CCE/Fc presented a redox pair at Epa = 405 mV and Epc = 335 mV (ΔE = 70 mV), related to the ferrocene/ferrocenium process. Studies showed a considerably increase in the redox currents at the same oxidation potential of ferrocene (Epa = 414 mV vs. Ag/AgCl) in the presence of dopamine (DA), differently from those observed when using only the unmodified CCE, in which the anodic peak increase was considerably lower. From SWV experiments, it was observed that the AA (ascorbic acid) oxidation at CCE/Fc occurred in a different potential than the DA oxidation (with a peak separation of approximately 200 mV). Moreover, CCE/Fc did not respond to different AA concentrations, indicating that it is possible to determine DA without the AA interference with this electrode. PMID:22319356

  4. A Glycyrrhetinic Acid-Modified Curcumin Supramolecular Hydrogel for liver tumor targeting therapy

    NASA Astrophysics Data System (ADS)

    Chen, Guoqin; Li, Jinliang; Cai, Yanbin; Zhan, Jie; Gao, Jie; Song, Mingcai; Shi, Yang; Yang, Zhimou

    2017-03-01

    Curcumin (Cur), a phenolic anti-oxidant compound obtained from Curcuma longa plant, possesses a variety of therapeutic properties. However, it is suffered from its low water solubility and low bioavailability property, which seriously restricts its clinical application. In this study, we developed a glycyrrhetinic acid (GA) modified curcumin supramolecular pro-gelator (GA-Cur) and a control compound Nap-Cur by replacing GA with the naphthylacetic acid (Nap). Both compounds showed good water solubility and could form supramolecular gels by disulfide bond reduction triggered by glutathione (GSH) in vitro. Both formed gels could sustainedly release Cur in buffer solutions. We also investigated the cytotoxicity of pro-gelators to HepG2 cells by a MTT assay and determined the cellular uptake behaviours of them by fluorescence microscopy and LC-MS. Due to the over expression of GA receptor in liver cancer cells, our pro-gelator of GA-Cur showed an enhanced cellular uptake and better inhibition capacity to liver tumor cells than Nap-Cur. Therefore, the GA-Cur could significantly inhibit HepG2 cell growth. Our study provides a novel nanomaterial for liver tumor chemotherapy.

  5. Interactions between organic amendments and phosphate fertilizers modify phosphate sorption processes in an acid soil

    SciTech Connect

    Sckefe, C.R.; Patti, A.F.; Clune, T.S.; Jackson, W.R.

    2008-07-15

    To determine how organic amendments and phosphate fertilizers interact to modify P sorption processes, three phosphate fertilizers were applied to lignite- and compost-amended acid soil and incubated for either 3 or 26 days. The fertilizers applied were potassium dihydrogen phosphate, triple superphosphate, and diammonium phosphate (DAP). After 3 days of incubation, sorption of all three P sources was decreased in the lignite-amended treatments, whereas P sorption was increased in the compost-amended treatments. Increased incubation time (26 days) resulted in significantly decreased P sorption when DAP was added to lignite-amended treatments. Addition of triple superphosphate increased P sorption in lignite- and compost-amended treatments and decreased solution pH compared with DAP application. In addition to the effect of P source, differences in P sorption between the lignite- and compost-amended treatments were driven by differences in solution chemistry, predominantly solution pH and cation dynamics. Soil amendment and fertilizer addition also increased microbial activity in the incubation systems, as measured by carbon dioxide respiration. It is proposed that the combination of lignite and DAP may contribute to decreased P sorption in acid soils, with the positive effects likely caused by both chemical and biological processes, including the formation of soluble organic-metal complexes.

  6. Novel Long-Circulating Liposomes Consisting of PEG Modified β-Sitosterol for Gambogic Acid Delivery.

    PubMed

    Yu, Fan; Tang, Xinhui

    2016-03-01

    Long-circulating liposome is an effective formulation in field of cancer treatment. However, high expenditure of formulation and high dose of cholesterol severely restrict its application. In this paper, we developed a method by grafting polyethylene glycol 2000 on β-sitosterol succinic anhydride ester to obtain relatively cheap polyethylene glycol-β-sitosterol conjugates, which were used to prepare long-circulating liposome without cholesterol. Gambogic acid which is an effective antitumor ingredient with very short half-life, was used as a model drug to prepare long-circulating liposome in this research. Meanwhile, the characteristics, pharmacokinetics and distribution of this novel long-circulating liposome were also investigated in comparison with other gambogic acid formulations. Polyethylene glycol-β-sitosterol conjugates were synthesized, different liposomal formulations were also prepared by ethanol injection method, and the obtained nanoparticles were characterized by dynamic light scattering and transmission electron microscope. The long-circulating effect, pharmacokinetics and distribution of gambogic acid in rats were also explored. 1HNMR confirmed that polyethylene glycol-β-sitosterol conjugates were synthesized successfully. Novel long-circulating liposome was successfully prepared by ethanol injection method attaining a entrapment efficiency of 89.4%, exhibiting a homogeneous particle size of 245.2 nm and -24.3 mV zeta potential with smooth continuous surface. This novel long-circulating liposome demonstrated better long-circulating effect than ordinary long-circulating liposome. The novel long-circulating liposome as-prepared not only could reduce cost of grafting polyethylene glycol on macromolecular phospholipid, but also no cholestrol in preparation was applied, expanding the application of liposome as a formulation in the field of lowering blood lipid. Therefore, polyethylene glycol-β-sitosterol conjugates are recommended substitute for

  7. Standardized Ileal Amino Acid Digestibility of Corn, Corn Distillers' Dried Grains with Solubles, Wheat Middlings, and Bakery By-Products in Broilers and Laying Hens.

    PubMed

    Adedokun, S A; Jaynes, P; Payne, R L; Applegate, T J

    2015-10-01

    Standardized ileal amino acid digestibility (SIAAD) of 5 samples of corn distillers dried grain with solubles (DDGS), 5 samples of bakery by-products (BBP), 3 samples of corn, and 1 sample of wheat middlings (WM) were evaluated in broilers and laying hens. Diets containing each of the 14 feed ingredients were evaluated in 21 day-old broiler chickens. The DDGS and BBP containing diets were fed to 30-week-old laying hens, while corn and wheat middling were evaluated in 50-week-old laying hens. All the diets were semi-purified with each feed ingredient being the only source of amino acid (AA). To obtain SIAAD values, apparent ileal AA digestibility was corrected for basal ileal endogenous AA losses using values generated from broilers and laying hens fed a nitrogen-free diet. Ileal crude protein digestibility for the 5 DDGS samples was higher (P < 0.05) in broilers than in laying hens. Broilers had higher SIAAD for DDGS 2, 3, 4, and 5 while there was no difference for DDGS 1 except for 4 AA where broilers had higher (P < 0.05) SIAAD values. Standardized ileal AA digestibility values for broilers were higher (P < 0.05) for BBP 1 and 4. Ileal CP digestibility for corn 1 was higher (P < 0.05) for broilers compared to laying hens, and SIAAD values for the 16 AA (9 indispensable and 7 dispensable) evaluated in this study were higher (P < 0.05) in broilers. Broilers had higher (P < 0.05) SIAAD values for 4 (histidine, leucine, phenylalanine, and valine) and 6 (histidine, leucine, methionine, phenylalanine, threonine, and valine) indispensable and 3 (cysteine, glutamic acid, and proline) and 4 (cysteine, glutamic acid, proline, and serine) dispensable AA for corn 2 and corn 3, respectively. No difference in SIAAD between broilers and laying hens was observed for WM. Results from this study confirm that high variability in digestibility exists between different samples of DDGS. Differences in SIAAD between broilers and laying hens were observed in some samples of

  8. Sensitive determination of dopamine in the presence of uric acid and ascorbic acid using TiO2 nanotubes modified with Pd, Pt and Au nanoparticles.

    PubMed

    Mahshid, Sara; Li, Chengcheng; Mahshid, Sahar Sadat; Askari, Masoud; Dolati, Abolghasem; Yang, Lixia; Luo, Shenglian; Cai, Qingyun

    2011-06-07

    A simple modified TiO(2) nanotubes electrode was fabricated by electrodeposition of Pd, Pt and Au nanoparticles. The TiO(2) nanotubes electrode was prepared using the anodizing method, followed by modifying Pd nanoparticles onto the tubes surface, offering a uniform conductive surface for electrodeposition of Pt and Au. The performance of the modified electrode was characterized by cyclic voltammetry and differential pulse voltammetry methods. The Au/Pt/Pd/TiO(2) NTs modified electrode represented a high sensitivity towards individual detection of dopamine as well as simultaneous detection of dopamine and uric acid using 0.1 M phosphate buffer solution (pH 7.00) as the base solution. In both case, electro-oxidation peak currents of dopamine were linearly related to accumulated concentration over a wide concentration range of 5.0 × 10(-8) to 3.0 × 10(-5) M. However in the same range of dopamine concentration, the sensitivity had a significant loss at Pt/Pd/TiO(2) NTs electrode, suggesting the necessity for Au nanoparticles in modified electrode. The limit of the detection was determined as 3 × 10(-8) M for dopamine at signal-to-noise ratio equal to 3. Furthermore, the Au/Pt/Pd/TiO(2) NTs modified electrode was able to distinguish the oxidation response of dopamine, uric acid and ascorbic acid in mixture solution of different acidity. It was shown that the modified electrode possessed a very good reproducibility and long-term stability. The method was also successfully applied for determination of DA in human urine samples with satisfactory results.

  9. Studies on the nutraceuticals composition of wheat derived oils wheat bran oil and wheat germ oil.

    PubMed

    Kumar, G Suresh; Krishna, A G Gopala

    2015-02-01

    Fat-soluble nutraceuticals of cereals are known for number of disease preventive activities. Hence wheat bran oil (WBO) and wheat germ oil (WGO) were extracted from wheat bran and germ which yielded 3.35 % and 7.35 % of oil, containing polyunsaturated fatty acids (PUFA) (64 %, 61.2 %) respectively. Both oils contained tocopherols and carotenoids, which were higher in wheat germ oil (273 mg/100 g, 12.23 mg/100 g) than wheat bran oil (190 mg/100 g, 2.21 mg/100 g). Steryl ferulates were also present in both the oils, but their content was eight-fold higher in WBO than in WGO. Three major steryl ferulates identified by HPLC were campesteryl ferulate and sitostenyl ferulate, campestanyl ferulate and β-sitosteryl ferulate as in γ-oryzanol and another ferulate, viz., sitostanyl ferulate. A strong IC50 value of 7.5 mg/mL and 21.6 mg/mL DPPH free radicals scavenging for wheat germ oil for wheat bran oil was observed. NMR ((13)C and (1)H) profile explored the evidence of distribution of antioxidant molecules in the unsaponifiable matter of wheat derived oil. Since oils rich in PUFA and minor components are required for the normal physiological activities, blending such oils with other edible oils of the diet in wheat growing countries like India may be useful to provide health benefits.

  10. Carbon-Pt nanoparticles modified TiO2 nanotubes for simultaneous detection of dopamine and uric acid.

    PubMed

    Mahshid, Sara; Luo, Shenglian; Yang, Lixia; Mahshid, Sahar Sadat; Askari, Masoud; Dolati, Abolghasem; Cai, Qingyun

    2011-08-01

    The present work describes sensing application of modified TiO2 nanotubes having carbon-Pt nanoparticles for simultaneous detection of dopamine and uric acid. The TiO2 nanotubes electrode was prepared using anodizing method, followed by electrodeposition of Pt nanoparticles onto the tubes. Carbon was deposited by decomposition of polyethylene glycol in a tube furnace to improve the conductivity. The C-Pt-TiO2 nanotubes modified electrode was characterized by cyclic voltammetry and differential pulse voltammetry methods. The modified electrode displayed high sensitivity towards the oxidation of dopamine and uric acid in a phosphate buffer solution (pH 7.00). The electro-oxidation currents of dopamine and uric acid were linearly related to the concentration over a wide range of 3.5 x 10(-8) M to 1 x 10(-5) M and 1 x 10(-7) M to 3 x 10(-5) M respectively. The limit of detection was determined as 2 x 10(-10) M for dopamine at signal-to-noise ratio of 3. The interference of uric acid was also investigated. Electro-oxidation currents of dopamine in the presence of fix amount of uric acid represented a linear behaviour towards successive addition of dopamine in range of 1 x 10(-7) M to 1 x 10(-5) M. Furthermore, in a solution containing dopamine, uric acid and ascorbic acid the overlapped oxidation peaks of dopamine and ascorbic acid could be easily separated by using C-Pt-TiO2 nanotubes modified electrode.

  11. A novel l-leucine modified Sol-Gel-Carbon electrode for simultaneous electrochemical detection of homovanillic acid, dopamine and uric acid in neuroblastoma diagnosis.

    PubMed

    Khamlichi, Redouan El; Bouchta, Dounia; Anouar, El Hassane; Atia, Mounia Ben; Attar, Aisha; Choukairi, Mohamed; Tazi, Saloua; Ihssane, Raissouni; Faiza, Chaoukat; Khalid, Draoui; Khalid, Riffi Temsamani

    2017-02-01

    Neuroblastoma is a pediatric neuroblastic tumor arising in the sympathetic nervous crest cells. A high grade of Neuroblastoma is characterized by a high urinary excretion of homovanillic acid and dopamine. In this work l-leucine modified Sol-Gel-Carbon electrode was used for a sensitive voltammetric determination of homovanillic acid and dopamine in urine. The electrochemical response characteristics were investigated by cyclic and differential pulse voltammetry; the modified electrode has shown an increase in the effective area of up to 40%, a well-separated oxidation peaks and an excellent electrocatalytic activity. High sensitivity and selectivity in the linear range of 0,4-100μML(-1) of homovanillic acid and 10-120μML(-1) of dopamine were also obtained. Moreover, a sub-micromolar limit of detection of 0.1μM for homovanillic acid and 1.0μM for the dopamine was achieved. Indeed, high reproducibility with simple preparation and regeneration of the electrode surface made this electrode very suitable for the determination of homovanillic acid and dopamine in pharmaceutical and clinical preparations. The mechanism of homovanillic acid and the electrochemical oxidation at l-leucine modified Sol-Gel-Carbon electrode is described out the B3P86/6-31+G(d,p) level of theory as implemented in Gaussian software.

  12. Use of fungal proteases and selected sourdough lactic acid bacteria for making wheat bread with an intermediate content of gluten.

    PubMed

    Rizzello, Carlo Giuseppe; Curiel, José Antonio; Nionelli, Luana; Vincentini, Olimpia; Di Cagno, Raffaella; Silano, Marco; Gobbetti, Marco; Coda, Rossana

    2014-02-01

    This study was aimed at combining the highest degradation of gluten during wheat flour fermentation with good structural and sensory features of the related bread. As estimated by R5-ELISA, the degree of degradation of immune reactive gluten was ca. 28%. Two-dimensional electrophoresis and RP-FPLC analyses showed marked variations of the protein fractions compared to the untreated flour. The comparison was also extended to in vitro effect of the peptic/tryptic-digests towards K562 and T84 cells. The flour with the intermediate content of gluten (ICG) was used for bread making, and compared to whole gluten (WG) bread. The chemical, structural and sensory features of the ICG bread approached those of the bread made with WG flour. The protein digestibility of the ICG bread was higher than that from WG flour. Also the nutritional quality, as estimated by different indexes, was the highest for ICG bread.

  13. Dietary n-3 polyunsaturated fatty acids modify fatty acid composition in hepatic and abdominal adipose tissue of sucrose-induced obese rats.

    PubMed

    Alexander-Aguilera, Alfonso; Berruezo, Silvia; Hernández-Diaz, Guillermo; Angulo, Ofelia; Oliart-Ros, Rosamaria

    2011-12-01

    The fatty acid profile of hepatocytes and adipocytes is determined by the composition of the dietary lipids. It remains unclear which fatty acid components contribute to the development or reduction of insulin resistance. The present work examined the fatty acid composition of both tissues in sucrose-induced obese rats receiving fish oil to determine whether the effect of dietary (n-3) polyunsaturated fatty acids (PUFAs) on the reversion of metabolic syndrome in these rats is associated to changes in the fatty acid composition of hepatocyte and adipocyte membrane lipids. Animals with metabolic syndrome were divided into a corn-canola oil diet group and a fish oil diet group, and tissues fatty acids composition were analyzed after 6 weeks of dietary treatment. Fatty acid profiles of the total membrane lipids were modified by the fatty acid composition of the diets fed to rats. N-3 PUFAs levels in animals receiving the fish oil diet plus sucrose in drinking water were significantly higher than in animals under corn-canola oil diets. It is concluded that in sucrose-induced obese rats, consumption of dietary fish oil had beneficial effects on the metabolic syndrome and that such effects would be conditioned by the changes in the n-3 PUFAs composition in hepatic and adipose tissues because they alter membrane properties and modify the type of substrates available for the production of active lipid metabolites acting on insulin resistance and obesity.

  14. Apparent digestibility of wheat bran and extruded flax in horses determined from the total collection of feces and acid-insoluble ash as an internal marker.

    PubMed

    De Marco, M; Miraglia, N; Peiretti, P G; Bergero, D

    2012-02-01

    Several studies have reported data on comparisons between two methods: the total collection of feces and the internal markers method. The aim of this study was to assess the apparent digestibility of two concentrates and to compare the apparent digestion coefficients using the total collection of feces and acid-insoluble ash (AIA) as the internal marker method. In 2009, six adult geldings aged between 3 and 11 years, with an average weight per trial of 543, 540 and 542 kg, respectively, were used to determine the apparent digestibility by means of three in vivo digestibility trials on hay, hay plus wheat bran (60 : 40) and hay plus extruded flax (80 : 20). Feces were collected over a 6-day period with a previous 14-day adaptation period. The three digestibility trials were carried out to determine the digestion coefficients of the three diets and, indirectly, of the two concentrates. The digestion coefficients of the diets were determined for the dry matter, organic matter, crude protein and gross energy, whereas the apparent digestion coefficients of the same parameters were calculated for wheat bran and extruded flax, by calculating the difference from the previous results. The data were analyzed using the Student t-test for paired samples. The digestion coefficients obtained were similar when the total collection of feces and the AIA method were used. Higher data variability, confirmed by a greater standard deviation, was observed using the AIA method to estimate the apparent digestion coefficients. It can be concluded that the use of AIA as an internal marker in digestibility trials on average leads to values similar to those obtained with the total collection of feces and can therefore be considered a less-expensive method to determine apparent digestion coefficients. Nevertheless, the total collection of feces should still be considered the best choice to determine the digestibility of some specific feedstuffs.

  15. The effectiveness of a modified hydrochloric acid-quartz-pumice abrasion technique on fluorosis stains: a case report.

    PubMed

    Erdogan, G

    1998-02-01

    Endemic dental fluorosis is a form of enamel hypoplasia characterized by moderate-to-severe staining of the tooth surface. Since 1916, numerous investigators have used hydrochloric acid alone on fluorosis stains. More recently, 18% hydrochloric acid-pumice microabrasion has been used to achieve color modification. The main disadvantage of this procedure is the high concentration and low viscosity of hydrochloric acid, which can cause damage to oral and dental tissues. To eliminate this problem, quartz particles can be mixed with the hydrochloric acid. The quartz particles prevent the hydrochloric acid from flowing uncontrollablely by altering it to a gel-like form. A modified 18% hydrochloric acid-quartz-pumice abrasion technique was used to remove fluorine stains from vital teeth in a teenager.

  16. High-efficiency l-lactic acid production by Rhizopus oryzae using a novel modified one-step fermentation strategy.

    PubMed

    Fu, Yong-Qian; Yin, Long-Fei; Zhu, Hua-Yue; Jiang, Ru

    2016-10-01

    In this study, lactic acid fermentation by Rhizopus oryzae was investigated using the two different fermentation strategies of one-step fermentation (OSF) and conventional fermentation (CF). Compared to CF, OSF reduced the demurrage of the production process and increased the production of lactic acid. However, the qp was significantly lower than during CF. Based on analysis of μ, qs and qp, a novel modified OSF strategy was proposed. This strategy aimed to achieve a high final concentration of lactic acid, and a high qp by R. oryzae. In this strategy, the maximum lactic acid concentration and productivity of the lactic acid production stage reached 158g/l and 5.45g/(lh), which were 177% and 366% higher, respectively, than the best results from CF. Importantly, the qp and yield did not decrease. This strategy is a convenient and economical method for l-lactic acid fermentation by R. oryzae.

  17. Investigation of new acyloxy derivatives of cholic acid and their esters as drug absorption modifiers.

    PubMed

    Mrózek, Lech; Dvořáková, Lenka; Mandelová, Zuzana; Rárová, Lucie; Řezáčová, Anna; Plaček, Lukáš; Opatřilová, Radka; Dohnal, Jiří; Paleta, Oldřich; Král, Vladimír; Drašar, Pavel; Jampílek, Josef

    2011-01-01

    Skin penetration enhancers are used in the formulation of transdermal delivery systems for drugs that are otherwise not sufficiently skin-permeable. Intestinal absorption promoters/enhancers are used as excipients in oral formulations of poorly oral-bioavailable drugs. Series of fourteen acyloxy derivatives of 5β-cholic acid as potential drug absorption modifiers was generated by multistep synthesis. The synthesis of all newly prepared compounds is presented here. Structure confirmation of all generated compounds was accomplished by (1)H NMR, (13)C NMR, IR and MS spectroscopy methods. All the prepared compounds were analyzed using RP-TLC, and their lipophilicity (R(M)) was determined. The hydrophobicity (logP) and solubility (logS) of the studied compounds were also calculated using two commercially available programs. All the target compounds were tested for their in vitro transdermal penetration activity and as potential intestinal absorption enhancers. The anti-proliferative activity of all the final compounds was also assessed against the human cancer cell lines: T-lymphoblastic leukemia cell line and the breast adenocarcinoma cell line. Their cytotoxicity was also evaluated against the normal human skin fibroblast cells. Two compounds showed anti-proliferative effect on cancer cells without affecting the growth of normal cells, which should be promising in potential development of new drugs. Most of the target compounds showed minimal anti-proliferative activity (IC(50)>37 μM), indicating they would have low cytotoxicity when administered as chemical absorption modifiers. The relationships between the lipophilicity and the chemical structure of the studied compounds as well as the relationships between their chemical structure and enhancement effects are discussed in this article.

  18. SMA-SH: Modified Styrene-Maleic Acid Copolymer for Functionalization of Lipid Nanodiscs.

    PubMed

    Lindhoud, Simon; Carvalho, Vanessa; Pronk, Joachim W; Aubin-Tam, Marie-Eve

    2016-04-11

    Challenges in purification and subsequent functionalization of membrane proteins often complicate their biochemical and biophysical characterization. Purification of membrane proteins generally involves replacing the lipids surrounding the protein with detergent molecules, which can affect protein structure and function. Recently, it was shown that styrene-maleic acid copolymers (SMA) can dissolve integral membrane proteins from biological membranes into nanosized discs. Within these nanoparticles, proteins are embedded in a patch of their native lipid bilayer that is stabilized in solution by the amphipathic polymer that wraps the disc like a bracelet. This approach for detergent-free purification of membrane proteins has the potential to greatly simplify purification but does not facilitate conjugation of functional compounds to the membrane proteins. Often, such functionalization involves laborious preparation of protein variants and optimization of labeling procedures to ensure only minimal perturbation of the protein. Here, we present a strategy that circumvents several of these complications through modifying SMA by grafting the polymer with cysteamine. The reaction results in SMA that has solvent-exposed sulfhydrils (SMA-SH) and allows tuning of the coverage with SH groups. Size exclusion chromatography, dynamic light scattering, and transmission electron microscopy demonstrate that SMA-SH dissolves lipid bilayer membranes into lipid nanodiscs, just like SMA. In addition, we demonstrate that, just like SMA, SMA-SH solubilizes proteoliposomes into protein-loaded nanodiscs. We covalently modify SMA-SH-lipid nanodiscs using thiol-reactive derivatives of Alexa Fluor 488 and biotin. Thus, SMA-SH promises to simultaneously tackle challenges in purification and functionalization of membrane proteins.

  19. Expression of a fungal ferulic acid esterase in alfalfa modifies cell wall digestibility

    PubMed Central

    2014-01-01

    Background Alfalfa (Medicago sativa) is an important forage crop in North America owing to its high biomass production, perennial nature and ability to fix nitrogen. Feruloyl esterase (EC 3.1.1.73) hydrolyzes ester linkages in plant cell walls and has the potential to further improve alfalfa as biomass for biofuel production. Results In this study, faeB [GenBank:AJ309807] was synthesized at GenScript and sub-cloned into a novel pEACH vector containing different signaling peptides to target type B ferulic acid esterase (FAEB) proteins to the apoplast, chloroplast, endoplasmic reticulum and vacuole. Four constructs harboring faeB were transiently expressed in Nicotiana leaves, with FAEB accumulating at high levels in all target sites, except chloroplast. Stable transformed lines of alfalfa were subsequently obtained using Agrobacterium tumefaciens (LBA4404). Out of 136 transgenic plants regenerated, 18 independent lines exhibited FAEB activity. Subsequent in vitro digestibility and Fourier transformed infrared spectroscopy (FTIR) analysis of FAEB-expressing lines showed that they possessed modified cell wall morphology and composition with a reduction in ester linkages and elevated lignin content. Consequently, they were more recalcitrant to digestion by mixed ruminal microorganisms. Interestingly, delignification by alkaline peroxide treatment followed by exposure to a commercial cellulase mixture resulted in higher glucose release from transgenic lines as compared to the control line. Conclusion Modifying cell wall crosslinking has the potential to lower recalcitrance of holocellulose, but also exhibited unintended consequences on alfalfa cell wall digestibility due to elevated lignin content. The combination of efficient delignification treatment (alkaline peroxide) and transgenic esterase activity complement each other towards efficient and effective digestion of transgenic lines. PMID:24650274

  20. Structural and fractal characterization of tungstophosphoric acid modified titanium dioxide photocatalyst

    NASA Astrophysics Data System (ADS)

    Petrović, S.; Rožić, Lj; Vuković, Z.; Grbić, B.; Radić, N.; Stojadinović, S.; Vasilić, R.

    2017-04-01

    This article presents the comparison of structural and fractal properties of nanocrystalline titanium dioxide (TiO2) and TiO2 modified with tungstophosphoric acid (TiO2/HPW) and their impact on the photocatalytic degradation of hazardous water pollutants. TiO2 and TiO2/HPW samples were synthesized by a combined sol-gel and hydrothermal processing. The XRD analysis of pure TiO2 samples revealed that phase composition was mainly dependent on the calcination temperature, changing from amorphous TiO2 to crystalline anatase and rutile by increasing the temperature. On the other hand, the XRD of TiO2/HPW samples calcined at temperatures above 600 °C showed crystalline peaks associated to formation of WO3 and WO2.92 crystalline domains. The N2 adsorption-desorption isotherm and pore size distribution of TiO2/HPW samples detected the existence of mesoporous characteristic with very narrow bimodal pores in the mesoporous region. The structural heterogeneity of samples was analyzed by means of pore size distribution functions, while the variation in fractal dimension were determined from the nitrogen adsorption isotherms, using the modified Frenkel-Halsey-Hill method. The results demonstrate that the approach is capable of characterizing complex textures such as those present in the TiO2 and TiO2/HPW photocatalysts. Besides, the effect of calcinations condition on photocatalytic properties of the samples was also investigated. The highest efficiency with respect to methyl orange photodecomposition was observed for TiO2/HPW photocatalysts calcined at 700 °C.

  1. A poly(3-acetylthiophene) modified glassy carbon electrode for selective voltammetric measurement of uric acid in urine sample.

    PubMed

    Aslanoglu, Mehmet; Kutluay, Aysegul; Abbasoglu, Sultan; Karabulut, Serpil

    2008-03-01

    A reliable and reproducible method for the determination of uric acid in urine samples has been developed. The method is based on the modification of a glassy carbon electrode by 3-acetylthiophene using cyclic voltammetry. The poly(3-acetylthiophene) modified glassy carbon electrode showed an excellent electrocatalytic effect towards the oxidation of uric acid in 0.1 m phosphate buffer solution (PBS) at pH 7.2. Compared with a bare glassy carbon electrode (GCE), an obvious shift of the oxidation peak potential in the cathodic direction and a marked enhancement of the anodic current response for uric acid were observed. The poly(3-acetylthiophene)/GCE was used for the determination of uric acid using square wave voltammetry. The peak current increased linearly with the concentration of uric acid in the range of 1.25 x 10(-5)-1.75 x 10(-4) M. The detection limit was 5.27 x 10(-7) M by square wave voltammetry. The poly(3-acetylthiophene)/GCE was also effective to determine uric acid and ascorbic acid in a mixture and resolved the overlapping anodic peaks of these two species into two well-defined voltammetric peaks in cyclic voltammetry at 0.030 V and 0.320 V (vs. Ag/AgCl) for ascorbic acid and uric acid, respectively. The modified electrode exhibited stable and sensitive current responses toward uric acid and ascorbic acid. The method has successfully been applied for determination of uric acid in urine samples.

  2. Wheat Mitochondria

    PubMed Central

    Raison, John K.; Chapman, Elza A.; White, P. Y.

    1977-01-01

    Mitochondrial oxidative activity and membrane lipid structure of two wheat (Triticum aestivum L.) cultivars were measured as a function of temperature. The Arrhenius activation energy for the oxidation of both succinate and α-ketoglutarate was constant over the temperature range of 3 to 27 C. The activation energy for succinate-cytochrome c oxidoreductase activity was also constant over the same temperature range. The concentration of mitochondria in the reaction, the degree of initial inhibition of state 3 respiration, and the time after isolation of mitochondria were each shown to be capable of causing a disproportionate decrease in the rate of oxidation at low temperatures which resulted in an apparent increase in the activation energy of oxidative activity. Using three spin-labeling techniques, wheat membrane lipids were shown to undergo phase changes at about 0 C and 30 C. It is concluded that the membrane lipids of wheat, a chillingresistant plant, undergo a phase transition similar to the transition observed in the membrane lipids of chilling-sensitive plants. For wheat, however, the transition is initiated at a lower temperature and extends over a wider temperature range. PMID:16659906

  3. Study of wheat protein based materials

    NASA Astrophysics Data System (ADS)

    Ye, Peng

    Wheat gluten is a naturally occurring protein polymer. It is produced in abundance by the agricultural industry, is biodegradable and very inexpensive (less than $0.50/lb). It has unique viscoelastic properties, which makes it a promising alternative to synthetic plastics. The unplasticized wheat gluten is, however, brittle. Plasticizers such as glycerol are commonly used to give flexibility to the articles made of wheat gluten but with the penalty of greatly reduced stiffness. Former work showed that the brittleness of wheat gluten can also be improved by modifying it with a tri-thiol additive with no penalty of reduced stiffness. However, the cost of the customer designed tri-thiol additive was very high and it was unlikely to make a cost effective material from such an expensive additive. Here we designed a new, inexpensive thiol additive called SHPVA. It was synthesized from polyvinyl alcohol (PVA) through a simple esterification reaction. The mechanical data of the molded wheat gluten/SHPVA material indicated that wheat gluten was toughened by SHPVA. As a control, the wheat gluten/PVA material showed no improvement compared with wheat gluten itself. Several techniques have been used to characterize this novel protein/polymer blend. Differential scanning calorimetric (DSC) study showed two phases in both wheat gluten/PVA and wheat gluten/SHPVA material. However, scanning electron microscope (SEM) pictures indicated that PVA was macroscopically separated from wheat gluten, while wheat gluten/SHPVA had a homogeneous look. The phase image from the atomic force microscope (AFM) gave interesting contrast based on the difference in the mechanical properties of these two phases. The biodegradation behavior of these protein/polymer blends was examined in soil. SHPVA was not degraded in the time period of the experiment. Wheat gluten/SHPVA degraded slower than wheat gluten. We also developed some other interesting material systems based on wheat gluten, including the

  4. Morphological Analyses of Spring Wheat (CIMMYT cv. PCYT-10) Somaclones

    NASA Technical Reports Server (NTRS)

    Campbell, W. F.; Carman, J. G.; Hashim, Z. N.

    1990-01-01

    The objectives of this study were to induce callus from single immature wheat embryos, produce multiple seedlings from the induced callus, and analyse the somaclonal regenerants for potential grain production in a space garden. Immature wheat, Triticum aestivum L. (cv. PCYT-10), embryos were excised 10 to 12 days post-anthesis and cultured on modified Murashige and Skoog's inorganic salts. Embryos cultured on medium containing kinetin (6-furfurylaminopurine) at 0.5mg/l plus 2 or 3mg/l dicamba (1-methoxy-3,6- dichlorobenzoic acid) or 0.2mg/l 2,4-dichlorophenoxyacetic acid produced calli from which 24, 35 and 39% of the explant tissue exhibited regenerants, respectively. The size of flag leaves, plant heights, tillers per plant, spike lengths, awn lengths, and seeds per spike were significantly different in regenerants of two-selfed recurrent generations (SC(sub 1), SC(sub 2)) than in parental controls. However, there were no significant differences in spikelets per spike between the SC(sub 2) and parental controls. Desirable characteristics that were obtained included longer spikes, more seeds per spike, supernumerary spikelets, and larger flag leaves, variants that should be useful in wheat improvement programs.

  5. Unlocked nucleic acids with a pyrene-modified uracil: synthesis, hybridization studies, fluorescent properties and i-motif stability.

    PubMed

    Perlíková, Pavla; Karlsen, Kasper K; Pedersen, Erik B; Wengel, Jesper

    2014-01-03

    The synthesis of two new phosphoramidite building blocks for the incorporation of 5-(pyren-1-yl)uracilyl unlocked nucleic acid (UNA) monomers into oligonucleotides has been developed. Monomers containing a pyrene-modified nucleobase component were found to destabilize an i-motif structure at pH 5.2, both under molecular crowding and noncrowding conditions. The presence of the pyrene-modified UNA monomers in DNA strands led to decreases in the thermal stabilities of DNA*/DNA and DNA*/RNA duplexes, but these duplexes' thermal stabilities were better than those of duplexes containing unmodified UNA monomers. Pyrene-modified UNA monomers incorporated in bulges were able to stabilize DNA*/DNA duplexes due to intercalation of the pyrene moiety into the duplexes. Steady-state fluorescence emission studies of oligonucleotides containing pyrene-modified UNA monomers revealed decreases in fluorescence intensities upon hybridization to DNA or RNA. Efficient quenching of fluorescence of pyrene-modified UNA monomers was observed after formation of i-motif structures at pH 5.2. The stabilizing/destabilizing effect of pyrene-modified nucleic acids might be useful for designing antisense oligonucleotides and hybridization probes.

  6. Effect of processing methods on the mechanical properties of natural rubber filled with stearic acid modified soy protein particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural rubber was reinforced with stearic acid modified soy protein particles prepared with a microfluidizing and ball milling process. Longer ball milling time tends to increase tensile strength of the rubber composites. Elastic modulus of the composites increased with the increasing filler concen...

  7. Study on intralymphatic-targeted hyaluronic acid-modified nanoliposome: influence of formulation factors on the lymphatic targeting.

    PubMed

    Tiantian, Ye; Wenji, Zhang; Mingshuang, Sun; Rui, Yang; Shuangshuang, Song; Yuling, Mao; Jianhua, Yao; Xinggang, Yang; Shujun, Wang; Weisan, Pan

    2014-08-25

    In this study, hyaluronic acid-modified docetaxel-loaded liposomes were prepared to evaluate the lymphatic targeting after subcutaneous administration, and formulation factors affecting the lymphatic targeting were examined, including free hyaluronic acid, molecular weight, hyaluronic acid-density and particle diameter. The high molecular weight hyaluronic acid-modified docetaxel-loaded liposomes (HA-LPs) and low molecular weight hyaluronic acid-modified docetaxel-loaded liposomes (LMWHA-LPs) were prepared via electrostatic attraction. The physicochemical properties and in vitro drug release were evaluated. The lymphatic drainage and the lymph node uptake were investigated by pharmacokinetics and distribution recovery of docetaxel in lymph nodes, injection site and plasma. The lymphatic targeting ability of optimized Cy7-loaded LMWHA-LPs (LMWHA-LPs/Cy7) was evaluated by near-infrared fluorescence imaging technique. The result showed that HA-LPs and LMWHA-LPs with suitable and stable physicochemical properties could be used for in vivo lymphatic targeting studies. Hyaluronic acid-modified liposome significantly increased the docetaxel recovery in lymph nodes, and displayed higher AUC(0-24h) and longer retention time compared to unmodified liposomes in vivo. In contrast, the presence of free hyaluronic acid hindered the lymphatic drainage and increased the plasma-drug concentration. Importantly, LMWHA-modification improved lymphatic drainage and lymph node uptake of liposomes compared with HA-modification. And Lymph node uptake of LMWHA-LPs depended mainly on LMWHA-density instead of particle size. The results of in vivo imaging showed that LMWHA-LPs/Cy7 significantly located in the lymphatic system. And both DTX-loaded and Cy7-loaded LMWHA-LPs had similar and stable lymphatic target level. Our investigation showed that LMWHA-LPs were a highly promising lymphatic targeting carrier for chemotherapy drugs and diagnostic fluorescence agents.

  8. Electrochemical determination of hydrochlorothiazide and folic acid in real samples using a modified graphene oxide sheet paste electrode.

    PubMed

    Beitollahi, Hadi; Hamzavi, Mozhdeh; Torkzadeh-Mahani, Masoud

    2015-01-01

    A new ferrocene-derivative compound, 2-chlorobenzoyl ferrocene, was synthesized and used to construct a modified graphene oxide sheet paste electrode. The electrooxidation of hydrochlorothiazide at the surface of the modified electrode was studied. Under optimized conditions, the square wave voltammetric (SWV) peak current of hydrochlorothiazide increased linearly with hydrochlorothiazide concentration in the range of 5.0 × 10(-8) to 2.0 × 10(-4) M and a detection limit of 20.0 nM was obtained for hydrochlorothiazide. The diffusion coefficient and kinetic parameters (such as electron transfer coefficient and the heterogeneous rate constant) for hydrochlorothiazide oxidation were also determined. The prepared modified electrode exhibits a very good resolution between the voltammetric peaks of hydrochlorothiazide and folic acid which makes it suitable for the detection of hydrochlorothiazide in the presence of folic acid in real samples.

  9. Improving the enzymatic hydrolysis of dilute acid pretreated wheat straw by metal ion blocking of non-productive cellulase adsorption on lignin.

    PubMed

    Akimkulova, Ardak; Zhou, Yan; Zhao, Xuebing; Liu, Dehua

    2016-05-01

    Eleven salts were selected to screen the possible metal ions for blocking the non-productive adsorption of cellulase onto the lignin of dilute acid pretreated wheat straw. Mg(2+) was screened finally as the promising candidate. The optimal concentration of MgCl2 was 1 mM, but the beneficial action was also dependent on pH, hydrolysis time and cellulase loading. Significant improvement of glucan conversion (19.3%) was observed at low cellulase loading (5 FPU/g solid). Addition of isolated lignins, tannic acid and lignin model compounds to pure cellulose hydrolysis demonstrated that phenolic hydroxyl group (Ph-OH) was the main active site blocked by Mg(2+). The interaction between Mg(2+) and Ph-OH of lignin monomeric moieties followed an order of p-hydroxyphenyl (H)>guaiacyl (G)>syringyl (S). Mg(2+) blocking made the lignin surface less negatively charged, which might weaken the hydrogen bonding and electrostatically attractive interaction between lignin and cellulase enzymes.

  10. In vivo toxicity and immunogenicity of wheat germ agglutinin conjugated poly(ethylene glycol)-poly(lactic acid) nanoparticles for intranasal delivery to the brain.

    PubMed

    Liu, Qingfeng; Shao, Xiayan; Chen, Jie; Shen, Yehong; Feng, Chengcheng; Gao, Xiaoling; Zhao, Yue; Li, Jingwei; Zhang, Qizhi; Jiang, Xinguo

    2011-02-15

    Biodegradable polymer-based nanoparticles have been widely studied to deliver therapeutic agents to the brain after intranasal administration. However, knowledge as to the side effects of nanoparticle delivery system to the brain is limited. The aim of this study was to investigate the in vivo toxicity and immunogenicity of wheat germ agglutinin (WGA) conjugated poly(ethylene glycol)-poly(lactic acid) nanoparticles (WGA-NP) after intranasal instillation. Sprague-Dawley rats were intranasally given WGA-NP for 7 continuous days. Amino acid neurotransmitters, lactate dehydrogenase (LDH) activity, reduced glutathione (GSH), acetylcholine, acetylcholinesterase activity, tumor necrosis factor α (TNF-α) and interleukin-8 (IL-8) in rat olfactory bulb (OB) and brain were measured to estimate the in vivo toxicity of WGA-NP. Balb/C mice were intranasally immunized by WGA-NP and then WGA-specific antibodies in serum and nasal wash were detected by indirect ELISA. WGA-NP showed slight toxicity to brain tissue, as evidenced by increased glutamate level in rat brain and enhanced LDH activity in rat OB. No significant changes in acetylcholine level, acetylcholinesterase activity, GSH level, TNF-α level and IL-8 level were observed in rat OB and brain for the WGA-NP group. WGA-specific antibodies in mice serum and nasal wash were not increased after two intranasal immunizations of WGA-NP. These results demonstrate that WGA-NP is a safe carrier system for intranasal delivery of therapeutic agents to the brain.

  11. In vivo toxicity and immunogenicity of wheat germ agglutinin conjugated poly(ethylene glycol)-poly(lactic acid) nanoparticles for intranasal delivery to the brain

    SciTech Connect

    Liu Qingfeng; Shao Xiayan; Chen Jie; Shen Yehong; Feng Chengcheng; Gao Xiaoling; Zhao Yue; Li Jingwei; Zhang Qizhi Jiang, Xinguo

    2011-02-15

    Biodegradable polymer-based nanoparticles have been widely studied to deliver therapeutic agents to the brain after intranasal administration. However, knowledge as to the side effects of nanoparticle delivery system to the brain is limited. The aim of this study was to investigate the in vivo toxicity and immunogenicity of wheat germ agglutinin (WGA) conjugated poly(ethylene glycol)-poly(lactic acid) nanoparticles (WGA-NP) after intranasal instillation. Sprague-Dawley rats were intranasally given WGA-NP for 7 continuous days. Amino acid neurotransmitters, lactate dehydrogenase (LDH) activity, reduced glutathione (GSH), acetylcholine, acetylcholinesterase activity, tumor necrosis factor {alpha} (TNF-{alpha}) and interleukin-8 (IL-8) in rat olfactory bulb (OB) and brain were measured to estimate the in vivo toxicity of WGA-NP. Balb/C mice were intranasally immunized by WGA-NP and then WGA-specific antibodies in serum and nasal wash were detected by indirect ELISA. WGA-NP showed slight toxicity to brain tissue, as evidenced by increased glutamate level in rat brain and enhanced LDH activity in rat OB. No significant changes in acetylcholine level, acetylcholinesterase activity, GSH level, TNF-{alpha} level and IL-8 level were observed in rat OB and brain for the WGA-NP group. WGA-specific antibodies in mice serum and nasal wash were not increased after two intranasal immunizations of WGA-NP. These results demonstrate that WGA-NP is a safe carrier system for intranasal delivery of therapeutic agents to the brain.

  12. Quantifying the impact of exogenous abscisic acid and gibberellins on pre-maturity α-amylase formation in developing wheat grains

    PubMed Central

    Kondhare, Kirtikumar R.; Hedden, Peter; Kettlewell, Peter S.; Farrell, Aidan D.; Monaghan, James M.

    2014-01-01

    To study the role of abscisic acid (ABA) and gibberellins (GA) in pre-maturity α-amylase (PMA) formation in developing wheat grain, two glasshouse experiments were conducted under controlled conditions in the highly PMA-susceptible genotype Rialto. The first, determined the relative efficacy of applying hormone solutions by injection into the peduncle compared to direct application to the intact grain. The second, examined the effects of each hormone, applied by either method, at mid-grain development on PMA in mature grains. In the first experiment, tritiated ABA (3H-ABA) and gibberellic acid (3H-GA3) were diluted with unlabelled ABA (100 µM) and GA3 (50 µM), respectively, and applied at mid-grain development using both methods. Spikes were harvested after 24, 48 and 72 h from application, and hormone taken up by grains was determined. After 72 h, the uptake per grain in terms of hormones applied was approximately 13% for ABA and 8% for GA3 when applied onto the grains, and approximately 17% for ABA and 5% for GA3 when applied by injection. In the second experiment, applied ABA reduced, whereas applied GA3 increased α-amylase activity. This confirmed that exogenously applied ABA and GA were absorbed in sufficient amounts to alter grain metabolism and impact on PMA. PMID:24942128

  13. Deoxyribonucleic acid modified poly(dimethylsiloxane) microfluidic channels for the enhancement of microchip electrophoresis.

    PubMed

    Liang, Ruping; Hu, Pengfei; Gan, Guihua; Qiu, Jianding

    2009-03-15

    In this paper, deoxyribonucleic acid (DNA) was employed to construct a functional film on the PDMS microfluidic channel surface and apply to perform electrophoresis coupled with electrochemical detection. The functional film was formed by sequentially immobilizing chitosan and DNA to the PDMS microfluidic channel surface using the layer-by-layer assembly. The polysaccharide backbone of chitosan can be strongly adsorbed onto the hydrophobic PDMS surface through electrostatic interaction in the acidic media, meanwhile, chitosan contains one protonatable functional moiety resulting in a strong electrostatic interactions between the surface amine group of chitosan and the charged phosphate backbone of DNA at low pH, which generates a hydrophilic microchannel surface and reveals perfect resistance to nonspecific adsorption of analytes. Aminophenol isomers (p-, o-, and m-aminophenol) served as a separation model to evaluate the effect of the functional PDMS microfluidic chips. The results clearly showed that these analytes were efficiently separated within 60s in a 3.7 cm long separation channel and successfully detected on the modified microchip coupled with in-channel amperometric detection mode at a single carbon fiber electrode. The theoretical plate numbers were 74,021, 92,658 and 60,552 Nm(-1) at the separation voltage of 900 V with the detection limits of 1.6, 4.7 and 2.5 microM (S/N=3) for p-, o-, and m-aminophenol, respectively. In addition, this report offered an effective means for preparing hydrophilic and biocompatible PDMS microchannel surface, which would facilitate the use of microfluidic devices for more widespread applications.

  14. Chromate adsorption on acid-treated and amines-modified clay

    NASA Astrophysics Data System (ADS)

    Hajjaji, M.; Beraa, A.

    2015-03-01

    Acid-treated montmorillonite-rich clay and amines (methylamine, morpholine, and aniline)-modified clay adsorbents were investigated and their abilities to remove chromate from aqueous solution were studied. For the later purpose, kinetic studies were carried out under different operating conditions (chromate concentration, adsorbent content, and temperature), and adsorption isotherm measurements were performed. It was found that the kinetic of adsorption was fast and the data followed the pseudo-second rate equation. The rate of adsorption was controlled by the intra-particle diffusion and mass transfer through the liquid film, and the relative importance of these limiting steps depended on the operating conditions. Chromate adsorption was an endothermic process and took place spontaneously by physisorption. The free energy at 25 ≤ T ≤ 40 °C varied from -1.5 to -46 kJ/mol. Adsorption isotherms of Na+-saturated clay (AN), acid-treated clay (AA), and methylamine-clay and morpholine-clay (A-Me, A-Mo) were type V, whereas those of aniline-clay (A-An) were type III. The estimated maximum uptakes were 105, 29, 15, 11, and 10 mmol/kg for A-An, AN, A-Mo, AA, and A-Me, respectively. The mechanism of chromate adsorption was discussed based on the shape of the isotherms. Considering for instance the most efficient absorbent (A-An), the isotherm followed the Freundlich equation and hydrogen chromate (the main stable form at working pH) adsorbed to solid particles once aniline species were entirely desorbed.

  15. Inclusion of sunflower seed and wheat dried distillers' grains with solubles in a red clover silage-based diet enhances steers performance, meat quality and fatty acid profiles.

    PubMed

    Mapiye, C; Aalhus, J L; Turner, T D; Vahmani, P; Baron, V S; McAllister, T A; Block, H C; Uttaro, B; Dugan, M E R

    2014-12-01

    The current study compared beef production, quality and fatty acid (FA) profiles of yearling steers fed a control diet containing 70 : 30 red clover silage (RCS) : barley-based concentrate, a diet containing 11% sunflower seed (SS) substituted for barley, and diets containing SS with 15% or 30% wheat dried distillers' grain with solubles (DDGS). Additions of DDGS were balanced by reductions in RCS and SS to maintain crude fat levels in diets. A total of two pens of eight animals were fed per diet for an average period of 208 days. Relative to the control diet, feeding the SS diet increased (P<0.05) average daily gain, final live weight and proportions of total n-6 FA, non-conjugated 18:2 biohydrogenation products (i.e. atypical dienes) with the first double bond at carbon 8 or 9 from the carboxyl end, conjugated linoleic acid isomers with the first double bond from carbon 7 to 10 from the carboxyl end, t-18:1 isomers, and reduced (P<0.05) the proportions of total n-3 FA, conjugated linolenic acids, branched-chain FA, odd-chain FA and 16:0. Feeding DDGS-15 and DDGS-30 diets v. the SS diet further increased (P<0.05) average daily gains, final live weight, carcass weight, hot dressing percentage, fat thickness, rib-eye muscle area, and improved instrumental and sensory panel meat tenderness. However, in general feeding DGGS-15 or DDGS-30 diets did not change FA proportions relative to feeding the SS diet. Overall, adding SS to a RCS-based diet enhanced muscle proportions of 18:2n-6 biohydrogenation products, and further substitutions of DDGS in the diet improved beef production, and quality while maintaining proportions of potentially functional bioactive FA including vaccenic and rumenic acids.

  16. Pathway of cytotoxicity induced by folic acid modified selenium nanoparticles in MCF-7 cells.

    PubMed

    Pi, Jiang; Jin, Hua; Liu, Ruiying; Song, Bing; Wu, Qing; Liu, Li; Jiang, Jinhuan; Yang, Fen; Cai, Huaihong; Cai, Jiye

    2013-02-01

    Selenium nanoparticles (Se NPs) have been recognized as promising materials for biomedical applications. To prepare Se NPs which contained cancer targeting methods and to clarify the cellular localization and cytotoxicity mechanisms of these Se NPs against cancer cells, folic acid protected/modified selenium nanoparticles (FA-Se NPs) were first prepared by a one-step method. Some morphologic and spectroscopic methods were obtained to prove the successfully formation of FA-Se NPs while free folate competitive inhibition assay, microscope, and several biological methods were used to determine the in vitro uptake, subcellular localization, and cytotoxicity mechanism of FA-Se NPs in MCF-7 cells. The results indicated that the 70-nm FA-Se NPs were internalized by MCF-7 cells through folate receptor-mediated endocytosis and targeted to mitochondria located regions through endocytic vesicles transporting. Then, the FA-Se NPs entered into mitochondria; triggered the mitochondria-dependent apoptosis of MCF-7 cells which involved oxidative stress, Ca(2)+ stress changes, and mitochondrial dysfunction; and finally caused the damage of mitochondria. FA-Se NPs released from broken mitochondria were transported into nucleus and further into nucleolus which then induced MCF-7 cell cycle arrest. In addition, FA-Se NPs could induce cytoskeleton disorganization and induce MCF-7 cell membrane morphology alterations. These results collectively suggested that FA-Se NPs could be served as potential therapeutic agents and organelle-targeted drug carriers in cancer therapy.

  17. Modified hydroxypropyl methyl cellulose: Efficient matrix for controlled release of 5-amino salicylic acid.

    PubMed

    Das, Raghunath; Pal, Sagar

    2015-01-01

    Hydroxypropyl methyl cellulose has been modified by grafting synthetic polyacrylamide chains [g-HPMC (M)] in presence of microwave irradiation, which has used as carrier for controlled release of 5-amino salicylic acid (5-ASA). The FTIR and UV-vis-NIR studies reveal the excellent compatibility between g-HPMC (M) and 5-ASA. Field emission scanning electron microscopy (FESEM) and UV-vis-NIR analyses suggest that physical interaction predominates between the drug and matrix. % equilibrium swelling ratio (% ESR) of g-HPMC (M) decreased with addition of salt solutions and follow the order: Na(+)>K(+)>Mg(2+)>Ca(2+)>Al(3+). The in vitro 5-ASA release studies indicate that g-HPMC (M) delivers the drug preferentially in colonic region in more sustained way than that of HPMC. The 5-ASA release follows first order kinetics and non-Fickian diffusion mechanism. These favorable features make the graft copolymer a potential matrix for colon specific delivery of 5-ASA.

  18. Interface modified polylactic acid/starch/poly ε-caprolactone antibacterial nanocomposite blends for medical applications.

    PubMed

    Davachi, Seyed Mohammad; Shiroud Heidari, Behzad; Hejazi, Iman; Seyfi, Javad; Oliaei, Erfan; Farzaneh, Arman; Rashedi, Hamid

    2017-01-02

    In this study, an optimized interface-modified ternary blend with antibacterial activity based on polylactic acid/starch/poly ε-caprolactone (PLASCL20), mixed with nano hydroxyapatite (nHA) via melt blending. This method results in a homogeneous nanocomposite blend in which the addition of 3% nHA improves the overall properties such as hydrolytic degradation, hydrophilicity, antibacterial activity and the drug release comparing to PLASCL20. Moreover, the simultaneous use of nHA and encapsulated triclosan (LATC30) compensated the negative effect of triclosan through increasing the possible cell attachment. According to the contact angle results, nHA was thermodynamically driven into the interface of PLA and PCL/Starch phases. The addition of 3% nHA showed a good adjustment between the hydrolytic degradation and the release profile, therefore, their electrospun microfibers demonstrated an improved fibroblast (L929) cell attachment. The aforementioned nanocomposite blend is a suitable antibacterial candidate for many medical applications with minimum side effects due to the controlled release of triclosan.

  19. Silymarin-Loaded Nanoparticles Based on Stearic Acid-Modified Bletilla striata Polysaccharide for Hepatic Targeting.

    PubMed

    Ma, Yanni; He, Shaolong; Ma, Xueqin; Hong, Tongtong; Li, Zhifang; Park, Kinam; Wang, Wenping

    2016-02-29

    Silymarin has been widely used as a hepatoprotective drug in the treatment of various liver diseases, yet its effectiveness is affected by its poor water solubility and low bioavailability after oral administration, and there is a need for the development of intravenous products, especially for liver-targeting purposes. In this study, silymarin was encapsulated in self-assembled nanoparticles of Bletilla striata polysaccharide (BSP) conjugates modified with stearic acid and the physicochemical properties of the obtained nanoparticles were characterized. The silymarin-loaded micelles appeared as spherical particles with a mean diameter of 200 nm under TEM. The encapsulation of drug molecules was confirmed by DSC thermograms and XRD diffractograms, respectively. The nanoparticles exhibited a sustained-release profile for nearly 1 week with no obvious initial burst. Compared to drug solutions, the drug-loaded nanoparticles showed a lower viability and higher uptake intensity on HepG2 cell lines. After intravenous administration of nanoparticle formulation for 30 min to mice, the liver became the most significant organ enriched with the fluorescent probe. These results suggest that BSP derivative nanoparticles possess hepatic targeting capability and are promising nanocarriers for delivering silymarin to the liver.

  20. Modified ferrous ammonium sulfate benzoic acid xyelenol orange (MFBX) and thermoluminescent dosimeters--a comparative study.

    PubMed

    Brindha, S; Rose, J V R; Sathyan, S; Singh I, Rabi Raja; Ravindran, B Paul

    2002-06-07

    Radiation dosimetry deals with the determination of absorbed dose to the medium exposed to ionizing radiation. Chemical dosimetry depends on oxidation or reduction of chemicals by ionizing radiation. A ferrous ammonium sulfate benzoic acid xyelenol orange (FBX) dosimeter based on this principle is being used as a clinical dosimeter at present. Certain modifications were carried out in the preparation and storage of the FBX dosimeter to increase its shelf life. The resulting dosimeter was called a modified FBX (MFBX) dosimeter and has been used in our department for the past few years. An extensive study of the dose, dose rate and energy response of the dosimeter was carried out and compared with a thermoluminescent (LiF7) dosimeter. The results obtained were found to be comparable to the thermoluminescent (LiF7) dosimeter. Hence it was concluded that the MFBX dosimeter could be used for phantom dosimetry, data collection and in vivo measurements. Easier preparation and availability of the reagents are added advantages of using MFBX as a clinical dosimeter in small radiotherapy departments.

  1. Production of resistant starch by extrusion cooking of acid-modified normal-maize starch.

    PubMed

    Hasjim, Jovin; Jane, Jay-Lin

    2009-09-01

    The objective of this study was to utilize extrusion cooking and hydrothermal treatment to produce resistant starch (RS) as an economical alternative to a batch-cooking process. A hydrothermal treatment (110 degrees C, 3 d) of batch-cooked and extruded starch samples facilitated propagation of heat-stable starch crystallites and increased the RS contents from 2.1% to 7.7% up to 17.4% determined using AOAC Method 991.43 for total dietary fiber. When starch samples were batch cooked and hydrothermally treated at a moisture content below 70%, acid-modified normal-maize starch (AMMS) produced a greater RS content than did native normal-maize starch (NMS). This was attributed to the partially hydrolyzed, smaller molecules in the AMMS, which had greater mobility and freedom than the larger molecules in the NMS. The RS contents of the batch-cooked and extruded AMMS products after the hydrothermal treatment were similar. A freezing treatment of the AMMS samples at -20 degrees C prior to the hydrothermal treatment did not increase the RS content. The DSC thermograms and the X-ray diffractograms showed that retrograded amylose and crystalline starch-lipid complex, which had melting temperatures above 100 degrees C, accounted for the RS contents.

  2. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

    NASA Astrophysics Data System (ADS)

    Yu, Meihua; Jambhrunkar, Siddharth; Thorn, Peter; Chen, Jiezhong; Gu, Wenyi; Yu, Chengzhong

    2012-12-01

    In this paper, a targeted drug delivery system has been developed based on hyaluronic acid (HA) modified mesoporous silica nanoparticles (MSNs). HA-MSNs possess a specific affinity to CD44 over-expressed on the surface of a specific cancer cell line, HCT-116 (human colon cancer cells). The cellular uptake performance of fluorescently labelled MSNs with and without HA modification has been evaluated by confocal microscopy and fluorescence-activated cell sorter (FACS) analysis. Compared to bare MSNs, HA-MSNs exhibit a higher cellular uptake via HA receptor mediated endocytosis. An anticancer drug, doxorubicin hydrochloride (Dox), has been loaded into MSNs and HA-MSNs as drug delivery vehicles. Dox loaded HA-MSNs show greater cytotoxicity to HCT-116 cells than free Dox and Dox-MSNs due to the enhanced cell internalization behavior of HA-MSNs. It is expected that HA-MSNs have a great potential in targeted delivery of anticancer drugs to CD44 over-expressing tumors.

  3. Sulfoacetic acid modifying poly(vinyl alcohol) hydrogel and its electroresponsive behavior under DC electric field

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Liu, Genqi; Zhang, Cheng; Liao, Jiae

    2013-01-01

    A strong electrolyte hydrogel was prepared by modifying poly (vinyl alcohol) hydrogel with sulfoacetic acid (SA-PVA). Its swelling properties, mechanical properties, and electroresponsive behavior in Na2SO4 solutions were studied. The results indicated that the water take-up ability of the hydrogel decreased with the increasing ionic strength of Na2SO4 solution. The Young’s modulus, elongation at break and tensile strength of the hydrogel swollen in deionized water are 1.247 MPa, 187% and 2.2 MPa, respectively. The hydrogel swollen in a Na2SO4 solution bent towards the cathode under non-contact dc electric fields, and its bending speed and equilibrium strain increased with increasing applied voltage. There is a critical ionic strength of 0.03 at which the maximum equilibrium strain of the hydrogel occurs. Also the bending behavior of hydrogel was not affected by the pH changes. By altering the direction of the applied potential cyclically, the hydrogel exhibited good reversible bending behavior. On this basis, a gel-worm was designed. Under a cyclically varying electric field (the period was 8 s, and the voltage ranged from -10 to 10 V), the walking speed was up to 15 cm min-1 in Na2SO4 solution with an ionic strength of 0.03.

  4. Risk assessment of genetically modified lactic acid bacteria using the concept of substantial equivalence.

    PubMed

    LeBlanc, Jean Guy; Van Sinderen, Douwe; Hugenholtz, Jeroen; Piard, Jean-Christophe; Sesma, Fernando; de Giori, Graciela Savoy

    2010-12-01

    The use of food-grade microorganisms such as lactic acid bacteria (LAB) is one of the most promising methods for delivering health promoting compounds. Since it is not always possible to obtain strains that have the ability to produce specific compounds naturally or that produce them in sufficient quantities to obtain physiological responses, genetic modifications can be performed to improve their output. The objective of this study was to evaluate if previously studied genetically modified LAB (GM-LAB), with proven in vivo beneficial effects, are just as safe as the progenitor strain from which they were derived. Mice received an elevated concentration of different GM-LAB or the native parental strain from which they were derived during a prolonged period of time, and different health parameters were evaluated. Similar growth rates, hematological values, and other physiological parameters were obtained in the animals that received the GM-LAB compared to those that were fed with the native strain. These results demonstrate that the GM-LAB used in this study are just as safe as the native strains from which they were derived and thus merit further studies to include them into the food chain.

  5. Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by sorbic acid

    NASA Astrophysics Data System (ADS)

    Guo, Baochun; Chen, Feng; Lei, Yanda; Liu, Xiaoliang; Wan, Jingjing; Jia, Demin

    2009-05-01

    Sorbic acid (SA) was used to improve the performance of styrene-butadiene rubber (SBR)/halloysite nanotubes (HNTs) nanocomposites by direct blending. The detailed mechanisms for the largely improved performance were studied by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), differential scanning calorimetry (DSC), porosity analysis and crosslink density determination. The strong interfacial bonding between HNTs and rubber matrix is resulted through SA intermediated linkages. SA bonds SBR and HNTs through grafting copolymerization/hydrogen bonding mechanism. Significantly improved dispersion of HNTs in virtue of the interactions between HNTs and SA was achieved. Formation of zinc disorbate (ZDS) was revealed during the vulcanization of the composites. However, in the present systems, the contribution of ZDS to the reinforcement was limited. Effects of SA content on the vulcanization behavior, morphology and mechanical properties of the nanocomposites were investigated. Promising mechanical properties of SA modified SBR/HNTs nanocomposites were obtained. The changes in vulcanization behavior, mechanical properties and morphology were correlated with the interactions between HNTs and SA and the largely improved dispersion of HNTs.

  6. Optimization of acidic fibroblast growth factor (FGF-1) and its delivery through a modified degradable fibrin scaffold

    NASA Astrophysics Data System (ADS)

    Pandit, Abhay Smashikant

    The aim of this investigation was to develop a degradable fibrin wound dressing that can deliver an optimized dose of acidic fibroblast growth factor (FGF-1). This aim led to three distinct phases of study. In the first phase, a structurally modified fibrin degradable scaffold was developed and tested in a rabbit ear ulcer model. A significant increase in the angiogenic and fibroblastic response with a corresponding decrease in healing time was seen in the modified fibrin-treated ulcers as compared with untreated ulcers and ulcers treated with non-modified fibrin systems. In the second phase of the study, a biochemical factor, FGF-1, was added to this scaffold. An optimal dose of 8 mug of FGF-1 was determined to be required to initiate a desired wound-healing response in a rabbit ear ulcer model, based on an enhanced angiogenic and fibroblastic response and an increased epithelialization rate. The objective of the last phase was to investigate the efficacy of a modified scaffold as a vehicle for FGF-1. In vivo testing was conducted in a full-thickness defect model in a rabbit. Improvements were seen in the angiogenic and fibroblastic responses in the FGF-1/modified fibrin treatment group and, hence, FGF-1/modified fibrin was the preferred treatment. In conclusion, the modified fibrin/FGF-1 matrix served as a suitable vehicle for the growth factor, providing a desired healing response and a desirable release rate and, thus, was determined to be an effective scaffold.

  7. Low phytic acid 1 mutation in maize modifies density, starch properties, cations, and fiber contents in the seed.

    PubMed

    Landoni, Michela; Cerino Badone, Francesco; Haman, Nabil; Schiraldi, Alberto; Fessas, Dimitrios; Cesari, Valentina; Toschi, Ivan; Cremona, Roberta; Delogu, Chiara; Villa, Daniela; Cassani, Elena; Pilu, Roberto

    2013-05-15

    Monogastric animals are unable to digest phytic acid, so it represents an antinutritional factor and also an environmental problem. One strategy to solve this problem is the utilization of low phytic acid (lpa) mutants that accumulate low levels of phytic P and high levels of free phosphate in the seeds; among the lpa maize mutants lpa1 exhibited the highest reduction of phytic acid in the seed. This study indicated that the low phytic acid mutations exerted pleiotropic effects not directly connected to the phytic acid pathway, such as on seed density, content of ions, and the antioxidant compounds present in the kernels. Furthermore some nutritional properties of the flour were altered by the lpa1 mutations, in particular lignin and protein content, while the starch does not seem to be modified as to the total amount and in the amylose/amylopectin ratio, but alterations were noticed in the structure and size of granules.

  8. Sodium Taurocholate Modifies the Bile Acid-Independent Fraction of Canalicular Bile Flow in the Rhesus Monkey

    PubMed Central

    Baker, Alfred L.; Wood, R. A. B.; Moossa, A. R.; Boyer, James L.

    1979-01-01

    Bile acid-independent secretion and the choleretic response to taurocholate were determined in rhesus monkeys fitted with indwelling silastic cannulas in the common bile ducts. Bile acids were infused intravenously in random order at 3.5, 7.0, or 10.5 μmol/min for 1.5 h each. When data were analyzed with a single regression line, bile flow increased in proportion to the level of bile acid secretion, although the y-intercepts (the conventional measurement of bile acid-independent secretion) varied widely (77.9±40.9 ml/24 h). The variation in y-intercepts was observed between animals and with repeated studies in the same animal and could not be explained by sex differences or the effects of the indwelling silastic cannulas, but seemed to be related to the order of bile acid infusion. With only two taurocholic acid infusion rates (7.0 and 3.5 μmol/min), [14C]erythritol clearance was greater per mole of secreted bile acid when the initial bile acid infusion was at the high level, but approached zero at low bile acid secretion rates, which suggests that so-called bile acid-independent canalicular flow is closely related to bile acid secretion or is small in size. The augmentation in [14C]erythritol clearance when the high infusion rate was given first was also associated with an increase in biliary clearance of [3H]inulin, which indicates that the premeability to inulin was also enhanced. Identical experiments which substituted equimolar infusions of a nonmicelle-forming bile acid (taurodehydrocholate) for taurocholate failed to demonstrate any difference in choleretic response or biliary clearance of [3H]inulin with the order of bile acid infusion. These experiments demonstrate that a micelleforming bile acid, taurocholate, can increase the permeability of the biliary system to large molecular weight solutes and simultaneously modify the y-intercept and the volume of bile secreted in response to the transported bile acid. Taurocholate may, therefore, modify its own

  9. [Direct embryogenesis from protoplast of winter wheat].

    PubMed

    Ge, T M; Zhang, R D; Qin, F L; Yu, Y J; Xie, Y F

    2000-09-01

    Friable embryogenic calli were obtained on a modified N6 medium (NBD medium) from a winter wheat cultivar "Jinghua No. 1" (Triticum aestivum L. cv. Jinghua No. 1) and were transferred to a modified MS liquid medium (MSDL medium) to initiate embryogenic suspension cultures. Protoplasts were isolated from the suspensions and cultured on a modified MS medium (MSDP medium). The somatic embryoids were formed directly from the protoplasts and germinated into entire plants. The development of the somatic embryoids was very similar to that of zygotic embryos of wheat.

  10. Modifications of wheat germ cell-free system for functional proteomics of plant membrane proteins.

    PubMed

    Nozawa, Akira; Tozawa, Yuzuru

    2014-01-01

    Functional proteomics of plant membrane proteins is an important approach to understand the comprehensive architecture of each metabolic pathway in plants. One bottleneck in the characterization of membrane proteins is the difficulty in producing sufficient quantities of functional protein for analysis. Here, we describe three methods for membrane protein production utilizing a wheat germ cell-free protein expression system. Owing to the open nature of cell-free synthesis reaction, protein synthesis can be modified with components necessary to produce functional protein. In this way we have developed modifications to a wheat germ cell-free system for the production of functional membrane proteins. Supplementation of liposomes or detergents allows the synthesis of functional integral membrane proteins. Furthermore, supplementation of myristic acid enables synthesis of N-myristylated peripheral membrane proteins. These modified cell-free synthesis methods facilitate the preparation and subsequent functional analyses of a wide variety of membrane proteins.

  11. Influence of a microbial phytase on the performance and the utilisation of energy, crude protein and fatty acids of young broilers fed on phosphorus-adequate maize- and wheat-based diets.

    PubMed

    Zaefarian, F; Romero, L F; Ravindran, V

    2013-01-01

    1. The effects of microbial phytase on the performance and nutrient utilisation in broilers fed on phosphorus-adequate starter diets were examined in this study. The effect of phytase on the apparent ileal digestibility of fatty acids was of particular interest. Two grain types (maize and wheat) and two inclusion concentrations of a phytase enzyme from Escherichia coli expressed in Schizosaccaromyces pombe (0 or 500 phytase units (FTU)/kg of feed) were evaluated in a 2 × 2 factorial arrangement of treatments. 2. Supplemental phytase improved the weight gain and feed per gain, but had no effect on the feed intake of young broilers receiving phosphorus-adequate diets. 3. Phytase supplementation improved the apparent ileal digestibility of nitrogen and phosphorus in both diet types. Phytase supplementation tended to improve the apparent ileal digestible energy in wheat-based diets, but had no effect on the apparent metabolisable energy in both diet types. 4. Supplementation of phytase increased the apparent ileal digestibility of fat, with similar effects for the different fatty acids measured. Increments on ileal fat digestibility due to phytase were not dependent on the type of diet. 5. Dietary supplementation of microbial phytase enhanced not only the digestibility of phosphorus, but also that of nitrogen and fat, exhibiting increased ileal digestibility for all fatty acids in P-adequate maize- and wheat-based diets.

  12. Effects of ascorbic acid and high oxygen modified atmosphere packaging during storage of fresh-cut eggplants.

    PubMed

    Li, Xihong; Jiang, Yuqian; Li, Weili; Tang, Yao; Yun, Juan

    2014-03-01

    Ascorbic acid dip and high O2 modified atmosphere packaging were used to alleviate browning and quality loss of fresh-cut eggplants. Fresh-cut eggplants were dipped in water or 0.5% ascorbic acid solution for 2 min before being packed in polyethylene film bags filled with air or high O2. The physiochemical and sensorial attributes of cut eggplants were evaluated during 12 days for storage at 4 . Results demonstrated that high O2 modified atmosphere packaging and ascorbic acid dip improved the preservation of fresh-cut eggplants compared with the control. High O2 showed an ability to reduce the browning and inhibit polyphenol oxidase and peroxidase activities. Higher total phenolic content and lower malondialdehyde content were also observed in ascorbic acid treated samples during storage. Moreover, the combination of ascorbic acid and high O2 was more effective than single treatments. The surface color was protected by ascorbic acid and high O2 packaging, and higher sensory scores were observed after 12 days of storage.

  13. Effect of the mode of incorporation on the disintegrant properties of acid modified water and white yam starches.

    PubMed

    Odeku, Oluwatoyin A; Akinwande, Babatunde L

    2012-04-01

    Acid modified starches obtained from two species of yam tubers namely white yam - Dioscorea rotundata L. and water yam - D. alata L. DIAL2 have been investigated as intra- and extra-granular disintegrants in paracetamol tablet formulations. The native starches were modified by acid hydrolysis and employed as disintegrant at concentrations of 5 and 10% w/w and their disintegrant properties compared with those of corn starch BP. The tensile strength and drug release properties of the tablets, assessed using the disintegration and dissolution (t 50 and t 80 - time required for 50% and 80% of paracetamol to be released) times, were evaluated. The results showed that the tensile strength and the disintegration and dissolution times of the tablets decreased with increase in the concentration of the starch disintegrants. The acid modified yam starches showed better disintegrant efficiency than corn starch in the tablet formulations. Acid modification appeared to improve the disintegrant efficiency of the yam starches. Furthermore, tablets containing starches incorporated extragranularly showed faster disintegration but lower tensile strength than those containing starches incorporated intragranularly. This emphasizes the importance of the mode of incorporation of starch disintegrant.

  14. Removal of o-nitrobenzoic acid by adsorption on to a new organoclay: montmorillonite modified with HDTMA microemulsion.

    PubMed

    Xin, Xiao-Dong; Wang, Jin; Yu, Hai-Qin; Du, Bin; Wei, Qin; Yan, Liang-Guo

    2011-01-01

    A new organoclay, consisting of montmorillonite modified by a hexadecyl trimethyl ammonium (HDTMA) microemulsion, was synthesized, characterized and used as an adsorbent for the removal of o-nitrobenzoic acid from aqueous solution. Adsorption kinetics, isotherms and effects of operating variables, such as adsorbent dosage, ionic strength and initial solution pH, were also investigated. The results of Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis and BET surface area determination indicated that HDTMA molecules had entered into the interlayer of the montmorillonite. The optimized experimental conditions for the adsorption of o-nitrobenzoic acid by montmorillonite modified by HDTMA microemulsion were 0.5 g adsorbent dosage, 0.4 mL of 0.1 mol lbL(-1) CaCl2 solution, initial solution pH of 6.0 and contact time of 6 h. The adsorption isotherms of o-nitrobenzoic acid fitted the Langmuir model well (R2 = 0.9880). The adsorption kinetics data fitted the pseudo-second-order equation (R2 = 0.9999). These above results indicate that montmorillonite modified by an HDTMA microemulsion can be used as adsorbent for o-nitrobenzoic acid because of its high adsorption capacity and low cost.

  15. Determination of indium in high purity antimony by electrothermal atomic absorption spectrometry (ETAAS) using boric acid as a modifier.

    PubMed

    Dash, K; Thangavel, S; Chaurasia, S C; Arunachalam, J

    2006-10-15

    The use of boric acid as a modifier for the determination of trace amount of indium in high purity antimony by electrothermal atomic absorption is described. It was found that the negative influence of the hydrofluoric acid, used for the digestion could not be eliminated by using stabilized temperature platform furnace (STPF) alone. Due to the high dissociation energy (D(0)=506kJmol(-1)) of indium fluoride, it is difficult to dissociate in the gas phase and hence is lost. In presence of HF (used for the dissolution of antimony), the universal Pd-Mg modifier does not work satisfactorily. Additionally, rising corrosion and reduced tube lifetime were observed when the acid digested (HF-HNO(3)) antimony solution was injected in to the platform. Improvement in platform life and elimination of interferences were achieved by the addition of boric acid as a chemical modifier together with ruthenium coating of the platform. Corrosive changes of the transversely heated graphite atomizer (THGA) platform surface were examined by scanning electron microscopy. The standard addition method was applied. A characteristic mass of 36pg was obtained. The detection limit of the proposed method is around 0.04mugg(-1). The developed method was applied to the determination of indium in real samples. The data obtained by this method were in good agreement with those obtained by ICP-MS.

  16. Effect of the mode of incorporation on the disintegrant properties of acid modified water and white yam starches

    PubMed Central

    Odeku, Oluwatoyin A.; Akinwande, Babatunde L.

    2011-01-01

    Acid modified starches obtained from two species of yam tubers namely white yam – Dioscorearotundata L. and water yam – D. alata L. DIAL2 have been investigated as intra- and extra-granular disintegrants in paracetamol tablet formulations. The native starches were modified by acid hydrolysis and employed as disintegrant at concentrations of 5 and 10% w/w and their disintegrant properties compared with those of corn starch BP. The tensile strength and drug release properties of the tablets, assessed using the disintegration and dissolution (t50 and t80 – time required for 50% and 80% of paracetamol to be released) times, were evaluated. The results showed that the tensile strength and the disintegration and dissolution times of the tablets decreased with increase in the concentration of the starch disintegrants. The acid modified yam starches showed better disintegrant efficiency than corn starch in the tablet formulations. Acid modification appeared to improve the disintegrant efficiency of the yam starches. Furthermore, tablets containing starches incorporated extragranularly showed faster disintegration but lower tensile strength than those containing starches incorporated intragranularly. This emphasizes the importance of the mode of incorporation of starch disintegrant. PMID:23960789

  17. New polyfluorothiopropanoyloxy derivatives of 5β-cholan-24-oic acid designed as drug absorption modifiers.

    PubMed

    Mrózek, Lech; Coufalová, Lenka; Rárová, Lucie; Plaček, Lukáš; Opatřilová, Radka; Dohnal, Jiří; Kráľová, Katarína; Paleta, Oldřich; Král, Vladimír; Drašar, Pavel; Jampílek, Josef

    2013-09-01

    A series of final six propanoyloxy derivatives of 5β-cholan-24-oic acid (tridecafluoroctylsulfanyl- and tridecafluoroctylsulfinylethoxycarbonylpropanoyloxy derivatives) as potential drug absorption promoters (skin penetration enhancers, intestinal absorption promoters) was generated by multistep synthesis. Structure confirmation of all generated compounds was accomplished by (1)H NMR, (13)C NMR, IR and MS spectroscopy methods. All the prepared compounds were analyzed using RP-TLC, and their lipophilicity (RM) was determined. The hydrophobicity (log P), solubility (logS), polar surface area (PSA) and molar volume (MV) of the studied compounds were also calculated. All the target compounds were tested for their in vitro transdermal penetration effect and as potential intestinal absorption enhancers. The cytotoxicity of all the evaluated compounds was evaluated against normal human skin fibroblast cells. Their anti-proliferative activity was also assessed against human cancer cell lines: T-lymphoblastic leukaemia cell line and breast adenocarcinoma cell line. One compound showed high selective cytotoxicity against human skin fibroblast cells and another compound possessed high cytotoxicity against breast adenocarcinoma cell line and skin fibroblast cells. Only one compound expressed anti-proliferative effect on leukaemia and breast adenocarcinoma cells without affecting the growth of normal cells, which should be promising in potential development of new drugs. Most of the target compounds showed minimal anti-proliferative activity (IC50>37μM), indicating they would have moderate cytotoxicity when administered as chemical absorption modifiers. The relationships between the lipophilicity/polarity and the chemical structure of the studied compounds as well as the relationships between their chemical structure and penetration enhancement effect are discussed in this article.

  18. Fermented and extruded wheat bran in piglet diets: impact on performance, intestinal morphology, microbial metabolites in chyme and blood lipid radicals.

    PubMed

    Kraler, Manuel; Schedle, Karl; Schwarz, Christiane; Domig, Konrad J; Pichler, Martin; Oppeneder, Alexander; Wetscherek, Wolfgang; Prückler, Michael; Pignitter, Marc; Pirker, Katharina F; Somoza, Veronika; Heine, Daniel; Kneifel, Wolfgang

    2015-01-01

    The aim of the present study was to evaluate the influence of native, fermented and extruded wheat bran on the performance and intestinal morphology of piglets. Additionally, short-chain fatty acids (SCFA), biogenic amines, ammonia, lactic acid, pH as well as E. coli and lactic acid bacterial counts were analysed in digesta samples from three gut sections. Furthermore, the antioxidant potential in blood samples was evaluated based on the lipid radicals formed. For this purpose, 48 newly weaned piglets (28 d old) were allocated to one of the four different dietary treatment groups: no wheat bran (Control), native wheat bran, fermented wheat bran as well as extruded wheat bran. Wheat bran variants were included at 150 g/kg into the diets. All diets were mixed to reach the calculated isonitrogenic nutrient contents. Gut tissue and digesta samples were collected from the proximal jejunum, the terminal ileum and the colon ascendens, blood samples directly at slaughter. Although none of the dietary interventions had an impact on performance parameters, the amount of goblet cells in the ileum was increased upon feeding native and extruded wheat bran, compared to fermented bran (p < 0.05). The E. coli counts in colonic chyme were significantly lower (p < 0.05) in the Control group compared to the groups fed with wheat bran. The concentration of SCFA showed differences for minor compounds (p < 0.05), while linear contrast analyses revealed a reduced concentration of total SCFA in the colon following the feeding of modified wheat bran compared to native wheat bran. This may suggest that several compounds are more easily digested already in the ileum, resulting in a reduced nutrient flow into the large intestine and therefore less unexploited digesta is available as substrate for the microorganisms there. Fermentation also resulted in a significant decrease of methylamine in the colon (p < 0.05), while other biogenic amines in the ileum and colon showed no

  19. Serial lectin affinity chromatography with concavalin A and wheat germ agglutinin demonstrates altered asparagine-linked sugar-chain structures of prostatic acid phosphatase in human prostate carcinoma.

    PubMed

    Yoshida, K I; Honda, M; Arai, K; Hosoya, Y; Moriguchi, H; Sumi, S; Ueda, Y; Kitahara, S

    1997-08-01

    Differences between human prostate carcinoma (PCA, five cases) and benign prostatic hyperplasia (BPH, five cases) in asparagine-linked (Asn) sugar-chain structure of prostatic acid phosphatase (PAP) were investigated using lectin affinity chromatography with concanavalin A (Con A) and wheat germ agglutinin (WGA). PAP activities were significantly decreased in PCA-derived PAP, while no significant differences between the two PAP preparations were observed in the enzymatic properties (Michaelis-Menten value, optimal pH, thermal stability, and inhibition study). In these PAP preparations, all activities were found only in the fractions which bound strongly to the Con A column and were undetectable in the Con A unbound fractions and in the fractions which bound weakly to the Con A column. The relative amounts of PAP which bound strongly to the Con A column but passed through the WGA column, were significantly greater in BPH-derived PAP than in PCA-derived PAP. In contrast, the relative amounts of PAP which bound strongly to the Con A column and bound to the WGA column, were significantly greater in PCA-derived PAP than in BPH-derived PAP. The findings suggest that Asn-linked sugar-chain structures are altered during oncogenesis in human prostate and also suggest that studies of qualitative differences of sugar-chain structures of PAP might lead to a useful diagnostic tool for PCA.

  20. Changes in the water status and osmotic solute contents in response to drought and salicylic acid treatments in four different cultivars of wheat (Triticum aestivum).

    PubMed

    Loutfy, Naglaa; El-Tayeb, Mohamed A; Hassanen, Ahmed M; Moustafa, Mahmoud F M; Sakuma, Yoh; Inouhe, Masahiro

    2012-01-01

    Salicylic acid (SA) controls growth and stress responses in plants. It also induces drought tolerance in plants. In this paper, four wheat (Triticum aestivum L.) cultivars with different drought responses were treated with SA in three levels of drain (90, 60, 30% of maximum field capacity) to examine its interactive effects on drought responses and contents of osmotic solutes that may be involved in growth and osmotic adjustment. Under drought condition, the cultivars Geza 164 and Sakha 69 had the plant biomass and leaf relative water content (LRWC) greater than the cultivars Gemaza 1 and Gemaza 3. In all cultivars, drought stress decreased the biomass, LRWC, and the contents of inorganic solutes (Ca, K, Mg) and largely increased the contents of organic solutes (soluble sugars and proline). By contrast, SA increased the biomass, LRWC and the inorganic and organic solute contents, except proline. Correlation analysis revealed that the LRWC correlated positively with the inorganic solute contents but negatively with proline in all cultivars. SA caused maximum accumulations of soluble sugars in roots under drought. These results indicated that SA-enhanced tolerance might involve solute accumulations but independently of proline biosynthesis. Drought-sensitive cultivars had a trait lowering Ca and K levels especially in shoots. Possible functions of the ions and different traits of cultivars were discussed.

  1. Effect of additives on adsorption and desorption behavior of xylanase on acid-insoluble lignin from corn stover and wheat straw.

    PubMed

    Li, Yanfei; Ge, Xiaoyan; Sun, Zongping; Zhang, Junhua

    2015-06-01

    The competitive adsorption between cellulases and additives on lignin in the hydrolysis of lignocelluloses has been confirmed, whereas the effect of additives on the interaction between xylanase and lignin is not clear. In this work, the effects of additives, poly(ethylene glycol) 2000, poly(ethylene glycol) 6000, Tween 20, and Tween 80, on the xylanase adsorption/desorption onto/from acid-insoluble lignin from corn stover (CS-lignin) and wheat straw (WS-lignin) were investigated. The results indicated that the additives could adsorb onto isolated lignin and reduce the xylanase adsorption onto lignin. Compared to CS-lignin, more additives could adsorb onto WS-lignin, making less xylanase adsorbed onto WS-lignin. In addition, the additives could enhance desorption of xylanase from lignin, which might be due to the competitive adsorption between xylanase and additives on lignin. The released xylanase from lignin still exhibited hydrolytic capacity in the hydrolysis of isolated xylan and xylan in corn stover.

  2. Determination of Acid Herbicides Using Modified QuEChERS with Fast Switching ESI(+)/ESI(-) LC-MS/MS.

    PubMed

    Sack, Chris; Vonderbrink, John; Smoker, Michael; Smith, Robert E

    2015-11-04

    A method for the determination of 35 acid herbicides in food matrices was developed, validated, and implemented. It utilizes a modified QuEChERS extraction procedure coupled with quantitation by liquid chromatography tandem mass spectrometry (LC-MS/MS). The acid herbicides analyzed are all organic carboxylic acids, including the older chlorophenoxy acid herbicides such as 2,4-dichlorophenoxyacetic acid (2,4-D), dicamba, 4-chlorophenoxyacetic acid (4-CPA), quinclorac, and many of the newer imidazolinone herbicides such as imazethapyr and imazaquin. In the procedure, 10 mL of water is added to 5 g of sample and then extracted with 1% formic acid in acetonitrile for 1 min. The acetonitrile phase is salted out of the extract by adding sodium chloride and magnesium sulfate, followed by centrifugation. The acetonitrile is diluted 1:1 with water to enable quantitation by LC-MS/MS using fast switching between positive and negative electrospray ionization modes. The average recoveries for all the compounds except aminocyclopyrachlor were 95% with a precision of 8%. The method detection limits for all residues were less than 10 ng/g, and the correlation coefficients for the calibration curves was greater than 0.99 for all but two compounds tested. The method was used successfully for the quantitation of acid herbicides in the FDA's total diet study. The procedure proved to be accurate, precise, linear, sensitive, and rugged.

  3. Acid dye removal: comparison of surfactant-modified mesoporous FSM-16 with activated carbon derived from rice husk.

    PubMed

    Mohamed, Mohamed Mokhtar

    2004-04-01

    Cetyltrimethylammonium bromide (CTAB)-modified mesoporous molecular sieve FSM-16, prepared by a hydrothermal process (373 K, 3 days), was tested as an adsorbent for acid dye (acid yellow, AY, and acid blue, AB) removal in comparison with as-prepared FSM-16 and activated carbon (AC) derived from rice husk (50 vol% H3PO4, 773 K, 2.5 h). The adsorption isotherms, sorption kinetics, and pH effects upon acid dyes sorption on the adsorbents were thoroughly investigated. The structures of different adsorbents were characterized by XRD, FTIR spectroscopy, N2 adsorption measurements, and thermogravimetric (TG) analysis. It was found that the ultimate capacity of the adsorbents varied in the order FSM-16 > modified FSM-16 > AC and followed first-order rate kinetics. The adsorption isotherm of acid dyes on FSM-16 is of type IV, according to the IUPAC classification, drastically different from that of CTAB/FSM-16, which showed a type I isotherm. The latter sample had better adsorption performance at low concentration of acid dyes than the former. As compared to activated carbon of microporous character, the CTAB/FSM-16 sample achieved higher performance at low concentrations. This was due to the successful narrowing of the pore opening of FSM-16 using CTAB with maintenance of a considerable portion of the pore volume. Powder XRD and N2 adsorption studies of the CTAB/FSM-16 material indicated that the textural properties of the support were preserved during the hydrothermal synthesis and that the channels remained accessible, despite a significant reduction in surface area (ca. 26%). TG studies, on the other hand, confirmed that the modified material presented a higher hydrophobicity than that of the CTAB-free FSM-16 sample.

  4. Voltammetric determination of polyphenolic content in pomegranate juice using a poly(gallic acid)/multiwalled carbon nanotube modified electrode

    PubMed Central

    Newair, Emad F

    2016-01-01

    Summary A simple and sensitive poly(gallic acid)/multiwalled carbon nanotube modified glassy carbon electrode (PGA/MWCNT/GCE) electrochemical sensor was prepared for direct determination of the total phenolic content (TPC) as gallic acid equivalent. The GCE working electrode was electrochemically modified and characterized using scanning electron microscope (SEM), cyclic voltammetry (CV), chronoamperometry and chronocoulometry. It was found that gallic acid (GA) exhibits a superior electrochemical response on the PGA/MWCNT/GCE sensor in comparison with bare GCE. The results reveal that a PGA/MWCNT/GCE sensor can remarkably enhance the electro-oxidation signal of GA as well as shift the peak potentials towards less positive potential values. The dependence of peak current on accumulation potential, accumulation time and pH were investigated by square-wave voltammetry (SWV) to optimize the experimental conditions for the determination of GA. Using the optimized conditions, the sensor responded linearly to a GA concentration throughout the range of 4.97 × 10−6 to 3.38 × 10−5 M with a detection limit of 3.22 × 10−6 M (S/N = 3). The fabricated sensor shows good selectivity, stability, repeatability and (101%) recovery. The sensor was successfully utilized for the determination of total phenolic content in fresh pomegranate juice without interference of ascorbic acid, fructose, potassium nitrate and barbituric acid. The obtained data were compared with the standard Folin–Ciocalteu spectrophotometric results. PMID:27547628

  5. Zinc oxide modified with benzylphosphonic acids as transparent electrodes in regular and inverted organic solar cell structures

    SciTech Connect

    Lange, Ilja; Reiter, Sina; Kniepert, Juliane; Piersimoni, Fortunato; Brenner, Thomas; Neher, Dieter; Pätzel, Michael; Hildebrandt, Jana; Hecht, Stefan

    2015-03-16

    An approach is presented to modify the work function of solution-processed sol-gel derived zinc oxide (ZnO) over an exceptionally wide range of more than 2.3 eV. This approach relies on the formation of dense and homogeneous self-assembled monolayers based on phosphonic acids with different dipole moments. This allows us to apply ZnO as charge selective bottom electrodes in either regular or inverted solar cell structures, using poly(3-hexylthiophene):phenyl-C71-butyric acid methyl ester as the active layer. These devices compete with or even surpass the performance of the reference on indium tin oxide/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate. Our findings highlight the potential of properly modified ZnO as electron or hole extracting electrodes in hybrid optoelectronic devices.

  6. A STUDY COMPARING CHEMICAL PEELING USING MODIFIED JESSNER'S SOLUTION AND 15%TRICHLOROACETIC ACID VERSUS 15% TRICHLOROACETIC ACID IN THE TREATMENT OF MELASMA

    PubMed Central

    Safoury, Omar Soliman; Zaki, Nagla Mohamed; El Nabarawy, Eman Ahmad; Farag, Eman Abas

    2009-01-01

    Background: Melasma is a symmetric progressive hyperpigmentation of the facial skin that occurs in all races but has a predilection for darker skin phenotypes. Depigmenting agents, laser and chemical peeling as classic Jessner's solution, modified Jessner's solution and trichloroacetic acid have been used alone and in combination in the treatment of melasma. Objectives: The aim of the study was to compare the therapeutic effect of combined 15% Trichloroacetic acid (TCA) and modified Jessner's solution with 15% TCA on melasma. Materials and Methods: Twenty married females with melasma (epidermal type), with a mean age of 38.25 years, were included in this study. All were of skin type III or IV. Fifteen percent TCA was applied to the whole face, with the exception of the left malar area to which combined TCA 15% and modified Jessner's solution was applied. Results: Our results revealed statistically highly significant difference between MASI Score (Melasma Area and Severity Index) between the right malar area and the left malar area. Conclusion: Modified Jessner's solution proved to be useful as an adjuvant treatment with TCA in the treatment of melasma, improving the results and minimizing postinflammatory hyperpigmentation. PMID:20049268

  7. Phytochemical Composition and Anti-Inflammatory Activity of Extracts from the Whole-Meal Flour of Italian Durum Wheat Cultivars

    PubMed Central

    Laddomada, Barbara; Durante, Miriana; Minervini, Fiorenza; Garbetta, Antonella; Cardinali, Angela; D’Antuono, Isabella; Caretto, Sofia; Blanco, Antonio; Mita, Giovanni

    2015-01-01

    In this study, the quali-quantitative composition of hydrophilic (phenolic acids) and lipophilic (isoprenoids) extracts from whole-meal flour of five elite Italian durum wheat cultivars was determined. Significant differences in the content of bioactive compounds were observed among the wheat extracts, in particular concerning the content of bound phenolic acids, lutein and β-tocotrienols. The cultivars Duilio and Svevo showed the highest amount of phenolic acids and isoprenoids, respectively. Extracts were evaluated for their anti-inflammatory activity on HT-29 human colon cells by measuring the levels of interleukin 8 (IL-8) and transforming growth factor β1 (TGF-β1). Durum wheat extracts significantly inhibited the secretion of the pro-inflammatory IL-8 mediator at 66 µg/mL of phenolic acids and at 0.2 µg/mL of isoprenoids. Conversely, the secretion of the anti-inflammatory mediator TGF-β1 was not modified by neither hydrophilic nor lipophilic extracts. These results provide further insight into the potential of durum wheat on human health suggesting the significance of varieties with elevated contents of bioactive components. PMID:25658801

  8. Mapping of Saccharomyces cerevisiae metabolites in fermenting wheat straight-dough reveals succinic acid as pH-determining factor.

    PubMed

    Jayaram, Vinay B; Cuyvers, Sven; Lagrain, Bert; Verstrepen, Kevin J; Delcour, Jan A; Courtin, Christophe M

    2013-01-15

    Fermenting yeast does not merely cause dough leavening, but also contributes to the bread aroma and might alter dough rheology. Here, the yeast carbon metabolism was mapped during bread straight-dough fermentation. The concentration of most metabolites changed quasi linearly as a function of fermentation time. Ethanol and carbon dioxide concentrations reached up to 60 mmol/100g flour. Interestingly, high levels of glycerol (up to 10 mmol/100g flour) and succinic acid (up to 1.6 mmol/100g flour) were produced during dough fermentation. Further tests showed that, contrary to current belief, the pH decrease in fermenting dough is primarily caused by the production of succinic acid by the yeast instead of carbon dioxide dissolution or bacterial organic acids. Together, our results provide a comprehensive overview of metabolite production during dough fermentation and yield insight into the importance of some of these metabolites for dough properties.

  9. Dispersion in the presence of acetic acid or ammonia confers gliadin-like characteristics to the glutenin in wheat gluten.

    PubMed

    Murakami, Tetsuya; Kitabatake, Naofumi; Tani, Fumito

    2015-02-01

    Spray-dried gluten has unique properties and is commercially available in the food industry worldwide. In this study, we examined the viscoelastic properties of gluten powder prepared by dispersion in the presence of acetic acid or an ammonia solvent and then followed by lyophilization instead of a spray drying. Mixograph measurements showed that the acid- and ammonia-treated gluten powders had marked decreases in the time to peak dough resistance when compared with the control gluten powder. The integrals of the dough resistance and bandwidth for 3 min after peak dough resistance decreased in both treated gluten powders. Similar phenomena were observed when gliadin was supplemented to gluten powders. Basic and acidic conditions were applied to the acid- and ammonia-treated gluten powders, respectively, and the viscoelastic behaviors were found to depend on the pH in the gluten dispersion just before lyophilization. These behaviors suggest that gluten may assume a reversible change in viscoelasticity by a fluctuation in pH during gluten dispersion. SDS-PAGE showed that the extractable proteins substantially increased in some polymeric glutenins including the low molecular weight-glutenin subunit (LMW-GS) when the ammonia-treated gluten powder was extracted with 70% ethanol. In contrast, the extractable proteins markedly increased in many polymeric glutenins including the high molecular weight-glutenin subunit and/or the LMW-GS when the acid-treated gluten powder was extracted with 70% ethanol. It thus follows that the extractability of polymeric glutenin to ethanol increases similarly to gliadin when gluten is exposed to an acidic or a basic pH condition; therefore, glutenin adopts gliadin-like characteristics.

  10. Endothelial cell functions in vitro cultured on poly(L-lactic acid) membranes modified with different methods.

    PubMed

    Zhu, Yabin; Gao, Changyou; Liu, Yunxiao; Shen, Jiacong

    2004-06-01

    We recently developed several methods to enhance the cell-polymer interactions. Optimal conditions for each method have been revealed separately by in vitro cell culture. As a practical consideration for construction of tissue-engineered organs, it is necessary to consider which is the most suitable and convenient in clinical applications. To compare the efficiency of these methods with respect to cell functions, poly-L-lactic acid (PLLA) was selected as matrix being modified by 1) aminolysis (PLLA-NH(2)), 2) collagen immobilization with GA (PLLA-GA-Col), 3) chondroitin sulfate (CS)/collagen layer-by-layer (LBL) assembly (PLLA-CS/Col), 4) photo-induced grafting copolymerization of hydrophilic methacrylic acid (MAA) (PLLA-g-PMAA), and 5) further immobilization of collagen with 1-ethyl-3-(3-dimethylamino propyl) carbodiimide hydrochloride (EDAC) (PLLA-g-PMAA-Col). The surface wettability of the modified PLLA was determined by water contact angle measurements. The cell response to the modified PLLA was quantitatively assessed and compared by using human umbilical endothelial cells (HUVECs) culture. Our results indicate that all the modifications can improve the cytocompatibility of PLLA (e.g., cells can attach with spreading morphology, proliferate and secret vWF and 6-keto-PGF(1 alpha)). All the collagen-modified PLLA showed more positive cell response than those purely aminolyzed or PMAA grafted. Among all the methods, collagen immobilization by LBL assembly or GA bridging after aminolysis is more acceptable for the convenience and applicability to scaffolds.

  11. Simultaneous Detection of Dopamine and Uric Acid Using a Poly(l-lysine)/Graphene Oxide Modified Electrode

    PubMed Central

    Zhang, Yuehua; Lei, Wu; Xu, Yujuan; Xia, Xifeng; Hao, Qingli

    2016-01-01

    A novel, simple and selective electrochemical method was investigated for the simultaneous detection of dopamine (DA) and uric acid (UA) on a poly(l-lysine)/graphene oxide (GO) modified glassy carbon electrode (PLL/GO/GCE) by differential pulse voltammetry (DPV). The electrochemically prepared PLL/GO sensory platform toward the oxidation of UA and DA exhibited several advantages, including high effective surface area, more active sites and enhanced electrochemical activity. Compared to the PLL-modified GCE (PLL/GCE), GO-modified GCE and bare GCE, the PLL/GO/GCE exhibited an increase in the anodic potential difference and a remarkable enhancement in the current responses for both UA and DA. For the simultaneous detection of DA and UA, the detection limits of 0.021 and 0.074 μM were obtained, while 0.031 and 0.018 μM were obtained as the detection limits for the selective detection of UA and DA, using DPV in the linear concentration ranges of 0.5 to 20.0 and 0.5 to 35 μM, respectively. In addition, the PLL/GO/GCE demonstrated good reproducibility, long-term stability, excellent selectivity and negligible interference of ascorbic acid (AA). The proposed modified electrode was successfully implemented in the simultaneous detection of DA and UA in human blood serum, urine and dopamine hydrochloride injection with satisfactory results.

  12. Modified biopolymers as sorbents for the removal of naphthenic acids from oil sands process affected water (OSPW).

    PubMed

    Arshad, Muhammad; Khosa, M A; Siddique, Tariq; Ullah, Aman

    2016-11-01

    Oil sands operations consume large volumes of water in bitumen extraction process and produce tailings that express pore water to the surface of tailings ponds known as oil sands process-affected water (OSPW). The OSPW is toxic and cannot be released into the environment without treatment. In addition to metals, dissolved solids, dissolved gases, hydrocarbons and polyaromatic compounds etc., OSPW also contains a complex mixture of dissolved organic acids, referred to as naphthenic acids (NAs). The NAs are highly toxic and react with metals to develop highly corrosive functionalities which cause corrosion in the oil sands processing and refining processes. We have chemically modified keratin biopolymer using polyhedral oligomeric silsesquioxanes (POSS) nanocages and goethite dopant to unfold keratinous structure for improving functionality. The untreated neat keratin and two modified sorbents were characterized to investigate structural, morphological, dimensional and thermal properties. These sorbents were then tested for the removal of NAs from OSPW. The NAs were selectively extracted and quantified before and after sorption process. The biosorption capacity (Q), rejection percentage (R%) and isotherm models were studied to investigate NAs removal efficiency of POSS modified keratin biopolymer (PMKB) and goethite modified keratin biopolymer (GMKB) from aliquots of OSPW.

  13. Fabrication of chiral amino acid ionic liquid modified magnetic multifunctional nanospheres for centrifugal chiral chromatography separation of racemates.

    PubMed

    Liu, Yating; Tian, Ailin; Wang, Xiong; Qi, Jing; Wang, Fengkang; Ma, Ying; Ito, Yoichiro; Wei, Yun

    2015-06-26

    As the rapid development of nanotechnology, the magnetic nanospheres modified with special chiral selective ligands show a great potentiality in enantiomeric separation. In this study, magnetic nanospheres modified with task-specific chiral ionic liquid were designed for the separation of chiral amino acids. These modified magnetic nanospheres were effective in a direct chiral separation of five racemic amino acids (D- and L-cysteine, D- and L-arginine, D- and L-leucine, D- and L-glutamine and D- and L-tryptophan). Furthermore, a new online method for complete separation of the enantiomers via the magnetic nanospheres was established with centrifugal chiral chromatography using a spiral tube assembly mounted on a type-J coil planet centrifuge. One kind of chiral compounds, D- and L-tryptophan was resolved well using this method. These results demonstrated that the modified nanospheres display a good chiral recognition ability, and can be used as a potential material for chiral separation of various racemates.

  14. Spring Wheat Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common wheat, known as bread wheat, is one of major crops for human food consumption. It is further classified into spring and winter wheat based on the distinct growing seasons. Spring wheat is grown worldwide and usually planted in the spring and harvested in late summer or early fall. In this c...

  15. Preparation and characterization of acorn starch/poly(lactic acid) composites modified with functionalized vegetable oil derivates.

    PubMed

    Li, Shouhai; Xia, Jianling; Xu, Yuzhi; Yang, Xuejuan; Mao, Wei; Huang, Kun

    2016-05-20

    Composites of acorn starch (AS) and poly(1actic acid) (PLA) modified with dimer fatty acid (DFA) or dimer fatty acid polyamide (DFAPA) were produced by a hot-melt extrusion method. The effects of DFA and DFAPA contents on the mechanical, hydrophobic, thermal properties and melt fluidity of the composites were studied under an invariable AS-to-PLA mass ratio of 40/60. SEM and DMA research results show that the compatibility of AS/PLA composites are determined by the dosage of DFA or DFAPA. The hydrophobicity and melt fluidity of composites are improved with the addition of DFA and DFAPA. The glass transition temperatures of the composites are all reduced remarkably by additives DFA and DFAPA. However, DFA and DFAPA exert different effects on the mechanical properties of AS/PLA composites. In the DFAPA-modified system, the tensile and flexural strength first increase and then decrease with the increase of DFAPA dosage; the mechanical strength is maximized when the dosage of DFAPA is 2 wt% of total weight. In the DFA-modified system, the tensile and flexural strength decrease with the increase of DFA dosage.

  16. LC-MS display of the total modified amino acids in cataract lens proteins and in lens proteins glycated by ascorbic acid in vitro.

    PubMed

    Cheng, Rongzhu; Feng, Qi; Ortwerth, Beryl J

    2006-05-01

    We previously reported chromatographic evidence supporting the similarity of yellow chromophores isolated from aged human lens proteins, early brunescent cataract lens proteins and calf lens proteins ascorbylated in vitro [Cheng, R. et al. Biochimica et Biophysica Acta 1537, 14-26, 2001]. In this paper, new evidence supporting the chemical identity of the modified amino acids in these protein populations were collected by using a