Sample records for acid molecule adduction

  1. Ion Pairs or Neutral Molecule Adducts? Cooperativity in Hydrogen Bonding

    ERIC Educational Resources Information Center

    DeKock, Roger L.; Schipper, Laura A.; Dykhouse, Stephanie C.; Heeringa, Lee P.; Brandsen, Benjamin M.

    2009-01-01

    We performed theoretical studies on the systems NH[subscript 3] times HF times mH[subscript 2]O, NH[subscript 3] times HCl times mH[subscript 2]O, with m = 0, 1, 2, and 6. The molecules with m = 0 form hydrogen-bonded adducts with little tendency to form an ion-pair structure. The molecule NH[subscript 3] times HCl times H[subscript 2]O cannot be…

  2. Molecular structures of five adducts assembled from p-dimethylaminobenzaldehyde and organic acids

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Wang, Lanqing; Liu, Hui; Liu, Li; Zhang, Huan; Wang, Daqi; Li, Minghui; Guo, Jianzhong; Guo, Ming

    2016-07-01

    Five adducts 1-5 derived from p-dimethylaminobenzaldehyde have been prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. Of the five adducts two are organic salts (1, and 2) and the other three (3-5) are cocrystals. In salts 1, and 2, the L molecules are protonated. The supramolecular architectures of the adducts 1-5 involve extensive intermolecular N-H⋯O, O-H⋯O, O-H⋯S, and C-H⋯O hydrogen bonds as well as other non-covalent interactions. The role of weak and strong non-covalent interactions in the crystal packing is ascertained. The complexes displayed 2D/3D framework structure for the synergistic effect of the various non-covalent interactions. The results presented herein tell that the strength and directionality of the N-H⋯O, O-H⋯O, and O-H⋯S hydrogen bonds between organic acids and p-dimethylaminobenzaldehyde are sufficient to bring about the formation of binary cocrystals or organic salts.

  3. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442) is...

  4. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442) is...

  5. Amino acid-based dithiazines: synthesis and photofragmentation of their benzaldehyde adducts.

    PubMed

    Kurchan, Alexei N; Kutateladze, Andrei G

    2002-11-14

    Alpha-amino acids and GABA are functionalized with dithiazine rings via reaction with sodium hydrosulfide in aqueous formaldehyde. The resulting dithiazines are lithiated at -78 degrees C and reacted with benzaldehyde furnishing amino acid-based 2,5-bis-substituted dithiazines. These adducts undergo externally sensitized photofragmentation with quantum efficiency comparable to that of the parent dithiane adducts, thus offering a novel approach to amino acid-based photolabile tethers. [reaction: see text

  6. Rotational Investigation of the Adducts of Formic Acid with Alcohols, Ethers and Esters

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Spada, Lorenzo; Li, Weixing; Caminati, Walther

    2016-06-01

    Mixtures of formic acid with methyl alcohol, with isopropyl alcohol, with tert-butyl alcohol, with dimethylether and with isopropylformiate have been supersonically expanded as pulsed jets. The obtained cool plumes have been analyzed by Fourier transform microwave spectroscopy. It has been possible to assign the rotational spectra of the 1:1 adducts of formic acid with tert-butyl alcohol, with dimethyl ether and with isopropylformiate. The conformational shapes and geometries of these adducts, as well as the topologies of their itermolecular hydrogen bonds will be presented. An explanation is given of the failure of the assignments of the rotational spectra of the adducts of formic acid with methyl alcohol and isopropyl alcohol.

  7. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    PubMed

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury.

  8. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene oxide...

  9. Adduct formation of ionic and nanoparticular silver with amino acids and glutathione

    NASA Astrophysics Data System (ADS)

    Blaske, Franziska; Stork, Lisa; Sperling, Michael; Karst, Uwe

    2013-09-01

    To investigate the interaction of ionic and nanoparticular silver with amino acids and small peptides, an electrospray ionization time-of-flight mass spectrometry method was developed. Monomeric and oligomeric silver adducts were formed with amino acids including cysteine (Cys), methionine, histidine, lysine, or the tripeptide glutathione (GSH). The obtained spectra for ionic silver show clusters in different ratios between Ag+ and the reaction partners (X) including [Ag n X m - ( n + 1)H]- ( n = 1-4, m = 1-3). Regarding Cys, adduct clusters up to n = 5 and m = 4 were observed as well. Considering silver-GSH interactions, even doubly charged oligomers occur generating [Ag( a + 1)GSH a - ( a + 3)H]2- ( a = 5-7) and [Ag b GSH b - ( b + 2)H]2- ( b = 4-8) ions. 1H NMR data of free GSH compared to that after treatment with Ag+ confirm sulfur-metal interactions due to changing chemical shifts for the protons located adjacent to the thiol group. Density functional theory calculations for silver-GSH clusters may explain the formation of experimentally recorded large clusters due to cooperative effects between silver and carboxylic acid side chains. Both sets of experiments indicate the presence of these adducts in the liquid phase. For silver nanoparticles, the respective data confirm the release of silver ions and the subsequent adduct formation.

  10. Identification of Rosmarinic Acid-Adducted Sites in Meat Proteins in a Gel Model under Oxidative Stress by Triple TOF MS/MS.

    PubMed

    Tang, Chang-Bo; Zhang, Wan-Gang; Wang, Yao-Song; Xing, Lu-Juan; Xu, Xing-Lian; Zhou, Guang-Hong

    2016-08-24

    Triple TOF MS/MS was used to identify adducts between rosmarinic acid (RosA)-derived quinones and meat proteins in a gel model under oxidative stress. Seventy-five RosA-modified peptides responded to 67 proteins with adduction of RosA. RosA conjugated with different amino acids in proteins, and His, Arg, and Lys adducts with RosA were identified for the first time in meat. A total of 8 peptides containing Cys, 14 peptides containing His, 48 peptides containing Arg, 64 peptides containing Lys, and 5 peptides containing N-termini that which participated in adduction reaction with RosA were identified, respectively. Seventy-seven adduction sites were subdivided into all adducted proteins including 2 N-terminal adduction sites, 3 Cys adduction sites, 4 His adduction sites, 29 Arg adduction sites, and 39 Lys adduction sites. Site occupancy analyses showed that approximately 80.597% of the proteins carried a single RosA-modified site, 14.925% retained two sites, 1.492% contained three sites, and the rest 2.985% had four or more sites. Large-scale triple TOF MS/MS mapping of RosA-adducted sites reveals the adduction regulations of quinone and different amino acids as well as the adduction ratios, which clarify phenol-protein adductions and pave the way for industrial meat processing and preservation.

  11. Nitro-fatty acid metabolome: saturation, desaturation, beta-oxidation, and protein adduction.

    PubMed

    Rudolph, Volker; Schopfer, Francisco J; Khoo, Nicholas K H; Rudolph, Tanja K; Cole, Marsha P; Woodcock, Steven R; Bonacci, Gustavo; Groeger, Alison L; Golin-Bisello, Franca; Chen, Chen-Shan; Baker, Paul R S; Freeman, Bruce A

    2009-01-16

    Nitrated derivatives of fatty acids (NO2-FA) are pluripotent cell-signaling mediators that display anti-inflammatory properties. Current understanding of NO2-FA signal transduction lacks insight into how or if NO2-FA are modified or metabolized upon formation or administration in vivo. Here the disposition and metabolism of nitro-9-cis-octadecenoic (18:1-NO2) acid was investigated in plasma and liver after intravenous injection in mice. High performance liquid chromatography-tandem mass spectrometry analysis showed that no 18:1-NO2 or metabolites were detected under basal conditions, whereas administered 18:1-NO2 is rapidly adducted to plasma thiol-containing proteins and glutathione. NO2-FA are also metabolized via beta-oxidation, with high performance liquid chromatography-tandem mass spectrometry analysis of liver lipid extracts of treated mice revealing nitro-7-cis-hexadecenoic acid, nitro-5-cis-tetradecenoic acid, and nitro-3-cis-dodecenoic acid and corresponding coenzyme A derivatives of 18:1-NO2 as metabolites. Additionally, a significant proportion of 18:1-NO2 and its metabolites are converted to nitroalkane derivatives by saturation of the double bond, and to a lesser extent are desaturated to diene derivatives. There was no evidence of the formation of nitrohydroxyl or conjugated ketone derivatives in organs of interest, metabolites expected upon 18:1-NO2 hydration or nitric oxide (*NO) release. Plasma samples from treated mice had significant extents of protein-adducted 18:1-NO2 detected by exchange to added beta-mercaptoethanol. This, coupled with the observation of 18:1-NO2 release from glutathione-18:1-NO2 adducts, supports that reversible and exchangeable NO2-FA-thiol adducts occur under biological conditions. After administration of [3H]18:1-NO2, 64% of net radiolabel was recovered 90 min later in plasma (0.2%), liver (18%), kidney (2%), adipose tissue (2%), muscle (31%), urine (6%), and other tissue compartments, and may include metabolites not yet

  12. Critical evaluation of dipolar, acid-base and charge interactions I. Electron displacement within and between molecules, liquids and semiconductors.

    PubMed

    Rosenholm, Jarl B

    2017-09-01

    Specific dipolar, acid-base and charge interactions involve electron displacements. For atoms, single bonds and molecules electron displacement is characterized by electronic potential, absolute hardness, electronegativity and electron gap. In addition, dissociation, bonding, atomization, formation, ionization, affinity and lattice enthalpies are required to quantify the electron displacement in solids. Semiconductors are characterized by valence and conduction band energies, electron gaps and average Fermi energies which in turn determine Galvani potentials of the bulk, space charge layer and surface states. Electron displacement due to interaction between (probe) molecules, liquids and solids are characterized by parameters such as Hamaker constant, solubility parameter, exchange energy density, surface tension, work of adhesion and immersion. They are determined from permittivity, refractive index, enthalpy of vaporization, molar volume, surface pressure and contact angle. Moreover, acidic and basic probes may form adducts which are adsorbed on target substrates in order to establish an indirect measure of polarity, acidity, basicity or hydrogen bonding. Acidic acceptor numbers (AN), basic donor numbers (DN), acidic and basic "electrostatic" (E) and "covalent" (C) parameters determined by enthalpy of adduct formation are considered as general acid-base scales. However, the formal grounds for assignments as dispersive, Lifshitz-van der Waals, polar, acid, base and hydrogen bond interactions are inconsistent. Although correlations are found no of the parameters are mutually fully compatible and moreover the enthalpies of acid-base interaction do not correspond to free energies. In this review the foundations of different acid-base parameters relating to electron displacement within and between (probe) molecules, liquids and (semiconducting) solids are thoroughly investigated and their mutual relationships are evaluated. Copyright © 2017 Elsevier B.V. All rights

  13. Extraction of rare earth oxides using supercritical carbon dioxide modified with Tri- n-butyl phosphate–nitric acid adducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek, Donna L.; Fox, Robert V.; Case, Mary E.

    A new tri- n-butylphosphate–nitric acid (TBP–HNO 3) adduct was prepared by combining TBP and fuming (90%) HNO 3. The adduct was characterized, and its phase-equilibrium behavior in supercritical carbon dioxide is reported. Supercritical carbon dioxide (sc-CO 2) was modified with this new adduct [TBP(HNO 3) 5.2(H 2O) 1.7], and the extraction efficacies of selected rare earth oxides (Y, Ce, Eu, Tb, and Dy) at 338 K and 34.5 MPa were compared with those obtained using an adduct formed from concentrated (70%) HNO 3 and TBP [TBP(HNO 3) 1.7(H 2O) 0.6]. All rare earth oxides tested with both adduct species couldmore » be extracted with the exception of cerium oxide. Furthermore, the water and acid concentrations in the different adducts were found to play a significant role in rare earth oxide extraction efficiency.« less

  14. Extraction of rare earth oxides using supercritical carbon dioxide modified with Tri- n-butyl phosphate–nitric acid adducts

    DOE PAGES

    Baek, Donna L.; Fox, Robert V.; Case, Mary E.; ...

    2016-06-14

    A new tri- n-butylphosphate–nitric acid (TBP–HNO 3) adduct was prepared by combining TBP and fuming (90%) HNO 3. The adduct was characterized, and its phase-equilibrium behavior in supercritical carbon dioxide is reported. Supercritical carbon dioxide (sc-CO 2) was modified with this new adduct [TBP(HNO 3) 5.2(H 2O) 1.7], and the extraction efficacies of selected rare earth oxides (Y, Ce, Eu, Tb, and Dy) at 338 K and 34.5 MPa were compared with those obtained using an adduct formed from concentrated (70%) HNO 3 and TBP [TBP(HNO 3) 1.7(H 2O) 0.6]. All rare earth oxides tested with both adduct species couldmore » be extracted with the exception of cerium oxide. Furthermore, the water and acid concentrations in the different adducts were found to play a significant role in rare earth oxide extraction efficiency.« less

  15. The influence of ochratoxin A on DNA adduct formation by the carcinogen aristolochic acid in rats.

    PubMed

    Stiborová, Marie; Bárta, František; Levová, Kateřina; Hodek, Petr; Frei, Eva; Arlt, Volker M; Schmeiser, Heinz H

    2015-11-01

    Exposure to the plant nephrotoxin and carcinogen aristolochic acid (AA) leads to the development of AA nephropathy, Balkan endemic nephropathy (BEN) and upper urothelial carcinoma (UUC) in humans. Beside AA, exposure to ochratoxin A (OTA) was linked to BEN. Although OTA was rejected as a factor for BEN/UUC, there is still no information whether the development of AA-induced BEN/UUC is influenced by OTA exposure. Therefore, we studied the influence of OTA on the genotoxicity of AA (AA-DNA adduct formation) in vivo. AA-DNA adducts were formed in liver and kidney of rats treated with AA or AA combined with OTA, but no OTA-related DNA adducts were detectable in rats treated with OTA alone or OTA combined with AA. Compared to rats treated with AA alone, AA-DNA adduct levels were 5.4- and 1.6-fold higher in liver and kidney, respectively, of rats treated with AA combined with OTA. Although AA and OTA induced quinone oxidoreductase (NQO1) activating AA to DNA adducts, their combined treatment did not lead to either higher NQO1 enzyme activity or higher AA-DNA adduct levels in ex vivo incubations. Oxidation of AA I (8-methoxy-6-nitrophenanthro[3,4-d]-1,3-dioxole-5-carboxylic acid) to its detoxification metabolite, 8-hydroxyaristolochic acid, was lower in microsomes from rats treated with AA and OTA, and this was paralleled by lower activities of cytochromes P450 1A1/2 and/or 2C11 in these microsomes. Our results indicate that a decrease in AA detoxification after combined exposure to AA and OTA leads to an increase in AA-DNA adduct formation in liver and kidney of rats.

  16. Nitro-fatty Acid Metabolome: Saturation, Desaturation, β-Oxidation, and Protein Adduction*

    PubMed Central

    Rudolph, Volker; Schopfer, Francisco J.; Khoo, Nicholas K. H.; Rudolph, Tanja K.; Cole, Marsha P.; Woodcock, Steven R.; Bonacci, Gustavo; Groeger, Alison L.; Golin-Bisello, Franca; Chen, Chen-Shan; Baker, Paul R. S.; Freeman, Bruce A.

    2009-01-01

    Nitrated derivatives of fatty acids (NO2-FA) are pluripotent cell-signaling mediators that display anti-inflammatory properties. Current understanding of NO2-FA signal transduction lacks insight into how or if NO2-FA are modified or metabolized upon formation or administration in vivo. Here the disposition and metabolism of nitro-9-cis-octadecenoic (18:1-NO2) acid was investigated in plasma and liver after intravenous injection in mice. High performance liquid chromatography-tandem mass spectrometry analysis showed that no 18:1-NO2 or metabolites were detected under basal conditions, whereas administered 18:1-NO2 is rapidly adducted to plasma thiol-containing proteins and glutathione. NO2-FA are also metabolized via β-oxidation, with high performance liquid chromatography-tandem mass spectrometry analysis of liver lipid extracts of treated mice revealing nitro-7-cis-hexadecenoic acid, nitro-5-cis-tetradecenoic acid, and nitro-3-cis-dodecenoic acid and corresponding coenzyme A derivatives of 18:1-NO2 as metabolites. Additionally, a significant proportion of 18:1-NO2 and its metabolites are converted to nitroalkane derivatives by saturation of the double bond, and to a lesser extent are desaturated to diene derivatives. There was no evidence of the formation of nitrohydroxyl or conjugated ketone derivatives in organs of interest, metabolites expected upon 18:1-NO2 hydration or nitric oxide (•NO) release. Plasma samples from treated mice had significant extents of protein-adducted 18:1-NO2 detected by exchange to added β-mercaptoethanol. This, coupled with the observation of 18:1-NO2 release from glutathione-18:1-NO2 adducts, supports that reversible and exchangeable NO2-FA-thiol adducts occur under biological conditions. After administration of [3H]18:1-NO2, 64% of net radiolabel was recovered 90 min later in plasma (0.2%), liver (18%), kidney (2%), adipose tissue (2%), muscle (31%), urine (6%), and other tissue compartments, and may include metabolites not yet

  17. Unusual analyte-matrix adduct ions and mechanism of their formation in MALDI TOF MS of benzene-1,3,5-tricarboxamide and urea compounds.

    PubMed

    Lou, Xianwen; Fransen, Michel; Stals, Patrick J M; Mes, Tristan; Bovee, Ralf; van Dongen, Joost J L; Meijer, E W

    2013-09-01

    Analyte-matrix adducts are normally absent under typical matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) conditions. Interestingly, though, in the analysis of several types of organic compounds synthesized in our laboratory, analyte-matrix adduct ion peaks were always recorded when common MALDI matrices such as 4-hydroxy-α-cyanocinnamic acid (CHCA) were used. These compounds are mainly those with a benzene-1,3,5-tricarboxamide (BTA) or urea moiety, which are important building blocks to make new functional supramolecular materials. The possible mechanism of the adduct formation was investigated. A shared feature of the compounds studied is that they can form intermolecular hydrogen bonding with matrices like CHCA. The intermolecular hydrogen bonding will make the association between analyte ions and matrix molecules stronger. As a result, the analyte ions and matrix molecules in MALDI clusters will become more difficult to be separated from each other. Furthermore, it was found that analyte ions were mainly adducted with matrix salts, which is probably due to the much lower volatility of the salts compared with that of their corresponding matrix acids. It seems that the analyte-matrix adduct formation for our compounds are caused by the incomplete evaporation of matrix molecules from the MALDI clusters because of the combined effects of enhanced intermolecular interaction between analyte-matrix and of the low volatility of matrix salts. Based on these findings, strategies to suppress the analyte-matrix adduction are briefly discussed. In return, the positive results of using these strategies support the proposed mechanism of the analyte-matrix adduct formation.

  18. Elucidating the Key Role of a Lewis Base Solvent in the Formation of Perovskite Films Fabricated from the Lewis Adduct Approach.

    PubMed

    Cao, Xiaobing; Zhi, Lili; Li, Yahui; Fang, Fei; Cui, Xian; Yao, Youwei; Ci, Lijie; Ding, Kongxian; Wei, Jinquan

    2017-09-27

    High-quality perovskite films can be fabricated from Lewis acid-base adducts through molecule exchange. Substantial work is needed to fully understand the formation mechanism of the perovskite films, which helps to further improve their quality. Here, we study the formation of CH 3 NH 3 PbI 3 perovskite films by introducing some dimethylacetamide into the PbI 2 /N,N-dimethylformamide solution. We reveal that there are three key processes during the formation of perovskite films through the Lewis acid-base adduct approach: molecule intercalation of solvent into the PbI 2 lattice, molecule exchange between the solvent and CH 3 NH 3 I, and dissolution-recrystallization of the perovskite grains during annealing. The Lewis base solvents play multiple functions in the above processes. The properties of the solvent, including Lewis basicity and boiling point, play key roles in forming smooth perovskite films with large grains. We also provide some rules for choosing Lewis base additives to prepare high-quality perovskite films through the Lewis adduct approach.

  19. Lewis Acid-Base Adduct Approach for High Efficiency Perovskite Solar Cells.

    PubMed

    Lee, Jin-Wook; Kim, Hui-Seon; Park, Nam-Gyu

    2016-02-16

    Since the first report on the long-term durable 9.7% solid-state perovskite solar cell employing methylammonium lead iodide (CH3NH3PbI3), mesoporous TiO2, and 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-MeOTAD) in 2012, following the seed technologies on perovskite-sensitized liquid junction solar cells in 2009 and 2011, a surge of interest has been focused on perovskite solar cells due to superb photovoltaic performance and extremely facile fabrication processes. The power conversion efficiency (PCE) of perovskite solar cells reached 21% in a very short period of time. Such an unprecedentedly high photovoltaic performance is due to the intrinsic optoelectronic property of organolead iodide perovskite material. Moreover, a high dielectric constant, sub-millimeter scale carrier diffusion length, an underlying ferroelectric property, and ion migration behavior can make organolead halide perovskites suitable for multifunctionality. Thus, besides solar cell applications, perovskite material has recently been applied to a variety fields of materials science such as photodetectors, light emitting diodes, lasing, X-ray imaging, resistive memory, and water splitting. Regardless of application areas, the growth of a well-defined perovskite layer with high crystallinity is essential for effective utilization of its excellent physicochemical properties. Therefore, an effective methodology for preparation of high quality perovskite layers is required. In this Account, an effective methodology for production of high quality perovskite layers is described, which is the Lewis acid-base adduct approach. In the solution process to form the perovskite layer, the key chemicals of CH3NH3I (or HC(NH2)2I) and PbI2 are used by dissolving them in polar aprotic solvents. Since polar aprotic solvents bear oxygen, sulfur, or nitrogen, they can act as a Lewis base. In addition, the main group compound PbI2 is known to be a Lewis acid. Thus, PbI2 has a chance

  20. Crystal and molecular structure of eight organic acid-base adducts from 2-methylquinoline and different acids

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Jin, Shouwen; Tao, Lin; Liu, Bin; Wang, Daqi

    2014-08-01

    Eight supramolecular complexes with 2-methylquinoline and acidic components as 4-aminobenzoic acid, 2-aminobenzoic acid, salicylic acid, 5-chlorosalicylic acid, 3,5-dinitrosalicylic acid, malic acid, sebacic acid, and 1,5-naphthalenedisulfonic acid were synthesized and characterized by X-ray crystallography, IR, mp, and elemental analysis. All of the complexes are organic salts except compound 2. All supramolecular architectures of 1-8 involve extensive classical hydrogen bonds as well as other noncovalent interactions. The results presented herein indicate that the strength and directionality of the classical hydrogen bonds (ionic or neutral) between acidic components and 2-methylquinoline are sufficient to bring about the formation of binary organic acid-base adducts. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, the complexes 1-8 displayed 2D-3D framework structure.

  1. Alcohol, Aldehydes, Adducts and Airways

    PubMed Central

    Sapkota, Muna; Wyatt, Todd A.

    2015-01-01

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease. PMID:26556381

  2. Alcohol, Aldehydes, Adducts and Airways.

    PubMed

    Sapkota, Muna; Wyatt, Todd A

    2015-11-05

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease.

  3. Reoriention of diprotonated DABCO (1,4-Diazabicyclo[2.2.2]octane) cation and proton transfer in organic ferroelectric adduct DABCO-2(2-Chlorobenzoic acid)

    NASA Astrophysics Data System (ADS)

    Asaji, Tetsuo

    2018-05-01

    Temperature dependences of 1H NMR as well as 35Cl NQR spin-lattice relaxation times T1 were investigated of a ferroelectric molecular adduct with Tc = 323 K, in which 1,4-diazabicyclo[2.2.2]octane (DABCO) is sandwiched between two 2-chlorobenzoic acid (2-ClBA). The NQR frequencies clearly show that proton transfer from 2-ClBA to DABCO is occurred and the molecular adduct consists of diprotonated DABCO cation and two 2-chlorobenzoate anions. The correlation time of reorientational motion of the diprotonated DABCO molecule was determined as a function of temperature. The activation energy Ea of the motion was estimated as 22 kJ mol-1 below Tc. The steep decrease of the NQR T1 with Ea = 50 kJ mol-1, observed above ca. 280 K in the ferroelectric phase, suggests a slow fluctuation of electric field gradient at chlorine nucleus.

  4. Conformational sensitivity of conjugated poly(ethylene oxide)-poly(amidoamine) molecules to cations adducted upon electrospray ionization - a mass spectrometry, ion mobility and molecular modeling study.

    PubMed

    Tintaru, Aura; Chendo, Christophe; Wang, Qi; Viel, Stéphane; Quéléver, Gilles; Peng, Ling; Posocco, Paola; Pricl, Sabrina; Charles, Laurence

    2014-01-15

    Tandem mass spectrometry and ion mobility spectrometry experiments were performed on multiply charged molecules formed upon conjugation of a poly(amidoamine) (PAMAM) dendrimer with a poly(ethylene oxide) (PEO) linear polymer to evidence any conformational modification as a function of their charge state (2+ to 4+) and of the adducted cation (H(+)vs Li(+)). Experimental findings were rationalized by molecular dynamics simulations. The G0 PAMAM head-group could accommodate up to three protons, with protonated terminal amine group enclosed in a pseudo 18-crown-6 ring formed by the PEO segment. This particular conformation enabled a hydrogen bond network which allowed long-range proton transfer to occur during collisionally activated dissociation. In contrast, lithium adduction was found to mainly occur onto oxygen atoms of the polyether, each Li(+) cation being coordinated by a 12-crown-4 pseudo structure. As a result, for the studied polymeric segment (Mn=1500gmol(-1)), PEO-PAMAM hybrid molecules exhibited a more expanded shape when adducted to lithium as compared to proton. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts

    DOE PAGES

    Lopez-Hilfiker, Felipe D.; Iyer, Siddarth; Mohr, Claudia; ...

    2016-04-06

    The sensitivity of a chemical ionization mass spectrometer (ions formed per number density of analytes) is fundamentally limited by the collision frequency between reagent ions and analytes, known as the collision limit, the ion–molecule reaction time, and the transmission efficiency of product ions to the detector. We use the response of a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) to N 2O 5, known to react with iodide at the collision limit, to constrain the combined effects of ion–molecule reaction time, which is strongly influenced by mixing and ion losses in the ion–molecule reaction drift tube. A mass spectrometric voltage scanningmore » procedure elucidates the relative binding energies of the ion adducts, which influence the transmission efficiency of molecular ions through the electric fields within the vacuum chamber. Together, this information provides a critical constraint on the sensitivity of a ToF-CIMS towards a wide suite of routinely detected multifunctional organic molecules for which no calibration standards exist. Lastly, we describe the scanning procedure and collision limit determination, and we show results from the application of these constraints to the measurement of organic aerosol composition at two different field locations.« less

  6. Self-assembly in solvates of 2,4-diamino-6-(4-methyl- phenyl)-1,3,5-triazine and in its molecular adducts with some aliphatic dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Nandy, Purnendu; Nayak, Amrita; Biswas, Sharmita Nandy; Pedireddi, V. R.

    2016-03-01

    Solid state structures of 2,4-diamino-6-(4-methylphenyl)-1,3,5-triazine, 1, in the form of methanol and dimethylsulfoxide (DMSO) solvates, as well as supramolecular assemblies of 1 with various aliphatic dicarboxylic acids, oxalic (a), malonic (b), succinic (c), glutaric (d) and adipic (e) have been reported. Analysis of the assemblies has been carried out by single crystal X-ray diffraction and thermal methods. Triazine 1 yields anhydrous molecular adducts with acids a-d, upon co-crystallization either from CH3OH and DMSO solvents. However acid e gives anhydrous adduct from DMSO solvent, while it gives a methanol adduct from CH3OH. Structure determination reveals that molecular adducts 1a, 1d and 1e are in a 2:1 ratio of 1 and the corresponding acid. However the ratio is 1:1, in 1b, perhaps due to the involvement of one of the acid groups in the intramolecular hydrogen bonding and in adduct 1c the ratio observed is 3:2. Structural features in all these assemblies have been rationalised in terms of various recognition patterns formed between the acceptor and donor groups. A noteworthy feature is that -COOH groups in acid a establish interaction with 1 through amino groups, while such interactions are observed to be through hetero -N atoms in case of the acids b-e.

  7. Immunohistochemical detection of a substituted 1,N(2)-ethenodeoxyguanosine adduct by omega-6 polyunsaturated fatty acid hydroperoxides in the liver of rats fed a choline-deficient, L-amino acid-defined diet.

    PubMed

    Kawai, Yoshichika; Kato, Yoji; Nakae, Dai; Kusuoka, Osamu; Konishi, Yoichi; Uchida, Koji; Osawa, Toshihiko

    2002-03-01

    Endogenous lipid peroxidation products react with DNA and form exocyclic DNA adducts. The purpose of this study was to investigate the in vivo formation of 7-(2-oxo-heptyl)-substituted 1,N(2)-etheno-2'-deoxyguanosine adduct (Oxo-heptyl-varepsilondG), one of the major products from the reaction of 13-hydroperoxyoctadecadienoic acid (13-HPODE) with dG. The monoclonal antibody specific to Oxo-heptyl-varepsilondG was prepared using a chemically synthesized conjugate of Oxo-heptyl-varepsilondG and carrier protein as immunogen. The characterization showed that the obtained antibody (mAb6A3) is specific to the Oxo-heptyl-varepsilondG moiety. Using the novel antibody, the presence of the Oxo-heptyl-varepsilondG adduct in vivo was immunohistochemically revealed in the liver of rats fed a choline-deficient, L-amino acid-defined diet, an endogenous carcinogenesis model, for 3 days. In addition, the Oxo-heptyl-varepsilondG formation was confirmed in DNAs treated with peroxidized linoleic acid, arachidonic acid and gamma-linolenic acid, respectively, suggesting that the hydroperoxides of omega-6 polyunsaturated fatty acids could be the potential sources of Oxo-heptyl-varepsilondG formation in vivo. Collectively, the results in this study suggest the first evidence that the formation of Oxo-heptyl-varepsilondG, the omega-6 lipid hydroperoxide-mediated DNA adduct, may be a potential biomarker for the early phase of carcinogenesis.

  8. Impact of genetic modulation of SULT1A enzymes on DNA adduct formation by aristolochic acids and 3-nitrobenzanthrone.

    PubMed

    Arlt, Volker M; Meinl, Walter; Florian, Simone; Nagy, Eszter; Barta, Frantisek; Thomann, Marlies; Mrizova, Iveta; Krais, Annette M; Liu, Maggie; Richards, Meirion; Mirza, Amin; Kopka, Klaus; Phillips, David H; Glatt, Hansruedi; Stiborova, Marie; Schmeiser, Heinz H

    2017-04-01

    Exposure to aristolochic acid (AA) causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN). Conflicting results have been found for the role of human sulfotransferase 1A1 (SULT1A1) contributing to the metabolic activation of aristolochic acid I (AAI) in vitro. We evaluated the role of human SULT1A1 in AA bioactivation in vivo after treatment of transgenic mice carrying a functional human SULT1A1-SULT1A2 gene cluster (i.e. hSULT1A1/2 mice) and Sult1a1(-/-) mice with AAI and aristolochic acid II (AAII). Both compounds formed characteristic DNA adducts in the intact mouse and in cytosolic incubations in vitro. However, we did not find differences in AAI-/AAII-DNA adduct levels between hSULT1A1/2 and wild-type (WT) mice in all tissues analysed including kidney and liver despite strong enhancement of sulfotransferase activity in both kidney and liver of hSULT1A1/2 mice relative to WT, kidney and liver being major organs involved in AA metabolism. In contrast, DNA adduct formation was strongly increased in hSULT1A1/2 mice compared to WT after treatment with 3-nitrobenzanthrone (3-NBA), another carcinogenic aromatic nitro compound where human SULT1A1/2 is known to contribute to genotoxicity. We found no differences in AAI-/AAII-DNA adduct formation in Sult1a1(-/-) and WT mice in vivo. Using renal and hepatic cytosolic fractions of hSULT1A1/2, Sult1a1(-/-) and WT mice, we investigated AAI-DNA adduct formation in vitro but failed to find a contribution of human SULT1A1/2 or murine Sult1a1 to AAI bioactivation. Our results indicate that sulfo-conjugation catalysed by human SULT1A1 does not play a role in the activation pathways of AAI and AAII in vivo, but is important in 3-NBA bioactivation.

  9. Detection of endogenous DNA adducts, O-carboxymethyl-2'-deoxyguanosine and 3-ethanesulfonic acid-2'-deoxycytidine, in the rat stomach after duodenal reflux.

    PubMed

    Terasaki, Masaru; Totsuka, Yukari; Nishimura, Koichi; Mukaisho, Ken-Ichi; Chen, Kuan-Hao; Hattori, Takanori; Takamura-Enya, Takeji; Sugimura, Takashi; Wakabayashi, Keiji

    2008-09-01

    The endogenous DNA adducts O(6)-carboxymethyl-deoxyguanosine (O(6)-CM-dG) and 3-ethanesulfonic acid-deoxycytidine (3-ESA-dC) are produced from N-nitroso bile acid conjugates, such as N-nitrosoglycocholic acid (NO-GCA) and N-nitrosotaurocholic acid (NO-TCA), respectively. Formation of these DNA adducts in vivo was here analyzed by 32P-postlabeling in the glandular stomach of rats subjected to duodenal content reflux surgery. In this model, all duodenal contents, including bile acid conjugates, flow back from the jejunum into the gastric corpus. The levels of O(6)-CM-dG found at 4 and 8 weeks after surgery were 40.9 +/- 9.4 and 56.3 +/- 3.2 per 10(8) nucleotides, respectively, whereas the sham operation groups had values of 5.8 +/- 2.3 and 5.9 +/- 0.5 per 10(8) nucleotides. Moreover, adduct spots corresponding to 3-ESA-dC were detected in both duodenal reflux and sham operation groups and levels in the duodenal reflux groups were around four-fold elevated at 11.2 +/- 1.0 and 8.9 +/- 1.0 per 10(8) nucleotides after 4 and 8 weeks, respectively. When the duodenal reflux animals were treated with a nitrite trapping agent, thiazolidine- 4-carboxylic acid (thioproline, TPRO), the levels of O(6)-CM-dG and 3-ESA-dC were reduced to the same levels as in the sham operation animals. These observations suggest that NO-TCA and NO-GCA are formed by nitrosation of glycocholic acid and taurocholic acid, respectively, and these nitroso compounds produce DNA adducts in the glandular stomach of rats subjected to duodenal content reflux surgery.

  10. Identification of the Phenol Functionality in Deprotonated Monomeric and Dimeric Lignin Degradation Products via Tandem Mass Spectrometry Based on Ion-Molecule Reactions with Diethylmethoxyborane

    NASA Astrophysics Data System (ADS)

    Zhu, Hanyu; Max, Joann P.; Marcum, Christopher L.; Luo, Hao; Abu-Omar, Mahdi M.; Kenttämaa, Hilkka I.

    2016-11-01

    Conversion of lignin into smaller molecules provides a promising alternate and sustainable source for the valuable chemicals currently derived from crude oil. Better understanding of the chemical composition of the resulting product mixtures is essential for the optimization of such conversion processes. However, these mixtures are complex and contain isomeric molecules with a wide variety of functionalities, which makes their characterization challenging. Tandem mass spectrometry based on ion-molecule reactions has proven to be a powerful tool in functional group identification and isomer differentiation for previously unknown compounds. This study demonstrates that the identification of the phenol functionality, the most commonly observed functionality in lignin degradation products, can be achieved via ion-molecule reactions between diethylmethoxyborane (DEMB) and the deprotonated analyte in the absence of strongly electron-withdrawing substituents in the ortho- and para-positions. Either a stable DEMB adduct or an adduct that has lost a methanol molecule (DEMB adduct-MeOH) is formed for these ions. Deprotonated phenols with an adjacent phenol or hydroxymethyl functionality or a conjugated carboxylic acid functionality can be identified based on the formation of DEMB adduct-MeOH. Deprotonated compounds not containing the phenol functionality and phenols containing an electron-withdrawing ortho- or para-substituent were found to be unreactive toward diethylmethoxyborane. Hence, certain deprotonated isomeric compounds with phenol and carboxylic acid, aldehyde, carboxylic acid ester, or nitro functionalities can be differentiated via these reactions. The above mass spectrometry method was successfully coupled with high-performance liquid chromatography for the analysis of a complex biomass degradation mixture.

  11. Identification of Carboxylate, Phosphate, and Phenoxide Functionalities in Deprotonated Molecules Related to Drug Metabolites via Ion-Molecule Reactions with water and Diethylhydroxyborane

    NASA Astrophysics Data System (ADS)

    Zhu, Hanyu; Ma, Xin; Kong, John Y.; Zhang, Minli; Kenttämaa, Hilkka I.

    2017-10-01

    Tandem mass spectrometry based on ion-molecule reactions has emerged as a powerful tool for structural elucidation of ionized analytes. However, most currently used reagents were designed to react with protonated analytes, making them suboptimal for acidic analytes that are preferentially detected in negative ion mode. In this work we demonstrate that the phenoxide, carboxylate, and phosphate functionalities can be identified in deprotonated molecules by use of a combination of two reagents, diethylmethoxyborane (DEMB) and water. A novel reagent introduction setup that allowed DEMB and water to be separately introduced into the ion trap region of the mass spectrometer was developed to facilitate fundamental studies of this reaction. A new reagent, diethylhydroxyborane (DEHB), was generated inside the ion trap by hydrolysis of DEMB on introduction of water. Most carboxylates and phenoxides formed a DEHB adduct, followed by addition of one water molecule and subsequent ethane elimination (DEHB adduct +H2O - CH3CH3) as the major product ion. Phenoxides with a hydroxy group adjacent to the deprotonation site and phosphates formed a DEHB adduct, followed by ethane elimination (DEHB adduct - CH3CH3). Deprotonated molecules with strong intramolecular hydrogen bonds or without the aforementioned functionalities, including sulfates, were unreactive toward DEHB/H2O. Reaction mechanisms were explored via isotope labeling experiments and quantum chemical calculations. The mass spectrometry method allowed the differentiation of phenoxide-, carboxylate-, phosphate-, and sulfate-containing analytes. Finally, it was successfully coupled with high-performance liquid chromatography for the analysis of a mixture containing hymecromone, a biliary spasm drug, and its three possible metabolites. [Figure not available: see fulltext.

  12. Existence of the sugar-bisulfite adducts and its inhibiting effect on degradation of monosaccharide in acid system.

    PubMed

    Shi, Yan

    2014-02-01

    Degradation of fermentable monosaccharides is one of the primary concerns for acid prehydrolysis of lignocellulosic biomass. Recently, in our research on degradation of pure monosaccharides in aqueous SO₂ solution by gas chromatography (GC) analysis, we found that detected yield was not actual yield of each monosaccharide due to the existence of sugar-bisulfite adducts, and a new method was developed by ourselves which led to accurate detection of recovery yield of each monosaccharide in aqueous SO₂ solution by GC analysis. By the use of this method, degradation of each monosaccharide in aqueous SO₂ was investigated and results showed that sugar-bisulfite adducts have different inhibiting effect on degradation of each monosaccharide in aqueous SO₂ because of their different stability. In addition, NMR testing also demonstrated possible existence of reaction between conjugated based HSO₃(-) and aldehyde group of sugars in acid system.

  13. Method for sequencing nucleic acid molecules

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2006-06-06

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  14. Method for sequencing nucleic acid molecules

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2006-05-30

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  15. Evidence for the presence of mutagenic arylamines in human breast milk and DNA adducts in exfoliated breast ductal epithelial cells.

    PubMed

    Thompson, Patricia A; DeMarini, David M; Kadlubar, Fred F; McClure, Gail Y; Brooks, Lance R; Green, Bridgett L; Fares, Manal Y; Stone, Angie; Josephy, P David; Ambrosone, Christine B

    2002-01-01

    Aromatic and heterocyclic amines are ubiquitous environmental mutagens present in combustion emissions, fried meats, and tobacco smoke, and are suspect human mammary carcinogens. To determine the presence of arylamines in breast tissue and fluid, we examined exfoliated breast ductal epithelial cells for DNA adducts and matched human milk samples for mutagenicity. Breast milk was obtained from 50 women who were 4-6 weeks postpartum, and exfoliated epithelial-cell DNA was evaluated for bulky, nonpolar DNA adducts by (32)P-postlabeling and thin-layer chromatography. Milk was processed by acid hydrolysis, and the extracted organics were examined in the standard plate-incorporation Ames Salmonella assay using primarily strain YG1024, which detects frameshift mutations and overexpresses aryl amine N-acetyltransferase. DNA adducts were identified in 66% of the specimens, and bulky adducts migrated in a pattern similar to that of 4-aminobiphenyl standards. The distribution of adducts did not vary by NAT2 genotype status. Of whole milk samples, 88% (22/25) had mutagenic activity. Among the samples for which we had both DNA adduct and mutagenicity data, 58% (14/19) of the samples with adducts were also mutagenic, and 85% (11/13) of the mutagenic samples had adducts. Quantitatively, no correlation was observed between the levels of adducts and the levels of mutagenicity. Separation of the milk showed that mutagenic activity was found in 69% of skimmed milk samples but in only 29% of the corresponding milk fat samples, suggesting that the breast milk mutagens were moderately polar molecules. Chemical fractionation showed that mutagenic activity was found in 67% (4/6) of the basic fractions but in only 33% (2/6) of acidic samples, indicating that the mutagens were primarily basic compounds, such as arylamines. Although pilot in nature, this study corroborates previous findings of significant levels of DNA adducts in breast tissue and mutagenicity in human breast milk and

  16. Crystal structures of eight 3D molecular adducts derived from bis-imidazole, bis(benzimidazole), and organic acids

    NASA Astrophysics Data System (ADS)

    Ding, Aihua; Jin, Shouwen; Jin, Shide; Hu, KaiKai; Lin, Zhihao; Liu, Hui; Wang, Daqi

    2018-01-01

    Cocrystallization of the bis(imidazole)/bis(benzimidazole) with a series of organic acids gave a total of eight molecular adducts with the compositions: (3,6-bis(imidazole-1-yl)pyridazine): (trichloroacetic acid)2(1) [(H2L1)2+ · (tca-)2, L1 = 3,6-bis(imidazole-1-yl)pyridazine, tca- = trichloroacetate], (bis(N-imidazolyl)methane): (suberic acid) (2) [(L2) · (H2suba), L2 = bis(N-imidazolyl)methane, H2suba = suberic acid], bis(N-imidazolyl)methane: (3-nitrophthalic acid): 3H2O (3) [(H2L2)2+ · (3-Hnpa-)2 · 3H2O, 3-Hnpa- = 3-nitro hydrogenphthalate], (bis(N-imidazolyl)butane)0.5: (4-nitrophthalic acid): H2O (4) [(H2L3)0.5+ · (4-Hnpa-)- · H2O, L3 = bis(N-imidazolyl)butane, 4-Hnpa- = 4-nitro hydrogenphthalate], (1-(3-(1H-benzimidazol-1-yl)propyl)-1H-benzimidazole): (3,5-dinitrosalicylic acid) (5) [(HL4) · (3,5-dns-), L4 = 1-(3-(1H-benzimidazol-1-yl)propyl)-1H-benzimidazole, 3,5-dns- = 3,5-dinitrosalicylate], (1-(3-(1H-benzimidazol-1-yl)propyl)-1H-benzimidazole): (3-nitrophthalic acid) (6) [(H2L4) · (3-npa2-), L4 = 1-(3-(1H-benzimidazol-1-yl)propyl)-1H-benzimidazole, 3-npa2-=3-nitrogenphthalate], (bis(N-imidazolyl)butane): (pamoic acid) (7) [(H2L3) · (pam), pam = pamoate], and (3,6-bis(imidazole-1-yl)pyridazine): (1,5-naphthalenedisulfonic acid) [(H2L1)2+ · (npda)2- = 1,5-naphthalenedisulfonate] (8). The eight adducts have been characterized by X-ray diffraction technique, infrared spectrum, and elemental analysis, and the melting points of all adducts were also reported. And their structural and supramolecular aspects are fully analyzed. The result reveals that among the eight investigated crystals both the end ring N in the bis(imidazole) moieties are protonated when the organic acids are deprotonated except 2, and 5, and the crystal packing is interpreted in terms of the strong ionic Nsbnd H⋯O H-bond between the imidazolium and the deprotonated acidic groups. Except the Nsbnd H⋯O H-bond, the Osbnd H⋯O H-bonds were also found at the salts 3, 4

  17. First steps towards a gas-phase acidity ladder for derivatized fullerene dications

    NASA Astrophysics Data System (ADS)

    Petrie, Simon; Javahery, Gholamreza; Bohme, Diethard K.

    1993-03-01

    C2+60 can be derivatized by gas-phase ion/molecule reactions with polar hydrogen-bearing molecules. The adduct dications so produced may then undergo proton transfer to neutrals. The occurrence or absence of proton transfer as a secondary process gives information on the gas-phase acidity of the dicationic species C60·(XH)2+in. We have performed studies using a selected-ion flow tube at 294 ± 2 K and 0.35 ± 0.01 Torr, and have used observed reactivity of such dicationic fullerene adducts to determine upper or lower limits to their apparent and absolute gas-phase acidities. We present also a rationale for assessing the proton-transfer reactivity of dications via the apparent gas-phase acidity of these species, rather than the traditional use of gas-phase basicities or proton affinities. We propose that further studies of proton transfer from polycharged fullerene adducts may provide considerable useful information to model the reactivity of polyprotonated proteins and other large molecular polycatiions which can now be produced by techniques such as electrospray ionization.

  18. Atomic-Resolution Structure of an N(5) Flavin Adduct in D-Arginine Dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Guoxing; Yuan, Hongling; Wang, Siming

    2011-09-06

    D-Arginine dehydrogenase (DADH) catalyzes the flavin-dependent oxidative deamination of D-arginine and other D-amino acids to the corresponding imino acids. The 1.07 {angstrom} atomic-resolution structure of DADH crystallized with D-leucine unexpectedly revealed a covalent N(5) flavin adduct, instead of the expected iminoleucine product in the active site. This acyl adduct has been successfully reproduced by photoreduction of DADH in the presence of 4-methyl-2-oxopentanoic acid (ketoleucine). The iminoleucine may be released readily because of weak interactions in the binding site, in contrast to iminoarginine, converted to ketoleucine, which reacts with activated FAD to form the covalently linked acyl adduct.

  19. Novel fragmentation pathways of anionic adducts of steroids formed by electrospray anion attachment involving regioselective attachment, regiospecific decompositions, charge-induced pathways, and ion-dipole complex intermediates.

    PubMed

    Rannulu, Nalaka S; Cole, Richard B

    2012-09-01

    The analysis of several bifunctional neutral steroids, 5-α-pregnane diol (5-α-pregnane-3α-20βdiol), estradiol (3,17α-dihydroxy-1,3,5(10)-estratriene), progesterone (4-pregnene-3,20-dione), lupeol (3β-hydroxy-20(29)-lupene), pregnenolone (5-pregnen-3β-ol-20-one), and pregnenolone acetate (5-pregnen-3β-ol-20-one acetate) was accomplished by negative ion electrospray mass spectrometry (ESI-MS) employing adduct formation with various anions: fluoride, bicarbonate, acetate, and chloride. Fluoride yielded higher abundances of anionic adducts and more substantial abundances of deprotonated molecules compared with other investigated anions. Collision-induced dissociation (CID) of precursor [M + anion](-) adducts of these steroids revealed that fluoride adduct [M + F](-) precursors first lose HF to produce [M - H](-) and then undergo consecutive decompositions to yield higher abundances of structurally-informative product ions than the other tested anions. In addition to charge-remote fragmentations, the majority of CID pathways of estradiol are deduced to occur via charge-induced fragmentation. Most interestingly, certain anions exhibit preferential attachment to a specific site on these bifunctional steroid molecules, which we are calling "regioselective anion attachment." Regioselective anion attachment is evidenced by subsequent regiospecific decomposition. Regioselective attachment of fluoride (and acetate) anions to low (and moderate) acidity functional groups of pregnenolone, respectively, is demonstrated using deuterated compounds. Moreover, the formation of unique intermediate ion-dipole complexes leading to novel fragmentation pathways of fluoride adducts of pregnenolone acetate, and bicarbonate adducts of d(4)-pregnenolone, are also discussed.

  20. Novel Fragmentation Pathways of Anionic Adducts of Steroids Formed by Electrospray Anion Attachment Involving Regioselective Attachment, Regiospecific Decompositions, Charge-Induced Pathways, and Ion-Dipole Complex Intermediates

    NASA Astrophysics Data System (ADS)

    Rannulu, Nalaka S.; Cole, Richard B.

    2012-09-01

    The analysis of several bifunctional neutral steroids, 5-α-pregnane diol (5-α-pregnane-3α-20βdiol), estradiol (3,17α-dihydroxy-1,3,5(10)-estratriene), progesterone (4-pregnene-3,20-dione), lupeol (3β-hydroxy-20(29)-lupene), pregnenolone (5-pregnen-3β-ol-20-one), and pregnenolone acetate (5-pregnen-3β-ol-20-one acetate) was accomplished by negative ion electrospray mass spectrometry (ESI-MS) employing adduct formation with various anions: fluoride, bicarbonate, acetate, and chloride. Fluoride yielded higher abundances of anionic adducts and more substantial abundances of deprotonated molecules compared with other investigated anions. Collision-induced dissociation (CID) of precursor [M + anion]- adducts of these steroids revealed that fluoride adduct [M + F]- precursors first lose HF to produce [M - H]- and then undergo consecutive decompositions to yield higher abundances of structurally-informative product ions than the other tested anions. In addition to charge-remote fragmentations, the majority of CID pathways of estradiol are deduced to occur via charge-induced fragmentation. Most interestingly, certain anions exhibit preferential attachment to a specific site on these bifunctional steroid molecules, which we are calling "regioselective anion attachment." Regioselective anion attachment is evidenced by subsequent regiospecific decomposition. Regioselective attachment of fluoride (and acetate) anions to low (and moderate) acidity functional groups of pregnenolone, respectively, is demonstrated using deuterated compounds. Moreover, the formation of unique intermediate ion-dipole complexes leading to novel fragmentation pathways of fluoride adducts of pregnenolone acetate, and bicarbonate adducts of d4-pregnenolone, are also discussed.

  1. Formation of difluorothionoacetyl-protein adducts by S-(1,1,2,2-tetrafluoroethyl)-L-cysteine metabolites: Nucleophilic catalysis of stable lysyl adduct formation by histidine and tyrosine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayden, P.J.; McCann, D.J.; Stevens, J.L.

    1991-06-18

    {sup 19}F NMR spectorscopy was used in conjunction with isotopic labeling to demonstrate that difluorothionoacetyl-protein adducts are formed by metabolites of the nephrotoxic cysteine conjugate S(1,1,2,2-tetrafluoroethyl)-L-cysteine (TFEC). To determine which amino acid residues can be involved in adduct formation, the reactivity of TFEC metabolites with a variety of N-acetyl amino acids was also investigated. An N{sup {alpha}}-acetyl-N{sup {epsilon}}-(difluorothionoacetyl)lysine (DFTAL) adduct was isolated and characterized by {sup 19}F and {sup 13}C NMR spectroscopy and mass spectrometry. N{sup {alpha}}-Acetylhistidine and N-acetyltyrosine were found to act as nucleophilic catalysts to facilitate the formation of both the protein and DFTAL adducts. Adduct formation wasmore » greatly reduced when lysyl-modified protein was used as the substrate, indicating that lysyl residues are primary sites of adduct formation. However, N{sup a}-acetyllysine, at concentrations of >100-fold in excess compared to protein lysyl residues, was not effective in preventing binding of metabolites to protein. Therefore, nucleophilic catalysis at the surface of the protein may be an important mechanism for the binding of TFEC metabolites to specific lysyl residues in protein. TFEC metabolites were very reactive with the thiol nucleophiles glutathione and N-acetylcysteine. However, the predicted difluorodithioesters could not be isolated. Bothe stable difluorothioacetamide and less stable difluorodithioester protein adducts may play a role in TFEC-mediated enphrotoxicity.« less

  2. Nucleoside adducts from the in vitro reaction of benzo[a]pyrene-7,8-dihydrodiol 9,10-oxide or benzo[a]pyrene 4,5-oxide with nucleic acids.

    PubMed

    Jennette, K W; Jeffrey, A M; Blobstein, S H; Beland, F A; Harvey, R G; Weinstein, I B

    1977-03-08

    The covalent binding of benzo[a]pyrene 4,5-oxide and benzo[a]pyrene-7,8-dihydrodiol 9,10-oxide isomer I and isomer II to nucleic acids in aqueous acetone solution has been investigated. Benzo[a]pyrene 4,5-oxide reacted preferentially with guanosine residues. On the other hand, benzo[a]pyrene-7,8-dihydrodiol 9,10-oxide isomer I and II reacted extensively with guanosine, adenosine, and cytidine residues. Time course studies showed that the reactivity of isomer I or isomer II with homopolyribonucleotides followed the order poly(G) greater than poly(A) greater than poly(C). Alkaline or enzymatic hydrolysis of the modified nucleic acids and subsequent chromatography on Sephadex LH-20 columns yielded benzo[a]pyrene-nucleotide adducts. These were enzymatically converted to the corresponding nucleosides which were resolved into several distinct components by high-pressure liquid chromatography. Evidence was obtained for the presence of multiple nucleoside adducts of guanosine, adenosine, cytidine, deoxyguanosine, deoxyadenosine, and deoxycytidine. The HPLC profiles of adducts formed with isomer I were different from the corresponding profiles of adducts formed with isomer II. Structural aspects of these nucleoside adducts are discussed.

  3. Distinguishing Biologically Relevant Hexoses by Water Adduction to the Lithium-Cationized Molecule.

    PubMed

    Campbell, Matthew T; Chen, Dazhe; Wallbillich, Nicholas J; Glish, Gary L

    2017-10-03

    A method to distinguish the four most common biologically relevant underivatized hexoses, d-glucose, d-galactose, d-mannose, and d-fructose, using only mass spectrometry with no prior separation/derivatization step has been developed. Electrospray of a solution containing hexose and a lithium salt generates [Hexose+Li] + . The lithium-cationized hexoses adduct water in a quadrupole ion trap. The rate of this water adduction reaction can be used to distinguish the four hexoses. Additionally, for each hexose, multiple lithiation sites are possible, allowing for multiple structures of [Hexose+Li] + . Electrospray produces at least one structure that reacts with water and at least one that does not. The ratio of unreactive lithium-cationized hexose to total lithium-cationized hexose is unique for the four hexoses studied, providing a second method for distinguishing the isomers. Use of the water adduction reaction rate or the unreactive ratio provides two separate methods for confidently (p ≤ 0.02) distinguishing the most common biologically relevant hexoses using only femtomoles of hexose. Additionally, binary mixtures of glucose and fructose were studied. A calibration curve was created by measuring the reaction rate of various samples with different ratios of fructose and glucose. The calibration curve was used to accurately measure the percentage of fructose in three samples of high fructose corn syrup (<4% error).

  4. Chemistry and Chemical Equilibrium Dynamics of BMAA and Its Carbamate Adducts

    PubMed Central

    Diaz-parga, Pedro

    2018-01-01

    Beta-N-methylamino-L-alanine (BMAA) has been demonstrated to contribute to the onset of the ALS/Parkinsonism-dementia complex (ALS/PDC) and is implicated in the progression of other neurodegenerative diseases. While the role of BMAA in these diseases is still debated, one of the suggested mechanisms involves the activation of excitatory glutamate receptors. In particular, the excitatory effects of BMAA are shown to be dependent on the presence of bicarbonate ions, which in turn forms carbamate adducts in physiological conditions. The formation of carbamate adducts from BMAA and bicarbonate is similar to the formation of carbamate adducts from non-proteinogenic amino acids. Structural, chemical, and biological information related to non-proteinogenic amino acids provide insight into the formation of and possible neurological action of BMAA. This article reviews the carbamate formation of BMAA in the presence of bicarbonate ions, with a particular focus on how the chemical equilibrium of BMAA carbamate adducts may affect the molecular mechanism of its function. Highlights of nuclear magnetic resonance (NMR)-based studies on the equilibrium process between free BMAA and its adducts are presented. The role of divalent metals on the equilibrium process is also explored. The formation and the equilibrium process of carbamate adducts of BMAA may answer questions on their neuroactive potency and provide strong motivation for further investigations into other toxic mechanisms. PMID:28921378

  5. Chemistry and Chemical Equilibrium Dynamics of BMAA and Its Carbamate Adducts.

    PubMed

    Diaz-Parga, Pedro; Goto, Joy J; Krishnan, V V

    2018-01-01

    Beta-N-methylamino-L-alanine (BMAA) has been demonstrated to contribute to the onset of the ALS/Parkinsonism-dementia complex (ALS/PDC) and is implicated in the progression of other neurodegenerative diseases. While the role of BMAA in these diseases is still debated, one of the suggested mechanisms involves the activation of excitatory glutamate receptors. In particular, the excitatory effects of BMAA are shown to be dependent on the presence of bicarbonate ions, which in turn forms carbamate adducts in physiological conditions. The formation of carbamate adducts from BMAA and bicarbonate is similar to the formation of carbamate adducts from non-proteinogenic amino acids. Structural, chemical, and biological information related to non-proteinogenic amino acids provide insight into the formation of and possible neurological action of BMAA. This article reviews the carbamate formation of BMAA in the presence of bicarbonate ions, with a particular focus on how the chemical equilibrium of BMAA carbamate adducts may affect the molecular mechanism of its function. Highlights of nuclear magnetic resonance (NMR)-based studies on the equilibrium process between free BMAA and its adducts are presented. The role of divalent metals on the equilibrium process is also explored. The formation and the equilibrium process of carbamate adducts of BMAA may answer questions on their neuroactive potency and provide strong motivation for further investigations into other toxic mechanisms.

  6. Analysis of Protein Adduction Kinetics by Quantitative Mass Spectrometry. Competing Adduction Reactions of Glutathione-S-Transferase P1-1 with Electrophiles

    PubMed Central

    Orton, Christopher R.; Liebler, Daniel C.

    2007-01-01

    Defining the mechanisms and consequences of protein adduction is crucial to understanding the toxicity of reactive electrophiles. Application of tandem mass spectrometry and data analysis algorithms enables detection and mapping of chemical adducts at the level of amino acid sequence. Nevertheless, detection of adducts does not indicate relative reactivity of different sites. Here we describe a method to measure the kinetics of competing adduction reactions at different sites on the same protein. Adducts are formed by electrophiles at Cys14 and Cys47 on the metabolic enzyme glutathione-S-transferase P1-1 and modification is accompanied by a loss of enzymatic activity. Relative quantitation of protein adducts was done by tagging N-termini of peptide digests with isotopically labeled phenyl isocyanate and tracking the ratio of light-tagged peptide adducts to heavy-tagged reference samples in liquid chromatography-tandem mass spectrometry analyses using a multiple reaction monitoring method. This approach was used to measure rate constants for adduction at both positions with two different model electrophiles, N-iodoacetyl-N-biotinylhexylenediamine and 1-biotinamido-4-(4′-[maleimidoethyl-cyclohexane]-carboxamido)butane. The results indicate that Cys47 was approximately 2–3-fold more reactive toward both electrophiles than was Cys14. This result was consistent with the relative reactivity of these electrophiles in a complex proteome system and with previously reported trends in reactivity of these sites. Kinetic analyses of protein modification reactions provide a means of evaluating the selectivity of reactive mediators of chemical toxicity. PMID:17433278

  7. Organocatalytic Removal of Formaldehyde Adducts from RNA and DNA Bases

    PubMed Central

    Karmakar, Saswata; Harcourt, Emily M.; Hewings, David S.; Lovejoy, Alexander F.; Kurtz, David M.; Ehrenschwender, Thomas; Barandun, Luzi J.; Roost, Caroline; Alizadeh, Ash A.; Kool, Eric T.

    2015-01-01

    Formaldehyde is universally employed to fix tissue specimens, where it forms hemiaminal and aminal adducts with biomolecules, hindering the ability to retrieve molecular information. Common methods for removing these adducts involve extended heating, which can cause extensive degradation of nucleic acids, particularly RNA. Here we show that water-soluble bifunctional catalysts (anthranilates and phosphanilates) speed the reversal of formaldehyde adducts of mononucleotides over standard buffers. Studies with formaldehyde-treated RNA oligonucleotides show that the catalysts enhance adduct removal, restoring unmodified RNA at 37 °C even when extensively modified, and avoiding high temperatures that promote RNA degradation. Experiments with formalin-fixed, paraffin-embedded cell samples show that the catalysis is compatible with common RNA extraction protocols, with detectable RNA yields increased by 1.5–2.4 fold using a catalyst under optimized conditions, and by 7–25 fold compared to a commercial kit. Such catalytic strategies show promise for general use in reversing formaldehyde adducts in clinical specimens. PMID:26291948

  8. Organocatalytic removal of formaldehyde adducts from RNA and DNA bases.

    PubMed

    Karmakar, Saswata; Harcourt, Emily M; Hewings, David S; Scherer, Florian; Lovejoy, Alexander F; Kurtz, David M; Ehrenschwender, Thomas; Barandun, Luzi J; Roost, Caroline; Alizadeh, Ash A; Kool, Eric T

    2015-09-01

    Formaldehyde is universally used to fix tissue specimens, where it forms hemiaminal and aminal adducts with biomolecules, hindering the ability to retrieve molecular information. Common methods for removing these adducts involve extended heating, which can cause extensive degradation of nucleic acids, particularly RNA. Here, we show that water-soluble bifunctional catalysts (anthranilates and phosphanilates) speed the reversal of formaldehyde adducts of mononucleotides over standard buffers. Studies with formaldehyde-treated RNA oligonucleotides show that the catalysts enhance adduct removal, restoring unmodified RNA at 37 °C even when extensively modified, while avoiding the high temperatures that promote RNA degradation. Experiments with formalin-fixed, paraffin-embedded cell samples show that the catalysis is compatible with common RNA extraction protocols, with detectable RNA yields increased by 1.5-2.4-fold using a catalyst under optimized conditions and by 7-25-fold compared with a commercial kit. Such catalytic strategies show promise for general use in reversing formaldehyde adducts in clinical specimens.

  9. The application of multiple analyte adduct formation in the LC-MS3 analysis of valproic acid in human serum.

    PubMed

    Dziadosz, Marek

    2017-01-01

    LC-MS using electrospray ionisation (negative ion mode) and low-energy collision-induced dissociation tandem mass spectrometric (CID-MS/MS) analysis, together with the multiple analyte adduct formation with the components of the mobile phase, were applied to analyse valproic acid in human serum with LC-MS 3 . The CID-fragmentation of the precursor analyte adduct [M+2CH 3 COONa-H] - was applied in the method validation (307.1/225.1/143.0). Chromatographic separation was performed with a Luna 5μm C18 (2) 100A, 150mm×2mm column and the elution with a mobile phase consisting of A (H 2 O/methanol=95/5, v/v) and B (H 2 O/methanol=3/97, v/v), both with 10mM ammonium acetate and 0.1% acetic acid. A binary flow pumping mode with a total flow rate of 0.400mL/min was used. The calculated limit of detection/quantification of the method calibrated in the range of 10-200μg/mL was 0.31/1.0μg/mL. The sample preparation based on protein precipitation with 1mL of H 2 O/methanol solution (3/97, v/v) with 10mM sodium acetate and 100mM acetic acid. On the basis of the experiments performed could be demonstrated, that multiple analyte adduct formation can be applied to generate MS 3 quantitation of analytes with problematic fragmentation. The presented new strategy makes the analysis of small drugs, which do not produce any stable product ions at all, on the basis of LC-MS 3 possible. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Hydrogen bond controlled adduct formation of meso-tetra(4-sulfonatophenyl)porphyrin with protic acids: a UV-vis spectroscopic study.

    PubMed

    Zakavi, Saeed; Rahiminezhad, Hajar; Alizadeh, Robabeh

    2010-12-01

    Interaction of meso-tetra(4-sulfonatophenyl)porphyrin (H2tppS4) with weak and strong protic acid have been studied by UV-vis spectroscopy in water, dichloromethane and methanol. Different shifts of the Soret and Q(0,0) bands in the three solvents, the aggregation of diprotonated species and the stability of porphyrin-acid adducts in the solution, may be explained by the inter- and intramolecular hydrogen bonds. Whilst, the addition of excess amounts of tetra-n-butylammonium chloride to H2tppS4(Cl)2 in dichloromethane has little to no effect on the UV-vis spectrum of the dication, gradual addition of tetra-n-butylammonium hydrogen sulfate to the dichloromethane solution of H2tppS4(H2SO4)2 leads to the degradation of adducts and the release of porphryin. The results of this study clearly show the crucial role played by hydrogen bonds between the porphyrin diprotonated species and the counter ion in the stability of porphyrin diacids in solution. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Formation of metal-ion adducts and evidence for surface-catalyzed ionization in electrospray analysis of pharmaceuticals and pesticides

    USGS Publications Warehouse

    Thurman, E.M.; Ferrer, I.

    2002-01-01

    The formation of metal ion adducts in liquid chromatography/mass spectrometry positive-ion electrospray analysis of pharmaceuticals and pesticides was investigated. The evidence of surface-catalyzed ionization in the electrospray analysis was also studied. Both positive and negative ion mass spectrometry were used for the analysis of the products. It was found that the sodium adducts formed in the analysis included single, double, and triple sodium adducts. Adduction was found to occur by attachment of the metal ion to carboxyl, carbonyl and aromatic pi electrons of the molecule.

  12. Isolevuglandin adducts in disease.

    PubMed

    Salomon, Robert G; Bi, Wenzhao

    2015-06-20

    A diverse family of lipid-derived levulinaldehydes, isolevuglandins (isoLGs), is produced by rearrangement of endoperoxide intermediates generated through both cyclooxygenase (COX) and free radical-induced cyclooxygenation of polyunsaturated fatty acids and their phospholipid esters. The formation and reactions of isoLGs with other biomolecules has been linked to alcoholic liver disease, Alzheimer's disease, age-related macular degeneration, atherosclerosis, cardiac arythmias, cancer, end-stage renal disease, glaucoma, inflammation of allergies and infection, mitochondrial dysfunction, multiple sclerosis, and thrombosis. This review chronicles progress in understanding the chemistry of isoLGs, detecting their production in vivo and understanding their biological consequences. IsoLGs have never been isolated from biological sources, because they form adducts with primary amino groups of other biomolecules within seconds. Chemical synthesis enabled investigation of isoLG chemistry and detection of isoLG adducts present in vivo. The first peptide mapping and sequencing of an isoLG-modified protein present in human retina identified the modification of a specific lysyl residue of the sterol C27-hydroxylase Cyp27A1. This residue is preferentially modified by iso[4]LGE2 in vitro, causing loss of function. Adduction of less than one equivalent of isoLG can induce COX-associated oligomerization of the amyloid peptide Aβ1-42. Adduction of isoLGE2 to phosphatidylethanolamines causes gain of function, converting them into proinflammatory isoLGE2-PE agonists that foster monocyte adhesion to endothelial cells. Among the remaining questions on the biochemistry of isoLGs are the dependence of biological activity on isoLG isomer structure, the structures and mechanism of isoLG-derived protein-protein and DNA-protein cross-link formation, and its biological consequences.

  13. Site-Specific Protein Adducts of 4-Hydroxy-2(E)-Nonenal in Human THP-1 Monocytic Cells: Protein Carbonylation Is Diminished by Ascorbic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Juan; Chung, Woon-Gye; Miranda, Cristobal L.

    2010-01-18

    The protein targets and sites of modification by 4-hydroxy-2(E)-nonenal (HNE) in human monocytic THP-1 cells after exogenous exposure to HNE were examined using a multipronged proteomic approach involving electrophoretic, immunoblotting, and mass spectrometric methods. Immunoblot analysis using monoclonal anti-HNE antibodies showed several proteins as targets of HNE adduction. Pretreatment of THP-1 cells with ascorbic acid resulted in reduced levels of HNE-protein adducts. Biotinylation of Michael-type HNE adducts using an aldehyde-reactive hydroxylamine-functionalized probe (aldehyde-reactive probe, ARP) and subsequent enrichment facilitated the identification and site-specific assignment of the modifications by LC-MS/MS analysis. Sixteen proteins were unequivocally identified as targets of HNE adduction,more » and eighteen sites of HNE modification at Cys and His residues were assigned. HNE exposure of THP-1 cells resulted in the modification of proteins involved in cytoskeleton organization and regulation, proteins associated with stress responses, and enzymes of the glycolytic and other metabolic pathways. Finally, this study yielded the first evidence of site-specific adduction of HNE to Cys-295 in tubulin α-1B chain, Cys-351 and Cys-499 in α-actinin-4, Cys-328 in vimentin, Cys-369 in d-3-phosphoglycerate dehydrogenase, and His-246 in aldolase A.« less

  14. Detection in vivo of a Novel Endogenous Etheno DNA Adduct Derived from Arachidonic Acid and the Effects of Antioxidants on Its Formation

    PubMed Central

    Cruz, Idalia M.; Pondicherry, Sharanya R.; Fernandez, Aileen; Schultz, Casey L.; Yang, Peiying; Pan, Jishen; Desai, Dhimant; Krzeminski, Jacek; Amin, Shantu; Christov, Plamen P.; Hara, Yukihiko; Chung, Fung-Lung

    2014-01-01

    Previous studies showed that the 7-(1′,2′-dihydroxyheptyl) substituted etheno DNA adducts are products from reactions with epoxide of (E)-4-hydroxy-2-nonenal (HNE), an oxidation product of ω-6 polyunsaturated fatty acids (PUFAs). In this work, we report the detection of 7-(1′,2′-dihydroxyheptyl)-1,N6-ethenodeoxyadenosine (DHHedA) in rodent and human tissues by two independent methods: a 32P-postlabeling/HPLC method and an isotope dilution liquid chromatography electrospray ionization tandem mass spectrometry method (ID-LC-ESI-MS/MS), demonstrating for the first time that DHHedA is a background DNA lesion in vivo. We showed that DHHedA can be formed upon incubation of arachidonic acid (AA) with deoxyadenosine (dA), supporting the notion that ω-6 PUFAs are the endogenous source of DHHedA formation. Because cyclic adducts are derived from the oxidation of PUFAs, we subsequently examined the effects of antioxidants, α-lipoic acid, Polyphenon E and vitamin E, on the formation of DHHedA and γ-hydroxy-1,N2-propanodeoxyguanosine (γ-OHPdG), a widely studied acrolein-derived adduct arising from oxidized PUFAs, in the livers of Long Evans Cinnamon (LEC) rats. LEC rats are inflicted with elevated lipid peroxidation and prone to the development of hepatocellular carcinomas. The results showed that while the survival of LEC rats increased significantly by α-lipoic acid, none of the antioxidants inhibited the formation of DHHedA and only Polyphenon E decreased the formation of γ-OHPdG. In contrast, vitamin E caused a significant increase in the formation of both γ-OHPdG and DHHedA in the livers of LEC rats. PMID:24816294

  15. Quantification of Lewis acid induced Brønsted acidity of protogenic Lewis bases.

    PubMed

    Lathem, A Paige; Heiden, Zachariah M

    2017-05-09

    Proton transfer promoted by the coordination of protogenic Lewis bases to a Lewis acid is a critical step in catalytic transformations. Although the acidification of water upon coordination to a Lewis acid has been known for decades, no attempts have been made to correlate the Brønsted acidity of the coordinated water molecule with Lewis acid strength. To probe this effect, the pK a 's (estimated error of 1.3 pK a units) in acetonitrile of ten protogenic Lewis bases coordinated to seven Lewis acids containing Lewis acidities varying 70 kcal mol -1 , were computed. To quantify Lewis acid strength, the ability to transfer a hydride (hydride donor ability) from the respective main group hydride was used. Coordination of a Lewis acid to water increased the acidity of the bound water molecule between 20 and 50 pK a units. A linear correlation exhibiting a 2.6 pK a unit change of the Lewis acid-water adduct per ten kcal mol -1 change in hydride donor ability of the respective main group hydride was obtained. For the ten protogenic Lewis bases studied, the coordinated protogenic Lewis bases were acidified between 10 and 50 pK a units. On average, a ten kcal mol -1 change in hydride donor ability of the respective main group hydride resulted in about a 2.8 pK a unit change in the Brønsted acidity of the Lewis acid-Lewis base adducts. Since attempts to computationally investigate the pK a of main group dihydrogen complexes were unsuccessful, experimental determination of the first reported pK a of a main group dihydrogen complex is described. The pK a of H 2 -B(C 6 F 5 ) 3 was determined to be 5.8 ± 0.2 in acetonitrile.

  16. Methods And Devices For Characterizing Duplex Nucleic Acid Molecules

    DOEpatents

    Akeson, Mark; Vercoutere, Wenonah; Haussler, David; Winters-Hilt, Stephen

    2005-08-30

    Methods and devices are provided for characterizing a duplex nucleic acid, e.g., a duplex DNA molecule. In the subject methods, a fluid conducting medium that includes a duplex nucleic acid molecule is contacted with a nanopore under the influence of an applied electric field and the resulting changes in current through the nanopore caused by the duplex nucleic acid molecule are monitored. The observed changes in current through the nanopore are then employed as a set of data values to characterize the duplex nucleic acid, where the set of data values may be employed in raw form or manipulated, e.g., into a current blockade profile. Also provided are nanopore devices for practicing the subject methods, where the subject nanopore devices are characterized by the presence of an algorithm which directs a processing means to employ monitored changes in current through a nanopore to characterize a duplex nucleic acid molecule responsible for the current changes. The subject methods and devices find use in a variety of applications, including, among other applications, the identification of an analyte duplex DNA molecule in a sample, the specific base sequence at a single nulceotide polymorphism (SNP), and the sequencing of duplex DNA molecules.

  17. Isolation and Characterization of the 2,2'-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Radical Cation-Scavenging Reaction Products of Arbutin.

    PubMed

    Tai, Akihiro; Ohno, Asako; Ito, Hideyuki

    2016-09-28

    Arbutin, a glucoside of hydroquinone, has shown strong 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation-scavenging activity, especially in reaction stoichiometry. This study investigated the reaction mechanism of arbutin against ABTS radical cation that caused high stoichiometry of arbutin in an ABTS radical cation-scavenging assay. HPLC analysis of the reaction mixture of arbutin and ABTS radical cation indicated the existence of two reaction products. The two reaction products were purified and identified to be a covalent adduct of arbutin with an ABTS degradation fragment and 3-ethyl-6-sulfonate benzothiazolone. A time-course study of the radical-scavenging reactions of arbutin and the two reaction products suggested that one molecule of arbutin scavenges three ABTS radical cation molecules to generate an arbutin-ABTS fragment adduct as a final reaction product. The results suggest that one molecule of arbutin reduced two ABTS radical cation molecules to ABTS and then cleaved the third ABTS radical cation molecule to generate two products, an arbutin-ABTS fragment adduct and 3-ethyl-6-sulfonate benzothiazolone.

  18. DNA adducts: Mass spectrometry methods and future prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, P.B.; Brown, K.; Tompkins, E.

    2005-09-01

    Detection of DNA adducts is widely used for the monitoring of exposure to genotoxic carcinogens. Knowledge of the nature and amounts of DNA adducts formed in vivo also gives valuable information regarding the mutational effects that may result from particular exposures. The power of mass spectrometry (MS) to achieve qualitative and quantitative analyses of human DNA adducts has increased greatly in recent years with the development of improved chromatographic interfaces and ionisation sources. Adducts have been detected on nucleic acid bases, 2'-deoxynucleosides or 2'-deoxynucleotides, with LC-MS/MS being the favoured technique for many of these analyses. Our current applications of thismore » technique include the determination of N7-(2-carbamoyl-2-hydroxyethyl)-guanine, which was postulated to be found as a DNA repair product in urine following exposure to acrylamide, and of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydro-2'-deoxyadenosine, as markers of oxidative damage in human lymphocyte DNA. Higher sensitivity (with a detection limit of 1-10 adducts/10{sup 12} nucleotides) may be achieved by the use of accelerator mass spectrometry (AMS), although this requires the presence of certain isotopes, such as [{sup 14}C], in the material being analysed. In order to make this technique more amenable for studies of human exposure to environmental carcinogens, new postlabelling techniques, incorporating [{sup 14}C] into specific DNA adducts after formation, are being developed. It is expected that combining the use of advanced MS techniques with existing {sup 32}P-postlabelling and immunochemical methodologies will contribute greatly to the understanding of the burden of human exposure to environmental carcinogens.« less

  19. Conformational preferences of DNA following damage by aristolochic acids: Structural and energetic insights into the different mutagenic potential of the ALI and ALII-N(6)-dA adducts.

    PubMed

    Kathuria, Preetleen; Sharma, Purshotam; Abendong, Minette N; Wetmore, Stacey D

    2015-04-21

    Aristolochic acids (AAI and AAII), produced by the Aristolochiaceae family of plants, are classified as group I (human) carcinogens by the International Agency for Research on Cancer. These acids are metabolized in cells to yield aristolactams (ALI and ALII, respectively), which further form bulky adducts with the purine nucleobases. Specifically, the adenine lesions are more persistent in cells and have been associated with chronic renal diseases and related carcinogenesis. To understand the structural basis of the nephrotoxicity induced by AAs, the ALI-N(6)-dA and ALII-N(6)-dA lesions are systematically studied using computational methods. Density functional theory calculations indicate that the aristolactam moiety intrinsically prefers a planar conformation with respect to adenine. Nucleoside and nucleotide models suggest that the anti and syn orientations about the glycosidic bond are isoenergetic for both adducts. Molecular dynamics simulations and free energy calculations reveal that the anti base-displaced intercalated conformation is the most stable conformer for both types of AL-N(6)-dA adducted DNA, which agrees with previous experimental work on the ALII-N(6)-dA adduct and thereby validates our approach. Interestingly, this conformer differs from the dominant conformations adopted by other N6-linked adenine lesions, including those derived from polycyclic aromatic hydrocarbons. Furthermore, the second most stable syn base-displaced intercalated conformation lies closer in energy to the anti base-displaced intercalated conformation for ALI-N(6)-dA compared to ALII-N(6)-dA. This indicates that a mixture of conformations may be detectable for ALI-N(6)-dA in DNA. If this enhanced conformational flexibility of double-stranded DNA persists when bound to a lesion-bypass polymerase, this provides a possible structural explanation for the previously observed greater nephrotoxic potential for the ALI versus ALII-N(6)-dA adduct. In addition, the structural

  20. Simultaneous quantification of soman and VX adducts to butyrylcholinesterase, their aged methylphosphonic acid adduct and butyrylcholinesterase in plasma using an off-column procainamide-gel separation method combined with UHPLC-MS/MS.

    PubMed

    Liu, Chang-Cai; Huang, Gui-Lan; Xi, Hai-Ling; Liu, Shi-Lei; Liu, Jing-Quan; Yu, Hui-Lan; Zhou, Shi-Kun; Liang, Long-Hui; Yuan, Ling

    2016-11-15

    This work describes a novel and sensitive non-isotope dilution method for simultaneous quantification of organophosphorus nerve agents (OPNAs) soman (GD) and VX adducts to butyrylcholinesterase (BChE), their aged methylphosphonic acid (MeP) adduct and unadducted BChE in plasma exposed to OPNA. OPNA-BChE adducts were isolated with an off-column procainamide-gel separation (PGS) from plasma, and then digested with pepsin into specific adducted FGES * AGAAS nonapeptide (NP) biomarkers. The resulting NPs were detected by UHPLC-MS/MS MRM. The off-column PGS method can capture over 90% of BChE, MeP-BChE, VX-BChE and GD-BChE from their respective plasma materials. One newly designed and easily synthesized phosphorylated BChE nonapeptide with one Gly-to-Ala mutation was successfully reported to serve as internal standard instead of traditional isotopically labeled BChE nonapeptide. The linear range of calibration curves were from 1.00-200ngmL -1 for VX-NP, 2.00-200ngmL -1 for GD-NP and MeP-NP (R 2 ≥0.995), and 3.00-200ngmL -1 for BChE NP (R 2 ≥0.990). The inter-day precision had relative standard deviation (%RSD) of <8.89%, and the accuracy ranged between 88.9-120%. The limit of detection was calculated to be 0.411, 0.750, 0.800 and 1.43ngmL -1 for VX-NP, GD-NP, MeP-NP and BChE NP, respectively. OPNA-exposed quality control plasma samples were characterized as part of method validation. Investigation of plasma samples unexposed to OPNA revealed no baseline values or interferences. Using the off-column PGS method combined with UHPLC-MS/MS, VX-NP and GD-NP adducts can be unambiguously detected with high confidence in 0.10ngmL -1 and 0.50ngmL -1 of exposed human plasma respectively, only requiring 0.1mL of plasma sample and taking about four hours without special sample preparation equipment. These improvements make it a simple, sensitive and robust PGS-UHPLC-MS/MS method, and this method will become an attractive alternative to immunomagnetic separation (IMS) method and

  1. Condensed tannin-resorcinol adducts and their use in wood-laminating adhesives: An exploratory study

    Treesearch

    Richard W. Hemingway; R.E. Kreibich

    1984-01-01

    The reaction of a tannin extract (containing about 30% carbohydrate) from loblolly pine (Pinus taeda L.) bark (two parts) and resorcinol (one part) at 120°C for 24 h with acetic acid catalyst gave a product containing predominantly oligomeric procyanidin-4-resorcinol adducts (39%), unreacted resorcinol (22%), carbohydrate (20%). the resorcinol adduct...

  2. Structure of 7,12-dimethylbenz(a)anthracene-guanosine adducts.

    PubMed

    Jeffrey, A M; Blobstein, S H; Weinstein, I B; Beland, F A; Harvey, R G; Kasai, H; Nakanishi, K

    1976-07-01

    Arene oxides have been proposed as the reactive intermediates in the process of carcinogenesis induced by polycyclic aromatic hydrocarbons. The present study defines the structures of four guanosine adducts formed by the reaction of 7,12-dimethylbenz[a]anthracene-5,6-oxide with polyguanylic acid. The modified polymer was hydrolyzed to nucleotides and the hydrophobic guanosine adducts separated from unmodified guanosine by LH-20 column chromatograhy. The adducts were further resolved into four components (I-IV) by reverse phase high pressure liquid chromatography. Analysis of the ultraviolet, circular dichroism, mass, and proton magnetic resonance spectra of these compounds, or their acetate and free base derivatives, indicates that in all four compounds the aromatic hydrocarbon is present on the 2 amino group of guanine. Compounds I and IV, and II and III constitute diastereoisomeric pairs, respectively. In the I and IV pair, the adducts result from addition at the 6 position of the original dimethylbenz[a]anthracene oxide, whereas in the II and III pair, the addition occurs at the 5 position. Indirect evidence suggests that trans opening of the oxide occurred in all cases but this remains to be established.

  3. Structure of 7,12-dimethylbenz(a)anthracene-guanosine adducts.

    PubMed Central

    Jeffrey, A M; Blobstein, S H; Weinstein, I B; Beland, F A; Harvey, R G; Kasai, H; Nakanishi, K

    1976-01-01

    Arene oxides have been proposed as the reactive intermediates in the process of carcinogenesis induced by polycyclic aromatic hydrocarbons. The present study defines the structures of four guanosine adducts formed by the reaction of 7,12-dimethylbenz[a]anthracene-5,6-oxide with polyguanylic acid. The modified polymer was hydrolyzed to nucleotides and the hydrophobic guanosine adducts separated from unmodified guanosine by LH-20 column chromatograhy. The adducts were further resolved into four components (I-IV) by reverse phase high pressure liquid chromatography. Analysis of the ultraviolet, circular dichroism, mass, and proton magnetic resonance spectra of these compounds, or their acetate and free base derivatives, indicates that in all four compounds the aromatic hydrocarbon is present on the 2 amino group of guanine. Compounds I and IV, and II and III constitute diastereoisomeric pairs, respectively. In the I and IV pair, the adducts result from addition at the 6 position of the original dimethylbenz[a]anthracene oxide, whereas in the II and III pair, the addition occurs at the 5 position. Indirect evidence suggests that trans opening of the oxide occurred in all cases but this remains to be established. PMID:821053

  4. Biomonitoring Human Albumin Adducts: The Past, the Present, and the Future

    PubMed Central

    2016-01-01

    Serum albumin (Alb) is the most abundant protein in blood plasma. Alb reacts with many carcinogens and/or their electrophilic metabolites. Studies conducted over 20 years ago showed that Alb forms adducts with the human carcinogens aflatoxin B1 and benzene, which were successfully used as biomarkers in molecular epidemiology studies designed to address the role of these chemicals in cancer risk. Alb forms adducts with many therapeutic drugs or their reactive metabolites such as β-lactam antibiotics, acetylsalicylic acid, acetaminophen, nonsteroidal anti-inflammatory drugs, chemotherapeutic agents, and antiretroviral therapy drugs. The identification and characterization of the adduct structures formed with Alb have served to understand the generation of reactive metabolites and to predict idiosyncratic drug reactions and toxicities. The reaction of candidate drugs with Alb is now exploited as part of the battery of screening tools to assess the potential toxicities of drugs. The use of gas chromatography-mass spectrometry, liquid chromatography, or liquid chromatography-mass spectrometry (LC-MS) enabled the identification and quantification of multiple types of Alb xenobiotic adducts in animals and humans during the past three decades. In this perspective, we highlight the history of Alb as a target protein for adduction to environmental and dietary genotoxicants, pesticides, and herbicides, common classes of medicinal drugs, and endogenous electrophiles, and the emerging analytical mass spectrometry technologies to identify Alb-toxicant adducts in humans. PMID:27989119

  5. Butyric acid - a well-known molecule revisited.

    PubMed

    Borycka-Kiciak, Katarzyna; Banasiewicz, Tomasz; Rydzewska, Grażyna

    2017-01-01

    The properties of butyric acid, and the role it plays in the gastrointestinal tract, have been known for many years. However, the newest research shows that butyric acid still remains a molecule with a potential that has not as yet been fully exploited. The article provides an outline of relevant up-to-date knowledge about butyric acid, and presents the expert position on the clinical benefits of using butyric acid products in the therapy of gastrointestinal diseases.

  6. N-(6-Methylpyridin-2-yl)mesitylenesulfonamide and acetic acid--a salt, a cocrystal or both?

    PubMed

    Pan, Fangfang; Kalf, Irmgard; Englert, Ulli

    2015-08-01

    In the solid obtained from N-(6-methylpyridin-2-yl)mesitylenesulfonamide and acetic acid, the constituents interact via two N-H···O hydrogen bonds. The H atom situated in one of these short contacts is disordered over two positions: one of these positions is formally associated with an adduct of the neutral sulfonamide molecule and the neutral acetic acid molecule, and corresponds to a cocrystal, while the alternative site is associated with salt formation between a protonated sulfonamide molecule and deprotonated acetic acid molecule. Site-occupancy refinements and electron densities from difference Fourier maps suggest a trend with temperature, albeit of limited significance; the cocrystal is more relevant at 100 K, whereas the intensity data collected at room temperature match the description as cocrystal and salt equally well.

  7. Featured Molecules: Ascorbic Acid and Methylene Blue

    NASA Astrophysics Data System (ADS)

    Coleman, William F.; Wildman, Randall J.

    2003-05-01

    The WebWare molecules of the month for May are featured in several articles in this issue. "Arsenic: Not So Evil After All?" discusses the pharmaceutical uses of methylene blue and its development as the first synthetic drug used against a specific disease. The JCE Classroom Activity "Out of the Blue" and the article "Greening the Blue Bottle" feature methylene blue and ascorbic acid as two key ingredients in the formulation of the blue bottle. You can also see a colorful example of these two molecules in action on the cover. "Sailing on the 'C': A Vitamin Titration with a Twist" describes an experiment to determine the vitamin C (ascorbic acid) content of citrus fruits and challenges students, as eighteenth-century sea captains, to decide the best fruit to take on a long voyage. Fully manipulable (Chime) versions of these and other molecules are available at Only@JCE Online.

  8. The role of various amino acids in enzymatic browning process in potato tubers, and identifying the browning products.

    PubMed

    Ali, Hussein M; El-Gizawy, Ahmed M; El-Bassiouny, Rawia E I; Saleh, Mahmoud A

    2016-02-01

    The effects of five structurally variant amino acids, glycine, valine, methionine, phenylalanine and cysteine were examined as inhibitors and/or stimulators of fresh-cut potato browning. The first four amino acids showed conflict effects; high concentrations (⩾ 100mM for glycine and ⩾ 1.0M for the other three amino acids) induced potato browning while lower concentrations reduced the browning process. Alternatively, increasing cysteine concentration consistently reduced the browning process due to reaction with quinone to give colorless adduct. In PPO assay, high concentrations (⩾ 1.11 mM) of the four amino acids developed more color than that of control samples. Visible spectra indicated a continuous condensation of quinone and glycine to give colored adducts absorbed at 610-630 nm which were separated and identified by LC-ESI-MS as catechol-diglycine adduct that undergoes polymerization with other glycine molecules to form peptide side chains. In lower concentrations, the less concentration the less developed color was observed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Electronic structure and optical properties of Eu(III) tris-β-diketonate adducts with 1,10-phenanthroline

    NASA Astrophysics Data System (ADS)

    Shurygin, A. V.; Korochentsev, V. V.; Cherednichenko, A. I.; Mirochnik, A. G.; Kalinovskaya, I. V.; Vovna, V. I.

    2018-03-01

    Adducts of tris-β-diketonates of the rare earth metal Eu(III) with 1,10-phenanthroline are studied by photoelectron spectroscopy and quantum chemistry methods. The electronic structure, peculiarities of the nature of chemical bonds, and the geometric structure of the adducts are determined. The interpretation of UV photoelectron spectra of vapors and X-ray photoelectron spectra of solid is carried out with the chosen technique. DFT/TDDFT methods make it possible to study the 1,10-phenanthroline molecule influence on the adduct electronic structure and to analyze the electronic effects of substitution of methyl groups by trifluoromethyl groups in the ligands. At transition from the tris-β-diketonate complexes to the adducts, it is observed an increase of the absorption region and a decrease in the energy gap that contributes to the efficiency growth in electronic excitation energy transfer in the ligand-metal. Moreover, phenanthroline displaces water groups, that are luminescence quenchers, from the first coordination sphere, closes coordination in the adduct, and blocks their further attachment. Both factors contribute to an increase in the luminescence intensity.

  10. A novel synthesis of malondialdehyde adducts of deoxyguanosine, deoxyadenosine, and deoxycytidine.

    PubMed

    Wang, Hao; Marnett, Lawrence J; Harris, Thomas M; Rizzo, Carmelo J

    2004-02-01

    Malondialdehyde (MDA) is a mutagenic product of lipid peroxidation and prostaglandin biosynthesis. MDA reacts with DNA bases to produce adducts of deoxyguanosine (M1G), deoxyadenosine (M1A), and deoxycytidine (M1C). A novel synthesis of these MDA nucleoside adducts has been developed, which significantly improves their availability. For the deoxyguanosine adduct, M1G, an amine equivalent to MDA, 4-amino-3-(phenylselenyl)butane-1,2-diol, was reacted with 2-fluoro-O6-(2-(trimethylsilyl)ethyl)-2'-deoxyinosine via a nucleophilic aromatic substitution reaction followed by acid hydrolysis of the O6-protecting group to give an N2-modified deoxyguanosine intermediate. Periodate oxidation of this intermediate under slightly acidic conditions gave M1G in good overall yield via cleavage of the vicinal diol unit and concomitant oxidation of the phenylselenide group to the corresponding selenoxide and syn beta-elimination. M1A and M1C were synthesized by the same strategy starting from 6-chloropurine 2'-deoxyriboside and 1-(2-deoxy-beta-d-erythro-pentofuranosyl)-4-(1H-1,2,4-triazol-1-yl)-2-(1H)pyrimidinone, respectively. An advantage of this approach is that similar chemistry has been shown to be directly applicable to the synthesis of site specifically adducted oligonucleotides containing activated nucleobases such as those used in this study. This strategy may offer an improved synthesis to oligonucleotides containing M1G and a feasible approach to M1A and M1C containing oligonucleotides.

  11. Determination of phospholipid regiochemistry by Ag(I) adduction and tandem mass spectrometry.

    PubMed

    Yoo, Hyun Ju; Håkansson, Kristina

    2011-02-15

    Collision-activated dissociation (CAD) and infrared multiphoton dissociation (IRMPD) of Ag-adducted phospholipids were investigated as structural tools. Previously, determination of the acyl chains at the two phospholipid esterification sites has been performed based on the R(1)COO(-)/R(2)COO(-) ratio in negative ion mode CAD tandem mass spectrometry. However, the observed product ion ratio is dependent on the extent of unsaturation of the fatty acyl group at sn-2 as well as on the total chain length. Similarly, in positive ion mode CAD with/without alkaline or alkaline earth metal adduction, the ratio of product ions resulting from either R(1)COOH or R(2)COOH neutral losses is dependent on the nature of the phospholipid polar headgroup. Ag(+) ion chromatography, in which silver ions are part of the stationary phase, can provide information on double bond number/distribution as well as double bond configuration (cis/trans) because of interaction between Ag(+) ions and olefinic π electrons of fatty acids and lipids. We hypothesized that interactions between double bonds and Ag(+) may be utilized to also reveal phospholipid esterification site information in tandem mass spectrometry. CAD and IRMPD of Ag-adducted phospholipids with unsaturated fatty acids (R(x)COOH, x = 1 or 2) provided characteristic product ions, [R(x)COOH + Ag](+), and their neutral losses. The characteristic product ions and their abundances do not depend on the type of polar headgroup or the number of double bonds of unsaturated acyl chains. Tandem mass spectrometry of Cu-adducted phospholipids was also performed for comparison based on the Lewis acid and base properties of Cu(+) and phospholipid double bonds, respectively.

  12. Methanol adducts leading to the identification of a reactive aldehyde metabolite of CPAQOP in human liver microsomes by ultra-high-performance liquid chromatography/mass spectrometry.

    PubMed

    Martin, Scott; Lenz, Eva M; Smith, Robin; Temesi, David G; Orton, Alexandra L; Clench, Malcolm R

    2017-01-15

    The incubation of CPAQOP (1-[(2R)-2-[[4-[3-chloro-4-(2-pyridyloxy)anilino]quinazolin-5-yl]oxymethyl]-1-piperidyl]-2-hydroxy) with human liver microsomes generated several metabolites that highlighted the hydroxyacetamide side chain was a major site of metabolism for the molecule. The metabolites were derived predominantly from oxidative biotransformations; however, two unexpected products were detected by liquid chromatography/ultraviolet/mass spectrometry (LC/UV/MS) and identified as methanol adducts. This observation prompted further LC/MS investigations into their formation. Three separate incubations of CPAQOP were conducted in human liver microsomes; Naïve, fortified with methoxyamine and fortified with glutathione. Separation was achieved via ultra-high-performance liquid chromatography with either methanol or acetonitrile gradients containing formic acid. MS analysis was conducted by electrospray ionisation LTQ Orbitrap mass spectrometry acquiring accurate mass full scan, data-dependent MS 2 and all ion fragmentation. No methanol adducts were detected by MS when acetonitrile was used in the mobile phase instead of methanol, verifying that a metabolite was reacting with methanol on column. Although this reactive metabolite could not be isolated or structurally characterised by LC/MS directly, product ion spectra of the methanol adducts confirmed addition of methanol on the hydroxyacetamide side chain. Additional experiments using methoxyamine showed the disappearance of the two methanol adducts and appearance of a methoxyamine adduct, confirming the presence of an aldhyde. Product ion spectra of the methoxyamine adduct confirmed addition of methoxyamine to the hydroxyacetamide side chain. The proposed bioactivation of CPAQOP occurred via the reactive aldehyde intermediate, which readily reacted with methanol in the mobile phase to form a pair of isomeric hemiacetal methanol adducts. In acidified methanol the equilibrium favoured the methanol adduct and in

  13. Mass spectrometric analyses of organophosphate insecticide oxon protein adducts.

    PubMed

    Thompson, Charles M; Prins, John M; George, Kathleen M

    2010-01-01

    Organophosphate (OP) insecticides continue to be used to control insect pests. Acute and chronic exposures to OP insecticides have been documented to cause adverse health effects, but few OP-adducted proteins have been correlated with these illnesses at the molecular level. Our aim was to review the literature covering the current state of the art in mass spectrometry (MS) used to identify OP protein biomarkers. We identified general and specific research reports related to OP insecticides, OP toxicity, OP structure, and protein MS by searching PubMed and Chemical Abstracts for articles published before December 2008. A number of OP-based insecticides share common structural elements that result in predictable OP-protein adducts. The resultant OP-protein adducts show an increase in molecular mass that can be identified by MS and correlated with the OP agent. Customized OP-containing probes have also been used to tag and identify protein targets that can be identified by MS. MS is a useful and emerging tool for the identification of proteins that are modified by activated organophosphate insecticides. MS can characterize the structure of the OP adduct and also the specific amino acid residue that forms the key bond with the OP. Each protein that is modified in a unique way by an OP represents a unique molecular biomarker that with further research can lead to new correlations with exposure.

  14. NALDB: nucleic acid ligand database for small molecules targeting nucleic acid.

    PubMed

    Kumar Mishra, Subodh; Kumar, Amit

    2016-01-01

    Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures. NALDB is the first ligand database that contains ligand information for all type of nucleic acid. NALDB contains more than 3500 ligand entries with detailed pharmacokinetic and pharmacodynamic information such as target name, target sequence, ligand 2D/3D structure, SMILES, molecular formula, molecular weight, net-formal charge, AlogP, number of rings, number of hydrogen bond donor and acceptor, potential energy along with their Ki, Kd, IC50 values. All these details at single platform would be helpful for the development and betterment of novel ligands targeting nucleic acids that could serve as a potential target in different diseases including cancers and neurological disorders. With maximum 255 conformers for each ligand entry, our database is a multi-conformer database and can facilitate the virtual screening process. NALDB provides powerful web-based search tools that make database searching efficient and simplified using option for text as well as for structure query. NALDB also provides multi-dimensional advanced search tool which can screen the database molecules on the basis of molecular properties of ligand provided by database users. A 3D structure visualization tool has also been included for 3D structure representation of ligands. NALDB offers an inclusive pharmacological information and the structurally flexible set of small molecules with their three-dimensional conformers that can accelerate the virtual screening and other modeling processes and eventually complement the nucleic acid-based drug discovery research. NALDB can be routinely updated and freely available on bsbe.iiti.ac.in/bsbe/naldb/HOME.php. Database URL: http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php. © The Author(s) 2016. Published by Oxford University Press.

  15. NALDB: nucleic acid ligand database for small molecules targeting nucleic acid

    PubMed Central

    Kumar Mishra, Subodh; Kumar, Amit

    2016-01-01

    Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures. NALDB is the first ligand database that contains ligand information for all type of nucleic acid. NALDB contains more than 3500 ligand entries with detailed pharmacokinetic and pharmacodynamic information such as target name, target sequence, ligand 2D/3D structure, SMILES, molecular formula, molecular weight, net-formal charge, AlogP, number of rings, number of hydrogen bond donor and acceptor, potential energy along with their Ki, Kd, IC50 values. All these details at single platform would be helpful for the development and betterment of novel ligands targeting nucleic acids that could serve as a potential target in different diseases including cancers and neurological disorders. With maximum 255 conformers for each ligand entry, our database is a multi-conformer database and can facilitate the virtual screening process. NALDB provides powerful web-based search tools that make database searching efficient and simplified using option for text as well as for structure query. NALDB also provides multi-dimensional advanced search tool which can screen the database molecules on the basis of molecular properties of ligand provided by database users. A 3D structure visualization tool has also been included for 3D structure representation of ligands. NALDB offers an inclusive pharmacological information and the structurally flexible set of small molecules with their three-dimensional conformers that can accelerate the virtual screening and other modeling processes and eventually complement the nucleic acid-based drug discovery research. NALDB can be routinely updated and freely available on bsbe.iiti.ac.in/bsbe/naldb/HOME.php. Database URL: http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php PMID:26896846

  16. The fate of H atom adducts to 3'-uridine monophosphate.

    PubMed

    Wang, Ran; Zhang, Ru Bo; Eriksson, Leif A

    2010-07-29

    The stabilities of the adducts deriving from H free radical addition to the O2, O4, and C5 positions of 3'-uridine monophosphate (3'UMP) are studied by the hybrid density functional B3LYP approach. Upon H atom addition at the O2 position, a concerted low-barrier proton-transfer process will initially occur, followed by the potential ruptures of the N-glycosidic or beta-phosphate bonds. The rupture barriers are strongly influenced by the rotational configuration of the phosphate group at the 3' terminal, and are influenced by bulk solvation effects. The O4-H adduct has the highest thermal stability, as the localization of the unpaired electron does not enable cleavage of either the C1'-N1 or the C3'-O(P) bonds. For the most stable adduct, with H atom added to the C5 position, the rate-controlled step is the H2'a abstraction by the C6 radical site, after which the subsequent strand rupture reactions proceed with low barriers. The main unpaired electron densities are presented for the transient species. Combined with previous results, it is concluded that the H atom adducts are more facile to drive the strand scission rather than N-glycosidic bond ruptures within the nucleic acid bases.

  17. Butyric acid – a well-known molecule revisited

    PubMed Central

    Banasiewicz, Tomasz; Rydzewska, Grażyna

    2017-01-01

    The properties of butyric acid, and the role it plays in the gastrointestinal tract, have been known for many years. However, the newest research shows that butyric acid still remains a molecule with a potential that has not as yet been fully exploited. The article provides an outline of relevant up-to-date knowledge about butyric acid, and presents the expert position on the clinical benefits of using butyric acid products in the therapy of gastrointestinal diseases. PMID:28702095

  18. Mass spectrometric analysis of sulfur mustard-induced biomolecular adducts: Are DNA adducts suitable biomarkers of exposure?

    PubMed

    Zubel, Tabea; Bürkle, Alexander; Mangerich, Aswin

    2018-09-01

    The bi-functional chemical warfare agent sulfur mustard (SM), whose release in asymmetric conflicts or terrorist attacks represents a realistic threat, induces several kinds of biomolecular adducts, including highly toxic DNA adducts. Isotope dilution liquid chromatographic tandem mass spectrometry (ID-LC-MS/MS) is considered the gold standard for highly accurate, precise, specific and sensitive quantification of DNA adducts in general. Recently, a number of LC-MS/MS approaches have been established to analyze SM-induced protein and DNA adducts in cell culture and rodent animal models. As DNA adducts are mechanism-based biomarkers for SM exposure, results from such studies provide a deeper understanding of the etiology of SM-induced pathologies, especially of long-term effects such as cancer formation. As a result, medical treatment of SM-exposed individuals might be improved. Yet, despite the progress that has been made during the last years, there is still a need for advanced methods of ID-LC-MS/MS for the detection and quantitation of SM adducts. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Cisplatin intrastrand adducts sensitize DNA to base damage by hydrated electrons.

    PubMed

    Behmand, B; Wagner, J R; Sanche, L; Hunting, D J

    2014-05-08

    The oligonucleotide TTTTTGTGTTT with or without a cisplatin adduct was reacted with hydrated electrons generated by ionizing radiation. Hydroxyl radicals were quenched with ethylenediaminetetraacetic acid (EDTA), and the solutions were bubbled with wet nitrogen to eliminate oxygen, a scavenger of hydrated electrons. Prior to irradiation, the structure of the initial cisplatin adduct was identified by mass spectrometry as G-cisplatin-G. Radiation damage to DNA bases was quantified by high-performance liquid chromatography (HPLC), after enzymatic digestion of the TTTTTGTGTTT-cisplatin complex to deoxyribonucleosides. The masses of the platinum adducts following digestion and separation by HPLC were measured by mass spectrometry. Our results demonstrate that hydrated electrons induce damage to thymines as well as detachment of the cisplatin moiety from both guanines in the oligonucleotide. This detachment regenerates both unmodified guanine and damaged guanine, in equimolar amounts. At 1000 Gy, a net average of 2.5 thymines and 1 guanine are damaged for each platinum lost from the oligonucleotide. Given the extensive base damage that occurs for each cisplatin adduct lost, it is clear that, prior to undergoing detachment, these adducts must catalyze several cycles of reactions of hydrated electrons with DNA bases. It is likely that a single reaction leads to the loss of the cisplatin adduct and the damage observed on the guanine base; however, the damage to the thymine bases must require the continued presence of the cisplatin adduct, acting as a catalyst. To our knowledge, this is the first time that platinum-DNA adducts have been shown to have catalytic activity. We propose two pathways for the interaction of hydrated electrons with TTTTTGTGTTT-cisplatin: (1) the hydrated electron is initially captured by a thymine base and transferred by base to base electron hopping to the guanine site, where the cisplatin moiety detaches from the oligonucleotide via dissociative

  20. Cisplatin Intrastrand Adducts Sensitize DNA to Base Damage by Hydrated Electrons

    PubMed Central

    Behmand, B.; Wagner, J. R.; Sanche, L.; Hunting, D. J.

    2015-01-01

    The oligonucleotide TTTTTGTGTTT with or without a cisplatin adduct was reacted with hydrated electrons generated by ionizing radiation. Hydroxyl radicals were quenched with ethylenediaminetetraacetic acid (EDTA), and the solutions were bubbled with wet nitrogen to eliminate oxygen, a scavenger of hydrated electrons. Prior to irradiation, the structure of the initial cisplatin adduct was identified by mass spectrometry as G-cisplatin-G. Radiation damage to DNA bases was quantified by high-performance liquid chromatography (HPLC), after enzymatic digestion of the TTTTTGTGTTT-cisplatin complex to deoxyribonucleosides. The masses of the platinum adducts following digestion and separation by HPLC were measured by mass spectrometry. Our results demonstrate that hydrated electrons induce damage to thymines as well as detachment of the cisplatin moiety from both guanines in the oligonucleotide. This detachment regenerates both unmodified guanine and damaged guanine, in equimolar amounts. At 1000 Gy, a net average of 2.5 thymines and 1 guanine are damaged for each platinum lost from the oligonucleotide. Given the extensive base damage that occurs for each cisplatin adduct lost, it is clear that, prior to undergoing detachment, these adducts must catalyze several cycles of reactions of hydrated electrons with DNA bases. It is likely that a single reaction leads to the loss of the cisplatin adduct and the damage observed on the guanine base; however, the damage to the thymine bases must require the continued presence of the cisplatin adduct, acting as a catalyst. To our knowledge, this is the first time that platinum-DNA adducts have been shown to have catalytic activity. We propose two pathways for the interaction of hydrated electrons with TTTTTGTGTTT-cisplatin: (1) the hydrated electron is initially captured by a thymine base and transferred by base to base electron hopping to the guanine site, where the cisplatin moiety detaches from the oligonucleotide via dissociative

  1. Competitive Deprotonation and Superoxide [O₂⁻•)] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions.

    PubMed

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B

    2016-03-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O(•)) preferentially form superoxide radical-anion (O2(-•)) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2(-•)) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2(-•) adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O(•)) to generate the superoxide radical-anion (m/z 32) or the deprotonated amide [m/z (M - H)(-)], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions.

  2. [Microspeciation of amphoteric molecules of unusual acid-base properties].

    PubMed

    Kóczián, Kristóf

    2007-01-01

    The phisico-chemical properties of bio- and drug molecules greatly influence their interactions in the body and strongly effect the mechanism of drug action. Among these properties, macroscopic and site-specific protonation constants are of crucial importance. Latter one is the tool to calculate the relative concentration of the various microspecies in the compartments of the body at different pH values, and also, it is the versatile parameter to improve the pharmacokinetic properties of a new molecule in a particular family of drugs. In the present thesis work, the microspeciation of three molecules of great pharmaceutical importance and unusual acid-base properties, were carried out. The microconstants of tenoxicam, the non-steroidal anti-inflammatory drug, were described, introducing a novel deductive method using Hammett constants. For this purpose, a total of 8 tenoxicam and piroxicam derivatives were synthesised. To the best of our knowledge, the log k(N)O microconstant of tenoxicam obtained thus is the lowest enolate basicity value, which, however, can be well explained by the effects of the intramolecular environment. The developed evaluation procedure is suitable for microconstant determination of compounds in other molecule families. Besides, prodrug-type compounds and analogues similar to the structures of selective COX-2 isoenzyme inhibitors were synthesised. The other two molecules studied, the 6-aminopenicillanic acid and 7-cephalosporanic acid, the core molecules of the two most important beta-lactam antibiotic-types were derivatised and investigated by 1D and 2D NMR techniques. The NMR-pH titration on the parent compounds and their ester derivatives, combined with in situ pH-measurements allowed the microspeciation of these easily decomposing molecules. One of the protonation constant of 7-ACA (log kN(O) = 4.12), to the best of our knowledge, is the least non-aromatic basic amino-site among the natural compounds.

  3. Mass Spectrometric Analyses of Organophosphate Insecticide Oxon Protein Adducts

    PubMed Central

    Thompson, Charles M.; Prins, John M.; George, Kathleen M.

    2010-01-01

    Objective Organophosphate (OP) insecticides continue to be used to control insect pests. Acute and chronic exposures to OP insecticides have been documented to cause adverse health effects, but few OP-adducted proteins have been correlated with these illnesses at the molecular level. Our aim was to review the literature covering the current state of the art in mass spectrometry (MS) used to identify OP protein biomarkers. Data sources and extraction We identified general and specific research reports related to OP insecticides, OP toxicity, OP structure, and protein MS by searching PubMed and Chemical Abstracts for articles published before December 2008. Data synthesis A number of OP-based insecticides share common structural elements that result in predictable OP–protein adducts. The resultant OP–protein adducts show an increase in molecular mass that can be identified by MS and correlated with the OP agent. Customized OP-containing probes have also been used to tag and identify protein targets that can be identified by MS. Conclusions MS is a useful and emerging tool for the identification of proteins that are modified by activated organophosphate insecticides. MS can characterize the structure of the OP adduct and also the specific amino acid residue that forms the key bond with the OP. Each protein that is modified in a unique way by an OP represents a unique molecular biomarker that with further research can lead to new correlations with exposure. PMID:20056576

  4. Quantification of malondialdehyde and 4-hydroxynonenal adducts to lysine residues in native and oxidized human low-density lipoprotein.

    PubMed Central

    Requena, J R; Fu, M X; Ahmed, M U; Jenkins, A J; Lyons, T J; Baynes, J W; Thorpe, S R

    1997-01-01

    Malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are major end-products of oxidation of polyunsaturated fatty acids, and are frequently measured as indicators of lipid peroxidation and oxidative stress in vivo. MDA forms Schiff-base adducts with lysine residues and cross-links proteins in vitro; HNE also reacts with lysines, primarily via a Michael addition reaction. We have developed methods using NaBH4 reduction to stabilize these adducts to conditions used for acid hydrolysis of protein, and have prepared reduced forms of lysine-MDA [3-(N epsilon-lysino)propan-1-ol (LM)], the lysine-MDA-lysine iminopropene cross-link [1,3-di(N epsilon-lysino)propane (LML)] and lysine-HNE [3-(N epsilon-lysino)-4-hydroxynonan-l-ol (LHNE)]. Gas chromatography/MS assays have been developed for quantification of the reduced compounds in protein. RNase incubated with MDA or HNE was used as a model for quantification of the adducts by gas chromatography/MS. There was excellent agreement between measurement of MDA bound to RNase as LM and LML, and as thiobarbituric acid-MDA adducts measured by HPLC; these adducts accounted for 70-80% of total lysine loss during the reaction with MDA. LM and LML (0.002-0.12 mmol/ mol of lysine) were also found in freshly isolated low-density lipoprotein (LDL) from healthy subjects. LHNE was measured in RNase treated with HNE, but was not detectable in native LDL. LM, LML and LHNE increased in concert with the formation of conjugated dienes during the copper-catalysed oxidation of LDL, but accounted for modification of < 1% of lysine residues in oxidized LDL. These results are the first report of direct chemical measurement of MDA and HNE adducts to lysine residues in LDL. LM, LML and LHNE should be useful as biomarkers of lipid peroxidative modification of protein and of oxidative stress in vitro and in vivo. PMID:9078279

  5. Infrared spectra of some acetone—magnesium adducts

    NASA Astrophysics Data System (ADS)

    Hisatsune, I. C.

    Co-deposition of atomic magnesium with excess acetone at liquid-nitrogen temperature produces an unstable charge-transfer complex with a characteristic carbonyl infrared band at 1595 cm -1 and stable acetone adducts in which the metal atom bridges the carbonyl bond (π-complex) or coordinates to the oxygen atom (σ-complex). Infrared spectra of these complexes with (CH 3) 2CO and (CD 3) 2CO have been obtained. Corroborations for these adducts were obtained from infrared studies of acetone matrices with atomic copper and acetaldehyde matrices with atomic magnesium and with atomic copper. Infrared spectra of an acetone adduct and a dimethyl ether adduct of the Grignard reagent CH 3MgI have also been obtained. Hydrolysis of a σ-adduct gives acetone but isopropyl alcohol is obtained from hydrolysis of the π-adduct.

  6. Hydrogen bonded binary molecular adducts derived from exobidentate N-donor ligand with dicarboxylic acids: Acid⋯imidazole hydrogen-bonding interactions in neutral and ionic heterosynthons

    NASA Astrophysics Data System (ADS)

    Kathalikkattil, Amal Cherian; Damodaran, Subin; Bisht, Kamal Kumar; Suresh, Eringathodi

    2011-01-01

    Four new binary molecular compounds between a flexible exobidentate N-heterocycle and a series of dicarboxylic acids have been synthesized. The N-donor 1,4-bis(imidazol-1-ylmethyl)benzene (bix) was reacted with flexible and rigid dicarboxylic acids viz., cyclohexane-1,4-dicarboxylic acid (H 2chdc), naphthalene-1,4-dicarboxylic acid (H 2npdc) and 1H-pyrazole-3,5-dicarboxylic acid (H 2pzdc), generating four binary molecular complexes. X-ray crystallographic investigation of the molecular adducts revealed the primary intermolecular interactions carboxylic acid⋯amine (via O-H⋯N) as well as carboxylate⋯protonated amine (via N-H +⋯O -) within the binary compounds, generating layered and two-dimensional sheet type H-bonded networks involving secondary weak interactions (C-H⋯O) including the solvent of crystallization. Depending on the differences in p Ka values of the selected base/acid (Δp Ka), diverse H-bonded supramolecular assemblies could be premeditated. This study demonstrates the H-bonding interactions between imidazole/imidazolium cation and carboxylic acid/carboxylate anion in providing sufficient driving force for the directed assembly of binary molecular complexes. In the two-component solid form of hetero synthons involving bix and dicarboxylic acid, only H 2chdc exist as cocrystal with bix, while all the other three compounds crystallized exclusively as salt, in agreement with the Δp Ka values predicted for the formation of salts/cocrystals from the base and acid used in the synthesis of supramolecular solids.

  7. Antibody recognition of melphalan adducts characterized using immobilized DNA: enhanced alkylation of G-Rich regions in cells compared to in vitro.

    PubMed

    McCartney, H; Martin, A M; Middleton, P G; Tilby, M J

    2001-01-01

    The bifunctional alkylating agent, melphalan, forms adducts on DNA that are recognized by two previously described monoclonal antibodies, MP5/73 and Amp4/42. Immunoreactivity to MP5/73 was lost when alkylated DNA was exposed to alkaline pH, while Amp4/42 only recognized the structures formed after the alkali treatment. Competitive enzyme-linked immunoadsorbent assays (ELISAs) indicated that in 0.01 and 0.1 M NaOH, loss of immunoreactivity to MP5/73 occurred with half-lives that were at least 2-fold longer than half-lives for gain of immunoreactivity to Amp4/42. This supported previously published evidence that Amp4/42 did not simply recognize all the products formed by alkali treatment of adducts that were initially recognized by MP5/73. Adducts recognized by MP5/73 on RNA were considerably more stable at 100 degrees C and pH 7 than adducts on DNA. This was consistent with the hypothesis that immunorecognition involved N7 guanine adducts and ruled out the involvement of phosphotriesters in immunoreactivity. Synthetic oligodeoxyribonucleotides, covalently immobilized onto 96-well plates, were reacted with melphalan and incubated for various periods with alkali, and then the levels of adducts recognized by each antibody in replicate wells were assayed by a direct binding ELISA. Adducts formed on oligodeoxyguanylic acid were recognized very weakly by Amp4/42, unlike other DNA sequences that were tested. Retention of immobilized DNA during alkali treatment was confirmed by immunoassay of cisplatin adducts. Poor recognition by Amp4/42 of adducts in oligodeoxyguanylic acid was confirmed by a competitive ELISA. Amp4/42, unlike MP5/73, efficiently recognized adducts resulting from alkylation of DNA with chlorambucil. It is concluded that the two antibodies recognized melphalan adducts in different DNA sequence environments and that this explains (a) the different alkali stability of immunoreactive adducts and (b) previous results which showed that, in DNA from melphalan

  8. Evidence for phosphorus bonding in phosphorus trichloride-methanol adduct: a matrix isolation infrared and ab initio computational study.

    PubMed

    Joshi, Prasad Ramesh; Ramanathan, N; Sundararajan, K; Sankaran, K

    2015-04-09

    The weak interaction between PCl3 and CH3OH was investigated using matrix isolation infrared spectroscopy and ab initio computations. In a nitrogen matrix at low temperature, the noncovalent adduct was generated and characterized using Fourier transform infrared spectroscopy. Computations were performed at B3LYP/6-311++G(d,p), B3LYP/aug-cc-pVDZ, and MP2/6-311++G(d,p) levels of theory to optimize the possible geometries of PCl3-CH3OH adducts. Computations revealed two minima on the potential energy surface, of which, the global minimum is stabilized by a noncovalent P···O interaction, known as a pnictogen bonding (phosphorus bonding or P-bonding). The local minimum corresponded to a cyclic adduct, stabilized by the conventional hydrogen bonding (Cl···H-O and Cl···H-C interactions). Experimentally, 1:1 P-bonded PCl3-CH3OH adduct in nitrogen matrix was identified, where shifts in the P-Cl modes of PCl3, O-C, and O-H modes of CH3OH submolecules were observed. The observed vibrational frequencies of the P-bonded adduct in a nitrogen matrix agreed well with the computed frequencies. Furthermore, computations also predicted that the P-bonded adduct is stronger than H-bonded adduct by ∼1.56 kcal/mol. Atoms in molecules and natural bond orbital analyses were performed to understand the nature of interactions and effect of charge transfer interaction on the stability of the adducts.

  9. Amino Acid-Assisted Incorporation of Dye Molecules within Calcite Crystals.

    PubMed

    Marzec, Bartosz; Green, David C; Holden, Mark A; Coté, Alexander S; Ihli, Johannes; Khalid, Saba; Kulak, Alexander; Walker, Daniel; Tang, Chiu; Duffy, Dorothy M; Kim, Yi-Yeoun; Meldrum, Fiona C

    2018-05-23

    Biomineralisation processes invariably occur in the presence of multiple organic additives, which act in combination to give exceptional control over structures and properties. However, few synthetic studies have investigated the cooperative effects of soluble additives. This work addresses this challenge and focuses on the combined effects of amino acids and coloured dye molecules. The experiments demonstrate that strongly coloured calcite crystals only form in the presence of Brilliant Blue R (BBR) and four of the seventeen soluble amino acids, as compared with almost colourless crystals using the dye alone. The active amino acids are identified as those which themselves effectively occlude in calcite, suggesting a mechanism where they can act as chaperones for individual molecules or even aggregates of dyes molecules. These results provide new insight into crystal-additive interactions and suggest a novel strategy for generating materials with target properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Human DNA adduct measurements: State of the art

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.C.; Weston, A.

    1996-10-01

    Human DNA adduct formation (covalent modification of DNA with chemical carcinogens) is a promising biomarker for elucidating the molecular epidemiology of cancer. Classes of compounds for which human DNA adducts have been observed include polycyclic aromatic hydrocarbons (PAHs), nitrosamines, mycotoxins, aromatic amines, heterocyclic amines, ultraviolet light, and alkylating cancer chemotherapeutic agents. Most human DNA adduct exposure monitoring has been performed with either {sup 32}P-postlabeling or immunoassays, neither of which is able to chemically characterize specific DNA adducts. Recently developed combinations of methods with chemical and physical end points have allowed identification of specific adducts in human tissues. Studies are presentedmore » that demonstrate that high ambient levels of benzo[a]pyrene are associated with high levels of DNA adducts in human blood cell DNA and that the same DNA adduct levels drop when the ambient PAH levels decrease significantly. DNA adduct dosimetry, which has been achieved with some dietary carcinogens and cancer chemotherapeutic agents, is described, as well as studies correlating DNA adducts with other biomarkers. It is likely that some toxic, noncarcinogenic compounds may have genotoxic effects, including oxidative damage, and that adverse health outcomes other than cancer may be correlated with DNA adduct formation. The studies presented here may serve as useful prototypes for exploration of other toxicological end points. 156 refs., 1 fig., 3 tabs.« less

  11. 2,3-Diamino-pyridinium sorbate-sorbic acid (1/1).

    PubMed

    Hemamalini, Madhukar; Goh, Jia Hao; Fun, Hoong-Kun

    2012-01-01

    In the title mol-ecular salt-adduct, C(5)H(8)N(3) (+)·C(6)H(7)O(2) (-)·C(6)H(8)O(2), the 2,3-diamino-pyridinium cation is essentially planar, with a maximum deviation of 0.013 (2) Å, and is protanated at its pyridine N atom. The sorbate anion and sorbic acid mol-ecules exist in extended conformations. In the crystal, the protonated N atom and one of the two amino-group H atoms are hydrogen bonded to the sorbate anion through a pair of N-H⋯O hydrogen bonds, forming an R(1) (2)(6) ring motif. The carboxyl groups of the sorbic acid mol-ecules and the carboxyl-ate groups of the sorbate anions are connected via O-H⋯O hydrogen bonds. Furthermore, the ion pairs and neutral mol-ecules are connected via inter-molecular N-H⋯O hydrogen bonds, forming sheets lying parallel to (100).

  12. The sphingosine 1-phosphate breakdown product, (2E)-hexadecenal, forms protein adducts and glutathione conjugates in vitro.

    PubMed

    Schumacher, Fabian; Neuber, Corinna; Finke, Hannah; Nieschalke, Kai; Baesler, Jessica; Gulbins, Erich; Kleuser, Burkhard

    2017-08-01

    Sphingosine 1-phosphate (S1P), a bioactive lipid involved in various physiological processes such as cell proliferation and apoptosis, can be irreversibly cleaved by S1P lyase, yielding phosphoethanolamine and (2 E )-hexadecenal (2 E HD). The latter metabolite, an α,β-unsaturated fatty aldehyde, may be susceptible to nucleophilic attack by cellular biomolecules. Hence, we studied whether 2 E HD forms reaction products with GSH and proteins in vitro. Using LC-MS/MS and stable isotopically labeled reference material, we identified a total of nine novel reaction products of 2 E HD in a cell-free approach: two GSH conjugates and seven l-amino acid adducts. Both GSH conjugates were also found in HepG2 cell lysates incubated with 2 E HD. Likewise, we detected four out of seven amino acid adducts released from the model protein, BSA, and proteins extracted from HepG2 cells. On this occasion, the 2 E HD Michael adduct with l-histidine proved to be the most prominent adduct. Most interestingly, inhibition of the enzymatically driven oxidative degradation of 2 E HD resulted in increased levels of both GSH conjugates and protein adducts in HepG2 cell lysates. Hence, our data provide new insights into sphingolipid metabolism and will be useful to investigate certain disorders linked to an impaired fatty aldehyde metabolism in more detail. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  13. Tandem Mass Spectrometry for Characterization of Covalent Adducts of DNA with Anti-cancer Therapeutics

    PubMed Central

    Silvestri, Catherine; Brodbelt, Jennifer S.

    2012-01-01

    The chemotherapeutic activities of many anticancer and antibacterial drugs arise from their interactions with nucleic acid substrates. Some of these ligands interact with DNA in a way that causes conformational changes or damage to the nucleic acid targets, ultimately altering recognition by key DNA-specific enzymes, interfering with DNA transcription or prohibiting replication, and terminating cell growth and proliferation. The design and synthesis of ligands that bind to nucleic acids remains a dynamic field in medicinal chemistry and pharmaceutical research. The quest for more selective and efficacious DNA-interactive anti-cancer chemotherapeutics has likewise catalyzed the need for sensitive analytical methods that can provide structural information about the nature of the resulting DNA adducts and provide insight into the mechanistic pathways of the DNA/drug interactions and the impact on the cellular processes in biological systems. This review focuses on the array of tandem mass spectrometric strategies developed and applied for characterization of covalent adducts formed between DNA and anti-cancer ligands. PMID:23150278

  14. Capturing Labile Sulfenamide and Sulfinamide Serum Albumin Adducts of Carcinogenic Arylamines by Chemical Oxidation

    PubMed Central

    Peng, Lijuan; Turesky, Robert J.

    2013-01-01

    Aromatic amines and heterocyclic aromatic amines (HAAs) are a class of structurally related carcinogens that are formed during the combustion of tobacco or during the high temperature cooking of meats. These procarcinogens undergo metabolic activation by N-oxidation of the exocyclic amine group to produce N-hydroxylated metabolites, which are critical intermediates implicated in toxicity and DNA damage. The arylhydroxylamines and their oxidized arylnitroso derivatives can also react with cysteine (Cys) residues of glutathione or proteins to form, respectively, sulfenamide and sulfinamide adducts. However, sulfur-nitrogen linked adducted proteins are often difficult to detect because they are unstable and undergo hydrolysis during proteolytic digestion. Synthetic N-oxidized intermediates of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a carcinogenic HAA produced in cooked meats, and 4-aminobiphenyl, a carcinogenic aromatic amine present in tobacco smoke were reacted with human serum albumin (SA) and formed labile sulfenamide or sulfinamide adducts at the Cys34 residue. Oxidation of the carcinogen-modified SA with m-chloroperoxybenzoic acid (m-CPBA) produced the arylsulfonamide adducts, which were stable to heat and the chemical reduction conditions employed to denature SA. The sulfonamide adducts of PhIP and 4-ABP were identified, by liquid chromatography/mass spectrometry, in proteolytic digests of denatured SA. Thus, selective oxidation of arylamine-modified SA produces stable arylsulfonamide-SA adducts, which may serve as biomarkers of these tobacco and dietary carcinogens. PMID:23240913

  15. Mass spectrometry of cis-diamminedichloroplatinum(II) adducts with the dinucleosidemonophosphates d(ApG), d(GpG) and d(TpC) in an ion trap.

    PubMed

    Hagemeister, Timo; Linscheid, Michael

    2002-07-01

    The detection and fragmentation behaviour of adducts of the chemotherapeutic cis-diamminedichloroplatinum(II) (cisplatin) with the dinucleosidemonophosphates d(ApG), d(GpG) and d(TpC) as model compounds for DNA adducts in an ion trap with electrospray ionization were studied. Mainly the monofunctional adduct, the bifunctional adduct and the bifunctional adduct with platinum bridging two dinucleosidemonophosphates were detected. In addition, several more complex adducts were seen resulting from reactions among these species. Adduct formation was low in the case of d(TpC). Fragmentation could be controlled strongly by varying the temperature of the transfer capillary; furthermore, tandem mass spectrometric (MS/MS) experiments on both the monofunctional and the bifunctional adducts were performed. For the adducts of d(ApG) and d(GpG) losses of NH(3) and HCl were the most dominant reactions, followed by the losses of one, then another two units of 98 amu from the sugar-phosphate backbone, whereas d(TpC)-Pt predominantly forms the dinucleosidemonophosphate. In the gas phase, the conversion of the monofunctional into the bifunctional adducts through binding to another site in the dinucleotide accompanied by loss of NH(3) or HCl could also be observed. The removal of a ligand from the coordination sphere of the square-planar platinum complexes appeared to be the crucial step for the induction of further fragmentation of the dinucleotide ligand. MS(n) experiments of the bifunctional adducts of d(ApG) and d(GpG) revealed different fragmentation pathways involving the loss of phosphoric acid, metaphosphoric acid, deoxyribose units (intact or dehydrated) and the nucleobases in different orders, leaving characteristic binding site-determining fragments. Fragmentation of these ions was also performed, mainly resulting in fragmentation of the bases. The study confirmed the remarkable stability of the platinum-guanine bond compared with other nucleobases. Copyright 2002 John

  16. Developments and Applications of Electrophoresis and Small Molecule Laser Desorption Ionization Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hui

    2007-01-01

    Ultra-sensitive native fluorescence detection of proteins with miniaturized one- and two-dimensional polyacrylamide gel electrophoresis was achieved with laser side-entry excitation, which provides both high excitation power and low background level. The detection limit for R-phycoerythrin protein spots in 1-D SDS-PAGE was as low as 15 fg, which corresponds to 40 thousand molecules only. The average detection limit of six standard native proteins was 5 pg per band and the dynamic range spanned more than 3 orders of magnitude. Approximately 150 protein spots from 30 ng of total Escherichia coli extraction were detected on a 0.8 cm x 1 cm gelmore » in two-dimensional separation. Estrogen-DNA adducts as 4-OHE 1(E 2)-1-N3Ade and 4-OHEI(E 2)-2-NacCys were hypothesized as early risk assessment of prostate and breast cancers. Capillary electrophoresis, luminescence/absorption spectroscopy and LC-MS were used to characterize and detect these adducts. Monoclonal antibodies against each individual adduct were developed and used to enrich such compounds from urine samples of prostate and breast cancer patients as well as healthy people. Adduct 4-OHE 1-1-N3Ade was detected at much higher level in urine from subjects with prostate cancer patients compared to healthy males. The same adduct and 4-OHEI-2-NacCys were also detected at a much higher level in urine from a woman with breast carcinoma than samples from healthy controls. These two DNA adducts may serve as novel biomarkers for early diagnostic of cancers. The adsorption properties of R-phycoerythrin (RPE), on the fused-silica surface were studied using capillary electrophoresis (CE) and single molecule spectroscopy. The band shapes and migration times were measured in CE. Adsorption and desorption events were recorded at the single-molecule level by imaging of the evanescent-field layer using total internal reflection. The adsorbed RPE molecules on the fused-silica prism surface were counted with confidence based on

  17. Anion photoelectron spectroscopy of acid-base systems, solvated molecules and MALDI matrix molecules

    NASA Astrophysics Data System (ADS)

    Eustis, Soren Newman

    Gas phase, mass-selected, anion photoelectron spectroscopic studies were performed on a variety of molecular systems. These studies can be grouped into three main themes: acid-base interactions, solvation, and ions of analytical interest. Acid-base interactions represent some of the most fundamental processes in chemistry. The study of these processes elucidates elementary principles such as inner and outer sphere complexes, hard and soft ions, and salt formation---to name a few. Apart from their appeal from a pedagogical standpoint, the ubiquity of chemical reactions which involve acids, bases or the resulting salts makes the study of their fundamental interactions both necessary and fruitful. With this in mind, the neutral and anionic series (NH3···HX) (X= F, Cl, Br, I) were examined experimentally and theoretically. The relatively small size of these systems, combined with the advances in computational methods, allowed our experimental results to be compared with very high level ab initio theoretical results. The synergy between theory and experiment yielded an understanding of the nature of the complexes that could not be achieved with either method in isolation. The second theme present in this body or work is molecular solvation. Solvation is a phenomenon which is present in biology, chemistry and physics. Many biological molecules do not become 'active' until they are solvated by water. Thus, the study of biologically relevant species solvated by water is one step in a bottom up approach to studying the biochemical interactions in living organisms. Furthermore, the hydration of acidic molecules in the atmosphere is what drives the formation of 'free' protons or hydronium ions which are the key players in acid driven chemistry. Here are presented two unique solvation studies, Adenine(H2O)-n and C6F6(H2O)-n, these systems are very distinct, but show somewhat similar responses to hydration. The last theme presented in this work is the electronic properties

  18. Structure and Oxidation of Pyrrole Adducts Formed between Aflatoxin B2a and Biological Amines.

    PubMed

    Rushing, Blake R; Selim, Mustafa I

    2017-06-19

    Aflatoxin B 2a has been shown to bind to proteins through a dialdehyde intermediate under physiological conditions. The proposed structure of this adduct has been published showing a Schiff base interaction, but adequate verification using structural elucidation instrumental techniques has not been performed. In this work, we synthesized the aflatoxin B 2a amino acid adduct under alkaline conditions, and the formation of a new product was determined using high performance liquid chromatography-time-of-flight mass spectrometry. The resulting accurate mass was used to generate a novel proposed chemical structure of the adduct in which the dialdehyde forms a pyrrole ring with primary amines rather than the previously proposed Schiff base interaction. The pyrrole structure was confirmed using 1 H, 13 C, correlation spectroscopy, heteronuclear single quantum correlation, and heteronuclear multiple bond correlation NMR and tandem mass spectrometry. Reaction kinetics show that the reaction is overall second order and that the rate increases as pH increases. Additionally, this study shows for the first time that aflatoxin B 2a dialdehyde forms adducts with phosphatidylethanolamines and does so through pyrrole ring formation, which makes it the first aflatoxin-lipid adduct to be structurally identified. Furthermore, oxidation of the pyrrole adduct produced a product that was 16 m/z heavier. When the aflatoxin B 2a -lysine (ε) adduct was oxidized, it gave a product with an accurate mass, mass fragmentation pattern, and 1 H NMR spectrum that match aflatoxin B 1 -lysine, which suggest the transformation of the pyrrole ring to a pyrrolin-2-one ring. These data give new insight into the fate and chemical properties of biological adducts formed from aflatoxin B 2a as well as possible interferences with known aflatoxin B 1 exposure biomarkers.

  19. Formation of a Hydroxymethylfurfural-Cysteine Adduct and Its Absorption and Cytotoxicity in Caco-2 Cells.

    PubMed

    Zhao, Qianzhu; Zou, Yueyu; Huang, Caihuan; Lan, Ping; Zheng, Jie; Ou, Shiyi

    2017-11-15

    Adducts of 5-hydroxymethylfurfural (HMF)-amino acids are formed during food processing and digestion; the elimination capacity of in vitro intestinal digests of biscuits, instant noodles, and potato crisps for HMF is 652, 727, and 540 μg/g, respectively. However, the safety of these adducts is unknown. In this study, an HMF-cysteine adduct named 1-dicysteinethioacetal-5-hydroxymehtylfurfural (DCH), which was found to be produced in the gastrointestinal tract after HMF intake, was prepared to test its effect toward Caco-2 cells. Compared with HMF, the adduct displayed lower cytotoxicity against Caco-2 cells with an IC 50 value of 31.26 mM versus 14.95 mM (HMF). The DCH did not induce cell apoptosis, whereas HMF significantly increased the apoptosis rate after incubation at concentrations of 16, 32, and 48 mM for 72 h. DCH showed an absorption rate considerably lower than that of HMF by Caco-2 cells. Lower absorption of DCH may result in lower toxicity compared with HMF against Caco-2 cells. Intracellular transformation of DCH has been observed.

  20. Carbon nanodots as a matrix for the analysis of low-molecular-weight molecules in both positive- and negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and quantification of glucose and uric acid in real samples.

    PubMed

    Chen, Suming; Zheng, Huzhi; Wang, Jianing; Hou, Jian; He, Qing; Liu, Huihui; Xiong, Caiqiao; Kong, Xianglei; Nie, Zongxiu

    2013-07-16

    Carbon nanodots were applied for the first time as a new matrix for the analysis of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in both positive- and negative-ion modes. A wide range of small molecules including amino acids, peptides, fatty acids, as well as β-agonists and neutral oligosaccharides were analyzed by MALDI MS with carbon nanodots as the matrix, and the lowest 0.2 fmol limits-of-detection were obtained for octadecanoic acid. Clear sodium and potassium adducts and deprotonated signals were produced in positive- and negative-ion modes. Furthermore, the glucose and uric acid in real samples were quantitatively determined by the internal standard method with the linear range of 0.5-9 mM and 0.1-1.8 mM (R(2) > 0.999), respectively. This work gives new insight into the application of carbon nanodots and provides a general approach for rapid analysis of low-molecular-weight compounds.

  1. Structural studies of crystalline forms of triamterene with carboxylic acid, GRAS and API molecules

    PubMed Central

    Rehman, Abida

    2018-01-01

    Pharmaceutical salt solvates (dimethyl sulfoxide, DMSO) of the drug triamterene with the coformers acetic, succinic, adipic, pimelic, azelaic and nicotinic acid and ibuprofen are prepared by liquid-assisted grinding and solvent-evaporative crystallization. The modified ΔpK a rule as proposed by Cruz-Cabeza [(2012 ▸). CrystEngComm, 14, 6362–6365] is in close agreement with the results of this study. All adducts were characterized by X-ray diffraction and thermal analytical techniques, including single-crystal X-ray diffraction, powder X-ray diffraction, differential scanning calorimetry and thermal gravimetric analysis. Hydrogen-bonded motifs combined to form a variety of extended tapes and sheets. Analysis of the crystal structures showed that all adducts existed as salt solvates and contained the amino­pyridinium–carboxyl­ate heterodimer, except for the solvate containing triamterene, ibuprofen and DMSO, as a result of the presence of a strong and stable hemitriamterenium duplex. A search of the Cambridge Structural Database (CSD 5.36, Version 1.18) to determine the frequency of occurrence of the putative supramolecular synthons found in this study showed good agreement with previous work. PMID:29755747

  2. The use of lithiated adducts for structural analysis of acylglycerols by MS-ESI

    USDA-ARS?s Scientific Manuscript database

    Electrospray ionization mass spectrometry (ESI-MS) using lithium adducts is the method of choice for the analysis of acyglycerols. The method can be used for the identification of the structures of fatty acid constituents, including the number and location of double bonds and hydroxyl groups. The me...

  3. Mass Spectrometric Analysis of a Cyclic 7,8-Butanoguanine Adduct of N-Nitrosopyrrolidine: Comparison to other N-Nitrosopyrrolidine Adducts in Rat Hepatic DNA

    PubMed Central

    Loureiro, Ana Paula M.; Zhang, Wenbing; Kassie, Fekadu; Zhang, Siyi; Villalta, Peter W.; Wang, Mingyao; Hecht, Stephen S.

    2009-01-01

    The well established rat hepatocarcinogen N-nitrosopyrrolidine (NPYR, 1) requires metabolic activation to DNA adducts to express its carcinogenic activity. Among the NPYR-DNA adducts that have been identified, the cyclic 7,8-butanoguanine adduct 2-amino-6,7,8,9-tetrahydro-9-hydroxypyrido[2,1-f]purine-4(3H)-one (6), has been quantified using moderately sensitive methods, but its levels have never been compared to those of other DNA adducts of NPYR in rat hepatic DNA. Therefore, in this study, we developed a sensitive new LC-ESI-MS/MS-SRM method for quantitation of adduct 6, and compared its levels to those of several other NPYR-DNA adducts formed by different mechanisms. The new method was shown to be accurate and precise, with good recoveries and low fmol detection limits. Rats were treated with NPYR by gavage at doses of 46, 92, or 184 mg/kg body weight and sacrificed 16 h later. Hepatic DNA was isolated and analyzed for NPYR-DNA adducts. Adduct 6 was by far the most prevalent, with levels ranging from about 900 – 3000 μmol/mol Gua and responsive to dose. Levels of adducts formed from crotonaldehyde, a metabolite of NPYR, were about 0.2 – 0.9 Pmol/mol dGuo, while those of adducts resulting from reaction with DNA of tetrahydrofuranyl- like intermediates were in the range of 0.01 – 4 μmol/mol deoxyribonucleoside. The results of this study demonstrate that, among typical NPYR-DNA adducts, adduct 6 is easily the most abundant in hepatic DNA. Since previous studies have shown that it can be detected in the urine of NPYR-treated rats, the results suggest that it is a potential candidate as a biomarker for assessing human exposure to and metabolic activation of NPYR. PMID:19761253

  4. Exporters for Production of Amino Acids and Other Small Molecules.

    PubMed

    Eggeling, Lothar

    Microbes are talented catalysts to synthesize valuable small molecules in their cytosol. However, to make full use of their skills - and that of metabolic engineers - the export of intracellularly synthesized molecules to the culture medium has to be considered. This step is as essential as is each step for the synthesis of the favorite molecule of the metabolic engineer, but is frequently not taken into account. To export small molecules via the microbial cell envelope, a range of different types of carrier proteins is recognized to be involved, which are primary active carriers, secondary active carriers, or proteins increasing diffusion. Relevant export may require just one carrier as is the case with L-lysine export by Corynebacterium glutamicum or involve up to four carriers as known for L-cysteine excretion by Escherichia coli. Meanwhile carriers for a number of small molecules of biotechnological interest are recognized, like for production of peptides, nucleosides, diamines, organic acids, or biofuels. In addition to carriers involved in amino acid excretion, such carriers and their impact on product formation are described, as well as the relatedness of export carriers which may serve as a hint to identify further carriers required to improve product formation by engineering export.

  5. Small Molecule Protection of Bone Marrow Hematopoietic Stem Cells

    DTIC Science & Technology

    2015-10-01

    several recently identified small molecules can protect hematopoietic stem cells (HSCs) from damage or killing by endogenous aldehydes . Proof-of-concept...anemia bone marrow failure CD34+ hematopoietic stem cells aldehydes formaldehyde DNA damage DNA base adduct DNA-protein crosslink mass...below. Revised Specific Aim 1: Small molecule protection of human cells from aldehyde - induced killing (in vitro studies - no mice or human subjects

  6. NMR structural studies of the supramolecular adducts between a liver cytosolic bile acid binding protein and gadolinium(III)-chelates bearing bile acids residues: molecular determinants of the binding of a hepatospecific magnetic resonance imaging contrast agent.

    PubMed

    Assfalg, Michael; Gianolio, Eliana; Zanzoni, Serena; Tomaselli, Simona; Russo, Vito Lo; Cabella, Claudia; Ragona, Laura; Aime, Silvio; Molinari, Henriette

    2007-11-01

    The binding affinities of a selected series of Gd(III) chelates bearing bile acid residues, potential hepatospecific MRI contrast agents, to a liver cytosolic bile acid transporter, have been determined through relaxivity measurements. The Ln(III) complexes of compound 1 were selected for further NMR structural analysis aimed at assessing the molecular determinants of binding. A number of NMR experiments have been carried out on the bile acid-like adduct, using both diamagnetic Y(III) and paramagnetic Gd(III) complexes, bound to a liver bile acid binding protein. The identified protein "hot spots" defined a single binding site located at the protein portal region. The presented findings will serve in a medicinal chemistry approach for the design of hepatocytes-selective gadolinium chelates for liver malignancies detection.

  7. Conformational changes of the phenyl and naphthyl isocyanate-DNA adducts during DNA replication and by minor groove binding molecules

    PubMed Central

    Nakano, Shu-ichi; Uotani, Yuuki; Sato, Yuichi; Oka, Hirohito; Fujii, Masayuki; Sugimoto, Naoki

    2013-01-01

    DNA lesions produced by aromatic isocyanates have an extra bulky group on the nucleotide bases, with the capability of forming stacking interaction within a DNA helix. In this work, we investigated the conformation of the 2′-deoxyadenosine and 2′-deoxycytidine derivatives tethering a phenyl or naphthyl group, introduced in a DNA duplex. The chemical modification experiments using KMnO4 and 1-cyclohexyl-3 -(2-morpholinoethyl) carbodiimide metho-p-toluenesulfonate have shown that the 2′-deoxycytidine lesions form the base pair with guanine while the 2′-deoxyadenosine lesions have less ability of forming the base pair with thymine in solution. Nevertheless, the kinetic analysis shows that these DNA lesions are compatible with DNA ligase and DNA polymerase reactions, as much as natural DNA bases. We suggest that the adduct lesions have a capability of adopting dual conformations, depending on the difference in their interaction energies between stacking of the attached aromatic group and base pairing through hydrogen bonds. It is also presented that the attached aromatic groups change their orientation by interacting with the minor groove binding netropsin, distamycin and synthetic polyamide. The nucleotide derivatives would be useful for enhancing the phenotypic diversity of DNA molecules and for exploring new non-natural nucleotides. PMID:23873956

  8. Raman spectroscopic evaluation of DNA adducts of a platinum containing anticancer drug.

    PubMed

    Jangir, Deepak K; Mehrotra, Ranjana

    2014-09-15

    Mechanistic understanding of the interaction of drugs with their target molecules is important for better understanding of their mode of action and to improve their efficacy. Carboplatin is a platinum containing anticancer drug, used to treat different type of tumors. In the present work, we applied Raman spectroscopy to study the interaction of carboplatin with DNA at molecular level using different carboplatin-DNA molar ratios. These Raman spectroscopic results provide comprehensive understanding on the carboplatin-DNA interactions and indicate that DNA cross-linked adducts formed by carboplatin are similar to cisplatin adducts. The results indicate that guanine N7 and adenine N7 are the putative sites for carboplatin interaction. It is observed that carboplatin has some affinity toward cytosine in DNA. Phosphate sugar backbone of DNA showed conformation perturbation in DNA which were easily sensible at higher concentrations of carboplatin. Most importantly, carboplatin interaction induces intermediate A- and B-DNA conformations at the cross-linking sites. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Requirements as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (where N = 400 ppb). (b) Specific requirements.... (1) Recordkeeping requirements. Requirements as specified in § 721.125 (a), (b), (c), (f), (g), (h... adduct (P-90-364) is subject to reporting under this section for the significant new uses described in...

  10. Detection of benzo[a]pyrene diol epoxide-DNA adducts in peripheral blood lymphocytes and antibodies to the adducts in serum from coke oven workers.

    PubMed Central

    Harris, C C; Vahakangas, K; Newman, M J; Trivers, G E; Shamsuddin, A; Sinopoli, N; Mann, D L; Wright, W E

    1985-01-01

    Coke oven workers are exposed to high levels of carcinogenic polycyclic aromatic hydrocarbons, including benzo[a]pyrene (B[a]P), and are at increased risk of lung cancer. Since B[a]P is enzymatically activated to 7 beta,8 alpha-dihydroxy(9 alpha, 10 alpha)epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (B[a]PDE) that forms adducts with DNA, the presence of these adducts was measured in DNA from peripheral blood lymphocytes by synchronous fluorescence spectrophotometry and enzyme radioimmunoassay. Approximately two-thirds of the workers had detectable levels of B[a]PDE-DNA adducts. Antibodies to the DNA adducts were also found in the serum of 27% of the workers. B[a]PDE-DNA adducts were not detectable in lymphocytes and antibodies to the adducts were not detected in sera from a control group of nonsmoking laboratory workers. DNA adducts and/or antibodies to the adducts indicate exposure to B[a]P and its metabolic activation to the carcinogenic metabolite that covalently binds to and damages DNA. Detection of adducts and antibodies to them may also be useful as internal dosimeters of the pathobiological effective doses of chemical carcinogens. PMID:2413443

  11. Cresyl saligenin phosphate makes multiple adducts on free histidine, but does not form an adduct on histidine 438 of human butyrylcholinesterase.

    PubMed

    Liyasova, Mariya S; Schopfer, Lawrence M; Lockridge, Oksana

    2013-03-25

    Cresyl saligenin phosphate (CBDP) is a suspected causative agent of "aerotoxic syndrome", affecting pilots, crew members and passengers. CBDP is produced in vivo from ortho-containing isomers of tricresyl phosphate (TCP), a component of jet engine lubricants and hydraulic fluids. CBDP irreversibly inhibits butyrylcholinesterase (BChE) in human plasma by forming adducts on the active site serine (Ser-198). Inhibited BChE undergoes aging to release saligenin and o-cresol. The active site histidine (His-438) was hypothesized to abstract o-hydroxybenzyl moiety from the initial adduct on Ser-198. Our goal was to test this hypothesis. Mass spectral analysis of CBDP-inhibited BChE digested with Glu-C showed an o-hydroxybenzyl adduct (+106 amu) on lysine 499, a residue far from the active site, but not on His-438. Nevertheless, the nitrogen of the imidazole ring of free L-histidine formed a variety of adducts upon reaction with CBDP, including the o-hydroxybenzyl adduct, suggesting that histidine-CBDP adducts may form on other proteins. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Cresyl saligenin phosphate makes multiple adducts on free histidine, but does not form an adduct on histidine 438 of human butyrylcholinesterase

    PubMed Central

    Liyasova, Mariya S.; Schopfer, Lawrence M.; Lockridge, Oksana

    2012-01-01

    Cresyl saligenin phosphate (CBDP) is a suspected causative agent of “aerotoxic syndrome”, affecting pilots, crew members and passengers. CBDP is produced in vivo from ortho-containing isomers of tricresyl phosphate (TCP), a component of jet engine lubricants and hydraulic fluids. CBDP irreversibly inhibits butyrylcholinesterase (BChE) in human plasma by forming adducts on the active site serine (Ser-198). Inhibited BChE undergoes aging to release saligenin and o-cresol. The active site histidine (His-438) was hypothesized to abstract o-hydroxybenzyl moiety from the initial adduct on Ser-198. Our goal was to test this hypothesis. Mass spectral analysis of CBDP-inhibited BChE digested with Glu-C showed an o-hydroxybenzyl adduct (+106 amu) on lysine 499, a residue far from the active site, but not on His-438. Nevertheless, the nitrogen of the imidazole ring of free L-histidine formed a variety of adducts upon reaction with CBDP, including the o-hydroxybenzyl adduct, suggesting that histidine-CBDP adducts may form on other proteins. PMID:22898212

  13. Atheroprotective immunization with malondialdehyde-modified LDL is hapten specific and dependent on advanced MDA adducts: implications for development of an atheroprotective vaccine1[S

    PubMed Central

    Gonen, Ayelet; Hansen, Lotte F.; Turner, William W.; Montano, Erica N.; Que, Xuchu; Rafia, Apaїs; Chou, Meng-Yun; Wiesner, Philipp; Tsiantoulas, Dimitrios; Corr, Maripat; VanNieuwenhze, Michael S.; Tsimikas, Sotirios; Binder, Christoph J.; Witztum, Joseph L.; Hartvigsen, Karsten

    2014-01-01

    Immunization with homologous malondialdehyde (MDA)-modified LDL (MDA-LDL) leads to atheroprotection in experimental models supporting the concept that a vaccine to oxidation-specific epitopes (OSEs) of oxidized LDL could limit atherogenesis. However, modification of human LDL with OSE to use as an immunogen would be impractical for generalized use. Furthermore, when MDA is used to modify LDL, a wide variety of related MDA adducts are formed, both simple and more complex. To define the relevant epitopes that would reproduce the atheroprotective effects of immunization with MDA-LDL, we sought to determine the responsible immunodominant and atheroprotective adducts. We now demonstrate that fluorescent adducts of MDA involving the condensation of two or more MDA molecules with lysine to form malondialdehyde-acetaldehyde (MAA)-type adducts generate immunodominant epitopes that lead to atheroprotective responses. We further demonstrate that a T helper (Th) 2-biased hapten-specific humoral and cellular response is sufficient, and thus, MAA-modified homologous albumin is an equally effective immunogen. We further show that such Th2-biased humoral responses per se are not atheroprotective if they do not target relevant antigens. These data demonstrate the feasibility of development of a small-molecule immunogen that could stimulate MAA-specific immune responses, which could be used to develop a vaccine approach to retard or prevent atherogenesis. PMID:25143462

  14. Chemistry and Biology of Aflatoxin-DNA Adducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Michael P.; Banerjee, Surajit; Brown, Kyle L.

    Aspergillus flavus is a fungal contaminant of stored rice, wheat, corn, and other grainstuffs, and peanuts. This is of concern to human health because it produces the mycotoxin aflatoxin B{sub 1} (AFB{sub 1}), which is genotoxic and is implicated in the etiology of liver cancer. AFB{sub 1} is oxidized in vivo by cytochrome P450 to form aflatoxin B{sub 1} epoxide, which forms an N7-dG adduct (AFB{sub 1}-N7-dG) in DNA. The latter rearranges to a formamidopyrimidine (AFB{sub 1}-FAPY) derivative that equilibrates between {alpha} and {beta} anomers of the deoxyribose. In DNA, both the AFB{sub 1}-N7-dG and AFB{sub 1}-{beta}-FAPY adducts intercalate abovemore » the 5'-face of the damaged guanine. Each produces G {yields} T transversions in Escherichia coli, but the AFB{sub 1}-{beta}-FAPY adduct is more mutagenic. The Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) provides a model for understanding error-prone bypass of the AFB{sub 1}-N7-dG and AFB{sub 1}-{beta}-FAPY adducts. It bypasses the AFB{sub 1}-N7-dG adduct, but it conducts error-prone replication past the AFB{sub 1}-FAPY adduct, including mis-insertion of dATP, consistent with the G {yields} T mutations characteristic of AFB{sub 1} mutagenesis in E. coli. Crystallographic analyses of a series of binary and ternary complexes with the Dpo4 polymerase revealed differing orientations of the N7-C8 bond of the AFB{sub 1}-N7-dG adduct as compared to the N{sup 5}-C8 bond in the AFB{sub 1}-{beta}-FAPY adduct, and differential accommodation of the intercalated AFB{sub 1} moieties within the active site. These may modulate AFB{sub 1} lesion bypass by this polymerase.« less

  15. A systematic tandem mass spectrometric study of anion attachment for improved detection and acidity evaluation of nitrogen-rich energetic compounds.

    PubMed

    Gaiffe, Gabriel; Bridoux, Maxime C; Costanza, Christine; Cole, Richard B

    2018-01-01

    The development of rapid, efficient, and reliable detection methods for the characterization of energetic compounds is of high importance to security forces concerned with terrorist threats. With a mass spectrometric approach, characteristic ions can be produced by attaching anions to analyte molecules in the negative ion mode of electrospray ionization mass spectrometry (ESI-MS). Under optimized conditions, formed anionic adducts can be detected with higher sensitivities as compared with the deprotonated molecules. Fundamental aspects pertaining to the formation of anionic adducts of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX), 1,3,5-trinitro-1,3,5-triazinane (RDX), pentaerythritol tetranitrate (PETN), nitroglycerin (NG), and 1,3,5-trinitroso-1,3,5-triazinane energetic (R-salt) compounds using various anions have been systematically studied by ESI-MS and ESI tandem mass spectrometry (collision-induced dissociation) experiments. Bracketing method results show that the gas-phase acidities of PETN, RDX, and HMX fall between those of HF and acetic acid. Moreover, PETN and RDX are each less acidic than HMX in the gas phase. Nitroglycerin was found to be the most acidic among the nitrogen-rich explosives studied. The ensemble of bracketing results allows the construction of the following ranking of gas-phase acidities: PETN (1530-1458 kJ/mol) > RDX (approximately 1458 kJ/mol) > HMX (approximately 1433 kJ/mol) > nitroglycerin (1427-1327.8 kJ/mol). Copyright © 2017 John Wiley & Sons, Ltd.

  16. Biomonitoring of Aristolactam-DNA Adducts in Human Tissues using Ultra-Performance Liquid Chromatography/Ion-Trap Mass Spectrometry

    PubMed Central

    Yun, Byeong Hwa; Rosenquist, Thomas; Sidorenko, Viktoriya; Iden, Charles; Chung-Hsin, Chen; Pu, Yeong-Shiau; Bonala, Radha; Johnson, Francis; Dickman, Kathleen G.; Grollman, Arthur P.; Turesky, Robert J.

    2012-01-01

    Aristolochic acids (AAs) are a structurally-related family of nephrotoxic and carcinogenic nitrophenanthrene compounds found in Aristolochia herbaceous plants, many of which have been used worldwide for medicinal purposes. AAs have been implicated in the etiology of so-called Chinese herbs nephropathy and of Balkan endemic nephropathy. Both of these disease syndromes are associated with carcinomas of the upper urinary tract (UUC). 8-Methoxy-6-nitrophenanthro-[3,4-d]-1,3-dioxolo-5-carboxylic acid (AA-I) is a principal component of Aristolochia herbs. Following metabolic activation, AA-I reacts with DNA to form aristolactam (AL-I)-DNA adducts. We have developed a sensitive analytical method, using ultra-performance liquid chromatography-electrospray ionization/multistage mass spectrometry (UPLC-ESI/MSn) with a linear quadrupole ion-trap mass spectrometer, to measure 7-(deoxyadenosin-N6-yl) aristolactam I (dA-AL-I) and 7-(deoxyguanosin-N2-yl) aristolactam I (dG-AL-I) adducts. Using 10 μg of DNA for measurements, the lower limits of quantitation of dA-AL-I and dG-AL-I are, respectively, 0.3 and 1.0 adducts per 108 DNA bases. We have used UPLC-ESI/MSn to quantify AL-DNA adducts in tissues of rodents exposed to AA, and in the renal cortex of patients with UUC who reside in Taiwan, where the incidence of this uncommon cancer is the highest reported for any country in the world. In human tissues, dA-AL-I was detected at levels ranging from 9 to 338 adducts per 108 DNA bases, whereas dG-AL-I was not found. We conclude that UPLC-ESI/MSn is a highly sensitive, specific and robust analytical method, positioned to supplant 32P-postlabeling techniques currently used for biomonitoring of DNA adducts in human tissues. Importantly, UPLC-ESI/MSn could be used to document exposure to AA, the toxicant responsible for AA nephropathy and its associated UUC. PMID:22515372

  17. Some reactions of the hydroxyl adduct of adenine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanhemmen, J.J.

    1975-01-01

    The chemical reactions of purine derivatives resulting from pulse radiolysis were studied. Some reactions of the hydroxyl adduct of adenine are described and one of these reactions was compared with similar reactions of hydroxyl adducts of other purine derivatives. Evidence is given that in various purines opening of the imidazole ring is due to unimolecular rearrangements of the hydroxyl adducts. (GRA)

  18. Polycyclic aromatic hydrocarbons and PAH-related DNA adducts.

    PubMed

    Ewa, Błaszczyk; Danuta, Mielżyńska-Švach

    2017-08-01

    Investigations on the impact of chemicals on the environment and human health have led to the development of an exposome concept. The exposome refers to the totality of exposures received by a person during life, including exposures to life-style factors, from the prenatal period to death. The exposure to genotoxic chemicals and their reactive metabolites can induce chemical modifications of DNA, such as, for example, DNA adducts, which have been extensively studied and which play a key role in chemically induced carcinogenesis. Development of different methods for the identification of DNA adducts has led to adopting DNA adductomic approaches. The ability to simultaneously detect multiple PAH-derived DNA adducts may allow for the improved assessment of exposure, and offer a mechanistic insight into the carcinogenic process following exposure to PAH mixtures. The major advantage of measuring chemical-specific DNA adducts is the assessment of a biologically effective dose. This review provides information about the occurrence of the polycyclic aromatic hydrocarbons (PAHs) and their influence on human exposure and biological effects, including PAH-derived DNA adduct formation and repair processes. Selected methods used for determination of DNA adducts have been presented.

  19. Reactive aldehyde metabolites from the anti-HIV drug abacavir: amino acid adducts as possible factors in abacavir toxicity.

    PubMed

    Charneira, Catarina; Godinho, Ana L A; Oliveira, M Conceição; Pereira, Sofia A; Monteiro, Emília C; Marques, M Matilde; Antunes, Alexandra M M

    2011-12-19

    Abacavir is a nucleoside reverse transcriptase inhibitor marketed since 1999 for the treatment of infection with the human immunodeficiency virus type 1 (HIV). Despite its clinical efficacy, abacavir administration has been associated with serious and sometimes fatal toxic events. Abacavir has been reported to undergo bioactivation in vitro, yielding reactive species that bind covalently to human serum albumin, but the haptenation mechanism and its significance to the toxic events induced by this anti-HIV drug have yet to be elucidated. Abacavir is extensively metabolized in the liver, resulting in inactive glucuronide and carboxylate metabolites. The metabolism of abacavir to the carboxylate involves a two-step oxidation via an unconjugated aldehyde, which under dehydrogenase activity isomerizes to a conjugated aldehyde. Concurrently with metabolic oxidation, the two putative aldehyde metabolites may be trapped by nucleophilic side groups in proteins yielding covalent adducts, which can be at the onset of the toxic events associated with abacavir. To gain insight into the role of aldehyde metabolites in abacavir-induced toxicity and with the ultimate goal of preparing reliable and fully characterized prospective biomarkers of exposure to the drug, we synthesized the two putative abacavir aldehyde metabolites and investigated their reaction with the α-amino group of valine. The resulting adducts were subsequently stabilized by reduction with sodium cyanoborohydride and derivatized with phenyl isothiocyanate, leading in both instances to the formation of the same phenylthiohydantoin, which was fully characterized by NMR and MS. These results suggest that the unconjugated aldehyde, initially formed in vivo, rapidly isomerizes to the thermodynamically more stable conjugated aldehyde, which is the electrophilic intermediate mainly involved in reaction with bionucleophiles. Moreover, we demonstrated that the reaction of the conjugated aldehyde with nitrogen

  20. Methods for Identifying Ligands that Target Nucleic Acid Molecules and Nucleic Acid Structural Motifs

    NASA Technical Reports Server (NTRS)

    Childs-Disney, Jessica L. (Inventor); Disney, Matthew D. (Inventor)

    2017-01-01

    Disclosed are methods for identifying a nucleic acid (e.g., RNA, DNA, etc.) motif which interacts with a ligand. The method includes providing a plurality of ligands immobilized on a support, wherein each particular ligand is immobilized at a discrete location on the support; contacting the plurality of immobilized ligands with a nucleic acid motif library under conditions effective for one or more members of the nucleic acid motif library to bind with the immobilized ligands; and identifying members of the nucleic acid motif library that are bound to a particular immobilized ligand. Also disclosed are methods for selecting, from a plurality of candidate ligands, one or more ligands that have increased likelihood of binding to a nucleic acid molecule comprising a particular nucleic acid motif, as well as methods for identifying a nucleic acid which interacts with a ligand.

  1. NITRO MUSK ADDUCTS OF RAINBOW TROUT ...

    EPA Pesticide Factsheets

    Rainbow trout and other fish species can serve as 'sentinel' species for the assessment of ecological status and the presence of certain environmental contaminants. As such they act as bioindicators of exposure. Here we present seminal data regarding dose-response and toxicokinetics of trout hemoglobin adduct formation from exposure to nitro musks that are frequently used as fragrance ingredients in formulations of personal care products. Hemoglobin adducts serve as biomarkers of exposure of the sentinel species as we have shown in previous studies of hemoglobin adducts formed in trout and environmental carp exposed to musk xylene (MX) and musk ketone (MK). Gas chromatography-electron capture negative ion chemical ionization-mass spectrometry (GC-NICI-MS) employing selected ion monitoring is used to measure 4-amino-MX (4-AMX), 2-amino-MX (2-AMX), and 2-amino-MK (2-AMK) released by alkaline hydrolysis from the sulfinamide adducts of hemoglobin. Dose-response and toxicokinetics were investigated using this sensitive method for analysis of these metabolites. In the dose-response investigation, the concentrations of 4-AMX and 2-2AMX are observed to pass through a maximum at 0.10 mg/g. In the case of 2-AMK, the adduct concentration is almost the same at dosages in the range of 0.030 to 0.10 mg/g. For toxicokinetics, the concentration of the metabolites in the Hb reaches a maximum in the 3-day sample after administration of MX or MK. Further elimination of the metabo

  2. Including the Copenhagen Adduction Exercise in the FIFA 11+ Provides Missing Eccentric Hip Adduction Strength Effect in Male Soccer Players: A Randomized Controlled Trial.

    PubMed

    Harøy, Joar; Thorborg, Kristian; Serner, Andreas; Bjørkheim, André; Rolstad, Linn E; Hölmich, Per; Bahr, Roald; Andersen, Thor Einar

    2017-11-01

    The FIFA 11+ was developed as a complete warm-up program to prevent injuries in soccer players. Although reduced hip adduction strength is associated with groin injuries, none of the exercises included in the FIFA 11+ seem to specifically target hip adduction strength. To investigate the effect on eccentric hip adduction strength of the FIFA 11+ warm-up program with or without the Copenhagen adduction exercise. Randomized controlled trial; Level of evidence, 1. We recruited 45 eligible players from 2 U19 elite male soccer teams. Players were randomized into 2 groups; 1 group carried out the standard FIFA 11+ program, while the other carried out the FIFA 11+ but replaced the Nordic hamstring exercise with the Copenhagen adduction exercise. Both groups performed the intervention 3 times weekly for 8 weeks. Players completed eccentric strength and sprint testing before and after the intervention. Per-protocol analyses were performed, and 12 players were excluded due to low compliance (<67% of sessions completed). The main outcome was eccentric hip adduction strength (N·m/kg). Between-group analyses revealed a significantly greater increase in eccentric hip adduction strength of 0.29 Nm/kg (8.9%; P = .01) in favor of the group performing the Copenhagen adduction exercise, whereas no within-group change was noted in the group that used the standard FIFA 11+ program (-0.02 N·m/kg [-0.7%]; P = .69). Including the Copenhagen adduction exercise in the FIFA 11+ program increases eccentric hip adduction strength, while the standard FIFA 11+ program does not. Registration: Registration: ISRCTN13731446 (International Standard Randomised Controlled Trial Number registry).

  3. Electron Detachment Dissociation of Underivatized Chloride-Adducted Oligosaccharides

    NASA Astrophysics Data System (ADS)

    Kornacki, James R.; Adamson, Julie T.; Håkansson, Kristina

    2012-11-01

    Chloride anion attachment has previously been shown to aid determination of saccharide anomeric configuration and generation of linkage information in negative ion post-source decay MALDI tandem mass spectrometry. Here, we employ electron detachment dissociation (EDD) and collision activated dissociation (CAD) for the structural characterization of underivatized oligosaccharides bearing a chloride ion adduct. Both neutral and sialylated oligosaccharides are examined, including maltoheptaose, an asialo biantennary glycan (NA2), disialylacto- N-tetraose (DSLNT), and two LS tetrasaccharides (LSTa and LSTb). Gas-phase chloride-adducted species are generated by negative ion mode electrospray ionization. EDD and CAD spectra of chloride-adducted oligosaccharides are compared to the corresponding spectra for doubly deprotonated species not containing a chloride anion to assess the role of chloride adduction in the stimulation of alternative fragmentation pathways and altered charge locations allowing detection of additional product ions. In all cases, EDD of singly chloridated and singly deprotonated species resulted in an increase in observed cross-ring cleavages, which are essential to providing saccharide linkage information. Glycosidic cleavages also increased in EDD of chloride-adducted oligosaccharides to reveal complementary structural information compared to traditional (non-chloride-assisted) EDD and CAD. Results indicate that chloride adduction is of interest in alternative anion activation methods such as EDD for oligosaccharide structural characterization.

  4. Linking the generation of DNA adducts to lung cancer.

    PubMed

    Ceppi, Marcello; Munnia, Armelle; Cellai, Filippo; Bruzzone, Marco; Peluso, Marco E M

    2017-09-01

    Worldwide, lung cancer is the leading cause of cancer death. DNA adducts are considered a reliable biomarker that reflects carcinogen exposure to tobacco smoke, but the central question is what is the relationship of DNA adducts and cancer? Therefore, we investigated this relationship by a meta-analysis of twenty-two studies with bronchial adducts for a total of 1091 subjects, 887 lung cancer cases and 204 apparently healthy individuals with no evidence of lung cancer. Our study shows that these adducts are significantly associated to increase lung cancer risk. The value of Mean Ratio lung-cancer (MR) of bronchial adducts resulting from the random effects model was 2.64, 95% C.I. 2.00-3.50, in overall lung cancer cases as compared to controls. The significant difference, with lung cancer patients having significant higher levels of bronchial adducts than controls, persisted after stratification for smoking habits. The MR lung-cancer value between lung cancer patients and controls for smokers was 2.03, 95% C.I. 1.42-2.91, for ex-smokers 3.27, 95% C.I. 1.49-7.18, and for non-smokers was 3.81, 95% C.I. 1.85-7.85. Next, we found that the generation of bronchial adducts is significantly related to inhalation exposure to tobacco smoke carcinogens confirming its association with volatile carcinogens. The MR smoking estimate of bronchial adducts resulting from meta-regression was 2.28, 95% Confidence Interval (C.I.) 1.10-4.73, in overall smokers in respect to non-smokers. The present work provides strengthening of the hypothesis that bronchial adducts are not simply relate to exposure, but are a cause of chemical-induced lung cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Diffusivity of dicarboxylic acids molecules to secondary organic material governed by particle phase state

    NASA Astrophysics Data System (ADS)

    Han, Y.; Gong, Z.; Liu, P.; de Sá, S. S.; McKinney, K. A.; Martin, S. T.

    2017-12-01

    Atmospheric secondary organic material (SOM) from oxidation of volatile organic compounds can exist in amorphous solid, semisolid, and liquid states depending on a range of factors such as relative humidity (RH), temperature, and reaction history. The phase state of SOM affects the dynamic exchange and reactivity between particles and gas-phase molecules. Dicarboxylic acids are ubiquitous in ambient atmosphere and the uptake of which may lead to substantial changes in hygroscopicity, absorption property, and light scattering of aerosol particles. This study investigates the diffusivity of dicarboxylic acids to the matrix of SOM particles. SOM was generated from dark ozonolysis of a-pinene in Harvard Environmental Chamber. The produced SOM particles were passed through an ozone scrubber to remove gas-phase chemistry before being led into a flask reactor, where gas-phase dicarboxylic acid was injected continuously and RH was varied from 5% to 85%. The probe dicarboxylic acids molecules including malonic acid and a-ketoglutaric acid have been investigated for the uptake to SOM particles. Organic composition in the outflow of the flask was measured with a high-resolution time-of-flight aerosol mass spectrometer. The mass fractions of tracer ions in total organic mass for both malonic acid and a-ketoglutaric acid increased substantially with the increase of RH values. The tracer ions of malonic acid were also more abundant in a-pinene SOM particles with increased gas-phase concentrations. These results suggest that the diffusion of the studied dicarboxylic acids molecules to a-pinene SOM particles was enhanced at increased RH values, which is possibly due to the phase transition of a-pinene SOM particles from non-liquid to liquid states. Therefore, particle phase state may be an important factor governing the diffusivity of dicarboxylic acids molecules to a-pinene SOM. Further dicarboxylic acids with various functional groups will be investigated to understand the

  6. Covalent adduct formation between the plasmalogen-derived modification product 2-chlorohexadecanal and phloretin.

    PubMed

    Üllen, Andreas; Nusshold, Christoph; Glasnov, Toma; Saf, Robert; Cantillo, David; Eibinger, Gerald; Reicher, Helga; Fauler, Günter; Bernhart, Eva; Hallstrom, Seth; Kogelnik, Nora; Zangger, Klaus; Oliver Kappe, C; Malle, Ernst; Sattler, Wolfgang

    2015-02-15

    Hypochlorous acid added as reagent or generated by the myeloperoxidase (MPO)-H2O2-Cl(-) system oxidatively modifies brain ether-phospholipids (plasmalogens). This reaction generates a sn2-acyl-lysophospholipid and chlorinated fatty aldehydes. 2-Chlorohexadecanal (2-ClHDA), a prototypic member of chlorinated long-chain fatty aldehydes, has potent neurotoxic potential by inflicting blood-brain barrier (BBB) damage. During earlier studies we could show that the dihydrochalcone-type polyphenol phloretin attenuated 2-ClHDA-induced BBB dysfunction. To clarify the underlying mechanism(s) we now investigated the possibility of covalent adduct formation between 2-ClHDA and phloretin. Coincubation of 2-ClHDA and phloretin in phosphatidylcholine liposomes revealed a half-life of 2-ClHDA of approx. 120min, decaying at a rate of 5.9×10(-3)min(-1). NMR studies and enthalpy calculations suggested that 2-ClHDA-phloretin adduct formation occurs via electrophilic aromatic substitution followed by hemiacetal formation on the A-ring of phloretin. Adduct characterization by high-resolution mass spectroscopy confirmed these results. In contrast to 2-ClHDA, the covalent 2-ClHDA-phloretin adduct was without adverse effects on MTT reduction (an indicator for metabolic activity), cellular adenine nucleotide content, and barrier function of brain microvascular endothelial cells (BMVEC). Of note, 2-ClHDA-phloretin adduct formation was also observed in BMVEC cultures. Intraperitoneal application and subsequent GC-MS analysis of brain lipid extracts revealed that phloretin is able to penetrate the BBB of C57BL/6J mice. Data of the present study indicate that phloretin scavenges 2-ClHDA, thereby attenuating 2-ClHDA-mediated brain endothelial cell dysfunction. We here identify a detoxification pathway for a prototypic chlorinated fatty aldehyde (generated via the MPO axis) that compromises BBB function in vitro and in vivo. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights

  7. Covalent adduct formation between the plasmalogen-derived modification product 2-chlorohexadecanal and phloretin

    PubMed Central

    Üllen, Andreas; Nusshold, Christoph; Glasnov, Toma; Saf, Robert; Cantillo, David; Eibinger, Gerald; Reicher, Helga; Fauler, Günter; Bernhart, Eva; Hallstrom, Seth; Kogelnik, Nora; Zangger, Klaus; Oliver Kappe, C.; Malle, Ernst; Sattler, Wolfgang

    2015-01-01

    Hypochlorous acid added as reagent or generated by the myeloperoxidase (MPO)-H2O2-Cl− system oxidatively modifies brain ether-phospholipids (plasmalogens). This reaction generates a sn2-acyl-lysophospholipid and chlorinated fatty aldehydes. 2-Chlorohexadecanal (2-ClHDA), a prototypic member of chlorinated long-chain fatty aldehydes, has potent neurotoxic potential by inflicting blood–brain barrier (BBB) damage. During earlier studies we could show that the dihydrochalcone-type polyphenol phloretin attenuated 2-ClHDA-induced BBB dysfunction. To clarify the underlying mechanism(s) we now investigated the possibility of covalent adduct formation between 2-ClHDA and phloretin. Coincubation of 2-ClHDA and phloretin in phosphatidylcholine liposomes revealed a half-life of 2-ClHDA of approx. 120 min, decaying at a rate of 5.9 × 10−3 min−1. NMR studies and enthalpy calculations suggested that 2-ClHDA-phloretin adduct formation occurs via electrophilic aromatic substitution followed by hemiacetal formation on the A-ring of phloretin. Adduct characterization by high-resolution mass spectroscopy confirmed these results. In contrast to 2-ClHDA, the covalent 2-ClHDA-phloretin adduct was without adverse effects on MTT reduction (an indicator for metabolic activity), cellular adenine nucleotide content, and barrier function of brain microvascular endothelial cells (BMVEC). Of note, 2-ClHDA-phloretin adduct formation was also observed in BMVEC cultures. Intraperitoneal application and subsequent GC–MS analysis of brain lipid extracts revealed that phloretin is able to penetrate the BBB of C57BL/6J mice. Data of the present study indicate that phloretin scavenges 2-ClHDA, thereby attenuating 2-ClHDA-mediated brain endothelial cell dysfunction. We here identify a detoxification pathway for a prototypic chlorinated fatty aldehyde (generated via the MPO axis) that compromises BBB function in vitro and in vivo. PMID:25576489

  8. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

  9. Enantiomer analysis of chiral carboxylic acids by AIE molecules bearing optically pure aminol groups.

    PubMed

    Zheng, Yan-Song; Hu, Yu-Jian; Li, Dong-Mi; Chen, Yi-Chang

    2010-01-15

    Pure enantiomers of carboxylic acids are a class of important biomolecules, chiral drugs, chiral reagents, etc. Analysis of the enantiomers usually needs expensive instrument or complex chiral receptors. However, to develop simple and reliable methods for the enantiomer analysis of acids is difficult. In this paper, chiral recognition of 2,3-dibenzoyltartaric acid and mandelic acid was first carried out by aggregation-induced emission molecules bearing optically pure aminol group, which was easily synthesized. The chiral recognition is not only seen by naked eyes but also measured by fluorophotometer. The difference of fluorescence intensity between the two enantiomers of the acids aroused by the aggregation-induced emission molecules was up to 598. The chiral recognition could be applied to quantitative analysis of enantiomer content of chiral acids. More chiral AIE amines need to be developed for enantiomer analysis of more carboxylic acids.

  10. Acetaminophen Adducts Detected in Serum of Pediatric Patients With Acute Liver Failure.

    PubMed

    Alonso, Estella M; James, Laura P; Zhang, Song; Squires, Robert H

    2015-07-01

    Previous studies in patients with acute liver failure identified acetaminophen (APAP) protein adducts in the serum of 12% and 19% of children and adults, respectively, with acute liver failure of indeterminate etiology. This article details the testing of APAP adducts in a subset (n = 393) of patients with varied diagnoses in the Pediatric Acute Liver Failure Study Group (PALFSG). Serum samples were available from 393 participants included in the PALFSG registry. Adduct measurement was performed using validated methods. Participants were grouped by diagnostic category as known APAP overdose, known other diagnosis, and indeterminate etiology. Demographic and clinical characteristics and participant outcomes were compared by adduct status (positive or negative) within each group. APAP adduct testing was positive in 86% of participants with known APAP overdose, 6% with other known diagnoses, and 11% with an indeterminate cause of liver failure. Adduct-positive participants were noted to have marked elevation of serum alanine aminotransferase and aspartate aminotransferase coupled with total serum bilirubin that was significantly lower than adduct-negative patients. In the indeterminate group, adduct-positive patients had different outcomes than adduct-negative patients (P = 0.03); spontaneous survival was 16 of 21 (76%) in adduct-positive patients versus 75 of 169 (44%) in adduct-negative patients. Prognosis did not vary by adduct status in patients with known diagnoses. Furthermore, study is needed to understand the relation of APAP exposure, as determined by the presence of APAP adducts, to the clinical phenotype and outcomes of children with acute liver failure.

  11. A new approach to the synthesis of monomers and polymers incorporating furan/maleimide Diels-Alder adducts

    NASA Astrophysics Data System (ADS)

    Banella, Maria Barbara; Gioia, Claudio; Vannini, Micaela; Colonna, Martino; Celli, Annamaria; Gandini, Alessandro

    2016-05-01

    The Diels-Alder reaction between furan and maleimide moieties is a well-known and widely used strategy to build bio-based macromolecular structures with peculiar properties. The furan-maleimide adducts are thermally reversible because they can be broken above about 120°C and recombined at lower temperatures. At the moment only the monomers exhibiting the furan or the maleimide moieties on their extremity are used in order to get linear or cross-linked polymeric structures. The innovative idea described here consists in using a monomer bearing two carboxylic acidic groups on its extremities and a furan-maleimide Diels-Alder adduct within its structure. This monomer can give rise to classical polycondensation reactions leading to polymers. These polymers (which are polyesters in the present case) can be broken at high temperatures in correspondence of the furane-maleimide Diels-Alder adduct leading to segments exhibiting furan or maleimide moieties at their extremities, which at lower temperature recombine leading to random or block copolymers.

  12. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity

    DOE PAGES

    Jiang, Shuai; Pan, Amy W.; Lin, Tzu-yin; ...

    2015-11-06

    This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 ± 30 versus 320 ± 120 adducts per 10 8 nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 10 8 nucleotides per hour in carboplatin alone (p = 0.021). In conclusion, this rapid reportmore » provides the first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic.« less

  13. Carbonic anhydrase inhibitors. Comparison of chlorthalidone, indapamide, trichloromethiazide, and furosemide X-ray crystal structures in adducts with isozyme II, when several water molecules make the difference.

    PubMed

    Temperini, Claudia; Cecchi, Alessandro; Scozzafava, Andrea; Supuran, Claudiu T

    2009-02-01

    Thiazide and high ceiling diuretics were recently shown to inhibit all mammalian isoforms of carbonic anhydrase (CA, EC 4.2.1.1) with a very different profile as compared to classical inhibitors, such as acetazolamide, methazolamide, and ethoxzolamide. Some of these structurally related compounds have a very different behavior against the widespread isozyme CA II, with chlorthalidone, trichloromethiazide, and furosemide being efficient inhibitors against CA II (K(I)s of 65-138 nM), whereas indapamide is a much weaker one (K(I) of 2520 nM). Furthermore, some of these diuretics are quite efficient (low nanomolar) inhibitors of other isoforms, for example, chlorthalidone against hCA VB, VII, IX, and XIII; indapamide against CA VII, IX, XII, and XIII, trichloromethiazide against CA VII and IX, and furosemide against CA I and XIV. Examining the four X-ray crystal structures of their CA II adducts, we observed several (2-3) active site water molecules interacting with the chlorthalidone, trichloromethiazide, and furosemide scaffolds which may be responsible for this important difference of activity. Indeed, indapamide bound to CA II has no interactions with active site water molecules. Chlorthalidone bound within the CA II active site is in an enolic (lactimic) tautomeric form, with the enolic OH also participating in two strong hydrogen bonds with Asn67 and a water molecule. The newly evidenced binding modes of these diuretics may be exploited for designing better CA II inhibitors as well as compounds with selectivity/affinity for various isoforms with medicinal chemistry applications.

  14. Malondialdehyde-acetaldehyde (MAA) adducted protein inhalation causes lung injury

    PubMed Central

    Wyatt, T. A.; Kharbanda, K. K.; McCaskill, M. L.; Tuma, D. J.; Yanov, D.; DeVasure, J.; Sisson, J. H.

    2011-01-01

    In addition to cigarette smoking, alcohol exposure is also associated with increased lung infections and decreased mucociliary clearance. However, little research has been conducted on the combination effects of alcohol and cigarette smoke on lungs. Previously, we have demonstrated in a mouse model that the combination of cigarette smoke and alcohol exposure results in the formation of a very stable hybrid malondialdehyde-acetaldehyde (MAA)-adducted protein in the lung. In in vitro studies, MAA-adducted protein stimulates bronchial epithelial cell interleukin-8 via the activation of protein kinase C epsilon (PKCε). We hypothesized that direct MAA-adducted protein exposure in the lungs would mimic such a combination of smoke and alcohol exposure leading to airway inflammation. To test this hypothesis, C57BL/6J female mice were intranasally instilled with either saline, 30 µL of 50 µg/mL BSA-MAA, or unadducted BSA for up to 3 wk. Likewise, human lung surfactant proteins A and D (SPA, SPD) were purified from human pulmonary proteinosis lung lavage fluid and successfully MAA-adducted in vitro. Similar to BSA-MAA, SPD-MAA was instilled into mouse lungs. Lungs were necropsied and assayed for histopathology, PKCε activation, and lung lavage chemokines. In control mice instilled with saline, normal lungs had few inflammatory cells. No significant effects were observed in un-adducted BSA- or SPD-instilled mice. However, when mice were instilled with BSA-MAA or SPD-MAA for 3 wk, a significant peribronchiolar localization of inflammatory cells was observed. Both BSA-MAA and SPD-MAA stimulated increased lung lavage neutrophils and caused a significant elevation in the chemokine, KC, which is a functional homologue to human interleukin-8. Likewise, MAA-adducted protein stimulated the activation of airway and lung slice PKCε. These data support that MAA-adducted protein induces a pro-inflammatory response in the lungs and that lung surfactant protein is a biologically

  15. Observation of CO2 and solvent adduct ions during negative mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometric analysis of monohydric alcohols.

    PubMed

    Zhou, Xibin; Zhang, Yahe; Zhao, Suoqi; Hsu, Chang Samuel; Shi, Quan

    2013-12-15

    Monohydric alcohols are common in natural products, bio-oils, and medicine. We have found that monohydric alcohols can form O3 (ions containing three oxygen atoms) and O4 adduct ions in negative electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), which would significantly affect the composition analysis of alcohols, especially in a complex mixture. It is necessary to study the reaction pathways and the method to eliminate or reduce the 'artifact' adducts. Octadecanol, cholesterol, squalanol and two complex monohydric alcohol mixtures were selected as model compounds. These samples were subjected to negative ion ESI FT-ICR MS analysis. The composition and formation mechanism of adducts were studied by the ultrahigh-resolution accurate mass measurement for elemental composition, along with the MS(2) isolation and collision-induced dissociation (CID) experiments for structural determination. The reaction pathway of O3 adduct formation is the coupling of a monohydric alcohol ion with a CO2 to form a stable O3 ionic species by likely a covalent bond (source of CO2 is not clear). The O4 species are formed by O3 ionic species adducted with an alcohol molecule of the solvent, such as methanol or ethanol, by likely a hydrogen bond. These adduct ions could be eliminated or reduced by increasing collision energy. However, excessive collision energy would fragment monohydric alcohol ions. The formation mechanisms of O3 and O4 adducts from monohydric alcohols in negative ion ESI FT-ICR MS were proposed. The solvent adduction effects can be eliminated or reduced by optimizing the collision energy of CID in FT-ICR MS. Copyright © 2013 John Wiley & Sons, Ltd.

  16. In vitro screening of 50 highly prescribed drugs for thiol adduct formation--comparison of potential for drug-induced toxicity and extent of adduct formation.

    PubMed

    Gan, Jinping; Ruan, Qian; He, Bing; Zhu, Mingshe; Shyu, Wen C; Humphreys, W Griffith

    2009-04-01

    Reactive metabolite formation has been associated with drug-induced liver, skin, and hematopoietic toxicity of many drugs that has resulted in serious clinical toxicity, leading to clinical development failure, black box warnings, or, in some cases, withdrawal from the market. In vitro and in vivo screening for reactive metabolite formation has been proposed and widely adopted in the pharmaceutical industry with the aim of minimizing the property and thus the risk of drug-induced toxicity (DIT). One of the most common screening methods is in vitro thiol trapping of reactive metabolites. Although it is well-documented that many hepatotoxins form thiol adducts, there is no literature describing the adduct formation potential of safer drugs that are widely used. The objective of this study was to quantitatively assess the thiol adduct formation potential of 50 drugs (10 associated with DIT and 40 not associated) and document apparent differences in adduct formation between toxic and safer drugs. Dansyl glutathione was used as a trapping agent to aid the quantitation of adducts following in vitro incubation of drugs with human liver microsomes in the presence and absence of NADPH. Metabolic turnover of these drugs was also monitored by LC/UV. Overall, 15 out of the 50 drugs screened formed detectable levels of thiol adducts. There were general trends toward more positive findings in the DIT group vs the non-DIT group. These trends became more marked when the relative amount of thiol adducts was taken into account and improved further when dose and total daily reactive metabolite burdens were considered. In conclusion, there appears to be a general trend between the extent of thiol adduct formation and the potential for DIT, which would support the preclinical measurement and minimization of the property through screening of thiol adduct formation as part of an overall discovery optimization paradigm.

  17. Interaction of plant cell signaling molecules, salicylic acid and jasmonic acid, with the mitochondria of Helicoverpa armigera.

    PubMed

    Akbar, S M D; Sharma, H C; Jayalakshmi, S K; Sreeramulu, K

    2012-02-01

    The cotton bollworm, Helicoverpa armigera is a polyphagous pest in Asia, Africa, and the Mediterranean Europe. Salicylic acid (SA) and jasmonic acid (JA) are the cell signaling molecules produced in response to insect attack in plants. The effect of these signaling molecules was investigated on the oxidative phosphorylation and oxidative stress of H. armigera. SA significantly inhibited the state III and state IV respiration, respiratory control index (RCI), respiratory complexes I and II, induced mitochondrial swelling, and cytochrome c release in vitro. Under in vivo conditions, SA induced state IV respiration as well as oxidative stress in time- and dose-dependent manner, and also inhibited the larval growth. In contrast, JA did not affect the mitochondrial respiration and oxidative stress. SA affected the growth and development of H. armigera, in addition to its function as signaling molecules involved in both local defense reactions at feeding sites and the induction of systemic acquired resistance in plants.

  18. Sperm DNA oxidative damage and DNA adducts

    PubMed Central

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-01-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps = 0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps = 0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps = 0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on

  19. Single Molecule Spectroscopy of Amino Acids and Peptides by Recognition Tunneling

    PubMed Central

    Zhao, Yanan; Ashcroft, Brian; Zhang, Peiming; Liu, Hao; Sen, Suman; Song, Weisi; Im, JongOne; Gyarfas, Brett; Manna, Saikat; Biswas, Sovan; Borges, Chad; Lindsay, Stuart

    2014-01-01

    The human proteome has millions of protein variants due to alternative RNA splicing and post-translational modifications, and variants that are related to diseases are frequently present in minute concentrations. For DNA and RNA, low concentrations can be amplified using the polymerase chain reaction, but there is no such reaction for proteins. Therefore, the development of single molecule protein sequencing is a critical step in the search for protein biomarkers. Here we show that single amino acids can be identified by trapping the molecules between two electrodes that are coated with a layer of recognition molecules and measuring the electron tunneling current across the junction. A given molecule can bind in more than one way in the junction, and we therefore use a machine-learning algorithm to distinguish between the sets of electronic ‘fingerprints’ associated with each binding motif. With this recognition tunneling technique, we are able to identify D, L enantiomers, a methylated amino acid, isobaric isomers, and short peptides. The results suggest that direct electronic sequencing of single proteins could be possible by sequentially measuring the products of processive exopeptidase digestion, or by using a molecular motor to pull proteins through a tunnel junction integrated with a nanopore. PMID:24705512

  20. Diet-related DNA adduct formation in relation to carcinogenesis.

    PubMed

    Hemeryck, Lieselot Y; Vanhaecke, Lynn

    2016-08-01

    The human diet contributes significantly to the initiation and promotion of carcinogenesis. It has become clear that the human diet contains several groups of natural foodborne chemicals that are at least in part responsible for the genotoxic, mutagenic, and carcinogenic potential of certain foodstuffs. Electrophilic chemicals are prone to attack nucleophilic sites in DNA, resulting in the formation of altered nucleobases, also known as DNA adducts. Since DNA adduct formation is believed to signal the onset of chemically induced carcinogenesis, the DNA adduct-inducing potential of certain foodstuffs has been investigated to gain more insight into diet-related pathways of carcinogenesis. Many studies have investigated diet-related DNA adduct formation. This review summarizes work on known or suspected dietary carcinogens and the role of DNA adduct formation in hypothesized carcinogenesis pathways. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes.

    PubMed

    Kiwamoto, R; Spenkelink, A; Rietjens, I M C M; Punt, A

    2015-01-01

    Acyclic α,β-unsaturated aldehydes present in food raise a concern because the α,β-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present study was to develop physiologically based kinetic/dynamic (PBK/D) models to examine dose-dependent detoxification and DNA adduct formation of a group of 18 food-borne acyclic α,β-unsaturated aldehydes without 2- or 3-alkylation, and with no more than one conjugated double bond. Parameters for the PBK/D models were obtained using quantitative structure-activity relationships (QSARs) defined with a training set of six selected aldehydes. Using the QSARs, PBK/D models for the other 12 aldehydes were defined. Results revealed that DNA adduct formation in the liver increases with decreasing bulkiness of the molecule especially due to less efficient detoxification. 2-Propenal (acrolein) was identified to induce the highest DNA adduct levels. At realistic dietary intake, the predicted DNA adduct levels for all aldehydes were two orders of magnitude lower than endogenous background levels observed in disease free human liver, suggesting that for all 18 aldehydes DNA adduct formation is negligible at the relevant levels of dietary intake. The present study provides a proof of principle for the use of QSAR-based PBK/D modelling to facilitate group evaluations and read-across in risk assessment. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Adducts of nitrogenous ligands with rhodium(II) tetracarboxylates and tetraformamidinate: NMR spectroscopy and density functional theory calculations.

    PubMed

    Cmoch, Piotr; Głaszczka, Rafał; Jaźwiński, Jarosław; Kamieński, Bohdan; Senkara, Elżbieta

    2014-03-01

    Complexation of tetrakis(μ2-N,N'-diphenylformamidinato-N,N')-di-rhodium(II) with ligands containing nitrile, isonitrile, amine, hydroxyl, sulfhydryl, isocyanate, and isothiocyanate functional groups has been studied in liquid and solid phases using (1)H, (13)C and (15)N NMR, (13)C and (15)N cross polarisation-magic angle spinning NMR, and absorption spectroscopy in the visible range. The complexation was monitored using various NMR physicochemical parameters, such as chemical shifts, longitudinal relaxation times T1 , and NOE enhancements. Rhodium(II) tetraformamidinate selectively bonded only unbranched amine (propan-1-amine), pentanenitrile, and (1-isocyanoethyl)benzene. No complexation occurred in the case of ligands having hydroxyl, sulfhydryl, isocyanate, and isothiocyanate functional groups, and more expanded amine molecules such as butan-2-amine and 1-azabicyclo[2.2.2]octane. Such features were opposite to those observed in rhodium(II) tetracarboxylates, forming adducts with all kind of ligands. Special attention was focused on the analysis of Δδ parameters, defined as a chemical shift difference between signal in adduct and corresponding signal in free ligand. In the case of (1)H NMR, Δδ values were either negative in adducts of rhodium(II) tetraformamidinate or positive in adducts of rhodium(II) tetracarboxylates. Experimental findings were supported by density functional theory molecular modelling and gauge independent atomic orbitals chemical shift calculations. The calculation of chemical shifts combined with scaling procedure allowed to reproduce qualitatively Δδ parameters. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Polylactic acid promotes healing of photodegraded disperse orange 11 molecules

    NASA Astrophysics Data System (ADS)

    Stubbs, Najee; Bridgewater, Mauricio; Stubbs, Micheala; Kabir, Amin; Crescimanno, Michael; Kuzyk, Mark G.; Dawson, Nathan J.

    2018-02-01

    We report on the recovery of a photodegraded organic molecule mediated by a biopolymer. Amplified spontaneous emission (ASE) from disperse orange 11 (DO11) dye-doped polylactic acid (PLA) was used to monitor photodegradation while the material was being damaged by a strong pump laser. The ASE signal fully recovers over two hours time when the pump beam is blocked. The fluorescence spectra was also observed to recover after partial photobleaching the dye-doped polymer. PLA is the first biopolymer known to mediate the recovery of a photodegraded organic dye molecule.

  4. Cresyl Saligenin Phosphate, an Organophosphorus Toxicant, Makes Covalent Adducts with Histidine, Lysine and Tyrosine Residues of Human Serum Albumin

    PubMed Central

    Liyasova, Mariya S.; Schopfer, Lawrence M.; Lockridge, Oksana

    2012-01-01

    CBDP (2-(2-cresyl)-4H-1-3-2-benzodioxaphosphorin-2-oxide) is a toxic organophosphorus compound. It is generated in vivo from tri-ortho-cresyl phosphate (TOCP), a component of jet engine oil and hydraulic fluids. Exposure to TOCP was proven to occur on board aircraft by finding CBDP-derived phospho-butyrylcholinesterase in the blood of passengers. Adducts on BChE however do not explain the toxicity of CBDP. Critical target proteins of CBDP are yet to be identified. Our goal was to facilitate the search for the critical targets of CBDP by determining the range of amino acid residues capable of reacting with CBDP and characterizing the types of adducts formed. We used human albumin as a model protein. Mass spectral analysis of the tryptic digest of CBDP-treated human albumin revealed adducts on His-67, His-146, His-242, His-247, His-338, Tyr-138, Tyr-140, Lys-199, Lys-351, Lys-414, Lys-432, Lys-525. Adducts formed on tyrosine residues were different from those formed on histidines and lysines. Tyrosines were organophosphorylated by CBDP, while histidine and lysine residues were alkylated. This is the first report of an organophosphorus compound with both phosphorylating and alkylating properties. The hydroxybenzyl adduct on histidine is novel. The ability of CBDP to form stable adducts on histidine, tyrosine and lysine allows one to consider new mechanisms of toxicity from TOCP exposure. PMID:22793878

  5. Cresyl saligenin phosphate, an organophosphorus toxicant, makes covalent adducts with histidine, lysine, and tyrosine residues of human serum albumin.

    PubMed

    Liyasova, Mariya S; Schopfer, Lawrence M; Lockridge, Oksana

    2012-08-20

    CBDP [2-(2-cresyl)-4H-1-3-2-benzodioxaphosphorin-2-oxide] is a toxic organophosphorus compound. It is generated in vivo from tri-ortho-cresyl phosphate (TOCP), a component of jet engine oil and hydraulic fluids. Exposure to TOCP was proven to occur on board aircraft by finding CBDP-derived phospho-butyrylcholinesterase in the blood of passengers. Adducts on BChE, however, do not explain the toxicity of CBDP. Critical target proteins of CBDP are yet to be identified. Our goal was to facilitate the search for the critical targets of CBDP by determining the range of amino acid residues capable of reacting with CBDP and characterizing the types of adducts formed. We used human albumin as a model protein. Mass spectral analysis of the tryptic digest of CBDP-treated human albumin revealed adducts on His-67, His-146, His-242, His-247, His-338, Tyr-138, Tyr-140, Lys-199, Lys-351, Lys-414, Lys-432, and Lys-525. Adducts formed on tyrosine residues were different from those formed on histidines and lysines. Tyrosines were organophosphorylated by CBDP, while histidine and lysine residues were alkylated. This is the first report of an organophosphorus compound with both phosphorylating and alkylating properties. The o-hydroxybenzyl adduct on histidine is novel. The ability of CBDP to form stable adducts on histidine, tyrosine, and lysine allows one to consider new mechanisms of toxicity from TOCP exposure.

  6. Photochemistry of Fe:H2O Adducts in Argon Matrixes: A Combined Experimental and Theoretical Study in the Mid-IR and UV-Visible Regions.

    PubMed

    Deguin, Vincent; Mascetti, Joëlle; Simon, Aude; Ben Amor, Nadia; Aupetit, Christian; Latournerie, Sandra; Noble, Jennifer A

    2018-01-18

    The photochemistry of Fe:H 2 O adducts is of interest in fields as diverse as catalysis and astrochemistry. Industrially, iron can be used as a catalyst to convert H 2 O to H 2 , whereas in the interstellar medium it may be an important component of dust grains, influencing the chemistry on their icy surfaces. This study consisted of the deposition and spectral characterization of binary systems of atomic iron with H 2 O in cryogenic argon matrixes. In this way, we were able to obtain information about the interaction of the two species; we observed the formation of adducts of iron monomers and dimers with water molecules in the mid-IR and UV-visible spectral domains. Upon irradiation with a UV radiation source, the iron species were inserted into the water molecules to form HFeOH and HFe 2 OH, leading in some cases to the formation of FeO possibly accompanied by the production of H 2 . DFT and correlated multireference wave function calculations confirmed our attributions. This combination of IR and UV-visible spectroscopy with theoretical calculations allowed us to determine, for the first time, the spectral characteristics of iron adducts and their photoproducts in the UV-visible and in the OH stretching region of the mid-IR domain.

  7. Conformations of 1,3,3,5,7,7-Hexamethyl-1,5-diazacyclooctane and Its Bis-BH(3) Adduct. Mono- and Bis-BH(3) Adducts of Di-Tertiary Amines.

    PubMed

    Livant, P.; Majors, A. W.; Webb, T. R.

    1996-05-03

    A variable-temperature (1)H- and (13)C-NMR study revealed a conformational equilibrium for 1,3,3,5,7,7-hexamethyl-1,5-diazacyclooctane (4) having DeltaG() = 8.8 +/- 0.6 kcal/mol at 184 K. This activation barrier connects a major and a minor form of 4. Molecular mechanics calculations on 4 led to the conclusion that the major form is a set of twist-chair-chairs interconverting rapidly via the chair-chair and that the minor form is most likely a set of twist-boat-boats interconverting rapidly via the boat-boat. The proximity of the two nitrogen lone pairs in the major form of 4 made plausible the expectation that 4, as well as a related diamine with apposed nitrogens, 3,7-dimethyl-3,7-diazabicyclo[3.3.1]nonane (3), might bind a Lewis acid, namely BH(3), using both lone pairs simultaneously and equally. This proved not to be the case: for 3 only the bis-BH(3) adduct was found and for 4 the mono-BH(3) adduct utilized only one nitrogen lone pair. The structure of the bis-BH(3) adduct of 4 (12) was determined by X-ray crystallography to be a twist-boat-boat with BH(3)s cis. Molecular mechanics calculations on 12 were consistent with the solid state conformation found.

  8. Evaluation of serum and liver toxicokinetics for furan and liver DNA adduct formation in male Fischer 344 rats.

    PubMed

    Churchwell, M I; Scheri, R C; Von Tungeln, L S; Gamboa da Costa, G; Beland, F A; Doerge, D R

    2015-12-01

    Furan is a food processing contaminant found in many common cooked foods that induces liver toxicity and liver cancer in animal models treated with sufficient doses. The metabolism of furan occurs primarily in the liver where CYP 2E1 produces a highly reactive bis-electrophile, cis-2-butene-1,4-dial (BDA). BDA reacts with nucleophilic groups in amino acids and DNA in vitro to form covalent adducts. Evidence for BDA-nucleoside adduct formation in vivo is limited but important for assessing the carcinogenic hazard of dietary furan. This study used controlled dosing with furan in Fischer 344 rats to measure serum and liver toxicokinetics and the possible formation of BDA-nucleoside adducts in vivo. After gavage exposure, furan concentrations in the liver were consistently higher than those in whole blood (∼6-fold), which is consistent with portal vein delivery of a lipophilic compound into the liver. Formation of BDA-2'-deoxycytidine in furan-treated rat liver DNA was not observed using LC/MS/MS after single doses as high as 9.2 mg/kg bw or repeated dosing for up to 360 days above a consistent background level (1-2 adducts per 10(8) nucleotides). This absence of BDA-nucleoside adduct formation is consistent with the general lack of evidence for genotoxicity of furan in vivo. Published by Elsevier Ltd.

  9. Differential Cationization of Fatty Acids with Monovalent Cations Studied by ESI-MS/MS and Computational Approach.

    PubMed

    Sudarshana Reddy, B; Pavankumar, P; Sridhar, L; Saha, Soumen; Narahari Sastry, G; Prabhakar, S

    2018-04-24

    The intercellular and intracellular transport of charged species (Na + /K + ) entail interaction of the ions with neutral organic molecules and formation of adduct ions. The rate of transport of the ions across the cell membrane(s) may depend on the stability of the adduct ions, which in turn rely on structural aspects of the organic molecules that interact with the ions. Positive ion ESI mass spectra were recorded for the solutions containing fatty acids (FAs) and monovalent cations (X=Li + , Na + , K + , Rb + and Cs + ). Product ion spectra of the [FA+X] + ions were recorded at different collision energies. Theoretical studies were exploited under both gas phase and solvent phase to investigate the structural effects of the fatty acids during cationization. Stability of [FA+X] + adduct ions were further estimated by means of AIM topological analyses and interaction energy (IE) values. Positive ion ESI-MS analyses of the solution of FAs and X + ions showed preferential binding of the K + ions to FAs. The K + ion binding increased with the increase in number of double bonds of FAs, while decreased with increase in the number of carbons of FAs. Dissociation curves of [FA+X] + ions indicated the relative stability order of the [FA+X] + ions and it was in line with the observed trends in ESI-MS. The solvent phase computational studies divulged the mode of binding and the binding efficiencies of different FAs with monovalent cations. Among the studied monovalent cations, the cationization of FAs follow the order K + >Na + >Li + >Rb + >Cs + . The docosahexaenoic acid showed high efficiency in binding with K + ion. The K + ion binding efficiency of FAs depends on the number of double bonds in unsaturated FAs and the carbon chain length in saturated FAs. The cationization trends of FAs obtained from the ESI-MS, ESI-MS/MS analyses were in good agreement with solvent phase computational studies. This article is protected by copyright. All rights reserved.

  10. Pd/NbOPO₄ multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans.

    PubMed

    Xia, Qi-Neng; Cuan, Qian; Liu, Xiao-Hui; Gong, Xue-Qing; Lu, Guan-Zhong; Wang, Yan-Qin

    2014-09-08

    Great efforts have been made to convert renewable biomass into transportation fuels. Herein, we report the novel properties of NbO(x)-based catalysts in the hydrodeoxygenation of furan-derived adducts to liquid alkanes. Excellent activity and stability were observed with almost no decrease in octane yield (>90% throughout) in a 256 h time-on-stream test. Experimental and theoretical studies showed that NbO(x) species play the key role in C-O bond cleavage. As a multifunctional catalyst, Pd/NbOPO4 plays three roles in the conversion of aldol adducts into alkanes: 1) The noble metal (in this case Pd) is the active center for hydrogenation; 2) NbO(x) species help to cleave the C-O bond, especially of the tetrahydrofuran ring; and 3) a niobium-based solid acid catalyzes the dehydration, thus enabling the quantitative conversion of furan-derived adducts into alkanes under mild conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Formation and Repair of Tobacco Carcinogen-Derived Bulky DNA Adducts

    DOE PAGES

    Hang, Bo

    2010-01-01

    DNA adducts play a central role in chemical carcinogenesis. The analysis of formation and repair of smoking-related DNA adducts remains particularly challenging as both smokers and nonsmokers exposed to smoke are repetitively under attack from complex mixtures of carcinogens such as polycyclic aromatic hydrocarbons and N -nitrosamines. The bulky DNA adducts, which usually have complex structure, are particularly important because of their biological relevance. Several known cellular DNA repair pathways have been known to operate in human cells on specific types of bulky DNA adducts, for example, nucleotide excision repair, base excision repair, and direct reversal involving O 6 -alkylguaninemore » DNA alkyltransferase or AlkB homologs. Understanding the mechanisms of adduct formation and repair processes is critical for the assessment of cancer risk resulting from exposure to cigarette smoke, and ultimately for developing strategies of cancer prevention. This paper highlights the recent progress made in the areas concerning formation and repair of bulky DNA adducts in the context of tobacco carcinogen-associated genotoxic and carcinogenic effects.« less

  12. Laser-triggered release of encapsulated molecules from polylactic-co-glycolic acid microcapsules

    NASA Astrophysics Data System (ADS)

    Ariyasu, Kazumasa; Ishii, Atsuhiro; Umemoto, Taiga; Terakawa, Mitsuhiro

    2016-08-01

    The controlled release of encapsulated molecules from a microcapsule is a promising method of targeted drug delivery. Laser-triggered methods for the release of encapsulated molecules have the advantage of spatial and temporal controllability. In this study, we demonstrated the release of encapsulated molecules from biodegradable polymer-based microcapsules using near-infrared femtosecond laser pulses. The polylactic-co-glycolic acid microcapsules encapsulating fluorescein isothiocyanate-dextran molecules were fabricated using a dual-coaxial nozzle system. Irradiation of femtosecond laser pulses enhanced the release of the molecules from the microcapsules, which was accompanied by a decrease in the residual ratio of the microcapsules. The laser-induced modification of the surface of the shell of the microcapsules indicated the potential for sustained release as well as burst release.

  13. Formation mechanism of glyoxal-DNA adduct, a DNA cross-link precursor.

    PubMed

    Vilanova, B; Fernández, D; Casasnovas, R; Pomar, A M; Alvarez-Idaboy, J R; Hernández-Haro, N; Grand, A; Adrover, M; Donoso, J; Frau, J; Muñoz, F; Ortega-Castro, J

    2017-05-01

    DNA nucleobases undergo non-enzymatic glycation to nucleobase adducts which can play important roles in vivo. In this work, we conducted a comprehensive experimental and theoretical kinetic study of the mechanisms of formation of glyoxal-guanine adducts over a wide pH range in order to elucidate the molecular basis for the glycation process. Also, we performed molecular dynamics simulations to investigate how open or cyclic glyoxal-guanine adducts can cause structural changes in an oligonucleotide model. A thermodynamic study of other glycating agents including methylglyoxal, acrolein, crotonaldehyde, 4-hydroxynonenal and 3-deoxyglucosone revealed that, at neutral pH, cyclic adducts were more stable than open adducts; at basic pH, however, the open adducts of 3-deoxyglucosone, methylglyoxal and glyoxal were more stable than their cyclic counterparts. This result can be ascribed to the ability of the adducts to cross-link DNA. The new insights may contribute to improve our understanding of the connection between glycation and DNA cross-linking. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Condensed tannin-resorcinol adducts in laminating adhesives

    Treesearch

    Richard W. Hemingway; Roland E. Kreibich

    1985-01-01

    A condensed tannin-resorcinol adduct made by co-reaction of an extract from southern pine bark with resorcinol at a 2 to 1 weight ratio was used to prepare a laminating resin in which the entire amount of resorcinol normally used was replaced by this adduct. The resin was formulated into a room temperature setting adhesive that meets the basic criteria of product...

  15. PURIFICATION AND RECOVERY OF BULKY HYDROPHOBIC DNA ADDUCTS

    EPA Science Inventory

    For many years 32P postlabeling has detected DNA adducts at very low levels and yet has not been able to identify unknown adducts. Mass spectrometry offers substantially improved identification powers, albeit at some loss in detection limits. With this ultimate utilization of ma...

  16. Cyclodextrin-supported organic matrix for application of MALDI-MS for forensics. Soft-ionization to obtain protonated molecules of low molecular weight compounds

    NASA Astrophysics Data System (ADS)

    Yonezawa, Tetsu; Asano, Takashi; Fujino, Tatsuya; Nishihara, Hiroshi

    2013-06-01

    A mass measurement technique for detecting low-molecular-weight drugs with a cyclodextrin-supported organic matrix was investigated. By using cyclodextrin-supported 2,4,6-trihydroxyacetophenone (THAP), the matrix-related peaks of drugs were suppressed. The peaks of protonated molecules of the sample and THAP were mainly observed, and small fragments were detected in a few cases. Despite the Na+ and K+ peaks were observed in the spectrum, Na+ or K+ adduct sample molecules were undetected, owing to the sugar units of cyclodextrin. The advantages of MALDI-MS with cyclodextrin-supported matrices as an analytical tool for forensic samples are discussed. The suppression of alkali adducted molecules and desorption process are also discussed.

  17. Background of the Hammett equation as observed for isolated molecules: meta- and para-substituted benzoic acids.

    PubMed

    Exner, Otto; Böhm, Stanislav

    2002-09-06

    Fundamental model compounds for the Hammett equation, meta- and para-substituted benzoic acids, were investigated by the density functional theory at the B3LYP/6-311+G(d,p) level. Energies of 25 acids and of their anions were calculated in all possible conformations and from them the energies of the assumed mixture of conformers. Relative acidities correlated with the experimental gas-phase acidities almost within the experimental uncertainty, much more precisely than in the case of previous calculations at lower levels. Dissection of the substituent effects into those operating in the acid molecule and in the anion was carried out by means of isodesmic reactions starting from monosubstituted benzenes. Both effects are cooperating in the resulting effect on the acidity; those in the acid molecule are smaller but not negligible. They are also responsible for some deviations from the Hammett equation (through-resonance of para donor substituents) and for the weaker resonance in the acid molecule in meta derivatives; in the anions the inductive and resonance effects are almost equal. On the other hand, the cooperation of effects in the acid and in the anion makes the relative acidity more sensitive to electron withdrawing and is probably one of the reasons why the Hammett equation is so generally valid.

  18. Compound annotation in liquid chromatography/high-resolution mass spectrometry based metabolomics: robust adduct ion determination as a prerequisite to structure prediction in electrospray ionization mass spectra.

    PubMed

    Jaeger, Carsten; Méret, Michaël; Schmitt, Clemens A; Lisec, Jan

    2017-08-15

    A bottleneck in metabolic profiling of complex biological extracts is confident, non-supervised annotation of ideally all contained, chemically highly diverse small molecules. Recent computational strategies combining sum formula prediction with in silico fragmentation achieve confident de novo annotation, once the correct neutral mass of a compound is known. Current software solutions for automated adduct ion assignment, however, are either publicly unavailable or have been validated against only few experimental electrospray ionization (ESI) mass spectra. We here present findMAIN (find Main Adduct IoN), a new heuristic approach for interpreting ESI mass spectra. findMAIN scores MS 1 spectra based on explained intensity, mass accuracy and isotope charge agreement of adducts and related ionization products and annotates peaks of the (de)protonated molecule and adduct ions. The approach was validated against 1141 ESI positive mode spectra of chemically diverse standard compounds acquired on different high-resolution mass spectrometric instruments (Orbitrap and time-of-flight). Robustness against impure spectra was evaluated. Correct adduct ion assignment was achieved for up to 83% of the spectra. Performance was independent of compound class and mass spectrometric platform. The algorithm proved highly tolerant against spectral contamination as demonstrated exemplarily for co-eluting compounds as well as systematically by pairwise mixing of spectra. When used in conjunction with MS-FINDER, a state-of-the-art sum formula tool, correct sum formulas were obtained for 77% of spectra. It outperformed both 'brute force' approaches and current state-of-the-art annotation packages tested as potential alternatives. Limitations of the heuristic pertained to poorly ionizing compounds and cationic compounds forming [M] + ions. A new, validated approach for interpreting ESI mass spectra is presented, filling a gap in the nontargeted metabolomics workflow. It is freely available

  19. Formation of oligonucleotide adducts in pharmaceutical formulations.

    PubMed

    Krotz, Achim H; Gaus, Hans; Hardee, Gregory E

    2005-01-01

    During preformulation studies, we observed that oligonucleotide extracted from topical formulations contained considerable amounts of covalently modified oligonucleotide adducts. In this report, we describe the identification and characterization of reaction products that form when PS-oligodeoxyribonucleotide ISIS 2302 (1) is brought into contact with aqueous solutions of glycerol-derived excipients. Compatibility tests showed that the presence of certain glycerides in the formulation lead to adduct formation (1+58x amu, 1+72x amu, 1+58x+72y amu, x, and y are the number of modifications on one oligonucleotide strand). No adduct formation was observed in the presence of triglycerides or propylene glycol-derived excipients used in the study. Using nucleosides as model compounds, two modifications of deoxyguanosine were isolated by preparative reversed phase (RP)-high pressure liquid chromatography (HPLC) and characterized by nuclear magnetic resonance (NMR) and HPLC-mass spectrometry (MS). Modifications were identified as N2-(1-carboxymethyl)- and N2-(1-carboxyethyl) derivatives of 2'-deoxyguanosine. The mechanism of formation of these adducts may involve advanced glycation reactions possibly caused by excipient impurities or degradation products such as glyceraldehyde or glyceraldehyde derivatives.

  20. Synthesis of nucleosides and oligonucleotides containing adducts of acrolein and vinyl chloride.

    PubMed

    Nechev, L V; Harris, C M; Harris, T M

    2000-05-01

    Vinyl chloride and acrolein are important industrial chemicals. Both form DNA adducts, vinyl chloride after enzymatic oxidation to chlorooxirane and acrolein by direct reaction. Reaction at the N(2) position of guanine is a major pathway. The resulting 2-oxoethyl and 3-oxopropyl adducts cyclize spontaneously to hydroxyethano and hydroxypropano derivatives, respectively. The two cyclic adducts have been detected in DNA exposed to these mutagens. A new method has been developed for the synthesis of deoxyguanosine adducts of chlorooxirane and acrolein, as well as oligonucleotides containing these adducts. Reaction of O(6)-[(trimethylsilyl)ethyl]-2-fluoro-2'-deoxyinosine with the appropriate aminodiol followed by oxidative cleavage of the diol with NaIO(4) gave the adducts in excellent yields. Reaction of oligonucleotides containing the halonucleoside with the aminodiols followed by NaIO(4) efficiently created the nucleosides in the oligonucleotides. Deoxyadenosine adducts were created similarly using 6-chloropurine 9-(2'-deoxyriboside).

  1. Quantitation of DNA Adducts Induced by 1,3-Butadiene

    NASA Astrophysics Data System (ADS)

    Sangaraju, Dewakar; Villalta, Peter W.; Wickramaratne, Susith; Swenberg, James; Tretyakova, Natalia

    2014-07-01

    Human exposure to 1,3-butadiene (BD) present in automobile exhaust, cigarette smoke, and forest fires is of great concern because of its potent carcinogenicity. The adverse health effects of BD are mediated by its epoxide metabolites such as 3,4-epoxy-1-butene (EB), which covalently modify genomic DNA to form promutagenic nucleobase adducts. Because of their direct role in cancer, BD-DNA adducts can be used as mechanism-based biomarkers of BD exposure. In the present work, a mass spectrometry-based methodology was developed for accurate, sensitive, and precise quantification of EB-induced N-7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) DNA adducts in vivo. In our approach, EB-GII adducts are selectively released from DNA backbone by neutral thermal hydrolysis, followed by ultrafiltration, offline HPLC purification, and isotope dilution nanoLC/ESI+-HRMS3 analysis on an Orbitrap Velos mass spectrometer. Following method validation, EB-GII lesions were quantified in human fibrosarcoma (HT1080) cells treated with micromolar concentrations of EB and in liver tissues of rats exposed to sub-ppm concentrations of BD (0.5-1.5 ppm). EB-GII concentrations increased linearly from 1.15 ± 0.23 to 10.11 ± 0.45 adducts per 106 nucleotides in HT1080 cells treated with 0.5-10 μM DEB. EB-GII concentrations in DNA of laboratory rats exposed to 0.5, 1.0, and 1.5 ppm BD were 0.17 ± 0.05, 0.33 ± 0.08, and 0.50 ± 0.04 adducts per 106 nucleotides, respectively. We also used the new method to determine the in vivo half-life of EB-GII adducts in rat liver DNA (2.20 ± 0.12 d) and to detect EB-GII in human blood DNA. To our knowledge, this is the first application of nanoLC/ESI+-HRMS3 Orbitrap methodology to quantitative analysis of DNA adducts in vivo.

  2. Equilibrium Dynamics of β-N-Methylamino-L-Alanine (BMAA) and Its Carbamate Adducts at Physiological Conditions

    PubMed Central

    Zimmerman, David; Goto, Joy J.; Krishnan, Viswanathan V

    2016-01-01

    Elevated incidences of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia complex (ALS/PDC) is associated with β-methylamino-L-alanine (BMAA), a non-protein amino acid. In particular, the native Chamorro people living in the island of Guam were exposed to BMAA by consuming a diet based on the cycad seeds. Carbamylated forms of BMAA are glutamate analogues. The mechanism of neurotoxicity of the BMAA is not completely understood, and BMAA acting as a glutamate receptor agonist may lead to excitotoxicity that interferes with glutamate transport systems. Though the interaction of BMAA with bicarbonate is known to produce carbamate adducts, here we demonstrate that BMAA and its primary and secondary adducts coexist in solution and undergoes a chemical exchange among them. Furthermore, we determined the rates of formation/cleavage of the carbamate adducts under equilibrium conditions using two-dimensional proton exchange NMR spectroscopy (EXSY). The coexistence of the multiple forms of BMAA at physiological conditions adds to the complexity of the mechanisms by which BMAA functions as a neurotoxin. PMID:27513925

  3. Specific Function of the Met-Tyr-Trp Adduct Radical and Residues Arg-418 and Asp-137 in the Atypical Catalase Reaction of Catalase-Peroxidase KatG*

    PubMed Central

    Zhao, Xiangbo; Khajo, Abdelahad; Jarrett, Sanchez; Suarez, Javier; Levitsky, Yan; Burger, Richard M.; Jarzecki, Andrzej A.; Magliozzo, Richard S.

    2012-01-01

    Catalase activity of the dual-function heme enzyme catalase-peroxidase (KatG) depends on several structural elements, including a unique adduct formed from covalently linked side chains of three conserved amino acids (Met-255, Tyr-229, and Trp-107, Mycobacterium tuberculosis KatG numbering) (MYW). Mutagenesis, electron paramagnetic resonance, and optical stopped-flow experiments, along with calculations using density functional theory (DFT) methods revealed the basis of the requirement for a radical on the MYW-adduct, for oxyferrous heme, and for conserved residues Arg-418 and Asp-137 in the rapid catalase reaction. The participation of an oxyferrous heme intermediate (dioxyheme) throughout the pH range of catalase activity is suggested from our finding that carbon monoxide inhibits the activity at both acidic and alkaline pH. In the presence of H2O2, the MYW-adduct radical is formed normally in KatG[D137S] but this mutant is defective in forming dioxyheme and lacks catalase activity. KatG[R418L] is also catalase deficient but exhibits normal formation of the adduct radical and dioxyheme. Both mutants exhibit a coincidence between MYW-adduct radical persistence and H2O2 consumption as a function of time, and enhanced subunit oligomerization during turnover, suggesting that the two mutations disrupting catalase turnover allow increased migration of the MYW-adduct radical to protein surface residues. DFT calculations showed that an interaction between the side chain of residue Arg-418 and Tyr-229 in the MYW-adduct radical favors reaction of the radical with the adjacent dioxyheme intermediate present throughout turnover in WT KatG. Release of molecular oxygen and regeneration of resting enzyme are thereby catalyzed in the last step of a proposed catalase reaction. PMID:22918833

  4. Tamoxifen-DNA adduct formation in monkey and human reproductive organs.

    PubMed

    Hernandez-Ramon, Elena E; Sandoval, Nicole A; John, Kaarthik; Cline, J Mark; Wood, Charles E; Woodward, Ruth A; Poirier, Miriam C

    2014-05-01

    The estrogen analog tamoxifen (TAM), used for adjuvant therapy of breast cancer, induces endometrial and uterine tumors in breast cancer patients. Proliferation stimulus of the uterine endometrium is likely involved in tumor induction, but genotoxicity may also play a role. Formation of TAM-DNA adducts in human tissues has been reported but remains controversial. To address this issue, we examined TAM-DNA adducts in uteri from two species of monkeys, Erythrocebus patas (patas) and Macaca fascicularis (macaque), and in human endometrium and myometrium. Monkeys were given 3-4 months of chronic TAM dosing scaled to be equivalent to the daily human dose. In the uteri, livers and brains from the patas (n = 3), and endometrium from the macaques (n = 4), TAM-DNA adducts were measurable by TAM-DNA chemiluminescence immunoassay. Average TAM-DNA adduct values for the patas uteri (23 adducts/10(8) nucleotides) were similar to those found in endometrium of the macaques (19 adducts/10(8) nucleotides). Endometrium of macaques exposed to both TAM and low-dose estradiol (n = 5) averaged 34 adducts/10(8) nucleotides. To examine TAM-DNA persistence in the patas, females (n = 3) were exposed to TAM for 3 months and to no drug for an additional month, resulting in low or non-detectable TAM-DNA in livers and uteri. Human endometrial and myometrial samples from women receiving (n = 8) and not receiving (n = 8) TAM therapy were also evaluated. Women receiving TAM therapy averaged 10.3 TAM-DNA adducts/10(8) nucleotides, whereas unexposed women showed no detectable TAM-DNA. The data indicate that genotoxicity, in addition to estrogen agonist effects, may contribute to TAM-induced human endometrial cancer.

  5. Quinone-induced Enhancement of DNA Cleavage by Human Topoisomerase IIα: Adduction of Cysteine Residues 392 and 405†

    PubMed Central

    Bender, Ryan P.; Ham, Amy-Joan L.; Osheroff, Neil

    2010-01-01

    Several quinone-based metabolites of drugs and environmental toxins are potent topoisomerase II poisons. These compounds act by adducting the protein, and appear to increase levels of enzyme-DNA cleavage complexes by at least two potentially independent mechanisms. Treatment of topoisomerase IIα with quinones inhibits DNA religation, and blocks the N-terminal gate of the protein by crosslinking its two protomer subunits. It is not known whether these two effects result from quinone adduction to the same amino acid residue(s) in topoisomerase IIα or whether they are mediated by modification of separate residues. Therefore, the present study identified amino acid residues in human topoisomerase IIα that are modified by quinones and determined their role in the actions of these compounds as topoisomerase II poisons. Four cysteine residues were identified by mass spectrometry as sites of quinone adduction: cys170, cys392, cys405, and cys455. Mutations (cys–>ala) were individually generated at each position. Only mutations at cys392 or cys405 reduced sensitivity (~50% resistance) to benzoquinone. Top2αC392A and top2αC405A displayed faster rates (~2–fold) of DNA religation than wild-type topoisomerase IIα in the presence of the quinone. In contrast, as determined by DNA binding, protein clamp closing, and protomer crosslinking experiments, mutations at cys392 and cys405 did not affect the ability of benzoquinone to block the N-terminal gate of topoisomerase IIα. These findings indicate that adduction of cys392 and cys405 is important for the actions of quinones against the enzyme, and increases levels of cleavage complexes primarily by inhibiting DNA religation. PMID:17298034

  6. Resonant electron capture by aspartame and aspartic acid molecules.

    PubMed

    Muftakhov, M V; Shchukin, P V

    2016-12-30

    The processes for dissociative electron capture are the key mechanisms for decomposition of biomolecules, proteins in particular, under interaction with low-energy electrons. Molecules of aspartic acid and aspartame, i.e. modified dipeptides, were studied herein to define the impact of the side functional groups on peptide chain decomposition in resonant electron-molecular reactions. The processes of formation and decomposition of negative ions of both aspartame and aspartic acid were studied by mass spectrometry of negative ions under resonant electron capture. The obtained mass spectra were interpreted under thermochemical analysis by quantum chemical calculations. Main channels of negative molecular ions fragmentation were found and characteristic fragment ions were identified. The СООН fragment of the side chain in aspartic acid is shown to play a key role like the carboxyl group in amino acids and aliphatic oligopeptides. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Quantitation of DNA adducts by stable isotope dilution mass spectrometry

    PubMed Central

    Tretyakova, Natalia; Goggin, Melissa; Janis, Gregory

    2012-01-01

    Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations potentially contributing to the development of cancer. Due to their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples – including immunoassay, HPLC, and 32P-postlabeling – isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adducts concentrations in biological samples are between 0.01 – 10 adducts per 108 normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry – especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS – have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke. PMID:22827593

  8. Surface functionalization of bioactive glasses with natural molecules of biological significance, Part I: Gallic acid as model molecule

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Ferraris, Sara; Prenesti, Enrico; Verné, Enrica

    2013-12-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) and its derivatives are a group of biomolecules (polyphenols) obtained from plants. They have effects which are potentially beneficial to heath, for example they are antioxidant, anticarcinogenic and antibacterial, as recently investigated in many fields such as medicine, food and plant sciences. The main drawbacks of these molecules are both low stability and bioavailability. In this research work the opportunity to graft GA to bioactive glasses is investigated, in order to deliver the undamaged biological molecule into the body, using the biomaterial surfaces as a localized carrier. GA was considered for functionalization since it is a good model molecule for polyphenols and presents several interesting biological activities, like antibacterial, antioxidant and anticarcinogenic properties. Two different silica based bioactive glasses (SCNA and CEL2), with different reactivity, were employed as substrates. UV photometry combined with the Folin&Ciocalteu reagent was adopted to test the concentration of GA in uptake solution after functionalization. This test verified how much GA consumption occurred with surface modification and it was also used on solid samples to test the presence of GA on functionalized glasses. XPS and SEM-EDS techniques were employed to characterize the modification of material surface properties and functional group composition before and after functionalization.

  9. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiwamoto, R., E-mail: reiko.kiwamoto@wur.nl; Spenkelink, A.; Rietjens, I.M.C.M.

    Acyclic α,β-unsaturated aldehydes present in food raise a concern because the α,β-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present study was to develop physiologically based kinetic/dynamic (PBK/D) models to examine dose-dependent detoxification and DNA adduct formation of a group of 18 food-borne acyclic α,β-unsaturated aldehydes without 2- or 3-alkylation, and with no more than one conjugated double bond. Parameters for the PBK/D models were obtained using quantitative structure–activity relationships (QSARs) defined with a training set of sixmore » selected aldehydes. Using the QSARs, PBK/D models for the other 12 aldehydes were defined. Results revealed that DNA adduct formation in the liver increases with decreasing bulkiness of the molecule especially due to less efficient detoxification. 2-Propenal (acrolein) was identified to induce the highest DNA adduct levels. At realistic dietary intake, the predicted DNA adduct levels for all aldehydes were two orders of magnitude lower than endogenous background levels observed in disease free human liver, suggesting that for all 18 aldehydes DNA adduct formation is negligible at the relevant levels of dietary intake. The present study provides a proof of principle for the use of QSAR-based PBK/D modelling to facilitate group evaluations and read-across in risk assessment. - Highlights: • Physiologically based in silico models were made for 18 α,β-unsaturated aldehydes. • Kinetic parameters were determined by in vitro incubations and a QSAR approach. • DNA adduct formation was negligible at levels relevant for dietary intake. • The use of QSAR-based PBK/D modelling facilitates group evaluations and read-across.« less

  10. Chloroethyinitrosourea-derived ethano cytosine and adenine adducts are substrates for escherichia coli glycosylases excising analogous etheno adducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guliaev, Anton B.; Singer, B.; Hang, Bo

    2004-05-05

    Exocyclic ethano DNA adducts are saturated etheno ring derivatives formed mainly by therapeutic chloroethylnitrosoureas (CNUs), which are also mutagenic and carcinogenic. In this work, we report that two of the ethano adducts, 3,N{sup 4}-ethanocytosine (EC) and 1,N{sup 6}-ethanoadenine (EA), are novel substrates for the Escherichia coli mismatch-specific uracil-DNA glycosylase (Mug) and 3-methyladenine DNA glycosylase II (AlkA), respectively. It has been shown previously that Mug excises 3,N{sup 4}-ethenocytosine ({var_epsilon}C) and AlkA releases 1,N{sup 6}-ethenoadenine ({var_epsilon}A). Using synthetic oligonucleotides containing a single ethano or etheno adduct, we found that both glycosylases had a {approx}20-fold lower excision activity toward EC or EA thanmore » that toward their structurally analogous {var_epsilon}C or {var_epsilon}A adduct. Both enzymes were capable of excising the ethano base paired with any of the four natural bases, but with varying efficiencies. The Mug activity toward EC could be stimulated by E. coli endonuclease IV and, more efficiently, by exonuclease III. Molecular dynamics (MD) simulations showed similar structural features of the etheno and ethano derivatives when present in DNA duplexes. However, also as shown by MD, the stacking interaction between the EC base and Phe 30 in the Mug active site is reduced as compared to the {var_epsilon}C base, which could account for the lower EC activity observed in this study.« less

  11. Evaluating Metabolite-Related DNA Oxidation and Adduct Damage from Aryl Amines Using a Microfluidic ECL Array.

    PubMed

    Bist, Itti; Bhakta, Snehasis; Jiang, Di; Keyes, Tia E; Martin, Aaron; Forster, Robert J; Rusling, James F

    2017-11-21

    Damage to DNA from the metabolites of drugs and pollutants constitutes a major human toxicity pathway known as genotoxicity. Metabolites can react with metal ions and NADPH to oxidize DNA or participate in S N 2 reactions to form covalently linked adducts with DNA bases. Guanines are the main DNA oxidation sites, and 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) is the initial product. Here we describe a novel electrochemiluminescent (ECL) microwell array that produces metabolites from test compounds and measures relative rates of DNA oxidation and DNA adduct damage. In this new array, films of DNA, metabolic enzymes, and an ECL metallopolymer or complex assembled in microwells on a pyrolytic graphite wafer are housed in dual microfluidic chambers. As reactant solution passes over the wells, metabolites form and can react with DNA in the films to form DNA adducts. These adducts are detected by ECL from a RuPVP polymer that uses DNA as a coreactant. Aryl amines also combine with Cu 2+ and NADPH to form reactive oxygen species (ROS) that oxidize DNA. The resulting 8-oxodG was detected selectively by ECL-generating bis(2,2'-bipyridine)-(4-(1,10-phenanthrolin-6-yl)-benzoic acid)Os(II). DNA/enzyme films on magnetic beads were oxidized similarly, and 8-oxodG determined by LC/MS/MS enabled array standardization. The array limit of detection for oxidation was 720 8-oxodG per 10 6 nucleobases. For a series of aryl amines, metabolite-generated DNA oxidation and adduct formation turnover rates from the array correlated very well with rodent 1/TD 50 and Comet assay results.

  12. Quantitative comparison between in vivo DNA adduct formation from exposure to selected DNA-reactive carcinogens, natural background levels of DNA adduct formation and tumour incidence in rodent bioassays.

    PubMed

    Paini, Alicia; Scholz, Gabriele; Marin-Kuan, Maricel; Schilter, Benoît; O'Brien, John; van Bladeren, Peter J; Rietjens, Ivonne M C M

    2011-09-01

    This study aimed at quantitatively comparing the occurrence/formation of DNA adducts with the carcinogenicity induced by a selection of DNA-reactive genotoxic carcinogens. Contrary to previous efforts, we used a very uniform set of data, limited to in vivo rat liver studies in order to investigate whether a correlation can be obtained, using a benchmark dose (BMD) approach. Dose-response data on both carcinogenicity and in vivo DNA adduct formation were available for six compounds, i.e. 2-acetylaminofluorene, aflatoxin B1, methyleugenol, safrole, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline and tamoxifen. BMD(10) values for liver carcinogenicity were calculated using the US Environmental Protection Agency BMD software. DNA adduct levels at this dose were extrapolated assuming linearity of the DNA adduct dose response. In addition, the levels of DNA adducts at the BMD(10) were compared to available data on endogenous background DNA damage in the target organ. Although for an individual carcinogen the tumour response increases when adduct levels increase, our results demonstrate that when comparing different carcinogens, no quantitative correlation exists between the level of DNA adduct formation and carcinogenicity. These data confirm that the quantity of DNA adducts formed by a DNA-reactive compound is not a carcinogenicity predictor but that other factors such as type of adduct and mutagenic potential may be equally relevant. Moreover, comparison to background DNA damage supports the notion that the mere occurrence of DNA adducts above or below the level of endogenous DNA damage is neither correlated to development of cancer. These data strongly emphasise the need to apply the mode of action framework to understand the contribution of other biological effect markers playing a role in carcinogenicity.

  13. Difficulties in Laboratory Studies and Astronomical Observations of Organic Molecules: Hydroxyacetone and Lactic Acid

    NASA Technical Reports Server (NTRS)

    Apponi, A. J.; Brewster, M. A.; Hoy, J.; Ziurys, L. M.

    2006-01-01

    For the past 35 years, radio astronomy has revealed a rich organic chemistry in the interstellar gas, which is exceptionally complex towards active star-forming regions. New solar systems condense out of this gas and may influence the evolution of life on newly formed planets. Much of the biologically important functionality is present among the some 130 gas-phase molecules found to date, including alcohols, aldehydes, ketones, acids, amines, amides and even the simplest sugar - glycolaldehyde. Still, many unidentified interstellar radio signals remain, and their identification relies on further laboratory study. The molecules hydroxyacetone and lactic acid are relatively small organic molecules, but possess rather complex rotational spectra owing to their high asymmetry. Hydroxyacetone is particularly problematic because it possess a very low barrier to internal rotation, and exhibits strong coupling of the free-rotor states with the overall rotation of the molecule. As in the case of acetamide, a full decomposition method was employed to order the resultant eigenstates onto normal asymmetric top eigenvectors.

  14. Recognition of platinum-DNA adducts by HMGB1a.

    PubMed

    Ramachandran, Srinivas; Temple, Brenda; Alexandrova, Anastassia N; Chaney, Stephen G; Dokholyan, Nikolay V

    2012-09-25

    Cisplatin (CP) and oxaliplatin (OX), platinum-based drugs used widely in chemotherapy, form adducts on intrastrand guanines (5'GG) in genomic DNA. DNA damage recognition proteins, transcription factors, mismatch repair proteins, and DNA polymerases discriminate between CP- and OX-GG DNA adducts, which could partly account for differences in the efficacy, toxicity, and mutagenicity of CP and OX. In addition, differential recognition of CP- and OX-GG adducts is highly dependent on the sequence context of the Pt-GG adduct. In particular, DNA binding protein domain HMGB1a binds to CP-GG DNA adducts with up to 53-fold greater affinity than to OX-GG adducts in the TGGA sequence context but shows much smaller differences in binding in the AGGC or TGGT sequence contexts. Here, simulations of the HMGB1a-Pt-DNA complex in the three sequence contexts revealed a higher number of interface contacts for the CP-DNA complex in the TGGA sequence context than in the OX-DNA complex. However, the number of interface contacts was similar in the TGGT and AGGC sequence contexts. The higher number of interface contacts in the CP-TGGA sequence context corresponded to a larger roll of the Pt-GG base pair step. Furthermore, geometric analysis of stacking of phenylalanine 37 in HMGB1a (Phe37) with the platinated guanines revealed more favorable stacking modes correlated with a larger roll of the Pt-GG base pair step in the TGGA sequence context. These data are consistent with our previous molecular dynamics simulations showing that the CP-TGGA complex was able to sample larger roll angles than the OX-TGGA complex or either CP- or OX-DNA complexes in the AGGC or TGGT sequences. We infer that the high binding affinity of HMGB1a for CP-TGGA is due to the greater flexibility of CP-TGGA compared to OX-TGGA and other Pt-DNA adducts. This increased flexibility is reflected in the ability of CP-TGGA to sample larger roll angles, which allows for a higher number of interface contacts between the Pt

  15. Detection and quantification of 4-ABP adducts in DNA from bladder cancer patients.

    PubMed

    Zayas, Beatriz; Stillwell, Sara W; Wishnok, John S; Trudel, Laura J; Skipper, Paul; Yu, Mimi C; Tannenbaum, Steven R; Wogan, Gerald N

    2007-02-01

    We analyzed bladder DNA from 27 cancer patients for dG-C8-4-aminobiphenyl (dG-C8-ABP) adducts using the liquid chromatography tandem mass spectrometry method with a 700 attomol (1 adduct in 10(9) bases) detection limit. Hemoglobin (Hb) 4-aminobiphenyl (4-ABP) adduct levels were measured by gas chromatography-mass spectrometry. After isolation of dG-C8-ABP by immunoaffinity chromatography and further purification, deuterated (d9) dG-C8-ABP (MW=443 Da) was added to each sample. Structural evidence and adduct quantification were determined by selected reaction monitoring, based on the expected adduct ion [M+H+]+1, at m/z 435 with fragmentation to the product ion at m/z 319, and monitoring of the transition for the internal standard, m/z 444-->328. The method was validated by analysis of DNA (100 microg each) from calf thymus; livers from ABP-treated and untreated rats; human placentas; and TK6 lymphoblastoid cells. Adduct was detected at femtomol levels in DNA from livers of ABP-treated rats and calf thymus, but not in other controls. The method was applied to 41 DNA samples (200 microg each) from 27 human bladders; 28 from tumor and 14 from surrounding non-tumor tissue. Of 27 tissues analyzed, 44% (12) contained 5-80 dG-C8-ABP adducts per 10(9) bases; only 1 out of 27 (4%) contained adduct in both tumor and surrounding tissues. The Hb adduct was detected in samples from all patients, at levels of 12-1960 pg per gram Hb. There was no correlation between levels of DNA and Hb adducts. The presence of DNA adducts in 44% of the subjects and high levels of Hb adducts in these non-smokers indicate environmental sources of exposure to 4-ABP.

  16. Adduct ion-targeted qualitative and quantitative analysis of polyoxypregnanes by ultra-high pressure liquid chromatography coupled with triple quadrupole mass spectrometry.

    PubMed

    Wu, Xu; Zhu, Lin; Ma, Jiang; Ye, Yang; Lin, Ge

    2017-10-25

    Polyoxypregnane and its glycosides (POPs) are frequently present in plants of Asclepiadaceae family, and have a variety of biological activities. There is a great need to comprehensively profile these phytochemicals and to quantify them for monitoring their contents in the herbs and the biological samples. However, POPs undergo extensive adduct ion formation in ESI-MS, which has posed a challenge for qualitative and quantitative analysis of POPs. In the present study, we took the advantage of such extensive adduct ion formation to investigate the suitability of adduct ion-targeted analysis of POPs. For the qualitative analysis, we firstly demonstrated that the sodium and ammonium adduct ion-targeted product ion scans (PIS) provided adequate MS/MS fragmentations for structural characterization of POPs. Aided with precursor ion (PI) scans, which showed high selectivity and sensitivity and improved peak assignment confidence in conjunction with full scan (FS), the informative adduct ion-targeted PIS enabled rapid POPs profiling. For the quantification, we used formic acid rather than ammonium acetate as an additive in the mobile phase to avoid simultaneous formation of sodium and ammonium adduct ions, and greatly improved reproducibility of MS response of POPs. By monitoring the solely formed sodium adduct ions [M+Na] + , a method for simultaneous quantification of 25 POPs in the dynamic multiple reaction monitoring mode was then developed and validated. Finally, the aforementioned methods were applied to qualitative and quantitative analysis of POPs in the extract of a traditional Chinses medicinal herb, Marsdenia tenacissima (Roxb.) Wight et Arn., and in the plasma obtained from the rats treated with this herb. The results demonstrated that adduct ion formation could be optimized for the qualitative and quantitative analysis of POPs, and our developed PI/FS-PIS scanning and sole [M+Na] + ion monitoring significantly improved the analysis of POPs in both herbal and

  17. Gas-Phase Anionic σ-Adduct (Trans)formations in Heteroaromatic Systems1

    NASA Astrophysics Data System (ADS)

    Zimnicka, Magdalena; Danikiewicz, Witold

    2015-07-01

    Anions of nitroderivatives of thiophene and furan were subjected to the reactions with selected C-H acids in the gas phase. Various structures and reaction pathways were proposed for the observed ionic products. In general, the reactions of heteroaromatic anions with C-H acids may be divided into three groups, depending on the proton affinity difference between C-H acid's conjugate base and heteroaromatic anion (ΔPA). The proton transfer from C-H acid to heteroaromatic anion is a dominant process in the reactions for which ΔPA < 0 kcal mol-1, whereas the reactions with high ΔPA (ΔPA > 16 kcal mol-1) do not lead to any ionic products. The formation of σ-adducts and products of their further transformations according to the VNS, SNAr, cine, and tele substitution mechanisms have been proposed for reactions with moderate ΔPA. The other possible mechanisms as SN2 reaction, nucleophilic addition to the cyano group, ring-opening pathway, and halogenophilic reaction have also been discussed to contribute in the reactions between heteroaromatic anions and C-H acids.

  18. Structural and thermodynamic insight into E. coli UvrABC mediated incision of cluster di-acetylaminofluorene adducts on the NarI sequence

    PubMed Central

    Jain, Vipin; Hilton, Benjamin; Lin, Bin; Jain, Anshu; MacKerell, Alexander D.; Zou, Yue; Cho, Bongsup P.

    2014-01-01

    Cluster DNA damage refers to two or more lesions in a single turn of the DNA helix. Such clustering may occur with bulky DNA lesions, which may be responsible for their sequence dependent repair and mutational outcomes. Here we prepared three 16-mer cluster duplexes in which two fluoroacetylaminofluorene adducts (dG-FAAF) are separated by none, one and two nucleotides in the E. coli NarI mutational hot spot (5'-CTCTCG1G2CG3CCATCAC-3'): i.e. 5'-- CG1*G2*CG3CC--3', 5'--CG1G2*CG3*CC--3', and 5'--CG1*G2CG3*CC--3' [G*=dG-FAAF], respectively. We conducted spectroscopic, thermodynamic, and molecular dynamics studies of these di-FAAF duplexes and the results were compared with those of the corresponding mono- FAAF adducts in the same NarI sequence (Nucleic Acids Res. 2012, 3939–3951). Our nucleotide excision repair results showed greater reparability of the di-adducts in comparison to the corresponding mono-adducts. Moreover, we observed dramatic flanking base sequence effects on their repair efficiency in the order of NarI-G2G3 > -G1G3 > -G1G2. The NMR/CD/UV-melting and MD-simulation results revealed that in contrast to the mono-adducts, di-adducts produced synergistic effect on duplex destabilization. In addition, dG-FAAF at G2G3 and G1G3 destack the neighboring bases with greater destabilization occurring with the former. Overall, the results indicate the importance of base stacking and related thermal/thermodynamic destabilization in the repair of bulky cluster arylamine DNA adducts. PMID:23841451

  19. Regiochemically controlled synthesis of a β-4-β' [70]fullerene bis-adduct

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerón, Maira R.; Castro, Edison; Neti, Venkata S. Pavan K.

    2016-12-22

    A β-4-β' C 70 bis-adduct regioisomer and an uncommon mono-adduct β-malonate C 70 derivative were synthesized by using a Diels–Alder cycloaddition followed by an addition–elimination of bromo-ethylmalonate and a retro-Diels–Alder cycloaddition reaction. Here, we also report the regioselective synthesis and spectroscopic characterization of C s-symmetric tris- and C 2v-symmetric tetra-adducts of C 70, which are the precursors of the mono- and bis-adduct final products.

  20. Line narrowing spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Myungkoo

    1995-12-06

    Laser-induced fluorescence line narrowing and non-line narrowing spectroscopic methods were applied to conformational studies of stable DNA adducts of the 7β, 8α-dihydoxy-9α, l0α-epoxy-7,8,9, 10-tetrahydrobenzo[α]pyrene (anti-BPDE). Stereochemically distinct (+)-trans-, (-)-trans-, (+)-cis- and (-)-cis adducts of anti-BPDE bound to exocyclic amino group of the central guanine in an 11-mer oligonucleotide, exist in a mixture of conformations in frozen aqueous buffer matrices. The (+)-trans adduct adopts primarily an external conformation with a smaller fraction ( ~25 %) exists in a partially base-stacked conformation. Both cis adducts were found to be intercalated with significant π-π stacking interactions between the pyrenyl residues and the bases.more » Conformations of the trans-adduct of (+)-anti -BPDE in 11-mer oligonucleotides were studied as a function of flanking bases. In single stranded form the adduct at G 2 or G 3 (5 ft-flanking, base guanine) adopts a conformation with strong, interaction with the bases. In contrast, the adduct with a 5ft-flanking, thymine exists in a primarily helixexternal conformation. Similar differences were observed in the double stranded oligonucleotides. The nature of the 3ft-flanking base has little influence on the conformational equilibrium of the (+)-trans-anti BPDE-dG adduct. The formation and repair of BPDE-N 2-dG in DNA isolated from the skin of mice treated topically with benzo[α]pyrene (BP) was studied. Low-temperature fluorescence spectroscopy of the intact DNA identified the major adduct as (+)-trans-anti-BPDE-N-dG, and the minor adduct fraction consisted mainly of (+)-cis-anti-BPDE-N 2-dG.« less

  1. Formation of DNA adducts from oil-derived products analyzed by 32P-HPLC.

    PubMed

    Akkineni, L K; Zeisig, M; Baranczewski, P; Ekström, L G; Möller, L

    2001-01-01

    The aim of this study was to investigate the genotoxic potential of DNA adducts and to compare DNA adduct levels and patterns in petroleum vacuum distillates, coal tar distillate, bitumen fume condensates, and related substances that have a wide range of boiling temperatures. An in vitro assay was used for DNA adduct analysis with human and rat S-9 liver extract metabolic activation followed by 32P-postlabeling and 32P-high-performance liquid chromatography (32p-HPLC). For petroleum distillates originating from one crude oil there was a correlation between in vitro DNA adduct formation and mutagenic index, which showed an increase with a distillation temperature of 250 degrees C and a peak around a distillation point of approximately 400 degrees C. At higher temperatures, the genotoxicity (DNA adducts and mutagenicity) rapidly declined to very low levels. Different petroleum products showed a more than 100-fold range in DNA adduct formation, with severely hydrotreated base oil and bitumen fume condensates being lowest. Coal tar distillates showed ten times higher levels of DNA adduct formation than the most potent petroleum distillate. A clustered DNA adduct pattern was seen over a wide distillation range after metabolic activation with liver extracts of rat or human origin. These clusters were eluted in a region where alkylated aromatic hydrocarbons could be expected. The DNA adduct patterns were similar for base oil and bitumen fume condensates, whereas coal tar distillates had a wider retention time range of the DNA adducts formed. Reference substances were tested in the same in vitro assay. Two- and three-ringed nonalkylated aromatics were rather low in genotoxicity, but some of the three- to four-ringed alkylated aromatics were very potent inducers of DNA adducts. Compounds with an amino functional group showed a 270-fold higher level of DNA adduct formation than the same structures with a nitro functional group. The most potent DNA adduct inducers of the 16

  2. Detection of Adriamycin–DNA adducts by accelerator mass spectrometry at clinically relevant Adriamycin concentrations

    PubMed Central

    Coldwell, Kate E.; Cutts, Suzanne M.; Ognibene, Ted J.; Henderson, Paul T.; Phillips, Don R.

    2008-01-01

    Limited sensitivity of existing assays has prevented investigation of whether Adriamycin–DNA adducts are involved in the anti-tumour potential of Adriamycin. Previous detection has achieved a sensitivity of a few Adriamycin–DNA adducts/104 bp DNA, but has required the use of supra-clinical drug concentrations. This work sought to measure Adriamycin–DNA adducts at sub-micromolar doses using accelerator mass spectrometry (AMS), a technique with origins in geochemistry for radiocarbon dating. We have used conditions previously validated (by less sensitive decay counting) to extract [14C]Adriamycin–DNA adducts from cells and adapted the methodology to AMS detection. Here we show the first direct evidence of Adriamycin–DNA adducts at clinically-relevant Adriamycin concentrations. [14C]Adriamycin treatment (25 nM) resulted in 4.4 ± 1.0 adducts/107 bp (∼1300 adducts/cell) in MCF-7 breast cancer cells, representing the best sensitivity and precision reported to date for the covalent binding of Adriamycin to DNA. The exceedingly sensitive nature of AMS has enabled over three orders of magnitude increased sensitivity of Adriamycin–DNA adduct detection and revealed adduct formation within an hour of drug treatment. This method has been shown to be highly reproducible for the measurement of Adriamycin–DNA adducts in tumour cells in culture and can now be applied to the detection of these adducts in human tissues. PMID:18632763

  3. Identification of the major tamoxifen-DNA adducts in rat liver by mass spectroscopy.

    PubMed

    Rajaniemi, H; Rasanen, I; Koivisto, P; Peltonen, K; Hemminki, K

    1999-02-01

    We present here the first mass spectroscopic (MS) identification of the main tamoxifen-induced DNA adducts in rat liver. The two main adducts were isolated by high-performance liquid chromatography (HPLC) and identified by MS, MS-MS and ultraviolet spectroscopy. Adduct 1 was the N-desmethyltamoxifen-deoxyguanosine adduct in which the alpha-position of the metabolite N-desmethyltamoxifen is linked covalently to the amino group of deoxyguanosine. Adduct 2 was confirmed to be the trans isomer of alpha-(N2-deoxyguanosinyl)tamoxifen, as previously suggested by co-chromatography.

  4. Building new discrete supramolecular assemblies through the interaction of iso-tellurazole N-oxides with Lewis acids and bases.

    PubMed

    Ho, Peter C; Jenkins, Hilary A; Britten, James F; Vargas-Baca, Ignacio

    2017-10-13

    The supramolecular macrocycles spontaneously assembled by iso-tellurazole N-oxides are stable towards Lewis bases as strong as N-heterocyclic carbenes (NHC) but readily react with Lewis acids such as BR 3 (R = Ph, F). The electron acceptor ability of the tellurium atom is greatly enhanced in the resulting O-bonded adducts, which consequently enables binding to a variety of Lewis bases that includes acetonitrile, 4-dimethylaminopyridine, 4,4'-bipyridine, triphenyl phosphine, a N-heterocyclic carbene and a second molecule of iso-tellurazole N-oxide.

  5. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under this...

  6. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under this...

  7. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under this...

  8. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under this...

  9. Conformations of stereoisomeric base adducts to 4-hydroxyequilenin.

    PubMed

    Ding, Shuang; Shapiro, Robert; Geacintov, Nicholas E; Broyde, Suse

    2003-06-01

    Exposure to estrogen through estrogen replacement therapy increases the risk of women developing cancer in hormone sensitive tissues. Premarin (Wyeth), which has been the most frequent choice for estrogen replacement therapy in the United States, contains the equine estrogens equilin and equilenin as major components. 4-Hydroxyequilenin (4-OHEN) is a phase I metabolite of both of these substances. This catechol estrogen autoxidizes to potent cytotoxic quinoids that can react with dG, dA, and dC to form unusual stereoisomeric cyclic adducts (Bolton, J. L., et al. (1998) Chem. Res. Toxicol. 11, 1113-1127). Like other bulky DNA adducts, these lesions may exhibit different susceptibilities to DNA repair and mutagenic potential, if not repaired in a structure-dependent manner. To ultimately gain insights into structure-function relationships, we computed conformations of stereoisomeric guanine, adenine, and cytosine base adducts using density functional theory. We find near mirror image conformations in stereoisomer adduct pairs for each modified base, suggesting opposite orientations with respect to the 5' --> 3' direction of the modified strand when the stereoisomer pairs are incorporated into duplex DNA. Such opposite orientations could cause stereoisomer pairs of lesions to respond differently to DNA replication and repair enzymes.

  10. Lewis acid-Lewis acid heterobimetallic cooperative catalysis: mechanistic studies and application in enantioselective aza-Michael reaction.

    PubMed

    Yamagiwa, Noriyuki; Qin, Hongbo; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2005-09-28

    The full details of a catalytic asymmetric aza-Michael reaction of methoxylamine promoted by rare earth-alkali metal heterobimetallic complexes are described, demonstrating the effectiveness of Lewis acid-Lewis acid cooperative catalysis. First, enones were used as substrates, and the 1,4-adducts were obtained in good yield (57-98%) and high ee (81-96%). Catalyst loading was successfully reduced to 0.3-3 mol % with enones. To broaden the substrate scope of the reaction to carboxylic acid derivatives, alpha,beta-unsaturated N-acylpyrroles were used as monodentate, carboxylic acid derivatives. With beta-alkyl-substituted N-acylpyrroles, the reaction proceeded smoothly and the products were obtained in high yield and good ee. Transformation of the 1,4-adducts from enones and alpha,beta-unsaturated N-acylpyrroles afforded corresponding chiral aziridines and beta-amino acids. Detailed mechanistic studies, including kinetics, NMR analysis, nonlinear effects, and rare earth metal effects, are also described. The Lewis acid-Lewis acid cooperative mechanism, including the substrate coordination mode, is discussed in detail.

  11. DNA Adduct Formation of 4-Aminobiphenyl and Heterocyclic Aromatic Amines in Human Hepatocytes

    PubMed Central

    Nauwelaers, Gwendoline; Bessette, Erin E.; Gu, Dan; Tang, Yijin; Rageul, Julie; Fessard, Valérie; Yuan, Jian-Min; Yu, Mimi C.; Langouët, Sophie; Turesky, Robert J.

    2011-01-01

    DNA adduct formation of the aromatic amine, 4-aminobiphenyl (4-ABP), a known human carcinogen present in tobacco smoke, and the heterocyclic aromatic amines (HAAs), 2-amino-9H-pyrido[2,3-b]indole (AαC), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), and 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), potential human carcinogens, which are also present in tobacco smoke or formed during the high-temperature cooking of meats, was investigated in freshly cultured human hepatocytes. The carcinogens (10 μM) were incubated with hepatocytes derived from eight different donors for time periods up to 24 h. The DNA adducts were quantified by liquid chromatography-electrospray ionization mass spectrometry with a linear quadrupole ion trap mass spectrometer. The principal DNA adducts formed for all of the carcinogens were N-(deoxyguanosin-8-yl) (dG-C8) adducts. The levels of adducts ranged from 3.4 to 140 adducts per 107 DNA bases. The highest level of adduct formation occurred with AαC, followed by 4-ABP, then by PhIP, MeIQx, and IQ. Human hepatocytes formed dG-C8-HAA-adducts at levels that were up to 100-fold greater than the amounts of adducts produced in rat hepatocytes. In contrast to HAA adducts, the levels of dG-C8-4-ABP adduct formation were similar in human and rat hepatocytes. These DNA binding data demonstrate that the rat, an animal model that is used for carcinogenesis bioassays, significantly underestimates the potential hepatic genotoxicity of HAAs in humans. The high level of DNA adducts formed by AαC, a carcinogen produced in tobacco smoke at levels that are up to 100-fold higher than the amounts of 4-ABP, is noteworthy. The possible causal role of AαC in tobacco-associated cancers warrants investigation. PMID:21456541

  12. Data-Independent Mass Spectrometry Approach for Screening and Identification of DNA Adducts.

    PubMed

    Guo, Jingshu; Villalta, Peter W; Turesky, Robert J

    2017-11-07

    Long-term exposures to environmental toxicants and endogenous electrophiles are causative factors for human diseases including cancer. DNA adducts reflect the internal exposure to genotoxicants and can serve as biomarkers for risk assessment. Liquid chromatography-multistage mass spectrometry (LC-MS n ) is the most common method for biomonitoring DNA adducts, generally targeting single exposures and measuring up to several adducts. However, the data often provide limited evidence for a role of a chemical in the etiology of cancer. An "untargeted" method is required that captures global exposures to chemicals, by simultaneously detecting their DNA adducts in the genome; some of which may induce cancer-causing mutations. We established a wide selected ion monitoring tandem mass spectrometry (wide-SIM/MS 2 ) screening method utilizing ultraperformance-LC nanoelectrospray ionization Orbitrap MS n with online trapping to enrich bulky, nonpolar adducts. Wide-SIM scan events are followed by MS 2 scans to screen for modified nucleosides by coeluting peaks containing precursor and fragment ions differing by -116.0473 Da, attributed to the neutral loss of deoxyribose. Wide-SIM/MS 2 was shown to be superior in sensitivity, specificity, and breadth of adduct coverage to other tested adductomic methods with detection possible at adduct levels as low as 4 per 10 9 nucleotides. Wide-SIM/MS 2 data can be analyzed in a "targeted" fashion by generation of extracted ion chromatograms or in an "untargeted" fashion where a chromatographic peak-picking algorithm can be used to detect putative DNA adducts. Wide-SIM/MS 2 successfully detected DNA adducts, derived from chemicals in the diet and traditional medicines and from lipid peroxidation products, in human prostate and renal specimens.

  13. Differences in micronucleus frequency and acrylamide adduct levels with hemoglobin between vegetarians and non-vegetarians.

    PubMed

    Kotova, Natalia; Frostne, Cecilia; Abramsson-Zetterberg, Lilianne; Tareke, Eden; Bergman, Rolf; Haghdoost, Siamak; Paulsson, Birgit; Törnqvist, Margareta; Segerbäck, Dan; Jenssen, Dag; Grawé, Jan

    2015-10-01

    Nutrients and food constituents can prevent or contribute to genotoxicity. In this study, the possible influence of a vegetarian/non-vegetarian diet on genotoxic effects was investigated in 58 non-smoking healthy vegetarians (V) and non-vegetarians (NV), age 21-37 years from the Stockholm area in Sweden. Physical activity and dietary habits were similar in both groups, with the exception of the intake of meat and fish. Using flow cytometry, we determined the formation of micronuclei (MN) in transferrin-positive immature peripheral blood reticulocytes (Trf-Ret) (Total: n = 53; V: n = 27; NV: n = 26). Dietary exposure to acrylamide was measured through hemoglobin (Hb) adducts in peripheral erythrocytes (Total: n = 53; V: n = 29; NV: n = 24). Hb adducts of both acrylamide and its genotoxic metabolite glycidamide were monitored as a measure of the corresponding in vivo doses. Our data demonstrated that compared with the non-vegetarians, the vegetarians exhibited lower frequencies of MN (fMN) in the Trf-Ret (p < 0.01, Student's t test). A multivariate analysis demonstrated that there was no association between the fMN and factors such as age, sex, intake of vitamins/minerals, serum folic acid and vitamin B12 levels, physical activity, and body mass index. The mean Hb adduct levels of acrylamide and glycidamide showed no significant differences between vegetarians and non-vegetarians. Furthermore, there were no significant relationships between the adduct levels and fMN in the individuals. The ratio of the Hb adduct levels from glycidamide and acrylamide, however, showed a significant difference (p < 0.04) between the two groups. These data suggest that the vegetarian diet might be beneficial in lowering genomic instability in healthy individuals. The measured Hb adduct levels indicate that the total intake of acrylamide does not differ between the two studied groups and does not contribute to the observed difference in fMN, although an influence of the diet on the

  14. A toolbox for microbore liquid chromatography tandem-high-resolution mass spectrometry analysis of albumin-adducts as novel biomarkers of organophosphorus pesticide poisoning.

    PubMed

    von der Wellen, Jens; Winterhalter, Peter; Siegert, Markus; Eyer, Florian; Thiermann, Horst; John, Harald

    2018-08-01

    Exposure to toxic organophosphorus pesticides (OPP) represents a serious problem in the public healthcare sector and might be forced in terroristic attacks. Therefore, reliable verification procedures for OPP-intoxications are required for forensic, toxicological and clinical reasons. We developed and optimized a toolbox of methods to detect adducts of human serum albumin (HSA) with OPP considered as long-term biomarkers. Human serum was incubated with diethyl-oxono and diethyl-thiono pesticides for adduct formation used as reference. Afterwards serum was subjected to proteolysis using three proteases separately thus yielding phosphorylated tyrosine residues (Y*) detected as single amino acid (pronase), as hexadecapeptide LVRY* 411 TKKVPQVSTPTL (pepsin) and as the tripeptide Y* 411 TK (trypsin), respectively. Adducts were analyzed via microbore liquid chromatography coupled to electrospray ionization (μLC-ESI) and tandem-high-resolution mass spectrometry (MS/HR MS). Using paraoxon-ethyl as model OPP for adduct formation, methods were optimized with respect to MS/HR MS-parameters, protease concentrations and incubation time for proteolysis. HSA-adducts were found to be stable in serum in vitro at +37 °C and -30 °C for at least 27 days and resulting biomarkers were stable in the autosampler at 15 °C for at least 24 h. Limits of identification of adducts varied between 0.25 μM and 4.0 μM with respect to the corresponding pesticide concentrations in serum. Applicability of the methods was proven by successful detection of the adducts in samples of OPP-poisoned patients thus demonstrating the methods as a reliable toolbox for forensic and toxicological analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Gas-phase ion-molecule reactions for the identification of the sulfone functionality in protonated analytes in a linear quadrupole ion trap mass spectrometer.

    PubMed

    Tang, Weijuan; Sheng, Huaming; Kong, John Y; Yerabolu, Ravikiran; Zhu, Hanyu; Max, Joann; Zhang, Minli; Kenttämaa, Hilkka I

    2016-06-30

    The oxidation of sulfur atoms is an important biotransformation pathway for many sulfur-containing drugs. In order to rapidly identify the sulfone functionality in drug metabolites, a tandem mass spectrometric method based on ion-molecule reactions was developed. A phosphorus-containing reagent, trimethyl phosphite (TMP), was allowed to react with protonated analytes with various functionalities in a linear quadrupole ion trap mass spectrometer. The reaction products and reaction efficiencies were measured. Only protonated sulfone model compounds were found to react with TMP to form a characteristic [TMP adduct-MeOH] product ion. All other protonated compounds investigated, with functionalities such as sulfoxide, N-oxide, hydroxylamino, keto, carboxylic acid, and aliphatic and aromatic amino, only react with TMP via proton transfer and/or addition. The specificity of the reaction was further demonstrated by using a sulfoxide-containing anti-inflammatory drug, sulindac, as well as its metabolite sulindac sulfone. A method based on functional group-selective ion-molecule reactions in a linear quadrupole ion trap mass spectrometer has been demonstrated for the identification of the sulfone functionality in protonated analytes. A characteristic [TMP adduct-MeOH] product ion was only formed for the protonated sulfone analytes. The applicability of the TMP reagent in identifying sulfone functionalities in drug metabolites was also demonstrated. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Pixantrone can be activated by formaldehyde to generate a potent DNA adduct forming agent

    PubMed Central

    Evison, Ben J.; Mansour, Oula C.; Menta, Ernesto; Phillips, Don R.; Cutts, Suzanne M.

    2007-01-01

    Mitoxantrone is an anti-cancer agent used in the treatment of breast and prostate cancers. It is classified as a topoisomerase II poison, however can also be activated by formaldehyde to generate drug–DNA adducts. Despite identification of this novel form of mitoxantrone–DNA interaction, excessively high, biologically irrelevant drug concentrations are necessary to generate adducts. A search for mitoxantrone analogues that could potentially undergo this reaction with DNA more efficiently identified Pixantrone as an ideal candidate. An in vitro crosslinking assay demonstrated that Pixantrone is efficiently activated by formaldehyde to generate covalent drug–DNA adducts capable of stabilizing double-stranded DNA in denaturing conditions. Pixantrone–DNA adduct formation is both concentration and time dependent and the reaction exhibits an absolute requirement for formaldehyde. In a direct comparison with mitoxantrone–DNA adduct formation, Pixantrone exhibited a 10- to 100-fold greater propensity to generate adducts at equimolar formaldehyde and drug concentrations. Pixantrone–DNA adducts are thermally and temporally labile, yet they exhibit a greater thermal midpoint temperature and an extended half-life at 37°C when compared to mitoxantrone–DNA adducts. Unlike mitoxantrone, this enhanced stability, coupled with a greater propensity to form covalent drug–DNA adducts, may endow formaldehyde-activated Pixantrone with the attributes required for Pixantrone–DNA adducts to be biologically active. PMID:17483512

  17. Atmospheric photochemistry at a fatty acid coated air/water interface

    NASA Astrophysics Data System (ADS)

    George, Christian; Rossignol, Stéphanie; Passananti, Monica; Tinel, Liselotte; Perrier, Sebastien; Kong, Lingdong; Brigante, Marcello; Bianco, Angelica; Chen, Jianmin; Donaldson, James

    2017-04-01

    Over the past 20 years, interfacial processes have become increasingly of interest in the field of atmospheric chemistry, with many studies showing that environmental surfaces display specific chemistry and photochemistry, enhancing certain reactions and acting as reactive sinks or sources for various atmospherically relevant species. Many molecules display a free energy minimum at the air-water interface, making it a favored venue for compound accumulation and reaction. Indeed, surface active molecules have been shown to undergo specific photochemistry at the air-water interface. This presentation will address some recent surprises. Indeed, while fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds (VOCs) are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over monolayer NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet state NA molecules excited by direct absorption of actinic light at the water surface. As fatty acids covered interfaces are ubiquitous in the environment, such photochemical processing will have a significant impact on local ozone and particle formation. In addition, it was shown recently that a heterogeneous reaction between SO2 and oleic acid (OA; an unsaturated fatty acid) takes place and leads efficiently to the formation of organosulfur products. Here, we demonstrate that this reaction proceeds photochemically on various unsaturated fatty acids compounds, and may therefore have a general environmental impact. This is probably due to the chromophoric nature of the SO2 adduct with C=C bonds, and means that the contribution of this direct addition of SO2 could

  18. Improved strategies for postoligomerization synthesis of oligodeoxynucleotides bearing structurally defined adducts at the N2 position of deoxyguanosine.

    PubMed

    DeCorte, B L; Tsarouhtsis, D; Kuchimanchi, S; Cooper, M D; Horton, P; Harris, C M; Harris, T M

    1996-01-01

    Improved methodology has been developed for preparation of oligodeoxynucleotides bearing adducts on the N2 position of guanine in which the adduction reaction is carried out in homogeneous solution rather than while the oligonucleotide is immobilized on a solid matrix. The methodology utilizes a new synthon, 2-fluoro-O6-(trimethylsilylethyl)-2'-deoxyinosine (3). Nucleoside 3 is stable to the conditions of oligonucleotide synthesis, but the O6 protection is eliminated under very mild conditions following displacement of the 2-fluoro group by amine nucleophiles. Oligonucleotides containing 3 could be removed from the solid support by treatment with 0.1 M NaOH (8 h, rt) without disruption of 3. Reaction of the crude, partially deprotected oligonucleotide with (R)-2-amino-2-phenylethanol in homogeneous solution, followed by removal of the remaining protective groups with NH4OH (60 degrees C, 8 h) and then 0.1% acetic acid, gave the adducted oligonucleotide in good purity and yield. Alternatively, fully deprotected oligonucleotide containing 3 could be prepared by use of labile phenoxyacetyl-type protecting groups on the exocyclic amino groups.

  19. 32P analysis of DNA adducts in tissues of benzene-treated rats.

    PubMed Central

    Reddy, M V; Blackburn, G R; Schreiner, C A; Mehlman, M A; Mackerer, C R

    1989-01-01

    Solid tumors have been reported in the Zymbal gland, oral and nasal cavities, liver, and mammary gland of Sprague-Dawley rats following chronic, high-dose administration of benzene. The carcinogenic activity of benzene is thought to be caused by activation to toxic metabolites that can interact with DNA, forming covalent adducts. A nuclease P1-enhanced 32P-postlabeling assay, having a sensitivity limit of 1 adduct in 10(9-10) DNA nucleotides, was found suitable for measuring aromatic DNA adducts derived in vitro from catechol, benzenetriol (BT), phenol, hydroquinone (HQ), and benzoquinone (BQ), potential metabolites of benzene. When DNA specimens isolated from tissues of female Sprague-Dawley rats at 24 hr after an oral gavage dose of 200 to 500 mg/kg, 5 days/week, in olive oil (3 mL/kg) for 1 day, 1 week, 5 weeks, and 10 weeks were analyzed by the 32P-postlabeling procedure, no aromatic adducts were detected unequivocally with DNA samples of liver, kidney, bone marrow, and mammary gland. With Zymbal gland DNA, three weak spots at levels totaling four lesions per 10(9) DNA nucleotides were seen only after 10 weeks of treatment, and these adducts did not correspond chromatographically to major adducts in vitro from the above specified compounds. Consequently, this finding requires confirmatory experiments. This distinct adduct pattern may relate to tumor induction in this organ following benzene administration. Our results also indicate that DNA adducts derived from catechol, BT, phenol, HQ, and BQ are either not formed in vivo with benzene or formed at levels below the detection limit of 1 adduct per 10(9-10) DNA nucleotides. Images FIGURE 1. FIGURE 2. FIGURE 3. PMID:2792046

  20. Underestimation of pyruvic acid concentrations by fructose and cysteine in 2,4-dinitrophenylhydrazine-mediated onion pungency test.

    PubMed

    Yoo, Kil Sun; Lee, Eun Jin; Patil, Bhimanagouda S

    2011-10-01

    Onion pungency has been routinely measured by determining pyruvic acid concentration in onion juice by reacting with 2,4-dinitrophenylhydrazine (DNPH) since 1961. However, the absorbency of the color adduct of the reaction rapidly decreased in onion samples as compared to that of the pyruvic acid standards, resulting in underestimations of the pyruvic acid concentrations. By measuring the absorbency at 1 min, we have demonstrated that accuracy could be substantially improved. As a continuation, the causes of degradation of the color adduct after the reaction and pyruvic acid itself before the reaction were examined in this study. Alliinase action in juice (fresh or cooked) and bulb colors did not influence the degradation. Some organic acids indigenously found in onion, such as ascorbic acid, proline, and glutamic acid, did not reduce the absorbency. However, fructose within the onion juice or supplemented caused the degradation of the color adduct, whereas sucrose and glucose had a lesser effect. Degradation rates increased proportionally as fructose concentrations increased up to 70 mg/mL. Cysteine was found to degrade the pyruvic acid itself before the pyruvic acid could react with DNPH. Approximately 90% of the pyruvic acid was degraded after 60 min in samples of 7 mM pyruvic acid supplemented with 10 mg/mL cysteine. Spectral comparisons of onion juice containing fructose naturally and pyruvic acid solution with supplemented fructose indicated identical patterns and confirmed that the color-adduct degradation was caused by fructose. Our study elucidated that fructose, a major sugar in onion juice, caused the degradation of color adduct in the onion pungency test and resulted in underestimation of the pyruvic acid concentration. © 2011 Institute of Food Technologists®

  1. Inert Reassessment Document for Poly(oxyethylene) adducts of mixed phytosterols

    EPA Pesticide Factsheets

    Poly(oxyethy1ene) adducts of mixed phytosterols is uncategorized as to list classification status. Based upon the reasonable certainty of no harm safety finding, the List 4B classification for poly(oxyethy1ene) adducts of mixed phytosterols is affirmed.

  2. Adduct simplification in the analysis of cyanobacterial toxins by matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Howard, Karen L; Boyer, Gregory L

    2007-01-01

    A novel method for simplifying adduct patterns to improve the detection and identification of peptide toxins using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry is presented. Addition of 200 microM zinc sulfate heptahydrate (ZnSO(4) . 7H(2)O) to samples prior to spotting on the target enhances detection of the protonated molecule while suppressing competing adducts. This produces a highly simplified spectrum with the potential to enhance quantitative analysis, particularly for complex samples. The resulting improvement in total signal strength and reduction in the coefficient of variation (from 31.1% to 5.2% for microcystin-LR) further enhance the potential for sensitive and accurate quantitation. Other potential additives tested, including 18-crown-6 ether, alkali metal salts (lithium chloride, sodium chloride, potassium chloride), and other transition metal salts (silver chloride, silver nitrate, copper(II) nitrate, copper(II) sulfate, zinc acetate), were unable to achieve comparable results. Application of this technique to the analysis of several microcystins, potent peptide hepatotoxins from cyanobacteria, is illustrated. Copyright (c) 2007 John Wiley & Sons, Ltd.

  3. Tyrosine-lipid peroxide adducts from radical termination: para coupling and intramolecular Diels-Alder cyclization.

    PubMed

    Shchepin, Roman; Möller, Matias N; Kim, Hye-young H; Hatch, Duane M; Bartesaghi, Silvina; Kalyanaraman, Balaraman; Radi, Rafael; Porter, Ned A

    2010-12-15

    Free radical co-oxidation of polyunsaturated lipids with tyrosine or phenolic analogues of tyrosine gave rise to lipid peroxide-tyrosine (phenol) adducts in both aqueous micellar and organic solutions. The novel adducts were isolated and characterized by 1D and 2D NMR spectroscopy as well as by mass spectrometry (MS). The spectral data suggest that the polyunsaturated lipid peroxyl radicals give stable peroxide coupling products exclusively at the para position of the tyrosyl (phenoxy) radicals. These adducts have characteristic (13)C chemical shifts at 185 ppm due to the cross-conjugated carbonyl of the phenol-derived cyclohexadienone. The primary peroxide adducts subsequently undergo intramolecular Diels-Alder (IMDA) cyclization, affording a number of diastereomeric tricyclic adducts that have characteristic carbonyl (13)C chemical shifts at ~198 ppm. All of the NMR HMBC and HSQC correlations support the structure assignments of the primary and Diels-Alder adducts, as does MS collision-induced dissociation data. Kinetic rate constants and activation parameters for the IMDA reaction were determined, and the primary adducts were reduced with cuprous ion to give a phenol-derived 4-hydroxycyclohexa-2,5-dienone. No products from adduction of peroxyls at the phenolic ortho position were found in either the primary or cuprous reduction product mixtures. These studies provide a framework for understanding the nature of lipid-protein adducts formed by peroxyl-tyrosyl radical-radical termination processes. Coupling of lipid peroxyl radicals with tyrosyl radicals leads to cyclohexenone and cyclohexadienone adducts, which are of interest in and of themselves since, as electrophiles, they are likely targets for protein nucleophiles. One consequence of lipid peroxyl reactions with tyrosyls may therefore be protein-protein cross-links via interprotein Michael adducts.

  4. Tyrosine-Lipid Peroxide Adducts from Radical Termination: Para-Coupling and Intramolecular Diels-Alder Cyclization

    PubMed Central

    Shchepin, Roman; Möller, Matias N.; Kim, Hye-young H.; Hatch, Duane M.; Bartesaghi, Silvina; Kalyanaraman, Balaraman; Radi, Rafael

    2013-01-01

    Free radical co-oxidation of polyunsaturated lipids with tyrosine or phenolic analogs of tyrosine gave rise to lipid peroxide-tyrosine (phenol) adducts in both aqueous micellar and organic solutions. The novel adducts were isolated and characterized by 1D and 2D NMR as well as by mass spectrometry. The spectral data suggest that the polyunsaturated lipid peroxyl radicals give stable peroxide coupling products exclusively at the para position of the tyrosyl (phenoxy) radicals. These adducts have characteristic 13C chemical shifts at 185 ppm due to the cross-conjugated carbonyl of the phenol-derived cyclohexadienone. The primary peroxide adducts subsequently undergo intramolecular Diels-Alder (IMDA) cyclization, affording a number of diastereomeric tricyclic adducts that have characteristic carbonyl 13C chemical shifts at ~198 ppm. All NMR HMBC and HSQC correlations support the structure assignment of the primary and Diels-Alder adducts, as does MS collision induced dissociation. Kinetic rate constants and activation parameters for the IMDA reaction were determined and the primary adducts were reduced with cuprous ion giving a phenol-derived 4-hydroxycyclohexa-2,5-dienone. No products from adduction of peroxyls at the phenolic ortho position were found either in the primary or the cuprous reduction product mixtures. These studies provide a framework for understanding the nature of lipid-protein adducts formed by peroxyl-tyrosyl radical-radical termination processes. Coupling of lipid peroxyl radicals with tyrosyl radicals leads to cyclohexenone and cyclohexadienone adducts which are of interest in and of themselves since, as electrophiles, they are likely targets for protein nucleophiles. One consequence of lipid peroxyl reactions with tyrosyls may therefore be protein-protein crosslinks via interprotein Michael adducts. PMID:21090613

  5. PROTEIN ADDUCTS AS BIOMAKERS OF EXPOSURE TO ORGANOPHOSPHORUS COMPOUNDS

    PubMed Central

    Marsillach, Judit; Costa, Lucio G.; Furlong, Clement E.

    2013-01-01

    Exposure to organophosphorus (OP) compounds can lead to serious neurological damage or death. Following bioactivation by the liver cytochromes P450, the OP metabolites produced are potent inhibitors of serine active-site enzymes including esterases, proteases and lipases. OPs may form adducts on other cellular proteins. Blood cholinesterases (ChEs) have long served as biomarkers of OP exposure in humans. However, the enzymatic assays used for biomonitoring OP exposures have several drawbacks. A more useful approach will focus on multiple biomarkers and avoid problems with the enzymatic activity assays. OP inhibitory effects result from a covalent bond with the active-site serine of the target enzymes. The serine OP adducts become irreversible following a process referred to as aging where one alkyl group dissociates over variable lengths of time depending on the OP adduct. The OP-adducted enzyme then remains in circulation until it is degraded, allowing for a longer window of detection compared with direct analysis of OPs or their metabolites. Mass spectrometry (MS) provides a very sensitive method for identification of post-translational protein modifications. MS analyses of the percentage adduction of the active-site serine of biomarker proteins such as ChEs will eliminate the need for basal activity levels of the individual and will provide for a more accurate determination of OP exposure. MS analysis of biomarker proteins also provides information about the OP that has caused inhibition. Other useful biomarker proteins include other serine hydrolases, albumin, tubulin and transferrin. PMID:23261756

  6. Accurate characterization of carcinogenic DNA adducts using MALDI tandem time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Barnes, Charles A.; Chiu, Norman H. L.

    2009-01-01

    Many chemical carcinogens and their in vivo activated metabolites react readily with genomic DNA, and form covalently bound carcinogen-DNA adducts. Clinically, carcinogen-DNA adducts have been linked to various cancer diseases. Among the current methods for DNA adduct analysis, mass spectroscopic method allows the direct measurement of unlabeled DNA adducts. The goal of this study is to explore the use of matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to determine the identity of carcinogen-DNA adducts. Two of the known carcinogenic DNA adducts, namely N-(2'-deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenyl-imidazo [4,5-b] pyridine (dG-C8-PhIP) and N-(2'-deoxyguanosin-8yl)-4-aminobiphenyl (dG-C8-ABP), were selected as our models. In MALDI-TOF MS measurements, the small matrix ion and its cluster ions did not interfere with the measurements of both selected dG adducts. To achieve a higher accuracy for the characterization of selected dG adducts, 1 keV collision energy in MALDI-TOF/TOF MS/MS was used to measure the adducts. In comparison to other MS/MS techniques with lower collision energies, more extensive precursor ion dissociations were observed. The detection of the corresponding fragment ions allowed the identities of guanine, PhIP or ABP, and the position of adduction to be confirmed. Some of the fragment ions of dG-C8-PhIP have not been reported by other MS/MS techniques.

  7. Crystal structure of a 2:1 piroxicam–gentisic acid co-crystal featuring neutral and zwitterionic piroxicam molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horstman, Elizabeth M.; Bertke, Jeffery A.; Woods, Toby J.

    2016-11-04

    A new 2:1 co-crystal of piroxicam and gentisic acid [systematic name: 4-hydroxy-1,1-dioxo-N-(pyridin-2-yl)-2H-1λ 6,2-benzothiazine-3-carboxamide–2-(4-oxido-1,1-dioxo-2H-1λ 6,2-benzothiazine-3-amido)pyridin-1-ium–2,5-dihydroxybenzoic acid, 2C 15H 13N 3O 4S·C 7H 6O 4] has been synthesized using a microfluidic platform and initially identified using Raman spectroscopy. In the co-crystal, one piroxicam molecule is in its neutral form and an intramolecular O—H...O hydrogen bond is observed. The other piroxicam molecule is zwitterionic (proton transfer from the OH group to the pyridine N atom) and two intramolecular N—H...O hydrogen bonds occur. The gentisic acid molecule shows whole-molecule disorder over two sets of sites in a 0.809(2):0.191(2) ratio. In the crystal, extensive hydrogenmore » bonding between the components forms layers propagating in theabplane.« less

  8. Arachidonic Acid: An Evolutionarily Conserved Signaling Molecule Modulates Plant Stress Signaling Networks[C][W

    PubMed Central

    Savchenko, Tatyana; Walley, Justin W.; Chehab, E. Wassim; Xiao, Yanmei; Kaspi, Roy; Pye, Matthew F.; Mohamed, Maged E.; Lazarus, Colin M.; Bostock, Richard M.; Dehesh, Katayoon

    2010-01-01

    Fatty acid structure affects cellular activities through changes in membrane lipid composition and the generation of a diversity of bioactive derivatives. Eicosapolyenoic acids are released into plants upon infection by oomycete pathogens, suggesting they may elicit plant defenses. We exploited transgenic Arabidopsis thaliana plants (designated EP) producing eicosadienoic, eicosatrienoic, and arachidonic acid (AA), aimed at mimicking pathogen release of these compounds. We also examined their effect on biotic stress resistance by challenging EP plants with fungal, oomycete, and bacterial pathogens and an insect pest. EP plants exhibited enhanced resistance to all biotic challenges, except they were more susceptible to bacteria than the wild type. Levels of jasmonic acid (JA) were elevated and levels of salicylic acid (SA) were reduced in EP plants. Altered expression of JA and SA pathway genes in EP plants shows that eicosapolyenoic acids effectively modulate stress-responsive transcriptional networks. Exogenous application of various fatty acids to wild-type and JA-deficient mutants confirmed AA as the signaling molecule. Moreover, AA treatment elicited heightened expression of general stress-responsive genes. Importantly, tomato (Solanum lycopersicum) leaves treated with AA exhibited reduced susceptibility to Botrytis cinerea infection, confirming AA signaling in other plants. These studies support the role of AA, an ancient metazoan signaling molecule, in eliciting plant stress and defense signaling networks. PMID:20935246

  9. Microdose-Induced Drug–DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice

    DOE PAGES

    Zimmermann, Maike; Wang, Si-Si; Zhang, Hongyong; ...

    2016-11-30

    Here, we report progress on predicting tumor response to platinum-based chemotherapy with a novel mass spectrometry approach. Fourteen bladder cancer patients were administered one diagnostic microdose each of [ 14C]carboplatin (1% of the therapeutic dose). Carboplatin–DNA adducts were quantified by accelerator mass spectrometry in blood and tumor samples collected within 24 hours, and compared with subsequent chemotherapy response. Patients with the highest adduct levels were responders, but not all responders had high adduct levels. Four patient-derived bladder cancer xenograft mouse models were used to test the possibility that another drug in the regimen could cause a response. The mice weremore » dosed with [ 14C]carboplatin or [ 14C]gemcitabine and the resulting drug–DNA adduct levels were compared with tumor response to chemotherapy. At least one of the drugs had to induce high drug–DNA adduct levels or create a synergistic increase in overall adducts to prompt a corresponding therapeutic response, demonstrating proof-of-principle for drug–DNA adducts as predictive biomarkers.« less

  10. Microdose-Induced Drug–DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmermann, Maike; Wang, Si-Si; Zhang, Hongyong

    Here, we report progress on predicting tumor response to platinum-based chemotherapy with a novel mass spectrometry approach. Fourteen bladder cancer patients were administered one diagnostic microdose each of [ 14C]carboplatin (1% of the therapeutic dose). Carboplatin–DNA adducts were quantified by accelerator mass spectrometry in blood and tumor samples collected within 24 hours, and compared with subsequent chemotherapy response. Patients with the highest adduct levels were responders, but not all responders had high adduct levels. Four patient-derived bladder cancer xenograft mouse models were used to test the possibility that another drug in the regimen could cause a response. The mice weremore » dosed with [ 14C]carboplatin or [ 14C]gemcitabine and the resulting drug–DNA adduct levels were compared with tumor response to chemotherapy. At least one of the drugs had to induce high drug–DNA adduct levels or create a synergistic increase in overall adducts to prompt a corresponding therapeutic response, demonstrating proof-of-principle for drug–DNA adducts as predictive biomarkers.« less

  11. Microdose-Induced Drug-DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice.

    PubMed

    Zimmermann, Maike; Wang, Si-Si; Zhang, Hongyong; Lin, Tzu-Yin; Malfatti, Michael; Haack, Kurt; Ognibene, Ted; Yang, Hongyuan; Airhart, Susan; Turteltaub, Kenneth W; Cimino, George D; Tepper, Clifford G; Drakaki, Alexandra; Chamie, Karim; de Vere White, Ralph; Pan, Chong-Xian; Henderson, Paul T

    2017-02-01

    We report progress on predicting tumor response to platinum-based chemotherapy with a novel mass spectrometry approach. Fourteen bladder cancer patients were administered one diagnostic microdose each of [ 14 C]carboplatin (1% of the therapeutic dose). Carboplatin-DNA adducts were quantified by accelerator mass spectrometry in blood and tumor samples collected within 24 hours, and compared with subsequent chemotherapy response. Patients with the highest adduct levels were responders, but not all responders had high adduct levels. Four patient-derived bladder cancer xenograft mouse models were used to test the possibility that another drug in the regimen could cause a response. The mice were dosed with [ 14 C]carboplatin or [ 14 C]gemcitabine and the resulting drug-DNA adduct levels were compared with tumor response to chemotherapy. At least one of the drugs had to induce high drug-DNA adduct levels or create a synergistic increase in overall adducts to prompt a corresponding therapeutic response, demonstrating proof-of-principle for drug-DNA adducts as predictive biomarkers. Mol Cancer Ther; 16(2); 376-87. ©2016 AACR. ©2016 American Association for Cancer Research.

  12. Microdose-induced Drug-DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice

    PubMed Central

    Zimmermann, Maike; Wang, Si-Si; Zhang, Hongyong; Lin, Tzu-yin; Malfatti, Michael; Haack, Kurt; Ognibene, Ted; Yang, Hongyuan; Airhart, Susan; Turteltaub, Kenneth W.; Cimino, George D.; Tepper, Clifford G.; Drakaki, Alexandra; Chamie, Karim; de Vere White, Ralph; Pan, Chong-xian; Henderson, Paul T.

    2017-01-01

    We report progress on predicting tumor response to platinum-based chemotherapy with a novel mass spectrometry approach. Fourteen bladder cancer patients were administered one diagnostic microdose each of [14C]carboplatin (1% of the therapeutic dose). Carboplatin-DNA adducts were quantified by accelerator mass spectrometry (AMS) in blood and tumor samples collected within 24 hours, and compared to subsequent chemotherapy response. Patients with the highest adduct levels were responders, but not all responders had high adduct levels. Four patient-derived bladder cancer xenograft mouse models were used to test the possibility that another drug in the regimen could cause a response. The mice were dosed with [14C]carboplatin or [14C]gemcitabine and the resulting drug-DNA adduct levels were compared to tumor response to chemotherapy. At least one of the drugs had to induce high drug-DNA adduct levels or create a synergistic increase in overall adducts to prompt a corresponding therapeutic response, demonstrating proof-of-principle for drug-DNA adducts as predictive biomarkers. PMID:27903751

  13. Structure of adducts of isoindolo[2,1-a]benzimidazole derivatives with maleimides

    NASA Astrophysics Data System (ADS)

    Korolev, Oleksandr; Yegorova, Tatyana; Levkov, Igor; Malytskyy, Volodymyr; Shishkin, Oleg; Zubatyuk, Roman; Palamarchuk, Genadiy; Vedrenne, Marc; Baltas, Michel; Voitenko, Zoia

    2015-03-01

    The selectivity of formation and some mechanistic insights during the synthesis of substituted isoindolo[2,1-a]benzimidazoles are discussed. Furthermore, the reactions of the obtained products with maleimides were carried out. Two types rearrangement adducts together with intermediate Michael type adducts were isolated. The influence of the reaction conditions and reagents ratio is discussed. Specific spectral criteria for the identification of the Michael type adducts are indicated.

  14. DNA adducts in coal miners: association with exposures to diesel engine emissions.

    PubMed

    Shu-Xin Qu James Leigh Hamilton Koelmeyer And Neill H Stacey

    1997-01-01

    The potential carcinogenic effects of exposure to diesel engine emissions (DEE) are of growing concern. Due to the use of diesel equipment in underground mines, DNA adducts in peripheral blood mononuclear cells have been measured using the (32)P-postlabelling technique in workers from two coal mines (A, B)in NSW, Australia, before and after a period of more intense exposure (long wall change out, LWCO). DNA adducts were readily detected in all workers. At Mine A, in the 89 participants before LWCO, no significant difference was found among the groups categorized by exposure levels. However, significantly higher concentrations of total DNA adducts were observed in the specific job categories, 'miners and loadmen', and 'machinemen, drivers and shiftmen' and in the smoking group. On comparing total DNA adducts before and after LWCO in a small number of workers, a significant increase was also found. At Mine B, before or after LWCO, the total DNA adduct levels showed no significant difference among groups categorized by exposure conditions, smoking status, job categories and job time length. However, the total DNA adducts for the 61 subjects were significantly increased (geometric means) from 297 to 389 amol lg(-1) DNA after LWCO (p < 0.0001, paired t test). Some individual adducts were also elevated to a greater extent (p < 0.05, paired non-parametric test, Wilcoxon signed rank test). Furthermore, using generalized estimating equations for adjusting all factors across the observation period, no particular factor showed any significant interactive effects. Given the association of exposure to DEE with lung cancer and the apparent increase in adducts during a period of intense DEE exposures it would be prudent to pay particular attention to keeping exposures as low as possible, especially during LWCO operations.

  15. 4-Nitro-aniline-picric acid (2/1).

    PubMed

    Li, Yan-Jun

    2009-09-30

    In the title adduct, C(6)H(3)N(3)O(7)·0.5C(6)H(6)N(2)O(2), the complete 4-nitro-aniline mol-ecule is generated by a crystallographic twofold axis with two C atoms and two N atoms lying on the axis. The mol-ecular components are linked into two dimensional corrugated layers running parallel to the (001) plane by a combination of inter-molecular N-H⋯O and C-H⋯O hydrogen bonds. The phenolic oxygen and two sets of nitro oxygen atoms in the picric acid were found to be disordered with occupancies of 0.81 (2):0.19 (2) and 0.55 (3):0.45 (3) and 0.77 (4):0.23 (4), respectively.

  16. Formation of monofunctional cisplatin-DNA adducts in carbonate buffer.

    PubMed

    Binter, Alexandra; Goodisman, Jerry; Dabrowiak, James C

    2006-07-01

    Carbonate in its various forms is an important component in blood and the cytosol. Since, under conditions that simulate therapy, carbonate reacts with cisplatin to form carbonato complexes, one of which is taken up and/or modified by the cell [C.R. Centerwall, J. Goodisman, D.J. Kerwood, J. Am. Chem. Soc., 127 (2005) 12768-12769], cisplatin-carbonato complexes may be important in the mechanism of action of cisplatin. In this report we study the binding of cisplatin to pBR322 DNA in two different buffers, using gel electrophoresis. In 23.8mM HEPES, N-(2-hydroxyethyl)-piperazine-N'-2-ethanesulfonic acid, 5mM NaCl, pH 7.4 buffer, cisplatin produces aquated species, which react with DNA to unwind supercoiled Form I DNA, increasing its mobility, and reducing the binding of ethidium to DNA. This behavior is consistent with the formation of the well-known intrastrand crosslink on DNA. In 23.8mM carbonate buffer, 5mM NaCl, pH 7.4, cisplatin forms carbonato species that produce DNA-adducts which do not significantly change supercoiling but enhance binding of ethidium to DNA. This behavior is consistent with the formation of a monofunctional cisplatin adduct on DNA. These results show that aquated cisplatin and carbonato complexes of cisplatin produce different types of lesions on DNA and they underscore the importance of carrying out binding studies with cisplatin and DNA using conditions that approximate those found in the cell.

  17. A fluorescent-based HPLC assay for quantification of cysteine and cysteamine adducts in Escherichia coli-derived proteins.

    PubMed

    Soriano, Brian D; Tam, Lei-Ting T; Lu, Hsieng S; Valladares, Violeta G

    2012-01-01

    Recombinant proteins expressed in Escherichia coli are often produced as unfolded, inactive forms accumulated in inclusion bodies. Redox-coupled thiols are typically employed in the refolding process in order to catalyze the formation of correct disulfide bonds at maximal folding efficiency. These thiols and the recombinant proteins can form mixed disulfide bonds to generate thiol-protein adducts. In this work, we apply a fluorescent-based assay for the quantification of cysteine and cysteamine adducts as observed in E. coli-derived proteins. The thiols are released by reduction of the adducted protein, collected and labeled with a fluorescent reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. The derivatized thiols are separated by reversed-phase HPLC and can be accurately quantified after method optimization. The estimated thiol content represents total amount of adducted forms present in the analyzed samples. The limit of quantification (LOQ) was established; specifically, the lowest amount of quantifiable cysteine adduction is 30 picograms and the lowest amount of quantifiable cysteamine adduction is 60 picograms. The assay is useful for quantification of adducts in final purified products as well as in-process samples from various purification steps. The assay indicates that the purification process accomplishes a decrease in cysteine adduction from 0.19 nmol adduct/nmol protein to 0.03 nmol adduct/nmol protein as well as a decrease in cysteamine adduction from 0.24 nmol adduct/nmol protein to 0.14 nmol adduct/nmol protein. Copyright © 2011. Published by Elsevier B.V.

  18. Detection and characterization of human serum antibodies to polycyclic aromatic hydrocarbon diol-epoxide DNA adducts.

    PubMed Central

    Newman, M J; Light, B A; Weston, A; Tollurud, D; Clark, J L; Mann, D L; Blackmon, J P; Harris, C C

    1988-01-01

    The presence of serum antibodies to the diol-epoxide DNA adducts of representative polycyclic aromatic hydrocarbons (PAH), chrysene, benz[a]anthracene and benzo[a]pyrene, was determined by ELISA using serum samples obtained from normal healthy individuals. Antibodies that reacted against PAH adducted-DNA, but not against PAH-adducted protein, were found in the serum of approximately 40% of the test individuals. Specificity analysis of the antibodies demonstrated that serological cross-reactions between the benzo[a]pyrene and the chrysene diol-epoxide adducts were present. Similar cross-reactivity between the benz[a]anthracene and the chrysene adducts was observed. Sera containing antibodies that were apparently specific for each of the three PAH-DNA adducts were also identified. The presence of antibodies to PAH-DNA adducts indicates both past exposure to these carcinogenic PAH and their metabolic activation to the DNA damaging metabolites. These antibodies may prove to be useful in both retrospective and prospective epidemiological studies of various diseases associated with PAH exposure. PMID:3392204

  19. Detection of Dichlorvos Adducts in a Hepatocyte Cell Line

    DTIC Science & Technology

    2014-06-30

    form adducts to DDVP.16,20−22 Two distinct DDVP adducts are formed by covalent bonding to the hydroxyl group of tyrosine, serine, and threonine ...variable modifications on methionine (oxidation) and on serine, tyrosine, or threonine (phosphorylation, O-methylphosphate, or O-dimethylphosphate). Only...modifications on tyrosine, serine, or threonine residues with a mass of 94 or 108 amu corresponding to O-methyl- or O-dimethyl-phosphate groups. We found 53

  20. Peroxidase-mediated dealkylation of tamoxifen, detected by electrospray ionization-mass spectrometry, and activation to form DNA adducts.

    PubMed

    Gaikwad, Nilesh W; Bodell, William J

    2012-01-15

    Tamoxifen (TAM) is extensively used for the treatment and prevention of breast cancer. Associated with TAM treatment is a two- to eightfold increase in risk of endometrial cancer. To understand the mechanisms associated with this increased risk several pathways for TAM metabolism and DNA adduct formation have been studied. The purpose of this study was to investigate the role of peroxidase enzymes in the metabolism of TAM and its activation to form DNA adducts. Using advanced tandem mass spectrometry we have investigated the peroxidase-mediated metabolism of TAM. Incubation of TAM with horseradish peroxidase (HRP) and H(2)O(2) produced multiple metabolites. Electrospray ionization-MS/MS analysis of the metabolites demonstrated a peak at 301.3m/z with daughter ions at 183.0, 166.9, 128.9, and 120.9m/z, which identified the metabolite as metabolite E (ME). The levels of ME were significantly inhibited by the addition of ascorbic acid to the incubation mixture. Co-incubation of either TAM or ME and DNA with HRP and H(2)O(2) produced three DNA adducts with a RAL of 1.97±0.01×10(-7) and 8.45±2.7×10(-7). Oxidation of ME with MnO(2) produced metabolite E quinone methide (MEQM). Furthermore, incubation of either TAM or ME with HRP and H(2)O(2) resulted in formation of MEQM. Reaction of calf thymus DNA with MEQM produced three DNA adducts with a RAL of 9.8±1.0×10(-7). Rechromatography analyses indicated that DNA adducts 1, 2, and 3 formed in the HRP activation of either TAM or ME were the same as those formed by the chemical reaction of DNA with MEQM. The results of these studies demonstrate that peroxidase enzymes can both metabolize TAM to form the primary metabolite ME and activate ME to a quinone methide intermediate, which reacts with DNA to form adducts. It is possible that peroxidase enzymes or peroxidase-like activity in endometrium could contribute to the formation of DNA damage and genotoxic effects in endometrium after TAM administration. Published by

  1. Ethanol Withdrawal Increases Glutathione Adducts of 4-Hydroxy-2-Hexenal but not 4-Hydroxyl-2-Nonenal in the Rat Cerebral Cortex

    USDA-ARS?s Scientific Manuscript database

    Ethanol withdrawal increases lipid peroxidation of the polyunsaturated fatty acid (PUFA) docosahexaenoate (DHA; 22:6; n-3) in the CNS. In order to further define the role of oxidative damage of PUFA during ethanol withdrawal, we measured levels of glutathione adducts of 4-hydroxy-2-hexenal (GSHHE) a...

  2. Nuclear Magnetic Resonance Studies of an N2-Guanine Adduct Derived from the Tumorigen Dibenzo[a,l]pyrene in DNA: Impact of Adduct Stereochemistry, Size, and Local DNA Sequence on Solution Conformations

    PubMed Central

    2015-01-01

    The dimensions and arrangements of aromatic rings (topology) in adducts derived from the reactions of polycyclic aromatic hydrocarbon (PAH) diol epoxide metabolites with DNA influence the distortions and stabilities of double-stranded DNA, and hence their recognition and processing by the human nucleotide excision repair (NER) system. Dibenzo[a,l]pyrene (DB[a,l]P) is a highly tumorigenic six-ring PAH, which contains a nonplanar and aromatic fjord region that is absent in the structurally related bay region five-ring PAH benzo[a]pyrene (B[a]P). The PAH diol epoxide–DNA adducts formed include the stereoisomeric 14S and 14Rtrans-anti-DB[a,l]P-N2-dG and the stereochemically analogous 10S- and 10R-B[a]P-N2-dG (B[a]P-dG) guanine adducts. However, nuclear magnetic resonance (NMR) solution studies of the 14S-DB[a,l]P-N2-dG adduct in DNA have not yet been presented. Here we have investigated the 14S-DB[a,l]P-N2-dG adduct in two different sequence contexts using NMR methods with distance-restrained molecular dynamics simulations. In duplexes with dC opposite the adduct deleted, a well-resolved base-displaced intercalative adduct conformation can be observed. In full duplexes, in contrast to the intercalated 14R stereoisomeric adduct, the bulky DB[a,l]P residue in the 14S adduct is positioned in a greatly widened and distorted minor groove, with significant disruptions and distortions of base pairing at the lesion site and two 5′-side adjacent base pairs. These unique structural features are significantly different from those of the stereochemically analogous but smaller B[a]P-dG adduct. The greater size and different topology of the DB[a,l]P aromatic ring system lead to greater structurally destabilizing DNA distortions that are partially compensated by stabilizing DB[a,l]P-DNA van der Waals interactions, whose combined effects impact the NER response to the adduct. These structural results broaden our understanding of the structure–function relationship in NER. PMID

  3. Optic Nerve Sheath Tethering in Adduction Occurs in Esotropia and Hypertropia, But Not in Exotropia

    PubMed Central

    Suh, Soh Youn; Clark, Robert A.; Demer, Joseph L.

    2018-01-01

    Purpose Repetitive strain to the optic nerve (ON) due to tethering in adduction has been recently proposed as an intraocular pressure-independent mechanism of optic neuropathy in primary open-angle glaucoma. Since strabismus may alter adduction, we investigated whether gaze-related ON straightening and associated globe translation differ in horizontal and vertical strabismus. Methods High-resolution orbital magnetic resonance imaging was obtained in 2-mm thick quasi-coronal planes using surface coils in 25 subjects (49 orbits) with esotropia (ET, 19 ± 3.6Δ SEM), 11 (15 orbits) with exotropia (XT, 33.7 ± 7.3Δ), 7 (12 orbits) with hypertropia (HT, 14.6 ± 3.2Δ), and 31 normal controls (62 orbits) in target-controlled central gaze, and in maximum attainable abduction and adduction. Area centroids were used to determine ON path sinuosity and globe positions. Results Adduction angles achieved in ET (30.6° ± 0.9°) and HT (27.2° ± 2.3°) did not significantly differ from normal (28.3° ± 0.7°), but significantly less adduction was achieved in XT (19.0° ± 2.5°, P = 0.005). ON sheath tethering in adduction occurred in ET and HT similarly to normal, but did not in XT. The globe translated significantly less than normal, nasally in adduction in XT and temporally in abduction in ET and HT (P < 0.02, for all). Globe retraction did not occur during abduction or adduction in any group. Conclusions Similar to normal subjects, the ON and sheath become tethered without globe retraction in ET and HT. In XT, adduction tethering does not occur, possibly due to limited adduction angle. Thus, therapeutic limitation of adduction could be considered as a possible treatment for ON sheath tethering.

  4. Analysis of 4-hydroxy-1-(-3-pyridyl)-1-butanone (HPB)-releasing DNA adducts in human exfoliated oral mucosa cells by liquid chromatography-electrospray ionization-tandem mass spectrometry

    PubMed Central

    Stepanov, Irina; Muzic, John; Le, Chap T.; Sebero, Erin; Villalta, Peter; Ma, Bin; Jensen, Joni; Hatsukami, Dorothy; Hecht, Stephen S.

    2013-01-01

    Quantitation of DNA adducts could provide critical information on the relationship between exposure to tobacco smoke and cancer risk in smokers. In this study, we developed a robust and sensitive liquid chromatography-tandem mass spectrometry method for the analysis of 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB1)-releasing DNA adducts in human oral cells, a non-invasive source of DNA for biomarker studies. Isolated DNA undergoes acid hydrolysis, after which samples are purified by solid-phase extraction and analyzed by LC-ESI-MS/MS. The developed method was applied for analysis of samples obtained via collection with a commercial mouthwash from 30 smokers and 15 nonsmokers. In smokers, the levels of HPB-releasing DNA adducts averaged 12.0 pmol HPB/mg DNA (detected in 20 out of 28 samples with quantifiable DNA yield) and in nonsmokers, the levels of adducts averaged 0.23 pmol/mg DNA (detected in 3 out of 15 samples). For the 30 smoking subjects, matching buccal brushings were also analyzed and HPB-releasing DNA adducts were detected in 24 out of 27 samples with quantifiable DNA yield, averaging 44.7 pmol HPB/mg DNA. The levels of adducts in buccal brushings correlated with those in mouthwash samples of smokers (R = 0.73, p < 0.0001). Potentially the method can be applied in studies of individual susceptibility to tobacco-induced cancers in humans. PMID:23252610

  5. DNA adduct formation among workers in a Thai industrial estate and nearby residents.

    PubMed

    Peluso, Marco; Srivatanakul, Petcharin; Munnia, Armelle; Jedpiyawongse, Adisorn; Meunier, Aurelie; Sangrajrang, Suleeporn; Piro, Sara; Ceppi, Marcello; Boffetta, Paolo

    2008-01-25

    The genotoxic effects of air pollutant exposures have been studied in people living and working in Map Ta Phut, Rayong province, Thailand, a site where is located the Map Ta Phut Industrial Estate (MIE) one of the largest steel, refinery and petrochemical complex in the South-Eastern Asia. This was done by the conduction of a transversal study aimed to compare the prevalence of bulky DNA adducts in groups of subjects experiencing various degree of air pollution. DNA adduct analysis was performed in the leukocytes of 201 volunteers by the (32)P-postlabelling assay: 79 were workers in the MIE complex, including 24 refinery workers, 40 steel workers and 15 tinplate workers, 72 were people residing downwind in the MIE area and 50 were residents in a control district of the same Rayong province but without industrial exposures. The groups of workers were analyzed separately to evaluate if DNA adduct formation differs by the type of industry. The levels of bulky DNA adducts were 1.17+/-0.17 (SE) adducts/10(8) nucleotides in refinery workers, 1.19+/-0.19 (SE) in steel workers, 0.87+/-0.17 (SE) in tinplate workers, 0.85+/-0.07 (SE) in MIE residents and 0.53+/-0.05 (SE) in district controls. No effects of smoking habits on DNA adducts was found. The multivariate regression analysis shows that the levels of DNA adducts were significantly increased among the individuals living near the MIE industrial complex in respect to those resident in a control district (p<0.05). In the groups of occupationally exposed workers, the highest levels of DNA adducts were found among the workers experiencing an occupational exposure to polycyclic aromatic hydrocarbons, e.g. the steel factory and refinery workers. When we have evaluated if the levels of DNA adducts of the PAH exposed workers were different from those of the MIE residents, a statistical significantly difference was found (p<0.05). Our present study indicates that people living near point sources of industrial air pollution can

  6. Enzymatic DNA molecules

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor); Breaker, Ronald R. (Inventor)

    1998-01-01

    The present invention discloses deoxyribonucleic acid enzymes--catalytic or enzymatic DNA molecules--capable of cleaving nucleic acid sequences or molecules, particularly RNA, in a site-specific manner, as well as compositions including same. Methods of making and using the disclosed enzymes and compositions are also disclosed.

  7. Cigarette smoke-induced DNA adducts in the respiratory and nonrespiratory tissues of rats.

    PubMed

    Gairola, C G; Gupta, R C

    1991-01-01

    Formation of DNA adducts is regarded as an essential initial step in the process of chemical carcinogenesis. To determine how chronic exposure to cigarette smoke affects the distribution of DNA adducts in selected respiratory and nonrespiratory tissues, we exposed male Sprague-Dawley rats daily to fresh mainstream smoke from the University of Kentucky reference cigarettes (2R1) in a nose-only exposure system for 32 weeks. Blood carboxyhemoglobin, total particulate matter (TPM) intake, and pulmonary aryl hydrocarbon hydroxylase values indicated effective exposure of animals to cigarette smoke. DNA was extracted from three respiratory (larynx, trachea, and lung) and three nonrespiratory (liver, heart, and bladder) tissues and analyzed for DNA adducts by the 32P-postlabeling assay under conditions capable of detecting low levels of diverse aromatic/hydrophobic adducts. Data showed that the total DNA adducts in the lung, heart, trachea, and larynx were increased by 10- to 20-fold in the smoke-exposed group. Five-fold increase was observed in the bladder tissue, but differences were not present in the liver DNA of control and smoke-exposed groups. These data suggest selective formation of DNA adducts in the tissues.

  8. Integrated magnetic tweezers and single-molecule FRET for investigating the mechanical properties of nucleic acid

    PubMed Central

    Long, Xi; Parks, Joseph W.; Stone, Michael D.

    2017-01-01

    Many enzymes promote structural changes in their nucleic acid substrates via application of piconewton forces over nanometer length scales. Magnetic tweezers (MT) is a single molecule force spectroscopy method widely used for studying the energetics of such mechanical processes. MT permits stable application of a wide range of forces and torques over long time scales with nanometer spatial resolution. However, in any force spectroscopy experiment, the ability to monitor structural changes in nucleic acids with nanometer sensitivity requires the system of interest to be held under high degrees of tension to improve signal to noise. This limitation prohibits measurement of structural changes within nucleic acids under physiologically relevant conditions of low stretching forces. To overcome this challenge, researchers have integrated a spatially sensitive fluorescence spectroscopy method, single molecule-FRET, with MT to allow simultaneous observation and manipulation of nanoscale structural transitions over a wide range of forces. Here, we describe a method for using this hybrid instrument to analyze the mechanical properties of nucleic acids. We expect that this method for analysis of nucleic acid structure will be easily adapted for experiments aiming to interrogate the mechanical responses of other biological macromolecules. PMID:27320203

  9. Lifetimes and stabilities of familiar explosives molecular adduct complexes during ion mobility measurements

    PubMed Central

    McKenzie, Alan; DeBord, John Daniel; Ridgeway, Mark; Park, Melvin; Eiceman, Gary; Fernandez-Lima, Francisco

    2015-01-01

    Trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) was utilized for the separation and identification of familiar explosives in complex mixtures. For the first time, molecular adduct complex lifetimes, relative stability, binding energies and candidate structures are reported for familiar explosives. Experimental and theoretical results showed that the adduct size and reactivity, complex binding energy and the explosive structure tailors the stability of the molecular adduct complex. TIMS flexibility to adapt the mobility separation as a function of the molecular adduct complex stability (i.e., short or long IMS experiments / low or high IMS resolution) permits targeted measurements of explosives in complex mixtures with higher confidence levels. PMID:26153567

  10. Quantitative detection of 4-hydroxyequilenin-DNA adducts in mammalian cells using an immunoassay with a novel monoclonal antibody.

    PubMed

    Okahashi, Yumiko; Iwamoto, Takaaki; Suzuki, Naomi; Shibutani, Shinya; Sugiura, Shigeki; Itoh, Shinji; Nishiwaki, Tomohisa; Ueno, Satoshi; Mori, Toshio

    2010-07-01

    Estrogen-DNA adducts are potential biomarkers for assessing the risk and development of estrogen-associated cancers. 4-Hydroxyequilenin (4-OHEN) and 4-hydroxyequilin (4-OHEQ), the metabolites of equine estrogens present in common hormone replacement therapy (HRT) formulations, are capable of producing bulky 4-OHEN-DNA adducts. Although the formation of 4-OHEN-DNA adducts has been reported, their quantitative detection in mammalian cells has not been done. To quantify such DNA adducts, we generated a novel monoclonal antibody (4OHEN-1) specific for 4-OHEN-DNA adducts. The primary epitope recognized is one type of stereoisomers of 4-OHEN-dA adducts and of 4-OHEN-dC adducts in DNA. An immunoassay with 4OHEN-1 revealed a linear dose-response between known amounts of 4-OHEN-DNA adducts and the antibody binding to those adducts, with a detection limit of approximately five adducts/10(8) bases in 1 microg DNA sample. In human breast cancer cells, the quantitative immunoassay revealed that 4-OHEN produces five times more 4-OHEN-DNA adducts than does 4-OHEQ. Moreover, in a mouse model for HRT, oral administration of Premarin increased the levels of 4-OHEN-DNA adducts in various tissues, including the uterus and ovaries, in a time-dependent manner. Thus, we succeeded in establishing a novel immunoassay for quantitative detection of 4-OHEN-DNA adducts in mammalian cells.

  11. Effect of green tea catechins and hydrolyzable tannins on benzo[a]pyrene-induced DNA adducts and structure-activity relationship.

    PubMed

    Cao, Pengxiao; Cai, Jian; Gupta, Ramesh C

    2010-04-19

    Green tea catechins and hydrolyzable tannins are gaining increasing attention as chemopreventive agents. However, their mechanism of action is poorly understood. We investigated the effects of four green tea catechins and two hydrolyzable tannins on microsome-induced benzo[a]pyrene (BP)-DNA adducts and the possible structure-activity relationship. BP (1 microM) was incubated with rat liver microsomes and DNA in the presence of the test compound (1-200 microM) or vehicle. The purified DNA was analyzed by (32)P-postlabeling. The inhibitory activity of the catechins was in the following descending order: epigallocatechin gallate (IC(50) = 16 microM) > epicatechin gallate (24 microM) > epigallocatechin (146 microM) > epicatechin (462 microM), suggesting a correlation between the number of adjacent aromatic hydroxyl groups in the molecular structure and their potencies. Tannic acid (IC(50) = 4 microM) and pentagalloglucose (IC(50) = 26 microM) elicited as much DNA adduct inhibitory activity as the catechins or higher presumably due to the presence of more functional hydroxyl groups. To determine if the activity of these compounds was due to direct interaction of phenolic groups with electrophilic metabolite(s) of BP, DNA was incubated with anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (anti-BPDE) (0.5 microM) in the presence of test compounds (200 microM) or vehicle. Significant inhibition of DNA adduct formation was found (tannic acid > pentagalloglucose > epigallocatechin gallate > epicatechin gallate). This notion was confirmed by analysis of the reaction products of anti-BPDE with the catechins and pentagalloglucose by electrospray ionization mass spectrometry and liquid chromatography-mass spectrometry. In conclusion, our data demonstrate that green tea catechins and the hydrolyzable tannins are highly effective in inhibiting BP-DNA adduct formation at least, in part, due to direct interaction of adjacent hydroxyl groups in their structures and that the activity is

  12. Effect of Green Tea Catechins and Hydrolyzable Tannins on Benzo[a]pyrene-Induced DNA Adducts and Structure–Activity Relationship

    PubMed Central

    Cao, Pengxiao; Cai, Jian; Gupta, Ramesh C.

    2016-01-01

    Green tea catechins and hydrolyzable tannins are gaining increasing attention as chemopreventive agents. However, their mechanism of action is poorly understood. We investigated the effects of four green tea catechins and two hydrolyzable tannins on microsome-induced benzo[a]pyrene (BP)–DNA adducts and the possible structure–activity relationship. BP (1 μM) was incubated with rat liver microsomes and DNA in the presence of the test compound (1–200 μM) or vehicle. The purified DNA was analyzed by 32P-postlabeling. The inhibitory activity of the catechins was in the following descending order: epigallocatechin gallate (IC50 = 16 μM) > epicatechin gallate (24 μM) > epigallocatechin (146 μM) > epicatechin (462 μM), suggesting a correlation between the number of adjacent aromatic hydroxyl groups in the molecular structure and their potencies. Tannic acid (IC50 = 4 μM) and pentagalloglucose (IC50 = 26 μM) elicited as much DNA adduct inhibitory activity as the catechins or higher presumably due to the presence of more functional hydroxyl groups. To determine if the activity of these compounds was due to direct interaction of phenolic groups with electrophilic metabolite(s) of BP, DNA was incubated with anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (anti-BPDE) (0.5 μM) in the presence of test compounds (200 μM) or vehicle. Significant inhibition of DNA adduct formation was found (tannic acid > pentagalloglucose > epigallocatechin gallate > epicatechin gallate). This notion was confirmed by analysis of the reaction products of anti-BPDE with the catechins and pentagalloglucose by electrospray ionization mass spectrometry and liquid chromatography–mass spectrometry. In conclusion, our data demonstrate that green tea catechins and the hydrolyzable tannins are highly effective in inhibiting BP–DNA adduct formation at least, in part, due to direct interaction of adjacent hydroxyl groups in their structures and that the activity is higher with an increasing

  13. DNA adducts induced by in vitro activation of extracts of diesel and biodiesel exhaust particles.

    PubMed

    Ross, Jeffrey A; Nelson, Garret B; Mutlu, Esra; Warren, Sarah H; Gilmour, M Ian; DeMarini, David M

    2015-01-01

    Biodiesel and biodiesel-blend fuels offer a renewable alternative to petroleum diesel, but few data are available concerning the carcinogenic potential of biodiesel exhausts. We compared the formation of covalent DNA adducts by the in vitro metabolic activation of organic extracts of diesel-exhaust particles (DEP) from petroleum diesel and soy biodiesel and correlated DNA adduct levels and mutagenicity in Salmonella TA100. We examined two different DEP from petroleum diesel (C-DEP and B0), one from soy bean oil biodiesel (B100) and one from combustion of a blend of 20% B100 and 80% B0 (B20) for in vitro DNA adduct-forming potential under oxidative or nitroreductive conditions in the presence of calf thymus DNA as well as in vivo in Salmonella TA100. The modified DNA was hydrolyzed and analyzed by (32)P-postlabeling using either butanol extraction or nuclease P1 pre-enrichment. Multiple DNA adducts were produced with chromatographic mobilities consistent with PAH and nitro-PAH adducts. The types and quantities of DNA adducts produced by the two independent petroleum diesel DEP were similar, with both polycyclic aromatic hydrocarbon (PAH)- and nitro-PAH-derived adducts formed. Relative potencies for S9-mediated DNA adduct formation, either per mass of particulate or per MJ(th) energy consumed were B100 > B0 > B20. Soy biodiesel emissions induced DNA damage in the form of presumptive PAH and nitro-PAH DNA adducts that correlated with mutagenicity in Salmonella. B20 is the soy biodiesel used most commonly in the US, and it produced the lowest DNA adduct-emission factor, ∼50% that of petroleum diesel.

  14. Noni juice reduces lipid peroxidation-derived DNA adducts in heavy smokers.

    PubMed

    Wang, Mian-Ying; Peng, Lin; Jensen, Claude J; Deng, Shixin; West, Brett J

    2013-03-01

    Food plants provide important phytochemicals which help improve or maintain health through various biological activities, including antioxidant effects. Cigarette smoke-induced oxidative stress leads to the formation of lipid hydroperoxides (LOOHs) and their decomposition product malondialdehyde (MDA), both of which cause oxidative damage to DNA. Two hundred forty-five heavy cigarette smokers completed a randomized, double-blind, placebo-controlled clinical trial designed to investigate the effect of noni juice on LOOH- and MDA-DNA adducts in peripheral blood lymphocytes (PBLs). Volunteers drank noni juice or a fruit juice placebo every day for 1 month. DNA adducts were measured by (32)P postlabeling analysis. Drinking 29.5-118 mL of noni juice significantly reduced adducts by 44.6-57.4%. The placebo, which was devoid of iridoid glycosides, did not significantly influence LOOH- and MDA-DNA adduct levels in current smokers. Noni juice was able to mitigate oxidative damage of DNA in current heavy smokers, an activity associated with the presence of iridoids.

  15. Noni juice reduces lipid peroxidation–derived DNA adducts in heavy smokers

    PubMed Central

    Wang, Mian-Ying; Peng, Lin; Jensen, Claude J; Deng, Shixin; West, Brett J

    2013-01-01

    Food plants provide important phytochemicals which help improve or maintain health through various biological activities, including antioxidant effects. Cigarette smoke–induced oxidative stress leads to the formation of lipid hydroperoxides (LOOHs) and their decomposition product malondialdehyde (MDA), both of which cause oxidative damage to DNA. Two hundred forty-five heavy cigarette smokers completed a randomized, double-blind, placebo-controlled clinical trial designed to investigate the effect of noni juice on LOOH- and MDA-DNA adducts in peripheral blood lymphocytes (PBLs). Volunteers drank noni juice or a fruit juice placebo every day for 1 month. DNA adducts were measured by 32P postlabeling analysis. Drinking 29.5–118 mL of noni juice significantly reduced adducts by 44.6–57.4%. The placebo, which was devoid of iridoid glycosides, did not significantly influence LOOH- and MDA-DNA adduct levels in current smokers. Noni juice was able to mitigate oxidative damage of DNA in current heavy smokers, an activity associated with the presence of iridoids. PMID:24804023

  16. Resonant electron capture by orotic acid molecules

    NASA Astrophysics Data System (ADS)

    Muftakhov, M. V.; Shchukin, P. V.; Khatymov, R. V.

    2017-09-01

    Resonant electron attachment by orotic acid molecules (6-COOH-uracil) are studied in the energy range of 0-14 eV via negative ion mass spectrometry. Molecular ions, whose lifetimes relative to electron autodetachment are found to be 300 μs are recorded in the region of thermal electron energies; they form in the valence state through a vibration-excited resonance mechanism. Unlike unsubstituted uracil, most dissociative processes occur in the low-energy region of <4 eV and are due to carboxylic anions. An absolute cross section of 2.4 × 10-17 cm2 is found for the most intense fragment ions [M-H]- at an output energy of 1.33 eV. The kinetics of decarboxylation is considered for these ions. This could be a model reaction for the last stage of uridine monophosphate biosynthesis.

  17. Loss of Dermatan-4-Sulfotransferase 1 Function Results in Adducted Thumb-Clubfoot Syndrome

    PubMed Central

    Dündar, Munis; Müller, Thomas; Zhang, Qi; Pan, Jing; Steinmann, Beat; Vodopiutz, Julia; Gruber, Robert; Sonoda, Tohru; Krabichler, Birgit; Utermann, Gerd; Baenziger, Jacques U.; Zhang, Lijuan; Janecke, Andreas R.

    2009-01-01

    Adducted thumb-clubfoot syndrome is an autosomal-recessive disorder characterized by typical facial appearance, wasted build, thin and translucent skin, congenital contractures of thumbs and feet, joint instability, facial clefting, and coagulopathy, as well as heart, kidney, or intestinal defects. We elucidated the molecular basis of the disease by using a SNP array-based genome-wide linkage approach that identified distinct homozygous nonsense and missense mutations in CHST14 in each of four consanguineous families with this disease. The CHST14 gene encodes N-acetylgalactosamine 4-O-sulfotransferase 1 (D4ST1), which catalyzes 4-O sulfation of N-acetylgalactosamine in the repeating iduronic acid-α1,3-N-acetylgalactosamine disaccharide sequence to form dermatan sulfate. Mass spectrometry of glycosaminoglycans from a patient's fibroblasts revealed absence of dermatan sulfate and excess of chondroitin sulfate, showing that 4-O sulfation by CHST14 is essential for dermatan sulfate formation in vivo. Our results indicate that adducted thumb-clubfoot syndrome is a disorder resulting from a defect specific to dermatan sulfate biosynthesis and emphasize roles for dermatan sulfate in human development and extracellular-matrix maintenance. PMID:20004762

  18. Body mass index modulates aromatic DNA adduct levels and their persistence in smokers.

    PubMed

    Godschalk, Roger W L; Feldker, Dorien E M; Borm, Paul J A; Wouters, Emiel F M; van Schooten, Frederik-Jan

    2002-08-01

    Smokers with a low body mass index (BMI; weight/height(2)) have a higher risk for developing lung malignancies as compared with smokers of average weight, but there is no mechanistic explanation for this observation. Carcinogens in cigarette smoke are thought to elicit cancer by the formation of DNA adducts, which give the opportunity to additionally investigate the biological link between BMI and lung cancer. DNA adduct levels in peripheral blood lymphocytes of 24 healthy smoking volunteers (0.76 +/- 0.41 adducts per 10(8) nucleotides) positively correlated with cigarette consumption (r = 0.51; P = 0.01) and were inversely related with BMI (r = -0.48; P = 0.02). A significant overall relationship was observed when both parameters were included in multiple regression analysis (r = 0.63; P = 0.007). Moreover, body composition may affect DNA adduct persistence, because lipophilic tobacco smoke-derived carcinogens accumulate in adipose tissue and can be mobilized once exposure ceases. Therefore, DNA adduct levels and BMI were reassessed in all of the subjects after a nonsmoking period of 22 weeks. Adduct levels declined to 0.44 +/- 0.23 per 10(8) nucleotides (P = 0.002), and the estimated half-life was 11 weeks on the basis of exponential decay to background levels in never-smoking controls (0.33 +/- 0.18 per 10(8) nucleotides). Overweight subjects (BMI >25) with little weight gain after smoking cessation (adduct levels as compared with those with lower BMI and higher weight gain (P = 0.06). Overall, these results suggest that leanness is a host susceptibility factor that affects DNA adduct formation, which could underlie the observed relationship between BMI and lung cancer risk.

  19. Virucidal properties of metal oxide nanoparticles and their halogen adducts.

    PubMed

    Häggström, Johanna; Balyozova, Denitza; Klabunde, Kenneth J; Marchin, George

    2010-04-01

    Selected metal oxide nanoparticles are capable of strongly adsorbing large amounts of halogens (Cl(2), Br, I(2)) and mixed halogens. These solid adducts are relatively stable thermally, and they can be stored for long periods. However, in the open environment, they are potent biocides. Herein are described studies with a number of bacteriophage MS2, phiX174, and PRD-1 (virus examples). PRD-1 is generally more resistant to chemical disinfection, but in this paper it is shown to be very susceptible to selected interhalogen and iodine adducts of CeO(2), Al(2)O(3), and TiO(2) nanoparticles. Overall, the halogen adducts of TiO(2) and Al(2)O(3) were most effective. The mechanism of disinfection by these nanoparticles is not completely clear, but could include abrasive properties, as well as oxidative powers. A hypothesis that nanoparticles damage virons or stick to them and prevent binding to the host cell is a consideration that needs to be explored. Herein are reported comparative biocidal activities of a series of adducts and electron microscope images of before and after treatment.

  20. Single d(ApG)/cis-diamminedichloroplatinum(II) adduct-induced mutagenesis in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnouf, D.; Fuchs, R.P.P.; Gauthier, C.

    1990-08-01

    The mutation spectrum induced by the widely used antitumor drug cis-diamminedichloroplatinum(II) (cis-DDP) showed that cisDDP(d(ApG)) adducts, although they account for only 25% of the lesions formed are {approx}5 times more mutagenic than the major GG adduct. The authors report the construction of vectors bearing a single cisDDP(d(ApG)) lesion and their use in mutagenesis experiments in Escherichia coli. The mutagenic processing of the lesion is found to depend strictly on induction of the SOS system of the bacterial host cells. In SOS-induced cells, mutation frequencies of 1-2% were detected. All these mutations are targeted to the 5{prime} base of the adduct.more » Single A {yields} T transversions are mainly observed (80%), whereas A {yields} G transitions account for 10% of the total mutations. Tandem base-pair substitutions involving the adenine residue and the thymine residue immediately 5{prime} to the adduct occur at a comparable frequency (10%). No selective loss of the strand bearing the platinum adduct was seen, suggesting that, in vivo, cisDDP(d(ApG)) adducts are not blocking lesions. The high mutation specificity of cisDDP-(d(ApG))-induced mutagenesis is discussed in relation to structural data.« less

  1. Formation of tamoxifen-DNA adducts in multiple organs of adult female cynomolgus monkeys dosed with tamoxifen for 30 days.

    PubMed

    Schild, Laura J; Divi, Rao L; Beland, Frederick A; Churchwell, Mona I; Doerge, Daniel R; Gamboa da Costa, Gonçalo; Marques, M Matilde; Poirier, Miriam C

    2003-09-15

    The use of the antiestrogen tamoxifen (TAM) is associated with an increase in endometrial cancer. TAM-induced endometrial carcinogenesis may proceed through a genotoxin-mediated pathway, although the detection of endometrial TAM-DNA adducts in exposed women is still controversial. In this study, a monkey model has been used to investigate the question of TAM-DNA adduct formation in primates. Two methods have been used to determine TAM-DNA adducts: a TAM-DNA chemiluminescence immunoassay (TAM-DNA CIA), using an antiserum that has specificity for (E)-alpha-(deoxyguanosin-N(2)-yl)-tamoxifen (dG-TAM) and (E)-alpha-(deoxyguanosin-N(2)-yl)-N-desmethyltamoxifen (dG-desmethyl-TAM) and electrospray ionization tandem mass spectrometry (ES-MS/MS) coupled with on-line sample preparation and high-performance liquid chromatography (HPLC). Mature (19 year old) cynomolgus monkeys were given either vehicle control (n = 1) or TAM (n = 3) twice daily for a total dose of 2 mg of TAM/kg body weight (bw)/day for 30 days by naso-gastric intubation. Tissues were harvested, and DNA was isolated from uterus, ovary, liver, brain cortex, and kidney. By TAM-DNA CIA, values for uterine TAM-DNA adducts in two monkeys were 0.9 and 1.7 adducts/10(8) nucleotides, whereas values for ovarian TAM-DNA adducts in the same animals were 0.4 and 0.5 adducts/10(8) nucleotides. Liver, brain cortex, and kidney DNA samples from the three exposed monkeys had TAM-DNA levels of 2.1-4.2 adducts/10(8) nucleotides, 0.4-5.0 adducts/10(8) nucleotides, and 0.7-2.1 adducts/10(8) nucleotides, respectively. By HPLC-ES-MS/MS, the levels of TAM-DNA adducts detected in all tissues were comparable with those observed by TAM-DNA CIA. Thus, values for uterine TAM-DNA adducts ranged from 0.5 to 1.4 adducts/10(8) nucleotides, whereas values for ovarian TAM-DNA adducts, measurable in two monkeys, were 0.2 and 0.3 adducts/10(8) nucleotides. Liver DNA contained the highest TAM-DNA adduct levels (7.0-11.1 adducts/10(8) nucleotides

  2. Integrated magnetic tweezers and single-molecule FRET for investigating the mechanical properties of nucleic acid.

    PubMed

    Long, Xi; Parks, Joseph W; Stone, Michael D

    2016-08-01

    Many enzymes promote structural changes in their nucleic acid substrates via application of piconewton forces over nanometer length scales. Magnetic tweezers (MT) is a single molecule force spectroscopy method widely used for studying the energetics of such mechanical processes. MT permits stable application of a wide range of forces and torques over long time scales with nanometer spatial resolution. However, in any force spectroscopy experiment, the ability to monitor structural changes in nucleic acids with nanometer sensitivity requires the system of interest to be held under high degrees of tension to improve signal to noise. This limitation prohibits measurement of structural changes within nucleic acids under physiologically relevant conditions of low stretching forces. To overcome this challenge, researchers have integrated a spatially sensitive fluorescence spectroscopy method, single molecule-FRET, with MT to allow simultaneous observation and manipulation of nanoscale structural transitions over a wide range of forces. Here, we describe a method for using this hybrid instrument to analyze the mechanical properties of nucleic acids. We expect that this method for analysis of nucleic acid structure will be easily adapted for experiments aiming to interrogate the mechanical responses of other biological macromolecules. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. On the dynamics of water molecules at the protein solute interfaces.

    PubMed

    Bernini, A; Spiga, O; Ciutti, A; Chiellini, S; Menciassi, N; Venditti, V; Niccolai, N

    2004-10-01

    Proteins, with the large variety of chemical groups they present at their molecular surface, are a class of molecules which can be very informative on most of the possible solute-solvent interactions. Hen egg white lysozyme has been used as a probe to investigate the complex solvent dynamics occurring at the protein surface, by analysing the results obtained from Nuclear Magnetic Resonance, X-ray diffractometry and Molecular Dynamics simulations. A consistent overall picture for the dynamics of water molecules close to the protein is obtained, suggesting that a rapid exchange occurs, in a picosecond timescale, among all the possible hydration surface sites both in solution and the solid state, excluding the possibility that solvent molecules can form liquid-crystal-like supramolecular adducts, which have been proposed as a molecular basis of 'memory of water'.

  4. Synthesis of New Ba Complex as Metalorganic Source for Metalorganic Chemical Vapor Deposition and Optimization of Its Molecule Structure

    NASA Astrophysics Data System (ADS)

    Zama, Hideaki; Morishita, Tadataka

    2000-10-01

    New Ba(DPM)2-amine (DPM=dipivaloylmethane) adduct compounds were attempted to be synthesized from Ba(DPM)2 and amines. Complexes obtained were evaluated based on decreases of their weight with increasing temperature by thermogravimetry. The simple vaporizing phenomenon, showing a one-step weight-reduction curve, was observed only in the case of using tetraethylenepentamine and pentaethylenehexamine (pentaen) as adduct molecules, which have a simple chain structure and five to six primary and secondary amine radicals. From the viewpoint of applicability to film growth, they have the best structure based on a survey in this study using sixteen amine molecules with distinctive structures. When we used Ba(DPM)2-pentaen as a metalorganic source for a metalorganic chemical vapor deposition method at a vaporizing temperature of 140°C, the Ba supply rate remained stable within a standard deviation of 1.6% for over 300 h.

  5. Proposed formation mechanism and active species of hydrogen molecules generated from a novel magnesium-citric acid-hydroxypropyl cellulose coating (MgCC) material

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shigeki; Chikuma, Toshiyuki; Chiba, Kazuyoshi; Tsuchiya, Daisuke; Hirai, Tomomitsu

    2016-02-01

    The presence of acids is known to accelerate the reaction (Mg + 2H2O = Mg(OH)2 + H2). We developed a novel Mg-citric acid coating (MgCC) material produced by milling Mg powder coated with hydroxypropyl cellulose (HPC); because of its H2 generation, this material could be used in antioxidant therapy and antiaging applications. After milling in the presence of citric acid, this material produced H2-rich water upon addition to cooled water. Although the reaction was considered to involve a two-electron transfer from Mg to 2H2O, the role of the acid in H2 generation remains incompletely understood. To clarify the reaction mechanism, we performed studies on the deuterium kinetic isotope effects (KIE) and electron spin resonance (ESR). We observed differences in the concentration ratios, such as H2/D2 > 1 and H2/(H2 + D2 + HD) > 1, involved in H2, D2, and (H2 + D2 + HD) production, and found that adducts with hydrogen atoms (Hrad) were not obtained from the spin-trapping reaction between 5-(2, 2-Dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO) and the MgCC material. The H2, D2, and HD produced from MgCC were identified by using a gas chromatograph connected to a mass spectrometer. The spin-trapping techniques showed that the Hrad adducts formed by the reaction of NaBH4 with CYPMPO could not be observed from reaction of MGCC with CYPMPO in H2O. The data suggest that the rate-controlling step and proposed transition state (TS) exist in the reaction pathway of the O-H bond cleavage and H-H bond formation. A TS of a structure such as [Mg(OH2)2]∗ could be expected in the reaction pathway between Mg and 2H2O by density functional theory calculations. Also, these results show that H2 generation is accelerated in the presence of acids because the activation energy of the TS is significantly smaller than that of H2O.

  6. Direct antioxidant properties of methotrexate: Inhibition of malondialdehyde-acetaldehyde-protein adduct formation and superoxide scavenging.

    PubMed

    Zimmerman, Matthew C; Clemens, Dahn L; Duryee, Michael J; Sarmiento, Cleofes; Chiou, Andrew; Hunter, Carlos D; Tian, Jun; Klassen, Lynell W; O'Dell, James R; Thiele, Geoffrey M; Mikuls, Ted R; Anderson, Daniel R

    2017-10-01

    Methotrexate (MTX) is an immunosuppressant commonly used for the treatment of autoimmune diseases. Recent observations have shown that patients treated with MTX also exhibit a reduced risk for the development of cardiovascular disease (CVD). Although MTX reduces systemic inflammation and tissue damage, the mechanisms by which MTX exerts these beneficial effects are not entirely known. We have previously demonstrated that protein adducts formed by the interaction of malondialdehyde (MDA) and acetaldehyde (AA), known as MAA-protein adducts, are present in diseased tissues of individuals with rheumatoid arthritis (RA) or CVD. In previously reported studies, MAA-adducts were shown to be highly immunogenic, supporting the concept that MAA-adducts not only serve as markers of oxidative stress but may have a direct role in the pathogenesis of inflammatory diseases. Because MAA-adducts are commonly detected in diseased tissues and are proposed to mitigate disease progression in both RA and CVD, we tested the hypothesis that MTX inhibits the generation of MAA-protein adducts by scavenging reactive oxygen species. Using a cell free system, we found that MTX reduces MAA-adduct formation by approximately 6-fold, and scavenges free radicals produced during MAA-adduct formation. Further investigation revealed that MTX directly scavenges superoxide, but not hydrogen peroxide. Additionally, using the Nrf2/ARE luciferase reporter cell line, which responds to intracellular redox changes, we observed that MTX inhibits the activation of Nrf2 in cells treated with MDA and AA. These studies define previously unrecognized mechanisms by which MTX can reduce inflammation and subsequent tissue damage, namely, scavenging free radicals, reducing oxidative stress, and inhibiting MAA-adduct formation. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Quantitative interference by cysteine and N-acetylcysteine metabolites during the LC-MS/MS bioanalysis of a small molecule.

    PubMed

    Barricklow, Jason; Ryder, Tim F; Furlong, Michael T

    2009-08-01

    During LC-MS/MS quantification of a small molecule in human urine samples from a clinical study, an unexpected peak was observed to nearly co-elute with the analyte of interest in many study samples. Improved chromatographic resolution revealed the presence of at least 3 non-analyte peaks, which were identified as cysteine metabolites and N-acetyl (mercapturic acid) derivatives thereof. These metabolites produced artifact responses in the parent compound MRM channel due to decomposition in the ionization source of the mass spectrometer. Quantitative comparison of the analyte concentrations in study samples using the original chromatographic method and the improved chromatographic separation method demonstrated that the original method substantially over-estimated the analyte concentration in many cases. The substitution of electrospray ionization (ESI) for atmospheric pressure chemical ionization (APCI) nearly eliminated the source instability of these metabolites, which would have mitigated their interference in the quantification of the analyte, even without chromatographic separation. These results 1) demonstrate the potential for thiol metabolite interferences during the quantification of small molecules in pharmacokinetic samples, and 2) underscore the need to carefully evaluate LC-MS/MS methods for molecules that can undergo metabolism to thiol adducts to ensure that they are not susceptible to such interferences during quantification.

  8. Malondialdehyde-acetaldehyde (MAA) adducted proteins bind to scavenger receptor A in airway epithelial cells.

    PubMed

    Berger, John P; Simet, Samantha M; DeVasure, Jane M; Boten, Jessica A; Sweeter, Jenea M; Kharbanda, Kusum K; Sisson, Joseph H; Wyatt, Todd A

    2014-08-01

    Co-exposure to cigarette smoke and ethanol generates malondialdehyde and acetaldehyde, which can subsequently lead to the formation of aldehyde-adducted proteins. We have previously shown that exposure of bronchial epithelial cells to malondialdehyde-acetaldehyde (MAA) adducted protein increases protein kinase C (PKC) activity and proinflammatory cytokine release. A specific ligand to scavenger receptor A (SRA), fucoidan, blocks this effect. We hypothesized that MAA-adducted protein binds to bronchial epithelial cells via SRA. Human bronchial epithelial cells (BEAS-2B) were exposed to MAA-adducted protein (either bovine serum albumin [BSA-MAA] or surfactant protein D [SPD-MAA]) and SRA examined using confocal microscopy, fluorescent activated cell sorting (FACS), and immunoprecipitation. Differentiated mouse tracheal epithelial cells (MTEC) cultured by air-liquid interface were assayed for MAA-stimulated PKC activity and keratinocyte-derived chemokine (KC) release. Specific cell surface membrane dye co-localized with upregulated SRA after exposure to MAA for 3-7 min and subsided by 20 min. Likewise, MAA-adducted protein co-localized to SRA from 3 to 7 min with a subsequent internalization of MAA by 10 min. These results were confirmed using FACS analysis and revealed a reduced mean fluorescence of SRA after 3 min. Furthermore, increased amounts of MAA-adducted protein could be detected by Western blot in immunoprecipitated SRA samples after 3 min treatment with MAA. MAA stimulated PKCε-mediated KC release in wild type, but not SRA knockout mice. These data demonstrate that aldehyde-adducted proteins in the lungs rapidly bind to SRA and internalize this receptor prior to the MAA-adducted protein stimulation of PKC-dependent inflammatory cytokine release in airway epithelium. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Malondialdehyde-acetaldehyde (MAA) adducted proteins bind to scavenger receptor A in airway epithelial cells

    PubMed Central

    Berger, John P.; Simet, Samantha M.; DeVasure, Jane M.; Boten, Jessica A.; Sweeter, Jenea M.; Kharbanda, Kusum K.; Sisson, Joseph H.; Wyatt, Todd A.

    2014-01-01

    Co-exposure to cigarette smoke and ethanol generates malondialdehyde and acetaldehyde, which can subsequently lead to the formation of aldehyde-adducted proteins. We have previously shown that exposure of bronchial epithelial cells to malondialdehyde-acetaldehyde (MAA) adducted protein increases protein kinase C (PKC) activity and proinflammatory cytokine release. A specific ligand to scavenger receptor A (SRA), fucoidan, blocks this effect. We hypothesized that MAA-adducted protein binds to bronchial epithelial cells via SRA. Human bronchial epithelial cells (BEAS-2B) were exposed to MAA-adducted protein (either bovine serum albumin [BSA-MAA] or surfactant protein D [SPD-MAA]) and SRA examined using confocal microscopy, fluorescent activated cell sorting (FACS), and immunoprecipitation. Differentiated mouse tracheal epithelial cells (MTEC) cultured by air-liquid interface were assayed for MAA-stimulated PKC activity and keratinocyte-derived chemokine (KC) release. Specific cell surface membrane dye co-localized with upregulated SRA after exposure to MAA for 3–7 min and subsided by 20 min. Likewise, MAA-adducted protein co-localized to SRA from 3–7 min with a subsequent internalization of MAA by 10 min. These results were confirmed using FACS analysis and revealed a reduced mean fluorescence of SRA after 3 min. Furthermore, increased amounts of MAA-adducted protein could be detected by Western blot in immunoprecipitated SRA samples after 3 min treatment with MAA. MAA stimulated PKCε-mediated KC release in wild type, but not SRA knockout mice. These data demonstrate that aldehyde-adducted proteins in the lungs rapidly bind to SRA and internalize this receptor prior to the MAA-adducted protein stimulation of PKC-dependent inflammatory cytokine release in airway epithelium. PMID:24880893

  10. Biological exposure indices of pyrrole adducts in serum and urine for hazard assessment of n-hexane exposure.

    PubMed

    Yin, Hongyin; Zhang, Chunling; Guo, Ying; Shao, Xiaoying; Zeng, Tao; Zhao, Xiulan; Xie, Keqin

    2014-01-01

    Pyrrole adducts might be used as a biomarker for monitoring occupational exposure to n-hexane, but the Biological Exposure Indices of pyrrole adducts in serum and urine are still unknown. The current study was designed to investigate the biological exposure limit of pyrrole adducts for hazard assessment of n-hexane. Male Wistar rats were given daily dose of 500, 1000, 1500, 2000, 4000 mg/kg bw n-hexane by gavage for 24 weeks. The levels of pyrrole adducts in serum and urine were determined at 8, 24 hours postdose once a week. The Biological Exposure Indices was evaluated by neurological evaluation and the levels of pyrrole adducts. The difference in pyrrole adducts formation between humans and rats were estimated by using in vitro test. Dose-dependent effects were observed between the doses of n-hexane and pyrrole adducts in serum and urine, and the levels of pyrrole adduct in serum and urine approached a plateau at week 4. There was a significantly negative correlation between the time to paralysis and the level of pyrrole adducts in serum and urine, while a positive correlation between gait score and levels of pyrrole adducts in serum and urine was observed. In vitro, pyrrole adducts formed in human serum was about two times more than those in rat serum at the same level of 2,5-HD. It was concluded that the BEIs of pyrrole adducts in humans were 23.1 ± 5.91 nmol/ml in serum 8 h postdose, 11.7 ± 2.64 nmol/ml in serum 24 h postdose, 253.8 ± 36.3 nmol/ml in urine 8 h postdose and 54.6 ± 15.42 nmol/ml in urine 24 h postdose.

  11. Biological Exposure Indices of Pyrrole Adducts in Serum and Urine for Hazard Assessment of n-Hexane Exposure

    PubMed Central

    Yin, Hongyin; Zhang, Chunling; Guo, Ying; Shao, Xiaoying; Zeng, Tao; Zhao, Xiulan; Xie, Keqin

    2014-01-01

    Background Pyrrole adducts might be used as a biomarker for monitoring occupational exposure to n-hexane, but the Biological Exposure Indices of pyrrole adducts in serum and urine are still unknown. The current study was designed to investigate the biological exposure limit of pyrrole adducts for hazard assessment of n-hexane. Methods Male Wistar rats were given daily dose of 500, 1000, 1500, 2000, 4000 mg/kg bw n-hexane by gavage for 24 weeks. The levels of pyrrole adducts in serum and urine were determined at 8, 24 hours postdose once a week. The Biological Exposure Indices was evaluated by neurological evaluation and the levels of pyrrole adducts. The difference in pyrrole adducts formation between humans and rats were estimated by using in vitro test. Results Dose-dependent effects were observed between the doses of n-hexane and pyrrole adducts in serum and urine, and the levels of pyrrole adduct in serum and urine approached a plateau at week 4. There was a significantly negative correlation between the time to paralysis and the level of pyrrole adducts in serum and urine, while a positive correlation between gait score and levels of pyrrole adducts in serum and urine was observed. In vitro, pyrrole adducts formed in human serum was about two times more than those in rat serum at the same level of 2,5-HD. Conclusion It was concluded that the BEIs of pyrrole adducts in humans were 23.1±5.91 nmol/ml in serum 8 h postdose, 11.7±2.64 nmol/ml in serum 24 h postdose, 253.8±36.3 nmol/ml in urine 8 h postdose and 54.6±15.42 nmol/ml in urine 24 h postdose. PMID:24465904

  12. Multiple analyte adduct formation in liquid chromatography-tandem mass spectrometry - Advantages and limitations in the analysis of biologically-related samples.

    PubMed

    Dziadosz, Marek

    2018-05-01

    Multiple analyte adduct formation was examined and discussed in the context of reproducible signal detection in liquid chromatography-tandem mass spectrometry applied in the analysis of biologically-related samples. Appropriate infusion solutions were prepared in H 2 O/methanol (3/97, v/v) with 1 mM sodium acetate and 10 mM acetic acid. An API 4000 QTrap tandem mass spectrometer was used for experiments performed in the negative scan mode (-Q1 MS) and the negative enhanced product ion mode (-EPI). γ‑Hydroxybutyrate and its deuterated form were used as model compounds to highlight both the complexity of adduct formation in popular mobile phases used and the effective signal compensation by the application of isotope-labelled analytes as internal standards. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. N-acetylcysteine prevents the geldanamycin cytotoxicity by forming geldanamycin-N-acetylcysteine adduct.

    PubMed

    Mlejnek, Petr; Dolezel, Petr

    2014-09-05

    Geldanamycin (GDN) is a benzoquinone ansamycin antibiotic with anti-proliferative activity on tumor cells. GDN cytotoxicity has been attributed to the disruption of heat shock protein 90 (Hsp90) binding and stabilizing client proteins, and by the induction of oxidative stress with concomitant glutathione (GSH) depletion. The later mechanism of cytotoxicity can be abrogated by N-acetylcysteine (NAC). It was suggested that NAC prevents GDN cytotoxicity mainly by the restoring of glutathione (GSH) level (Clark et al., 2009). Here we argue that NAC does not protect cells from the GDN cytotoxicity by restoring the level of GSH. A detailed LC/MS/MS analysis of cell extracts indicated formation of GDN adducts with GSH. The amount of the GDN-GSH adduct is proportional to the GDN concentration and increases with incubation time. While nanomolar and low micromolar GDN concentrations induce cell death without an apparent GSH decrease, only much higher micromolar GDN concentrations cause a significant GSH decrease. Therefore, only high micromolar GDN concentrations can cause cell death which might be related to GSH depletion. Addition of NAC leads to the formation of adducts with GDN which diminish formation of GDN adducts with GSH. NAC also forms stable adducts with GDN extracellularly. Although NAC induces an increase in the GSH pool, this effect is not crucial for abrogation of GDN cytotoxicity. Indeed, the presence of NAC in the growth medium causes a rapid conversion of GDN into the GDN-NAC adduct, which is the real cause of the abrogated GDN cytotoxicity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. A Small Molecule Inhibits Virion Attachment to Heparan Sulfate- or Sialic Acid-Containing Glycans

    PubMed Central

    Colpitts, Che C.

    2014-01-01

    ABSTRACT Primary attachment to cellular glycans is a critical entry step for most human viruses. Some viruses, such as herpes simplex virus type 1 (HSV-1) and hepatitis C virus (HCV), bind to heparan sulfate, whereas others, such as influenza A virus (IAV), bind to sialic acid. Receptor mimetics that interfere with these interactions are active against viruses that bind to either heparan sulfate or to sialic acid. However, no molecule that inhibits the attachment of viruses in both groups has yet been identified. Epigallocatechin gallate (EGCG), a green tea catechin, is active against many unrelated viruses, including several that bind to heparan sulfate or to sialic acid. We sought to identify the basis for the broad-spectrum activity of EGCG. Here, we show that EGCG inhibits the infectivity of a diverse group of enveloped and nonenveloped human viruses. EGCG acts directly on the virions, without affecting the fluidity or integrity of the virion envelopes. Instead, EGCG interacts with virion surface proteins to inhibit the attachment of HSV-1, HCV, IAV, vaccinia virus, adenovirus, reovirus, and vesicular stomatitis virus (VSV) virions. We further show that EGCG competes with heparan sulfate for binding of HSV-1 and HCV virions and with sialic acid for binding of IAV virions. Therefore, EGCG inhibits unrelated viruses by a common mechanism. Most importantly, we have identified EGCG as the first broad-spectrum attachment inhibitor. Our results open the possibility for the development of small molecule broad-spectrum antivirals targeting virion attachment. IMPORTANCE This study shows that it is possible to develop a small molecule antiviral or microbicide active against the two largest groups of human viruses: those that bind to glycosaminoglycans and those that bind to sialoglycans. This group includes the vast majority of human viruses, including herpes simplex viruses, cytomegalovirus, influenza virus, poxvirus, hepatitis C virus, HIV, and many others. PMID

  15. Influence of GSTM1 and NAT2 genotypes on placental DNA adducts in an environmentally exposed population.

    PubMed

    Topinka, J; Binková, B; Mracková, G; Stávková, Z; Peterka, V; Benes, I; Dejmek, J; Lenícek, J; Pilcík, T; Srám, R J

    1997-01-01

    The placenta bulky DNA adducts have been studied in relation to metabolic genotypes for glutathione S-transferase M1 (GSTM1) and N-acetyl transferase 2 (NAT2) in 158 mothers (113 nonsmokers and 45 smokers) living in two regions with different annual average air pollution levels of sulphur dioxide, nitrogen oxides, particulate matter < 10 microns, and polycyclic aromatic hydrocarbons. One region was the district of Teplice as the polluted industrial region with mines and brown coal power plants, and the other was the district of Prachatice, an agricultural region without heavy industry. DNA adduct levels were determined by using a butanol extraction enrichment procedure of 32P-postlabeling. GSTM1 and NAT2 genotypes were studied by using polymerase chain reaction. The total DNA adduct levels included a diagonal radioactive zone (DRZ) and one distinct spot outside DRZ (termed X), which was detected in almost all placenta samples and correlated with DRZ (r = .682; P < .001). We found the total DNA adduct levels 2.12 +/- 1.46 (0.04-7.70) and 1.48 +/- 1.09 (0.11-4.98) adducts per 10(8) nucleotides for Teplice and Prachatice districts, respectively, indicating significant differences between both regions studied (P = .004). Elevated DNA adduct levels were found in smoking mothers (10 or more cigarettes per day) by comparison with nonsmoking mothers (3.21 +/- 1.39 versus 1.32 +/- 0.88 adducts per 10(8) nucleotides; P < .001). Placental DNA adduct levels in smokers correlated with cotinine measured in plasma (r = .432; P = .003). This relation indicates that cigarette smoking could be predominantly responsible for DNA adduct formation in placentas of smoking mothers. DNA adduct levels were evaluated separately for non-smokers (1.50 +/- 1.00 vs. 1.09 +/- 0.66 adducts/10(8) nucleotides for the Teplice and Prachatice districts, respectively; P = .046) and smokers (3.35 +/- 1.47 vs. 2.91 +/- 1.20 adducts/10(8) nucleotides for Teplice and Prachatice districts, respectively; P

  16. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost.

    PubMed

    Scaglia, Barbara; Nunes, Ramom Rachide; Rezende, Maria Olímpia Oliveira; Tambone, Fulvia; Adani, Fabrizio

    2016-08-15

    This work studied the auxin-like activity of humic acids (HA) obtained from vermicomposts produced using leather wastes plus cattle dung at different maturation stages (fresh, stable and mature). Bioassays were performed by testing HA concentrations in the range of 100-6000mgcarbonL(-1). (13)C CPMAS-NMR and GC-MS instrumental methods were used to assess the effect of biological processes and starting organic mixtures on HA composition. Not all HAs showed IAA-like activity and in general, IAA-like activity increased with the length of the vermicomposting process. The presence of leather wastes was not necessary to produce the auxin-like activity of HA, since HA extracted from a mix of cattle manure and sawdust, where no leather waste was added, showed IAA-like activity as well. CPMAS (13)CNMR revealed that HAs were similar independently of the mix used and that the humification process involved the increasing concentration of pre-existing alkali soluble fractions in the biomass. GC/MS allowed the identification of the molecules involved in IAA-like effects: carboxylic acids and amino acids. The concentration of active molecules, rather than their simple presence in HA, determined the bio-stimulating effect, and a good linear regression between auxin-like activity and active stimulating molecules concentration was found (R(2)=-0.85; p<0.01, n=6). Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Conformational stability of the propylene oxide-water adduct: direct spectroscopic detection of O-H...O hydrogen bonded conformers.

    PubMed

    Su, Zheng; Wen, Qing; Xu, Yunjie

    2006-05-24

    The 1:1 molecular adduct of propylene oxide and water (PO-H(2)O) was studied using Fourier transform microwave spectroscopy and high level ab initio methods. Two distinct structural conformers with the water molecule acting as a proton donor were detected experimentally: one with the water on the same side as the methyl group with respect to the ether ring, i.e., syn-PO-H(2)O, the other with the water molecule binding to the O-atom from the opposite side of the methyl group, i.e., anti-PO-H(2)O. The nonbonded hydrogen is entgegen to the ether ring in both conformers. Rotational spectra of four isotopic species, namely PO-H(2)O, PO-DOH, PO-HOD, and PO-D(2)O, were recorded for the two conformers. The hydrogen bond parameters: r(O(epoxy)...H), angle(ring-O(epoxy)...H), and angle(O(epoxy)...H-O) are 1.908 A, 112 degrees, and 177 degrees for syn-PO-H(2)O, and 1.885 A, 104.3 degrees, and 161.7 degrees for anti-PO-H(2)O, respectively. The experimental results suggest that the hydrogen bond in syn-PO-H(2)O is stronger and the monomer subunits are more rigidly locked in their positions than in the ethylene oxide-water adduct. The stabilizing effect of the methyl group to the intermolecular hydrogen bond is discussed in terms of the experimentally estimated binding energies, the structural parameters, and the ab initio calculations.

  18. ON BENZO[A]PYRENE DERIVED DNA ADDUCTS FORMED IN LUNG TISSUE OF MICE

    EPA Science Inventory

    On Benzo [a] pyrene Derived DNA Adducts Formed in Lung Tissue of Mice
    The previously identified major DNA adducts of benzo[a]pyrene (BP) in vitro and in vivo are the stable and unstable adducts formed by reaction of the bay-region diol epoxide of BP (BPDE) and BP radical catio...

  19. Single-Molecule Reaction Chemistry in Patterned Nanowells

    PubMed Central

    2016-01-01

    A new approach to synthetic chemistry is performed in ultraminiaturized, nanofabricated reaction chambers. Using lithographically defined nanowells, we achieve single-point covalent chemistry on hundreds of individual carbon nanotube transistors, providing robust statistics and unprecedented spatial resolution in adduct position. Each device acts as a sensor to detect, in real-time and through quantized changes in conductance, single-point functionalization of the nanotube as well as consecutive chemical reactions, molecular interactions, and molecular conformational changes occurring on the resulting single-molecule probe. In particular, we use a set of sequential bioconjugation reactions to tether a single-strand of DNA to the device and record its repeated, reversible folding into a G-quadruplex structure. The stable covalent tether allows us to measure the same molecule in different solutions, revealing the characteristic increased stability of the G-quadruplex structure in the presence of potassium ions (K+) versus sodium ions (Na+). Nanowell-confined reaction chemistry on carbon nanotube devices offers a versatile method to isolate and monitor individual molecules during successive chemical reactions over an extended period of time. PMID:27270004

  20. Hemoglobin adducts in workers exposed to 1,6-hexamethylene diisocyanate.

    PubMed

    Flack, Sheila L; Fent, Kenneth W; Gaines, Linda G T; Thomasen, Jennifer M; Whittaker, Stephen G; Ball, Louise M; Nylander-French, Leena A

    2011-05-01

    We investigated the utility of 1,6-hexamethylene diamine (HDA) hemoglobin adducts as biomarkers of exposure to 1,6-hexamethylene diisocyanate (HDI) monomer. Blood samples from 15 spray painters applying HDI-containing paint were analyzed for hemoglobin HDA (HDA-Hb) and N-acetyl-1,6-hexamethylene diamine (monoacetyl-HDA-Hb) by GC-MS. HDA-Hb was detected in the majority of workers (≤1.2-37 ng/g Hb), whereas monoacetyl-HDA-Hb was detected in one worker (0.06 ng/g Hb). The stronger, positive association between HDA-Hb and cumulative HDI exposure (r(2) = 0.3, p < 0.06) than same day exposure (p ≥ 0.13) indicates long-term elimination kinetics for HDA-Hb adducts. This association demonstrates the suitability of HDA-Hb adducts for further validation as a biomarker of HDI exposure.

  1. Hemoglobin adducts in workers exposed to 1,6-hexamethylene diisocyanate

    PubMed Central

    Flack, Sheila L.; Fent, Kenneth W.; Gaines, Linda G. T.; Thomasen, Jennifer M.; Whittaker, Stephen G.; Ball, Louise M.; Nylander-French, Leena A.

    2014-01-01

    We investigated the utility of 1,6-hexamethylene diamine (HDA) hemoglobin adducts as biomarkers of exposure to 1,6-hexamethylene diisocyanate (HDI) monomer. Blood samples from 15 spray painters applying HDI-containing paint were analyzed for hemoglobin HDA (HDA-Hb) and N-acetyl-1,6-hexamethylene diamine (monoacetyl-HDA-Hb) by GC-MS. HDA-Hb was detected in the majority of workers (≤1.2–37 ng/g Hb), whereas monoacetyl-HDA-Hb was detected in one worker (0.06 ng/g Hb). The stronger, positive association between HDA-Hb and cumulative HDI exposure (r2 = 0.3, p < 0.06) than same day exposure (p ≥ 0.13) indicates long-term elimination kinetics for HDA-Hb adducts. This association demonstrates the suitability of HDA-Hb adducts for further validation as a biomarker of HDI exposure. PMID:21506697

  2. Attenuation of autoimmune responses to oxidative specific epitopes, but not nitroso-adducts, is associated with a better clinical outcome in Myalgic Encephalomyelitis/chronic fatigue syndrome.

    PubMed

    Maes, Michael; Leunis, Jean-Claude

    2014-01-01

    There is evidence that inflammatory, oxidative and nitrosative stress (IO&NS) pathways participate in the pathophysiology of a subgroup of patients with Myalgic Encephalomyelitis/chronic fatigue syndrome (ME/CFS). Increased IgM-related autoimmune responses to oxidative specific epitopes (OSEs), including malondialdehyde (MDA), oleic acid and phosphatidyl inositol (Pi), and nitroso-(NO)-adducts, including NO-tryptophan (NOW), NO-arginine and NO-cysteinyl, are frequently observed in ME/CFS. Autoimmune responses in ME/CFS may be driven by increased bacterial translocation as measured by IgM and IgA responses to LPS of gram negative bacteria. The aim of this study is to examine whether IgM responses to OSEs and NO-adducts are related to a better outcome as measured by the Fibromyalgia and Fatigue Rating Scale (FF). 76 ME/CFS patients with initially abnormal autoimmune responses were treated with care-as-usual, including nutraceuticals with anti-IO&NS effects (NAIOS), such as L-carnitine, coenzyme Q10, taurine + lipoic acid, with or without curcumine + quercitine or N-acetyl-cysteine, zinc + glutamine. We found that use of these NAIOS was associated with highly significant reductions in initially increased IgM-mediated autoimmune responses to OSEs and NO-adducts. A greater reduction in autoimmune responses to OSEs during intake of these NAIOS was associated with a lower FF score. Reductions in IgM responses to oleic acid, MDA and Pi, but not in any of the NO-adducts, were associated with reductions in severity of illness. These associations remained significant after adjusting for possible effects of increased bacterial translocation (leaky gut). Our results show that autoimmune responses to OSEs are involved in the pathophysiology of ME/CFS and that these pathways are a new drug target in a subgroup of ME/CFS patients. Although hypernitrosylation and nitrosative stress play a role in ME/CFS, reductions in these pathways are not associated with lowered severity of

  3. Benzo(a)pyrene-albumin adducts in humans exposed to polycyclic aromatic hydrocarbons in an industrial area of Poland.

    PubMed Central

    Kure, E H; Andreassen, A; Ovrebø, S; Grzybowska, E; Fiala, Z; Strózyk, M; Chorazy, M; Haugen, A

    1997-01-01

    OBJECTIVES: The interaction of benzo(a)pyrene with serum albumin was measured in an attempt to identify the actual exposure and to evaluate albumin adduct measurements as biomarkers for exposure monitoring. METHODS: Benzo(a)pyrene-diol-epoxide (BPDE)-albumin adducts were measured by competitive enzyme linked immunosorbent assay (ELISA) in plasma of coke oven plant workers from three plants and from people living in a highly industrialised area of Silesia in Poland. Due to the high air concentrations of polycyclic aromatic hydrocarbons (PAHs) in this area, a control group was selected from a rural non-industrialised area in Poland. Breathing zone air measurements of PAHs were collected from some of the participants. RESULTS: Coke oven plant workers and non-occupationally exposed people had similar concentrations of albumin adducts whereas the rural controls were significantly lower (2.74 fmol adducts/microgram albumin (SEM 0.124)). The mean concentration of BPDE-albumin adduct in plasma of both the occupational and the environmental groups were significantly higher in the summer samples (4.34 fmol adducts/microgram albumin (SEM 0.335) and 4.55 fmol adducts/microgram albumin (SEM 0.296), respectively) than in the winter samples (3.06 fmol adducts/microgram albumin (SEM 0.187) and 3.04 fmol adducts/microgram albumin (SEM 0.184), respectively) even though the air measurements showed higher concentrations of PAHs in the winter. The statistical analysis did not show any effects of air exposures on concentrations of BPDE-albumin adduct. CONCLUSIONS: A multiple regression analysis of the measured concentrations of BPDE-albumin adducts for all the groups, during both seasons, indicates that occupational exposures do not contribute significantly to the formation of adducts. In general, the concentrations of albumin adducts found vary within relatively small limits for the two seasons and between the various groups of participants. No extreme differences were found. PMID

  4. Investigation of Pyridine Carboxylic Acids in CM2 Carbonaceous Chondrites: Potential Precursor Molecules for Ancient Coenzymes

    NASA Technical Reports Server (NTRS)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-01-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We lso report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  5. Investigation of Pyridine Carboxylic Acids in CM2 Carbonaceous Chondrites: Potential Precursor Molecules for Ancient Coenzymes

    NASA Technical Reports Server (NTRS)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-01-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We also report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  6. Hyperpolarized Amino Acid Derivatives as Multivalent Magnetic Resonance pH Sensor Molecules.

    PubMed

    Hundshammer, Christian; Düwel, Stephan; Ruseckas, David; Topping, Geoffrey; Dzien, Piotr; Müller, Christoph; Feuerecker, Benedikt; Hövener, Jan B; Haase, Axel; Schwaiger, Markus; Glaser, Steffen J; Schilling, Franz

    2018-02-15

    pH is a tightly regulated physiological parameter that is often altered in diseased states like cancer. The development of biosensors that can be used to non-invasively image pH with hyperpolarized (HP) magnetic resonance spectroscopic imaging has therefore recently gained tremendous interest. However, most of the known HP-sensors have only individually and not comprehensively been analyzed for their biocompatibility, their pH sensitivity under physiological conditions, and the effects of chemical derivatization on their logarithmic acid dissociation constant (p K a ). Proteinogenic amino acids are biocompatible, can be hyperpolarized and have at least two pH sensitive moieties. However, they do not exhibit a pH sensitivity in the physiologically relevant pH range. Here, we developed a systematic approach to tailor the p K a of molecules using modifications of carbon chain length and derivatization rendering these molecules interesting for pH biosensing. Notably, we identified several derivatives such as [1- 13 C]serine amide and [1- 13 C]-2,3-diaminopropionic acid as novel pH sensors. They bear several spin-1/2 nuclei ( 13 C, 15 N, 31 P) with high sensitivity up to 4.8 ppm/pH and we show that 13 C spins can be hyperpolarized with dissolution dynamic polarization (DNP). Our findings elucidate the molecular mechanisms of chemical shift pH sensors that might help to design tailored probes for specific pH in vivo imaging applications.

  7. CYCLOPENTA-FUSED POLYCYCLIC AROMATIC HYDROCARBONS IN STRAIN A/J MOUSE LUNG: DNA ADDUCTS, ONCOGENE MUTATIONS, & TUMORIGENESIS

    EPA Science Inventory

    Cyclopenta-fused Polycyclic Aromatic Hydrocarbons in Strain AJJ Mouse Lung: DNA Adducts, Oncogene Mutations, and Tumorigenesis.

    We have examined the relationships between DNA adducts, Ki-ras oncogene mutations, DNA adducts, and adenoma induction in the lungs of strain A/J...

  8. 2-Hydroxy-succinaldehyde, a lipid peroxidation product proving that polyunsaturated fatty acids are able to react with three molecules of oxygen.

    PubMed

    Mlakar, A; Spiteller, G

    1997-01-01

    2-Hydroxy-succinaldehyde was detected by a GC/MS analysis of trapped aldehydic compounds obtained after Fe2+/ascorbate lipid peroxidation of arachidonic acid. Precursor molecules of aldehydes are hydroperoxy compounds. Thus the generation of the two aldehydic groups in 2-hydroxysuccinaldehyde requires a precursor molecule with two hydroperoxy groups. The hydroxy group in 2-position is generated by a third hydroperoxidation reaction. The detection of 2-hydroxysuccinaldehyde--although found only in traces--is the first example for triple dioxigenation of unsaturated fatty acid. Linolenic acid produces 2-hydroxysuccinaldehyde in much lower amounts than arachidonic acid. A similar oxidation of linoleic acid was not observed.

  9. Quantitative changes in endogenous DNA adducts correlate with conazole in vivo mutagenicity and tumorigenicity.

    PubMed

    Ross, Jeffrey A; Leavitt, Sharon A; Schmid, Judith E; Nelson, Garret B

    2012-09-01

    The mouse liver tumorigenic conazole fungicides triadimefon and propiconazole have previously been shown to be in vivo mouse liver mutagens in the Big Blue™ transgenic mutation assay when administered in feed at tumorigenic doses, whereas the nontumorigenic conazole myclobutanil was not mutagenic. DNA sequencing of the mutants recovered from each treatment group as well as from animals receiving control diet revealed that propiconazole- and triadimefon-induced mutations do not represent general clonal expansion of background mutations, and support the hypothesis that they arise from the accumulation of endogenous reactive metabolic intermediates within the liver in vivo. We therefore measured the spectra of endogenous DNA adducts in the livers of mice from these studies to determine if there were quantitative or qualitative differences between mice receiving tumorigenic or nontumorigenic conazoles compared to concurrent control animals. We resolved and quantitated 16 individual adduct spots by (32)P postlabelling and thin layer chromatography using three solvent systems. Qualitatively, we observed the same DNA adducts in control mice as in mice receiving conazoles. However, the 13 adducts with the highest chromatographic mobility were, as a group, present at significantly higher amounts in the livers of mice treated with propiconazole and triadimefon than in their concurrent controls, whereas this same group of DNA adducts in the myclobutanil-treated mice was not different from controls. This same group of endogenous adducts were significantly correlated with mutant frequency across all treatment groups (P = 0.002), as were total endogenous DNA adduct levels (P = 0.005). We hypothesise that this treatment-related increase in endogenous DNA adducts, together with concomitant increases in cell proliferation previously reported to be induced by conazoles, explain the observed increased in vivo mutation frequencies previously reported to be induced by treatment with

  10. Carbonyl Activation by Borane Lewis Acid Complexation: Transition States of H2 Splitting at the Activated Carbonyl Carbon Atom in a Lewis Basic Solvent and the Proton-Transfer Dynamics of the Boroalkoxide Intermediate.

    PubMed

    Heshmat, Mojgan; Privalov, Timofei

    2017-07-06

    By using transition-state (TS) calculations, we examined how Lewis acid (LA) complexation activates carbonyl compounds in the context of hydrogenation of carbonyl compounds by H 2 in Lewis basic (ethereal) solvents containing borane LAs of the type (C 6 F 5 ) 3 B. According to our calculations, LA complexation does not activate a ketone sufficiently enough for the direct addition of H 2 to the O=C unsaturated bond; but, calculations indicate a possibly facile heterolytic cleavage of H 2 at the activated and thus sufficiently Lewis acidic carbonyl carbon atom with the assistance of the Lewis basic solvent (i.e., 1,4-dioxane or THF). For the solvent-assisted H 2 splitting at the carbonyl carbon atom of (C 6 F 5 ) 3 B adducts with different ketones, a number of TSs are computed and the obtained results are related to insights from experiment. By using the Born-Oppenheimer molecular dynamics with the DFT for electronic structure calculations, the evolution of the (C 6 F 5 ) 3 B-alkoxide ionic intermediate and the proton transfer to the alkoxide oxygen atom were investigated. The results indicate a plausible hydrogenation mechanism with a LA, that is, (C 6 F 5 ) 3 B, as a catalyst, namely, 1) the step of H 2 cleavage that involves a Lewis basic solvent molecule plus the carbonyl carbon atom of thermodynamically stable and experimentally identifiable (C 6 F 5 ) 3 B-ketone adducts in which (C 6 F 5 ) 3 B is the "Lewis acid promoter", 2) the transfer of the solvent-bound proton to the oxygen atom of the (C 6 F 5 ) 3 B-alkoxide intermediate giving the (C 6 F 5 ) 3 B-alcohol adduct, and 3) the S N 2-style displacement of the alcohol by a ketone or a Lewis basic solvent molecule. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. White blood cell DNA adducts in a cohort of asthmatic children exposed to environmental tobacco smoke

    PubMed Central

    Talaska, Glenn; Kahn, Robert S.; Schumann, Brenda; Khoury, Jane; Leonard, Anthony C.; Lanphear, Bruce P.

    2010-01-01

    Purpose Exposure to environmental tobacco smoke (ETS) leads to molecular damage in the form of DNA adducts. While lung cancer risk is higher among African Americans compared to White Americans, a few studies have tested for racial differences in DNA adducts among children exposed to ETS. The purpose of this study was to test whether African American children have higher DNA adducts levels compared to White children adjusted for ETS exposure. Methods Data and biologic specimens were drawn from an existing cohort of 212 asthmatic children. These subjects participated in a 12-month ETS-reduction trial that employed HEPA air cleaners with active filter cartridges and sham filter cartridges. White blood cell (WBC) DNA was analyzed for DNA adducts using 32P-postlabeling. We assessed ETS exposure using a validated air nicotine dosimeter. We determined the independent relationship between African American race and DNA adduct levels adjusted for ETS exposure and air cleaner use. Results The mean age of the subjects was 8.4 years; 55% were African American. There was no difference in DNA adduct levels between African American and White children (11.8 vs. 11.2 adducts per 109 nucleotides, p = 0.86), despite slightly higher levels of air nicotine exposure (3.4 vs. 2.2 μg/m3, p = 0.14). African American children used their air cleaners less often than White children. We found that the best predictor of DNA adduct levels was the duration of air cleaner use (r = −0.133, p = 0.056). This association was independent of cartridge type. Conclusions We did not see differences in adduct levels by race even after accounting for the level of ETS exposure. However, there was a marginal inverse association between air cleaner use and adducts. Additional research is required to understand this phenomenon. PMID:20336464

  12. Omega-3 fatty acids and inflammatory processes: from molecules to man.

    PubMed

    Calder, Philip C

    2017-10-15

    Inappropriate, excessive or uncontrolled inflammation contributes to a range of human diseases. Inflammation involves a multitude of cell types, chemical mediators and interactions. The present article will describe nutritional and metabolic aspects of omega-6 (n-6) and omega-3 (n-3) fatty acids and explain the roles of bioactive members of those fatty acid families in inflammatory processes. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are n-3 fatty acids found in oily fish and fish oil supplements. These fatty acids are capable of partly inhibiting many aspects of inflammation including leucocyte chemotaxis, adhesion molecule expression and leucocyte-endothelial adhesive interactions, production of eicosanoids like prostaglandins and leukotrienes from the n-6 fatty acid arachidonic acid and production of pro-inflammatory cytokines. In addition, EPA gives rise to eicosanoids that often have lower biological potency than those produced from arachidonic acid, and EPA and DHA give rise to anti-inflammatory and inflammation resolving mediators called resolvins, protectins and maresins. Mechanisms underlying the anti-inflammatory actions of EPA and DHA include altered cell membrane phospholipid fatty acid composition, disruption of lipid rafts, inhibition of activation of the pro-inflammatory transcription factor nuclear factor κB so reducing expression of inflammatory genes and activation of the anti-inflammatory transcription factor peroxisome proliferator-activated receptor γ. Animal experiments demonstrate benefit from EPA and DHA in a range of models of inflammatory conditions. Human trials demonstrate benefit of oral n-3 fatty acids in rheumatoid arthritis and in stabilizing advanced atherosclerotic plaques. Intravenous n-3 fatty acids may have benefits in critically ill patients through reduced inflammation. The anti-inflammatory and inflammation resolving actions of EPA, DHA and their derivatives are of clinical relevance. © 2017 The Author

  13. Oleamide: a fatty acid amide signaling molecule in the cardiovascular system?

    PubMed

    Hiley, C Robin; Hoi, Pui Man

    2007-01-01

    Oleamide (cis-9,10-octadecenoamide), a fatty acid primary amide discovered in the cerebrospinal fluid of sleep-deprived cats, has a variety of actions that give it potential as a signaling molecule, although these actions have not been extensively investigated in the cardiovascular system. The synthetic pathway probably involves synthesis of oleoylglycine and then conversion to oleamide by peptidylglycine alpha-amidating monooxygenase (PAM); breakdown of oleamide is by fatty acid amide hydrolase (FAAH). Oleamide interacts with voltage-gated Na(+) channels and allosterically with GABA(A) and 5-HT(7) receptors as well as having cannabinoid-like actions. The latter have been suggested to be due to potentiation of the effects of endocannabinoids such as anandamide by inhibiting FAAH-mediated hydrolysis. This might underlie an "entourage effect" whereby co-released endogenous nonagonist congeners of endocannabinoids protect the active molecule from hydrolysis by FAAH. However, oleamide has direct agonist actions at CB(1) cannabinoid receptors and also activates the TRPV1 vanilloid receptor. Other actions include inhibition of gap-junctional communication, and this might give oleamide a role in myocardial development. Many of these actions are absent from the trans isomer of 9,10-octadecenoamide. One of the most potent actions of oleamide is vasodilation. In rat small mesenteric artery the response does not involve CB(1) cannabinoid receptors but another pertussis toxin-sensitive, G protein-coupled receptor, as yet unidentified. This receptor is sensitive to rimonabant and O-1918, an antagonist at the putative "abnormal-cannabidiol" or endothelial "anandamide" receptors. Vasodilation is mediated by endothelium-derived nitric oxide, endothelium-dependent hyperpolarization, and also through activation of TRPV1 receptors. A physiological role for oleamide in the heart and circulation has yet to be demonstrated, as has production by cells of the cardiovascular system, but

  14. Comparison of EMG activity on abdominal muscles during plank exercise with unilateral and bilateral additional isometric hip adduction.

    PubMed

    Kim, Soo-Yong; Kang, Min-Hyeok; Kim, Eui-Ryong; Jung, In-Gui; Seo, Eun-Young; Oh, Jae-Seop

    2016-10-01

    The aim of this study was to investigate the effects of additional isometric hip adduction during the plank exercise on the abdominal muscles. Twenty healthy young men participated in this study. Surface electromyography (EMG) was used to monitor the activity of the bilateral rectus abdominis (RA), the internal oblique (IO), and the external oblique (EO) muscles. The participants performed three types of plank exercise; the standard plank exercise, the plank exercise with bilateral isometric hip adduction, and the plank exercise with unilateral isometric hip adduction. All abdominal muscle activity was significantly increased during the plank exercise combined with the bilateral and unilateral isometric hip adduction compared with the standard plank exercise (p<0.05). Bilateral IO, EO, and left RA muscle activity was significantly increased during the unilateral isometric hip adduction compared with the bilateral isometric hip adduction (p<0.05). These findings suggest that additional isometric hip adduction during the plank exercise could be a useful method to enhance abdominal muscle activity. In particular, the unilateral isometric hip adduction is a more beneficial exercise than the bilateral isometric hip adduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Malondialdehyde–Deoxyguanosine Adducts among Workers of a Thai Industrial Estate and Nearby Residents

    PubMed Central

    Peluso, Marco; Srivatanakul, Petcharin; Munnia, Armelle; Jedpiyawongse, Adisorn; Ceppi, Marcello; Sangrajrang, Suleeporn; Piro, Sara; Boffetta, Paolo

    2010-01-01

    Background Humans living near industrial point emissions can experience high levels of exposures to air pollutants. Map Ta Phut Industrial Estate in Thailand is the location of the largest steel, oil refinery, and petrochemical factory complexes in Southeast Asia. Air pollution is an important source of oxidative stress and reactive oxygen species, which interact with DNA and lipids, leading to oxidative damage and lipid peroxidation, respectively. Objective We measured the levels of malondialdehyde–deoxyguanosine (dG) adducts, a biomarker of oxidative stress and lipid peroxidation, in petrochemical workers, nearby residents, and subjects living in a control district without proximity to industrial sources. Design We conducted a cross-sectional study to compare the prevalence of malondialdehyde-dG adducts in groups of subjects experiencing various degrees of air pollution. Results The multivariate regression analysis shows that the adduct levels were associated with occupational and environmental exposures to air pollution. The highest adduct level was observed in the steel factory workers. In addition, the formation of DNA damage tended to be associated with tobacco smoking, but without reaching statistical significance. A nonsignificant increase in DNA adducts was observed after 4–6 years of employment among the petrochemical complexes. Conclusions Air pollution emitted from the Map Ta Phut Industrial Estate complexes was associated with increased adduct levels in petrochemical workers and nearby residents. Considering the mutagenic potential of DNA lesions in the carcinogenic process, we recommend measures aimed at reducing the levels of air pollution. PMID:20056580

  16. Identification and Characterization of 2′-Deoxyadenosine Adducts formed by Isoprene Monoepoxides In Vitro

    PubMed Central

    Begemann, Petra; Boysen, Gunnar; Georgieva, Nadia I.; Sangaiah, Ramiah; Koshlap, Karl M.; Koc, Hasan; Zhang, Daping; Golding, Bernard T.; Gold, Avram; Swenberg, James A.

    2011-01-01

    Isoprene, the 2-methyl analog of 1,3-butadiene, is ubiquitous in the environment, with major contributions to total isoprene emissions stemming from natural processes despite the compound being a bulk industrial chemical. Additionally, isoprene is a combustion product and a major component in cigarette smoke. Isoprene has been classified as possibly carcinogenic to humans (group 2B) by IARC and as reasonably anticipated to be a human carcinogen by the National Toxicology Program. Isoprene, like butadiene, requires metabolic activation to reactive epoxides to exhibit its carcinogenic properties. The mode of action has been postulated to be that of a genotoxic carcinogen, with formation of promutagenic DNA adducts being essential for mutagenesis and carcinogenesis. In rodents, isoprene-induced tumors show unique point mutations (A→T transversions) in the K-ras protooncogene at codon 61. Therefore, we investigated adducts formed after reaction of 2′-deoxyadenosine (dAdo1) with the two monoepoxides of isoprene, 2-ethenyl-2-methyloxirane (IP-1,2-O) and propen-2-yloxirane (IP-3,4-O), under physiological conditions. The formation of N1–2′-deoxyinosine (N1-dIno) due to deamination of N1-dAdo adducts was of particular interest, since N1-dIno adducts are suspected to have high mutagenic potential based on in vitro experiments. Major stable adducts were identified by HPLC, UV-Spectrometry and LC-MS/MS and characterized by 1H and 1H,13C HSQC and NMR experiments. Adducts of IP-1,2-O that were fully identified are: R,S-C1-N6-dAdo, R-C2-N6-dAdo, and S-C2-N6-dAdo; adducts of IP-3,4-O are: S-C3-N6-dAdo, R-C3-N6-dAdo, R,S-C4-N6-dAdo, S-C4-N1-dIno, R-C4-N1-dIno, R-C3-N1-dIno, S-C3-N1-dIno, and C3-N7-Ade. Both monoepoxides formed adducts on the external and internal oxirane carbons. This is the first study to describe adducts of isoprene monoepoxides with dAdo. Characterization of adducts formed by isoprene monoepoxides with deoxynucleosides and subsequently with DNA represent

  17. Characterization and Reactivity of a Terminal Nickel(III)-Oxygen Adduct

    PubMed Central

    Pirovano, Paolo; Farquhar, Erik R.; Swart, Marcel; Fitzpatrick, Anthony J.; Morgan, Grace G.; McDonald, Aidan R.

    2015-01-01

    High-valent terminal metal-oxygen adducts are hypothesized to be the potent oxidising reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel-oxygen adducts are sparse, meaning there is a dearth in the understanding of such oxidants. In this study, a monoanionic NiII-bicarbonate complex was found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (~95%). Electronic absorption, electronic paramagnetic resonance and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S = ½), square planar NiIII-oxygen adduct. This rare example of a high-valent terminal nickel-oxygen complex performs oxidations of organic substrates, including 2,6-ditertbutylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively. PMID:25612563

  18. Manipulative interplay of two adozelesin molecules with d(ATTAAT)₂achieving ligand-stacked Watson-Crick and Hoogsteen base-paired duplex adducts.

    PubMed

    Hopton, Suzanne R; Thompson, Andrew S

    2011-05-17

    Previous structural studies of the cyclopropapyrroloindole (CPI) antitumor antibiotics have shown that these ligands bind covalently edge-on into the minor groove of double-stranded DNA. Reversible covalent modification of the DNA via N3 of adenine occurs in a sequence-specific fashion. Early nuclear magnetic resonance and molecular modeling studies with both mono- and bis-alkylating ligands indicated that the ligands fit tightly within the minor groove, causing little distortion of the helix. In this study, we propose a new binding model for several of the CPI-based analogues, in which the aromatic secondary rings form π-stacked complexes within the minor groove. One of the adducts, formed with adozelesin and the d(ATTAAT)(2) sequence, also demonstrates the ability of these ligands to manipulate the DNA of the binding site, resulting in a Hoogsteen base-paired adduct. Although this type of base pairing has been previously observed with the bisfunctional CPI analogue bizelesin, this is the first time that such an observation has been made with a monoalkylating nondimeric analogue. Together, these results provide a new model for the design of CPI-based antitumor antibiotics, which also has a significant bearing on other structurally related and structurally unrelated minor groove-binding ligands. They indicate the dynamic nature of ligand-DNA interactions, demonstrating both DNA conformational flexibility and the ability of two DNA-bound ligands to interact to form stable covalent modified complexes.

  19. Computational Study of the Bulk Properties of a Novel Molecule: alpha-Tocopherol-Ascorbic Acid Surfactant

    NASA Astrophysics Data System (ADS)

    Stirling, Shannon; Kim, Hye-Young

    Alpha-tocopherol-ascorbic acid surfactant (EC) is a novel amphiphilic molecule of antioxidant properties, which has a hydrophobic vitamin E and a hydrophilic vitamin C chemically linked. We have developed atomistic force fields (g54a7) for a protonated (neutral) EC molecule. Our goal is to carry out molecular dynamics (MD) simulations of protonated EC molecules using the newly developed force fields and study the molecular properties. First we ran energy minimization (EM) with one molecule in a vacuum to obtain the low energy molecular configuration with emtol =10. We then used Packmol to insert 125 EC molecules in a 3nm cube. We then performed MD simulations of the bulk system composed of 125 EC molecules, from which we measured the bulk density and the evaporation energy of the molecular system. Gromacs2016 is used for the EM and MD simulation studies. We will present the results of the ongoing research. National Institute Of General Medical Sciences of the National Institutes of Health under Award Number P20GM103424 (Kim). Computational resources were provided by the Louisiana Optical Network Initiative.

  20. Determination of albumin adducts of 4,4'-methylenediphenyl diisocyanate after specific inhalative challenge tests in workers.

    PubMed

    Sabbioni, Gabriele; Dongari, Nagaraju; Kumar, Anoop; Baur, Xaver

    2016-10-17

    4,4'-Methylenediphenyl diisocyanate (MDI) is the most important isocyanate used in the industry. Lung sensitization with bronchial asthma is the main disorder in exposed workers. Albumin adducts of MDI might be involved in specific immunological reactions. MDI adducts with lysine (MDI-Lys) of albumin have been found in MDI-workers and construction workers. MDI-Lys is an isocyanate-specific adduct of MDI with albumin. In the present study, we report MDI-adducts in workers undergoing diagnostic MDI challenge tests. The workers were exposed for 2h to 5ppb of MDI. The adduct levels increase significantly after the exposure to MDI in the challenge chamber. About 0.6% of the dose was bound to albumin. So far, only urinary metabolites of MDI were measured to monitor isocyanate workers. However, such urinary metabolites are not isocyanate specific. Therefore, we propose to measure albumin adducts for monitoring MDI exposed subjects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Ascorbic acid derivatives as a new class of antiproliferative molecules.

    PubMed

    Bordignon, Benoit; Chiron, Julien; Fontés, Michel

    2013-09-28

    Ascorbic acid (AA) has long been described as an antiproliferative agent. However, the molecule has to be used at a very high concentrations, which necessitates i.v. injection, and the tight regulation of in-blood and in-cell AA concentrations making it impossible to hold very high concentrations for any substantial length of time. Here we report evidence that AA derivates are antiproliferative and cytotoxic molecules at an IC50 lower than AA itself. Among these new molecules, we selected K873 that has cytotoxic and antiproliferative effects on different human tumor cells at tenth micromolar concentration. In a further step, we demonstrated that K873 selectively to kills only cancer cells without being toxic for normal non-dividing (or poorly dividing) cells. Finally, we tested the effect of treatment with K873 (5-10 mg/kg/d by i.p. route) on tumor progression in xenografted immunodeficient mice (BALB/c Nude). Our data suggest that K873 administration strongly inhibits tumor progression. In a previous study using microarrays, we demonstrated that AA decreases the expression of two genes families involved in cell cycle progression, i.e. initiation factor of translation and tRNA synthetases. Here we show that K873 treatment also decreases the expression of four of these genes in xenografted tumors, in proportions similar to that previously observed with AA. Taken together, our data suggest that AA and K873 share similar action. Our findings suggest that AA derivatives could be a promising new class of anti-cancer drugs, either alone or in combination with other molecules. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine as orally-active adhesion molecule inhibitors.

    PubMed

    Kaneko, Toshihiko; Clark, Richard S J; Ohi, Norihito; Ozaki, Fumihiro; Kawahara, Tetsuya; Kamada, Atsushi; Okano, Kazuo; Yokohama, Hiromitsu; Ohkuro, Masayoshi; Muramoto, Kenzo; Takenaka, Osamu; Kobayashi, Seiichi

    2004-06-01

    Novel piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine were prepared and evaluated for their inhibitory activity on the upregulation of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1). Replacement of the methanesulfonyl group on the piperidine ring of previously prepared derivatives with a carboxylic acid-containing moiety resulted in a number of potent adhesion molecule inhibitors. Of these, (anti) [3-(10H-pyrazino[2,3-b][1,4]benzothiazin-8-yl)methyl-3-azabicyclo[3.3.1]non-9-yl]acetic acid 2q (ER-49890), showed the most potent oral inhibitory activities against neutrophil migration in an interleukin-1 (IL-1) induced paw inflammation model using mice, and leukocyte accumulation in a carrageenan pleurisy model in the rat, and therapeutic effect on collagen-induced arthritis in rats.

  3. Temporal and spatial features of the formation of DNA adducts in sulfur mustard-exposed skin.

    PubMed

    Batal, Mohamed; Boudry, Isabelle; Mouret, Stéphane; Wartelle, Julien; Emorine, Sandy; Bertoni, Marine; Bérard, Izabel; Cléry-Barraud, Cécile; Douki, Thierry

    2013-12-15

    Sulfur mustard (SM) is a chemical warfare agent that targets skin where it induces large blisters. DNA alkylation is a critical step to explain SM-induced cutaneous symptoms. We determined the kinetics of formation of main SM-DNA adducts and compare it with the development of the SM-induced pathogenesis in skin. SKH-1 mice were exposed to 2, 6 and 60 mg/kg of SM and treated skin was biopsied between 6h and 21 days. Formation of SM DNA adducts was dose-dependent with a maximum immediately after exposure. However, adducts were persistent and still detectable 21 days post-exposure. The time-dependent formation of DNA adducts was also found to be correlated with the appearance of apoptotic cells. This temporal correlation suggests that these two early events are responsible for the severity of the damage to the skin. Besides, SM-DNA adducts were also detected in areas located next to contaminated zone, thus suggesting that SM diffuses in skin. Altogether, this work provides for the first time a clear picture of SM-induced genotoxicity using DNA adducts as a marker. © 2013.

  4. Nucleotides with altered hydrogen bonding capacities impede human DNA polymerase η by reducing synthesis in the presence of the major cisplatin DNA adduct.

    PubMed

    Nilforoushan, Arman; Furrer, Antonia; Wyss, Laura A; van Loon, Barbara; Sturla, Shana J

    2015-04-15

    Human DNA polymerase η (hPol η) contributes to anticancer drug resistance by catalyzing the replicative bypass of DNA adducts formed by the widely used chemotherapeutic agent cis-diamminedichloroplatinum (cisplatin). A chemical basis for overcoming bypass-associated resistance requires greater knowledge of how small molecules influence the hPol η-catalyzed bypass of DNA adducts. In this study, we demonstrated how synthetic nucleoside triphosphates act as hPol η substrates and characterized their influence on hPol η-mediated DNA synthesis over unmodified and platinated DNA. The single nucleotide incorporation efficiency of the altered nucleotides varied by more than 10-fold and the higher incorporation rates appeared to be attributable to the presence of an additional hydrogen bond between incoming dNTP and templating base. Finally, full-length DNA synthesis in the presence of increasing concentrations of synthetic nucleotides reduced the amount of DNA product independent of the template, representing the first example of hPol η inhibition in the presence of a platinated DNA template.

  5. LC-MS/MS screening strategy for unknown adducts to N-terminal valine in hemoglobin applied to smokers and nonsmokers.

    PubMed

    Carlsson, Henrik; von Stedingk, Hans; Nilsson, Ulrika; Törnqvist, Margareta

    2014-12-15

    Electrophilically reactive compounds have the ability to form adducts with nucleophilic sites in DNA and proteins, constituting a risk for toxic effects. Mass spectrometric detection of adducts to N-terminal valine in hemoglobin (Hb) after detachment by modified Edman degradation procedures is one approach for in vivo monitoring of exposure to electrophilic compounds/metabolites. So far, applications have been limited to one or a few selected reactive species, such as acrylamide and its metabolite glycidamide. This article presents a novel screening strategy for unknown Hb adducts to be used as a basis for an adductomic approach. The method is based on a modified Edman procedure, FIRE, specifically developed for LC-MS/MS analysis of N-terminal valine adducts in Hb detached as fluorescein thiohydantoin (FTH) derivatives. The aim is to detect and identify a priori unknown Hb adducts in human blood samples. Screening of valine adducts was performed by stepwise scanning of precursor ions in small mass increments, monitoring four fragments common for the FTH derivative of valine with different N-substitutions in the multiple-reaction mode, covering a mass range of 135 Da (m/z 503-638). Samples from six smokers and six nonsmokers were analyzed. Control experiments were performed to compare these results with known adducts and to check for artifactual formation of adducts. In all samples of smokers and nonsmokers, seven adducts were identified, of which six have previously been studied. Nineteen unknown adducts were observed, and 14 of those exhibited fragmentation patterns similar to earlier studied FTH derivatives of adducts to valine. Identification of the unknown adducts will be the focus of future work. The presented methodology is a promising screening tool using Hb adducts to indicate exposure to potentially toxic electrophilic compounds and metabolites.

  6. Separation of {sup 32}P-postlabeled DNA adducts of polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons by HPLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, L.C.; Gallagher, J.E.; Lewtas, J.

    The {sup 32}P-postlabeling assay, thin-layer chromatography, and reverse-phase high-pressure liquid chromatography (HPLC) were used to separate DNA adducts formed from 10 polycyclic aromatic hydrocarbons (PAHs) and 6 nitrated polycyclic aromatic hydrocarbons (NO{sub 2}-PAHs). The PAHs included benzo[j]fluoranthene, benzo[k]fluoranthene, indeno[1,2,3-cd]pyrene, benzo[a]pyrene, chrysene, 6-methylchrysene, 5-methylchrysene, and benz[a]anthracene. The NO{sub 2}-PAHs included 1-nitropyrene, 2-nitrofluoranthene, 3-nitrofluoranthene, 1,6-dinitropyrene, 1,3-dinitropyrene, and 1,8-dinitropyrene. Separation of seven of the major PAH-DNA adducts was achieved by an initial PAH HPLC gradient system. The major NO{sub 2}-PAH-DNA adducts were not all separated from each other using the initial PAH HPLC gradient but were clearly separated from the PAH-DNA adducts. Amore » second NO{sub 2}-PAH HPLC gradient system was developed to separate NO{sub 2}-PAH-DNA adducts following one-dimensional TLC and HPLC analysis. HPLC profiles of NO{sub 2}-PAH-DNA adducts were compared using both adduct enhancement versions of the {sup 32}P-postlabeling assay to evaluate the use of this technique on HPLC to screen for the presence of NO{sub 2}-PAH-DNA adducts. To demonstrate the application of these separation methods to a complex mixture of DNA adducts, the chromatographic mobilities of the {sup 32}P-postlabeled DNA adduct standards (PAHs and NO{sub 2}-PAHs) were compared with those produced by a complex mixture of polycyclic organic matter (POM) extracted from diesel emission particles. The diesel-derived adducts did not elute with the identical retention time of any of the PAH or NO{sub 2}-PAH standards used in this study. HPLC analyses of the NO{sub 2}-PAH-derived adducts (butanol extracted) revealed the presence of multiple DNA adducts.« less

  7. Chemical Reaction between Boric Acid and Phosphine Indicates Boric Acid as an Antidote for Aluminium Phosphide Poisoning.

    PubMed

    Soltani, Motahareh; Shetab-Boushehri, Seyed F; Shetab-Boushehri, Seyed V

    2016-08-01

    Aluminium phosphide (AlP) is a fumigant pesticide which protects stored grains from insects and rodents. When it comes into contact with moisture, AlP releases phosphine (PH3), a highly toxic gas. No efficient antidote has been found for AlP poisoning so far and most people who are poisoned do not survive. Boric acid is a Lewis acid with an empty p orbital which accepts electrons. This study aimed to investigate the neutralisation of PH3 gas with boric acid. This study was carried out at the Baharlou Hospital, Tehran University of Medical Sciences, Tehran, Iran, between December 2013 and February 2014. The volume of released gas, rate of gas evolution and changes in pH were measured during reactions of AlP tablets with water, acidified water, saturated boric acid solution, acidified saturated boric acid solution, activated charcoal and acidified activated charcoal. Infrared spectroscopy was used to study the resulting probable adduct between PH3 and boric acid. Activated charcoal significantly reduced the volume of released gas (P <0.01). Although boric acid did not significantly reduce the volume of released gas, it significantly reduced the rate of gas evolution (P <0.01). A gaseous adduct was formed in the reaction between pure AlP and boric acid. These findings indicate that boric acid may be an efficient and non-toxic antidote for PH3 poisoning.

  8. Formation of a tyrosine adduct involved in lignin degradation by Trametopsis cervina lignin peroxidase: a novel peroxidase activation mechanism.

    PubMed

    Miki, Yuta; Pogni, Rebecca; Acebes, Sandra; Lucas, Fátima; Fernández-Fueyo, Elena; Baratto, Maria Camilla; Fernández, María I; de los Ríos, Vivian; Ruiz-Dueñas, Francisco J; Sinicropi, Adalgisa; Basosi, Riccardo; Hammel, Kenneth E; Guallar, Victor; Martínez, Angel T

    2013-06-15

    LiP (lignin peroxidase) from Trametopsis cervina has an exposed catalytic tyrosine residue (Tyr181) instead of the tryptophan conserved in other lignin-degrading peroxidases. Pristine LiP showed a lag period in VA (veratryl alcohol) oxidation. However, VA-LiP (LiP after treatment with H2O2 and VA) lacked this lag, and H2O2-LiP (H2O2-treated LiP) was inactive. MS analyses revealed that VA-LiP includes one VA molecule covalently bound to the side chain of Tyr181, whereas H2O2-LiP contains a hydroxylated Tyr181. No adduct is formed in the Y171N variant. Molecular docking showed that VA binding is favoured by sandwich π stacking with Tyr181 and Phe89. EPR spectroscopy after peroxide activation of the pre-treated LiPs showed protein radicals other than the tyrosine radical found in pristine LiP, which were assigned to a tyrosine-VA adduct radical in VA-LiP and a dihydroxyphenyalanine radical in H2O2-LiP. Both radicals are able to oxidize large low-redox-potential substrates, but H2O2-LiP is unable to oxidize high-redox-potential substrates. Transient-state kinetics showed that the tyrosine-VA adduct strongly promotes (>100-fold) substrate oxidation by compound II, the rate-limiting step in catalysis. The novel activation mechanism is involved in ligninolysis, as demonstrated using lignin model substrates. The present paper is the first report on autocatalytic modification, resulting in functional alteration, among class II peroxidases.

  9. Effect of Foot Progression Angle and Lateral Wedge Insole on a Reduction in Knee Adduction Moment.

    PubMed

    Tokunaga, Ken; Nakai, Yuki; Matsumoto, Ryo; Kiyama, Ryoji; Kawada, Masayuki; Ohwatashi, Akihiko; Fukudome, Kiyohiro; Ohshige, Tadasu; Maeda, Tetsuo

    2016-10-01

    This study evaluated the effect of foot progression angle on the reduction in knee adduction moment caused by a lateral wedged insole during walking. Twenty healthy, young volunteers walked 10 m at their comfortable velocity wearing a lateral wedged insole or control flat insole in 3 foot progression angle conditions: natural, toe-out, and toe-in. A 3-dimensional rigid link model was used to calculate the external knee adduction moment, the moment arm of ground reaction force to knee joint center, and the reduction ratio of knee adduction moment and moment arm. The result indicated that the toe-out condition and lateral wedged insole decreased the knee adduction moment in the whole stance phase. The reduction ratio of the knee adduction moment and the moment arm exhibited a close relationship. Lateral wedged insoles decreased the knee adduction moment in various foot progression angle conditions due to decrease of the moment arm of the ground reaction force. Moreover, the knee adduction moment during the toe-out gait with lateral wedged insole was the smallest due to the synergistic effect of the lateral wedged insole and foot progression angle. Lateral wedged insoles may be a valid intervention for patients with knee osteoarthritis regardless of the foot progression angle.

  10. Determination of isocyanate specific albumin-adducts in workers exposed to toluene diisocyanates.

    PubMed

    Sabbioni, Gabriele; Gu, Qi; Vanimireddy, Lakshiminiranjan Reddy

    2012-03-01

    Toluene diisocyanates (2,4-TDI and 2,6-TDI) are important intermediates in the chemical industry. Among the main damages after low levels of TDI exposure are lung sensitization and asthma. It is therefore necessary to have sensitive and specific methods to monitor isocyanate exposure of workers. Urinary metabolites or protein adducts have been used as biomarkers in workers exposed to TDI. However, with these methods it was not possible to determine if the biomarkers result from exposure to TDI or to the corresponding toluene diamines (TDA). This work presents a new procedure for the determination of isocyanate-specific albumin adducts. Isotope dilution mass spectrometry was used to measure the adducts in albumin present in workers exposed to TDI. 2,4-TDI and 2,6-TDI formed adducts with lysine: N(ϵ)-[({3-amino-4-methylphenyl}amino)carbonyl]-lysine, N(ϵ)-[({5-amino-2-methylphenyl}amino)carbonyl]-lysine, and N(ϵ)- [({3-amino-2-methylphenyl}amino)carbonyl]-lysine. In future studies, this new method can be applied to measure TDI-exposures in workers.

  11. Characterization and reactivity of a terminal nickel(III)-oxygen adduct.

    PubMed

    Pirovano, Paolo; Farquhar, Erik R; Swart, Marcel; Fitzpatrick, Anthony J; Morgan, Grace G; McDonald, Aidan R

    2015-02-23

    High-valent terminal metal-oxygen adducts are hypothesized to be the potent oxidizing reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel-oxygen adducts are scarce, meaning there is a dearth in the understanding of such oxidants. A monoanionic Ni(II)-bicarbonate complex has been found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (ca. 95%). Electronic absorption, electronic paramagnetic resonance, and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S = 1/2), square planar Ni(III)-oxygen adduct. This rare example of a high-valent terminal nickel-oxygen complex performs oxidations of organic substrates, including 2,6-di-tert-butylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Characterization and Reactivity of a Terminal Nickel(III)-Oxygen Adduct

    DOE PAGES

    Pirovano, Paolo; Farquhar, Erik R.; Swart, Marcel; ...

    2015-01-22

    Here, high-valent terminal metal–oxygen adducts are hypothesized to be the potent oxidizing reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel–oxygen adducts are scarce, meaning there is a dearth in the understanding of such oxidants. A monoanionic Ni II-bicarbonate complex has been found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (ca. 95%). Electronic absorption, electronic paramagnetic resonance, and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S=1/2), square planar Ni III–oxygen adduct. Moreover, this rare examplemore » of a high-valent terminal nickel–oxygen complex performs oxidations of organic substrates, including 2,6-di-tert-butylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively.« less

  13. [Formation of pyrrole adducts in 2,5-hexanedione-containing human serum cultured in vitro].

    PubMed

    Zhu, Ming-xing; Yin, Hong-yin; Xie, Ke-qin

    2013-08-01

    To investigate the relationship between formation of pyrrole adducts and concentration of 2, 5-hexanedione (2, 5-HD) and to provide an experimental basis for the study on toxicity of n-hexane. Serum samples were collected from normal persons and were then filtered and sterilized. They were mixed with 2,5-HD to obtain sera with final 2, 5-HD concentrations of 10, 25, 50, 100, and 200 mg/L, and blank serum was also prepared. The sera were cultured at 37°C and taken at different time points. Colorimetry was used to quantify the pyrrole adducts formed in sera, and gas chromatography was used to measure the remaining 2, 5-HD levels in sera. The content of pyrrole adducts increased as the culture proceeded and was dependent on the dose of 2, 5-HD; at the end of the experiment, the content of pyrrole adducts differed significantly across all concentration groups (P < 0.5). The concentrations of 2,5-HD decreased as the culture proceeded; at the end of the experiment, the concentrations of 2, 5-HD, from the highest to the lowest, decreased by 29%, 55%, 22%, 44%, and 40%, respectively. The decrease in 2, 5-HD had a positive correlation with the increase in pyrrole adducts, and the correlation coefficients for 200∼10 mg/L 2, 5-HD were 0.865, 0.697, 0.835, 0.823, and 0.814, respectively. The content of formed pyrrole adducts increases as the concentration of 2,5-HD rises; there is a positive correlation between the decrease in 2, 5-HD and the increase in pyrrole adducts in human serum.

  14. Gender differences in the knee adduction moment after anterior cruciate ligament reconstruction surgery.

    PubMed

    Webster, Kate E; McClelland, Jodie A; Palazzolo, Simon E; Santamaria, Luke J; Feller, Julian A

    2012-04-01

    The external knee adduction moment during gait has previously been associated with knee pain and osteoarthritis (OA). Recently, the knee adduction moment has been shown to be increased following anterior cruciate ligament (ACL) reconstruction surgery and has been suggested as a potential mechanism for the progression of early onset knee OA in this population. No study has investigated the gender differences in gait biomechanics following ACL reconstruction. To examine gender differences in gait biomechanics following ACL reconstruction surgery. 36 subjects (18 females, 18 males) who had previously undergone ACL reconstruction surgery (mean time since surgery 20 months) underwent gait analysis at a self-selected walking speed. Males and females were well matched for age, time since surgery and walking speed. Maximum flexion and adduction angles and moments were recorded during the stance phase of level walking and compared between the male and female groups. The knee adduction moment was 23% greater in the female compared with the male ACL group. No gender differences were seen in the sagittal plane. No differences were seen between the reconstructed and contralateral limb. The higher knee adduction moment seen in females compared with males may suggest an increased risk for the development of OA in ACL-reconstructed females.

  15. Different catalytic effects of a single water molecule: the gas-phase reaction of formic acid with hydroxyl radical in water vapor.

    PubMed

    Anglada, Josep M; Gonzalez, Javier

    2009-12-07

    The effect of a single water molecule on the reaction mechanism of the gas-phase reaction between formic acid and the hydroxyl radical was investigated with high-level quantum mechanical calculations using DFT-B3LYP, MP2 and CCSD(T) theoretical approaches in concert with the 6-311+G(2df,2p) and aug-cc-pVTZ basis sets. The reaction between HCOOH and HO has a very complex mechanism involving a proton-coupled electron transfer process (pcet), two hydrogen-atom transfer reactions (hat) and a double proton transfer process (dpt). The hydroxyl radical predominantly abstracts the acidic hydrogen of formic acid through a pcet mechanism. A single water molecule affects each one of these reaction mechanisms in different ways, depending on the way the water interacts. Very interesting is also the fact that our calculations predict that the participation of a single water molecule results in the abstraction of the formyl hydrogen of formic acid through a hydrogen atom transfer process (hat).

  16. Detection of benzo[a]pyrene-guanine adducts in single-stranded DNA using the α-hemolysin nanopore

    NASA Astrophysics Data System (ADS)

    Perera, Rukshan T.; Fleming, Aaron M.; Johnson, Robert P.; Burrows, Cynthia J.; White, Henry S.

    2015-02-01

    The carcinogenic precursor benzo[a]pyrene (BP), a polycyclic aromatic hydrocarbon, is released into the environment through the incomplete combustion of hydrocarbons. Metabolism of BP in the human body yields a potent alkylating agent (benzo[a]pyrene diol epoxide, BPDE) that reacts with guanine (G) in DNA to form an adduct implicated in cancer initiation. We report that the α-hemolysin (αHL) nanopore platform can be used to detect a BPDE adduct to G in synthetic oligodeoxynucleotides. Translocation of a 41-mer poly-2‧-deoxycytidine strand with a centrally located BPDE adduct to G through αHL in 1 M KCl produces a unique multi-level current signature allowing the adduct to be detected. This readily distinguishable current modulation was observed when the BPDE-adducted DNA strand translocated from either the 5‧ or 3‧ directions. This study suggests that BPDE adducts and other large aromatic biomarkers can be detected with αHL, presenting opportunities for the monitoring, quantification, and sequencing of mutagenic compounds from cellular DNA samples.

  17. B(a)P adduct levels and fertility: A cross-sectional study in a Sicilian population

    PubMed Central

    Conti, Gea Oliveri; Calogero, Aldo Eugenio; Giacone, Filippo; Fiore, Maria; Barchitta, Martina; Agodi, Antonella; Ferrante, Margherita

    2017-01-01

    Benzo(a)pyrene (BaP) is a carcinogenic polycyclic aromatic hydrocarbon for human tissues. Still today it is not fully investigated if BaP can affect negatively the male fertility through the BaP-DNA adducts production. In the present study, BaP Tetrol I-1 (TI-1) and BaP Tetrol II-2 (TII-2) BaP-DNA adducts were investigated in spermatozoa of a Sicilian male population. Semen samples from 86 volunteers in two eastern Sicilian cities (Regalbuto and Melilli) were collected. The quality of semen was evaluated in all samples according to the World Health Organization (WHO) guidelines. We analyzed BaP-DNA adducts in extracted sperm cell DNA using the modified high-performance liquid chromatography-fluorescence method to detects both Tetrols. Differences between Tetrol levels were assessed by the Wilcoxon signed-rank test and the Mann-Whitney U test, as appropriate. Correlation between semen quality parameters and Tetrol concentrations were analyzed using the Spearman's correlation coefficient. Σ(TI-1+TII-2) were significantly higher in spermatozoa of volunteers from Regalbuto. Furthermore, a greater dispersion of the levels of adducts was observed in these specimens. TI-1 adducts were higher than TII-2 in Melilli samples (95% CI) and TII-2 were higher than TI-1 in Regalbuto semen samples (95% CI). A significant inverse correlation between sperm progressive motility and both TI-1 and TII-2 adducts was observed. The present study showed that BaP negatively affects male fertility by TI-1 and TII-2 DNA-adduct production. These results suggest that DNA adducts could be used as biomarker to assess BaP exposure by air pollution. Further studies are needed to confirm if these findings could affect male fertility because of the growing impairment of this function observed in recent years. PMID:28350051

  18. Effect of Laterally Wedged Insoles on the External Knee Adduction Moment across Different Reference Frames.

    PubMed

    Yamaguchi, Satoshi; Kitamura, Masako; Ushikubo, Tomohiro; Murata, Atsushi; Akagi, Ryuichiro; Sasho, Takahisa

    2015-01-01

    Biomechanical effects of laterally wedged insoles are assessed by reduction in the knee adduction moment. However, the degree of reduction may vary depending on the reference frame with which it is calculated. The purpose of this study was to clarify the effect of reference frame on the reduction in the knee adduction moment by laterally wedged insoles. Twenty-nine healthy participants performed gait trials with a laterally wedged insole and with a flat insole as a control. The knee adduction moment, including the first and second peaks and the angular impulse, were calculated using four different reference frames: the femoral frame, tibial frame, laboratory frame and the Joint Coordinate System. There were significant effects of reference frame on the knee adduction moment first and second peaks (P < 0.001 for both variables), while the effect was not significant for the angular impulse (P = 0.84). No significant interaction between the gait condition and reference frame was found in either of the knee adduction moment variables (P = 0.99 for all variables), indicating that the effects of laterally wedged insole on the knee adduction moments were similar across the four reference frames. On the other hand, the average percent changes ranged from 9% to 16% for the first peak, from 16% to 18% for the second peak and from 17% to 21% for the angular impulse when using the different reference frames. The effects of laterally wedged insole on the reduction in the knee adduction moment were similar across the reference frames. On the other hand, Researchers need to recognize that when the percent change was used as the parameter of the efficacy of laterally wedged insole, the choice of reference frame may influence the interpretation of how laterally wedged insoles affect the knee adduction moment.

  19. Chemical and electrochemical oxidation of small organic molecules

    NASA Astrophysics Data System (ADS)

    Smart, Marshall C.

    Direct oxidation fuel cells using proton-exchange membrane electrolytes have long been recognized as being an attractive mode of power generation. The current work addresses the electro-oxidation characteristics of a number of potential fuels on Pt-based electrodes which can be used in direct oxidation fuel cells, including hydrocarbons and oxygenated molecules, such as alcohols, formates, ethers, and acetals. Promising alternative fuels which were identified, such as trimethoxymethane and dimethoxymethane, were then investigated in liquid-feed PEM-based fuel cells. In addition to investigating the nature of the anodic electro-oxidation of organic fuels, effort was also devoted to developing novel polymer electrolyte membranes which have low permeability to organic molecules, such as methanol. This research was initiated with the expectation of reducing the extent of fuel crossover from the anode to the cathode in the liquid-feed design fuel cell which results in lower fuel efficiency and performance. Other work involving efforts to improve the performance of direct oxidation fuel cell includes research focused upon improving the kinetics of oxygen reduction. There is continued interest in the identification of new, safe, non-toxic, and inexpensive reagents which can be used in the oxidation of organic compounds. Urea-hydrogen peroxide (UHP), a hydrogen bonded adduct, has been shown to serve as a valuable source of hydrogen peroxide in a range of reactions. UHP has been shown to be ideal for the monohydroxylation of aromatics, including toluene, ethylbenzene, p-xylene, m-xylene, and mesitylene, as well as benzene, in the presence of trifluoromethanesulfonic acid. It was also found that aniline was converted to a mixture containing primarily azobenzene, azoxybenzene and nitrobenzene when reacted with UHP in glacial acetic acid. A number of aniline derivatives have been investigated and it was observed that the corresponding azoxybenzene derivatives could be

  20. Formaldehyde activation of mitoxantrone yields CpG and CpA specific DNA adducts

    PubMed Central

    Parker, Belinda S.; Cutts, Suzanne M.; Cullinane, Carleen; Phillips, Don R.

    2000-01-01

    Recently we have found that mitoxantrone, like Adriamycin, can be activated by formaldehyde and subsequently form adducts which stabilise double-stranded DNA in vitro. This activation by formaldehyde may be biologically relevant since formaldehyde levels are elevated in those tumours in which mitoxantrone is most cytotoxic. In vitro transcription analysis revealed that these adducts block the progression of RNA polymerase during transcription and cause truncated RNA transcripts. There was an absolute requirement for both mitoxantrone and formaldehyde in transcriptional blockage formation and the activated complex was found to exhibit site specificity, with blockage occurring prior to CpG and CpA sites in the DNA (non-template strand). The stability of the adduct at 37°C was site dependent. The half-lives ranged from 45 min to ~5 h and this was dependent on both the central 2 bp blockage site as well as flanking sequences. The CpG specificity of mitoxantrone adduct sites was also confirmed independently by a λ exonuclease digestion assay. PMID:10648792

  1. Noninvasive penetration of 5 nm hyaluronic acid molecules across the epidermal barrier (in vitro) and its interaction with human skin cells.

    PubMed

    Nashchekina, Yu A; Raydan, M

    2018-02-01

    Hyaluronic acid represents one of the major components of the extracellular environment. The main challenge remains in the ability to deliver these molecules noninvasively across the skin barrier, which can be overcome by the reduction in size to an extent that allows these molecules to pass across the skin barrier. The aim of this study was to measure the penetration and bioavailability of low molecular weight hyaluronic acid to cross an epidermal barrier model. Determining the quantity of hyaluronic acid in the test solutions was carried with method of photocolorimetry analysis. Investigation of the interaction of cells with LMWHA was studied with a confocal microscope. The study showed that LMWHA is able to cross the epidermis. Most effective penetration level is during the first 6 hours reaching 75%, and then the concentration started to decline and reached the equilibrium state within the following 2 hours. Confocal laser microscopy demonstrated different distribution and behavior of these molecules among the keratinocytes and fibroblasts. Reducing the size of hyaluronic acid to 5 nm enhance their transport across the epidermal layer. The concentration of hyaluronic acid molecules was higher on the fibroblast surface in comparison to their extracellular environment. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bin, E-mail: binli@unmc.edu; Eyer, Peter, E-mail: peter.eyer@lrz.uni-muenchen.de; Eddleston, Michael, E-mail: M.Eddleston@ed.ac.uk

    2013-06-15

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasmamore » levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates.« less

  3. Acid and alkali effects on the decomposition of HMX molecule: a computational study.

    PubMed

    Zhang, Chaoyang; Li, Yuzhen; Xiong, Ying; Wang, Xiaolin; Zhou, Mingfei

    2011-11-03

    The stored and wasted explosives are usually in an acid or alkali environment, leading to the importance of exploring the acid and alkali effects on the decomposition mechanism of explosives. The acid and alkali effects on the decomposition of HMX molecule in gaseous state and in aqueous solution at 298 K are studied using quantum chemistry and molecular force field calculations. The results show that both H(+) and OH(-) make the decomposition in gaseous state energetically favorable. However, the effect of H(+) is much different from that of OH(-) in aqueous solution: OH(-) can accelerate the decomposition but H(+) cannot. The difference is mainly caused by the large aqueous solvation energy difference between H(+) and OH(-). The results confirm that the dissociation of HMX is energetically favored only in the base solutions, in good agreement with previous HMX base hydrolysis experimental observations. The different acid and alkali effects on the HMX decomposition are dominated by the large aqueous solvation energy difference between H(+) and OH(-).

  4. Assessment of Dimeric Metal-Glycan Adducts via Isotopic Labeling and Ion Mobility-Mass Spectrometry.

    PubMed

    Morrison, Kelsey A; Bendiak, Brad K; Clowers, Brian H

    2018-05-25

    Adduction of multivalent metal ions to glycans has been shown in recent years to produce altered tandem mass spectra with collision-induced dissociation, electron transfer techniques, and photon-based fragmentation approaches. However, these approaches assume the presence of a well-characterized precursor ion population and do not fully account for the possibility of multimeric species for select glycan-metal complexes. With the use of ion mobility separations prior to mass analysis, doubly charged dimers are not necessarily problematic for tandem MS experiments given that monomer and dimer drift times are sufficiently different. However, multistage mass spectrometric experiments performed on glycans adducted to multivalent metals without mobility separation can yield chimeric fragmentation spectra that are essentially a superposition of the fragments from both the monomeric and dimeric adducts. For homodimeric adducts, where the dimer contains two of the same glycan species, this is less of a concern but if heterodimers can form, there exists the potential for erroneous and misleading fragment ions to appear if a heterodimer containing two different isomers is fragmented along with a targeted monomer. We present an assessment of heterodimer formation between a series of six tetrasaccharides, of which three are isomers, adducted with cobalt(II) and a monodeuterated tetrasaccharide. Using ion mobility separations prior to single-stage and tandem mass analysis, the data shown demonstrate that heterodimeric species can indeed form, and that ion mobility separations are highly necessary prior to using tandem techniques on metal-glycan adducts. Graphical Abstract ᅟ.

  5. Assessment of Dimeric Metal-Glycan Adducts via Isotopic Labeling and Ion Mobility-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Morrison, Kelsey A.; Bendiak, Brad K.; Clowers, Brian H.

    2018-05-01

    Adduction of multivalent metal ions to glycans has been shown in recent years to produce altered tandem mass spectra with collision-induced dissociation, electron transfer techniques, and photon-based fragmentation approaches. However, these approaches assume the presence of a well-characterized precursor ion population and do not fully account for the possibility of multimeric species for select glycan-metal complexes. With the use of ion mobility separations prior to mass analysis, doubly charged dimers are not necessarily problematic for tandem MS experiments given that monomer and dimer drift times are sufficiently different. However, multistage mass spectrometric experiments performed on glycans adducted to multivalent metals without mobility separation can yield chimeric fragmentation spectra that are essentially a superposition of the fragments from both the monomeric and dimeric adducts. For homodimeric adducts, where the dimer contains two of the same glycan species, this is less of a concern but if heterodimers can form, there exists the potential for erroneous and misleading fragment ions to appear if a heterodimer containing two different isomers is fragmented along with a targeted monomer. We present an assessment of heterodimer formation between a series of six tetrasaccharides, of which three are isomers, adducted with cobalt(II) and a monodeuterated tetrasaccharide. Using ion mobility separations prior to single-stage and tandem mass analysis, the data shown demonstrate that heterodimeric species can indeed form, and that ion mobility separations are highly necessary prior to using tandem techniques on metal-glycan adducts.

  6. Redox proteomic profiling of neuroketal-adducted proteins in human brain: Regional vulnerability at middle age increases in the elderly.

    PubMed

    Domínguez, Mayelín; de Oliveira, Eliandre; Odena, María Antonia; Portero, Manuel; Pamplona, Reinald; Ferrer, Isidro

    2016-06-01

    Protein lipoxidation was assessed in the parietal cortex (PC), frontal cortex (FC), and cingulate gyrus (CG) in middle-aged and old-aged individuals with no clinical manifestations of cognitive impairment, in order to increase understanding of regional brain vulnerability to oxidative damage during aging. Twenty-five lipoxidized proteins were identified in all the three regions although with regional specificities, by using redox proteomics to detect target proteins of neuroketals (NKT) adduction. The number of cases with NKT-adducted proteins was higher in old-aged individuals but most oxidized proteins were already present in middle-aged individuals. Differences in vulnerability to oxidation were dependent on the sub-cellular localization, secondary structure, and external exposition of certain amino acids. Lipoxidized proteins included those involved in energy metabolism, cytoskeleton, proteostasis, neurotransmission and O2/CO2, and heme metabolism. Total NKT and soluble oligomer levels were estimated employing slot-blot, and these were compared between age groups. Oligomers increased with age in PC and FC; NKT significantly increased with age in FC, whereas total NKT and oligomer levels were not modified in CG, thus highlighting differences in brain regional vulnerability with age. Oligomers significantly correlated with NKT levels in the three cortical regions, suggesting that protein NKT adduction parallels soluble oligomer formation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Exposure to meat-derived carcinogens and bulky DNA adduct levels in normal-appearing colon mucosa.

    PubMed

    Ho, Vikki; Brunetti, Vanessa; Peacock, Sarah; Massey, Thomas E; Godschalk, Roger W L; van Schooten, Frederik J; Ashbury, Janet E; Vanner, Stephen J; King, Will D

    2017-09-01

    Meat consumption is a risk factor for colorectal cancer. This research investigated the relationship between meat-derived carcinogen exposure and bulky DNA adduct levels, a biomarker of DNA damage, in colon mucosa. Least squares regression was used to examine the relationship between meat-derived carcinogen exposure (PhIP and meat mutagenicity) and bulky DNA adduct levels in normal-appearing colon tissue measured using 32 P-postlabelling among 202 patients undergoing a screening colonoscopy. Gene-diet interactions between carcinogen exposure and genetic factors relevant to biotransformation and DNA repair were also examined. Genotyping was conducting using the MassARRAY ® iPLEX ® Gold SNP Genotyping assay. PhIP and higher meat mutagenicity exposures were not associated with levels of bulky DNA adducts in colon mucosa. The XPC polymorphism (rs2228001) was found to associate with bulky DNA adduct levels, whereby genotypes conferring lower DNA repair activity were associated with higher DNA adduct levels than the normal activity genotype. Among individuals with genotypes associated with lower DNA repair (XPD, rs13181 and rs1799179) or detoxification activity (GSTP1, rs1695), higher PhIP or meat mutagenicity exposures were associated with higher DNA adduct levels. Significant interactions between the XPC polymorphism (rs2228000) and both dietary PhIP and meat mutagenicity on DNA adduct levels was observed, but associations were inconsistent with the a priori hypothesized direction of effect. Exposure to meat-derived carcinogens may be associated with increased DNA damage occurring directly in the colon among genetically susceptible individuals. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Analyses of (1-chloroethenyl)oxirane headspace and hemoglobin N-valine adducts in erythrocytes indicate selective detoxification of (1-chloroethenyl)oxirane enantiomers.

    PubMed

    Hurst, Harrell E; Ali, Md Yeakub

    2007-03-20

    Chloroprene (2-chloro-1,3-butadiene, CAS 126-99-8, CP) is a colorless volatile liquid used in manufacture of polychloroprene, a synthetic rubber polymer. National Toxicology Program inhalation studies of CP in rats and mice gave clear evidence of carcinogenic activity. CP is metabolized by CYP2E1 to electrophilic epoxides, including R- and S-(1-chloroethenyl)oxirane (CEO), which form adducts with nucleic acids and other nucleophiles including glutathione and hemoglobin. As detection of these epoxide metabolites in vivo is technically challenging, measurements of CEO-Hb adducts may provide biomarkers of exposure to bioactivated metabolites of CP. The present studies involved exposure of C57BL/6 mouse erythrocytes (RBC) in vitro to pure enantiomers of CEO. Headspace analysis of CEO using Cyclodex-B capillary GC/MS with selected ion monitoring enabled separation, specific detection, and quantification of CEO enantiomers as reactions proceeded in vitro with RBC. These analyses indicated that R-CEO was much more persistent when incubated in vitro with RBC, while S-CEO disappeared rapidly. After periods of exposure of RBC to various concentrations of R- or S-CEO, erythrocytes were lysed and globin isolated. Covalent adducts, formed by reaction of CEO with N-terminal valine in Hb, were analyzed following Edman cleavage and trimethylsilylation. SIM-GC/MS analyses using a 5%-phenyl-dimethylsiloxane capillary column enabled quantification of CEO-Hb adducts. These analyses produced two chromatographic peaks of CEO-valine adduct derivatives, which were tentatively identified from mass spectra, reaction, and abundance data to be 1-(3-chloro-2-trimethylsilyloxybut-3-en-1-yl)-5-isopropyl-3-phenyl-2-thiohydantoin and 1-[2-chloro-1-(trimethylsilyloxymethyl)prop-2-en-1-yl]-5-isopropyl-3-phenyl-2-thiohydantoin. Analyses quantified significantly greater levels of adducts formed from R-CEO than from S-CEO. Studies involving pretreatment of RBC with glutathione-depleting diethyl maleate

  9. Quantification of tamoxifen DNA adducts using on-line sample preparation and HPLC-electrospray ionization tandem mass spectrometry.

    PubMed

    Gamboa da Costa, Gonçalo; Marques, M Matilde; Beland, Frederick A; Freeman, James P; Churchwell, Mona I; Doerge, Daniel R

    2003-03-01

    The nonsteroidal antiestrogen tamoxifen is used as an adjuvant chemotherapeutic agent for the treatment of all stages of hormone-dependent breast cancer and more recently as a chemopreventive agent in women with elevated risk of developing the disease. While clearly beneficial for the treatment of breast cancer, tamoxifen has been reported to increase the risk of endometrial cancer in women. Furthermore, it has been shown to be hepatocarcinogenic in rats. Tamoxifen is clearly genotoxic in rat liver, as indicated by the formation of DNA adducts; the occurrence of tamoxifen DNA adducts in human endometrial tissue is more controversial. The detection and quantitation of tamoxifen DNA adducts have relied primarily upon (32)P-postlabeling, with other techniques, such as immunoassays and accelerator mass spectrometry, being used to a much lesser extent. To expand the range of available analytical methodologies for quantifying tamoxifen DNA adducts, we have developed an assay using on-line sample preparation, coupled with HPLC and electrospray ionization tandem mass spectrometry (ES-MS/MS). alpha-Acetoxytamoxifen was reacted with salmon testis DNA at ratios between 0.1 ng and 1 mg alpha-acetoxytamoxifen per mg DNA. After enzymatic hydrolysis to nucleosides, the most highly modified DNA samples were analyzed by HPLC-UV, which indicated the presence of two adduct peaks in approximately a 1:4 ratio. The major adduct was isolated, rigorously characterized as (E)-alpha-(deoxyguanosin-N(2)-yl)tamoxifen, and quantified on the basis of its molar extinction coefficient. A similar reaction was conducted with [N(CD(3))(2)]-alpha-acetoxytamoxifen to prepare a deuterated adduct that could serve as an internal standard for ES-MS/MS. The limit of detection for the HPLC-ES-MS/MS method was approximately 5 adducts/10(9) nucleotides, with an intra- and interassay precision of 3% relative standard deviation. The method was validated over the range of 8-1 520,000 adducts/10(8) nucleotides

  10. Validation of a food frequency questionnaire measurement of dietary acrylamide intake using hemoglobin adducts of acrylamide and glycidamide

    PubMed Central

    Wilson, Kathryn M.; Vesper, Hubert W.; Tocco, Paula; Sampson, Laura; Rosén, Johan; Hellenäs, Karl-Erik; Törnqvist, Margareta; Willett, Walter C.

    2011-01-01

    Objective Acrylamide, a probable human carcinogen, is formed during high-heat cooking of many common foods. The validity of food frequency questionnaire (FFQ) measures of acrylamide intake has not been established. We assessed the validity of acrylamide intake calculated from an FFQ using a biomarker of acrylamide exposure. Methods We calculated acrylamide intake from an FFQ in the Nurses' Health Study II. We measured hemoglobin adducts of acrylamide and its metabolite, glycidamide, in a random sample of 296 women. Correlation and regression analyses were used to assess the relationship between acrylamide intake and adducts. Results The correlation between acrylamide intake and the sum of acrylamide and glycidamide adducts was 0.31 (95% CI: 0.20 – 0.41), adjusted for laboratory batch, energy intake, and age. Further adjustment for BMI, alcohol intake, and correction for random within-person measurement error in adducts gave a correlation of 0.34 (CI: 0.23 – 0.45). The intraclass correlation coefficient for the sum of adducts was 0.77 in blood samples collected 1 to 3 years apart in a subset of 45 women. Intake of several foods significantly predicted adducts in multiple regression. Conclusions Acrylamide intake and hemoglobin adducts of acrylamide and glycidamide were moderately correlated. Within-person consistency in adducts was high over time. PMID:18855107

  11. DNA adducts of ethylene dibromide: Aspects of formation and mutagenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cmarik, J.L.

    1,2-Dibromoethane (ethylene dibromide, EDB), a potential human carcinogen, undergoes bioactivation by the pathway of glutathione (GSH) conjugation, which generates a reactive intermediate capable of alkylating DNA. The major DNA adduct formed is S-[2-(N[sup 7]-guanyl)ethyl]GSH. This dissertation examined the bioactivation of EDB and the formation of DNA adducts. The selectivity of purified rat and human GSH S-transferases for EDB was examined in vitro. An assay was developed to measure the formation of S,S[prime]-ethylene-bis(GSH). The [alpha] class of the GSH S-transferases was responsible for the majority of EDB-GSH conjugation with both the rat and human enzymes. Human tissue samples for a victimmore » of EDB poisoning were analyzed for S-[2-(N[sup 7]-guanyl)ethyl]GSH utilizing electrochemical detection. No adducts were detected in samples of brain, heart, or kidney. The pattern of alkylation of guanines in fragments of plasmid pBR322 DNA by S-(2-chloroethyl)GSH and related compounds was determined. Alkylation varied approximately ten-fold in intensity and was strongest in runs of guanines. Few differences were observed in the alkylation patterns generated by the different compounds tested. The spectrum of mutations caused by S-(2-chloroethyl)GSH was determined using an M13 bacteriophage forward mutation assay. The majority of mutations (70%) were G:C to A:T transitions. Participation of the N[sup 7]-guanyl adduct in the mutagenic process is strongly implicated. The sequence selectivity of alkylation in the region of M13 sequenced in the mutation assay was determined. Comparison of the sequence selectivity with the mutation spectrum revealed no obligate relationship between the extent of adduct formation and the number of mutations which resulted at different sites. Sequence context appears to exert a strong influence on the processing of lesions. These studies strongly implicate S-[2-(N[sup 7]-guanyl)-ethyl]GSH as a mutagenic lesion formed by EDB.« less

  12. Inactivation of a class A and a class C β-lactamase by 6β-(hydroxymethyl)penicillanic acid sulfone

    PubMed Central

    Papp-Wallace, Krisztina M.; Bethel, Christopher R.; Gootz, Thomas D.; Shang, Wenchi; Stroh, Justin; Lau, William; McLeod, Dale; Price, Loren; Marfat, Anthony; Distler, Anne; Drawz, Sarah M.; Chen, Hansong; Harry, Emily; Nottingham, Micheal; Carey, Paul R.; Buynak, John D.; Bonomo, Robert A.

    2012-01-01

    β-Lactamase inhibitors (clavulanic acid, sulbactam, and tazobactam) contribute significantly to the longevity of the β-lactam antibiotics used to treat serious infections. In the quest to design more potent compounds and to understand the mechanism of action of known inhibitors, 6β-(hydroxymethyl)penicillanic acid sulfone (6β-HM-sulfone) was tested against isolates expressing the class A TEM-1 β-lactamase and a clinically important variant of the AmpC cephalosporinase of Pseudomonas aeruginosa, PDC-3. The addition of the 6β-HM-sulfone inhibitor to ampicillin was highly effective. 6β-HM-sulfone inhibited TEM-1 with an IC50 of 12 ± 2 nM and PDC-3 with an IC50 of 180 ± 36 nM, and displayed lower partition ratios than commercial inhibitors, with partition ratios (kcat/kinact) equal to 174 for TEM-1 and 4 for PDC-3. Measured for 20 h, 6β-HM-sulfone demonstrated rapid, first-order inactivation kinetics with the extent of inactivation being related to the concentration of inhibitor for both TEM-1 and PDC-3. Using mass spectrometry to gain insight into the intermediates of inactivation of this inhibitor, 6β-HM-sulfone was found to form a major adduct of +247 ± 5 Da with TEM-1 and +245 ± 5 Da with PDC-3, suggesting that the covalently bound, hydrolytically stabilized acyl-enzyme has lost a molecule of water (H–O–H). Minor adducts of +88 ± 5 Da with TEM-1 and +85 ± 5 Da with PDC-3 revealed that fragmentation of the covalent adduct can result but appeared to occur slowly with both enzymes. 6β-HM-sulfone is an effective and versatile β-lactamase inhibitor of representative class A and C enzymes. PMID:22155308

  13. 2-Nitrosoamino-3-methylimidazo[4,5-f]quinoline activated by the inflammatory response forms nucleotide adducts.

    PubMed

    Lakshmi, Vijaya M; Schut, Herman A J; Zenser, Terry V

    2005-11-01

    Heterocyclic amines and inflammation have been implicated in the etiology of colon cancer. We have recently demonstrated that during autoxidation of the inflammatory mediator nitric oxide 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) undergoes nitrosation to form 2-nitrosoamino-3-methylimidazo[4,5-f]quinoline (N-NO-IQ). This study evaluates the genotoxicity of N-NO-IQ and compares the adducts it forms to those of 2-hydroxyamino-3-methylimidazo[4,5-f]quinoline (N-OH-IQ). N-NO-IQ was incubated with 2'-deoxyguanosine 3'-monophosphate (dGp) under a variety of inflammatory conditions. 32P-Postlabeling demonstrated the presence of multiple adducts. Incubation of N-OH-IQ with dGp at pH 7.4, 5.5, or 2.0 resulted in the formation of a single major adduct, N-(deoxyguanosin-8-yl)-IQ (dG-C8-IQ). Using a combination of 32P-postlabeling, HPLC, and nuclease P1 treatment, N-NO-IQ was shown to produce dG-C8-IQ under several different conditions. HOCl oxidation of N-NO-IQ increased dG-C8-IQ formation, and this was further increased as pH decreased from 7.4 to 5.5. Oxidation of N-NO-IQ formed a new adduct, adduct 2, while in the absence of oxidants adduct m was the major adduct. Adducts 2 and m were not formed by N-OH-IQ and not further identified. The results demonstrate that N-NO-IQ forms N-(deoxyguanosin-8-yl)-IQ, is genotoxic, is activated by conditions that mediate inflammatory responses, and is a possible cancer risk factor for individuals with colitis, inflammation of the colon.

  14. DBDA as a Novel Matrix for the Analyses of Small Molecules and Quantification of Fatty Acids by Negative Ion MALDI-TOF MS

    NASA Astrophysics Data System (ADS)

    Ling, Ling; Li, Ying; Wang, Sheng; Guo, Liming; Xiao, Chunsheng; Chen, Xuesi; Guo, Xinhua

    2018-01-01

    Matrix interference ions in low mass range has always been a concern when using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze small molecules (<500 Da). In this work, a novel matrix, N1,N4-dibenzylidenebenzene-1,4-diamine (DBDA) was synthesized for the analyses of small molecules by negative ion MALDI-TOF MS. Notably, only neat ions ([M-H]-) of fatty acids without matrix interference appeared in the mass spectra and the limit of detection (LOD) reached 0.3 fmol. DBDA also has great performance towards other small molecules such as amino acids, peptides, and nucleotide. Furthermore, with this novel matrix, the free fatty acids in serum were quantitatively analyzed based on the correlation curves with correlation coefficient of 0.99. In addition, UV-Vis experiments and molecular orbital calculations were performed to explore mechanism about DBDA used as matrix in the negative ion mode. The present work shows that the DBDA matrix is a highly sensitive matrix with few interference ions for analysis of small molecules. Meanwhile, DBDA is able to precisely quantify the fatty acids in real biological samples. [Figure not available: see fulltext.

  15. DBDA as a Novel Matrix for the Analyses of Small Molecules and Quantification of Fatty Acids by Negative Ion MALDI-TOF MS.

    PubMed

    Ling, Ling; Li, Ying; Wang, Sheng; Guo, Liming; Xiao, Chunsheng; Chen, Xuesi; Guo, Xinhua

    2018-04-01

    Matrix interference ions in low mass range has always been a concern when using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze small molecules (<500 Da). In this work, a novel matrix, N1,N4-dibenzylidenebenzene-1,4-diamine (DBDA) was synthesized for the analyses of small molecules by negative ion MALDI-TOF MS. Notably, only neat ions ([M-H] - ) of fatty acids without matrix interference appeared in the mass spectra and the limit of detection (LOD) reached 0.3 fmol. DBDA also has great performance towards other small molecules such as amino acids, peptides, and nucleotide. Furthermore, with this novel matrix, the free fatty acids in serum were quantitatively analyzed based on the correlation curves with correlation coefficient of 0.99. In addition, UV-Vis experiments and molecular orbital calculations were performed to explore mechanism about DBDA used as matrix in the negative ion mode. The present work shows that the DBDA matrix is a highly sensitive matrix with few interference ions for analysis of small molecules. Meanwhile, DBDA is able to precisely quantify the fatty acids in real biological samples. Graphical Abstract ᅟ.

  16. DNA Adducts from Anticancer Drugs as Candidate Predictive Markers for Precision Medicine

    PubMed Central

    2016-01-01

    Biomarker-driven drug selection plays a central role in cancer drug discovery and development, and in diagnostic strategies to improve the use of traditional chemotherapeutic drugs. DNA-modifying anticancer drugs are still used as first line medication, but drawbacks such as resistance and side effects remain an issue. Monitoring the formation and level of DNA modifications induced by anticancer drugs is a potential strategy for stratifying patients and predicting drug efficacy. In this perspective, preclinical and clinical data concerning the relationship between drug-induced DNA adducts and biological response for platinum drugs and combination therapies, nitrogen mustards and half-mustards, hypoxia-activated drugs, reductase-activated drugs, and minor groove binding agents are presented and discussed. Aspects including measurement strategies, identification of adducts, and biological factors that influence the predictive relationship between DNA modification and biological response are addressed. A positive correlation between DNA adduct levels and response was observed for the majority of the studies, demonstrating the high potential of using DNA adducts from anticancer drugs as mechanism-based biomarkers of susceptibility, especially as bioanalysis approaches with higher sensitivity and throughput emerge. PMID:27936622

  17. Label-free proteomics assisted by affinity enrichment for elucidating the chemical reactivity of the liver mitochondrial proteome toward adduction by the lipid electrophile 4-hydroxy-2-nonenal (HNE)

    NASA Astrophysics Data System (ADS)

    Maier, Claudia

    2016-03-01

    The analysis of oxidative stress-induced post-translational modifications remains challenging due to the chemical diversity of these modifications, the possibility of the presence of positional isomers and the low stoichiometry of the modified proteins present in a cell or tissue proteome. Alcoholic liver disease (ALD) is a multifactorial disease in which mitochondrial dysfunction and oxidative stress have been identified as being critically involved in the progression of the disease from steatosis to cirrhosis. Ethanol metabolism leads to increased levels of reactive oxygen species (ROS), glutathione depletion and lipid peroxidation. Posttranslational modification of proteins by electrophilic products of lipid peroxidation has been associated with governing redox-associated signaling mechanisms, but also as contributing to protein dysfunction leading to organelle and liver injury. In particular the prototypical α,β-unsaturated aldehyde, 4-hydroxy-2-nonenal (HNE), has been extensively studied as marker of increased oxidative stress in hepatocytes. In this study, we combined a LC-MS label-free quantification method and affinity enrichment to assess the dose-dependent insult by HNE on the proteome of rat liver mitochondria. We used a carbonyl-selective probe, the ARP probe, to label HNE-protein adducts and to perform affinity capture at the protein level. Using LC-MS to obtain protein abundance estimates, a list of protein targets was obtained with increasing concentration of HNE used in the exposure studies. In parallel, we performed affinity capture at the peptide level to acquire site-specific information. Examining the concentration-dependence of the protein modifications, we observed distinct reactivity profiles for HNE-protein adduction. Pathway analysis indicated that proteins associated with metabolic processes, including amino acid, fatty acid and glyoxylate and dicarboxylate metabolism, bile acid synthesis and TCA cycle, showed enhanced reactivity to HNE

  18. Characterization of Nitrogen Mustard Formamidopyrimidine Adduct Formation of bis-(2-Chloroethyl)ethylamine with Calf Thymus DNA and a Human Mammary Cancer Cell Line

    PubMed Central

    Gruppi, Francesca; Hejazi, Leila; Christov, Plamen P.; Krishnamachari, Sesha; Turesky, Robert J.; Rizzo, Carmelo J.

    2015-01-01

    A robust, quantitative ultraperformance liquid chromatography ion trap multistage scanning mass spectrometric (UPLC/MS3) method was established to characterize and measure five deoxyguanosine (dG) adducts formed by reaction of the chemotherapeutic nitrogen mustard (NM) bis-(2-chloroethyl)ethylamine with calf thymus (CT) DNA. In addition to the known N7-guanine (NM-G) adduct and its crosslink (G-NM-G), the ring-opened formamidopyrimidine (FapyG) mono-adduct (NM-FapyG) and cross-links in which one (FapyG-NM-G) or both (FapyG-NM-FapyG) guanines underwent ring-opening to FapyG units were identified. Authentic standards of all adducts were synthesized and characterized by NMR and mass spectrometry. These adducts were quantified in CT DNA treated with NM (1 μM) as their deglycosylated bases. A two-stage neutral thermal hydrolysis was developed to mitigate the artifactual formation of ring-opened FapyG adducts involving hydrolysis of the cationic adduct at 37 °C, followed by hydrolysis of the FapyG adducts at 95 °C. The limit of quantification values ranged between 0.3 and 1.6 adducts per 107 DNA bases, when the equivalent of 5 μg DNA hydrolysate was assayed on column. The principal adduct formed was the G-NM-G cross-link, followed by the NM-G mono-adduct; the FapyG-NM-FapyG adduct was at the limit of detection. The NM-FapyG adducts formed in CT DNA at a level of ~20% that of the NM-G adduct. NM-FapyG has not been previously quanitified and the FapyG-NM-G and FapyG-NM-FapyG adducts have not be previously characterized. Our validated analytical method was then applied to measure DNA adduct formation in the MDA-MB-231 mammary tumor cell line exposed to NM (100 μM) for 24 h. The major adduct formed was NM-G (970 adducts per 107 bases), followed by G-NM-G (240 adducts per 107 bases) and NM-FapyG (180 adducts per 107 bases), and lastly the FapyG-NM-G cross-link adduct (6.0 adducts per 107 bases). These lesions are expected to contribute to the NM-mediated toxicity and

  19. Nitroreduction and formation of hemoglobin adducts in rats with a human intestinal microflora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheepers, P.T.J.; Straetemans, M.M.E.; Koopman, J.P.

    1994-10-01

    In the covalent binding of nitroarenes to macromolecules, nitroreduction is an important step. The intestinal microflora represents an enormous potential of bacterial nitroreductase activity. As a consequence, the in vivo nitroreduction of orally administerednitroarenes is primarily located in the intestine. In this study, we have investigated the nitroreduction of 2-nitrofluorene (2-NF) by a human microflora in female Wistar rats. Germ-free (FG) rats were equipped with a bacterial flora derived from human feces. Nontreated GF rats and GF animals equipped with a conventional rat flora were used as controls. The composition of the human and the conventional microflora isolated from themore » rats were consistent with the microflora of the administered feces. In the rats receiving only sunflower seed oil, no adducts were detected. The animals equipped with a human or rat microflora that received 2-aminofluorene (2-AF) formed 2-AF hemoglobin (Hb)-adducts at average levels mean {+-} 0.003 and 0.043 {+-} 0.010 {mu}mole/g Hb, respectively. In the FG rats, an adduct level of 0.57 {+-} 0.09 was determined after 2-AF administration and non adducts were detected after 2-NF administration. The results show that nitroreduction by an acquired human intestinal microflora and subsequent adduct formation can be studied in the rate in vivo. 21 refs., 3 tabs.« less

  20. Correlation between levels of 2, 5-hexanedione and pyrrole adducts in tissues of rats exposure to n-hexane for 5-days.

    PubMed

    Yin, Hongyin; Guo, Ying; Zeng, Tao; Zhao, Xiulan; Xie, Keqin

    2013-01-01

    The formation of pyrrole adducts might be responsible for peripheral nerve injury caused by n-hexane. The internal dose of pyrrole adducts would supply more information for the neurotoxicity of n-hexane. The current study was designed to investigate the tissue distributions of 2, 5-hexanedione (2,5-HD) and pyrrole adducts in rats exposed to n-hexane, and analyze the correlation between pyrrole adducts and 2,5-HD in tissues. Male Wistar rats were given daily dose of 500,1000, 2000, 4000 mg/kg bw n-hexane by gavage for 5 days. The rats were sacrificed 24 hours after the last administration. The levels of 2, 5-hexanedione and pyrrole adducts in tissues were measured by gas chromatography and Ehrlich's reagent, respectively. The correlations between 2, 5-hexanedione and pyrrole adducts were analyzed by linear regression. Dose-dependent effects were observed between the dosage of n-hexane and 2, 5-hexanedione, and pyrrole adducts in tissues. The highest level of 2, 5-hexanedione was found in urine and the lowest in sciatic nerve, while the highest level of pyrrole adducts was seen in liver and the lowest in serum. There were significant correlations among the free 2, 5-hexanedione, total 2, 5-hexanedione and pyrrole adducts within the same tissues. Pyrrole adducts in serum showed the most significant correlation with free 2, 5-hexanedione or pyrrole adducts in tissues. The findings suggested that pyrrole adducts in serum might be a better indicator for the internal dose of free 2, 5-hexanedione and pyrrole adducts in tissues.

  1. Small molecule inhibitors of human adipocyte fatty acid binding protein (FABP4).

    PubMed

    Zhang, Mingming; Zhu, Weiliang; Li, Yingxia

    2014-06-01

    Fatty acid binding protein 4 (FABP4) is expressed in adipocytes and macrophages, and modulates inflammatory and metabolic response. Studies in FABP4-deficient mice have shown that this lipid carrier has a significant role within the field of metabolic syndrome, inflammation and atherosclerosis; thus, its inhibition may open up new opportunities to develop novel therapeutic agents. A number of potent small molecule inhibitors of FABP4 have been identified and found to have the potential to prevent and treat metabolic diseases such as type-2 diabetes and atherosclerosis. Due to the ubiquity of endogenous fatty acids and the high intracellular concentration of FABP4, the inhibitors need to have significantly greater intrinsic potency than endogenous fatty acids. Furthermore, heart-type FABP (FABP3), which is expressed in both heart and skeletal muscle, is involved in active fatty acid metabolism where it transports fatty acids from the cell membrane to mitochondria for oxidation. However, FABP3 shares high overall sequence identity and similar 3D structure with FABP4, but has a potential problem with selectivity. In this review, we would like to analyze the main inhibitors that have appeared in the literature in the last decade, focusing on chemical structures, biological properties, selectivity and structure-activity relationships.

  2. Sequence distribution of acetaldehyde-derived N2-ethyl-dG adducts along duplex DNA.

    PubMed

    Matter, Brock; Guza, Rebecca; Zhao, Jianwei; Li, Zhong-ze; Jones, Roger; Tretyakova, Natalia

    2007-10-01

    Acetaldehyde (AA) is the major metabolite of ethanol and may be responsible for an increased gastrointestinal cancer risk associated with alcohol beverage consumption. Furthermore, AA is one of the most abundant carcinogens in tobacco smoke and induces tumors of the respiratory tract in laboratory animals. AA binding to DNA induces Schiff base adducts at the exocyclic amino group of dG, N2-ethylidene-dG, which are reversible on the nucleoside level but can be stabilized by reduction to N2-ethyl-dG. Mutagenesis studies in the HPRT reporter gene and in the p53 tumor suppressor gene have revealed the ability of AA to induce G-->A transitions and A-->T transversions, as well as frameshift and splice mutations. AA-induced point mutations are most prominent at 5'-AGG-3' trinucleotides, possibly a result of sequence specific adduct formation, mispairing, and/or repair. However, DNA sequence preferences for the formation of acetaldehyde adducts have not been previously examined. In the present work, we employed a stable isotope labeling-HPLC-ESI+-MS/MS approach developed in our laboratory to analyze the distribution of acetaldehyde-derived N2-ethyl-dG adducts along double-stranded oligodeoxynucleotides representing two prominent lung cancer mutational "hotspots" and their surrounding DNA sequences. 1,7,NH 2-(15)N-2-(13)C-dG was placed at defined positions within DNA duplexes derived from the K-ras protooncogene and the p53 tumor suppressor gene, followed by AA treatment and NaBH 3CN reduction to convert N2-ethylidene-dG to N2-ethyl-dG. Capillary HPLC-ESI+-MS/MS was used to quantify N2-ethyl-dG adducts originating from the isotopically labeled and unlabeled guanine nucleobases and to map adduct formation along DNA duplexes. We found that the formation of N2-ethyl-dG adducts was only weakly affected by the local sequence context and was slightly increased in the presence of 5-methylcytosine within CG dinucleotides. These results are in contrast with sequence

  3. Chemical Reaction between Boric Acid and Phosphine Indicates Boric Acid as an Antidote for Aluminium Phosphide Poisoning

    PubMed Central

    Soltani, Motahareh; Shetab-Boushehri, Seyed F.; Shetab-Boushehri, Seyed V.

    2016-01-01

    Objectives: Aluminium phosphide (AlP) is a fumigant pesticide which protects stored grains from insects and rodents. When it comes into contact with moisture, AlP releases phosphine (PH3), a highly toxic gas. No efficient antidote has been found for AlP poisoning so far and most people who are poisoned do not survive. Boric acid is a Lewis acid with an empty p orbital which accepts electrons. This study aimed to investigate the neutralisation of PH3 gas with boric acid. Methods: This study was carried out at the Baharlou Hospital, Tehran University of Medical Sciences, Tehran, Iran, between December 2013 and February 2014. The volume of released gas, rate of gas evolution and changes in pH were measured during reactions of AlP tablets with water, acidified water, saturated boric acid solution, acidified saturated boric acid solution, activated charcoal and acidified activated charcoal. Infrared spectroscopy was used to study the resulting probable adduct between PH3 and boric acid. Results: Activated charcoal significantly reduced the volume of released gas (P <0.01). Although boric acid did not significantly reduce the volume of released gas, it significantly reduced the rate of gas evolution (P <0.01). A gaseous adduct was formed in the reaction between pure AlP and boric acid. Conclusion: These findings indicate that boric acid may be an efficient and non-toxic antidote for PH3 poisoning. PMID:27606109

  4. Toxicokinetic study of pyrrole adducts and its potential application for biological monitoring of 2,5-hexanedione subacute exposure.

    PubMed

    Yin, Hong-Yin; Guo, Ying; Song, Fu-Yong; Zeng, Tao; Xie, Ke-Qin

    2014-08-01

    The formation of pyrrole adducts might be responsible for peripheral nerve injury caused by n-hexane, but there is not an effective biomarker for monitoring occupational exposure of n-hexane. The current study was designed to investigate the changes of pyrrole adducts in serum and urine of rats exposed to 2,5-hexanedione (2,5-HD) and analyze the correlation between pyrrole adducts and 2,5-HD. Two groups of male Wistar rats (n = 8) were administered a single dose of 200 and 400 mg/kg 2,5-HD (i.p.), and another two groups (n = 8) were given daily dose of 200 and 400 mg/kg 2,5-HD (i.p.) for 5 days. Pyrrole adducts and 2,5-HD in serum and urine were determined, at different time points after dosing, using Ehrlich’s reagent and gas chromatography, respectively. The levels of pyrrole adducts in serum accumulated in a time-dependant manner after repeated exposure to 2,5-HD, while pyrrole adducts in urine, and 2,5-HD in serum and urine were kept stable. The half-life times (t1/2) of 2,5-HD and pyrrole adducts in serum were 2.27 ± 0.28 and 25.3 ± 3.34 h, respectively. Furthermore, the levels of pyrrole adducts in urine were significantly correlated with the levels of 2,5-HD in serum (r = 0.736, P < 0.001) and urine (r = 0.730, P < 0.001), and the levels of pyrrole adducts in serum were correlated with the cumulative dosage of 2,5-HD (r = 0.965, P < 0.001). The results suggested that pyrrole adducts in serum and urine might be markers of chronic exposure to n-hexane or 2,5-HD.

  5. Use of LC-MS/MS and Stable Isotopes to Differentiate Hydroxymethyl and Methyl DNA Adducts from Formaldehyde and Nitrosodimethylamine

    PubMed Central

    Lu, Kun; Craft, Sessaly; Nakamura, Jun; Moeller, Benjamin C.; Swenberg, James A.

    2012-01-01

    Formaldehyde is a known human and animal carcinogen that forms DNA adducts, and causes mutations. While there is widespread exposure to formaldehyde in the environment, formaldehyde is also an essential biochemical in all living cells. The presence of both endogenous and exogenous sources of formaldehyde makes it difficult to develop exposure-specific DNA biomarkers. Furthermore, chemicals such as nitrosodimethylamine form one mole of formaldehyde for every mole of methylating agent, raising questions about potential co-carcinogenesis. Formaldehyde-induced hydroxymethyl DNA adducts are not stable and need to be reduced to stable methyl adducts for detection, which adds another layer of complexity to identifying the origins of these adducts. In this study, highly sensitive mass spectrometry methods and isotope labeled compounds were used to differentiate between endogenous and exogenous hydroxymethyl and methyl DNA adducts. We demonstrate that N2-hydroxymethyl-dG is the primary DNA adduct formed in cells following formaldehyde exposure. In addition, we show that alkylating agents induce methyl adducts at N2-dG and N6-dA positions, which are identical to the reduced forms of hydroxymethyl adducts arising from formaldehyde. The use of highly sensitive LC-MS/MS and isotope labeled compounds for exposure solves these challenges and provides mechanistic insights on the formation and role of these DNA adducts. PMID:22148432

  6. Protein adducts as biomarkers of exposure to aromatic diisocyanates in workers manufacturing polyurethane (PUR) foam.

    PubMed

    Säkkinen, Kirsi; Tornaeus, Jarkko; Hesso, Antti; Hirvonen, Ari; Vainio, Harri; Norppa, Hannu; Rosenberg, Christina

    2011-04-01

    This work was undertaken to investigate the usefulness of diisocyanate-related protein adducts in blood samples as biomarkers of occupational exposure to toluene diisocyanate (TDI; 2,4- and 2,6-isomers) and 4,4'-methylenediphenyl diisocyanate (MDI). Quantification of adducts as toluene diamines (TDAs) and methylenedianiline (MDA) was performed on perfluoroacylated derivatives by gas chromatography-mass spectrometry (GC-MS/MS) in negative chemical ionisation mode. TDI-derived adducts were found in 77% of plasma and in 59% of globin samples from exposed workers manufacturing flexible polyurethane foam. The plasma levels ranged from 0.003 to 0.58 nmol mL(-1) and those in globin from 0.012 to 0.33 nmol g(-1). The 2,6-isomer amounted to about two-thirds of the sum concentration of TDA isomers. MDI-derived adducts were detected in 3.5% of plasma and in 7% of globin samples from exposed workers manufacturing rigid polyurethane foam. A good correlation was found between the sum of TDA isomers in urine and that in plasma. The relationship between globin adducts and urinary metabolites was ambiguous. Monitoring TDI-derived TDA in plasma thus appears to be an appropriate method for assessing occupational exposure. Contrary to TDI exposure, adducts in plasma or globin were not useful in assessing workers' exposure to MDI. An important outcome of the study was that no amine-related adducts were detected in globin samples from TDI- or MDI-exposed workers, alleviating concerns that TDI or MDI might pose a carcinogenic hazard. Further studies are nevertheless required to judge whether diisocyanates per se could be such a hazard.

  7. Intracellular delivery of peptide nucleic acid and organic molecules using zeolite-L nanocrystals.

    PubMed

    Bertucci, Alessandro; Lülf, Henning; Septiadi, Dedy; Manicardi, Alex; Corradini, Roberto; De Cola, Luisa

    2014-11-01

    The design and synthesis of smart nanomaterials can provide interesting potential applications for biomedical purposes from bioimaging to drug delivery. Manufacturing multifunctional systems in a way to carry bioactive molecules, like peptide nucleic acids able to recognize specific targets in living cells, represents an achievement towards the development of highly selective tools for both diagnosis and therapeutics. This work describes a very first example of the use of zeolite nanocrystals as multifunctional nanocarriers to deliver simultaneously PNA and organic molecules into living cells. Zeolite-L nanocrystals are functionalized by covalently attaching the PNA probes onto the surface, while the channel system is filled with fluorescent guest molecules. The cellular uptake of the PNA/Zeolite-L hybrid material is then significantly increased by coating the whole system with a thin layer of biodegradable poly-L-lysine. The delivery of DAPI as a model drug molecule, inserted into the zeolite pores, is also demonstrated to occur in the cells, proving the multifunctional ability of the system. Using this zeolite nanosystem carrying PNA probes designed to target specific RNA sequences of interest in living cells could open new possibilities for theranostic and gene therapy applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Correlation between Levels of 2, 5-Hexanedione and Pyrrole Adducts in Tissues of Rats Exposure to n-Hexane for 5-Days

    PubMed Central

    Yin, Hongyin; Guo, Ying; Zeng, Tao; Zhao, Xiulan; Xie, Keqin

    2013-01-01

    Background The formation of pyrrole adducts might be responsible for peripheral nerve injury caused by n-hexane. The internal dose of pyrrole adducts would supply more information for the neurotoxicity of n-hexane. The current study was designed to investigate the tissue distributions of 2, 5-hexanedione (2,5-HD) and pyrrole adducts in rats exposed to n-hexane, and analyze the correlation between pyrrole adducts and 2,5-HD in tissues. Methods Male Wistar rats were given daily dose of 500,1000, 2000, 4000 mg/kg bw n-hexane by gavage for 5 days. The rats were sacrificed 24 hours after the last administration. The levels of 2, 5-hexanedione and pyrrole adducts in tissues were measured by gas chromatography and Ehrlich’s reagent, respectively. The correlations between 2, 5-hexanedione and pyrrole adducts were analyzed by linear regression Results Dose-dependent effects were observed between the dosage of n-hexane and 2, 5-hexanedione, and pyrrole adducts in tissues. The highest level of 2, 5-hexanedione was found in urine and the lowest in sciatic nerve, while the highest level of pyrrole adducts was seen in liver and the lowest in serum. There were significant correlations among the free 2, 5-hexanedione, total 2, 5-hexanedione and pyrrole adducts within the same tissues. Pyrrole adducts in serum showed the most significant correlation with free 2, 5-hexanedione or pyrrole adducts in tissues. Conclusion The findings suggested that pyrrole adducts in serum might be a better indicator for the internal dose of free 2, 5-hexanedione and pyrrole adducts in tissues. PMID:24098756

  9. Quantitative analysis of small molecule-nucleic acid interactions with a biosensor surface and surface plasmon resonance detection.

    PubMed

    Liu, Yang; Wilson, W David

    2010-01-01

    Surface plasmon resonance (SPR) technology with biosensor surfaces has become a widely-used tool for the study of nucleic acid interactions without any labeling requirements. The method provides simultaneous kinetic and equilibrium characterization of the interactions of biomolecules as well as small molecule-biopolymer binding. SPR monitors molecular interactions in real time and provides significant advantages over optical or calorimetic methods for systems with strong binding coupled to small spectroscopic signals and/or reaction heats. A detailed and practical guide for nucleic acid interaction analysis using SPR-biosensor methods is presented. Details of the SPR technology and basic fundamentals are described with recommendations on the preparation of the SPR instrument, sensor chips, and samples, as well as extensive information on experimental design, quantitative and qualitative data analysis and presentation. A specific example of the interaction of a minor-groove-binding agent with DNA is evaluated by both kinetic and steady-state SPR methods to illustrate the technique. Since the molecules that bind cooperatively to specific DNA sequences are attractive for many applications, a cooperative small molecule-DNA interaction is also presented.

  10. Crystal growth and physical characterization of picolinic acid cocrystallized with dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Somphon, Weenawan; Haller, Kenneth J.

    2013-01-01

    Pharmaceutical cocrystals are multicomponent materials containing an active pharmaceutical ingredient with another component in well-defined stoichiometry within the same unit cell. Such cocrystals are important in drug design, particularly for improving physicochemical properties such as solubility, bioavailability, or chemical stability. Picolinic acid is an endogenous metabolite of tryptophan and is widely used for neuroprotective, immunological, and anti-proliferative effects within the body. In this paper we present cocrystallization experiments of a series of dicarboxylic acids, oxalic acid, succinic acid, DL-tartaric acid, pimelic acid, and phthalic acid, with picolinic acid. Characterization by FT-IR and Raman spectroscopy, DSC and TG/DTG analysis, and X-ray powder diffraction show that new compounds are formed, including a 1:1 picolinium tartrate monohydrate, a 2:1 monohydrate adduct of picolinic acid and oxalic acid, and a 2:1 picolinic acid-succinic acid monohydrate cocrystal.

  11. Synthesis and Verification of Biobased Terephthalic Acid from Furfural

    NASA Astrophysics Data System (ADS)

    Tachibana, Yuya; Kimura, Saori; Kasuya, Ken-Ichi

    2015-02-01

    Exploiting biomass as an alternative to petrochemicals for the production of commodity plastics is vitally important if we are to become a more sustainable society. Here, we report a synthetic route for the production of terephthalic acid (TPA), the monomer of the widely used thermoplastic polymer poly(ethylene terephthalate) (PET), from the biomass-derived starting material furfural. Biobased furfural was oxidised and dehydrated to give maleic anhydride, which was further reacted with biobased furan to give its Diels-Alder (DA) adduct. The dehydration of the DA adduct gave phthalic anhydride, which was converted via phthalic acid and dipotassium phthalate to TPA. The biobased carbon content of the TPA was measured by accelerator mass spectroscopy and the TPA was found to be made of 100% biobased carbon.

  12. Characterization of the Major Purine and Pyrimidine Adducts Formed after Incubations of 1-Chloro-3-buten-2-one with Single-/Double-Stranded DNA and Human Cells.

    PubMed

    Liu, Ling-Yan; Zheng, Jin; Kong, Cong; An, Jing; Yu, Ying-Xin; Zhang, Xin-Yu; Elfarra, Adnan A

    2017-02-20

    We have previously shown that 1-chloro-3-buten-2-one (CBO), a potential reactive metabolite of 1,3-butadiene (BD), exhibits potent cytotoxicity and genotoxicity that have been attributed in part to its reactivity toward DNA. In an effort to identify the DNA adducts of CBO, we characterized the CBO reactions with 2'-deoxyguanosine (dG), 2'-deoxycytidine (dC), and 2'-deoxyadenosine (dA) under in vitro physiological conditions (pH 7.4, 37 °C). In the present study, we investigated the CBO reaction with 2'-deoxythymidine (dT) and compared the rate constants of the reactions of CBO with dA, dC, dG, and dT at both individual- and mixed-nucleosides levels. We also investigated the reactions of CBO with single- and double-stranded DNA using HPLC with UV detection after adducts were released by either acid or enzymatic hydrolysis of DNA. Consistent with the results from the nucleoside reactions and the rate constant experiments, 1,N 6 -(1-hydroxy-1-chloromethylpropan-1,3-diyl)adenine (A-2D) was identified as the major DNA adduct detected after acid hydrolysis, followed by N7-(4-chloro-3-oxobutyl)guanine (CG-2H) and a small amount of 1,N 6 -(1-hydroxy-1-hydroxymethylpropan-1,3-diyl)adenine (A-1D). After enzymatic hydrolysis, 1,N 6 -(1-hydroxy-1-hydroxymethylpropan-1,3-diyl)-2'-dexoyadenosine (dA-1), 3,N 4 -(1-hydroxy-1-hydroxymethylpropan-1,3-diyl)-2'-deoxycytidine (dC-1/2), and 1,N 2 -(3-hydroxy-3-hydroxymethylpropan-1,3-diyl)-2'-dexoyguanosine (CG-1) were detected, with dA-1 being the major product, followed by dC-1/2. When a nontoxic concentration of CBO (1 μM) was incubated with HepG2 cells, no adducts could be detected by LC-MS. However, pretreatment of cells with l-buthionine sulfoximine to deplete GSH levels allowed A-2D to be consistently detected in cellular DNA. These results may contribute to a better understanding of the role of the DNA adducts in CBO genotoxicity and mutagenicity. It also suggests that A-2D could be developed as a biomarker of CBO formation

  13. DNA adduct profiling of in vitro colonic meat digests to map red vs. white meat genotoxicity.

    PubMed

    Hemeryck, Lieselot Y; Rombouts, Caroline; De Paepe, Ellen; Vanhaecke, Lynn

    2018-05-01

    The consumption of red meat has been linked to an increased colorectal cancer (CRC) risk. One of the major hypotheses states that heme iron (present in red meat) stimulates the formation of genotoxic N-nitroso compounds (NOCs) and lipid peroxidation products (LPOs). By means of DNA adductomics, chemically induced DNA adduct formation can be mapped in relation to e.g. dietary exposures. In this study, this state-of-the-art methodology was used to investigate alkylation and (lipid per)oxidation induced DNA adduct formation in in vitro red vs. white meat digests. In doing so, 90 alkylation and (lipid per)oxidation induced DNA adduct types could be (tentatively) identified. Overall, 12 NOC- and/or LPO-related DNA adduct types, i.e. dimethyl-T (or ethyl-T), hydroxymethyl-T, tetramethyl-T, methylguanine (MeG), guanidinohydantoin, hydroxybutyl-C, hydroxymethylhydantoin, malondialdehyde-x3-C, O 6 -carboxymethylguanine, hydroxyethyl-T, carboxyethyl-T and 3,N 4 -etheno-C were singled out as potential heme-rich meat digestion markers. The retrieval of these DNA adduct markers is in support of the heme, NOC and LPO hypotheses, suggesting that DNA adduct formation may indeed contribute to red meat related CRC risk. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Adduction of DNA with MTBE and TBA in mice studied by accelerator mass spectrometry.

    PubMed

    Yuan, Y; Wang, H F; Sun, H F; Du, H F; Xu, L H; Liu, Y F; Ding, X F; Fu, D P; Liu, K X

    2007-12-01

    Methyl tert-butyl ether (MTBE) is a currently worldwide used octane enhancer substituting for lead alkyls and gasoline oxygenate. Our previous study using doubly (14)C-labeled MTBE [(CH(3))(3) (14)CO(14)CH(3)] has shown that MTBE binds DNA to form DNA adducts at low dose levels in mice. To elucidate the mechanism of the binding reaction, in this study, the DNA adducts with singly (14)C-labeled MTBE, which was synthesized from (14)C-methanol and tert-butyl alcohol (TBA), or (14)C-labeled TBA in mice have been measured by ultra sensitive accelerator mass spectrometry. The results show that the methyl group of MTBE and tert-butyl alcohol definitely form adducts with DNA in mouse liver, lung, and kidney. The methyl group of MTBE is the predominant binding part in liver, while the methyl group and the tert-butyl group give comparable contributions to the adduct formation in lung and kidney.

  15. Detection of Acetaminophen-Protein Adducts in Decedents with Suspected Opioid-Acetaminophen Combination Product Overdose.

    PubMed

    Thomas, Karen C; Wilkins, Diana G; Curry, Steven C; Grey, Todd C; Andrenyak, David M; McGill, Lawrence D; Rollins, Douglas E

    2016-09-01

    Acetaminophen overdose is a leading cause of drug-induced liver failure in the United States. Acetaminophen-protein adducts have been suggested as a biomarker of hepatotoxicity. The purpose of this study was to determine whether protein-derived acetaminophen-protein adducts are quantifiable in postmortem samples. Heart blood, femoral blood, and liver tissue were collected at autopsy from 22 decedents suspected of opioid-acetaminophen overdose. Samples were assayed for protein-derived acetaminophen-protein adducts, acetaminophen, and selected opioids found in combination products containing acetaminophen. Protein-derived APAP-CYS was detected in 17 of 22 decedents and was measurable in blood that was not degraded or hemolyzed. Heart blood concentrations ranged from 11 ng/mL (0.1 μM) to 7817 ng/mL (28.9 μM). Protein-derived acetaminophen-protein adducts were detectable in liver tissue for 20 of 22 decedents. Liver histology was also performed for all decedents, and no evidence of centrilobular hepatic necrosis was observed. © 2016 American Academy of Forensic Sciences.

  16. Direct analysis of ethylene glycol in human serum on the basis of analyte adduct formation and liquid chromatography-tandem mass spectrometry.

    PubMed

    Dziadosz, Marek

    2018-01-01

    The aim of this work was to develop a fast, cost-effective and time-saving liquid chromatography-tandem mass spectrometry (LC-MS/MS) analytical method for the analysis of ethylene glycol (EG) in human serum. For these purposes, the formation/fragmentation of an EG adduct ion with sodium and sodium acetate was applied in the positive electrospray mode for signal detection. Adduct identification was performed with appropriate infusion experiments based on analyte solutions prepared in different concentrations. Corresponding analyte adduct ions and adduct ion fragments could be identified both for EG and the deuterated internal standard (EG-D4). Protein precipitation was used as sample preparation. The analysis of the supernatant was performed with a Luna 5μm C18 (2) 100A, 150mm×2mm analytical column and a mobile phase consisting of 95% A (H 2 O/methanol=95/5, v/v) and 5% B (H 2 O/methanol=3/97, v/v), both with 10mmolL -1 ammonium acetate and 0.1% acetic acid. Method linearity was examined in the range of 100-4000μg/mL and the calculated limit of detection/quantification was 35/98μg/mL. However, on the basis of the signal to noise ratio, quantification was recommended at a limit of 300μg/mL. Additionally, the examined precision, accuracy, stability, selectivity and matrix effect demonstrated that the method is a practicable alternative for EG quantification in human serum. In comparison to other methods based on liquid chromatography, the strategy presented made for the first time the EG analysis without analyte derivatisation possible. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Quantification of 3-nitrobenzanthrone-DNA adducts using online column-switching HPLC-electrospray tandem mass spectrometry.

    PubMed

    Gamboa da Costa, Gonçalo; Singh, Rajinder; Arlt, Volker M; Mirza, Amin; Richards, Meirion; Takamura-Enya, Takeji; Schmeiser, Heinz H; Farmer, Peter B; Phillips, David H

    2009-11-01

    The aromatic nitroketone 3-nitrobenzanthrone (3-nitro-7H-benz[de]anthracen-7-one; 3-NBA) is an extremely potent mutagen and a suspected human carcinogen detected in the exhaust of diesel engines and in airborne particulate matter. 3-NBA is metabolically activated via reduction of the nitro group to the hydroxylamine (N-OH-3-ABA) to form covalent DNA adducts. Thus far, the detection and quantification of covalent 3-NBA-DNA adducts has relied solely on (32)P-postlabeling methodologies. In order to expand the range of available techniques for the detection and improved quantification of 3-NBA-DNA adducts, we have developed a method based upon online column-switching HPLC coupled to electrospray tandem mass spectrometry, with isotopic dilution of (15)N-labeled internal standards. This methodology was applied to the determination of three 3-NBA-derived adducts: 2-(2'-deoxyguanosin-N(2)-yl)-3-aminobenzanthrone (dG-N(2)-3-ABA), N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG-C8-N-3-ABA) and 2-(2'-deoxyguanosine-8-yl)-3-aminobenzanthrone (dG-C8-C2-3-ABA). Dose-dependent increases were observed for all three adducts when salmon testis DNA was reacted with N-acetoxy-3-aminobenzanthrone (N-AcO-3-ABA). dG-C8-C2-3-ABA was detected at much lower levels (overall 1%) than the other two adducts. DNA samples isolated from tissues of rats treated either intratracheally with 3-NBA or intraperitoneally with N-OH-3-ABA were analyzed by mass spectrometry, and the results compared to those obtained by (32)P-postlabeling. The method required 50 microg of hydrolyzed animal DNA on column and the limit of detection was 2.0 fmol for each adduct. dG-C8-C2-3-ABA was not observed in any of the samples providing confirmation that it is not formed in vivo. Linear regression analysis of the levels of dG-N(2)-3-ABA and dG-C8-N-3-ABA in the rat DNA showed a reasonable correlation between the two methods (R(2) = 0.88 and 0.93, respectively). In summary, the mass spectrometric method is a faster, more

  18. Dietary butyrylated high-amylose starch reduces azoxymethane-induced colonic O(6)-methylguanine adducts in rats as measured by immunohistochemistry and high-pressure liquid chromatography.

    PubMed

    Le Leu, Richard K; Scherer, Benjamin L; Mano, Mark T; Winter, Jean M; Lannagan, Tamsin; Head, Richard J; Lockett, Trevor; Clarke, Julie M

    2016-09-01

    O(6)-methyl guanine (O(6)MeG) adducts are major toxic, promutagenic, and procarcinogenic adducts involved in colorectal carcinogenesis. Resistant starch and its colonic metabolite butyrate are known to protect against oncogenesis in the colon. In this study, we hypothesized that a dietary intervention that specifically delivers butyrate to the large bowel (notably butyrylated high-amylose maize starch [HAMSB]) would reduce colonic levels of O(6)MeG in rats shortly after exposure to the deoxyribonucleic acid (DNA) alkylating agent azoxymethane (AOM) when compared with a low-amylose maize starch (LAMS). A further objective was to validate an immunohistochemistry (IHC) method for quantifying O(6)MeG against a high-performance liquid chromatography method using fluorescence and diode array detection. Rats were fed either LAMS or HAMSB diets for 4 weeks followed by a single injection of AOM or saline and killed 6 hours later. After AOM exposure, both IHC and high-performance liquid chromatography method using fluorescence and diode array detection measured a substantially increased quantity of DNA adducts in the colon (P<.001). Both techniques demonstrated equally that consumption of HAMSB provided a protective effect by reducing colonic adduct load compared with the LAMS diet (P<.05). In addition, IHC allowed visualization of the O(6)MeG distribution, where adduct load was reduced in the lower third of the crypt compartment in HAMSB-fed rats (P=.036). The apoptotic response to AOM was higher in the HAMSB-fed rats (P=.002). In conclusion, the reduction in O(6)MeG levels and enhancement of the apoptotic response to DNA damage in the colonic epithelium through consumption of HAMSB provide mechanistic insights into how HAMSB protects against colorectal tumorigenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis.

    PubMed

    Osberger, Thomas J; Rogness, Donald C; Kohrt, Jeffrey T; Stepan, Antonia F; White, M Christina

    2016-09-08

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four 'chiral pool' amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  20. Simultaneous Time-concentration Analysis of Soman and VX Adducts to Butyrylcholinesterase and Albumin by LC-MS-MS.

    PubMed

    Lee, Jin Young; Kim, Changhwan; Lee, Yong Han

    2018-06-01

    A sensitive method for the purification and determination of two protein adducts, organophosphorus (OP)-BChE and OP-albumin adducts, in a single sample using a simultaneous sample preparation method was developed and validated using liquid chromatography-tandem mass spectrometry. First, we isolated O-ethyl S-2-diisopropylaminoethyl methyl phosphonothiolate (VX) and O-pinacolyl methylphosphonofluoridate (soman, GD)-BChE adducts using an immunomagnetic separation (IMS) method and the HiTrap™ Blue affinity column was subsequently used to isolate and purify VX and GD-albumin adducts from the plasma of rhesus monkeys exposed to nerve agents. Additionally, we examined the time-concentration profiles of two biomarkers, VX and GD-nonapeptides and VX and GD-tyrosines, derived from OP-BChE and OP-albumin adducts up to 8 weeks after exposure. Based on the results, we determined that VX and GD-tyrosine is more suitable than VX and GD-nonapeptide as a biomarker owing to its longevity. This integrated approach is expected to be applicable for the quantification of other OP-BChE and OP-albumin adducts in human plasma, thus serving as a potential generic assay for exposure to nerve agents.

  1. Nuclear magnetic resonance at the picomole level of a DNA adduct.

    PubMed

    Kautz, Roger; Wang, Poguang; Giese, Roger W

    2013-10-21

    We investigate the limit of detection for obtaining NMR data of a DNA adduct using modern microscale NMR instrumentation, once the adduct has been isolated at the picomole level. Eighty nanograms (130 pmol) of a DNA adduct standard, N-(2'-deoxyguanosin-8-yl)-2-acetylaminofluorene 5'-monophosphate (AAF-dGMP), in 1.5 μL of D₂O with 10% methanol-d₄, in a vial, was completely picked up as a droplet suspended in a fluorocarbon liquid and loaded efficiently into a microcoil probe. This work demonstrates a practical manual method of droplet microfluidic sample loading, previously demonstrated using automated equipment, which provides a severalfold advantage over conventional flow injection. Eliminating dilution during injection and confining the sample to the observed volume produce the full theoretical mass sensitivity of a microcoil, comparable to that of a microcryo probe. With 80 ng, an NMR spectrum acquired over 40 h showed all of the resonances seen in a standard spectrum of AAF-dGMP, with a signal-to-noise ratio of at least 10, despite broadening due to previously noted effects of conformational exchange. Even with this broadening to 5 Hz, a two-dimensional total correlation spectroscopy spectrum was acquired on 1.6 μg in 18 h. This work helps to define the utility of NMR in combination with other analytical methods for the structural characterization of a small amount of a DNA adduct.

  2. Influence of charge carrier mobility and morphology on solar cell parameters in devices of mono- and bis-fullerene adducts.

    PubMed

    Muth, Mathis-Andreas; Mitchell, William; Tierney, Steven; Lada, Thomas A; Xue, Xiang; Richter, Henning; Carrasco-Orozco, Miguel; Thelakkat, Mukundan

    2013-12-06

    Herein, we analyze charge carrier mobility and morphology of the active blend layer in thin film organic solar cells and correlate them with device parameters. A low band gap donor-acceptor copolymer in combination with phenyl-C61-butyric acid methyl ester (PCBM) or two bis-adduct fullerenes, bis-PCBM and bis-o-quino-dimethane C60 (bis-oQDMC), is investigated. We study the charge transport of polymer:fullerene blends in hole- and electron-only devices using the space-charge limited current method. Lower electron mobilities are observed in both bis-adduct fullerene blends. Hole mobility, however, is decreased only in the blend containing bis-oQDMC. Both bis-adduct fullerene blends show very high open circuit voltage in solar cell devices, but poor photocurrent compared to the standard PCBM blend for an active layer thickness of 200 nm. Therefore, a higher short circuit current is feasible for the polymer:bis-PCBM blend by reducing the active layer thickness in order to compensate for the low electron mobility, which results in a PCE of 4.3%. For the polymer:bis-oQDMC blend, no such improvement is achieved due to an unfavorable morphology in this particular blend system. The results are supported by external quantum efficiency measurements, atomic force microscopy, transmission electron microscopy and UV/vis spectroscopy. Based on these results, the investigations presented herein give a more scientific basis for the optimization of solar cells.

  3. The location of the thioglycolic acid molecules in intrafibrillar unordered areas of the human hair keratin structure.

    PubMed

    Zabashta, Y F; Kasprova, A V; Senchurov, S P; Grabovskii, Y E

    2012-06-01

    It has been established after conducting an X-ray diffraction study of the structure of hair treated with the thioglycolic acid solution that the preferable location of thioglycolic acid molecules should be the intrafibrillar unordered areas. Based on this fact it has been concluded that the redistribution of disulphide bonds of hair occurs mainly in the mentioned above areas when treated with thioglycolic acid solution. © 2012 The Authors. ICS © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  4. Polycyclic aromatic hydrocarbon (PAH)-DNA adducts and breast cancer: modification by gene promoter methylation in a population-based study.

    PubMed

    White, Alexandra J; Chen, Jia; McCullough, Lauren E; Xu, Xinran; Cho, Yoon Hee; Teitelbaum, Susan L; Neugut, Alfred I; Terry, Mary Beth; Hibshoosh, Hanina; Santella, Regina M; Gammon, Marilie D

    2015-12-01

    Polycyclic aromatic hydrocarbon (PAH)-DNA adducts have been associated with breast cancer incidence. Aberrant changes in DNA methylation may be an early event in carcinogenesis. However, possible relations between PAH-DNA adducts, methylation, and breast cancer are unknown. The objectives of this study were to (1) assess associations between PAH-DNA adducts, and breast cancer, stratified by DNA methylation markers and (2) examine interactions between adducts and DNA methylation in association with breast cancer and tumor subtype. In a population-based case-control study, promoter methylation of 13 breast cancer-related genes was measured in tumor tissue (n = 765-851 cases). Blood DNA from breast cancer cases (n = 873) and controls (n = 941) was used to assess PAH-DNA adducts and global methylation. Logistic regression was used to estimate adjusted odds ratios (ORs) and 95% confidence intervals (CI); and the ratio of the OR (ROR) was used to assess heterogeneity. Women with detectable PAH-DNA adducts and methylated RARβ (ROR 2.69, 95% CI 1.02-7.12; p for interaction = 0.03) or APC (ROR 1.76, 95% CI 0.87-3.58; p for interaction = 0.09) genes were more likely to have hormone receptor-positive tumors than other subtypes. Interactions with other methylation markers were not apparent (p ≥ 0.10). The association between adducts and breast cancer did not vary by methylation status of the tumor nor did adducts associate with global methylation in the controls. Gene-specific methylation of RARβ, and perhaps APC, may interact with PAH-DNA adducts to increase risk of hormone receptor-positive breast cancer. There was little evidence that adducts were associated with or interacted with other methylation markers of interest.

  5. The effect of exercise therapy on knee adduction moment in individuals with knee osteoarthritis: A systematic review.

    PubMed

    Ferreira, Giovanni E; Robinson, Caroline Cabral; Wiebusch, Matheus; Viero, Carolina Cabral de Mello; da Rosa, Luis Henrique Telles; Silva, Marcelo Faria

    2015-07-01

    Exercise therapy is an evidence-based intervention for the conservative management of knee osteoarthritis. It is hypothesized that exercise therapy could reduce the knee adduction moment. A systematic review was performed in order to verify the effects of exercise therapy on the knee adduction moment in individuals with knee osteoarthritis in studies that also assessed pain and physical function. A comprehensive electronic search was performed on MEDLINE, Cochrane CENTRAL, EMBASE, Google scholar and OpenGrey. Inclusion criteria were randomized controlled trials with control or sham groups as comparator assessing pain, physical function, muscle strength and knee adduction moment during walking at self-selected speed in individuals with knee osteoarthritis that underwent a structured exercise therapy rehabilitation program. Two independent reviewers extracted the data and assessed risk of bias. For each study, knee adduction moment, pain and physical function outcomes were extracted. For each outcome, mean differences and 95% confidence intervals were calculated. Due to clinical heterogeneity among exercise therapy protocols, a descriptive analysis was chosen. Three studies, comprising 233 participants, were included. None of the studies showed significant differences between strengthening and control/sham groups in knee adduction moment. In regards to pain and physical function, the three studies demonstrated significant improvement in pain and two of them showed increased physical function following exercise therapy compared to controls. Muscle strength and torque significantly improved in all the three trials favoring the intervention group. Clinical benefits from exercise therapy were not associated with changes in the knee adduction moment. The lack of knee adduction moment reduction indicates that exercise therapy may not be protective in knee osteoarthritis from a joint loading point of view. Alterations in neuromuscular control, not captured by the knee

  6. Crystallographic, Spectroscopic, and Computational Analysis of a Flavin-C4a-Oxygen Adduct in Choline Oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orville, A.M.; Lountos, G. T.; Finnegan, S.

    2009-02-03

    Flavin C4a-OO(H) and C4a-OH adducts are critical intermediates proposed in many flavoenzyme reaction mechanisms, but they are rarely detected even by rapid transient kinetics methods. We observe a trapped flavin C4a-OH or C4a-OO(H) adduct by single-crystal spectroscopic methods and in the 1.86 {angstrom} resolution X-ray crystal structure of choline oxidase. The microspectrophotometry results show that the adduct forms rapidly in situ at 100 K upon exposure to X-rays. Density functional theory calculations establish the electronic structures for the flavin C4a-OH and C4a-OO(H) adducts and estimate the stabilization energy of several active site hydrogen bonds deduced from the crystal structure. Wemore » propose that the enzyme-bound FAD is reduced in the X-ray beam. The aerobic crystals then form either a C4a-OH or C4a-OO(H) adduct, but an insufficient proton inventory prevents their decay at cryogenic temperatures.« less

  7. Crystallographic, Spectroscopic, and Computational Analysis of a Flavin C4a-Oxygen Adduct in Choline Oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orville, A.; Lountos, G; Finnegan, S

    2009-01-01

    Flavin C4a-OO(H) and C4a-OH adducts are critical intermediates proposed in many flavoenzyme reaction mechanisms, but they are rarely detected even by rapid transient kinetics methods. We observe a trapped flavin C4a-OH or C4a-OO(H) adduct by single-crystal spectroscopic methods and in the 1.86 {angstrom} resolution X-ray crystal structure of choline oxidase. The microspectrophotometry results show that the adduct forms rapidly in situ at 100 K upon exposure to X-rays. Density functional theory calculations establish the electronic structures for the flavin C4a-OH and C4a-OO(H) adducts and estimate the stabilization energy of several active site hydrogen bonds deduced from the crystal structure. Wemore » propose that the enzyme-bound FAD is reduced in the X-ray beam. The aerobic crystals then form either a C4a-OH or C4a-OO(H) adduct, but an insufficient proton inventory prevents their decay at cryogenic temperatures.« less

  8. The role of highly oxygenated molecules (HOMs) in determining the composition of ambient ions in the boreal forest

    NASA Astrophysics Data System (ADS)

    Bianchi, Federico; Garmash, Olga; He, Xucheng; Yan, Chao; Iyer, Siddharth; Rosendahl, Ida; Xu, Zhengning; Rissanen, Matti P.; Riva, Matthieu; Taipale, Risto; Sarnela, Nina; Petäjä, Tuukka; Worsnop, Douglas R.; Kulmala, Markku; Ehn, Mikael; Junninen, Heikki

    2017-11-01

    In order to investigate the negative ions in the boreal forest we have performed measurements to chemically characterise the composition of negatively charged clusters containing highly oxygenated molecules (HOMs). Additionally, we compared this information with the chemical composition of the neutral gas-phase molecules detected in the ambient atmosphere during the same period. The chemical composition of the ions was retrieved using an atmospheric pressure interface time-of-flight mass spectrometer (APi-TOF-MS) while the gas-phase neutral molecules (mainly sulfuric acid and HOMs) were characterised using the same mass spectrometer coupled to a nitrate-based chemical ionisation unit (CI-APi-TOF). Overall, we divided the identified HOMs in two classes: HOMs containing only carbon, hydrogen and oxygen and nitrogen-containing HOMs or organonitrates (ONs). During the day, among the ions, in addition to the well-known pure sulfuric acid clusters, we found a large number of HOMs clustered with nitrate (NO3-) or bisulfate (HSO4-), with the first one being more abundant. During the night, the distribution of ions, mainly composed of HOM clustered with NO3-, was very similar to the neutral compounds that are detected in the CI-APi-TOF as adducts with the artificially introduced primary ion (NO3-). For the first time, we identified several clusters containing up to 40 carbon atoms. These ions are formed by up to four oxidised α-pinene units clustered with NO3-. While we know that dimers (16-20 carbon atoms) are probably formed by a covalent bond between two α-pinene oxidised units, it is still unclear what bonding formed larger clusters. Finally, diurnal profiles of the negative ions were consistent with the neutral compounds revealing that ONs peak during the day while HOMs are more abundant at night-time. However, during the day, a large fraction of the negative charge is taken up by the pure sulfuric acid clusters causing differences between ambient ions and neutral

  9. A Sandwich ELISA for Adducts of Polycyclic Aromatic Hydrocarbons with Human Serum Albumin1

    PubMed Central

    Chung, Ming Kei; Riby, Jacques; Li, He; Iavarone, Anthony T.; Williams, Evan R.; Zheng, Yuxin; Rappaport, Stephen M.

    2010-01-01

    Adducts of benzo[α]pyrene-diolepoxide (BPDE)2 with blood nucleophiles have been used as biomarkers of exposure to polycyclic aromatic hydrocarbons (PAHs). The most popular such assay is a competitive ELISA which employs monoclonal antibody 8E11 to detect benzo[α]pyrene tetrols following hydrolysis of BPDE adducts from lymphocyte DNA or human serum albumin (HSA). Here we use 8E11 as the capture antibody in a sandwich ELISA to detect BPDE-HSA adducts directly in 1 mg samples of HSA or 20 μL of serum/plasma. The assay employs an anti-HSA antibody for detection, which is amplified by an avidin/biotinylated horseradish peroxidase complex. The sandwich ELISA has advantages of specificity and simplicity and is about 10 times more sensitive than the competitive ELISA. To validate the assay, HSA samples were assayed from three populations with known high (coke-oven workers), medium (steel-factory control workers), and low (volunteer subjects) PAH exposures (n = 30). The respective geometric mean levels of BPDE-HSA adducts, i.e., 67.8, 14.7 and 1.93 ng/mg HSA (1,010, 220 and 28.9 fmol BPDE equivalents/mg HSA), were significantly different (p < 0.05). The sandwich ELISA will be useful for screening PAH exposures in large epidemiologic studies and can be extended to other adducts for which capture antibodies are available. PMID:20083082

  10. Electrospray ionization-tandem mass spectrometry and 32P-postlabeling analyses of tamoxifen-DNA adducts in humans.

    PubMed

    Beland, Frederick A; Churchwell, Mona I; Doerge, Daniel R; Parkin, Daniel R; Malejka-Giganti, Danuta; Hewer, Alan; Phillips, David H; Carmichael, Paul L; Gamboa da Costa, Gonçalo; Marques, M Matilde

    2004-07-21

    Although the nonsteroidal antiestrogen tamoxifen is used as an adjuvant chemotherapeutic agent to treat hormone-dependent breast cancer and as a chemopreventive agent in women with elevated risk of breast cancer, it has also been reported to increase the risk of endometrial cancer. Reports of low levels of tamoxifen-DNA adducts in human endometrial tissue have suggested that tamoxifen induces endometrial cancer by a genotoxic mechanism. However, these findings have been controversial. We used electrospray ionization-tandem mass spectrometry (ES-MS/MS) and 32P-postlabeling analyses to investigate the presence of tamoxifen-DNA adducts in human endometrial tissue. Endometrial DNA from eight tamoxifen-treated women and eight untreated women was hydrolyzed to nucleosides and assayed for (E)-alpha-(deoxyguanosin-N2-yl)-tamoxifen (dG-Tam) and (E)-alpha-(deoxyguanosin-N2-yl)-N-desmethyltamoxifen (dG-desMeTam), the two major tamoxifen-DNA adducts that have been reported to be present in humans and/or experimental animals treated with tamoxifen, using on-line sample preparation coupled with high-performance liquid chromatography (HPLC) and ES-MS/MS. The same DNA samples were assayed for the presence of dG-Tam and dG-desMeTam by (32)P-postlabeling methodology, using two different DNA digestion and labeling protocols, followed by both thin-layer chromatography and HPLC. We did not detect either tamoxifen-DNA adduct by HPLC-ES-MS/MS analyses (limits of detection for dG-Tam and dG-desMeTam were two adducts per 10(9) nucleotides and two adducts per 10(8) nucleotides, respectively) or by 32P-postlabeling analyses (limit of detection for both adducts was one adduct per 10(9) nucleotides) in any of the endometrial DNA samples. The initiation of endometrial cancer by tamoxifen is probably not due to a genotoxic mechanism involving the formation of dG-Tam or dG-desMeTam.

  11. Correlations between Photodegradation of Bisretinoid Constituents of Retina and Dicarbonyl Adduct Deposition*

    PubMed Central

    Zhou, Jilin; Ueda, Keiko; Zhao, Jin; Sparrow, Janet R.

    2015-01-01

    Non-enzymatic collagen cross-linking and carbonyl adduct deposition are features of Bruch's membrane aging in the eye, and disturbances in extracellular matrix turnover are considered to contribute to Bruch's membrane thickening. Because bisretinoid constituents of the lipofuscin of retinal pigment epithelial (RPE) cells are known to photodegrade to mixtures of aldehyde-bearing fragments and small dicarbonyls (glyoxal (GO) and methylglyoxal (MG)), we investigated RPE lipofuscin as a source of the reactive species that covalently modify protein side chains. Abca4−/− and Rdh8−/−/Abca4−/− mice that are models of accelerated bisretinoid formation were studied and pre-exposure of mice to 430 nm light enriched for dicarbonyl release by bisretinoid photodegradation. MG protein adducts were elevated in posterior eyecups of mutant mice, whereas carbonylation of an RPE-specific protein was observed in Abca4−/− but not in wild-type mice under the same conditions. Immunolabeling of cryostat-sectioned eyes harvested from Abca4−/− mice revealed that carbonyl adduct deposition in Bruch's membrane was accentuated. Cell-based assays corroborated these findings in mice. Moreover, the receptor for advanced glycation end products that recognizes MG and GO adducts and glyoxylase 1 that metabolizes MG and GO were up-regulated in Abca4−/− mice. Additionally, in acellular assays, peptides were cross-linked in the presence of A2E (adduct of two vitamin A aldehyde and ethanolamine) photodegradation products, and in a zymography assay, reaction of collagen IV with products of A2E photodegradation resulted in reduced cleavage by the matrix metalloproteinases MMP2 and MMP9. In conclusion, these mechanistic studies demonstrate a link between the photodegradation of RPE bisretinoid fluorophores and aging changes in underlying Bruch's membrane that can confer risk of age-related macular degeneration. PMID:26400086

  12. Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol

    DOEpatents

    Brown, Steven; Guss, Adam; Yang, Shihui; Karpinets, Tatiana; Lynd, Lee; Shao, Xiongjun

    2014-01-14

    The present invention provides isolated nucleic acid molecules which encode a mutant acetaldehyde-CoA/alcohol dehydrogenase or mutant alcohol dehydrogenase and confer enhanced tolerance to ethanol. The invention also provides related expression vectors, genetically engineered microorganisms having enhanced tolerance to ethanol, as well as methods of making and using such genetically modified microorganisms for production of biofuels based on fermentation of biomass materials.

  13. The clinical spectrum of mutations in L1, a neuronal cell adhesion molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fransen, E.; Vits, L.; Van Camp, G.

    1996-07-12

    Mutations in the gene encoding the neuronal cell adhesion molecule L1 are responsible for several syndromes with clinical overlap, including X-linked hydrocephalus (XLH, HSAS), MASA (mental retardation, aphasia, shuffling gait, adducted thumbs) syndrome, complicated X-linked spastic paraplegia (SP 1), X-linked mental retardation-clasped thumb (MR-CT) syndrome, and some forms of X-linked agenesis of the corpus callosum (ACC). We review 34 L1 mutations in patients with these phenotypes. 22 refs., 3 figs., 4 tabs.

  14. Intramolecular and intermolecular N-H...C(5)H(5)(-) hydrogen bonding in magnesocene adducts of alkylamines. Implications for chemical vapor deposition using cyclopentadienyl source compounds.

    PubMed

    Xia, Aibing; Heeg, Mary Jane; Winter, Charles H

    2002-09-25

    Magnesocene adducts of alkylamines were prepared and characterized. Treatment of 3-amino-2,4-dimethylpentane, isopropylamine, tert-butylamine, benzylamine, or N-isopropylbenzylamine with magnesocene at ambient temperature in toluene afforded the amine adducts Cp2Mg(NH2CH(CH(CH3)2)2) (91%), Cp2Mg(NH2iPr) (80%), Cp2Mg(NH2tBu) (67%), Cp2Mg(NH2CH2Ph) (80%), and Cp2Mg(NH(CH(CH3)2)(CH2C6H5)) (91%). These adducts are stable at ambient temperature, and Cp2Mg(NH2CH(CH(CH3)2)2) can be sublimed at 60 degrees C/0.05 Torr without any evidence for reversion to magnesocene. The solid-state structure of Cp2Mg(NH2CH(CH(CH3)2)2) contains eta5- and eta2-cyclopentadienyl ligands, and the hydrogen atoms on the coordinated amine nitrogen atom participate in intramolecular and intermolecular hydrogen bonding to the eta2-cyclopentadienyl ligand. The observed hydrogen bonding is relevant to the path by which cyclopentadiene is eliminated from metal cyclopentadienyl CVD source compounds during film growth employing acidic element hydrides as co-reactants.

  15. Synthesis and Verification of Biobased Terephthalic Acid from Furfural

    PubMed Central

    Tachibana, Yuya; Kimura, Saori; Kasuya, Ken-ichi

    2015-01-01

    Exploiting biomass as an alternative to petrochemicals for the production of commodity plastics is vitally important if we are to become a more sustainable society. Here, we report a synthetic route for the production of terephthalic acid (TPA), the monomer of the widely used thermoplastic polymer poly(ethylene terephthalate) (PET), from the biomass-derived starting material furfural. Biobased furfural was oxidised and dehydrated to give maleic anhydride, which was further reacted with biobased furan to give its Diels-Alder (DA) adduct. The dehydration of the DA adduct gave phthalic anhydride, which was converted via phthalic acid and dipotassium phthalate to TPA. The biobased carbon content of the TPA was measured by accelerator mass spectroscopy and the TPA was found to be made of 100% biobased carbon. PMID:25648201

  16. Oxidation of cinnamic acid derivatives: A pulse radiolysis and theoretical study

    NASA Astrophysics Data System (ADS)

    Yadav, Pooja; Mohan, Hari; Maity, Dilip Kumar; Suresh, Cherumuttathu H.; Rao, B. S. Madhav

    2008-07-01

    Second order rate constants in the range of ( k = 1.6-4.5) × 10 9 dm 3 mol -1 s -1 were obtained for the rad OH induced oxidation of nitro- and methoxycinnamic acid derivatives in neutral solutions using pulse radiolysis. The transient absorption spectra exhibited a broad peak around 360-410 nm in o-methoxy, o- and p-nitrocinnamates or two peaks around 310-330 and 370-410 nm in other isomers. Quantum chemical calculations revealed that addition of rad OH to olefinic moiety yielded considerably more stable structures than ring addition products and the para system among the latter is the most stable. Spin density analysis suggested that olefinic adducts retained the aromaticity in contrast to its loss in ring rad OH adducts. An excellent linear correlation between the relative stabilities of the rad OH adducts (after accounting for the aromatic stabilization in olefinic adducts) and the maximum Sd values is also obtained.

  17. Gender differences in hip adduction motion and torque during a single-leg agility maneuver.

    PubMed

    Hewett, Timothy E; Ford, Kevin R; Myer, Gregory D; Wanstrath, Kim; Scheper, Melia

    2006-03-01

    The purpose of this study was to identify gender differences in hip motion and kinetics during a single leg bidirectional deceleration maneuver. The rationale for the development of this maneuver was to test dynamic hip control during the deceleration of three different types of single-leg landings. The hypothesis was that female athletes would display increased hip adduction angles and moments during the maneuver compared to male athletes. Thirty-six collegiate soccer players (19 female, 17 male) volunteered to participate. Subjects were instructed to start the maneuver balancing on one foot, to hop through an agility-speed ladder on the same leg "up two boxes, back one, and then up one and hold it." Hip kinematics and kinetics during all three landings were examined. Females demonstrated significantly greater hip adduction angles at initial contact during all three landings and greater maximal hip adduction during landings 1 and 2 compared to male athletes. Females also exhibited significantly increased external hip adduction moments during landing 1, however, no differences were found between genders during landings 2 and 3. Copyright 2006 Orthopaedic Research Society.

  18. [Determination of normal reference value of pyrrole adducts in urine in young people in a university in Shandong, China].

    PubMed

    Wang, Hui; Wang, Yiping; Zhou, Zhenwei; Wang, Shuo; Yin, Hongyin; Xie, Keqin

    2015-06-01

    To determine the normal reference value of pyrrole adducts in urine in young people in a university in Shandong, China, and to provide a reliable basis for the clinical diagnosis of n-hexane poisoning. A total of 240 college students were randomly selected. After excluding 32 ineligible students, 208 subjects were included in this study, consisting of 104 males and 104 females, with a mean age of 21?3 years (range: 18 to 24 years). Morning urine was collected from each subject. The content of pyrrole adducts was determined by chromatometry. The content of pyrrole adducts in both male and female obeyed a positively skewed distribution. The median level of pyrrole adducts in male subjects was 0.88 nmol/ml, and the reference value was 0.14-3.92 nmol/ml. The median level of pyrrole adducts in female subjects was 0.93 nmol/ ml, and the reference value was 0.09-3.27 nmol/ml. Student's t test identified no statistical difference in pyrrole adduct level between male and female subjects (t=0.15, P>0.05). The median level of pyrrole adducts in normal young people is 0.91 nmol/ml, and the reference value is 0.11-3.95 nmol/ml.

  19. Fabrication and electrochemical properties of insoluble fullerene-diamine adduct thin-films as buffer layer by alternate immersion process

    NASA Astrophysics Data System (ADS)

    Saito, Jo; Akiyama, Tsuyoshi; Suzuki, Atsushi; Oku, Takeo

    2017-01-01

    Insoluble fullerene-diamine adduct thin-films consisting of C60 and 1,2-diaminoethane were easily fabricated on an electrode by an alternate immersion process. Formation of the C60-diamine adduct films were confirmed using transmission absorption spectroscopy and atomic force microscopy. An inverted-type organic solar cells were fabricated by using the C60-diamine adduct film as the electron transport layer. The resultant photoelectric conversation performance of the solar cells suggested that photocurrent is generated via the photoexcitation of polythiophene. The result suggests that the present insoluble fullerene-diamine adduct films worked as buffer layer for organic thin-film solar cells.

  20. Mapping DNA adducts of mitomycin C and decarbamoyl mitomycin C in cell lines using liquid chromatography/electrospray tandem mass spectrometry

    PubMed Central

    Paz, Manuel M.; Ladwa, Sweta; Champeil, Elise; Liu, Yanfeng; Rockwell, Sara; Boamah, Ernest K.; Bargonetti, Jill; Callahan, John; Roach, John; Tomasz, Maria

    2009-01-01

    The antitumor antibiotic and cancer chemotherapeutic agent mitomycin C (MC) alkylates and cross-links DNA, forming six major MC-deoxyguanosine adducts of known structures in vitro and in vivo. Two of these adducts are derived from 2,7-diaminomitosene (2,7-DAM), a non-toxic reductive metabolite of MC formed in cells in situ. Several methods have been used for analysis of MC-DNA adducts in the past; however, a need exists for a safer, more comprehensive and direct assay of the six-adduct complex. Development of an assay, based on mass spectrometry is described. DNA from EMT6 mouse mammary tumor cells, Fanconi Anemia –A fibroblasts, normal human fibroblasts, and MCF-7 human breast cancer cells was isolated after MC or DMC treatment of the cells, digested to nucleosides and submitted to liquid chromatography electrospray-tandem mass spectrometry. Two fragments of each parent ion were monitored (“multiple reaction monitoring”; MRM). Identification and quantitative analysis was based on a standard mixture of six adducts, the preparation of which is described here in detail. The lower limit of detection of adducts is estimated as 0.25 picomol. Three initial applications of this method are reported: (i) differential kinetics of adduct repair in EMT6 cells; (ii) analysis of adducts in MC- or DMC-treated Fanconi Anemia cells; and (iii) comparison of the adducts generated by treatment of MCF-7 breast cancer cells with MC and DMC. Notable results are the following: repair removal of the DNA interstrand cross-link and of the two adducts of 2,7-DAM is relatively slow; both MC and DMC generate DNA interstrand cross-links in human fibroblasts, Fanconi Anemia-A fibroblasts and MCF-7 cells as well as EMT6 cells; DMC shows a stereochemical preference of linkage to the guanine-2-amino group opposite from that of MC. PMID:19053323

  1. Mapping DNA adducts of mitomycin C and decarbamoyl mitomycin C in cell lines using liquid chromatography/ electrospray tandem mass spectrometry.

    PubMed

    Paz, Manuel M; Ladwa, Sweta; Champeil, Elise; Liu, Yanfeng; Rockwell, Sara; Boamah, Ernest K; Bargonetti, Jill; Callahan, John; Roach, John; Tomasz, Maria

    2008-12-01

    The antitumor antibiotic and cancer chemotherapeutic agent mitomycin C (MC) alkylates and crosslinks DNA, forming six major MC-deoxyguanosine adducts of known structures in vitro and in vivo. Two of these adducts are derived from 2,7-diaminomitosene (2,7-DAM), a nontoxic reductive metabolite of MC formed in cells in situ. Several methods have been used for the analysis of MC-DNA adducts in the past; however, a need exists for a safer, more comprehensive and direct assay of the six-adduct complex. Development of an assay, based on mass spectrometry, is described. DNA from EMT6 mouse mammary tumor cells, Fanconi Anemia-A fibroblasts, normal human fibroblasts, and MCF-7 human breast cancer cells was isolated after MC or 10-decarbamoyl mitomycin C (DMC) treatment of the cells, digested to nucleosides, and submitted to liquid chromatography electrospray-tandem mass spectrometry. Two fragments of each parent ion were monitored ("multiple reaction monitoring"). Identification and quantitative analysis were based on a standard mixture of six adducts, the preparation of which is described here in detail. The lower limit of detection of adducts is estimated as 0.25 pmol. Three initial applications of this method are reported as follows: (i) differential kinetics of adduct repair in EMT6 cells, (ii) analysis of adducts in MC- or DMC-treated Fanconi Anemia cells, and (iii) comparison of the adducts generated by treatment of MCF-7 breast cancer cells with MC and DMC. Notable results are the following: Repair removal of the DNA interstrand cross-link and of the two adducts of 2,7-DAM is relatively slow; both MC and DMC generate DNA interstrand cross-links in human fibroblasts, Fanconi Anemia-A fibroblasts, and MCF-7 cells as well as EMT6 cells; and DMC shows a stereochemical preference of linkage to the guanine-2-amino group opposite from that of MC.

  2. Determinants of anti-benzo[a]pyrene diol epoxide-DNA adduct formation in lymphomonocytes of the general population.

    PubMed

    Pavanello, Sofia; Pulliero, Alessandra; Saia, Bruno Onofrio; Clonfero, Erminio

    2006-12-10

    We evaluated determinants of anti-benzo[a]pyrenediolepoxide-(B[a]PDE)-DNA adduct formation (adduct induced by the ultimate carcinogenic metabolite of B[a]P) in lymphomonocytes of subjects environmentally exposed to low doses of polycyclic aromatic hydrocarbons (PAHs) (B[a]P). Our study population consisted of 585 Caucasian subjects, all municipal workers living in North-East Italy and recruited during their periodic check-ups after informed consent. PAH (B[a]P) exposure was assessed by questionnaire. Anti-B[a]PDE-DNA levels were measured by HPLC fluorescence analysis. We found that cigarette smoking (smokers (22%) versus non-smokers, p<0.0001), dietary intake of PAH-rich meals (> or =52 (38%) versus <52 times/year, p<0.0001), and outdoor exposure (> or =4 (19%) versus <4h/day; p=0.0115) significantly influenced adduct levels. Indoor exposure significantly increased the frequency of positive subjects (> or =0.5 adducts/10(8) nucleotides; chi(2) for linear trend, p=0.051). In linear multiple regression analysis the major determinants of increased DNA adduct levels (ln values) were smoking (t=6.362, p<0.0001) and diet (t=4.035, p<0.0001). In this statistical analysis, indoor and outdoor exposure like other factors of PAH exposure had no influence. In non-smokers, the influence of diet (p<0.0001) and high indoor exposure (p=0.016) on anti-B[a]PDE-DNA adduct formation became more evident, but not that of outdoor exposure, as was confirmed by linear multiple regression analysis (diet, t=3.997, p<0.0001 and high indoor exposure, t=2.522, p=0.012). This study indicates that anti-B[a]PDE-DNA adducts can be detected in the general population and are modulated by PAH (B[a]P) exposure not only with smoking - information already known from studies with limited number of subjects - but also with dietary habits and high indoor exposure. In non-smokers, these two factors are the principal determinants of DNA adduct formation. The information provided here seems to be important

  3. Bypass of Aflatoxin B[subscript 1] Adducts by the Sulfolobus solfataricus DNA Polymerase IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Surajit; Brown, Kyle L.; Egli, Martin

    Aflatoxin B{sub 1} (AFB{sub 1}) is oxidized to an epoxide in vivo, which forms an N7-dG DNA adduct (AFB{sub 1}-N7-dG). The AFB{sub 1}-N7-dG can rearrange to a formamidopyrimidine (AFB{sub 1}-FAPY) derivative. Both AFB{sub 1}-N7-dG and the {beta}-anomer of the AFB{sub 1}-FAPY adduct yield G {yields} T transversions in Escherichia coli, but the latter is more mutagenic. We show that the Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) bypasses AFB{sub 1}-N7-dG in an error-free manner but conducts error-prone replication past the AFB{sub 1}-FAPY adduct, including misinsertion of dATP, consistent with the G {yields} T mutations observed in E. coli. Three ternarymore » (Dpo4-DNA-dNTP) structures with AFB{sub 1}-N7-dG adducted template:primers have been solved. These demonstrate insertion of dCTP opposite the AFB{sub 1}-N7-dG adduct, and correct vs incorrect insertion of dATP vs dTTP opposite the 5'-template neighbor dT from a primed AFB{sub 1}-N7-dG:dC pair. The insertion of dTTP reveals hydrogen bonding between the template N3 imino proton and the O{sup 2} oxygen of dTTP, and between the template T O{sup 4} oxygen and the N3 imino proton of dTTP, perhaps explaining why this polymerase does not efficiently catalyze phosphodiester bond formation from this mispair. The AFB{sub 1}-N7-dG maintains the 5'-intercalation of the AFB{sub 1} moiety observed in DNA. The bond between N7-dG and C8 of the AFB{sub 1} moiety remains in plane with the alkylated guanine, creating a 16{sup o} inclination of the AFB{sub 1} moiety with respect to the guanine. A binary (Dpo4-DNA) structure with an AFB{sub 1}-FAPY adducted template:primer also maintains 5'-intercalation of the AFB{sub 1} moiety. The {beta}-deoxyribose anomer is observed. Rotation about the FAPY C5-N{sup 5} bond orients the bond between N{sup 5} and C8 of the AFB{sub 1} moiety out of plane in the 5'-direction, with respect to the FAPY base. The formamide group extends in the 3'-direction. This improves stacking of the AFB

  4. CYP1A2 and NAT2 phenotyping and 3-aminobiphenyl and 4-aminobiphenyl hemoglobin adduct levels in smokers and non-smokers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Mohamadi; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298; Stabbert, Regina

    Some aromatic amines are considered to be putative bladder carcinogens. Hemoglobin (Hb) adducts of 3-aminobiphenyl (3-ABP) and 4-aminobiphenyl (4-ABP) have been used as biomarkers of exposure to aromatic amines from cigarette smoke. One of the goals of this study was to determine intra- and inter-individual variability in 3-ABP and 4-ABP Hb adducts and to explore the predictability of ABP Hb adduct levels based on caffeine phenotyping. The study was conducted in adult smokers (S, n = 65) and non-smokers (NS, n 65). The subjects were phenotyped for CYP1A2 and NAT2 using urinary caffeine metabolites. Blood samples were collected twice withinmore » 6 weeks and adducts measured by GC/MS. The levels of 4-ABP Hb adducts were significantly (p < 0.0001) greater in S (34.5 {+-} 21.06 pg/g Hb) compared to NS (6.3 {+-} 3.02 pg/g Hb). The levels of 3-ABP Hb adducts were below the limit of quantification (BLOQ) in most (82%) of the NS and about 10-fold lower in S (3.6 {+-} 3.29 pg/g Hb) compared to 4-ABP Hb adducts. No differences were observed in the adduct levels between weeks 1 and 6 in the smokers, suggesting that a single sample would be adequate to monitor cigarette smoke exposure. The regression model developed with CYP1A2, NAT2 phenotype and number of cigarettes smoked (NCIG) accounted for 47% of the variability in 3-ABP adducts, whereas 32% variability in 4-ABP adducts was accounted by CYP1A2 and NCIG. The ratio of 4-ABP Hb adducts in adult S:NS was {approx} 5:1, whereas 3-ABP Hb adducts levels were BLOQ in some S, exhibited large interindividual variability ({approx} 91% compared to 57% for 4-ABP Hb) and poor dose response relationship. Therefore, 4-ABP Hb adduct levels may be a more useful biomarker of aminobiphenyl exposure from cigarette smoke.« less

  5. Controlled synthesis and inclusion ability of a hyaluronic acid derivative bearing beta-cyclodextrin molecules.

    PubMed

    Charlot, Aurélia; Heyraud, Alain; Guenot, Pierre; Rinaudo, Marguerite; Auzély-Velty, Rachel

    2006-03-01

    A new synthetic route to beta-cyclodextrin-linked hyaluronic acid (HA-CD) was developed. This was based on the preparation of a HA derivative selectively modified with adipic dihydrazide (HA-ADH) and a beta-cyclodextrin derivative possessing an aldehyde function on the primary face, followed by their coupling by a reductive amination-type reaction. The CD-polysaccharide was fully characterized in terms of chemical integrity and purity by high-resolution NMR spectroscopy. The complexation ability of the grafted CD was further demonstrated by isothermal titration calorimetry using sodium adamantane acetate (ADAc) and Ibuprofen as model guest molecules. The thermodynamic parameters for the complexation of these negatively charged guest molecules by the beta-CD grafted on negatively charged HA were shown to be largely influenced by the ionic strength of the aqueous medium.

  6. Blood Pyrrole-Protein Adducts--A Biomarker of Pyrrolizidine Alkaloid-Induced Liver Injury in Humans.

    PubMed

    Ruan, Jianqing; Gao, Hong; Li, Na; Xue, Junyi; Chen, Jie; Ke, Changqiang; Ye, Yang; Fu, Peter Pi-Cheng; Zheng, Jiang; Wang, Jiyao; Lin, Ge

    2015-01-01

    Pyrrolizidine alkaloids (PAs) induce liver injury (PA-ILI) and is very likely to contribute significantly to drug-induced liver injury (DILI). In this study we used a newly developed ultra-high performance liquid chromatography-triple quadrupole-mass spectrometry (UHPLC-MS)-based method to detect and quantitate blood pyrrole-protein adducts in DILI patients. Among the 46 suspected DILI patients, 15 were identified as PA-ILI by the identification of PA-containing herbs exposed. Blood pyrrole-protein adducts were detected in all PA-ILI patients (100%). These results confirm that PA-ILI is one of the major causes of DILI and that blood pyrrole-protein adducts quantitated by the newly developed UHPLC-MS method can serve as a specific biomarker of PA-ILI.

  7. Analysis of tamoxifen-DNA adducts in endometrial explants by MS and 32P-postlabeling.

    PubMed

    Beland, Frederick A; Churchwell, Mona I; Hewer, Alan; Phillips, David H; Gamboa da Costa, Gonçalo; Marques, M Matilde

    2004-07-23

    The nonsteroidal antiestrogen tamoxifen increases the risk of endometrial cancer; however, the mechanism for the induction of these tumors is not known. Recently, Sharma et al. [Biochem. Biophys. Res. Commun. 307 (2003) 157], using high performance liquid chromatography (HPLC) with online postcolumn photochemical activation and fluorescence detection, reported the presence of (E)-alpha-(deoxyguanosin- N2-yl)tamoxifen in DNA from human endometrial explants incubated with tamoxifen. Inasmuch as the methodology used by these investigators does not allow unambiguous characterization of tamoxifen-DNA adducts, we have used two additional techniques (HPLC coupled with electrospray ionization tandem mass spectrometry and 32P-postlabeling analyses) to assay for the presence of tamoxifen-DNA adducts in the human endometrial explant DNA. Tamoxifen-DNA adducts were not detected by either method.

  8. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    PubMed Central

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K.; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P.; Rondo, Linda; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S.; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M.; Worsnop, Douglas R.

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  9. Quantification of Hemoglobin and White Blood Cell DNA Adducts of the Tobacco Carcinogens 2-Amino-9H-pyrido[2,3-b]indole and 4-Aminobiphenyl Formed in Humans by Nanoflow Liquid Chromatography/Ion Trap Multistage Mass Spectrometry.

    PubMed

    Cai, Tingting; Bellamri, Medjda; Ming, Xun; Koh, Woon-Puay; Yu, Mimi C; Turesky, Robert J

    2017-06-19

    Aromatic amines covalently bound to hemoglobin (Hb) as sulfinamide adducts at the cysteine 93 residue of the Hb β chain have served as biomarkers to assess exposure to this class of human carcinogens for the past 30 years. In this study, we report that 2-amino-9H-pyrido[2,3-b]indole (AαC), an abundant carcinogenic heterocyclic aromatic amine formed in tobacco smoke and charred cooked meats, also reacts with Hb to form a sulfinamide adduct. A novel nanoflow liquid chromatography/ion trap multistage mass spectrometry (nanoLC-IT/MS 3 ) method was established to assess exposure to AαC and the tobacco-associated bladder carcinogen 4-aminobiphenyl (4-ABP) through their Hb sulfinamide adducts. Following mild acid hydrolysis of Hb in vitro, the liberated AαC and 4-ABP were derivatized with acetic anhydride to form the N-acetylated amines, which were measured by nanoLC-IT/MS 3 . The limits of quantification (LOQ) for AαC- and 4-ABP-Hb sulfinamide adducts were ≤7.1 pg/g Hb. In a pilot study, the mean level of Hb sulfinamide adducts of AαC and 4-ABP were, respectively, 3.4-fold and 4.8-fold higher in smokers (>20 cigarettes/day) than nonsmokers. In contrast, the major DNA adducts of 4-ABP, N-(2'-deoxyguanosin-8-yl)-4-aminobiphenyl, and AαC, N-(2'-deoxyguanosin-8-yl)-2-amino-9H-pyrido[2,3-b]indole, were below the LOQ (3 adducts per 10 9 bases) in white blood cell (WBC) DNA of smokers and nonsmokers. These findings reaffirm that tobacco smoke is a major source of exposure to AαC. Hb sulfinamide adducts are suitable biomarkers to biomonitor 4-ABP and AαC; however, neither carcinogen binds to DNA in WBC, even in heavy smokers, at levels sufficient for biomonitoring.

  10. Evaluation of polycyclic aromatic hydrocarbon-DNA adducts in exfoliated oral cells by an immunohistochemical assay.

    PubMed

    Romano, G; Sgambato, A; Boninsegna, A; Flamini, G; Curigliano, G; Yang, Q; La Gioia, V; Signorelli, C; Ferro, A; Capelli, G; Santella, R M; Cittadini, A

    1999-01-01

    Polycyclic aromatic hydrocarbon-DNA adducts were evaluated in oral cells from 98 healthy volunteers by an immunohistochemical method using a specific antiserum against benzo(a)pyrene-DNA adducts revealed by the immunoperoxidase reaction. Mean adduct content, determined as relative staining intensity by absorbance image analyzer, was significantly higher in the cells from tobacco smokers compared with nonsmokers (330 +/- 98, n = 33 versus 286 +/- 83, n = 64, respectively) with a P = 0.013 obtained by two-sample t test with equal variances. We found that in the smoker group, the PAH-DNA adduct content increases with the number of cigarettes. Thus, the relative staining intensity was 305 +/- 105 in the group smoking 1-10 cigarettes/day (n = 16), 347 +/- 77 in the 11-20 group (n = 14), and 386 +/- 112 in the group smoking more than 20 cigarettes/day (n = 3; P = 0.03 by nonparametric test for trend). No significant association was detected between PAH-DNA adducts in oral cells and variables such as residential area, oral infections, alcohol or vitamin intake, grilled food consumption, and professional activity. This work confirms and extends previous data suggesting that this immunohistochemical method might be used as a valuable dosimeter of genotoxic damage in a carcinogen-exposed population, although further studies are needed to verify the applicability of the test in high-risk populations other than smokers.

  11. Formation of DNA adducts by ellipticine and its micellar form in rats - a comparative study.

    PubMed

    Stiborova, Marie; Manhartova, Zuzana; Hodek, Petr; Adam, Vojtech; Kizek, Rene; Frei, Eva

    2014-12-03

    The requirements for early diagnostics as well as effective treatment of cancer diseases have increased the pressure on development of efficient methods for targeted drug delivery as well as imaging of the treatment success. One of the most recent approaches covering the drug delivery aspects is benefitting from the unique properties of nanomaterials. Ellipticine and its derivatives are efficient anticancer compounds that function through multiple mechanisms. Formation of covalent DNA adducts after ellipticine enzymatic activation is one of the most important mechanisms of its pharmacological action. In this study, we investigated whether ellipticine might be released from its micellar (encapsulated) form to generate covalent adducts analogous to those formed by free ellipticine. The (32)P-postlabeling technique was used as a useful imaging method to detect and quantify covalent ellipticine-derived DNA adducts. We compared the efficiencies of free ellipticine and its micellar form (the poly(ethylene oxide)-block-poly(allyl glycidyl ether) (PAGE-PEO) block copolymer, P 119 nanoparticles) to form ellipticine-DNA adducts in rats in vivo. Here, we demonstrate for the first time that treatment of rats with ellipticine in micelles resulted in formation of ellipticine-derived DNA adducts in vivo and suggest that a gradual release of ellipticine from its micellar form might produce the enhanced permeation and retention effect of this ellipticine-micellar delivery system.

  12. Hypothesis of Lithocoding: Origin of the Genetic Code as a "Double Jigsaw Puzzle" of Nucleobase-Containing Molecules and Amino Acids Assembled by Sequential Filling of Apatite Mineral Cellules.

    PubMed

    Skoblikow, Nikolai E; Zimin, Andrei A

    2016-05-01

    The hypothesis of direct coding, assuming the direct contact of pairs of coding molecules with amino acid side chains in hollow unit cells (cellules) of a regular crystal-structure mineral is proposed. The coding nucleobase-containing molecules in each cellule (named "lithocodon") partially shield each other; the remaining free space determines the stereochemical character of the filling side chain. Apatite-group minerals are considered as the most preferable for this type of coding (named "lithocoding"). A scheme of the cellule with certain stereometric parameters, providing for the isomeric selection of contacting molecules is proposed. We modelled the filling of cellules with molecules involved in direct coding, with the possibility of coding by their single combination for a group of stereochemically similar amino acids. The regular ordered arrangement of cellules enables the polymerization of amino acids and nucleobase-containing molecules in the same direction (named "lithotranslation") preventing the shift of coding. A table of the presumed "LithoCode" (possible and optimal lithocodon assignments for abiogenically synthesized α-amino acids involved in lithocoding and lithotranslation) is proposed. The magmatic nature of the mineral, abiogenic synthesis of organic molecules and polymerization events are considered within the framework of the proposed "volcanic scenario".

  13. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    PubMed Central

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-01-01

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. PMID:23566956

  14. Kinetics and Thermochemistry of Reversible Adduct Formation in the Reaction of Cl((sup 2)P(sub J)) with CS2

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Shackelford, C. J.; Wine, P. H.

    1997-01-01

    Reversible adduct formation in the reaction of Cl((sup 2)P(sub J)) with CS2 has been observed over the temperature range 193-258 K by use of time-resolved resonance fluorescence spectroscopy to follow the decay of pulsed-laser-generated Cl((sup 2)P(sub J)) into equilbrium with CS2Cl. Rate coefficients for CS2Cl formation and decomposition have been determined as a function of temperature and pressure; hence, the equilbrium constant has been determined as a function of temperature. A second-law analysis of the temperature dependence of Kp and heat capacity corrections calculated with use of an assumed CS2Cl structure yields the following thermodynamic parameters for the association reaction: Delta-H(sub 298) = -10.5 +/- 0.5 kcal/mol, Delta-H(sub 0) = -9.5 +/- 0.7 kcal/mol, Delta-S(sub 298) = -26.8 +/- 2.4 cal/mol.deg., and Delta-H(sub f,298)(CS2Cl) = 46.4 +/- 0.6 kcal/mol. The resonance fluorescence detection scheme has been adapted to allow detection of Cl((sup 2)P(sub J)) in the presence of large concentrations of O2, thus allowing the CS2Cl + Cl + O2 reaction to be investigated. We find that the rate coefficient for CS2Cl + O2 reaction via all channels that do not generate Cl((sup 2)P(sub J)) is less than 2.5 x 10(exp-16) cu cm/(molecule.s) at 293 K and 300-Torr total pressure and that the total rate coefficient is less than 2 x 10 (exp -15) cu cm/(molecule.s) at 230 K and 30-Torr total pressure. Evidence for reversible adduct formation in the reaction of Cl((sup 2)P(sub J)) with COS was sought but not observed, even at temperatures as low as 194 K.

  15. In silico Screening and Evaluation of the Anticonvulsant Activity of Docosahexaenoic Acid-Like Molecules in Experimental Models of Seizures.

    PubMed

    Gharibi Loron, Ali; Sardari, Soroush; Narenjkar, Jamshid; Sayyah, Mohammad

    2017-01-01

    Resistance to antiepileptic drugs and the intolerability in 20-30% of the patients raises demand for developing new drugs with improved efficacy and safety. Acceptable anticonvulsant activity, good tolerability, and inexpensiveness of docosahexaenoic acid (DHA) make it as a good candidate for designing and development of the new anticonvulsant medications. Ten DHA-based molecules were screened based on in silico screening of DHA-like molecules by root-mean-square deviation of atomic positions, the biological activity score of Professional Association for SQL Server, and structural requirements suggested by pharmacophore design. Anticonvulsant activity was tested against clonic seizures induced by pentylenetetrazole (PTZ, 60 mg/kg, i.p.) and tonic seizures induced by maximal electroshock (MES, 50 mA, 50 Hz, 1 ms duration) by intracerebroventricular (i.c.v.) injection of the screened compounds to mice. Among screened compounds, 4-Phenylbutyric acid, 4-Biphenylacetic acid, phenylacetic acid, and 2-Phenylbutyric acid showed significant protective activity in pentylenetetrazole test with ED50 values of 4, 5, 78, and 70 mM, respectively. In MES test, shikimic acid and 4-tert-Butylcyclo-hexanecarboxylic acid showed significant activity with ED50 values 29 and 637 mM, respectively. Effective compounds had no mortality in mice up to the maximum i.c.v. injectable dose of 1 mM. Common electrochemical features and three-dimensional spatial structures of the effective compounds suggest the involvement of the anticonvulsant mechanisms similar to the parent compound DHA.

  16. In silico Screening and Evaluation of the Anticonvulsant Activity of Docosahexaenoic Acid-Like Molecules in Experimental Models of Seizures

    PubMed Central

    Loron, Ali Gharibi; Sardari, Soroush; Narenjkar, Jamshid; Sayyah, Mohammad

    2017-01-01

    Background: Resistance to antiepileptic drugs and the intolerability in 20-30% of the patients raises demand for developing new drugs with improved efficacy and safety. Acceptable anticonvulsant activity, good tolerability, and inexpensiveness of docosahexaenoic acid (DHA) make it as a good candidate for designing and development of the new anticonvulsant medications. Methods: Ten DHA-based molecules were screened based on in silico screening of DHA-like molecules by root-mean-square deviation of atomic positions, the biological activity score of Professional Association for SQL Server, and structural requirements suggested by pharmacophore design. Anticonvulsant activity was tested against clonic seizures induced by pentylenetetrazole (PTZ, 60 mg/kg, i.p.) and tonic seizures induced by maximal electroshock (MES, 50 mA, 50 Hz, 1 ms duration) by intracerebroventricular (i.c.v.) injection of the screened compounds to mice. Results: Among screened compounds, 4-Phenylbutyric acid, 4-Biphenylacetic acid, phenylacetic acid, and 2-Phenylbutyric acid showed significant protective activity in pentylenetetrazole test with ED50 values of 4, 5, 78, and 70 mM, respectively. In MES test, shikimic acid and 4-tert-Butylcyclo-hexanecarboxylic acid showed significant activity with ED50 values 29 and 637 mM, respectively. Effective compounds had no mortality in mice up to the maximum i.c.v. injectable dose of 1 mM. Conclusion: Common electrochemical features and three-dimensional spatial structures of the effective compounds suggest the involvement of the anticonvulsant mechanisms similar to the parent compound DHA. PMID:27592363

  17. Novel LC-ESI/MS/MSn Method for the Characterization and Quantification of 2′-Deoxyguanosine Adducts of the Dietary Carcinogen 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by 2-D Linear Quadrupole Ion Trap Mass Spectrometry

    PubMed Central

    Goodenough, Angela K.; Schut, Herman A. J.; Turesky, Robert J.

    2008-01-01

    An accurate and sensitive liquid chromatography-electrospray ionization/multi-stage mass spectrometry (LC-ESI/MS/MSn) technique has been developed for the characterization and quantification of 2′-deoxyguanosine (dG) adducts of the dietary mutagen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). PhIP is an animal and potential human carcinogen that occurs in grilled meats. Following enzymatic digestion and adduct enrichment by solid-phase extraction (SPE), PhIP—DNA adducts were analyzed by MS/MS and MSn scan modes on a 2-D linear quadrupole ion trap mass spectrometer (QIT/MS). The major DNA adduct, N-(deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP), was detected in calf thymus (CT) DNA modified in vitro with a bioactivated form of PhIP and in the colon and liver of rats given PhIP as part of the diet. The lower limit of detection (LOD) was 1 adduct per 108 DNA bases, and the limit of quantification (LOQ) was 3 adducts per 108 DNA bases in both MS/MS and MS3 scan modes, using 27 μg of DNA for analysis. Measurements were based on isotope dilution with the internal standard, N-(deoxyguanosin-8-yl)-2-amino-1-(trideutero)methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-[2H3C]-PhIP). The selected reaction monitoring (SRM) scan mode in MS/MS was employed to monitor the loss of deoxyribose (dR) from the protonated molecules of the adducts ([M + H - 116]+). The consecutive reaction monitoring (CRM) scan modes in MS3 and MS4 were used to measure and further characterize product ions of the aglycone ion (BH2+) (Guanyl-PhIP). The MS3 scan mode was effective in eliminating isobaric interferences observed in the MS/MS scan mode and resulted in an improved signal-to-noise (S/N) ratio. Moreover, the product ion spectra obtained by the MSn scan modes provided rich structural information about the adduct and were used to corroborate the identity of dG-C8-PhIP. In addition, an isomeric dG-PhIP adduct was detected in vivo. This LCESI

  18. INVESTIGATION OF THE RADICAL-MEDIATED PRODUCTION OF BENZENE OXIDE PROTEIN ADDUCTS IN VITRO AND IN VIVO

    EPA Science Inventory

    High background levels of benzene oxide (BO) adducts with hemoglobin and albumin (BO-Hb and BO-Alb) have been measured in unexposed humans and animals. To test the influence of radical-mediated pathways on production of these BO-protein adducts, we employed Fenton chemistry to...

  19. Spectral characterization of guanine C4-OH adduct: a radiation and quantum chemical study.

    PubMed

    Phadatare, Suvarna D; Sharma, Kiran Kumar K; Rao, B S M; Naumov, S; Sharma, Geeta K

    2011-11-24

    The reaction of hydroxyl radical ((•)OH) with guanine was investigated under restricted pH condition (pH 4.6) using pulse radiolysis technique. The time-resolved optical transient absorption spectra showed two peaks centered at 300 and 330 nm at 4 μs after the pulse which exhibited different reactivity toward molecular oxygen (O(2)). The peak at 300 nm was found to be relatively more stable than the peak at 330 nm. The peak corresponding to 330 nm decayed within 20 μs having a first order rate constant 4-7 × 10(4) s(-1) and was pH dependent. On longer time scale, the species decayed by a bimolecular process. The presence of O(2) did not affect its decay rate constant. The (•)OH reacts with guanine at pH 4.6 with a diffusion-controlled second order rate constant of ≥1 × 10(10) mol(-1) dm(3) s(-1). The reaction of Br(2)(•-), O(2)(•-), and 2-hydroxy-2-propyl radical with guanine was also investigated to differentiate among the one-electron oxidized, one-electron reduced species of guanine and the guanine-OH adducts formed in the reaction of (•)OH at pH 4.6. On the basis of the spectral characteristics and reactivity toward O(2), two guanine-OH adduct species were identified (i) the C4-OH adduct species absorbing at 330 nm which has not been reported so far and (ii) the C8-OH adduct species absorbing at 300 nm in agreement with the known literature absorption features. Quantum chemical calculations using BHandHLYP with 6-31+G(d,p) basis set and excited state calculations using TDDFT for all possible transients complement the assignment of the observed spectral peak at 330 nm to the C4-OH adduct of guanine. Furthermore, steady state radiolysis revealed the formation of 8-hydroxy-guanine whose precursor is known to be the C8-OH adduct species. © 2011 American Chemical Society

  20. Sodiated Sugar Structures: Cryogenic Ion Vibrational Spectroscopy of Na^+(GLUCOSE) Adducts

    NASA Astrophysics Data System (ADS)

    Voss, Jonathan; Kregel, Steven J.; Fischer, Kaitlyn C.; Garand, Etienne

    2017-06-01

    The recent discovery that ionic liquids help facilitate the dissolution of cellulose has renewed interest in understanding how ionic species interact with carbohydrates. Here we present infrared spectra in the 2800 - 3800 \\wn range of gas-phase mass-selected Na^+(Glucose) adducts. These adducts are further probed with IR-dip spectroscopy to yield conformer specific spectra of at least seven unique species. The relative abundances of conformers show that gas-phase interconversion barriers are sufficiently high to preserve the solution-phase populations. Additionally, our results demonstrate that mM concentrations of NaCl do not strongly perturb the anomeric ratio of glucose in solution.

  1. Malondialdehyde-Acetaldehyde (MAA) Adducted Surfactant Protein Alters Macrophage Functions through Scavenger Receptor A

    PubMed Central

    Sapkota, Muna; Kharbanda, Kusum K.; Wyatt, Todd A.

    2016-01-01

    Background Reactive aldehydes like acetaldehyde and malondialdehyde generated as a result of alcohol metabolism and cigarette smoke exposure lead to the formation of malondialdehyde-acetaldehyde-adducted proteins (MAA adducts). These aldehydes can adduct to different proteins such as bovine serum album (BSA) and surfactant proteins A or D (SPA, SPD). Macrophages play an important role in innate immunity, but the effect of MAA adducts on macrophage function has not yet been examined. Because macrophage scavenger receptor A (SRA; CD204) mediates the uptake of modified proteins, we hypothesized that the effects of MAA modified proteins on macrophage function are primarily mediated through SRA. Methods and Results We tested this hypothesis by exposing SPD-MAA to macrophages and measuring functions. SPD-MAA treatment significantly stimulated pro-inflammatory cytokine TNF-α release in the macrophage cell line, RAW 264.7. A significant reduction in phagocytosis of zymosan particles was also observed. SPD-MAA stimulated a significant dose-dependent increase in TNF-α and IL-6 release from peritoneal macrophages of WT mice. But a significantly less TNF-α and IL-6 were released from peritoneal macrophages of SRA−/− mice. We observed a significant reduction in phagocytosis of zymosan particles in peritoneal macrophages from WT mice treated with SPD-MAA. No further SPD-MAA-induced reduction was seen in peritoneal macrophages form SRA−/− mice. SPD-MAA treatment significantly increased SRA mRNA expression, but had no effect on surface receptor protein expression. Protein kinase C alpha inhibitor and NF-κB inhibitor significantly reduced pro-inflammatory cytokine release in response to SPD-MAA. Conclusion In conclusion, our data demonstrate that SRA is important for MAA-adducted protein-mediated effect on macrophage functions. PMID:27783409

  2. Mycosporine-like amino acids are multifunctional molecules in sea hares and their marine community

    PubMed Central

    Kicklighter, Cynthia E.; Kamio, Michiya; Nguyen, Linh; Germann, Markus W.; Derby, Charles D.

    2011-01-01

    Molecules of keystone significance are relatively rare, yet mediate a variety of interactions between organisms. They influence the distribution and abundance of species, the transfer of energy across multiple trophic levels, and thus they play significant roles in structuring ecosystems. Despite their potential importance in facilitating our understanding of ecological systems, only three molecules thus far have been proposed as molecules of keystone significance: saxitoxin and dimethyl sulfide in marine communities and tetrodotoxin in riparian communities. In the course of studying the neuroecology of chemical defenses, we identified three mycosporine-like amino acids (MAAs)—N-ethanol palythine (= asterina-330), N-isopropanol palythine (= aplysiapalythine A), and N-ethyl palythine (= aplysiapalythine B)—as intraspecific alarm cues for sea hares (Aplysia californica). These alarm cues are released in the ink secretion of sea hares and cause avoidance behaviors in neighboring conspecifics. Further, we show that these three bioactive MAAs, two [aplysiapalythine A (APA) and -B (APB)] being previously unknown molecules, are present in the algal diet of sea hares and are concentrated in their defensive secretion as well as in their skin. MAAs are known to be produced by algae, fungi, and cyanobacteria and are acquired by many aquatic animals through trophic interactions. MAAs are widely used as sunscreens, among other uses, but sea hares modify their function to serve a previously undocumented role, as intraspecific chemical cues. Our findings highlight the multifunctionality of MAAs and their role in ecological connectivity, suggesting that they may function as molecules of keystone significance in marine ecosystems. PMID:21709250

  3. Reaction of glyoxal with 2'-deoxyguanosine, 2'-deoxyadenosine, 2'-deoxycytidine, cytidine, thymidine, and calf thymus DNA: identification of DNA adducts.

    PubMed

    Olsen, Raymond; Molander, Paal; Øvrebø, Steinar; Ellingsen, Dag G; Thorud, Syvert; Thomassen, Yngvar; Lundanes, Elsa; Greibrokk, Tyge; Backman, Josefin; Sjöholm, Rainer; Kronberg, Leif

    2005-04-01

    Glyoxal (ethanedial) is an increasingly used industrial chemical that has been found to be mutagenic in bacteria and mammalian cells. In this study, the reactions of glyoxal with 2'-deoxyguanosine, 2'-deoxyadenosine, 2'-deoxycytidine, cytidine, thymidine, and calf thymus DNA have been studied in aqueous buffered solutions. The nucleoside adducts were isolated by reversed-phase liquid chromatography and characterized by their UV absorbance and 1H and 13C NMR spectroscopic and mass spectrometric features. The reaction with 2'-deoxyguanosine gave one adduct, the previously known 3-(2'-deoxy-beta-D-erythro-pentofuranosyl)-5,6,7-trihydro-6,7-dihydroxyimidazo[1,2-a]purine-9-one adduct. The reaction of 2'-deoxyadenosine with glyoxal resulted in the formation of a previously not reported N6-(hydroxyacetyl)-2'-deoxyadenosine adduct. In the reaction of glyoxal with 2'-deoxycytidine and cytidine at neutral conditions and 37 degrees C, 5-hydroxyacetyl pyrimidine derivatives were obtained. When the cytidine reaction was performed at pH 4.5 and 50 degrees C, the 5-hydroxyacetyl derivative of uridine was formed through deamination of cytidine-glyoxal. Adducts in the thymidine reaction could not be detected. In the reaction of glyoxal with calf thymus DNA, the 2'-deoxyguanosine-glyoxal and 2'-deoxyadenosine-glyoxal adducts were obtained, the former being the major adduct.

  4. Electrophilic properties of common MALDI matrix molecules

    NASA Astrophysics Data System (ADS)

    Lippa, T. P.; Eustis, S. N.; Wang, D.; Bowen, K. H.

    2007-11-01

    The negative ion photoelectron spectra of the following MALDI matrix molecules have been measured: 3-carboxypyridine (nicotinic acid), 2,5-dihydroxybenzoic acid (DHB), 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid), 2,6-dihydroxyacetophenone (DHAP), 3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid (ferulic acid), 3-hydroxy-2-pyridinecarboxylic acid (3HPA), and 2,6-pyridinedicarboxylic acid (dipicolinic acid). Adiabatic electron affinities and vertical detachment energies were extracted from these spectra and reported. In addition, electron affinities were calculated for DHAP, ferulic acid, dipicolinic acid and sinapinic acid. Photoelectron spectra were also measured for the dimer anions of DHB and nicotinic acid and for the fragment anion in which alpha-cyano-cinnamic acid had lost a CO2 unit. Together, these results augment the database of presently available electrophilic data on common matrix molecules along with some of their dimers and fragments.

  5. Effect of Watson-Crick and Hoogsteen base pairing on the conformational stability of C8-phenoxyl-2'-deoxyguanosine adducts.

    PubMed

    Millen, Andrea L; Churchill, Cassandra D M; Manderville, Richard A; Wetmore, Stacey D

    2010-10-14

    Bulky DNA addition products (adducts) formed through attack at the C8 site of guanine can adopt the syn orientation about the glycosidic bond due to changes in conformational stability or hydrogen-bonding preferences directly arising from the bulky group. Indeed, the bulky substituent may improve the stability of (non-native) Hoogsteen pairs. Therefore, such adducts often result in mutations upon DNA replication. This work examines the hydrogen-bonded pairs between the Watson-Crick and Hoogsteen faces of the ortho or para C8-phenoxyl-2'-deoxyguanosine adduct and each natural (undamaged) nucleobase with the goal to clarify the conformational preference of this type of damage, as well as provide insight into the likelihood of subsequent mutation events. B3LYP/6-311+G(2df,p)//B3LYP/6-31G(d) hydrogen-bond strengths were determined using both nucleobase and nucleoside models for adduct pairs, as well as the corresponding complexes involving natural 2'-deoxyguanosine. In addition to the magnitude of the binding strengths, the R(C1'···C1') distances and ∠(N9C1'C1') angles, as well as the degree of propeller-twist and buckle distortions, were carefully compared to the values observed in natural DNA strands. Due to structural changes in the adduct monomer upon inclusion of the sugar moiety, the monomer deformation energy significantly affects the relative hydrogen-bond strengths calculated with the nucleobase and nucleoside models. Therefore, we recommend the use of at least a nucleoside model to accurately evaluate hydrogen-bond strengths of base pairs involving flexible, bulky nucleobase adducts. Our results also emphasize the importance of considering both the magnitude of the hydrogen-bond strength and the structure of the base pair when predicting the preferential binding patterns of nucleobases. Using our best models, we conclude that the Watson-Crick face of the ortho phenoxyl adduct forms significantly more stable complexes than the Hoogsteen face, which

  6. Aristolochic acid-associated urothelial cancer in Taiwan

    PubMed Central

    Chen, Chung-Hsin; Dickman, Kathleen G.; Moriya, Masaaki; Zavadil, Jiri; Sidorenko, Viktoriya S.; Edwards, Karen L.; Gnatenko, Dmitri V.; Wu, Lin; Turesky, Robert J.; Wu, Xue-Ru; Pu, Yeong-Shiau; Grollman, Arthur P.

    2012-01-01

    Aristolochic acid, a potent human carcinogen produced by Aristolochia plants, is associated with urothelial carcinoma of the upper urinary tract (UUC). Following metabolic activation, aristolochic acid reacts with DNA to form aristolactam (AL)-DNA adducts. These lesions concentrate in the renal cortex, where they serve as a sensitive and specific biomarker of exposure, and are found also in the urothelium, where they give rise to a unique mutational signature in the TP53 tumor-suppressor gene. Using AL-DNA adducts and TP53 mutation spectra as biomarkers, we conducted a molecular epidemiologic study of UUC in Taiwan, where the incidence of UUC is the highest reported anywhere in the world and where Aristolochia herbal remedies have been used extensively for many years. Our study involves 151 UUC patients, with 25 patients with renal cell carcinomas serving as a control group. The TP53 mutational signature in patients with UUC, dominated by otherwise rare A:T to T:A transversions, is identical to that observed in UUC associated with Balkan endemic nephropathy, an environmental disease. Prominent TP53 mutational hotspots include the adenine bases of 5′AG (acceptor) splice sites located almost exclusively on the nontranscribed strand. A:T to T:A mutations also were detected at activating positions in the FGFR3 and HRAS oncogenes. AL-DNA adducts were present in the renal cortex of 83% of patients with A:T to T:A mutations in TP53, FGFR3, or HRAS. We conclude that exposure to aristolochic acid contributes significantly to the incidence of UUC in Taiwan, a finding with significant implications for global public health. PMID:22493262

  7. Differences in hemoglobin adduct levels of acrylamide in the general population with respect to dietary intake, smoking habits and gender.

    PubMed

    Hagmar, Lars; Wirfält, Elisabet; Paulsson, Birgit; Törnqvist, Margareta

    2005-02-07

    The variation in dietary exposure to acrylamide (AA) has been studied through measurement of hemoglobin adduct levels from AA, as a measurement of internal dose, in a sample from the blood bank of the Malmö Diet and Cancer Cohort (n=28,098). The blood donors are well characterised with regard to their food habits, and 142 individuals were selected to obtain highest possible variation in the adduct levels from AA (none, random or high intake of coffee, fried potato, crisp bread and snacks, food items estimated to have high levels of AA). Among 70 non-smokers the AA-adduct levels varied by a factor of 5, and ranged between 0.02 and 0.1 nmol/g, with considerable overlap in AA-adduct levels between the different dietary groups. There was a significant difference between men with high dietary exposure to AA compared to men with low dietary exposure (P=0.04). No such difference was found for women. As expected a higher level (range: 0.03-0.43 nmol/g) of the AA-adduct, due to AA in tobacco smoke, was found in smokers. Smoking women with high dietary exposure to AA had significantly higher AA-adduct levels compared to smoking women with low dietary exposure (P=0.01). No such significant difference was found in smoking men. The median hemoglobin (Hb) adduct level in the randomly selected group of non-smokers was compatible with earlier studies (0.031 nmol/g). The variation in the average internal dose, measured as Hb adducts, was somewhat smaller than estimated for daily intake by food consumption questionnaires in other studies. Thus, the observed relatively narrow inter-individual variation in AA-adduct levels means that estimates of individual dietary AA intake have to be very precise if they should be useful in future cancer epidemiology.

  8. Modified arytenoid adduction for cancer-related unilateral vocal fold paralysis.

    PubMed

    Shi, J; Chen, S; Chen, D; Wang, W; Xia, S; Zheng, H

    2011-02-01

    (1) To evaluate the efficacy of modified arytenoid adduction in the management of patients with symptomatic cancer-related unilateral vocal fold paralysis, and (2) to assess the impact of this treatment on patients' quality of life. Forty-two patients with cancer-related unilateral vocal fold paralysis underwent modified arytenoid adduction between February 2001 and December 2008. Of these, 37 patients were enrolled in this retrospective study (one patient died of primary disease and four were lost to follow up). Laryngostroboscopy was performed to evaluate vocal fold orientation and mobility. Pre- and post-operative assessment of subjective and objective voice, aerodynamic parameters, and quality of life were also undertaken, and aspiration was subjectively rated. Laryngostroboscopic findings indicated a significant post-operative improvement in vocal fold posterior glottal closure and vertical gap. Significant improvements in voice quality, aerodynamic parameters and quality of life were noted three months post-operatively in all patients (p < 0.01). The overall success rate for swallowing rehabilitation was 94.6 per cent (35/37). Subjective aspiration ratings decreased significantly post-operatively, compared with pre-operative values (p < 0.01). No major complication occurred in any patient, except for dyspnoea in one patient. Modified arytenoid adduction is an effective and reliable medialisation technique which can restore satisfactory voice quality, prevent aspiration and lead to a better quality of life for patients with cancer-related unilateral vocal fold paralysis.

  9. Proteomic analysis of adducted butyrylcholinesterase for biomonitoring organophosphorus exposures

    PubMed Central

    Marsillach, Judit; Hsieh, Edward J.; Richter, Rebecca J.; MacCoss, Michael J.; Furlong, Clement E.

    2014-01-01

    Organophosphorus (OP) compounds include a broad group of toxic chemicals such as insecticides, chemical warfare agents and antiwear agents. The liver cytochromes P450 bioactivate many OPs to potent inhibitors of serine hydrolases. Cholinesterases were the first OP targets discovered and are the most studied. They are used to monitor human exposures to OP compounds. However, the assay that is currently used has limitations. The mechanism of action of OP compounds is the inhibition of serine hydrolases by covalently modifying their active-site serine. After structural rearrangement, the complex OP inhibitor-enzyme is irreversible and will remain in circulation until the modified enzyme is degraded. Mass spectrometry is a sensitive technology for analyzing protein modifications, such as OP-adducted enzymes. These analyses also provide some information about the nature of the OP adduct. Our aim is to develop high-throughput protocols for monitoring OP exposures using mass spectrometry. PMID:23123252

  10. Hepatic DNA adduct dosimetry in rats fed tamoxifen: a comparison of methods.

    PubMed

    Schild, Laura J; Phillips, David H; Osborne, Martin R; Hewer, Alan; Beland, Frederick A; Churchwell, Mona I; Brown, Karen; Gaskell, Margaret; Wright, Elizabeth; Poirier, Miriam C

    2005-03-01

    Liver homogenates from rats fed tamoxifen (TAM) in the diet were shared among four different laboratories. TAM-DNA adducts were assayed by high pressure liquid chromatography-electrospray tandem mass spectrometry (HPLC-ES-MS/MS), TAM-DNA chemiluminescence immunoassay (TAM-DNA CIA), and (32)P-postlabeling with either thin layer ((32)P-P-TLC) or liquid chromatography ((32)P-P-HPLC) separation. In the first study, rats were fed a diet containing 500 p.p.m. TAM for 2 months, and the values for measurements of the (E)-alpha-(deoxyguanosin-N(2)-yl)-tamoxifen (dG-N(2)-TAM) adduct in replicate rat livers varied by 3.5-fold when quantified using 'in house' TAM-DNA standards, or other approaches where appropriate. In the second study, rats were fed 0, 50, 250 or 500 p.p.m. TAM for 2 months, and TAM-DNA values were quantified using both 'in house' approaches as well as a newly synthesized [N-methyl-(3)H]TAM-DNA standard that was shared among all the participating groups. In the second study, the total TAM-DNA adduct values varied by 2-fold, while values for the dG-N(2)-TAM varied by 2.5-fold. Ratios of dG-N(2)-TAM:(E)-alpha-(deoxyguanosin-N(2)-yl)-N-desmethyltamoxifen (dG-N(2)-N-desmethyl-TAM) in the second study were approximately 1:1 over the range of doses examined. The study demonstrated a remarkably good agreement for TAM-DNA adduct measurements among the diverse methods employed.

  11. Hemoglobin Adducts of Benzene Oxide in Neonatal and Adult Dried Blood Spots

    PubMed Central

    Funk, William E.; Waidyanatha, Suramya; Chaing, Shu H.; Rappaport, Stephen M.

    2010-01-01

    Adducts of reactive chemicals with hemoglobin (Hb) or human serum albumin can be used as biomarkers of internal doses of carcinogens. Since dried blood spots (DBS) are easier to collect and store than conventional venous blood samples, they encourage applications of biomarkers of exposure in large epidemiology studies. Also, neonatal DBS can be used to investigate chemical exposures in utero. Here, we report a simple method to isolate Hb from DBS with high recovery and purity using the addition of ethanol to aqueous DBS extracts. To prove the concept that DBS-derived proteins can be used to assay for adducts, we measured Hb adducts of benzene oxide, a reactive metabolite of the ubiquitous air pollutant, benzene, in 9 neonatal and 9 adult DBS (from volunteer subjects), using a gas chromatography-mass spectrometry method that we had previously developed. For comparison, benzene oxide-Hb adducts (BO-Hb) were measured in the same 9 adult subjects, using Hb that had been isolated and purified using our conventional method for venous blood. The geometric mean BO-Hb levels in all DBS samples ranged from 27.7 to 33.1 pmol/g globin. Neither of the comparisons of mean (logged) BO-Hb levels between sources (adult conventional vs. adult DBS and adult DBS vs. newborn DBS) showed a significant difference. Based upon the estimated variance of the BO-Hb levels, we had 80% power to detect a 1.7-fold difference in geometric mean levels of BO-Hb in our samples of 9 subjects. PMID:18708378

  12. Signal transduction in light–oxygen–voltage receptors lacking the adduct-forming cysteine residue

    PubMed Central

    Yee, Estella F.; Diensthuber, Ralph P.; Vaidya, Anand T.; Borbat, Peter P.; Engelhard, Christopher; Freed, Jack H.; Bittl, Robert; Möglich, Andreas; Crane, Brian R.

    2015-01-01

    Light–oxygen–voltage (LOV) receptors sense blue light through the photochemical generation of a covalent adduct between a flavin-nucleotide chromophore and a strictly conserved cysteine residue. Here we show that, after cysteine removal, the circadian-clock LOV-protein Vivid still undergoes light-induced dimerization and signalling because of flavin photoreduction to the neutral semiquinone (NSQ). Similarly, photoreduction of the engineered LOV histidine kinase YF1 to the NSQ modulates activity and downstream effects on gene expression. Signal transduction in both proteins hence hinges on flavin protonation, which is common to both the cysteinyl adduct and the NSQ. This general mechanism is also conserved by natural cysteine-less, LOV-like regulators that respond to chemical or photoreduction of their flavin cofactors. As LOV proteins can react to light even when devoid of the adduct-forming cysteine, modern LOV photoreceptors may have arisen from ancestral redox-active flavoproteins. The ability to tune LOV reactivity through photoreduction may have important implications for LOV mechanism and optogenetic applications. PMID:26648256

  13. Activation of aminoimidazole carcinogens by nitrosation: mutagenicity and nucleotide adducts

    PubMed Central

    Zenser, Terry V.; Lakshmi, Vijaya M.; Schut, Herman A. J.; Zhou, Hui-jia; Josephy, P. David

    2009-01-01

    2-Amino-3-methylimidazo[4,5-f]quinoline (IQ) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) are heterocyclic amines (HCA) derived from high temperature cooking of meat and thought to cause colon cancer in humans. Reactive nitrogen oxygen species, which are mediators of the inflammatory response, can convert these amines to the corresponding N-nitrosamines, N-NO-IQ and N-NO-MeIQx. This study was designed to evaluate whether these N-nitrosamines are genotoxic and could be responsible, in part, for the high incidence of colon cancer in individuals with colitis. Such an association would counsel reduced intake of well-done red meat by colitis patients. Mutagenicity was evaluated by reversion of a lacZ frameshift allele in three different E. coli strains. Strains DJ701 and DJ702 express recombinant (S. typhimurium) aromatic amine N-acetyltransferase; DJ702 also expresses recombinant human cytochrome P450 1A2 and NADPH-P450 reductase; and DJ2002 served as an N-acetyltransferase-negative control. In strain DJ701, N-NO-IQ and N-NO-MeIQx elicited dose-dependent mutagenicity, which was not further increased in DJ702. Neither nitrosamine was mutagenic in strain DJ2002. While both N-nitrosamines are stable for >4 hours (pH 7.4, 37°C), they react with DNA or 2′-deoxyguanosine 3′-monophosphate at lower pH (5.5) to form adducts. HOCl, a component of the inflammatory response, increased adduct formation, as measured by 32P-postlabeling. Following treatment with nuclease P1 and separation by two-dimensional thin-layer chromatography and then HPLC, N-NO-IQ and N-NO-MeIQx were shown to form the same adducts as those formed by N-OH-MeIQx or N-OH-IQ, namely N-(deoxyguanosin-8-yl) adducts. In summary, these N-nitrosamines are genotoxic and might be alternatives to their hydroxylamine analogues as activated intermediates leading to initiation of colon cancer in individuals with colitis. PMID:19449459

  14. Detection of Pyrrolizidine Alkaloid DNA Adducts in Livers of Cattle Poisoned with Heliotropium europaeum.

    PubMed

    Fu, Peter P; Xia, Qingsu; He, Xiaobo; Barel, Shimon; Edery, Nir; Beland, Frederick A; Shimshoni, Jakob A

    2017-03-20

    Pyrrolizidine alkaloids are among the most common poisonous plants affecting livestock, wildlife, and humans. Exposure of humans and livestock to toxic pyrrolizidine alkaloids through the intake of contaminated food and feed may result in poisoning, leading to devastating epidemics. During February 2014, 73 mixed breed female beef cows from the Galilee region of Israel were accidently fed pyrrolizidine alkaloid contaminated hay for 42 days, resulting in the sudden death of 24 cows over a period of 63 days. The remaining cows were slaughtered 2.5 months after the last ingestion of the contaminated hay. In this study, we report the histopathological analysis of the livers from five of the slaughtered cows and quantitation of pyrrolizidine alkaloid-derived DNA adducts from their livers and three livers of control cows fed with feed free of weeds producing pyrrolizidine alkaloids. Histopathological examination revealed that the five cows suffered from varying degrees of bile duct proliferation, fibrosis, and megalocytosis. Selected reaction monitoring HPLC-ES-MS/MS analysis indicated that (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts were formed in all five livers. The livers from the three control cows did not have any liver damage nor any indication of DHP-DNA adduct formed. These results confirm that the toxicity observed in these cattle was caused by pyrrolizidine alkaloid poisoning and that pyrrolizidine alkaloid-derived DNA adducts could still be detected and quantified in the livers of the chronically poisoned cows 2.5 months after their last exposure to the contaminated feed, suggesting that DHP-derived DNA adducts can serve as biomarkers for pyrrolizidine alkaloid exposure and poisoning.

  15. Formation of Hydroxymethyl DNA Adducts in Rats Orally Exposed to Stable Isotope Labeled Methanol

    PubMed Central

    Lu, Kun; Gul, Husamettin; Upton, Patricia B.; Moeller, Benjamin C.; Swenberg, James A.

    2012-01-01

    Methanol is a large volume industrial chemical and widely used solvent and fuel additive. Methanol’s well known toxicity and use in a wide spectrum of applications has raised long-standing environmental issues over its safety, including its carcinogenicity. Methanol has not been listed as a carcinogen by any regulatory agency; however, there are debates about its carcinogenic potential. Formaldehyde, a metabolite of methanol, has been proposed to be responsible for the carcinogenesis of methanol. Formaldehyde is a known carcinogen and actively targets DNA and protein, causing diverse DNA and protein damage. However, formaldehyde-induced DNA adducts arising from the metabolism of methanol have not been reported previously, largely due to the absence of suitable DNA biomarkers and the inability to differentiate what was due to methanol compared with the substantial background of endogenous formaldehyde. Recently, we developed a unique approach combining highly sensitive liquid chromatography-mass spectrometry methods and exposure to stable isotope labeled chemicals to simultaneously quantify formaldehyde-specific endogenous and exogenous DNA adducts. In this study, rats were exposed daily to 500 or 2000 mg/kg [13CD4]-methanol by gavage for 5 days. Our data demonstrate that labeled formaldehyde arising from [13CD4]-methanol induced hydroxymethyl DNA adducts in multiple tissues in a dose-dependent manner. The results also demonstrated that the number of exogenous DNA adducts was lower than the number of endogenous hydroxymethyl DNA adducts in all tissues of rats administered 500 mg/kg per day for 5 days, a lethal dose to humans, even after incorporating an average factor of 4 for reduced metabolism due to isotope effects of deuterium-labeled methanol into account. PMID:22157354

  16. Repair of O6-methylguanine adducts in human telomeric G-quadruplex DNA by O6-alkylguanine-DNA alkyltransferase

    PubMed Central

    Hellman, Lance M.; Spear, Tyler J.; Koontz, Colton J.; Melikishvili, Manana; Fried, Michael G.

    2014-01-01

    O6-alkylguanine-DNA alkyltransferase (AGT) is a single-cycle DNA repair enzyme that removes pro-mutagenic O6-alkylguanine adducts from DNA. Its functions with short single-stranded and duplex substrates have been characterized, but its ability to act on other DNA structures remains poorly understood. Here, we examine the functions of this enzyme on O6-methylguanine (6mG) adducts in the four-stranded structure of the human telomeric G-quadruplex. On a folded 22-nt G-quadruplex substrate, binding saturated at 2 AGT:DNA, significantly less than the ∼5 AGT:DNA found with linear single-stranded DNAs of similar length, and less than the value found with the telomere sequence under conditions that inhibit quadruplex formation (4 AGT:DNA). Despite these differences, AGT repaired 6mG adducts located within folded G-quadruplexes, at rates that were comparable to those found for a duplex DNA substrate under analogous conditions. Repair was kinetically biphasic with the amplitudes of rapid and slow phases dependent on the position of the adduct within the G-quadruplex: in general, adducts located in the top or bottom tetrads of a quadruplex stack exhibited more rapid-phase repair than did adducts located in the inner tetrad. This distinction may reflect differences in the conformational dynamics of 6mG residues in G-quadruplex DNAs. PMID:25080506

  17. Cobalt(II) chloride adducts with acetonitrile, propan-2-ol and tetrahydrofuran: considerations on nuclearity, reactivity and synthetic applications.

    PubMed

    Stinghen, Danilo; Rüdiger, André Luis; Giese, Siddhartha O K; Nunes, Giovana G; Soares, Jaísa F; Hughes, David L

    2017-02-01

    High-spin cobalt(II) complexes are considered useful building blocks for the synthesis of single-molecule magnets (SMM) because of their intrinsic magnetic anisotropy. In this work, three new cobalt(II) chloride adducts with labile ligands have been synthesized from anhydrous CoCl 2 , to be subsequently employed as starting materials for heterobimetallic compounds. The products were characterized by elemental, spectroscopic (EPR and FT-IR) and single-crystal X-ray diffraction analyses. trans-Tetrakis(acetonitrile-κN)bis(tetrahydrofuran-κO)cobalt(II) bis[(acetonitrile-κN)trichloridocobaltate(II)], [Co(C 2 H 3 N) 4 (C 4 H 8 O) 2 ][CoCl 3 (C 2 H 3 N)] 2 , (1), comprises mononuclear ions and contains both acetonitrile and tetrahydrofuran (thf) ligands, The coordination polymer catena-poly[[tetrakis(propan-2-ol-κO)cobalt(II)]-μ-chlorido-[dichloridocobalt(II)]-μ-chlorido], [Co 2 Cl 4 (C 3 H 8 O) 4 ], (2'), was prepared by direct reaction between anhydrous CoCl 2 and propan-2-ol in an attempt to rationalize the formation of the CoCl 2 -alcohol adduct (2), probably CoCl 2 (HO i Pr) m . The binuclear complex di-μ-chlorido-1:2κ 4 Cl:Cl-dichlorido-2κ 2 Cl-tetrakis(tetrahydrofuran-1κO)dicobalt(II), [Co 2 Cl 4 (C 4 H 8 O) 4 ], (3), was obtained from (2) after recrystallization from tetrahydrofuran. All three products present cobalt(II) centres in both octahedral and tetrahedral environments, the former usually less distorted than the latter, regardless of the nature of the neutral ligand. Product (2') is stabilized by an intramolecular hydrogen-bond network that appears to favour a trans arrangement of the chloride ligands in the octahedral moiety; this differs from the cis disposition found in (3). The expected easy displacement of the bound solvent molecules from the metal coordination sphere makes the three compounds good candidates for suitable starting materials in a number of synthetic applications.

  18. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6more » μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.« less

  19. Formation of DNA Adducts by Ellipticine and Its Micellar Form in Rats — A Comparative Study

    PubMed Central

    Stiborova, Marie; Manhartova, Zuzana; Hodek, Petr; Adam, Vojtech; Kizek, Rene; Frei, Eva

    2014-01-01

    The requirements for early diagnostics as well as effective treatment of cancer diseases have increased the pressure on development of efficient methods for targeted drug delivery as well as imaging of the treatment success. One of the most recent approaches covering the drug delivery aspects is benefitting from the unique properties of nanomaterials. Ellipticine and its derivatives are efficient anticancer compounds that function through multiple mechanisms. Formation of covalent DNA adducts after ellipticine enzymatic activation is one of the most important mechanisms of its pharmacological action. In this study, we investigated whether ellipticine might be released from its micellar (encapsulated) form to generate covalent adducts analogous to those formed by free ellipticine. The 32P-postlabeling technique was used as a useful imaging method to detect and quantify covalent ellipticine-derived DNA adducts. We compared the efficiencies of free ellipticine and its micellar form (the poly(ethylene oxide)-block-poly(allyl glycidyl ether) (PAGE-PEO) block copolymer, P 119 nanoparticles) to form ellipticine-DNA adducts in rats in vivo. Here, we demonstrate for the first time that treatment of rats with ellipticine in micelles resulted in formation of ellipticine-derived DNA adducts in vivo and suggest that a gradual release of ellipticine from its micellar form might produce the enhanced permeation and retention effect of this ellipticine-micellar delivery system. PMID:25479328

  20. Investigating the Role of Adducts in Protein Supercharging with Sulfolane

    NASA Astrophysics Data System (ADS)

    Douglass, Kevin Aart; Venter, Andre R.

    2012-03-01

    The supercharging effect of sulfolane on cytochrome c (cyt c) during electrospray ionization mass spectrometry (ESI-MS) in the absence of conformational effects was investigated. The addition of sulfolane on the order of 1 mM or greater to denaturing solutions of cyt c results in supercharging independent of protein concentration over the range of 0.1 to 10 μM. While supercharging was observed in the positive mode, no change in the charge state distribution was observed in the negative mode, ruling out polarity-independent factors such as conformational changes or surface tension effects. A series of sulfolane adducts observed with increasing intensity concurrent with increasing charge state suggests that a direct interaction between sulfolane and the charged sites of cyt c plays an important role in supercharging. We propose that charge delocalization occurring through large-scale dipole reordering of the highly polar supercharging reagent reduces the electrostatic barrier for proximal charging along the cyt c amino acid chain. Supporting this claim, supercharging was shown to increase with increasing dipole moment for several supercharging reagents structurally related to sulfolane.

  1. Tumor suppressor molecules and methods of use

    DOEpatents

    Welch, Peter J.; Barber, Jack R.

    2004-09-07

    The invention provides substantially pure tumor suppressor nucleic acid molecules and tumor suppressor polypeptides. The invention also provides hairpin ribozymes and antibodies selective for these tumor suppressor molecules. Also provided are methods of detecting a neoplastic cell in a sample using detectable agents specific for the tumor suppressor nucleic acids and polypeptides.

  2. Environmental, Dietary, Maternal, and Fetal Predictors of Bulky DNA Adducts in Cord Blood: A European Mother–Child Study (NewGeneris)

    PubMed Central

    Mendez, Michelle A.; Schoket, Bernadette; Godschalk, Roger W.; Espinosa, Ana; Landström, Anette; Villanueva, Cristina M.; Merlo, Domenico F.; Fthenou, Eleni; Gracia-Lavedan, Esther; van Schooten, Frederik-J.; Hoek, Gerard; Brunborg, Gunnar; Meltzer, Helle M.; Alexander, Jan; Nielsen, Jeanette K.; Sunyer, Jordi; Wright, John; Kovács, Katalin; de Hoogh, Kees; Gutzkow, Kristine B.; Hardie, Laura J.; Chatzi, Leda; Knudsen, Lisbeth E.; Anna, Lívia; Ketzel, Matthias; Haugen, Margaretha; Botsivali, Maria; Nieuwenhuijsen, Mark J.; Cirach, Marta; Toledano, Mireille B.; Smith, Rachel B.; Fleming, Sarah; Agramunt, Silvia; Kyrtopoulos, Soterios A.; Lukács, Viktória; Kleinjans, Jos C.; Segerbäck, Dan; Kogevinas, Manolis

    2015-01-01

    Background: Bulky DNA adducts reflect genotoxic exposures, have been associated with lower birth weight, and may predict cancer risk. Objective: We selected factors known or hypothesized to affect in utero adduct formation and repair and examined their associations with adduct levels in neonates. Methods: Pregnant women from Greece, Spain, England, Denmark, and Norway were recruited in 2006–2010. Cord blood bulky DNA adduct levels were measured by the 32P-postlabeling technique (n = 511). Diet and maternal characteristics were assessed via questionnaires. Modeled exposures to air pollutants and drinking-water disinfection by-products, mainly trihalomethanes (THMs), were available for a large proportion of the study population. Results: Greek and Spanish neonates had higher adduct levels than the northern European neonates [median, 12.1 (n = 179) vs. 6.8 (n = 332) adducts per 108 nucleotides, p < 0.001]. Residence in southern European countries, higher maternal body mass index, delivery by cesarean section, male infant sex, low maternal intake of fruits rich in vitamin C, high intake of dairy products, and low adherence to healthy diet score were statistically significantly associated with higher adduct levels in adjusted models. Exposure to fine particulate matter and nitrogen dioxide was associated with significantly higher adducts in the Danish subsample only. Overall, the pooled results for THMs in water show no evidence of association with adduct levels; however, there are country-specific differences in results with a suggestion of an association in England. Conclusion: These findings suggest that a combination of factors, including unknown country-specific factors, influence the bulky DNA adduct levels in neonates. Citation: Pedersen M, Mendez MA, Schoket B, Godschalk RW, Espinosa A, Landström A, Villanueva CM, Merlo DF, Fthenou E, Gracia-Lavedan E, van Schooten FJ, Hoek G, Brunborg G, Meltzer HM, Alexander J, Nielsen JK, Sunyer J, Wright J, Kovács K, de

  3. Monte Carlo study of disorder in HMTA

    NASA Astrophysics Data System (ADS)

    Goossens, D. J.; Welberry, T. R.

    2001-12-01

    We investigate disordered solids by automated fitting of a Monte Carlo simulation of a crystal to observed single-crystal diffuse X-ray scattering. This method has been extended to the study of crystals of relatively large organic molecules by using a z-matrix to describe the molecules. This allows exploration of motions within molecules. We refer to the correlated thermal motion observed in benzil, and to the occupational and thermal disorder in the 1:1 adduct of hexamethylenetetramine and azelaic acid, HMTA. The technique is capable of giving insight into modes of vibration within molecules and correlated motions between molecules.

  4. Understanding chemical reactions of CO2 and its isoelectronic molecules with 1-butyl-3-methylimidazolium acetate by changing the nature of the cation: the case of CS2 in 1-butyl-1-methylpyrrolidinium acetate studied by NMR spectroscopy and density functional theory calculations.

    PubMed

    Cabaço, M Isabel; Besnard, Marcel; Chávez, Fabián Vaca; Pinaud, Noël; Sebastião, Pedro J; Coutinho, João A P; Danten, Yann

    2014-06-28

    NMR spectroscopy ((1)H, (13)C, (15)N) shows that carbon disulfide reacts spontaneously with 1-butyl-1-methylpyrrolidinium acetate ([BmPyrro][Ac]) in the liquid phase. It is found that the acetate anions play an important role in conditioning chemical reactions with CS2 leading, via coupled complex reactions, to the degradation of this molecule to form thioacetate anion (CH3COS(-)), CO2, OCS, and trithiocarbonate (CS3 (2-)). In marked contrast, the cation does not lead to the formation of any adducts allowing to conclude that, at most, its role consists in assisting indirectly these reactions. The choice of the [BmPyrro](+) cation in the present study allows disentangling the role of the anion and the cation in the reactions. As a consequence, the ensemble of results already reported on CS2-[Bmim][Ac] (1), OCS-[Bmim][Ac] (2), and CO2-[Bmim][Ac] (3) systems can be consistently rationalized. It is argued that in system (1) both anion and cation play a role. The CS2 reacts with the acetate anion leading to the formation of CH3COS(-), CO2, and OCS. After these reactions have proceeded the nascent CO2 and OCS interact with the cation to form imidazolium-carboxylate ([Bmim] CO2) and imidazolium-thiocarboxylate ([Bmim] COS). The same scenario also applies to system (2). In contrast, in the CO2-[Bmim] [Ac] system a concerted cooperative process between the cation, the anion, and the CO2 molecule takes place. A carbene issued from the cation reacts to form the [Bmim] CO2, whereas the proton released by the ring interacts with the anion to produce acetic acid. In all these systems, the formation of adduct resulting from the reaction between the solute molecule and the carbene species originating from the cation is expected. However, this species was only observed in systems (2) and (3). The absence of such an adduct in system (1) has been theoretically investigated using DFT calculations. The values of the energetic barrier of the reactions show that the formation of [Bmim

  5. A new glycation product ‘norpronyl-lysine,’ and direct characterization of cross linking and other glycation adducts: NMR of model compounds and collagen

    PubMed Central

    Bullock, Peter T. B.; Reid, David G.; Ying Chow, W.; Lau, Wendy P. W.; Duer, Melinda J.

    2014-01-01

    NMR is ideal for characterizing non-enzymatic protein glycation, including AGEs (advanced glycation endproducts) underlying tissue pathologies in diabetes and ageing. Ribose, R5P (ribose-5-phosphate) and ADPR (ADP-ribose), could be significant and underinvestigated biological glycating agents especially in chronic inflammation. Using [U-13C]ribose we have identified a novel glycoxidation adduct, 5-deoxy-5-desmethylpronyl-lysine, ‘norpronyl-lysine’, as well as numerous free ketones, acids and amino group reaction products. Glycation by R5P and ADPR proceeds rapidly with R5P generating a brown precipitate with PLL (poly-L-lysine) within hours. ssNMR (solid-state NMR) 13C–13C COSY identifies several crosslinking adducts such as the newly identified norpronyl-lysine, in situ, from the glycating reaction of 13C5-ribose with collagen. The same adducts are also identifiable after reaction of collagen with R5P. We also demonstrate for the first time bio-amine (spermidine, N-acetyl lysine, PLL) catalysed ribose 2-epimerization to arabinose at physiological pH. This work raises the prospect of advancing understanding of the mechanisms and consequences of glycation in actual tissues, in vitro or even ex vivo, using NMR isotope-labelled glycating agents, without analyses requiring chemical or enzymatic degradations, or prior assumptions about glycation products. PMID:27919030

  6. Inhibition of DES-induced DNA adducts by diallyl sulfide: implications in liver cancer prevention.

    PubMed

    Green, Mario; Thomas, Ronald; Gued, Lisa; Sadrud-Din, Sakeenah

    2003-01-01

    Diethylstilbesterol (DES) is known to cause cancer in humans and animals. Diallyl sulfide (DAS), a component of garlic, has been shown to prevent various types of cancer, presumably via metabolic modulation. Previously, we have demonstrated that DAS prevents the oxidation and reduction of DES in vitro. We hypothesize that DAS will inhibit the metabolism of DES in vivo thus preventing the formation of DES-induced DNA adducts. To test this hypothesis, five groups of five male Sprague-Dawley rats were treated as follows: the control received 0.5 ml of corn oil daily for four days. The second group received 50 mg/kg DAS daily for four days. The third group received 50 mg/kg DAS daily for four days followed by 150 mg/kg DES on day five. The fourth group received 400 mg/kg DAS on day five followed by 150 mg/kg DES. The fifth group received 150 mg/kg DES on day five. All of the rats were sacrificed on day five, 4 h after DES treatment. DNA was isolated from the liver and analyzed by 32P-post-labeling for DNA adducts. The in vitro study was performed utilizing four reactions described as follows: the control reaction contained 200 microg DNA, microsomes (346 microg protein/ml), and 10 mM DES; no oxidation co-factor (cumen hydroperoxide) was added. The second reaction, a complete oxidation system, contained 200 microg DNA, microsomes (346 microg protein/ml), 30 mM cumen hydroperoxide, and 10 mM DES. The third reaction contained 200 microg DNA, microsomes (346 microg protein/ml), 30 mM cumen hydroperoxide, 50 mM DAS, and 10 mM DES. The fourth reaction contained 200 microg DNA, microsomes (346 microg protein/ml), 30 mM cumen hydroperoxide, 100 mM DAS, and 10 mM DES. All of the in vitro reactions were buffered with 100 mM KPO4 pH 7.4 and incubated for 30 min at 37 degrees C. DNA was extracted and analyzed by 32P-post-labeling. We found that DAS inhibited the formation of DES-induced DNA adducts in a dose-dependent fashion. We have shown that DES-induced DNA adducts were

  7. PAH-DNA adducts in cord blood and fetal and child development in a Chinese cohort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, D.L.; Li, T.Y.; Liu, J.J.

    Polycyclic aromatic hydrocarbons (PAHs) are an important class of toxic pollutants released by fossil fuel combustion. Other pollutants include metals and particulate matter. PAH-DNA adducts, or benzo(a)pyrene (BaP) adducts as their proxy, provide a chemical-specific measure of individual biologically effective doses that have been associated with increased risk of cancer and adverse birth outcomes. In the present study we examined the relationship between prenatal PAH exposure and fetal and child growth and development in Tongliang, China, where a seasonally operated coal-fired power plant was the major pollution source. In a cohort of 150 nonsmoking women and their newborns enrolled betweenmore » 4 March 2002 and 19 June 2002, BaP-DNA adducts were measured in maternal and umbilical cord blood obtained at delivery. High PAH-DNA adduct levels (above the median of detectable adduct level) were associated with decreased birth head circumference (p = 0.057) and reduced children's weight at 18 months, 24 months, and 30 months of age (p {lt} 0.05), after controlling for potential confounders. In addition, in separate models, longer duration of prenatal exposure was associated with reduced birth length (p = 0.033) and reduced children's height at 18 (p = 0.001), 24 (p {lt} 0.001), and 30 months of age (p {lt} 0.001). The findings suggest that exposure to elevated levels of PAHS, with the Tongliang power plant being a significant source, is associated with reduced fetal and child growth in this population.« less

  8. Xeroderma Pigmentosum Group A Suppresses Mutagenesis Caused by Clustered Oxidative DNA Adducts in the Human Genome.

    PubMed

    Sassa, Akira; Kamoshita, Nagisa; Kanemaru, Yuki; Honma, Masamitsu; Yasui, Manabu

    2015-01-01

    Clustered DNA damage is defined as multiple sites of DNA damage within one or two helical turns of the duplex DNA. This complex damage is often formed by exposure of the genome to ionizing radiation and is difficult to repair. The mutagenic potential and repair mechanisms of clustered DNA damage in human cells remain to be elucidated. In this study, we investigated the involvement of nucleotide excision repair (NER) in clustered oxidative DNA adducts. To identify the in vivo protective roles of NER, we established a human cell line lacking the NER gene xeroderma pigmentosum group A (XPA). XPA knockout (KO) cells were generated from TSCER122 cells derived from the human lymphoblastoid TK6 cell line. To analyze the mutagenic events in DNA adducts in vivo, we previously employed a system of tracing DNA adducts in the targeted mutagenesis (TATAM), in which DNA adducts were site-specifically introduced into intron 4 of thymidine kinase genes. Using the TATAM system, one or two tandem 7,8-dihydro-8-oxoguanine (8-oxoG) adducts were introduced into the genomes of TSCER122 or XPA KO cells. In XPA KO cells, the proportion of mutants induced by a single 8-oxoG (7.6%) was comparable with that in TSCER122 cells (8.1%). In contrast, the lack of XPA significantly enhanced the mutant proportion of tandem 8-oxoG in the transcribed strand (12%) compared with that in TSCER122 cells (7.4%) but not in the non-transcribed strand (12% and 11% in XPA KO and TSCER122 cells, respectively). By sequencing the tandem 8-oxoG-integrated loci in the transcribed strand, we found that the proportion of tandem mutations was markedly increased in XPA KO cells. These results indicate that NER is involved in repairing clustered DNA adducts in the transcribed strand in vivo.

  9. Xeroderma Pigmentosum Group A Suppresses Mutagenesis Caused by Clustered Oxidative DNA Adducts in the Human Genome

    PubMed Central

    Sassa, Akira; Kamoshita, Nagisa; Kanemaru, Yuki; Honma, Masamitsu; Yasui, Manabu

    2015-01-01

    Clustered DNA damage is defined as multiple sites of DNA damage within one or two helical turns of the duplex DNA. This complex damage is often formed by exposure of the genome to ionizing radiation and is difficult to repair. The mutagenic potential and repair mechanisms of clustered DNA damage in human cells remain to be elucidated. In this study, we investigated the involvement of nucleotide excision repair (NER) in clustered oxidative DNA adducts. To identify the in vivo protective roles of NER, we established a human cell line lacking the NER gene xeroderma pigmentosum group A (XPA). XPA knockout (KO) cells were generated from TSCER122 cells derived from the human lymphoblastoid TK6 cell line. To analyze the mutagenic events in DNA adducts in vivo, we previously employed a system of tracing DNA adducts in the targeted mutagenesis (TATAM), in which DNA adducts were site-specifically introduced into intron 4 of thymidine kinase genes. Using the TATAM system, one or two tandem 7,8-dihydro-8-oxoguanine (8-oxoG) adducts were introduced into the genomes of TSCER122 or XPA KO cells. In XPA KO cells, the proportion of mutants induced by a single 8-oxoG (7.6%) was comparable with that in TSCER122 cells (8.1%). In contrast, the lack of XPA significantly enhanced the mutant proportion of tandem 8-oxoG in the transcribed strand (12%) compared with that in TSCER122 cells (7.4%) but not in the non-transcribed strand (12% and 11% in XPA KO and TSCER122 cells, respectively). By sequencing the tandem 8-oxoG-integrated loci in the transcribed strand, we found that the proportion of tandem mutations was markedly increased in XPA KO cells. These results indicate that NER is involved in repairing clustered DNA adducts in the transcribed strand in vivo. PMID:26559182

  10. Malondialdehyde-Deoxyguanosine Adduct Formation in Workers of Pathology Wards. The Role of Air Formaldehyde Exposure

    PubMed Central

    Romanazzi, Valeria; Munnia, Armelle; Piro, Sara; Allione, Alessandra; Ricceri, Fulvio; Guarrera, Simonetta; Pignata, Cristina; Matullo, Giuseppe; Wang, Poguang; Giese, Roger W.; Peluso, Marco

    2010-01-01

    Background Formaldehyde is a ubiquitous pollutant to which humans are exposed. Pathologists can experience high formaldehyde exposure levels. Formaldehyde – among other properties – induce oxidative stress and free radicals, which react with DNA and lipids, leading to oxidative damage and lipid peroxidation, respectively. We measured the levels of air-formaldehyde exposure in a group of Italian pathologists and controls. We analyzed the effect of formaldehyde exposure on leukocyte malondialdehyde-deoxyguanosine adducts (M1-dG), a biomarker of oxidative stress and lipid peroxidation. We studied the relationship between air-formaldehyde and M1-dG adducts. Methods Air-formaldehyde levels were measured by personal air samplers. M1-dG adducts were analyzed by 32P-postlabelling assay. Results Reduction rooms pathologists were significantly exposed to air-formaldehyde in respect to controls and to the pathologists working in other laboratory areas (p<0.001). A significant difference for M1-dG adducts between exposed pathologists and controls was found (p=0.045). The effect becomes stronger when the evaluation of air-formaldehyde exposure was based on personal samplers (p=0.018). Increased M1dG adduct levels were only found in individuals exposed to air-formaldehyde concentrations higher than 66 μg/m3. When the exposed workers and controls were subgrouped according to smoking, M1-dG tended to increase in all the subjects but a significant association between M1-dG and air-formaldehyde was only found in not smokers (p= 0.009). Air formaldehyde played a role positive but not significant (r = 0.355, p = 0.075, Pearson correlation) in the formation of M1-dG, only in not smokers. Conclusions Working in the reduction rooms and to be exposed to air-formaldehyde concentrations higher than 66 μg/m3 is associated with increased levels of M1-dG adducts. PMID:20707408

  11. Synthesis, characterisation and optical studies of new tetraethyl- rubyrin-graphene oxide covalent adducts

    NASA Astrophysics Data System (ADS)

    Garg, Kavita; Shanmugam, Ramakrishanan; Ramamurthy, Praveen C.

    2018-02-01

    Tetrathia-rubyrin and graphene oxide (GO) covalent adduct was synthesized, characterised and optical properties were studied. GO-Rubyrin adducts showed fluorescence quenching of rubyrin due to electron or energy transfer from rubyrin to graphene oxide, which also reflected in UV-vis absorbance spectroscopy. The non-linear optical responses were measured through Z scan technique in nano-second regime. The enhanced optical non-linearity was observed after attachment of GO with rubyrin, can be ascribed to the photo-induced electron or energy transfer from the electron rich rubyrin moiety to the electron deficient GO.

  12. Methemoglobin Formation and Characterization of Hemoglobin Adducts of Carcinogenic Aromatic Amines and Heterocyclic Aromatic Amines.

    PubMed

    Pathak, Khyatiben V; Chiu, Ting-Lan; Amin, Elizabeth Ambrose; Turesky, Robert J

    2016-03-21

    Arylamines (AAs) and heterocyclic aromatic amines (HAAs) are structurally related carcinogens formed during the combustion of tobacco or cooking of meat. They undergo cytochrome P450 mediated N-hydroxylation to form metabolites which bind to DNA and lead to mutations. The N-hydroxylated metabolites of many AAs also can undergo a co-oxidation reaction with oxy-hemolgobin (HbO2) to form methemoglobin (met-Hb) and the arylnitroso intermediates, which react with the β-Cys(93) chain of Hb to form Hb-arylsulfinamide adducts. The biochemistry of arylamine metabolism has been exploited to biomonitor certain AAs through their Hb arylsulfinamide adducts in humans. We examined the reactivity of HbO2 with the N-hydroxylated metabolites of 4-aminobiphenyl (ABP, HONH-ABP), aniline (ANL, HONH-ANL), and the HAAs 2-amino-9H-pyrido[2,3-b]indole (AαC, HONH-AαC), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP, HONH-PhIP), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx, HONH-MeIQx). HONH-ABP, HO-ANL, and HONH-AαC induced methemoglobinemia and formed Hb sulfinamide adducts. However, HONH-MeIQx and HONH-PhIP did not react with the oxy-heme complex, and met-Hb formation and chemical modification of the β-Cys(93) residue were negligible. Molecular modeling studies showed that the distances between the H-ON-AA or H-ON-HAA substrates and the oxy-heme complex of HbO2 were too far away to induce methemoglobinemia. Different conformational changes in flexible helical and loop regions around the heme pocket induced by the H-ON-AA or H-ON-HAAs may explain the different proclivities of these chemicals to induce methemoglobinemia. Hb-Cys(93β) sulfinamide and sulfonamide adducts of ABP, ANL, and AαC were identified, by Orbitrap MS, following the proteolysis of Hb with trypsin, Glu-C, or Lys-C. Hb sulfinamide and sulfonamide adducts of ABP were identified in the blood of mice exposed to ABP, by Orbitrap MS. This is the first report of the identification of intact Hb

  13. Courses of change in knee adduction moment and lateral thrust differ up to 1 year after TKA.

    PubMed

    Shimada, Noboru; Deie, Masataka; Hirata, Kazuhiko; Hiate, Yasuhiko; Orita, Naoya; Iwaki, Daisuke; Ito, Yoshihiro; Kimura, Hiroaki; Pappas, Evangelos; Ochi, Mitsuo

    2016-08-01

    In total knee arthroplasty (TKA), dynamic knee loading may loosen the artificial joint and bone or cause polyethylene wear after prolonged use. TKA decreases knee adduction moment at 6 months, but this effect is lost by 1 year post-operatively. However, lateral thrust after TKA has not been clarified. We hypothesized that like knee adduction moment, lateral thrust would return to baseline levels by 1 year post-operatively. Participants were 15 patients who underwent TKA for medial knee OA. Japanese Orthopaedic Association (JOA) score, numeric rating scale, and gait analysis (measurement of peak knee adduction moment, knee varus angle at peak knee adduction moment, lateral thrust, and gait speed) were performed preoperatively (baseline) and 3 weeks, 3 and 6 months, and 1 year post-operatively. JOA score improved from 55 ± 9.8 to 78 ± 12.1 at 1 year post-operatively, and pain decreased significantly from baseline at each follow-up (p < 0.001). Significant increases in gait speed were observed at 6 months and 1 year (p < 0.001). Peak knee adduction moment during stance phase was significantly lower at 3 weeks, 3 months, and 6 months compared to baseline (p < 0.05), but no significant changes were seen at 1 year. Knee varus at peak knee adduction moment did not differ significantly between any measurement points, while lateral thrust was decreased at 6 months and 1 year compared to baseline (p < 0.05). Temporal courses of changes up to 1 year after TKA differed between knee adduction moment and lateral thrust, so our hypothesis was rejected. IV.

  14. Monitoring exposure to acrylonitrile using adducts with N-terminal valine in hemoglobin.

    PubMed

    Osterman-Golkar, S M; MacNeela, J P; Turner, M J; Walker, V E; Swenberg, J A; Sumner, S J; Youtsey, N; Fennell, T R

    1994-12-01

    Human exposure to acrylonitrile (ACN), a carcinogen in rats, may occur in industrial settings, through waste water and tobacco smoke. ACN is an electrophilic compound and binds covalently to nucleophilic sites in macromolecules. Measurements of adducts with hemoglobin could be utilized for improved exposure assessments. In this study, a method for quantification of N-(2-cyanoethyl)valine (CEVal), the product of reaction of ACN with N-terminal valine in hemoglobin has been developed. The method is based on the N-alkyl Edman procedure, which involves derivatization of the globin with pentafluorophenyl isothiocyanate and gas chromatographic-mass spectrometric analysis of the resulting thiohydantoin. An internal standard was prepared by reacting valylglycylglycine with [2H3]ACN, spiked with [14C]ACN to a known sp. act. Levels of CEVal were measured in globin from rats exposed to 3-300 p.p.m. ACN in drinking water for 105 days and from humans (four smokers and four non-smokers). CEVal was detected at all exposure levels in the drinking water study. The relationship between adduct level and water concentration was linear at concentrations of 10 p.p.m. (corresponding to an average daily uptake of c. 0.74 mg ACN/kg body wt during the 65 days prior to sacrifice) and below, with a slope of 37.7 pmol CEVal/g globin/p.p.m. At higher concentrations, adduct levels increased sublinearly, indicating saturation of a metabolic process for elimination of ACN. Comparison of adduct formation with the estimated dose (mg/kg/day) of ACN indicated that at low dose (0-10 p.p.m.) CEVal = 0.508 x ACN dose + 0.048 and at high dose (35-300 p.p.m.) CEVal = 1.142 x ACN dose - 1.098. Globin from the smokers (10-20 cigarettes/day) contained about 90 pmol CEVal/g, whereas the adduct levels in globin from non-smokers were below the detection limit. The analytical sensitivity should be sufficient to allow monitoring of occupationally exposed workers at levels well below the current Occupational Safety

  15. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells.

    PubMed

    Ganesan, Shanthi; Keating, Aileen F

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6μM) for 24 or 48h. Cell viability was reduced (P<0.05) after 48h of exposure to 3 or 6μM PM. The NOR-G-OH DNA adduct was detected after 24h of 6μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Role of halogen and hydrogen bonds for stabilization of antithyroid drugs with hypohalous acids (HOX, X = I, Br, and Cl) adducts

    NASA Astrophysics Data System (ADS)

    El-Sheshtawy, Hamdy S.; El-Mehasseb, Ibrahim

    2017-11-01

    The mechanism for the inhibition of thyroid hormones by the thioamide-like antithyroid drug is a key process in the thyroid gland function. Therefore, in this study theoretical investigation of the molecular interaction between two antithyroid drugs, namely methimazol (MMI) and thiazoline-2-thione (T2T), with the hypohalous acids (HOX, X = I, Br, and Cl), which act as heme-linked halogenated species to tyrosine residue was discussed. The calculations were performed by M06-2X and MP2 using aug-cc-pVDZ level of theory. In addition, wB97xd/6-31G* level of theory was used in order to account for the dispersion forces. The results show the possible formation of three adducts, which is stabilized by halogen bond (I), both halogen and hydrogen bonds (II), two hydrogen bonds (III). The binding energies of the complexes reveals stabilization in the order III > II > I. The binding energies of the complexes was increased with increasing the electron affinity and polarizability of halogen atom, the dipole moment of the complexes (I and II), the electrostatic potential on halogen atom (Vmax:i.e σ-hole), and the charge-transfer process through the halogen bond in I. On the other hand, the binding energies of the complexes decreased with increasing the halogen atom electronegativity and the dipole moment of complex III. Natural bond orbital (NBO) analysis was used to investigate the molecular orbital interactions and the charge transfer process upon complexation.

  17. Ordered Structure Formed by Biologically Related Molecules

    NASA Astrophysics Data System (ADS)

    Hatta, Ichiro; Nishino, Junichiro; Sumi, Akinori; Hibino, Masahiro

    1995-07-01

    The two-dimensional arrangement of biologically related molecules was studied by means of scanning probe microscopy. For monolayers of fatty acid molecules with a saturated hydrocarbon chain adsorbed on a graphite substrate, in the scanning tunneling microscope image, the position associated with the carbon atoms was clearly distinguished. In addition, based on the image for fatty acid molecules with an unsaturated hydrocarbon chain, at the position of a double bond, local electrical conductance was found to increase. Based on the images, it was pointed out that not the position of each carbon but the interaction between a graphite substrate and an alkyl chain plays an important role in imaging. On the other hand, for the surface of Langmuir-Blodgett films composed of phosphatidic acids with cations, the scanning force microscope image shows, for the first time, evidence of the methyl ends in the arrangement of phospholipid molecules.

  18. Modeling the binding of fulvic acid by goethite: the speciation of adsorbed FA molecules

    NASA Astrophysics Data System (ADS)

    Filius, Jeroen D.; Meeussen, Johannes C. L.; Lumsdon, David G.; Hiemstra, Tjisse; van Riemsdijk, Willem H.

    2003-04-01

    Under natural conditions, the adsorption of ions at the solid-water interface may be strongly influenced by the adsorption of organic matter. In this paper, we describe the adsorption of fulvic acid (FA) by metal(hydr)oxide surfaces with a heterogeneous surface complexation model, the ligand and charge distribution (LCD) model. The model is a self-consistent combination of the nonideal competitive adsorption (NICA) equation and the CD-MUSIC model. The LCD model can describe simultaneously the concentration, pH, and salt dependency of the adsorption with a minimum of only three adjustable parameters. Furthermore, the model predicts the coadsorption of protons accurately for an extended range of conditions. Surface speciation calculations show that almost all hydroxyl groups of the adsorbed FA molecules are involved in outer sphere complexation reactions. The carboxylic groups of the adsorbed FA molecule form inner and outer sphere complexes. Furthermore, part of the carboxylate groups remain noncoordinated and deprotonated.

  19. Small molecule annotation for the Protein Data Bank

    PubMed Central

    Sen, Sanchayita; Young, Jasmine; Berrisford, John M.; Chen, Minyu; Conroy, Matthew J.; Dutta, Shuchismita; Di Costanzo, Luigi; Gao, Guanghua; Ghosh, Sutapa; Hudson, Brian P.; Igarashi, Reiko; Kengaku, Yumiko; Liang, Yuhe; Peisach, Ezra; Persikova, Irina; Mukhopadhyay, Abhik; Narayanan, Buvaneswari Coimbatore; Sahni, Gaurav; Sato, Junko; Sekharan, Monica; Shao, Chenghua; Tan, Lihua; Zhuravleva, Marina A.

    2014-01-01

    The Protein Data Bank (PDB) is the single global repository for three-dimensional structures of biological macromolecules and their complexes, and its more than 100 000 structures contain more than 20 000 distinct ligands or small molecules bound to proteins and nucleic acids. Information about these small molecules and their interactions with proteins and nucleic acids is crucial for our understanding of biochemical processes and vital for structure-based drug design. Small molecules present in a deposited structure may be attached to a polymer or may occur as a separate, non-covalently linked ligand. During curation of a newly deposited structure by wwPDB annotation staff, each molecule is cross-referenced to the PDB Chemical Component Dictionary (CCD). If the molecule is new to the PDB, a dictionary description is created for it. The information about all small molecule components found in the PDB is distributed via the ftp archive as an external reference file. Small molecule annotation in the PDB also includes information about ligand-binding sites and about covalent and other linkages between ligands and macromolecules. During the remediation of the peptide-like antibiotics and inhibitors present in the PDB archive in 2011, it became clear that additional annotation was required for consistent representation of these molecules, which are quite often composed of several sequential subcomponents including modified amino acids and other chemical groups. The connectivity information of the modified amino acids is necessary for correct representation of these biologically interesting molecules. The combined information is made available via a new resource called the Biologically Interesting molecules Reference Dictionary, which is complementary to the CCD and is now routinely used for annotation of peptide-like antibiotics and inhibitors. PMID:25425036

  20. Small molecule annotation for the Protein Data Bank.

    PubMed

    Sen, Sanchayita; Young, Jasmine; Berrisford, John M; Chen, Minyu; Conroy, Matthew J; Dutta, Shuchismita; Di Costanzo, Luigi; Gao, Guanghua; Ghosh, Sutapa; Hudson, Brian P; Igarashi, Reiko; Kengaku, Yumiko; Liang, Yuhe; Peisach, Ezra; Persikova, Irina; Mukhopadhyay, Abhik; Narayanan, Buvaneswari Coimbatore; Sahni, Gaurav; Sato, Junko; Sekharan, Monica; Shao, Chenghua; Tan, Lihua; Zhuravleva, Marina A

    2014-01-01

    The Protein Data Bank (PDB) is the single global repository for three-dimensional structures of biological macromolecules and their complexes, and its more than 100,000 structures contain more than 20,000 distinct ligands or small molecules bound to proteins and nucleic acids. Information about these small molecules and their interactions with proteins and nucleic acids is crucial for our understanding of biochemical processes and vital for structure-based drug design. Small molecules present in a deposited structure may be attached to a polymer or may occur as a separate, non-covalently linked ligand. During curation of a newly deposited structure by wwPDB annotation staff, each molecule is cross-referenced to the PDB Chemical Component Dictionary (CCD). If the molecule is new to the PDB, a dictionary description is created for it. The information about all small molecule components found in the PDB is distributed via the ftp archive as an external reference file. Small molecule annotation in the PDB also includes information about ligand-binding sites and about covalent and other linkages between ligands and macromolecules. During the remediation of the peptide-like antibiotics and inhibitors present in the PDB archive in 2011, it became clear that additional annotation was required for consistent representation of these molecules, which are quite often composed of several sequential subcomponents including modified amino acids and other chemical groups. The connectivity information of the modified amino acids is necessary for correct representation of these biologically interesting molecules. The combined information is made available via a new resource called the Biologically Interesting molecules Reference Dictionary, which is complementary to the CCD and is now routinely used for annotation of peptide-like antibiotics and inhibitors. © The Author(s) 2014. Published by Oxford University Press.

  1. Identification of antisense nucleic acid hybridization sites in mRNA molecules with self-quenching fluorescent reporter molecules

    PubMed Central

    Gifford, Lida K.; Opalinska, Joanna B.; Jordan, David; Pattanayak, Vikram; Greenham, Paul; Kalota, Anna; Robbins, Michelle; Vernovsky, Kathy; Rodriguez, Lesbeth C.; Do, Bao T.; Lu, Ponzy; Gewirtz, Alan M.

    2005-01-01

    We describe a physical mRNA mapping strategy employing fluorescent self-quenching reporter molecules (SQRMs) that facilitates the identification of mRNA sequence accessible for hybridization with antisense nucleic acids in vitro and in vivo, real time. SQRMs are 20–30 base oligodeoxynucleotides with 5–6 bp complementary ends to which a 5′ fluorophore and 3′ quenching group are attached. Alone, the SQRM complementary ends form a stem that holds the fluorophore and quencher in contact. When the SQRM forms base pairs with its target, the structure separates the fluorophore from the quencher. This event can be reported by fluorescence emission when the fluorophore is excited. The stem–loop of the SQRM suggests that SQRM be made to target natural stem–loop structures formed during mRNA synthesis. The general utility of this method is demonstrated by SQRM identification of targetable sequence within c-myb and bcl-6 mRNA. Corresponding antisense oligonucleotides reduce these gene products in cells. PMID:15718294

  2. Acrylamide Hemoglobin Adduct Levels and Ovarian Cancer Risk: a nested case-control study

    PubMed Central

    Xie, Jing; Terry, Kathryn L.; Poole, Elizabeth M.; Wilson, Kathryn M.; Rosner, Bernard A.; Willett, Walter C.; Vesper, Hubert W.; Tworoger, Shelley S.

    2013-01-01

    Background Acrylamide is a probable human carcinogen formed during cooking of starchy foods. Two large prospective cohort studies of dietary acrylamide intake and ovarian cancer risk observed a positive association, although two other studies reported no association. Methods We measured acrylamide exposure using red blood cell acrylamide and glycidamide hemoglobin adducts among women in two large prospective cohorts: the Nurses’ Health Study and Nurses’ Health Study II. Between blood collection and 2010, we identified 263 incident cases of epithelial ovarian cancer, matching two controls per case. We used logistic regression models to examine the association between acrylamide exposure and ovarian cancer risk, adjusting for matching factors, family history of ovarian cancer, tubal ligation, oral contraceptive use, body mass index (BMI), parity, alcohol intake, smoking, physical activity, and caffeine intake. Results The multivariate-adjusted relative risk (RR) of ovarian cancer comparing the highest versus lowest tertile of total acrylamide adducts was 0.79 (95% CI: 0.50–1.24, P trend = 0.08). The comparable RR of ovarian cancer among non-smokers at blood draw was 0.85 (95% CI: 0.57–1.27, P trend =0.14). The association did not differ by tumor histology (serous invasive versus not), P for heterogeneity=0.41. Individual adduct types (acrylamide or glycidamide) were not associated with risk. Conclusions We observed no evidence that acrylamide exposure as measured by adducts to hemoglobin is associated with an increased risk of ovarian cancer. Impact Our finding indicates that acrylamide intake may not increase risk of ovarian cancer. PMID:23417989

  3. Lack of contribution of covalent benzo[a]pyrene-7,8-quinone-DNA adducts in benzo[a]pyrene-induced mouse lung tumorigenesis.

    PubMed

    Nesnow, Stephen; Nelson, Garret; Padgett, William T; George, Michael H; Moore, Tanya; King, Leon C; Adams, Linda D; Ross, Jeffrey A

    2010-07-30

    Benzo[a]pyrene (B[a]P) is a potent human and rodent lung carcinogen. This activity has been ascribed in part to the formation of anti-trans-7,8-dihydroxy-7,8-dihydroB[a]P-9,10-epoxide (BPDE)-DNA adducts. Other carcinogenic mechanisms have been proposed: (1) the induction of apurinic sites from radical cation processes, and (2) the metabolic formation of B[a]P-7,8-quinone (BPQ) that can form covalent DNA adducts or reactive oxygen species which can damage DNA. The studies presented here sought to examine the role of stable BPQ-DNA adducts in B[a]P-induced mouse lung tumorigenesis. Male strain A/J mice were injected intraperitoneally once with BPQ or trans-7,8-dihydroxy-7,8-dihydroB[a]P (BP-7,8-diol) at 30, 10, 3, or 0mg/kg. Lungs and livers were harvested after 24h, the DNA extracted and subjected to (32)P-postlabeling analysis. Additional groups of mice were dosed once with BPQ or BP-7,8-diol each at 30 mg/kg and tissues harvested 48 and 72 h later, or with B[a]P (50mg/kg, a tumorigenic dose) and tissues harvested 72 h later. No BPQ or any other DNA adducts were observed in lung or liver tissues 24, 48, or 72 h after the treatment with 30 mg/kg BPQ. BP-7,8-diol gave BPDE-DNA adducts at all time points in both tissues and B[a]P treatment gave BPDE-DNA adducts in the lung. In each case, no BPQ-DNA adducts were detected. Mouse body weights significantly decreased over time after BPQ or BP-7,8-diol treatments suggesting that systemic toxicity was induced by both agents. Model studies with BPQ and N-acetylcysteine suggested that BPQ is rapidly inactivated by sulfhydryl-containing compounds and not available for DNA adduction. We conclude that under these treatment conditions BPQ does not form stable covalent DNA adducts in the lungs or livers of strain A/J mice, suggesting that stable BPQ-covalent adducts are not a part of the complex of mechanisms involved in B[a]P-induced mouse lung tumorigenesis. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Base-Displaced Intercalated Conformation of the 2-Amino-3-methylimidazo[4,5-f]quinoline N2-dG DNA Adduct Positioned at the Nonreiterated G1 in the NarI Restriction Site

    PubMed Central

    2016-01-01

    The conformation of an N2-dG adduct arising from the heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), a potent food mutagen, was determined in 5′-d(C1T2C3X4G5C6G7C8C9A10T11C12)-3′:5′-d(G13A14T15G16G17C18G19C20C21G22A23G24)-3′; X = N2-dG-IQ, in which the modified nucleotide X4 corresponds to G1 in the 5′-d(G1G2CG3CC)-3′ NarI restriction endonuclease site. Circular dichroism (CD) revealed blue shifts relative to the unmodified duplex, consistent with adduct-induced twisting, and a hypochromic effect for the IQ absorbance in the near UV region. NMR revealed that the N2-dG-IQ adduct adopted a base-displaced intercalated conformation in which the modified guanine remained in the anti conformation about the glycosidic bond, the IQ moiety intercalated into the duplex, and the complementary base C21 was displaced into the major groove. The processing of the N2-dG-IQ lesion by hpol η is sequence-dependent; when placed at the reiterated G3 position, but not at the G1 position, this lesion exhibits a propensity for frameshift replication [Choi, J. Y., et al. (2006) J. Biol. Chem., 281, 25297–25306]. The structure of the N2-dG-IQ adduct at the nonreiterated G1 position was compared to that of the same adduct placed at the G3 position [Stavros, K. M., et al. (2014) Nucleic Acids Res., 42, 3450–3463]. CD indicted minimal spectral differences between the G1 vs G3N2-dG-IQ adducts. NMR indicated that the N2-dG-IQ adduct exhibited similar base-displaced intercalated conformations at both the G1 and G3 positions. This result differed as compared to the corresponding C8-dG-IQ adducts placed at the same positions. The C8-dG-IQ adduct adopted a minor groove conformation when placed at position G1 but a base-displaced intercalated conformation when placed at position G3 in the NarI sequence. The present studies suggest that differences in lesion bypass by hpol η may be mediated by differences in the 3′-flanking sequences, perhaps modulating the ability

  5. Effect of temperature on thermal oxidation of palmitic acid studied by combination of EPR spin trapping technique and SPME-GC-MS/MS.

    PubMed

    Chen, Hongjian; Wang, Yong; Cao, Peirang; Liu, Yuanfa

    2017-11-01

    Effect of temperatures on thermal oxidation of palmitic acid was studied by the combination of EPR and GC-MS/MS. DMPO was used as the spin trap. The experimental spectrum was simulated with alkyl and alkoxyl spin adducts. Total amount of spins, a parameter to indicate radical concentrations, detected at 180°C was nearly 10 times higher than that at 175°C. Besides, total amounts of spins detected at 180°C decreased rapidly because of the reaction between radical adducts and newly formed radicals. Signal intensities of alkyl radical adducts increased rapidly from 0.405 to 4.785 from 175°C to 180°C. Besides, more palmitic acid degraded to oxidized compounds from 175°C to 180°C than that of other temperature ranges. The C-C linkages between carbons 2 to 6 were easier to be oxidized at 180°C. The results all implied that oxidation rates of palmitic acid samples increased rapidly from 175°C to 180°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. CANCER BIOMARKERS IN HUMAN ATHEROSCLEROTIC LESIONS: DETECTION OF DNA ADDUCTS

    EPA Science Inventory

    Since somatic mutations are suspected to contribute to the pathogenesis not only of cancer but also of atherosclerotic plaques, we measured DNA adducts in the smooth muscle layer of atherosclerotic lesions in abnormal aorta specimens taken at surgery from seven patients. NA adduc...

  7. Aberrant Expression of Retinoic Acid Signaling Molecules Influences Patient Survival in Astrocytic Gliomas

    PubMed Central

    Campos, Benito; Centner, Franz-Simon; Bermejo, Justo Lorenzo; Ali, Ramadan; Dorsch, Katharina; Wan, Feng; Felsberg, Jörg; Ahmadi, Rezvan; Grabe, Niels; Reifenberger, Guido; Unterberg, Andreas; Burhenne, Jürgen; Herold-Mende, Christel

    2011-01-01

    Undifferentiated cell populations may influence tumor growth in malignant glioma. We investigated potential disruptions in the retinoic acid (RA) differentiation pathway that could lead to a loss of differentiation capacity, influencing patient prognosis. Expression of key molecules belonging to the RA differentiation pathway was analyzed in 283 astrocytic gliomas and was correlated with tumor proliferation, tumor differentiation, and patient survival. In addition, in situ concentrations of retinoids were measured in tumors, and RA signaling events were studied in vitro. Unlike other tumors, in gliomas expression of most RA signaling molecules increased with malignancy and was associated with augmented intratumoral retinoid levels in high-grade gliomas. Aberrantly expressed RA signaling molecules included i) the retinol-binding protein CRBP1, which facilitates cellular retinoid uptake; ii) ALDH1A1, capable of activating RA precursors; iii) the RA-degrading enzyme CYP26B1; and iv) the RA-binding protein FABP5, which can inhibit RA-induced differentiation. In contrast, expression of the RA-binding protein CRABP2, which fosters differentiation, was decreased in high-grade tumors. Moreover, expression of CRBP1 correlated with tumor proliferation, and FABP5 expression correlated with an undifferentiated tumor phenotype. CRBP1 and ALDH1A1 were independent prognostic markers for adverse patient survival. Our data indicate a complex and clinically relevant deregulation of RA signaling, which seems to be a central event in glioma pathogenesis. PMID:21514413

  8. A redox-active, compact molecule for cross-linking amyloidogenic peptides into nontoxic, off-pathway aggregates: In vitro and in vivo efficacy and molecular mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derrick, Jeffrey S.; Kerr, Richard A.; Nam, Younwoo

    Chemical reagents targeting and controlling amyloidogenic peptides have received much attention for helping identify their roles in the pathogenesis of protein-misfolding disorders. In this paper, we report a novel strategy for redirecting amyloidogenic peptides into nontoxic, off-pathway aggregates, which utilizes redox properties of a small molecule (DMPD, N,N-dimethyl- p-phenylenediamine) to trigger covalent adduct formation with the peptide. In addition, for the first time, biochemical, biophysical, and molecular dynamics simulation studies have been performed to demonstrate a mechanistic understanding for such an interaction between a small molecule (DMPD) and amyloid-β (Aβ) and its subsequent anti-amyloidogenic activity, which, upon its transformation, generatesmore » ligand–peptide adducts via primary amine-dependent intramolecular cross-linking correlated with structural compaction. Furthermore, in vivo efficacy of DMPD toward amyloid pathology and cognitive impairment was evaluated employing 5xFAD mice of Alzheimer’s disease (AD). Such a small molecule (DMPD) is indicated to noticeably reduce the overall cerebral amyloid load of soluble Aβ forms and amyloid deposits as well as significantly improve cognitive defects in the AD mouse model. Altogether our in vitro and in vivo studies of DMPD toward Aβ with the first molecular-level mechanistic investigations present the feasibility of developing new, innovative approaches that employ redox-active compounds without the structural complexity as next-generation chemical tools for amyloid management.« less

  9. A Redox-Active, Compact Molecule for Cross-Linking Amyloidogenic Peptides into Nontoxic, Off-Pathway Aggregates: In Vitro and In Vivo Efficacy and Molecular Mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derrick, Jeffrey S.; Kerr, Richard A.; Nam, Younwoo

    Chemical reagents targeting and controlling amyloidogenic peptides have received much attention for helping identify their roles in the pathogenesis of protein-misfolding disorders. Herein, we report a novel strategy for redirecting amyloidogenic peptides into nontoxic, off-pathway aggregates, which utilizes redox properties of a small molecule (DMPD, N,N-dimethyl-p-phenylenediamine) to trigger covalent adduct formation with the peptide. In addition, for the first time, biochemical, biophysical, and molecular dynamics simulation studies have been performed to demonstrate a mechanistic understanding for such an interaction between a small molecule (DMPD) and amyloid-β (Aβ) and its subsequent anti-amyloidogenic activity, which, upon its transformation, generates ligand–peptide adducts viamore » primary amine-dependent intramolecular cross-linking correlated with structural compaction. Furthermore, in vivo efficacy of DMPD toward amyloid pathology and cognitive impairment was evaluated employing 5xFAD mice of Alzheimer’s disease (AD). Such a small molecule (DMPD) is indicated to noticeably reduce the overall cerebral amyloid load of soluble Aβ forms and amyloid deposits as well as significantly improve cognitive defects in the AD mouse model. Overall, our in vitro and in vivo studies of DMPD toward Aβ with the first molecular-level mechanistic investigations present the feasibility of developing new, innovative approaches that employ redox-active compounds without the structural complexity as next-generation chemical tools for amyloid management.« less

  10. A redox-active, compact molecule for cross-linking amyloidogenic peptides into nontoxic, off-pathway aggregates: In vitro and in vivo efficacy and molecular mechanisms

    DOE PAGES

    Derrick, Jeffrey S.; Kerr, Richard A.; Nam, Younwoo; ...

    2015-11-17

    Chemical reagents targeting and controlling amyloidogenic peptides have received much attention for helping identify their roles in the pathogenesis of protein-misfolding disorders. In this paper, we report a novel strategy for redirecting amyloidogenic peptides into nontoxic, off-pathway aggregates, which utilizes redox properties of a small molecule (DMPD, N,N-dimethyl- p-phenylenediamine) to trigger covalent adduct formation with the peptide. In addition, for the first time, biochemical, biophysical, and molecular dynamics simulation studies have been performed to demonstrate a mechanistic understanding for such an interaction between a small molecule (DMPD) and amyloid-β (Aβ) and its subsequent anti-amyloidogenic activity, which, upon its transformation, generatesmore » ligand–peptide adducts via primary amine-dependent intramolecular cross-linking correlated with structural compaction. Furthermore, in vivo efficacy of DMPD toward amyloid pathology and cognitive impairment was evaluated employing 5xFAD mice of Alzheimer’s disease (AD). Such a small molecule (DMPD) is indicated to noticeably reduce the overall cerebral amyloid load of soluble Aβ forms and amyloid deposits as well as significantly improve cognitive defects in the AD mouse model. Altogether our in vitro and in vivo studies of DMPD toward Aβ with the first molecular-level mechanistic investigations present the feasibility of developing new, innovative approaches that employ redox-active compounds without the structural complexity as next-generation chemical tools for amyloid management.« less

  11. Supramolecular intermediates in the synthesis of polymeric carbon nitride from melamine cyanurate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dante, Roberto C., E-mail: rcdante@yahoo.com; Sánchez-Arévalo, Francisco M.; Chamorro-Posada, Pedro

    The adduct of melamine and cyanuric acid (MCA) was used in past research to produce polymeric carbon nitride and precursors. The reaction yield was considerably incremented by the addition of sulfuric acid. The polymeric carbon nitride formation occurs around 450 °C at temperatures above the sublimation of the adduct components, which occurs around 400 °C. In this report the effect of sulfuric acid on MCA was investigated. It was found that the MCA rosette supramolecular channel structures behave as a solid solvent able to host small molecules, such as sulfuric acid, inside these channels and interact with them. Therefore, themore » sulfuric acid effect was found to be close to that of a solute that causes a temperature increment of the “solvent sublimation” enough to allowing the formation of polymeric carbon nitride to occur. Sulfate ions are presumably hosted in the rosette channels of MCA as shown by simulations. - Graphical abstract: The blend of melamine cyanurate and sulfuric acid behaves like a solution so that melamine cyanurate decomposition is shifted to temperatures high enough to react and form polymeric carbon nitride. - Highlights: • The adduct of melamine and cyanuric acid behaves as a solid solvent. • The blend of sulfuric acid and melamine cyanurate behaves like a solution. • Melamine cyanurate decomposition is shifted to higher temperatures by sulfuric acid. • The formation of polymeric carbon nitride occurs for these higher temperatures.« less

  12. Threefold interweaving of (4,4) nets built from R(10)10(58) rings inthe hydrogen-bonded adduct 1,4-diazabicyclo

    PubMed

    Burchell; Ferguson; Lough; Glidewell

    2000-09-01

    The 1:1 adduct of 1,4-diazabicyclo[2.2.2]octane and 5-hydroxyisophthalic acid is a salt, [H(C(6)H(12)N(2))](+). [HOC(6)H(3)(COOH)COO](-) or C(6)H(13)N(2)(+).C(8)H(5)O(5)(-). The ions are linked by three types of hydrogen bond, i.e. N-H.O, O-H.O and O-H.N, into continuous two-dimensional (4,4) nets built from a single type of R(10)(10)(58) ring. Six independent sheets of this type make up the structure and these are interwoven in sets of three.

  13. Bioactive Molecules Released in Food by Lactic Acid Bacteria: Encrypted Peptides and Biogenic Amines

    PubMed Central

    Pessione, Enrica; Cirrincione, Simona

    2016-01-01

    Lactic acid bacteria (LAB) can produce a huge amount of bioactive compounds. Since their elective habitat is food, especially dairy but also vegetal food, it is frequent to find bioactive molecules in fermented products. Sometimes these compounds can have adverse effects on human health such as biogenic amines (tyramine and histamine), causing allergies, hypertensive crises, and headache. However, some LAB products also display benefits for the consumers. In the present review article, the main nitrogen compounds produced by LAB are considered. Besides biogenic amines derived from the amino acids tyrosine, histidine, phenylalanine, lysine, ornithine, and glutamate by decarboxylation, interesting peptides can be decrypted by the proteolytic activity of LAB. LAB proteolytic system is very efficient in releasing encrypted molecules from several proteins present in different food matrices. Alpha and beta-caseins, albumin and globulin from milk and dairy products, rubisco from spinach, beta-conglycinin from soy and gluten from cereals constitute a good source of important bioactive compounds. These encrypted peptides are able to control nutrition (mineral absorption and oxidative stress protection), metabolism (blood glucose and cholesterol lowering) cardiovascular function (antithrombotic and hypotensive action), infection (microbial inhibition and immunomodulation) and gut-brain axis (opioids and anti-opioids controlling mood and food intake). Very recent results underline the role of food-encrypted peptides in protein folding (chaperone-like molecules) as well as in cell cycle and apoptosis control, suggesting new and positive aspects of fermented food, still unexplored. In this context, the detailed (transcriptomic, proteomic, and metabolomic) characterization of LAB of food interest (as starters, biocontrol agents, nutraceuticals, and probiotics) can supply a solid evidence-based science to support beneficial effects and it is a promising approach as well to obtain

  14. Quenching methods for background reduction in luminescence-based probe-target binding assays

    DOEpatents

    Cai, Hong [Los Alamos, NM; Goodwin, Peter M [Los Alamos, NM; Keller, Richard A [Los Alamos, NM; Nolan, Rhiannon L [Santa Fe, NM

    2007-04-10

    Background luminescence is reduced from a solution containing unbound luminescent probes, each having a first molecule that attaches to a target molecule and having an attached luminescent moiety, and luminescent probe/target adducts. Quenching capture reagent molecules are formed that are capable of forming an adduct with the unbound luminescent probes and having an attached quencher material effective to quench luminescence of the luminescent moiety. The quencher material of the capture reagent molecules is added to a solution of the luminescent probe/target adducts and binds in a proximity to the luminescent moiety of the unbound luminescent probes to quench luminescence from the luminescent moiety when the luminescent moiety is exposed to exciting illumination. The quencher capture reagent does not bind to probe molecules that are bound to target molecules and the probe/target adduct emission is not quenched.

  15. Platinum anti-cancer drugs: Free radical mechanism of Pt-DNA adduct formation and anti-neoplastic effect.

    PubMed

    Fong, Clifford W

    2016-06-01

    The literature on the anti-neoplastic effects of Pt drugs provides substantial evidence that free radical may be involved in the formation of Pt-DNA adducts and other cytotoxic effects. The conditions specific to cancerous tumours are more conducive to free radical mechanisms than the commonly accepted hydrolysis nucleophilic-electrophilic mechanism of Pt-DNA adduct formation. Molecular orbital studies of the adiabatic attachment of hydrated electrons to Pt drugs reveal that there is a significant lengthening of the Pt-X bond (where X is Cl, O in cisplatin, carboplatin and some pyrophosphate-Pt drugs but not oxaliplatin) in the anion radical species. This observation is consistent with a dissociative electron transfer (DET) mechanism for the formation of Pt-DNA adducts. A DET reaction mechanism is proposed for the reaction of Pt drugs with guanine which involves a quasi-inner sphere 2 electron transfer process involving a transient intermediate 5 co-ordinated activated anion radical species {R2Pt---Cl(G)(Cl)•}*(-) (where R is an ammine group, and G is guanine) and the complex has an elongated Pt---Cl (or Pt---O) bond. A DET mechanism is also proposed when Pt drugs are activated by reaction with free radicals such as HO•, CO3•(-), O2•(-) but do not react with DNA bases to form adducts, but form Pt-protein adducts with proteins such ezrin, FAS, DR5, TNFR1 etc. The DET mechanism may not occur with oxaliplatin. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Debio 0507 primarily forms diaminocyclohexane-Pt-d(GpG) and -d(ApG) DNA adducts in HCT116 cells

    PubMed Central

    King, C. L.; Ramachandran, S.; Collins, L.; Swenberg, J. A.; deKrafft, K. E.; Lin, W.; Cicurel, L.; Barbier, M.

    2013-01-01

    Purpose To characterize the cellular action mechanism of Debio 0507, we compared the major DNA adducts formed by Debio 0507- and oxaliplatin-treated HCT116 human colon carcinoma cells by a combination of inductively coupled plasma mass spectrometry (ICP-MS) and ultra-performance liquid chromatography mass spectrometry (UPLC-MS/MS). Methods HCT116 cells were treated with IC50 doses of Debio 0507 or oxaliplatin for 3 days. Total cellular Pt–DNA adducts were determined by ICP-MS. The DNA was digested, and the major Pt–DNA adducts formed by both drugs were characterized by UPLC/MS/MS essentially as described previously for cisplatin (Baskerville-Abraham et al. in Chem Res Toxicol 22:905–912, 2009). Results The Pt level/deoxynucleotide was 7.4/104 for DNA from Debio 0507-treated cells and 5.5/104 for oxaliplatin-treated cells following a 3-day treatment at the IC50 for each drug. UPLC-MS/MS in the positive ion mode confirmed the major Pt–DNA adducts formed by both drugs were dach-Pt-d(GpG) (904.2 m/z → 610 m/z and 904.2 m/z → 459 m/z) and dach-Pt-d(ApG) (888.2 m/z → 594 m/z and 888.2 m/z → 459 m/z). Conclusions These data show that the major DNA adducts formed by Debio 0507 are the dach-Pt-d(GpG) and dach-Pt-d(ApG) adducts and at equitoxic doses Debio 0507 and oxaliplatin form similar levels of dach-Pt-d(GpG) and dach-Pt-d(ApG) adducts. This suggests that the action mechanisms of Debio 0507 and oxaliplatin are similar at a cellular level. PMID:21968950

  17. Debio 0507 primarily forms diaminocyclohexane-Pt-d(GpG) and -d(ApG) DNA adducts in HCT116 cells.

    PubMed

    King, C L; Ramachandran, S; Chaney, S G; Collins, L; Swenberg, J A; DeKrafft, K E; Lin, W; Cicurel, L; Barbier, M

    2012-03-01

    To characterize the cellular action mechanism of Debio 0507, we compared the major DNA adducts formed by Debio 0507- and oxaliplatin-treated HCT116 human colon carcinoma cells by a combination of inductively coupled plasma mass spectrometry (ICP-MS) and ultraperformance liquid chromatography mass spectrometry (UPLC-MS/MS). HCT116 cells were treated with IC(50) doses of Debio 0507 or oxaliplatin for 3 days. Total cellular Pt-DNA adducts were determined by ICP-MS. The DNA was digested, and the major Pt-DNA adducts formed by both drugs were characterized by UPLC/MS/MS essentially as described previously for cisplatin (Baskerville-Abraham et al. in Chem Res Toxicol 22:905-912, 2009). The Pt level/deoxynucleotide was 7.4/10(4) for DNA from Debio 0507-treated cells and 5.5/10(4) for oxaliplatin-treated cells following a 3-day treatment at the IC(50) for each drug. UPLC-MS/MS in the positive ion mode confirmed the major Pt-DNA adducts formed by both drugs were dach-Pt-d(GpG) (904.2 m/z → 610 m/z and 904.2 m/z → 459 m/z) and dach-Pt-d(ApG) (888.2 m/z → 594 m/z and 888.2 m/z → 459 m/z). These data show that the major DNA adducts formed by Debio 0507 are the dach-Pt-d(GpG) and dach-Pt-d(ApG) adducts and at equitoxic doses Debio 0507 and oxaliplatin form similar levels of dach-Pt-d(GpG) and dach-Pt-d(ApG) adducts. This suggests that the action mechanisms of Debio 0507 and oxaliplatin are similar at a cellular level.

  18. Studies on the reaction mechanism of lactate oxidase. Formation of two covalent flavin-substrate adducts on reaction with glycollate.

    PubMed

    Massey, V; Ghisla, S; Kieschke, K

    1980-04-10

    L-Lactate oxidase from Mycobacterium smegmatis catalyzes the oxidative decarboxylation of glycollate, with formate, CO2, and H2O as the major products. In addition, some "uncoupling" of the normal reaction occurs, with glyoxylate and H2O adition, some "uncoupling" of the normal reaction occurs, with glyoxylate and H2O2 as products. Glyoxylate is also a substrate (presumably as its hydrate); in this case, the reaction products are oxalate and H2O2. Evidence is presented that the enzyme recognizes glycollate as a prochiral substrate, differentiating between the Re- and Si-faces of the alpha carbon atom. Two highly fluorescent species are formed concomitantly from the reaction with glycollate; they are proposed to be covalent alpha-glycollyl adducts to the reduced flavin position N(5). One of these adducts is labile and in rapid equilibrium with oxidized enzyme and glycollate, and with the complex of reduced enzyme and glyoxylate; this adduct is a catalytically competent intermediate. The other adduct is comparatively stable (t 1/2 for decay = 20 min at 25 degrees C) and does not react with O2. It is formed at a rate approximately 1% that of the catalytic adduct, but because of its lack of reaction with O2 and its stability, it gradually accumulates during catalytic turnover, resulting in catalytically incompetent enzyme. An isotope effect of approximately 4 is found in the reduction of oxidized enzyme flavin and in the formation of the labile fluorescent adduct, when alpha-2H2-glycollate or (R)-glycollate-2-d is used, but not with the (S)-glycollate-2-d enantiomer. It is concluded that the catalytic adduct is formed by hydrogen abstraction from the Re-face of glycollate.

  19. Fast Fourier Transform IR Characterization of Epoxy GY Systems Crosslinked with Aliphatic and Cycloaliphatic EH Polyamine Adducts

    PubMed Central

    Nikolic, Goran; Zlatkovic, Sasa; Cakic, Milorad; Cakic, Suzana; Lacnjevac, Caslav; Rajic, Zoran

    2010-01-01

    The use of fast FT-IR spectroscopy as a sensitive method to estimate a change of the crosslinking kinetics of epoxy resin with polyamine adducts is described in this study. A new epoxy formulation based on the use of polyamine adducts as the hardeners was analyzed. Crosslinking reactions of the different stoichiometric mixtures of the unmodified GY250 epoxy resin with the aliphatic EH606 and the cycloaliphatic EH637 polyamine adducts were studied using mid FT-IR spectroscopic techniques. As the crosslinking proceeded, the primary amine groups in polyamine adduct are converted to secondary and the tertiary amines. The decrease in the IR band intensity of epoxy groups at about 915 cm−1, as well as at about 3,056 cm−1, was observed due to process. Mid IR spectral analysis was used to calculate the content of the epoxy groups as a function of crosslinking time and the crosslinking degree of resin. The amount of all the epoxy species was estimated from IR spectra to changes during the crosslinking kinetics of epichlorhydrin. PMID:22315562

  20. A differential mobility spectrometry/mass spectrometry platform for the rapid detection and quantitation of DNA adduct dG-ABP.

    PubMed

    Kafle, Amol; Klaene, Joshua; Hall, Adam B; Glick, James; Coy, Stephen L; Vouros, Paul

    2013-07-15

    There is continued interest in exploring new analytical technologies for the detection and quantitation of DNA adducts, biomarkers which provide direct evidence of exposure and genetic damage in cells. With the goal of reducing clean-up steps and improving sample throughput, a Differential Mobility Spectrometry/Mass Spectrometry (DMS/MS) platform has been introduced for adduct analysis. A DMS/MS platform has been utilized for the analysis of dG-ABP, the deoxyguanosine adduct of the bladder carcinogen 4-aminobiphenyl (4-ABP). After optimization of the DMS parameters, each sample was analyzed in just 30 s following a simple protein precipitation step of the digested DNA. A detection limit of one modification in 10^6 nucleosides has been achieved using only 2 µg of DNA. A brief comparison (quantitative and qualitative) with liquid chromatography/mass spectrometry is also presented highlighting the advantages of using the DMS/MS method as a high-throughput platform. The data presented demonstrate the successful application of a DMS/MS/MS platform for the rapid quantitation of DNA adducts using, as a model analyte, the deoxyguanosine adduct of the bladder carcinogen 4-aminobiphenyl. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Specific intermolecular interactions of conserved water molecules with amino acids in the Galectin-1 carbohydrate recognition domain

    NASA Astrophysics Data System (ADS)

    Di Lella, Santiago; Petruk, Ariel A.; Armiño, Diego J. Alonso de; Álvarez, Rosa M. S.

    2010-08-01

    Water molecules, rigidly associated to protein surfaces, play a key role in stabilizing biomolecules and participating in their biological functions. Recent studies on the solvation properties of the carbohydrate recognition domain of Galectin-1 by means of molecular dynamic simulations have revealed the existence of several water sites which were well correlated to both the bound water molecules observed in the crystal structure of the protein in the free state and to some of the hydroxyl groups of the carbohydrate ligand observed in the crystal structure of the complexed protein. In this work, we present a study using quantum mechanical methods (B3LYP/6-311++G(3df,3dp)//B3LYP/6-31+G(d)) to determine the energy involved in the binding of these water molecules to specific amino acids in the carbohydrate recognition domain of the protein. By modeling the hydroxyl groups of the carbohydrate by methanol, the energies associated to the local interactions between the ligand and the protein have been evaluated by replacing specific water molecules with methanol. The values of the binding energies have been compared to those previously obtained by the molecular dynamic method.

  2. A comparative study of the vibrational spectra of the anticancer drug melphalan and its fundamental molecules 3-phenylpropionic acid and L-phenylalanine

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Khan, Ibrahim

    2016-04-01

    The structural stability and the vibrational spectra of the anticancer drug melphalan and its parent compounds 3-phenylpropionic acid and L-phenylalanine were investigated by the DFT B3LYP/6-311G** calculations. Melphalan and its fundamental compounds were predicted to exist predominantly in non-planar structures. The vibrational frequencies of the low energy structures of melphalan, 3-phenylpropionic acid, and phenylalanine were computed at the DFT B3LYP level of theory. Complete vibrational assignments of the normal modes of melphalan, 3-phenylpropionic acid, and phenylalanine were provided by combined theoretical and experimental data of the molecules. The experimental infrared spectra of phenylalanine and melphalan show a significantly different pattern of the Cdbnd O stretching mode as compared to those of normal carboxylic acids. A comparison of the 3700-2000 cm-1 infrared spectral region of the three molecules suggests the presence of similar intermolecular H-bonding in their condensed phases. The observed infrared and Raman spectra are consistent with the presence of one predominant melphalan conformation at room temperature.

  3. Infrared spectra and density functional calculations for SMO2 molecules (M = Cr, Mo, W).

    PubMed

    Wang, Xuefeng; Andrews, Lester

    2009-08-06

    Infrared absorptions of the matrix isolated SMO2 (M = Cr, Mo, W) molecules were observed following laser-ablated metal atom reactions with SO2 during condensation in solid argon and neon. The symmetric and antisymmetric M-O stretching mode assignments were confirmed by appropriate S18O2 and S(16,18)O2 isotopic shifts. The much weaker Cr-S stretching mode was identified through its 34S shift. Density functional (B3LYP and BPW91) calculations were performed to obtain molecular structures and to reproduce the infrared spectra. Computed pyramidal structures for the SMO2 molecules are very similar to those for the analogous trioxides and this functional group in [MO2S(bdt)]2- complexes. Additional weaker absorptions are assigned to the (SO2)(SMO2) adducts, which are stabilized by a four-membered ring.

  4. Magnetic Resonance Imaging of Optic Nerve Traction During Adduction in Primary Open-Angle Glaucoma With Normal Intraocular Pressure

    PubMed Central

    Demer, Joseph L.; Clark, Robert A.; Suh, Soh Youn; Giaconi, JoAnn A.; Nouri-Mahdavi, Kouros; Law, Simon K.; Bonelli, Laura; Coleman, Anne L.; Caprioli, Joseph

    2017-01-01

    Purpose We used magnetic resonance imaging (MRI) to ascertain effects of optic nerve (ON) traction in adduction, a phenomenon proposed as neuropathic in primary open-angle glaucoma (POAG). Methods Seventeen patients with POAG and maximal IOP ≤ 20 mm Hg, and 31 controls underwent MRI in central gaze and 20° to 30° abduction and adduction. Optic nerve and sheath area centroids permitted computation of midorbital lengths versus minimum paths. Results Average mean deviation (±SEM) was −8.2 ± 1.2 dB in the 15 patients with POAG having interpretable perimetry. In central gaze, ON path length in POAG was significantly more redundant (104.5 ± 0.4% of geometric minimum) than in controls (102.9 ± 0.4%, P = 2.96 × 10−4). In both groups the ON became significantly straighter in adduction (28.6 ± 0.8° in POAG, 26.8 ± 1.1° in controls) than central gaze and abduction. In adduction, the ON in POAG straightened to 102.0% ± 0.2% of minimum path length versus 104.5% ± 0.4% in central gaze (P = 5.7 × 10−7), compared with controls who straightened to 101.6% ± 0.1% from 102.9% ± 0.3% in central gaze (P = 8.7 × 10−6); and globes retracted 0.73 ± 0.09 mm in POAG, but only 0.07 ± 0.08 mm in controls (P = 8.8 × 10−7). Both effects were confirmed in age-matched controls, and remained significant after correction for significant effects of age and axial globe length (P = 0.005). Conclusions Although tethering and elongation of ON and sheath are normal in adduction, adduction is associated with abnormally great globe retraction in POAG without elevated IOP. Traction in adduction may cause mechanical overloading of the ON head and peripapillary sclera, thus contributing to or resulting from the optic neuropathy of glaucoma independent of IOP. PMID:28829843

  5. Plasma and liver acetaminophen-protein adduct levels in mice after acetaminophen treatment: Dose–response, mechanisms, and clinical implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGill, Mitchell R.; Lebofsky, Margitta; Norris, Hye-Ryun K.

    2013-06-15

    At therapeutic doses, acetaminophen (APAP) is a safe and effective analgesic. However, overdose of APAP is the principal cause of acute liver failure in the West. Binding of the reactive metabolite of APAP (NAPQI) to proteins is thought to be the initiating event in the mechanism of hepatotoxicity. Early work suggested that APAP-protein binding could not occur without glutathione (GSH) depletion, and likely only at toxic doses. Moreover, it was found that protein-derived APAP-cysteine could only be detected in serum after the onset of liver injury. On this basis, it was recently proposed that serum APAP-cysteine could be used asmore » diagnostic marker of APAP overdose. However, comprehensive dose–response and time course studies have not yet been done. Furthermore, the effects of co-morbidities on this parameter have not been investigated. We treated groups of mice with APAP at multiple doses and measured liver GSH and both liver and plasma APAP-protein adducts at various timepoints. Our results show that protein binding can occur without much loss of GSH. Importantly, the data confirm earlier work that showed that protein-derived APAP-cysteine can appear in plasma without liver injury. Experiments performed in vitro suggest that this may involve multiple mechanisms, including secretion of adducted proteins and diffusion of NAPQI directly into plasma. Induction of liver necrosis through ischemia–reperfusion significantly increased the plasma concentration of protein-derived APAP-cysteine after a subtoxic dose of APAP. While our data generally support the measurement of serum APAP-protein adducts in the clinic, caution is suggested in the interpretation of this parameter. - Highlights: • Extensive GSH depletion is not required for APAP-protein binding in the liver. • APAP-protein adducts appear in plasma at subtoxic doses. • Proteins are adducted in the cell and secreted out. • Coincidental liver injury increases plasma APAP-protein adducts at

  6. Formation of Fused-Ring 2′-Deoxycytidine Adducts from 1-Chloro-3-buten-2-one, an in Vitro 1,3-Butadiene Metabolite, under in Vitro Physiological Conditions

    PubMed Central

    Sun, Liang; Pelah, Avishay; Zhang, Dong-Ping; Zhong, Yu-Fang; An, Jing; Yu, Ying-Xin; Zhang, Xin-Yu; Elfarra, Adnan A.

    2013-01-01

    1-Chloro-3-buten-2-one (CBO) is a potential metabolite of 1,3-butadiene (BD), a carcinogenic air pollutant. CBO is a bifunctional alkylating agent that readily reacts with glutathione (GSH) to form mono-GSH and di-GSH adducts. Recently, CBO and its precursor 1-chloro-2-hydroxy-3-butene (CHB) were found to be cytotoxic and genotoxic in human liver cells in culture with CBO being approximately 100-fold more potent than CHB. In the present study, CBO was shown to react readily with 2′-deoxycytidine (dC) under in vitro physiological conditions (pH 7.4, 37 °C) to form four dC adducts with the CBO moieties forming fused rings with the N3 and N4 atoms of dC. The four products were structurally characterized as 2-hydroxy-2-hydroxymethyl-7-(2-deoxy-β-D-erythro-pentofuranosyl)-1,2,3,4-tetrahy dro-6-oxo-6H,7H-pyrimido[1,6-a]pyrimidin-5-ium (dC-1 and dC-2, a pair of diastereomers), 4-chloromethyl-4-hydroxy-7-(2-deoxy-β-D-erythro-pentofuranosyl)-1,2,3,4-tetrahydr o-6-oxo-6H,7H-pyrimido[1,6-a]pyrimidin-5-ium (dC-3), and 2-chloromethyl-2-hydroxy-7-(2-deoxy-β-D-erythro-pentofuranosyl)-1,2,3,4-tetrahydr o-6-oxo-6H,7H-pyrimido[1,6-a]pyrimidin-5-ium (dC-4). Interestingly, dC-1 and dC-2 were stable under our experimental conditions (pH 7.4, 37 °C, 6 h) and existed in equilibrium as indicated by HPLC analysis, whereas dC-3 and dC-4 were labile with the half-lives being 3.0 ± 0.36 and 1.7 ± 0.06 h, respectively. Decomposition of dC-4 produced both dC-1 and dC-2, whereas acid hydrolysis of dC-1/dC-2 and dC-4 in 1 M HCl at 100 °C for 30 min yielded the deribosylated adducts dC-1H/dC-2H and dC-4H, respectively. Because fused-ring dC adducts of other chemicals are mutagenic, the characterized CBO-dC adducts could be mutagenic and play a role in the cytotoxicity and genotoxicity of CBO and its precursors, CHB and BD. The CBO-dC adducts may also be used as standards to characterize CBO-DNA adducts and to develop potential biomarkers for CBO formation in vivo. PMID:24020501

  7. Development of an ultra performance LC/MS method to quantify cisplatin 1,2 intrastrand guanine-guanine adducts

    PubMed Central

    Baskerville-Abraham, Irene M.; Boysen, Gunnar; Troutman, J. Mitchell; Mutlu, Esra; Collins, Leonard; deKrafft, Kathryn E.; Lin, Wenbin; King, Candice; Chaney, Stephen G.; Swenberg, James A.

    2009-01-01

    Platinum chemotherapeutic agents have been widely used in the treatment of cancer. Cisplatin was the first of the platinum based chemotherapeutic agents and therefore has been extensively studied as an anti-tumor agent since the late 1960s. Because this agent forms several DNA adducts, a highly sensitive and specific quantitative assay is needed to correlate the molecular dose of individual adducts with the effects of treatment. An ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay for quantification of 1,2 guanine-guanine intrastrand cisplatin adducts [CP-d(GpG)], using 15N10 CP-d(GpG) as an internal standard, was developed. The internal standard was characterized by MS/MS and its concentration was validated by ICP-MS. Samples containing CP-d(GpG) in DNA were purified by enzyme hydrolysis , centrifugal filtration and HPLC with fraction collection prior to quantification by UPLC-MS/MS in the selective reaction monitoring (SRM) mode (m/z 412.5→248.1 for CP-d(GpG); m/z 417.5→253.1 for [15N10] CP-d(GpG)). Recovery of standards was >90% and quantification was unaffected by increasing concentrations of calf thymus DNA. This method utilizes 25 μg of DNA per injection. The limit of quantification was 3 fmol or 3.7 adducts per 108 nucleotides, which approaches the sensitivity of the 32P postlabeling method for this adduct. These data suggested that this method is suitable for in vitro and in vivo assessment of CP-d(GpG) adducts formed by cisplatin and carboplatin. Subsequently the method was applied to studies using ovarian carcinoma cell lines and C57/BL6 mice to illustrate that this method is capable of quantifying CP-d(GpG) adducts using biologically relevant systems and doses. The development of biomarkers to determine tissue-specific molecular dosimetry during treatment will lead to a more complete understanding of both therapeutic and adverse effects of cisplatin and carboplatin. This will support the refinement of therapeutic

  8. Quantitative single molecule measurements on the interaction forces of poly(L-glutamic acid) with calcite crystals.

    PubMed

    Sonnenberg, Lars; Luo, Yufei; Schlaad, Helmut; Seitz, Markus; Cölfen, Helmut; Gaub, Hermann E

    2007-12-12

    The interaction between poly(L-glutamic acid) (PLE) and calcite crystals was studied with AFM-based single molecule force spectroscopy. Block copolymers of poly(ethylene oxide) (PEO) and PLE were synthesized and covalently attached to the tip of an AFM cantilever. In desorption measurements the molecules were allowed to adsorb on the calcite crystal faces and afterward successively desorbed. The corresponding desorption forces were detected with high precision, showing for example a force transition between the two blocks. Because of its importance in the crystallization process in biominerals, the PLE-calcite interaction was investigated as a function of the pH as well as the calcium concentration of the aqueous solution. The sensitivity of the technique was underlined by resolving different interaction forces for calcite (104) and calcite (100).

  9. Efficient CO2 capture by tertiary amine-functionalized ionic liquids through Li+-stabilized zwitterionic adduct formation

    PubMed Central

    Yang, Zhen-Zhen

    2014-01-01

    Summary Highly efficient CO2 absorption was realized through formation of zwitterionic adducts, combining synthetic strategies to ionic liquids (ILs) and coordination. The essence of our strategy is to make use of multidentate cation coordination between Li+ and an organic base. Also PEG-functionalized organic bases were employed to enhance the CO2-philicity. The ILs were reacted with CO2 to form the zwitterionic adduct. Coordination effects between various lithium salts and neutral ligands, as well as the CO2 capacity of the chelated ILs obtained were investigated. For example, the CO2 capacity of PEG150MeBu2N increased steadily from 0.10 to 0.66 (mol CO2 absorbed per mol of base) through the formation of zwitterionic adducts being stabilized by Li+. PMID:25246955

  10. Role of CYP1B1 in PAH-DNA adduct formation and breast cancer risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goth-Goldstein, Regine; Russell, Marion L.; Muller, A.P.

    2010-04-01

    This study investigated the hypothesis that increased exposure to polycyclic aromatic hydrocarbons (PAHs) increases breast cancer risk. PAHs are products of incomplete burning of organic matter and are present in cigarette smoke, ambient air, drinking water, and diet. PAHs require metabolic transformation to bind to DNA, causing DNA adducts, which can lead to mutations and are thought to be an important pre-cancer marker. In breast tissue, PAHs appear to be metabolized to their cancer-causing form primarily by the cytochrome P450 enzyme CYP1B1. Because the genotoxic impact of PAH depends on their metabolism, we hypothesized that high CYP1B1 enzyme levels resultmore » in increased formation of PAH-DNA adducts in breast tissue, leading to increased development of breast cancer. We have investigated molecular mechanisms of the relationship between PAH exposure, CYP1B1 expression and breast cancer risk in a clinic-based case-control study. We collected histologically normal breast tissue from 56 women (43 cases and 13 controls) undergoing breast surgery and analyzed these specimens for CYP1B1 genotype, PAH-DNA adducts and CYP1B1 gene expression. We did not detect any difference in aromatic DNA adduct levels of cases and controls, only between smokers and non-smokers. CYP1B1 transcript levels were slightly lower in controls than cases, but the difference was not statistically significant. We found no correlation between the levels of CYP1B1 expression and DNA adducts. If CYP1B1 has any role in breast cancer etiology it might be through its metabolism of estrogen rather than its metabolism of PAHs. However, due to the lack of statistical power these results should be interpreted with caution.« less

  11. Changes in In Vivo Knee Loading with a Variable-Stiffness Intervention Shoe Correlate with Changes in the Knee Adduction Moment

    PubMed Central

    Erhart, Jennifer C.; Dyrby, Chris O.; D'Lima, Darryl D.; Colwell, Clifford W.; Andriacchi, Thomas P.

    2010-01-01

    External knee adduction moment can be reduced using footwear interventions, but the exact changes in in vivo medial joint loading remain unknown. An instrumented knee replacement was used to assess changes in in vivo medial joint loading in a single patient walking with a variable-stiffness intervention shoe. We hypothesized that during walking with a load modifying variable-stiffness shoe intervention: (1) the first peak knee adduction moment will be reduced compared to a subject's personal shoes; (2) the first peak in vivo medial contact force will be reduced compared to personal shoes; and (3) the reduction in knee adduction moment will be correlated with the reduction in medial contact force. The instrumentation included a motion capture system, force plate, and the instrumented knee prosthesis. The intervention shoe reduced the first peak knee adduction moment (13.3%, p=0.011) and medial compartment joint contact force (22%; p=0.008) compared to the personal shoe. The change in first peak knee adduction moment was significantly correlated with the change in first peak medial contact force (R2=0.67, p=0.007). Thus, for a single subject with a total knee prosthesis the variable-stiffness shoe reduces loading on the affected compartment of the joint. The reductions in the external knee adduction moment are indicative of reductions in in vivo medial compressive force with this intervention. PMID:20973058

  12. Effects of alkyl chain length and substituent pattern of fullerene bis-adducts on film structures and photovoltaic properties of bulk heterojunction solar cells.

    PubMed

    Tao, Ran; Umeyama, Tomokazu; Kurotobi, Kei; Imahori, Hiroshi

    2014-10-08

    A series of alkoxycarbonyl-substituted dihydronaphthyl-based [60]fullerene bis-adduct derivatives (denoted as C2BA, C4BA, and C6BA with the alkyl chain of ethyl, n-butyl, and n-hexyl, respectively) have been synthesized to investigate the effects of alkyl chain length and substituent pattern of fullerene bis-adducts on the film structures and photovoltaic properties of bulk heterojunction polymer solar cells. The shorter alkyl chain length caused lower solubility of the fullerene bis-adducts (C6BA > C4BA > C2BA), thereby resulting in the increased separation difficulty of respective bis-adduct isomers. The device performance based on poly(3-hexylthiophene) (P3HT) and the fullerene bis-adduct regioisomer mixtures was enhanced by shortening the alkyl chain length. When using the regioisomerically separated fullerene bis-adducts, the devices based on trans-2 and a mixture of trans-4 and e of C4BA exhibited the highest power conversion efficiencies of ca. 2.4%, which are considerably higher than those of the C6BA counterparts (ca. 1.4%) and the C4BA regioisomer mixture (1.10%). The film morphologies as well as electron mobilities of the P3HT:bis-adduct blend films were found to affect the photovoltaic properties considerably. These results reveal that the alkyl chain length and substituent pattern of fullerene bis-adducts significantly influence the photovoltaic properties as well as the film structures of bulk heterojunction solar cells.

  13. Identification of organic hydroperoxides and peroxy acids using atmospheric pressure chemical ionization-tandem mass spectrometry (APCI-MS/MS): application to secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Zhou, Shouming; Rivera-Rios, Jean C.; Keutsch, Frank N.; Abbatt, Jonathan P. D.

    2018-05-01

    Molecules with hydroperoxide functional groups are of extreme importance to both the atmospheric and biological chemistry fields. In this work, an analytical method is presented for the identification of organic hydroperoxides and peroxy acids (ROOH) by direct infusion of liquid samples into a positive-ion atmospheric pressure chemical ionization-tandem mass spectrometer ((+)-APCI-MS/MS). Under collisional dissociation conditions, a characteristic neutral loss of 51 Da (arising from loss of H2O2+NH3) from ammonium adducts of the molecular ions ([M + NH4]+) is observed for ROOH standards (i.e. cumene hydroperoxide, isoprene-4-hydroxy-3-hydroperoxide (ISOPOOH), tert-butyl hydroperoxide, 2-butanone peroxide and peracetic acid), as well as the ROOH formed from the reactions of H2O2 with aldehydes (i.e. acetaldehyde, hexanal, glyoxal and methylglyoxal). This new ROOH detection method was applied to methanol extracts of secondary organic aerosol (SOA) material generated from ozonolysis of α-pinene, indicating a number of ROOH molecules in the SOA material. While the full-scan mass spectrum of SOA demonstrates the presence of monomers (m/z = 80-250), dimers (m/z = 250-450) and trimers (m/z = 450-600), the neutral loss scan shows that the ROOH products all have masses less than 300 Da, indicating that ROOH molecules may not contribute significantly to the SOA oligomeric content. We anticipate this method could also be applied to biological systems with considerable value.

  14. Context Matters: Contribution of Specific DNA Adducts to the Genotoxic Properties of the Tobacco-Specific Nitrosamine NNK.

    PubMed

    Peterson, Lisa A

    2017-01-17

    The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent pulmonary carcinogen in laboratory animals. It is classified as a Group 1 human carcinogen by the International Agency for Cancer Research. NNK is bioactivated upon cytochrome P450 catalyzed hydroxylation of the carbon atoms adjacent to the nitrosamino group to both methylating and pyridyloxobutylating agents. Both pathways generate a spectrum of DNA damage that contributes to the overall mutagenic and toxic properties of this compound. NNK is also reduced to form 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which is also carcinogenic. Like NNK, NNAL requires metabolic activation to DNA alkylating agents. Methyl hydroxylation of NNAL generates pyridylhydroxybutyl DNA adducts, and methylene hydroxylation leads to DNA methyl adducts. The consequence of this complex metabolism is that NNK generates a vast spectrum of DNA damage, any form of which can contribute to the overall carcinogenic properties of this potent pulmonary carcinogen. This Perspective reviews the chemistry and genotoxic properties of the collection of DNA adducts formed from NNK. In addition, it provides evidence that multiple adducts contribute to the overall carcinogenic properties of this chemical. The adduct that contributes to the genotoxic effects of NNK depends on the context, such as the relative amounts of each DNA alkylating pathway occurring in the model system, the levels and genetic variants of key repair enzymes, and the gene targeted for mutation.

  15. Characterization of glycidol-hemoglobin adducts as biomarkers of exposure and in vivo dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, Hiroshi, E-mail: honda.hiroshi@kao.co.jp; Törnqvist, Margareta; Nishiyama, Naohiro

    2014-03-15

    Hemoglobin adducts have been used as biomarkers of exposure to reactive chemicals. Glycidol, an animal carcinogen, has been reported to form N-(2,3-dihydroxy-propyl)valine adducts to hemoglobin (diHOPrVal). To support the use of these adducts as markers of glycidol exposure, we investigated the kinetics of diHOPrVal formation and its elimination in vitro and in vivo. Five groups of rats were orally administered a single dose of glycidol ranging from 0 to 75 mg/kg bw, and diHOPrVal levels were measured 24 h after administration. A dose-dependent increase in diHOPrVal levels was observed with high linearity (R{sup 2} = 0.943). Blood sampling at differentmore » time points (1, 10, 20, or 40 days) from four groups administered glycidol at 12 mg/kg bw suggested a linear decrease in diHOPrVal levels compatible with the normal turnover of rat erythrocytes (life span, 61 days), with the calculated first-order elimination rate constant (k{sub el}) indicating that the diHOPrVal adduct was chemically stable. Then, we measured the second-order rate constant (k{sub val}) for the reaction of glycidol with N-terminal valine in rat and human hemoglobin in in vitro experiments with whole blood. The k{sub val} was 6.7 ± 1.1 and 5.6 ± 1.3 (pmol/g globin per μMh) in rat and human blood, respectively, indicating no species differences. In vivo doses estimated from k{sub val} and diHOPrVal levels were in agreement with the area under the (concentration–time) curve values determined in our earlier toxicokinetic study in rats. Our results indicate that diHOPrVal is a useful biomarker for quantification of glycidol exposure and for risk assessment. - Highlight: • Glycidol-hemoglobin adduct (diHOPrVal) was characterized for exposure evaluation. • We studied the kinetics of diHOPrVal formation and elimination in vitro and in vivo. • Dose dependent formation and chemical stability were confirmed in the rat study. • In vivo dose (AUC) of glycidol could be estimated from di

  16. Ion-neutral Clustering of Bile Acids in Electrospray Ionization Across UPLC Flow Regimes

    NASA Astrophysics Data System (ADS)

    Brophy, Patrick; Broeckling, Corey D.; Murphy, James; Prenni, Jessica E.

    2018-02-01

    Bile acid authentic standards were used as model compounds to quantitatively evaluate complex in-source phenomenon on a UPLC-ESI-TOF-MS operated in the negative mode. Three different diameter columns and a ceramic-based microfluidic separation device were utilized, allowing for detailed descriptions of bile acid behavior across a wide range of flow regimes and instantaneous concentrations. A custom processing algorithm based on correlation analysis was developed to group together all ion signals arising from a single compound; these grouped signals produce verified compound spectra for each bile acid at each on-column mass loading. Significant adduction was observed for all bile acids investigated under all flow regimes and across a wide range of bile acid concentrations. The distribution of bile acid containing clusters was found to depend on the specific bile acid species, solvent flow rate, and bile acid concentration. Relative abundancies of each cluster changed non-linearly with concentration. It was found that summing all MS level (low collisional energy) ions and ion-neutral adducts arising from a single compound improves linearity across the concentration range (0.125-5 ng on column) and increases the sensitivity of MS level quantification. The behavior of each cluster roughly follows simple equilibrium processes consistent with our understanding of electrospray ionization mechanisms and ion transport processes occurring in atmospheric pressure interfaces. [Figure not available: see fulltext.

  17. Replica amplification of nucleic acid arrays

    DOEpatents

    Church, George M.

    2002-01-01

    A method of producing a plurality of a nucleic acid array, comprising, in order, the steps of amplifying in situ nucleic acid molecules of a first randomly-patterned, immobilized nucleic acid array comprising a heterogeneous pool of nucleic acid molecules affixed to a support, transferring at least a subset of the nucleic acid molecules produced by such amplifying to a second support, and affixing the subset so transferred to the second support to form a second randomly-patterned, immobilized nucleic acid array, wherein the nucleic acid molecules of the second array occupy positions that correspond to those of the nucleic acid molecules from which they were amplified on the first array, so that the first array serves as a template to produce a plurality, is disclosed.

  18. Evaluation of the DNA damaging potential of cannabis cigarette smoke by the determination of acetaldehyde derived N2-ethyl-2'-deoxyguanosine adducts.

    PubMed

    Singh, Rajinder; Sandhu, Jatinderpal; Kaur, Balvinder; Juren, Tina; Steward, William P; Segerbäck, Dan; Farmer, Peter B

    2009-06-01

    Acetaldehyde is an ubiquitous genotoxic compound that has been classified as a possible carcinogen to humans. It can react with DNA to form primarily a Schiff base N(2)-ethylidene-2'-deoxyguanosine (N(2)-ethylidene-dG) adduct. An online column-switching valve liquid chromatography tandem mass spectrometry (LC-MS/MS) selected reaction monitoring (SRM) method was developed for the determination of N(2)-ethylidene-dG adducts in DNA following reduction with sodium cyanoborohydride (NaBH(3)CN) to the chemically stable N(2)-ethyl-2'-deoxyguanosine (N(2)-ethyl-dG) adduct. Accurate quantitation of the adduct was obtained by the addition of the [(15)N(5)]N(2)-ethyl-dG stable isotope-labeled internal standard prior to enzymatic hydrolysis of the DNA samples to 2'-deoxynucleosides with the incorporation of NaBH(3)CN in the DNA hydrolysis buffer. The method required 50 microg of hydrolyzed DNA on column for the analysis, and the limit of detection for N(2)-ethyl-dG was 2.0 fmol. The analysis of calf thymus DNA treated in vitro with acetaldehyde (ranging from 0.5 to 100 mM) or with the smoke generated from 1, 5, and 10 cannabis cigarettes showed linear dose-dependent increases in the level of N(2)-ethyl-dG adducts (r = 0.954 and r = 0.999, respectively). Similar levels (332.8 +/- 21.9 vs 348.4 +/- 19.1 adducts per 10(8) 2'-deoxynucleosides) of N(2)-ethyl-dG adducts were detected following the exposure of calf thymus DNA to 10 tobacco or 10 cannabis cigarettes. No significant difference was found in the levels of N(2)-ethyl-dG adducts in human lung DNA obtained from nonsmokers (n = 4) and smokers (n = 4) with the average level observed as 13.3 +/- 0.7 adducts per 10(8) 2'-deoxynucleosides. No N(2)-ethyl-dG adducts were detected in any of the DNA samples following analysis with the omission of NaBH(3)CN from the DNA hydrolysis buffer. In conclusion, these results provide evidence for the DNA damaging potential of cannabis smoke, implying that the consumption of cannabis

  19. /sup 32/P-postlabeling analysis of DNA adducts in liver of wild English sole (Parophrys vetulus) and winter flounder (Pseudopleuronectes americanus)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varanasi, U.; Reichert, W.L.; Stein, J.E.

    The 1-butanol adduct enhancement version of the 32P-postlabeling assay was used to measure the levels of hepatic DNA adducts in the marine flatfish, English sole (Parophrys vetulus), sampled from the Duwamish Waterway and Eagle Harbor, Puget Sound, WA, where they are exposed to high concentrations of sediment-associated chemical contaminants and exhibit an elevated prevalence of hepatic neoplasms. Hepatic DNA was also analyzed from English sole from a reference area (Useless Bay, WA) and from reference English sole treated with organic-solvent extracts of sediments from the two contaminated sites. Autoradiograms of thin-layer chromatograms of 32P-labeled hepatic DNA digests from English solemore » from the contaminated sites exhibited up to three diagonal radioactive zones, which were not present in autoradiograms of thin-layer chromatogram maps of 32P-labeled DNA digests from English sole from the reference site. These diagonal radioactive zones contained several distinct spots as well as what appeared to be multiple overlapping adduct spots. The levels (nmol of adducts/mol of nucleotides) of total DNA adducts for English sole from Duwamish Waterway and Eagle Harbor were 26 +/- 28 (DS) and 17 +/- 9.6, respectively. All autoradiograms of DNA from fish from the contaminated sites exhibited a diagonal radioactive zone where DNA adducts of chrysene, benzo(a)pyrene, and dibenz(a,h)anthracene, formed in vitro using English sole hepatic microsomes, were shown to chromatograph. English sole treated with extracts of the contaminated sediments had adduct profiles generally similar to those for English sole from the respective contaminated sites.« less

  20. Effect of citric acid modification of aspen wood on sorption of copper ion

    Treesearch

    James D. McSweeny; Roger M. Rowell; Soo Hong Min

    2006-01-01

    Milled aspen wood was thermochemically modified with citric acid for the purpose of improving the copper (Cu2+) ion sorption capacity of the wood when tested in 24-hour equilibrium batch tests. The wood-citric acid adducts provided additional carboxyl groups to those in the native wood and substantially increased Cu2+ ion uptake of the modified wood compared with that...

  1. BINDING OF CARCINOGENS TO DNA AND COVALENT ADDUCTS DNA DAMAGE - PAH, AROMATIC AMINES, NITRO-AROMATIC COMPOUNDS, AND HALOGENATED COMPOUNDS

    EPA Science Inventory

    DNA adducts are the covalent addition products resulting from binding of reactive chemical species to DNA bases. The cancer initiating role of DNA adducts is well-established, and is clearly reflected in the high cancer incidence observed in individuals with deficiencies in any o...

  2. Open-framework gallium borate with boric and metaboric acid molecules inside structural channels showing photocatalysis to water splitting.

    PubMed

    Gao, Wenliang; Jing, Yan; Yang, Jia; Zhou, Zhengyang; Yang, Dingfeng; Sun, Junliang; Lin, Jianhua; Cong, Rihong; Yang, Tao

    2014-03-03

    An open-framework gallium borate with intrinsic photocatalytic activities to water splitting has been discovered. Small inorganic molecules, H3BO3 and H3B3O6, are confined inside structural channels by multiple hydrogen bonds. It is the first example to experimentally show the structural template effect of boric acid in flux synthesis.

  3. Association between mutation spectra and stable and unstable DNA adduct profiles in Salmonella for benzo[a]pyrene and dibenzo[a,l]pyrene.

    PubMed

    DeMarini, David M; Hanley, Nancy M; Warren, Sarah H; Adams, Linda D; King, Leon C

    2011-09-01

    Benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) are two polycyclic aromatic hydrocarbons (PAHs) that exhibit distinctly different mutagenicity and carcinogenicity profiles. Although some studies show that these PAHs produce unstable DNA adducts, conflicting data and arguments have been presented regarding the relative roles of these unstable adducts versus stable adducts, as well as oxidative damage, in the mutagenesis and tumor-mutation spectra of these PAHs. However, no study has determined the mutation spectra along with the stable and unstable DNA adducts in the same system with both PAHs. Thus, we determined the mutagenic potencies and mutation spectra of BP and DBP in strains TA98, TA100 and TA104 of Salmonella, and we also measured the levels of abasic sites (aldehydic-site assay) and characterized the stable DNA adducts ((32)P-postlabeling/HPLC) induced by these PAHs in TA104. Our results for the mutation spectra and site specificity of stable adducts were consistent with those from other systems, showing that DBP was more mutagenic than BP in TA98 and TA100. The mutation spectra of DBP and BP were significantly different in TA98 and TA104, with 24% of the mutations induced by BP in TA98 being complex frameshifts, whereas DBP produced hardly any of these mutations. In TA104, BP produced primarily GC to TA transversions, whereas DBP produced primarily AT to TA transversions. The majority (96%) of stable adducts induced by BP were at guanine, whereas the majority (80%) induced by DBP were at adenine. Although BP induced abasic sites, DBP did not. Most importantly, the proportion of mutations induced by DBP at adenine and guanine paralleled the proportion of stable DNA adducts induced by DBP at adenine and guanine; however, this was not the case for BP. Our results leave open a possible role for unstable DNA adducts in the mutational specificity of BP but not for DBP. Published by Elsevier B.V.

  4. Eight supramolecular assemblies constructed from bis(benzimidazole) and organic acids through strong classical hydrogen bonding and weak noncovalent interactions

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Wang, Daqi

    2014-05-01

    Eight crystalline organic acid-base adducts derived from alkane bridged bis(N-benzimidazole) and organic acids (2,4,6-trinitrophenol, p-nitrobenzoic acid, m-nitrobenzoic acid, 3,5-dinitrobenzoic acid, 5-sulfosalicylic acid and oxalic acid) were prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. Of the eight compounds five are organic salts (1, 4, 6, 7 and 8) and the other three (2, 3, and 5) are cocrystals. In all of the adducts except 1 and 8, the ratio of the acid and the base is 2:1. All eight supramolecular assemblies involve extensive intermolecular classical hydrogen bonds as well as other noncovalent interactions. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, all the complexes displayed 3D framework structure. The results presented herein indicate that the strength and directionality of the classical N+-H⋯O-, O-H⋯O, and O-H⋯N hydrogen bonds (ionic or neutral) and other nonbonding associations between acids and ditopic benzimidazoles are sufficient to bring about the formation of cocrystals or organic salts.

  5. New insights into the chemistry of fac-[Ru(CO)₃]²⁺ fragments in biologically relevant conditions: the CO releasing activity of [Ru(CO)₃Cl₂(1,3-thiazole)], and the X-ray crystal structure of its adduct with lysozyme.

    PubMed

    Santos, M F A; Seixas, J D; Coelho, A C; Mukhopadhyay, A; Reis, P M; Romão, M J; Romão, C C; Santos-Silva, T

    2012-12-01

    Complexes of the general formula fac-[Ru(CO)(3)L(3)](2+), namely CORM-2 and CORM-3, have been successfully used as experimental CO releasing molecules (CO-RMs) but their mechanism of action and delivery of CO remain unclear. The well characterized complex [Ru(CO)(3)Cl(2)(1,3-thiazole)] (1) is now studied as a potential model CO-RM of the same family of complexes using LC-MS, FTIR, and UV-vis spectroscopy, together with X-ray crystallography. The chemistry of [Ru(CO)(3)Cl(2)(1,3-thiazole)] is very similar to that of CORM-3: it only releases residual amounts of CO to the headspace of a solution in PBS7.4 and produces marginal increase of COHb after long incubation in whole blood. 1 also reacts with lysozyme to form Ru adducts. The crystallographic model of the lysozyme-Ru adducts shows only mono-carbonyl Ru species. [Ru(H(2)O)(4)(CO)] is found covalently bound to a histidine (His15) and to two aspartates (Asp18 and Asp119) at the protein surface. The CO release silence of both 1 and CORM-3 and their rapid formation of protein-Ru(CO)(x)(H(2)O)(y) (x=1,2) adducts, support our hypothesis that fac-[Ru(CO)(3)L(3)] CO-RMs deliver CO in vivo through the decay of their adducts with plasma proteins. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Association between plasma BPDE‐Alb adduct concentrations and DNA damage of peripheral blood lymphocytes among coke oven workers

    PubMed Central

    Wang, Hong; Chen, Weihong; Zheng, Hongyan; Guo, Liang; Liang, Huashan; Yang, Xiaobo; Bai, Yun; Sun, Jianya; Su, Yougong; Chen, Yongwen; Yuan, Jing; Bi, Yongyi; Wei, Qingyi; Wu, Tangchun

    2007-01-01

    Objectives Coke oven emissions (COE) containing polycyclic aromatic hydrocarbons (PAHs) can induce both benzo[a]pyrene‐r‐7, t‐8, t‐9,c‐10‐tetrahydotetrol‐albumin (BPDE‐Alb) adducts and DNA damage. However, the relation between these biomarkers for early biological effects is not well documented in coke oven workers. Methods In this study, the authors recruited 207 male workers exposed to COE and 102 controls not exposed to COE in the same steel plant in northern China. They measured BPDE‐Alb adduct concentrations in plasma with reverse‐phase high performance liquid chromatography and DNA damage in peripheral blood lymphocytes with alkaline comet assay. Results The results showed that the median concentration of BPDE‐Alb adducts in the exposed group (34.36 fmol/mg albumin) was significantly higher than that in the control group (21.90 fmol/mg albumin, p = 0.012). The mean Olive tail moment (Olive TM) of DNA damage in the exposed and control groups were 1.20 and 0.63, respectively (p = 0.000). Multivariate logistic regression analysis revealed that the odds ratio (OR) for BPDE‐Alb adduct and Olive TM associated with the exposure were 1.72 (95% CI 1.06 to 2.81) and 1.96 (95% CI 1.20 to 3.19), respectively. These results show significant correlations between the concentrations of BPDE‐Alb adduct and Olive TM levels in exposed group (r = 0.235, p = 0.001) but not in control group (r = 0.093, p = 0.353). Conclusion The results suggest that occupational exposure to COE may induce both BPDE–Alb adducts and DNA damage in the lymphocytes of coke oven workers and that these two markers are useful for monitoring exposure to COE in the workplace. PMID:17449561

  7. XPC genotypes/diplotypes play no independent or interaction role with PAH-DNA adducts for breast cancer risk

    PubMed Central

    Shen, Jing; Gammon, Marilie D.; Terry, Mary Beth; Teitelbaum, Susan L.; Eng, Sybil M.; Neugut, Alfred I.; Santella, Regina M.

    2008-01-01

    Xeroderma pigmentosum complementation group C (XPC) is an important DNA nuclear excision repair (NER) gene that recognizes the damage caused by variety of bulky DNA adducts. We evaluated the association of two common non-synonymous polymorphisms in XPC (Ala499Val and Lys939Gln) with breast cancer risk in the Long Island Breast Cancer Study Project (LIBCSP), a population-based case-control study. Genotyping of 1,067 cases and 1,110 controls was performed by a high throughput assay with fluorescence polarization. There were no overall associations between XPC polymorphisms and breast cancer risk. A diplotype CC-CC was significantly associated with increased breast cancer risk compared with diplotype CA-CA (OR = 1.4, 95%CI: 1.0–1.9), but was not significant when compared with all other diplotypes combined (OR = 1.22, 95%CI: 0.97–1.53). No modification effects were observed for XPC genotypes by cigarette smoking status, smoking pack years or polycyclic aromatic hydrocarbons (PAH) DNA adducts. The increase in breast cancer risk was slightly more pronounced among women with detectable PAH-DNA adducts and carrying the diplotype CC-CC (OR = 1.6, 95%CI: 1.1–2.2) compared to women with non detectable PAH-DNA adducts carrying other diplotypes combined, but no statistically significant interaction was observed (P interaction = 0.69). These data suggest that XPC have neither independent effects nor interactions with cigarette smoking and PAH-DNA adducts for breast cancer risk. Further studies with multiple genetic polymorphisms in NER pathway are warranted. PMID:18053706

  8. Analysis of 4-aminobiphenyl-DNA adducts in human urinary bladder and lung by alkaline hydrolysis and negative ion gas chromatography-mass spectrometry.

    PubMed Central

    Lin, D; Lay, J O; Bryant, M S; Malaveille, C; Friesen, M; Bartsch, H; Lang, N P; Kadlubar, F F

    1994-01-01

    Analysis of carcinogen-DNA adducts has been regarded as a useful means of assessing human exposure to chemical carcinogens. We have established a method for quantitation of 4-aminobiphenyl (4-ABP)-DNA adducts by alkaline hydrolysis and gas chromatography with negative ion chemical ionization mass spectrometry (GC-NICI-MS). Aliquots of DNA (typically 100 micrograms/ml) were spiked with an internal standard, d9-4-ABP, and were hydrolyzed in 0.05 N NaOH at 130 degrees C overnight. The liberated 4-ABP was extracted with hexane and derivatized using pentafluoropropionic anhydride in trimethylamine for 30 min at room temperature prior to GC-NICI-MS. With in vitro [3H]N-hydroxy-4-ABP modified DNA standards, we observed 59 +/- 7% (n = 9) recovery of the 4-ABP and a linear correlation between hydrolyzed 4-ABP and the adduct levels ranging from about 1 in 10(8) to 1 in 10(4) nucleotides (r = 0.999, n = 9). The method was further validated by comparison of the results with that obtained by the 32P-postlabeling method. There was excellent agreement (r = 0.994, p < 0.001) between the two methods for quantitation of the adduct in eight samples of Salmonella typhimurium DNA treated with 4-ABP and rat liver S9, although the 32P-postlabeling method gave slightly higher values. The DNA adducts in 11 human lung and 8 urinary bladder mucosa specimens were then determined by our GC-NICI-MS method. The adduct levels were found to be < 0.32 to 49.5 adducts per 10(8) nucleotides in the lungs and < 0.32 to 3.94 adducts per 10(8) nucleotides in the bladder samples.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 4. A Figure 4. B PMID:7889831

  9. Chemical repair activity of free radical scavenger edaravone: reduction reactions with dGMP hydroxyl radical adducts and suppression of base lesions and AP sites on irradiated plasmid DNA

    PubMed Central

    Hata, Kuniki; Urushibara, Ayumi; Yamashita, Shinichi; Lin, Mingzhang; Muroya, Yusa; Shikazono, Naoya; Yokoya, Akinari; Fu, Haiying; Katsumura, Yosuke

    2015-01-01

    Reactions of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) with deoxyguanosine monophosphate (dGMP) hydroxyl radical adducts were investigated by pulse radiolysis technique. Edaravone was found to reduce the dGMP hydroxyl radical adducts through electron transfer reactions. The rate constants of the reactions were greater than 4 × 108 dm3 mol−1 s−1 and similar to those of the reactions of ascorbic acid, which is a representative antioxidant. Yields of single-strand breaks, base lesions, and abasic sites produced in pUC18 plasmid DNA by gamma ray irradiation in the presence of low concentrations (10–1000 μmol dm−3) of edaravone were also quantified, and the chemical repair activity of edaravone was estimated by a method recently developed by the authors. By comparing suppression efficiencies to the induction of each DNA lesion, it was found that base lesions and abasic sites were suppressed by the chemical repair activity of edaravone, although the suppression of single-strand breaks was not very effective. This phenomenon was attributed to the chemical repair activity of edaravone toward base lesions and abasic sites. However, the chemical repair activity of edaravone for base lesions was lower than that of ascorbic acid. PMID:25212600

  10. Profiling Cholinesterase Adduction: A High-Throughput Prioritization Method for Organophosphate Exposure Samples

    PubMed Central

    Carter, Melissa D.; Crow, Brian S.; Pantazides, Brooke G.; Watson, Caroline M.; deCastro, B. Rey; Thomas, Jerry D.; Blake, Thomas A.; Johnson, Rudolph C.

    2017-01-01

    A high-throughput prioritization method was developed for use with a validated confirmatory method detecting organophosphorus nerve agent exposure by immunomagnetic separation-HPLC-MS/MS. A ballistic gradient was incorporated into this analytical method in order to profile unadducted butyrylcholinesterase (BChE) in clinical samples. With Zhang, et al. 1999’s Z′-factor of 0.88 ± 0.01 (SD) of control analytes and Z-factor of 0.25 ± 0.06 (SD) of serum samples, the assay is rated an “excellent assay” for the synthetic peptide controls used and a “double assay” when used to prioritize clinical samples. Hits, defined as samples containing BChE Ser-198 adducts or no BChE present, were analyzed in a confirmatory method for identification and quantitation of the BChE adduct, if present. The ability to prioritize samples by highest exposure for confirmatory analysis is of particular importance in an exposure to cholinesterase inhibitors such as organophosphorus nerve agents where a large number of clinical samples may be collected. In an initial blind screen, 67 out of 70 samples were accurately identified giving an assay accuracy of 96% and yielded no false negatives. The method is the first to provide a high-throughput prioritization assay for profiling adduction of Ser-198 BChE in clinical samples. PMID:23954929

  11. PARP1 impact on DNA repair of platinum adducts: preclinical and clinical read-outs.

    PubMed

    Olaussen, Ken A; Adam, Julien; Vanhecke, Elsa; Vielh, Philippe; Pirker, Robert; Friboulet, Luc; Popper, Helmut; Robin, Angélique; Commo, Fréderic; Thomale, Jürgen; Kayitalire, Louis; Filipits, Martin; Le Chevalier, Thierry; André, Fabrice; Brambilla, Elisabeth; Soria, Jean-Charles

    2013-05-01

    Evaluation of DNA repair proteins might provide meaningful information in relation to prognosis and chemotherapy efficacy in Non-Small Cell Lung Cancer (NSCLC) patients. The role of Poly(ADP-Ribose) Polymerase (PARP) in DNA repair of platinum adducts has not been firmly established. We used a DNA repair functional test based on antibody recognition of cisplatin intrastrand platinum adducts on DNA. We evaluated the effect of PARP inhibition on DNA repair functionality in a panel of cisplatin cell lines treated by the clinical-grade pharmacological inhibitor CEP8983 (a 4-methoxy-carbazole derivate) and the commercially available inhibitor PJ34 (phenanthridinone). We determined PARP1 protein expression in whole tumor sections from the International Adjuvant Lung cancer Trial (IALT)-bio study and tested a 3-marker PARP1/MSH2/ERCC1 algorithm combining PARP1 tumor status with previously published data. Chemosensitivity of cisplatin in NSCLC cell lines was correlated with the accumulation of cisplatin DNA adducts (P=0.0004). Further, the pharmacological inhibition of PARP induced a 1.7 to 2.3-fold increase in platinum adduct accumulation (24h) in A549 cell line suggesting a slow-down of platinum DNA-adduct repair capacity. In parallel, PARP1 inhibition increased the sensitivity to cisplatin treatment. In patient samples, PARP1 expression levels did not influence patient survival or the effect of platinum-based post-operative chemotherapy in the global IALT-bio population (interaction P=0.79). Among cases with high expression of all three markers (triple positive), untreated patients had prolonged survival with a median DFS of 7.8 years, (HR=0.34, 95%CI [0.19-0.61], adjusted P=0.0003) compared to triple negative patients (1.4 years). Remarkably, triple positive patients suffered from a detrimental effect (4.9-year reduction of median DFS) by post-operative cisplatin-based chemotherapy (HR=1.79, 95%CI [1.01-3.17], adjusted P=0.04, chemotherapy vs. control). Combinatorial

  12. Single-molecule analysis of DNA cross-links using nanopore technology

    NASA Astrophysics Data System (ADS)

    Wolna, Anna H.

    The alpha-hemolysin (alpha-HL) protein ion channel is a potential next-generation sequencing platform that has been extensively used to study nucleic acids at a single-molecule level. After applying a potential across a lipid bilayer, the imbedded alpha-HL allows monitoring of the duration and current levels of DNA translocation and immobilization. Because this method does not require DNA amplification prior to sequencing, all the DNA damage present in the cell at any given time will be present during the sequencing experiment. The goal of this research is to determine if these damage sites give distinguishable current levels beyond those observed for the canonical nucleobases. Because DNA cross-links are one of the most prevalent types of DNA damage occurring in vivo, the blockage current levels were determined for thymine-dimers, guanine(C8)-thymine(N3) cross-links and platinum adducts. All of these cross-links give a different blockage current level compared to the undamaged strands when immobilized in the ion channel, and they all can easily translocate across the alpha-HL channel. Additionally, the alpha-HL nanopore technique presents a unique opportunity to study the effects of DNA cross-links, such as thymine-dimers, on the secondary structure of DNA G-quadruplexes folded from the human telomere sequence. Using this single-molecule nanopore technique we can detect subtle structural differences that cannot be easily addressed using conventional methods. The human telomere plays crucial roles in maintaining genome stability. In the presence of suitable cations, the repetitive 5'-TTAGGG human telomere sequence can fold into G-quadruplexes that adopt the hybrid fold in vivo. The telomere sequence is hypersensitive to UV-induced thymine-dimer (T=T) formation, and yet the presence of thymine dimers does not cause telomere shortening. The potential structural disruption and thermodynamic stability of the T=T-containing natural telomere sequences were studied to

  13. Poly(2-alkylacrylic acid) polymers deliver molecules to the cytosol by pH-sensitive disruption of endosomal vesicles.

    PubMed

    Jones, Rachel A; Cheung, Charles Y; Black, Fiona E; Zia, Jasmine K; Stayton, Patrick S; Hoffman, Allan S; Wilson, Mark R

    2003-05-15

    The permeability barrier posed by cell membranes represents a challenge for the delivery of hydrophilic molecules into cells. We previously proposed that poly(2-alkylacrylic acid)s are endocytosed by cells into acidified vesicles and are there triggered by low pH to disrupt membranes and release the contents of endosomes/lysosomes to the cytosol. If this hypothesis is correct, these polymers could be valuable in drug-delivery applications. The present paper reports functional comparisons of a family of three poly(2-alkylacrylic acid)s. Poly(2-propylacrylic acid) (PPAA), poly(2-ethylacrylic acid) (PEAA) and poly(2-methylacrylic acid) (PMAA) were compared in red-blood-cell haemolysis assays and in a lipoplex (liposome-DNA complex) assay. We also directly examined the ability of these polymers to disrupt endosomes and lysosomes in cultured human cells. Our results show that: (i) unlike membrane-disruptive peptides, the endosomal-disruptive ability of poly(2-alkylacrylic acid)s cannot necessarily be predicted from their haemolytic activity at low pH, (ii) PPAA (but not PEAA or PMAA) potently facilitates gene transfection by cationic lipoplexes and (iii) endocytosed poly(2-alkylacrylic acid)s are triggered by luminal acidification to selectively disrupt endosomes (not lysosomes) and release their contents to the cytosol. These results will facilitate the rational design of future endosomal-disrupting polymers for drug delivery.

  14. Exposure to the chlorofluorocarbon substitute 2,2-dichloro-1,1,1- trifluoroethane and the anesthetic agent halothane is associated with transient protein adduct formation in the heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huwyler, J.; Gut, J.

    1992-05-15

    Hydrochlorofluorocarbons (HCFCs) that are structural analogues of the anesthetic agent halothane may follow a common pathway of bioactivation and formation of adducts to cellular targets of distinct tissues. Exposure of rats to a single dose of HCFC 123 (2,2-dichloro- 1,1,1-trifluoroethane) or its structural analogue halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) in vivo resulted in the formation of one prominent trifluoroacetylated protein adduct (TFA-protein adduct) in the heart. In contrast, a variety of distinct TFA-protein adducts were formed in the liver and the kidney of the same animals. The TFA-protein adduct in the heart was processed rapidly; t1/2 of the intact TFA-protein adduct was lessmore » than 12 h.« less

  15. Two novel creatinine adducts of andrographolide in human urine.

    PubMed

    Qiu, Feng; Cui, Liang; Chen, Lixia; Sun, Jiawen; Yao, Xinsheng

    2012-09-01

    Andrographolide is a major labdane diterpenoid of the traditional Chinese and Ayurvedic medicine. Andrographis paniculate (Burm) Nees, is used in clinical situations in China mainly to treat fever, cold, and inflammation. In our previous study, fifteen metabolites of andrographolide were identified in human urine. However, there are still two other unknown metabolites. The aim of this study was to elucidate the structures of these two metabolites. 3. The two metabolites which are probably epimers were identified as creatinine adducts, and their structures were determined to be 14-deoxy-12-(creatinine-5-yl)-andrographolide-19-O-β-D-glucuronide A (Metabolite 1) and 14-deoxy-12-(creatinine-5-yl)-andrographolide-19-O-β-D-glucuronide B (Metabolite 2) by means of spectroscopic evidences. 4. It is for the first time that the formation of creatinine adducts as a novel metabolic pathway is reported. The mechanism was presumed that β-carbon (C-12) of α, β-unsaturated carbonyl was attacked by a 5-anion intermediate of creatinine formed through elimination of a proton, followed by the double bond migration from 12(13) to 13(14) and elimination of the hydroxyl group at C-14.

  16. DNA Polymerases η and ζ Combine to Bypass O(2)-[4-(3-Pyridyl)-4-oxobutyl]thymine, a DNA Adduct Formed from Tobacco Carcinogens.

    PubMed

    Gowda, A S Prakasha; Spratt, Thomas E

    2016-03-21

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are important human carcinogens in tobacco products. They are metabolized to produce a variety 4-(3-pyridyl)-4-oxobutyl (POB) DNA adducts including O(2)-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O(2)-POB-dT), the most abundant POB adduct in NNK- and NNN-treated rodents. To evaluate the mutagenic properties of O(2)-POB-dT, we measured the rate of insertion of dNTPs opposite and extension past O(2)-POB-dT and O(2)-Me-dT by purified human DNA polymerases η, κ, ι, and yeast polymerase ζ in vitro. Under conditions of polymerase in excess, polymerase η was most effective at the insertion of dNTPs opposite O(2)-alkyl-dTs. The time courses were biphasic suggesting the formation of inactive DNA-polymerase complexes. The kpol parameter was reduced approximately 100-fold in the presence of the adduct for pol η, κ, and ι. Pol η was the most reactive polymerase for the adducts due to a higher burst amplitude. For all three polymerases, the nucleotide preference was dATP > dTTP ≫ dGTP and dCTP. Yeast pol ζ was most effective in bypassing the adducts; the kcat/Km values were reduced only 3-fold in the presence of the adducts. The identity of the nucleotide opposite the O(2)-alkyl-dT did not significantly affect the ability of pol ζ to bypass the adducts. The data support a model in which pol η inserts ATP or dTTP opposite O(2)-POB-dT, and then, pol ζ extends past the adduct.

  17. Bulky DNA Adducts in Cord Blood, Maternal Fruit-and-Vegetable Consumption, and Birth Weight in a European Mother–Child Study (NewGeneris)

    PubMed Central

    Schoket, Bernadette; Godschalk, Roger W.; Wright, John; von Stedingk, Hans; Törnqvist, Margareta; Sunyer, Jordi; Nielsen, Jeanette K.; Merlo, Domenico F.; Mendez, Michelle A.; Meltzer, Helle M.; Lukács, Viktória; Landström, Anette; Kyrtopoulos, Soterios A.; Kovács, Katalin; Knudsen, Lisbeth E.; Haugen, Margaretha; Hardie, Laura J.; Gützkow, Kristine B.; Fleming, Sarah; Fthenou, Eleni; Farmer, Peter B.; Espinosa, Aina; Chatzi, Leda; Brunborg, Gunnar; Brady, Nigel J.; Botsivali, Maria; Arab, Khelifa; Anna, Lívia; Alexander, Jan; Agramunt, Silvia; Kleinjans, Jos C.; Segerbäck, Dan; Kogevinas, Manolis

    2013-01-01

    Background: Tobacco-smoke, airborne, and dietary exposures to polycyclic aromatic hydrocarbons (PAHs) have been associated with reduced prenatal growth. Evidence from biomarker-based studies of low-exposed populations is limited. Bulky DNA adducts in cord blood reflect the prenatal effective dose to several genotoxic agents including PAHs. Objectives: We estimated the association between bulky DNA adduct levels and birth weight in a multicenter study and examined modification of this association by maternal intake of fruits and vegetables during pregnancy. Methods: Pregnant women from Denmark, England, Greece, Norway, and Spain were recruited in 2006–2010. Adduct levels were measured by the 32P-postlabeling technique in white blood cells from 229 mothers and 612 newborns. Maternal diet was examined through questionnaires. Results: Adduct levels in maternal and cord blood samples were similar and positively correlated (median, 12.1 vs. 11.4 adducts in 108 nucleotides; Spearman rank correlation coefficient = 0.66, p < 0.001). Cord blood adduct levels were negatively associated with birth weight, with an estimated difference in mean birth weight of –129 g (95% CI: –233, –25 g) for infants in the highest versus lowest tertile of adducts. The negative association with birth weight was limited to births in Norway, Denmark, and England, the countries with the lowest adduct levels, and was more pronounced in births to mothers with low intake of fruits and vegetables (–248 g; 95% CI: –405, –92 g) compared with those with high intake (–58 g; 95% CI: –206, 90 g) Conclusions: Maternal exposure to genotoxic agents that induce the formation of bulky DNA adducts may affect intrauterine growth. Maternal fruit and vegetable consumption may be protective. Citation: Pedersen M, Schoket B, Godschalk RW, Wright J, von Stedingk H, Törnqvist M, Sunyer J, Nielsen JK, Merlo DF, Mendez MA, Meltzer HM, Lukács V, Landström A, Kyrtopoulos SA, Kovács K, Knudsen LE, Haugen

  18. Red Wine Consumption is inversely associated with 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-DNA Adduct Levels in Prostate

    PubMed Central

    Rybicki, Benjamin A.; Neslund-Dudas, Christine; Bock, Cathryn H.; Nock, Nora L.; Rundle, Andrew; Jankowski, Michelle; Levin, Albert M.; Beebe-Dimmer, Jennifer; Savera, Adnan T.; Takahashi, Satoru; Shirai, Tomoyuki; Tang, Deliang

    2011-01-01

    In humans, genetic variation and dietary factors may alter the biologic effects of exposure to 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), one of the major heterocyclic amines generated from cooking meats at high temperatures that has carcinogenic potential through the formation of DNA adducts. Previously, we reported grilled red meat consumption associated with PhIP-DNA adduct levels in human prostate. In the present study, we expanded our investigation to estimate the associations between beverage consumption and PhIP-DNA adduct levels in prostate for 391 prostate cancer cases. Of the 15 beverages analyzed, red wine consumption had the strongest association with PhIP-DNA adduct levels showing an inverse correlation in both tumor (p=0.006) and non-tumor (p=0.002) prostate cells. Red wine consumption differed significantly between African-American and white cases, but PhIP-DNA adduct levels in prostate did not vary by race. In African Americans compared with whites, however, associations between red wine consumption and PhIP-DNA adduct levels were not as strong as associations with specific (e.g., SULT1A1 and UGT1A10 genotypes) and non-specific (e.g., African ancestry) genetic variation. In a multivariable model, the covariate for red wine consumption explained a comparable percentage (13-16%) of the variation in PhIP-DNA adduct levels in prostate across the two racial groups, but the aforementioned genetic factors explained 33% of the PhIP-DNA adduct variation in African-American cases, while only 19% of the PhIPDNA adduct variation in whites. We conclude that red wine consumption may counteract biologic effects of PhIP exposure in human prostate, but genetic factors may play an even larger role, particularly in African Americans. PMID:21846795

  19. Reversible capture of small molecules on bimetallaborane clusters: synthesis, structural characterization, and photophysical aspects.

    PubMed

    Bould, Jonathan; Baše, Tomáš; Londesborough, Michael G S; Oro, Luis A; Macías, Ramón; Kennedy, John D; Kubát, Pavel; Fuciman, Marcel; Polívka, Tomáš; Lang, Kamil

    2011-08-15

    Metallaborane compounds containing two adjacent metal atoms, [(PMe(2)Ph)(4)MM'B(10)H(10)] (where MM' = Pt(2), 1; PtPd, 7; Pd(2), 8), have been synthesized, and their propensity to sequester O(2), CO, and SO(2) and to then release them under pulsed and continuous irradiation are described. Only [(PMe(2)Ph)(4)Pt(2)B(10)H(10)], 1, undergoes reversible binding of O(2) to form [(PMe(2)Ph)(4)(O(2))Pt(2)B(10)H(10)] 3, but solutions of 1, 7, and 8 all quantitatively take up CO across their metal-metal vectors to form [(PMe(2)Ph)(4)(CO)Pt(2)B(10)H(10)] 4, [(PMe(2)Ph)(4)(CO)PtPdB(10)H(10)] 10, and [(PMe(2)Ph)(4)(CO)Pd(2)B(10)H(10)] 11, respectively. Crystallographically determined interatomic M-M distances and infrared CO stretching frequencies show that the CO molecule is bound progressively more weakly in the sequence {PtPt} > {PtPd} > {PdPd}. Similarly, SO(2) forms [(PMe(2)Ph)(4)(SO(2))Pt(2)B(10)H(10)] 5, [(PMe(2)Ph)(4)(SO(2))PtPdB(10)H(10)] 12, and [(PMe(2)Ph)(4)(SO(2))Pd(2)B(10)H(10)] 13 with progressively weaker binding of the SO(2) molecule. The uptake and release of gas molecules are accompanied by changes in their absorption spectra. Nanosecond transient absorption spectroscopy clearly shows that the O(2) and CO molecules are liberated from the bimetallic binding site with high quantum yields of about 0.6. For 3, in addition to dioxygen release in the triplet ground state, singlet oxygen O(2)((1)Δ(g)) was also detected with a quantum yield <0.01. In most cases, the release and rebinding of the gas molecules can be cycled with little photodegradation of the compounds. Femtosecond transient absorption spectroscopy further reveals that the photorelease of the O(2) and CO molecules, from 3 and 4 respectively, is an ultrafast process taking place on a time scale of tens of picoseconds. For SO(2), the release is even faster (<1 ps), but only in the case of mixed metal PtPd adducts, most probably because of the metal-metal bonding asymmetry in the mixed metal clusters

  20. Role of CYP1B1 in PAH-DNA Adduct Formation and Breast Cancer Risk

    DTIC Science & Technology

    2006-03-01

    32 cases and 11 controls) undergoing surgery and analyzed these specimens for CYP1B1 gene expression, CYP1B1 genotype and PAH-DNA adducts. CYP1B1...quantitated and its purity determined by its 260/280 nm absorption. Samples were aliqoted for later measurements of CYP1B1 genotype and DNA adducts...19.78) 0.06 – 73.7 d. Perform CYP1B1 genotype analysis The CYP1B1 genotype at two polymorphic sites located in the catalytic side of the enzyme

  1. Malondialdehyde-acetaldehyde adducts (MAA) and anti-MAA antibody in rheumatoid arthritis

    PubMed Central

    Thiele, Geoffrey M.; Duryee, Michael J.; Anderson, Daniel R.; Klassen, Lynell W.; Mohring, Stephen M.; Young, Kathleen A.; Benissan-Messan, Dathe; Sayles, Harlan; Dusad, Anand; Hunter, Carlos D.; Sokolove, Jeremy; Robinson, William; O’Dell, James R.; Nicholas, Anthony P.; Tuma, Dean; Mikuls, Ted R.

    2017-01-01

    Objective As a product of oxidative stress associated with tolerance loss in other disease states, we investigated the presence of malondialdehyde-acetaldehyde (MAA) adducts and circulating anti-MAA antibody in rheumatoid arthritis (RA). Methods Synovial tissues from RA and osteoarthritis patients were examined for the presence of MAA-modified and citrullinated proteins. Anti-MAA antibody isotypes were measured in RA cases (n = 1720) and healthy controls (n = 80) by ELISA. Antigen-specific anti-citrullinated protein antibody (ACPA) was measured in RA cases using a multiplex antigen array. Anti-MAA isotype concentrations were compared in a subset of cases (n = 80) and matched controls (n = 80). Associations of anti-MAA antibody isotypes with disease characteristics, including ACPA, were examined in all RA cases. Results MAA adducts were increased in RA synovial tissues relative to osteoarthritis and co-localized with citrullinated protein. Anti-MAA antibody isotypes were increased in RA cases vs. controls (p < 0.001). Among RA cases, anti-MAA antibody isotypes were associated with ACPA and RF positivity (p < 0.001) in addition to select measures of disease activity. Higher anti-MAA antibody concentrations were associated with a higher number of positive antigen-specific ACPA analytes in high titer (p < 0.001) and a higher ACPA score (p < 0.001) independent of other covariates. Conclusion MAA adduct formation is increased in RA and appears to result in robust antibody responses that are strongly associated with ACPA. These results support speculation that MAA formation may be a co-factor that drives tolerance loss resulting in the autoimmune responses characteristic of RA. PMID:25417811

  2. IDENTIFICATION OF STEROCHEMICAL CONFIGERATION OF CYCLOPENTA[CD]PYRENE-DNA ADDUCTS IN STRAIN A/J MOUSE LUNG AND C3H10T1/2CL8

    EPA Science Inventory

    The definitive identification of stereochemical configurations of DNA adducts detected by 32P-postlabeling requires co-chromatography of adducts with synthetic chromatographic standards. Four major and several minor DNA adducts are formed by cyclopenta[cd]pyrene (CPP) in strain A...

  3. Adduct-specific monoclonal antibodies for the measurement of cisplatin-induced DNA lesions in individual cell nuclei

    PubMed Central

    Liedert, Bernd; Pluim, Dick; Schellens, Jan; Thomale, Jürgen

    2006-01-01

    The anticancer drug cisplatin executes its cytotoxic activity via formation of intra- and interstrand crosslinks in DNA. The relative contribution of structurally defined cisplatin adducts to induce apoptosis and the cellular processing of these lesions is still poorly understood mostly due to the lack of sensitive analytical tools for in vivo studies. Here we describe a new method to establish and characterize monoclonal antibodies (Mab) for structurally defined DNA adducts. The two major reaction products of cisplatin, the guanine–guanine (Pt-[GG]) and adenine–guanine (Pt-[AG]) intrastrand crosslinks are recognized by Mab R-C18 and R-B3, respectively. Both antibodies were employed in an immuno-cytological assay allowing the quantification of drug-induced lesions in individual cell nuclei at clinically relevant doses. Analyzing various tissues of cisplatin-treated C57Bl/6 mice the accumulation of Pt-(GG) was highest in kidney tubular cells compared with 30, 50 and 90% lower levels in kidney stroma, liver and peripheral blood cells, respectively. Adduct kinetics revealed that wild type mouse cells remove up to 80% of the crosslinks in contrast to their complete persistence in nucleotide excision repair-deficient (XPC−/−) mice. The aptitude of the immunoassay for human molecular dosimetry studies was demonstrated by measuring adduct levels in tumor biopsies from patients treated with cisplatin. PMID:16571898

  4. Lewis acid properties of alumina based catalysts: study by paramagnetic complexes of probe molecules

    NASA Astrophysics Data System (ADS)

    Fionov, Alexander V.

    2002-06-01

    Lewis acid properties of LiAl 5O 8/Al 2O 3 (2 wt.% Li) and MgAl 2O 4/Al 2O 3 (3 wt.% Mg) catalysts were studied by EPR of adsorbed probe molecules--anthraquinone and 2,2,6,6-tetramethylpiperidine- N-oxyl (TEMPO). The lesser (in comparison with γ-Al 2O 3) concentration and the strength of Lewis acid sites (LAS) formed on the surface of aluminate layer has been shown. The stability of this layer plays important role in the change of Lewis acid properties during the calcination of modified alumina. The lithium aluminate layer was stable at used calcination temperature, 773 K, meanwhile magnesium aluminate layer observed only at calcination temperature below 723 K. The increase of the calcination temperature to 773 K caused the segregation of MgAl 2O 4 on the surface resulted in the release of alumina surface and recovery of the Lewis acid properties. The differences in the LAS manifestations towards TEMPO and anthraquinone was discussed. The mechanism of the formation of anthraquinone paramagnetic complexes with LAS--three-coordinated aluminum ions--was proposed. This mechanism includes the formation of anthrasemiquinone, and then--anthrasemiquinone ion pair or triple ion. Fragments like -O-Al +-O- play the role of cations in these ion pairs and triple ions. Proposed mechanism can also be applied for the consideration of similar anthraquinone paramagnetic complexes on the surface of gallium oxide containing systems.

  5. Mass spectrometric approaches for the identification and quantification of reactive carbonyl species protein adducts.

    PubMed

    Colzani, Mara; Aldini, Giancarlo; Carini, Marina

    2013-10-30

    Our current knowledge of the occurrence of proteins covalently modified by reactive carbonyl species (RCS) generated by lipid peroxidation indicates their involvement as pathogenic factors associated with several chronic degenerative diseases. Proteomics and mass spectrometry (MS) in the last decade have played a fundamental role in this context, allowing the demonstration of the formation of RCS-protein adducts in vitro and in vivo under different experimental conditions. In conjunction with functional and computational studies, MS has been widely applied in vitro to study the stoichiometry of the protein-RCS adduct formation, and, by identifying the site(s) of modification, to elucidate the molecular mechanisms of protein carbonylation and the physiologic impact of such modification on protein function. This review will provide an update of the MS methods commonly used in detecting and characterizing protein modification by RCS generated by lipid peroxidation, among which 4-hydroxy-trans-2-nonenal and acrolein represent the most studied and cytotoxic compounds. Research in this field, employing state-of-the-art MS, is rapidly and continuously evolving, owing also to the development of suitable derivatization and enrichment procedures enabling the improve MS detectability of RCS-protein adducts in complex biological matrices. By considering the emerging role of RCS in several human diseases, unequivocal analytical approaches by MS are needed to provide levels of intermediate diagnostic biomarkers for human diseases. This review focuses also on the different MS-based approaches so far developed for RCS-protein adduct quantification. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. INVESTIGATION OF THE USE OF ISOCYANATE ADDUCTS IN URETHANE FOAM

    DTIC Science & Technology

    The fea ibility of a one-can, delayed action foaming system was successfully d monstra e . A literary arch revealed that y co poun s po e ing...ctive ydrogens may react with organic isocyanates to produce heat-s nsitive adducts. T HESE D UCT YI LD BACK THE ORIGINAL ISOCY N TE AND THE

  7. Hydrogen bonding in hydrates with one acetic acid molecule.

    PubMed

    Pu, Liang; Sun, Yueming; Zhang, Zhibing

    2010-10-14

    Hydrogen bonding (H-bond) interaction significantly influences the separation of acetic acid (HAc) from the HAc/H(2)O mixtures, especially the dilute solution, in distillation processes. It has been examined from the HAc mono-, di-, tri-, and tetrahydrates by analyzing the structures, binding energies, and infrared vibrational frequencies from quantum chemical calculations. For the first coordinate shell the 6-membered head-on ring is surely the most favorable structure because it has (1) the most favorable H-bonding parameters, (2) almost the largest binding energy per H-bond, (3) the biggest wavenumber shifts, and (4) the highest ring distribution (the AIMD simulations). Moreover, the comparison of the calculations with the experiments (the X-ray scattering data and IR frequencies) suggests that the possible structures in dilute aqueous solution are those involving two or more coordinate shells. The H-bonding in these water-surrounded HAc hydrates are the origin of the low-efficiency problem of isolating HAc from the dilute HAc/H(2)O mixtures. It is apparently a tougher work to break the H-bonds among HAc and the surrounded H(2)O molecules with respect to the case of more concentrated solutions, where the dominant structures are HAc or H(2)O aggregates.

  8. Interaction of benzo[a]pyrene diol epoxide isomers with human serum albumin: Site specific characterisation of adducts and associated kinetics

    NASA Astrophysics Data System (ADS)

    Motwani, Hitesh V.; Westberg, Emelie; Törnqvist, Margareta

    2016-11-01

    Carcinogenicity of benzo[a]pyrene {B[a]P, a polycyclic aromatic hydrocarbon (PAH)} involves DNA-modification by B[a]P diol epoxide (BPDE) metabolites. Adducts to serum albumin (SA) are not repaired, unlike DNA adducts, and therefore considered advantageous in assessment of in vivo dose of BPDEs. In the present work, kinetic experiments were performed in relation to the dose (i.e. concentration over time) of different BPDE isomers, where human SA (hSA) was incubated with respective BPDEs under physiological conditions. A liquid chromatography (LC) tandem mass spectrometry methodology was employed for characterising respective BPDE-adducts at histidine and lysine. This strategy allowed to structurally distinguish between the adducts from racemic anti- and syn-BPDE and between (+)- and (-)-anti-BPDE, which has not been attained earlier. The adduct levels quantified by LC-UV and the estimated rate of disappearance of BPDEs in presence of hSA gave an insight into the reactivity of the diol epoxides towards the N-sites on SA. The structure specific method and dosimetry described in this work could be used for accurate estimation of in vivo dose of the BPDEs following exposure to B[a]P, primarily in dose response studies of genotoxicity, e.g. in mice, to aid in quantitative risk assessment of PAHs.

  9. Malondialdehyde-Acetaldehyde (MAA) Protein Adducts Are Found Exclusively in the Lungs of Smokers with Alcohol Use Disorders and Are Associated with Systemic Anti-MAA Antibodies.

    PubMed

    Sapkota, Muna; Burnham, Ellen L; DeVasure, Jane M; Sweeter, Jenea M; Hunter, Carlos D; Duryee, Michael J; Klassen, Lynell W; Kharbanda, Kusum K; Sisson, Joseph H; Thiele, Geoffrey M; Wyatt, Todd A

    2017-12-01

    Malondialdehyde (MDA) and acetaldehyde (AA) exist following ethanol metabolism and tobacco pyrolysis. As such, lungs of individuals with alcohol use disorders (AUDs) are a target for the effects of combined alcohol and cigarette smoke metabolites. MDA and AA form a stable protein adduct, malondialdehyde-acetaldehyde (MAA) adduct, known to be immunogenic, profibrotic, and proinflammatory. MAA adduct is the dominant epitope in anti-MAA antibody formation. We hypothesized that MAA-adducted protein forms in lungs of those who both abuse alcohol and smoke cigarettes, and that this would be associated with systemically elevated anti-MAA antibodies. Four groups were established: AUD subjects who smoked cigarettes (+AUD/+smoke), smokers without AUD (-AUD/+smoke), AUD without smoke (+AUD/-smoke), and non-AUD/nonsmokers (-AUD/-smoke). We observed a significant increase in MAA adducts in lung cells of +AUD/+smoke versus -AUD/-smoke. No significant increase in MAA adducts was observed in -AUD/+smoke or in +AUD/-smoke compared to -AUD/-smoke. Serum from +AUD/+smoke had significantly increased levels of circulating anti-MAA IgA antibodies. After 1 week of alcohol that MAA-adducted protein is formed in the lungs of those who smoke cigarettes and abuse alcohol, leading to a subsequent increase in serum IgA antibodies. MAA-adducted proteins could play a role in pneumonia and other diseases of the lung in the setting of AUD and smoking. Copyright © 2017 by the Research Society on Alcoholism.

  10. Effect of combined actions of hip adduction/abduction on the force generation and maintenance of pelvic floor muscles in healthy women

    PubMed Central

    Amorim, Amanda C.; Cacciari, Licia P.; Passaro, Anice C.; Silveira, Simone R. B.; Amorim, Cesar F.; Loss, Jefferson F.

    2017-01-01

    Pelvic floor muscle (PFM) force and coordination are related to urinary incontinence severity and to sexual satisfaction. Health professionals frequently combine classic PFM exercises with hip adduction/abduction contraction to treat these disorders, but the real benefits of this practice are still unknown. Based on a theoretical anatomy approach whereby the levator ani muscle is inserted into the obturator internus myofascia and in which force generated by hip movements should increase the contraction quality of PFMs, our aim was to investigate the effects of isometric hip adduction and abduction on PFM force generation. Twenty healthy, nulliparous women were evaluated using two strain-gauge dynamometers (one cylinder-like inside the vaginal cavity, and the other measuring hip adduction/abduction forces around both thighs) while performing three different tasks: (a) isolated PFM contraction; (b) PFM contraction combined with hip adduction (30% and 50% maximum hip force); and (c) PFM contraction combined with hip abduction (30% and 50% maximum hip force). Data were sampled at 100Hz and subtracted from the offset if existent. We calculated a gradient between the isolated PFM contraction and each hip condition (Δ Adduction and Δ Abduction) for all variables: Maximum force (N), instant of maximum-force occurrence (s), mean force in an 8-second window (N), and PFM force loss (N.s). We compared both conditions gradients in 30% and 50% by paired t-tests. All variables did not differ between hip conditions both in 30% and 50% of maximum hip force (p>.05). PFM contraction combined with isometric hip abduction did not increase vaginal force in healthy and nulliparous women compared to PFM contraction combined with isometric hip adduction. Therefore, so far, the use of hip adduction or abduction in PFM training and treatments are not justified for improving PFM strength and endurance. PMID:28542276

  11. Effect of combined actions of hip adduction/abduction on the force generation and maintenance of pelvic floor muscles in healthy women.

    PubMed

    Amorim, Amanda C; Cacciari, Licia P; Passaro, Anice C; Silveira, Simone R B; Amorim, Cesar F; Loss, Jefferson F; Sacco, Isabel C N

    2017-01-01

    Pelvic floor muscle (PFM) force and coordination are related to urinary incontinence severity and to sexual satisfaction. Health professionals frequently combine classic PFM exercises with hip adduction/abduction contraction to treat these disorders, but the real benefits of this practice are still unknown. Based on a theoretical anatomy approach whereby the levator ani muscle is inserted into the obturator internus myofascia and in which force generated by hip movements should increase the contraction quality of PFMs, our aim was to investigate the effects of isometric hip adduction and abduction on PFM force generation. Twenty healthy, nulliparous women were evaluated using two strain-gauge dynamometers (one cylinder-like inside the vaginal cavity, and the other measuring hip adduction/abduction forces around both thighs) while performing three different tasks: (a) isolated PFM contraction; (b) PFM contraction combined with hip adduction (30% and 50% maximum hip force); and (c) PFM contraction combined with hip abduction (30% and 50% maximum hip force). Data were sampled at 100Hz and subtracted from the offset if existent. We calculated a gradient between the isolated PFM contraction and each hip condition (Δ Adduction and Δ Abduction) for all variables: Maximum force (N), instant of maximum-force occurrence (s), mean force in an 8-second window (N), and PFM force loss (N.s). We compared both conditions gradients in 30% and 50% by paired t-tests. All variables did not differ between hip conditions both in 30% and 50% of maximum hip force (p>.05). PFM contraction combined with isometric hip abduction did not increase vaginal force in healthy and nulliparous women compared to PFM contraction combined with isometric hip adduction. Therefore, so far, the use of hip adduction or abduction in PFM training and treatments are not justified for improving PFM strength and endurance.

  12. Carbonyl-Phenol Adducts: An Alternative Sink for Reactive and Potentially Toxic Lipid Oxidation Products.

    PubMed

    Zamora, Rosario; Hidalgo, Francisco J

    2018-02-14

    Different from the well-characterized function of phenolics as antioxidants, their function as lipid-derived carbonyl scavengers is mostly unknown. However, phenolics react with lipid-derived carbonyls as a function of the nucleophilicity of their reactive groups and the electronic effects and steric hindrances present in the reactive carbonyls. Furthermore, the reaction produces a wide variety of carbonyl-phenol adducts, some of which are stable and have been isolated and characterized but others polymerize spontaneously. This perspective updates present knowledge about the lipid-derived carbonyl trapping ability of phenolics, its competition with carbonyl-amine reactions produced in foods, and the presence of carbonyl-phenol adducts in food products.

  13. Chirality induction and amplification in the 2,2,2-trifluoroethanol⋅⋅⋅propylene oxide adduct.

    PubMed

    Thomas, Javix; Jäger, Wolfgang; Xu, Yunjie

    2014-07-07

    Chirality induction and amplification in a model system, that is, the 2,2,2-trifluoroethanol (TFE)⋅⋅⋅propylene oxide (PO) adduct, were investigated using free-space and cavity-based Fourier transform microwave spectroscopy, complemented with high level ab initio calculations. Rotational spectra of four out of eight predicted TFE⋅⋅PO adducts were assigned, and the remaining four were shown to relax to the geometries of the four observed in a jet expansion. The g+ TFE⋅⋅⋅S-PO adduct was found to be favored over that of g- TFE⋅⋅⋅S-PO by a factor of 2.8 at 60 K. This difference contrasts the TFE dimer for which an extreme case of chirality synchronization was previously reported. All TFE⋅⋅⋅PO conformers observed take on the open arrangement, in contrast to 2-fluoroethanol⋅⋅⋅PO, which prefers the closed arrangement. Furthermore, perfluorination at CH3 increases the hydrogen-bonding energy by about 70 % over its ethanol counterpart. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The missing organic molecules on Mars

    NASA Technical Reports Server (NTRS)

    Benner, S. A.; Devine, K. G.; Matveeva, L. N.; Powell, D. H.

    2000-01-01

    GC-MS on the Viking 1976 Mars missions did not detect organic molecules on the Martian surface, even those expected from meteorite bombardment. This result suggested that the Martian regolith might hold a potent oxidant that converts all organic molecules to carbon dioxide rapidly relative to the rate at which they arrive. This conclusion is influencing the design of Mars missions. We reexamine this conclusion in light of what is known about the oxidation of organic compounds generally and the nature of organics likely to come to Mars via meteorite. We conclude that nonvolatile salts of benzenecarboxylic acids, and perhaps oxalic and acetic acid, should be metastable intermediates of meteoritic organics under oxidizing conditions. Salts of these organic acids would have been largely invisible to GC-MS. Experiments show that one of these, benzenehexacarboxylic acid (mellitic acid), is generated by oxidation of organic matter known to come to Mars, is rather stable to further oxidation, and would not have been easily detected by the Viking experiments. Approximately 2 kg of meteorite-derived mellitic acid may have been generated per m(2) of Martian surface over 3 billion years. How much remains depends on decomposition rates under Martian conditions. As available data do not require that the surface of Mars be very strongly oxidizing, some organic molecules might be found near the surface of Mars, perhaps in amounts sufficient to be a resource. Missions should seek these and recognize that these complicate the search for organics from entirely hypothetical Martian life.

  15. The missing organic molecules on Mars

    PubMed Central

    Benner, Steven A.; Devine, Kevin G.; Matveeva, Lidia N.; Powell, David H.

    2000-01-01

    GC-MS on the Viking 1976 Mars missions did not detect organic molecules on the Martian surface, even those expected from meteorite bombardment. This result suggested that the Martian regolith might hold a potent oxidant that converts all organic molecules to carbon dioxide rapidly relative to the rate at which they arrive. This conclusion is influencing the design of Mars missions. We reexamine this conclusion in light of what is known about the oxidation of organic compounds generally and the nature of organics likely to come to Mars via meteorite. We conclude that nonvolatile salts of benzenecarboxylic acids, and perhaps oxalic and acetic acid, should be metastable intermediates of meteoritic organics under oxidizing conditions. Salts of these organic acids would have been largely invisible to GC-MS. Experiments show that one of these, benzenehexacarboxylic acid (mellitic acid), is generated by oxidation of organic matter known to come to Mars, is rather stable to further oxidation, and would not have been easily detected by the Viking experiments. Approximately 2 kg of meteorite-derived mellitic acid may have been generated per m2 of Martian surface over 3 billion years. How much remains depends on decomposition rates under Martian conditions. As available data do not require that the surface of Mars be very strongly oxidizing, some organic molecules might be found near the surface of Mars, perhaps in amounts sufficient to be a resource. Missions should seek these and recognize that these complicate the search for organics from entirely hypothetical Martian life. PMID:10706606

  16. The missing organic molecules on Mars.

    PubMed

    Benner, S A; Devine, K G; Matveeva, L N; Powell, D H

    2000-03-14

    GC-MS on the Viking 1976 Mars missions did not detect organic molecules on the Martian surface, even those expected from meteorite bombardment. This result suggested that the Martian regolith might hold a potent oxidant that converts all organic molecules to carbon dioxide rapidly relative to the rate at which they arrive. This conclusion is influencing the design of Mars missions. We reexamine this conclusion in light of what is known about the oxidation of organic compounds generally and the nature of organics likely to come to Mars via meteorite. We conclude that nonvolatile salts of benzenecarboxylic acids, and perhaps oxalic and acetic acid, should be metastable intermediates of meteoritic organics under oxidizing conditions. Salts of these organic acids would have been largely invisible to GC-MS. Experiments show that one of these, benzenehexacarboxylic acid (mellitic acid), is generated by oxidation of organic matter known to come to Mars, is rather stable to further oxidation, and would not have been easily detected by the Viking experiments. Approximately 2 kg of meteorite-derived mellitic acid may have been generated per m(2) of Martian surface over 3 billion years. How much remains depends on decomposition rates under Martian conditions. As available data do not require that the surface of Mars be very strongly oxidizing, some organic molecules might be found near the surface of Mars, perhaps in amounts sufficient to be a resource. Missions should seek these and recognize that these complicate the search for organics from entirely hypothetical Martian life.

  17. Unusual hafnium-pyridylamido/ER(n) heterobimetallic adducts (ER(n) = ZnR2 or AlR3).

    PubMed

    Rocchigiani, Luca; Busico, Vincenzo; Pastore, Antonello; Talarico, Giovanni; Macchioni, Alceo

    2014-02-17

    NMR spectroscopy and DFT studies indicate that the Symyx/Dow Hf(IV)-pyridylamido catalytic system for olefin polymerization, [{N(-),N,CNph(-)}HfMe][B(C6F5)4] (1, Nph = naphthyl), interacts with ER(n) (E = Al or Zn, R = alkyl group) to afford unusual heterobimetallic adducts [{N(-),N}HfMe(μ-CNph)(μ-R)ER(n-1)][B(C6F5)4 in which the cyclometalated Nph acts as a bridge between Hf and E. (1)H VT (variable-temperature) EXSY NMR spectroscopy provides direct evidence of reversible alkyl exchanges in heterobimetallic adducts, with ZnR2 showing a higher tendency to participate in this exchange than AlR3. 1-Hexene/ERn competitive reactions with 1 at 240 K reveal that the formation of adducts is strongly favored over 1-hexene polymerization. Nevertheless, a slight increase in the temperature (to >265 K) initiates 1-hexene polymerization. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nucleation kinetics of MgCl2-ethanol adduct for the supported Ziegler-Natta catalysts with a thermodynamic approach

    NASA Astrophysics Data System (ADS)

    Ansari, Ziaul Haque; Zeng, Yan; Demopoulos, George P.; Li, Zhibao

    2018-07-01

    MgCl2-ethanol adducts play a key role in the synthesis of supported Ziegler-Natta catalysts. The morphology of the MgCl2-ethanol adducts, which is controlled by their crystallization process, can determine the structure and thus the property of the polyolefin products. Here we study the nucleation kinetics of MgCl2-ethanol adducts by measuring the metastable zone width (MSZW) and induction time at different temperatures. Supersaturation ratios used in induction time measurements were predicted by the Mixed Solvent Electrolyte (MSE) model embedded in OLI System. Nývlt‧s approach was applied to determine MSZW. By the induction time measurement, the effect of temperature, and supersaturation were studied. It was found that induction time decreases as either temperature or supersaturation increases. The measured MSZW and induction time are used to estimate the nucleation kinetics of the system, and thereby distinguishing between the homogeneous and heterogeneous mechanisms. The interfacial tension and other related nucleation parameters were calculated from the induction time data. XRD and TGA indicate that the MgCl2-ethanol adduct has the stoichiometry of MgCl2·6C2H5OH.

  19. Structural and vibrational spectroscopy investigation of the 5-[(diphenyl) amino] isophthalic acid molecule

    NASA Astrophysics Data System (ADS)

    Kurt, M.; Şaş, E. Babur; Can, M.; Okur, S.; Icli, S.; Demic, S.

    2014-10-01

    The molecular structure and vibrations of 5-(diphenyl) amino] isophthalic acid (DPIFA) were investigated by different spectroscopic techniques (such as infrared and Raman). FT-IR, FT-Raman and dispersive Raman spectra were recorded in the solid phase. HOMO-LUMO analyses were performed. The theoretical calculations for the molecular structure and spectroscopic studies were performed with DFT (B3LYP) and 6-311G(d,p) basis set calculations using the Gaussian 09 program. After optimizing the geometry of the molecule, vibration wavenumbers and fundamental vibrations wavenumbers were assigned on the basis of the potential energy distribution (PED) of the vibrational modes calculated with VEDA 4 program. The results of theoretical calculations for the spectra of the title compound were compared with the observed spectra.

  20. NMR and computational studies of stereoisomeric equine estrogen-derived DNA cytidine adducts in oligonucleotide duplexes: opposite orientations of diastereomeric forms.

    PubMed

    Zhang, Na; Ding, Shuang; Kolbanovskiy, Alexander; Shastry, Anant; Kuzmin, Vladimir A; Bolton, Judy L; Patel, Dinshaw J; Broyde, Suse; Geacintov, Nicholas E

    2009-08-04

    The equine estrogens equilin (EQ) and equilenin (EN) are the active components in the widely prescribed hormone replacement therapy formulation Premarin. Metabolic activation of EQ and EN generates the catechol 4-hydroxyequilenin (4-OHEN) that autoxidizes to the reactive o-quinone form in aerated aqueous solutions. The o-quinones react predominantly with C, and to a lesser extent with A and G, to form premutagenic cyclic covalent DNA adducts in vitro and in vivo. To obtain insights into the structural properties of these biologically important DNA lesions, we have synthesized site-specifically modified oligonucleotides containing the stereoisomeric 1'S,2'R,3'R-4-OHEN-C3 and 1'R,2'S,3'S-4-OHEN-C4 adducts derived from the reaction of 4-OHEN with the C in the oligonucleotide 5'-GGTAGCGATGG in aqueous solution. A combined NMR and computational approach was utilized to determine the conformational characteristics of the two major 4-OHEN-C3 and 4-OHEN-C4 stereoisomeric adducts formed in this oligonucleotide hybridized with its complementary strand. In both cases, the modified C adopts an anti glycosidic bond conformation; the equilenin distal ring protrudes into the minor groove while its two proximal hydroxyl groups are exposed on the major groove side of the DNA duplex. The bulky 4-OHEN-C adduct distorts the duplex within the central GC*G portion, but Watson-Crick pairing is maintained adjacent to C* in both stereoisomeric adducts. For the 4-OHEN-C3 adduct, the equilenin rings are oriented toward the 5'-end of the modified strand, while in 4-OHEN-C4 the equilenin is 3'-directed. Correspondingly, the distortions of the double-helical structures are more pronounced on the 5'- or the 3'-side of the lesion, respectively. These differences in stereoisomeric adduct conformations may play a role in the processing of these lesions in cellular environments.