Science.gov

Sample records for acid molecule adduction

  1. Anion Effects on Sodium Ion and Acid Molecule Adduction to Protein Ions in Electrospray Ionization Mass Spectrometry

    PubMed Central

    Flick, Tawnya G.; Merenbloom, Samuel I.; Williams, Evan R.

    2012-01-01

    Gaseous protein–metal ion and protein–molecule complexes can be readily formed by electrospray ionization (ESI) from aqueous solutions containing proteins and millimolar concentrations of sodium salts of various anions. The extent of sodium and acid molecule adduction to multiply charged protein ions is inversely related and depends strongly on the proton affinity (PA) of the anion, with extensive sodium adduction occurring for anions with PA values greater than ~300 kcal·mol−1 and extensive acid molecule adduction occurring for anions with PA values less than 315 kcal·mol−1. The role of the anion on the extent of sodium and acid molecule adduction does not directly follow the Hofmeister series, suggesting that direct protein–ion interactions may not play a significant role in the observed effect of anions on protein structure in solution. These results indicate that salts with anions that have low PA values may be useful solution-phase additives to minimize nonspecific metal ion adduction in ESI experiments designed to identify specific protein-metal ion interactions. PMID:21952761

  2. Ion Pairs or Neutral Molecule Adducts? Cooperativity in Hydrogen Bonding

    ERIC Educational Resources Information Center

    DeKock, Roger L.; Schipper, Laura A.; Dykhouse, Stephanie C.; Heeringa, Lee P.; Brandsen, Benjamin M.

    2009-01-01

    We performed theoretical studies on the systems NH[subscript 3] times HF times mH[subscript 2]O, NH[subscript 3] times HCl times mH[subscript 2]O, with m = 0, 1, 2, and 6. The molecules with m = 0 form hydrogen-bonded adducts with little tendency to form an ion-pair structure. The molecule NH[subscript 3] times HCl times H[subscript 2]O cannot be…

  3. Ion-molecule adduct formation in tandem mass spectrometry.

    PubMed

    Alechaga, Élida; Moyano, Encarnación; Galceran, Maria Teresa

    2016-02-01

    Nowadays most LC-MS methods rely on tandem mass spectrometry not only for quantitation and confirmation of compounds by multiple reaction monitoring (MRM), but also for the identification of unknowns from their product ion spectra. However, gas-phase reactions between charged and neutral species inside the mass analyzer can occur, yielding product ions at m/z values higher than that of the precursor ion, or at m/z values difficult to explain by logical losses, which complicate mass spectral interpretation. In this work, the formation of adduct ions in the mass analyzer was studied using several mass spectrometers with different mass analyzers (ion trap, triple quadrupole, and quadrupole-Orbitrap). Heterocyclic amines (AαC, MeAαC, Trp-P-1, and Trp-P-2), photo-initiators (BP and THBP), and pharmaceuticals (phenacetin and levamisole) were selected as model compounds and infused in LCQ Classic, TSQ Quantum Ultra AM, and Q-Exactive Orbitrap (ThermoFisher Scientific) mass spectrometers using electrospray as ionization method. The generation of ion-molecule adducts depended on the compound and also on the instrument employed. Adducts with neutral organic solvents (methanol and acetonitrile) were only observed in the ion trap instrument (LCQ Classic), because of the ionization source on-axis configuration and the lack of gas-phase barriers, which allowed inertial entrance of the neutrals into the analyzer. Adduct formation (only with water) in the triple quadrupole instruments was less abundant than in the ion trap and quadrupole-Orbitrap mass spectrometers, because of the lower residence time of the reactive product ions in the mass analyzer. The moisture level of the CID and/or damper gas had a great effect in beam-like mass analyzers such as triple quadrupole, but not in trap-like mass analyzers, probably because of the long residence time that allowed adduct formation even with very low concentrations of water inside the mass spectrometer. PMID:26700446

  4. Characterization of the lysyl adducts of prostaglandin H-synthases that are derived from oxygenation of arachidonic acid.

    PubMed

    Boutaud, O; Brame, C J; Chaurand, P; Li, J; Rowlinson, S W; Crews, B C; Ji, C; Marnett, L J; Caprioli, R M; Roberts, L J; Oates, J A

    2001-06-12

    These investigations characterize the covalent binding of reactive products of prostaglandin H-synthases (PGHSs) to the enzyme and to other molecules. The intermediate product of oxygenation of arachidonic acid by the PGHSs, prostaglandin (PG) H2, undergoes rearrangement to the highly reactive gamma-keto aldehydes, levuglandin (LG) E2 and D2. We previously have demonstrated that LGE2 reacts with the epsilon-amine of lysine to form both the lysyl-levuglandin Shiff base and the pyrrole-derived lysyl-levuglandin lactam adducts. We now demonstrate that these lysyl-levuglandin adducts are formed on the PGHSs following the oxygenation of arachidonic acid; after reduction of the putative Schiff base, proteolytic digestion of the enzyme, and isolation of the adducted amino acid residues, these adducts were identified by liquid chromatography-tandem mass spectrometry. The reactivity of the LGs is reflected by the finding that virtually all of the LG predicted to be formed from PGH2 can be accounted for as adducts of the PGH-synthase and that oxygenation of arachidonic acid by PGH-synthases also leads to the formation of adducts of other proteins present in the reaction solution. The reactivity of the PGH-synthase adducts themselves is demonstrated by the formation of intermolecular cross-links. PMID:11389610

  5. Crystal and molecular structure of adduct of 6-benzylaminopurine and 5-sulfosalicylic acid

    SciTech Connect

    Xia Min Ma Kuirong

    2010-12-15

    The crystal structure of adduct of 6-benzylaminopurine and 5-sulfosalicylic acid C{sub 19}H{sub 25}N{sub 5}O{sub 10}S 1 is studied using single-crystal diffraction (R = 0.0482 for 2852 reflections with I > 2{sigma}(I)). The asymmetric unit of 1 contains one 6-benzylaminopurine molecule and one 5-sulfosalicylic acid molecule, as well as four lattice water molecules. Hydrogen bonds, formed by 6-benzylaminopurine and 5-sulfosalicylic acid, link the two molecules into one-dimensional chain (omitting four water molecules), further joined to two-dimensional layer network. Short ring-interactions with intra-chain {pi}-{pi} stacking are observed. The data of IR spectroscopy confirm the formation of the two-dimensional supramolecular layer structure. At last, a 3D supramolecular network constructs via hydrogen bonds.

  6. Supramolecular Adducts of Cucurbit[7]uril and Amino Acids in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Kovalenko, Ekaterina; Vilaseca, Marta; Díaz-Lobo, Mireia; Masliy, A. N.; Vicent, Cristian; Fedin, Vladimir P.

    2016-02-01

    The complexation of the macrocyclic cavitand cucurbit[7]uril (Q7) with a series of amino acids (AA) with different side chains (Asp, Asn, Gln, Ser, Ala, Val, and Ile) is investigated by ESI-MS techniques. The 1:1 [Q7 + AA + 2H]2+ adducts are observed as the base peak when equimolar Q7:AA solutions are electrosprayed, whereas the 1:2 [Q7 + 2AA + 2H]2+ dications are dominant when an excess of the amino acid is used. A combination of ion mobility mass spectrometry (IM-MS) and DFT calculations of the 1:1 [Q7 + AA + 2H]2+ (AA = Tyr, Val, and Ser) adducts is also reported and proven to be unsuccessful at discriminating between exclusion or inclusion-type conformations in the gas phase. Collision induced dissociation (CID) revealed that the preferred dissociation pathways of the 1:1 [Q7 + AA + 2H]2+ dications are strongly influenced by the identity of the amino acid side chain, whereas ion molecule reactions towards N-butylmethylamine displayed a common reactivity pattern comprising AA displacement. Special emphasis is given on the differences between the gas-phase behavior of the supramolecular adducts with amino acids (AA = Asp, Asn, Gln, Ser, Ala, Val, and Ile) and those featuring basic (Lys and Arg) and aromatic (Tyr and Phe) side chains.

  7. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ester with pentaerythritol. 721.3680 Section 721.3680 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  8. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ester with pentaerythritol. 721.3680 Section 721.3680 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  9. Molecular structures of five adducts assembled from p-dimethylaminobenzaldehyde and organic acids

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Wang, Lanqing; Liu, Hui; Liu, Li; Zhang, Huan; Wang, Daqi; Li, Minghui; Guo, Jianzhong; Guo, Ming

    2016-07-01

    Five adducts 1-5 derived from p-dimethylaminobenzaldehyde have been prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. Of the five adducts two are organic salts (1, and 2) and the other three (3-5) are cocrystals. In salts 1, and 2, the L molecules are protonated. The supramolecular architectures of the adducts 1-5 involve extensive intermolecular N-H⋯O, O-H⋯O, O-H⋯S, and C-H⋯O hydrogen bonds as well as other non-covalent interactions. The role of weak and strong non-covalent interactions in the crystal packing is ascertained. The complexes displayed 2D/3D framework structure for the synergistic effect of the various non-covalent interactions. The results presented herein tell that the strength and directionality of the N-H⋯O, O-H⋯O, and O-H⋯S hydrogen bonds between organic acids and p-dimethylaminobenzaldehyde are sufficient to bring about the formation of binary cocrystals or organic salts.

  10. Strategy for identifying unknown hemoglobin adducts using adductome LC-MS/MS data: Identification of adducts corresponding to acrylic acid, glyoxal, methylglyoxal, and 1-octen-3-one.

    PubMed

    Carlsson, Henrik; Törnqvist, Margareta

    2016-06-01

    Electrophilic compounds have the ability to form adducts with nucleophilic sites in proteins and DNA in tissues, and thereby constitute risks for toxic effects. Adductomic approaches are developed for systematic screening of adducts to DNA and blood proteins, with the aim to detect unknown internal exposures to electrophiles. In a previous adductomic screening of adducts to N-terminals in hemoglobin, using LC-MS/MS, 19 unknown adducts were detected in addition to seven previously identified adducts. The present paper describes the identification of four of these unknown adducts, as well as the strategy used to identify them. Using LC-MS data from the screening, hypotheses about adduct identities were formulated: probable precursor electrophiles with matching molecular weights were suggested based on the molecular weights of the modifications and the retention times of the analytes, in combination with comparisons of theoretical Log P calculations and databases. Reference adducts were generated by incubation of blood samples with the hypothesized precursor electrophiles. The four identified precursor electrophiles, corresponding to the observed unknown adducts, were glyoxal, methylglyoxal, acrylic acid and 1-octen-3-one. Possible origins/exposure sources and toxicological information concerning the electrophilic precursors are discussed. The identified adducts could be explored as possible biomarkers for exposure. PMID:27046699

  11. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity

    PubMed Central

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury. PMID:26208104

  12. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    PubMed

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury. PMID:26208104

  13. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.3700 Fatty acid, ester with styrenated phenol... chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  14. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.3700 Fatty acid, ester with styrenated phenol... chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  15. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.3700 Fatty acid, ester with styrenated phenol... chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  16. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.3700 Fatty acid, ester with styrenated phenol... chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  17. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.3700 Fatty acid, ester with styrenated phenol... chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  18. Structural determination of cerebrosides isolated from Asterias amurensis starfish eggs using high-energy collision-induced dissociation of sodium-adducted molecules.

    PubMed

    Park, Taeseong; Park, Young Seung; Rho, Jung-Rae; Kim, Young Hwan

    2011-03-15

    Six cerebrosides were isolated from the eggs of the starfish Asterias amurensis using solvent extraction, silica gel column chromatography, and reversed-phase high-performance liquid chromatography. This study demonstrated that the structures of cerebrosides could be completely characterized, based on their sodium-adducted molecules, using fast atom bombardment (FAB) tandem mass spectrometry. The high-energy collision-induced dissociation of the sodium-adducted molecule, [M + Na](+), of each cerebroside molecular species generated abundant ions, providing information on the compositions of the 2-hydroxy fatty acids and long-chain sphingoid bases, as well as the sugar moiety polar head group. Each homologous ion series along the fatty acid and aliphatic chain of the sphingoid base was useful for locating the double-bond positions of both chains and the methyl branching position of the long-chain base. The N-fatty acyl portions were primarily long-chain saturated or monoenoic acids (C16 to C24) with an α-hydroxy group. The sphingoid long-chain base portions were aliphatic chains (C18 or C22) with two or three degrees of unsaturation and with or without methyl branching. PMID:21290443

  19. Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts

    DOE PAGESBeta

    Lopez-Hilfiker, Felipe D.; Iyer, Siddarth; Mohr, Claudia; Lee, Ben H.; D'Ambro, Emma L.; Kurten, Theo; Thornton, Joel A.

    2016-04-06

    The sensitivity of a chemical ionization mass spectrometer (ions formed per number density of analytes) is fundamentally limited by the collision frequency between reagent ions and analytes, known as the collision limit, the ion–molecule reaction time, and the transmission efficiency of product ions to the detector. We use the response of a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) to N2O5, known to react with iodide at the collision limit, to constrain the combined effects of ion–molecule reaction time, which is strongly influenced by mixing and ion losses in the ion–molecule reaction drift tube. A mass spectrometric voltage scanning procedure elucidatesmore » the relative binding energies of the ion adducts, which influence the transmission efficiency of molecular ions through the electric fields within the vacuum chamber. Together, this information provides a critical constraint on the sensitivity of a ToF-CIMS towards a wide suite of routinely detected multifunctional organic molecules for which no calibration standards exist. Lastly, we describe the scanning procedure and collision limit determination, and we show results from the application of these constraints to the measurement of organic aerosol composition at two different field locations.« less

  20. Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts

    DOE PAGESBeta

    Lopez-Hilfiker, Felipe D.; Iyer, Siddarth; Mohr, Claudia; Lee, Ben H.; D'Ambro, Emma L.; Kurtén, Theo; Thornton, Joel A.

    2016-04-06

    The sensitivity of a chemical ionization mass spectrometer (ions formed per number density of analytes) is fundamentally limited by the collision frequency between reagent ions and analytes, known as the collision limit, the ion–molecule reaction time, and the transmission efficiency of product ions to the detector. We use the response of a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) to N2O5, known to react with iodide at the collision limit, to constrain the combined effects of ion–molecule reaction time, which is strongly influenced by mixing and ion losses in the ion–molecule reaction drift tube. A mass spectrometric voltage scanning procedure elucidatesmore » the relative binding energies of the ion adducts, which influence the transmission efficiency of molecular ions through the electric fields within the vacuum chamber. Together, this information provides a critical constraint on the sensitivity of a ToF-CIMS towards a wide suite of routinely detected multifunctional organic molecules for which no calibration standards exist. We describe the scanning procedure and collision limit determination, and we show results from the application of these constraints to the measurement of organic aerosol composition at two different field locations.« less

  1. Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, Felipe D.; Iyer, Siddarth; Mohr, Claudia; Lee, Ben H.; D'Ambro, Emma L.; Kurtén, Theo; Thornton, Joel A.

    2016-04-01

    The sensitivity of a chemical ionization mass spectrometer (ions formed per number density of analytes) is fundamentally limited by the collision frequency between reagent ions and analytes, known as the collision limit, the ion-molecule reaction time, and the transmission efficiency of product ions to the detector. We use the response of a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) to N2O5, known to react with iodide at the collision limit, to constrain the combined effects of ion-molecule reaction time, which is strongly influenced by mixing and ion losses in the ion-molecule reaction drift tube. A mass spectrometric voltage scanning procedure elucidates the relative binding energies of the ion adducts, which influence the transmission efficiency of molecular ions through the electric fields within the vacuum chamber. Together, this information provides a critical constraint on the sensitivity of a ToF-CIMS towards a wide suite of routinely detected multifunctional organic molecules for which no calibration standards exist. We describe the scanning procedure and collision limit determination, and we show results from the application of these constraints to the measurement of organic aerosol composition at two different field locations.

  2. Identification of Rosmarinic Acid-Adducted Sites in Meat Proteins in a Gel Model under Oxidative Stress by Triple TOF MS/MS.

    PubMed

    Tang, Chang-Bo; Zhang, Wan-Gang; Wang, Yao-Song; Xing, Lu-Juan; Xu, Xing-Lian; Zhou, Guang-Hong

    2016-08-24

    Triple TOF MS/MS was used to identify adducts between rosmarinic acid (RosA)-derived quinones and meat proteins in a gel model under oxidative stress. Seventy-five RosA-modified peptides responded to 67 proteins with adduction of RosA. RosA conjugated with different amino acids in proteins, and His, Arg, and Lys adducts with RosA were identified for the first time in meat. A total of 8 peptides containing Cys, 14 peptides containing His, 48 peptides containing Arg, 64 peptides containing Lys, and 5 peptides containing N-termini that which participated in adduction reaction with RosA were identified, respectively. Seventy-seven adduction sites were subdivided into all adducted proteins including 2 N-terminal adduction sites, 3 Cys adduction sites, 4 His adduction sites, 29 Arg adduction sites, and 39 Lys adduction sites. Site occupancy analyses showed that approximately 80.597% of the proteins carried a single RosA-modified site, 14.925% retained two sites, 1.492% contained three sites, and the rest 2.985% had four or more sites. Large-scale triple TOF MS/MS mapping of RosA-adducted sites reveals the adduction regulations of quinone and different amino acids as well as the adduction ratios, which clarify phenol-protein adductions and pave the way for industrial meat processing and preservation. PMID:27486909

  3. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    SciTech Connect

    Croteau, Rodney Bruce; Burke, Charles Cullen

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  4. Structure of six organic acid-base adducts from 6-bromobenzo[d]thiazol-2-amine and acidic compounds

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Zhang, Jing; Wang, Daqi; Tao, Lin; Zhou, Mengjian; Shen, Yinyan; Chen, Quan; Lin, Zhanghui; Gao, Xingjun

    2014-05-01

    Six anhydrous organic acid-base adducts of 6-bromobenzo[d]thiazol-2-amine were prepared with organic acids as 2,4,6-trinitrophenol, salicylic acid, 3,5-dinitrobenzoic acid, 3,5-dinitrosalicylic acid, malonic acid and sebacic acid. The compounds 1-6 were characterized by X-ray diffraction analysis, IR, and elemental analysis. The melting points of all the adducts were given. Of the six adducts, 1, 3, 4, and 5 are organic salts, while 2, and 6 are cocrystals. The supramolecular arrangement in the crystals 2-6 is based on the R22(8) synthon. Analysis of the crystal packing of 1-6 suggests that there are strong NH⋯O, OH⋯N, and OH⋯O hydrogen bonds (charge assisted or neutral) between acid and base components in the supramolecular assemblies. When the hydroxyl group is present in the ortho position of the carboxy, the intramolecular S6 synthon is present, as expected. Besides the classical hydrogen bonding interactions, other noncovalent interactions also play important roles in structure extension. Due to the synergetic effect of these weak interactions, compounds 1-6 display 1D-3D framework structure.

  5. Crystal and molecular structure of eight organic acid-base adducts from 2-methylquinoline and different acids

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Jin, Shouwen; Tao, Lin; Liu, Bin; Wang, Daqi

    2014-08-01

    Eight supramolecular complexes with 2-methylquinoline and acidic components as 4-aminobenzoic acid, 2-aminobenzoic acid, salicylic acid, 5-chlorosalicylic acid, 3,5-dinitrosalicylic acid, malic acid, sebacic acid, and 1,5-naphthalenedisulfonic acid were synthesized and characterized by X-ray crystallography, IR, mp, and elemental analysis. All of the complexes are organic salts except compound 2. All supramolecular architectures of 1-8 involve extensive classical hydrogen bonds as well as other noncovalent interactions. The results presented herein indicate that the strength and directionality of the classical hydrogen bonds (ionic or neutral) between acidic components and 2-methylquinoline are sufficient to bring about the formation of binary organic acid-base adducts. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, the complexes 1-8 displayed 2D-3D framework structure.

  6. Chiral Phosphoric Acid Catalyzed Asymmetric Ugi Reaction by Dynamic Kinetic Resolution of the Primary Multicomponent Adduct.

    PubMed

    Zhang, Yun; Ao, Yu-Fei; Huang, Zhi-Tang; Wang, De-Xian; Wang, Mei-Xiang; Zhu, Jieping

    2016-04-18

    Reaction of isonitriles with 3-(arylamino)isobenzofuran-1(3H)-ones in the presence of a catalytic amount of an octahydro (R)-binol-derived chiral phosphoric acid afforded 3-oxo-2-arylisoindoline-1-carboxamides in high yields with good to high enantioselectivities. An enantioselective Ugi four-center three-component reaction of 2-formylbenzoic acids, anilines, and isonitriles was subsequently developed for the synthesis of the same heterocycle. Mechanistic studies indicate that the enantioselectivity results from the dynamic kinetic resolution of the primary Ugi adduct, rather than from the C-C bond-forming process. The resulting heterocycle products are of significant medicinal importance. PMID:26997306

  7. Supramolecular adducts based on weak interactions between the trimeric Lewis acid complex (perfluoro-ortho-phenylene)mercury and polypnictogen complexes.

    PubMed

    Fleischmann, Martin; Jones, James S; Balázs, Gábor; Gabbaï, François P; Scheer, Manfred

    2016-09-21

    Reactions of the trinuclear Lewis acid perfluoro-ortho-phenylene)mercury [(o-HgC6F4)3] (1) with the polypnictogen complex [CpMo(CO)2(η(3)-P3)] (2) containing a cyclo-P3 ligand and the series of E2 complexes [{CpMo(CO)2}2(μ,η(2):η(2)-E2)] (E = P(3a), As(3b), Sb(3c), Bi(3d)) are reported. In all cases, the reaction products show very weak interactions between the En ligand complexes and the Lewis acid 1, as evidenced by their highly dynamic behaviour in solution and the formation of adducts in the solid state showing HgE contacts below the respective sum of the van der Waals radii. The complexes 2 (P3), 3a (P2) and 3b (As2) show interactions of only one pnictogen atom with all three Hg atoms of 1. The complex 3c (Sb2) forms two adducts with 1 showing either a side-on coordination of the Sb2 dumbbell towards Hg or an end-on coordination of both Sb atoms towards two independent molecules of 1. The Bi2 complex 3d shows an almost parallel alignment of the Bi2 dumbbell situated above the center of the planar Lewis acid 1. The arrangements of the E2 complex series towards 1 are rationalized with the help of electrostatic potential maps obtained by DFT calculations. Finally the structural characterizations of a new modification of the free Sb2 complex 3c, the Bi2 complex 3d, the starting material of its preparation [Bi{CpMo(CO)3}3] (4) and an unprecedented 'Cr4As5' cluster 5 are presented. PMID:27461890

  8. Lewis Acid-Base Adduct Approach for High Efficiency Perovskite Solar Cells.

    PubMed

    Lee, Jin-Wook; Kim, Hui-Seon; Park, Nam-Gyu

    2016-02-16

    Since the first report on the long-term durable 9.7% solid-state perovskite solar cell employing methylammonium lead iodide (CH3NH3PbI3), mesoporous TiO2, and 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-MeOTAD) in 2012, following the seed technologies on perovskite-sensitized liquid junction solar cells in 2009 and 2011, a surge of interest has been focused on perovskite solar cells due to superb photovoltaic performance and extremely facile fabrication processes. The power conversion efficiency (PCE) of perovskite solar cells reached 21% in a very short period of time. Such an unprecedentedly high photovoltaic performance is due to the intrinsic optoelectronic property of organolead iodide perovskite material. Moreover, a high dielectric constant, sub-millimeter scale carrier diffusion length, an underlying ferroelectric property, and ion migration behavior can make organolead halide perovskites suitable for multifunctionality. Thus, besides solar cell applications, perovskite material has recently been applied to a variety fields of materials science such as photodetectors, light emitting diodes, lasing, X-ray imaging, resistive memory, and water splitting. Regardless of application areas, the growth of a well-defined perovskite layer with high crystallinity is essential for effective utilization of its excellent physicochemical properties. Therefore, an effective methodology for preparation of high quality perovskite layers is required. In this Account, an effective methodology for production of high quality perovskite layers is described, which is the Lewis acid-base adduct approach. In the solution process to form the perovskite layer, the key chemicals of CH3NH3I (or HC(NH2)2I) and PbI2 are used by dissolving them in polar aprotic solvents. Since polar aprotic solvents bear oxygen, sulfur, or nitrogen, they can act as a Lewis base. In addition, the main group compound PbI2 is known to be a Lewis acid. Thus, PbI2 has a chance

  9. Shape of the Adduct Formic Acid-Dimethyl Ether: A Rotational Study.

    PubMed

    Evangelisti, Luca; Spada, Lorenzo; Li, Weixing; Ciurlini, Anna; Grabow, Jens-Uwe; Caminati, Walther

    2016-05-12

    Formic acid and dimethyl ether are combined in a supersonic expansion to form a molecular adduct with the two subunits held together by a "classical" OH···O hydrogen bond and a bifurcated weak CH2···O hydrogen bond. The rotational spectra of the parent and of two (13)C isotopologues in natural abundance show that the complex has Cs symmetry, with the heavy atom symmetry planes of HCOOH and (CH3)2O perpendicular to each other. PMID:27102727

  10. Extraction of rare earth oxides using supercritical carbon dioxide modified with Tri-n-butyl phosphate–nitric acid adducts

    DOE PAGESBeta

    Baek, Donna L.; Fox, Robert V.; Case, Mary E.; Sinclair, Laura K.; Schmidt, Alex B.; McIlwain, Patrick R.; Mincher, Bruce J.; Wai, Chien M.

    2016-06-14

    A new tri-n-butylphosphate–nitric acid (TBP–HNO3) adduct was prepared by combining TBP and fuming (90%) HNO3. The adduct was characterized, and its phase-equilibrium behavior in supercritical carbon dioxide is reported. Supercritical carbon dioxide (sc-CO2) was modified with this new adduct [TBP(HNO3)5.2(H2O)1.7], and the extraction efficacies of selected rare earth oxides (Y, Ce, Eu, Tb, and Dy) at 338 K and 34.5 MPa were compared with those obtained using an adduct formed from concentrated (70%) HNO3 and TBP [TBP(HNO3)1.7(H2O)0.6]. All rare earth oxides tested with both adduct species could be extracted with the exception of cerium oxide. Furthermore, the water and acidmore » concentrations in the different adducts were found to play a significant role in rare earth oxide extraction efficiency.« less

  11. Cysteine amide adduct formation from carboxylic acid drugs via UGT-mediated bioactivation in human liver microsomes.

    PubMed

    Harada, H; Toyoda, Y; Endo, T; Kobayashi, M

    2015-10-01

    Although chemical trapping has been widely used to evaluate cytochrome P450-mediated drug bioactivation, thus far, only a few in vitro-trapping studies have been performed on UDP-glucuronosyltransferase (UGT)-mediated drug bioactivation. In this study, we used cysteine (Cys) as trapping agent to gain new insights into the UGT-mediated bioactivation involving acyl glucuronides of carboxylic acid drugs. Diclofenac, ketoprofen and ibuprofen were incubated in human liver microsomes with UDPGA and Cys, followed by analysis using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). The N-acyl-Cys amide adduct of diclofenac was characterized by mass analysis and was detectable even in photodiode array analysis. Our data indicated that the formation of such adducts reflects the reactivity of the corresponding acyl glucuronides. In addition, it was suggested that the adduct formation requires an N-terminal Cys moiety with both a free amine and a free thiol group, from the results using various cysteine derivatives. We propose that the S-acyl-Cys thioester adduct can form via transacylation of an acyl glucuronide and can then form to an N-acyl-Cys amide adduct through intramolecular S- to N-acyl rearrangement. This series of the reactions has important implications as a possible bioactivation mechanism for covalent binding of carboxylic acid drugs to macromolecules. PMID:26601426

  12. Method for sequencing nucleic acid molecules

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2006-05-30

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  13. Method for sequencing nucleic acid molecules

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2006-06-06

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  14. Nucleic Acids as Information Molecules.

    ERIC Educational Resources Information Center

    McInerney, Joseph D.

    1996-01-01

    Presents an activity that aims at enabling students to recognize that DNA and RNA are information molecules whose function is to store, copy, and make available the information in biological systems, without feeling overwhelmed by the specialized vocabulary and the minutia of the central dogma. (JRH)

  15. Inhibition of DNA adduct formation of PhIP in female F344 rats by dietary conjugated linoleic acid.

    PubMed

    Josyula, S; He, Y H; Ruch, R J; Schut, H A

    1998-01-01

    The dietary mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a mammary carcinogen in the female Fischer (F344) rat and a colon carcinogen in the male F344 rat. To exert its carcinogenicity, it is believed that PhIP needs to form adducts with DNA, a process requiring N-hydroxylation of PhIP by cytochromes P-450 1A1 and/or 1A2 (CYP 1A1 and/or 1A2), as well as further esterification of the hydroxylamine thus formed. Dietary conjugated linoleic acid (CLA) inhibits chemical carcinogenesis in various experimental models. We have examined the effect of dietary CLA on PhIP-DNA adduct formation in female F344 rats. Four-week-old animals were maintained on AIN-76A diet without or with CLA (1%, 0.5%, and 0.1% wt/wt) for 57 days. PhIP was added to the diets (0.04% wt/wt) from Days 14-42. Animals were killed (4/group) on Days 43, 50, and 57. DNA isolated from liver, mammary epithelial cells (MEC), colon, and white blood cells (WBC) was analyzed for PhIP-DNA adducts by 32P-postlabeling assays. On Day 43, CLA inhibited adduct formation in the liver (up to 58%) in a dose-dependent manner. CLA also inhibited hepatic adduct levels (29-39%) on Day 50 (at 1.0% and 0.5% CLA) and on Day 57 (53% at 0.5% CLA). CLA significantly reduced adduct levels in the WBC on Day 50 (63-70%). Adducts in MEC and the colon were not affected by dietary CLA. On Day 57, adduct levels in MEC, liver, colon, and WBC were 0-30.3%, 8.6-41.7%, 21.5-50.7%, and 7.5-11.8%, respectively, of those on Day 43. Northern blot analysis of liver RNA showed that dietary CLA did not affect steady-state levels of CYP 1A1 or 1A2 mRNA. It is concluded that dietary CLA inhibits PhIP-DNA adduct formation in liver and WBC but that those in MEC and the colon are unaffected when a low-level dietary regimen of carcinogen and inhibitor was used. In inhibiting PhIP-DNA adduct formation, CLA does not appear to act by inhibiting CYP 1A1 or 1A2 expression. PMID:10050262

  16. Determination of DNA adducts by combining acid-catalyzed hydrolysis and chromatographic analysis of the carcinogen-modified nucleobases.

    PubMed

    Leung, Elvis M K; Deng, Kailin; Wong, Tin-Yan; Chan, Wan

    2016-01-01

    The commonly used method of analyzing carcinogen-induced DNA adducts involves the hydrolysis of carcinogen-modified DNA samples by using a mixture of enzymes, followed by (32)P-postlabeling or liquid chromatography (LC)-based analyses of carcinogen-modified mononucleotides/nucleosides. In the present study, we report the development and application of a new approach to DNA adduct analysis by combining the H(+)/heat-catalyzed release of carcinogen-modified nucleobases and the use of LC-based methods to analyze DNA adducts. Results showed that heating the carcinogen-modified DNA samples at 70 °C for an extended period of 4 to 6 h in the presence of 0.05% HCl can efficiently induce DNA depurination, releasing the intact carcinogen-modified nucleobases for LC analyses. After optimizing the hydrolysis conditions, DNA samples with C8- and N (2) -modified 2'-deoxyguanosine, as well as N (6) -modified 2'-deoxyadenosine, were synthesized by reacting DNA with 1-nitropyrene, acetaldehyde, and aristolochic acids, respectively. These samples were then hydrolyzed, and the released nucleobase adducts were analyzed using LC-based analytical methods. Analysis results demonstrated a dose-dependent release of target DNA adducts from carcinogen-modified DNA samples, indicating that the developed H(+)/heat-catalyzed hydrolysis method was quantitative. Comparative studies with enzymatic digestion method on carcinogen-modified DNA samples revealed that the two hydrolysis methods did not yield systematically different results. PMID:26581621

  17. The 1:2:1 adduct of DABCO dication, hydrogen squarate and water molecules studied by X-ray diffraction and FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Barczyński, P.; Dega-Szafran, Z.; Katrusiak, A.; Szafran, M.

    2011-07-01

    The molecular structure of 1:2:1 adduct of diprotonated 1,4-diazabicyclo[2.2.2]octane, (DABCO), hydrogen squarates (HSQ -) and water ( 1) has been characterized by single-crystal X-ray diffraction and infrared spectroscopy. The crystals of 1 are orthorhombic, space group Pnma. The non-equivalent HSQ - anions are bonded into zigzag chains (α-chain) by two short O sbnd H⋯O hydrogen bonds of 2.485(2) and 2.509(2) Å, and additionally H-bonded by water molecules linking the zigzag chains into ribbons. The diprotonated DABCO cations are located between the ribbons and interact with HSQ - anions by the N sbnd H⋯O trifurcated hydrogen bonds. The FTIR spectrum shows a very broad absorption in the 1740-550 cm -1 region, typical of short hydrogen bonds and it is attributed to the ν(OHO) and γ(OHO) vibrations. The second derivative spectrum distinguishes the νC sbnd O and γC sbnd C modes assigned to the π-delocalized squaric acid ring.

  18. Conformational changes of the phenyl and naphthyl isocyanate-DNA adducts during DNA replication and by minor groove binding molecules

    PubMed Central

    Nakano, Shu-ichi; Uotani, Yuuki; Sato, Yuichi; Oka, Hirohito; Fujii, Masayuki; Sugimoto, Naoki

    2013-01-01

    DNA lesions produced by aromatic isocyanates have an extra bulky group on the nucleotide bases, with the capability of forming stacking interaction within a DNA helix. In this work, we investigated the conformation of the 2′-deoxyadenosine and 2′-deoxycytidine derivatives tethering a phenyl or naphthyl group, introduced in a DNA duplex. The chemical modification experiments using KMnO4 and 1-cyclohexyl-3 -(2-morpholinoethyl) carbodiimide metho-p-toluenesulfonate have shown that the 2′-deoxycytidine lesions form the base pair with guanine while the 2′-deoxyadenosine lesions have less ability of forming the base pair with thymine in solution. Nevertheless, the kinetic analysis shows that these DNA lesions are compatible with DNA ligase and DNA polymerase reactions, as much as natural DNA bases. We suggest that the adduct lesions have a capability of adopting dual conformations, depending on the difference in their interaction energies between stacking of the attached aromatic group and base pairing through hydrogen bonds. It is also presented that the attached aromatic groups change their orientation by interacting with the minor groove binding netropsin, distamycin and synthetic polyamide. The nucleotide derivatives would be useful for enhancing the phenotypic diversity of DNA molecules and for exploring new non-natural nucleotides. PMID:23873956

  19. Sugar amino acids in designing new molecules.

    PubMed

    Chakraborty, Tushar Kanti; Srinivasu, Pothukanuri; Tapadar, Subhasish; Mohan, Bajjuri Krishna

    2005-03-01

    Emulating the basic principles followed by nature to build its vast repertoire of biomolecules, organic chemists are developing many novel multifunctional building blocks and using them to create 'nature-like' and yet unnatural organic molecules. Sugar amino acids constitute an important class of such polyfunctional scaffolds where the carboxyl, amino and hydroxyl termini provide an excellent opportunity to organic chemists to create structural diversities akin to Nature's molecular arsenal. This article describes some of our works on various sugar amino acids and many other related building blocks, like furan amino acids, pyrrole amino acids etc. used in wide-ranging peptidomimetic studies. PMID:16133829

  20. Featured Molecules: Ascorbic Acid and Methylene Blue

    NASA Astrophysics Data System (ADS)

    Coleman, William F.; Wildman, Randall J.

    2003-05-01

    The WebWare molecules of the month for May are featured in several articles in this issue. "Arsenic: Not So Evil After All?" discusses the pharmaceutical uses of methylene blue and its development as the first synthetic drug used against a specific disease. The JCE Classroom Activity "Out of the Blue" and the article "Greening the Blue Bottle" feature methylene blue and ascorbic acid as two key ingredients in the formulation of the blue bottle. You can also see a colorful example of these two molecules in action on the cover. "Sailing on the 'C': A Vitamin Titration with a Twist" describes an experiment to determine the vitamin C (ascorbic acid) content of citrus fruits and challenges students, as eighteenth-century sea captains, to decide the best fruit to take on a long voyage. Fully manipulable (Chime) versions of these and other molecules are available at Only@JCE Online.

  1. /sup 113/Cd NMR studies of a 1:1 Cd adduct with an 18-residue finger peptide from HIV-1 nucleic acid binding protein, p7

    SciTech Connect

    South, T.L.; Kim, B.; Summers, M.F.

    1989-01-04

    The Zn/sup 2+/ and Cd/sup 2+/ adducts with the 18-residue peptide comprising the amino acid sequence of the first finger (residues 13 through 30) of retroviral nucleic acid binding proteins p7 from HIV-1 (the causative agent of AIDS) have been prepared. /sup 1/H NMR data indicate that the metal adducts are 1:1 compounds that are stable in aqueous solutions for at least a month. The /sup 113/Cd NMR spectral results for the adduct are presented and analyzed. 26 references, 3 figures.

  2. Quantitative determination of polycyclic aromatic hydrocarbon adducts to deoxyribonucleic acid using GC/MS (gas chromatography/mass spectrometry) techniques

    SciTech Connect

    Bean, R.M.; Thomas, B.L.; Chess, E.K.; Pavlovich, J.G.; Springer, D.L.

    1988-02-01

    A direct, specific mass spectrometric method useful for determination of polycyclic aromatic adducts has been developed. Our experiments indicated that overall recoveries from the acid hydrolysis, isolation and derivatization steps will be about 50%. It is apparent that a method even for BaP adducts is not yet complete. The methods described in this paper are provided in detail. Other derivatization techniques are needed that are selective and quantitative, and that will enhance the singal in the mass spectrometer to improve instrument selectivity and sensitivity. In addition to improvements in instrument sensitivity and gas chromatography column performance, there is a great need for procedures for rigorous documentation of organic analytical methods at the picogram level. 12 refs., 2 tabs.

  3. Crystal structure of the 1:2:2 adduct of piperazine, o-phthalic acid and water.

    PubMed

    Jin, Zhi Min; Pan, Yuan Jiang; He, Ling; Li, Zu Guang; Yu, Kai Bei

    2003-02-01

    The adduct of piperazine, o-phthalic acid and water (1:2:2), C20H26N2O10, crystallizes in the monoclinic space group P21/c with a = 6.129(1), b = 12.810(2), c = 13.137(2)A, beta = 95.87(1) degrees, V = 1026.0(3)A3, Z = 2. The piperazinium adopts a chair comformer, and is tied with the hydrogen orthophthalate via a hydrogen bond of the N-H...O type. Because of bifurcated hydrogen bonding of C(sp3)H-O [3.0801(17) and 3.1408(18)A] and the shortest hydrogen bond of C(sp3)H-O [2.9758(17)A], C(sp3)H-O hydrogen bonds play important roles in stablizing the title adduct. PMID:12608772

  4. Nanoconstructions Based on Spatially Ordered Nucleic Acid Molecules

    NASA Astrophysics Data System (ADS)

    Yevdokimov, Yu. M.

    Different strategies for the design of nanoconstructions whose building blocks are both linear molecules of double-stranded nucleic acids and nucleic acid molecules fixed in the spatial structure of particles of liquid-crystalline dispersions are described.

  5. Identification of serine and histidine adducts in complexes of trypsin and trypsinogen with peptide and nonpeptide boronic acid inhibitors by 1H NMR spectroscopy.

    PubMed

    Tsilikounas, E; Kettner, C A; Bachovchin, W W

    1992-12-29

    We have previously shown, in 15N NMR studies of the enzyme's active site histidine residue, that boronic acid inhibitors can form two distinct types of complexes with alpha-lytic protease. Inhibitors that are structural analogs of good alpha-lytic protease substrates form transition-state-like tetrahedral complexes with the active site serine whereas those that are not form complexes in which N epsilon 2 of the active site histidine is covalently bonded to the boron of the inhibitor. This study also demonstrated that the serine and histidine adduct complexes exhibit quite distinctive and characteristic low-field 1H NMR spectra [Bachovchin, W. W., Wong, W. Y. L., Farr-Jones, S., Shenvi, A. B., & Kettner, C. A. (1988) Biochemistry 27, 7689-7697]. Here we have used low-field 1H NMR diagnostically for a series of boronic acid inhibitor complexes of trypsin and trypsinogen. The results show that H-D-Val-Leu-boroArg and Ac-Gly-boroArg, analogs of good trypsin substrates, form transition-state-like serine adducts with trypsin, whereas the nonsubstrate analog inhibitors boric acid, methane boronic acid, butane boronic acid, and triethanolamine borate all form histidine adducts, thereby paralleling the previous results obtained with alpha-lytic protease. However, with trypsinogen, Ac-Gly-boroArg forms predominantly a histidine adduct while H-D-Val-Leu-boroArg forms both histidine and serine adducts, with the histidine adduct predominating below pH 8.0 and the serine adduct predominating above pH 8.0.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1463754

  6. Role of retinoic acid in the modulation of benzo(a)pyrene-DNA adducts in human hepatoma cells: Implications for cancer prevention

    SciTech Connect

    Zhou Guodong; Richardson, Molly; Fazili, Inayat S.; Wang, Jianbo; Donnelly, Kirby C.; Wang Fen; Amendt, Brad; Moorthy, Bhagavatula

    2010-12-15

    Carcinogen-DNA adducts could lead to mutations in critical genes, eventually resulting in cancer. Many studies have shown that retinoic acid (RA) plays an important role in inducing cell apoptosis. Here we have tested the hypothesis that levels of carcinogen-DNA adducts can be diminished by DNA repair and/or by eliminating damaged cells through apoptosis. Our results showed that the levels of total DNA adducts in HepG2 cells treated with benzo(a)pyrene (BP, 2 {mu}M) + RA (1 {mu}M) were significantly reduced compared to those treated with BP only (P = 0.038). In order to understand the mechanism of attenuation of DNA adducts, further experiments were performed. Cells were treated with BP (4 {mu}M) for 24 h to initiate DNA adduct formation, following which the medium containing BP was removed, and fresh medium containing 1 {mu}M RA was added. The cells were harvested 24 h after RA treatment. Interestingly, the levels of total DNA adducts were lower in the BP/RA group (390 {+-} 34) than those in the BP/DMSO group (544 {+-} 33), P = 0.032. Analysis of cell apoptosis showed an increase in BP + RA group, compared to BP or RA only groups. Our results also indicated that attenuation of BP-DNA adducts by RA was not primarily due to its effects on CYP1A1 expression. In conclusion, our results suggest a mechanistic link between cellular apoptosis and DNA adduct formation, phenomena that play important roles in BP-mediated carcinogenesis. Furthermore, these results help understand the mechanisms of carcinogenesis, especially in relation to the chemopreventive properties of nutritional apoptosis inducers.

  7. Induction of cytochromes P450 1A1 and 1A2 suppresses formation of DNA adducts by carcinogenic aristolochic acid I in rats in vivo

    PubMed Central

    Dračínská, Helena; Bárta, František; Levová, Kateřina; Hudecová, Alena; Moserová, Michaela; Schmeiser, Heinz H.; Kopka, Klaus; Frei, Eva; Arlt, Volker M.; Stiborová, Marie

    2016-01-01

    Aristolochic acid I (AAI) is a natural plant alkaloid causing aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. One of the most efficient enzymes reductively activating AAI to species forming AAI-DNA adducts is cytosolic NAD(P)H:quinone oxidoreductase 1. AAI is also either reductively activated or oxidatively detoxified to 8-hydroxyaristolochic acid (AAIa) by microsomal cytochrome P450 (CYP) 1A1 and 1A2. Here, we investigated which of these two opposing CYP1A1/2-catalyzed reactions prevails in AAI metabolism in vivo. The formation of AAI-DNA adducts was analyzed in liver, kidney and lung of rats treated with AAI, Sudan I, a potent inducer of CYP1A1/2, or AAI after pretreatment with Sudan I. Compared to rats treated with AAI alone, levels of AAI-DNA adducts determined by the 32P-postlabeling method were lower in liver, kidney and lung of rats treated with AAI after Sudan I. The induction of CYP1A1/2 by Sudan I increased AAI detoxification to its O-demethylated metabolite AAIa, thereby reducing the actual amount of AAI available for reductive activation. This subsequently resulted in lower AAI-DNA adduct levels in the rat in vivo. Our results demonstrate that CYP1A1/2-mediated oxidative detoxification of AAI is the predominant role of these enzymes in rats in vivo, thereby suppressing levels of AAI-DNA adducts. PMID:26845733

  8. Regio- and stereochemically controlled formation of hydroxamic acids from indium triflate-mediated nucleophilic ring-opening reactions with acylnitroso-Diels–Alder adducts

    PubMed Central

    Yang, Baiyuan; Miller, Marvin J.

    2010-01-01

    Treatment of acylnitroso-Diels–Alder [2.2.1] bicyclic adducts 2a–b with indium triflate in an alcohol solvent induces ring opening reactions to afford monocyclic anti-1,2-, anti-1,4- and syn-1,4-hydroxamic acids with good to excellent regio- and stereoselectivity (up to 7:86:7). Treatment of [2.2.2] bicyclic nitroso adducts 2c–d under similar reaction conditions generates only anti-1,2- and anti-1,4-hydroxamic acids with anti-1,4-product predominant (up to 17:83). PMID:20209116

  9. Effects of epigallocatechin gallate, L-ascorbic acid, alpha-tocopherol, and dihydrolipoic acid on the formation of deoxyguanosine adducts derived from lipid peroxidation.

    PubMed

    Nath, Raghu G; Wu, Mona Y; Emami, Armaghan; Chung, Fung-Lung

    2010-01-01

    Oxidation of polyunsaturated fatty acids (PUFAs) releases alpha,beta-unsaturated aldehydes that modify deoxyguanosine (dG) to form cyclic 1,N(2)-propanodeoxyguanosine adducts. One of the major adducts detected in vivo is acrolein (Acr)-derived 1,N(2)-propanodeoxyguanosine (Acr-dG). We used a chemical model system to examine the effects of 4 antioxidants known to inhibit fatty acid oxidation on the formation of Acr-dG and 8-oxodeoxyguaonsine (8-oxodG) from the PUFA docosahexaenoic acid (DHA) under oxidative conditions. We found that epigallocatechin gallate (EGCG) and dihydrolipoic acid (DHLA) inhibit both Acr-dG and 8-oxodG formation. In contrast, ascorbic acid and alpha-tocopherol actually increase Acr-dG at high concentrations and do not show a concentration-dependant inhibition of 8-oxodG. We also studied their effects on blocking Acr-dG formation directly from Acr. EGCG and DHLA can both effectively block Acr-dG formation, but ascorbic acid and alpha-tocopherol show weak or little effect. These results highlight the complexity of antioxidant mechanisms and also reveal that EGCG and DHLA are effective at suppressing lipid peroxidation-induced Acr-dG and 8-oxodG formation as well as blocking the reaction of dG with Acr. PMID:20574923

  10. Glycidol exposure evaluation of humans who have ingested diacylglycerol oil containing glycidol fatty acid esters using hemoglobin adducts.

    PubMed

    Honda, Hiroshi; Fujii, Kenkichi; Yamaguchi, Tohru; Ikeda, Naohiro; Nishiyama, Naohiro; Kasamatsu, Toshio

    2012-11-01

    Glycidol fatty acid esters (GEs) have been found as impurities in refined edible oils including diacylglycerol (DAG) oil, and concerns of possible exposure to glycidol (G), a known animal carcinogen, during digestion have been raised. We previously measured N-(2,3-dihydroxy-propyl)valine (diHOPrVal), a G hemoglobin adduct, for DAG oil exposed and non-exposed groups and showed there was no significant difference between them. In the present study, we conducted an additional analysis to verify the outcome of the previous report. The first experiment was designed as a matched case-control study to adjust variables with an increased sample size. The average levels of diHOPrVal were 6.9 pmol/g-globin (95%CI: 4.9-9.0) for 14 DAG oil exposed subjects and 7.3 pmol/g-globin (95%CI: 6.1-8.5) for 42 non-exposed volunteers, and no significant difference in levels was found between the two groups. In a second experiment, we compared the adduct levels of 12 DAG oil exposed subjects before and after discontinuing use of DAG oil, and found there was no significant change in diHOPrVal levels (from 7.1±1.1 to 7.5±1.4 pmol/g-globin). These results suggest that there was no increased exposure to G for humans who ingested DAG oil daily, although the evaluated population was limited. PMID:22889899

  11. Punicalagin and Ellagic Acid Demonstrate Antimutagenic Activity and Inhibition of Benzo[a]pyrene Induced DNA Adducts

    PubMed Central

    Zahin, Maryam; Ahmad, Iqbal; Gupta, Ramesh C.; Aqil, Farrukh

    2014-01-01

    Punicalagin (PC) is an ellagitannin found in the fruit peel of Punica granatum. We have demonstrated antioxidant and antigenotoxic properties of Punica granatum and showed that PC and ellagic acid (EA) are its major constituents. In this study, we demonstrate the antimutagenic potential, inhibition of BP-induced DNA damage, and antiproliferative activity of PC and EA. Incubation of BP with rat liver microsomes, appropriate cofactors, and DNA in the presence of vehicle or PC and EA showed significant inhibition of the resultant DNA adducts, with essentially complete inhibition (97%) at 40 μM by PC and 77% inhibition by EA. Antimutagenicity was tested by Ames test. PC and EA dose-dependently and markedly antagonized the effect of tested mutagens, sodium azide, methyl methanesulfonate, benzo[a]pyrene, and 2-aminoflourine, with maximum inhibition of mutagenicity up to 90 percent. Almost all the doses tested (50–500 μM) exhibited significant antimutagenicity. A profound antiproliferative effect on human lung cancer cells was also shown with PC and EA. Together, our data show that PC and EA are pomegranate bioactives responsible for inhibition of BP-induced DNA adducts and strong antimutagenic, antiproliferative activities. However, these compounds are to be evaluated in suitable animal model to assess their therapeutic efficacy against cancer. PMID:24949451

  12. Crystal and molecular structure of four 1:1 adducts from 2-methylquinoline and different acidic components

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Lu, XingHua; Wang, Daqi; Chen, Wei

    2012-02-01

    Four 2-methylquinoline derived supramolecular complexes [2-methylquinoline: (2,4,6-trinitrophenol) [(HL)+ · (pic-), pic- = picrate, L = 2-methylquinoline] (1), 2-methylquinoline: (5-nitrosalicylic acid) [(HL)+ · (5-nsa-), 5-nsa- = 5-nitrosalicylate] (2), 2-methylquinoline: (5-sulfosalicylic acid): H2O [(HL)+ · (5-ssa-). H2O, 5-ssa- = 5-sulfosalicylate] (3), and 2-methylquinoline: (trimesic acid) [(L)⋯(Tma), Tma = trimesic acid] (4) were synthesized and structurally characterized by X-ray crystallography. All supramolecular architectures of 1-4 involve extensive classical hydrogen bonds as well as other noncovalent interactions. The results presented herein indicate that the strength and directionality of the Nsbnd H⋯O, Osbnd H⋯N, and Osbnd H⋯O hydrogen bonds (ionic or neutral) between acidic components and 2-methylquinoline are sufficient to bring about the formation of binary organic acid-base adducts. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, the complexes 1-4 displayed 2D-3D framework structure.

  13. Effects of dietary conjugated linoleic acid on DNA adduct formation of PhIP and IQ after bolus administration to female F344 rats.

    PubMed

    Josyula, S; Schut, H A

    1998-01-01

    Meats cooked at high temperatures contain mutagenic heterocyclic amines such as 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). In female Fischer 344 rats, IQ is a multiorgan carcinogen, whereas PhIP induces mammary adenocarcinomas. For IQ and PhIP, N-hydroxylation, catalyzed by microsomal cytochrome P-450 1A1 and/or 1A2, and then esterification, especially O-acetylation, are the principal steps leading to DNA adduct formation. Conjugated linoleic acid (CLA) is a mixture of conjugated linoleic acid isomers found in various meat and dairy products. We have examined the effect of dietary CLA on DNA adduct formation by PhIP and IQ in female Fischer 344 rats. Four-week-old animals were maintained on AIN-76A diet without or with CLA (4% wt/wt) and treated with IQ or PhIP (50 mg/kg by gavage) after two weeks. Animals were killed (4/group) one, four, and eight days later. DNA isolated from mammary epithelial cells, liver, colon, and white blood cells was analyzed for carcinogen-DNA adducts by 32P-postlabeling assays. On Day 1, dietary CLA significantly inhibited adduct formation (82.0%) in mammary epithelial cells in IQ--but not in PhIP-treated rats. In the colon, dietary CLA significantly inhibited PhIP-DNA adduct formation (18.7%) on Day 8 but increased IQ-DNA adduct formation (30.5%) on Day 8. Dietary CLA had no effect on adduct levels in liver or white blood cells. Calf thymus DNA was incubated with N-hydroxy-PhIP or -IQ in the presence of acetyl-CoA. Enzymatic activation was catalyzed by liver or mammary cytosol. A two-week pretreatment with 2% (wt/wt) dietary CLA had no effect on O-acetyltransferase-catalyzed IQ- or PhIP-DNA adduct formation. It is concluded, under certain conditions, that dietary CLA can lower IQ- and PhIP-DNA adduct formation. Overall, however, the major mode of action of CLA is probably by a mechanism other than the inhibition of the N-hydroxylation and subsequent O-acetylation of PhIP or

  14. Recent Advances in Developing Small Molecules Targeting Nucleic Acid

    PubMed Central

    Wang, Maolin; Yu, Yuanyuan; Liang, Chao; Lu, Aiping; Zhang, Ge

    2016-01-01

    Nucleic acids participate in a large number of biological processes. However, current approaches for small molecules targeting protein are incompatible with nucleic acids. On the other hand, the lack of crystallization of nucleic acid is the limiting factor for nucleic acid drug design. Because of the improvements in crystallization in recent years, a great many structures of nucleic acids have been reported, providing basic information for nucleic acid drug discovery. This review focuses on the discovery and development of small molecules targeting nucleic acids. PMID:27248995

  15. Site-specific protein adducts of 4-hydroxy-2(E)-nonenal in human THP-1 monocytic cells: Protein carbonylation is diminished by ascorbic acid

    PubMed Central

    Chavez, Juan; Chung, Woon-Gye; Miranda, Cristobal L.; Singhal, Mudita; Stevens, Jan F.; Maier, Claudia S.

    2010-01-01

    The protein targets and sites of modification by 4-hydroxy-2(E)-nonenal (HNE) in human monocytic THP-1 cells after exogenous exposure to HNE were examined using a multi-pronged proteomic approach involving electrophoretic, immunoblotting and mass spectrometric methods. Immunoblot analysis using monoclonal anti-HNE antibodies showed several proteins as targets of HNE adduction. Pretreatment of THP-1 cells with ascorbic acid resulted in reduced levels of HNE-protein adducts. Biotinylation of Michael-type HNE adducts using an aldehyde-reactive hydroxylamine-functionalized probe (aldehyde-reactive probe, ARP) and subsequent enrichment facilitated the identification and site-specific assignment of the modifications by LC-MS/MS analysis. Sixteen proteins were unequivocally identified as targets of HNE adduction and eighteen sites of HNE modification at Cys and His residues were assigned. HNE exposure of THP-1 cells resulted in the modification of proteins involved in cytoskeleton organization and regulation, proteins associated with stress responses and enzymes of the glycolytic and other metabolic pathways. This study yielded the first evidence of site-specific adduction of HNE to Cys-295 in tubulin α-1B chain, Cys-351 and Cys-499 in α-actinin-4, Cys-328 in vimentin, Cys-369 in D-3-phosphoglycerate dehydrogenase and His-246 in aldolase A. PMID:20043646

  16. Alcohol, Aldehydes, Adducts and Airways.

    PubMed

    Sapkota, Muna; Wyatt, Todd A

    2015-01-01

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease. PMID:26556381

  17. Alcohol, Aldehydes, Adducts and Airways

    PubMed Central

    Sapkota, Muna; Wyatt, Todd A.

    2015-01-01

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease. PMID:26556381

  18. Dispersant additives derived from lactone modified amido-amine adducts

    SciTech Connect

    Gutierrez, A.; Lundberg, R.D.

    1990-10-16

    This patent describes a lactone modified dispersant additive. It comprises one adduct of a polyolefin of 300 to 10,000 number average molecular weight substituted with at least 0.8 (e.g., from about 1 to 4) dicarboxylic acid producing moieties (preferably acid or anhydride moieties) per polyolefin molecule, an amido-amine or thioamido-amine characterized by being a reaction product of at least a polyamine and an alpha, beta-unsaturated compound.

  19. Aflatoxin metabolism in humans: detection of metabolites and nucleic acid adducts in urine by affinity chromatography

    SciTech Connect

    Groopman, J.D.; Donahue, P.R.; Zhu, J.Q.; Chen, J.S.; Wogan, G.N.

    1985-10-01

    A high-affinity IgM monoclonal antibody specific for aflatoxins was covalently bound to Sepharose 4B and used as a preparative column to isolate aflatoxin derivatives from the urine of people and experimental animals who had been exposed to the carcinogen environmentally or under laboratory conditions. Aflatoxin levels were quantified by radioimmunoassay and high-performance liquid chromatography after elution from the affinity column. In studies on rats injected with ( UC)aflatoxin B1, the authors identified the major aflatoxin-DNA adduct, 2,3-dihydro-2-(N7-guanyl)-3-hydroxy-aflatoxin B1 (AFB1-N7-Gua), and the oxidative metabolites M1 and P1 as the major aflatoxin species present in the urine. When this methodology was applied to human urine samples obtained from people from the Guangxi Province of China exposed to aflatoxin B1 through dietary contamination, the aflatoxin metabolites detected were also AFB1-N7-Gua and aflatoxins M1 and P1. Therefore, affinity chromatography using a monoclonal antibody represents a useful and rapid technique with which to isolate this carcinogen and its metabolites in biochemical epidemiology and for subsequent quantitative measurements, providing exposure information that can be used for risk assessment.

  20. Acid-labile protein-adducted heterocyclic aromatic amines in human blood are not viable biomarkers of dietary exposure: A systematic study.

    PubMed

    Cooper, Kevin M; Brennan, Sarah F; Woodside, Jayne V; Cantwell, Marie; Guo, Xiaoxiao; Mooney, Mark; Elliott, Christopher T; Cuskelly, Geraldine J

    2016-05-01

    Heterocyclic aromatic amines (HCA) are carcinogenic mutagens formed during cooking of protein-rich foods. HCA residues adducted to blood proteins have been postulated as biomarkers of HCA exposure. However, the viability of quantifying HCAs following hydrolytic release from adducts in vivo and correlation with dietary intake are unproven. To definitively assess the potential of labile HCA-protein adducts as biomarkers, a highly sensitive UPLC-MS/MS method was validated for four major HCAs: 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) and 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (7,8-DiMeIQx). Limits of detection were 1-5 pg/ml plasma and recoveries 91-115%. Efficacy of hydrolysis was demonstrated by HCA-protein adducts synthesised in vitro. Plasma and 7-day food diaries were collected from 122 fasting adults consuming their habitual diets. Estimated HCA intakes ranged from 0 to 2.5 mg/day. An extensive range of hydrolysis conditions was examined for release of adducted HCAs in plasma. HCA was detected in only one sample (PhIP, 9.7 pg/ml), demonstrating conclusively for the first time that acid-labile HCA adducts do not reflect dietary HCA intake and are present at such low concentrations that they are not feasible biomarkers of exposure. Identification of biomarkers remains important. The search should concentrate on stabilised HCA-peptide markers and use of untargeted proteomic and metabolomic approaches. PMID:26993956

  1. On-line cation exchange for suppression of adduct formation in negative-ion electrospray mass spectrometry of nucleic acids.

    PubMed

    Huber, C G; Buchmeiser, M R

    1998-12-15

    One major difficulty in the analysis of nucleic acids by electrospray mass spectrometry is represented by the affinity of the polyanionic sugar-phosphate backbone for nonvolatile cations, especially ubiquitous sodium and potassium ions. A simple on-line sample preparation system comprising a microflow pumping system and 45 x 0.8-mm-i.d. microcolumns packed with weak or strong cation-exchange resins is described for the efficient removal of cations from nucleic acid samples. Samples were analyzed by flow injection analysis at a 3-5 microL/min flow of 10 mM triethylamine in 50% water-50% acetonitrile. After on-line desalting, mass spectra of oligonucleotides revealed no significant sodium adduct peaks. Moreover, signal-to-noise ratios were greatly enhanced compared to direct injection of the samples. Electrospray mass spectrometry with on-line sample preparation allowed accurate molecular mass determinations of picomole amounts of crude oligonucleotide preparations ranging in size from 8 to 80 nucleotides within a few minutes. The good linearity of the calibration plot (R2 = 0.9988) over at least 2 orders of magnitude and a relative standard deviation in peak areas of less than 9% permitted the sensitive quantitative measurement of oligonucleotides in a concentration range of 0.2-20 microM with selected-ion monitoring. Finally, the on-line sample preparation system was evaluated for the mass spectrometric analysis of complex oligonucleotide mixtures. PMID:9868919

  2. Fluorometric Determination of a 1,3-Diethyl-2-thiobarbituric Acid-Malondialdehyde Adduct as an Index of Lipid Peroxidation in Plant Materials.

    PubMed

    Suda, I; Furuta, S; Nishiba, Y

    1994-01-01

    A fluorometric method has been developed to measure a 1,3-diethyl-2-thiobarbituric acid (DETBA)-malondialdehyde (MDA) adduct as an index of lipid peroxidation in plant materials. Plant tissue samples were prepared under nitrogen gas and then added to an assay system containing butylated hydroxytoluene. Following the reaction between DETBA and the plant tissue samples, the DETBA-MDA adduct was extracted with ethyl acetate and measured by spectrofluorometry or high-performance liquid chromatography (HPLC) with a fluorescence detector. The species of influencing substances with spectrofluorometry were fewer and their interfering concentration was higher than that by traditional colorimetry. When this method was applied to plant materials, the detection limits for the DETBA-MDA adduct were 2.5 nmol/g of fresh weight and 0.0625 nmol/g of fresh weight by spectrofluorometry and HPLC with a fluorescence detector, respectively. Using this sensitive, specific and simple fluorometric method, DETBA-MDA adducts ranging from 0.8 to 18.0 pmol/g of fresh weight could easily be detected from vegetables, fruits, and potatoes. PMID:27315698

  3. Isolated menthone reductase and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney B; Davis, Edward M; Ringer, Kerry L

    2013-04-23

    The present invention provides isolated menthone reductase proteins, isolated nucleic acid molecules encoding menthone reductase proteins, methods for expressing and isolating menthone reductase proteins, and transgenic plants expressing elevated levels of menthone reductase protein.

  4. Methods And Devices For Characterizing Duplex Nucleic Acid Molecules

    DOEpatents

    Akeson, Mark; Vercoutere, Wenonah; Haussler, David; Winters-Hilt, Stephen

    2005-08-30

    Methods and devices are provided for characterizing a duplex nucleic acid, e.g., a duplex DNA molecule. In the subject methods, a fluid conducting medium that includes a duplex nucleic acid molecule is contacted with a nanopore under the influence of an applied electric field and the resulting changes in current through the nanopore caused by the duplex nucleic acid molecule are monitored. The observed changes in current through the nanopore are then employed as a set of data values to characterize the duplex nucleic acid, where the set of data values may be employed in raw form or manipulated, e.g., into a current blockade profile. Also provided are nanopore devices for practicing the subject methods, where the subject nanopore devices are characterized by the presence of an algorithm which directs a processing means to employ monitored changes in current through a nanopore to characterize a duplex nucleic acid molecule responsible for the current changes. The subject methods and devices find use in a variety of applications, including, among other applications, the identification of an analyte duplex DNA molecule in a sample, the specific base sequence at a single nulceotide polymorphism (SNP), and the sequencing of duplex DNA molecules.

  5. Urinary mercapturic acids and a hemoglobin adduct for the dosimetry of acrylamide exposure in smokers and nonsmokers.

    PubMed

    Urban, Michael; Kavvadias, Dominique; Riedel, Kirsten; Scherer, Gerhard; Tricker, Anthony R

    2006-09-01

    Acrylamide, used in the manufacture of polyacrylamide and grouting agents, is also present in the diet and tobacco smoke. It is a neurotoxin and a probable human carcinogen. Analytical methods were established to determine the mercapturic acids of acrylamide (N-acetyl-S-(2-carbamoylethyl)-L-cysteine, AAMA) and its metabolite glycidamide (N-(R/S)-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine, GAMA) by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS), as well as the N-terminal valine adduct of acrylamide (N-2-carbamoylethylvaline, AAVal) released by N-alkyl Edman degradation of hemoglobin by gas chromatography-mass spectrometry (GC-MS). Twenty-four-hour urine samples from 60 smokers and 60 nonsmokers were analyzed for AAMA and GAMA, and blood samples were analyzed for AAVal. Smokers excreted 2.5-fold higher amounts of AAMA and 1.7-fold higher amounts of GAMA in their urine and had 3-fold higher levels of AAVal in their blood. All three biomarkers of acrylamide exposure were strongly correlated with the smoking dose as determined by the daily cigarette consumption, nicotine equivalents (the molar sum of nicotine, cotinine, trans-3'-hydroxycotinine, and their respective glucuronides) in urine, salivary cotinine, and carbon monoxide in expired breath. In nonsmokers, a weak but significant correlation between AAMA and the estimated dietary intake of acrylamide was found. It is concluded that all three biomarkers of acrylamide are suitable for the determination of exposure in both smokers and nonsmokers. PMID:16774873

  6. Self-assembly in solvates of 2,4-diamino-6-(4-methyl- phenyl)-1,3,5-triazine and in its molecular adducts with some aliphatic dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Nandy, Purnendu; Nayak, Amrita; Biswas, Sharmita Nandy; Pedireddi, V. R.

    2016-03-01

    Solid state structures of 2,4-diamino-6-(4-methylphenyl)-1,3,5-triazine, 1, in the form of methanol and dimethylsulfoxide (DMSO) solvates, as well as supramolecular assemblies of 1 with various aliphatic dicarboxylic acids, oxalic (a), malonic (b), succinic (c), glutaric (d) and adipic (e) have been reported. Analysis of the assemblies has been carried out by single crystal X-ray diffraction and thermal methods. Triazine 1 yields anhydrous molecular adducts with acids a-d, upon co-crystallization either from CH3OH and DMSO solvents. However acid e gives anhydrous adduct from DMSO solvent, while it gives a methanol adduct from CH3OH. Structure determination reveals that molecular adducts 1a, 1d and 1e are in a 2:1 ratio of 1 and the corresponding acid. However the ratio is 1:1, in 1b, perhaps due to the involvement of one of the acid groups in the intramolecular hydrogen bonding and in adduct 1c the ratio observed is 3:2. Structural features in all these assemblies have been rationalised in terms of various recognition patterns formed between the acceptor and donor groups. A noteworthy feature is that -COOH groups in acid a establish interaction with 1 through amino groups, while such interactions are observed to be through hetero -N atoms in case of the acids b-e.

  7. Effects of Black Raspberry Extract and Protocatechuic Acid on Carcinogen-DNA Adducts and Mutagenesis, and Oxidative Stress in Rat and Human Oral Cells.

    PubMed

    Guttenplan, Joseph B; Chen, Kun-Ming; Sun, Yuan-Wan; Kosinska, Wieslawa; Zhou, Ying; Kim, Seungjin Agatha; Sung, Youngjae; Gowda, Krishne; Amin, Shantu; Stoner, Gary D; El-Bayoumy, Karam

    2016-08-01

    Effects of black raspberry (BRB) extract and protocatechuic acid (PCA) on DNA adduct formation and mutagenesis induced by metabolites of dibenzo[a,l]pyrene (DBP) were investigated in rat oral fibroblasts. The DBP metabolites, (±)-anti-11,12-dihydroxy-11,12,-dihydrodibenzo[a,l]pyrene (DBP-diol) and 11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]pyrene (DBPDE) induced dose-dependent DNA adducts and mutations. DBPDE was considerably more potent, whereas the parent compound had no significant effect. Treatment with BRB extract (BRBE) and PCA resulted in reduced DBP-derived DNA adduct levels and reduced mutagenesis induced by DBP-diol, but only BRBE was similarly effective against (DBPDE). BRBE did not directly inactivate DBPDE, but rather induced a cellular response-enhanced DNA repair. When BRBE was added to cells 1 day after the DBP-diol, the BRBE greatly enhanced removal of DBP-derived DNA adducts. As oxidative stress can contribute to several stages of carcinogenesis, BRBE and PCA were investigated for their abilities to reduce oxidative stress in a human leukoplakia cell line by monitoring the redox indicator, 2',7'-dichlorodihydrofluorescein diacetate (H2DCF) in cellular and acellular systems. BRBE effectively inhibited the oxidation, but PCA was only minimally effective against H2DCF. These results taken together provide evidence that BRBE and PCA can inhibit initiation of carcinogenesis by polycyclic aromatic hydrocarbons; and in addition, BRBE reduces oxidative stress. Cancer Prev Res; 9(8); 704-12. ©2016 AACR. PMID:27267891

  8. Isolevuglandin Adducts in Disease

    PubMed Central

    Bi, Wenzhao

    2015-01-01

    Abstract Significance: A diverse family of lipid-derived levulinaldehydes, isolevuglandins (isoLGs), is produced by rearrangement of endoperoxide intermediates generated through both cyclooxygenase (COX) and free radical-induced cyclooxygenation of polyunsaturated fatty acids and their phospholipid esters. The formation and reactions of isoLGs with other biomolecules has been linked to alcoholic liver disease, Alzheimer's disease, age-related macular degeneration, atherosclerosis, cardiac arythmias, cancer, end-stage renal disease, glaucoma, inflammation of allergies and infection, mitochondrial dysfunction, multiple sclerosis, and thrombosis. This review chronicles progress in understanding the chemistry of isoLGs, detecting their production in vivo and understanding their biological consequences. Critical Issues: IsoLGs have never been isolated from biological sources, because they form adducts with primary amino groups of other biomolecules within seconds. Chemical synthesis enabled investigation of isoLG chemistry and detection of isoLG adducts present in vivo. Recent Advances: The first peptide mapping and sequencing of an isoLG-modified protein present in human retina identified the modification of a specific lysyl residue of the sterol C27-hydroxylase Cyp27A1. This residue is preferentially modified by iso[4]LGE2 in vitro, causing loss of function. Adduction of less than one equivalent of isoLG can induce COX-associated oligomerization of the amyloid peptide Aβ1-42. Adduction of isoLGE2 to phosphatidylethanolamines causes gain of function, converting them into proinflammatory isoLGE2-PE agonists that foster monocyte adhesion to endothelial cells. Future Directions: Among the remaining questions on the biochemistry of isoLGs are the dependence of biological activity on isoLG isomer structure, the structures and mechanism of isoLG-derived protein–protein and DNA–protein cross-link formation, and its biological consequences. Antioxid. Redox Signal. 22

  9. Ring-chain tautomerism with participation of pyridine nitrogen: The intramolecular cyclization of 2-pyridinecarboxaldehyde-indandione adducts in acidic medium

    NASA Astrophysics Data System (ADS)

    Sigalov, Mark V.

    2014-09-01

    Keto-enol tautomerism of 2-pyridine carboxaldehyde adducts with ring-substituted 1,3-indandione derivatives observed in neutral solutions, in the presence of trifluoroacetic acid (TFA) is changed by the previously unknown prototropic ring-chain tautomerism with reversible quaternization of pyridine nitrogen. The proposed mechanism of tautomerization includes intramolecular proton transfer from the protonated nitrogen to indandione carbonyl oxygen, with subsequent cyclization of the unstable O-protonated intermediate. Neutralization of TFA leads to recovery of the keto-enol tautomers.

  10. The 1:1 adduct of caffeine and 2-(1,3-dioxoisoindolin-2-yl)acetic acid

    PubMed Central

    Bhatti, Moazzam H.; Yunus, Uzma; Saeed, Sohail; Shah, Syed Raza; Wong, Wing-Tak

    2011-01-01

    In the crystal structure of the title adduct [systematic name: 2-(1,3-dioxoisoindolin-2-yl)acetic acid–1,3,7-trimethyl-1,2,3,6-tetra­hydro-7H-purine-2,6-dione (1/1)], C8H10N4O2·C10H7NO4, the components are linked by an O—H⋯N hydrogen-bond and no proton transfer occurs. PMID:22058908

  11. Cytochrome c adducts with PCB quinoid metabolites.

    PubMed

    Li, Miao; Teesch, Lynn M; Murry, Daryl J; Pope, R Marshal; Li, Yalan; Robertson, Larry W; Ludewig, Gabriele

    2016-02-01

    Polychlorinated biphenyls (PCBs) are a group of 209 individual congeners widely used as industrial chemicals. PCBs are found as by-products in dye and paint manufacture and are legacy, ubiquitous, and persistent as human and environmental contaminants. PCBs with fewer chlorine atoms may be metabolized to hydroxy- and dihydroxy-metabolites and further oxidized to quinoid metabolites both in vitro and in vivo. Specifically, quinoid metabolites may form adducts on nucleophilic sites within cells. We hypothesized that the PCB-quinones covalently bind to cytochrome c and, thereby, cause defects in the function of cytochrome c. In this study, synthetic PCB quinones, 2-(4'-chlorophenyl)-1,4-benzoquinone (PCB3-pQ), 4-4'-chlorophenyl)-1,2-benzoquinone (PCB3-oQ), 2-(3', 5'-dichlorophenyl)-1,4-benzoquinone, 2-(3',4', 5'-trichlorophenyl)-1,4-benzoquinone, and 2-(4'-chlorophenyl)-3,6-dichloro-1,4-benzoquinone, were incubated with cytochrome c, and adducts were detected by liquid chromatography-mass spectrometry (LC-MS) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI TOF). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was employed to separate the adducted proteins, while trypsin digestion and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were applied to identify the amino acid binding sites on cytochrome c. Conformation change of cytochrome c after binding with PCB3-pQ was investigated by SYBYL-X simulation and cytochrome c function was examined. We found that more than one molecule of PCB-quinone may bind to one molecule of cytochrome c. Lysine and glutamic acid were identified as the predominant binding sites. Software simulation showed conformation changes of adducted cytochrome c. Additionally, cross-linking of cytochrome c was observed on the SDS-PAGE gel. Cytochrome c was found to lose its function as electron acceptor after incubation with PCB quinones. These data provide evidence that the covalent

  12. History of gymnemic acid, a molecule that does not exist. .

    PubMed

    Zarrelli, Armando; Romanucci, Valeria; Gravante, Raffaele; Di Marino, Cinzia; Di Fabio, Giovanni

    2014-10-01

    In the literature there are hundreds of articles, the first dating back to 1866 and the last to 2014, on gymnemic acid, isolated from Gymnnema sylvestre, from its isolation to the determination of its biological activities. Gymnemic acid has a CAS number but its structure is not specified. Studies during the second half of the 1970s clearly demonstrated that what was being referred to as gymnemic acid is actually a very complex mixture of dozens of substances, belonging to different classes of natural compounds. This plant, whose infusions or complex mixtures of its metabolites are the basis for many formulas sold in pharmacies and by herbalists, has anti-diabetic and slimming effects. It is certainly misleading to talk about gymnemic acid as a specific molecule. There may be doubts about the exact composition of the products, and consequently about their origin and the claimed effects. PMID:25522530

  13. Sugar amino acids and their uses in designing bioactive molecules.

    PubMed

    Chakraborty, Tushar K; Ghosh, Subhash; Jayaprakash, Sarva

    2002-02-01

    In search of new molecular entities for discovering new drugs and materials, organic chemists are looking for innovative approaches that try to imitate nature in assembling quickly large number of distinct and diverse molecular structures from 'nature-like' and yet unnatural designer building blocks using combinatorial approach. The main objective in developing such libraries is to mimic the diversities displayed in structures and properties of natural products. The unnatural building blocks used in these assemblies are carefully designed to manifest the structural diversities of the monomeric units used by nature like amino acids, carbohydrates and nucleosides to build its arsenal. Compounds made of such unnatural building blocks are also expected to be more stable toward proteolytic cleavage in physiological systems than their natural counterparts. Sugar amino acids constitute an important class of such polyfunctional scaffolds where the carboxyl, amino and hydroxyl termini provide an excellent opportunity to organic chemists to create structural diversities akin to nature's molecular arsenal. Recent advances in the area of combinatorial chemistry give an unprecedented technological support for rapid compilations of sugar amino acid-based libraries exploiting the diversities of carbohydrate molecules and well-developed solid-phase peptide synthesis methods. This review describes the development of sugar amino acids as a novel class of peptidomimetic building blocks and their applications in creating large number of structurally diverse peptide-based molecules many of which display interesting three-dimensional structures as well as useful biological properties. PMID:11945118

  14. DNA adducts in biomonitoring.

    PubMed

    Hemminki, K

    1995-05-01

    The types of occupational groups studied by postlabelling include foundry, coke oven and aluminium workers, roofers, garage and terminal workers, car mechanics and chimney sweeps. There does not seem to be a direct relationship between the exposure and adduct levels. However, the postlabelling assay is sensitive enough to show adducts in apparently unexposed individuals. The origin of such adducts is unknown; in the case of aromatic adducts, the origin is likely to be environmental and/or dietary. PMID:7618142

  15. Quantum dot targeting with lipoic acid ligase and HaloTag for single-molecule imaging on living cells.

    PubMed

    Liu, Daniel S; Phipps, William S; Loh, Ken H; Howarth, Mark; Ting, Alice Y

    2012-12-21

    We present a methodology for targeting quantum dots to specific proteins on living cells in two steps. In the first step, Escherichia coli lipoic acid ligase (LplA) site-specifically attaches 10-bromodecanoic acid onto a 13 amino acid recognition sequence that is genetically fused to a protein of interest. In the second step, quantum dots derivatized with HaloTag, a modified haloalkane dehalogenase, react with the ligated bromodecanoic acid to form a covalent adduct. We found this targeting method to be specific, fast, and fully orthogonal to a previously reported and analogous quantum dot targeting method using E. coli biotin ligase and streptavidin. We used these two methods in combination for two-color quantum dot visualization of different proteins expressed on the same cell or on neighboring cells. Both methods were also used to track single molecules of neurexin, a synaptic adhesion protein, to measure its lateral diffusion in the presence of neuroligin, its trans-synaptic adhesion partner. PMID:23181687

  16. Anion photoelectron spectroscopy of acid-base systems, solvated molecules and MALDI matrix molecules

    NASA Astrophysics Data System (ADS)

    Eustis, Soren Newman

    Gas phase, mass-selected, anion photoelectron spectroscopic studies were performed on a variety of molecular systems. These studies can be grouped into three main themes: acid-base interactions, solvation, and ions of analytical interest. Acid-base interactions represent some of the most fundamental processes in chemistry. The study of these processes elucidates elementary principles such as inner and outer sphere complexes, hard and soft ions, and salt formation---to name a few. Apart from their appeal from a pedagogical standpoint, the ubiquity of chemical reactions which involve acids, bases or the resulting salts makes the study of their fundamental interactions both necessary and fruitful. With this in mind, the neutral and anionic series (NH3···HX) (X= F, Cl, Br, I) were examined experimentally and theoretically. The relatively small size of these systems, combined with the advances in computational methods, allowed our experimental results to be compared with very high level ab initio theoretical results. The synergy between theory and experiment yielded an understanding of the nature of the complexes that could not be achieved with either method in isolation. The second theme present in this body or work is molecular solvation. Solvation is a phenomenon which is present in biology, chemistry and physics. Many biological molecules do not become 'active' until they are solvated by water. Thus, the study of biologically relevant species solvated by water is one step in a bottom up approach to studying the biochemical interactions in living organisms. Furthermore, the hydration of acidic molecules in the atmosphere is what drives the formation of 'free' protons or hydronium ions which are the key players in acid driven chemistry. Here are presented two unique solvation studies, Adenine(H2O)-n and C6F6(H2O)-n, these systems are very distinct, but show somewhat similar responses to hydration. The last theme presented in this work is the electronic properties

  17. Stability of Hydrogen-Bonded Supramolecular Architecture under High Pressure Conditions: Pressure-Induced Amorphization in Melamine−Boric Acid Adduct

    SciTech Connect

    Wang, K.; Duan, D; Wang, R; Lin, A; Cui, Q; Liu, B; Cui, T; Zou, B; Zhang, X; et. al.

    2009-01-01

    The effects of high pressure on the structural stability of the melamine-boric acid adduct (C3N6H6 2H3BO3, M 2B), a three-dimensional hydrogen-bonded supramolecular architecture, were studied by in situ synchrotron X-ray diffraction (XRD) and Raman spectroscopy. M 2B exhibited a high compressibility and a strong anisotropic compression, which can be explained by the layerlike crystal packing. Furthermore, evolution of XRD patterns and Raman spectra indicated that the M 2B crystal undergoes a reversible pressure-induced amorphization (PIA) at 18 GPa. The mechanism for the PIA was attributed to the competition between close packing and long-range order. Ab initio calculations were also performed to account for the behavior of hydrogen bonding under high pressure.

  18. Ultrasensitive nucleic acid sequence detection by single-molecule electrophoresis

    SciTech Connect

    Castro, A; Shera, E.B.

    1996-09-01

    This is the final report of a one-year laboratory-directed research and development project at Los Alamos National Laboratory. There has been considerable interest in the development of very sensitive clinical diagnostic techniques over the last few years. Many pathogenic agents are often present in extremely small concentrations in clinical samples, especially at the initial stages of infection, making their detection very difficult. This project sought to develop a new technique for the detection and accurate quantification of specific bacterial and viral nucleic acid sequences in clinical samples. The scheme involved the use of novel hybridization probes for the detection of nucleic acids combined with our recently developed technique of single-molecule electrophoresis. This project is directly relevant to the DOE`s Defense Programs strategic directions in the area of biological warfare counter-proliferation.

  19. Nucleotide excision repair deficiency increases levels of acrolein-derived cyclic DNA adduct and sensitizes cells to apoptosis induced by docosahexaenoic acid and acrolein.

    PubMed

    Pan, Jishen; Sinclair, Elizabeth; Xuan, Zhuoli; Dyba, Marcin; Fu, Ying; Sen, Supti; Berry, Deborah; Creswell, Karen; Hu, Jiaxi; Roy, Rabindra; Chung, Fung-Lung

    2016-07-01

    The acrolein derived cyclic 1,N(2)-propanodeoxyguanosine adduct (Acr-dG), formed primarily from ω-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA) under oxidative conditions, while proven to be mutagenic, is potentially involved in DHA-induced apoptosis. The latter may contribute to the chemopreventive effects of DHA. Previous studies have shown that the levels of Acr-dG are correlated with apoptosis induction in HT29 cells treated with DHA. Because Acr-dG is shown to be repaired by the nucleotide excision repair (NER) pathway, to further investigate the role of Acr-dG in apoptosis, in this study, NER-deficient XPA and its isogenic NER-proficient XAN1 cells were treated with DHA. The Acr-dG levels and apoptosis were sharply increased in XPA cells, but not in XAN1 cells when treated with 125μM of DHA. Because DHA can induce formation of various DNA damage, to specifically investigate the role of Acr-dG in apoptosis induction, we treated XPA knockdown HCT116+ch3 cells with acrolein. The levels of both Acr-dG and apoptosis induction increased significantly in the XPA knockdown cells. These results clearly demonstrate that NER deficiency induces higher levels of Acr-dG in cells treated with DHA or acrolein and sensitizes cells to undergo apoptosis in a correlative manner. Collectively, these results support that Acr-dG, a ubiquitously formed mutagenic oxidative DNA adduct, plays a role in DHA-induced apoptosis and suggest that it could serve as a biomarker for the cancer preventive effects of DHA. PMID:27036235

  20. 11B NMR spectroscopy of peptide boronic acid inhibitor complexes of alpha-lytic protease. Direct evidence for tetrahedral boron in both boron-histidine and boron-serine adduct complexes.

    PubMed

    Tsilikounas, E; Kettner, C A; Bachovchin, W W

    1993-11-30

    We have previously shown, using 15N and 1H NMR spectroscopy, that MeOSuc-Ala-Ala-Pro-boroPhe and certain other boronic acid inhibitors form boron-histidine adducts with alpha-lytic protease instead of transition-state-like tetrahedral boron-serine adducts as is generally supposed [Bachovchin, W. W., Wong, W. Y. L., Farr-Jones, S., Shenvi, A. B., & Kettner, C. (1988) Biochemistry 27, 7689-7697]. An X-ray crystallographic study of the MeOSuc-Ala-Ala-Pro-boroPhe complex with alpha-lytic protease [Bone, R., Frank, D., Kettner, C. A., & Agard, D. A. (1989) Biochemistry 28, 7600-7609] has confirmed the existence of the boron-histidine bond but has concluded that the boron atom is trigonal rather than tetrahedral. Here we report a 11B NMR study at 160.46 MHz of this histidine adduct complex and of two other complexes known to be serine adducts: alpha-lytic protease with MeOSuc-Ala-Ala-Pro-boroVal and chymotrypsin with MeOSucAla-Ala-Pro-boroPhe. The 11B NMR chemical shifts demonstrate that the boron atom is tetrahedral in both the histidine and serine adduct complexes.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8251483

  1. Novel characterisation of minor α-linolenic acid isomers in linseed oil by gas chromatography and covalent adduct chemical ionisation tandem mass spectrometry.

    PubMed

    Gómez-Cortés, P; Brenna, J T; Lawrence, P; de la Fuente, M A

    2016-06-01

    Discrimination between polyunsaturated fatty acid isomers with three double bonds is a great challenge, due to structural similarities and similar polarities. In this study, we report the identification of four minor geometrical isomers of α-linolenic acid (ALA) present in linseed oil samples: (9E,12Z,15E)-, (9Z,12Z,15E)-, (9Z,12E,15Z)- and (9E,12Z,15Z)-octadeca-9,12,15-trienoic acids, chromatographically resolved by gas chromatography (GC) using a new and highly polar ionic phase column (SLB-IL111). Gas chromatography-electron ionisation mass spectrometry (GC-EIMS) determined that the four unknown compounds were C18:3 n-3 isomers. The positional 9-12-15 C18:3 configuration was achieved by covalent adduct chemical ionisation tandem mass spectrometry (CACI-MS/MS) while geometrical configuration was established with analytical standards based on relative retention. We hypothesised that these isomers are formed during linseed oil deodorisation and postulate preferred and unfavoured isomerisation pathways of ALA. PMID:26830571

  2. Structure of Replicating Simian Virus 40 Deoxyribonucleic Acid Molecules 1

    PubMed Central

    Sebring, E. D.; Kelly, T. J.; Thoren, M. M.; Salzman, N. P.

    1971-01-01

    Properties of replicating simian virus 40 (SV40) deoxyribonucleic acid (DNA) have been examined by sedimentation analysis and by direct observation during a lytic cycle of infection of African green monkey kidney cells. Two types of replicating DNA molecules were observed in the electron microscope. One was an open structure containing two branch points, three branches, and no free ends whose length measurements were consistent with those expected for replicating SV40 DNA molecules. A second species had the same features as the open structure, but in addition it contained a superhelix in the unreplicated portion of the molecule. Eighty to ninety per cent of the replicative intermediates (RI) were in this latter configuration, and length measurements of these molecules also were consistent with replicating SV40 DNA. Replicating DNA molecules with this configuration have not been described previously. RI, when examined in ethidium bromide-cesium chloride (EB-CsCl) isopycnic gradients, banded in a heterogeneous manner. A fraction of the RI banded at the same density as circular SV40 DNA containing one or more single-strand nicks (component II). The remaining radioactive RI banded at densities higher than that of component II, and material was present at all densities between that of supercoiled double-stranded DNA (component I) and component II. When RI that banded at different densities in EB-CsCl were examined in alkaline gradients, cosedimentation of parental DNA and newly replicated DNA did not occur. All newly replicated DNA sedimented more slowly than did intact single-stranded SV40 DNA, a finding that is inconsistent with the rolling circle model of DNA replication. An inverse correlation exists between the extent of replication of the SV40 DNA and the banding density in EB-CsCl. Under alkaline conditions, the parental DNA strands that were contained in the RI sedimented as covalently closed structures. The sedimentation rates in alkali of the covalently closed

  3. Hyaluronic acid: A key molecule in skin aging

    PubMed Central

    Papakonstantinou, Eleni; Roth, Michael; Karakiulakis, George

    2012-01-01

    Skin aging is a multifactorial process consisting of two distinct and independent mechanisms: intrinsic and extrinsic aging. Youthful skin retains its turgor, resilience and pliability, among others, due to its high content of water. Daily external injury, in addition to the normal process of aging, causes loss of moisture. The key molecule involved in skin moisture is hyaluronic acid (HA) that has unique capacity in retaining water. There are multiple sites for the control of HA synthesis, deposition, cell and protein association and degradation, reflecting the complexity of HA metabolism. The enzymes that synthesize or catabolize HA and HA receptors responsible for many of the functions of HA are all multigene families with distinct patterns of tissue expression. Understanding the metabolism of HA in the different layers of the skin and the interactions of HA with other skin components will facilitate the ability to modulate skin moisture in a rational manner. PMID:23467280

  4. Mass spectrometric characterization of human hemoglobin adducts formed in vitro by hexahydrophthalic anhydride.

    PubMed

    Kristiansson, Monica H; Jönsson, Bo A G; Lindh, Christian H

    2002-04-01

    Primary structural information of anhydride binding to endogenous proteins is of interest in order to determine the mechanism causing the type-I allergy seen in many anhydride-exposed workers. In addition, studies on specific protein adducts may generate new methods for biological monitoring. In this study, the binding of hexahydrophthalic anhydride (HHPA) to human hemoglobin (Hb) in vitro was investigated. The in vitro synthesized conjugates were analyzed using a hybrid quadrupole-time-of-flight mass spectrometer (Q-TOF) with electrospray ionization (ESI) to determine the number of HHPA adducts per Hb molecule. Structural information on the locations of the adducts was obtained through nanospray Q-TOF, liquid chromatography-ESI mass spectrometric analysis, and gas chromatography/mass spectrometric analysis of Pronase E and tryptic digests. Up to six adducts were found on the alpha-chain and five on the beta-chain. The HHPA-adducts were localized to the N-terminal valine of the alpha- and beta-chains of Hb and to lysine residues at positions 7, 11, 16, and 40 of the alpha-chain and 8, 17, 59, 66, and 144 of the beta-chain. These results will constitute a basis for studies on structure-activity relationships as well as for development of methods for biological monitoring of acid anhydrides. PMID:11952343

  5. The boron trifluoride nitromethane adduct

    NASA Astrophysics Data System (ADS)

    Ownby, P. Darrell

    2004-02-01

    The separation of the boron isotopes using boron trifluoride·organic-donor, Lewis acid·base adducts is an essential first step in preparing 10B enriched and depleted crystalline solids so vital to nuclear studies and reactor applications such as enriched MgB 2, boron carbide, ZrB 2, HfB 2, aluminum boron alloys, and depleted silicon circuits for radiation hardening and neutron diffraction crystal structure studies. The appearance of this new adduct with such superior properties demands attention in the continuing search for more effective and efficient means of separation. An evaluation of the boron trifluoride nitromethane adduct, its thermodynamic and physical properties related to large-scale isotopic separation is presented. Its remarkably high separation factor was confirmed to be higher than the expected theoretical value. However, the reportedly high acid/donor ratio was proven to be an order of magnitude lower. On-going research is determining the crystal structure of deuterated and 11B enriched 11BF 3·CD 3NO 2 by X-ray and neutron diffraction.

  6. Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules.

    PubMed

    Copple, Bryan L; Li, Tiangang

    2016-02-01

    For many years, bile acids were thought to only function as detergents which solubilize fats and facilitate the uptake of fat-soluble vitamins in the intestine. Many early observations; however, demonstrated that bile acids regulate more complex processes, such as bile acids synthesis and immune cell function through activation of signal transduction pathways. These studies were the first to suggest that receptors may exist for bile acids. Ultimately, seminal studies by many investigators led to the discovery of several bile acid-activated receptors including the farnesoid X receptor, the vitamin D receptor, the pregnane X receptor, TGR5, α5 β1 integrin, and sphingosine-1-phosphate receptor 2. Several of these receptors are expressed outside of the gastrointestinal system, indicating that bile acids may have diverse functions throughout the body. Characterization of the functions of these receptors over the last two decades has identified many important roles for these receptors in regulation of bile acid synthesis, transport, and detoxification; regulation of glucose utilization; regulation of fatty acid synthesis and oxidation; regulation of immune cell function; regulation of energy expenditure; and regulation of neural processes such as gastric motility. Through these many functions, bile acids regulate many aspects of digestion ranging from uptake of essential vitamins to proper utilization of nutrients. Accordingly, within a short time period, bile acids moved beyond simple detergents and into the realm of complex signaling molecules. Because of the important processes that bile acids regulate through activation of receptors, drugs that target these receptors are under development for the treatment of several diseases, including cholestatic liver disease and metabolic syndrome. In this review, we will describe the various bile acid receptors, the signal transduction pathways activated by these receptors, and briefly discuss the physiological processes that

  7. Control of Biofilms with the Fatty Acid Signaling Molecule cis-2-Decenoic Acid

    PubMed Central

    Marques, Cláudia N. H.; Davies, David G.; Sauer, Karin

    2015-01-01

    Biofilms are complex communities of microorganisms in organized structures attached to surfaces. Importantly, biofilms are a major cause of bacterial infections in humans, and remain one of the most significant challenges to modern medical practice. Unfortunately, conventional therapies have shown to be inadequate in the treatment of most chronic biofilm infections based on the extraordinary innate tolerance of biofilms to antibiotics. Antagonists of quorum sensing signaling molecules have been used as means to control biofilms. QS and other cell-cell communication molecules are able to revert biofilm tolerance, prevent biofilm formation and disrupt fully developed biofilms, albeit with restricted effectiveness. Recently however, it has been demonstrated that Pseudomonas aeruginosa produces a small messenger molecule cis-2-decenoic acid (cis-DA) that shows significant promise as an effective adjunctive to antimicrobial treatment of biofilms. This molecule is responsible for induction of the native biofilm dispersion response in a range of Gram-negative and Gram-positive bacteria and in yeast, and has been shown to reverse persistence, increase microbial metabolic activity and significantly enhance the cidal effects of conventional antimicrobial agents. In this manuscript, the use of cis-2-decenoic acid as a novel agent for biofilm control is discussed. Stimulating the biofilm dispersion response as a novel antimicrobial strategy holds significant promise for enhanced treatment of infections and in the prevention of biofilm formation. PMID:26610524

  8. Conformational preferences of DNA following damage by aristolochic acids: Structural and energetic insights into the different mutagenic potential of the ALI and ALII-N(6)-dA adducts.

    PubMed

    Kathuria, Preetleen; Sharma, Purshotam; Abendong, Minette N; Wetmore, Stacey D

    2015-04-21

    Aristolochic acids (AAI and AAII), produced by the Aristolochiaceae family of plants, are classified as group I (human) carcinogens by the International Agency for Research on Cancer. These acids are metabolized in cells to yield aristolactams (ALI and ALII, respectively), which further form bulky adducts with the purine nucleobases. Specifically, the adenine lesions are more persistent in cells and have been associated with chronic renal diseases and related carcinogenesis. To understand the structural basis of the nephrotoxicity induced by AAs, the ALI-N(6)-dA and ALII-N(6)-dA lesions are systematically studied using computational methods. Density functional theory calculations indicate that the aristolactam moiety intrinsically prefers a planar conformation with respect to adenine. Nucleoside and nucleotide models suggest that the anti and syn orientations about the glycosidic bond are isoenergetic for both adducts. Molecular dynamics simulations and free energy calculations reveal that the anti base-displaced intercalated conformation is the most stable conformer for both types of AL-N(6)-dA adducted DNA, which agrees with previous experimental work on the ALII-N(6)-dA adduct and thereby validates our approach. Interestingly, this conformer differs from the dominant conformations adopted by other N6-linked adenine lesions, including those derived from polycyclic aromatic hydrocarbons. Furthermore, the second most stable syn base-displaced intercalated conformation lies closer in energy to the anti base-displaced intercalated conformation for ALI-N(6)-dA compared to ALII-N(6)-dA. This indicates that a mixture of conformations may be detectable for ALI-N(6)-dA in DNA. If this enhanced conformational flexibility of double-stranded DNA persists when bound to a lesion-bypass polymerase, this provides a possible structural explanation for the previously observed greater nephrotoxic potential for the ALI versus ALII-N(6)-dA adduct. In addition, the structural

  9. Covalent adduction of nitrogen mustards to model protein nucleophiles.

    PubMed

    Thompson, Vanessa R; DeCaprio, Anthony P

    2013-08-19

    Protein adducts have the potential to serve as unique biomarkers of exposure to compounds of interest. Many xenobiotics (or their metabolites) are electrophilic and therefore reactive with nucleophilic amino acid residues on proteins. Nitrogen mustards are reactive xenobiotics with potential use as chemical warfare agents (CWA) or agents of terrorist attack, in addition to being employed as chemotherapeutic agents. The present study utilized cysteine-, lysine-, and histidine-containing model peptides to characterize in vitro adduction of the nitrogen mustards mechloroethamine (HN-2) and tris-(2-chlorethyl)amine (HN-3) to these nucleophilic amino acid residues by means of liquid chromatography-tandem mass spectrometry. The study assessed the structure of adducts formed, the time course of adduct formation, concentration-response relationships, and temporal stability of adducts. Adduction was hypothesized to occur on all three model peptides via initial formation of a reactive aziridinium intermediate for both mechloroethamine and tris-(2-chlorethyl)amine, followed by covalent adduction to nucleophilic residues. While adduction was found to occur most readily with cysteine, it was also observed at lysine and histidine, demonstrating that adduction by mechloroethamine and tris-(2-chlorethyl)amine is possible at multiple nucleophilic sites. Following solid phase extraction cleanup, adducts formed with mechloroethamine were stable for up to three weeks. Adducts formed with tris-(2-chlorethyl)amine were less stable; however, hydrolyzed secondary adducts were observed throughout the three week period. This study demonstrates that the nitrogen mustards mechloroethamine and tris-(2-chlorethyl)amine form stable adducts with reactive protein nucleophiles other than cysteine. PMID:23859065

  10. Circulating levels of linoleic acid and HDL-cholesterol are major determinants of 4-hydroxynonenal protein adducts in patients with heart failure☆

    PubMed Central

    Asselin, Caroline; Ducharme, Anique; Ntimbane, Thierry; Ruiz, Matthieu; Fortier, Annik; Guertin, Marie-Claude; Lavoie, Joël; Diaz, Ariel; Levy, Émile; Tardif, Jean-Claude; Des Rosiers, Christine

    2013-01-01

    Objective Measurements of oxidative stress biomarkers in patients with heart failure (HF) have yielded controversial results. This study aimed at testing the hypothesis that circulating levels of the lipid peroxidation product 4-hydroxynonenal bound to thiol proteins (4HNE-P) are strongly associated with those of its potential precursors, namely n-6 polyunsaturated fatty acids (PUFA). Methods and results Circulating levels of 4HNE-P were evaluated by gas chromatography-mass spectrometry in 71 control subjects and 61 ambulatory symptomatic HF patients along with various other clinically- and biochemically-relevant parameters, including other oxidative stress markers, and total levels of fatty acids from all classes, which reflect both free and bound to cholesterol, phospholipids and triglycerides. All HF patients had severe systolic functional impairment despite receiving optimal evidence-based therapies. Compared to controls, HF patients displayed markedly lower circulating levels of HDL- and LDL-cholesterol, which are major PUFA carriers, as well as of PUFA of the n-6 series, specifically linoleic acid (LA; P=0.001). Circulating 4HNE-P in HF patients was similar to controls, albeit multiple regression analysis revealed that LA was the only factor that was significantly associated with circulating 4HNE-P in the entire population (R2=0.086; P=0.02). In HF patients only, 4HNE-P was even more strongly associated with LA (P=0.003) and HDL-cholesterol (p<0.0002). Our results demonstrate that 4HNE-P levels, expressed relative to HDL-cholesterol, increase as HDL-cholesterol plasma levels decrease in the HF group only. Conclusion Results from this study emphasize the importance of considering changes in lipids and lipoproteins in the interpretation of measurements of lipid peroxidation products. Further studies appear warranted to explore the possibility that HDL-cholesterol particles may be a carrier of 4HNE adducts. PMID:24494189

  11. NALDB: nucleic acid ligand database for small molecules targeting nucleic acid

    PubMed Central

    Kumar Mishra, Subodh; Kumar, Amit

    2016-01-01

    Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures. NALDB is the first ligand database that contains ligand information for all type of nucleic acid. NALDB contains more than 3500 ligand entries with detailed pharmacokinetic and pharmacodynamic information such as target name, target sequence, ligand 2D/3D structure, SMILES, molecular formula, molecular weight, net-formal charge, AlogP, number of rings, number of hydrogen bond donor and acceptor, potential energy along with their Ki, Kd, IC50 values. All these details at single platform would be helpful for the development and betterment of novel ligands targeting nucleic acids that could serve as a potential target in different diseases including cancers and neurological disorders. With maximum 255 conformers for each ligand entry, our database is a multi-conformer database and can facilitate the virtual screening process. NALDB provides powerful web-based search tools that make database searching efficient and simplified using option for text as well as for structure query. NALDB also provides multi-dimensional advanced search tool which can screen the database molecules on the basis of molecular properties of ligand provided by database users. A 3D structure visualization tool has also been included for 3D structure representation of ligands. NALDB offers an inclusive pharmacological information and the structurally flexible set of small molecules with their three-dimensional conformers that can accelerate the virtual screening and other modeling processes and eventually complement the nucleic acid-based drug discovery research. NALDB can be routinely updated and freely available on bsbe.iiti.ac.in/bsbe/naldb/HOME.php. Database URL: http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php PMID:26896846

  12. NALDB: nucleic acid ligand database for small molecules targeting nucleic acid.

    PubMed

    Kumar Mishra, Subodh; Kumar, Amit

    2016-01-01

    Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures. NALDB is the first ligand database that contains ligand information for all type of nucleic acid. NALDB contains more than 3500 ligand entries with detailed pharmacokinetic and pharmacodynamic information such as target name, target sequence, ligand 2D/3D structure, SMILES, molecular formula, molecular weight, net-formal charge, AlogP, number of rings, number of hydrogen bond donor and acceptor, potential energy along with their Ki, Kd, IC50 values. All these details at single platform would be helpful for the development and betterment of novel ligands targeting nucleic acids that could serve as a potential target in different diseases including cancers and neurological disorders. With maximum 255 conformers for each ligand entry, our database is a multi-conformer database and can facilitate the virtual screening process. NALDB provides powerful web-based search tools that make database searching efficient and simplified using option for text as well as for structure query. NALDB also provides multi-dimensional advanced search tool which can screen the database molecules on the basis of molecular properties of ligand provided by database users. A 3D structure visualization tool has also been included for 3D structure representation of ligands. NALDB offers an inclusive pharmacological information and the structurally flexible set of small molecules with their three-dimensional conformers that can accelerate the virtual screening and other modeling processes and eventually complement the nucleic acid-based drug discovery research. NALDB can be routinely updated and freely available on bsbe.iiti.ac.in/bsbe/naldb/HOME.php. Database URL: http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php. PMID:26896846

  13. Crystal structure of FAS thioesterase domain with polyunsaturated fatty acyl adduct and inhibition by dihomo-[gamma]-linolenic acid

    SciTech Connect

    Zhang, Wei; Chakravarty, Bornali; Zheng, Fei; Gu, Ziwei; Wu, Hongmei; Mao, Jianqiang; Wakil, Salih J.; Quiocho, Florante A.

    2012-05-29

    Human fatty acid synthase (hFAS) is a homodimeric multidomain enzyme that catalyzes a series of reactions leading to the de novo biosynthesis of long-chain fatty acids, mainly palmitate. The carboxy-terminal thioesterase (TE) domain determines the length of the fatty acyl chain and its ultimate release by hydrolysis. Because of the upregulation of hFAS in a variety of cancers, it is a target for antiproliferative agent development. Dietary long-chain polyunsaturated fatty acids (PUFAs) have been known to confer beneficial effects on many diseases and health conditions, including cancers, inflammations, diabetes, and heart diseases, but the precise molecular mechanisms involved have not been elucidated. We report the crystal structure of the hFAS TE domain covalently modified and inactivated by methyl {gamma}-linolenylfluorophosphonate. Whereas the structure confirmed the phosphorylation by the phosphonate head group of the active site serine, it also unexpectedly revealed the binding of the 18-carbon polyunsaturated {gamma}-linolenyl tail in a long groove-tunnel site, which itself is formed mainly by the emergence of an {alpha} helix (the 'helix flap'). We then found inhibition of the TE domain activity by the PUFA dihomo-{gamma}-linolenic acid; {gamma}- and {alpha}-linolenic acids, two popular dietary PUFAs, were less effective. Dihomo-{gamma}-linolenic acid also inhibited fatty acid biosynthesis in 3T3-L1 preadipocytes and selective human breast cancer cell lines, including SKBR3 and MDAMB231. In addition to revealing a novel mechanism for the molecular recognition of a polyunsaturated fatty acyl chain, our results offer a new framework for developing potent FAS inhibitors as therapeutics against cancers and other diseases.

  14. Role of pyridine in Wyodak-pyridine adducts

    SciTech Connect

    David L. Wertz; Amanda Winters; Tara Craft; Jami Holloway

    2006-02-01

    When pyridine (PYR) is added to powdered Wyodak subbituminous coal (WYO), the sample is converted to a paste, and the molecular-level adduct which is formed is stable for months. After the excess pyridine has evaporated from the WYO-PYR sample, the stoichiometry of the adduct is ca. two pyridine molecules per bilayer of WYO polycyclic units; this adduct exists even after mild vacuum treatment of the sample. The pyridine molecules in this adduct appear to be located between the bilayer lamellae and to be H-bonded to either H-O or H-N moieties attached to the poly-cyclic aromatic units of WYO. An H-bonded N- - -H-X distance of 2.6 {angstrom} has been calculated from a structural model of the WYO-PYR adduct. 37 refs., 12 figs., 4 tabs.

  15. Development of an immunoassay to detect benzene adducts in hemoglobin

    SciTech Connect

    Grassman, J.A.

    1993-01-01

    The purpose of this project was to develop an immunoassay to detect the adducts formed in hemoglobin after exposure to benzene, which is known to cause bone marrow degeneration and acute myelogenous leukemia. The use of benzene-adduct detection as a biological monitoring method would permit measurement of low exposures and exposures sustained weeks earlier. The reactivity of hydroquinone, an important benzene metabolite, with blood proteins and amino acids was investigated in order to decide which antigens and analytes were likely to be suitable for immunoassay development. The second section determined the combination of benzene-metabolite and antigen need to produce an immunoassay with the requisite low detection limit and specificity. The immunoassays with the best performance were tested on hemoglobin from benzene-exposed mice. In vitro studies showed that hydroquinone efficiently formed adducts with erythrocyte membranes and hemoglobin but not with albumin. Adduction efficiency was greater in incubations using purified hemoglobin than whole blood. Cysteine accounted for 15 to 27% of the adducts formed by hydroquinone. The site of the other adducts were not identified although there was evidence that the hemoglobin heme was adducted. Adducts were found on only 1 of the 2 globin chains. Tryptic digestion of the globin failed to associate the adducts with a specific peptide. Antigens made from hydroquinone-adducted hemoglobin but not hydroquinone-adducted cysteines coupled to carrier proteins effectively elicited adduct-specific antibodies. Interference due to reactivity to hemoglobin was controlled by using uniform quantities of hemoglobin in all wells. The mid-range of the best assays were approximately 12 pmoles HQ per well. Antibodies directed toward hemoglobin adducted with the benzene metabolites phenol, catechol and 1,2,4-trihydroxybenzene were also made. The performance of the anti-1,2,4-trihydroxybenzene were suitable for quantitative immunoassays.

  16. Breaking the dogma: PCB-derived semiquinone free radicals do not form covalent adducts with DNA, GSH, and amino acids.

    PubMed

    Wangpradit, Orarat; Rahaman, Asif; Mariappan, S V Santhana; Buettner, Garry R; Robertson, Larry W; Luthe, Gregor

    2016-02-01

    Covalent bond formations of free radical metabolites with biomolecules like DNA and proteins are thought to constitute a major mechanism of toxicity and carcinogenesis. Glutathione (GSH) is generally accepted as a radical scavenger protecting the cell. In the present study, we investigated a semiquinone radical (SQ(●-)) metabolite of the semivolatile 4-chlorobiphenyl, using electron paramagnetic resonance spectroscopy, and oxygen consumption. Proton nuclear magnetic resonance ((1)H NMR) and liquid chromatography-mass spectrometry (LC-MS) were also employed to elucidate the radical interaction with DNA, amino acids, and GSH. We found that DNA and oligonucleotides stabilized SQ(●-) by electron delocalization in the π-stacking system, resulting in persistent radical intercalated, rather than forming a covalent bond with SQ(●-). This finding was strongly supported by the semiempirical calculation of the semioccupied molecular orbital and the linear combination of the atomic orbitals, indicating 9.8 kcal mol(-1) energy gain. The insertion of SQ(●-) into the DNA strand may result in DNA strand breaks and interruption of DNA replication process or even activate radical mediated secondary reactions. The presence of amino acids resulted in a decrease of the electron paramagnetic resonance (EPR) signal of SQ(●-) and correlated with their isoelectric points. The pH shifts the equilibrium of the dianions of hydroquinone and influenced indirectly the formation of SQ(●-). Similar findings were observed with GSH and Cys. GSH and Cys functioned as indirect radical scavengers; their activities depend on their chemical equilibria with the corresponding quinones, and their further reaction via Michael addition. The generally accepted role of GSH as radical scavenger in biological systems should be reconsidered based upon these findings, questioning the generally accepted view of radical interaction of semiquinones with biologically active compounds, like DNA, amino acids

  17. Lewis acid properties of the XeF[sup +] cation and its adducts with organic nitrogen bases

    SciTech Connect

    Emara, A.A.A.

    1991-01-01

    This Thesis describes the synthesis and spectroscopic characterization of noble-gas compounds containing Xe-N bonds in solution by multinuclear magnetic resonance (multi-NMR) spectroscopy and in the solid state by low-temperature Raman spectroscopy. This work represents an extension of noble-gas chemistry and the synthesis of novel xenon-nitrogen bonded compounds. The key synthetic approach involves the interaction of the Lewis acid XeF[sup +] with an organic nitrogen Lewis base, where the organic nitrogen base must be resistant to oxidation by the XeF[sup +] cation. Hydrogen cyanide, alkyl nitriles, perfluorophenyl nitrile and perfluoropyridine derivatives were investigated as potential ligands for xenon (II). The electron pairs of nitriles and perfluoropyridines have been shown to interact with the Lewis acid XeF[sup +] resulting in the cations RC[triple bond]N-XeF[sup +] (R = H, CH[sup 3], CH[sub 2]F, CH[sub 2]Cl, C[sub 2]H[sub 5], CH[sub 2]FCH[sub 2], n-C[sub 3]H[sub 7], CH[sub 2]FCH[sub 2]CH[sub 2], CH[sub 3]CHFCH[sub 2]CHF[sub 2]CH[sub 2]CH[sub 2]CH[sub 3]CF[sub 2]CH[sub 2], n-C[sub 4]H[sub 9], CH[sub 3]CHFCH[sub 2]CH[sub 2], (CH[sub 3])[sub 2]CH, (CH[sub 3])[sub 3]C, FCH[sub 2]C (CH[sub 3])H, ClCH[sub 2]C(CH[sub 3])H and C[sub 6]F[sub 5]) and R[sub F]C[sub 5]F[sub 4]N-XeF[sup +] (R[sub F] = F, 2-CF[sub 3], 3-CF[sub 3], 4-CF[sub 3]). These cations have been characterized in HF and/or BrF[sub 5] by [sup 129]Xe, [sup 19]F, [sup 15]N, [sup 14]N, [sup 13]C and [sup 1]H NMR spectroscopy and in the solid state by low-temperature Raman spectroscopy. The thermal stabilities of RC[triple bond]N-XeF[sup +]AsF[sub 6][sup [minus

  18. Identification and quantitation of N-(carboxymethyl)valine adduct in hemoglobin by gas chromatography/mass spectrometry.

    PubMed

    Cai, J; Hurst, H E

    1999-05-01

    A sensitive, specific and reproducible method was developed for the quantitation of the hemoglobin (Hb) adduct N-(carboxymethyl)valine (CMV). This adduct is one of various products from the Maillard reaction, involving reducing sugars and amino acids, proteins or other molecules with a free amino group. Such adducts, including N epsilon-(carboxymethyl)lysine (CML), are called advanced glycation end products (AGE) and have been correlated with aging and severity of diabetes in human tissues. This method was developed to examine the CMV-Hb adduct as a possible AGE formed by reaction of Hb with glucose or other oxidation products. CMV was cleaved selectively from isolated globin using pentafluorophenyl isothiocyanate (PFPITC) in a modified Edman degradation at pH 9.5. The carboxyl group of the adduct was derivatized to its methyl ester with diazomethane. The resulting derivative, 5-isopropyl-1-(methyl acetate)-3-pentafluorophenyl-2-thiohydantoin, was detected by gas chromatography/mass spectrometry with selected ion monitoring (GC/SIM/MS). Quantitation was based on the response factor of the derivative molecular ion (m/z 396) from synthesized CMV and N-(2-carboxyethyl)valine (molecular ion m/z 410) as internal standard. This method exhibits reproducibility and linearity in the range 0.2-100 ng CMV. The limit of quantitation (0.2 ng CMV) gave a signal-to-noise ratio greater than 5:1 using a 1:30 sample aliquot. The GC/SIM/MS method can detect CMV adduct in 5 mg globin samples with relative standard deviations less than 5%. This approach avoids tedious acid hydrolysis and interference from other amino acids. The molecular ion and other CMV derivative ion assignments from samples were confirmed by accurate mass determinations using GC/high resolution SIM/MS. Measurements from random mouse, rat and human globin samples gave mean CMV levels of about 6, 5 and 14 nmol g-1 Hb in these species, respectively. PMID:10390858

  19. Protein modification by acrolein: Formation and stability of cysteine adducts

    PubMed Central

    Cai, Jian; Bhatnagar, Aruni; Pierce, William M.

    2010-01-01

    The toxicity of the ubiquitous pollutant and endogenous metabolite, acrolein, is due in part to covalent protein modifications. Acrolein reacts readily with protein nucleophiles via Michael addition and Schiff base formation. Potential acrolein targets in protein include the nucleophilic side chains of cysteine, histidine, and lysine residues as well as the free amino terminus of proteins. Although cysteine is the most acrolein-reactive residue, cysteine-acrolein adducts are difficult to identify in vitro and in vivo. In this study, model peptides with cysteine, lysine, and histidine residues were used to examine the reactivity of acrolein. Results from these experiments show that acrolein reacts rapidly with cysteine residues through Michael addition to form M+56 Da adducts. These M+56 adducts are, however, not stable, even though spontaneous dissociation of the adduct is slow. Further studies demonstrated that when acrolein and model peptides are incubated at physiological pH and temperature, the M+56 adducts decreased gradually accompanied by the increase of M+38 adducts, which are formed from intra-molecular Schiff base formation. Adduct formation with the side chains of other amino acid residues (lysine and histidine) was much slower than cysteine and required higher acrolein concentration. When cysteine residues were blocked by reaction with iodoacetamide and higher concentrations of acrolein were used, adducts of the N-terminal amino group or histidyl residues were formed but lysine adducts were not detected. Collectively, these data demonstrate that acrolein reacts avidly with protein cysteine residues and that the apparent loss of protein-acrolein Michael adducts over time may be related to the appearance of a novel (M+38) adduct. These findings may be important in identification of in vivo adducts of acrolein with protein cysteine residues. PMID:19231900

  20. Adduct supported analysis of γ-hydroxybutyrate in human serum with LC-MS/MS.

    PubMed

    Dziadosz, Marek; Weller, Jens-Peter; Klintschar, Michael; Teske, Jörg

    2013-08-01

    To avoid the detection of small fragmentation products of γ-hydroxybutyrate (GHB), a liquid chromatography-tandem mass spectrometry GHB quantification method in human serum supported by adduct formation was developed and validated. The continuous infusion of GHB/GHB-D6 made the identification of two adducts possible and GHB/GHB-D6 sodium acetate adduct fragmentation was used as target mass transition. A Luna 5 μm C18 (2) 100 A, 150 mm × 2 mm analytical column and elution with a programmed flow of the mobile phase consisting of 10% A (H2O/methanol = 95/5, v/v) and 90% B (H2O/methanol = 3/97, v/v), both with 10 mM ammonium acetate and 0.1% acetic acid (pH = 3.2), were used. Protein precipitation with 1 mL of the mobile phase B was used as the sample preparation. The calculated limit of detection/quantification was 1 μg/mL. The presented study shows that the fragmentation of GHB sodium acetate adducts is an effective way of quantification of this small molecule and is an interesting alternative to other methods based on the detection of ions smaller than 85 Da. This fact together with the short analysis time of 3 min and the fast sample preparation make this method very attractive for forensic/clinical application. PMID:23712650

  1. New fluorescence methodology for detecting DNA adducts

    SciTech Connect

    Giese, R.W.

    1993-05-21

    A new reagent, BO-IMI, has been developed that achieves, single step, phosphate specific fluorescence labeling under aqueous conditions. Both 3 in. and 5 in. mononucleotides, including representative DNA adducts can be labeled. Included in this technique is a convenient procedure for postlabeling sample cleanup, leading to a practical detection of the products by capillary electrophoresis with laser fluorescencedetection. We consider that this new method will have a significant impact on the measurement of DNA adducts in human samples. This work was largely accomplished in the second half of our project. In the first half, we set up a new way to isolate DNA nucleotides from blood, worked with an initial, less specific technique for labeling DNA adducts, compared ionizing radiation vs oxidative damage to fluorescein labeled deoxyadenylic acid, and set up a capillary electrophoresis laser fluorescence detection system.

  2. Dissociative attachment reactions of electrons with strong acid molecules

    NASA Astrophysics Data System (ADS)

    Adams, Nigel G.; Smith, David; Viggiano, A. A.; Paulson, John F.; Henchman, Michael J.

    1986-06-01

    Using the flowing afterglow/Langmuir probe (FALP) technique, we have determined (at variously 300 and 570 K) the dissociative attachment coefficients β for the reactions of electrons with the common acids HNO3 (producing NO-2) and H2SO4 (HSO-4), the superacids FSO3H (FSO-3), CF3SO3H (CF3SO-3), ClSO3H (ClSO-3,Cl-), the acid anhydride (CF3SO2)2O (CF3SO-3), and the halogen halides HBr (Br-) and HI (I-). The anions formed in the reactions are those given in the parentheses. The reactions with HF and HCl were investigated, but did not occur at a measurable rate since they are very endothermic. Dissociative attachment is rapid for the common acids, the superacids, and the anhydride, the measured β being appreciable fractions of the theoretical maximum β for such reactions, βmax. The HI reaction is very fast ( β˜βmax) but the HBr reaction occurs much more slowly because it is significantly endothermic. The data indicate that the extreme acidity of the (Bronsted-type) superacids has its equivalence in the very efficient gas-phase dissociative attachment which these species undergo when reacting with free electrons. The anions of the superacids generated in these reactions, notably FSO-3 and CF3SO-3, are very stable (unreactive) implying exceptionally large electron affinities for the FSO3 and CF3SO3 radicals.

  3. 2-Fatty acrylic acids: new highly derivatizable lipophilic platform molecules

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reports the incorporation of an alpha-methylene unit into fatty acid skeletons. Since the new olefin is conjugated with the carboxylate, it is susceptible to 1,4- (Michael) additions. We have used multifunctional thiols and amines for additions at the methylene. The resulting products ...

  4. Electric Dipole Moments of Nanosolvated Acid Molecules in Water Clusters

    NASA Astrophysics Data System (ADS)

    Guggemos, Nicholas; Slavíček, Petr; Kresin, Vitaly V.

    2015-01-01

    The electric dipole moments of (H2O)nDCl (n =3 - 9 ) clusters have been measured by the beam-deflection method. Reflecting the (dynamical) charge distribution within the system, the dipole moment contributes information about the microscopic structure of nanoscale solvation. The addition of a DCl molecule to a water cluster results in a strongly enhanced susceptibility. There is evidence for a noticeable rise in the dipole moment occurring at n ≈5 - 6 . This size is consistent with predictions for the onset of ionic dissociation. Additionally, a molecular-dynamics model suggests that even with a nominally bound impurity an enhanced dipole moment can arise due to the thermal and zero-point motion of the proton and the water molecules. The experimental measurements and the calculations draw attention to the importance of fluctuations in defining the polarity of water-based nanoclusters and generally to the essential role played by motional effects in determining the response of fluxional nanoscale systems under realistic conditions.

  5. Stardust and the Molecules of Life (Why are the Amino Acids Left-Handed?)

    SciTech Connect

    Boyd, R N; Kajino, T; Onaka, T

    2010-04-02

    A mechanism for creating and selecting amino acid chirality is identified, and subsequent chemical replication and galactic mixing that would populate the galaxy with the predominant species will be described. This involves: (1) the spin of the {sup 14}N in the amino acids, or in precursor molecules from which amino acids might be formed, coupling to the chirality of the molecules; (2) the neutrinos emitted from the supernova, together with magnetic field from the nascent neutron star or black hole from the supernova selectively destroying one orientation of the {sup 14}N, thereby selecting the chirality associated with the other {sup 14}N orientation; (3) amplification by chemical evolution, by which the molecules replicate on a relatively short timescale; and (4) galactic mixing on a longer timescale mixing the selected molecules throughout the galaxy.

  6. Surface functionalization of bioactive glasses with natural molecules of biological significance, Part I: Gallic acid as model molecule

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Ferraris, Sara; Prenesti, Enrico; Verné, Enrica

    2013-12-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) and its derivatives are a group of biomolecules (polyphenols) obtained from plants. They have effects which are potentially beneficial to heath, for example they are antioxidant, anticarcinogenic and antibacterial, as recently investigated in many fields such as medicine, food and plant sciences. The main drawbacks of these molecules are both low stability and bioavailability. In this research work the opportunity to graft GA to bioactive glasses is investigated, in order to deliver the undamaged biological molecule into the body, using the biomaterial surfaces as a localized carrier. GA was considered for functionalization since it is a good model molecule for polyphenols and presents several interesting biological activities, like antibacterial, antioxidant and anticarcinogenic properties. Two different silica based bioactive glasses (SCNA and CEL2), with different reactivity, were employed as substrates. UV photometry combined with the Folin&Ciocalteu reagent was adopted to test the concentration of GA in uptake solution after functionalization. This test verified how much GA consumption occurred with surface modification and it was also used on solid samples to test the presence of GA on functionalized glasses. XPS and SEM-EDS techniques were employed to characterize the modification of material surface properties and functional group composition before and after functionalization.

  7. Analysis of single nucleic acid molecules in micro- and nano-fluidics.

    PubMed

    Friedrich, Sarah M; Zec, Helena C; Wang, Tza-Huei

    2016-03-01

    Nucleic acid analysis has enhanced our understanding of biological processes and disease progression, elucidated the association of genetic variants and disease, and led to the design and implementation of new treatment strategies. These diverse applications require analysis of a variety of characteristics of nucleic acid molecules: size or length, detection or quantification of specific sequences, mapping of the general sequence structure, full sequence identification, analysis of epigenetic modifications, and observation of interactions between nucleic acids and other biomolecules. Strategies that can detect rare or transient species, characterize population distributions, and analyze small sample volumes enable the collection of richer data from biosamples. Platforms that integrate micro- and nano-fluidic operations with high sensitivity single molecule detection facilitate manipulation and detection of individual nucleic acid molecules. In this review, we will highlight important milestones and recent advances in single molecule nucleic acid analysis in micro- and nano-fluidic platforms. We focus on assessment modalities for single nucleic acid molecules and highlight the role of micro- and nano-structures and fluidic manipulation. We will also briefly discuss future directions and the current limitations and obstacles impeding even faster progress toward these goals. PMID:26818700

  8. Activation of Carbonyl-Containing Molecules with Solid Lewis Acids in Aqueous Media

    SciTech Connect

    Román-Leshkov, Yuriy; Davis, Mark E.

    2011-09-28

    Current interest in reacting carbonyl-containing molecules in aqueous media is primarily due to the growing emphasis on conversion of biomass to fuels and chemicals. Recently, solid Lewis acids have been shown to perform catalytic reactions with carbonyl-containing molecules such as sugars in aqueous media. Here, catalysis mediated by Lewis acids is briefly discussed, Lewis acid solids that perform catalysis in aqueous media are then described, and the review is concluded with a few comments on the outlook for the future.

  9. Specific spin-labeling of transfer ribonucleic acid molecules.

    PubMed Central

    Caron, M; Dugas, H

    1976-01-01

    The spin labels anhydride (ASL), bromoacetamide (BSL) and carbodiimide (CSL) were used to label selectively tRNAGlu, tRNA fMet and tRNAPhe from E. coli. The preparation and characterization of the sites of labeling of eight new spin-labeled tRNAs are described. The sites of labeling are: s2U using ASL, BSL and CLS and tRNAGlu; s4U using ASL and BSL on tRNAfMet and tRNAPhe; U-37 with CSL on tRNfMet; U-33 with CSL on tRNAPhe. The rare base X at position 47 of tRNAPhe has been acylated with a spin-labeled N-hydroxysuccinimide (HSL). The 3'end of unfractionated tRNA molecules has been chemically modified to a morpholino spin-labeled analogue (MSL). Their respective e.s.r. spectra are reported and discussed. PMID:175353

  10. Single-molecule pull-down for investigating protein-nucleic acid interactions.

    PubMed

    Fareh, Mohamed; Loeff, Luuk; Szczepaniak, Malwina; Haagsma, Anna C; Yeom, Kyu-Hyeon; Joo, Chirlmin

    2016-08-01

    The genome and transcriptome are constantly modified by proteins in the cell. Recent advances in single-molecule techniques allow for high spatial and temporal observations of these interactions between proteins and nucleic acids. However, due to the difficulty of obtaining functional protein complexes, it remains challenging to study the interactions between macromolecular protein complexes and nucleic acids. Here, we combined single-molecule fluorescence with various protein complex pull-down techniques to determine the function and stoichiometry of ribonucleoprotein complexes. Through the use of three examples of protein complexes from eukaryotic cells (Drosha, Dicer, and TUT4 protein complexes), we provide step-by-step guidance for using novel single-molecule techniques. Our single-molecule methods provide sub-second and nanometer resolution and can be applied to other nucleoprotein complexes that are essential for cellular processes. PMID:27017911

  11. Comparative Study on Single-Molecule Junctions of Alkane- and Benzene-Based Molecules with Carboxylic Acid/Aldehyde as the Anchoring Groups.

    PubMed

    Chen, Fang; Peng, Lin-Lu; Hong, Ze-Wen; Mao, Jin-Chuan; Zheng, Ju-Fang; Shao, Yong; Niu, Zhen-Jiang; Zhou, Xiao-Shun

    2016-12-01

    We have measured the alkane and benzene-based molecules with aldehyde and carboxylic acid as anchoring groups by using the electrochemical jump-to-contact scanning tunneling microscopy break junction (ECSTM-BJ) approach. The results show that molecule with benzene backbone has better peak shape and intensity than those with alkane backbone. Typically, high junction formation probability for same anchoring group (aldehyde and carboxylic acid) with benzene backbone is found, which contributes to the stronger attractive interaction between Cu and molecules with benzene backbone. The present work shows the import role of backbone in junction, which can guide the design molecule to form effective junction for studying molecular electronics. PMID:27566686

  12. Distribution of proton dissociation constants for model humic and fulvic acid molecules.

    PubMed

    Atalay, Yasemin B; Carbonaro, Richard F; Di Toro, Dominic M

    2009-05-15

    The intrinsic proton binding constants of 10 model humic acid and six model fulvic acid molecules are calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC). The accuracy of the SPARC calculations is examined using estimated microscopic binding constants of various small organic acids. An equimolar mixture of the appropriate hypothetical molecules is used as a representation of soil and aqueous humic acid and fulvic acid. The probability distributions of the mixture microscopic proton binding constants and the intrinsic proton binding constants in the metal speciation models WHAM V and WHAM VI (Windermere humic aqueous models) are compared. The idea is to assess the predictive value of the molecular mixture models as representations of heterogeneous natural organic matter. For aqueous humic and fulvic acids, the results are comparable to the WHAM distribution. For soil humic acid, the WHAM probability distribution is less acidic for the carboxylic sites but similar to that of the phenolic sites. Computations made using the WHAM molecular distributions and WHAM VI are comparable to titration data for Suwannee River fulvic acid. These results suggest that mixture molecular models can be used to investigate and predict the binding of metal cations to humic and fulvic acids. PMID:19544864

  13. Variant fatty acid-like molecules Conjugation, novel approaches for extending the stability of therapeutic peptides

    PubMed Central

    Li, Ying; Wang, Yuli; Wei, Qunchao; Zheng, Xuemin; Tang, Lida; Kong, Dexin; Gong, Min

    2015-01-01

    The multiple physiological properties of glucagon-like peptide-1 (GLP-1) make it a promising drug candidate for the treatment of type 2 diabetes. However, the in vivo half-life of GLP-1 is short due to rapid degradation by dipeptidyl peptidase-IV (DPP-IV) and renal clearance. The poor stability of GLP-1 has significantly limited its clinical utility; however, many studies are focused on extending its stability. Fatty acid conjugation is a traditional approach for extending the stability of therapeutic peptides because of the high binding affinity of human serum albumin for fatty acids. However, the conjugate requires a complex synthetic approach, usually involving Lys and occasionally involving a linker. In the current study, we conjugated the GLP-1 molecule with fatty acid derivatives to simplify the synthesis steps. Human serum albumin binding assays indicated that the retained carboxyl groups of the fatty acids helped maintain a tight affinity to HSA. The conjugation of fatty acid-like molecules improved the stability and increased the binding affinity of GLP-1 to HSA. The use of fatty acid-like molecules as conjugating components allowed variant conjugation positions and freed carboxyl groups for other potential uses. This may be a novel, long-acting strategy for the development of therapeutic peptides. PMID:26658631

  14. Variant fatty acid-like molecules Conjugation, novel approaches for extending the stability of therapeutic peptides.

    PubMed

    Li, Ying; Wang, Yuli; Wei, Qunchao; Zheng, Xuemin; Tang, Lida; Kong, Dexin; Gong, Min

    2015-01-01

    The multiple physiological properties of glucagon-like peptide-1 (GLP-1) make it a promising drug candidate for the treatment of type 2 diabetes. However, the in vivo half-life of GLP-1 is short due to rapid degradation by dipeptidyl peptidase-IV (DPP-IV) and renal clearance. The poor stability of GLP-1 has significantly limited its clinical utility; however, many studies are focused on extending its stability. Fatty acid conjugation is a traditional approach for extending the stability of therapeutic peptides because of the high binding affinity of human serum albumin for fatty acids. However, the conjugate requires a complex synthetic approach, usually involving Lys and occasionally involving a linker. In the current study, we conjugated the GLP-1 molecule with fatty acid derivatives to simplify the synthesis steps. Human serum albumin binding assays indicated that the retained carboxyl groups of the fatty acids helped maintain a tight affinity to HSA. The conjugation of fatty acid-like molecules improved the stability and increased the binding affinity of GLP-1 to HSA. The use of fatty acid-like molecules as conjugating components allowed variant conjugation positions and freed carboxyl groups for other potential uses. This may be a novel, long-acting strategy for the development of therapeutic peptides. PMID:26658631

  15. Disulfuric acid dissociated by two water molecules: ab initio and density functional theory calculations.

    PubMed

    Kim, Seong Kyu; Lee, Han Myoung; Kim, Kwang S

    2015-11-21

    We have studied geometries, energies and vibrational spectra of disulfuric acid (H2S2O7) and its anion (HS2O7(-)) hydrated by a few water molecules, using density functional theory (M062X) and ab initio theory (SCS-MP2 and CCSD(T)). The most noteworthy result is found in H2S2O7(H2O)2 in which the lowest energy conformer shows deprotonated H2S2O7. Thus, H2S2O7 requires only two water molecules, the fewest number of water molecules for deprotonation among various hydrated monomeric acids reported so far. Even the second deprotonation of the first deprotonated species HS2O7(-) needs only four water molecules. The deprotonation is supported by vibration spectra, in which acid O-H stretching peaks disappear and specific three O-H stretching peaks for H3O(+) (eigen structure) appear. We have also kept track of variations in several geometrical parameters, atomic charges, and hybrid orbital characters upon addition of water. As the number of water molecules added increases, the S-O bond weakens in the case of H2S2O7, but strengthens in the case of HS2O7(-). It implies that the decomposition leading to H2SO4 and SO3 hardly occurs prior to the 2nd deprotonation at low temperatures. PMID:26400266

  16. Protein adduct formation as a molecular mechanism in neurotoxicity.

    PubMed

    Lopachin, Richard M; Decaprio, Anthony P

    2005-08-01

    Chemicals that cause nerve injury and neurological deficits are a structurally diverse group. For the majority, the corresponding molecular mechanisms of neurotoxicity are poorly understood. Many toxicants (e.g., hepatotoxicants) of other organ systems and/or their oxidative metabolites have been identified as electrophiles and will react with cellular proteins by covalently binding nucleophilic amino acid residues. Cellular toxicity occurs when adduct formation disrupts protein structure and/or function, which secondarily causes damage to submembrane organelles, metabolic pathways, or cytological processes. Since many neurotoxicants are also electrophiles, the corresponding pathophysiological mechanism might involve protein adduction. In this review, we will summarize the principles of covalent bond formation that govern reactions between xenobiotic electrophiles and biological nucleophiles. Because a neurotoxicant can form adducts with multiple nucleophilic residues on proteins, the challenge is to identify the mechanistically important adduct. In this regard, it is now recognized that despite widespread chemical adduction of tissue proteins, neurotoxicity can be mediated through binding of specific target nucleophiles in key neuronal proteins. Acrylamide and 2,5-hexanedione are prototypical neurotoxicants that presumably act through the formation of protein adducts. To illustrate both the promise and the difficulty of adduct research, these electrophilic chemicals will be discussed with respect to covalent bond formation, suspected protein sites of adduction, and proposed mechanisms of neurotoxicity. The goals of future investigations are to identify and quantify specific protein adducts that play a causal role in the generation of neurotoxicity induced by electrophilic neurotoxicants. This is a challenging but critical objective that will be facilitated by recent advances in proteomic methodologies. PMID:15901921

  17. Novel Fragmentation Pathways of Anionic Adducts of Steroids Formed by Electrospray Anion Attachment Involving Regioselective Attachment, Regiospecific Decompositions, Charge-Induced Pathways, and Ion-Dipole Complex Intermediates

    NASA Astrophysics Data System (ADS)

    Rannulu, Nalaka S.; Cole, Richard B.

    2012-09-01

    The analysis of several bifunctional neutral steroids, 5-α-pregnane diol (5-α-pregnane-3α-20βdiol), estradiol (3,17α-dihydroxy-1,3,5(10)-estratriene), progesterone (4-pregnene-3,20-dione), lupeol (3β-hydroxy-20(29)-lupene), pregnenolone (5-pregnen-3β-ol-20-one), and pregnenolone acetate (5-pregnen-3β-ol-20-one acetate) was accomplished by negative ion electrospray mass spectrometry (ESI-MS) employing adduct formation with various anions: fluoride, bicarbonate, acetate, and chloride. Fluoride yielded higher abundances of anionic adducts and more substantial abundances of deprotonated molecules compared with other investigated anions. Collision-induced dissociation (CID) of precursor [M + anion]- adducts of these steroids revealed that fluoride adduct [M + F]- precursors first lose HF to produce [M - H]- and then undergo consecutive decompositions to yield higher abundances of structurally-informative product ions than the other tested anions. In addition to charge-remote fragmentations, the majority of CID pathways of estradiol are deduced to occur via charge-induced fragmentation. Most interestingly, certain anions exhibit preferential attachment to a specific site on these bifunctional steroid molecules, which we are calling "regioselective anion attachment." Regioselective anion attachment is evidenced by subsequent regiospecific decomposition. Regioselective attachment of fluoride (and acetate) anions to low (and moderate) acidity functional groups of pregnenolone, respectively, is demonstrated using deuterated compounds. Moreover, the formation of unique intermediate ion-dipole complexes leading to novel fragmentation pathways of fluoride adducts of pregnenolone acetate, and bicarbonate adducts of d4-pregnenolone, are also discussed.

  18. Identification of uric acid as the redox molecule secreted by the yeast Arxula adeninivorans.

    PubMed

    Williams, Jonathan; Trautwein-Schult, Anke; Jankowska, Dagmara; Kunze, Gotthard; Squire, Marie A; Baronian, Keith

    2014-03-01

    The yeast Arxula adeninivorans has been previously shown to secrete a large amount of an electro-active molecule. The molecule was produced by cells that had been cultivated in a rich medium, harvested, washed and then suspended in phosphate-buffered saline (PBS). The molecule was easily detectable after 60 min of incubation in PBS, and the cells continued to produce the molecule in these conditions for up to 3 days. The peak anodic potential of the oxidation peak was 0.42 V, and it was shown to be a solution species rather than a cell-attached species. We have optimised the production of the molecule, identified it by high-pressure liquid chromatography (HPLC) fractionation and high-resolution mass spectrometric analysis and determined the pathway involved in its synthesis. It has a mass/charge ratio that corresponds to uric acid, and this identification was supported by comparing UV spectra and cyclic voltammograms of the samples to those of uric acid. An A. adeninivorans xanthine oxidase gene disruption mutant failed to produce uric acid, which added further validity to this identification. It also demonstrated that the purine catabolism pathway is involved in its production. A transgenic A. adeninivorans strain with a switchable urate oxidase gene (AUOX) accumulated uric acid when the gene was switched off but did not when the gene was switched on. Cultivation of cells on amino acid and purine-free minimal media with an inorganic nitrogen source suggests that the cells synthesise purines from inorganic nitrogen and proceed to degrade them via the normal purine degradation pathway. PMID:24407453

  19. Single molecule DNA interaction kinetics of retroviral nucleic acid chaperone proteins

    NASA Astrophysics Data System (ADS)

    Williams, Mark

    2010-03-01

    Retroviral nucleocapsid (NC) proteins are essential for several viral replication processes including specific genomic RNA packaging and reverse transcription. The nucleic acid chaperone activity of NC facilitates the latter process. In this study, we use single molecule biophysical methods to quantify the DNA interactions of wild type and mutant human immunodeficiency virus type 1 (HIV-1) NC and Gag and human T-cell leukemia virus type 1 (HTLV-1) NC. We find that the nucleic acid interaction properties of these proteins differ significantly, with HIV-1 NC showing rapid protein binding kinetics, significant duplex destabilization, and strong DNA aggregation, all properties that are critical components of nucleic acid chaperone activity. In contrast, HTLV-1 NC exhibits significant destabilization activity but extremely slow DNA interaction kinetics and poor aggregating capability, which explains why HTLV-1 NC is a poor nucleic acid chaperone. To understand these results, we developed a new single molecule method for quantifying protein dissociation kinetics, and applied this method to probe the DNA interactions of wild type and mutant HIV-1 and HTLV-1 NC. We find that mutations to aromatic and charged residues strongly alter the proteins' nucleic acid interaction kinetics. Finally, in contrast to HIV-1 NC, HIV-1 Gag, the nucleic acid packaging protein that contains NC as a domain, exhibits relatively slow binding kinetics, which may negatively impact its ability to act as a nucleic acid chaperone.

  20. Investigation of Pyridine Carboxylic Acids in CM2 Carbonaceous Chondrites: Potential Precursor Molecules for Ancient Coenzymes

    NASA Technical Reports Server (NTRS)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-01-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We lso report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  1. Investigation of Pyridine Carboxylic Acids in CM2 Carbonaceous Chondrites: Potential Precursor Molecules for Ancient Coenzymes

    NASA Technical Reports Server (NTRS)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-01-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We also report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  2. Single-molecule studies of acidity distributions in mesoporous aluminosilicate thin films.

    PubMed

    Sun, Xiaojiao; Xie, Jingyi; Xu, Jiayi; Higgins, Daniel A; Hohn, Keith L

    2015-05-26

    Solid acid catalysts are important for many petrochemical processes. The ensemble methods most often employed to characterize acid site properties in catalyst materials provide limited insights into their heterogeneity. Single-molecule (SM) fluorescence spectroscopic methods provide a valuable route to probing the properties of individual microenvironments. In this work, dual-color SM methods are adopted to study acidity distributions in mesoporous aluminosilicate (Al-Si) films prepared by the sol-gel method. The highly fluorescent pH-sensitive dye C-SNARF-1 was employed as a probe. The ratio of C-SNARF-1 emission in two bands centered at 580 and 640 nm provides an effective means to sense the pH of bulk solutions. In mesoporous thin films, SM emission data provide a measure of the effective pH of the microenvironment in which each molecule resides. SM emission data were obtained from mesoporous Al-Si films as a function of Al2O3 content for films ranging from 0% to 30% alumina. Histograms of the emission ratio reveal a broad distribution of acidity properties, with the film microenvironments becoming more acidic, on average, as the alumina content of the films increases. This work provides new insights into the distribution of Brønsted acidity in solid acids that cannot be obtained by conventional means. PMID:25941900

  3. Investigation of pyridine carboxylic acids in CM2 carbonaceous chondrites: Potential precursor molecules for ancient coenzymes

    NASA Astrophysics Data System (ADS)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-07-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We also report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  4. L-Ascorbic Acid: A Multifunctional Molecule Supporting Plant Growth and Development

    PubMed Central

    Gallie, Daniel R.

    2013-01-01

    L-Ascorbic acid (vitamin C) is as essential to plants as it is to animals. Ascorbic acid functions as a major redox buffer and as a cofactor for enzymes involved in regulating photosynthesis, hormone biosynthesis, and regenerating other antioxidants. Ascorbic acid regulates cell division and growth and is involved in signal transduction. In contrast to the single pathway responsible for ascorbic acid biosynthesis in animals, plants use multiple pathways to synthesize ascorbic acid, perhaps reflecting the importance of this molecule to plant health. Given the importance of ascorbic acid to human nutrition, several technologies have been developed to increase the ascorbic acid content of plants through the manipulation of biosynthetic or recycling pathways. This paper provides an overview of these approaches as well as the consequences that changes in ascorbic acid content have on plant growth and function. Discussed is the capacity of plants to tolerate changes in ascorbic acid content. The many functions that ascorbic acid serves in plants, however, will require highly targeted approaches to improve their nutritional quality without compromising their health. PMID:24278786

  5. Conformational dynamics of nucleic acid molecules studied by PELDOR spectroscopy with rigid spin labels

    NASA Astrophysics Data System (ADS)

    Prisner, T. F.; Marko, A.; Sigurdsson, S. Th.

    2015-03-01

    Nucleic acid molecules can adopt a variety of structures and exhibit a large degree of conformational flexibility to fulfill their various functions in cells. Here we describe the use of Pulsed Electron-Electron Double Resonance (PELDOR or DEER) to investigate nucleic acid molecules where two cytosine analogs have been incorporated as spin probes. Because these new types of spin labels are rigid and incorporated into double stranded DNA and RNA molecules, there is no additional flexibility of the spin label itself present. Therefore the magnetic dipole-dipole interaction between both spin labels encodes for the distance as well as for the mutual orientation between the spin labels. All of this information can be extracted by multi-frequency/multi-field PELDOR experiments, which gives very precise and valuable information about the structure and conformational flexibility of the nucleic acid molecules. We describe in detail our procedure to obtain the conformational ensembles and show the accuracy and limitations with test examples and application to double-stranded DNA.

  6. On the influence of low-energy ionizing radiation on the amino acid molecule: proline

    NASA Astrophysics Data System (ADS)

    Tamuliene, Jelena; Romanova, Liudmila; Vukstich, Vasyl; Papp, Alexander; Shkurin, Serhiy; Baliulyte, Laura; Snegursky, Alexander

    2016-06-01

    New data on the electron-impact fragmentation of the amino acid proline molecule are presented as being related to the formation of the ionized products due to the influence of low-energy ionizing radiation on the above molecule. An extensive DFT-theory based on the theoretical approach enabled the main pathways of the proline molecules fragmentation to be elucidated. A series of the produced fragments have been identified. The absolute appearance energies for some of them have been both measured experimentally and calculated theoretically. The data of the experimental studies and theoretical calculations are compared and analyzed. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic, B. Sivaraman.

  7. Sequential photochemical and microbial degradation of organic molecules bound to humic acid

    SciTech Connect

    Amador, J.A.; Zika, R.G. ); Alexander, M. )

    1989-11-01

    We studied the effects of photochemical processes on the mineralization by soil microorganisms of (2-{sup 14}C)glycine bound to soil humic acid. Microbial mineralization of these complexes in the dark increased inversely with the molecular weight of the complex molecules. Sunlight irradiation of glycine-humic acid complexes resulted in loss of absorbance in the UV range and an increase in the amount of {sup 14}C-labeled low-molecular-weight photoproducts and the rate and extent of mineralization. More than half of the radioactivity in the low-molecular-weight photoproducts appears to be associated with carboxylic acids. Microbial mineralization of the organic carbon increased with solar flux and was proportional to the loss of A{sub 330}. Mineralization was proportional to the percentage of the original complex that was converted to low-molecular-weight photoproducts. Only light at wavelengths below 380 nm had an effect on the molecular weight distribution of the products formed from the glycine-humic acid complexes and on the subsequent microbial mineralization. Our results indicate that photochemical processes generate low-molecular-weight, readily biodegradable molecules from high-molecular-weight complexes of glycine with humic acid.

  8. Integrated magnetic tweezers and single-molecule FRET for investigating the mechanical properties of nucleic acid.

    PubMed

    Long, Xi; Parks, Joseph W; Stone, Michael D

    2016-08-01

    Many enzymes promote structural changes in their nucleic acid substrates via application of piconewton forces over nanometer length scales. Magnetic tweezers (MT) is a single molecule force spectroscopy method widely used for studying the energetics of such mechanical processes. MT permits stable application of a wide range of forces and torques over long time scales with nanometer spatial resolution. However, in any force spectroscopy experiment, the ability to monitor structural changes in nucleic acids with nanometer sensitivity requires the system of interest to be held under high degrees of tension to improve signal to noise. This limitation prohibits measurement of structural changes within nucleic acids under physiologically relevant conditions of low stretching forces. To overcome this challenge, researchers have integrated a spatially sensitive fluorescence spectroscopy method, single molecule-FRET, with MT to allow simultaneous observation and manipulation of nanoscale structural transitions over a wide range of forces. Here, we describe a method for using this hybrid instrument to analyze the mechanical properties of nucleic acids. We expect that this method for analysis of nucleic acid structure will be easily adapted for experiments aiming to interrogate the mechanical responses of other biological macromolecules. PMID:27320203

  9. Sequential photochemical and microbial degradation of organic molecules bound to humic Acid.

    PubMed

    Amador, J A; Alexander, M; Zika, R G

    1989-11-01

    We studied the effects of photochemical processes on the mineralization by soil microorganisms of [2-C]glycine bound to soil humic acid. Microbial mineralization of these complexes in the dark increased inversely with the molecular weight of the complex molecules. Sunlight irradiation of glycine-humic acid complexes resulted in loss of absorbance in the UV range and an increase in the amount of C-labeled low-molecular-weight photoproducts and the rate and extent of mineralization. More than half of the radioactivity in the low-molecular-weight photoproducts appears to be associated with carboxylic acids. Microbial mineralization of the organic carbon increased with solar flux and was proportional to the loss of A(330). Mineralization was proportional to the percentage of the original complex that was converted to low-molecular-weight photoproducts. Only light at wavelengths below 380 nm had an effect on the molecular weight distribution of the products formed from the glycine-humic acid complexes and on the subsequent microbial mineralization. Our results indicate that photochemical processes generate low-molecular-weight, readily biodegradable molecules from high-molecular-weight complexes of glycine with humic acid. PMID:16348046

  10. Sequential Photochemical and Microbial Degradation of Organic Molecules Bound to Humic Acid

    PubMed Central

    Amador, José A.; Alexander, Martin; Zika, Rod G.

    1989-01-01

    We studied the effects of photochemical processes on the mineralization by soil microorganisms of [2-14C]glycine bound to soil humic acid. Microbial mineralization of these complexes in the dark increased inversely with the molecular weight of the complex molecules. Sunlight irradiation of glycine-humic acid complexes resulted in loss of absorbance in the UV range and an increase in the amount of 14C-labeled low-molecular-weight photoproducts and the rate and extent of mineralization. More than half of the radioactivity in the low-molecular-weight photoproducts appears to be associated with carboxylic acids. Microbial mineralization of the organic carbon increased with solar flux and was proportional to the loss of A330. Mineralization was proportional to the percentage of the original complex that was converted to low-molecular-weight photoproducts. Only light at wavelengths below 380 nm had an effect on the molecular weight distribution of the products formed from the glycine-humic acid complexes and on the subsequent microbial mineralization. Our results indicate that photochemical processes generate low-molecular-weight, readily biodegradable molecules from high-molecular-weight complexes of glycine with humic acid. PMID:16348046

  11. Single Molecule Spectroscopy of Amino Acids and Peptides by Recognition Tunneling

    PubMed Central

    Zhao, Yanan; Ashcroft, Brian; Zhang, Peiming; Liu, Hao; Sen, Suman; Song, Weisi; Im, JongOne; Gyarfas, Brett; Manna, Saikat; Biswas, Sovan; Borges, Chad; Lindsay, Stuart

    2014-01-01

    The human proteome has millions of protein variants due to alternative RNA splicing and post-translational modifications, and variants that are related to diseases are frequently present in minute concentrations. For DNA and RNA, low concentrations can be amplified using the polymerase chain reaction, but there is no such reaction for proteins. Therefore, the development of single molecule protein sequencing is a critical step in the search for protein biomarkers. Here we show that single amino acids can be identified by trapping the molecules between two electrodes that are coated with a layer of recognition molecules and measuring the electron tunneling current across the junction. A given molecule can bind in more than one way in the junction, and we therefore use a machine-learning algorithm to distinguish between the sets of electronic ‘fingerprints’ associated with each binding motif. With this recognition tunneling technique, we are able to identify D, L enantiomers, a methylated amino acid, isobaric isomers, and short peptides. The results suggest that direct electronic sequencing of single proteins could be possible by sequentially measuring the products of processive exopeptidase digestion, or by using a molecular motor to pull proteins through a tunnel junction integrated with a nanopore. PMID:24705512

  12. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling.

    PubMed

    Zhao, Yanan; Ashcroft, Brian; Zhang, Peiming; Liu, Hao; Sen, Suman; Song, Weisi; Im, JongOne; Gyarfas, Brett; Manna, Saikat; Biswas, Sovan; Borges, Chad; Lindsay, Stuart

    2014-06-01

    The human proteome has millions of protein variants due to alternative RNA splicing and post-translational modifications, and variants that are related to diseases are frequently present in minute concentrations. For DNA and RNA, low concentrations can be amplified using the polymerase chain reaction, but there is no such reaction for proteins. Therefore, the development of single-molecule protein sequencing is a critical step in the search for protein biomarkers. Here, we show that single amino acids can be identified by trapping the molecules between two electrodes that are coated with a layer of recognition molecules, then measuring the electron tunnelling current across the junction. A given molecule can bind in more than one way in the junction, and we therefore use a machine-learning algorithm to distinguish between the sets of electronic 'fingerprints' associated with each binding motif. With this recognition tunnelling technique, we are able to identify D and L enantiomers, a methylated amino acid, isobaric isomers and short peptides. The results suggest that direct electronic sequencing of single proteins could be possible by sequentially measuring the products of processive exopeptidase digestion, or by using a molecular motor to pull proteins through a tunnel junction integrated with a nanopore. PMID:24705512

  13. Difficulties in Laboratory Studies and Astronomical Observations of Organic Molecules: Hydroxyacetone and Lactic Acid

    NASA Technical Reports Server (NTRS)

    Apponi, A. J.; Brewster, M. A.; Hoy, J.; Ziurys, L. M.

    2006-01-01

    For the past 35 years, radio astronomy has revealed a rich organic chemistry in the interstellar gas, which is exceptionally complex towards active star-forming regions. New solar systems condense out of this gas and may influence the evolution of life on newly formed planets. Much of the biologically important functionality is present among the some 130 gas-phase molecules found to date, including alcohols, aldehydes, ketones, acids, amines, amides and even the simplest sugar - glycolaldehyde. Still, many unidentified interstellar radio signals remain, and their identification relies on further laboratory study. The molecules hydroxyacetone and lactic acid are relatively small organic molecules, but possess rather complex rotational spectra owing to their high asymmetry. Hydroxyacetone is particularly problematic because it possess a very low barrier to internal rotation, and exhibits strong coupling of the free-rotor states with the overall rotation of the molecule. As in the case of acetamide, a full decomposition method was employed to order the resultant eigenstates onto normal asymmetric top eigenvectors.

  14. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling

    NASA Astrophysics Data System (ADS)

    Zhao, Yanan; Ashcroft, Brian; Zhang, Peiming; Liu, Hao; Sen, Suman; Song, Weisi; Im, Jongone; Gyarfas, Brett; Manna, Saikat; Biswas, Sovan; Borges, Chad; Lindsay, Stuart

    2014-06-01

    The human proteome has millions of protein variants due to alternative RNA splicing and post-translational modifications, and variants that are related to diseases are frequently present in minute concentrations. For DNA and RNA, low concentrations can be amplified using the polymerase chain reaction, but there is no such reaction for proteins. Therefore, the development of single-molecule protein sequencing is a critical step in the search for protein biomarkers. Here, we show that single amino acids can be identified by trapping the molecules between two electrodes that are coated with a layer of recognition molecules, then measuring the electron tunnelling current across the junction. A given molecule can bind in more than one way in the junction, and we therefore use a machine-learning algorithm to distinguish between the sets of electronic `fingerprints' associated with each binding motif. With this recognition tunnelling technique, we are able to identify D and L enantiomers, a methylated amino acid, isobaric isomers and short peptides. The results suggest that direct electronic sequencing of single proteins could be possible by sequentially measuring the products of processive exopeptidase digestion, or by using a molecular motor to pull proteins through a tunnel junction integrated with a nanopore.

  15. Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol

    DOEpatents

    Brown, Steven; Guss, Adam; Yang, Shihui; Karpinets, Tatiana; Lynd, Lee; Shao, Xiongjun

    2014-01-14

    The present invention provides isolated nucleic acid molecules which encode a mutant acetaldehyde-CoA/alcohol dehydrogenase or mutant alcohol dehydrogenase and confer enhanced tolerance to ethanol. The invention also provides related expression vectors, genetically engineered microorganisms having enhanced tolerance to ethanol, as well as methods of making and using such genetically modified microorganisms for production of biofuels based on fermentation of biomass materials.

  16. Lewis acid adducts (BH sub 3 , Me sup + , and Et sup + ) of the. eta. sup 4 and. eta. sup 2 isomers of Cp sup * Ir(thiophene)

    SciTech Connect

    Chen, Jiabi; Angelici, R.J. )

    1990-03-01

    The {eta}{sup 4}-thiophene complex Cp{sup *}Ir({eta}{sup 4}-2,5-Me{sub 2}T) (2), where 2,5-Me{sub 2} is 2,5-dimethylthiophene, reacts with Me{sub 2}S{center dot}BH{sub 3} to give the BH{sub 3} adduct Cp{sup *}Ir({eta}{sup 4}-2,5-Me{sub 2}T{center dot}BH{sub 3}) (6), demonstrating the unusually high basicity of the sulfur in 2 as compared with that in Me{sub 2}S. Basic amines remove the BH{sub 3} in 6 to give 2. Surprisingly, the isomer Cp{sup *}Ir({eta}{sup 2}-2,5-Me{sub 2}T) (4) also reacts with Me{sub 2}S{center dot}BH to give 6. The 2-methylthiophene analogues of 2 and 4 react similarly to give Cp{sup *}Ir({eta}{sup 4}-2-MeT{center dot}BH{sub 3}) (5), whose structure was determined by X-ray diffraction. Complex 2 also reacts with R{sub 3}O{sup +} (R = Me, Et) to give the S-alkylated thiophene complexes Cp{sup *}Ir({eta}{sup 4}-2,5-Me{sub 2}T-R){sup +}.

  17. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost.

    PubMed

    Scaglia, Barbara; Nunes, Ramom Rachide; Rezende, Maria Olímpia Oliveira; Tambone, Fulvia; Adani, Fabrizio

    2016-08-15

    This work studied the auxin-like activity of humic acids (HA) obtained from vermicomposts produced using leather wastes plus cattle dung at different maturation stages (fresh, stable and mature). Bioassays were performed by testing HA concentrations in the range of 100-6000mgcarbonL(-1). (13)C CPMAS-NMR and GC-MS instrumental methods were used to assess the effect of biological processes and starting organic mixtures on HA composition. Not all HAs showed IAA-like activity and in general, IAA-like activity increased with the length of the vermicomposting process. The presence of leather wastes was not necessary to produce the auxin-like activity of HA, since HA extracted from a mix of cattle manure and sawdust, where no leather waste was added, showed IAA-like activity as well. CPMAS (13)CNMR revealed that HAs were similar independently of the mix used and that the humification process involved the increasing concentration of pre-existing alkali soluble fractions in the biomass. GC/MS allowed the identification of the molecules involved in IAA-like effects: carboxylic acids and amino acids. The concentration of active molecules, rather than their simple presence in HA, determined the bio-stimulating effect, and a good linear regression between auxin-like activity and active stimulating molecules concentration was found (R(2)=-0.85; p<0.01, n=6). PMID:27100009

  18. Ferulic acid attenuates adhesion molecule expression in gamma-radiated human umbilical vascular endothelial cells.

    PubMed

    Ma, Zeng-Chun; Hong, Qian; Wang, Yu-Guang; Tan, Hong-Ling; Xiao, Cheng-Rong; Liang, Qian-De; Cai, Shao-Hua; Gao, Yue

    2010-01-01

    Radiation induces an important inflammatory response in the irradiated organs, characterized by leukocyte infiltration and vascular changes. Since adhesion molecules play an important role in facilitating the immune response at the inflammation sites, interfering with the expression of these molecules may be an important therapeutic target of radiation induced inflammation. Many adhesion molecules such as intercellular cell adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) have been identified in radiation. Ferulic acid (FA), an effective radioprotector during radiotherapy, is widely used in endothelium protection. The present study examined the effect of FA on the induction of adhesion molecules by gamma-radiation and the mechanisms of its effect in gamma-irradiated human umbilical vein endothelial cells (HUVECs). HUVECs were pretreated for 18 h with FA and then exposed to 10 Gy radiation. The result of cell adhesion assay showed FA inhibited radiation-induced U937 adhesion to HUVECs. FA prevented induction of ICAM-1 and VCAM-1 expression in a concentration-dependent manner after stimulation with radiation at the level of mRNA and protein. Inhibitors of the extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) pathways were used to determine which pathway was involved in FA action; the result showed that the inhibitory effect of FA on adhesion molecule expression was mediated by the blockade of JNK. FA appears to be a potential therapeutic agent for treating various inflammatory disorders including radiation induced inflammation. PMID:20460750

  19. Nanopore Analysis of Nucleic Acids: Single-Molecule Studies of Molecular Dynamics, Structure, and Base Sequence

    NASA Astrophysics Data System (ADS)

    Olasagasti, Felix; Deamer, David W.

    Nucleic acids are linear polynucleotides in which each base is covalently linked to a pentose sugar and a phosphate group carrying a negative charge. If a pore having roughly the crosssectional diameter of a single-stranded nucleic acid is embedded in a thin membrane and a voltage of 100 mV or more is applied, individual nucleic acids in solution can be captured by the electrical field in the pore and translocated through by single-molecule electrophoresis. The dimensions of the pore cannot accommodate anything larger than a single strand, so each base in the molecule passes through the pore in strict linear sequence. The nucleic acid strand occupies a large fraction of the pore's volume during translocation and therefore produces a transient blockade of the ionic current created by the applied voltage. If it could be demonstrated that each nucleotide in the polymer produced a characteristic modulation of the ionic current during its passage through the nanopore, the sequence of current modulations would reflect the sequence of bases in the polymer. According to this basic concept, nanopores are analogous to a Coulter counter that detects nanoscopic molecules rather than microscopic [1,2]. However, the advantage of nanopores is that individual macromolecules can be characterized because different chemical and physical properties affect their passage through the pore. Because macromolecules can be captured in the pore as well as translocated, the nanopore can be used to detect individual functional complexes that form between a nucleic acid and an enzyme. No other technique has this capability.

  20. Determination of (alpha)-dialkylamino acids and their Enantiomers in Geological Samples by High-Performance Liquid Chromatography after Dervatization with a Chiral Adduct of (omicron)-Phthaldialdehyde

    NASA Technical Reports Server (NTRS)

    Zhoa, Meixun; Bada, Jeffrey L.

    1995-01-01

    Derivatization with (omicron)-phthaldialdehyde (OPA) and the chiral thiol N-acetyl-L-cysteine (NAC) is a convenient and sensitive technique for the HPLC detection and resolution of protein amino acid enantiomers. The kinetics of the reaction of OPA-NAC with (alpha)-dialkylamino acids was investigated. The fluorescence yield of (alpha)-dialkylamino acids was only about 10% of that of protein amino acids when the derivatization was carried out at room temperature for 1-2 min, which is the procedure generally used for protein amino acid analyses. The fluorescence yield of (alpha)-dialkylamino acids can be enhanced by up to ten-fold when the derivatization reaction time is increased to 15 min at room temperature. The OPA-NAC technique was optimized for the detection and enantiomeric resolution of a-dialkylamino acids in geological samples which contain a large excess of protein amino acids. The estimated detection limit for a-dialkylamino acids is 1-2 pmol, comparable to that for protein amino acids.

  1. Covalent adducts arising from the decomposition products of lipid hydroperoxides in the presence of cytochrome C

    PubMed Central

    Williams, Michelle V.; Wishnok, John S.; Tannenbaum, Steven R.

    2008-01-01

    Polyunsaturated fatty acids can be converted to lipid hydroperoxides through non-enzymatic and enzymatic pathways. The prototypic ω-6 lipid hydroperoxide 13-hydroperoxy-octadecadienoic acid (13-HPODE) decomposes homolytically to form highly reactiveα,β-unsaturated aldehydes, such as 9,12-dioxo-10(E)-dodecenoic acid (DODE), 4-oxo-2(E)-nonenal (ONE), 4,5-epoxy-2(E)-decenal (EDE), and 4-hydroxy-2(E)-nonenal (HNE), that can form covalent adducts with DNA. Both 4-oxo-2(E)-nonenal and 4-hydroxy-2(E)-nonenal can also modify proteins to form products that can potentially serve as biomarkers of lipid hydroperoxide-mediated macromolecule damage. In this study cytochrome C was used to identify and characterize the modification sites individually for each of these aldehydes and also to determine the most abundant adduct formed following decomposition of 13-HPODE. The adducts were characterized by ESI-TOF/MS analysis of the intact proteins and by a combination of ESI-ion-trap/MSn and quadrupole-TOF/MS/MS analysis of the tryptic and chymotryptic peptides. The major adducts included an HNE-His Michael adduct on H33, EDE-Lys adducts on K7 and K8, ONE-Lys ketoamide adducts on K5, K7, and K8, an apparent ONE-Lys Michael adduct on K5, and DODE-Lys carboxyl ketoamide adducts on K86 and K87. DODE was the most reactive aldehyde toward cytochrome C. The major adduct from this reaction was analogous to the most abundant adduct resulting from the decomposition of 13-HPODE in the presence of cytochrome C. PMID:17407328

  2. A Small Molecule Inhibits Virion Attachment to Heparan Sulfate- or Sialic Acid-Containing Glycans

    PubMed Central

    Colpitts, Che C.

    2014-01-01

    ABSTRACT Primary attachment to cellular glycans is a critical entry step for most human viruses. Some viruses, such as herpes simplex virus type 1 (HSV-1) and hepatitis C virus (HCV), bind to heparan sulfate, whereas others, such as influenza A virus (IAV), bind to sialic acid. Receptor mimetics that interfere with these interactions are active against viruses that bind to either heparan sulfate or to sialic acid. However, no molecule that inhibits the attachment of viruses in both groups has yet been identified. Epigallocatechin gallate (EGCG), a green tea catechin, is active against many unrelated viruses, including several that bind to heparan sulfate or to sialic acid. We sought to identify the basis for the broad-spectrum activity of EGCG. Here, we show that EGCG inhibits the infectivity of a diverse group of enveloped and nonenveloped human viruses. EGCG acts directly on the virions, without affecting the fluidity or integrity of the virion envelopes. Instead, EGCG interacts with virion surface proteins to inhibit the attachment of HSV-1, HCV, IAV, vaccinia virus, adenovirus, reovirus, and vesicular stomatitis virus (VSV) virions. We further show that EGCG competes with heparan sulfate for binding of HSV-1 and HCV virions and with sialic acid for binding of IAV virions. Therefore, EGCG inhibits unrelated viruses by a common mechanism. Most importantly, we have identified EGCG as the first broad-spectrum attachment inhibitor. Our results open the possibility for the development of small molecule broad-spectrum antivirals targeting virion attachment. IMPORTANCE This study shows that it is possible to develop a small molecule antiviral or microbicide active against the two largest groups of human viruses: those that bind to glycosaminoglycans and those that bind to sialoglycans. This group includes the vast majority of human viruses, including herpes simplex viruses, cytomegalovirus, influenza virus, poxvirus, hepatitis C virus, HIV, and many others. PMID

  3. Oxalic acid: a signal molecule for fungus-feeding bacteria of the genus Collimonas?

    PubMed

    Rudnick, M B; van Veen, J A; de Boer, W

    2015-10-01

    Mycophagous (=fungus feeding) soil bacteria of the genus Collimonas have been shown to colonize and grow on hyphae of different fungal hosts as the only source of energy and carbon. The ability to exploit fungal nutrient resources might require a strategy for collimonads to sense fungi in the soil matrix. Oxalic acid is ubiquitously secreted by soil fungi, serving different purposes. In this study, we investigated the possibility that collimonads might use oxalic acid secretion to localize a fungal host and move towards it. We first confirmed earlier indications that collimonads have a very limited ability to use oxalic acid as growth substrate. In a second step, with using different assays, we show that oxalic acid triggers bacterial movement in such a way that accumulation of cells can be expected at micro-sites with high free oxalic acid concentrations. Based on these observations we propose that oxalic acid functions as a signal molecule to guide collimonads to hyphal tips, the mycelial zones that are most sensitive for mycophagous bacterial attack. PMID:25858310

  4. Lysophosphatidic acid regulates adhesion molecules and enhances migration of human oral keratinocytes.

    PubMed

    Thorlakson, Hong H; Schreurs, Olav; Schenck, Karl; Blix, Inger J S

    2016-04-01

    Oral keratinocytes are connected via cell-to-cell adhesions to protect underlying tissues from physical and bacterial damage. Lysophosphatidic acids (LPAs) are a family of phospholipid mediators that have the ability to regulate gene expression, cytoskeletal rearrangement, and cytokine/chemokine secretion, which mediate proliferation, migration, and differentiation. Several forms of LPA are found in saliva and gingival crevicular fluid, but it is unknown how they affect human oral keratinocytes (HOK). The aim of the present study was therefore to examine how different LPA forms affect the expression of adhesion molecules and the migration and proliferation of HOK. Keratinocytes were isolated from gingival biopsies obtained from healthy donors and challenged with different forms of LPA. Quantitative real-time RT-PCR, immunocytochemistry, and flow cytometry were used to analyze the expression of adhesion molecules. Migration and proliferation assays were performed. Lysophosphatidic acids strongly promoted expression of E-cadherin and occludin mRNAs and translocation of E-cadherin protein from the cytoplasm to the membrane. Occludin and claudin-1 proteins were up-regulated by LPA. Migration of HOK in culture was increased, but proliferation was reduced, by the addition of LPA. This indicates that LPA can have a role in the regulation of the oral epithelial barrier by increasing the expression of adhesion molecules of HOK, by promotion of migration and by inhibition of proliferation. PMID:26913569

  5. Glutathione transferase A4-4 resists adduction by 4-hydroxynonenal☆

    PubMed Central

    Shireman, Laura M.; Kripps, Kimberly A.; Balogh, Larissa M.; Conner, Kip P.; Whittington, Dale; Atkins, William M.

    2010-01-01

    4-Hydroxy-2-trans-nonenal (HNE) is a lipid peroxidation product that contributes to the pathophysiology of several diseases with components of oxidative stress. The electrophilic nature of HNE results in covalent adduct formation with proteins, fatty acids and DNA. However, it remains unclear whether enzymes that metabolize HNE avoid inactivation by it. Glutathione transferase A4-4 (GST A4-4) plays a significant role in the elimination of HNE by conjugating it with glutathione (GSH), with catalytic activity toward HNE that is dramatically higher than the homologous GST A1-1 or distantly related GSTs. To determine whether enzymes that metabolize HNE resist its covalent adduction, the rates of adduction of these GST isoforms were compared and the functional effects of adduction on catalytic properties were determined. Although GST A4-4 and GST A1-1 have striking structural similarity, GST A4-4 was insensitive to adduction by HNE under conditions that yield modest adduction of GST A1-1 and extensive adduction of GST P1-1. Furthermore, adduction of GST P1-1 by HNE eliminated its activity toward the substrates 1-chloro- 2,4-dinitrobenzene (CDNB) and toward HNE itself. HNE effects on GST A4-4 and A1-1 were less significant. The results indicate that enzymes that metabolize HNE may have evolved structurally to resist covalent adduction by it. PMID:20836986

  6. Glutathione transferase A4-4 resists adduction by 4-hydroxynonenal.

    PubMed

    Shireman, Laura M; Kripps, Kimberly A; Balogh, Larissa M; Conner, Kip P; Whittington, Dale; Atkins, William M

    2010-12-15

    4-Hydroxy-2-trans-nonenal (HNE) is a lipid peroxidation product that contributes to the pathophysiology of several diseases with components of oxidative stress. The electrophilic nature of HNE results in covalent adduct formation with proteins, fatty acids and DNA. However, it remains unclear whether enzymes that metabolize HNE avoid inactivation by it. Glutathione transferase A4-4 (GST A4-4) plays a significant role in the elimination of HNE by conjugating it with glutathione (GSH), with catalytic activity toward HNE that is dramatically higher than the homologous GST A1-1 or distantly related GSTs. To determine whether enzymes that metabolize HNE resist its covalent adduction, the rates of adduction of these GST isoforms were compared and the functional effects of adduction on catalytic properties were determined. Although GST A4-4 and GST A1-1 have striking structural similarity, GST A4-4 was insensitive to adduction by HNE under conditions that yield modest adduction of GST A1-1 and extensive adduction of GST P1-1. Furthermore, adduction of GST P1-1 by HNE eliminated its activity toward the substrates 1-chloro-2,4-dinitrobenzene (CDNB) and toward HNE itself. HNE effects on GST A4-4 and A1-1 were less significant. The results indicate that enzymes that metabolize HNE may have evolved structurally to resist covalent adduction by it. PMID:20836986

  7. Photoelectron circular dichroism of the randomly oriented chiral molecules glyceraldehyde and lactic acid

    NASA Astrophysics Data System (ADS)

    Powis, Ivan

    2000-01-01

    The differing interaction of left and right circularly polarized light with chiral molecules is shown to lead to different angular distributions of the photoelectrons created by photoionization of a given enantiomer, even when the target molecules are randomly oriented. Numerical calculations are presented to demonstrate the magnitude of this effect for the C3H6O3 structural isomers lactic acid and glyceraldehyde, including two different conformations of the latter. Circular dichroism in the angular distributions (CDAD) of the valence electrons of these biomolecules is most pronounced close to threshold, but tends to vanish as the electron kinetic energy approaches 20 eV and above. CDAD signals are predicted to range, typically, from 10% to 40% and sometimes to more than 60% of the differential cross section.

  8. Modeling the binding of fulvic acid by goethite: the speciation of adsorbed FA molecules

    NASA Astrophysics Data System (ADS)

    Filius, Jeroen D.; Meeussen, Johannes C. L.; Lumsdon, David G.; Hiemstra, Tjisse; van Riemsdijk, Willem H.

    2003-04-01

    Under natural conditions, the adsorption of ions at the solid-water interface may be strongly influenced by the adsorption of organic matter. In this paper, we describe the adsorption of fulvic acid (FA) by metal(hydr)oxide surfaces with a heterogeneous surface complexation model, the ligand and charge distribution (LCD) model. The model is a self-consistent combination of the nonideal competitive adsorption (NICA) equation and the CD-MUSIC model. The LCD model can describe simultaneously the concentration, pH, and salt dependency of the adsorption with a minimum of only three adjustable parameters. Furthermore, the model predicts the coadsorption of protons accurately for an extended range of conditions. Surface speciation calculations show that almost all hydroxyl groups of the adsorbed FA molecules are involved in outer sphere complexation reactions. The carboxylic groups of the adsorbed FA molecule form inner and outer sphere complexes. Furthermore, part of the carboxylate groups remain noncoordinated and deprotonated.

  9. Controlled synthesis and inclusion ability of a hyaluronic acid derivative bearing beta-cyclodextrin molecules.

    PubMed

    Charlot, Aurélia; Heyraud, Alain; Guenot, Pierre; Rinaudo, Marguerite; Auzély-Velty, Rachel

    2006-03-01

    A new synthetic route to beta-cyclodextrin-linked hyaluronic acid (HA-CD) was developed. This was based on the preparation of a HA derivative selectively modified with adipic dihydrazide (HA-ADH) and a beta-cyclodextrin derivative possessing an aldehyde function on the primary face, followed by their coupling by a reductive amination-type reaction. The CD-polysaccharide was fully characterized in terms of chemical integrity and purity by high-resolution NMR spectroscopy. The complexation ability of the grafted CD was further demonstrated by isothermal titration calorimetry using sodium adamantane acetate (ADAc) and Ibuprofen as model guest molecules. The thermodynamic parameters for the complexation of these negatively charged guest molecules by the beta-CD grafted on negatively charged HA were shown to be largely influenced by the ionic strength of the aqueous medium. PMID:16529430

  10. An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode.

    PubMed

    Doni, Andrea; Musso, Tiziana; Morone, Diego; Bastone, Antonio; Zambelli, Vanessa; Sironi, Marina; Castagnoli, Carlotta; Cambieri, Irene; Stravalaci, Matteo; Pasqualini, Fabio; Laface, Ilaria; Valentino, Sonia; Tartari, Silvia; Ponzetta, Andrea; Maina, Virginia; Barbieri, Silvia S; Tremoli, Elena; Catapano, Alberico L; Norata, Giuseppe D; Bottazzi, Barbara; Garlanda, Cecilia; Mantovani, Alberto

    2015-06-01

    Pentraxin 3 (PTX3) is a fluid-phase pattern recognition molecule and a key component of the humoral arm of innate immunity. In four different models of tissue damage in mice, PTX3 deficiency was associated with increased fibrin deposition and persistence, and thicker clots, followed by increased collagen deposition, when compared with controls. Ptx3-deficient macrophages showed defective pericellular fibrinolysis in vitro. PTX3-bound fibrinogen/fibrin and plasminogen at acidic pH and increased plasmin-mediated fibrinolysis. The second exon-encoded N-terminal domain of PTX3 recapitulated the activity of the intact molecule. Thus, a prototypic component of humoral innate immunity, PTX3, plays a nonredundant role in the orchestration of tissue repair and remodeling. Tissue acidification resulting from metabolic adaptation during tissue repair sets PTX3 in a tissue remodeling and repair mode, suggesting that matrix and microbial recognition are common, ancestral features of the humoral arm of innate immunity. PMID:25964372

  11. An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode

    PubMed Central

    Doni, Andrea; Musso, Tiziana; Morone, Diego; Bastone, Antonio; Zambelli, Vanessa; Sironi, Marina; Castagnoli, Carlotta; Cambieri, Irene; Stravalaci, Matteo; Pasqualini, Fabio; Laface, Ilaria; Valentino, Sonia; Tartari, Silvia; Ponzetta, Andrea; Maina, Virginia; Barbieri, Silvia S.; Tremoli, Elena; Catapano, Alberico L.; Norata, Giuseppe D.; Bottazzi, Barbara; Garlanda, Cecilia

    2015-01-01

    Pentraxin 3 (PTX3) is a fluid-phase pattern recognition molecule and a key component of the humoral arm of innate immunity. In four different models of tissue damage in mice, PTX3 deficiency was associated with increased fibrin deposition and persistence, and thicker clots, followed by increased collagen deposition, when compared with controls. Ptx3-deficient macrophages showed defective pericellular fibrinolysis in vitro. PTX3-bound fibrinogen/fibrin and plasminogen at acidic pH and increased plasmin-mediated fibrinolysis. The second exon-encoded N-terminal domain of PTX3 recapitulated the activity of the intact molecule. Thus, a prototypic component of humoral innate immunity, PTX3, plays a nonredundant role in the orchestration of tissue repair and remodeling. Tissue acidification resulting from metabolic adaptation during tissue repair sets PTX3 in a tissue remodeling and repair mode, suggesting that matrix and microbial recognition are common, ancestral features of the humoral arm of innate immunity. PMID:25964372

  12. A systematic method for studying the spatial distribution of water molecules around nucleic acid bases.

    PubMed Central

    Schneider, B; Cohen, D M; Schleifer, L; Srinivasan, A R; Olson, W K; Berman, H M

    1993-01-01

    A new method to analyze the distribution of water molecules around the bases in DNA is presented. This method relies on the notion of a "hydrated building block," which represents the joint observed hydration around all bases of a particular type, in structures of a particular conformation type. The hydrated building blocks were constructed using atomic coordinates from 40 structures contained in the Nucleic Acid Database. Pseudoelectron densities were calculated for water molecules in each hydrated building block using standard crystallographic procedures. The electron densities were fitted to obtain "average building blocks," which represent bases with waters only at average or probable positions. Both types of building blocks were used to construct models of hydrated DNA oligomers. The essential features of the solvent structure around d(CGCGAATTCGCG)2 in the B form and d(CGCGCG)2 in the Z form were reproduced. Images FIGURE 4 FIGURE 5 PMID:8312469

  13. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    PubMed Central

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K.; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P.; Rondo, Linda; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S.; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M.; Worsnop, Douglas R.

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  14. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules.

    PubMed

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P; Rondo, Linda; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M; Worsnop, Douglas R

    2013-10-22

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  15. Covalent thiol adducts arising from reactive intermediates of cocaine biotransformation.

    PubMed

    Schneider, Kevin J; DeCaprio, Anthony P

    2013-11-18

    Exposure to cocaine results in the depletion of hepatocellular glutathione and macromolecular protein binding in humans. Such cocaine-induced responses have generally been attributed to oxidative stress and reactive metabolites resulting from oxidative activation of the cocaine tropane nitrogen. However, little conclusive data exists on the mechanistic pathways leading to protein modification or the structure and specificity of cocaine-derived adduction products. We now report a previously uncharacterized route of cocaine bioactivation leading to the covalent adduction of biological thiols, including cysteine and glutathione. Incubation of cocaine with biological nucleophiles in an in vitro biotransformation system containing human liver microsomes identified a monooxygenase-mediated event leading to the oxidation of, and subsequent sulfhydryl addition to, the cocaine aryl moiety. Adduct structures were confirmed using ultra-high performance liquid chromatography coupled to high resolution, high mass accuracy mass spectrometry. Examination of assays containing transgenic bactosomes expressing single human cytochrome P450 isoforms determined the role of P450s 1A2, 2C19, and 2D6 in the oxidation process resulting in adduct formation. P450-catalyzed aryl epoxide formation and subsequent attack by free nucleophilic moieties is consistent with the resulting adduct structures, mechanisms of formation, and the empirical observation of multiple structural and stereo isomers. Analogous adduction mechanisms were maintained across all sulfhydryl-containing nucleophile models examined; N-acetylcysteine, glutathione, and a synthetic cysteine-containing hexapeptide. Predictive in silico calculations of molecular reactivity and electrophilicity/nucleophilicity were compared to the results of in vitro assay incubations in order to better understand the adduction process using the principles of hard and soft acid and base (HSAB) theory. This study elucidated a novel metabolic

  16. Ab initio investigation of the adsorption of zoledronic acid molecule on hydroxyapatite (001) surface: an atomistic insight of bone protection

    NASA Astrophysics Data System (ADS)

    Ri, Mun-Hyok; Yu, Chol-Jun; Jang, Yong-Man; Kim, Song-Un

    2016-03-01

    We report a computational study of the adsorption of zoledronic acid molecule on hydroxyapatite (001) surface within ab initio density functional theory. The systematic study has been performed, from hydroxyapatite bulk and surface, and zoledronic acid molecule to the adsorption of the molecule on the surface. The optimized bond lengths and bond angles were obtained and analyzed, giving an evidence of structural similarity between subjects under study. The formation energies of hydroxyapatite (001) surfaces with two kinds of terminations were computed as about 1.2 and 1.5 J/m^2 with detailed atomistic structural information. We determined the adsorption energies of zoledronic acid molecule on the surfaces, which are -260 kJ/mol at 0.25 ML and -400 kJ/mol at 0.5 ML. An atomistic insight of strong binding affinity of zoledronic acid to the hydroxyapatite surface was given and discussed.

  17. Elastic Properties of Nucleic Acids by Single-Molecule Force Spectroscopy.

    PubMed

    Camunas-Soler, Joan; Ribezzi-Crivellari, Marco; Ritort, Felix

    2016-07-01

    We review the current knowledge on the use of single-molecule force spectroscopy techniques to extrapolate the elastic properties of nucleic acids. We emphasize the lesser-known elastic properties of single-stranded DNA. We discuss the importance of accurately determining the elastic response in pulling experiments, and we review the simplest models used to rationalize the experimental data as well as the experimental approaches used to pull single-stranded DNA. Applications used to investigate DNA conformational transitions and secondary structure formation are also highlighted. Finally, we provide an overview of the effects of salt and temperature and briefly discuss the effects of contour length and sequence dependence. PMID:27145878

  18. Mycosporine-like amino acids are multifunctional molecules in sea hares and their marine community

    PubMed Central

    Kicklighter, Cynthia E.; Kamio, Michiya; Nguyen, Linh; Germann, Markus W.; Derby, Charles D.

    2011-01-01

    Molecules of keystone significance are relatively rare, yet mediate a variety of interactions between organisms. They influence the distribution and abundance of species, the transfer of energy across multiple trophic levels, and thus they play significant roles in structuring ecosystems. Despite their potential importance in facilitating our understanding of ecological systems, only three molecules thus far have been proposed as molecules of keystone significance: saxitoxin and dimethyl sulfide in marine communities and tetrodotoxin in riparian communities. In the course of studying the neuroecology of chemical defenses, we identified three mycosporine-like amino acids (MAAs)—N-ethanol palythine (= asterina-330), N-isopropanol palythine (= aplysiapalythine A), and N-ethyl palythine (= aplysiapalythine B)—as intraspecific alarm cues for sea hares (Aplysia californica). These alarm cues are released in the ink secretion of sea hares and cause avoidance behaviors in neighboring conspecifics. Further, we show that these three bioactive MAAs, two [aplysiapalythine A (APA) and -B (APB)] being previously unknown molecules, are present in the algal diet of sea hares and are concentrated in their defensive secretion as well as in their skin. MAAs are known to be produced by algae, fungi, and cyanobacteria and are acquired by many aquatic animals through trophic interactions. MAAs are widely used as sunscreens, among other uses, but sea hares modify their function to serve a previously undocumented role, as intraspecific chemical cues. Our findings highlight the multifunctionality of MAAs and their role in ecological connectivity, suggesting that they may function as molecules of keystone significance in marine ecosystems. PMID:21709250

  19. Evolution of HLA class II molecules: Allelic and amino acid site variability across populations.

    PubMed Central

    Salamon, H; Klitz, W; Easteal, S; Gao, X; Erlich, H A; Fernandez-Viña, M; Trachtenberg, E A; McWeeney, S K; Nelson, M P; Thomson, G

    1999-01-01

    Analysis of the highly polymorphic beta1 domains of the HLA class II molecules encoded by the DRB1, DQB1, and DPB1 loci reveals contrasting levels of diversity at the allele and amino acid site levels. Statistics of allele frequency distributions, based on Watterson's homozygosity statistic F, reveal distinct evolutionary patterns for these loci in ethnically diverse samples (26 populations for DQB1 and DRB1 and 14 for DPB1). When examined over all populations, the DQB1 locus allelic variation exhibits striking balanced polymorphism (P < 10(-4)), DRB1 shows some evidence of balancing selection (P < 0.06), and while there is overall very little evidence for selection of DPB1 allele frequencies, there is a trend in the direction of balancing selection (P < 0.08). In contrast, at the amino acid level all three loci show strong evidence of balancing selection at some sites. Averaged over polymorphic amino acid sites, DQB1 and DPB1 show similar deviation from neutrality expectations, and both exhibit more balanced polymorphic amino acid sites than DRB1. Across ethnic groups, polymorphisms at many codons show evidence for balancing selection, yet data consistent with directional selection were observed at other codons. Both antigen-binding pocket- and non-pocket-forming amino acid sites show overall deviation from neutrality for all three loci. Only in the case of DRB1 was there a significant difference between pocket- and non-pocket-forming amino acid sites. Our findings indicate that balancing selection at the MHC occurs at the level of polymorphic amino acid residues, and that in many cases this selection is consistent across populations. PMID:10224269

  20. Organocatalytic removal of formaldehyde adducts from RNA and DNA bases

    NASA Astrophysics Data System (ADS)

    Karmakar, Saswata; Harcourt, Emily M.; Hewings, David S.; Lovejoy, Alexander F.; Kurtz, David M.; Ehrenschwender, Thomas; Barandun, Luzi J.; Roost, Caroline; Alizadeh, Ash A.; Kool, Eric T.

    2015-09-01

    Formaldehyde is universally used to fix tissue specimens, where it forms hemiaminal and aminal adducts with biomolecules, hindering the ability to retrieve molecular information. Common methods for removing these adducts involve extended heating, which can cause extensive degradation of nucleic acids, particularly RNA. Here, we show that water-soluble bifunctional catalysts (anthranilates and phosphanilates) speed the reversal of formaldehyde adducts of mononucleotides over standard buffers. Studies with formaldehyde-treated RNA oligonucleotides show that the catalysts enhance adduct removal, restoring unmodified RNA at 37 °C even when extensively modified, while avoiding the high temperatures that promote RNA degradation. Experiments with formalin-fixed, paraffin-embedded cell samples show that the catalysis is compatible with common RNA extraction protocols, with detectable RNA yields increased by 1.5-2.4-fold using a catalyst under optimized conditions and by 7-25-fold compared with a commercial kit. Such catalytic strategies show promise for general use in reversing formaldehyde adducts in clinical specimens.

  1. Organocatalytic removal of formaldehyde adducts from RNA and DNA bases.

    PubMed

    Karmakar, Saswata; Harcourt, Emily M; Hewings, David S; Scherer, Florian; Lovejoy, Alexander F; Kurtz, David M; Ehrenschwender, Thomas; Barandun, Luzi J; Roost, Caroline; Alizadeh, Ash A; Kool, Eric T

    2015-09-01

    Formaldehyde is universally used to fix tissue specimens, where it forms hemiaminal and aminal adducts with biomolecules, hindering the ability to retrieve molecular information. Common methods for removing these adducts involve extended heating, which can cause extensive degradation of nucleic acids, particularly RNA. Here, we show that water-soluble bifunctional catalysts (anthranilates and phosphanilates) speed the reversal of formaldehyde adducts of mononucleotides over standard buffers. Studies with formaldehyde-treated RNA oligonucleotides show that the catalysts enhance adduct removal, restoring unmodified RNA at 37 °C even when extensively modified, while avoiding the high temperatures that promote RNA degradation. Experiments with formalin-fixed, paraffin-embedded cell samples show that the catalysis is compatible with common RNA extraction protocols, with detectable RNA yields increased by 1.5-2.4-fold using a catalyst under optimized conditions and by 7-25-fold compared with a commercial kit. Such catalytic strategies show promise for general use in reversing formaldehyde adducts in clinical specimens. PMID:26291948

  2. Ultrasensitive isolation, identification and quantification of DNA-protein adducts by ELISA-based RADAR assay.

    PubMed

    Kiianitsa, Kostantin; Maizels, Nancy

    2014-07-01

    Enzymes that form transient DNA-protein covalent complexes are targets for several potent classes of drugs used to treat infectious disease and cancer, making it important to establish robust and rapid procedures for analysis of these complexes. We report a method for isolation of DNA-protein adducts and their identification and quantification, using techniques compatible with high-throughput screening. This method is based on the RADAR assay for DNA adducts that we previously developed (Kiianitsa and Maizels (2013) A rapid and sensitive assay for DNA-protein covalent complexes in living cells. Nucleic Acids Res., 41:e104), but incorporates three key new steps of broad applicability. (i) Silica-assisted ethanol/isopropanol precipitation ensures reproducible and efficient recovery of DNA and DNA-protein adducts at low centrifugal forces, enabling cell culture and DNA precipitation to be carried out in a single microtiter plate. (ii) Rigorous purification of DNA-protein adducts by a procedure that eliminates free proteins and free nucleic acids, generating samples suitable for detection of novel protein adducts (e.g. by mass spectroscopy). (iii) Identification and quantification of DNA-protein adducts by direct ELISA assay. The ELISA-based RADAR assay can detect Top1-DNA and Top2a-DNA adducts in human cells, and gyrase-DNA adducts in Escherichia coli. This approach will be useful for discovery and characterization of new drugs to treat infectious disease and cancer, and for development of companion diagnostics assays for individualized medicine. PMID:24914050

  3. 3-Nitropropionic Acid is a Suicide Inhibitor of MitochondrialRespiration that, Upon Oxidation by Complex II, Forms a Covalent AdductWith a Catalytic Base Arginine in the Active Site of the Enzyme

    SciTech Connect

    Huang, Li-shar; Sun, Gang; Cobessi, David; Wang, Andy C.; Shen,John T.; Tung, Eric Y.; Anderson, Vernon E.; Berry, Edward A.

    2005-12-01

    We report three new structures of mitochondrial respiratory Complex II (succinate ubiquinone oxidoreductase, E.C. 1.3.5.1) at up to 2.1 {angstrom} resolution, with various inhibitors. The structures define the conformation of the bound inhibitors and suggest the residues involved in substrate binding and catalysis at the dicarboxylate site. In particular they support the role of Arg297 as a general base catalyst accepting a proton in the dehydrogenation of succinate. The dicarboxylate ligand in oxaloacetate-containing crystals appears to be the same as that reported for Shewanella flavocytochrome c treated with fumarate. The plant and fungal toxin 3-nitropropionic acid, an irreversible inactivator of succinate dehydrogenase, forms a covalent adduct with the side chain of Arg297. The modification eliminates a trypsin cleavage site in the flavoprotein, and tandem mass spectroscopic analysis of the new fragment shows the mass of Arg 297 to be increased by 83 Da and to have potential of losing 44 Da, consistent with decarboxylation, during fragmentation.

  4. Formation of metal-ion adducts and evidence for surface-catalyzed ionization in electrospray analysis of pharmaceuticals and pesticides

    USGS Publications Warehouse

    Thurman, E.M.; Ferrer, I.

    2002-01-01

    The formation of metal ion adducts in liquid chromatography/mass spectrometry positive-ion electrospray analysis of pharmaceuticals and pesticides was investigated. The evidence of surface-catalyzed ionization in the electrospray analysis was also studied. Both positive and negative ion mass spectrometry were used for the analysis of the products. It was found that the sodium adducts formed in the analysis included single, double, and triple sodium adducts. Adduction was found to occur by attachment of the metal ion to carboxyl, carbonyl and aromatic pi electrons of the molecule.

  5. Intramolecular Tetrylene Lewis Adducts: Synthesis and Reactivity.

    PubMed

    Schneider, Julia; Krebs, Kilian M; Freitag, Sarah; Eichele, Klaus; Schubert, Hartmut; Wesemann, Lars

    2016-07-01

    A series of benzyl(diphenylphosphino) and o-phenyl(diphenlyphosphino) substituted germylenes and plumbylenes were synthesized by nucleophilic substitution between the respective lithium reagent and tetrylene halide. The Lewis pairs were characterized by X-ray crystallography and NMR spectroscopy. The reactivity of the tetrylenes was investigated with respect to azide addition. In the germylene case, the germaniumimide was formed as the kinetically controlled product, which rearranges upon heating to give the phosphinimide. The stannylene and plumbylene derivatives react with adamantylazide to give the azide adducts. 1-Pentene reacts diastereoselectively with the phosphagermirane to give a cyclic addition product. Trimethysilylacetylene shows an addition with the benzylphosphino-substituted germylene and plumbylene to give the cycloheteropentene molecules. The addition product between phenylacetylene and the four membered Ge-P adduct shows after addition at room temperature a 1,4-phenylmigration to give a cyclic phosphine. Alkylnitrene insertion into a Ge-C bond of the alkyne addition product of the phosphagermirane was found in reaction with adamantylazide. PMID:27273819

  6. Nucleic Acid Chaperone Activity of HIV-1 NC Proteins Investigated by Single Molecule DNA Stretching

    NASA Astrophysics Data System (ADS)

    Williams, Mark C.; Gorelick, Robert J.; Musier-Forsyth, Karin; Bloomfield, Victor A.

    2002-03-01

    HIV-1 Nucleocapsid Protein (NC) is a nucleic acid chaperone protein that is responsible for facilitating numerous nucleic acid rearrangements throughout the reverse transcription cycle of HIV-1. To understand the mechanism of NC’s chaperone function, we carried out single molecule DNA stretching studies in the presence of NC and mutant forms of NC. Using an optical tweezers instrument, we stretch single DNA molecules from the double-stranded helical state to the single-stranded (coil) state. Based on the observed cooperativity of DNA force-induced melting, we find that the fraction of melted base pairs at room temperature is increased dramatically in the presence of NC. Thus, upon NC binding, increased thermal fluctuations cause continuous melting and reannealing of base pairs so that DNA strands are able to rapidly sample configurations in order to find the lowest energy state. While NC destabilizes the double-stranded form of DNA, a mutant form of NC that lacks the zinc finger structures does not. DNA stretching experiments carried out in the presence of NC variants containing more subtle changes in the zinc finger structures were conducted to elucidate the contribution of each individual finger to NC’s chaperone activity, and these results will be reported.

  7. Bioactive Molecules Released in Food by Lactic Acid Bacteria: Encrypted Peptides and Biogenic Amines

    PubMed Central

    Pessione, Enrica; Cirrincione, Simona

    2016-01-01

    Lactic acid bacteria (LAB) can produce a huge amount of bioactive compounds. Since their elective habitat is food, especially dairy but also vegetal food, it is frequent to find bioactive molecules in fermented products. Sometimes these compounds can have adverse effects on human health such as biogenic amines (tyramine and histamine), causing allergies, hypertensive crises, and headache. However, some LAB products also display benefits for the consumers. In the present review article, the main nitrogen compounds produced by LAB are considered. Besides biogenic amines derived from the amino acids tyrosine, histidine, phenylalanine, lysine, ornithine, and glutamate by decarboxylation, interesting peptides can be decrypted by the proteolytic activity of LAB. LAB proteolytic system is very efficient in releasing encrypted molecules from several proteins present in different food matrices. Alpha and beta-caseins, albumin and globulin from milk and dairy products, rubisco from spinach, beta-conglycinin from soy and gluten from cereals constitute a good source of important bioactive compounds. These encrypted peptides are able to control nutrition (mineral absorption and oxidative stress protection), metabolism (blood glucose and cholesterol lowering) cardiovascular function (antithrombotic and hypotensive action), infection (microbial inhibition and immunomodulation) and gut-brain axis (opioids and anti-opioids controlling mood and food intake). Very recent results underline the role of food-encrypted peptides in protein folding (chaperone-like molecules) as well as in cell cycle and apoptosis control, suggesting new and positive aspects of fermented food, still unexplored. In this context, the detailed (transcriptomic, proteomic, and metabolomic) characterization of LAB of food interest (as starters, biocontrol agents, nutraceuticals, and probiotics) can supply a solid evidence-based science to support beneficial effects and it is a promising approach as well to obtain

  8. Bioactive Molecules Released in Food by Lactic Acid Bacteria: Encrypted Peptides and Biogenic Amines.

    PubMed

    Pessione, Enrica; Cirrincione, Simona

    2016-01-01

    Lactic acid bacteria (LAB) can produce a huge amount of bioactive compounds. Since their elective habitat is food, especially dairy but also vegetal food, it is frequent to find bioactive molecules in fermented products. Sometimes these compounds can have adverse effects on human health such as biogenic amines (tyramine and histamine), causing allergies, hypertensive crises, and headache. However, some LAB products also display benefits for the consumers. In the present review article, the main nitrogen compounds produced by LAB are considered. Besides biogenic amines derived from the amino acids tyrosine, histidine, phenylalanine, lysine, ornithine, and glutamate by decarboxylation, interesting peptides can be decrypted by the proteolytic activity of LAB. LAB proteolytic system is very efficient in releasing encrypted molecules from several proteins present in different food matrices. Alpha and beta-caseins, albumin and globulin from milk and dairy products, rubisco from spinach, beta-conglycinin from soy and gluten from cereals constitute a good source of important bioactive compounds. These encrypted peptides are able to control nutrition (mineral absorption and oxidative stress protection), metabolism (blood glucose and cholesterol lowering) cardiovascular function (antithrombotic and hypotensive action), infection (microbial inhibition and immunomodulation) and gut-brain axis (opioids and anti-opioids controlling mood and food intake). Very recent results underline the role of food-encrypted peptides in protein folding (chaperone-like molecules) as well as in cell cycle and apoptosis control, suggesting new and positive aspects of fermented food, still unexplored. In this context, the detailed (transcriptomic, proteomic, and metabolomic) characterization of LAB of food interest (as starters, biocontrol agents, nutraceuticals, and probiotics) can supply a solid evidence-based science to support beneficial effects and it is a promising approach as well to obtain

  9. The role of polymorphic amino acids of the MHC molecule in the selection of the T cell repertoire

    SciTech Connect

    Bhayani, H.R.; Hedrick, S.M. )

    1991-02-15

    Allelic variants of MHC molecules expressed on cells of the thymus affect the selection and the specificity of the T cell repertoire. The selection is based on either the direct recognition by the TCR of the MHC molecules, or the recognition of a complex determinant formed by self-peptides bound to MHC molecules. In an analysis of the T cell repertoire in bone marrow chimeras that express allelic forms of MHC class II molecules in the thymus epithelium, we find that amino acid substitutions that are predicted to affect peptide binding influence the selection of the T cell repertoire during thymic selection.

  10. Single-Molecule Imaging Reveals That Argonaute Reshapes the Binding Properties of Its Nucleic Acid Guides

    PubMed Central

    Salomon, William E.; Jolly, Samson M.; Moore, Melissa J.; Zamore, Phillip D.; Serebrov, Victor

    2015-01-01

    SUMMARY Argonaute proteins repress gene expression and defend against foreign nucleic acids using short RNAs or DNAs to specify the correct target RNA or DNA sequence. We have developed single-molecule methods to analyze target binding and cleavage mediated by the Argonaute:guide complex, RISC. We find that both eukaryotic and prokaryotic Argonaute proteins reshape the fundamental properties of RNA:RNA, RNA:DNA, and DNA:DNA hybridization: a small RNA or DNA bound to Argonaute as a guide no longer follows the well-established rules by which oligonucleotides find, bind, and dissociate from complementary nucleic acid sequences. Argonautes distinguish substrates from targets with similar complementarity. Mouse AGO2, for example, binds tighter to miRNA targets than its RNAi cleavage product, even though the cleaved product contains more base pairs. By re-writing the rules for nucleic acid hybridization, Argonautes allow oligonucleotides to serve as specificity determinants with thermodynamic and kinetic properties more typical of RNA-binding proteins than of RNA or DNA. PMID:26140592

  11. Single-Molecule Imaging Reveals that Argonaute Reshapes the Binding Properties of Its Nucleic Acid Guides.

    PubMed

    Salomon, William E; Jolly, Samson M; Moore, Melissa J; Zamore, Phillip D; Serebrov, Victor

    2015-07-01

    Argonaute proteins repress gene expression and defend against foreign nucleic acids using short RNAs or DNAs to specify the correct target RNA or DNA sequence. We have developed single-molecule methods to analyze target binding and cleavage mediated by the Argonaute:guide complex, RISC. We find that both eukaryotic and prokaryotic Argonaute proteins reshape the fundamental properties of RNA:RNA, RNA:DNA, and DNA:DNA hybridization—a small RNA or DNA bound to Argonaute as a guide no longer follows the well-established rules by which oligonucleotides find, bind, and dissociate from complementary nucleic acid sequences. Argonautes distinguish substrates from targets with similar complementarity. Mouse AGO2, for example, binds tighter to miRNA targets than its RNAi cleavage product, even though the cleaved product contains more base pairs. By re-writing the rules for nucleic acid hybridization, Argonautes allow oligonucleotides to serve as specificity determinants with thermodynamic and kinetic properties more typical of RNA-binding proteins than of RNA or DNA. PMID:26140592

  12. Propaedeutic study for the delivery of nucleic acid-based molecules from PLGA microparticles and stearic acid nanoparticles

    PubMed Central

    Grassi, G; Coceani, N; Farra, R; Dapas, B; Racchi, G; Fiotti, N; Pascotto, A; Rehimers, B; Guarnieri, G; Grassi, M

    2006-01-01

    We studied the mechanism governing the delivery of nucleic acid-based drugs (NABD) from microparticles and nanoparticles in zero shear conditions, a situation occurring in applications such as in situ delivery to organ parenchyma. The delivery of a NABD molecule from poly(DL-lactide-co-glycolide) (PLGA) microparticles and stearic acid (SA) nanoparticles was studied using an experimental apparatus comprising a donor chamber separated from the receiver chamber by a synthetic membrane. A possible toxic effect on cell biology, as evaluated by studying cell proliferation, was also conducted for just PLGA microparticles. A mathematical model based on the hypothesis that NABD release from particles is due to particle erosion was used to interpret experimental release data. Despite zero shear conditions imposed in the donor chamber, particle erosion was the leading mechanism for NABD release from both PLGA microparticles and SA nanoparticles. PLGA microparticle erosion speed is one order of magnitude higher than that of competing to SA nanoparticles. Finally, no deleterious effects of PLGA microparticles on cell proliferation were detected. Thus, the data here reported can help optimize the delivery systems aimed at release of NABD from micro- and nanoparticles. PMID:17722283

  13. Quantitation of 4,4′-methylene diphenyl diisocyanate human serum albumin adducts

    PubMed Central

    Luna, Leah G.; Green, Brett J.; Zhang, Fagen; Arnold, Scott M.; Siegel, Paul D.; Bartels, Michael J.

    2016-01-01

    4,4′-Methylene diphenyl diisocyanate (herein 4,4′-MDI) is used in the production of polyurethane foams, elastomers, coatings, adhesives and the like for a wide range of commercial products. Occupational exposure to MDI levels above current airborne exposure limits can elicit immune mediated hypersensitivity reactions such as occupational asthma in sensitive individuals. To accurately determine exposure, there has been increasing interest in developing analytical methods to measure internal biomarkers of exposure to MDI. Previous investigators have reported methodologies for measuring MDI diamine metabolites and MDI-Lysine (4,4′-MDI-Lys) adducts. The purpose of this study was to develop and validate an ultra performance liquid chromatography isotope dilution tandem mass spectrometry (UPLC-ID/MS/MS) quantitation method via a signature peptide approach to enable biomonitoring of 4,4′-MDI adducted to human serum albumin (HSA) in plasma. A murine, anti-4,4′-MDI monoclonal IgM antibody was bound to magnetic beads and utilized for enrichment of the MDI adducted HSA. Following enrichment, trypsin digestion was performed to generate the expected 414 site (primary site of adduction) 4,4′-MDI-adducted HSA signature peptide that was quantified by UPLC-ID/MS/MS. An Agilent 6530 UPLC/quadrupole time of flight MS (QTOF) system was utilized for intact adducted protein analysis and an Agilent 6490 UPLC/MS/MS system operated in multiple reaction monitoring (MRM) mode was utilized for quantification of the adducted signature peptide biomarker both for in chemico and worker serum samples. Worker serum samples were initially screened utilizing the previously developed 4,4′-MDI-Lys amino acid method and results showed that 12 samples were identified as quantifiable for 4,4′-MDI-Lys adducts. The signature peptide adduct approach was applied to the 12 worker samples identified as quantifiable for 4,4′-MDI-Lys adducts. Results indicated no positive results were obtained

  14. β-Amyloid amorphous aggregates induced by the small natural molecule ferulic acid.

    PubMed

    Bramanti, Emilia; Fulgentini, Lorenzo; Bizzarri, Ranieri; Lenci, Francesco; Sgarbossa, Antonella

    2013-11-01

    There is an emerging interest in small natural molecules for their potential therapeutic use in neurodegenerative disorders like Alzheimer's disease (AD). Ferulic acid (FA), an antioxidant phenolic compound present in fruit and vegetables, has been proposed as an inhibitor of beta amyloid (Aβ) pathological aggregation. Using fluorescence and Fourier transform infrared spectroscopy, electrophoresis techniques, chromatographic analysis, and confocal microscopy, we investigated the effects of FA in the early stages of Aβ fibrillogenesis in vitro. Our results show that FA interacts promptly with Aβ monomers/oligomers, interfering since the beginning with its self-assembly and finally forming amorphous aggregates more prone to destabilization. These findings highlight the molecular basis underlying FA antiamyloidogenic activity in AD. PMID:24168390

  15. Ionization-site effects on the photofragmentation of chloro- and bromoacetic acid molecules

    NASA Astrophysics Data System (ADS)

    Levola, Helena; Itälä, Eero; Schlesier, Kim; Kooser, Kuno; Laine, Sanna; Laksman, Joakim; Ha, Dang Trinh; Rachlew, Elisabeth; Tarkanovskaja, Marta; Tanzer, Katrin; Kukk, Edwin

    2015-12-01

    Fragmentation of gas-phase chloro- and bromoacetic acid samples, particularly its dependency on the atomic site of the initial core ionization, was studied in photoelectron-photoion-photoion coincidence (PEPIPICO) measurements. The fragmentation was investigated after ionizing carbon 1 s and bromine 3 d or chlorine 2 p core orbitals. It was observed that the samples had many similar fragmentation pathways and that their relative weights depended strongly on the initial ionization site. Additional Auger PEPIPICO measurements revealed a clear dependence of fragment pair intensities on the kinetic energy of the emitted Auger electrons. The modeled and measured Auger electron spectra indicated that the average internal energy of the molecule was larger following the carbon 1 s core-hole decay than after the decay of the halogen core hole. This difference in the internal energies was found to be the source of the site-dependent photofragmentation behavior.

  16. Structural and vibrational spectroscopy investigation of the 5-[(diphenyl) amino] isophthalic acid molecule

    NASA Astrophysics Data System (ADS)

    Kurt, M.; Şaş, E. Babur; Can, M.; Okur, S.; Icli, S.; Demic, S.

    2014-10-01

    The molecular structure and vibrations of 5-(diphenyl) amino] isophthalic acid (DPIFA) were investigated by different spectroscopic techniques (such as infrared and Raman). FT-IR, FT-Raman and dispersive Raman spectra were recorded in the solid phase. HOMO-LUMO analyses were performed. The theoretical calculations for the molecular structure and spectroscopic studies were performed with DFT (B3LYP) and 6-311G(d,p) basis set calculations using the Gaussian 09 program. After optimizing the geometry of the molecule, vibration wavenumbers and fundamental vibrations wavenumbers were assigned on the basis of the potential energy distribution (PED) of the vibrational modes calculated with VEDA 4 program. The results of theoretical calculations for the spectra of the title compound were compared with the observed spectra.

  17. Mucosal targeting of therapeutic molecules using genetically modified lactic acid bacteria: an update.

    PubMed

    LeBlanc, Jean Guy; Aubry, Camille; Cortes-Perez, Naima G; de Moreno de LeBlanc, Alejandra; Vergnolle, Nathalie; Langella, Philippe; Azevedo, Vasco; Chatel, Jean-Marc; Miyoshi, Anderson; Bermúdez-Humarán, Luis G

    2013-07-01

    Lactic acid bacteria (LAB) represent a heterogeneous group of microorganisms naturally present in many foods and those have proved to be effective mucosal delivery vectors. Moreover, some specific strains of LAB exert beneficial properties (known as probiotic effect) on both human and animal health. Although probiotic effects are strain-specific traits, it is theoretically possible, using genetic engineering techniques, to design strains that can exert a variety of beneficial properties. During the two past decades, a large variety of therapeutic molecules has been successfully expressed in LAB, and although this field has been largely reviewed in recent years, approximately 20 new publications appear each year. Thus, the aim of this minireview is not to extensively assess the entire literature but to update progress made within the last 2 years regarding the use of the model LAB Lactococcus lactis and certain species of lactobacilli as live recombinant vectors for the development of new safe mucosal vaccines. PMID:23600579

  18. Crystal structures and hydrogen bonding in the co-crystalline adducts of 3,5-di­nitro­benzoic acid with 4-amino­salicylic acid and 2-hy­droxy-3-(1H-indol-3-yl)propenoic acid

    PubMed Central

    Smith, Graham; Lynch, Daniel E.

    2014-01-01

    The structures of the co-crystalline adducts of 3,5-di­nitro­benzoic acid (3,5-DNBA) with 4-amino­salicylic acid (PASA), the 1:1 partial hydrate, C7H4N2O6·C7H7NO3·0.2H2O, (I), and with 2-hy­droxy-3-(1H-indol-3-yl)propenoic acid (HIPA), the 1:1:1 d 6-dimethyl sulfoxide solvate, C7H4N2O6·C11H9NO3·C2D6OS, (II), are reported. The crystal substructure of (I) comprises two centrosymmetric hydrogen-bonded R 2 2(8) homodimers, one with 3,5-DNBA, the other with PASA, and an R 2 2(8) 3,5-DNBA–PASA heterodimer. In the crystal, inter-unit amine N—H⋯O and water O—H⋯O hydrogen bonds generate a three-dimensional supra­molecular structure. In (II), the asymmetric unit consists of the three constituent mol­ecules, which form an essentially planar cyclic hydrogen-bonded heterotrimer unit [graph set R 3 2(17)] through carboxyl, hy­droxy and amino groups. These units associate across a crystallographic inversion centre through the HIPA carb­oxy­lic acid group in an R 2 2(8) hydrogen-bonding association, giving a zero-dimensional structure lying parallel to (100). In both structures, π–π inter­actions are present [minimum ring-centroid separations = 3.6471 (18) Å in (I) and 3.5819 (10) Å in (II)]. PMID:25484647

  19. Cross-Linking Poly(lactic acid) Film Surface by Neutral Hyperthermal Hydrogen Molecule Bombardment.

    PubMed

    Du, Wangli; Shao, Hong; He, Zhoukun; Tang, Changyu; Liu, Yu; Shen, Tao; Zhu, Yan; Lau, Woon-ming; Hui, David

    2015-12-16

    Constructing a dense cross-linking layer on a polymer film surface is a good way to improve the water resistance of poly(lactic acid) (PLA). However, conventional plasma treatments have failed to achieve the aim as a result of the unavoidable surface damage arising from the charged species caused by the uncontrolled high energy coming from colliding ions and electrons. In this work, we report a modified plasma method called hyperthermal hydrogen-induced cross-linking (HHIC) technology to construct a dense cross-linking layer on PLA film surfaces. This method produces energy-controlled neutral hyperthermal hydrogen, which selectively cleaves C-H bonds by molecule collision from the PLA film without breaking other bonds (e.g., C-C bonds in the polymer backbone), and results in subsequent cross-linking of the carbon radicals generated from the organic molecules. The formation of a dense cross-linking layer can serve as a barrier layer to significantly improve both the hydrophobicity and water vapor barrier property of the PLA film. Because of the advantage of selective cleavage of C-H bonds by HHIC treatment, the original physical properties (e.g., mechanical strength and light transmittance) of the PLA films are well-preserved. PMID:26594874

  20. Intramolecular cyclization of aspartic acid residues assisted by three water molecules: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Takahashi, Ohgi; Kirikoshi, Ryota

    2014-01-01

    Aspartic acid (Asp) residues in peptides and proteins (l-Asp) are known to undergo spontaneous nonenzymatic reactions to form l-β-Asp, d-Asp, and d-β-Asp residues. The formation of these abnormal Asp residues in proteins may affect their three-dimensional structures and hence their properties and functions. Indeed, the reactions have been thought to contribute to aging and pathologies. Most of the above reactions of the l-Asp residues proceed via a cyclic succinimide intermediate. In this paper, a novel three-water-assisted mechanism is proposed for cyclization of an Asp residue (forming a gem-diol precursor of the succinimide) by the B3LYP/6-31 + G(d,p) density functional theory calculations carried out for an Asp-containing model compound (Ace-Asp-Nme, where Ace = acetyl and Nme = NHCH3). The three water molecules act as catalysts by mediating ‘long-range’ proton transfers. In the proposed mechanism, the amide group on the C-terminal side of the Asp residue is first converted to the tautomeric iminol form (iminolization). Then, reorientation of a water molecule and a conformational change occur successively, followed by the nucleophilic attack of the iminol nitrogen on the carboxyl carbon of the Asp side chain to form the gem-diol species. A satisfactory agreement was obtained between the calculated and experimental energetics.

  1. Amino acid conjugated self assembling molecules for enhancing surface wettability of fiber laser treated titanium surfaces

    NASA Astrophysics Data System (ADS)

    Akkan, Cagri K.; Hür, Deniz; Uzun, Lokman; Garipcan, Bora

    2016-03-01

    Surface wetting properties of implants are one of the most critical parameter, which determine the interaction of proteins and cells with the implant surface. In this regards, acid etching and sand blasting are the mostly used methods at surface modification of Titanium (Ti) for enhanced surface wettability. Besides, these kinds of modifications may cause a conflict whether the surface wettability is influenced by the process related surface contaminations or by the surface roughness. In contrast, lasers might be an option for the alteration of surface wetting properties via supporting micro and/or nano surface topographies while preventing surface chemical contaminations. In this work, we focused on two steps of surface processing approaches of Ti surface: physical and chemical modifications. Herein, we hierarchically structured Ti surfaces by using microsecond modulated pulsed fiber laser. Subsequently, laser structured and non-structured Ti surfaces were further modified with novel histidine and leucine Amino Acid conjugated Self-Assembled Molecules (His1-SAMs2 and Leu3-SAMs) to alter the surface wettability by introducing biologically hydrophilic and hydrophobic groups. Modification of Ti surfaces with His-SAMs and Leu-SAMs ended up with stable wetting properties when compared to non-modified surfaces after 7 days which may enhances the cell-surface interaction.

  2. DNA adducts-chemical addons.

    PubMed

    Rajalakshmi, T R; AravindhaBabu, N; Shanmugam, K T; Masthan, K M K

    2015-04-01

    DNA adduct is a piece of DNA covalently bond to a chemical (safrole, benzopyrenediol epoxide, acetaldehyde). This process could be the start of a cancerous cell. When a chemical binds to DNA, it gets damaged resulting in abnormal replication. This could be the start of a mutation and without proper DNA repair, this can lead to cancer. It is this chemical that binds with the DNA is our prime area of concern. Instead of performing the whole body analysis for diagnosing cancer, this test could be carried out for early detection of cancer. When scanning tunneling microscope is used, the DNA results can be obtained earlier. DNA adducts in scientific experiments are used as biomarkers. PMID:26015708

  3. DNA adducts-chemical addons

    PubMed Central

    Rajalakshmi, T. R.; AravindhaBabu, N.; Shanmugam, K. T.; Masthan, K. M. K.

    2015-01-01

    DNA adduct is a piece of DNA covalently bond to a chemical (safrole, benzopyrenediol epoxide, acetaldehyde). This process could be the start of a cancerous cell. When a chemical binds to DNA, it gets damaged resulting in abnormal replication. This could be the start of a mutation and without proper DNA repair, this can lead to cancer. It is this chemical that binds with the DNA is our prime area of concern. Instead of performing the whole body analysis for diagnosing cancer, this test could be carried out for early detection of cancer. When scanning tunneling microscope is used, the DNA results can be obtained earlier. DNA adducts in scientific experiments are used as biomarkers. PMID:26015708

  4. Molecule-displacive ferroelectricity in organic supramolecular solids

    PubMed Central

    Ye, Heng-Yun; Zhang, Yi; Noro, Shin-ichiro; Kubo, Kazuya; Yoshitake, Masashi; Liu, Zun-Qi; Cai, Hong-Ling; Fu, Da-Wei; Yoshikawa, Hirofumi; Awaga, Kunio; Xiong, Ren-Gen; Nakamura, Takayoshi

    2013-01-01

    Ferroelectricity is essential to many forms of current technology, ranging from sensors and actuators to optical or memory devices. In this circumstance, organic ferroelectrics are of particular importance because of their potential application in tomorrow's organic devices, and several pure organic ferroelectrics have been recently developed. However, some problems, such as current leakage and/or low working frequencies, make their application prospects especially for ferroelectric memory (FeRAM) not clear. Here, we describe the molecule-displacive ferroelectricity of supramolecular adducts of tartaric acid and 1,4-diazabicyclo[2.2.2]octane N,N′-dioxide. The adducts show large spontaneous polarization, high rectangularity of the ferroelectric hysteresis loops even at high operation frequency (10 kHz), and high performance in polarization switching up to 1 × 106 times without showing fatigue. It opens great perspectives in terms of applications, especially in organic FeRAM. PMID:23873392

  5. Molecule-displacive ferroelectricity in organic supramolecular solids

    NASA Astrophysics Data System (ADS)

    Ye, Heng-Yun; Zhang, Yi; Noro, Shin-Ichiro; Kubo, Kazuya; Yoshitake, Masashi; Liu, Zun-Qi; Cai, Hong-Ling; Fu, Da-Wei; Yoshikawa, Hirofumi; Awaga, Kunio; Xiong, Ren-Gen; Nakamura, Takayoshi

    2013-07-01

    Ferroelectricity is essential to many forms of current technology, ranging from sensors and actuators to optical or memory devices. In this circumstance, organic ferroelectrics are of particular importance because of their potential application in tomorrow's organic devices, and several pure organic ferroelectrics have been recently developed. However, some problems, such as current leakage and/or low working frequencies, make their application prospects especially for ferroelectric memory (FeRAM) not clear. Here, we describe the molecule-displacive ferroelectricity of supramolecular adducts of tartaric acid and 1,4-diazabicyclo[2.2.2]octane N,N'-dioxide. The adducts show large spontaneous polarization, high rectangularity of the ferroelectric hysteresis loops even at high operation frequency (10 kHz), and high performance in polarization switching up to 1 × 106 times without showing fatigue. It opens great perspectives in terms of applications, especially in organic FeRAM.

  6. Mass Spectrometric Analyses of Organophosphate Insecticide Oxon Protein Adducts

    PubMed Central

    Thompson, Charles M.; Prins, John M.; George, Kathleen M.

    2010-01-01

    Objective Organophosphate (OP) insecticides continue to be used to control insect pests. Acute and chronic exposures to OP insecticides have been documented to cause adverse health effects, but few OP-adducted proteins have been correlated with these illnesses at the molecular level. Our aim was to review the literature covering the current state of the art in mass spectrometry (MS) used to identify OP protein biomarkers. Data sources and extraction We identified general and specific research reports related to OP insecticides, OP toxicity, OP structure, and protein MS by searching PubMed and Chemical Abstracts for articles published before December 2008. Data synthesis A number of OP-based insecticides share common structural elements that result in predictable OP–protein adducts. The resultant OP–protein adducts show an increase in molecular mass that can be identified by MS and correlated with the OP agent. Customized OP-containing probes have also been used to tag and identify protein targets that can be identified by MS. Conclusions MS is a useful and emerging tool for the identification of proteins that are modified by activated organophosphate insecticides. MS can characterize the structure of the OP adduct and also the specific amino acid residue that forms the key bond with the OP. Each protein that is modified in a unique way by an OP represents a unique molecular biomarker that with further research can lead to new correlations with exposure. PMID:20056576

  7. Detection of mitomycin C-DNA adducts in vivo by 32P-postlabeling: time course for formation and removal of adducts and biochemical modulation.

    PubMed

    Warren, A J; Maccubbin, A E; Hamilton, J W

    1998-02-01

    Mitomycin C (MMC) is a DNA cross-linking agent that has been used in cancer chemotherapy for over 20 years, yet little is known either qualitatively or quantitatively about MMC-induced DNA adduct formation and repair in vivo. As an initial means of investigating this, we used a recently developed 32P-postlabeling assay to examine the formation and loss of MMC-DNA adducts in the tissues of a simple in vivo model test system, the chick embryo, following treatment with a chemotherapeutic dose of MMC. As early as 15 min after MMC treatment, four adducts could be detected in the liver which were tentatively identified as the (CpG) N2G-MMC-N2G interstrand cross-link, the bifunctionally activated MMC-N2G monoadduct, and two isomers (alpha and beta) of the monofunctionally activated MMC-N2G monoadduct. The (GpG) N2G-MMC-N2G intrastrand cross-link appears to be a poor substrate for nuclease P1 and/or T4 kinase and was not evaluable by this assay. Levels of all four detectable adducts increased substantially within the first 2 h after MMC treatment, reached maximal levels by 6 h, and decreased progressively thereafter through 24 h, although low levels of certain adducts persisted beyond 24 h. Lung and kidney had comparable levels of total MMC adducts, which were approximately 60% those of the liver, and there were no significant differences in the proportion of specific adducts among the three tissues. The interstrand cross-link represented approximately 13-14% of the total MMC adducts, which is approximately 5-fold greater than the proportion of CpG sites in the genome. In addition, the interstrand cross-link was selectively decreased after 16 h relative to the three monoadducts, suggesting preferential repair. The effect of modulating different components of the Phase I and Phase II drug metabolism on MMC adduct formation, using either glutethimide, 3,4,3',4'-tetrachlorobiphenyl, dexamethasone, buthionine sulfoximine, ethacrynic acid, or N-acetylcysteine pretreatments, was

  8. Captides: Rigid Junctions between Beta Sheets and Small Molecules

    PubMed Central

    Kier, Brandon L.; Andersen, Niels H.

    2014-01-01

    An extensive series of covalently linked small molecule-peptide adducts based on a terminally capped beta hairpin motif is reported. The constructs can be prepared by standard solid-phase fmoc chemistry with 1 to 4 peptide chains linked to small molecule hubs bearing carboxylic acid moieties. The key feature of interest is the precise, buried environment of the small molecule, and its rigid orientation relative to one or more short, but fully structured peptide chain(s). Most of this study employs a minimalist 9 residue “captide”, a capped β-turn, but we illustrate general applicability to peptides which can terminate in a beta strand. The non-peptide portion of these adducts can include nearly any molecule bearing one or more carboxylic acid groups. Fold-dependent rigidity sets this strategy apart from currently available bioconjugation methods, which typically engender significant flexibility between peptide and tag. Applications to catalyst enhancement, drug design, higher-order assembly, and FRET calibration rulers are discussed. PMID:24909552

  9. Nucleation of Mixed Nitric Acid-Water Ice Nanoparticles in Molecular Beams that Starts with a HNO3 Molecule.

    PubMed

    Lengyel, Jozef; Pysanenko, Andriy; Kočišek, Jaroslav; Poterya, Viktoriya; Pradzynski, Christoph C; Zeuch, Thomas; Slavíček, Petr; Fárník, Michal

    2012-11-01

    Mixed (HNO3)m(H2O)n clusters generated in supersonic expansion of nitric acid vapor are investigated in two different experiments, (1) time-of-flight mass spectrometry after electron ionization and (2) Na doping and photoionization. This combination of complementary methods reveals that only clusters containing at least one acid molecule are generated, that is, the acid molecule serves as the nucleation center in the expansion. The experiments also suggest that at least four water molecules are needed for HNO3 acidic dissociation. The clusters are undoubtedly generated, as proved by electron ionization; however, they are not detected by the Na doping due to a fast charge-transfer reaction between the Na atom and HNO3. This points to limitations of the Na doping recently advocated as a general method for atmospheric aerosol detection. On the other hand, the combination of the two methods introduces a tool for detecting molecules with sizable electron affinity in clusters. PMID:26296012

  10. IR spectra and structure of benzylidenemalononitrile and its cyanide, methoxide and heptylamine adducts: experimental and ab initio studies

    NASA Astrophysics Data System (ADS)

    Binev, Ivan G.; Binev, Yuri I.; Stamboliyska, Bistra A.; Juchnovski, Ivan N.

    1997-12-01

    The potassium cyanide, alkali-metal methoxide and heptylamine adducts of benzylidenemalononitrile were prepared as dimethyl sulphoxide (DMSO) and DMSO- d6 solutions; their structures were studied by IR spectroscopy and ab initio force field calculations. The cyanide and methoxide adducts have a carbanionic structure, whereas heptylamine forms a zwitterion. The IR spectra of the adducts studied are characterized by very intense, low-frequency νCN bands with a strong νCNs- νCNas splitting. The changes in the structure and force field of benzylidenemalononitrile accompanying its conversion into the adducts studied are essential and are spread over the whole molecule. The anionic charge is localized mainly within the dicyanomethide groups of the adducts.

  11. Fabrication of nickel and gold nanowires by controlled electrodeposition on deoxyribonucleic acid molecules

    NASA Astrophysics Data System (ADS)

    Gu, Qun; Jin, Helena; Dai, Kun

    2009-01-01

    Magnetic and electrical nanowires are two important materials in the development of futuristic nanoelectronics, data storage media and nanosensors. Ni and Au nanowires with a diameter of a few tens of nanometres have been fabricated using deoxyribonucleic acid (DNA) molecules as a template through nanoparticle-controlled electroless deposition (ELD). Nanowire precursors, 1-3 nm Pt(0)-DNA and 1.4 nm Au(0)-DNA, were assembled using two different methods. Chemical reduction was used to deposit Pt(0) particles on DNA which catalyzed Ni nanowire growth. Positively charged Au nanoparticles were directly assembled on phosphate groups of DNA which were stretched and anchored between micrometre-spaced electrodes. Electrical measurement has shown that Au nanowires, catalyzed by Au(0)-DNA in a subsequent ELD, are highly conductive and show linear I-V characteristics. The major factors for the resistivity of nanowires were discussed in detail. This work involves important aspects in the field of DNA-based self-assembly, such as DNA and surface interaction, DNA nanoparticle assembly and electrical property of fabricated nanowires.

  12. Relationship between ST8SIA2, polysialic acid and its binding molecules, and psychiatric disorders.

    PubMed

    Sato, Chihiro; Hane, Masaya; Kitajima, Ken

    2016-08-01

    Polysialic acid (polySia, PSA) is a unique and functionally important glycan, particularly in vertebrate brains. It is involved in higher brain functions such as learning, memory, and social behaviors. Recently, an association between several genetic variations and single nucleotide polymorphisms (SNPs) of ST8SIA2/STX, one of two polysialyltransferase genes in vertebrates, and psychiatric disorders, such as schizophrenia (SZ), bipolar disorder (BD), and autism spectrum disorder (ASD), was reported based on candidate gene approaches and genome-wide studies among normal and mental disorder patients. It is of critical importance to determine if the reported mutations and SNPs in ST8SIA2 lead to impairments of the structure and function of polySia, which is the final product of ST8SIA2. To date, however, only a few such forward-directed studies have been conducted. In addition, the molecular mechanisms underlying polySia-involved brain functions remain unknown, although polySia was shown to have an anti-adhesive effect. In this report, we review the relationships between psychiatric disorders and polySia and/or ST8SIA2, and describe a new function of polySia as a regulator of neurologically active molecules, such as brain-derived neurotrophic factor (BDNF) and dopamine, which are deeply involved in psychiatric disorders. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc. PMID:27105834

  13. Adenovirus Type 2-Simian Virus 40 Hybrid Population: Evidence for a Hybrid Deoxyribonucleic Acid Molecule and the Absence of Adenovirus-Encapsidated Circular Simian Virus 40 Deoxyribonucleic Acid

    PubMed Central

    Crumpacker, Clyde S.; Levin, Myron J.; Wiese, William H.; Lewis, Andrew M.; Rowe, Wallace P.

    1970-01-01

    The deoxyribonucleic acid (DNA) from the adenovirus-encapsidated particles of the adenovirus type 2 (Ad2)-simian virus 40 (SV40) hybrid population plaque variant (Ad2++ HEY), known to yield SV40 virus with high efficiency, was studied by equilibrium density centrifugation followed by ribonucleic acid-DNA hybridization employing virus-specific complementary ribonucleic acids synthesized in vitro. These techniques establish linkage between the Ad2 and SV40 components in the adenovirus-encapsidated particles of this population. The linkage is alkali-resistant and presumably covalent; thus, the Ad2 DNA and SV40 DNA are present in a hybrid molecule. Velocity centrifugation studies in alkaline sucrose gradients eliminated the possibility that supercoiled circular SV40 DNA is present in the adenovirus capsids. The DNA obtained from the adenovirus-encapsidated particles of the Ad2++ HEY population appears to consist of nonhybrid Ad2 DNA and Ad2-SV40 hybrid DNA molecules. PMID:4322081

  14. Searching for amino-acid homochirality on Mars with the Mars Organic Molecule Analyzer (MOMA) onboard ExoMars

    NASA Astrophysics Data System (ADS)

    Buch, A.; Freissinet, C.; Sternberg, R.; Brault, A.; Szopa, C.; Claude-Geffroy, C.; Coll, P. J.; Grand, N.; Raulin, F.; Pinick, V.; Goesmann, F.

    2012-12-01

    The joint ESA-Roscosmos Exo-Mars-2018 rover mission plans to seek the signs of a past or a present life on Mars. The Mars Organic Molecule Analyzer (MOMA) experiment onboard theExoMars rover will be a key analytical tool in providing molecular information from Mars solid samples, with a specific focus on the characterization of their organic content. In this purpose, one of MOMA's main instruments is a gas chromatograph-mass spectrometer (GC-MS), which provides a unique ability to characterize a broad range of compounds and allow chemical analyses on volatile and refractory species. The challenge with the analysis of this refractory matter embedded in soil is their primary extraction before their analysis by GC-MS. Since the extraction of organic matter is not possible by liquid solvent extraction, we have developed a method based on the thermodesorption and subsequent derivatization of the organic molecules. The goal of the thermodesorption is to extract the organic matter by heating the sample quickly enough not to degrade its organic content. One of the main focuses is to determine the chirality of this organic matter, notably amino acids. Indeed, on Earth, homochirality of molecules is an indicator for the presence of life. Amino acids appear to bear only the left-handed form (L) in living system. However, other refractory compounds can raise interest: nucleobases, carboxylic acids and PAHs are among molecules supported by life as we know it, and all of them can display chirality. The intrinsic chirality of molecules being thermosensitive, the thermodesorption parameters have been adjusted to occur within a range of temperatures from 150 °C to 300 °C over a period of 30 s to 10 min, depending on the chemical compound. Under these conditions, we have shown that amino acids are not degraded and that their chirality is preserved. Once extracted, refractory molecules with labile hydrogens (e.g. amino acids, nucleobases, carboxylic acids, etc.) are derivatized

  15. Nanostructured lipid carrier-loaded hyaluronic acid microneedles for controlled dermal delivery of a lipophilic molecule.

    PubMed

    Lee, Sang Gon; Jeong, Jae Han; Lee, Kyung Min; Jeong, Kyu Ho; Yang, Huisuk; Kim, Miroo; Jung, Hyungil; Lee, Sangkil; Choi, Young Wook

    2014-01-01

    Nanostructured lipid carriers (NLCs) were employed to formulate a lipophilic drug into hydrophilic polymeric microneedles (MNs). Hyaluronic acid (HA) was selected as a hydrophilic and bioerodible polymer to fabricate MNs, and nile red (NR) was used as a model lipophilic molecule. NR-loaded NLCs were consolidated into the HA-based MNs to prepare NLC-loaded MNs (NLC-MNs). A dispersion of NLCs was prepared by high-pressure homogenization after dissolving NR in Labrafil and mixing with melted Compritol, resulting in 268 nm NLCs with a polydispersity index of 0.273. The NLC dispersion showed a controlled release of NR over 24 hours, following Hixson-Crowell's cube root law. After mixing the NLC dispersion with the HA solution, the drawing lithography method was used to fabricate NLC-MNs. The length, base diameter, and tip diameter of the NLC-MNs were approximately 350, 380, and 30 μm, respectively. Fluorescence microscopic imaging of the NLC-MNs helped confirm that the NR-loaded NLCs were distributed evenly throughout the MNs. In a skin permeation study performed using a Franz diffusion cell with minipig dorsal skin, approximately 70% of NR was localized in the skin after 24-hour application of NLC-MNs. Confocal laser scanning microscopy (z-series) of the skin at different depths showed strong fluorescence intensity in the epidermal layer, which appeared to spread out radially with the passage of time. This study indicated that incorporation of drug-loaded NLCs into MNs could represent a promising strategy for controlled dermal delivery of lipophilic drugs. PMID:24403833

  16. DNA ADDUCTS OF THE ANTITUMOR AGENT DIAZIQUONE

    EPA Science Inventory

    We have studied adduct formation of the antineoplastic agent diaziquone with DNA and nucleotides in vitro. he aziridine moieties of AZQ can be expected to interact covalently with DNA which in turn presumably elicit the antitumor activity. e analyzed AZQ-DNA adducts by a modified...

  17. Surface active molecules: preparation and properties of long chain n-acyl-l-alpha-amino-omega-guanidine alkyl acid derivatives.

    PubMed

    Infante, R; Dominguez, J G; Erra, P; Julia, R; Prats, M

    1984-12-01

    Synopsis A new route for the synthesis of long chain N(alpha)-acyl-l-alpha-amino-omega-guamdine alkyl acid derivatives, with cationic or amphoteric character has been established. The general formula of these compounds is shown below. A physico-chemical and antimicrobial study of these products as a function of the alkyl ester or sodium salt (R), the straight chain length of the fatty acid residue (x) and the number of carbons between the omega-guanidine and omega-carboxyl group (n) has been investigated. The water solubility, surface tension, critical micelle concentration (c.m.c.) and minimum inhibitory concentration (MIC) against Gram-positive and Gram-negative bacteria (including Pseudomonas) has been determined. Dicyclohexylcarbodiimide has been used to condense fatty acids and alpha-amino-omega-guanidine alkyl acids. In these conditions protection of the omega-guanidine group is not necessary. The main characteristic of this synthetic procedure is the use of very mild experimental conditions (temperature, pH) to form the amide linkage which leads to pure optical compounds in high yield in the absence of electrolytes. The results show that some structural modifications, particularly the protection of the carboxyl group, promote variations of the surfactant and antimicrobial properties. Only those molecules with the blocked carboxyl group (cationic molecules, where R = Me, Et or Pr) showed a good surfactant and antimicrobial activity. When the carboxyl group was unprotected (amphoteric molecules, where R = Na(+)) the resulting compounds were inactive. PMID:19467126

  18. Structural Characterization of Hydroxyl Radical Adducts in Aqueous Media

    NASA Astrophysics Data System (ADS)

    Janik, Ireneusz; Tripathi, G. N. R.

    2015-06-01

    The oxidation by the hydroxyl (OH) radical is one of the most widely studied reactions because of its central role in chemistry, biology, organic synthesis, and photocatalysis in aqueous environments, wastewater treatment, and numerous other chemical processes. Although the redox potential of OH is very high, direct electron transfer (ET) is rarely observed. If it happens, it mostly proceeds through the formation of elusive OH adduct intermediate which facilitates ET and formation of hydroxide anion. Using time resolved resonance Raman technique we structurally characterized variety of OH adducts to sulfur containing organic compounds, halide ions as well as some metal cations. The bond between oxygen of OH radical and the atom of oxidized molecule differs depending on the nature of solute that OH radical reacts with. For most of sulfur containing organics, as well as halide and pseudo-halide ions, our observation suggested that this bond has two-center three-electron character. For several metal aqua ions studied, the nature of the bond depends on type of the cation being oxidized. Discussion on spectral parameters of all studied hydroxyl radical adducts as well as the role solvent plays in their stabilization will be presented.

  19. Recognition of cisplatin adducts by cellular proteins.

    PubMed

    Kartalou, M; Essigmann, J M

    2001-07-01

    Cisplatin is a widely used chemotherapeutic agent. It reacts with nucleophilic bases in DNA and forms 1,2-d(ApG), 1,2-d(GpG) and 1,3-d(GpTpG) intrastrand crosslinks, interstrand crosslinks and monofunctional adducts. The presence of these adducts in DNA is through to be responsible for the therapeutic efficacy of cisplatin. The exact signal transduction pathway that leads to cell cycle arrest and cell death following treatment with the drug is not known but cell death is believed to be mediated by the recognition of the adducts by cellular proteins. Here we describe the structural information available for cisplatin and related platinum adducts, the interactions of the adducts with cellular proteins and the implications of these interactions for cell survival. PMID:11406166

  20. Oxidative Damage to Nucleic Acids and Benzo(a)pyrene-7,8-diol-9,10-epoxide-DNA Adducts and Chromosomal Aberration in Children with Psoriasis Repeatedly Exposed to Crude Coal Tar Ointment and UV Radiation

    PubMed Central

    Andrys, Ctirad; Palicka, Vladimir; Chmelarova, Marcela; Hamakova, Kvetoslava

    2014-01-01

    The paper presents a prospective cohort study. Observed group was formed of children with plaque psoriasis (n=19) treated by Goeckerman therapy (GT). The study describes adverse (side) effects associated with application of GT (combined exposure of 3% crude coal tar ointment and UV radiation). After GT we found significantly increased markers of oxidative stress (8-hydroxy-2′-deoxyguanosine, 8-hydroxyguanosine, and 8-hydroxyguanine), significantly increased levels of benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE) DNA adducts (BPDE-DNA), and significantly increased levels of total number of chromosomal aberrations in peripheral lymphocytes. We found significant relationship between (1) time of UV exposure and total number of aberrated cells and (2) daily topical application of 3% crude coal tar ointment (% of body surface) and level of BPDE-DNA adducts. The findings indicated increased hazard of oxidative stress and genotoxic effects related to the treatment. However, it must be noted that the oxidized guanine species and BPDE-DNA adducts also reflect individual variations in metabolic enzyme activity (different extent of bioactivation of benzo[a]pyrene to BPDE) and overall efficiency of DNA/RNA repair system. The study confirmed good effectiveness of the GT (significantly decreased PASI score). PMID:25197429

  1. Silver adducts of four-branched histidine rich peptides exhibit synergistic antifungal activity.

    PubMed

    Leng, Qixin; Woodle, Martin C; Liu, Yijia; Mixson, A James

    2016-09-01

    Previously, a four branched histidine-lysine rich peptide, H3K4b, was shown to demonstrate selective antifungal activity with minimal antibacterial activity. Due to the potential breakdown from proteases, H3K4b was further evaluated in the current study by varying the D- and l-amino acid content in its branches. Whereas analogues of H3K4b that selectively replaced l-amino acids (H3k4b, h3K4b) had improved antifungal activity, the all d-amino acid analogue, h3k4b, had reduced activity, suggesting that partial breakdown of the peptide may be necessary. Moreover, because histidines form coordination bonds with the silver ion, we examined whether silver adducts can be formed with these branched histidine-lysine peptides, which may improve antifungal activity. For Candida albicans, the silver adduct of h3K4b or H3k4b reduced the MIC compared to peptide and silver ions alone by 4- and 5-fold, respectively. For Aspergillus fumigatus, the silver adducts showed even greater enhancement of activity. Although the silver adducts of H3k4b or h3K4b showed synergistic activity, the silver adduct with the all l-amino acid H3K4b surprisingly showed the greatest synergistic and growth inhibition of A. fumigatus: the silver adduct of H3K4b reduced the MIC compared to the peptide and silver ions alone by 30- and 26-fold, respectively. Consistent with these antifungal efficacy results, marked increases in free oxygen radicals were produced with the H3K4b and silver combination. These studies suggest that there is a balance between stability and breakdown for optimal antifungal activity of the peptide alone and for the peptide-silver adduct. PMID:27387239

  2. Brevetoxin Forms Covalent DNA Adducts in Rat Lung Following Intratracheal Exposure

    PubMed Central

    Radwan, Faisal F.Y.; Ramsdell, John S.

    2008-01-01

    Background Human exposure to brevetoxins produced by the red tide organism, Karenia brevis, is an increasing public health concern. Using in vitro exposure of rat liver cells to brevetoxin B (PbTx-2), the primary toxin product of K. brevis, we previously showed that it formed C27,28-epoxy brevetoxin metabolites capable of covalently binding to nucleic acids, a common initiation step for carcinogenesis. Objective This study was undertaken to evaluate nucleic acid adduction in lung following in vitro and in vivo brevetoxin exposures. Methods To clarify reactions of brevetoxin epoxide with DNA, we analyzed reaction products of PbTx-6 (a C27,28 epoxide metabolite of brevetoxin B) with nucleosides. We also analyzed adducts from nucleic acid hydrolysates of isolated rat lung cells treated with PbTx-2 or PbTx-6 in vitro and lung tissue from rats after intratracheal exposure to PbTx-2 or PbTx-6 at 45 μg toxin/kg body weight. Results Our results indicate that PbTx-2 forms DNA adducts with cytidine after treatment of isolated lung cells, and forms DNA adducts with adenosine and guanosine after intratracheal exposure. Conclusions These results are consistent with metabolic activation of highly reactive brevetoxin intermediates that bind to nucleic acid. These findings provide a basis for monitoring exposure and assessing the hazard associated with depurination of brevetoxin–nucleotide adducts in lung tissue. PMID:18629316

  3. Quantitative Structure of an Acetate Dye Molecule Analogue at the TiO2–Acetic Acid Interface

    PubMed Central

    2016-01-01

    The positions of atoms in and around acetate molecules at the rutile TiO2(110) interface with 0.1 M acetic acid have been determined with a precision of ±0.05 Å. Acetate is used as a surrogate for the carboxylate groups typically employed to anchor monocarboxylate dye molecules to TiO2 in dye-sensitized solar cells (DSSC). Structural analysis reveals small domains of ordered (2 × 1) acetate molecules, with substrate atoms closer to their bulk terminated positions compared to the clean UHV surface. Acetate is found in a bidentate bridge position, binding through both oxygen atoms to two 5-fold titanium atoms such that the molecular plane is along the [001] azimuth. Density functional theory calculations provide adsorption geometries in excellent agreement with experiment. The availability of these structural data will improve the accuracy of charge transport models for DSSC. PMID:27110318

  4. Theoretical study of the NLO responses of some natural and unnatural amino acids used as probe molecules.

    PubMed

    Derrar, S N; Sekkal-Rahal, M; Derreumaux, P; Springborg, M

    2014-08-01

    The first hyperpolarizabilities β of the natural aromatic amino acids tryptophan and tyrosine have been investigated using several methods and basis sets. Some of the theoretical results obtained were compared to the only experimental hyper-Rayleigh scattering data available. The sensitivity of tryptophan to its local environment was analyzed by constructing two-dimensional potential energy plots around the dipeptide tryptophan-lysine. Static hyperpolarizabilities β(0) of the found minima were calculated by a second-order Møller-Plesset (MP2) method in combination with the 6-31+G(d) basis set. Moreover, the efficiency of tryptophan and those of a series of unnatural amino acids as endogenous probe molecules were tested by calculating the nonlinear responses of some peptides. Impressive results were obtained for the amino acid ALADAN, which shows significantly improved nonlinear performance compared to other amino acids with weak nonlinear responses. PMID:25092242

  5. Synthesis and reactivity of a CAAC-aminoborylene adduct: a hetero-allene or an organoboron isoelectronic with singlet carbenes.

    PubMed

    Dahcheh, Fatme; Martin, David; Stephan, Douglas W; Bertrand, Guy

    2014-11-24

    A one-electron reduction of a cyclic (alkyl)(amino)carbene (CAAC)-bis(trimethylsilyl)aminodichloroborane adduct leads to a stable aminoboryl radical. A second one-electron reduction gives rise to a CAAC-aminoborylene adduct, which features an allenic structure. However, in manner similar to that of stable electrophilic singlet carbenes, this compound activates small molecules, such as CO and H2. PMID:25267591

  6. Approaching the Golden Fleece a Molecule at a Time: Biophysical Insights into Argonaute-Instructed Nucleic Acid Interactions.

    PubMed

    Herzog, Veronika A; Ameres, Stefan L

    2015-07-01

    Argonaute proteins act at the core of nucleic acid-guided interference pathways that regulate gene expression and defend organisms against foreign genetic elements in all domains of life. Here, we review recent biophysical studies on how Argonaute proteins instruct oligonucleotides in the process of target finding, binding, cleavage, and release, as measured at high spatiotemporal resolution by single-molecule approaches. In the context of previous structural, biochemical, and computational studies, a model emerges for how Argonaute proteins manipulate the thermodynamic rules for nucleic acid hybridization to convey efficiency and specificity to RNA- and DNA-guided regulatory processes. PMID:26140366

  7. Atomic-resolution structure of an N5 flavin adduct in D-arginine dehydrogenase.

    PubMed

    Fu, Guoxing; Yuan, Hongling; Wang, Siming; Gadda, Giovanni; Weber, Irene T

    2011-07-26

    D-Arginine dehydrogenase (DADH) catalyzes the flavin-dependent oxidative deamination of D-arginine and other D-amino acids to the corresponding imino acids. The 1.07 Å atomic-resolution structure of DADH crystallized with D-leucine unexpectedly revealed a covalent N(5) flavin adduct, instead of the expected iminoleucine product in the active site. This acyl adduct has been successfully reproduced by photoreduction of DADH in the presence of 4-methyl-2-oxopentanoic acid (ketoleucine). The iminoleucine may be released readily because of weak interactions in the binding site, in contrast to iminoarginine, converted to ketoleucine, which reacts with activated FAD to form the covalently linked acyl adduct. PMID:21707047

  8. Low Band Gap Coplanar Conjugated Molecules Featuring Dynamic Intramolecular Lewis Acid-Base Coordination.

    PubMed

    Zhu, Congzhi; Guo, Zi-Hao; Mu, Anthony U; Liu, Yi; Wheeler, Steven E; Fang, Lei

    2016-05-20

    Ladder-type conjugated molecules with a low band gap and low LUMO level were synthesized through an N-directed borylation reaction of pyrazine-derived donor-acceptor-donor precursors. The intramolecular boron-nitrogen coordination bonds played a key role in rendering the rigid and coplanar conformation of these molecules and their corresponding electronic structures. Experimental investigation and theoretical simulation revealed the dynamic nature of such coordination, which allowed for active manipulation of the optical properties of these molecules by using competing Lewis basic solvents. PMID:27096728

  9. Phosphatase activity in commercial spleen exonuclease decreases the recovery of benzo[a]pyrene and N-hydroxy-2-naphthylamine DNA adducts by 32P-postlabeling.

    PubMed

    Adams, S P; Laws, G M; Selden, J R; Nichols, W W

    1994-05-15

    Spleen exonuclease, which degrades nucleic acids into single 3'-nucleotides, is used in the detection of DNA adducts by 32P-postlabeling. Contamination of the exonuclease with phosphatase activity can reduce the recovery of benzo[a]pyrene and N-hydroxy-2-naphthylamine DNA adducts by 32P-postlabeling. Four preparations of spleen exonuclease containing varying levels of phosphatase activity (< 1-62% of the unmodified 3'-nucleotides being dephosphorylated) were used to hydrolyze the DNA. The exonuclease with the lowest phosphatase activity produced a recovery of up to 9.60 mumol of benzo[a]pyrene adducts per mole of DNA. Recovery of benzo[a]pyrene adducts was reduced to 0.56 mumol of adduct per mole of DNA using the exonuclease with the highest phosphatase activity. Phosphatase in the exonucleases also dephosphorylated N-hydroxy-2-naphthylamine DNA adducts. Surprisingly, recovery of these DNA adducts was nearly 10 times greater using nuclease P1 than when using 1-butanol extraction for adduct enrichment, since arylamine DNA adducts have previously been reported to be poorly detected by 32P-postlabeling after nuclease P1 treatment. Our data indicate that the hydrolysis of DNA by spleen exonuclease may be an important source of variability in both qualitative and quantitative analysis of adducts by 32P-postlabeling. PMID:8059938

  10. Determining efficacy of cancer chemopreventive agents using a cell-free system concomitant with DNA adduction.

    PubMed

    Smith, W A; Gupta, R C

    1999-03-10

    The large (>2000) and expanding number of natural and synthetic agents with potential cancer chemopreventive properties renders it economically and physically impossible to test each of these agents for their efficacy in the widely accepted 2-year animal bioassay and clinical trials. Therefore, there is a growing need for relevant short-term screening tests to study these compounds such that only the most efficacious ones undergo extensive long-term studies. We have previously reported in a pilot study that the use of a microsome-mediated test system concomitant with DNA adduction is a pertinent and relevant model for rapidly studying the efficacy and mechanisms of cancer chemopreventive agents. We have extended this study to investigate 26 additional agents for their potential chemopreventive abilities by studying their effects on microsome-mediated benzo[a]pyrene (BP)-DNA adduction. These agents had differential effects on the two major adducts of BP-DNA, i.e., BP-7,8-diol-9,10-epoxide (BPDE)-deoxyguanosine (dG) and 9-OH-BP-dG-derived adducts. These agents were therefore categorized into five classes. Three test agents (ellagic acid, genistein and oltipraz) were strong inhibitors of both adducts. These agents diminished BP-DNA adduction by 65-95% and were categorized as Class I agents. Six other agents (benzyl isocyanate, R(+)-1-phenylethyl isocyanate, linoleic acid ethyl ester, (+)-biotin, indole-3-carboxylic acid and beta-carotene) moderately inhibited both BP-DNA adducts (25-64%); these compounds were identified as Class II agents. Six additional test agents inhibited only one adduct selectively and nine others were ineffective; these agents were categorized as Class III and Class IV, respectively. Interestingly, seven test agents enhanced BPDE-dG or 9-OH-BP-dG or both adducts and were categorized as Class V agents. Four of these Class V agents concomitantly inhibited BPDE-dG while enhancing 9-OH-BP-dG. This emphasizes the importance of studying individual DNA

  11. Capturing Labile Sulfenamide and Sulfinamide Serum Albumin Adducts of Carcinogenic Arylamines by Chemical Oxidation

    PubMed Central

    Peng, Lijuan; Turesky, Robert J.

    2013-01-01

    Aromatic amines and heterocyclic aromatic amines (HAAs) are a class of structurally related carcinogens that are formed during the combustion of tobacco or during the high temperature cooking of meats. These procarcinogens undergo metabolic activation by N-oxidation of the exocyclic amine group to produce N-hydroxylated metabolites, which are critical intermediates implicated in toxicity and DNA damage. The arylhydroxylamines and their oxidized arylnitroso derivatives can also react with cysteine (Cys) residues of glutathione or proteins to form, respectively, sulfenamide and sulfinamide adducts. However, sulfur-nitrogen linked adducted proteins are often difficult to detect because they are unstable and undergo hydrolysis during proteolytic digestion. Synthetic N-oxidized intermediates of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a carcinogenic HAA produced in cooked meats, and 4-aminobiphenyl, a carcinogenic aromatic amine present in tobacco smoke were reacted with human serum albumin (SA) and formed labile sulfenamide or sulfinamide adducts at the Cys34 residue. Oxidation of the carcinogen-modified SA with m-chloroperoxybenzoic acid (m-CPBA) produced the arylsulfonamide adducts, which were stable to heat and the chemical reduction conditions employed to denature SA. The sulfonamide adducts of PhIP and 4-ABP were identified, by liquid chromatography/mass spectrometry, in proteolytic digests of denatured SA. Thus, selective oxidation of arylamine-modified SA produces stable arylsulfonamide-SA adducts, which may serve as biomarkers of these tobacco and dietary carcinogens. PMID:23240913

  12. Assay of Protein and Peptide Adducts of Cholesterol Ozonolysis Products by Hydrophobic and Click Enrichment Methods

    PubMed Central

    2015-01-01

    Cholesterol undergoes ozonolysis to afford a variety of oxysterol products, including cholesterol-5,6-epoxide (CholEp) and the isomeric aldehydes secosterol A (seco A) and secosterol B (seco B). These oxysterols display numerous important biological activities, including protein adduction; however, much remains to be learned about the identity of the reactive species and the range of proteins modified by these oxysterols. Here, we synthesized alkynyl derivatives of cholesterol-derived oxysterols and employed a straightforward detection method to establish secosterols A and B as the most protein-reactive of the oxysterols tested. Model adduction studies with an amino acid, peptides, and proteins provide evidence for the potential role of secosterol dehydration products in protein adduction. Hydrophobic separation methods—Folch extraction and solid phase extraction (SPE)—were successfully applied to enrich oxysterol-adducted peptide species, and LC-MS/MS analysis of a model peptide–seco adduct revealed a unique fragmentation pattern (neutral loss of 390 Da) for that species. Coupling a hydrophobic enrichment method with proteomic analysis utilizing characteristic fragmentation patterns facilitates the identification of secosterol-modified peptides and proteins in an adducted protein. More broadly, these improved enrichment methods may give insight into the role of oxysterols and ozone exposure in the pathogenesis of a variety of diseases, including atherosclerosis, Alzheimer’s disease, Parkinson’s disease, and asthma. PMID:25185119

  13. [DNA adducts in human female genital organs].

    PubMed

    Postawski, Krzysztof; Przadka-Rabaniuk, Dorota; Monist, Marta; Baranowski, Włodzimierz

    2007-12-01

    DNA adducts, one of genetic damages markers, precede and finally can lead to oncogenic mutations. They appear in genome as a result of DNA bases damages caused by various and numerous environmental factors eg. ultraviolet light, ionic radiation, toxins and also endogenic substances, for example estrogens. It is believed that the creation of DNA adducts is a necessary but insufficient process for the neoplastic transformation of the cell. The following review presents concise knowledge about the DNA adducts creation and their sequels served in healthy and cancerous tissues of the female genital organs, on the base of the available data. PMID:18411923

  14. Group 13 Superacid Adducts of [PCl2N]3.

    PubMed

    Tun, Zin-Min; Heston, Amy J; Panzner, Matthew J; Scionti, Vincenzo; Medvetz, Doug A; Wright, Brian D; Johnson, Nicholas A; Li, Linlin; Wesdemiotis, Chrys; Rinaldi, Peter L; Youngs, Wiley J; Tessier, Claire A

    2016-04-01

    Irrespective of the order of the addition of reagents, the reactions of [PCl2N]3 with MX3 (MX3 = AlCl3, AlBr3, GaCl3) in the presence of water or gaseous HX give the air- and light-sensitive superacid adducts [PCl2N]3·HMX4. The reactions are quantitative when HX is used. These reactions illustrate a Lewis acid/Brønsted acid dichotomy in which Lewis acid chemistry can become Brønsted acid chemistry in the presence of adventitious water or HX. The crystal structures of all three [PCl2N]3·HMX4 adducts show that protonation weakens the two P-N bonds that flank the protonated nitrogen atom. Variable-temperature NMR studies indicate that exchange in solution occurs in [PCl2N]3·HMX4, even at lower temperatures than those for [PCl2N]3·MX3. The fragility of [PCl2N]3·HMX4 at or near room temperature and in the presence of light suggests that such adducts are not involved directly as intermediates in the high-temperature ring-opening polymerization (ROP) of [PCl2N]3 to give [PCl2N]n. Attempts to catalyze or initiate the ROP of [PCl2N]3 with the addition of [PCl2N]3·HMX4 at room temperature or at 70 °C were not successful. PMID:26974866

  15. Charge separated states and singlet oxygen generation of mono and bis adducts of C60 and C70

    NASA Astrophysics Data System (ADS)

    Dallas, Panagiotis; Rogers, Gregory; Reid, Ben; Taylor, Robert A.; Shinohara, Hisanori; Briggs, G. Andrew D.; Porfyrakis, Kyriakos

    2016-02-01

    We present a series of fullerene derivatives and a study on their photoluminescence properties, complete with their efficiency as singlet oxygen generation photosensitizers. We demonstrate the intramolecular charge transfer between pyrene donor and fullerene acceptor. The opposite effect in decay lifetime measurements is observed for the mono and bis adducts of C60 and C70 for the first time, indicating an interplay between charge-separation and locally excited states. A monoexponential decay was observed for the mono adduct of C60 and the bis adduct of C70, while a biexponential decay was observed for the bis adduct of C60 and the mono adduct of C70. The effect of these molecules as sensitizers of the singlet oxygen radical was tested using detailed 3D excitation photoluminescence maps. A quenching of the singlet oxygen for the C60-mono and C70-bis adducts was observed while a strong photosensitizing effect was observed for the C60-bis and C70-mono adducts.

  16. Stereochemical Configuration of 4-Hydroxy-2-nonenal-Cysteine Adducts and Their Stereoselective Formation in a Redox-regulated Protein*

    PubMed Central

    Wakita, Chika; Maeshima, Takuya; Yamazaki, Atsushi; Shibata, Takahiro; Ito, Sohei; Akagawa, Mitsugu; Ojika, Makoto; Yodoi, Junji; Uchida, Koji

    2009-01-01

    4-Hydroxy-2-nonenal (HNE), a major racemic product of lipid peroxidation, preferentially reacts with cysteine residues to form a stable HNE-cysteine Michael addition adduct possessing three chiral centers. Here, to gain more insight into sulfhydryl modification by HNE, we characterized the stereochemical configuration of the HNE-cysteine adducts and investigated their stereoselective formation in redox-regulated proteins. To characterize the HNE-cysteine adducts by NMR, the authentic (R)-HNE- and (S)-HNE-cysteine adducts were prepared by incubating N-acetylcysteine with each HNE enantiomer, both of which provided two peaks in reversed-phase high performance liquid chromatography (HPLC). The NMR analysis revealed that each peak was a mixture of anomeric isomers. In addition, mutarotation at the anomeric center was also observed in the analysis of the nuclear Overhauser effect. To analyze these adducts in proteins, we adapted a pyridylamination-based approach, using 2-aminopyridine in the presence of sodium cyanoborohydride, which enabled analyzing the individual (R)-HNE- and (S)-HNE-cysteine adducts by reversed-phase HPLC following acid hydrolysis. Using the pyridylamination method along with mass spectrometry, we characterized the stereoselective formation of the HNE-cysteine adducts in human thioredoxin and found that HNE preferentially modifies Cys73 and, to the lesser extent, the active site Cys32. More interestingly, the (R)-HNE- and (S)-HNE-cysteine adducts were almost equally formed at Cys73, whereas Cys32 exhibited a remarkable preference for the adduct formation with (R)-HNE. Finally, the utility of the method for the determination of the HNE-cysteine adducts was confirmed by an in vitro study using HeLa cells. The present results not only offer structural insight into sulfhydryl modification by lipid peroxidation products but also provide a platform for the chemical analysis of protein S-associated aldehydes in vitro and in vivo. PMID:19692331

  17. Reactivity of adducts relevant to the deposition of hexagonal BN from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Freitas, R. R. Q.; Gueorguiev, G. K.; de Brito Mota, F.; de Castilho, C. M. C.; Stafström, S.; Kakanakova-Georgieva, A.

    2013-09-01

    First-principles calculations, which also implement the nudged elastic band (NEB) code, are performed to investigate (i) the stability of the (C2H5)3B:NH3 adduct formed by the initial precursor molecules triethylborane (C2H5)3B and ammonia NH3 in the metal-chemical-vapor-deposition (MOCVD) of hexagonal BN, and (ii) the energy barrier to the first ethane elimination through consistent unimolecular, ammonia-assisted, and adduct-assisted reaction pathways. Comparison is done with the reference case of the (CH3)3Al:NH3 adduct, notoriously known for its high degree of stability and reactivity, which determines an overall severe parasitic gas-phase chemical reaction mechanism in the deposition of AlN.

  18. Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform.

    PubMed

    Lin, Meihua; Song, Ping; Zhou, Guobao; Zuo, Xiaolei; Aldalbahi, Ali; Lou, Xiaoding; Shi, Jiye; Fan, Chunhai

    2016-07-01

    The occurrence and prognosis of many complex diseases, such as cancers, is associated with the variation of various molecules, including DNA at the genetic level, RNA at the regulatory level, proteins at the functional level and small molecules at the metabolic level (defined collectively as multilevel molecules). Thus it is highly desirable to develop a single platform for detecting multilevel biomarkers for early-stage diagnosis. Here we report a protocol on DNA-nanostructure-based programmable engineering of the biomolecular recognition interface, which provides a universal electrochemical biosensing platform for the ultrasensitive detection of nucleic acids (DNA/RNA), proteins, small molecules and whole cells. The protocol starts with the synthesis of a series of differentially sized, self-assembled tetrahedral DNA nanostructures (TDNs) with site-specifically modified thiol groups that can be readily anchored on the surface of a gold electrode with high reproducibility. By exploiting the rigid structure, nanoscale addressability and versatile functionality of TDNs, one can tailor the type of biomolecular probes appended on individual TDNs for the detection of specific molecules of interest. Target binding occurring on the gold surface patterned with TDNs is quantitatively translated into electrochemical signals via a coupled enzyme-based catalytic process. This uses a sandwich assay strategy in which biotinylated reporter probes recognize TDN-bound target biomolecules, which then allow binding of horseradish-peroxidase-conjugated avidin (avidin-HRP). Hydrogen peroxide (H2O2) is then reduced by avidin-HRP in the presence of TMB (3,3',5,5'-tetramethylbenzidine) to generate a quantitative electrochemical signal. The time range for the entire protocol is ∼1 d, whereas the detection process takes ∼30 min to 3 h. PMID:27310264

  19. Effect of Varying Magnetic Fields on Targeted Gene Delivery of Nucleic Acid-Based Molecules.

    PubMed

    Oral, Ozlem; Cıkım, Taha; Zuvin, Merve; Unal, Ozlem; Yagci-Acar, Havva; Gozuacik, Devrim; Koşar, Ali

    2015-11-01

    Several physical methods have been developed to introduce nucleic acid expression vectors into mammalian cells. Magnetic transfection (magnetofection) is one such transfection method, and it involves binding of nucleic acids such as DNA, RNA or siRNA to magnetic nanoparticles followed by subsequent exposure to external magnetic fields. However, the challenge between high efficiency of nucleic acid uptake by cells and toxicity was not totally resolved. Delivery of nucleic acids and their transport to the target cells require carefully designed and controlled systems. In this study, we introduced a novel magnetic system design providing varying magnet turn speeds and magnetic field directions. The system was tested in the magnetofection of human breast (MCF-7), prostate (DU-145, PC-3) and bladder (RT-4) cancer cell lines using green fluorescent protein DNA as a reporter. Polyethylenimine coated superparamagnetic iron oxide nanoparticles (SPIONs) were used as nucleic acid carriers. Adsorption of PEI on SPION improved the cytocompatibility dramatically. Application of external magnetic field increased intracellular uptake of nanoparticles and transfection efficiency without any additional cytotoxicity. We introduce our novel magnetism-based method as a promising tool for enhanced nucleic acid delivery into mammalian cells. PMID:25963582

  20. Quantitative analysis of positional isomers of triacylglycerols via electrospray ionization tandem mass spectrometry of sodiated adducts.

    PubMed

    Herrera, Lisandra Cubero; Potvin, Michael A; Melanson, Jeremy E

    2010-09-01

    Herein we report a reversed-phase high-performance liquid chromatography tandem mass spectrometry (RP-HPLC/MS/MS) method for the analysis of positional isomers of triacylglycerols (TAGs) in vegetable oils. The fragmentation behavior of [M + X](+) ions (X = NH(4), Li, Na or Ag) was studied on a quadrupole-time-of-flight (Q-TOF) mass spectrometer under low-energy collision-induced dissociation (CID) conditions. Mass spectra that were dependent on the X(+) ion and the nature and position of the acyl substituents were observed for four pairs of 'AAB/ABA'-type TAGs, namely PPO/POP, OOP/OPO, LLO/LOL and OOL/OLO (where P is 16:0, palmitic acid; O is 18:1, oleic acid; and L is 18:2, linoleic acid). For the majority of [M + X](+) adducts, the loss of the fatty acid in the outer positions (sn-1 or sn-3) was favored over the loss in the central position (sn-2), which enabled the determination of the fractional abundance of the isomers. Ratios of the intensity of fragment ions at various AAB/ABA compositions produced linear calibration curves with positive slopes, comparable to those obtained traditionally by ESI-MS/MS of [M + NH(4)](+) adducts. The only exceptions were the [M + Ag](+) adducts of the PPO/POP system, which produced calibration curves with negative slopes. Sodium adducts provided the most consistent level of isomeric discrimination for the TAGs studied and also offered the most convenience in that they required no additive to the mobile phase. Therefore, calibration curve data derived from [M + Na](+) adducts were applied to the quantification of TAG regioisomers in sunflower and olive oils. The regiospecific analysis showed that palmitic acid was typically located at positions sn-1 or sn-3, whereas unsaturated fatty acids, oleic and linoleic acids were mostly found at the sn-2 position. PMID:20814981

  1. The pharmacology and therapeutic potential of small molecule inhibitors of acid-sensing ion channels in stroke intervention

    PubMed Central

    Leng, Tian-dong; Xiong, Zhi-gang

    2013-01-01

    In the nervous system, a decrease in extracellular pH is a common feature of various physiological and pathological processes, including synaptic transmission, cerebral ischemia, epilepsy, brain trauma, and tissue inflammation. Acid-sensing ion channels (ASICs) are proton-gated cation channels that are distributed throughout the central and peripheral nervous systems. Following the recent identification of ASICs as critical acid-sensing extracellular proton receptors, growing evidence has suggested that the activation of ASICs plays important roles in physiological processes such as nociception, mechanosensation, synaptic plasticity, learning and memory. However, the over-activation of ASICs is also linked to adverse outcomes for certain pathological processes, such as brain ischemia and multiple sclerosis. Based on the well-demonstrated role of ASIC1a activation in acidosis-mediated brain injury, small molecule inhibitors of ASIC1a may represent novel therapeutic agents for the treatment of neurological disorders, such as stroke. PMID:22820909

  2. Microbial production of bi-functional molecules by diversification of the fatty acid pathway.

    PubMed

    Garg, Shivani; Rizhsky, Ludmila; Jin, Huanan; Yu, Xiaochen; Jing, Fuyuan; Yandeau-Nelson, Marna D; Nikolau, Basil J

    2016-05-01

    Fatty acids that are chemically functionalized at their ω-ends are rare in nature yet offer unique chemical and physical properties with wide ranging industrial applications as feedstocks for bio-based polymers, lubricants and surfactants. Two enzymatic determinants control this ω-group functionality, the availability of an appropriate acyl-CoA substrate for initiating fatty acid biosynthesis, and a fatty acid synthase (FAS) variant that can accommodate that substrate in the initial condensation reaction of the process. In Type II FAS, 3-ketoacyl-ACP synthase III (KASIII) catalyses this initial condensation reaction. We characterized KASIIIs from diverse bacterial sources, and identified variants with novel substrate specificities towards atypical acyl-CoA substrates, including 3-hydroxybutyryl-CoA. Using Alicyclobacillus acidocaldarius KASIII, we demonstrate the in vivo diversion of FAS to produce novel ω-1 hydroxy-branched fatty acids from glucose in two bioengineered microbial hosts. This study unveils the biocatalytic potential of KASIII for synthesizing diverse ω-functionalized fatty acids. PMID:26827988

  3. Peptide nucleic acids rather than RNA may have been the first genetic molecule

    NASA Technical Reports Server (NTRS)

    Nelson, K. E.; Levy, M.; Miller, S. L.

    2000-01-01

    Numerous problems exist with the current thinking of RNA as the first genetic material. No plausible prebiotic processes have yet been demonstrated to produce the nucleosides or nucleotides or for efficient two-way nonenzymatic replication. Peptide nucleic acid (PNA) is a promising precursor to RNA, consisting of N-(2-aminoethyl)glycine (AEG) and the adenine, uracil, guanine, and cytosine-N-acetic acids. However, PNA has not yet been demonstrated to be prebiotic. We show here that AEG is produced directly in electric discharge reactions from CH(4), N(2), NH(3), and H(2)O. Electric discharges also produce ethylenediamine, as do NH(4)CN polymerizations. AEG is produced from the robust Strecker synthesis with ethylenediamine. The NH(4)CN polymerization in the presence of glycine leads to the adenine and guanine-N(9)-acetic acids, and the cytosine and uracil-N(1)-acetic acids are produced in high yield from the reaction of cyanoacetaldehyde with hydantoic acid, rather than urea. Preliminary experiments suggest that AEG may polymerize rapidly at 100 degrees C to give the polypeptide backbone of PNA. The ease of synthesis of the components of PNA and possibility of polymerization of AEG reinforce the possibility that PNA may have been the first genetic material.

  4. Jasmonates and Tetrahydrojasmonic Acid: A Novel Class of Anti-Aging Molecules.

    PubMed

    Alexiades, Macrene

    2016-02-01

    Jasmonates are plant-derived hormones from linoleic acid that were originally isolated from jasmine, and which are involved in plant stress regulation, wound repair and defense. They have been demonstrated through in vitro and in vivo studies to possess anti-neoplastic properties. Most recently, a novel jasmonate analog was developed, tetrahydrojasmonic acid (LR2412), which possesses favorable characteristics for cutaneous application and which induces improvements in epidermal hyaluronic acid and thickness. Clinical application of LR2412 to facial skin has been demonstrated to reduce the appearance of wrinkles and photoaging. In this issue, a clinical trial is published demonstrating the results of topical application of this agent for th cosmetic treatment of wrinkle appearance, poor texture and large pores. PMID:26885789

  5. Visualising single molecules of HIV-1 and miRNA nucleic acids

    PubMed Central

    2013-01-01

    Background The scarcity of certain nucleic acid species and the small size of target sequences such as miRNA, impose a significant barrier to subcellular visualization and present a major challenge to cell biologists. Here, we offer a generic and highly sensitive visualization approach (oligo fluorescent in situ hybridization, O-FISH) that can be used to detect such nucleic acids using a single-oligonucleotide probe of 19–26 nucleotides in length. Results We used O-FISH to visualize miR146a in human and avian cells. Furthermore, we reveal the sensitivity of O-FISH detection by using a HIV-1 model system to show that as little as 1–2 copies of nucleic acids can be detected in a single cell. We were able to discern newly synthesized viral cDNA and, moreover, observed that certain HIV RNA sequences are only transiently available for O-FISH detection. Conclusions Taken together, these results suggest that the O-FISH method can potentially be used for in situ probing of, as few as, 1–2 copies of nucleic acid and, additionally, to visualize small RNA such as miRNA. We further propose that the O-FISH method could be extended to understand viral function by probing newly transcribed viral intermediates; and discern the localisation of nucleic acids of interest. Additionally, interrogating the conformation and structure of a particular nucleic acid in situ might also be possible, based on the accessibility of a target sequence. PMID:23590669

  6. Analysis of regiospecific triacylglycerols by electrospray ionization-mass spectrometry 3 of lithiated adducts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some regiospecific triacylglycerol standards containing normal fatty acids, e.g., 1,3-dioleoyl-2-palmitoyl-glycerol (OPO) and 1,2-dioleoyl-3-palmitoyl-rac-glycerol (OOP), were analyzed by the electrospray ionization MS3 of their lithiated adducts. The fragment ions of the MS3 from the loss of alpha,...

  7. The use of lithiated adducts for structural analysis of acylglycerols by MS-ESI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electrospray ionization mass spectrometry (ESI-MS) using lithium adducts is the method of choice for the analysis of acyglycerols. The method can be used for the identification of the structures of fatty acid constituents, including the number and location of double bonds and hydroxyl groups. The me...

  8. MALDI-TOF analysis of steroid/PAH-modified DNA adducts at the femtomole level

    SciTech Connect

    Gooden, J.K.; Gross, M.L.; Stack, D.

    1995-12-31

    Covalent binding of polycyclic aromatic hydrocarbons (PAH`s) and steroids to DNA to form adducts is one of the first events in the process of tumor initiation in carcinogenesis. Structure elucidation and characterization of these adducts provide important information that leads to further understanding of their biological metabolic pathways. In in vivo and in vitro steroid/PAH-DNA binding studies, the reaction products (adducts) are often of low amount (low picomole to femtomole). Previous results from this laboratory have shown that the sensitivity of MALDI-TOF can be improved by proper matrix selection. An increase in sensitivity can also be obtained with the use of d-fucose as a co-matrix. In this study 4-phenyl-{alpha}-cyanocinnamic acid, PCC, 4-benzyloxy-{alpha}-cyanocinnamic acid, BCC, ferulic acid, FA, {alpha}-cyano-4-hydroxycinnamic acid, 4HCCA, and 3-(2-naphthyl)-2-cyanoacrylic NCA, were used in the determination of the limit of detection for two different DNA adducts dibenzocarbazole-5-N7Ade, and 4-hydroxyestrone-N7Gua.

  9. Lactoferrin Combined with Retinoic Acid Stimulates B1 Cells to Express IgA Isotype and Gut-homing Molecules

    PubMed Central

    Kang, Seong-Ho; Jin, Bo-Ra; Kim, Hyeon-Jin; Seo, Goo-Young; Jang, Young-Saeng; Kim, Sun-Jin; An, Sun-Jin; Park, Seok-Rae; Kim, Woan-Sub

    2015-01-01

    It is well established that TGF-β1 and retinoic acid (RA) cause IgA isotype switching in mice. We recently found that lactoferrin (LF) also has an activity of IgA isotype switching in spleen B cells. The present study explored the effect of LF on the Ig production by mouse peritoneal B cells. LF, like TGF-β1, substantially increased IgA production in peritoneal B1 cells but little in peritoneal B2 cells. In contrast, LF increased IgG2b production in peritoneal B2 cells much more strongly than in peritoneal B1 cells. LF in combination with RA further enhanced the IgA production and, interestingly, this enhancement was restricted to IgA isotype and B1 cells. Similarly, the combination of the two molecules also led to expression of gut homing molecules α4β7 and CCR9 on peritoneal B1 cells, but not on peritoneal B2 cells. Thus, these results indicate that LF and RA can contribute to gut IgA response through stimulating IgA isotype switching and expression of gut-homing molecules in peritoneal B1 cells. PMID:25713507

  10. Coupled Cluster Evaluation of the Stability of Atmospheric Acid-Base Clusters with up to 10 Molecules.

    PubMed

    Myllys, Nanna; Elm, Jonas; Halonen, Roope; Kurtén, Theo; Vehkamäki, Hanna

    2016-02-01

    We investigate the utilization of the domain local pair natural orbital coupled cluster (DLPNO-CCSD(T)) method for calculating binding energies of atmospherical molecular clusters. Applied to small complexes of atmospherical relevance we find that the DLPNO method significantly reduces the scatter in the binding energy, which is commonly present in DFT calculations. For medium sized clusters consisting of sulfuric acid and bases the DLPNO method yields a systematic underestimation of the binding energy compared to canonical coupled cluster results. The errors in the DFT binding energies appear to be more random, while the systematic nature of the DLPNO results allows the establishment of a scaling factor, to better mimic the canonical coupled cluster calculations. Based on the trends identified for the small and medium sized systems, we further extend the application of the DLPNO method to large acid - base clusters consisting of up to 10 molecules, which have previously been out of reach with accurate coupled cluster methods. Using the Atmospheric Cluster Dynamics Code (ACDC) we compare the sulfuric acid dimer formation based on the new DLPNO binding energies with previously published RI-CC2/aug-cc-pV(T+d)Z results. We also compare the simulated sulfuric acid dimer concentration as a function of the base concentration with measurement data from the CLOUD chamber and flow tube experiments. The DLPNO method, even after scaling, underpredicts the dimer concentration significantly. Reasons for this are discussed. PMID:26771121

  11. Direct Determination of a Small-Molecule Drug, Valproic Acid, by an Electrically-Detected Microcantilever Biosensor for Personalized Diagnostics

    PubMed Central

    Huang, Long-Sun; Gunawan, Christian; Yen, Yi-Kuang; Chang, Kai-Fung

    2015-01-01

    Direct, small-molecule determination of the antiepileptic drug, valproic acid, was investigated by a label-free, nanomechanical biosensor. Valproic acid has long been used as an antiepileptic medication, which is administered through therapeutic drug monitoring and has a narrow therapeutic dosage range of 50–100 μg·mL−1 in blood or serum. Unlike labeled and clinically-used measurement techniques, the label-free, electrical detection microcantilever biosensor can be miniaturized and simplified for use in portable or hand-held point-of-care platforms or personal diagnostic tools. A micromachined microcantilever sensor was packaged into the micro-channel of a fluidic system. The measurement of the antiepileptic drug, valproic acid, in phosphate-buffered saline and serum used a single free-standing, piezoresistive microcantilever biosensor in a thermally-controlled system. The measured surface stresses showed a profile over a concentration range of 50–500 μg·mL−1, which covered the clinically therapeutic range of 50–100 μg·mL−1. The estimated limit of detection (LOD) was calculated to be 45 μg·mL−1, and the binding affinity between the drug and the antibody was measured at around 90 ± 21 μg·mL−1. Lastly, the results of the proposed device showed a similar profile in valproic acid drug detection with those of the clinically-used fluorescence polarization immunoassay. PMID:25632826

  12. Fluorescence study on the aggregation of collagen molecules in acid solution influenced by hydroxypropyl methylcellulose.

    PubMed

    Ding, Cuicui; Zhang, Min; Li, Guoying

    2016-01-20

    The effect of hydroxypropyl methylcellulose (HPMC) on the aggregation of collagen molecules with collagen concentrations of 0.25, 0.5 and 1.0mg/mL was studied by fluorescence techniques. On one hand, both the synchronous fluorescence spectra and fluorescence emission spectra showed that there was no change in the fluorescence intensity of collagen intrinsic fluorescence when 30% HPMC was added, while it decreased obviously when HPMC content ≥ 50%. From the two-dimensional fluorescence correlation analysis, it was indicated that collagen molecules in 0.25 and 0.5mg/mL collagen solutions were more sensitive to HPMC than those in 1.0mg/mL collagen solution. On the other hand, the pyrene fluorescence and the fluorescence anisotropy measurements indicated that HPMC inhibited the collagen aggregation for 0.25 and 0.5mg/mL collagen, but promoted it for 1.0mg/mL collagen. The atomic force microscopy images further confirmed the effect of HPMC on collagen with different initial states. PMID:26572350

  13. Adsorption of biomedical coating molecules, amino acids, and short peptides on magnetite (110).

    PubMed

    Aschauer, Ulrich; Selloni, Annabella

    2015-07-28

    Superparamagnetic iron oxide nanoparticles for biomedical applications are usually coated with organic molecules to form a steric barrier against agglomeration. The stability of these coatings is well established in the synthesis medium but is more difficult to assess in physiological environment. To obtain a first theoretical estimate of their stability in such an environment, we perform density functional theory calculations of the adsorption of water, polyvinyl alcohol (PVA) and polyethylene glycol (PEG) coating molecules, as well as the monomer and dimer of glycine as a prototype short peptide, on the (110) surface of magnetite (Fe3O4) in vacuo. Our results show that PVA binds significantly stronger to the surface than both PEG and glycine, while the difference between the latter two is quite small. Depending on the coverage, the water adsorption strength is intermediate between PVA and glycine. Due to its strongly interacting OH side groups, PVA is likely to remain bound to the surface in the presence of short peptides. This stability will have to be further assessed by molecular dynamics in the solvated state for which the present work forms the basis. PMID:26233155

  14. Non Covalent Interactions and Internal Dynamics in Adducts of Freons

    NASA Astrophysics Data System (ADS)

    Caminati, Walther; Gou, Qian; Evangelisti, Luca; Feng, Gang; Spada, Lorenzo; Vallejo-López, Montserrat; Lesarri, Alberto; Cocinero, Emilio J.

    2014-06-01

    The complexation of chlorofluorocarbons (CFCs) with atmospheric water and pollutants of the atmosphere affects their reactivity and it seems to accelerate, for example, the decomposition rate of freons in the atmosphere [1]. For this reason we characterized shapes, stabilities, nature of the non-covalent interactions, structures and internal dynamics of a number of complexes of CFCs with water and of their dimers or oligomers by rotational spectroscopy. It has been found that hydrogenated CFCs form adducts with other molecules through weak hydrogen bonds (WHBs). Their C-H groups can act as proton donors, enhanced by the electron withdrawing of the halogen atoms, interacting with the electron rich regions of the partner molecules [2]. Also in adducts or oligomers of hydrogenated CFCs the monomer units are held together by nets of WHBs [3]. When CFCs are perhalogenated, the positive electrostatic region ("σ-hole") can interact electrostatically with negative sites of another, or of the same molecular entity, giving rise, according to IUPAC, to the so called halogen bond (HaB). However, it has been observed that when the perhalogenated CFCs has a Π electron system, a lone pair•••Π interaction (Bürgi-Dunitz) is favoured [4]. We describe here the HaBs that CF4 and CF3Cl form with a variety of partner molecules such as water, ammonia, dimethyl ether, etc. Important spectroscopic features outline strong dynamics effects taking place in this kind of complex. References [1] V. Vaida, H. G. Kjaergaard, K. J. Feierabend, Int. Rev. Phys. Chem. 22 (2003) 203. [2] See, for example: W. Caminati, S. Melandri, A. Maris, P. Ottaviani, Angew. Chem. Int. Ed. 45 (2006) 2438. [3] G. Feng, L. Evangelisti, I. Cacelli, L. Carbonaro, G. Prampolini, W. Caminati, Chem. Commun. 50 (2014) 171. [4] Q. Gou, G. Feng, L. Evangelisti, W. Caminati, Angew. Chem. Int. Ed. 52 (2013) 52 11888.

  15. Aminofluorene-DNA adduct formation in Salmonella typhimurium exposed to the carcinogen N-hydroxy-2-acetylaminofluorene.

    PubMed Central

    Beranek, D T; White, G L; Heflich, R H; Beland, F A

    1982-01-01

    The DNA adducts formed during incubation of the hepatocarcinogen N-hydroxy-2-acetylaminofluorene with Salmonella typhimurium tester strain TA1538 were investigated to determine if the covalently bound products were identical to those adducts found in rat liver DNA and to establish the biological significance of the adducts in a mutational assay. When bacteria were exposed to N-hydroxy-2-acetylaminofluorene in the presence of a 9,000 x g supernatant from a rat liver homogenate (S9), only one adduct was detected. This adduct had chromatographic, pH-dependent partitioning, and UV spectral characteristics identical to those of N-(deoxyguanosin-8-yl)-2-aminofluorene. In the absence of S9 activation the same product was detected, but at a 85-90% lower level, which indicates that S. typhimurium also may be capable of metabolizing N-hydroxy-2-acetylaminofluorene to a reactive electrophile. When incubations were conducted with N-hydroxy-2-aminofluorene in the absence of the activation system, N-(deoxyguanosin-8-yl)-2-aminofluorene again was the major adduct. At equimolar concentrations, the arylhydroxylamine was approximately 10 times more efficient than the arylhydroxamic acid in inducing reversions in the bacteria. Comparison of the mutation rate to the level of binding in bacterial DNA gave a linear relationship with a slope of 0.96 and a correlation coefficient of 0.92. These data support previous suggestions that N-hydroxy-2-acetylaminofluorene is deacetylated by rat liver S9 to the ultimate mutagen, N-hydroxy-2-aminofluorene, and also indicate that S. typhimurium can mediate this reaction. The correlation between mutagenicity and the extent of N-(deoxyguanosin-8-yl)-2-aminofluorene adduct formation, coupled with the observation that this adduct is the major DNA adduct found in rat liver in vivo, suggests that N-(deoxyguanosin-8-yl)-2-aminofluorene may be a critical lesion for the initiation of hepatic tumorigenesis. PMID:6752940

  16. Serine Protease Catalysis: A Computational Study of Tetrahedral Intermediates and Inhibitory Adducts.

    PubMed

    Ngo, Phong D; Mansoorabadi, Steven O; Frey, Perry A

    2016-08-01

    Peptide boronic acids and peptidyl trifluoromethyl ketones (TFKs) inhibit serine proteases by forming monoanionic, tetrahedral adducts to serine in the active sites. Investigators regard these adducts as analogs of monoanionic, tetrahedral intermediates. Density functional theory (DFT) calculations and fractional charge analysis show that tetrahedral adducts of model peptidyl TFKs are structurally and electrostatically very similar to corresponding tetrahedral intermediates. In contrast, the DFT calculations show the structures and electrostatic properties of analogous peptide boronate adducts to be significantly different. The peptide boronates display highly electrostatically positive boron, with correspondingly negative ligands in the tetrahedra. In addition, the computed boron-oxygen and boron-carbon bond lengths in peptide boronates (which are identical or very similar to the corresponding bonds in a peptide boronate adduct of α-lytic protease determined by X-ray crystallography at subangstrom resolution) are significantly longer than the corresponding bond lengths in model tetrahedral intermediates. Since protease-peptidyl TFKs incorporate low-barrier hydrogen bonds (LBHBs) between an active site histidine and aspartate, while the protease-peptide boronates do not, these data complement the spectroscopic and chemical evidence for the participation of LBHBs in catalysis by serine proteases. Moreover, while the potency of these classes of inhibitors can be correlated to the structures of the peptide moieties, the present results indicate that the strength of their bonds to serine contribute significantly to their inhibitory properties. PMID:27387593

  17. Proposed formation mechanism and active species of hydrogen molecules generated from a novel magnesium-citric acid-hydroxypropyl cellulose coating (MgCC) material

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shigeki; Chikuma, Toshiyuki; Chiba, Kazuyoshi; Tsuchiya, Daisuke; Hirai, Tomomitsu

    2016-02-01

    The presence of acids is known to accelerate the reaction (Mg + 2H2O = Mg(OH)2 + H2). We developed a novel Mg-citric acid coating (MgCC) material produced by milling Mg powder coated with hydroxypropyl cellulose (HPC); because of its H2 generation, this material could be used in antioxidant therapy and antiaging applications. After milling in the presence of citric acid, this material produced H2-rich water upon addition to cooled water. Although the reaction was considered to involve a two-electron transfer from Mg to 2H2O, the role of the acid in H2 generation remains incompletely understood. To clarify the reaction mechanism, we performed studies on the deuterium kinetic isotope effects (KIE) and electron spin resonance (ESR). We observed differences in the concentration ratios, such as H2/D2 > 1 and H2/(H2 + D2 + HD) > 1, involved in H2, D2, and (H2 + D2 + HD) production, and found that adducts with hydrogen atoms (Hrad) were not obtained from the spin-trapping reaction between 5-(2, 2-Dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO) and the MgCC material. The H2, D2, and HD produced from MgCC were identified by using a gas chromatograph connected to a mass spectrometer. The spin-trapping techniques showed that the Hrad adducts formed by the reaction of NaBH4 with CYPMPO could not be observed from reaction of MGCC with CYPMPO in H2O. The data suggest that the rate-controlling step and proposed transition state (TS) exist in the reaction pathway of the O-H bond cleavage and H-H bond formation. A TS of a structure such as [Mg(OH2)2]∗ could be expected in the reaction pathway between Mg and 2H2O by density functional theory calculations. Also, these results show that H2 generation is accelerated in the presence of acids because the activation energy of the TS is significantly smaller than that of H2O.

  18. New fluorescence methodology for detecting DNA adducts. Final progress report, May 1, 1991--November 30, 1994

    SciTech Connect

    Giese, R.W.

    1994-12-19

    A new reagent, {open_quotes}BO-IMI{close_quotes}, has been developed that achieves, for the first time, single step, phosphate specific fluorescence labeling under aqueous conditions. Both 3{prime} and 5{prime} mononucleotides, including representative DNA adducts can be labeled. Included in this technique is a convenient procedure for postlabeling sample cleanup, leading to a practical detection of the products by capillary electrophoresis with laser fluorescence detection (CE-LIF). We consider that this new method will have a significant impact on the measurement of DNA adducts in human samples. This work was largely accomplished in the second half of our project. In the first half, we set up a new way to isolate DNA nucleotides from blood, worked with an initial, less specific technique for labeling DNA adducts, compared ionizing radiation vs oxidative damage to fluorescein labeled deoxyadenylic acid, and set up a capillary electrophoresis laser fluorescence detection system.

  19. New fluorescence methodology for detecting DNA adducts. Progress report, May 1, 1991--May 21, 1993

    SciTech Connect

    Giese, R.W.

    1993-05-21

    A new reagent, BO-IMI, has been developed that achieves, single step, phosphate specific fluorescence labeling under aqueous conditions. Both 3 in. and 5 in. mononucleotides, including representative DNA adducts can be labeled. Included in this technique is a convenient procedure for postlabeling sample cleanup, leading to a practical detection of the products by capillary electrophoresis with laser fluorescencedetection. We consider that this new method will have a significant impact on the measurement of DNA adducts in human samples. This work was largely accomplished in the second half of our project. In the first half, we set up a new way to isolate DNA nucleotides from blood, worked with an initial, less specific technique for labeling DNA adducts, compared ionizing radiation vs oxidative damage to fluorescein labeled deoxyadenylic acid, and set up a capillary electrophoresis laser fluorescence detection system.

  20. Effect of folic acid decorated magnetic fluorescent nanoparticles on the sedimentation of starch molecules

    NASA Astrophysics Data System (ADS)

    Palanikumar, S.; Kannammal, L.; Meenarathi, B.; Anbarasan, R.

    2014-04-01

    Ferrite-folic acid (FA) nanohybrids were synthesized and characterized by various analytical tools like Fourier transform infrared spectroscopy, UV-Visible spectroscopy, fluorescence spectroscopy, field emission scanning electron microscopy, X-ray diffraction analysis and vibrating sample measurement techniques. After the nanohybrid formation, both the crystallinity and the magnetization values of ferrite were disturbed due to the surface functionalization of ferrite by FA. The role of nanohybrid on the structure-property relationship of starch, particularly the sedimentation of starch under three different pHs, was evaluated. Again the magnetization value of Fe3O4-FA/starch nanocomposite system was reduced due to the encapsulation effect. The sedimentation velocity of starch under the influence of nanohybrid was enhanced in the acidic medium.

  1. Camphorquinone-10-sulfonic acid and derivatives: convenient reagents for reversible modification of arginine residues

    SciTech Connect

    Pande, C.S.; Pelzig, M.; Glass, J.D.

    1980-02-01

    Camphorquinone-10-sulfonic acid hydrate was prepared by the action of selenous acid on camphor-10-sulfonic acid. Camphorquinone-10-sulfonylnorleucine was prepared either from the sulfonic acid via the sulfonyl chloride or by selenous acid oxidation of camphor-10-sulfonylnorleucine. These reagents are useful for specific, reversible modification of the guanidino groups of arginine residues. Camphorquinonsulfonic acid is a crystalline water-soluble reagent that is especially suitable for use with small arginine-containing molecules, because the sulfonic acid group of the reagent is a convenient handle for analytical and preparative separation of products. Camphorquinonesulfonylnorleucine is more useful for work with large polypeptides and proteins, because hydrolysates of modified proteins may be analyzed for norleucine to determine the extent of arginine modification. The adducts of the camphorquinone derivatives with the guanidino group are stable to 0.5 M hydroxylamine solutions at pH 7, the recommended conditions for cleavage of the corresponding cyclohexanedione adducts. At pH 8-9 the adducts of the camphorquinone derivatives with the guanidino group are cleaved by o-phenylenediamine. The modification and regeneration of arginine, of the dipeptide arginylaspartic acid, of ribonuclease S-peptide, and of soybean trypsin inhibitor are presented as demonstrations of the use of the reagents.The use of camphorquinonesulfonyl chloride to prepare polymers containing arginine-specific ligands is discussed.

  2. Sperm DNA oxidative damage and DNA adducts.

    PubMed

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-12-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps=0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps=0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps=0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on sperm

  3. Reduced variational space analysis of methane adducts

    SciTech Connect

    Cundari, T.R.; Klinckman, T.R.

    1998-10-05

    Methane is the major component of natural gas, and hence its catalytic conversion to functionalized products (e.g., methanol) is of great interest. A variety of transition metal complexes have been investigated experimentally for the selective activation of methane. Recent experiments and computations suggest that weakly bound methane adducts play a pivotal role in metal-mediated methane activation. Calculation of the intrinsic reaction coordinates for methane activation by d{sup 0} imidos indicates that the adduct lies along the pathway for methane activation. Isolation of a stable methane adduct, suitable for experimental characterization, would be aided by a greater understanding of their chemistry. Given the short-lived nature of these adducts and the limited direct experimental information, computational chemistry is a useful tool for understanding the bonding and structure of these catalytic intermediates. This research investigated the bonding forces in methane adducts of transition metal (TM) complexes. The calculations reported here employed effective core potential (ECP) methods within the Hartree-Fock approximation using the GAMESS quantum chemistry program. The reduced variational space self-consistent field (RVS-SCF) method developed by Stevens and Fink was employed. This technique was used to analyze the Coulomb and exchange energy (CEX), polarization energy (POL), and charge transfer energy (CT) contributions to the binding energy ({Delta}E{sub add}) of methane to a TM complex. Adducts of high-valent (d{sup 0}) transition metal complexes were studied. The role of metal, ligand, and charge on the different contributions to the binding energy were analyzed.

  4. The Fatty Acid Signaling Molecule cis-2-Decenoic Acid Increases Metabolic Activity and Reverts Persister Cells to an Antimicrobial-Susceptible State

    PubMed Central

    Morozov, Aleksey; Planzos, Penny; Zelaya, Hector M.

    2014-01-01

    Persister cells, which are tolerant to antimicrobials, contribute to biofilm recalcitrance to therapeutic agents. In turn, the ability to kill persister cells is believed to significantly improve efforts in eradicating biofilm-related, chronic infections. While much research has focused on elucidating the mechanism(s) by which persister cells form, little is known about the mechanism or factors that enable persister cells to revert to an active and susceptible state. Here, we demonstrate that cis-2-decenoic acid (cis-DA), a fatty acid signaling molecule, is able to change the status of Pseudomonas aeruginosa and Escherichia coli persister cells from a dormant to a metabolically active state without an increase in cell number. This cell awakening is supported by an increase of the persister cells' respiratory activity together with changes in protein abundance and increases of the transcript expression levels of several metabolic markers, including acpP, 16S rRNA, atpH, and ppx. Given that most antimicrobials target actively growing cells, we also explored the effect of cis-DA on enhancing antibiotic efficacy in killing persister cells due to their inability to keep a persister cell state. Compared to antimicrobial treatment alone, combinational treatments of persister cell subpopulations with antimicrobials and cis-DA resulted in a significantly greater decrease in cell viability. In addition, the presence of cis-DA led to a decrease in the number of persister cells isolated. We thus demonstrate the ability of a fatty acid signaling molecule to revert bacterial cells from a tolerant phenotype to a metabolically active, antimicrobial-sensitive state. PMID:25192989

  5. Cisplatin intrastrand adducts sensitize DNA to base damage by hydrated electrons.

    PubMed

    Behmand, B; Wagner, J R; Sanche, L; Hunting, D J

    2014-05-01

    The oligonucleotide TTTTTGTGTTT with or without a cisplatin adduct was reacted with hydrated electrons generated by ionizing radiation. Hydroxyl radicals were quenched with ethylenediaminetetraacetic acid (EDTA), and the solutions were bubbled with wet nitrogen to eliminate oxygen, a scavenger of hydrated electrons. Prior to irradiation, the structure of the initial cisplatin adduct was identified by mass spectrometry as G-cisplatin-G. Radiation damage to DNA bases was quantified by high-performance liquid chromatography (HPLC), after enzymatic digestion of the TTTTTGTGTTT-cisplatin complex to deoxyribonucleosides. The masses of the platinum adducts following digestion and separation by HPLC were measured by mass spectrometry. Our results demonstrate that hydrated electrons induce damage to thymines as well as detachment of the cisplatin moiety from both guanines in the oligonucleotide. This detachment regenerates both unmodified guanine and damaged guanine, in equimolar amounts. At 1000 Gy, a net average of 2.5 thymines and 1 guanine are damaged for each platinum lost from the oligonucleotide. Given the extensive base damage that occurs for each cisplatin adduct lost, it is clear that, prior to undergoing detachment, these adducts must catalyze several cycles of reactions of hydrated electrons with DNA bases. It is likely that a single reaction leads to the loss of the cisplatin adduct and the damage observed on the guanine base; however, the damage to the thymine bases must require the continued presence of the cisplatin adduct, acting as a catalyst. To our knowledge, this is the first time that platinum-DNA adducts have been shown to have catalytic activity. We propose two pathways for the interaction of hydrated electrons with TTTTTGTGTTT-cisplatin: (1) the hydrated electron is initially captured by a thymine base and transferred by base to base electron hopping to the guanine site, where the cisplatin moiety detaches from the oligonucleotide via dissociative

  6. Preparation and affinity identification of glutamic acid-urea small molecule analogs in prostate cancer

    PubMed Central

    Zhang, Zhiwei; Zhu, Zheng; Yang, Deyong; Fan, Weiwei; Wang, Jianbo; Li, Xiancheng; Chen, Xiaochi; Wang, Qifeng; Song, Xishuang

    2016-01-01

    In recent years, study concerning activity inhibitors of prostate-specific membrane antigen (PSMA) has been concentrated on the glutamic urea (Glu-urea-R) small molecule and its analogs. The present study aimed to synthesize 4 analogs of Glu-urea-R and identify the affinities of these compounds to PSMA. The compounds were synthesized from raw materials, and the experimental procedures of the present study were in accordance with standard techniques under anhydrous and anaerobic conditions. Glu-urea-Lysine (Glu-urea-Lys), Glu-urea-Ornithine (Glu-urea-Orn), Glu-urea-Glutamine (Glu-urea-Gln) and Glu-urea-Asparagine (Glu-urea-Asn) were successfully synthesized, and their structures were confirmed to be as desired using nuclear magnetic resonance spectroscopy and mass spectrometry. An affinity assay was performed to detect the affinity between the various compounds and PSMA expressed from the prostate cancer LNCap cell line. Glu-urea-Gln had the highest affinity to PSMA, followed by Glu-urea-Asn, Glu-urea-Orn and Glu-urea-Lys. In conclusion, the present study demonstrated that Glu-urea-R specifically binds PSMA expressed in the LNCap cell line and inhibits its activity. PMID:27446384

  7. Self-assembly modes of glycyrrhetinic acid esters in view of the crystal packing of related triterpene molecules.

    PubMed

    Langer, Dominik; Wicher, Barbara; Szczołko, Wojciech; Gdaniec, Maria; Tykarska, Ewa

    2016-08-01

    The crystal structures of three ester derivatives of glycyrrhetinic acid (GE) are reported. X-ray crystallography revealed that despite differences in the size of the ester substituents (ethyl, isopropyl and 2-morpholinoethyl) the scheme of molecular self-assembly is similar in all three cases but differs significantly from that observed in other known GE esters. According to our analysis, the two basic patterns of self-assembly of GE esters observed in their unsolvated crystals correspond to two distinct orientations of the ester groups relative to the triterpene backbone. Moreover, comparison of the self-assembly modes of GE esters in their unsolvated forms with the supramolecular organization of GE and carbenoxolone in their solvated crystals revealed that ester substituents replace solvent molecules hydrogen bonded to the COOH group at the triterpene skeleton, resulting in similar packing arrangements of these compounds. PMID:27484379

  8. Vibrational spectra and natural bond orbital analysis of the herbicidal molecule 2(4-chlorophenoxy)-2-methyl propionic acid

    NASA Astrophysics Data System (ADS)

    Monicka, J. Clemy; James, C.

    2011-02-01

    The herbicide 2(4-chlorophenoxy)-2-methyl propionic acid (MCPP) has been subjected to NIR FT-Raman and infrared spectral studies. The optimized molecular structure, vibrational wavenumbers, IR intensities and Raman activities have been calculated by using density functional method (B3LYP) with the standard 6-31G(d) basis set. The calculated molecular geometry has been compared with the XRD data. The detailed assignments of the normal modes have been performed based on the potential energy distribution (PED) following the scaled quantum mechanical force field (SQMFF) methodology. The IR and Raman spectra have been plotted for the calculated wavenumbers. The simulated spectra satisfactorily coincide with the experimental spectra. The strong hyperconjugative interaction and charge delocalization that leads to the stability of the molecule have been investigated with the aid of natural bond orbital (NBO) analysis.

  9. An aspartate and a water molecule mediate efficient acid-base catalysis in a tailored antibody pocket

    SciTech Connect

    Debler, Erik W.; Müller, Roger; Hilvert, Donald; Wilson, Ian A.

    2009-12-01

    Design of catalysts featuring multiple functional groups is a desirable, yet formidable goal. Antibody 13G5, which accelerates the cleavage of unactivated benzisoxazoles, is one of few artificial enzymes that harness an acid and a base to achieve efficient proton transfer. X-ray structures of the Fab-hapten complexes of wild-type 13G5 and active-site variants now afford detailed insights into its mechanism. The parent antibody preorganizes Asp{sup H35} and Glu{sup L34} to abstract a proton from substrate and to orient a water molecule for leaving group stabilization, respectively. Remodeling the environment of the hydrogen bond donor with a compensatory network of ordered waters, as seen in the Glu{sup L34} to alanine mutant, leads to an impressive 10{sup 9}-fold rate acceleration over the nonenzymatic reaction with acetate, illustrating the utility of buried water molecules in bifunctional catalysis. Generalization of these design principles may aid in creation of catalysts for other important chemical transformations.

  10. Amino Acid Polymorphisms in Hepatitis C Virus Core Affect Infectious Virus Production and Major Histocompatibility Complex Class I Molecule Expression.

    PubMed

    Tasaka-Fujita, Megumi; Sugiyama, Nao; Kang, Wonseok; Masaki, Takahiro; Masaski, Takahiro; Murayama, Asako; Yamada, Norie; Sugiyama, Ryuichi; Tsukuda, Senko; Watashi, Koichi; Asahina, Yasuhiro; Sakamoto, Naoya; Wakita, Takaji; Shin, Eui-Cheol; Kato, Takanobu

    2015-01-01

    Amino acid (aa) polymorphisms in the hepatitis C virus (HCV) genotype 1b core protein have been reported to be a potent predictor for poor response to interferon (IFN)-based therapy and a risk factor for hepatocarcinogenesis. We investigated the effects of these polymorphisms with genotype 1b/2a chimeric viruses that contained polymorphisms of Arg/Gln at aa 70 and Leu/Met at aa 91. We found that infectious virus production was reduced in cells transfected with chimeric virus RNA that had Gln at aa 70 (aa70Q) compared with RNA with Arg at aa 70 (aa70R). Using flow cytometry analysis, we confirmed that HCV core protein accumulated in aa70Q clone transfected cells, and it caused a reduction in cell-surface expression of major histocompatibility complex (MHC) class I molecules induced by IFN treatment through enhanced protein kinase R phosphorylation. We could not detect any effects due to the polymorphism at aa 91. In conclusion, the polymorphism at aa 70 was associated with efficiency of infectious virus production, and this deteriorated virus production in strains with aa70Q resulted in the intracellular accumulation of HCV proteins and attenuation of MHC class I molecule expression. These observations may explain the strain-associated resistance to IFN-based therapy and hepatocarcinogenesis of HCV. PMID:26365522

  11. DETERMINATION OF HEMOGLOBIN ADDUCTS FOLLOWING ACRYLAMIDE EXPOSURE

    EPA Science Inventory

    The present project was undertaken to develop new methodologies for biological monitoring of exposure to the toxicant acrylamide in laboratory animals as well as humans. ethods were developed to measure the adducts of acrylamide and its epoxide metabolite glycinamide to cysteine ...

  12. Synthesis and structural studies of flavin and alloxazine adducts with O-nucleophiles

    NASA Astrophysics Data System (ADS)

    Ménová, Petra; Eigner, Václav; Čejka, Jan; Dvořáková, Hana; Šanda, Miloslav; Cibulka, Radek

    2011-10-01

    Five flavin (isoalloxazine) and alloxazine adducts with O-nucleophiles, 5-ethyl-4a-hydroxy-3,7,8,10-tetramethyl-4a,5-dihydroisoalloxazine ( 1a-OH), 5-ethyl-4a-hydroxy-3,10-dimethyl-4a,5-dihydroisoalloxazine ( 1b-OH), 5-ethyl-4a-methoxy-3,10-dimethyl-4a,5-dihydroisoalloxazine ( 1b-OMe), 5-ethyl-4a-hydroxy-1,3-dimethyl-4a,5-dihydroalloxazine ( 2a-OH) and 5-ethyl-4a-methoxy-1,3-dimethyl-4a,5-dihydroalloxazine ( 2a-OMe) were prepared from the corresponding salts, 5-ethyl-3,7,8,10-tetramethylisoalloxazinium ( 1a), 5-ethyl-3,10-dimethylisoalloxazinium ( 1b) and 5-ethyl-1,3-dimethylalloxazinium ( 2a) perchlorates by the addition of a nucleophile (water or methanol) and triethylamine as a base. The prepared adducts represent artificial analogs of flavin cofactor derivatives which are essential for the functioning of flavoenzymes. They were characterized by 1H and 13C NMR, HR-MS and UV-VIS spectra. In the cases of 1a-OH, 1b-OH, and 2a-OMe, the crystal structures were determined by X-ray diffraction. Flavinium and alloxazinium salts are in rapid equilibria with their adducts in water or methanolic solutions without the presence of a base. It was found that the equilibrium constants for flavin adduct formation is higher by six orders of magnitude than those for alloxazine derivatives. The presence of the sp 3 hybridized C4a atom in the molecule of the adducts causes deviation from planarity. The interplanar angles between benzene and the pyrimidine ring were found to be 31.5°, 23.64° and 15.62° for 1a-OH, 1b-OH and 2a-OMe, respectively, which are much higher than those of previously published adducts of C-nucleophiles. In isoalloxazine adducts, delocalization of π electrons between the N10-C10a and C10a-N1 bonds was detected while the length of the N10-C10a and C10a-N1 bonds in the alloxazine adducts corresponds to a double and single bond, respectively.

  13. Nucleic acid molecules encoding isopentenyl monophosphate kinase, and methods of use

    DOEpatents

    Croteau, Rodney B.; Lange, Bernd M.

    2001-01-01

    A cDNA encoding isopentenyl monophosphate kinase (IPK) from peppermint (Mentha x piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of isopentenyl monophosphate kinase (SEQ ID NO:2), from peppermint (Mentha x piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for isopentenyl monophosphate kinase, or for a base sequence sufficiently complementary to at least a portion of isopentenyl monophosphate kinase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding isopentenyl monophosphate kinase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant isopentenyl monophosphate kinase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant isopentenyl monophosphate kinase may be used to obtain expression or enhanced expression of isopentenyl monophosphate kinase in plants in order to enhance the production of isopentenyl monophosphate kinase, or isoprenoids derived therefrom, or may be otherwise employed for the regulation or expression of isopentenyl monophosphate kinase, or the production of its products.

  14. Quinolinic Acid, an endogenous molecule combining excitotoxicity, oxidative stress and other toxic mechanisms.

    PubMed

    Pérez-De La Cruz, Verónica; Carrillo-Mora, Paul; Santamaría, Abel

    2012-01-01

    Quinolinic acid (QUIN), an endogenous metabolite of the kynurenine pathway, is involved in several neurological disorders, including Huntington's disease, Alzheimer's disease, schizophrenia, HIV associated dementia (HAD) etc. QUIN toxicity involves several mechanisms which trigger various metabolic pathways and transcription factors. The primary mechanism exerted by this excitotoxin in the central nervous system (CNS) has been largely related with the overactivation of N-methyl-D-aspartate receptors and increased cytosolic Ca(2+) concentrations, followed by mitochondrial dysfunction, cytochrome c release, ATP exhaustion, free radical formation and oxidative damage. As a result, this toxic pattern is responsible for selective loss of middle size striatal spiny GABAergic neurons and motor alterations in lesioned animals. This toxin has recently gained attention in biomedical research as, in addition to its proven excitotoxic profile, a considerable amount of evidence suggests that oxidative stress and energetic disturbances are major constituents of its toxic pattern in the CNS. Hence, this profile has changed our perception of how QUIN-related disorders combine different toxic mechanisms resulting in brain damage. This review will focus on the description and integration of recent evidence supporting old and suggesting new mechanisms to explain QUIN toxicity. PMID:22408367

  15. Quinolinic Acid, an Endogenous Molecule Combining Excitotoxicity, Oxidative Stress and Other Toxic Mechanisms

    PubMed Central

    Pérez-De La Cruz, Verónica; Carrillo-Mora, Paul; Santamaría, Abel

    2012-01-01

    Quinolinic acid (QUIN), an endogenous metabolite of the kynurenine pathway, is involved in several neurological disorders, including Huntington’s disease, Alzheimer’s disease, schizophrenia, HIV associated dementia (HAD) etc. QUIN toxicity involves several mechanisms which trigger various metabolic pathways and transcription factors. The primary mechanism exerted by this excitotoxin in the central nervous system (CNS) has been largely related with the overactivation of N-methyl-D-aspartate receptors and increased cytosolic Ca2+ concentrations, followed by mitochondrial dysfunction, cytochrome c release, ATP exhaustion, free radical formation and oxidative damage. As a result, this toxic pattern is responsible for selective loss of middle size striatal spiny GABAergic neurons and motor alterations in lesioned animals. This toxin has recently gained attention in biomedical research as, in addition to its proven excitotoxic profile, a considerable amount of evidence suggests that oxidative stress and energetic disturbances are major constituents of its toxic pattern in the CNS. Hence, this profile has changed our perception of how QUIN-related disorders combine different toxic mechanisms resulting in brain damage. This review will focus on the description and integration of recent evidence supporting old and suggesting new mechanisms to explain QUIN toxicity. PMID:22408367

  16. Single Conformation Spectroscopy of Suberoylanilide Hydroxamic Acid: a Molecule Bites its Tail

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Dean, Jacob; Zwier, Timothy S.

    2012-06-01

    Suberoylanilide hydroxamic acid (C_6H_5NHCO(CH_2)_6CONHOH, SAHA) is a histone deacetylase inhibitor approved by the FDA for the treatment of cutaneous T-cell lymphoma. With one hydrogen bonding group adjacent to ring and the other at the end of a long C_6 hydrocarbon tail, SAHA possesses an interesting potential energy landscape to be probed by single-conformation methods. A large number of extended structures favored by entropy are offset by a few structures in which head-to-tail or tail-to-head H-bonds close a large loop between the two groups separated by the C_6 chain. We use laser desorption to bring SAHA into the gas phase and cool it in a supersonic expansion before interrogation with resonant two-photon ionization. Single-conformation UV spectra in the S_0-S_1 region and infrared spectra in the hydride stretch region were recorded using IR-UV hole-burning and resonant ion-dip infrared (RIDIR) spectroscopies, respectively. Four different conformers were observed and spectroscopically characterized. Comparison of the experimental IR spectra with density functional theory (DFT) calculations leads to assignments for two of the major conformers, which adopt head-to-tail and tail-to-head binding patterns. The implication of the observed structures for the folding landscape and configuration preference of SAHA will be discussed.

  17. Synthesis and biological evaluation of boswellic acid-NSAID hybrid molecules as anti-inflammatory and anti-arthritic agents.

    PubMed

    Shenvi, Suvarna; Kiran, K R; Kumar, Krishna; Diwakar, Latha; Reddy, G Chandrasekara

    2015-06-15

    Methyl esters of the β-boswellic acid (BA) and 11-keto-β-boswellic acid (KBA) obtained from Boswellia serrata resin were subjected to Steglich esterification with the different non-steroidal anti-inflammatory drugs (NSAID) viz., ibuprofen, naproxen, diclophenac and indomethacin. The novel hybrids of methyl boswellate (5-8) and that of methyl 11-keto boswellate (9-12) were evaluated for anti-inflammatory activity by carrageenan-induced rat hind paw edema model and anti-arthritic activity by Complete Freund's Adjuvant (CFA) induced arthritis in Wister albino rat. Significant inhibition on carrageenan-induced paw edema has been observed with 5, 6 and 10 where as in CFA induced rats, hybrids 5, 8, 9 and 12 exhibited pronounced antiarthritic activity. Hybrid molecules 5 and 9 have been found to be more effective in inhibiting in-vivo COX-2 than ibuprofen by itself, thus showing the synergistic effect. Hybrid 5 and 9 tested for in-vitro lipoxygenase and cyclooxygenase-2 (LOX/COX-2) inhibitory activity. The studies revealed that both 5 and 9 inhibited COX-2 relatively better than LOX enzyme. PMID:26010018

  18. Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli.

    PubMed

    Howard, Thomas P; Middelhaufe, Sabine; Moore, Karen; Edner, Christoph; Kolak, Dagmara M; Taylor, George N; Parker, David A; Lee, Rob; Smirnoff, Nicholas; Aves, Stephen J; Love, John

    2013-05-01

    Biofuels are the most immediate, practical solution for mitigating dependence on fossil hydrocarbons, but current biofuels (alcohols and biodiesels) require significant downstream processing and are not fully compatible with modern, mass-market internal combustion engines. Rather, the ideal biofuels are structurally and chemically identical to the fossil fuels they seek to replace (i.e., aliphatic n- and iso-alkanes and -alkenes of various chain lengths). Here we report on production of such petroleum-replica hydrocarbons in Escherichia coli. The activity of the fatty acid (FA) reductase complex from Photorhabdus luminescens was coupled with aldehyde decarbonylase from Nostoc punctiforme to use free FAs as substrates for alkane biosynthesis. This combination of genes enabled rational alterations to hydrocarbon chain length (Cn) and the production of branched alkanes through upstream genetic and exogenous manipulations of the FA pool. Genetic components for targeted manipulation of the FA pool included expression of a thioesterase from Cinnamomum camphora (camphor) to alter alkane Cn and expression of the branched-chain α-keto acid dehydrogenase complex and β-keto acyl-acyl carrier protein synthase III from Bacillus subtilis to synthesize branched (iso-) alkanes. Rather than simply reconstituting existing metabolic routes to alkane production found in nature, these results demonstrate the ability to design and implement artificial molecular pathways for the production of renewable, industrially relevant fuel molecules. PMID:23610415

  19. Polysaccharide arabinogalactan from larch Larix sibirica as carrier for molecules of salicylic and acetylsalicylic acid: preparation, physicochemical and pharmacological study.

    PubMed

    Chistyachenko, Yulia S; Dushkin, Alexandr V; Polyakov, Nikolay E; Khvostov, Mikhail V; Tolstikova, Tatyana G; Tolstikov, Genrikh A; Lyakhov, Nikolay Z

    2015-05-01

    Inclusion complexes of salicylic acid (SA) and acetylsalicylic acid (aspirin, ASA) with polysaccharide arabinogalactan (AG) from larch wood Larix sibirica and Larix gmelinii were synthesized using mechanochemical technology. In the present study, we have investigated physicochemical properties of the synthesized complexes in solid state and in aqueous solutions as well as their anti-aggregation and ulcerogenic activity. The evidence of the complexes formation was obtained by nuclear magnetic resonance (NMR) relaxation technique. It was shown that in aqueous solution the molecules of SA and ASA are in fast exchange between the complex with AG macromolecules and solution. The stability constant of aspirin complex was calculated. It was shown that mechanochemically synthesized complexes are more stable when compared to the complex obtained by mixing solutions of the components. Complexes of ASA show two-fold increase of anti-platelet effect. It allows to reduce the dose of the antithrombotic drug and its ulcerogenic activity. These results substantiate the possibility to design new preparations on the basis of ASA with increased activity and safety. PMID:24517849

  20. Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli

    PubMed Central

    Howard, Thomas P.; Middelhaufe, Sabine; Moore, Karen; Edner, Christoph; Kolak, Dagmara M.; Taylor, George N.; Parker, David A.; Lee, Rob; Smirnoff, Nicholas; Aves, Stephen J.; Love, John

    2013-01-01

    Biofuels are the most immediate, practical solution for mitigating dependence on fossil hydrocarbons, but current biofuels (alcohols and biodiesels) require significant downstream processing and are not fully compatible with modern, mass-market internal combustion engines. Rather, the ideal biofuels are structurally and chemically identical to the fossil fuels they seek to replace (i.e., aliphatic n- and iso-alkanes and -alkenes of various chain lengths). Here we report on production of such petroleum-replica hydrocarbons in Escherichia coli. The activity of the fatty acid (FA) reductase complex from Photorhabdus luminescens was coupled with aldehyde decarbonylase from Nostoc punctiforme to use free FAs as substrates for alkane biosynthesis. This combination of genes enabled rational alterations to hydrocarbon chain length (Cn) and the production of branched alkanes through upstream genetic and exogenous manipulations of the FA pool. Genetic components for targeted manipulation of the FA pool included expression of a thioesterase from Cinnamomum camphora (camphor) to alter alkane Cn and expression of the branched-chain α-keto acid dehydrogenase complex and β-keto acyl-acyl carrier protein synthase III from Bacillus subtilis to synthesize branched (iso-) alkanes. Rather than simply reconstituting existing metabolic routes to alkane production found in nature, these results demonstrate the ability to design and implement artificial molecular pathways for the production of renewable, industrially relevant fuel molecules. PMID:23610415

  1. Structural analysis and aggregation propensity of reduced and nonreduced glycated insulin adducts.

    PubMed

    Alavi, Parnian; Yousefi, Reza; Amirghofran, Sara; Karbalaei-Heidari, Hamid Reza; Moosavi-Movahedi, Ali Akbar

    2013-06-01

    The milieu within pancreatic β cells represents a favorable environment for glycation of insulin. Therefore, in this study, insulin samples were individually subjected to glycation under reducing and nonreducing conditions. As monitored by ortho-phthalaldehyde and fluorescamine assays, the reduced glycated insulin adduct demonstrates extensively higher level of glycation than the nonreduced glycated counterpart. Also, gel electrophoresis experiments suggest a significant impact of glycation under a reducing system on the level of insulin oligomerization. Furthermore, reduced and nonreduced glycated insulin adducts respectively exhibit full and partial resistance against dithiothreitol-induced aggregation. The results of thioflavin T and Congo red assays suggest the existence of a significant quantity of amyloid-like entities in the sample of reduced glycated insulin adduct. Both fluorescence and far-ultraviolet circular dichroism studies respectively suggest that the extents of unfolding and secondary structural alteration were closely correlated to the level of insulin glycation. Moreover, the surface tension of two glycated insulin adducts was inversely correlated to their glycation extents and to the quantity of exposed hydrophobic patches. Overall, the glucose-modified insulin molecules under reducing and nonreducing systems display different structural features having significant consequences on aggregation behaviors and surface tension properties. The particular structural constraints of glycated insulin may reduce the binding interaction of this hormone to its receptor which is important for both insulin function and clearance. PMID:23584594

  2. Molecular characterization of the boron adducts of the proteasome inhibitor bortezomib with epigallocatechin-3-gallate and related polyphenols.

    PubMed

    Glynn, Stephen J; Gaffney, Kevin J; Sainz, Marcos A; Louie, Stan G; Petasis, Nicos A

    2015-04-01

    The green tea polyphenol epigallocatechin-3-gallate (EGCG) was reported to effectively antagonize the ability of Bortezomib (BZM) to induce apoptosis in cancer cells. This interaction was attributed to the formation of a covalent adduct between a phenolic moiety of EGCG with the boronic acid group of Bortezomib. However, the structural details of this boron adduct and the molecular factors that contribute to its formation and its ability to inhibit Bortezomib's activity remain unclear. This paper describes the use of NMR spectroscopy and cell assays to characterize the structures and properties of the boron adducts of EGCG and related polyphenols. The observed boron adducts included both boronate and borate derivatives, and their structural characteristics were correlated with cell-based evaluation of the ability of EGCG and other phenols to antagonize the anticancer activity of Bortezomib. The enhanced stability of the BZM/EGCG adduct was attributed to electronic and steric reasons, and a newly identified intramolecular interaction of the boron atom of BZM with the adjacent amide bond. The reported approach provides a useful method for determining the potential ability of polyphenols to form undesired adducts with boron-based drugs and interfere with their actions. PMID:25669488

  3. The formation of lipid hydroperoxide-derived amide-type lysine adducts on proteins: a review of current knowledge.

    PubMed

    Kato, Yoji

    2014-01-01

    Lipid peroxidation is an important biological reaction. In particular, polyunsaturated fatty acid (PUFA) can be oxidized easily. Peroxidized lipids often react with other amines accompanied by the formation of various covalent adducts. Novel amide-type lipid-lysine adducts have been identified from an in vitro reaction mixture of lipid hydroperoxide with a protein, biological tissues exposed to conditions of oxidative stress and human urine from a healthy person. In this chapter, the current knowledge of amide type adducts is reviewed with a focus on the evaluation of functional foods and diseases with a history of discovery of hexanoyl-lysine (HEL). Although there is extensive research on HEL and other amide-type adducts, the mechanism of generation of the amide bond remains unclear. We have found that the decomposed aldehyde plus peroxide combined with a lysine moiety does not fully explain the formation of the amide-type lipid-lysine adduct that is generated by lipid hydroperoxide. Singlet oxygen or an excited state of the ketone generated from the lipid hydroperoxide may also contribute to the formation of the amide linkage. The amide-adducts may prove useful not only for the detection of oxidative stress induced by disease but also for the estimation of damage caused by an excess intake of PUFA. PMID:24374915

  4. Molecular characterization of the boron adducts of the proteasome inhibitor Bortezomib with epigallocatechin-3-gallate and related polyphenols

    PubMed Central

    Glynn, Stephen J.; Gaffney, Kevin J.; Sainz, Marcos A.; Louie, Stan G.

    2015-01-01

    The green tea polyphenol epigallocatechin-3-gallate (EGCG) was reported to effectively antagonize the ability of Bortezomib to induce apoptosis in cancer cells. This interaction was attributed to the formation of a covalent adduct between a phenolic moiety of EGCG with the boronic acid group of Bortezomib. However, the structural details of this boron adduct and the molecular factors that contribute to its formation and its ability to inhibit Bortezomib's activity remain unclear. This paper describes the use of NMR spectroscopy and cell assays to characterize the structures and properties of the boron adducts of EGCG and related polyphenols. The observed boron adducts included both boronate and borate derivatives, and their structural characteristics were correlated with cell-based evaluation of the ability of EGCG and other phenols to antagonize the anticancer activity of Bortezomib. The enhanced stability of the BZM/EGCG adduct was attributed to electronic and steric reasons, and a newly identified intramolecular interaction of the boron atom of BZM with the adjacent amide bond. The reported approach provides a useful method for determining the potential ability of polyphenols to form undesired adducts with boron-based drugs and interfere with their actions. PMID:25669488

  5. 32P-postlabelling methods for cyclic DNA adducts.

    PubMed

    Watson, W P; Crane, A E; Steiner, S

    1993-01-01

    32P-Postlabelling procedures coupled with HPLC have been developed to detect and measure a range of cyclic DNA adducts formed by bifunctional genotoxic agents. The methods are based on reverse-phase HPLC, particularly column-switching HPLC, to enrich adduct 3'-monophosphates before labelling. Following 3'-dephosphorylation of the 3'5'-[5'-32P]bisphosphates with nuclease P1, the resulting 5'-[32P]monophosphate adducts are resolved, identified and characterized by co-chromatography with synthetic reference standards. The procedures have been applied to a number of cyclic adducts including those formed by chloroacetaldehyde, glycidaldehyde and malonaldehyde. In general, labelling efficiencies measured as chromatographed 5'-[32P]monophosphates were in the range 30-40%. However, the values for the malonaldehyde deoxyguanosine adduct were much lower. The techniques have been applied to studies on the formation of DNA adducts in the skin of male C3H mice treated cutaneously with glycidaldehyde. The HPLC-32P-postlabelling analysis of epidermal DNA hydrolysates indicated that a single major cyclic adduct was formed by reaction with deoxyadenosine residues in mouse skin DNA. The adduct was identified as a hydroxymethyl ethenodeoxyadenosine adduct by comparison with a synthetic standard. This adduct was highly fluorescent and it was possible to make quantitative comparisons of the amounts of adduct determined by either HPLC-32P-postlabelling or HPLC-fluorescence detection. PMID:8225493

  6. Monitoring of environmental cancer initiators through hemoglobin adducts by a modified Edman degradation method

    SciTech Connect

    Toernqvist, M.M.; Mowrer, J.; Jensen, S.; Ehrenberg, L.

    1986-04-01

    Tissue doses of cancer initiators/mutagens are suitably monitored through hemoglobin adducts formed in vivo, but the use of this method has been hampered by a lack of sufficiently simple and fast procedures. It was previously observed that when the N-terminal amino acid in hemoglobin, valine, is alkylated it is cleaved off by the Edman sequencing reagent, phenyl isothiocyanate, in the neutral-alkaline coupling medium, as opposed to the acidic medium required by normal amino acids. Based on this principle, conditions for a functioning procedure for gas chromatography/mass spectrometry (GC/MS) determination of N-terminal alkylvalines in hemoglobin were worked out. Derivatizing the protein in formamide solution with pentafluorophenyl isothiocyanate, using a /sup 2/H-alkylated protein as internal standard, and applying on-column injection during analysis, permit reproducible determination of hydroxyethylvaline and other adducts down into the dose range where cancer risks may be considered acceptably low.

  7. Analytical continuation in coupling constant method; application to the calculation of resonance energies and widths for organic molecules: Glycine, alanine and valine and dimer of formic acid

    NASA Astrophysics Data System (ADS)

    Papp, P.; Matejčík, Š.; Mach, P.; Urban, J.; Paidarová, I.; Horáček, J.

    2013-06-01

    The method of analytic continuation in the coupling constant (ACCC) in combination with use of the statistical Padé approximation is applied to the determination of resonance energy and width of some amino acids and formic acid dimer. Standard quantum chemistry codes provide accurate data which can be used for analytic continuation in the coupling constant to obtain the resonance energy and width of organic molecules with a good accuracy. The obtained results are compared with the existing experimental ones.

  8. Structural determination of glycosphingolipids as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisional-activated dissociation on a triple stage quadrupole instrument.

    PubMed

    Hsu, F F; Turk, J

    2001-01-01

    Structural characterization of glycosphingolipids as their lithiated adducts using low-energy collisional-activated dissociation (CAD) tandem mass spectrometry with electrospray ionization (ESI) is described. The tandem mass spectra contain abundant fragment ions reflecting the long chain base (LCB), fatty acid, and the sugar constituent of the molecule and permit unequivocal identification of cerebrosides, di-, trihexosyl ceramides and globosides. The major fragmentation pathways arise from loss of the sugar moiety to yield a lithiated ceramide ion, which undergoes further fragmentation to form multiple fragment ions that confirm the structures of the fatty acid and LCB. The mechanisms for the ion formation and the possible configuration of the fragment ions, resulting from CAD of the lithiated molecular ions ([M + Li]+) of monoglycosylceramides are proposed. The mechanisms were supported by CAD and source CAD tandem mass spectra of various cerebrosides and of their analogous molecules prepared by H-D exchange. Constant neutral loss and precursor ion scannings to identify galactosylceramides with sphingosine or sphinganine LCB subclasses, and with specific N-2-hydroxyl fatty acid subclass in mixtures are also demonstrated. PMID:11142362

  9. Human DNA adduct measurements: state of the art.

    PubMed Central

    Poirier, M C; Weston, A

    1996-01-01

    Human DNA adduct formation (covalent modification of DNA with chemical carcinogens) is a promising biomarker for elucidating the molecular epidemiology of cancer. Classes of compounds for which human DNA adducts have been observed include polycyclic aromatic hydrocarbons (PAHs), nitrosamines, mycotoxins, aromatic amines, heterocyclic amines, ultraviolet light, and alkylating cancer chemotherapeutic agents. Most human DNA adduct exposure monitoring has been performed with either 32P-postlabeling or immunoassays, neither of which is able to chemically characterize specific DNA adducts. Recently developed combinations of methods with chemical and physical end points have allowed identification of specific adducts in human tissues. Studies are presented that demonstrate that high ambient levels of benzo[a]pyrene are associated with high levels of DNA adducts in human blood cell DNA and that the same DNA adduct levels drop when the ambient PAH levels decrease significantly. DNA adduct dosimetry, which has been achieved with some dietary carcinogens and cancer chemotherapeutic agents, is described, as well as studies correlating DNA adducts with other biomarkers. It is likely that some toxic, noncarcinogenic compounds may have genotoxic effects, including oxidative damage, and that adverse health outcomes other than cancer may be correlated with DNA adduct formation. The studies presented here may serve as useful prototypes for exploration of other toxicological end points. PMID:8933030

  10. Polymorphic acetylation of arylamines and DNA-adduct formation.

    PubMed

    Weber, W W; Levy, G N; Martell, K J

    1990-01-01

    Inbred mouse strains congenic for rapid and slow N-acetyltransferase (NAT) (A.B6, rapid and B6.A, slow) were used to separate the effect of the NAT polymorphism from the influence of other genetically polymorphic enzymes on DNA adduct formation induced by exposure to arylamine carcinogens. Adduct formation was measured by HPLC analysis of 32P-postlabeled nucleotides from DNA of the urinary bladder and liver. Acetylator phenotype was a significant determinant of DNA damage in females as slow acetylators had higher levels of bladder DNA adducts than rapids. This correlation was the reverse of that seen with liver DNA. Older mice (20-23 weeks) formed much higher bladder DNA adduct levels than young mice (7 week). The increase in bladder adduct formation with age was seen in both sexes of all mouse strains. The older male B6 mice showed a 26-fold increase in bladder adducts and the older females showed no more than a 2-fold increase. In addition, the older male B6 mice produced significant amounts of an unidentified, early eluting adduct peak. Biochemical studies of liver NAT and O-acetyltransferase (OAT) activities showed a direct correlation between the levels of liver 2-aminofluorene (AF) NAT activity and levels of liver DNA-adduct formation, but the role of OAT activity in adduct formation in the mouse remains unclear. These results indicate that the NAT phenotype, age and sex are all important determinants of arylamine-DNA adduct formation in mice. PMID:2134671

  11. Electron Impact Excitation of C60 Adducts: Flourescence From C60OH and C60H Species

    NASA Technical Reports Server (NTRS)

    Trajmar, S.; Kanik, I.

    1996-01-01

    An investigation concerning possible visible and UV photon emissions by gas phase C(sub 60) ( and C(sub 70)) samples under electron impact excitation was caried out in the 180-750 nm spectral region. Radiation resembling OH (A (sup 2)pi {leads to}X (sup 2){summation}) emission bands and H Balmer series was observed. Based on our investigations, it is concluded that none of the observed emission was associated with the fullerene molecule itself but with the C(sub 60)OH and C(sub 60)H adducts (which are present in the fullerene samples). We also conclude that in these adducts, simultaneous ionization and excitation take place under electron impact and the excited ionic species (C(sub 60)+OH* and C(sub 60)+H*) decay by radiation which was observed in our experiments. These surprising results reveal an interesting new character of buckyball adducts.

  12. Nucleic acid-binding molecules with high affinity and base sequence specificity: intercalating agents covalently linked to oligodeoxynucleotides.

    PubMed Central

    Asseline, U; Delarue, M; Lancelot, G; Toulmé, F; Thuong, N T; Montenay-Garestier, T; Hélène, C

    1984-01-01

    Oligodeoxyribonucleotides covalently linked to an intercalating agent via a polymethylene linker were synthesized. Oligothymidylates attached to an acridine dye (Acr) through the 3'-phosphate group [(Tp)n(CH2) mAcr ] specifically interact with the complementary sequence. The interaction is strongly stabilized by the intercalating agent. By using absorption and fluorescence spectroscopies, it is shown that complex formation between (Tp)n(CH2) mAcr and poly(rA) involves the formation of n A X T base pairs, where n is the number of thymines in the oligonucleotide. The acridine ring intercalates between A X T base pairs. Fluorescence excitation spectra reveal the existence of two environments for the acridine ring, whose relative contributions depend on the linker length (m). The binding of (Tp)4(CH2) mAcr to poly(rA) is analyzed in terms of site binding and cooperative interactions between oligonucleotides along the polynucleotide lattice. Thermodynamic parameters show that the covalent attachment of the acridine ring strongly stabilizes the binding of the oligonucleotide to its complementary sequence. The stabilization depends on the linker length; the compound with m = 5 gives a more stable complex than that with m = 3. These results open the way to the synthesis of a family of molecules exhibiting both high-affinity and high-specificity for a nucleic acid base sequence. PMID:6587350

  13. Microfluidic study of the chemotactic response of Escherichia coli to amino acids, signaling molecules and secondary metabolites.

    PubMed

    Nagy, Krisztina; Sipos, Orsolya; Valkai, Sándor; Gombai, Éva; Hodula, Orsolya; Kerényi, Ádám; Ormos, Pál; Galajda, Péter

    2015-07-01

    Quorum sensing and chemotaxis both affect bacterial behavior on the population level. Chemotaxis shapes the spatial distribution of cells, while quorum sensing realizes a cell-density dependent gene regulation. An interesting question is if these mechanisms interact on some level: Does quorum sensing, a density dependent process, affect cell density itself via chemotaxis? Since quorum sensing often spans across species, such a feedback mechanism may also exist between multiple species. We constructed a microfluidic platform to study these questions. A flow-free, stable linear chemical gradient is formed in our device within a few minutes that makes it suitable for sensitive testing of chemoeffectors: we showed that the amino acid lysine is a weak chemoattractant for Escherichia coli, while arginine is neutral. We studied the effect of quorum sensing signal molecules of Pseudomonas aeruginosa on E. coli chemotaxis. Our results show that N-(3-oxododecanoyl)-homoserine lactone (oxo-C12-HSL) and N-(butryl)-homoserine lactone (C4-HSL) are attractants. Furthermore, we tested the chemoeffector potential of pyocyanin and pyoverdine, secondary metabolites under a quorum sensing control. Pyocyanin is proved to be a weak attractant while pyoverdine are repellent. We demonstrated the usability of the device in co-culturing experiments, where we showed that various factors released by P. aeruginosa affect the dynamic spatial rearrangement of a neighboring E. coli population, while surface adhesion of the cells is also modulated. PMID:26339306

  14. Structure and Mutagenesis of Neural Cell Adhesion Molecule Domains Evidence for Flexibility in the Placement of Polysialic Acid Attachment Sites

    SciTech Connect

    Foley, Deirdre A.; Swartzentruber, Kristin G.; Lavie, Arnon; Colley, Karen J.

    2010-11-09

    The addition of {alpha}2,8-polysialic acid to the N-glycans of the neural cell adhesion molecule, NCAM, is critical for brain development and plays roles in synaptic plasticity, learning and memory, neuronal regeneration, and the growth and invasiveness of cancer cells. Our previous work indicates that the polysialylation of two N-glycans located on the fifth immunoglobulin domain (Ig5) of NCAM requires the presence of specific sequences in the adjacent fibronectin type III repeat (FN1). To understand the relationship of these two domains, we have solved the crystal structure of the NCAM Ig5-FN1 tandem. Unexpectedly, the structure reveals that the sites of Ig5 polysialylation are on the opposite face from the FN1 residues previously found to be critical for N-glycan polysialylation, suggesting that the Ig5-FN1 domain relationship may be flexible and/or that there is flexibility in the placement of Ig5 glycosylation sites for polysialylation. To test the latter possibility, new Ig5 glycosylation sites were engineered and their polysialylation tested. We observed some flexibility in glycosylation site location for polysialylation and demonstrate that the lack of polysialylation of a glycan attached to Asn-423 may be in part related to a lack of terminal processing. The data also suggest that, although the polysialyltransferases do not require the Ig5 domain for NCAM recognition, their ability to engage with this domain is necessary for polysialylation to occur on Ig5 N-glycans.

  15. Quantifying the ion atmosphere of unfolded, single-stranded nucleic acids using equilibrium dialysis and single-molecule methods

    PubMed Central

    Jacobson, David R.; Saleh, Omar A.

    2016-01-01

    To form secondary structure, nucleic acids (NAs) must overcome electrostatic strand–strand repulsion, which is moderated by the surrounding atmosphere of screening ions. The free energy of NA folding therefore depends on the interactions of this ion atmosphere with both the folded and unfolded states. We quantify such interactions using the preferential ion interaction coefficient or ion excess: the number of ions present near the NA in excess of the bulk concentration. The ion excess of the folded, double-helical state has been extensively studied; however, much less is known about the salt-dependent ion excess of the unfolded, single-stranded state. We measure this quantity using three complementary approaches: a direct approach of Donnan equilibrium dialysis read out by atomic emission spectroscopy and two indirect approaches involving either single-molecule force spectroscopy or existing thermal denaturation data. The results of these three approaches, each involving an independent experimental technique, are in good agreement. Even though the single-stranded NAs are flexible polymers that are expected to adopt random-coil configurations, we find that their ion atmosphere is quantitatively described by rod-like models that neglect large-scale conformational freedom, an effect that we explain in terms of the competition between the relevant structural and electrostatic length scales. PMID:27036864

  16. Determining protein adducts of fipexide: mass spectrometry based assay for confirming the involvement of its reactive metabolite in covalent binding.

    PubMed

    Sleno, Lekha; Varesio, Emmanuel; Hopfgartner, Gérard

    2007-01-01

    Fipexide is a nootropic drug, withdrawn from the market due to its idiosyncratic drug reactions causing adverse effects in man. Previous work on its metabolites has identified several potential reactive metabolites which could be implicated in protein binding. Here, we investigated the formation of these metabolites in rat and human hepatocytes. Based on these results, the o-quinone of fipexide (FIP), formed via the demethylenation reaction through a catechol intermediate, was chosen for further investigation. Studies were then pursued in order to relate this metabolite to protein binding, and thus better understand potential mechanisms for the toxicity of the parent compound. An assay was developed for determining the fipexide catechol-cysteine adduct in the microsomal protein fractions following in vitro incubations. This method digests the entire protein fraction into amino acids, followed by the detection of the Cys-metabolite adduct by liquid chromatography/mass spectrometry (LC/MS). We have designed a strategy where drug metabolism taking place in microsomal incubations and involved in protein binding can be assessed after the proteins have been digested, with the detection of the specific amino acid adduct. In this study, the structure of the fipexide adduct was hypothesized using knowledge previously gained in glutathione and N-acetylcysteine trapping experiments. Acetaminophen was used as a positive control for detecting a drug metabolite-cysteine adduct by LC/MS. This approach has the potential to be applicable as a protein-binding assay in early drug discovery without the need for radioactive compounds. PMID:18022964

  17. DNA adduction by phenol, hydroquinone, or benzoquinone in vitro but not in vivo: nuclease P1-enhanced 32P-postlabeling of adducts as labeled nucleoside bisphosphates, dinucleotides and nucleoside monophosphates.

    PubMed

    Reddy, M V; Bleicher, W T; Blackburn, G R; Mackerer, C R

    1990-08-01

    The carcinogenicity of benzene has been considered to be in part mediated by its chemically reactive metabolic product benzoquinone (BQ), which is formed from the intermediary metabolites phenol and hydroquinone (HQ). We have evaluated the DNA-binding capability of these chemicals in vitro and in vivo by postlabeling. Treatment of rat Zymbal glands in culture with phenol and HQ or direct reaction of BQ with DNA produced DNA adducts, which were detectable by the nuclease P1-enhanced 32P-postlabeling assay as 5'-32P-labeled 3',5'-bisphosphate products. The enhancement of sensitivity in this assay is based on the previous finding that nuclease P1 hydrolyzes the phosphate attached to the 3' side of normal nucleotides but not the corresponding phosphate of most aromatic/bulky adducted nucleotides. Also based on this hydrolytic property of nuclease P1, we developed an additional sensitive procedure that permitted the detection of DNA lesions as 5'-32P-labeled products of dinucleotides, pXpN, or of nucleoside monophosphates, pX, where X and N indicate an adducted nucleoside and a normal nucleoside respectively. In the latter assay, adducted DNA was first digested with nuclease P1 and acid phosphatase to yield XpN and N. The latter were then 32P-labeled to yield [5'-32P] pXpN or 32P-labeled and treated with venom phosphodiesterase to obtain [5'-32P]pX. After optimization of enzymatic conditions, the modified nuclease P1 assay yielded adduct recoveries similar to those obtained by the bisphosphate assay for in vitro phenol-, HQ- and BQ-DNA adducts. Neither of the nuclease P1-enhanced postlabeling procedures showed exposure-specific adducts in vivo in the bone marrow, Zymbal gland, liver and spleen of female Sprague-Dawley rats at 24 h after the last of four single, daily p.o. doses of 75 mg/kg phenol or 150 mg/kg phenol/HQ (1:1). Our results show that phenol, HQ and BQ produce adducts in vitro, but corresponding adducts are not detected in vivo with phenol and phenol

  18. Cyanobacteria Produce N-(2-Aminoethyl)Glycine, a Backbone for Peptide Nucleic Acids Which May Have Been the First Genetic Molecules for Life on Earth

    PubMed Central

    Banack, Sandra Anne; Metcalf, James S.; Jiang, Liying; Craighead, Derek; Ilag, Leopold L.; Cox, Paul Alan

    2012-01-01

    Prior to the evolution of DNA-based organisms on earth over 3.5 billion years ago it is hypothesized that RNA was the primary genetic molecule. Before RNA-based organisms arose, peptide nucleic acids may have been used to transmit genetic information by the earliest forms of life on earth. We discovered that cyanobacteria produce N-(2-aminoethyl)glycine (AEG), a backbone for peptide nucleic acids. We detected AEG in axenic strains of cyanobacteria with an average concentration of 1 µg/g. We also detected AEG in environmental samples of cyanobacteria as both a free or weakly bound molecule and a tightly bound form released by acid hydrolysis, at concentrations ranging from not detected to 34 µg/g. The production of AEG by diverse taxa of cyanobacteria suggests that AEG may be a primitive feature which arose early in the evolution of life on earth. PMID:23145061

  19. Theoretical characterization of dihydrogen adducts with halide anions

    NASA Astrophysics Data System (ADS)

    Vitillo, Jenny G.; Damin, Alessandro; Zecchina, Adriano; Ricchiardi, Gabriele

    2006-06-01

    The interaction between a hydrogen molecule and the halide anions F-, Cl-, Br-, and I- has been studied at different levels of theory and with different basis sets. The most stable configurations of the complexes have a linear geometry, while the t-shaped complexes are saddle points on the potential energy surface, opposite to what is observed for alkali cations. An electrostatic analysis conducted on the resulting adducts has highlighted the predominance of the electrostatic term in the complexation energy and, in particular, of the quadrupole- and dipole-polarizability dependent contributions. Another striking difference with respect to the positive ions, is the fact that although the binding energies have similar values (ranging between 25 and 3kJ/mol for F- and I-, respectively), the vibrational shift of the ν˜H-H and in general the perturbation of the hydrogen molecule in complexes are much greater in the complexes with anions (Δν˜H-H ranges between -720 and -65cm-1). Another difference with respect to the interaction with cations is a larger charge transfer from the anion to the hydrogen molecule. The Δν˜ is the result of the cooperative role of the electrostatics and of the charge transfer in the interaction. The correlation between binding energies and vibrational shift is far from linear, contrary to what is observed for cation complexes, in accordance with the higher polarizability and dynamic polarizability of the molecule along the molecular axis. The observed correlation may be valuable in the interpretation of spectra and thermodynamic properties of adsorbed H2 in storage materials.

  20. Raman spectroscopic evaluation of DNA adducts of a platinum containing anticancer drug

    NASA Astrophysics Data System (ADS)

    Jangir, Deepak K.; Mehrotra, Ranjana

    2014-09-01

    Mechanistic understanding of the interaction of drugs with their target molecules is important for better understanding of their mode of action and to improve their efficacy. Carboplatin is a platinum containing anticancer drug, used to treat different type of tumors. In the present work, we applied Raman spectroscopy to study the interaction of carboplatin with DNA at molecular level using different carboplatin-DNA molar ratios. These Raman spectroscopic results provide comprehensive understanding on the carboplatin-DNA interactions and indicate that DNA cross-linked adducts formed by carboplatin are similar to cisplatin adducts. The results indicate that guanine N7 and adenine N7 are the putative sites for carboplatin interaction. It is observed that carboplatin has some affinity toward cytosine in DNA. Phosphate sugar backbone of DNA showed conformation perturbation in DNA which were easily sensible at higher concentrations of carboplatin. Most importantly, carboplatin interaction induces intermediate A- and B-DNA conformations at the cross-linking sites.

  1. Inhibition by resistant starch of red meat-induced promutagenic adducts in mouse colon.

    PubMed

    Winter, Jean; Nyskohus, Laura; Young, Graeme P; Hu, Ying; Conlon, Michael A; Bird, Anthony R; Topping, David L; Le Leu, Richard K

    2011-11-01

    Population studies have shown that high red meat intake may increase colorectal cancer risk. Our aim was to examine the effect of different amounts and sources of dietary protein on induction of the promutagenic adduct O(6)-methyl-2-deoxyguanosine (O(6)MeG) in colonocytes, to relate these to markers of large bowel protein fermentation and ascertain whether increasing colonic carbohydrate fermentation modified these effects. Mice (n = 72) were fed 15% or 30% protein as casein or red meat or 30% protein with 10% high amylose maize starch as the source of resistant starch. Genetic damage in distal colonocytes was detected by immunohistochemical staining for O(6)MeG and apoptosis. Feces were collected for measurement of pH, ammonia, phenols, p-cresol, and short-chain fatty acids (SCFA). O(6)MeG and fecal p-cresol concentrations were significantly higher with red meat than with casein (P < 0.018), with adducts accumulating in cells at the crypt apex. DNA adducts (P < 0.01) and apoptosis (P < 0.001) were lower and protein fermentation products (fecal ammonia, P < 0.05; phenol, P < 0.0001) higher in mice fed resistant starch. Fecal SCFA levels were also higher in mice fed resistant starch (P < 0.0001). This is the first demonstration that high protein diets increase promutagenic adducts (O(6)MeG) in the colon and dietary protein type seems to be the critical factor. The delivery of fermentable carbohydrate to the colon (as resistant starch) seems to switch from fermentation of protein to that of carbohydrate and a reduction in adduct formation, supporting previous observations that dietary resistant starch opposes the mutagenic effects of dietary red meat. PMID:21885815

  2. Covalent adduct formation between the plasmalogen-derived modification product 2-chlorohexadecanal and phloretin

    PubMed Central

    Üllen, Andreas; Nusshold, Christoph; Glasnov, Toma; Saf, Robert; Cantillo, David; Eibinger, Gerald; Reicher, Helga; Fauler, Günter; Bernhart, Eva; Hallstrom, Seth; Kogelnik, Nora; Zangger, Klaus; Oliver Kappe, C.; Malle, Ernst; Sattler, Wolfgang

    2015-01-01

    Hypochlorous acid added as reagent or generated by the myeloperoxidase (MPO)-H2O2-Cl− system oxidatively modifies brain ether-phospholipids (plasmalogens). This reaction generates a sn2-acyl-lysophospholipid and chlorinated fatty aldehydes. 2-Chlorohexadecanal (2-ClHDA), a prototypic member of chlorinated long-chain fatty aldehydes, has potent neurotoxic potential by inflicting blood–brain barrier (BBB) damage. During earlier studies we could show that the dihydrochalcone-type polyphenol phloretin attenuated 2-ClHDA-induced BBB dysfunction. To clarify the underlying mechanism(s) we now investigated the possibility of covalent adduct formation between 2-ClHDA and phloretin. Coincubation of 2-ClHDA and phloretin in phosphatidylcholine liposomes revealed a half-life of 2-ClHDA of approx. 120 min, decaying at a rate of 5.9 × 10−3 min−1. NMR studies and enthalpy calculations suggested that 2-ClHDA-phloretin adduct formation occurs via electrophilic aromatic substitution followed by hemiacetal formation on the A-ring of phloretin. Adduct characterization by high-resolution mass spectroscopy confirmed these results. In contrast to 2-ClHDA, the covalent 2-ClHDA-phloretin adduct was without adverse effects on MTT reduction (an indicator for metabolic activity), cellular adenine nucleotide content, and barrier function of brain microvascular endothelial cells (BMVEC). Of note, 2-ClHDA-phloretin adduct formation was also observed in BMVEC cultures. Intraperitoneal application and subsequent GC–MS analysis of brain lipid extracts revealed that phloretin is able to penetrate the BBB of C57BL/6J mice. Data of the present study indicate that phloretin scavenges 2-ClHDA, thereby attenuating 2-ClHDA-mediated brain endothelial cell dysfunction. We here identify a detoxification pathway for a prototypic chlorinated fatty aldehyde (generated via the MPO axis) that compromises BBB function in vitro and in vivo. PMID:25576489

  3. Direct quantitation of methyl phosphonate adducts to human serum butyrylcholinesterase by immunomagnetic-UHPLC-MS/MS.

    PubMed

    Carter, Melissa D; Crow, Brian S; Pantazides, Brooke G; Watson, Caroline M; Thomas, Jerry D; Blake, Thomas A; Johnson, Rudolph C

    2013-11-19

    Hydrolysis of G- and V-series organophosphorus nerve agents (OPNAs) containing a phosphorus-methyl bond yields a methylphosphonic acid (MeP) product when adducted to human butyrylcholinesterase (BChE). The MeP adduct is considered a sign of "aging" and results in loss of the o-alkyl identifier specific to each nerve agent. After aging has occurred, common therapeutics such as oximes cannot reactivate the cholinesterase enzyme and relieve cholinergic inhibition. Until now, a direct, quantitative method for determination of the MeP adduct to BChE was unavailable. Aged adducts in serum samples were processed by immunomagnetic separation of BChE by antibody conjugated bead, isotope-dilution, pepsin digestion, followed by UHPLC separation and detection by conventional electrospray ionization-tandem mass spectrometry (ESI-MS/MS). Ions were detected in selected reaction monitoring (SRM) mode, and transition m/z 874.3 → 778.3 was used for quantitation. The analytical response ratio was linearly proportional to the serum concentration of MeP-adducted peptide (MeP-P) over the nominal concentration range of 2.0-250 ng/mL, with a coefficient of determination of R(2) ≥ 0.997. Intrarun accuracy, expressed as %Relative Error (%RE), was ≤13.5%, 16.3%, and 3.20% at 2.0, 16, and 250 ng/mL, respectively; the corresponding precision expressed as %RSD was ≤11.9%, 6.15%, and 3.39%. Interday %RSD was ≤7.13%, 5.69%, and 1.91%. Recovery of MeP-P from serum was ≥68% across the validated concentration range, and contributions from matrix effects were minimal. The method provides a direct, quantitative measurement of MeP-P found in clinical samples suspected of nerve agent exposure and subjected to such post-sampling stresses as elevated temperature and extended shipping. PMID:24205842

  4. Mitigation of the Hematopoietic and Gastrointestinal Acute Radiation Syndrome by Octadecenyl Thiophosphate, a Small Molecule Mimic of Lysophosphatidic Acid

    PubMed Central

    Deng, Wenlin; Kimura, Yasuhiro; Gududuru, Veeresh; Wu, Wenjie; Balogh, Andrea; Szabo, Erzsebet; Thompson, Karin Emmons; Yates, C. Ryan; Balazs, Louisa; Johnson, Leonard R.; Miller, Duane D.; Strobos, Jur; McCool, W. Shannon; Tigyi, Gabor J.

    2015-01-01

    We have previously demonstrated that the small molecule octadecenyl thiophosphate (OTP), a synthetic mimic of the growth factor-like mediator lysophosphatidic acid (LPA), showed radioprotective activity in a mouse model of total-body irradiation (TBI) when given orally or intraperitoneally 30 min before exposure to 9 Gy γ radiation. In the current study, we evaluated the effects of OTP, delivered subcutaneously, for radioprotection or radiomitigation from −24 h before to up to +72 h postirradiation using a mouse TBI model with therapeutic doses at around 1 mg/kg. OTP was injected at 10 mg/kg without observable toxic side effects in mice, providing a comfortable safety margin. Treatment of C57BL/6 mice with a single dose of OTP over the time period from −12 h before to +26 h after a lethal dose of TBI reduced mortality by 50%. When administered at +48 h to +72 h postirradiation (LD50/30 to LD100/30), OTP reduced mortality by ≥34%. OTP administered at +24 h postirradiation significantly elevated peripheral white blood cell and platelet counts, increased crypt survival in the jejunum, enhanced intestinal glucose absorption and reduced endotoxin seepage into the blood. In the 6.4–8.6 Gy TBI range using LD50/10 as the end point, OTP yielded a dose modification factor of 1.2. The current data indicate that OTP is a potent radioprotector and radiomitigator ameliorating the mortality and tissue injury of acute hematopoietic as well as acute gastrointestinal radiation syndrome. PMID:25807318

  5. Small-Molecule Inhibitors of the Pseudaminic Acid Biosynthetic Pathway: Targeting Motility as a Key Bacterial Virulence Factor

    PubMed Central

    Ménard, Robert; Schoenhofen, Ian C.; Tao, Limei; Aubry, Annie; Bouchard, Patrice; Reid, Christopher W.; Lachance, Paule; Twine, Susan M.; Fulton, Kelly M.; Cui, Qizhi; Hogues, Hervé; Purisima, Enrico O.

    2014-01-01

    Helicobacter pylori is motile by means of polar flagella, and this motility has been shown to play a critical role in pathogenicity. The major structural flagellin proteins have been shown to be glycosylated with the nonulosonate sugar, pseudaminic acid (Pse). This glycan is unique to microorganisms, and the process of flagellin glycosylation is required for H. pylori flagellar assembly and consequent motility. As such, the Pse biosynthetic pathway offers considerable potential as an antivirulence drug target, especially since motility is required for H. pylori colonization and persistence in the host. This report describes screening the five Pse biosynthetic enzymes for small-molecule inhibitors using both high-throughput screening (HTS) and in silico (virtual screening [VS]) approaches. Using a 100,000-compound library, 1,773 hits that exhibited a 40% threshold inhibition at a 10 μM concentration were identified by HTS. In addition, VS efforts using a 1.6-million compound library directed at two pathway enzymes identified 80 hits, 4 of which exhibited reasonable inhibition at a 10 μM concentration in vitro. Further secondary screening which identified 320 unique molecular structures or validated hits was performed. Following kinetic studies and structure-activity relationship (SAR) analysis of selected inhibitors from our refined list of 320 compounds, we demonstrated that three inhibitors with 50% inhibitory concentrations (IC50s) of approximately 14 μM, which belonged to a distinct chemical cluster, were able to penetrate the Gram-negative cell membrane and prevent formation of flagella. PMID:25267679

  6. Chemical interaction of water molecules with framework Al in acid zeolites: a periodic ab initio study on H-clinoptilolite.

    PubMed

    Valdiviés-Cruz, Karell; Lam, Anabel; Zicovich-Wilson, Claudio M

    2015-09-28

    Periodic quantum-chemistry methods as implemented in the CRYSTAL14 code were considered to analyse the interaction of acid clinoptilolite with water. Initially adsorbed molecules hydrolyse the Al-O bonds, giving rise to defective dealuminated materials. A suitable and representative periodic model of the partially disordered hydrated H-zeolite is the primitive cell (18 T sites) of a decahydrated trialuminated structure of HEU topology. The water distribution inside the material cavities was initially investigated. The model considered for further dealumination was the most stable one from those generated through a combined force field Monte Carlo and ab initio optimization strategy. Optimizations and energy estimations were made at the hybrid DFT level of theory (PBE0 functional) with an atomic basis set of VDZP quality. The energetics of the different pathways involved in the dealumination process was addressed by considering the Gibbs free energy with thermal and zero-point corrections through phonon analysis. It arises that hydrated models exhibit protonated water clusters stabilized by different kinds of H-bonds. The first Al extraction is slightly more energetically favourable from T3 than T2 sites, but at the same time the latter is more probable owing to its larger Al population. However, concerning the second dealumination step, it is more favourable removing the Al atom from both remaining sites after a starting abstraction from T2 rather than T3. These facts determine that the most probable overall pathways go through a first Al removal from T2. The agreement with experimental results is discussed. PMID:26299763

  7. Mutagenesis by site-specific arylamine adducts in plasmid DNA: Enhancing replication of the adducted strand alters mutation frequency

    SciTech Connect

    Reid, T.M.; Lee, Meisie; King, C.M. )

    1990-07-03

    Site specifically modified plasmids were used to determine the mutagenic effects of single arylamine adducts in bacterial cells. A synthetic heptadecamer bearing a single N-(guanin-8-yl)-2-aminofluorene (AF) or N-(guanin-8-yl)-2-(acetylamino)fluorene (AAF) adduct was used to introduce the adducts into a specific site in plasmid DNA that contained a 17-base single-stranded region complementary to the modified oligonucleotide. Following transformation of bacterial cells with the adduct-bearing DNA, putative mutants were detected by colony hybridization techniques that allowed unbiased detection of all mutations at or near the site of the adduct. The site-specific AF or AAF adducts were also placed into plasmid DNA that contained uracil residues on the strand opposite that bearing the lesions. The presence of uracil in one strand of the DNA decreases the ability of the bacterial replication system to use the uracil-containing strand, thereby favoring the use of the strand bearing the adducts. In a comparison of the results obtained with site specifically modified DNA, either with or without uracil, the presence of the uracil increased the mutation frequencies of the AF adduct by >7-fold to 2.9% and of the AAF adduct by >12-fold to 0.75%. The AF adduct produced primarily single-base deletions in the absence of uracil but only base substitutions in the uracil-containing constructs. The AAF adduct produced mutations only in the uracil-containing DNA, which included both frame shifts and base substitutions. Mutations produced by both adducts were SOS dependent.

  8. Store-operated Ca(2+) channels and Stromal Interaction Molecule 1 (STIM1) are targets for the actions of bile acids on liver cells.

    PubMed

    Aromataris, Edoardo C; Castro, Joel; Rychkov, Grigori Y; Barritt, Greg J

    2008-05-01

    Cholestasis is a significant contributor to liver pathology and can lead to primary sclerosis and liver failure. Cholestatic bile acids induce apoptosis and necrosis in hepatocytes but these effects can be partially alleviated by the pharmacological application of choleretic bile acids. These actions of bile acids on hepatocytes require changes in the release of Ca(2+) from intracellular stores and in Ca(2+) entry. However, the nature of the Ca(2+) entry pathway affected is not known. We show here using whole cell patch clamp experiments with H4-IIE liver cells that taurodeoxycholic acid (TDCA) and other choleretic bile acids reversibly activate an inwardly-rectifying current with characteristics similar to those of store-operated Ca(2+) channels (SOCs), while lithocholic acid (LCA) and other cholestatic bile acids inhibit SOCs. The activation of Ca(2+) entry was observed upon direct addition of the bile acid to the incubation medium, whereas the inhibition of SOCs required a 12 h pre-incubation. In cells loaded with fura-2, choleretic bile acids activated a Gd(3+)-inhibitable Ca(2+) entry, while cholestatic bile acids inhibited the release of Ca(2+) from intracellular stores and Ca(2+) entry induced by 2,5-di-(tert-butyl)-1,4-benzohydro-quinone (DBHQ). TDCA and LCA each caused a reversible redistribution of stromal interaction molecule 1 (STIM1, the endoplasmic reticulum Ca(2+) sensor required for the activation of Ca(2+) release-activated Ca(2+) channels and some other SOCs) to puncta, similar to that induced by thapsigargin. Knockdown of Stim1 using siRNA caused substantial inhibition of Ca(2+)-entry activated by choleretic bile acids. It is concluded that choleretic and cholestatic bile acids activate and inhibit, respectively, the previously well-characterised Ca(2+)-selective hepatocyte SOCs through mechanisms which involve the bile acid-induced redistribution of STIM1. PMID:18342630

  9. Novel pyrano and vinylphenol adducts of deoxyanthocyanidins in sorghum sourdough.

    PubMed

    Bai, Yunpeng; Findlay, Brandon; Maldonado, Alma Fernanda Sanchez; Schieber, Andreas; Vederas, John C; Gänzle, Michael G

    2014-11-26

    This study determined the fate of deoxyanthocyanidins in sorghum sourdoughs. Sourdoughs prepared from the red sorghum variety Town were fermented with the caffeic acid-decarboxylating strains Lactobacillus plantarum FUA3171 and the decarboxylase negative L. casei FUA3166. Deoxyanthocyanidins were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Apigeninidin and methoxyapigeninidin were the major deoxyanthocyanidins prior to fermentation. During fermentation, novel deoxyanthocyanidins were formed. Purification by preparative LC, followed by NMR analysis and high-resolution MS identified two of the compounds as 6-deoxyanthocyanidin-vinylphenol and pyrano-3-deoxyanthocyanidin. To identify pathways for their formation, sorghum was fermented with single strains, L. plantarum or L. casei. 6-Deoxyanthocyanidin-vinylphenol and pyrano-3-deoxyanthocyanidin were formed only during fermentation with L. plantarum FUA3171, indicating a role of vinylphenol in their formation. Chemical synthesis confirmed that 6-deoxyanthocyanidin-vinylphenol and pyrano-3-deoxyanthocyanidin are formed from apigeninidin with vinylphenol but not with p-coumaric acid as reactants. In conclusion, the products of microbial decarboxylation of hydroxycinnamic acids convert apigeninidin and methoxyapigeninidin to pyrano-3-deoxyanthocyanidins and vinylphenol adducts. PMID:25370078

  10. Identification of two N{sup 2}-deoxyguanosinyl DNA adducts upon nitroreduction of the environmental mutagen 1-nitropyrene

    SciTech Connect

    Herreno-Saenz, D.; Evans, F.E.; Beland, F.A.

    1995-03-01

    1-Nitropyrene, the most abundant nitro-polycyclic aromatic hydrocarbon in the environment, is a known mammalian and bacterial mutagen and a tumorigen in animals. Early studies on DNA adduct characterization for 1-nitropyrene identified N-(deoxyguanosin-8-yl)-1-aminopyrene as the major product from the modification of calf thymus DNA with N-hydroxy-1-aminopyrene, the activated metabolite from nitroreduction of 1-nitropyrene. In this paper, we report the identification of two N{sup 2}-deoxyguanosinyl adducts, in addition to N-(deoxyguanosin-8-yl)-1-aminopyrene, formed from the reaction of N-hydroxy-1-aminopyrene, prepared in situ, with calf thymus DNA. These DNA adducts were identified as 6-(deoxyguanosin-N{sup 2}-yl)-1-aminopyrene and 8-(deoxyguanosin-N{sup 2}-yl)-1-aminopyrene. The two N{sup 2}-deoxyguanosinyl adducts were also identified in an ascorbic acid-catalyzed activation of 1-nitropyrene and in the mammary gland of female Sprague-Dawley rats administered 1-nitropyrene. The DNA adducts were also formed when 1-nitropyrene was metabolized by xanthine oxidase in the presence of calf thymus DNA, and when 1-nitropyrene was activated by rat liver microsomes and cytosols, as well as from DNA isolated from Salmonella typhimurium suspension cultures incubated with 1-nitropyrene. 45 refs., 7 figs., 1 tab.

  11. Silver(I) and copper(I) adducts of a tris(pyrazolyl)borate decorated with nine trifluoromethyl groups.

    PubMed

    Jayaratna, Naleen B; Gerus, Igor I; Mironets, Roman V; Mykhailiuk, Pavel K; Yousufuddin, Muhammed; Dias, H V Rasika

    2013-02-18

    Silver and copper ethylene adducts and the silver carbonyl complex of the tris(pyrazolyl)borate [HB(3,4,5-(CF(3))(3)Pz)(3)](-) (which is based on one of the most acidic pyrazoles known) have been synthesized. (13)C NMR resonance signals of metal-bound ethylene carbon atoms of [HB(3,4,5-(CF(3))(3)Pz)(3)]Ag(C(2)H(4)) and [HB(3,4,5-(CF(3))(3)Pz)(3)]Cu(C(2)H(4)) appear at δ 111.6 and 94.9, respectively. The CO stretching frequency of the silver adduct [HB(3,4,5-(CF(3))(3)Pz)(3)]Ag(CO) is significantly higher than that of free CO, but it appears at a region less sensitive to the ligand electronic effects of tris(azolyl)borate silver adducts. PMID:23368672

  12. Intermolecular Hydrogen Bonds Formed Between Amino Acid Molecules in Aqueous Solution Investigated by Temperature-jump Nanosecond Time-resolved Transient Mid-IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ye, Man-ping; Li, Heng; Zhang, Qing-li; Weng, Yu-xiang; Qiu, Xiang-gang

    2007-08-01

    Carboxyl (COO-) vibrational modes of two amino acids histidine and glycine in D2O solution were investigated by temperature-dependent FTIR spectroscopy and temperature-jump nanosecond time-resolved IR difference absorbance spectroscopy. The results show that hydrogen bonds are formed between amino acid molecules as well as between the amino acid molecule and the solvent molecules. The asymmetric vibrational frequency of COO- around 1600-1610 cm-1 is blue shifted when raising temperature, indicating that the strength of the hydrogen bonds becomes weaker at higher temperature. Two bleaching peaks at 1604 and 1612 cm-1 were observed for histidine in response to a temperature jump from 10 °C to 20 °C. The lower vibrational frequency at 1604 cm-1 is assigned to the chain COO- group which forms the intermolecular hydrogen bond with NH3+ group, while the higher frequency at 1612 cm-1 is assigned to the end COO- group forming hydrogen bonds with the solvent molecules. This is because that the hydrogen bonds in the former are expected to be stronger than the latter. In addition the intensities of these two bleaching peaks are almost the same. In contrast, only the lower frequency at 1604 cm-1 bleaching peak has been observed for glycine. The fact indicates that histidine molecules form a dimer-like intermolecular chain while glycine forms a relatively longer chain in the solution. The rising phase of the IR absorption kinetics in response to the temperature-jump detected at 1604 cm-1 for histidine is about 30+/-10 ns, within the resolution limit of our instrument, indicating that breaking or weakening the hydrogen bond is a very fast process.

  13. Reactivity, Selectivity, and Stability in Sulfenic Acid Detection: A Comparative Study of Nucleophilic and Electrophilic Probes.

    PubMed

    Gupta, Vinayak; Paritala, Hanumantharao; Carroll, Kate S

    2016-05-18

    The comparative reaction efficiencies of currently used nucleophilic and electrophilic probes toward cysteine sulfenic acid have been thoroughly evaluated in two different settings-(i) a small molecule dipeptide based model and (ii) a recombinant protein model. We further evaluated the stability of corresponding thioether and sulfoxide adducts under reducing conditions which are commonly encountered during proteomic protocols and in cell analysis. Powered by the development of new cyclic and linear C-nucleophiles, the unsurpassed efficiency in the capture of sulfenic acid under competitive conditions is achieved and thus holds great promise as highly potent tools for activity-based sulfenome profiling. PMID:27123991

  14. Selective Enrichment and MALDI-TOF MS Analysis of Small Molecule Compounds with Vicinal Diols by Boric Acid-Functionalized Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Zheng, Xiaoling; Ni, Yanli

    2015-08-01

    In this study, a 4-vinylphenylboronic acid-functionalized graphene oxide (GO) material was prepared via atom-transfer radical polymerization (ATRP) method and applied for the first time as a novel matrix for the selective enrichment and analysis of small-molecule compounds with vicinal diols, which have been the focus of intense research in the field of life science, by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in positive-ion mode. There are two main factors playing a decisive role in assisting laser D/I process comparing to some traditional matrices: (1) GO provides π-conjugated system by itself for laser absorption and energy transfer; (2) the modified 4-vinylphenylboronic acid can selectively capture small-molecule compounds with vicinal diols. The results demonstrate that the novel material has distinct advantages over previously reported matrices in enriching and assisting the highly efficient ionization of target molecules for mass spectrometry analysis. This work indicates a new application branch for graphene-based matrices and provides an alternative solution for small-molecules analysis.

  15. Selective Enrichment and MALDI-TOF MS Analysis of Small Molecule Compounds with Vicinal Diols by Boric Acid-Functionalized Graphene Oxide.

    PubMed

    Zhang, Jing; Zheng, Xiaoling; Ni, Yanli

    2015-08-01

    In this study, a 4-vinylphenylboronic acid-functionalized graphene oxide (GO) material was prepared via atom-transfer radical polymerization (ATRP) method and applied for the first time as a novel matrix for the selective enrichment and analysis of small-molecule compounds with vicinal diols, which have been the focus of intense research in the field of life science, by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in positive-ion mode. There are two main factors playing a decisive role in assisting laser D/I process comparing to some traditional matrices: (1) GO provides π-conjugated system by itself for laser absorption and energy transfer; (2) the modified 4-vinylphenylboronic acid can selectively capture small-molecule compounds with vicinal diols. The results demonstrate that the novel material has distinct advantages over previously reported matrices in enriching and assisting the highly efficient ionization of target molecules for mass spectrometry analysis. This work indicates a new application branch for graphene-based matrices and provides an alternative solution for small-molecules analysis. PMID:25990923

  16. Enzymatic DNA molecules

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor); Breaker, Ronald R. (Inventor)

    1998-01-01

    The present invention discloses deoxyribonucleic acid enzymes--catalytic or enzymatic DNA molecules--capable of cleaving nucleic acid sequences or molecules, particularly RNA, in a site-specific manner, as well as compositions including same. Methods of making and using the disclosed enzymes and compositions are also disclosed.

  17. A fullerene-carbene adduct as a crystalline molecular rotor: remarkable behavior of a spherically-shaped rotator.

    PubMed

    Lorbach, Andreas; Maverick, Emily; Carreras, Abel; Alemany, Pere; Wu, Guang; Garcia-Garibay, Miguel A; Bazan, Guillermo C

    2014-07-01

    A new fullerene structure was recently obtained from the reaction of a Lewis basic N-heterocyclic carbene (NHC) and the Lewis acidic C60. The molecular features of the zwitterionic adduct can be described as a molecular rotor with the fullerene cage acting as the rotator that spins about one distinct axis given by its C-C single bond linkage with the imidazolium heterocycle stator. A detailed structural analysis of the compound by means of single-crystal X-ray diffraction (XRD) revealed significant differences in the packing motifs of solvent-free and solvent-containing crystals. Variable temperature single-crystal XRD experiments (80 K ≤ T ≤ 480 K) carried out to investigate the rotational dynamics of the fullerene group in the higher quality solvent-free structure revealed atomic displacement parameters consistent with fast rotation of the highly symmetric fullerene in the solid state, whereas the imidazolium unit remains in a fixed position and therefore represents the stator. DFT and semiempirical calculations were applied to get insight into the profile of the rotational potential of the fullerene unit, particularly considering interactions with the neighboring molecules in the crystal lattice. The results indicate that the crystal environment leads to the presence of one lowest energy minimum that is connected to seven others that are slightly higher in energy through rotational barriers of approximately 1.5-2.5 kcal mol(-1). PMID:24852314

  18. 40 CFR 721.4590 - Mannich-based adduct.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mannich-based adduct. 721.4590 Section 721.4590 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4590 Mannich-based adduct....

  19. PURIFICATION AND RECOVERY OF BULKY HYDROPHOBIC DNA ADDUCTS

    EPA Science Inventory

    For many years 32P postlabeling has detected DNA adducts at very low levels and yet has not been able to identify unknown adducts. Mass spectrometry offers substantially improved identification powers, albeit at some loss in detection limits. With this ultimate utilization of ma...

  20. Effects of water and polymer content on covalent amide-linked adduct formation in peptide-containing amorphous lyophiles.

    PubMed

    DeHart, Michael P; Anderson, Bradley D

    2012-09-01

    Deamidation of asparagine-containing proteins and peptides results in the formation of hydrolysis products via a reactive succinimide intermediate. In amorphous lyophile formulations at low water content, nucleophilic amine groups in neighboring molecules can effectively compete with water for reaction with the succinimide intermediate resulting in the formation of a variety of covalent amide-linked adducts. This study examines the effects of changes in percentage of a polymeric excipient [hypromellose (HPMC)] and water content on the degradants formed from a model asparaginyl peptide (Gly-Phe-L-Asn-Gly) in amorphous solids also containing an excess of Gly-Val and carbonate buffer and stored at 40°C. Degradation of Gly-Phe-L-Asn-Gly and formation of succinimide intermediates, aspartyl peptides, and covalent amide-linked adducts were monitored by high-performance liquid chromatography. In all formulations and storage conditions, the formation kinetics of aspartyl hydrolysis products and covalent adducts could be described by a mechanism-based model that assigned a central role to the succinimide intermediate. Increasing the percentage of HPMC (i.e., reactant dilution) favored the formation of hydrolysis products over covalent amide-linked adducts, consistent with the bimolecular nature of covalent adduct formation. Increases in water content as relative humidity (RH) was varied from 33% to 75% produced orders-of-magnitude increases in the rate constants for succinimide formation and hydrolysis with both becoming nearly constant at high water contents. A bell-shaped profile for the dependence of the rate of covalent adduct formation on water content was observed, a result that may be indicative of phase separation at higher RHs. PMID:22437444

  1. Diet-related DNA adduct formation in relation to carcinogenesis.

    PubMed

    Hemeryck, Lieselot Y; Vanhaecke, Lynn

    2016-08-01

    The human diet contributes significantly to the initiation and promotion of carcinogenesis. It has become clear that the human diet contains several groups of natural foodborne chemicals that are at least in part responsible for the genotoxic, mutagenic, and carcinogenic potential of certain foodstuffs. Electrophilic chemicals are prone to attack nucleophilic sites in DNA, resulting in the formation of altered nucleobases, also known as DNA adducts. Since DNA adduct formation is believed to signal the onset of chemically induced carcinogenesis, the DNA adduct-inducing potential of certain foodstuffs has been investigated to gain more insight into diet-related pathways of carcinogenesis. Many studies have investigated diet-related DNA adduct formation. This review summarizes work on known or suspected dietary carcinogens and the role of DNA adduct formation in hypothesized carcinogenesis pathways. PMID:27330144

  2. General method for quantifying base adducts in specific mammalian genes

    SciTech Connect

    Thomas, D.C.; Morton, A.G.; Bohr, V.A.; Sancar, A.

    1988-06-01

    A general method has been developed to measure the formation and removal of DNA adducts in defined sequences of mammalian genomes. Adducted genomic DNA is digested with an appropriate restriction enzyme, treated with Escherichia coli UvrABC excision nuclease (ABC excinuclease), subjected to alkaline gel electrophoresis, and probed for specific sequences by Southern hybridization. The ABC excinuclease incises DNA containing bulky adducts and thus reduces the intensity of the full-length fragments in Southern hybridization in proportion to the number of adducts present in the probed sequence. This method is similar to that developed by Bohr et al. for quantifying pyrimidine dimers by using T4 endonuclease V. Because of the wide substrate range of ABC exinuclease, however, our method can be used to quantify a large variety of DNA adducts in specific genomic sequences.

  3. Crystal Structure of Fatty Acid Amide Hydrolase Bound to the Carbamate Inhibitor URB597: Discovery of a Deacylating Water Molecule and Insight into Enzyme Inactivation

    SciTech Connect

    Mileni, Mauro; Kamtekar, Satwik; Wood, David C.; Benson, Timothy E.; Cravatt, Benjamin F.; Stevens, Raymond C.

    2010-08-12

    The endocannabinoid system regulates a wide range of physiological processes including pain, inflammation, and cognitive/emotional states. URB597 is one of the best characterized covalent inhibitors of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH). Here, we report the structure of the FAAH-URB597 complex at 2.3 {angstrom} resolution. The structure provides insights into mechanistic details of enzyme inactivation and experimental evidence of a previously uncharacterized active site water molecule that likely is involved in substrate deacylation. This water molecule is part of an extensive hydrogen-bonding network and is coordinated indirectly to residues lining the cytosolic port of the enzyme. In order to corroborate our hypothesis concerning the role of this water molecule in FAAH's catalytic mechanism, we determined the structure of FAAH conjugated to a urea-based inhibitor, PF-3845, to a higher resolution (2.4 {angstrom}) than previously reported. The higher-resolution structure confirms the presence of the water molecule in a virtually identical location in the active site. Examination of the structures of serine hydrolases that are non-homologous to FAAH, such as elastase, trypsin, or chymotrypsin, shows a similarly positioned hydrolytic water molecule and suggests a functional convergence between the amidase signature enzymes and serine proteases.

  4. 32P-POSTLABELING DNA ADDUCT ASSAY: CIGARETTE SMOKE-INDUCED DNA ADDUCTS IN THE RESPIRATORY AND NONRESPIRATORY RAT TISSUES

    EPA Science Inventory

    An analysis of the tissue DNA adducts in rats by the sensitive 32P-postlabeling assay showed one to eight detectable DNA adducts in lung, trachea, larynx, heart and bladder of the sham controls. hronic exposure of animals to mainstream cigarette smoke showed a remarkable enhancem...

  5. A comparative study of the vibrational spectra of the anticancer drug melphalan and its fundamental molecules 3-phenylpropionic acid and L-phenylalanine

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Khan, Ibrahim

    2016-04-01

    The structural stability and the vibrational spectra of the anticancer drug melphalan and its parent compounds 3-phenylpropionic acid and L-phenylalanine were investigated by the DFT B3LYP/6-311G** calculations. Melphalan and its fundamental compounds were predicted to exist predominantly in non-planar structures. The vibrational frequencies of the low energy structures of melphalan, 3-phenylpropionic acid, and phenylalanine were computed at the DFT B3LYP level of theory. Complete vibrational assignments of the normal modes of melphalan, 3-phenylpropionic acid, and phenylalanine were provided by combined theoretical and experimental data of the molecules. The experimental infrared spectra of phenylalanine and melphalan show a significantly different pattern of the Cdbnd O stretching mode as compared to those of normal carboxylic acids. A comparison of the 3700-2000 cm-1 infrared spectral region of the three molecules suggests the presence of similar intermolecular H-bonding in their condensed phases. The observed infrared and Raman spectra are consistent with the presence of one predominant melphalan conformation at room temperature.

  6. Temperature and Enhanced Adduct Mobility on the Growth of MMTWNMP Single Crystals

    NASA Astrophysics Data System (ADS)

    Srinivasan, R.; Raghavan, C. M.; Saravanan, L.; Jayavel, R.; Baskar, K.

    2011-07-01

    A novel organometallic nonlinear optical crystal material; diaquatetrakis (thiocyanato) manganese (II) mercury (II)-N-methyl-2-pyrrolidone, MnHg(SCN)4(H2O)2.2(C3H6CONCH3), (abbreviated as MMTWNMP) of very good transparency was grown by low temperature solution growth method. The improvement on the quality of the single crystal was analyzed and explained based on the temperature effect and the mobility of adduct N-Methyl Pyrrolidone molecules. A mechanism for the basic mass transport is proposed and reasoned.

  7. Conformational Preferences and the Phase Stability of Fullerene Hexa-adducts.

    PubMed

    Wu, San-Lien; Hong, Chen-Yang; Wu, Kuan-Yi; Lan, Shih-Ting; Hsieh, Chou-Ting; Chen, Hsin-Lung; Wang, Chien-Lung

    2016-07-20

    Molecular conformation and the assembly structure determine the spatial arrangements of the constituent units and the functions of a molecule. Although, fullerene hexa-adducts (FHAs) have been known as functional materials with great versatility, their conformational preferences and phase stability remain a complicate issue. By choosing bithiophene (T2 ) and dodecyl bithiophene (C12 T2 ) as the peripheral units of FHA, and using microscopic, scattering and diffraction characterizations, our study reveals how the intramolecular interaction and environmental stimulus affects the conformational preferences and phase stability of FHAs. PMID:27246179

  8. 2-Aminofluorene metabolism and DNA adduct formation by mononuclear leukocytes from rapid and slow acetylator mouse strains.

    PubMed

    Levy, G N; Chung, J G; Weber, W W

    1994-02-01

    Following exposure of mice to the arylamine carcinogen 2-aminofluorene, DNA-carcinogen adducts can be found in the target tissues liver and bladder, and also in circulating leukocytes. Evidence is presented here that mouse mononuclear leukocytes (MNL) are capable of metabolizing 2-aminofluorene to DNA-binding metabolites which give rise to the adducts found in the MNL. Both lymphocytes and monocytes were able to acetylate arylamines during 18 h of culture. The degree of acetylation was determined by the N-acetyltransferase genotype of the mice as shown through use of acetylator congenic strains which differ only in the Nat-2 gene. Cultured MNL from rapid acetylator mice (C57BL/6J and A.B6-Natr) produced about twice as much N-acetylaminofluorene from 2-aminofluorene and 6- to 8-fold as much N-acetyl-p-aminobenzoic acid from p-aminobenzoic acid as cells from slow acetylator mice (B6.A-Nat(s) and A/J). Other differences in arylamine metabolism by MNL in culture were observed and shown to be due to genetic factors, currently unidentified, other than N-acetyltransferase. DNA adduct formation following incubation of MNL with the arylamine carcinogen 2-aminofluorene was related to both acetylation capacity and to other genetic metabolic factors in the mouse genome. MNL from rapid acetylator mice with the C57BL/6J background (B6) had 3-fold the DNA adduct levels of cells from the corresponding slow acetylator congenic (B6.A-Nat(s)). Similarly, MNL from rapid acetylator mice with the A/J background (A.B6-Natr) had twice the DNA adduct levels of those from their corresponding slow congenic (A). Adduct levels in MNL from C57BL/6J were nearly the same as those of MNL from A/J, again indicating the involvement of loci other than acetylation in DNA adduct formation. The finding of genetically dependent arylamine carcinogen metabolism and DNA adduct formation in cultured MNL suggests the possibility of using cultured MNL for assessing individual susceptibility to arylamine

  9. Biocatalytic Reductions of Baylis - Hillman Adducts

    SciTech Connect

    A Walton; W Conerly; Y Pompeu; B Sullivan; J Stewart

    2011-12-31

    Baylis-Hillman adducts are highly useful synthetic intermediates; to enhance their value further, we sought enantiocomplementary alkene reductases to introduce chirality. Two solutions emerged: (1) a wild-type protein from Pichia stipitis (OYE 2.6), whose performance significantly outstrips that of the standard enzyme (Saccharomyces pastorianus OYE1), and (2) a series of OYE1 mutants at position 116 (Trp in the wild-type enzyme). To understand how mutations could lead to inverted enantioselectivity, we solved the X-ray crystal structure of the Trp116Ile OYE1 variant complexed with a cyclopentenone substrate. This revealed key protein-ligand interactions that control the orientation of substrate binding above the FMN cofactor.

  10. Neural network consistent empirical physical formula construction for density functional theory based nonlinear vibrational absorbance and intensity of 6-choloronicotinic acid molecule

    NASA Astrophysics Data System (ADS)

    Yildiz, Nihat; Karabacak, Mehmet; Kurt, Mustafa; Akkoyun, Serkan

    2012-05-01

    Being directly related to the electric charge distributions in a molecule, the vibrational spectra intensities are both experimentally and theoretically important physical quantities. However, these intensities are inherently highly nonlinear and of complex pattern. Therefore, in particular for unknown detailed spatial molecular structures, it is difficult to make ab initio intensity calculations to compare with new experimental data. In this respect, we very recently initiated entirely novel layered feedforward neural network (LFNN) approach to construct empirical physical formulas (EPFs) for density functional theory (DFT) vibrational spectra of some molecules. In this paper, as a new and far improved contribution to our novel molecular vibrational spectra LFNN-EPF approach, we constructed LFFN-EPFs for absorbances and intensities of 6-choloronicotinic acid (6-CNA) molecule. The 6-CNA data, borrowed from our previous study, was entirely different and much larger than the vibrational intensity data of our formerly used LFNN-EPF molecules. In line with our another previous work which theoretically proved the LFNN relevance to EPFs, although the 6-CNA DFT absorbance and intensity were inherently highly nonlinear and sharply fluctuating in character, still the optimally constructed train set LFFN-EPFs very successfully fitted the absorbances and intensities. Moreover, test set (i.e. yet-to-be measured experimental data) LFNN-EPFs consistently and successfully predicted the absorbance and intensity data. This simply means that the physical law embedded in the 6-CNA vibrational data was successfully extracted by the LFNN-EPFs. In conclusion, these vibrational LFNN-EPFs are of explicit form. Therefore, by various suitable operations of mathematical analysis, they can be used to estimate the electronic charge distributions of the unknown molecule of the significant complexity. Additionally, these estimations can be combined with those of theoretical DFT atomic polar

  11. Glottal Adduction and Subglottal Pressure in Singing.

    PubMed

    Herbst, Christian T; Hess, Markus; Müller, Frank; Švec, Jan G; Sundberg, Johan

    2015-07-01

    Previous research suggests that independent variation of vocal loudness and glottal configuration (type and degree of vocal fold adduction) does not occur in untrained speech production. This study investigated whether these factors can be varied independently in trained singing and how subglottal pressure is related to average glottal airflow, voice source properties, and sound level under these conditions. A classically trained baritone produced sustained phonations on the endoscopic vowel [i:] at pitch D4 (approximately 294 Hz), exclusively varying either (a) vocal register; (b) phonation type (from "breathy" to "pressed" via cartilaginous adduction); or (c) vocal loudness, while keeping the others constant. Phonation was documented by simultaneous recording of videokymographic, electroglottographic, airflow and voice source data, and by percutaneous measurement of relative subglottal pressure. Register shifts were clearly marked in the electroglottographic wavegram display. Compared with chest register, falsetto was produced with greater pulse amplitude of the glottal flow, H1-H2, mean airflow, and with lower maximum flow declination rate (MFDR), subglottal pressure, and sound pressure. Shifts of phonation type (breathy/flow/neutral/pressed) induced comparable systematic changes. Increase of vocal loudness resulted in increased subglottal pressure, average flow, sound pressure, MFDR, glottal flow pulse amplitude, and H1-H2. When changing either vocal register or phonation type, subglottal pressure and mean airflow showed an inverse relationship, that is, variation of glottal flow resistance. The direct relation between subglottal pressure and airflow when varying only vocal loudness demonstrated independent control of vocal loudness and glottal configuration. Achieving such independent control of phonatory control parameters would be an important target in vocal pedagogy and in voice therapy. PMID:25944295

  12. DNA adduct formation by alachlor metabolites

    SciTech Connect

    Brown, M.A.; Kimmel, E.C.; Casida, J.E.

    1988-01-01

    The extent of DNA adduct formation by alachlor (ArN(CH/sub 2/OCH/sub 3/)C(O)CH/sub 2/Cl wherein Ar is 2,6-diethylphenyl) and its metabolites is used as a guide to deduce the causal agent(s) in the carcinogenicity of this major herbicide. (/sup 14/C-phenyl)Alachlor is compared to its two metabolic cleavage products, (/sup 14/C-phenyl) 2-chloro-N-(2,6-diethylphenyl)acetamide (CDEPA) (ArNHC(O)CH/sub 2/Cl) and (/sup 14/C-phenyl)2,6-diethylaniline (DEA) (ArNH/sub 2/), and to (/sup 14/C-methoxy)alachlor in various in vitro and in vivo systems. Horseradish peroxidase and hydrogen peroxide activate DEA, but not CEDPA or alachlor, for formation of adducts with calf thymus DNA, which probably involves 2,6-diethylnitrosobenzene (ArNO) as an intermediate. Mouse liver microsomes and NADPH are both required to enhance the binding from each labeled preparation to calf thymus DNA; 4-fold higher labeling is observed from (/sup 14/C-methoxy)- than from (/sup 14/C-phenyl)alachlor. This 4-fold preferential DNA labeling from the /sup 14/C-methoxy compound is likewise found in the liver of mice treated intraperitoneally. Mouse liver protein and hemoglobin are also labeled, in vivo, with (/sup 14/C-phenyl)alachlor, -CDEPA and -DEA, and, as with the DNA, the labeling of these proteins is 1.5- to 2-fold higher with (/sup 14/C-methoxy)alachlor.

  13. Single Molecule FRET of Protein-Nucleic Acid and Protein-Protein complexes: Surface Passivation and Immobilization

    PubMed Central

    Lamichhane, Rajan; Solem, Amanda; Black, Will; Rueda, David

    2010-01-01

    Single-molecule fluorescence spectroscopy reveals the real time dynamics that occur during biomolecular interactions that would otherwise be hidden by the ensemble average. It also removes the requirement to synchronize reactions, thus providing a very intuitive approach to study kinetics of biological systems. Surface immobilization is commonly used to increase observation times to the minute time scale, but it can be detrimental if the sample interacts non-specifically with the surface. Here, we review detailed protocols to prevent such interactions by passivating the surface or by trapping the molecules inside surface immobilized lipid vesicles. Finally, we discuss recent examples where these methods were applied to study the dynamics of important cellular processes at the single molecule level. PMID:20554047

  14. Glutathione adducts induced by ischemia and deletion of glutaredoxin-1 stabilize HIF-1α and improve limb revascularization.

    PubMed

    Watanabe, Yosuke; Murdoch, Colin E; Sano, Soichi; Ido, Yasuo; Bachschmid, Markus M; Cohen, Richard A; Matsui, Reiko

    2016-05-24

    Reactive oxygen species (ROS) are increased in ischemic tissues and necessary for revascularization; however, the mechanism remains unclear. Exposure of cysteine residues to ROS in the presence of glutathione (GSH) generates GSH-protein adducts that are specifically reversed by the cytosolic thioltransferase, glutaredoxin-1 (Glrx). Here, we show that a key angiogenic transcriptional factor hypoxia-inducible factor (HIF)-1α is stabilized by GSH adducts, and the genetic deletion of Glrx improves ischemic revascularization. In mouse muscle C2C12 cells, HIF-1α protein levels are increased by increasing GSH adducts with cell-permeable oxidized GSH (GSSG-ethyl ester) or 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanyl thiocarbonylamino) phenylthiocarbamoylsulfanyl] propionic acid (2-AAPA), an inhibitor of glutathione reductase. A biotin switch assay shows that GSSG-ester-induced HIF-1α contains reversibly modified thiols, and MS confirms GSH adducts on Cys(520) (mouse Cys(533)). In addition, an HIF-1α Cys(520) serine mutant is resistant to 2-AAPA-induced HIF-1α stabilization. Furthermore, Glrx overexpression prevents HIF-1α stabilization, whereas Glrx ablation by siRNA increases HIF-1α protein and expression of downstream angiogenic genes. Blood flow recovery after femoral artery ligation is significantly improved in Glrx KO mice, associated with increased levels of GSH-protein adducts, capillary density, vascular endothelial growth factor (VEGF)-A, and HIF-1α in the ischemic muscles. Therefore, Glrx ablation stabilizes HIF-1α by increasing GSH adducts on Cys(520) promoting in vivo HIF-1α stabilization, VEGF-A production, and revascularization in the ischemic muscles. PMID:27162359

  15. Immunodetection of Serum Albumin Adducts as Biomarkers for Organophosphorus Exposure

    PubMed Central

    Chen, Sigeng; Zhang, Jun; Lumley, Lucille

    2013-01-01

    A major challenge in organophosphate (OP) research has been the identification and utilization of reliable biomarkers for the rapid, sensitive, and efficient detection of OP exposure. Although Tyr 411 OP adducts to human serum albumin (HSA) have been suggested to be one of the most robust biomarkers in the detection of OP exposure, the analysis of HSA-OP adduct detection has been limited to techniques using mass spectrometry. Herein, we describe the procurement of two monoclonal antibodies (mAb-HSA-GD and mAb-HSA-VX) that recognized the HSA Tyr 411 adduct of soman (GD) or S-[2-(diisopropylamino)ethyl]-O-ethyl methylphosphonothioate (VX), respectively, but did not recognize nonphosphonylated HSA. We showed that mAb-HSA-GD was able to detect the HSA Tyr 411 OP adduct at a low level (i.e., human blood plasma treated with 180 nM GD) that could not be detected by mass spectrometry. mAb-HSA-GD and mAb-HSA-VX showed an extremely low-level detection of GD adducted to HSA (on the order of picograms). mAb-HSA-GD could also detect serum albumin OP adducts in blood plasma samples from different animals administered GD, including rats, guinea pigs, and monkeys. The ability of the two antibodies to selectively recognize nerve agents adducted to serum albumin suggests that these antibodies could be used to identify biomarkers of OP exposure and provide a new biologic approach to detect OP exposure in animals. PMID:23192655

  16. Derivatization of isothiocyanates and their reactive adducts for chromatographic analysis.

    PubMed

    Agerbirk, Niels; De Nicola, Gina Rosalinda; Olsen, Carl Erik; Müller, Caroline; Iori, Renato

    2015-10-01

    Isothiocyanates form adducts with a multitude of biomolecules, and these adducts need analytical methods. Likewise, analytical methods for hydrophilic isothiocyanates are needed. We considered reaction with ammonia to form thiourea derivatives. The hydrophilic, glycosylated isothiocyanate moringin, 4-(α-L-rhamnopyranosyloxy)benzyl isothiocyanate, was efficiently derivatized to the thiourea derivative by incubation with ammonia. The hydrophobic benzyl isothiocyanate was also efficiently derivatized to the thiourea derivative. The thiourea group provided a UV absorbing chromophore, and the derivatives showed expectable sodium and hydrogen adducts in ion trap mass spectrometry and were suitable for liquid chromatography analysis. Reactive dithiocarbamate adducts constitute the major type of reactive ITC adduct expected in biological matrices. Incubation of a model dithiocarbamate with ammonia likewise resulted in conversion to the corresponding thiourea derivative, suggesting that a variety of matrix-bound reactive isothiocyanate adducts can be determined using this strategy. As an example of the application of the method, recovery of moringin and benzyl isothiocyanate applied to cabbage leaf discs was studied in simulated insect feeding assays. The majority of moringin was recovered as native isothiocyanate, but a major part of benzyl isothiocyanate was converted to reactive adducts. PMID:26342619

  17. Quantitation of DNA adducts by stable isotope dilution mass spectrometry

    PubMed Central

    Tretyakova, Natalia; Goggin, Melissa; Janis, Gregory

    2012-01-01

    Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations potentially contributing to the development of cancer. Due to their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples – including immunoassay, HPLC, and 32P-postlabeling – isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adducts concentrations in biological samples are between 0.01 – 10 adducts per 108 normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry – especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS – have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke. PMID:22827593

  18. Ultra-high-density 3D DNA arrays within nanoporous biocompatible membranes for single-molecule-level detection and purification of circulating nucleic acids.

    PubMed

    Aramesh, M; Shimoni, O; Fox, K; Karle, T J; Lohrmann, A; Ostrikov, K; Prawer, S; Cervenka, J

    2015-04-14

    Extracellular nucleic acids freely circulating in blood and other physiologic fluids are important biomarkers for non-invasive diagnostics and early detection of cancer and other diseases, yet difficult to detect because they exist in very low concentrations and large volumes. Here we demonstrate a new broad-range sensor platform for ultrasensitive and selective detection of circulating DNA down to the single-molecule level. The biosensor is based on a chemically functionalized nanoporous diamond-like carbon (DLC) coated alumina membrane. The few nanometer-thick, yet perfect and continuous DLC-coating confers the chemical stability and biocompatibility of the sensor, allowing its direct application in biological conditions. The selective detection is based on complementary hybridization of a fluorescently-tagged circulating cancer oncomarker (a 21-mer nucleic acid) with covalently immobilized DNA on the surface of the membrane. The captured DNAs are detected in the nanoporous structure of the sensor using confocal scanning laser microscopy. The flow-through membrane sensor demonstrates broad-range sensitivity, spanning from 10(15) molecules per cm(2) down to single molecules, which is several orders of magnitude improvement compared to the flat DNA microarrays. Our study suggests that these flow-through type nanoporous sensors represent a new powerful platform for large volume sampling and ultrasensitive detection of different chemical biomarkers. PMID:25744416

  19. Effect of propane-2-sulfonic acid octadec-9-enyl-amide on the expression of adhesion molecules in human umbilical vein endothelial cells.

    PubMed

    Chen, Cai-Xia; Yang, Li-Chao; Xu, Xu-Dong; Wei, Xiao; Gai, Ya-Ting; Peng, Lu; Guo, Han; Hao-Zhou; Wang, Yi-Qing; Jin, Xin

    2015-06-01

    Oleoylethanolamide (OEA), an endogenous agonist of PPARα, has been reported to have anti-atherosclerotic properties. However, OEA can be enzymatically hydrolyzed to oleic acid and ethanolamine and, thus, is not expected to be orally active. In the present study, we designed and synthesized an OEA analog, propane-2-sulfonic acid octadec-9-enyl-amide (N15), which is resistant to enzymatic hydrolysis. The purpose of this study was to investigate the effects of N15 on the expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs). The results showed that N15 inhibited TNFα-induced production of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 and the adhesion of monocytes to TNFα-induced HUVECs. Furthermore, the protective effect of N15 on inflammation is dependent upon a PPAR-α/γ-mediated mechanism. In conclusion, N15 protects against TNFα-induced vascular endothelial inflammation. This anti-inflammatory effect of N15 is dependent on PPAR-α/γ dual targets. PMID:25797284

  20. The role of various amino acids in enzymatic browning process in potato tubers, and identifying the browning products.

    PubMed

    Ali, Hussein M; El-Gizawy, Ahmed M; El-Bassiouny, Rawia E I; Saleh, Mahmoud A

    2016-02-01

    The effects of five structurally variant amino acids, glycine, valine, methionine, phenylalanine and cysteine were examined as inhibitors and/or stimulators of fresh-cut potato browning. The first four amino acids showed conflict effects; high concentrations (⩾ 100mM for glycine and ⩾ 1.0M for the other three amino acids) induced potato browning while lower concentrations reduced the browning process. Alternatively, increasing cysteine concentration consistently reduced the browning process due to reaction with quinone to give colorless adduct. In PPO assay, high concentrations (⩾ 1.11 mM) of the four amino acids developed more color than that of control samples. Visible spectra indicated a continuous condensation of quinone and glycine to give colored adducts absorbed at 610-630 nm which were separated and identified by LC-ESI-MS as catechol-diglycine adduct that undergoes polymerization with other glycine molecules to form peptide side chains. In lower concentrations, the less concentration the less developed color was observed. PMID:26304424

  1. Isolation of methylcarbamoyl-adducts of adenine and cytosine following in vitro reaction of methyl isocyanate with calf thymus DNA.

    PubMed

    Segal, A; Solomon, J J; Li, F J

    1989-01-01

    Methylisocyanate (MIC) is the direct-acting acylating compound involved in the Bhopal, India disaster which occurred on December 3rd, 1984. The accidental release of MIC resulted in at least 2000 deaths, thousands of injuries and exposure of at least 200,000 people to varying amounts of MIC. We have studied how MIC reacts with 2'-deoxyribonucleosides at pH 7.0 and 37 degrees C for 1 h. MIC acylates exocyclic amino groups resulting in the following methylcarbamoyl (MC) adducts: N6-MC-Ade (0.5% yield) and N4-MC-dCyd (6%). No adducts were detected with dThd and dGuo. UV, NMR and mass spectrometry were employed to spectroscopically characterize these adducts. MIC was reacted with calf thymus DNA (pH 7.0, 37 degrees C, 1 h) and yielded N6-MC-Ade (0.3 nmol/mg DNA) and N4-MC-dCyd (2.0 nmol/mg DNA). The inability of others to observe genetic mutations by MIC in Salmonella and Drosophila is consistent with the exocyclic adducts at N4 of Cyt and N6 of Ade where normal hydrogen bonding can occur after rotation of the methylcarbamoyl group anti to the Watson-Crick side of the molecule assuming that MIC binds to DNA within the intact cell. PMID:2731306

  2. Radiation-induced reactions of polymer radicals with ruthenium tris(bipyridyl)-OH adducts in aqueous solutions

    SciTech Connect

    Neta, P.; Silverman, J.; Markovic, V.; Rabani, J.

    1986-02-13

    Polymer radicals are produced by H abstraction from polyethylene glycol (PEG) and polybrene (PB) and by H abstraction and OH addition to polystyrenesulfonate (PSS). When ruthenium tris(bipyridyl) ions (Ru(bpy)/sub 3//sup 2 +/) are also present, they compete for OH and H radicals and produce the appropriate adducts. These adducts may disproportionate or react with the polymer radicals. The kinetic constants of these systems were measured by pulse radiolysis. The reaction products were also studied by dialysis of these systems following ..gamma..-irradiation. Under the conditions of these experiments the Ru(bpy)/sub 3//sup 2 +/-OH adduct (and probably also the corresponding H adduct) reacts with the polymer radicals. The products of these reactions are the appropriate polymer molecules with covalently bound Ru(bpy)/sub 3//sup 2 +/ residues. This method has a potential use in the synthesis of such compounds, which may be utilized for photochemical storage of light energy. 26 references, 4 figures, 1 table.

  3. Scanning Tunneling Imaging of Bio-Organic Molecules and Their Tunneling Properties: Fatty Acids, Their Derivatives and Cholesteryl Stearate

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kousei; Arakawa, Hideo; Ikai, Atsushi

    1995-06-01

    Scanning tunneling microscopy imaging was applied to long-chain fatty acids, their derivatives and cholesteryl stearate in the adsorbed state at the liquid-solid interface between phenyloctane and highly oriented pyrolytic graphite. Cerotic acid, lignoceric acid, stearic acid, sodium stearate, stearoyl amide, and stearoyl anilide all produced regular arrays of dark and bright bands. Bright bands in the images of all execept the last compound were assigned as side-by-side alignment of hydrocarbon chains based on the variation of the band width between the three fatty acids. In the case of stearoyl anilide, the bright part was assigned to aromatic ring structure and the wider dark area to the hydrocarbon part.

  4. The reversibility of the glutathionyl-quercetin adduct spreads oxidized quercetin-induced toxicity

    SciTech Connect

    Boots, Agnes W. . E-mail: a.boots@farmaco.unimaas.nl; Balk, Jiska M.; Bast, Aalt; Haenen, Guido R.M.M.

    2005-12-16

    Quercetin is one of the most prominent dietary antioxidants. During its antioxidant activity, quercetin becomes oxidized into its o-quinone/quinone methide QQ. QQ is toxic since it instantaneously reacts with thiols of, e.g., proteins. In cells, QQ will initially form an adduct with glutathione (GSH), giving GSQ. We have found that GSQ is not stable; it dissociates continuously into GSH and QQ with a half life of 2 min. Surprisingly, GSQ incubated with 2-mercapto-ethanol (MSH), a far less reactive thiol, results in the conversion of GSQ into the MSH-adduct MSQ. A similar conversion of GSQ into relatively stable protein thiol-quercetin adducts is expected. With the dithiol dihydrolipoic acid (L(SH){sub 2}), quercetin is formed out of GSQ. These results indicate that GSQ acts as transport and storage of QQ. In that way, the initially highly focussed toxicity of QQ is dispersed by the formation of GSQ that finally spreads QQ-induced toxicity, probably even over cells.

  5. Adducts of nitrous oxide and N-heterocyclic carbenes: syntheses, structures, and reactivity.

    PubMed

    Tskhovrebov, Alexander G; Vuichoud, Basile; Solari, Euro; Scopelliti, Rosario; Severin, Kay

    2013-06-26

    N-Heterocyclic carbenes (NHCs) react at ambient conditions with nitrous oxide to give covalent adducts. In the crystal, all compounds show a bent N2O group connected via the N-atom to the former carbene carbon atom. Most adducts are stable at room temperature, but heating induces decomposition into the corresponding ureas. Kinetic experiments show that the thermal stability of the NHC-N2O adducts depends on steric as well as electronic effects. The coordination of N2O to NHCs weakens the N-N bond substantially, and facile N-N bond rupture was observed in reactions with acid or acetyl chloride. On the other hand, reaction with tritylium tetrafluoroborate resulted in a covalent modification of the terminal O-atom, and cleavage of the C-N2O bond was observed in a reaction with thionyl chloride. The coordination chemistry of IMes-N2O (IMes = 1,3-dimesitylimidazol-2-ylidene) was explored in reactions with the complexes CuOTf, Fe(OTf)2, PhSnCl3, CuCl2, and Zn(C6F5)2. Structural analyses show that IMes-N2O is able to act as a N-donor, as an O-donor, or as a chelating N,O-donor. The different coordination modes go along with pronounced electronic changes as evidenced by a bond length analysis. PMID:23758062

  6. Catalytic activities of Werner protein are affected by adduction with 4-hydroxy-2-nonenal

    PubMed Central

    Czerwińska, Jolanta; Poznański, Jarosław; Dębski, Janusz; Bukowy, Zuzanna; Bohr, Vilhelm A.; Tudek, Barbara; Speina, Elżbieta

    2014-01-01

    4-Hydroxy-2-nonenal (HNE) is a reactive α,β-unsaturated aldehyde generated during oxidative stress and subsequent peroxidation of polyunsaturated fatty acids. Here, Werner protein (WRN) was identified as a novel target for modification by HNE. Werner syndrome arises through mutations in the WRN gene that encodes the RecQ DNA helicase which is critical for maintaining genomic stability. This hereditary disease is associated with chromosomal instability, premature aging and cancer predisposition. WRN appears to participate in the cellular response to oxidative stress and cells devoid of WRN display elevated levels of oxidative DNA damage. We demonstrated that helicase/ATPase and exonuclease activities of HNE-modified WRN protein were inhibited both in vitro and in immunocomplexes purified from the cell extracts. Sites of HNE adduction in human WRN were identified at Lys577, Cys727, His1290, Cys1367, Lys1371 and Lys1389. We applied in silico modeling of the helicase and RQC domains of WRN protein with HNE adducted to Lys577 and Cys727 and provided a potential mechanism of the observed deregulation of the protein catalytic activities. In light of the obtained results, we postulate that HNE adduction to WRN is a post-translational modification, which may affect WRN conformational stability and function, contributing to features and diseases associated with premature senescence. PMID:25170083

  7. Protein adducts of the prostate carcinogen PhIP in children

    SciTech Connect

    Lawrence Livermore National Laboratory

    2004-02-20

    Prostate cancer is the second leading cause of cancer death in men in the United States. few epidemiology studies have indicated that exposure to PhIP, a rodent prostate carcinogen formed in meat during cooking, may be an important risk factor for prostate cancer in humans. Therefore, a highly sensitive biomarker assay is urgently needed to clarify the role of PhIP in prostate cancer. The goal of this project is to develop an assay that can be used to more accurately quantify human exposure to PhIP and potential prostate cancer risk. Our hypothesis is that an Accelerator Mass Spectrometry-based method can be developed to measure protein adducts of PhIP in the blood of humans. This will provide a measure of the internal dose, as well as the capacity for carcinogen bioactivation to a form that can initiate the cancer process. Towards this goal, we have characterized an adduct formed by PhIP in vitro with the amino acid cysteine. This adduct should provide a biomarker of dietary PhIP exposure and potential prostate cancer risk that could be used to identify individuals for prevention and for monitoring the effect chemoprevention strategies.

  8. Protonation and Trapping of a Small pH-Sensitive Near-Infrared Fluorescent Molecule in the Acidic Tumor Environment Delineate Diverse Tumors in Vivo.

    PubMed

    Gilson, Rebecca C; Tang, Rui; Som, Avik; Klajer, Chloe; Sarder, Pinaki; Sudlow, Gail P; Akers, Walter J; Achilefu, Samuel

    2015-12-01

    Enhanced glycolysis and poor perfusion in most solid malignant tumors create an acidic extracellular environment, which enhances tumor growth, invasion, and metastasis. Complex molecular systems have been explored for imaging and treating these tumors. Here, we report the development of a small molecule, LS662, that emits near-infrared (NIR) fluorescence upon protonation by the extracellular acidic pH environment of diverse solid tumors. Protonation of LS662 induces selective internalization into tumor cells and retention in the tumor microenvironment. Noninvasive NIR imaging demonstrates selective retention of the pH sensor in diverse tumors, and two-photon microscopy of ex vivo tumors reveals significant retention of LS662 in tumor cells and the acid tumor microenvironment. Passive and active internalization processes combine to enhance NIR fluorescence in tumors over time. The low background fluorescence allows tumors to be detected with high sensitivity, as well as dead or dying cells to be delineated from healthy cells. In addition to demonstrating the feasibility of using small molecule pH sensors to image multiple aggressive solid tumor types via a protonation-induced internalization and retention pathway, the study reveals the potential of using LS662 to monitor treatment response and tumor-targeted drug delivery. PMID:26488921

  9. Free flow electrophoresis separation and AMS quantitation of 14C-naphthalene-protein adducts

    NASA Astrophysics Data System (ADS)

    Buchholz, Bruce A.; Haack, Kurt W.; Sporty, Jennifer L.; Buckpitt, Alan R.; Morin, Dexter

    2010-04-01

    Naphthalene is a volatile aromatic hydrocarbon to which humans are exposed from a variety of sources including mobile air sources and cigarette smoke. Naphthalene produces dose-(concentration)dependent injury to airway epithelial cells of murine lung which is observed at concentrations well below the current occupational exposure standard. Toxicity is dependent upon the cytochrome P450 mediated metabolic activation of the parent substrate to unstable metabolites which become bound covalently to tissue proteins. Nearly 70 proteins have been identified as forming adducts with reactive naphthalene metabolites using in vitro systems but very little work has been conducted in vivo because reasonably large amounts (100 μCi) of 14C labeled parent compound must be administered to generate detectable adduct levels on storage phosphor screens following separation of labeled proteins by 2D gel electrophoresis. The work described here was done to provide proof of concept that protein separation by free flow electrophoresis followed by AMS detection of protein fractions containing protein bound reactive metabolites would provide adducted protein profiles in animals dosed with trace quantities of labeled naphthalene. Mice were administered 200 mg/kg naphthalene intraperitoneally at a calculated specific activity of 2 DPM/nmol (1 pCi/nmol) and respiratory epithelial tissue was obtained by lysis lavage 4 h post injection. Free flow electrophoresis (FFE) separates proteins in the liquid phase over a large pH range (2.5-11.5) using low molecular weight acids and bases to modify the pH. The apparatus separates fractions into standard 96-well plates that can be used in other protein analysis techniques. The buffers of the fractions have very high carbon content, however, and need to be dialyzed to yield buffers compatible with 14C-AMS. We describe the processing techniques required to couple FFE to AMS for quantitation of protein adducts.

  10. Towards an understanding of the molecular mechanism of solvation of drug molecules: a thermodynamic approach by crystal lattice energy, sublimation, and solubility exemplified by hydroxybenzoic acids.

    PubMed

    Perlovich, German L; Volkova, Tatyana V; Bauer-Brandl, Annette

    2006-07-01

    Temperature dependencies of saturated vapor pressure and heat capacities for the 2-, 3-, and 4-hydroxybenzoic acids were measured and thermodynamic functions of sublimation calculated (2-hydroxybenzoic acid: DeltaG(sub) (298) = 38.5 kJ/mol; DeltaH(sub) (298) = 96.6 +/- 0.8 kJ/mol; DeltaS(sub) (298) = 191 +/- 3 J/mol . K; 3-hydroxybenzoic acid: DeltaG(sub) (298) = 50.6 kJ/mol; DeltaH(sub) (298) = 105.2 +/- 0.8 kJ/mol; DeltaS(sub) (298) = 180 +/- 2 J/mol . K; 4-hydroxybenzoic acid: DeltaG(sub) (298) = 55.0 kJ/mol; DeltaH(sub) (298) = 113.3 +/- 0.7 kJ/mol; DeltaS(sub) (298) = 193 +/- 2 J/mol . K). Analysis of crystal lattice packing energies based on geometry optimization of the molecules in the crystal using diffraction data and the program Dmol(3) was carried out. The energetic contributions of van der Waals, Coulombic, and hydrogen bond terms to the total packing energy were analyzed. The fraction of hydrogen bond energy in the packing energy increases as: 3-hydroxybenzoic (29.7%) < 2-hydroxybenzoic (34.7%) < 4-hydroxybenzoic acid (42.0%). Enthalpies of evaporation were estimated from enthalpies of sublimation and fusion. Temperature dependencies of the solubility in n-octanol and n-hexane were measured. The thermodynamic functions of solubility and solvation processes were deduced. Specific and nonspecific solvation terms were distinguished using the transfer from the "inert" n-hexane to the other solvents. The transfer of the molecules from water to n-octanol is enthalpy driven process. PMID:16729271

  11. Flow-through Capture and in Situ Amplification Can Enable Rapid Detection of a Few Single Molecules of Nucleic Acids from Several Milliliters of Solution.

    PubMed

    Schlappi, Travis S; McCalla, Stephanie E; Schoepp, Nathan G; Ismagilov, Rustem F

    2016-08-01

    Detecting nucleic acids (NAs) at zeptomolar concentrations (few molecules per milliliter) currently requires expensive equipment and lengthy processing times to isolate and concentrate the NAs into a volume that is amenable to amplification processes, such as PCR or LAMP. Shortening the time required to concentrate NAs and integrating this procedure with amplification on-device would be invaluable to a number of analytical fields, including environmental monitoring and clinical diagnostics. Microfluidic point-of-care (POC) devices have been designed to address these needs, but they are not able to detect NAs present in zeptomolar concentrations in short time frames because they require slow flow rates and/or they are unable to handle milliliter-scale volumes. In this paper, we theoretically and experimentally investigate a flow-through capture membrane that solves this problem by capturing NAs with high sensitivity in a short time period, followed by direct detection via amplification. Theoretical predictions guided the choice of physical parameters for a chitosan-coated nylon membrane; these predictions can also be applied generally to other capture situations with different requirements. The membrane is also compatible with in situ amplification, which, by eliminating an elution step enables high sensitivity and will facilitate integration of this method into sample-to-answer detection devices. We tested a wide range of combinations of sample volumes and concentrations of DNA molecules using a capture membrane with a 2 mm radius. We show that for nucleic acid detection, this approach can concentrate and detect as few as ∼10 molecules of DNA with flow rates as high as 1 mL/min, handling samples as large as 50 mL. In a specific example, this method reliably concentrated and detected ∼25 molecules of DNA from 50 mL of sample. PMID:27429181

  12. Investigating the Role of Adducts in Protein Supercharging with Sulfolane

    NASA Astrophysics Data System (ADS)

    Douglass, Kevin Aart; Venter, Andre R.

    2012-03-01

    The supercharging effect of sulfolane on cytochrome c (cyt c) during electrospray ionization mass spectrometry (ESI-MS) in the absence of conformational effects was investigated. The addition of sulfolane on the order of 1 mM or greater to denaturing solutions of cyt c results in supercharging independent of protein concentration over the range of 0.1 to 10 μM. While supercharging was observed in the positive mode, no change in the charge state distribution was observed in the negative mode, ruling out polarity-independent factors such as conformational changes or surface tension effects. A series of sulfolane adducts observed with increasing intensity concurrent with increasing charge state suggests that a direct interaction between sulfolane and the charged sites of cyt c plays an important role in supercharging. We propose that charge delocalization occurring through large-scale dipole reordering of the highly polar supercharging reagent reduces the electrostatic barrier for proximal charging along the cyt c amino acid chain. Supporting this claim, supercharging was shown to increase with increasing dipole moment for several supercharging reagents structurally related to sulfolane.

  13. Membrane-based continuous remover of trifluoroacetic acid in mobile phase for LC-ESI-MS analysis of small molecules and proteins.

    PubMed

    Zhou, Zhigui; Zhang, Jialing; Xing, Jiawei; Bai, Yu; Liao, Yiping; Liu, Huwei

    2012-07-01

    We developed a "continuous" trifluoroacetic acid (TFA) remover based on electrodialysis with bipolar membrane for online coupling of liquid chromatography (LC) and electrospray ionization mass spectrometry (ESI-MS) using TFA containing mobile phase. With the TFA remover as an interface, the TFA anion in the mobile phase was removed based on electrodialysis mechanism, and meanwhile, the anion exchange membrane was self-regenerated by the hydroxide ions produced by the bipolar membrane. So the remover could continuously work without any additional regeneration process. The established LC-TFA remover-MS system has been successfully applied for the qualitative and quantitative analysis of small molecules as well as proteins. PMID:22528206

  14. Membrane-Based Continuous Remover of Trifluoroacetic Acid in Mobile Phase for LC-ESI-MS Analysis of Small Molecules and Proteins

    NASA Astrophysics Data System (ADS)

    Zhou, Zhigui; Zhang, Jialing; Xing, Jiawei; Bai, Yu; Liao, Yiping; Liu, Huwei

    2012-07-01

    We developed a "continuous" trifluoroacetic acid (TFA) remover based on electrodialysis with bipolar membrane for online coupling of liquid chromatography (LC) and electrospray ionization mass spectrometry (ESI-MS) using TFA containing mobile phase. With the TFA remover as an interface, the TFA anion in the mobile phase was removed based on electrodialysis mechanism, and meanwhile, the anion exchange membrane was self-regenerated by the hydroxide ions produced by the bipolar membrane. So the remover could continuously work without any additional regeneration process. The established LC-TFA remover-MS system has been successfully applied for the qualitative and quantitative analysis of small molecules as well as proteins.

  15. N7-glycidamide-guanine DNA adduct formation by orally ingested acrylamide in rats: a dose-response study encompassing human diet-related exposure levels.

    PubMed

    Watzek, Nico; Böhm, Nadine; Feld, Julia; Scherbl, Denise; Berger, Franz; Merz, Karl Heinz; Lampen, Alfonso; Reemtsma, Thorsten; Tannenbaum, Steven R; Skipper, Paul L; Baum, Matthias; Richling, Elke; Eisenbrand, Gerhard

    2012-02-20

    Acrylamide (AA) is formed during the heating of food and is classified as a genotoxic carcinogen. The margin of exposure (MOE), representing the distance between the bench mark dose associated with 10% tumor incidence in rats and the estimated average human exposure, is considered to be of concern. After ingestion, AA is converted by P450 into the genotoxic epoxide glycidamide (GA). GA forms DNA adducts, primarily at N7 of guanine (N7-GA-Gua). We performed a dose-response study with AA in female Sprague-Dawley (SD) rats. AA was given orally in a single dosage of 0.1-10 000 μg/kg bw. The formation of urinary mercapturic acids and of N7-GA-Gua DNA adducts in liver, kidney, and lung was measured 16 h after application. A mean of 37.0 ± 11.5% of a given AA dose was found as mercapturic acids (MAs) in urine. MA excretion in urine of untreated controls indicated some background exposure from endogenous AA. N7-GA-Gua adduct formation was not detectable in any organ tested at 0.1 μg AA/kg bw. At a dose of 1 μg/kg bw, adducts were found in kidney (around 1 adduct/10(8) nucleotides) and lung (below 1 adduct/10(8) nucleotides) but not in liver. At 10, respectively, 100 μg/kg bw, adducts were found in all three organs, at levels close to those found at 1 μg AA/kg, covering a range of about 1-2 adducts/10(8) nucleotides. As compared to DNA adduct levels from electrophilic genotoxic agents of various origin found in human tissues, N7-GA-Gua adduct levels within the dose range of 0.1-100 μg AA/kg bw were at the low end of this human background. We propose to take the background level of DNA lesions in humans more into consideration when doing risk assessment of food-borne genotoxic carcinogens. PMID:22211389

  16. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity

    SciTech Connect

    Jiang, Shuai; Pan, Amy W.; Lin, Tzu-yin; Zhang, Hongyong; Malfatti, Michael; Turteltaub, Kenneth; Henderson, Paul T.; Pan, Chong-xian

    2015-11-06

    This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 ± 30 versus 320 ± 120 adducts per 108 nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 108 nucleotides per hour in carboplatin alone (p = 0.021). In conclusion, this rapid report provides the first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic.

  17. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity

    DOE PAGESBeta

    Jiang, Shuai; Pan, Amy W.; Lin, Tzu-yin; Zhang, Hongyong; Malfatti, Michael; Turteltaub, Kenneth; Henderson, Paul T.; Pan, Chong-xian

    2015-11-06

    This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 ± 30 versus 320 ± 120 adducts per 108 nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 108 nucleotides per hour in carboplatin alone (p = 0.021). In conclusion, this rapid report provides themore » first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic.« less

  18. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity.

    PubMed

    Jiang, Shuai; Pan, Amy W; Lin, Tzu-yin; Zhang, Hongyong; Malfatti, Michael; Turteltaub, Kenneth; Henderson, Paul T; Pan, Chong-xian

    2015-12-21

    This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 ± 30 versus 320 ± 120 adducts per 10(8) nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 10(8) nucleotides per hour in carboplatin alone (p = 0.021). This rapid report provides the first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic. PMID:26544157

  19. Conformational analysis via LIF spectroscopy of jet-cooled molecules: hydroxy- and amino-benzoic acid esters

    NASA Astrophysics Data System (ADS)

    McCombie, J.; Hepworth, P. A.; Palmer, T. F.; Simons, J. P.; Walker, M. J.

    1993-04-01

    Laser-induced fluorescence excitation spectra have been recorded under free-jet conditions for the series methyl(ethyl)-4-aminobenzoate, methyl(ethyl)-3-aminobenzoate, and methyl(ethyl)-3-hydroxybenzoate. The partially resolved rotational band contours display clear differences. Their analysis has allowed the assignment of conformers associated with each molecule. The differences in their band contours reflect the changes in hybrid composition introduced by the changes in conformational structure.

  20. Single Qdot-labeled glycosylase molecules use a wedge amino acid to probe for lesions while scanning along DNA

    PubMed Central

    Dunn, Andrew R.; Kad, Neil M.; Nelson, Shane R.; Warshaw, David M.; Wallace, Susan S.

    2011-01-01

    Within the base excision repair (BER) pathway, the DNA N-glycosylases are responsible for locating and removing the majority of oxidative base damages. Endonuclease III (Nth), formamidopyrimidine DNA glycosylase (Fpg) and endonuclease VIII (Nei) are members of two glycosylase families: the helix–hairpin–helix (HhH) superfamily and the Fpg/Nei family. The search mechanisms employed by these two families of glycosylases were examined using a single molecule assay to image quantum dot (Qdot)-labeled glycosylases interacting with YOYO-1 stained λ-DNA molecules suspended between 5 µm silica beads. The HhH and Fpg/Nei families were found to have a similar diffusive search mechanism described as a continuum of motion, in keeping with rotational diffusion along the DNA molecule ranging from slow, sub-diffusive to faster, unrestricted diffusion. The search mechanism for an Fpg variant, F111A, lacking a phenylalanine wedge residue no longer displayed slow, sub-diffusive motion compared to wild type, suggesting that Fpg base interrogation may be accomplished by Phe111 insertion. PMID:21666255

  1. H 3SiOH and F 3SiOH as models for isolated hydroxyl groups of amorphous silica: an ab initio study of the adducts with dihydrogen and carbon monoxide

    NASA Astrophysics Data System (ADS)

    Senchenya, I. N.; Civalleri, B.; Ugliengo, P.; Garrone, E.

    1998-09-01

    Ab initio calculations have been performed at both the self-consistent field (SCF) and the second-order Møller-Plesset (MP2) levels of theory, using both double-zeta plus polarisation functions basis sets and augmented correlation-consistent valence-polarised (aug-cc-pVDZ and aug-cc-pVTZ) ones, to compare the acidic and vibration features and the geometry of H 3SiOH, the model usually adopted for the isolated hydroxyls of silica, with those of its fluorinated analogue, F 3SiOH. Their complexes with H 2 and CO have also been studied. Passing from the MP2/DZP level of computation to MP2/aug-cc-pVDZ and MP2/aug-cc-pVTZ levels results in a considerable improvement of calculated data for H 3SiOH and its complexes when compared with experimental data. H 3SiOH is, however, less acidic than isolated hyroxyls of silica. In contrast, the use of F 3SiOH as a model yields an overestimation of the acidic properties; e.g., the stretching O-H mode frequency shifts caused by hydrogen-bond interaction with the base molecules. The combined use of both models may provide guidelines for prediction of the adducts of the isolated hydroxyl of silica with small molecules.

  2. Phenobarbital increases DNA adduct and metabolites formed by ochratoxin A: role of CYP 2C9 and microsomal glutathione-S-transferase.

    PubMed

    El Adlouni, C; Pinelli, E; Azémar, B; Zaoui, D; Beaune, P; Pfohl-Leszkowicz, A

    2000-01-01

    Ochratoxin A (OTA), a mycotoxin that induces nephrotoxicity and urinary tract tumors, is genotoxic and can be metabolized not only by different cytochromes P450 (CYP) but also by peroxidases involved in the arachidonic cascade, although the exact nature of the metabolites involved in the genotoxic process is still unknown. In order to establish the relation between OTA genotoxicity and the formation of metabolites, we chose three experimental models: kidney microsomes from rabbit, human bronchial epithelial cells, and microsomes from yeast that specifically express the human cytochrome P450 2C9 or 2B6 genes. OTA-DNA adducts were analyzed by (32)P postlabeling and the OTA derivatives formed were isolated by HPLC after incubation of OTA in the presence of: (1) kidney microsomes from rabbit pretreated or not with phenobarbital (PB); (2) human pulmonary epithelial cells simultaneously pretreated (or not) with PB alone or in the presence of ethacrynic acid (EA); (3) microsomes expressing CYP 2B6 and 2C9. PB pretreatment significantly increased DNA adducts formed after OTA treatment, both in the presence of kidney microsomes and bronchial epithelial cells, and induced the formation of new adducts. Ethacrynic acid, which inhibits microsomal glutathione-S-transferase, reduced DNA adduct level. DNA adducts were detected when OTA were incubated with microsomes expressing human CYP 2C9 but not with those expressing CYP 2B6. Several metabolites detected by HPLC were increased after PB treatment. Some of them could be related to DNA-adduct formation. In conclusion, OTA biotransformation, enhanced by PB pretreatment, increased DNA-adduct formation through pathways involving microsomal glutathion-S-transferase and CYP 2C9. PMID:10712746

  3. The sequence of rat leukosialin (W3/13 antigen) reveals a molecule with O-linked glycosylation of one third of its extracellular amino acids.

    PubMed Central

    Killeen, N; Barclay, A N; Willis, A C; Williams, A F

    1987-01-01

    Leukosialin is one of the major glycoproteins of thymocytes and T lymphocytes and is notable for a very high content of O-linked carbohydrate structures. The full protein sequence for rat leukosialin as translated from cDNA clones is now reported. The molecule contains 371 amino acids with 224 residues outside the cell, one transmembrane sequence and 124 cytoplasmic residues. Data from the peptide sequence and carbohydrate composition suggest that one in three of the extracellular amino acids may be O-glycosylated with no N-linked glycosylation sites. The cDNA sequence contained a CpG rich region in the 3' coding sequence and a large 3' non-coding region which included tandem repeats of the sequence GGAT. Images Fig. 4. PMID:2965006

  4. Investigation of the distribution of acidity strength in zeolites by temperature-programmed desorption of probe molecules. 2. Dealuminated Y-type zeolites

    SciTech Connect

    Karge, H.G.; Dondur, V. ); Weitkamp, J. )

    1991-01-10

    The acidity of dealuminated hydrogen forms of Y-type zeolites (Si/Al = 2.4-8.6) is determined by temperature-programmed desorption of ammonia or pyridine, which is monitored through a mass spectrometer. Four types of acidic sites are indicated by ammonia, viz., weak Broensted and/or Lewis centers and medium and strong Broensted and strong Lewis sites. In contrast, pyridine, after sample activation at 675 K, probed only two types of sites, i.e., medium and strong Broensted sites. This difference is ascribed to different accessibility of sites for the two probe molecules. From the desorption spectra (i) the fractional coverage of the various sites, (ii) the most frequent energies of activation, {anti E}{sub d}, for desorption, and (iii) the probability functions of the activation energies are derived by using a previously described method of evaluation.

  5. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol,...

  6. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol,...

  7. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol,...

  8. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol,...

  9. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol,...

  10. Non-covalent C-Cl…π interaction in acetylene-carbon tetrachloride adducts: Matrix isolation infrared and ab initio computational studies.

    PubMed

    Ramanathan, N; Sundararajan, K; Vidya, K; Jemmis, Eluvathingal D

    2016-03-15

    Non-covalent halogen-bonding interactions between π cloud of acetylene (C2H2) and chlorine atom of carbon tetrachloride (CCl4) have been investigated using matrix isolation infrared spectroscopy and quantum chemical computations. The structure and the energies of the 1:1 C2H2-CCl4 adducts were computed at the B3LYP, MP2 and M05-2X levels of theory using 6-311++G(d,p) basis set. The computations indicated two minima for the 1:1 C2H2-CCl4 adducts; with the C-Cl…π adduct being the global minimum, where π cloud of C2H2 is the electron donor. The second minimum corresponded to a C-H…Cl adduct, in which C2H2 is the proton donor. The interaction energies for the adducts A and B were found to be nearly identical. Experimentally, both C-Cl…π and C-H…Cl adducts were generated in Ar and N2 matrixes and characterized using infrared spectroscopy. This is the first report on halogen bonded adduct, stabilized through C-Cl…π interaction being identified at low temperatures using matrix isolation infrared spectroscopy. Atoms in Molecules (AIM) and Natural Bond Orbital (NBO) analyses were performed to support the experimental results. The structures of 2:1 ((C2H2)2-CCl4) and 1:2 (C2H2-(CCl4)2) multimers and their identification in the low temperature matrixes were also discussed. PMID:26722673

  11. Non-covalent C-Cl…π interaction in acetylene-carbon tetrachloride adducts: Matrix isolation infrared and ab initio computational studies

    NASA Astrophysics Data System (ADS)

    Ramanathan, N.; Sundararajan, K.; Vidya, K.; Jemmis, Eluvathingal D.

    2016-03-01

    Non-covalent halogen-bonding interactions between π cloud of acetylene (C2H2) and chlorine atom of carbon tetrachloride (CCl4) have been investigated using matrix isolation infrared spectroscopy and quantum chemical computations. The structure and the energies of the 1:1 C2H2-CCl4 adducts were computed at the B3LYP, MP2 and M05-2X levels of theory using 6-311 ++G(d,p) basis set. The computations indicated two minima for the 1:1 C2H2-CCl4 adducts; with the C-Cl…π adduct being the global minimum, where π cloud of C2H2 is the electron donor. The second minimum corresponded to a C-H…Cl adduct, in which C2H2 is the proton donor. The interaction energies for the adducts A and B were found to be nearly identical. Experimentally, both C-Cl…π and C-H…Cl adducts were generated in Ar and N2 matrixes and characterized using infrared spectroscopy. This is the first report on halogen bonded adduct, stabilized through C-Cl…π interaction being identified at low temperatures using matrix isolation infrared spectroscopy. Atoms in Molecules (AIM) and Natural Bond Orbital (NBO) analyses were performed to support the experimental results. The structures of 2:1 ((C2H2)2-CCl4) and 1:2 (C2H2-(CCl4)2) multimers and their identification in the low temperature matrixes were also discussed.

  12. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes

    SciTech Connect

    Kiwamoto, R. Spenkelink, A.; Rietjens, I.M.C.M.; Punt, A.

    2015-01-01

    Acyclic α,β-unsaturated aldehydes present in food raise a concern because the α,β-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present study was to develop physiologically based kinetic/dynamic (PBK/D) models to examine dose-dependent detoxification and DNA adduct formation of a group of 18 food-borne acyclic α,β-unsaturated aldehydes without 2- or 3-alkylation, and with no more than one conjugated double bond. Parameters for the PBK/D models were obtained using quantitative structure–activity relationships (QSARs) defined with a training set of six selected aldehydes. Using the QSARs, PBK/D models for the other 12 aldehydes were defined. Results revealed that DNA adduct formation in the liver increases with decreasing bulkiness of the molecule especially due to less efficient detoxification. 2-Propenal (acrolein) was identified to induce the highest DNA adduct levels. At realistic dietary intake, the predicted DNA adduct levels for all aldehydes were two orders of magnitude lower than endogenous background levels observed in disease free human liver, suggesting that for all 18 aldehydes DNA adduct formation is negligible at the relevant levels of dietary intake. The present study provides a proof of principle for the use of QSAR-based PBK/D modelling to facilitate group evaluations and read-across in risk assessment. - Highlights: • Physiologically based in silico models were made for 18 α,β-unsaturated aldehydes. • Kinetic parameters were determined by in vitro incubations and a QSAR approach. • DNA adduct formation was negligible at levels relevant for dietary intake. • The use of QSAR-based PBK/D modelling facilitates group evaluations and read-across.

  13. Relating protein adduction to gene expression changes: a systems approach

    PubMed Central

    Zhang, Bing; Shi, Zhiao; Duncan, Dexter T; Prodduturi, Naresh; Marnett, Lawrence J; Liebler, Daniel C

    2013-01-01

    Modification of proteins by reactive electrophiles such as the 4-hydroxy-2-nonenal (HNE) plays a critical role in oxidant-associated human diseases. However, little is known about protein adduction and the mechanism by which protein damage elicits adaptive effects and toxicity. We developed a systems approach for relating protein adduction to gene expression changes through the integration of protein adduction, gene expression, protein-DNA interaction, and protein-protein interaction data. Using a random walk strategy, we expanded a list of responsive transcription factors inferred from gene expression studies to upstream signaling networks, which in turn allowed overlaying protein adduction data on the network for the prediction of stress sensors and their associated regulatory mechanisms. We demonstrated the general applicability of transcription factor-based signaling network inference using 103 known pathways. Applying our workflow on gene expression and protein adduction data from HNE-treatment not only rediscovered known mechanisms of electrophile stress but also generated novel hypotheses regarding protein damage sensors. Although developed for analyzing protein adduction data, the framework can be easily adapted for phosphoproteomics and other types of protein modification data. PMID:21594272

  14. Pyrrolizidine Alkaloid-Protein Adducts: Potential Non-invasive Biomarkers of Pyrrolizidine Alkaloid-Induced Liver Toxicity and Exposure.

    PubMed

    Xia, Qingsu; Zhao, Yuewei; Lin, Ge; Beland, Frederick A; Cai, Lining; Fu, Peter P

    2016-08-15

    Pyrrolizidine alkaloids (PAs) are phytochemicals present in hundreds of plant species from different families widely distributed in many geographical regions around the world. PA-containing plants are probably the most common type of poisonous plants affecting livestock, wildlife, and humans. There have been many large-scale human poisonings caused by the consumption of food contaminated with toxic PAs. PAs require metabolic activation to generate pyrrolic metabolites to exert their toxicity. In this study, we developed a novel method to quantify pyrrole-protein adducts present in the blood. This method involves the use of AgNO3 in acidic ethanol to cleave the thiol linkage of pyrrole-protein (DHP-protein) adducts, and the resulting 7,9-di-C2H5O-DHP is quantified by HPLC-ES-MS/MS multiple reaction monitoring analysis in the presence of a known quantity of isotopically labeled 7,9-di-C2D5O-DHP internal standard. Using this method, we determined that diester-type PAs administered to rats produced higher levels of DHP-protein adducts than other types of PAs. The results suggest that DHP-protein adducts can potentially serve as minimally invasive biomarkers of PA exposure. PMID:27388689

  15. Charge density of the biologically active molecule (2-oxo-1,3-benzoxazol-3(2H)-yl)acetic acid.

    PubMed

    Wang, Ai; Ashurov, Jamshid; Ibragimov, Aziz; Wang, Ruimin; Mouhib, Halima; Mukhamedov, Nasir; Englert, Ulli

    2016-02-01

    (2-Oxo-1,3-benzoxazol-3(2H)-yl)acetic acid is a member of a biologically active class of compounds. Its molecular structure in the crystal has been determined by X-ray diffraction, and its gas phase structure was obtained by quantum chemical calculations at the B3LYP/6-311++G(d,p) level of theory. In order to understand the dynamics of the molecule, two presumably soft degrees of freedom associated with the relative orientation of the planar benzoxazolone system and its substituent at the N atom were varied systematically. Five conformers have been identified as local minima on the resulting two-dimensional potential energy surface within an energy window of 27 kJ mol(-1). The energetically most favourable minimum closely matches the conformation observed in the crystal. Based on high-resolution diffraction data collected at low temperature, the experimental electron density of the compound was determined. Comparison with the electron density established by theory for the isolated molecule allowed the effect of intermolecular interactions to be addressed, in particular a moderately strong O-H...O hydrogen bond with a donor...acceptor distance of 2.6177 (9) Å: the oxygen acceptor is clearly polarized in the extended solid. The hydrogen bond connects consecutive molecules to chains, and the pronounced charge separation leads to stacking between neighburs with antiparallel dipole moments perpendicular to the chain direction. PMID:26830806

  16. Just three water molecules can trigger the undesired nonenzymatic reactions of aspartic acid residues: new insight from a quantum-chemical study

    NASA Astrophysics Data System (ADS)

    Takahashi, O.

    2014-03-01

    Aspartic acid (Asp) residues in peptides and proteins (L-Asp) can undergo spontaneous, nonenzymatic reactions under physiological conditions by which abnormal L-β-Asp, D-Asp, and/or D-β-Asp residues are formed. These altered Asp residues may affect the three-dimensional structures of the peptides and proteins and hence their properties and functions. In fact, the altered Asp residues are relevant to age-related diseases such as cataract and Alzheimer's disease. Most of the above reactions of the L-Asp residue proceed via a cyclic succinimide intermediate. In this paper, I propose a detailed mechanism of cyclization of an Asp residue (forming a precursor of the succinimide) by the B3LYP/6-31+G(d,p) density functional theory calculations carried out for a small Asp-containing model compound complexed with three water molecules which act as general acid-base catalysts in proton transfers. In the proposed mechanism, the amide group on the C-terminal side of the Asp residue is first converted to the tautomeric iminol form. Then, successive reorientation of a water molecule and conformational change occur followed by the nucleophilic attack of the iminol nitrogen atom on the carboxyl carbon atom of the Asp side chain to form a five-membered ring. A satisfactory agreement was obtained between the calculated and experimental energetics.

  17. Ultra-high-density 3D DNA arrays within nanoporous biocompatible membranes for single-molecule-level detection and purification of circulating nucleic acids

    NASA Astrophysics Data System (ADS)

    Aramesh, M.; Shimoni, O.; Fox, K.; Karle, T. J.; Lohrmann, A.; Ostrikov, K.; Prawer, S.; Cervenka, J.

    2015-03-01

    Extracellular nucleic acids freely circulating in blood and other physiologic fluids are important biomarkers for non-invasive diagnostics and early detection of cancer and other diseases, yet difficult to detect because they exist in very low concentrations and large volumes. Here we demonstrate a new broad-range sensor platform for ultrasensitive and selective detection of circulating DNA down to the single-molecule level. The biosensor is based on a chemically functionalized nanoporous diamond-like carbon (DLC) coated alumina membrane. The few nanometer-thick, yet perfect and continuous DLC-coating confers the chemical stability and biocompatibility of the sensor, allowing its direct application in biological conditions. The selective detection is based on complementary hybridization of a fluorescently-tagged circulating cancer oncomarker (a 21-mer nucleic acid) with covalently immobilized DNA on the surface of the membrane. The captured DNAs are detected in the nanoporous structure of the sensor using confocal scanning laser microscopy. The flow-through membrane sensor demonstrates broad-range sensitivity, spanning from 1015 molecules per cm2 down to single molecules, which is several orders of magnitude improvement compared to the flat DNA microarrays. Our study suggests that these flow-through type nanoporous sensors represent a new powerful platform for large volume sampling and ultrasensitive detection of different chemical biomarkers.Extracellular nucleic acids freely circulating in blood and other physiologic fluids are important biomarkers for non-invasive diagnostics and early detection of cancer and other diseases, yet difficult to detect because they exist in very low concentrations and large volumes. Here we demonstrate a new broad-range sensor platform for ultrasensitive and selective detection of circulating DNA down to the single-molecule level. The biosensor is based on a chemically functionalized nanoporous diamond-like carbon (DLC) coated

  18. 2-Amino-9H-pyrido[2,3-b]indole (AαC) Adducts and Thiol Oxidation of Serum Albumin as Potential Biomarkers of Tobacco Smoke*

    PubMed Central

    Pathak, Khyatiben V.; Bellamri, Medjda; Wang, Yi; Langouët, Sophie; Turesky, Robert J.

    2015-01-01

    2-Amino-9H-pyrido[2,3-b]indole (AαC) is a carcinogenic heterocyclic aromatic amine formed during the combustion of tobacco. AαC undergoes bioactivation to form electrophilic N-oxidized metabolites that react with DNA to form adducts, which can lead to mutations. Many genotoxicants and toxic electrophiles react with human serum albumin (albumin); however, the chemistry of reactivity of AαC with proteins has not been studied. The genotoxic metabolites, 2-hydroxyamino-9H-pyrido[2,3-b]indole (HONH-AαC), 2-nitroso-9H-pyrido[2,3-b]indole (NO-AαC), N-acetyloxy-2-amino-9H-pyrido[2,3-b]indole (N-acetoxy-AαC), and their [13C6]AαC-labeled homologues were reacted with albumin. Sites of adduction of AαC to albumin were identified by data-dependent scanning and targeted bottom-up proteomics approaches employing ion trap and Orbitrap MS. AαC-albumin adducts were formed at Cys34, Tyr140, and Tyr150 residues when albumin was reacted with HONH-AαC or NO-AαC. Sulfenamide, sulfinamide, and sulfonamide adduct formation occurred at Cys34 (AαC-Cys34). N-Acetoxy-AαC also formed an adduct at Tyr332. Albumin-AαC adducts were characterized in human plasma treated with N-oxidized metabolites of AαC and human hepatocytes exposed to AαC. High levels of N-(deoxyguanosin-8-yl)-AαC (dG-C8-AαC) DNA adducts were formed in hepatocytes. The Cys34 was the sole amino acid of albumin to form adducts with AαC. Albumin also served as an antioxidant and scavenged reactive oxygen species generated by metabolites of AαC in hepatocytes; there was a strong decrease in reduced Cys34, whereas the levels of Cys34 sulfinic acid (Cys-SO2H), Cys34-sulfonic acid (Cys-SO3H), and Met329 sulfoxide were greatly increased. Cys34 adduction products and Cys-SO2H, Cys-SO3H, and Met329 sulfoxide may be potential biomarkers to assess exposure and oxidative stress associated with AαC and other arylamine toxicants present in tobacco smoke. PMID:25953894

  19. Effects of specific amino acid changes on the antigenicity of hemagglutinin molecules of avian influenza isolates from Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amino acid (aa) changes between the hemagglutinin (HA) proteins of a vaccine avian influenza virus and more recent field isolates were detected following prolonged vaccination of Mexican poultry. Using site-directed mutagenesis and reverse genetics (rg), viruses containing identical backbones but d...

  20. A PTBA small molecule enhances recovery and reduces postinjury fibrosis after aristolochic acid-induced kidney injury

    PubMed Central

    Novitskaya, Tatiana; McDermott, Lee; Zhang, Ke Xin; Chiba, Takuto; Paueksakon, Paisit; Hukriede, Neil A.

    2013-01-01

    Phenylthiobutanoic acids (PTBAs) are a new class of histone deacetylase (HDAC) inhibitors that accelerate recovery and reduce postinjury fibrosis after ischemia-reperfusion-induced acute kidney injury. However, unlike the more common scenario in which patients present with protracted and less clearly defined onset of renal injury, this model of acute kidney injury gives rise to a clearly defined injury that begins to resolve over a short period of time. In these studies, we show for the first time that treatment with the PTBA analog methyl-4-(phenylthio)butanoate (M4PTB) accelerates recovery and reduces postinjury fibrosis in a progressive model of acute kidney injury and renal fibrosis that occurs after aristolochic acid injection in mice. These effects are apparent when M4PTB treatment is delayed 4 days after the initiating injury and are associated with increased proliferation and decreased G2/M arrest of regenerating renal tubular epithelial cells. In addition, there is reduced peritubular macrophage infiltration and decreased expression of the macrophage chemokines CX3Cl1 and CCL2. Since macrophage infiltration plays a role in promoting kidney injury, and since renal tubular epithelial cells show defective repair and a marked increase in maladaptive G2/M arrest after aristolochic acid injury, these findings suggest M4PTB may be particularly beneficial in reducing injury and enhancing intrinsic cellular repair even when administered days after aristolochic acid ingestion. PMID:24370591

  1. Tandem Mass Spectrometry for Characterization of Covalent Adducts of DNA with Anti-cancer Therapeutics

    PubMed Central

    Silvestri, Catherine; Brodbelt, Jennifer S.

    2012-01-01

    The chemotherapeutic activities of many anticancer and antibacterial drugs arise from their interactions with nucleic acid substrates. Some of these ligands interact with DNA in a way that causes conformational changes or damage to the nucleic acid targets, ultimately altering recognition by key DNA-specific enzymes, interfering with DNA transcription or prohibiting replication, and terminating cell growth and proliferation. The design and synthesis of ligands that bind to nucleic acids remains a dynamic field in medicinal chemistry and pharmaceutical research. The quest for more selective and efficacious DNA-interactive anti-cancer chemotherapeutics has likewise catalyzed the need for sensitive analytical methods that can provide structural information about the nature of the resulting DNA adducts and provide insight into the mechanistic pathways of the DNA/drug interactions and the impact on the cellular processes in biological systems. This review focuses on the array of tandem mass spectrometric strategies developed and applied for characterization of covalent adducts formed between DNA and anti-cancer ligands. PMID:23150278

  2. Differential repair of etheno-DNA adducts by bacterial and human AlkB proteins.

    PubMed

    Zdżalik, Daria; Domańska, Anna; Prorok, Paulina; Kosicki, Konrad; van den Born, Erwin; Falnes, Pål Ø; Rizzo, Carmelo J; Guengerich, F Peter; Tudek, Barbara

    2015-06-01

    AlkB proteins are evolutionary conserved Fe(II)/2-oxoglutarate-dependent dioxygenases, which remove alkyl and highly promutagenic etheno(ɛ)-DNA adducts, but their substrate specificity has not been fully determined. We developed a novel assay for the repair of ɛ-adducts by AlkB enzymes using oligodeoxynucleotides with a single lesion and specific DNA glycosylases and AP-endonuclease for identification of the repair products. We compared the repair of three ɛ-adducts, 1,N(6)-ethenoadenine (ɛA), 3,N(4)-ethenocytosine (ɛC) and 1,N(2)-ethenoguanine (1,N(2)-ɛG) by nine bacterial and two human AlkBs, representing four different structural groups defined on the basis of conserved amino acids in the nucleotide recognition lid, engaged in the enzyme binding to the substrate. Two bacterial AlkB proteins, MT-2B (from Mycobacterium tuberculosis) and SC-2B (Streptomyces coelicolor) did not repair these lesions in either double-stranded (ds) or single-stranded (ss) DNA. Three proteins, RE-2A (Rhizobium etli), SA-2B (Streptomyces avermitilis), and XC-2B (Xanthomonas campestris) efficiently removed all three lesions from the DNA substrates. Interestingly, XC-2B and RE-2A are the first AlkB proteins shown to be specialized for ɛ-adducts, since they do not repair methylated bases. Three other proteins, EcAlkB (Escherichia coli), SA-1A, and XC-1B removed ɛA and ɛC from ds and ssDNA but were inactive toward 1,N(2)-ɛG. SC-1A repaired only ɛA with the preference for dsDNA. The human enzyme ALKBH2 repaired all three ɛ-adducts in dsDNA, while only ɛA and ɛC in ssDNA and repair was less efficient in ssDNA. ALKBH3 repaired only ɛC in ssDNA. Altogether, we have shown for the first time that some AlkB proteins, namely ALKBH2, RE-2A, SA-2B and XC-2B can repair 1,N(2)-ɛG and that ALKBH3 removes only ɛC from ssDNA. Our results also suggest that the nucleotide recognition lid is not the sole determinant of the substrate specificity of AlkB proteins. PMID:25797601

  3. Configurational and conformational analysis of chiral molecules using IR and VCD spectroscopies: spiropentylcarboxylic acid methyl ester and spiropentyl acetate.

    PubMed

    Devlin, F J; Stephens, P J; Osterle, C; Wiberg, K B; Cheeseman, J R; Frisch, M J

    2002-11-15

    The chiral monosubstituted derivatives of spiropentane, spiropentylcarboxylic acid methyl ester, 1, and spiropentyl acetate, 2, have been synthesized in optically active form. Configurational and conformational analysis of 1 and 2 has been carried out using infrared (IR) and vibrational circular dichroism (VCD) spectroscopies. Analysis of the experimental IR and VCD spectra has been carried out using ab initio density functional theory (DFT). For both 1 and 2, DFT predicts two populated conformations. Comparison to experiment of the conformationally averaged IR and VCD spectra of 1 and 2, predicted using DFT, provides unequivocal evidence of the predicted conformations and yields the absolute configurations R(-)/S(+) for 1 and R(+)/S(-) for 2. These absolute configurations are consistent with the R(-)/S(+) absolute configuration of spiropentylcarboxylic acid, assigned previously via X-ray crystallography of its alpha-phenylethylammonium salt. PMID:12423137

  4. Competitive Deprotonation and Superoxide [O₂⁻•)] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions.

    PubMed

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B

    2016-03-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O(•)) preferentially form superoxide radical-anion (O2(-•)) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2(-•)) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2(-•) adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O(•)) to generate the superoxide radical-anion (m/z 32) or the deprotonated amide [m/z (M - H)(-)], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions. PMID:26545766

  5. Competitive Deprotonation and Superoxide [O2 -•] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions

    NASA Astrophysics Data System (ADS)

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B.

    2016-03-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O•) preferentially form superoxide radical-anion (O2 -•) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2 -•) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2 -• adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O•) to generate the superoxide radical-anion ( m/z 32) or the deprotonated amide [ m/z (M - H)-], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions.

  6. Improvement in the diagnostic potential of (32)P-postlabeling analysis demonstrated by the selective formation and comparative analysis of nitrated-PAH-derived adducts arising from diesel-particle extracts

    SciTech Connect

    Gallagher, J.E.; Kohan, M.J.; George, M.H.; Lewtas, J.

    1991-01-01

    Studies suggest that DNA adducts derived from N-substituted aryl-compounds are poorly recovered in the nuclease P1 version of the (32)P-postlabeling assay but not the butanol extraction version. Both versions were employed to ascertain whether the differences in sensitivity could be used to select for nitroaromatic-DNA adducts derived by treating calf thymus DNA with organic extracts from four diesel and one gasoline vehicle emission particles. The authors' enhanced the formation of nitrated-PAH-derived adducts through xanthine oxidase-catalyzed nitroreduction of nitrated-polycyclic aromatic hydrocarbons; constituents previously detected in the diesel emissions. All four diesel organic extracts treated with xanthine oxidase resulted in the formation of one major DNA adduct chromatographically distinct from the multiple DNA adducts detected in the rat liver S9-treated incubations. The adduct was detectable with the butanol extraction but not the nuclease P1 version of the (32)P-postlabeling assay and was chromatographically similar to DNA adducts formed following xanthine oxidase nitroreduction of 1-nitropyrene or ascorbic acid treatment of 1-nitro-8-nitrosopyrene and 1-nitro-6-nitrosopyrene.

  7. Mass spectrometric detection of CYP450 adducts following oxidative desulfuration of methyl parathion.

    PubMed

    Kyle, Patrick B; Smith, Stanley V; Baker, Rodney C; Kramer, Robert E

    2013-07-01

    Cytochrome P450 (CYP)-mediated desulfuration of methyl parathion results in mechanism-based inhibition of the enzyme. Although previous data suggest that reactive sulfur is released and binds to the apoprotein, the identities of neither the adduct(s) nor the affected amino acid(s) have been clearly determined. In this study, nanospray tandem mass spectroscopy was used to analyze peptide digests of CYP resolved by SDS-PAGE from liver microsomes of male rats following incubation in the absence or presence of methyl parathion. Oxidative desulfuration was confirmed by measurement of methyl paraoxon, and inhibition of specific CYP isozymes was determined by measurement of testosterone hydroxylation. Total CYP content was quantified spectrophotometrically. Incubation of microsomes with methyl parathion decreased CYP content by 58%. This effect was not associated with a comparable increase in absorbance at 420 nm, suggesting the displacement of heme from the apoprotein. Rates of testosterone 2β- and 6β-hydroxylation, respectively, were reduced to 8 and 2%, implicating CYP3A and CYP2C11 in the oxidative desulfuration of methyl parathion. Mass spectrometric analysis identified 96 amu adducts to cysteines 64 and 378 of CYP3A1. In addition, a peptide containing cysteine 433 that coordinates with heme was possibly modified as it was detected in control, but not methyl parathion samples. A comparison of rat CYP3A1 with human CYP3A4 suggests that cysteines 64 and 378 reside along the substrate channel, remote from the active site. Alteration of these residues might modulate substrate entry to the binding pocket of the enzyme. PMID:22271348

  8. Kinetics of the competitive degradation of deoxyribose and other molecules by hydroxyl radicals produced by the Fenton reaction in the presence of ascorbic acid.

    PubMed

    Zhao, M J; Jung, L

    1995-09-01

    The competition method in which the Fenton reaction is employed as an .OH radical generator and deoxyribose as a detecting molecule, has been used to determine the rate constants for reactions of the .OH radical with its scavengers. Nonlinear competition plots were obtained for those scavengers which reacted with the Fenton reagents (Fe2+ or H2O2). Ascorbic acid is believed to overcome this problem. We have investigated the kinetics of deoxyribose degradation by .OH radicals generated by the Fenton reaction in the presence of ascorbic acid, and observed that the inclusion of ascorbic acid in the Fenton system greatly increased the rate of .OH radical generation. As a result, the interaction between some scavengers and the Fenton reagents became negligeable and linear competition plots of A degree/A vs scavenger concentrations were obtained. The effects of experimental conditions such as, the concentrations of ascorbic acid, deoxyribose, H2O2 and Fe(2+)-EDTA, the EDTA/Fe2+ ratio as well as the incubation time, on the deoxyribose degradation and the determination of the rate constant for mercaptoethanol chosen as a reference compound were studied. The small standard error, (6.76 +/- 0.21) x 10(9) M-1s-1, observed for the rate constant values for mercaptoethanol determined under 13 different experimental conditions, indicates the latter did not influence the rate constant determination. This is in fact assured by introducing a term, kx, into the kinetic equation. This term represents the rate of .OH reactions with other reagents such as ascorbic acid, Fe(2+)-EDTA, H2O2 etc. The agreement of the rate constants obtained in this work with that determined by pulse radiolysis techniques for cysteine, thiourea and many other scavengers, suggests that this simple competition method is applicable to a wide range of compounds, including those which react with the Fenton reagents and those whose solubility in water is low. PMID:7581818

  9. Ethanol Withdrawal Increases Glutathione Adducts of 4-Hydroxy-2-Hexenal but not 4-Hydroxyl-2-Nonenal in the Rat Cerebral Cortex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethanol withdrawal increases lipid peroxidation of the polyunsaturated fatty acid (PUFA) docosahexaenoate (DHA; 22:6; n-3) in the CNS. In order to further define the role of oxidative damage of PUFA during ethanol withdrawal, we measured levels of glutathione adducts of 4-hydroxy-2-hexenal (GSHHE) a...

  10. The influence of chemisorbed molecules on mass transfer in H-ZSM-5-type zeolites and the location of Broensted acid sites

    SciTech Connect

    Caro, J.; Buelow, M. ); Kaerger, J.; Pfeifer, H. )

    1988-11-01

    Heterogeneous catalysis is one of the most important applications of zeolites. Therefore, various methods have been developed to determine the strength and concentration of Bronsted acid sites in zeolites. Among them, in the last few years, {sup 1}H MAS NMR has become a powerful tool. In addition to the accessibility of the acid sites probed by chemisorption of N-bases, the steric environment of these catalytically active sites is of importance since it imposes constraints on the geometry of the transition state. However, only a few studies have been reported on this topic. Information was obtained from quantum chemical calculations, catalytic experiments, I.R. spectroscopy, and the arrangement of guest molecules. From these investigations it has been concluded that in H-ZSM-5 the channel intersections should be preferential location centers for the Bronsted acid sites. In adsorption technology, in the use of zeolites as shape-selective adsorbents, modification of the molecular sieve properties by chemisorption of nitrogen-containing bases (N-compounds) has become a common technique. The authors have applied the NMR pulsed field gradient technique to study the influence of chemisorbed N-compounds on transport properties of molecular sieves, considering the chemisorbed compounds as transport obstacles.

  11. Alpha2,6-sialic acid on platelet endothelial cell adhesion molecule (PECAM) regulates its homophilic interactions and downstream antiapoptotic signaling.

    PubMed

    Kitazume, Shinobu; Imamaki, Rie; Ogawa, Kazuko; Komi, Yusuke; Futakawa, Satoshi; Kojima, Soichi; Hashimoto, Yasuhiro; Marth, Jamey D; Paulson, James C; Taniguchi, Naoyuki

    2010-02-26

    Antiangiogenesis therapies are now part of the standard repertoire of cancer therapies, but the mechanisms for the proliferation and survival of endothelial cells are not fully understood. Although endothelial cells are covered with a glycocalyx, little is known about how endothelial glycosylation regulates endothelial functions. Here, we show that alpha2,6-sialic acid is necessary for the cell-surface residency of platelet endothelial cell adhesion molecule (PECAM), a member of the immunoglobulin superfamily that plays multiple roles in cell adhesion, mechanical stress sensing, antiapoptosis, and angiogenesis. As a possible underlying mechanism, we found that the homophilic interactions of PECAM in endothelial cells were dependent on alpha2,6-sialic acid. We also found that the absence of alpha2,6-sialic acid down-regulated the tyrosine phosphorylation of PECAM and recruitment of Src homology 2 domain-containing protein-tyrosine phosphatase 2 and rendered the cells more prone to mitochondrion-dependent apoptosis, as evaluated using PECAM- deficient endothelial cells. The present findings open up a new possibility that modulation of glycosylation could be one of the promising strategies for regulating angiogenesis. PMID:20048157

  12. Arylamine-DNA adducts in vitro and in vivo: their role in bacterial mutagenesis and urinary bladder carcinogenesis

    PubMed Central

    Beland, Frederick A.; Beranek, David T.; Dooley, Kenneth L.; Heflich, Robert H.; Kadlubar, Fred F.

    1983-01-01

    Hepatic N-oxidation, followed by N-glucuronidation, has been proposed as a route of metabolic activation for arylamine bladder carcinogens. It is postulated that the N-glucuronides are transported to the bladder lumen where they are hydrolyzed under slightly acidic conditions to release direct-acting carcinogenic and mutagenic N-hydroxyarylamines. In this study, 4-aminobiphenyl (ABP), 1-naphthylamine (1-NA), 2-naphthylamine (2-NA), 2-acetylaminofluorene (AAF), 4-nitrobiphenyl (NBP), benzidine (BZ), and N-acetylbenzidine (ABZ) were administered to male beagle dogs (60 μmole/kg), and the bladder epithelium DNA adducts were quantified at various times after treatment. At 24-48 hr after administration, the order of binding to bladder epithelium DNA was: ABP >> AAF > NBP ≅ 2-NA≅BZ ≅ ABZ >> 1-NA. The level of DNA modification by ABP remained constant for 7 days, whereas 2-NA and AAF residues decreased by 35% and 80%, respectively. The extent and relative persistence of total DNA binding correlated with the compounds' ability to induce bladder tumors in dogs. ABP, AAF, NBP, 2-NA and ABZ administration resulted in DNA binding sufficient for adduct analysis. Enzymatic hydrolysis of the DNA and examination of the adducts by high pressure liquid chromatography indicated that arylamine substitution at C8 of deoxyguanosine was the dominant product. Additional adducts were detected in animals treated with ABP, NBP, and 2-NA. Furthermore, the profiles of adducts obtained in vivo were remarkably similar to the profiles obtained when the N-hydroxy arylamine metabolites of these carcinogens were reacted with DNA in vitro at pH 5.0. To evaluate the mutagenic potential of these arylamine-DNA adducts, Salmonella typhimurium strains TA 1535 and TA 1538 were incubated with N-hydroxy-2-NA, N-hydroxy-2-aminofluorene (AF), N-hydroxy-ABP, and N-hydroxy-ABZ and the resulting DNA adducts and reversions were quantified. Arylamine-C8-deoxyguanosine substitution was correlated with

  13. PROTEIN ADDUCTS AS BIOMAKERS OF EXPOSURE TO ORGANOPHOSPHORUS COMPOUNDS

    PubMed Central

    Marsillach, Judit; Costa, Lucio G.; Furlong, Clement E.

    2013-01-01

    Exposure to organophosphorus (OP) compounds can lead to serious neurological damage or death. Following bioactivation by the liver cytochromes P450, the OP metabolites produced are potent inhibitors of serine active-site enzymes including esterases, proteases and lipases. OPs may form adducts on other cellular proteins. Blood cholinesterases (ChEs) have long served as biomarkers of OP exposure in humans. However, the enzymatic assays used for biomonitoring OP exposures have several drawbacks. A more useful approach will focus on multiple biomarkers and avoid problems with the enzymatic activity assays. OP inhibitory effects result from a covalent bond with the active-site serine of the target enzymes. The serine OP adducts become irreversible following a process referred to as aging where one alkyl group dissociates over variable lengths of time depending on the OP adduct. The OP-adducted enzyme then remains in circulation until it is degraded, allowing for a longer window of detection compared with direct analysis of OPs or their metabolites. Mass spectrometry (MS) provides a very sensitive method for identification of post-translational protein modifications. MS analyses of the percentage adduction of the active-site serine of biomarker proteins such as ChEs will eliminate the need for basal activity levels of the individual and will provide for a more accurate determination of OP exposure. MS analysis of biomarker proteins also provides information about the OP that has caused inhibition. Other useful biomarker proteins include other serine hydrolases, albumin, tubulin and transferrin. PMID:23261756

  14. Characterization of deoxyguanosine adducts from hydroquinone/benzoquinone

    SciTech Connect

    Jowa, J.; Winkel, S.; Witz, G.; Snyder, R.

    1986-03-01

    Occupational exposure to benzene has long been associated with the development of pancytopenia and leukemia. This toxicity has been attributed to the action of benzene metabolites. The authors have chosen to investigate the reaction of hydroquinone (HQ)/benzoquinone(BQ) with deoxyguanosine(dG) and DNA. (/sup 14/C)HQ was incubated with (/sup 3/H)dG in potassium phosphate buffer pH7.2 for 24 hours. Two dual labeled products were found by HPLC and presumed to be adducts. The same result was obtained when BQ was substituted in the reaction for HQ. Both adducts were found in isolated DNA from Clostridium perfringens, Micrococcus lysodeikticus, human placenta and calf thymus reacted with HO under similar conditions. One of the dG adducts was proposed to be (/sup 3/'OH) benzetheno(1,N-2)deoxyguanosine based on NMR and mass spectral results. The other adduct was characterized by a molecular weight of 339. The latter adduct was found in greater amounts than the former when HQ was reacted with denatured DNA.

  15. Atheroprotective immunization with malondialdehyde-modified LDL is hapten specific and dependent on advanced MDA adducts: implications for development of an atheroprotective vaccine.

    PubMed

    Gonen, Ayelet; Hansen, Lotte F; Turner, William W; Montano, Erica N; Que, Xuchu; Rafia, Apaїs; Chou, Meng-Yun; Wiesner, Philipp; Tsiantoulas, Dimitrios; Corr, Maripat; VanNieuwenhze, Michael S; Tsimikas, Sotirios; Binder, Christoph J; Witztum, Joseph L; Hartvigsen, Karsten

    2014-10-01

    Immunization with homologous malondialdehyde (MDA)-modified LDL (MDA-LDL) leads to atheroprotection in experimental models supporting the concept that a vaccine to oxidation-specific epitopes (OSEs) of oxidized LDL could limit atherogenesis. However, modification of human LDL with OSE to use as an immunogen would be impractical for generalized use. Furthermore, when MDA is used to modify LDL, a wide variety of related MDA adducts are formed, both simple and more complex. To define the relevant epitopes that would reproduce the atheroprotective effects of immunization with MDA-LDL, we sought to determine the responsible immunodominant and atheroprotective adducts. We now demonstrate that fluorescent adducts of MDA involving the condensation of two or more MDA molecules with lysine to form malondialdehyde-acetaldehyde (MAA)-type adducts generate immunodominant epitopes that lead to atheroprotective responses. We further demonstrate that a T helper (Th) 2-biased hapten-specific humoral and cellular response is sufficient, and thus, MAA-modified homologous albumin is an equally effective immunogen. We further show that such Th2-biased humoral responses per se are not atheroprotective if they do not target relevant antigens. These data demonstrate the feasibility of development of a small-molecule immunogen that could stimulate MAA-specific immune responses, which could be used to develop a vaccine approach to retard or prevent atherogenesis. PMID:25143462

  16. Ion condensation behavior and dynamics of water molecules surrounding the sodium poly(methacrylic acid) chain in water: a molecular dynamics study.

    PubMed

    Chung, Yung-Ting; Huang, Ching-I

    2012-03-28

    All-atom molecular dynamics simulations are used to study the condensation behavior of monovalent (Na(+)) and multivalent (Ca(2+)) salt counterions associated with the co-ions (Cl(-)) surrounding the charged poly(methacrylic acid) (PMAA) chain in water. The study is extended to the influences on chain conformation, local arrangement, and dynamics of water in the highly diluted aqueous solutions. We find that even when the salt ions are monovalent, they attract more than one charged monomer and act as a bridging agent within the chain, as the multivalent salt ions. In principle, the salt ions bridge between not only the "non-adjacent" but also the "adjacent" charged monomers, leading to a more coil-like and a locally stretched conformation, respectively. With an increase in the salt concentration, the amount of coiled-type condensed ions increase and reach a maximum when the chain conformation becomes the most collapsed; whereas, the stretched-type shows an opposite trend. Our results show that the attractive interactions through the condensed salt ions between the non-adjacent monomers are responsible for the conformational collapse. When the salt concentration increases high enough, a significant increase for the stretched-type condensed ions makes an expansion effect on the chain. These stretched-type salt ions, followed by the adsorption of the co-ions and water molecules, tend to form a multilayer organization outside surrounding the PMAA chain. Thus, the expansion degree of the chain conformation is greatly limited. When only the monovalent Na(+) ions are present in the solutions, water molecules are primarily adsorbed into either the condensed Na(+) ions or the COO(-) groups. These adsorbed water molecules form hydrogen bonds with each other and enhance the local bridging behavior associated with the Na(+) condensation on the resultant chain conformation. With an increase in the amount of multivalent Ca(2+) salt ions, more water molecules are bonded directly

  17. Hypothesis of Lithocoding: Origin of the Genetic Code as a "Double Jigsaw Puzzle" of Nucleobase-Containing Molecules and Amino Acids Assembled by Sequential Filling of Apatite Mineral Cellules.

    PubMed

    Skoblikow, Nikolai E; Zimin, Andrei A

    2016-05-01

    The hypothesis of direct coding, assuming the direct contact of pairs of coding molecules with amino acid side chains in hollow unit cells (cellules) of a regular crystal-structure mineral is proposed. The coding nucleobase-containing molecules in each cellule (named "lithocodon") partially shield each other; the remaining free space determines the stereochemical character of the filling side chain. Apatite-group minerals are considered as the most preferable for this type of coding (named "lithocoding"). A scheme of the cellule with certain stereometric parameters, providing for the isomeric selection of contacting molecules is proposed. We modelled the filling of cellules with molecules involved in direct coding, with the possibility of coding by their single combination for a group of stereochemically similar amino acids. The regular ordered arrangement of cellules enables the polymerization of amino acids and nucleobase-containing molecules in the same direction (named "lithotranslation") preventing the shift of coding. A table of the presumed "LithoCode" (possible and optimal lithocodon assignments for abiogenically synthesized α-amino acids involved in lithocoding and lithotranslation) is proposed. The magmatic nature of the mineral, abiogenic synthesis of organic molecules and polymerization events are considered within the framework of the proposed "volcanic scenario". PMID:27048216

  18. Benzamide-DNA interactions: deductions from binding, enzyme kinetics and from X-ray structural analysis of a 9-ethyladenine-benzamide adduct.

    PubMed

    McLick, J; Hakam, A; Bauer, P I; Kun, E; Zacharias, D E; Glusker, J P

    1987-06-01

    The interaction of benzamide with the isolated components of calf thymus poly(ADP-ribose) polymerase and with liver nuclei has been investigated. A benzamide-agarose affinity gel matrix was prepared by coupling o-aminobenzoic acid with Affi-Gel 10, followed by amidation. The benzamide-agarose matrix bound the DNA that is coenzymic with poly(ADP-ribose) polymerase; the matrix, however, did not bind the purified poly(ADP-ribose) polymerase protein. A highly radioactive derivative of benzamide, the 125I-labelled adduct of o-aminobenzamide and the Bolton-Hunter reagent, was prepared and its binding to liver nuclear DNA, calf thymus DNA and specific coenzymic DNA of poly(ADP-ribose) polymerase was compared. The binding of labelled benzamide to coenzymic DNA was several-fold higher than its binding to unfractionated calf thymus DNA. A DNA-related enzyme inhibitory site of benzamide was demonstrated in a reconstructed poly(ADP-ribose) polymerase system, made up from purified enzyme protein and varying concentrations of a synthetic octadeoxynucleotide that serves as coenzyme. As a model for benzamide binding to DNA, a crystalline complex of 9-ethyladenine and benzamide was prepared and its X-ray crystallographic structure was determined; this indicated a specific hydrogen bond between an amide hydrogen atom and N-3 of adenine. The benzamide also formed a hydrogen bond to another benzamide molecule. The aromatic ring of benzamide does not intercalate between ethyladenine molecules, but lies nearly perpendicular to the planes of stacking ethyladenine molecules in a manner reminiscent of the binding of ethidium bromide to polynucleotides. Thus we have identified DNA as a site of binding of benzamide; this binding is critically dependent on the nature of the DNA and is high for coenzymic DNA that is isolated with the purified enzyme as a tightly associated species. A possible model for such binding has been suggested from the structural analysis of a benzamide

  19. Killing of Mycobacterium avium by Lactoferricin Peptides: Improved Activity of Arginine- and d-Amino-Acid-Containing Molecules

    PubMed Central

    Silva, Tânia; Magalhães, Bárbara; Maia, Sílvia; Gomes, Paula; Nazmi, Kamran; Bolscher, Jan G. M.; Rodrigues, Pedro N.; Bastos, Margarida

    2014-01-01

    Mycobacterium avium causes respiratory disease in susceptible individuals, as well as disseminated infections in immunocompromised hosts, being an important cause of morbidity and mortality among these populations. Current therapies consist of a combination of antibiotics taken for at least 6 months, with no more than 60% overall clinical success. Furthermore, mycobacterial antibiotic resistance is increasing worldwide, urging the need to develop novel classes of antimicrobial drugs. One potential and interesting alternative strategy is the use of antimicrobial peptides (AMP). These are present in almost all living organisms as part of their immune system, acting as a first barrier against invading pathogens. In this context, we investigated the effect of several lactoferrin-derived AMP against M. avium. Short peptide sequences from both human and bovine lactoferricins, namely, hLFcin1-11 and LFcin17-30, as well as variants obtained by specific amino acid substitutions, were evaluated. All tested peptides significantly inhibited the axenic growth of M. avium, the bovine peptides being more active than the human. Arginine residues were found to be crucial for the display of antimycobacterial activity, whereas the all-d-amino-acid analogue of the bovine sequence displayed the highest mycobactericidal activity. These findings reveal the promising potential of lactoferricins against mycobacteria, thus opening the way for further research on their development and use as a new weapon against mycobacterial infections. PMID:24709266

  20. The Cell Adhesion Molecule “CAR” and Sialic Acid on Human Erythrocytes Influence Adenovirus In Vivo Biodistribution

    PubMed Central

    Wodrich, Harald; Billet, Olivier; Perreau, Matthieu; Hippert, Claire; Mennechet, Franck; Schoehn, Guy; Lortat-Jacob, Hugues; Dreja, Hanna; Ibanes, Sandy; Kalatzis, Vasiliki; Wang, Jennifer P.; Finberg, Robert W.; Cusack, Stephen; Kremer, Eric J.

    2009-01-01

    Although it has been known for 50 years that adenoviruses (Ads) interact with erythrocytes ex vivo, the molecular and structural basis for this interaction, which has been serendipitously exploited for diagnostic tests, is unknown. In this study, we characterized the interaction between erythrocytes and unrelated Ad serotypes, human 5 (HAd5) and 37 (HAd37), and canine 2 (CAV-2). While these serotypes agglutinate human erythrocytes, they use different receptors, have different tropisms and/or infect different species. Using molecular, biochemical, structural and transgenic animal-based analyses, we found that the primary erythrocyte interaction domain for HAd37 is its sialic acid binding site, while CAV-2 binding depends on at least three factors: electrostatic interactions, sialic acid binding and, unexpectedly, binding to the coxsackievirus and adenovirus receptor (CAR) on human erythrocytes. We show that the presence of CAR on erythrocytes leads to prolonged in vivo blood half-life and significantly reduced liver infection when a CAR-tropic Ad is injected intravenously. This study provides i) a molecular and structural rationale for Ad–erythrocyte interactions, ii) a basis to improve vector-mediated gene transfer and iii) a mechanism that may explain the biodistribution and pathogenic inconsistencies found between human and animal models. PMID:19119424

  1. Isolation, identification, and assay of [3H]-porfiromycin adducts of EMT6 mouse mammary tumor cell DNA: effects of hypoxia and dicumarol on adduct patterns.

    PubMed

    Tomasz, M; Hughes, C S; Chowdary, D; Keyes, S R; Lipman, R; Sartorelli, A C; Rockwell, S

    1991-07-01

    [3H]-(N-la-methyl) Porfiromycin (POR) was employed to detect and identify the radiolabeled mono- and bis-adducts formed in living EMT6 mouse mammary tumor cells under different conditions. To provide authentic standard adducts, calf-thymus DNA was treated with POR under reductive activation, then digested to nucleosides and POR-nucleoside adducts. The three major adducts formed were isolated by HPLC and authenticated. Two were mono-adducts, composed of deoxyguanosine linked at its N2-position to C-1 of POR and of 10-decarbamoyl POR. The third was a bis-adduct, in which POR was crosslinked to two deoxyguanosines at their N2-positions. DNA from [3H]-POR treated EMT6 cells was digested an analyzed by HPLC. DNA-associated label was located in thymidine and in two mono-adducts and one bis-adduct identical to those described above. Label in thymidine resulted from N-demethylation of POR and reincorporation of label into new thymidylate residues. Adducts were formed more abundantly in hypoxia than in air. In addition, the mono-adduct to crosslink ratios were different, approximately 1:1 and 2:1 for hypoxic and aerobic cells, respectively. The different patterns of alkylation in air and hypoxia may be related to the greater toxicity of POR in hypoxia. When cells were treated simultaneously with POR and dicumarol, adduct levels were lower, and a new, unknown adduct was observed primarily under hypoxia; these changes may be related to the altered toxicity of POR in the presence of dicumarol. The HPLC assay detected simultaneously the full array of stable mono- and bis-adducts in DNA with good sensitivity (greater than or equal to 2 x 10(6) adducts/nucleotide) and excellent reproducibility. This assay should be generally applicable to all cells and tissues when MC or POR with high specific radioactivity can be employed. PMID:1714285

  2. The role of reactive oxygen species (ROS) and cytochrome P-450 2E1 in the generation of carcinogenic etheno-DNA adducts

    PubMed Central

    Linhart, Kirsten; Bartsch, Helmut; Seitz, Helmut K.

    2014-01-01

    Exocyclic etheno-DNA adducts are mutagenic and carcinogenic and are formed by the reaction of lipidperoxidation (LPO) products such as 4-hydoxynonenal or malondialdehyde with DNA bases. LPO products are generated either via inflammation driven oxidative stress or via the induction of cytochrome P-450 2E1 (CYP2E1). In the liver CYP2E1 is induced by various compounds including free fatty acids, acetone and ethanol. Increased levels of CYP2E1 and thus, oxidative stress are observed in the liver of patients with non-alcoholic steatohepatitis (NASH) as well as in the chronic alcoholic. In addition, chronic ethanol ingestion also increases CYP2E1 in the mucosa of the oesophagus and colon. In all these tissues CYP2E1 correlates significantly with the levels of carcinogenic etheno-DNA adducts. In contrast, in patients with non-alcoholic steatohepatitis (NASH) hepatic etheno-DNA adducts do not correlate with CYP2E1 indicating that in NASH etheno-DNA adducts formation is predominately driven by inflammation rather than by CYP2E1 induction. Since etheno-DNA adducts are strong mutagens producing various types of base pair substitution mutations as well as other types of genetic damage, it is strongly believed that they are involved in ethanol mediated carcinogenesis primarily driven by the induction of CYP2E1. PMID:25462066

  3. Dual Unnatural Amino Acid Incorporation and Click-Chemistry Labeling to Enable Single-Molecule FRET Studies of p97 Folding.

    PubMed

    Lee, Taehyung C; Kang, Minjin; Kim, Chan Hyuk; Schultz, Peter G; Chapman, Eli; Deniz, Ashok A

    2016-06-01

    Many cellular functions are critically dependent on the folding of complex multimeric proteins, such as p97, a hexameric multidomain AAA+ chaperone. Given the complex architecture of p97, single-molecule (sm) FRET would be a powerful tool for studying folding while avoiding ensemble averaging. However, dual site-specific labeling of such a large protein for smFRET is a significant challenge. Here, we address this issue by using bioorthogonal azide-alkyne chemistry to attach an smFRET dye pair to site-specifically incorporated unnatural amino acids, allowing us to generate p97 variants reporting on inter- or intradomain structural features. An initial proof-of-principle set of smFRET results demonstrated the strengths of this labeling method. Our results highlight this as a powerful tool for structural studies of p97 and other large protein machines. PMID:27115850

  4. Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings.

    PubMed

    Li, Zhong-Guang; Xie, Lin-Run; Li, Xiao-Juan

    2015-04-01

    Salicylic acid (SA), 2-hydroxy benzoic acid, is a small phenolic compound with multifunction that is involved in plant growth, development, and the acquisition of stress tolerance. In recent years, hydrogen sulfide (H2S) has been found to have similar functions, but cross talk between SA and H2S in the acquisition of heat tolerance is not clear. In this study, pretreatment of maize seedlings with SA improved the survival percentage of seedlings under heat stress, indicating that SA pretreatment could improve the heat tolerance of maize seedlings. In addition, treatment with SA enhanced the activity of L-cysteine desulfhydrase (L-DES), a key enzyme in H2S biosynthesis, which in turn induced accumulation of endogenous H2S. Interestingly, SA-induced heat tolerance was enhanced by addition of NaHS, a H2S donor, but weakened by specific inhibitors of H2S biosynthesis DL-propargylglycine (PAG) and its scavenger hydroxylamine (HT). Furthermore, pretreatment with paclobutrazol (PAC) and 2-aminoindan-2-phosphonic acid (AIP), inhibitors of SA biosynthesis, had no significant effect on NaHS-induced heat tolerance of maize seedlings. Similarly, significant change in the activities of phenylalanine ammonia lyase (PAL) and benzoic-acid-2-hydroxylase (BA2H), the key enzymes in SA biosynthesis, and the content of endogenous SA, was not observed in maize seedlings by NaHS treatment. All of the above-mentioned results suggest that SA pretreatment could improve the heat tolerance of maize seedlings, and H2S might be a novel downstream signal molecule in SA-induced heat tolerance. PMID:25727780

  5. Effects of caffeic acid phenethyl ester on matrix molecules and angiogenetic and anti-angiogenetic factors in gastric cancer cells cultured on different substrates.

    PubMed

    Kosova, F; Kurt, F O; Olmez, E; Tuğlu, I; Arı, Z

    2016-01-01

    Migration, invasion, metastasis and angiogenesis associated with cancer depend on the surrounding microenvironment. Angiogenesis, the growth of new capillaries, is a regulator of cancer growth and a useful target for cancer therapy. We examined matrix protein interactions in a gastric cancer cell culture that was treated with different doses of caffeic acid (3,4-dihydroxycinnamic acid) phenethyl ester (CAPE). We also investigated the relations among the levels of vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), endostatin (ES) and trombospondin-1 (TSP-1). Cytotoxity of CAPE was measured using the 3-(4,5-dmethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. We examined the behavior of cells on laminin and collagen I coated surfaces in response to the angiogenic effect of these matrix molecules. We examined the protein alterations of these matrix molecules immunohistochemically and measured the levels of VEGF, MMP-9, ES and TSP-1 using the ELISA test. We showed that application of CAPE to the gastric cancer cell line on tissue culture plastic, laminin and collagen I significantly decreased the VEGF and MMP-9 protein levels. We found that TSP-1 levels were increased significantly in the gastric cancer cells after application of CAPE. The protein levels of gastric cancer cells also were increased significantly when tissue was cultured on laminin and collagen I. Application of CAPE to cells on laminin or collagen I coated surfaces significantly increased all of the proteins except ES. ES levels were increased on the collagen I covered surfaces, but the laminin surface decreased the levels of ES significantly. We demonstrated the beneficial effect of CAPE on a gastric cancer cell line including inhibition of proliferation and induction of some proteins that might be related to decreased angiogenesis. PMID:26523612

  6. Effects of sub-lethal concentrations of thyme and oregano essential oils, carvacrol, thymol, citral and trans-2-hexenal on membrane fatty acid composition and volatile molecule profile of Listeria monocytogenes, Escherichia coli and Salmonella enteritidis.

    PubMed

    Siroli, Lorenzo; Patrignani, Francesca; Gardini, Fausto; Lanciotti, Rosalba

    2015-09-01

    The aim of this work was to investigate the modifications of cell membrane fatty acid composition and volatile molecule profiles of Listeria monocytogenes, Salmonella enteritidis, Escherichia coli, during growth in the presence of different sub-lethal concentrations of thyme and oregano essential oils as well as carvacrol, thymol, trans-2-hexenal and citral. The results evidenced that the tested molecules induced noticeable modifications of membrane fatty acid profiles and volatile compounds produced during the growth. Although specific differences in relation to the species considered were identified, the tested compounds induced a marked increase of some membrane associated fatty acids, particularly unsaturated fatty acids, trans-isomers, and specific released free fatty acids. These findings can contribute to the comprehension of the stress response mechanisms used by different pathogenic microorganisms often involved in food-borne diseases in relation to the exposure to sub-lethal concentrations of natural antimicrobials. PMID:25842326

  7. "Best Match" Model and Effect of Na+/H+ Exchange on Anion Attachment to Peptides and Stability of Formed Adducts in Negative Ion Electrospray Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohua; Cole, Richard B.

    2013-12-01

    The "Best Match" model has been extended to account for the role that Na+/H+ exchange plays on anion attachment in negative ion electrospray. Without any Na+/H+ exchange on (Glu) fibrinopeptide B, the higher basicity anions F- and CH3COO- can hardly form observable adducts; however, after multiple Na+/H+ exchanges, adduct formation is enabled. Moreover, dissociation pathways of CF3COO- adducts with singly deprotonated peptides that have undergone 0 to 3 Na+/H+ exchanges exhibit a shift in CID product ions from losing predominately CF3COOH (case of 0 Na+/H+ exchanges) to losing predominately CF3COO- (case of 3 Na+/H+ exchanges). These phenomena can be rationalized by considering that Na+ cations exchange at, and serve to "block", the most acidic sites, thereby forcing implicated anions to attach to lower acidity protons. In addition to forming ion pairs with carboxylate groups, Na+ also participates in formation of tri-atomic ions of the form ANaA- during adduct dissociation. The fact that low gas-phase basicity (GB) anions preferentially form ANaA- species, even though high GB anions form more stable tri-atomic species, indicates that the monatomic ions were not in close contact in the initial adduct. The propensity for formation of stable anionic adducts is dependent on the degree of matching between anion GBs and GBapp of deprotonated sites on the peptide. The GBapp is raised dramatically as the charge state of the peptide increases via a through-space effect. The presence of Na+ on carboxylate sites substantially decreases the GBapp by neutralizing these sites, while slightly increasing the intrinsic GBs by an inductive effect.

  8. Strained cycloalkynes as new protein sulfenic acid traps.

    PubMed

    Poole, Thomas H; Reisz, Julie A; Zhao, Weiling; Poole, Leslie B; Furdui, Cristina M; King, S Bruce

    2014-04-30

    Protein sulfenic acids are formed by the reaction of biologically relevant reactive oxygen species with protein thiols. Sulfenic acid formation modulates the function of enzymes and transcription factors either directly or through the subsequent formation of protein disulfide bonds. Identifying the site, timing, and conditions of protein sulfenic acid formation remains crucial to understanding cellular redox regulation. Current methods for trapping and analyzing sulfenic acids involve the use of dimedone and other nucleophilic 1,3-dicarbonyl probes that form covalent adducts with cysteine-derived protein sulfenic acids. As a mechanistic alternative, the present study describes highly strained bicyclo[6.1.0]nonyne (BCN) derivatives as concerted traps of sulfenic acids. These strained cycloalkynes react efficiently with sulfenic acids in proteins and small molecules yielding stable alkenyl sulfoxide products at rates more than 100× greater than 1,3-dicarbonyl reagents enabling kinetic competition with physiological sulfur chemistry. Similar to the 1,3-dicarbonyl reagents, the BCN compounds distinguish the sulfenic acid oxoform from the thiol, disulfide, sulfinic acid, and S-nitrosated forms of cysteine while displaying an acceptable cell toxicity profile. The enhanced rates demonstrated by these strained alkynes identify them as new bioorthogonal probes that should facilitate the discovery of previously unknown sulfenic acid sites and their parent proteins. PMID:24724926

  9. QUANTITATIVE AND TEMPORAL RELATIONSHIPS BETWEEN DNA ADDUCT FORMATION IN TARGET AND SURROGATE TISSUES: IMPLICATIONS FOR BIOMONITORING

    EPA Science Inventory

    DNA-carcinogen adducts offer a potential dosimeter for environmental genotoxicants reaching the exposed individual. ecause the target tissues for many chemical carcinogens are not readily accessible for monitoring adducts in humans, peripheral blood lymphocytes (PBLS) have served...

  10. Lewis Acid-Base, Molecular Modeling, and Isotopic Labeling in a Sophomore Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nataro, Chip; Ferguson, Michelle A.; Bocage, Katherine M.; Hess, Brian J.; Ross, Vincent J.; Swarr, Daniel T.

    2004-01-01

    An experiment to prepare a deuterium labeled adduct of a Lewis acid and Lewis base, to use computational methods allowing students to visualize the LUMO of Lewis acids, the HOMO of Lewis bases and the molecular orbitals of the adduct that is formed is developed. This allows students to see the interplay between calculated and experimental results.

  11. Quantitation of DNA Adducts Induced by 1,3-Butadiene

    NASA Astrophysics Data System (ADS)

    Sangaraju, Dewakar; Villalta, Peter W.; Wickramaratne, Susith; Swenberg, James; Tretyakova, Natalia

    2014-07-01

    Human exposure to 1,3-butadiene (BD) present in automobile exhaust, cigarette smoke, and forest fires is of great concern because of its potent carcinogenicity. The adverse health effects of BD are mediated by its epoxide metabolites such as 3,4-epoxy-1-butene (EB), which covalently modify genomic DNA to form promutagenic nucleobase adducts. Because of their direct role in cancer, BD-DNA adducts can be used as mechanism-based biomarkers of BD exposure. In the present work, a mass spectrometry-based methodology was developed for accurate, sensitive, and precise quantification of EB-induced N-7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) DNA adducts in vivo. In our approach, EB-GII adducts are selectively released from DNA backbone by neutral thermal hydrolysis, followed by ultrafiltration, offline HPLC purification, and isotope dilution nanoLC/ESI+-HRMS3 analysis on an Orbitrap Velos mass spectrometer. Following method validation, EB-GII lesions were quantified in human fibrosarcoma (HT1080) cells treated with micromolar concentrations of EB and in liver tissues of rats exposed to sub-ppm concentrations of BD (0.5-1.5 ppm). EB-GII concentrations increased linearly from 1.15 ± 0.23 to 10.11 ± 0.45 adducts per 106 nucleotides in HT1080 cells treated with 0.5-10 μM DEB. EB-GII concentrations in DNA of laboratory rats exposed to 0.5, 1.0, and 1.5 ppm BD were 0.17 ± 0.05, 0.33 ± 0.08, and 0.50 ± 0.04 adducts per 106 nucleotides, respectively. We also used the new method to determine the in vivo half-life of EB-GII adducts in rat liver DNA (2.20 ± 0.12 d) and to detect EB-GII in human blood DNA. To our knowledge, this is the first application of nanoLC/ESI+-HRMS3 Orbitrap methodology to quantitative analysis of DNA adducts in vivo.

  12. Chemistry and Biology of Aflatoxin-DNA Adducts

    SciTech Connect

    Stone, Michael P.; Banerjee, Surajit; Brown, Kyle L.; Egli, Martin

    2012-03-27

    Aspergillus flavus is a fungal contaminant of stored rice, wheat, corn, and other grainstuffs, and peanuts. This is of concern to human health because it produces the mycotoxin aflatoxin B{sub 1} (AFB{sub 1}), which is genotoxic and is implicated in the etiology of liver cancer. AFB{sub 1} is oxidized in vivo by cytochrome P450 to form aflatoxin B{sub 1} epoxide, which forms an N7-dG adduct (AFB{sub 1}-N7-dG) in DNA. The latter rearranges to a formamidopyrimidine (AFB{sub 1}-FAPY) derivative that equilibrates between {alpha} and {beta} anomers of the deoxyribose. In DNA, both the AFB{sub 1}-N7-dG and AFB{sub 1}-{beta}-FAPY adducts intercalate above the 5'-face of the damaged guanine. Each produces G {yields} T transversions in Escherichia coli, but the AFB{sub 1}-{beta}-FAPY adduct is more mutagenic. The Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) provides a model for understanding error-prone bypass of the AFB{sub 1}-N7-dG and AFB{sub 1}-{beta}-FAPY adducts. It bypasses the AFB{sub 1}-N7-dG adduct, but it conducts error-prone replication past the AFB{sub 1}-FAPY adduct, including mis-insertion of dATP, consistent with the G {yields} T mutations characteristic of AFB{sub 1} mutagenesis in E. coli. Crystallographic analyses of a series of binary and ternary complexes with the Dpo4 polymerase revealed differing orientations of the N7-C8 bond of the AFB{sub 1}-N7-dG adduct as compared to the N{sup 5}-C8 bond in the AFB{sub 1}-{beta}-FAPY adduct, and differential accommodation of the intercalated AFB{sub 1} moieties within the active site. These may modulate AFB{sub 1} lesion bypass by this polymerase.

  13. Purine twisted-intercalating nucleic acids: a new class of anti-gene molecules resistant to potassium-induced aggregation.

    PubMed

    Paramasivam, Manikandan; Cogoi, Susanna; Filichev, Vyacheslav V; Bomholt, Niels; Pedersen, Erik B; Xodo, Luigi E

    2008-06-01

    Sequence-specific targeting of genomic DNA by triplex-forming oligonucleotides (TFOs) is a promising strategy to modulate in vivo gene expression. Triplex formation involving G-rich oligonucleotides as third strand is, however, strongly inhibited by potassium-induced TFO self-association into G-quartet structures. We report here that G-rich TFOs with bulge insertions of (R)-1-O-[4-(1-pyrenylethynyl)-phenylmethyl] glycerol (called twisted intercalating nucleic acids, TINA) show a much lower tendency to aggregate in potassium than wild-type analogues do. We designed purine-motif TINA-TFOs for binding to a regulatory polypurine-polypyrimidine (pur/pyr) motif present in the promoter of the KRAS proto-oncogene. The binding of TINA-TFOs to the KRAS target has been analysed by electrophoresis mobility shift assays and DNase I footprinting experiments. We discovered that in the presence of potassium the wild-type TFOs did not bind to the KRAS target, differently from the TINA analogues, whose binding was observed up to 140 mM KCl. The designed TINA-TFOs were found to abrogate the formation of a DNA-protein complex at the pur/pyr site and to down-regulate the transcription of CAT driven by the murine KRAS promoter. Molecular modelling of the DNA/TINA-TFO triplexes are also reported. This study provides a new and promising approach to create TFOs to target in vivo the genome. PMID:18456705

  14. Salicylic Acid Based Small Molecule Inhibitor for the Oncogenic Src Homology-2 Domain Containing Protein Tyrosine Phosphatase-2 (SHP2)

    SciTech Connect

    Zhang, Xian; He, Yantao; Liu, Sijiu; Yu, Zhihong; Jiang, Zhong-Xing; Yang, Zhenyun; Dong, Yuanshu; Nabinger, Sarah C.; Wu, Li; Gunawan, Andrea M.; Wang, Lina; Chan, Rebecca J.; Zhang, Zhong-Yin

    2010-08-13

    The Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) plays a pivotal role in growth factor and cytokine signaling. Gain-of-function SHP2 mutations are associated with Noonan syndrome, various kinds of leukemias, and solid tumors. Thus, there is considerable interest in SHP2 as a potential target for anticancer and antileukemia therapy. We report a salicylic acid based combinatorial library approach aimed at binding both active site and unique nearby subpockets for enhanced affinity and selectivity. Screening of the library led to the identification of a SHP2 inhibitor II-B08 (compound 9) with highly efficacious cellular activity. Compound 9 blocks growth factor stimulated ERK1/2 activation and hematopoietic progenitor proliferation, providing supporting evidence that chemical inhibition of SHP2 may be therapeutically useful for anticancer and antileukemia treatment. X-ray crystallographic analysis of the structure of SHP2 in complex with 9 reveals molecular determinants that can be exploited for the acquisition of more potent and selective SHP2 inhibitors.

  15. Effects of Hypoxanthine Substitution in Peptide Nucleic Acids Targeting KRAS2 Oncogenic mRNA Molecules: Theory and Experiment

    PubMed Central

    Sanders, Jeffrey M.; Wampole, Matthew E.; Chen, Chang-Po; Sethi, Dalip; Singh, Amrita; Dupradeau, François-Yves; Wang, Fan; Gray, Brian D.; Thakur, Mathew L.; Wickstrom, Eric

    2013-01-01

    Genetic disorders can arise from single base substitutions in a single gene. A single base substitution for wild type guanine in the twelfth codon of KRAS2 mRNA occurs frequently to initiate lung, pancreatic, and colon cancer. We have observed single base mismatch specificity in radioimaging of mutant KRAS2 mRNA in tumors in mice by in vivo hybridization with radiolabeled peptide nucleic acid (PNA) dodecamers. We hypothesized that multi-mutant specificity could be achieved with a PNA dodecamer incorporating hypoxanthine, which can form Watson-Crick basepairs with adenine, cytosine, thymine, and uracil. Using molecular dynamics simulations and free energy calculations, we show that hypoxanthine substitutions in PNAs are tolerated in KRAS2 RNA-PNA duplexes where wild type guanine is replaced by mutant uracil or adenine in RNA. To validate our predictions, we synthesized PNA dodecamers with hypoxanthine, and then measured the thermal stability of RNA-PNA duplexes. Circular dichroism thermal melting results showed that hypoxanthine-containing PNAs are more stable in duplexes where hypoxanthine-adenine and hypoxanthine-uracil base pairs are formed than single mismatch duplexes or duplexes containing hypoxanthine-guanine opposition. PMID:23972113

  16. IGF-I regulates redox status in breast cancer cells by activating the amino acid transport molecule xC−

    PubMed Central

    Yang, Yuzhe; Yee, Douglas

    2014-01-01

    Insulin-like growth factors (IGFs) stimulate cell growth in part by increasing amino acid uptake. xCT (SLC7A11) encodes the functional subunit of the cell surface transport system xC− which mediates cystine uptake, a pivotal step in glutathione synthesis and cellular redox control. In this study, we show that IGF-I regulates cystine uptake and cellular redox status by activating the expression and function of xCT in estrogen receptor-positive (ER+) breast cancer cells by a mechanism that relies on the IGF receptor substrate-1 (IRS-1). Breast cancer cell proliferation mediated by IGF-I was suppressed by attenuating xCT expression or blocking xCT activity with the pharmacological inhibitor sulfasalazine (SASP). Notably, SASP sensitized breast cancer cells to inhibitors of the IGF-I receptor in a manner reversed by the ROS scavenger N-acetyl-L-cysteine. Thus, IGF-I promoted the proliferation of ER+ breast cancer cells by regulating xC− transporter function to protect cancer cells from ROS in an IRS-1 dependent manner. Our findings suggest that inhibiting xC− transporter function may synergize with modalities that target the IGF-I receptor to heighten their therapeutic effects. PMID:24686172

  17. Nanoparticles that deliver triplex-forming peptide nucleic acid molecules correct F508del CFTR in airway epithelium.

    PubMed

    McNeer, Nicole Ali; Anandalingam, Kavitha; Fields, Rachel J; Caputo, Christina; Kopic, Sascha; Gupta, Anisha; Quijano, Elias; Polikoff, Lee; Kong, Yong; Bahal, Raman; Geibel, John P; Glazer, Peter M; Saltzman, W Mark; Egan, Marie E

    2015-01-01

    Cystic fibrosis (CF) is a lethal genetic disorder most commonly caused by the F508del mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. It is not readily amenable to gene therapy because of its systemic nature and challenges including in vivo gene delivery and transient gene expression. Here we use triplex-forming peptide nucleic acids and donor DNA in biodegradable polymer nanoparticles to correct F508del. We confirm modification with sequencing and a functional chloride efflux assay. In vitro correction of chloride efflux occurs in up to 25% of human cells. Deep-sequencing reveals negligible off-target effects in partially homologous sites. Intranasal delivery of nanoparticles in CF mice produces changes in the nasal epithelium potential difference assay, consistent with corrected CFTR function. Also, gene correction is detected in the nasal and lung tissue. This work represents facile genome engineering in vivo with oligonucleotides using a nanoparticle system to achieve clinically relevant levels of gene editing without off-target effects. PMID:25914116

  18. Structure and spectromagnetic properties of the superoxide radical adduct of DMPO in water: elucidation by theoretical investigations.

    PubMed

    Houriez, Céline; Ferré, Nicolas; Siri, Didier; Tordo, Paul; Masella, Michel

    2010-09-16

    In the field of spin trapping chemistry, the design of more efficient radical traps can be assisted by the development of theoretical methods able to give a quantitative evaluation of the electron paramagnetic resonance (EPR) spectrum features of the spin-adduct radical, even before initiating the experimental work. The superoxide radical adduct of the 5,5-dimethyl-1-pyrroline-N-oxide nitrone (DMPO-OOH) has been reported in a huge number of papers devoted to the study of the oxidative stress. Here, we present for the first time the theoretical study of DMPO-OOH in an explicit water solution, based on the combined QM/MM//MD protocol we recently proposed, featuring a full coupling between the solute and all the explicit water molecules. Our results show that the DMPO-OOH EPR spectrum, whose interpretation is still debated, can be explained in the light of two sites in chemical exchange, in agreement with the most recent experimental data. Moreover, we demonstrate that each site consists of an equilibrium between the two main 5-membered ring conformations of DMPO-OOH. We provide also an analysis of the solvent contribution to the hyperfine coupling constants (hcc's) as well as an exhaustive study of the possible relationship between the hcc's and the main structural characteristics of DMPO-OOH. Our QM/MM//MD protocol appears thus to be an accurate theoretical tool allowing the investigation of the magnetic properties of large nitroxide spin adducts in complex environments. PMID:20722404

  19. Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk

    PubMed Central

    Hu, Xinli; Deutsch, Aaron J; Lenz, Tobias L; Onengut-Gumuscu, Suna; Han, Buhm; Chen, Wei-Min; Howson, Joanna M M; Todd, John A; de Bakker, Paul I W; Rich, Stephen S; Raychaudhuri, Soumya

    2016-01-01

    Variation in the human leukocyte antigen (HLA) genes accounts for one-half of the genetic risk in type 1 diabetes (T1D). Amino acid changes in the HLA-DR and HLA-DQ molecules mediate most of the risk, but extensive linkage disequilibrium complicates the localization of independent effects. Using 18,832 case-control samples, we localized the signal to 3 amino acid positions in HLA-DQ and HLA-DR. HLA-DQβ1 position 57 (previously known; P = 1 × 10−1,355) by itself explained 15.2% of the total phenotypic variance. Independent effects at HLA-DRβ1 positions 13 (P = 1 × 10−721) and 71 (P = 1 × 10−95) increased the proportion of variance explained to 26.9%. The three positions together explained 90% of the phenotypic variance in the HLA-DRB1–HLA-DQA1–HLA-DQB1 locus. Additionally, we observed significant interactions for 11 of 21 pairs of common HLA-DRB1–HLA-DQA1–HLA-DQB1 haplotypes (P = 1.6 × 10−64). HLA-DRβ1 positions 13 and 71 implicate the P4 pocket in the antigen-binding groove, thus pointing to another critical protein structure for T1D risk, in addition to the HLA-DQ P9 pocket. PMID:26168013

  20. Discovery and Characterization of a Novel Small-Molecule Agonist for Medium-Chain Free Fatty Acid Receptor G Protein-Coupled Receptor 84.

    PubMed

    Zhang, Qing; Yang, Hui; Li, Jing; Xie, Xin

    2016-05-01

    G protein-coupled receptor 84 (GPR84) is a free fatty acid receptor activated by medium-chain free fatty acids with 9-14 carbons. It is expressed mainly in the immune-related tissues, such as spleen, bone marrow, and peripheral blood leukocytes. GPR84 plays significant roles in inflammatory processes and may represent a novel drug target for the treatment of immune-mediated diseases. However, the lack of potent and specific ligands for GPR84 hindered the study of its functions and the development of potential clinical applications. Here, we report the screen of 160,000 small-molecule compounds with a calcium mobilization assay using a human embryonic kidney 293 cell line stably expressing GPR84 and Gα16, and the identification of 2-(hexylthio)pyrimidine-4,6-diol (ZQ-16) as a potent and selective agonist of GPR84 with a novel structure. ZQ-16 activates several GPR84-mediated signaling pathways, including calcium mobilization, inhibition of cAMP accumulation, phosphorylation of extracellular signal-regulated protein kinase 1/2, receptor desensitization and internalization, and receptor-β-arrestin interaction. This compound may be a useful tool to study the functions of GPR84 and a potential candidate for further structural optimization. PMID:26962172

  1. UNUSUALLY STABLE ADDUCT BETWEEN METHANOLYZED AMOXICILLIN OR AMPICILLIN AND THEIR DIKETOPIPERAZINE DERIVATIVES.

    PubMed

    Kosińska, Katarzyna; Frański, Rafał; Frańska, Magdalena

    2016-01-01

    Amoxicillin and ampicillin were subjected to methanolysis. As expected, the methanolysis products were observed by HPLC-ESI-MS. Besides these products, diketopiperazine derivatives were also detected. Additionally, unusually stable adduct formed between the products of methanolysis and diketopiperazine derivatives was also identified. Analogical adducts were detected when ethanolysis was performed instead of methanolysis. HPLC-ESI-MS analysis of the separated adducts confirmed that the adducts were composed of methanolysis products and diketopiperazine derivatives. PMID:27180422

  2. Novel Endogenous Proresolving Molecules:Essential Fatty Acid-Derived and Gaseous Mediators in the Resolution of Inflammation.

    PubMed

    Shinohara, Masakazu; Serhan, Charles N

    2016-06-01

    Acute inflammation is a fundamental, protective response that orchestrates immune system to address harmful stimuli both from within and via invasion. New evidences indicate that the resolution of acute inflammation is not simply passive but active and highly regulated processes coordinated by new families of potent bioactive lipid mediators (LMs), coined specialized proresolving mediators (SPMs). These SPMs are biosynthesized from n-3 polyunsaturated fatty acids. Low concentrations of SPM (nM range) stimulate proresolving cellular processes, such as inhibition of neutrophil infiltration, enhancement of macrophage phagocytosis of bacteria and efferocytosis of cellular debris, and reduction of inflammatory pain through specific G-protein coupled receptors.Of the many bioactive mediators that regulate inflammation resolution, low-dose carbon monoxide (CO) functions as a tissue-protective gaso-transmitter that is endogenously produced by the heme oxygenase (HO) system. Specific SPMs activate the HO system, which in turn enhances endogenous CO production locally, thus establishing a protective feed-forward circuit between SPMs and CO. In addition, treatment with low-dose CO and SPMs exerts protective effects against ischemia/reperfusion injury by decreasing leukocyte-platelet interaction and proinflammatory LM levels.Recent studies reviewed herein assessed the impact of SPMs and low-dose inhaled CO on inflammatory diseases. LM metabololipidomics approach allows the assessment of the efficacy of novel treatments with SPMs and low-dose CO. Moreover, this approach indicates the regions where the action of individual LMs may be physiologically relevant and when these LMs are produced in vivo to serve their proresolving mediator functions that may also permit new directions for treating human diseases. PMID:27052783

  3. A single amino acid change in the cytoplasmic domain of the simian immunodeficiency virus transmembrane molecule increases envelope glycoprotein expression on infected cells.

    PubMed Central

    LaBranche, C C; Sauter, M M; Haggarty, B S; Vance, P J; Romano, J; Hart, T K; Bugelski, P J; Marsh, M; Hoxie, J A

    1995-01-01

    We have described a virus termed CP-MAC, derived from the BK28 molecular clone of simian immunodeficiency virus, that was remarkable for its ability to infect Sup-T1 cells with rapid kinetics, cell fusion, and CD4 down-modulation (C. C. LaBranche, M. M. Sauter, B. S. Haggarty, P. J. Vance, J. Romano, T. K. Hart, P. J. Bugelski, and J. A. Hoxie, J. Virol. 68:5509-5522, 1994 [Erratum 68:7665-7667]). Compared with BK28, CP-MAC exhibited a number of changes in its envelope glycoproteins, including a highly stable association between the external (SU) and transmembrane (TM) molecules, a more rapid electrophoretic mobility of TM, and, of particular interest, a marked increase in the level of envelope protein expression on the surface of infected cells. These changes were shown to be associated with 11 coding mutations in the env gene (5 in SU and 6 in TM). In this report, we demonstrate that a single amino acid mutation of a Tyr to a Cys at position 723 (Y723C) in the TM cytoplasmic domain of CP-MAC is the principal determinant for the increased expression of envelope glycoproteins on the cell surface. When introduced into the env gene of BK28, the Y723C mutation produced up to a 25-fold increase in the levels of SU and TM on chronically infected cells, as determined by fluorescence-activated cell sorter analysis with monoclonal and polyclonal antibodies. A similar effect was observed when a Tyr-to-Cys change was introduced at the analogous position (amino acid 721) in the SIVmac239 molecular clone, which, unlike BK28 does not contain a premature stop codon in its TM cytoplasmic tail. Substituting other amino acids, including Ala, Ile, and Ser, at this position produced increases in surface envelope glycoproteins that were similar to that observed for the Cys substitution, while a Tyr-to-Phe mutation produced a smaller increase. These results could not be accounted for by differences in the kinetics or efficiency of envelope glycoprotein processing or by shedding of SU

  4. IMPROVED THIN-LAYER CHROMATOGRAPHIC SEPARATION OF 32P-POSTLABELING DNA ADDUCTS

    EPA Science Inventory

    DNA adducts represent the putative initiating event in the chemical process. 2P-Postlabeling is one of several assayswhich have been developed for the sensitive detection of DNA adducts. n integral part of the 32p-postlabeling assay is the separation of adducted nucleotides by mu...

  5. Equilibrium 2H/ 1H fractionations in organic molecules. II: Linear alkanes, alkenes, ketones, carboxylic acids, esters, alcohols and ethers

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Sessions, Alex L.; Nielsen, Robert J.; Goddard, William A., III

    2009-12-01

    Equilibrium 2H/ 1H fractionation factors (α eq) for various H positions in alkanes, alkenes, ketones, carboxylic acids, esters, alcohols, and ethers were calculated between 0 and 100 °C using vibrational frequencies from ab initio QM calculations (B3LYP/6-311G**). Results were then corrected using a temperature-dependent linear calibration curve based on experimental data for H α in ketones ( Wang et al., 2009). The total uncertainty in reported α eq values is estimated at 10-20‰. The effects of functional groups were found to increase the value of α eq for H next to electron-donating groups, e.g. sbnd OR, sbnd OH or sbnd O(C dbnd O)R, and to decrease the value of α eq for H next to electron-withdrawing groups, e.g. sbnd (C dbnd O)R or sbnd (C dbnd O)OR. Smaller but significant functional group effects are also observed for H β and sometimes H γ. By summing over individual H positions, we estimate the equilibrium fractionation relative to water to be -90‰ to -70‰ for n-alkanes and around -100‰ for pristane and phytane. The temperature dependence of these fractionations is very weak between 0 and 100 °C. Our estimates of α eq agree well with field data for thermally mature hydrocarbons (δ 2H values between -80‰ and -110‰ relative to water). Therefore the observed δ 2H increase of individual hydrocarbons and the disappearance of the biosynthetic δ 2H offset between n-alkyl and linear isoprenoid lipids during maturation of organic matter can be confidently attributed to H exchange towards an equilibrium state. Our results also indicate that many n-alkyl lipids are biosynthesized with δ 2H values that are close to equilibrium with water. In these cases, constant down-core δ 2H values for n-alkyl lipids cannot be reliably used to infer a lack of isotopic exchange.

  6. Molecule nanoweaver

    DOEpatents

    Gerald, II; Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  7. Toxic Dopamine Metabolite DOPAL Forms an Unexpected Dicatechol Pyrrole Adduct with Lysines of α-Synuclein.

    PubMed

    Werner-Allen, Jon W; DuMond, Jenna F; Levine, Rodney L; Bax, Ad

    2016-06-20

    Parkinson's disease has long been known to involve the loss of dopaminergic neurons in the substantia nigra and the coincidental appearance of Lewy bodies containing oligomerized forms of α-synuclein. The "catecholaldehyde hypothesis" posits a causal link between these two central pathologies mediated by 3,4-dihydroxyphenylacetaldehyde (DOPAL), the most toxic dopamine metabolite. Here we determine the structure of the dominant product in reactions between DOPAL and α-synuclein, a dicatechol pyrrole lysine adduct. This novel modification results from the addition of two DOPAL molecules to the Lys sidechain amine through their aldehyde moieties and the formation of a new carbon-carbon bond between their alkyl chains to generate a pyrrole ring. The product is detectable at low concentrations of DOPAL and its discovery should provide a valuable chemical basis for future studies of DOPAL-induced crosslinking of α-synuclein. PMID:27158766

  8. Reversible Post-translational Modification of Proteins by Nitrated Fatty Acids in Vivo*S

    PubMed Central

    Batthyany, Carlos; Schopfer, Francisco J.; Baker, Paul R. S.; Durán, Rosario; Baker, Laura M. S.; Huang, Yingying; Cerveñansky, Carlos; Branchaud, Bruce P.; Freeman, Bruce A.

    2007-01-01

    Nitric oxide (˙NO)-derived reactive species nitrate unsaturated fatty acids, yielding nitroalkene derivatives, including the clinically abundant nitrated oleic and linoleic acids. The olefinic nitro group renders these derivatives electrophilic at the carbon β to the nitro group, thus competent for Michael addition reactions with cysteine and histidine. By using chromatographic and mass spectrometric approaches, we characterized this reactivity by using in vitro reaction systems, and we demonstrated that nitroalkene-protein and GSH adducts are present in vivo under basal conditions in healthy human red cells. Nitro-linoleic acid (9-, 10-, 12-, and 13-nitro-9,12-octadecadienoic acids) (m/z 324.2) and nitro-oleic acid (9- and 10-nitro-9-octadecaenoic acids) (m/z 326.2) reacted with GSH (m/z 306.1), yielding adducts with m/z of 631.3 and 633.3, respectively. At physiological concentrations, nitroalkenes inhibited glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which contains a critical catalytic Cys (Cys-149). GAPDH inhibition displayed an IC50 of ∼3 μm for both nitroalkenes, an IC50 equivalent to the potent thiol oxidant peroxynitrite (ONOO−) and an IC50 30-fold less than H2O2, indicating that nitroalkenes are potent thiol-reactive species. Liquid chromatography-mass spectrometry analysis revealed covalent adducts between fatty acid nitroalkene derivatives and GAPDH, including at the catalytic Cys-149. Liquid chromatography-mass spectrometry-based proteomic analysis of human red cells confirmed that nitroalkenes readily undergo covalent, thiol-reversible post-translational modification of nucleophilic amino acids in GSH and GAPDH in vivo. The adduction of GAPDH and GSH by nitroalkenes significantly increased the hydrophobicity of these molecules, both inducing translocation to membranes and suggesting why these abundant derivatives had not been detected previously via traditional high pressure liquid chromatography analysis. The occurrence of these

  9. CANCER BIOMARKERS IN HUMAN ATHEROSCLEROTIC LESIONS: DETECTION OF DNA ADDUCTS

    EPA Science Inventory

    Since somatic mutations are suspected to contribute to the pathogenesis not only of cancer but also of atherosclerotic plaques, we measured DNA adducts in the smooth muscle layer of atherosclerotic lesions in abnormal aorta specimens taken at surgery from seven patients. NA adduc...

  10. DETERMINATION OF HEMOGLOBIN ADDUCTS IN HUMANS OCCUPATIONALLY EXPOSED TO ACRYLAMIDE

    EPA Science Inventory

    Hemoglobin (Hb) adduct determinations were used to monitor occupational exposure to acrylamide (AA) and acrylonitrile (AN). orth-one workers in a factory in the People's Republic of China who were involved in the synthesis of a AA by catalytic hydration of AN and the manufacturin...

  11. 40 CFR 721.4590 - Mannich-based adduct.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reporting. (1) The chemical substance generically identified as a Mannich-based adduct (PMN P-93-66) is.... Requirements as specified in § 721.80(h). (ii) Release to water. Requirements as specified in § 721.90 (a)(4... 721.4590 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  12. 40 CFR 721.4590 - Mannich-based adduct.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reporting. (1) The chemical substance generically identified as a Mannich-based adduct (PMN P-93-66) is.... Requirements as specified in § 721.80(h). (ii) Release to water. Requirements as specified in § 721.90 (a)(4... 721.4590 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  13. 40 CFR 721.4590 - Mannich-based adduct.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reporting. (1) The chemical substance generically identified as a Mannich-based adduct (PMN P-93-66) is.... Requirements as specified in § 721.80(h). (ii) Release to water. Requirements as specified in § 721.90 (a)(4... 721.4590 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  14. 40 CFR 721.4590 - Mannich-based adduct.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reporting. (1) The chemical substance generically identified as a Mannich-based adduct (PMN P-93-66) is.... Requirements as specified in § 721.80(h). (ii) Release to water. Requirements as specified in § 721.90 (a)(4... 721.4590 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  15. Distortions induced in DNA by cis-platinum interstrand adducts

    SciTech Connect

    Sip, M.; Schwartz, A.; Vovelle, F.; Ptak, M.; Leng, M. )

    1992-03-10

    A 22 base pair double-stranded oligonucleotide containing a unique interstrand adduct resulting from chelation of the two guanine residues within the central sequence d(TGCT/AGCA) by a cis-platinum residue has been studied by means of gel electrophoresis, chemical probes, and molecular mechanics. The anomalously slow electrophoretic mobility of the multimers of the platinated and ligated oligomers suggests that the platinated oligonucleotide is bent. The two cytosine residues (complementary to the platinated guanines) are hyperreactive to hydroxylamine, indicating a large exposure of the two bases to the solvent. The adduct does not induce a local denaturation within the flanking sequences since the adenine residues are not reactive with diethyl pyrocarbonate. This is confirmed by the nonreactivity of the complementary T residues with osmium tetraoxide. These results and the molecular mechanics modeling suggest that the interstrand adduct bends the double helix by approximately 55{degree} toward the major groove, that the double helix conserves its average twist angle, and that the distortion induced by the adduct is localized at the platinated sequence d(GC/CG).

  16. CARCINOGEN-DNA ADDUCTS: INTRODUCTION, LITERATURE SUMMARY, AND RECOMMENDATIONS

    EPA Science Inventory

    The report summarizes the literature concerning adducts formed by xenobiotics with DNA and/or protein and discusses their feasibility as a monitoring tool for use in exposure and risk assessment. The report is divided into three segments. The first segment provides an introductio...

  17. NMR at the Picomole Level of a DNA Adduct

    PubMed Central

    Kautz, Roger; Wang, Poguang; Giese, Roger W.

    2014-01-01

    We investigate the limit of detection for obtaining NMR data of a DNA adduct using modern microscale NMR instrumentation, once the adduct has been isolated at the pmol level. Eighty nanograms (130 pmol) of a DNA adduct standard, N-(2′-deoxyguanosin-8-yl)-2-acetylaminofluorene 5′-monophosphate (AAF-dGMP), in 1.5 μL of D2O with 10% methanol-d4, in a vial, was completely picked up as a droplet suspended in a fluorocarbon liquid, and loaded efficiently into a microcoil probe. This work demonstrates a practical manual method of droplet microfluidic sample loading, previously demonstrated using automated equipment, which provides a several-fold advantage over conventional flow injection. Eliminating dilution during injection and confining the sample into the observed volume realizes the full theoretical mass sensitivity of a microcoil, comparable to a micro-cryo probe. With 80 ng, an NMR spectrum acquired over 40 hr showed all of the resonances seen in a standard spectrum of AAF-dGMP, with a S/N of at least 10, despite broadening due to previously-noted effects of conformational exchange. Also a 2D TOCSY spectrum (total correlation spectroscopy) was acquired on 1.6 μg in 18 hr. This work helps to define the utility of NMR in combination with other analytical methods for the structural characterization of a small amount of a DNA adduct. PMID:24028148

  18. Probing myo-inositol 1-phosphate synthase with multisubstrate adducts

    PubMed Central

    Deranieh, Rania M.; Greenberg, Miriam L.; Le Calvez, Pierre-B.; Mooney, Maura C.; Migaud, Marie E.

    2015-01-01

    The synthesis of a series of carbohydrate-nucleotide hybrids, designed to be multisubstrate adducts mimicking myo-inositol 1-phosphate synthase first oxidative transition state, is reported. Their ability to inhibit the synthase has been assessed and results have been rationalised computationally to estimate their likely binding mode. PMID:23132282

  19. Enteral n-3 fatty acids and micronutrients enhance percentage of positive neutrophil and lymphocyte adhesion molecules: a potential mediator of pressure ulcer healing in critically ill patients.

    PubMed

    Theilla, Miriam; Schwartz, Betty; Zimra, Yael; Shapiro, Haim; Anbar, Ronit; Rabizadeh, Esther; Cohen, Jonathan; Singer, Pierre

    2012-04-01

    n-3 Fatty acids are recognised as influencing both wound healing and immunity. We assessed the impact of a fish oil- and micronutrient-enriched formula (study formula) on the healing of pressure ulcers and on immune function in critically ill patients in an intensive care unit. A total of forty patients with pressure ulcers and receiving nutritional support were enrolled (intervention group, n 20, received study formula; and a control group, n 20, received an isoenergetic formula). Total and differential leucocyte count and percentage of adhesion molecule positive granulocyte and lymphocyte cells (CD11a, CD11b, CD18 and CD49b) were measured on days 0, 7 and 14. Percentage of positive lymphocytes for CD54, CD49b, CD49d and CD8 were also measured on days 0, 7 and 14. The state of pressure ulcers was assessed by using the pressure ulcer scale for healing tool score on days 7, 14 and 28 of treatment. No between-group differences in patient demographics, anthropometry or diagnostic class were observed. Patients who received the study formula showed significant increases in the percentage of positive CD18 and CD11a lymphocytes and of CD49b granulocytes as compared to controls (P < 0·05). While the severity of pressure ulcers was not significantly different between the two groups on admission, severity increased significantly over time for the control group (P < 0·05), but not for the study group. The present study suggests that a fish oil- and micronutrient-enriched formula may prevent worsening of pressure ulcers and that this effect may be mediated by an effect on adhesion molecule expression. PMID:22040465

  20. Loss of Dermatan-4-Sulfotransferase 1 Function Results in Adducted Thumb-Clubfoot Syndrome

    PubMed Central

    Dündar, Munis; Müller, Thomas; Zhang, Qi; Pan, Jing; Steinmann, Beat; Vodopiutz, Julia; Gruber, Robert; Sonoda, Tohru; Krabichler, Birgit; Utermann, Gerd; Baenziger, Jacques U.; Zhang, Lijuan; Janecke, Andreas R.

    2009-01-01

    Adducted thumb-clubfoot syndrome is an autosomal-recessive disorder characterized by typical facial appearance, wasted build, thin and translucent skin, congenital contractures of thumbs and feet, joint instability, facial clefting, and coagulopathy, as well as heart, kidney, or intestinal defects. We elucidated the molecular basis of the disease by using a SNP array-based genome-wide linkage approach that identified distinct homozygous nonsense and missense mutations in CHST14 in each of four consanguineous families with this disease. The CHST14 gene encodes N-acetylgalactosamine 4-O-sulfotransferase 1 (D4ST1), which catalyzes 4-O sulfation of N-acetylgalactosamine in the repeating iduronic acid-α1,3-N-acetylgalactosamine disaccharide sequence to form dermatan sulfate. Mass spectrometry of glycosaminoglycans from a patient's fibroblasts revealed absence of dermatan sulfate and excess of chondroitin sulfate, showing that 4-O sulfation by CHST14 is essential for dermatan sulfate formation in vivo. Our results indicate that adducted thumb-clubfoot syndrome is a disorder resulting from a defect specific to dermatan sulfate biosynthesis and emphasize roles for dermatan sulfate in human development and extracellular-matrix maintenance. PMID:20004762

  1. Detection of protein adduction derived from dauricine by alkaline permethylation.

    PubMed

    Xie, Honglei; Liu, Yuyang; Peng, Ying; Zhao, Dongmei; Zheng, Jiang

    2016-06-01

    Dauricine is a bisbenzylisoquinoline alkaloid derivative and has shown multiple pharmacological properties. Despite this, our previous study demonstrated that dauricine induced severe lung toxicity in experimental animals. Metabolic activation of dauricine to the corresponding quinone methide intermediate is suggested to play an important role in dauricine-induced cytotoxicity. Protein adduction derived from the reactive intermediate is considered to initiate the process of the toxicity. In the present study, we developed an alkaline permethylation- and mass spectrometry-based approach to detect dauricine-derived protein adduction. Protein samples were permethylated in the presence of NaOH and CH3I at 80 °C, followed by LC-MS/MS analysis. A thioether product was produced in the reaction. Not only does this technique quantify dauricine-derived protein adduction but also it tells the nature of the interaction between the target proteins and the reactive intermediate of dauricine. The recovery, precision, limit of detection, limit of quantity, and method detection limit were found to be 102.8 %±1.7 %, 1.89 %, 1.32 fmol/mL, 4.93 fmol/mL and 3.37 fmol/mL respectively. The surrogate recovery and surrogate RSD values were 81.5-103.0 % and 2.59 %, respectively. This analytical method has proven sensitive, selective, reliable, and feasible to assess total protein adduction derived from dauricine, and will facilitate the mechanistic investigation of dauricine and other bisbenzylisoquinoline toxicities. Graphical Abstract Alkaline permethylation of dauricine derived protein adduct. PMID:27071763

  2. Quantification of Carnosine-Aldehyde Adducts in Human Urine.

    PubMed

    da Silva Bispo, Vanderson; Di Mascio, Paolo; Medeiros, Marisa

    2014-10-01

    Lipid peroxidation generates several reactive carbonyl species, including 4-hydroxy-2-nonenal (HNE), acrolein (ACR), 4-hydroxy-2-hexenal (HHE) and malondialdehyde. One major pathwayof aldehydes detoxification is through conjugation with glutathione catalyzed by glutathione-S-transferases or, alternatively, by conjugation with endogenous histidine containing dipeptides, such as carnosine (CAR). In this study, on-line reverse-phase high-performance liquid chromatography (HPLC) separation with tandem mass spectrometry detection was utilized for the accurate quantification of CAR- ACR, CAR-HHE and CAR-HNE adducts in human urinary samples from non-smokers young adults. Standard adducts were prepared and isolated by HPLC. The results showed the presence of a new product from the reaction of CAR with ACR. This new adduct was completely characterized by HPLC/MS-MSn, 1H RMN, COSY and HSQC. The new HPLC/MS/MS methodology employing stable isotope-labeled internal standards (CAR-HHEd5 and CAR-HNEd11) was developed for adducts quantification. This methodology permits quantification of 10pmol CAR-HHE and 1pmol of CAR-ACR and CAR-HNE. Accurate determinations in human urine sample were performed and showed 4.65±1.71 to CAR-ACR, 5.13±1.76 to CAR-HHE and 5.99±3.19nmol/mg creatinine to CAR-HNE. Our results indicate that carnosine pathways can be an important detoxification route of a, ß -unsaturated aldehydes. Moreover, carnosine adducts may be useful as redox stress indicator. PMID:26461323

  3. 32P-postlabeling DNA adduct assay: cigarette smoke-induced dna adducts in the respiratory and nonrespiratory rat tissues. Book chapter

    SciTech Connect

    Gupta, R.C.; Gairola, C.G.

    1990-01-01

    An analysis of the tissue DNA adducts in rats by the sensitive (32)p-postlabeling assay showed one to eight detectable DNA adducts in lung, trachea, larynx, heart and bladder of the sham controls. Chronic exposure of animals to mainstream cigarette smoke showed a remarkable enhancement of most adducts in the lung and heart DNA. Since cigarette smoke contains several thousand chemicals and a few dozen of them are known or potential carcinogens, the difference between the DNA adducts of nasal and the other tissues may reflect the diversity of reactive constituents and their differential absorption in different tissues. In comparison to the lung DNA adducts, the adducts in nasal DNA were less hydrophobic. Identity of the predominant adducts was further investigated by comparison with several reference DNA adducts from 10 PAH and aromatic amines. Since some of these chemicals are present in cigarette smoke, the results suggest that these constituents of cigarette smoke may not be directly responsible for formation of DNA adducts in the lung and heart of the smoke-exposed animals.

  4. Detection of benzo[a]pyrene diol epoxide-DNA adducts in peripheral blood lymphocytes and antibodies to the adducts in serum from coke oven workers.

    PubMed Central

    Harris, C C; Vahakangas, K; Newman, M J; Trivers, G E; Shamsuddin, A; Sinopoli, N; Mann, D L; Wright, W E

    1985-01-01

    Coke oven workers are exposed to high levels of carcinogenic polycyclic aromatic hydrocarbons, including benzo[a]pyrene (B[a]P), and are at increased risk of lung cancer. Since B[a]P is enzymatically activated to 7 beta,8 alpha-dihydroxy(9 alpha, 10 alpha)epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (B[a]PDE) that forms adducts with DNA, the presence of these adducts was measured in DNA from peripheral blood lymphocytes by synchronous fluorescence spectrophotometry and enzyme radioimmunoassay. Approximately two-thirds of the workers had detectable levels of B[a]PDE-DNA adducts. Antibodies to the DNA adducts were also found in the serum of 27% of the workers. B[a]PDE-DNA adducts were not detectable in lymphocytes and antibodies to the adducts were not detected in sera from a control group of nonsmoking laboratory workers. DNA adducts and/or antibodies to the adducts indicate exposure to B[a]P and its metabolic activation to the carcinogenic metabolite that covalently binds to and damages DNA. Detection of adducts and antibodies to them may also be useful as internal dosimeters of the pathobiological effective doses of chemical carcinogens. PMID:2413443

  5. Chloroethyinitrosourea-derived ethano cytosine and adenine adducts are substrates for escherichia coli glycosylases excising analogous etheno adducts

    SciTech Connect

    Guliaev, Anton B.; Singer, B.; Hang, Bo

    2004-05-05

    Exocyclic ethano DNA adducts are saturated etheno ring derivatives formed mainly by therapeutic chloroethylnitrosoureas (CNUs), which are also mutagenic and carcinogenic. In this work, we report that two of the ethano adducts, 3,N{sup 4}-ethanocytosine (EC) and 1,N{sup 6}-ethanoadenine (EA), are novel substrates for the Escherichia coli mismatch-specific uracil-DNA glycosylase (Mug) and 3-methyladenine DNA glycosylase II (AlkA), respectively. It has been shown previously that Mug excises 3,N{sup 4}-ethenocytosine ({var_epsilon}C) and AlkA releases 1,N{sup 6}-ethenoadenine ({var_epsilon}A). Using synthetic oligonucleotides containing a single ethano or etheno adduct, we found that both glycosylases had a {approx}20-fold lower excision activity toward EC or EA than that toward their structurally analogous {var_epsilon}C or {var_epsilon}A adduct. Both enzymes were capable of excising the ethano base paired with any of the four natural bases, but with varying efficiencies. The Mug activity toward EC could be stimulated by E. coli endonuclease IV and, more efficiently, by exonuclease III. Molecular dynamics (MD) simulations showed similar structural features of the etheno and ethano derivatives when present in DNA duplexes. However, also as shown by MD, the stacking interaction between the EC base and Phe 30 in the Mug active site is reduced as compared to the {var_epsilon}C base, which could account for the lower EC activity observed in this study.

  6. Photochemistry of psoralen-DNA adducts, biological effects of psoralen-DNA adducts, applications of psoralen-DNA photochemistry

    SciTech Connect

    Shi, Yun-bo

    1988-03-01

    This thesis consists of three main parts and totally eight chapters. In Part I, The author will present studies on the photochemistry of psoralen-DNA adducts, specifically, the wavelength dependencies for the photoreversals of thymidine-HMT (4'-hydroxymethyl-4, 5', 8-trimenthylpsoralen) monoadducts and diadduct and the same adducts incorporated in DNA helices and the wavelength dependecies for the photocrossslinking of thymidine-HMT monoadducts in double-stranded helices. In Part II, The author will report some biological effects of psoralen-DNA adducts, i.e., the effects on double-stranded DNA stability, DNA structure, and transcription by E. coli and T7 RNA polymerases. Finally, The author will focus on the applications of psoralen-DNA photochemistry to investigation of protein-DNA interaction during transcription, which includes the interaction of E. coli and T7 RNA polymerases with DNA in elongation complexes arrested at specific psoralen-DNA adduct sites as revealed by DNase I footprinting experiments. 123 refs., 52 figs., 12 tabs.

  7. Crystalline guanine adducts of natural and synthetic trioxacarcins suggest a common biological mechanism and reveal a basis for the instability of trioxacarcin A.

    PubMed

    Pröpper, Kevin; Dittrich, Birger; Smaltz, Daniel J; Magauer, Thomas; Myers, Andrew G

    2014-09-15

    X-ray crystallographic characterization of products derived from natural and fully synthetic trioxacarcins, molecules with potent antiproliferative effects, illuminates aspects of their reactivity and mechanism of action. Incubation of the fully synthetic trioxacarcin analog 3, which lacks one of the carbohydrate residues present in the natural product trioxacarcin A (1) as well as oxygenation at C2 and C4 yet retains potent antiproliferative effects, with the self-complimentary duplex oligonucleotide d(AACCGGTT) led to production of a crystalline covalent guanine adduct (6). Adduct 6 is closely analogous to gutingimycin (2), the previously reported guanine adduct derived from incubation of natural trioxacarcin A (1) with duplex DNA, suggesting that 3 and 1 likely share a common basis of cytotoxicity. In addition, we isolated a novel, dark-red crystalline guanine adduct (7) from incubation of trioxacarcin A itself with the self-complimentary duplex oligonucleotide d(CGTATACG). Crystallographic analysis suggests that 7 is an anthraquinone derivative, which we propose arises by a sequence of guanosine alkylation within duplex DNA, depurination, base-catalyzed elimination of the trioxacarcinose A carbohydrate residue, and oxidative rearrangement to form an anthraquinone. We believe that this heretofore unrecognized chemical instability of natural trioxacarcins may explain why trioxacarcin analogs lacking C4 oxygenation exhibit superior chemical stabilities yet, as evidenced by structure 3, retain a capacity to form lesions with duplex DNA. PMID:25176186

  8. Formation of cyclic 1,N2-propanodeoxyguanosine and thymidine adducts in the reaction of the mutagen 2-bromoacrolein with calf thymus DNA

    SciTech Connect

    Meerman, J.H.; Smith, T.R.; Pearson, P.G.; Meier, G.P.; Nelson, S.D. )

    1989-11-15

    The interaction of the mutagen 2-bromoacrolein (2BA) with DNA and thymidine was studied in vitro by reaction of (3-3H)2BA with thymidine, RNA, single-stranded DNA, and double-stranded DNA in phosphate buffer (pH 7.4). After purification of the nucleic acids, they were incubated at alkaline pH to convert any (hydroxybromo)propano(deoxy)-guanosine adducts to their dihydroxy analogues. After acid or enzymatic hydrolysis, the hydrolysates were analyzed by reversed-phase high-performance liquid chromatography. At a concentration of 1.6 mM, the fraction of 2BA that became covalently bound to DNA was 2.3% of the amount added. Only 3% of the radioactivity bound to DNA after extensive purification could be accounted for as cyclic 1,N2-(6,7-dihydroxy)-propanoguanine adducts. More 2BA became covalently bound to single-stranded DNA and RNA as compared with double-stranded DNA. However, high-performance liquid chromatographic analyses showed that formation of cyclic 1,N2-(6,7-dihydroxy)propanoguanine adducts was also a minor reaction with these macromolecules. Because these data showed that other type(s) of reaction(s) are more important in the reaction of 2BA with nucleic acids, we have investigated the reaction of 2BA with other nucleosides. It was found that 2BA reacted well with thymidine in vitro, and the major product was identified by 500 MHz 1H and 75.43 MHz 13C nuclear magnetic resonance and thermospray mass spectrometry as 3-(2-bromo-3-oxopropyl)thymidine. This adduct was unstable and decomposed upon storage. After enzymatic hydrolysis of (3H)2BA-modified double-stranded DNA and subsequent analysis of the hydrolysate by high-performance liquid chromatography, 22% of the covalently bound radioactivity to DNA coeluted with decomposition products of the 3-(bromooxypropyl)thymidine adduct.

  9. Human Biomonitoring of DNA Adducts by Ion Trap Multistage Mass Spectrometry.

    PubMed

    Guo, Jingshu; Turesky, Robert J

    2016-01-01

    Humans are continuously exposed to hazardous chemicals in the environment. These chemicals or their electrophilic metabolites can form adducts with genomic DNA, which can lead to mutations and the initiation of cancer. The identification of DNA adducts is required for understanding exposure and the etiological role of a genotoxic chemical in cancer risk. The analytical chemist is confronted with a great challenge because the levels of DNA adducts generally occur at <1 adduct per 10(7) nucleotides, and the amount of tissue available for measurement is limited. Ion trap mass spectrometry has emerged as an important technique to screen for DNA adducts because of the high level sensitivity and selectivity, particularly when employing multi-stage scanning (MS(n) ). The product ion spectra provide rich structural information and corroborate the adduct identities even at trace levels in human tissues. Ion trap technology represents a significant advance in measuring DNA adducts in humans. © 2016 by John Wiley & Sons, Inc. PMID:27584705

  10. Redox proteomic profiling of neuroketal-adducted proteins in human brain: Regional vulnerability at middle age increases in the elderly.

    PubMed

    Domínguez, Mayelín; de Oliveira, Eliandre; Odena, María Antonia; Portero, Manuel; Pamplona, Reinald; Ferrer, Isidro

    2016-06-01

    Protein lipoxidation was assessed in the parietal cortex (PC), frontal cortex (FC), and cingulate gyrus (CG) in middle-aged and old-aged individuals with no clinical manifestations of cognitive impairment, in order to increase understanding of regional brain vulnerability to oxidative damage during aging. Twenty-five lipoxidized proteins were identified in all the three regions although with regional specificities, by using redox proteomics to detect target proteins of neuroketals (NKT) adduction. The number of cases with NKT-adducted proteins was higher in old-aged individuals but most oxidized proteins were already present in middle-aged individuals. Differences in vulnerability to oxidation were dependent on the sub-cellular localization, secondary structure, and external exposition of certain amino acids. Lipoxidized proteins included those involved in energy metabolism, cytoskeleton, proteostasis, neurotransmission and O2/CO2, and heme metabolism. Total NKT and soluble oligomer levels were estimated employing slot-blot, and these were compared between age groups. Oligomers increased with age in PC and FC; NKT significantly increased with age in FC, whereas total NKT and oligomer levels were not modified in CG, thus highlighting differences in brain regional vulnerability with age. Oligomers significantly correlated with NKT levels in the three cortical regions, suggesting that protein NKT adduction parallels soluble oligomer formation. PMID:26968793

  11. A new approach to the synthesis of monomers and polymers incorporating furan/maleimide Diels-Alder adducts

    NASA Astrophysics Data System (ADS)

    Banella, Maria Barbara; Gioia, Claudio; Vannini, Micaela; Colonna, Martino; Celli, Annamaria; Gandini, Alessandro

    2016-05-01

    The Diels-Alder reaction between furan and maleimide moieties is a well-known and widely used strategy to build bio-based macromolecular structures with peculiar properties. The furan-maleimide adducts are thermally reversible because they can be broken above about 120°C and recombined at lower temperatures. At the moment only the monomers exhibiting the furan or the maleimide moieties on their extremity are used in order to get linear or cross-linked polymeric structures. The innovative idea described here consists in using a monomer bearing two carboxylic acidic groups on its extremities and a furan-maleimide Diels-Alder adduct within its structure. This monomer can give rise to classical polycondensation reactions leading to polymers. These polymers (which are polyesters in the present case) can be broken at high temperatures in correspondence of the furane-maleimide Diels-Alder adduct leading to segments exhibiting furan or maleimide moieties at their extremities, which at lower temperature recombine leading to random or block copolymers.

  12. Equilibrium Dynamics of β-N-Methylamino-L-Alanine (BMAA) and Its Carbamate Adducts at Physiological Conditions.

    PubMed

    Zimmerman, David; Goto, Joy J; Krishnan, Viswanathan V

    2016-01-01

    Elevated incidences of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia complex (ALS/PDC) is associated with β-methylamino-L-alanine (BMAA), a non-protein amino acid. In particular, the native Chamorro people living in the island of Guam were exposed to BMAA by consuming a diet based on the cycad seeds. Carbamylated forms of BMAA are glutamate analogues. The mechanism of neurotoxicity of the BMAA is not completely understood, and BMAA acting as a glutamate receptor agonist may lead to excitotoxicity that interferes with glutamate transport systems. Though the interaction of BMAA with bicarbonate is known to produce carbamate adducts, here we demonstrate that BMAA and its primary and secondary adducts coexist in solution and undergoes a chemical exchange among them. Furthermore, we determined the rates of formation/cleavage of the carbamate adducts under equilibrium conditions using two-dimensional proton exchange NMR spectroscopy (EXSY). The coexistence of the multiple forms of BMAA at physiological conditions adds to the complexity of the mechanisms by which BMAA functions as a neurotoxin. PMID:27513925

  13. Pd/NbOPO₄ multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans.

    PubMed

    Xia, Qi-Neng; Cuan, Qian; Liu, Xiao-Hui; Gong, Xue-Qing; Lu, Guan-Zhong; Wang, Yan-Qin

    2014-09-01

    Great efforts have been made to convert renewable biomass into transportation fuels. Herein, we report the novel properties of NbO(x)-based catalysts in the hydrodeoxygenation of furan-derived adducts to liquid alkanes. Excellent activity and stability were observed with almost no decrease in octane yield (>90% throughout) in a 256 h time-on-stream test. Experimental and theoretical studies showed that NbO(x) species play the key role in C-O bond cleavage. As a multifunctional catalyst, Pd/NbOPO4 plays three roles in the conversion of aldol adducts into alkanes: 1) The noble metal (in this case Pd) is the active center for hydrogenation; 2) NbO(x) species help to cleave the C-O bond, especially of the tetrahydrofuran ring; and 3) a niobium-based solid acid catalyzes the dehydration, thus enabling the quantitative conversion of furan-derived adducts into alkanes under mild conditions. PMID:25045056

  14. Equilibrium Dynamics of β-N-Methylamino-L-Alanine (BMAA) and Its Carbamate Adducts at Physiological Conditions

    PubMed Central

    Zimmerman, David; Goto, Joy J.; Krishnan, Viswanathan V

    2016-01-01

    Elevated incidences of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia complex (ALS/PDC) is associated with β-methylamino-L-alanine (BMAA), a non-protein amino acid. In particular, the native Chamorro people living in the island of Guam were exposed to BMAA by consuming a diet based on the cycad seeds. Carbamylated forms of BMAA are glutamate analogues. The mechanism of neurotoxicity of the BMAA is not completely understood, and BMAA acting as a glutamate receptor agonist may lead to excitotoxicity that interferes with glutamate transport systems. Though the interaction of BMAA with bicarbonate is known to produce carbamate adducts, here we demonstrate that BMAA and its primary and secondary adducts coexist in solution and undergoes a chemical exchange among them. Furthermore, we determined the rates of formation/cleavage of the carbamate adducts under equilibrium conditions using two-dimensional proton exchange NMR spectroscopy (EXSY). The coexistence of the multiple forms of BMAA at physiological conditions adds to the complexity of the mechanisms by which BMAA functions as a neurotoxin. PMID:27513925

  15. Post-Training Intrahippocampal Injection of Synthetic Poly-Alpha-2,8-Sialic Acid-Neural Cell Adhesion Molecule Mimetic Peptide Improves Spatial Long-Term Performance in Mice

    ERIC Educational Resources Information Center

    Florian, Cedrick; Foltz, Jane; Norreel, Jean-Chretien; Rougon, Genevieve; Roullet, Pascal

    2006-01-01

    Several data have shown that the neural cell adhesion molecule (NCAM) is necessary for long-term memory formation and might play a role in the structural reorganization of synapses. The NCAM, encoded by a single gene, is represented by several isoforms that differ with regard to their content of alpha-2,8-linked sialic acid residues (PSA) on their…

  16. Polysialic acid enters the cell nucleus attached to a fragment of the neural cell adhesion molecule NCAM to regulate the circadian rhythm in mouse brain.

    PubMed

    Westphal, Nina; Kleene, Ralf; Lutz, David; Theis, Thomas; Schachner, Melitta

    2016-07-01

    In the mammalian nervous system, the neural cell adhesion molecule NCAM is the major carrier of the glycan polymer polysialic acid (PSA) which confers important functions to NCAM's protein backbone. PSA attached to NCAM contributes not only to cell migration, neuritogenesis, synaptic plasticity, and behavior, but also to regulation of the circadian rhythm by yet unknown molecular mechanisms. Here, we show that a PSA-carrying transmembrane NCAM fragment enters the nucleus after stimulation of cultured neurons with surrogate NCAM ligands, a phenomenon that depends on the circadian rhythm. Enhanced nuclear import of the PSA-carrying NCAM fragment is associated with altered expression of clock-related genes, as shown by analysis of cultured neuronal cells deprived of PSA by specific enzymatic removal. In vivo, levels of nuclear PSA in different mouse brain regions depend on the circadian rhythm and clock-related gene expression in suprachiasmatic nucleus and cerebellum is affected by the presence of PSA-carrying NCAM in the cell nucleus. Our conceptually novel observations reveal that PSA attached to a transmembrane proteolytic NCAM fragment containing part of the extracellular domain enters the cell nucleus, where PSA-carrying NCAM contributes to the regulation of clock-related gene expression and of the circadian rhythm. PMID:27236020

  17. The Small Molecule GMX1778 Is a Potent Inhibitor of NAD+ Biosynthesis: Strategy for Enhanced Therapy in Nicotinic Acid Phosphoribosyltransferase 1-Deficient Tumors▿

    PubMed Central

    Watson, Mark; Roulston, Anne; Bélec, Laurent; Billot, Xavier; Marcellus, Richard; Bédard, Dominique; Bernier, Cynthia; Branchaud, Stéphane; Chan, Helen; Dairi, Kenza; Gilbert, Karine; Goulet, Daniel; Gratton, Michel-Olivier; Isakau, Henady; Jang, Anne; Khadir, Abdelkrim; Koch, Elizabeth; Lavoie, Manon; Lawless, Michael; Nguyen, Mai; Paquette, Denis; Turcotte, Émilie; Berger, Alvin; Mitchell, Matthew; Shore, Gordon C.; Beauparlant, Pierre

    2009-01-01

    GMX1777 is a prodrug of the small molecule GMX1778, currently in phase I clinical trials for the treatment of cancer. We describe findings indicating that GMX1778 is a potent and specific inhibitor of the NAD+ biosynthesis enzyme nicotinamide phosphoribosyltransferase (NAMPT). Cancer cells have a very high rate of NAD+ turnover, which makes NAD+ modulation an attractive target for anticancer therapy. Selective inhibition by GMX1778 of NAMPT blocks the production of NAD+ and results in tumor cell death. Furthermore, GMX1778 is phosphoribosylated by NAMPT, which increases its cellular retention. The cytotoxicity of GMX1778 can be bypassed with exogenous nicotinic acid (NA), which permits NAD+ repletion via NA phosphoribosyltransferase 1 (NAPRT1). The cytotoxicity of GMX1778 in cells with NAPRT1 deficiency, however, cannot be rescued by NA. Analyses of NAPRT1 mRNA and protein levels in cell lines and primary tumor tissue indicate that high frequencies of glioblastomas, neuroblastomas, and sarcomas are deficient in NAPRT1 and not susceptible to rescue with NA. As a result, the therapeutic index of GMX1777 can be widended in the treatment animals bearing NAPRT1-deficient tumors by coadministration with NA. This provides the rationale for a novel therapeutic approach for the use of GMX1777 in the treatment of human cancers. PMID:19703994

  18. Amino acid substitution at peptide-binding pockets of HLA class I molecules increases risk of severe acute GVHD and mortality

    PubMed Central

    Wang, Tao; Haagenson, Michael; Spellman, Stephen R.; Askar, Medhat; Battiwalla, Minoo; Baxter-Lowe, Lee Ann; Bitan, Menachem; Fernandez-Viña, Marcelo; Gandhi, Manish; Jakubowski, Ann A.; Maiers, Martin; Marino, Susana R.; Marsh, Steven G. E.; Oudshoorn, Machteld; Palmer, Jeanne; Prasad, Vinod K.; Reddy, Vijay; Ringden, Olle; Saber, Wael; Santarone, Stella; Schultz, Kirk R.; Setterholm, Michelle; Trachtenberg, Elizabeth; Turner, E. Victoria; Woolfrey, Ann E.; Lee, Stephanie J.; Anasetti, Claudio

    2013-01-01

    HLA disparity has a negative impact on the outcomes of hematopoietic cell transplantation (HCT). We studied the independent impact of amino acid substitution (AAS) at peptide-binding positions 9, 99, 116, and 156, and killer immunoglobulin-like receptor binding position 77 of HLA-A, B, or C, on the risks for grade 3-4 acute graft-versus-host disease (GVHD), chronic GVHD, treatment-related mortality (TRM), relapse, and overall survival. In multivariate analysis, a mismatch at HLA-C position 116 was associated with increased risk for severe acute GVHD (hazard ratio [HR] = 1.45, 95% confidence interval [CI] = 1.15-1.82, P = .0016). Mismatch at HLA-C position 99 was associated with increased transplant-related mortality (HR = 1.37, 95% CI = 1.1-1.69, P = .0038). Mismatch at HLA-B position 9 was associated with increased chronic GVHD (HR = 2.28, 95% CI = 1.36-3.82, P = .0018). No AAS were significantly associated with outcome at HLA-A. Specific AAS pair combinations with a frequency >30 were tested for association with HCT outcomes. Cysteine to tyrosine substitution at position 99 of HLA-C was associated with increased TRM (HR = 1.78, 95% = CI 1.27-2.51, P = .0009). These results demonstrate that donor-recipient mismatch for certain peptide-binding residues of the HLA class I molecule is associated with increased risk for acute and chronic GVHD and death. PMID:23982174

  19. UVR Exposure Sensitizes Keratinocytes to DNA Adduct Formation

    PubMed Central

    Nair, Sudhir; Kekatpure, Vikram D.; Judson, Benjamin L.; Rifkind, Arleen B.; Granstein, Richard D.; Boyle, Jay O.; Subbaramaiah, Kotha; Guttenplan, Joseph B.; Dannenberg, Andrew J.

    2009-01-01

    Ultraviolet radiation (UVR) and exposure to tobacco smoke, a source of polycyclic aromatic hydrocarbons (PAH), have been linked to skin carcinogenesis. UVR-mediated activation of the aryl hydrocarbon receptor (AhR) stimulates the transcription of CYP1A1 and CYP1B1, which encode proteins that convert PAH to genotoxic metabolites. We determined whether UVR exposure sensitized human keratinocytes to PAH-induced DNA adduct formation. UVR exposure induced CYP1A1 and CYP1B1 in HaCaT cells, an effect that was mimicked by photooxidized tryptophan (aTRP) and FICZ, a component of aTRP. UVR exposure or pretreatment with aTRP or FICZ also sensitized cells to benzo[a]pyrene (B[a]P) induced DNA adduct formation. α-Naphthoflavone (αNF), an AhR antagonist, suppressed UVR-, aTRP- and FICZ-mediated induction of CYP1A1 and CYP1B1 and inhibited B[a]P induced DNA adduct formation. Treatment with 17-AAG, a Hsp90 inhibitor, caused a marked decrease in levels of AhR, inhibited UVR-, aTRP- and FICZ-mediated induction of CYP1A1 and CYP1B1 and blocked the sensitization of HaCaT cells to B[a]P induced DNA adduct formation. FICZ has been suggested to be a physiological ligand of the AhR that may have systemic effects. Hence, studies of FICZ were also carried out in MSK-Leuk1 cells, a model of oral leukoplakia. Pretreatment with αNF or 17-AAG blocked FICZ-mediated induction of CYP1A1 and CYP1B1, and suppressed the increased B[a]P-induced DNA adduct formation. Collectively, these results suggest that sunlight may activate AhR signaling and thereby sensitize cells to PAH-mediated DNA adduct formation. Antagonists of AhR signaling may have a role in the chemoprevention of photocarcinogenesis. PMID:19789301

  20. Multiclass Carcinogenic DNA Adduct Quantification in Formalin-Fixed Paraffin-Embedded Tissues by Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Guo, Jingshu; Yun, Byeong Hwa; Upadhyaya, Pramod; Yao, Lihua; Krishnamachari, Sesha; Rosenquist, Thomas A; Grollman, Arthur P; Turesky, Robert J

    2016-05-01

    DNA adducts are a measure of internal exposure to genotoxicants and an important biomarker for human risk assessment. However, the employment of DNA adducts as biomarkers in human studies is often restricted because fresh-frozen tissues are not available. In contrast, formalin-fixed paraffin-embedded (FFPE) tissues with clinical diagnosis are readily accessible. Recently, our laboratory reported that DNA adducts of aristolochic acid, a carcinogenic component of Aristolochia herbs used in traditional Chinese medicines worldwide, can be recovered quantitatively from FFPE tissues. In this study, we have evaluated the efficacy of our method for retrieval of DNA adducts from archived tissue by measuring DNA adducts derived from four other classes of human carcinogens: polycyclic aromatic hydrocarbons (PAHs), aromatic amines, heterocyclic aromatic amines (HAAs), and N-nitroso compounds (NOCs). Deoxyguanosine (dG) adducts of the PAH benzo[a]pyrene (B[a]P), 10-(deoxyguanosin-N(2)-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene (dG-N(2)-B[a]PDE); the aromatic amine 4-aminobiphenyl (4-ABP), N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-4-ABP); the HAA 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), N-(deoxyguanosin-8-yl)-PhIP (dG-C8-PhIP); and the dG adducts of the NOC 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), O(6)-methyl-dG (O(6)-Me-dG) and O(6)-pyridyloxobutyl-dG (O(6)-POB-dG), formed in liver, lung, bladder, pancreas, or colon were recovered in comparable yields from fresh-frozen and FFPE preserved tissues of rodents treated with the procarcinogens. Quantification was achieved by ultraperformance liquid chromatography coupled with electrospray ionization ion-trap multistage mass spectrometry (UPLC/ESI-IT-MS(3)). These advancements in the technology of DNA adduct retrieval from FFPE tissue clear the way for use of archived pathology samples in molecular epidemiology studies designed to assess the causal role of exposure to hazardous chemicals

  1. Gas-Phase Anionic σ-Adduct (Trans)formations in Heteroaromatic Systems1

    NASA Astrophysics Data System (ADS)

    Zimnicka, Magdalena; Danikiewicz, Witold

    2015-07-01

    Anions of nitroderivatives of thiophene and furan were subjected to the reactions with selected C-H acids in the gas phase. Various structures and reaction pathways were proposed for the observed ionic products. In general, the reactions of heteroaromatic anions with C-H acids may be divided into three groups, depending on the proton affinity difference between C-H acid's conjugate base and heteroaromatic anion (ΔPA). The proton transfer from C-H acid to heteroaromatic anion is a dominant process in the reactions for which ΔPA < 0 kcal mol-1, whereas the reactions with high ΔPA (ΔPA > 16 kcal mol-1) do not lead to any ionic products. The formation of σ-adducts and products of their further transformations according to the VNS, SNAr, cine, and tele substitution mechanisms have been proposed for reactions with moderate ΔPA. The other possible mechanisms as SN2 reaction, nucleophilic addition to the cyano group, ring-opening pathway, and halogenophilic reaction have also been discussed to contribute in the reactions between heteroaromatic anions and C-H acids.

  2. Specific Function of the Met-Tyr-Trp Adduct Radical and Residues Arg-418 and Asp-137 in the Atypical Catalase Reaction of Catalase-Peroxidase KatG*

    PubMed Central

    Zhao, Xiangbo; Khajo, Abdelahad; Jarrett, Sanchez; Suarez, Javier; Levitsky, Yan; Burger, Richard M.; Jarzecki, Andrzej A.; Magliozzo, Richard S.

    2012-01-01

    Catalase activity of the dual-function heme enzyme catalase-peroxidase (KatG) depends on several structural elements, including a unique adduct formed from covalently linked side chains of three conserved amino acids (Met-255, Tyr-229, and Trp-107, Mycobacterium tuberculosis KatG numbering) (MYW). Mutagenesis, electron paramagnetic resonance, and optical stopped-flow experiments, along with calculations using density functional theory (DFT) methods revealed the basis of the requirement for a radical on the MYW-adduct, for oxyferrous heme, and for conserved residues Arg-418 and Asp-137 in the rapid catalase reaction. The participation of an oxyferrous heme intermediate (dioxyheme) throughout the pH range of catalase activity is suggested from our finding that carbon monoxide inhibits the activity at both acidic and alkaline pH. In the presence of H2O2, the MYW-adduct radical is formed normally in KatG[D137S] but this mutant is defective in forming dioxyheme and lacks catalase activity. KatG[R418L] is also catalase deficient but exhibits normal formation of the adduct radical and dioxyheme. Both mutants exhibit a coincidence between MYW-adduct radical persistence and H2O2 consumption as a function of time, and enhanced subunit oligomerization during turnover, suggesting that the two mutations disrupting catalase turnover allow increased migration of the MYW-adduct radical to protein surface residues. DFT calculations showed that an interaction between the side chain of residue Arg-418 and Tyr-229 in the MYW-adduct radical favors reaction of the radical with the adjacent dioxyheme intermediate present throughout turnover in WT KatG. Release of molecular oxygen and regeneration of resting enzyme are thereby catalyzed in the last step of a proposed catalase reaction. PMID:22918833

  3. Structural basis for recognition of 5'-phosphotyrosine adducts by TDP2

    SciTech Connect

    Shi, Ke; Kurahash, Kayo; Gao, Rui; Tsutakawa, Susan E.; Tainer, John A.; Pommier, Yves; Aihara, Hideki

    2012-12-19

    The DNA repair enzyme TDP2 resolves 5'-phosphotyrosyl-DNA adducts, and is responsible for resistance to anti-cancer drugs that target covalent topoisomerase-DNA complexes. TDP2 also participates in key signaling pathways during development and tumorigenesis, and cleaves a protein-RNA linkage during picornavirus replication. The crystal structure of zebrafish TDP2 bound to DNA reveals a deep and narrow basic groove that selectively accommodates the 5'-end of single-stranded DNA in a stretched conformation. The crystal structure of the full-length C. elegans TDP2 shows that this groove can also accommodate an acidic peptide stretch in vitro, with Glu and Asp sidechains occupying the DNA backbone phosphate binding sites. This extensive molecular mimicry suggests a potential mechanism for auto-regulation and how TDP2 may interact with phosphorylated proteins in signaling. Our study provides a framework to interrogate functions of TDP2 and develop inhibitors for chemotherapeutic and antiviral applications.

  4. Impairment of histone H1 DNA binding by adduct formation with acetaldehyde

    SciTech Connect

    Niemela, O.; Mannermaa, R.; Oikarinen, J. )

    1990-01-01

    Incubation of histone H1 with pharmacologically relevant concentrations of acetaldehyde resulted in the formation of spontaneously stable acetaldehyde-protein linkages. The reaction of acetaldehyde and H1 purified from rat liver either by a DNA recognition site affinity chromatography or by perchloric acid extraction occurred primarily at the lysine residues in the carboxyterminal tail of H1, which is crucial for its function as a eukaryotic repressor. It was further shown using an H1-lacZ fusion protein produced in E. coli and the protein isolated from rat liver that the formation of acetaldehyde adducts with H1 impair its DNA binding properties. They propose that such a reaction may occur in vivo and lead to an inability to repress genes in the liver upon excessive alcohol consumption. This mechanism may play a role in acetaldehyde-induced collagen synthesis in alcoholics.

  5. Proteomic analysis of adducted butyrylcholinesterase for biomonitoring organophosphorus exposures

    PubMed Central

    Marsillach, Judit; Hsieh, Edward J.; Richter, Rebecca J.; MacCoss, Michael J.; Furlong, Clement E.

    2014-01-01

    Organophosphorus (OP) compounds include a broad group of toxic chemicals such as insecticides, chemical warfare agents and antiwear agents. The liver cytochromes P450 bioactivate many OPs to potent inhibitors of serine hydrolases. Cholinesterases were the first OP targets discovered and are the most studied. They are used to monitor human exposures to OP compounds. However, the assay that is currently used has limitations. The mechanism of action of OP compounds is the inhibition of serine hydrolases by covalently modifying their active-site serine. After structural rearrangement, the complex OP inhibitor-enzyme is irreversible and will remain in circulation until the modified enzyme is degraded. Mass spectrometry is a sensitive technology for analyzing protein modifications, such as OP-adducted enzymes. These analyses also provide some information about the nature of the OP adduct. Our aim is to develop high-throughput protocols for monitoring OP exposures using mass spectrometry. PMID:23123252

  6. Smoking related carcinogen-DNA adducts in biopsy samples of human urinary bladder: Identification of N-(deoxyguanosin-8-yl)-4-aminobiphenyl as a major adduct

    SciTech Connect

    Talaska, G. Univ. of Cincinnati, OH ); Al-Juburi, A.Z.S.S. ); Kadlubar, F.F. )

    1991-06-15

    The prevalence of covalent modifications to DNA (carcinogen-DNA adducts) in 42 human urinary bladder biopsy samples was investigated by {sup 32}P-postlabeling methods, with enhancement by both nuclease P1 treatment and 1-butanol extraction. Total mean carcinogen-DNA adduct levels and the mean levels of several specific adducts were significantly elevated in DNA samples of 13 current smokers, as opposed to 9 never smokers or 20 ex-smokers (5 years abstinence). There was no significant difference between the latter two groups. Several DNA adducts enhanced by nuclease P1 treatment were chromatographically similar to putative hydrocarbon DNA adducts reported earlier for placenta and lung DNA samples obtained from cigarette smokers. Putative aromatic amine adducts were detected by 1-butanol extraction that were not present when the samples were treated with nuclease P1. One of these displayed chromatographic behavior identical to the predominant adduct induced by the human urinary bladder carcinogen, 4-aminobiphenyl, which is present in cigarette smoke. This adduct comigrated in several thin-layer chromatographic systems with a synthetic N-(deoxyguanosin-8-yl)-4-amino(2,2{prime}-{sup 3}H)biphenyl-3{prime},5{prime}-bisphosphate marker. These data reinforce an association between cigarette smoking and DNA damage and suggest a molecular basis for the initiation of human urinary bladder cancer by cigarette smoke.

  7. 2' and 3' Carboranyl uridines and their diethyl ether adducts

    DOEpatents

    Soloway, Albert H.; Barth, Rolf F.; Anisuzzaman, Abul K.; Alam, Fazlul; Tjarks, Werner

    1992-01-01

    There is disclosed a process for preparing carboranyl uridine nucleoside compounds and their diethyl ether adducts, which exhibit a tenfold increase in boron content over prior art boron containing nucleoside compounds. Said carboranyl uridine nucleoside compounds exhibit enhanced lipophilicity and hydrophilic properties adequate to enable solvation in aqueous media for subsequent incorporation of said compounds in methods for boron neutron capture therapy in mammalian tumor cells.

  8. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    SciTech Connect

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-06-15

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates.

  9. A structurally-characterized NbCl5-NHC adduct.

    PubMed

    Bortoluzzi, Marco; Ferretti, Eleonora; Marchetti, Fabio; Pampaloni, Guido; Zacchini, Stefano

    2014-05-01

    The selective reactions of niobium pentachloride with two bulky NHC carbenes afforded NbCl5(NHC) complexes, bearing the highest oxidation state ever found for a metal centre in a transition metal halide-NHC adduct. The X-ray structure of 2a is the first one reported for a monodentate NHC-niobium species, and exhibits an abnormally long Nb-C bond. PMID:24658260

  10. 32P-postlabelling analysis of small aromatic and of bulky non-aromatic DNA adducts.

    PubMed

    Reddy, M V

    1993-01-01

    The 32P-postlabelling methodology for analysis of DNA adducts derived from carcinogens containing one aromatic ring (e.g., safrole, styrene oxide, benzene metabolites, 1-nitrosoindole-3-acetonitrile) or a bulky non-aromatic moiety (e.g., mitomycin C, diaziquone) is reviewed. Six steps are involved: digestion of DNA to 3'-nucleotides, enrichment of adducts, 32P-labelling of adducts, separation of labelled adducts by TLC, detection, and quantitation. The first step, DNA digestion with micrococcal nuclease and spleen phosphodiesterase, is applicable to DNA modified with most carcinogens independent of their size and structure. Of the two commonly used procedures for enrichment of aromatic adducts in DNA digests, the nuclease P1 treatment is substantially more effective than butanol extraction for small aromatic and bulky non-aromatic adducts. For initial purification of these adducts from unadducted material after 32P-labelling, multi-directional polyethyleneimine (PEI)-cellulose TLC using 1 M sodium phosphate, pH 6.0, as the D1 solvent is not suitable, because they are not retained on PEI-cellulose under these conditions. A higher concentration of sodium phosphate (e.g., 2.3 M) or development with D1 and D3 solvents in the same direction helps to retain adducts of safrole and of benzene metabolites. Also, transfer of adducts from multiple cut-outs above the origin after D1 chromatography, as adopted for analysis of I-compounds, is potentially applicable. However, initial purification by reverse-phase TLC, followed by in situ transfer and resolution by PEI-cellulose TLC has been found to be most effective for these adducts. Reverse-phase TLC at 4 degrees C or in a stronger salt solution further improves retention of some adducts (e.g., mitomycin C and diaziquone adducts). For adduct separation by PEI-cellulose TLC, salt solutions with or without urea are used. PMID:8225492

  11. Effect of phytochemical intervention on dibenzo[a,l]pyrene-induced DNA adduct formation.

    PubMed

    Russell, Gilandra K; Gupta, Ramesh C; Vadhanam, Manicka V

    2015-04-01

    Dibenzo[a,l]pyrene (DBP) has been found to be the most potent carcinogen of the polycyclic aromatic hydrocarbons (PAHs). Primary sources for DBP in the environment are combustion of wood and coal burning, gasoline and diesel exhaust, and tires. Given the likelihood of environmental exposure to DBP and strong experimental evidence of its potency, it is likely to contribute to lung cancer development. Intervention with compounds of natural origin ("phytochemicals") is considered an effective means to prevent cancer development and favorably modulate the underlying mechanisms, including DNA adduct formation. In this study, several agents have been identified that inhibit environmental carcinogen-induced DNA adduct formation using a cell-free microsomal system. Of the ten agents tested, resveratrol (648 ± 26 adducts/10(9) nucleotides), oltipraz (1007 ± 348 adducts/10(9) nucleotides), delphinidin (1252 ± 142 adducts/10(9) nucleotides), tanshinone I (1981 ± 213 adducts/10(9) nucleotides), tanshinone IIA (2606 ± 478 adducts/10(9) nucleotides) and diindoylmethane (3643 ± 469 adducts/10(9) nucleotides) were the most effective compared to vehicle treatment (14,062 ± 1097 adducts/10(9) nucleotides). DBP is metabolized by phase I metabolizing enzymes CYP1A1, CYP1A2, and CYP1B1. DBP-induced DNA adducts can be inhibited by several mechanisms. We found that all the test agents inhibited DNA adducts by inhibiting one or more of these enzymes. Oltipraz inhibited DNA adducts entirely by inhibiting the CYP450s, while resveratrol and delphinidin inhibited DNA adducts by also interacting directly with the carcinogenic metabolite, anti-dibenzo(a,l)pyrene-11,12-dihydrodiol-13,14-epoxide. PMID:25794985

  12. Effect of phytochemical intervention on dibenzo[a,l]pyrene-induced DNA adduct formation

    PubMed Central

    Russell, Gilandra K.; Gupta, Ramesh C.; Vadhanam, Manicka V.

    2015-01-01

    Dibenzo[a,l]pyrene (DBP) has been found to be the most potent carcinogen of the polycyclic aromatic hydrocarbons (PAHs). Primary sources for DBP in the environment are combustion of wood and coal burning, gasoline and diesel exhaust, and tires. Given the likelihood of environmental exposure to DBP and strong experimental evidence of its potency, it is likely to contribute to lung cancer development. Intervention with compounds of natural origin (“phytochemicals”) is considered an effective means to prevent cancer development and favorably modulate the underlying mechanisms, including DNA adduct formation. In this study, several agents have been identified that inhibit environmental carcinogen-induced DNA adduct formation using a cell-free microsomal system. Of the ten agents tested, resveratrol (648 ± 26 adducts/109 nucleotides), oltipraz (1007 ± 348 adducts/109 nucleotides), delphinidin (1252 ± 142 adducts/109 nucleotides), tanshinone I (1981 ± 213 adducts/109 nucleotides), tanshinone IIA (2606 ± 478 adducts/109 nucleotides) and diindoylmethane (3643 ± 469 adducts/109 nucleotides) were the most effective compared to vehicle treatment (14,062 ± 1097 adducts/109 nucleotides). DBP is metabolized by phase I metabolizing enzymes CYP1A1, CYP1A2, and CYP1B1. DBP-induced DNA adducts can be inhibited by several mechanisms. We found that all the test agents inhibited DNA adducts by inhibiting one or more of these enzymes. Oltipraz inhibited DNA adducts entirely by inhibiting the CYP450s, while resveratrol and delphinidin inhibited DNA adducts by also interacting directly with the carcinogenic metabolite, anti-dibenzo(a,l)pyrene-11,12-dihydrodiol-13,14-epoxide. PMID:25794985

  13. Thermal stability of DNA adducts induced by cyanomorpholinoadriamycin in vitro.

    PubMed Central

    Cullinane, C; Phillips, D R

    1993-01-01

    The Adriamycin derivative, cyanomorpholinoadriamycin (CMA) was reacted with DNA in vitro to form apparent interstrand crosslinks. The extent of interstrand crosslink formation was monitored by a gel electrophoresis assay and maximal crosslinking of DNA was observed within 1 hr with 5 microM of drug. The interstrand crosslinks were heat labile, with a midpoint melting temperature of 70 degrees C (10 min exposure to heat) in 45% formamide. When CMA-induced adducts were detected as blockages of lambda-exonuclease, 12 blockage sites were observed with 8 being prior to 5'-GG sequences, one prior to 5'-CC, one prior to 5'-GC and 2 at unresolved combinations of these sequences. These exonuclease-detected blockages reveal the same sites of CMA-induced crosslinking as detected by in vitro transcription footprinting and primer-extension blockages on single strand DNA, where the blockages at 5'-GG and 5'-CC were identified as sites of intrastrand crosslinking and the 5'-GC blockage as a probable site of interstrand crosslinking. The thermal stability of both types of crosslink (10 min exposure to heat) ranged from 63-70 degrees C at individual sites. High levels of adduct were detected with poly (dG-dC) but not with poly (dI-dC). These results suggest adduct formation involving an aminal linkage between the 3 position of the morpholino moiety and N2 of guanine. Images PMID:8493102

  14. Langmuir-Blodgett films of self-assembled (alkylether-derivatized Zn phthalocyanine)-(C₆₀ imidazole adduct) dyad with controlled intermolecular distance for photoelectrochemical studies.

    PubMed

    Obraztsov, Ievgen; Noworyta, Krzysztof; Hart, Aaron; Gobeze, Habtom B; Kc, Chandra B; Kutner, Wlodzimierz; D'Souza, Francis

    2014-06-11

    A multilayer Langmuir-Blodgett (LB) film of the self-assembled electron donor-acceptor dyad of Zn phthalocyanine, appended with four long-chain aliphatic ether peripheral substituents, and an imidazole adduct of C60 was prepared and applied as a photoactive material in a photoelectrochemical cell. Changes in the simultaneously recorded surface pressure and surface potential vs area per molecule compression isotherms for Langmuir films of the dyad and, separately, of its components helped to identify phase transitions and mutual interactions of molecules in films. The Brewster angle microscopy (BAM) imaging of the Langmuir films showed circular condensed phase domains of the dyad molecules. The determined area per molecule was lower than that estimated for the dyad and its components, separately. The multilayer LB films of the dyad were transferred onto hydrophobized fluorine-doped tin oxide-coated (FTO) glass slides under different conditions. The presence of both components in the dyad LB films was confirmed with the UV-vis spectroscopy measurements. For the LB films transferred at different surface pressures, the PM-IRRAS measurements revealed that the phthalocyanine macrocycle planes and ether moieties in films were tilted with respect to the FTO surface. The AFM imaging of the LB films indicated formation of relatively uniform dyad LB films. Then, the femtosecond transient absorption spectral studies evidenced photoinduced electron transfer in the LB film. The obtained transient signals corresponding to both Zn(TPPE)(•+) and C60im(•-) confirmed the occurrence of intramolecular electron transfer. The determined rate constants of charge separation, kcs = 2.6 × 10(11) s(-1), and charge recombination, kcr = 9.7 × 10(9) s(-1), indicated quite efficient electron transfer within the film. In the photoelectrochemical studies, either photoanodic or photocathodic current was generated depending on the applied bias potential when the dyad LB film-coated FTO was used

  15. Ice photochemistry as a source of amino acids and other organic molecules in meteorites, and implications for the origin of life and the search for life in the Solar System

    NASA Technical Reports Server (NTRS)

    Bernstein, Max

    2005-01-01

    The tons of extraterrestrial organic material that come to the Earth every day probably helped to made the Earth habitable, and possibly played a role in the origin of life. At the astrochemistry lab (http://www.astrochem.orq) we investigate the formation and distribution of organic molecules in space and consider the impact such molecules may have on the habitability of planets and the search for life in the Solar System. The organic compounds in meteorites include amino acids, aromatics of various sorts including purine and pyrimidine bases, and fatty acids that form bi-layer vesicles. The origin of many of these species remains mysterious, but in recent years we and others have performed experiments that suggest low temperature radiation chemistry could account for the presence and deuterium enrichment of many of these molecules. . I will present our laboratory experiments that show the viability of low temperature radiation chemistry as a source of organic molecules such as;amino acids (Nature, 2002, 416, 401-403), amphiphiles (Astrobiology, 2003, 2, 371, Proc. Nat. Acad. Sci. 2001, 98, 815), quinones (Science, 1999, 283, 1135) and other functionalized aromatic compounds (Meteoritics, 2001, 36, 351 ; Astrophysical Journal., 2003, 582, L25), some of which were invoked as potential biomarkers in the Alan Hills 84001 Martian meteorite. Understanding how components of proteins and DNA could form in sterile space environments is also of relevance to our search for life elsewhere in the Solar System, the great task now ahead of NASA. If we find evidence of Life elsewhere in the Solar System it will probably be in form of chemical biomarkers, quintessentially biological molecules that indicate the presence of micro-organisms. While most people think of molecules such as amino acids, and nucleo-bases as good candidate biomarkers, these molecules are produced non-biotically in space and are expected to be present on the surface of other planets even in the absence of

  16. Urine Liver-Type Fatty Acid-Binding Protein and Kidney Injury Molecule-1 in HIV-Infected Patients Receiving Combined Antiretroviral Treatment Based on Tenofovir

    PubMed Central

    Wójcik, Kamila; Piekarska, Anna

    2014-01-01

    Abstract The aim of this study was to determine the presence of kidney tubular damage in the absence of overt evidence of glomerular dysfunction (GFR>60 ml/min without proteinuria) in HIV-infected patients receiving antiretroviral therapy. Urine kidney injury molecule-1 (KIM-1) and liver-type fatty acid-binding protein (L-FABP) levels were measured by ELISA and expressed as a ratio to creatinine. Sixty-six patients (median age 38 years) and 10 healthy controls (median age 35.5 years) were included in the study. Patients with chronic diseases such as diabetes, hypertension, heart disease, or kidney disease were excluded from the study. All patients received tenofovir/emtricitabine combined with one of three other components, namely efavirenz, atazanavir/norvir, or lopinavir/norvir. A lower concentration of L-FABP/creatinine was observed in HIV-infected as compared to healthy individuals (p=0.0353); KIM-1/creatinine was also lower in comparison with healthy controls but not statistically significantly. Patients receiving efavirenz had higher levels of L-FABP/creatinine in comparison to healthy controls (p=0.0039). Patients with anti-HCV had higher concentrations of L-FABP/creatinine as compared to the HIV-monoinfected individuals (not statistically significant) and to healthy subjects (p=0.0356). All four patients with L-FABP>17.5 μg/g creatinine were HIV/HCV coinfected. On multivariate logistic regression urine L-FABP above 5.5 μg/g creatinine was independently associated with body weight (OR=0.93 p=0.039). This study suggests that HIV/HCV-coinfected patients with lower body weight treated with tenofovir may be at an increased risk of tubular dysfunction and should be monitored more closely. The use of protease inhibitors was not associated with an increased risk of tubular disorders. PMID:24164392

  17. Maternal serum uric acid concentration is associated with the expression of tumour necrosis factor-α and intercellular adhesion molecule-1 in patients with preeclampsia.

    PubMed

    Zhao, J; Zheng, D-Y; Yang, J-M; Wang, M; Zhang, X-T; Sun, L; Yun, X-G

    2016-07-01

    We aimed to investigate whether there is a correlation between elevated serum uric acid (SUA) concentration and endothelial inflammatory response in women with preeclampsia (PE). On the basis of clinical and laboratory findings, patients were assigned to three groups: normal blood pressure (Control (Con)), gestational hypertension (GH) and PE (n=50 in each group). SUA concentration was measured by spectrophotometry, and serum tumour necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1) levels were measured by enzyme-linked immunosorbent assay. Western blotting and immunohistochemical staining were also used to detect the changes in TNF-α and ICAM-1 expression in subcutaneous fat tissue. PE patients showed significantly higher systolic and diastolic blood pressures compared with Con and GH pregnant women (P=0.02 and P=0.02, respectively). The changes of body mass index (ΔBMI) before and after pregnancy and 24-h urine protein were significantly different among the three groups (P<0.001). Maternal SUA, TNF-α and soluble ICAM-1 (sICAM-1) levels were significantly increased in the patients with PE (P<0.05) compared with the other two groups. Scatterplot analysis revealed that elevated SUA concentration positively correlated with TNF-α and sICAM-1 in pregnant women. Moreover, vessels in subcutaneous fat tissues of preeclamptic patients showed intense TNF-α and ICAM-1 staining compared with Con and GH patients. The results support that, to a certain extent, elevated SUA concentration is significantly associated with inflammation of maternal systemic vasculature as indicated by increased TNF-α and ICAM-1 expression in women with PE. PMID:26511169

  18. CC/DFT Route toward Accurate Structures and Spectroscopic Features for Observed and Elusive Conformers of Flexible Molecules: Pyruvic Acid as a Case Study.

    PubMed

    Barone, Vincenzo; Biczysko, Malgorzata; Bloino, Julien; Cimino, Paola; Penocchio, Emanuele; Puzzarini, Cristina

    2015-09-01

    The structures and relative stabilities as well as the rotational and vibrational spectra of the three low-energy conformers of pyruvic acid (PA) have been characterized using a state-of-the-art quantum-mechanical approach designed for flexible molecules. By making use of the available experimental rotational constants for several isotopologues of the most stable PA conformer, Tc-PA, the semiexperimental equilibrium structure has been derived. The latter provides a reference for the pure theoretical determination of the equilibrium geometries for all conformers, thus confirming for these structures an accuracy of 0.001 Å and 0.1 deg for bond lengths and angles, respectively. Highly accurate relative energies of all conformers (Tc-, Tt-, and Ct-PA) and of the transition states connecting them are provided along with the thermodynamic properties at low and high temperatures, thus leading to conformational enthalpies accurate to 1 kJ mol(-1). Concerning microwave spectroscopy, rotational constants accurate to about 20 MHz are provided for the Tt- and Ct-PA conformers, together with the computed centrifugal-distortion constants and dipole moments required to simulate their rotational spectra. For Ct-PA, vibrational frequencies in the mid-infrared region accurate to 10 cm(-1) are reported along with theoretical estimates for the transitions in the near-infrared range, and the corresponding infrared spectrum including fundamental transitions, overtones, and combination bands has been simulated. In addition to the new data described above, theoretical results for the Tc- and Tt-PA conformers are compared with all available experimental data to further confirm the accuracy of the hybrid coupled-cluster/density functional theory (CC/DFT) protocol applied in the present study. Finally, we discuss in detail the accuracy of computational models fully based on double-hybrid DFT functionals (mainly at the B2PLYP/aug-cc-pVTZ level) that avoid the use of very expensive CC

  19. Quick chip assay using locked nucleic acid modified epithelial cell adhesion molecule and nucleolin aptamers for the capture of circulating tumor cells.

    PubMed

    Maremanda, Nihal G; Roy, Kislay; Kanwar, Rupinder K; Shyamsundar, Vidyarani; Ramshankar, Vijayalakshmi; Krishnamurthy, Arvind; Krishnakumar, Subramanian; Kanwar, Jagat R

    2015-09-01

    The role of circulating tumor cells (CTCs) in disease diagnosis, prognosis, monitoring of the therapeutic efficacy, and clinical decision making is immense and has attracted tremendous focus in the last decade. We designed and fabricated simple, flat channel microfluidic devices polydimethylsiloxane (PDMS based) functionalized with locked nucleic acid (LNA) modified aptamers (targeting epithelial cell adhesion molecule (EpCAM) and nucleolin expression) for quick and efficient capture of CTCs and cancer cells. With optimized flow rates (10 μl/min), it was revealed that the aptamer modified devices offered reusability for up to six times while retaining optimal capture efficiency (>90%) and specificity. High capture sensitivity (92%) and specificity (100%) was observed in whole blood samples spiked with Caco-2 cells (10-100 cells/ml). Analysis of blood samples obtained from 25 head and neck cancer patients on the EpCAM LNA aptamer functionalized chip revealed that an average count of 5 ± 3 CTCs/ml of blood were captured from 22/25 samples (88%). EpCAM intracellular domain (EpICD) immunohistochemistry on 9 oral squamous cell carcinomas showed the EpICD positivity in the tumor cells, confirming the EpCAM expression in CTCs from head and neck cancers. These microfluidic devices also maintained viability for in vitro culture and characterization. Use of LNA modified aptamers provided added benefits in terms of cost effectiveness due to increased reusability and sustainability of the devices. Our results present a robust, quick, and efficient CTC capture platform with the use of simple PDMS based devices that are easy to fabricate at low cost and have an immense potential in cancer diagnosis, prognosis, and therapeutic planning. PMID:26487896

  20. Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides

    PubMed Central

    Kulesza, Pawel J.; Pieta, Izabela S.; Rutkowska, Iwona A.; Wadas, Anna; Marks, Diana; Klak, Karolina; Stobinski, Leszek; Cox, James A.

    2013-01-01

    Different approaches to enhancement of electrocatalytic activity of noble metal nanoparticles during oxidation of small organic molecules (namely potential fuels for low-temperature fuel cells such as methanol, ethanol and formic acid) are described. A physical approach to the increase of activity of catalytic nanoparticles (e.g. platinum or palladium) involves nanostructuring to obtain highly dispersed systems of high surface area. Recently, the feasibility of enhancing activity of noble metal systems through the formation of bimetallic (e.g. PtRu, PtSn, and PdAu) or even more complex (e.g. PtRuW, PtRuSn) alloys has been demonstrated. In addition to possible changes in the electronic properties of alloys, specific interactions between metals as well as chemical reactivity of the added components have been postulated. We address and emphasize here the possibility of utilization of noble metal and alloyed nanoparticles supported on robust but reactive high surface area metal oxides (e.g. WO3, MoO3, TiO2, ZrO2, V2O5, and CeO2) in oxidative electrocatalysis. This paper concerns the way in which certain inorganic oxides and oxo species can act effectively as supports for noble metal nanoparticles or their alloys during electrocatalytic oxidation of hydrogen and representative organic fuels. Among important issues are possible changes in the morphology and dispersion, as well as specific interactions leading to the improved chemisorptive and catalytic properties in addition to the feasibility of long time operation of the discussed systems. PMID:24443590

  1. Crystal structures of the co-crystalline adduct 5-(4-bromo­phen­yl)-1,3,4-thia­diazol-2-amine–4-nitro­benzoic acid (1/1) and the salt 2-amino-5-(4-bromo­phen­yl)-1,3,4-thia­diazol-3-ium 2-carb­oxy-4,6-di­nitro­phenolate

    PubMed Central

    Smith, Graham; Lynch, Daniel E.

    2014-01-01

    The structures of the 1:1 co-crystalline adduct C8H6BrN3S·C7H5NO4, (I), and the salt C8H7BrN3S+·C7H3N2O7 −, (II), obtained from the inter­action of 5-(4-bromo­phen­yl)-1,3,4-thia­diazol-2-amine with 4-nitro­benzoic acid and 3,5-di­nitro­salicylic acid, respectively, have been determined. The primary inter-species association in both (I) and (II) is through duplex R 2 2(8) (N—H⋯O/O—H⋯O) or (N—H⋯O/N—H⋯O) hydrogen bonds, respectively, giving heterodimers. In (II), these are close to planar [the dihedral angles between the thia­diazole ring and the two phenyl rings are 2.1 (3) (intra) and 9.8 (2)° (inter)], while in (I) these angles are 22.11 (15) and 26.08 (18)°, respectively. In the crystal of (I), the heterodimers are extended into a chain along b through an amine N—H⋯Nthia­diazole hydrogen bond but in (II), a centrosymmetric cyclic hetero­tetra­mer structure is generated through N—H⋯O hydrogen bonds to phenol and nitro O-atom acceptors and features, together with the primary R 2 2(8) inter­action, conjoined R 4 6(12), R 2 1(6) and S(6) ring motifs. Also present in (I) are π–π inter­actions between thia­diazole rings [minimum ring-centroid separation = 3.4624 (16) Å], as well as short Br⋯Onitro inter­actions in both (I) and (II) [3.296 (3) and 3.104 (3) Å, respectively]. PMID:25484726

  2. DNA adducts and carcinogenicity of nitro-polycyclic aromatic hydrocarbons

    SciTech Connect

    Fu, P.P.; Herreno-Saenz, D.; Von Tungeln, L.S.

    1994-10-01

    We have been interested in the structure-activity relationships of nitro-polycyclic aromatic hydrocarbons (nitro-PAHs), and have focused on the correlation of structural and electronic features with biological activities, including mutagenicity and tumorigenicity. In our studies, we have emphasized 1-, 2-, 3-, and 6-nitrobenzo[a]pyrenes (nitro-B[a]Ps) and related compounds, all of which are derived from the potent carcinogen benzo[a]pyrene. While 1-, 2-, and 3-nitro-B[a]P are potent mutagens in Salmonella, 6-nitro-B[a]P is a weak mutagen. In vitro metabolism of 1- and 3-nitro-B[a]P has been found to generate multiple pathways for mutagenic activation. The formation of the corresponding trans-7,8-dihydrodiols and 7,8,9,10-tetrahydrotetrols suggests that 1- and 3-nitro-B[a]P trans-7,8-diol-anti-9, 10--epoxides are ultimate metabolites of the parent nitro-B[a]Ps. We have isolated a DNA adduct from the reaction between 3-nitro-B[a]P trans-7,8-diol-anti-9, 10-epoxide and calf thymus DNA, and identified it as 10-(deoxyguanosin-N{sup 2}-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-3-nitro-B[a]P. The same adduct was identified from in vitro metabolism of [{sup 3}H]3-nitro-B[a]P by rat liver microsomes in the presence of calf thymus DNA. A DNA adduct of 3-nitro-B[a]P formed from reaction of N-hydroxy-3-amino-B[a]P, prepared in situ with calf thymus DNA was also isolated. This adduct was identified as 6-(deoxyguanosin-N{sup 2}-yl)-3-amino-B[a]P. The same adduct was obtained from incubating DNA with 3-nitro-B[a]P in the presence of the mammalian nitroreductase, xanthine oxidase, and hypoxanthine. 48 refs., 6 figs., 1 tab.

  3. DNA adducts of ethylene dibromide: Aspects of formation and mutagenicity

    SciTech Connect

    Cmarik, J.L.

    1991-01-01

    1,2-Dibromoethane (ethylene dibromide, EDB), a potential human carcinogen, undergoes bioactivation by the pathway of glutathione (GSH) conjugation, which generates a reactive intermediate capable of alkylating DNA. The major DNA adduct formed is S-[2-(N[sup 7]-guanyl)ethyl]GSH. This dissertation examined the bioactivation of EDB and the formation of DNA adducts. The selectivity of purified rat and human GSH S-transferases for EDB was examined in vitro. An assay was developed to measure the formation of S,S[prime]-ethylene-bis(GSH). The [alpha] class of the GSH S-transferases was responsible for the majority of EDB-GSH conjugation with both the rat and human enzymes. Human tissue samples for a victim of EDB poisoning were analyzed for S-[2-(N[sup 7]-guanyl)ethyl]GSH utilizing electrochemical detection. No adducts were detected in samples of brain, heart, or kidney. The pattern of alkylation of guanines in fragments of plasmid pBR322 DNA by S-(2-chloroethyl)GSH and related compounds was determined. Alkylation varied approximately ten-fold in intensity and was strongest in runs of guanines. Few differences were observed in the alkylation patterns generated by the different compounds tested. The spectrum of mutations caused by S-(2-chloroethyl)GSH was determined using an M13 bacteriophage forward mutation assay. The majority of mutations (70%) were G:C to A:T transitions. Participation of the N[sup 7]-guanyl adduct in the mutagenic process is strongly implicated. The sequence selectivity of alkylation in the region of M13 sequenced in the mutation assay was determined. Comparison of the sequence selectivity with the mutation spectrum revealed no obligate relationship between the extent of adduct formation and the number of mutations which resulted at different sites. Sequence context appears to exert a strong influence on the processing of lesions. These studies strongly implicate S-[2-(N[sup 7]-guanyl)-ethyl]GSH as a mutagenic lesion formed by EDB.

  4. Total synthsis of (+)-ambuic acid: α-bromination with 1,2-dibromotetrachloroethane.

    PubMed

    Jung, Sun Hee; Hwang, Geum-Sook; Lee, Sung Il; Ryu, Do Hyun

    2012-03-01

    Total synthesis of (+)-ambuic acid has been accomplished from the readily available stereocontrolled Diels-Alder adduct of cyclopentadiene and iodo-1,4-benzoquinone monoketal through an efficient series of steps. A new method for the highly commendable synthesis of α-brominated Diels-Alder adduct is described. PMID:22280015

  5. Interstellar molecules

    NASA Astrophysics Data System (ADS)

    Smith, D.

    1987-09-01

    Some 70 different molecular species have so far been detected variously in diffuse interstellar clouds, dense interstellar clouds, and circumstellar shells. Only simple (diatomic and triatomic) species exist in diffuse clouds because of the penetration of destructive UV radiations, whereas more complex (polyatomic) molecules survive in dense clouds as a result of the shielding against this UV radiation provided by dust grains. A current list of interstellar molecules is given together with a few other molecular species that have so far been detected only in circumstellar shells. Also listed are those interstellar species that contain rare isotopes of several elements. The gas phase ion chemistry is outlined via which the observed molecules are synthesized, and the process by which enrichment of the rare isotopes occurs in some interstellar molecules is described.

  6. Interstellar Molecules

    ERIC Educational Resources Information Center

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  7. Modeling Molecules

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The molecule modeling method known as Multibody Order (N) Dynamics, or MBO(N)D, was developed by Moldyn, Inc. at Goddard Space Flight Center through funding provided by the SBIR program. The software can model the dynamics of molecules through technology which stimulates low-frequency molecular motions and properties, such as movements among a molecule's constituent parts. With MBO(N)D, a molecule is substructured into a set of interconnected rigid and flexible bodies. These bodies replace the computation burden of mapping individual atoms. Moldyn's technology cuts computation time while increasing accuracy. The MBO(N)D technology is available as Insight II 97.0 from Molecular Simulations, Inc. Currently the technology is used to account for forces on spacecraft parts and to perform molecular analyses for pharmaceutical purposes. It permits the solution of molecular dynamics problems on a moderate workstation, as opposed to on a supercomputer.

  8. Low response in white blood cell DNA adducts among workers in a highly polluted cokery environment.

    PubMed

    Kuljukka, T; Savela, K; Vaaranrinta, R; Mutanen, P; Veidebaum, T; Sorsa, M; Peltonen, K

    1998-06-01

    Coke oven workers are often heavily exposed to polynuclear aromatic hydrocarbons (PAHs); this exposure has been associated with higher cancer rates among these workers. We assessed the exposure of cokery workers in an oil shale processing plant. Personal hygienic monitoring, measurement of urinary 1-hydroxypyrene (1-OHP), and analysis of PAH-DNA adducts in white blood cells (WBCs) were performed. The 32P-postlabeling method was used for adduct measurement. The mean adduct value, 1.6 adducts per 10(8) nucleotides, did not differ significantly from the control value (P = 0.098). Smokers had significantly higher adduct levels than non-smoking workers (P = 0.002). 1-OHP levels measured in post-shift samples correlated with DNA adducts found in white blood cells (WBCs). We conclude that hygienic monitoring and measurement of urinary metabolites are essential background exposure data when the biologically effective dose of chemical carcinogens is assessed. PMID:9636933

  9. Zinc acetylacetonate hydrate adducted with nitrogen donor ligands: Synthesis, spectroscopic characterization, and thermal analysis

    NASA Astrophysics Data System (ADS)

    Brahma, Sanjaya; Shivashankar, S. A.

    2015-12-01

    We report synthesis, spectroscopic characterization, and thermal analysis of zinc acetylacetonate complex adducted by nitrogen donor ligands, such as pyridine, bipyridine, and phenanthroline. The pyridine adducted complex crystallizes to monoclinic crystal structure, whereas other two adducted complexes have orthorhombic structure. Addition of nitrogen donor ligands enhances the thermal property of these complexes as that with parent metal-organic complex. Zinc acetylacetonate adducted with pyridine shows much higher volatility (106 °C), decomposition temperature (202 °C) as that with zinc acetylacetonate (136 °C, 220 °C), and other adducted complexes. All the adducted complexes are thermally stable, highly volatile and are considered to be suitable precursors for metal organic chemical vapor deposition. The formation of these complexes is confirmed by powder X-ray diffraction, Fourier transform infrared spectroscopy, mass spectroscopy, and elemental analysis. The complexes are widely used as starting precursor materials for the synthesis of ZnO nanostructures by microwave irradiation assisted coating process.

  10. Enumerating molecules.

    SciTech Connect

    Visco, Donald Patrick, Jr.; Faulon, Jean-Loup Michel; Roe, Diana C.

    2004-04-01

    This report is a comprehensive review of the field of molecular enumeration from early isomer counting theories to evolutionary algorithms that design molecules in silico. The core of the review is a detail account on how molecules are counted, enumerated, and sampled. The practical applications of molecular enumeration are also reviewed for chemical information, structure elucidation, molecular design, and combinatorial library design purposes. This review is to appear as a chapter in Reviews in Computational Chemistry volume 21 edited by Kenny B. Lipkowitz.

  11. Structural aspects of adducts of N-phthaloylglycine and its derivatives

    NASA Astrophysics Data System (ADS)

    Barooah, Nilotpal; Sarma, Rupam J.; Batsanov, Andrei S.; Baruah, Jubaraj B.

    2006-06-01

    N-phthaloylglycine forms 2:1 adduct with 1,3-dihydroxybenzene and 1:2 adduct with 2-aminopyrimidine. Whereas N-phthaloylglycine form salts with 2,6-diaminopyridine and with 8-hydroxyquinoline. The 1:1 adduct of N, N'-bis(glycinyl)pyromellitic diimide with dimethylsulphoxide, 2-aminopyrimidine and 4,4'-dihydroxybiphenyl are prepared and characterised. The reaction of N, N'-bis(glycinyl)pyromellitic diimide with 2,6-diaminopyridine gives corresponding salt.

  12. Structure of adducts of isoindolo[2,1-a]benzimidazole derivatives with maleimides

    NASA Astrophysics Data System (ADS)

    Korolev, Oleksandr; Yegorova, Tatyana; Levkov, Igor; Malytskyy, Volodymyr; Shishkin, Oleg; Zubatyuk, Roman; Palamarchuk, Genadiy; Vedrenne, Marc; Baltas, Michel; Voitenko, Zoia

    2015-03-01

    The selectivity of formation and some mechanistic insights during the synthesis of substituted isoindolo[2,1-a]benzimidazoles are discussed. Furthermore, the reactions of the obtained products with maleimides were carried out. Two types rearrangement adducts together with intermediate Michael type adducts were isolated. The influence of the reaction conditions and reagents ratio is discussed. Specific spectral criteria for the identification of the Michael type adducts are indicated.

  13. Comparison of DNA adducts from exposure to complex mixtures in various human tissues and experimental systems

    PubMed Central

    Lewtas, Joellen; Mumford, Judy; Everson, Richard B.; Hulka, Barbara; Wilcosky, Tim; Kozumbo, Walter; Thompson, Claudia; George, Michael; Dobiáš, Lubomir; Šrám, Radim; Li, Xueming; Gallagher, Jane

    1993-01-01

    DNA adducts derived from complex mixtures of polycyclic aromatic compounds emitted from tobacco smoke are compared to industrial pollution sources (e.g., coke ovens and aluminum smelters), smoky coal burning, and urban air pollution. Exposures to coke oven emissions and smoky coal, both potent rodent skin tumor initiators and lung carcinogens in humans, result in high levels of DNA adducts compared to tobacco smoke in the in vitro calf thymus DNA model system, in cultured lymphocytes, and in the mouse skin assay. Using tobacco smoke as a model in human studies, we have compared relative DNA adduct levels detected in blood lymphocytes, placental tissue, bronchoalveolar lung lavage cells, sperm, and autopsy tissues of smokers and nonsmokers. Adduct levels in DNA isolated from smokers were highest in human heart and lung tissue with smaller but detectable differences in placental tissue and lung lavage cells. Comparison of the DNA adduct levels resulting from human exposure to different complex mixtures shows that emissions from coke ovens, aluminum smelters, and smoky coal result in higher DNA adduct levels than tobacco smoke exposure. These studies suggest that humans exposed to complex combustion mixtures will have higher DNA adduct levels in target cells (e.g., lung) as compared to nontarget cells (e.g., lymphocytes) and that the adduct levels will be dependent on the genotoxic and DNA adduct-forming potency of the mixture. ImagesFIGURE 1.FIGURE 1.FIGURE 2.FIGURE 3.FIGURE 3.FIGURE 3.FIGURE 3.FIGURE 3.FIGURE 3.FIGURE 4. PMID:8319665

  14. Detection and comparison of DNA adducts after in vitro and in vivo diesel emission exposures

    SciTech Connect

    Gallagher, J.; George, M.; Kohan, M.; Thompson, C.; Shank, T.

    1993-01-01

    Development of methodologies to evaluate certain classes of polycyclic aromatic compounds (PAC) detected in complex mixtures to which humans are exposed would greatly improve the diagnostic potential of (32)P-postlabeling analysis. Identification of DNA adduct patterns of specific exposure-related marker adducts would strengthen associations between observed DNA adducts and exposures to different environmental pollutants (e.g., kerosene, cigarette smoke, coke oven, and diesel). Diesel-modified DNA adduct patterns were compared in various in vitro and in vivo rodent model systems and then compared to DNA reactive oxidative and reductive metabolites of 1-nitropyrene. The formation of nitrated-polycyclic aromatic hydrocarbon (nitrated-PAH) DNA adducts, derived from the metabolism of diesel extract constituents, was enhanced relative to other PAH-derived DNA adducts via xanthine oxidase-catalyzed nitroreduction. These adducts were detectable only by the butanol extraction version of the postlabeling analysis. Marker adducts detected in the various test systems presented here will assist in characterizing nuclease-P1-sensitive nitrated PAH adducts in humans.

  15. Lifetimes and stabilities of familiar explosives molecular adduct complexes during ion mobility measurements

    PubMed Central

    McKenzie, Alan; DeBord, John Daniel; Ridgeway, Mark; Park, Melvin; Eiceman, Gary; Fernandez-Lima, Francisco

    2015-01-01

    Trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) was utilized for the separation and identification of familiar explosives in complex mixtures. For the first time, molecular adduct complex lifetimes, relative stability, binding energies and candidate structures are reported for familiar explosives. Experimental and theoretical results showed that the adduct size and reactivity, complex binding energy and the explosive structure tailors the stability of the molecular adduct complex. TIMS flexibility to adapt the mobility separation as a function of the molecular adduct complex stability (i.e., short or long IMS experiments / low or high IMS resolution) permits targeted measurements of explosives in complex mixtures with higher confidence levels. PMID:26153567

  16. Chromatographic and fluorescence spectroscopic studies of individual 7,12-dimethylbenz(a)anthracene--deoxyribonucleoside adducts

    SciTech Connect

    Moschel, R.C.; Pigott, M.A.; Costantino, N.; Dipple, A.

    1983-09-01

    Compared with standard Sephadex LH-20 column chromatography, a newly developed high pressure liquid chromatographic separation of hydrocarbon deoxyribonucleoside adducts derived from the DNA of mouse embryo cell cultures exposed to 7,12-dimethylbenz(a)anthracene (DMBA) provides markedly superior resolution. Once resolved, the fluorescence spectroscopic properties of the three major DMBA--DNA adducts indicate that the fluorescence exhibited by adducts derived from a bay region syn dihydrodiol epoxide of DMBA differs subtly from that exhibited by adducts derived from the isomeric anti dihydrodiol epoxide.

  17. Temporal and spatial features of the formation of DNA adducts in sulfur mustard-exposed skin

    SciTech Connect

    Batal, Mohamed; Boudry, Isabelle; Mouret, Stéphane; Wartelle, Julien; Emorine, Sandy; Bertoni, Marine; Bérard, Izabel; and others

    2013-12-15

    Sulfur mustard (SM) is a chemical warfare agent that targets skin where it induces large blisters. DNA alkylation is a critical step to explain SM-induced cutaneous symptoms. We determined the kinetics of formation of main SM–DNA adducts and compare it with the development of the SM-induced pathogenesis in skin. SKH-1 mice were exposed to 2, 6 and 60 mg/kg of SM and treated skin was biopsied between 6 h and 21 days. Formation of SM DNA adducts was dose-dependent with a maximum immediately after exposure. However, adducts were persistent and still detectable 21 days post-exposure. The time-dependent formation of DNA adducts was also found to be correlated with the appearance of apoptotic cells. This temporal correlation suggests that these two early events are responsible for the severity of the damage to the skin. Besides, SM–DNA adducts were also detected in areas located next to contaminated zone, thus suggesting that SM diffuses in skin. Altogether, this work provides for the first time a clear picture of SM-induced genotoxicity using DNA adducts as a marker. - Highlights: • Sulfur mustard adducts are formed in DNA after skin exposure. • DNA damage formation is an early event in the pathological process of skin burn. • The amount of SM–DNA adducts is maximal at the earliest time point investigated. • Adducts are still detected 3 weeks after exposure. • Sulfur mustard diffuses in skin especially when large doses are applied.

  18. Albumin Cys34 adducted by acrolein as a marker of oxidative stress in ischemia-reperfusion injury during hepatectomy.

    PubMed

    Witort, Ewa; Capaccioli, Sergio; Becatti, Matteo; Fiorillo, Claudia; Batignani, Giacomo; Pavoni, Vittorio; Piccini, Matteo; Orioli, Marica; Carini, Marina; Aldini, Giancarlo; Lulli, Matteo

    2016-08-01

    The aim of this study was to measure and identify the reactive carbonyl species (RCSs) released in the blood of humans subjected to hepatic resection. Pre-anesthesia malondialdehyde (MDA) plasma content (0.36 ± 0.11 nmol/mg protein) remained almost unchanged immediately after anaesthesia, before clamping and at the 10th min after ischemia, while markedly increased (to 0.59 ± 0.07 nmol/mg; p < 0.01, Tukey's post test) at the 10th min of reperfusion. A similar trend was observed for the protein carbonyls (PCs), whose pre-anesthesia levels (0.17 ± 0.13 nmol/mg) did not significantly change during ischemia, while increased more than fourfold at the 10th min of reperfusion (0.75 ± 0.17 nmol/mg; p < 0.01, Tukey's post test). RCSs were then identified as covalent adducts to the albumin Cys34, which we previously found as the most reactive protein nucleophilic site in plasma. By using a mass spectrometry (MS) approach based on precursor ion scanning, we found that acrolein (ACR) is the main RCS adducted to albumin Cys34. In basal conditions, the adducted albumin was 0.6 ± 0.4% of the native form but it increased by almost fourfold at the 10th min of reperfusion (2.3 ± 0.7%; p < 0.01, t-test analysis). Since RCSs are damaging molecules, we propose that RCSs, and ACR in particular, are new targets for novel molecular treatments aimed at reducing the ischemia/reperfusion damage by the use of RCS sequestering agents. PMID:27089934

  19. Absorption spectra of isomeric OH adducts of 1,3,7-trimethylxanthine

    SciTech Connect

    Vinchurkar, M.S.; Rao, B.S.M.; Mohan, H.; Mittal, J.P.; Schmidt, K.H.; Jonah, C.D.

    1997-04-17

    The reactions of OH{sup .}, O{sup .-}, and SO{sub 4}{sup .-} with 1,3,7-trimethylxanthine (caffeine) were studied by pulse radiolysis with optical and conductance detection techniques. The absorption spectra of transients formed in OH{sup .} reaction in neutral solutions exhibited peaks at 310 and 335 nm, as well as a broad absorption maximum at 500 nm, which decayed by first-order kinetics. The rate (k = (4.0 {+-} 0.5) x 10{sup 4} s{sup -1}) of this decay is independent of pH in the range 4-9 and is in agreement with that determined from the conductance detection (k = 4 x 10{sup 4} s{sup -1}). The spectrum in acidic solutions has only a broad peak around 330 nm with no absorption in the higher wavelength region. The intermediates formed in reaction of O{sup .-} absorb around 310 and at 350 nm, and the first-order decay at the latter wavelength was not seen. The OH radical adds to C-4 (X-40H{sup .}) and C-8 (X-80H{sup .}) positions of caffeine in the ratio 1:2 as determined from the redox titration and conductivity measurements. H abstraction from the methyl group is an additional reaction channel in O{sup .-} reaction. Dehydroxylation of the X-40H{sup .} adduct occurs, whereas the X-80H{sup .} adduct does not undergo ring opening. The spectrum obtained for OH{sup .} reaction in oxygenated solutions is similar to that observed in SO{sub 4}{sup .-} reaction in basic solutions. 25 refs., 5 figs., 1 tab.

  20. Metabolites and DNA adduct formation from flavoenzyme-activated porfiromycin.

    PubMed

    Pan, S S; Iracki, T

    1988-08-01

    Porfiromycin was reductively metabolized by NADPH cytochrome P-450 reductase and xanthine oxidase under anaerobic conditions. The production of metabolites varied with the pH and the contents of the reaction buffer. In Tris buffer, two major metabolites were produced at pH 7.5 and above, whereas one major metabolite was produced at pH 6.5. The three major metabolites were separated and isolated by HPLC. Identification by californium-252 plasma desorption mass spectrometry showed that the two major metabolites from pH 7.5 were (trans) and (cis)-forms of 7-amino-1-hydroxyl-2-methylaminomitosene and the major metabolite from pH 6.5 was 7-amino-2-methylaminomitosene. All three major metabolites showed substitutions at the C-1 position. DNA was alkylated readily by enzyme-activated porfiromycin. Digestion of porfiromycin-alkylated DNA by DNase, snake venom phosphodiesterase, and alkaline phosphatase resulted in an insoluble nuclease-resistant fraction and a soluble fraction. The nuclease-resistant fraction reflected a high content of cross-linked adducts. Upon HPLC analysis, the solubilized fraction contained two monofunctionally linked porfiromycin adducts and a possibly cross-linked dinucleotide. The major adduct was isolated by HPLC and identified by NMR, as N2-(2'-deoxyguanosyl)-7-amino-2-methylaminomitosene. The N2 position of deoxyguanosine appeared as the major monofunctional alkylating site for DNA alkylation by porfiromycin. Thus, mitomycin C and porfiromycin (which differs from mitomycin C only by the addition of a methyl group to the aziridine nitrogen) share the same enzymatic activating mechanism that leads to the formation of the same types of metabolites and the same specificity of DNA alkylation. PMID:3412325

  1. First Crystal Structure for a Gold Carbene-Protein Adduct.

    PubMed

    Ferraro, Giarita; Gabbiani, Chiara; Merlino, Antonello

    2016-07-20

    The X-ray structure of the adduct formed in the reaction between the gold N-heterocyclic carbene compound Au(NHC)Cl (with NHC = 1-butyl-3-methyl-imidazole-2-ylidene) and the model protein thaumatin is reported here. The structure reveals binding of Au(NHC)(+) fragments to distinct protein sites. Notably, binding of the gold compound occurs at lysine side chains and at the N-terminal tail; the metal binds the protein after releasing Cl(-) ligand, but retaining NHC fragment. PMID:27364343

  2. Unraveling the Photoswitching Mechanism in Donor-Acceptor Stenhouse Adducts.

    PubMed

    Lerch, Michael M; Wezenberg, Sander J; Szymanski, Wiktor; Feringa, Ben L

    2016-05-25

    Molecular photoswitches have opened up a myriad of opportunities in applications ranging from responsive materials and control of biological function to molecular logics. Here, we show that the photoswitching mechanism of donor-acceptor Stenhouse adducts (DASA), a recently reported class of photoswitches, proceeds by photoinduced Z-E isomerization, followed by a thermal, conrotatory 4π-electrocyclization. The photogenerated intermediate is manifested by a bathochromically shifted band in the visible absorption spectrum of the DASA. The identification of the role of this intermediate reveals a key step in the photoswitching mechanism that is essential to the rational design of switching properties via structural modification. PMID:27152878

  3. Molecular interactions between organized surface-confined monolayers and vapor-phase probe molecules. 8. Reactions between acid-terminated self-assembled monolayers and vapor-phase bases

    SciTech Connect

    Yang, H.C.; Dermody, D.L.; Xu, C.; Crooks, R.M.; Ricco, A.J.

    1996-02-07

    We present the results of a study of the interactions between three different acid-terminated self-assembled monolayer(SAM) surfaces and three basic vapor-phase probe molecules. The SAMs are composed of 4-mercaptobenzoic acid (MBA), 3-mercaptopropionic acid(MPA), and 11-mercaptoundecanoic acid (MUA), and the vapor-phase probes are, in order of increasing solution-phase acidity, decylamine, pyridine, and pyrazine. Our results are based on data from surface infrared spectroscopy and thickness-shear mode mass sensors. We find that all three SAMs irreversibly bind approximately one monolayer of decylamine, although there are slight differences that correlate with the structural nuances of the SAMs. The MPA and MBA SAMs bind decylamine through an electrostatic interaction brought about by transfer of a proton from the acid to the base. Because the MUA SAM is more impenetrable than the others, complete proton transfer is hindered, and binding of decylamine arises through a combination of proton transfer and strong hydrogen bonding. In the presence of its vapor, pyridine adsorbs to MBA surfaces at near-monolayrer coverage, but upon N{sub 2} purging about two-thirds of it desorbs. Only one-half monolayer of pyrazine, which is less basic than pyridine, adsorbs to the MBA SAM, and upon N{sub 2} purging, about two-thirds of it desorbs. The aliphatic acid SAMs follow a similar trend. 40 refs., 10 figs., 2 tabs.

  4. Carbonic anhydrase activators: X-ray crystal structure of the adduct of human isozyme II with L-histidine as a platform for the design of stronger activators.

    PubMed

    Temperini, Claudia; Scozzafava, Andrea; Puccetti, Luca; Supuran, Claudiu T

    2005-12-01

    Activation of the carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA I, II, and IV with l-histidine and some of its derivatives has been investigated by kinetic and X-ray crystallographic methods. l-His was a potent activator of isozymes I and IV (activation constants in the range of 4-33microM), and a moderate hCA II activator (activation constant of 113microM). Both carboxy- as well as amino-substituted l-His derivatives, such as the methyl ester or the dipeptide carnosine (beta-Ala-His), acted as more efficient activators as compared to l-His. The X-ray crystallographic structure of the hCA II-l-His adduct showed the activator to be anchored at the entrance of the active site cavity, participating in an extended network of hydrogen bonds with the amino acid residues His64, Asn67, and Gln92 and, with three water molecules connecting it to the zinc-bound water. Although the binding site of l-His is similar to that of histamine, the first CA activator for which the X-ray crystal structure has been reported in complex with hCA II (Briganti, F.; Mangani, S.; Orioli, P.; Scozzafava, A.; Vernaglione, G.; Supuran, C. T. Biochemistry1997, 36, 10384) there are important differences of binding between the two structurally related activators, since histamine interacts among others with Asn67 and Gln92 (similarly to l-His), but also with Asn62 and not His64, whereas the number of water molecules connecting them to the zinc-bound water is different (two for histamine, three for l-His). Furthermore, the imidazole moieties of the two activators adopt different conformations when bound to the enzyme active site. Since neither the amino- nor carboxy moieties of l-His participate in interactions with amino acid moieties of the active site, they can be derivatized for obtaining more potent activators, with pharmacological applications for the enhancement of synaptic efficacy. This may constitute a novel approach for the treatment of Alzheimer's disease, aging, and other conditions in

  5. Lack of Involvement of CEP Adducts in TLR Activation and in Angiogenesis

    PubMed Central

    Gounarides, John; Cobb, Jennifer S.; Zhou, Jing; Cook, Frank; Yang, Xuemei; Yin, Hong; Meredith, Erik; Rao, Chang; Huang, Qian; Xu, YongYao; Anderson, Karen; De Erkenez, Andrea; Liao, Sha-Mei; Crowley, Maura; Buchanan, Natasha; Poor, Stephen; Qiu, Yubin; Fassbender, Elizabeth; Shen, Siyuan; Woolfenden, Amber; Jensen, Amy; Cepeda, Rosemarie; Etemad-Gilbertson, Bijan; Giza, Shelby; Mogi, Muneto; Jaffee, Bruce; Azarian, Sassan

    2014-01-01

    Proteins that are post-translationally adducted with 2-(ω-carboxyethyl)pyrrole (CEP) have been proposed to play a pathogenic role in age-related macular degeneration, by inducing angiogenesis in a Toll Like Receptor 2 (TLR2)-dependent manner. We have investigated the involvement of CEP adducts in angiogenesis and TLR activation, to assess the therapeutic potential of inhibiting CEP adducts and TLR2 for ocular angiogenesis. As tool reagents, several CEP-adducted proteins and peptides were synthetically generated by published methodology and adduction was confirmed by NMR and LC-MS/MS analyses. Structural studies showed significant changes in secondary structure in CEP-adducted proteins but not the untreated proteins. Similar structural changes were also observed in the treated unadducted proteins, which were treated by the same adduction method except for one critical step required to form the CEP group. Thus some structural changes were unrelated to CEP groups and were artificially induced by the synthesis method. In biological studies, the CEP-adducted proteins and peptides failed to activate TLR2 in cell-based assays and in an in vivo TLR2-mediated retinal leukocyte infiltration model. Neither CEP adducts nor TLR agonists were able to induce angiogenesis in a tube formation assay. In vivo, treatment of animals with CEP-adducted protein had no effect on laser-induced choroidal neovascularization. Furthermore, in vivo inactivation of TLR2 by deficiency in Myeloid Differentiation factor 88 (Myd88) had no effect on abrasion-induced corneal neovascularization. Thus the CEP-TLR2 axis, which is implicated in other wound angiogenesis models, does not appear to play a pathological role in a corneal wound angiogenesis model. Collectively, our data do not support the mechanism of action of CEP adducts in TLR2-mediated angiogenesis proposed by others. PMID:25343517

  6. Dynamic and static control of the human knee joint in abduction-adduction.

    PubMed

    Zhang, L Q; Wang, G

    2001-09-01

    It is unclear whether humans can voluntarily control dynamic and static properties in knee abduction-adduction, which may be important in performing functional tasks and preventing injuries, whether the main load is about the abduction axis or not. A joint-driving device was used to perturb the knee in abduction-adduction at full knee extension under both passive (muscle relaxed) and active (muscle contracted in abduction or adduction) conditions. Dynamic control properties in knee abduction-adduction were characterized by joint stiffness, viscosity, and limb inertia, and quasi-static knee torque-angle relationship was characterized by knee abduction-adduction laxity and quasi-static stiffness (at a 20Nm moment). It was found that the subjects were capable of generating net abduction and adduction moment through differential co-contraction of muscles crossing the medial and lateral sides of the knee, which helped to reduce the abduction-adduction joint laxity (p< or =0.01) and increase stiffness (p<0.027) and viscous damping. Knee abduction laxity was significantly lower than adduction laxity (p=0.043) and the quasi-static abduction stiffness was significantly higher than adduction stiffness (p<0.001). The knee joint showed significantly higher stiffness and viscosity in abduction-adduction than their counterparts in knee flexion-extension at comparable levels of joint torque (p<0.05). Similar to dynamic flexion-extension properties, the system damping ratio remained constant over different levels of contraction, indicating simplified control tasks for the central nervous system; while the natural undamped frequency increased considerably with abduction-adduction muscle contraction, presumably making the knee a quicker system during strenuous tasks involving strong muscle contraction. PMID:11506781

  7. In vitro and in vivo temperature modulation of hepatic metabolism and DNA adduction of aflatoxin B1 in rainbow trout.

    PubMed

    Carpenter, H M; Zhang, Q; el Zahr, C; Selivonchick, D P; Brock, D E; Curtis, L R

    1995-02-01

    Alterations in membrane lipid composition during temperature acclimation of poikilotherms is hypothesized to compensate for direct effects of temperature on membrane fluidity. Temperature also influences disposition and actions of some xenobiotics. This suggests the potential for complex interactions between temperature and metabolism of chemical carcinogens. Whole livers and hepatic microsomes from rainbow trout acclimated at 18 degrees C have more saturated fatty acids and less mono- and polyunsaturated fatty acids than those from fish acclimated at 10 degrees C. Such changes are consistent with a role for membrane lipid fluidity in temperature compensation. When 10 and 18 degrees C acclimated fish are ip injected with 0.4 mg/kg [3H]aflatoxin B1 (AFB1) at their respective acclimation temperatures, hepatic disposition of AFB1, DNA adduction, and biliary metabolites are similar. An acute shift of 18 degrees C acclimated trout to 14 degrees C reduces [3H]AFB-DNA adduct formation, while [3H]AFB1 adduction after acute shift of 10 degrees C acclimated fish to 14 degrees C is no different than in non-shifted fish. Hepatic microsomes isolated from 10 or 18 degrees C acclimated trout, incubated with 10 microM [3H]AFB1 and calf thymus DNA between 6 and 22 degrees C exhibit no differences in the "break points" of Arrhenius plots (16 degrees C in both groups). There is, however, more in vitro DNA adduction of [3H]AFB1 by microsomes from 18 degrees C acclimated fish, a difference abolished by 0.5 mM alpha-naphthoflavone (ANF). These results suggest that temperature acclimation of trout differentially modifies activities of cytochrome P-450 isozymes. When assayed at respective acclimation temperatures, hepatic cytosol from 18 degrees C fish produces more aflatoxicol, a detoxication product of AFB1, than cytosol from 10 degree C fish. Therefore, this soluble enzyme does not exhibit ideal temperature compensation. Such temperature-induced differences in microsomal cytochrome P

  8. Solid-state NMR strategies for the structural characterization of paramagnetic NO adducts of Frustrated Lewis Pairs (FLPs).

    PubMed

    Wiegand, Thomas; Sajid, Muhammad; Kehr, Gerald; Erker, Gerhard; Eckert, Hellmut

    2014-01-01

    By N,N addition of NO to the norbonane annulated borane-phosphane Frustrated Lewis pair (FLP) 1 a five-membered heterocyclic persistent aminoxyl radical 2 and its diamagnetic hydroxylamine reduction product 3 are prepared, and the comprehensive multinuclear solid state NMR characterization ((1)H, (11)B, (19)F, (31)P) of these FLP adducts is reported. Signal quantification experiments using a standard addition method reveal that the (11)B and (31)P NMR signals observed in 2 actually arise from molecular impurities of 3 embedded in the paramagnetic crystal. In contrast analogous quantification experiments reveal that the (1)H and (19)F MAS-NMR spectra originate from spin-carrying molecules. Peak assignments are based on DFT-calculated Mulliken spin densities, which lead to the surprising result that the largest paramagnetic shift affecting a proton NMR resonance in 2 originates from intermolecular interactions. For the (19)F nuclei, experiments and calculations indicate that paramagnetic shift effects are very small. In this case, assignments are based on DFT chemical shift calculations carried out on diamagnetic 3 and (19)F((11)B) Rotational Echo Adiabatic Passage DOuble Resonance (REAPDOR) experiments. The set of experiments described here defines an efficient strategy for the structural analysis of paramagnetic FLP adducts. PMID:24815176

  9. Mechanism of repair of 5'-topoisomerase II-DNA adducts by mammalian tyrosyl-DNA phosphodiesterase 2

    SciTech Connect

    Schellenberg, Matthew J; Appel, C Denise; Adhikari, Sanjay; Robertson, Patrick D; Ramsden, Dale A; Williams, R Scott

    2012-10-28

    The topoisomerase II (topo II) DNA incision-and-ligation cycle can be poisoned (for example following treatment with cancer chemotherapeutics) to generate cytotoxic DNA double-strand breaks (DSBs) with topo II covalently conjugated to DNA. Tyrosyl-DNA phosphodiesterase 2 (Tdp2) protects genomic integrity by reversing 5'-phosphotyrosyl–linked topo II–DNA adducts. Here, X-ray structures of mouse Tdp2–DNA complexes reveal that Tdp2 β–2-helix–β DNA damage–binding 'grasp', helical 'cap' and DNA lesion–binding elements fuse to form an elongated protein-DNA conjugate substrate-interaction groove. The Tdp2 DNA-binding surface is highly tailored for engagement of 5'-adducted single-stranded DNA ends and restricts nonspecific endonucleolytic or exonucleolytic processing. Structural, mutational and functional analyses support a single–metal ion catalytic mechanism for the exonuclease-endonuclease-phosphatase (EEP) nuclease superfamily and establish a molecular framework for targeted small-molecule blockade of Tdp2-mediated resistance to anticancer topoisomerase drugs.

  10. The effect of functional groups on the SO2 adsorption on carbon surface I: A new insight into noncovalent interaction between SO2 molecule and acidic oxygen-containing groups

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Sun, Fei; Qu, Zhibin; Gao, Jihui; Wu, Shaohua

    2016-04-01

    For the aim to give a new insight into the interactions between SO2 molecule and carbon surface and the effect of acidic oxygen-containing groups, density functional theory and noncovalent interaction analysis in terms of reduced density gradient were employed to investigate both the intensity and type of the interactions. The results indicate that the physisorption of SO2 molecule mainly occurs on the basal plane of pure carbon surface due to van der Waals interactions, however, when acidic oxygen-containing groups were decorated on the carbon surface, they would facilitate SO2 adsorption as a result of hydrogen bonding and dipole-dipole interactions. What's more, these groups could not affect the chemisorption of SO2 remarkably, no matter they are near the adsorption sites or not. In addition, calculation results show that the interactions between SO2 and acidic oxygen-containing groups are in physisorption nature, which challenges a long-held the viewpoint of irreversible chemisorption. Acidic oxygen-containing groups could boost the effective surface area of carbon by enhancing the physisorption on edge positions.

  11. Single-Molecule DNA Analysis

    NASA Astrophysics Data System (ADS)

    Efcavitch, J. William; Thom