Science.gov

Sample records for acid molten carbonate

  1. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis

    SciTech Connect

    Remick, R.; Wheeler, D.

    2010-09-01

    This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants.

  2. Molten carbonate fuel cell

    DOEpatents

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  3. Molten carbonate fuel cell

    DOEpatents

    Kaun, Thomas D.; Smith, James L.

    1987-01-01

    A molten electrolyte fuel cell with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas, the cell enclosures collectively providing an enclosure for the array and effectively avoiding the problems of electrolyte migration and the previous need for compression of stack components, the fuel cell further including an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  4. Molten carbonate fuel cell matrices

    DOEpatents

    Vogel, Wolfgang M.; Smith, Stanley W.

    1985-04-16

    A molten carbonate fuel cell including a cathode electrode of electrically conducting or semiconducting lanthanum containing material and an electrolyte containing matrix of an electrically insulating lanthanum perovskite. In addition, in an embodiment where the cathode electrode is LaMnO.sub.3, the matrix may include LaAlO.sub.3 or a lithium containing material such as LiAlO.sub.2 or Li.sub.2 TiO.sub.3.

  5. Molten carbonate fuel cell separator

    DOEpatents

    Nickols, Richard C.

    1986-09-02

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  6. Molten carbonate fuel cell separator

    DOEpatents

    Nickols, R.C.

    1984-10-17

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  7. Molten fatty acid based microemulsions.

    PubMed

    Noirjean, Cecile; Testard, Fabienne; Dejugnat, Christophe; Jestin, Jacques; Carriere, David

    2016-06-21

    We show that ternary mixtures of water (polar phase), myristic acid (MA, apolar phase) and cetyltrimethylammonium bromide (CTAB, cationic surfactant) studied above the melting point of myristic acid allow the preparation of microemulsions without adding a salt or a co-surfactant. The combination of SANS, SAXS/WAXS, DSC, and phase diagram determination allows a complete characterization of the structures and interactions between components in the molten fatty acid based microemulsions. For the different structures characterized (microemulsion, lamellar or hexagonal phases), a similar thermal behaviour is observed for all ternary MA/CTAB/water monophasic samples and for binary MA/CTAB mixtures without water: crystalline myristic acid melts at 52 °C, and a thermal transition at 70 °C is assigned to the breaking of hydrogen bounds inside the mixed myristic acid/CTAB complex (being the surfactant film in the ternary system). Water determines the film curvature, hence the structures observed at high temperature, but does not influence the thermal behaviour of the ternary system. Myristic acid is partitioned in two "species" that behave independently: pure myristic acid and myristic acid associated with CTAB to form an equimolar complex that plays the role of the surfactant film. We therefore show that myristic acid plays the role of a solvent (oil) and a co-surfactant allowing the fine tuning of the structure of oil and water mixtures. This solvosurfactant behaviour of long chain fatty acid opens the way for new formulations with a complex structure without the addition of any extra compound. PMID:27241163

  8. Cathode for molten carbonate fuel cell

    DOEpatents

    Kaun, Thomas D.; Mrazek, Franklin C.

    1990-01-01

    A porous sintered cathode for a molten carbonate fuel cell and method of making same, the cathode including a skeletal structure of a first electronically conductive material slightly soluble in the electrolyte present in the molten carbonate fuel cell covered by fine particles of a second material of possibly lesser electronic conductivity insoluble in the electrolyte present in the molten carbonate fuel cell, the cathode having a porosity in the range of from about 60% to about 70% at steady-state cell operating conditions consisting of both macro-pores and micro-pores.

  9. Electrode for molten carbonate fuel cell

    DOEpatents

    Iacovangelo, Charles D.; Zarnoch, Kenneth P.

    1983-01-01

    A sintered porous electrode useful for a molten carbonate fuel cell is produced which is composed of a plurality of 5 wt. % to 95 wt. % nickel balance copper alloy encapsulated ceramic particles sintered together by the alloy.

  10. Oxygen electrode in molten carbonate fuel cells

    SciTech Connect

    Dave, B.B.; White, R.E. . Dept. of Chemical Engineering); Srinivasan, S; Appleby, A.J. . Center for Electrochemical Systems and Hydrogen Research)

    1990-01-01

    During this quarter, impedance data were analyzed for oxygen reduction process in molten carbonate electrolyte and a manuscript, Impedance Analysis for Oxygen Reduction in a Lithium Carbonate Melt: Effects of Partial Pressure of Carbon Dioxide and Temperature,'' was prepared which will be submitted to Journal of the Electrochemical Society for publication. 31 refs., 10 figs., 5 tabs.

  11. Physical properties of molten carbonate electrolyte

    SciTech Connect

    Kojima, T.; Yanagida, M.; Tanimoto, K.

    1996-12-31

    Recently many kinds of compositions of molten carbonate electrolyte have been applied to molten carbonate fuel cell in order to avoid the several problems such as corrosion of separator plate and NiO cathode dissolution. Many researchers recognize that the addition of alkaline earth (Ca, Sr, and Ba) carbonate to Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} and Li{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} eutectic electrolytes is effective to avoid these problems. On the other hand, one of the corrosion products, CrO{sub 4}{sup 2-} ion is found to dissolve into electrolyte and accumulated during the long-term MCFC operations. This would affect the performance of MCFC. There, however, are little known data of physical properties of molten carbonate containing alkaline earth carbonates and CrO{sub 4}{sup 2-}. We report the measured and accumulated data for these molten carbonate of electrical conductivity and surface tension to select favorable composition of molten carbonate electrolytes.

  12. High temperature desulfurization using molten salt carbonate

    SciTech Connect

    Yoshida, Nobuhiro; Iwahashi, Takashi; Kosaka, Hitoshi; Tsuji, Kiyoshi; Yoshikawa, Kunio; Yamashita, Keijiro; Murata, Keiji; Hori, Michio

    1998-07-01

    A new desulfurization process using molten salt carbonate as an absorber is proposed. Main feature of this process is its high operating temperature (600{approximately}800 C) as well as the possibility of simultaneous desulfurization and dechlorination. Some chemical equilibrium calculations and basic experiments of this process have been done as the first step of basic theoretical investigations for this new gas cleanup concept. It is confirmed from this calculation that this new gas cleanup concept has enough ability of desulfurization and regeneration of molten salt carbonate.

  13. Multiply manifolded molten carbonate fuel cells

    SciTech Connect

    Krumpelt, M.; Roche, M.F.; Geyer, H.K.; Johnson, S.A.

    1994-08-01

    This study consists of research and development activities related to the concept of a molten carbonate fuel cell (MCFC) with multiple manifolds. Objective is to develop an MCFC having a higher power density and a longer life than other MCFC designs. The higher power density will result from thinner gas flow channels; the extended life will result from reduced temperature gradients. Simplification of the gas flow channels and current collectors may also significantly reduce cost for the multiply manifolded MCFC.

  14. Molten carbonate fuel cell stack design options

    SciTech Connect

    Benjamin, T.G.; Petri, R.J.

    1986-01-01

    Significant strides in molten carbonate fuel cell (MCFC) life and performance have been made during the last 20 years. Results include single cell performance improvement from 10 watts/ft/sup 2/ to 120 watts/ft/sup 2/, testing of several sub-scale stacks, and significant reductions in cost. In the 1980s, attention has turned toward stack-related issues including component dimensional and structural stability, cathode dissolution, sulfur poisoning, hardware design, electrolyte management, carbon dioxide conservation, internal reforming, and systems considerations. This paper discusses MCFC stack hardware design options and present a brief introduction to MCFC technology. 4 refs., 8 figs.

  15. Molten carbonate fuel cell stack design options

    SciTech Connect

    Benjamin, T.G.; Petri, R.J.

    1986-03-01

    Significant strides in molten carbonate fuel cell (MCFC) life and performance have been made during the last 20 years. Results include single cell performance improvement from 10 watts/ft/sup 2/ to 120 watts/ft/sup 2/, testing of several sub-scale stacks, and significant reductions in cost. In the 1980's, attention has turned toward stack-related issues including component dimensional and structural stability, cathode dissolution, sulfur poisoning, hardware design, electrolyte management, carbon dioxide conservation, internal reforming, and systems considerations. This paper discusses MCFC stack hardware design options and present a brief introduction to MCFC technology. 4 references, 8 figures.

  16. Molten carbonate fuel cell research and development

    SciTech Connect

    Ong, E.T. )

    1991-02-01

    Successful molten carbonate fuel cell development required the resolution of four significant technical problems: (1) the molten carbonate fuel cell nickel anode had excessive creep, (2) the nickel oxide cathode exhibited an excessively high dissolution rate, (3) electrolyte matrices have been prone to cracking, and (4) a comprehensive definition of component development requirements for the MCFC stack was lacking. This program addressed all of these issues and others. As a result of a series of studies on materials and manufacturing processes, anode creep (shrinkage) has been reduced significantly with the development of oxide-dispersion-strengthened nickel aluminum anodes. By increasing the basicity of the carbonate electrolyte with alkaline-earth additives, nickel dissolution has been reduced by a factor of 2 to 4, thus increasing MCFC cell life. Successful techniques for the simple and low-cost tape casting of MCFC matrices and carbonate layers have been developed, and successful endurance tests have been run on new cell anodes, cathodes, and matrices. 2 refs., 51 figs., 7 tabs.

  17. Alternative cathodes for molten carbonate fuel cells

    SciTech Connect

    Bloom, I.; Lanagan, M.; Roche, M.F.; Krumpelt, M.

    1996-02-01

    Argonne National Laboratory (ANL) is developing advanced cathodes for pressurized operation of the molten carbonate fuel cell (MCFC). The present cathode, lithiated nickel oxide, tends to transport to the anode of the MCFC, where it is deposited as metallic nickel. The rate of transport increases with increasing CO{sub 2} pressure. This increase is due to an increased solubility of nickel oxide (NiO) in the molten carbonate electrolyte. An alternative cathode is lithium cobaltate (LiCoO{sub 2})-Solid solutions of LiCoO{sub 2} in LiFeO{sub 2} show promise for long-lived cathode materials. We have found that small additions of LiCoO{sub 2} to LiFeO{sub 2} markedly decrease the resistivity of the cathode material. Cells containing the LiCoO{sub 2}-LiFeO{sub 2} cathodes have stable performance for more than 2100 h of operation and display lower cobalt migration.

  18. Pitting corrosion of aluminized seals in molten carbonate fuel cells

    SciTech Connect

    Krumpelt, M.; Roche, M.F.; Bloom, I.

    1994-08-01

    The objective of this research is to gain a better understanding of the corrosion of the aluminized type 316 stainless steel employed in the seal areas of the molten carbonate fuel cell. The seals are formed between the aluminized Type 316 SS surface and the electrolyte (generally a mixture of molten alkali carbonates and lithium aluminate).

  19. Method of making molten carbonate fuel cell ceramic matrix tape

    DOEpatents

    Maricle, Donald L.; Putnam, Gary C.; Stewart, Jr., Robert C.

    1984-10-23

    A method of making a thin, flexible, pliable matrix material for a molten carbonate fuel cell is described. The method comprises admixing particles inert in the molten carbonate environment with an organic polymer binder and ceramic particle. The composition is applied to a mold surface and dried, and the formed compliant matrix material removed.

  20. Performance model of molten carbonate fuel cell

    SciTech Connect

    Matsumoto, S.; Sasaki, A.; Urushibata, H.; Tanaka, T. )

    1990-06-01

    A performance model of a molten carbonate fuel cell (MCFC), that is an electrochemical energy conversion device for electric power generation, is discussed. The authors' purpose is to improve the presumptive ability of the MCFC model and to investigate the impact of MCFC characteristics in fuel cell system simulations. Basic data are obtained experimentally by single-cell tests. The authors pay special attention to the MCFC overall characteristics with respect to oxidant composition. A correlation formula based on the experimental data is derived as for the cell voltage, oxygen and carbon dioxide partial pressures. After three types of the MCFC system option are assumed, trade-off studies are made dependant on the performance models.

  1. Stabilized matrix for molten carbonate fuel cell

    SciTech Connect

    Nirasawa, Hitoshi; Kawachi, Takanori; Ogawa, Takashi; Hori, Michio; Tomimatsu, Norihiro; Nakagawa, Kazuaki; Ohzu, Hideyuki; Yamazaki, Yohtaro

    1996-12-31

    For commercialization of molten carbonate fuel cell (MCFC) power plants, the most important factors are MCFC performance and life. The performance and life of an MCFC depend on the electrolyte loss and gas crossover due to the matrix degradation, such as LiAlO{sub 2} particle growth during cell operation and the matrix cracking at the initial heat-up stage. In order to suppress the matrix degradation, the authors fabricated a stabilized matrix with {alpha}-LiAlO{sub 2} as the electrolyte support material and with long {alpha}-Al{sub 2}O{sub 3} fibers as the reinforcement. They assembled the cell with the stabilized matrix. The performance of the cell is stable for 7,000 hours. They consider that the matrix degradation, such as the particle growth during cell operation and matrix cracking, has not occurred in this cell.

  2. Electrolyte paste for molten carbonate fuel cells

    DOEpatents

    Bregoli, Lawrance J.; Pearson, Mark L.

    1995-01-01

    The electrolyte matrix and electrolyte reservoir plates in a molten carbonate fuel cell power plant stack are filled with electrolyte by applying a paste of dry electrolyte powder entrained in a dissipatable carrier to the reactant flow channels in the current collector plate. The stack plates are preformed and solidified to final operating condition so that they are self sustaining and can be disposed one atop the other to form the power plant stack. Packing the reactant flow channels with the electrolyte paste allows the use of thinner electrode plates, particularly on the anode side of the cells. The use of the packed electrolyte paste provides sufficient electrolyte to fill the matrix and to entrain excess electrolyte in the electrode plates, which also serve as excess electrolyte reservoirs. When the stack is heated up to operating temperatures, the electrolyte in the paste melts, the carrier vaporizes, or chemically decomposes, and the melted electrolyte is absorbed into the matrix and electrode plates.

  3. Molten metal reactor and method of forming hydrogen, carbon monoxide and carbon dioxide using the molten alkaline metal reactor

    DOEpatents

    Bingham, Dennis N.; Klingler, Kerry M.; Turner, Terry D.; Wilding, Bruce M.

    2012-11-13

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  4. Sulfur tolerant molten carbonate fuel cell anode and process

    DOEpatents

    Remick, Robert J.

    1990-01-01

    Molten carbonate fuel cell anodes incorporating a sulfur tolerant carbon monoxide to hydrogen water-gas-shift catalyst provide in situ conversion of carbon monoxide to hydrogen for improved fuel cell operation using fuel gas mixtures of over about 10 volume percent carbon monoxide and up to about 10 ppm hydrogen sulfide.

  5. Molten Carbonate Fuel Cell Product Design Improvement

    SciTech Connect

    1996-03-01

    This annual report provides results of Energy Research Corporation`s technical approach to performing the program `Molten Carbonate Fuel Cell (MCFC) Product Design Improvement` covered under the DOE-ERC Cooperative Agreement DE-FC21-95MC31184. This work is supported by DOE/METC and DOD/DARPA as well as ERC Team funds. The objective of the DOE-sponsored program is to advance the direct carbonate fuel cell technology to a level suitable for commercial entry for civilian applications. The overall objective of the DOD/DARPA initiative is to adapt the civilian 2 MW-Class fuel cell power plant for dual fuel DOD applications. This program is designed to advance the carbonate fuel cell technology from the power plant demonstration status to the commercial entry early production unit design stage. The specific objectives which will allow attainment of these overall program goals are: (1) Provide environmental information to support DOE evaluation with respect to the National Environmental Policy Act (NEPA), (2) Define market-responsive power plant requirements and specifications, (3) Establish design for multifuel, low-cost, modular, market-responsive power plant, (4) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (5) Acquire capabilities to support developmental testing of 0370 stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness of the power plant for commercial entry.

  6. Corrosion behavior of chromium in molten carbonate

    SciTech Connect

    Vossen, J.P.T.; Makkus, R.C.; Wit, J.H.W. de

    1996-01-01

    The corrosion behavior of Cr in molten carbonate was investigated with electrochemical techniques in combination with quenching after polarization at fixed potentials. Between {minus}1,700 and {minus}1,500 mV carbon deposition takes place on the surface. The stationary corrosion product formed on Cr after polarization at {minus}1,700 mV is probably chromium carbide. Between {minus}1,600 and {minus}300 mV a LiCrO{sub 2}-layer is present on the surface of the Cr. At potentials above approximately {minus}500 mV chromate formation and dissolution take place. When the potential increases, the oxidation rate of the Cr increases due to the larger driving force for oxidation. In the potential region where oxygen vacancies are filled and bivalent chromium ions are oxidized, the conductivity of the scale decreases and the oxidation rate is determined by the transport properties of the scale: the passive properties of the LiCrO{sub 2}-scale have improved. In the anodic scan of a cyclic voltammogram two peaks can be observed, corresponding with the oxidation of point defects, and the formation of instable intermediate chromium oxide. These reactions are accompanied by the formation of lithium chromite. While scanning cathodically, first chromate ions are reduced. At very cathodic potentials trivalent Cr ions are reduced to bivalent Cr ions and point defects, which are incorporated in the LiCrO{sub 2}-lattice, and water is reduced. These reactions may be accompanied by the reduction of the instable chromium oxide formed during the preceding anodic scan. Near {minus}1,700 mV carbonate decomposes, lithium chromite is reduced and possibly carbide formation also takes place.

  7. Kinetics of Carbon Dissolution of Coke in Molten Iron

    NASA Astrophysics Data System (ADS)

    Jang, Dongik; Kim, Yumkyum; Shin, Minsoo; Lee, Joonho

    2012-12-01

    The effect of temperature on the dissolution rate of carbon from coke in molten iron was investigated using a sampling technique in the temperature range of 1723 K to 1923 K (1450 °C to 1650 °C). The dissolution rate of carbon from coke in molten iron increased as the temperature increased. At 1923 K (1650 °C), the rate-determining step was the mass transfer of carbon in the boundary layer adjacent to the metal-carbon interface. At 1723 K (1450 °C), the rate-determining step changed from the mass transfer to the interfacial chemical reaction as the reaction proceeded. At 1823 K (1550 °C), both reaction steps affected the apparent reaction rates. Sulfur dissolution did not affect the carbon dissolution rates in molten iron, so it was considered that the sulfur adsorption at the metal/coke interface was not so significant. The apparent activation energy of the carbon dissolution of coke in molten iron was estimated to be 442 kJ/mol.

  8. Oxygen electrode reaction in molten carbonate fuel cells

    SciTech Connect

    Appleby, A.J.; White, R.E.

    1992-07-07

    Molten carbonate fuel cell system is a leading candidate for the utility power generation because of its high efficiency for fuel to AC power conversion, capability for an internal reforming, and a very low environmental impact. However, the performance of the molten carbonate fuel cell is limited by the oxygen reduction reaction and the cell life time is limited by the stability of the cathode material. An elucidation of oxygen reduction reaction in molten alkali carbonate is essential because overpotential losses in the molten carbonate fuel cell are considerably greater at the oxygen cathode than at the fuel anode. Oxygen reduction on a fully-immersed gold electrode in a lithium carbonate melt was investigated by electrochemical impedance spectroscopy and cyclic voltammetry to determine electrode kinetic and mass transfer parameters. The dependences of electrode kinetic and mass transfer parameters on gas composition and temperature were examined to determine the reaction orders and the activation energies. The results showed that oxygen reduction in a pure lithium carbonate melt occurs via the peroxide mechanism. A mass transfer parameter, D{sub O}{sup 1/2}C{sub O}, estimated by the cyclic voltammetry concurred with that calculated by the EIS technique. The temperature dependence of the exchange current density and the product D{sub O}{sup 1/2}C{sub O} were examined and the apparent activation energies were determined to be about 122 and 175 kJ/ mol, respectively.

  9. Non-segregating electrolytes for molten carbonate fuel cells

    SciTech Connect

    Krumpelt, M.; Kaun, T.; Lanagan, M.

    1996-08-01

    Current MCFCs use a Li/K carbonate mixture; the segregation increases the K concentration near the cathode, leading to increase cathode solubility and performance decline. ANL is developing molten carbonates that have minimal segregation; the approach is using Li-Na carbonates. In screening tests, fully developed potential distributions were obtained for 4 Li/Na compositions, and performance data were used to compare these.

  10. Electrode reaction mechanisms in molten carbonate fuel cells

    SciTech Connect

    Selman, J.R.; Nishina, T.; Lin, Y.P.; Yeager, E.B.; Tryk, D.A.

    1989-07-01

    This report describes the results of a joint research effort at Illinois Institute of Technology (IIT) and Case Western Reserve University (CWRU) to elucidate the reaction mechanism of oxygen reduction at the cathode of the molten carbonate fuel cell (MCFC). This research project was aimed at developing novel experimental approaches to the chemistry and electrode kinetics of oxygen reduction under MCFC conditions, and improving our fundamental understanding of the reaction mechanism as it applies to the MCFC. IIT's contribution was focused on developing and using rotating electrodes with well-defined mass-transfer properties, to characterize the electrode kinetics of oxygen reduction in molten carbonate. CWRU's contribution was focused on developing and using micro-electrodes for the same purpose, and also on developing spectroscopic cells and carrying out various types of spectroscopic measurements to characterize the oxygen species in molten carbonate under MCFC conditions. This report is divided into two main parts. Part 1 provides the technical background of the questions concerning oxygen reduction in molten carbonate as they apply to the MCFC system. The methodological approach and the objectives of the research are also presented. The second part describes the development of the rotating electrodes, micro-electrodes and spectroscopic cells and the results of measurements, as well as the interpretation of the data. Conclusions of this project, including some recommendations for further research, are also given in this part. 111 refs., 69 figs., 7 tabs.

  11. Research and development issues for molten carbonate fuel cells

    SciTech Connect

    Krumpelt, M.

    1996-04-01

    This paper describes issues pertaining to the development of molten carbonate fuel cells. In particular, the corrosion resistance and service life of nickel oxide cathodes is described. The resistivity of lithium oxide/iron oxides and improvement with doping is addressed.

  12. Fabrication of catalytic electrodes for molten carbonate fuel cells

    DOEpatents

    Smith, James L.

    1988-01-01

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.

  13. Density functional theory study of oxygen migration in molten carbonate

    NASA Astrophysics Data System (ADS)

    Lei, Xueling; Haines, Kahla; Huang, Kevin; Qin, Changyong

    2016-02-01

    The process of oxygen migration in alkali molten carbonate salts has been examined using density functional theory method. All geometries were optimized at the B3LYP/6-31G(d) level, while single point energy corrections were performed using MP4 and CCSD(T). At TS, a O-O-O linkage is formed and O-O bond forming and breaking is concerted. A cooperative "cogwheel" mechanism as described in the equation of CO42- + CO32- → CO32- ⋯O ⋯ CO32- → CO32- + CO42- is involved. The energy barrier is calculated to be 103.0, 136.3 and 127.9 kJ/mol through an intra-carbonate pathway in lithium, sodium and potassium carbonate, respectively. The reliability and accuracy of B3LYP/6-31G(d) were confirmed by CCSD(T). The calculated low values of activation energy indicate that the oxygen transfer in molten carbonate salts is fairly easy. In addition, it is found that lithium carbonate is not only a favorable molten carbonate salt for better cathode kinetics, but also it is widely used for reducing the melting point of Li/Na and Li/K eutectic MC mixtures. The current results imply that the process of oxygen reduction in MC modified cathodes is facilitated by the presence of MC, resulting in an enhancement of cell performance at low operating temperatures.

  14. Molten carbonate fuel cells (MCFC): Structure and operation

    SciTech Connect

    1996-03-01

    The main components of an individual cell are the anode, the cathode, and the molten carbonate electrolyte. Electrode materials are usually porous nickel alloys for reducing atmospheres (anode) and nickel oxide for oxidizing atmospheres (cathode). The electrolyte, typically a combination of molten, alkali (Li, K, Na) carbonates, is contained within a porous ceramic matrix, commonly made of lithium aluminate (LiAlO{sub 2}). The molten carbonate electrolyte, sandwiched between the anode and cathode, partially fills these porous electrodes. Electrochemical reactions take place at a three-phase interface formed by the electrolyte, the electrodes, and the gas streams. Carbonate ions are formed at an oxidant/electrolyte interface in the cathode and are transported through the electrolyte to a fuel/electrolyte interface in the anode. There, the carbonate ions react with the fuel, releasing electrons into the anode. The electrons then travel through an external circuit and through the load, suffering a voltage drop. Finally, the circuit is completed as the electrons return to the cathode. The paper gives data on MCFC efficiency and NO{sub x} emissions compared with engines and turbines.

  15. DFT Study of Oxygen Dissociation in Molten Carbonate.

    PubMed

    Lei, Xueling; Haines, Kahla; Huang, Kevin; Qin, Changyong

    2015-08-20

    Using density functional theory method, we have studied the oxygen dissociation in alkali molten carbonate at the B3LYP/6-31G(d) level. The calculated energies were then verified by MP4 and CCSD(T). A four-formula cluster (M2CO3)4, M = Li, Na, and K was used to describe the molten carbonate. It was found that the adsorption of oxygen to molten carbonate is of a chemical type and leads to the formation of CO5(2-) in MC, which was confirmed for the first time by DFT calculations. The energy barrier for its dissociation is calculated to be 197.9, 116.7, and 170.3 kJ/mol in the (M2CO3)4 cluster, M = Li, Na, and K, respectively. If the reaction of O2 + 2CO3(2-) → 2CO4(2-) is approximated as a one-step reaction, the activation energy is estimated to be 96.2, 15.1, and 68.6 kJ/mol, respectively. The reaction rate is first order to the pressure of oxygen. Surprisingly, the reaction of oxygen dissociation has the lowest energy barrier in sodium carbonate, which is consistent with the recent experimental findings. It is very clear that the molten carbonate salt has directly participated in the ORR process and plays an important role as a catalyst in the cathode of SOFCs. The oxygen reduction has been facilitated by MC and enhanced cell performance has been observed. PMID:26219024

  16. Non-segregating electrolytes for molten carbonate fuel cells

    SciTech Connect

    Kaun, T.D.; Bloom, I.D.; Krumpelt, M.

    1997-09-01

    Argonne National Laboratory is developing molten carbonate electrolyte compositions which have minimal segregation in the individual fuel cell and cell stack under an electric field. The approach is to characterize Li-Na carbonate mixtures in terms of their segregation properties in an electric field and, if necessary, to modify the observed segregation by adding Ba and Ca carbonates. Both non-segregating properties and MCFC test-cell performance show improvement as the lithium content is modified, up or down, from a baseline of 52/48 Li/Na. Results of gasket strip (20 V) screening studies, as well as those from cell tests, will be discussed.

  17. Wetting properties of molten carbonate fuel cell electrode materials

    SciTech Connect

    Fisher, J.M.; Bennett, P.S.; Pignon, J.F. ); Makkus, R.C.; Weewer, R.; Hemmes, K. )

    1990-05-01

    Molten carbonate fuel cells (MCFC) are of interest for their potentially highly efficient conversion of chemical energy into electrical energy. This paper discusses how the wetting properties of electrode materials by molten carbonate have a high relevance for the performance of the porous electrodes. When internal reforming of the fuel gas at the anode is performed, the wetting properties also influence the efficiency of the reforming process. Distribution of the electrolyte in an MCFC stack is mainly determined by the wetting properties of the porous MCFC materials, such as electrodes and tile in contact with the electrolyte. The quality of the wet seal areas of the separator plates in an MCFC stack to prevent gas leakage also depends on the wetting properties.

  18. Steam methane reforming in molten carbonate salt. Final report

    SciTech Connect

    Erickson, D.C.

    1996-05-01

    This report documents the work accomplished on the project {open_quotes}Steam Methane Reforming in Molten Carbonate Salt.{close_quotes}. This effort has established the conceptual basis for molten carbonate-based steam reforming of methane. It has not proceeded to prototype verification, because corrosion concerns have led to reluctance on the part of large hydrogen producers to adopt the technology. Therefore the focus was shifted to a less corrosive embodiment of the same technology. After considerable development effort it was discovered that a European company (Catalysts and Chemicals Europe) was developing a similar process ({open_quotes}Regate{close_quotes}). Accordingly the focus was shifted a second time, to develop an improvement which is generic to both types of reforming. That work is still in progress, and shows substantial promise.

  19. Molten carbonate fuel cell with high power density

    SciTech Connect

    Krumpelt, M.; Roche, M.F.; Bloom, I.; Geyer, H.; Johnson, S.

    1994-08-01

    The objective of this research is a doubling of the current density of the molten carbonate fuel cell (MCFC) from the present value of 1600A/m{sup 2} to 3200 A/m{sup 2} and a similar increase in the volumetric power density. This project is linked to other projects concerning MCFCs (one on the multiply manifolded MCFCs, the other on lithium ferrate and lithium cobaltate cathodes for MCFCs).

  20. Development of large scale internal reforming molten carbonate fuel cell

    SciTech Connect

    Sasaki, A.; Shinoki, T.; Matsumura, M.

    1996-12-31

    Internal Reforming (IR) is a prominent scheme for Molten Carbonate Fuel Cell (MCFC) power generating systems in order to get high efficiency i.e. 55-60% as based on the Higher Heating Value (HHV) and compact configuration. The Advanced Internal Reforming (AIR) technology has been developed based on two types of the IR-MCFC technology i.e. Direct Internal Reforming (DIR) and Indirect Internal Reforming (DIR).

  1. Molten carbonate fuel cells for coal and natural gas fuels

    SciTech Connect

    Krumplet, M.; Ackerman, J.P.; Cook, G.M.; Pierce, R.D.

    1984-02-01

    System designs of molten carbonate fuel cell power plants are described for central stations using coal and on-site generators operating on natural gas. Fuel-to-busbar efficiencies are near 50% in coal based systems with turbine bottoming and in simple gas based systems. Coal based systems with more advanced but not fully developed components, and more complex gas based systems approach 60% efficiency.

  2. Molten carbonate fuel cells for coal and natural gas fuels

    SciTech Connect

    Krumpelt, M.; Cook, G.M.; Pierce, R.D.; Ackerman, J.P.

    1984-01-01

    System designs of molten carbonate fuel cell power plants are described for central stations using coal and on-site generators operating on natural gas. Fuel-to-busbar efficiencies are near 50% in coal based systems with turbine bottoming and in simple gas based systems. Coal based systems with more advanced but not fully developed components, and more complex gas based systems approach 60% efficiency.

  3. Molten carbonate fuel cell cathode with mixed oxide coating

    DOEpatents

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  4. Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates

    NASA Astrophysics Data System (ADS)

    Lu, Beihu; Xiao, Zuoan; Zhu, Hua; Xiao, Wei; Wu, Wenlong; Wang, Dihua

    2015-12-01

    Simple, affordable and green methods to improve capacitive properties of commercial activated carbon (AC) are intriguing since ACs possess a predominant role in the commercial supercapacitor market. Herein, we report a green reactivation of commercial ACs by soaking ACs in molten Na2CO3-K2CO3 (equal in mass ratios) at 850 °C combining the merits of both physical and chemical activation strategies. The mechanism of molten carbonate treatment and structure-capacitive activity correlations of the ACs are rationalized. Characterizations show that the molten carbonate treatment increases the electrical conductivity of AC without compromising its porosity and wettability of electrolytes. Electrochemical tests show the treated AC exhibited higher specific capacitance, enhanced high-rate capability and excellent cycle performance, promising its practical application in supercapacitors. The present study confirms that the molten carbonate reactivation is a green and effective method to enhance capacitive properties of ACs.

  5. Low-Dimensional Network Formation in Molten Sodium Carbonate

    PubMed Central

    Wilding, Martin C.; Wilson, Mark; Alderman, Oliver L. G.; Benmore, Chris; Weber, J. K. R.; Parise, John B.; Tamalonis, Anthony; Skinner, Lawrie

    2016-01-01

    Molten carbonates are highly inviscid liquids characterized by low melting points and high solubility of rare earth elements and volatile molecules. An understanding of the structure and related properties of these intriguing liquids has been limited to date. We report the results of a study of molten sodium carbonate (Na2CO3) which combines high energy X-ray diffraction, containerless techniques and computer simulation to provide insight into the liquid structure. Total structure factors (Fx(Q)) are collected on the laser-heated carbonate spheres suspended in flowing gases of varying composition in an aerodynamic levitation furnace. The respective partial structure factor contributions to Fx(Q) are obtained by performing molecular dynamics simulations treating the carbonate anions as flexible entities. The carbonate liquid structure is found to be heavily temperature-dependent. At low temperatures a low-dimensional carbonate chain network forms, at T = 1100 K for example ~55% of the C atoms form part of a chain. The mean chain lengths decrease as temperature is increased and as the chains become shorter the rotation of the carbonate anions becomes more rapid enhancing the diffusion of Na+ ions. PMID:27080401

  6. Low-Dimensional Network Formation in Molten Sodium Carbonate.

    PubMed

    Wilding, Martin C; Wilson, Mark; Alderman, Oliver L G; Benmore, Chris; Weber, J K R; Parise, John B; Tamalonis, Anthony; Skinner, Lawrie

    2016-01-01

    Molten carbonates are highly inviscid liquids characterized by low melting points and high solubility of rare earth elements and volatile molecules. An understanding of the structure and related properties of these intriguing liquids has been limited to date. We report the results of a study of molten sodium carbonate (Na2CO3) which combines high energy X-ray diffraction, containerless techniques and computer simulation to provide insight into the liquid structure. Total structure factors (F(x)(Q)) are collected on the laser-heated carbonate spheres suspended in flowing gases of varying composition in an aerodynamic levitation furnace. The respective partial structure factor contributions to F(x)(Q) are obtained by performing molecular dynamics simulations treating the carbonate anions as flexible entities. The carbonate liquid structure is found to be heavily temperature-dependent. At low temperatures a low-dimensional carbonate chain network forms, at T = 1100 K for example ~55% of the C atoms form part of a chain. The mean chain lengths decrease as temperature is increased and as the chains become shorter the rotation of the carbonate anions becomes more rapid enhancing the diffusion of Na(+) ions. PMID:27080401

  7. Low-Dimensional Network Formation in Molten Sodium Carbonate

    NASA Astrophysics Data System (ADS)

    Wilding, Martin C.; Wilson, Mark; Alderman, Oliver L. G.; Benmore, Chris; Weber, J. K. R.; Parise, John B.; Tamalonis, Anthony; Skinner, Lawrie

    2016-04-01

    Molten carbonates are highly inviscid liquids characterized by low melting points and high solubility of rare earth elements and volatile molecules. An understanding of the structure and related properties of these intriguing liquids has been limited to date. We report the results of a study of molten sodium carbonate (Na2CO3) which combines high energy X-ray diffraction, containerless techniques and computer simulation to provide insight into the liquid structure. Total structure factors (Fx(Q)) are collected on the laser-heated carbonate spheres suspended in flowing gases of varying composition in an aerodynamic levitation furnace. The respective partial structure factor contributions to Fx(Q) are obtained by performing molecular dynamics simulations treating the carbonate anions as flexible entities. The carbonate liquid structure is found to be heavily temperature-dependent. At low temperatures a low-dimensional carbonate chain network forms, at T = 1100 K for example ~55% of the C atoms form part of a chain. The mean chain lengths decrease as temperature is increased and as the chains become shorter the rotation of the carbonate anions becomes more rapid enhancing the diffusion of Na+ ions.

  8. Determination of optimum electrolyte composition for molten carbonate fuel cells

    SciTech Connect

    Yuh, C.Y.; Pigeaud, A.

    1987-01-01

    The objective of this study is to determine the optimum electrolyte composition for molten carbonate fuel cells. To accomplish this, the contractor will provide: (1) Comprehensive reports of on-going efforts to optimize carbonate composition. (2) A list of characteristics affected by electrolyte composition variations (e.g. ionic conductivity, vapor pressure, melting range, gas solubility, exchange current densities on NiO, corrosion and cathode dissolution effects). (3) Assessment of the overall effects that these characteristics have state-of-the-art cell voltage and lifetime.

  9. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2003-03-01

    The program efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program is designed to advance the carbonate fuel cell technology from full-size field test to the commercial design. FuelCell Energy, Inc. (FCE) is in the later stage of the multiyear program for development and verification of carbonate fuel cell based power plants supported by DOE/NETL with additional funding from DOD/DARPA and the FuelCell Energy team. FCE has scaled up the technology to full-size and developed DFC{reg_sign} stack and balance-of-plant (BOP) equipment technology to meet product requirements, and acquired high rate manufacturing capabilities to reduce cost. FCE has designed submegawatt (DFC300A) and megawatt (DFC1500 and DFC3000) class fuel cell products for commercialization of its DFC{reg_sign} technology. A significant progress was made during the reporting period. The reforming unit design was optimized using a three-dimensional stack simulation model. Thermal and flow uniformities of the oxidant-In flow in the stack module were improved using computational fluid dynamics based flow simulation model. The manufacturing capacity was increased. The submegawatt stack module overall cost was reduced by {approx}30% on a per kW basis. An integrated deoxidizer-prereformer design was tested successfully at submegawatt scale using fuels simulating digester gas, coal bed methane gas and peak shave (natural) gas.

  10. Electrolyte matrix for molten carbonate fuel cells

    DOEpatents

    Huang, C.M.; Yuh, C.Y.

    1999-02-09

    A matrix is described for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 {micro}m to 20 {micro}m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling. 5 figs.

  11. Electrolyte matrix for molten carbonate fuel cells

    DOEpatents

    Huang, Chao M.; Yuh, Chao-Yi

    1999-01-01

    A matrix for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 .mu.m to 20 .mu.m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling.

  12. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    Unknown

    2000-01-01

    The FCE PDI program is designed to advance the carbonate fuel cell technology from the current full-size field test to the commercial design. The specific objectives selected to attain the overall program goal are: Define power plant requirements and specifications; Establish the design for a multifuel, low-cost, modular, market-responsive power plant; Resolve power plant manufacturing issues and define the design for the commercial-scale manufacturing facility; Define the stack and balance-of-plant (BOP) equipment packaging arrangement, and module designs; Acquire capability to support developmental testing of stacks and critical BOP equipment to prepare for commercial design; and Resolve stack and BOP equipment technology issues, and design, build and field test a modular prototype power plant to demonstrate readiness for commercial entry.

  13. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2002-02-01

    The carbonate fuel cell promises highly efficient, cost-effective and environmentally superior power generation from pipeline natural gas, coal gas, biogas, and other gaseous and liquid fuels. FuelCell Energy, Inc. has been engaged in the development of this unique technology, focusing on the development of the Direct Fuel Cell (DFC{reg_sign}). The DFC{reg_sign} design incorporates the unique internal reforming feature which allows utilization of a hydrocarbon fuel directly in the fuel cell without requiring any external reforming reactor and associated heat exchange equipment. This approach upgrades waste heat to chemical energy and thereby contributes to a higher overall conversion efficiency of fuel energy to electricity with low levels of environmental emissions. Among the internal reforming options, FuelCell Energy has selected the Indirect Internal Reforming (IIR)--Direct Internal Reforming (DIR) combination as its baseline design. The IIR-DIR combination allows reforming control (and thus cooling) over the entire cell area. This results in uniform cell temperature. In the IIR-DIR stack, a reforming unit (RU) is placed in between a group of fuel cells. The hydrocarbon fuel is first fed into the RU where it is reformed partially to hydrogen and carbon monoxide fuel using heat produced by the fuel cell electrochemical reactions. The reformed gases are then fed to the DIR chamber, where the residual fuel is reformed simultaneously with the electrochemical fuel cell reactions. FuelCell Energy plans to offer commercial DFC power plants in various sizes, focusing on the subMW as well as the MW-scale units. The plan is to offer standardized, packaged DFC power plants operating on natural gas or other hydrocarbon-containing fuels for commercial sale. The power plant design will include a diesel fuel processing option to allow dual fuel applications. These power plants, which can be shop-fabricated and sited near the user, are ideally suited for distributed power

  14. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2004-08-01

    The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction, leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where the fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report.

  15. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2005-03-01

    The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste

  16. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H. C. Maru; M. Farooque

    2003-12-19

    The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations or in distributed locations near the customer, including hospitals, schools, universities, hotels and other commercial and industrial applications. FuelCell Energy has designed three different fuel cell power plant models (DFC300, DFC1500 and DFC3000). FCE's power plants are based on its patented Direct FuelCell technology, where the fuel is directly fed to fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating, and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report. FCE's DFC

  17. Current status of two molten carbonate fuel cell installations

    SciTech Connect

    Andrews, T.M.; Robertson, T.A.

    1996-03-01

    Bechtel Corporation and Stewart and Stevenson Service, Inc. are currently designing and building two 250-kW net molten carbonate fuel cell (MCFC) demonstration plants. Both plants employ MCFC stacks produced by M-C Power Corporation using internally manifolded heat exchange (IMHEX{reg_sign}) stacks. M-C Power provides the overall project management.Bechtel is responsible for the overall system design, integration, and procurement of major BOP (balance of plant) equipment. Stewart and Stevenson is responsible for the engineering and fabrication of a BOP skid for both plants. This paper gives a brief description of the two fuel cell plants and the current status of each plant.

  18. Molten carbonate fuel cell (MCFC) porous electrode and kinetic studies

    SciTech Connect

    Selman, J.R. )

    1992-10-01

    This report sumarizes a research project undertaken to improve the performance and understand the limitations of porous electrodes for molten carbonate fuel cells (MCFCs). Using a novel MCFC rotating-disk'' electrode, the electrode kinetic and mass transfer properties of commonly used electrode materials were determined, and a practical performance model for MCFC electrodes was developed. The report also outlines a general strategy for designing a high-performance MCFC electrode, assesses the current understanding of porous electrode operation, and discusses some of the unresolved questions of the field. An appendix gives a complete list of the many theses, journal articles, and symposium contributions based on this research.

  19. Strategic planning for molten carbonate fuel cell development and commercialization

    SciTech Connect

    Williams, M.C.; Mayfield, M.J.

    1993-01-01

    The molten carbonate fuel cell (MCFC), a high-temperature fuel cell, is a promising energy conversion product for generating electricity. Natural gas availability appears to play a key role in MCFC commercialization; natural gas MCFC and Integrated gasification MCFC (IGMCFC) are emerging power generation options that are responsive to requirements of Clean Air Act amendments and to guidance in National Energy Strategy. Goal of DOE IGMCFC program is to demonstrate the commercial readiness of this technology by the year 2010. DOE MCFC development objectives and planned activities are outlined.

  20. Strategic planning for molten carbonate fuel cell development and commercialization

    SciTech Connect

    Williams, M.C.; Mayfield, M.J.

    1993-03-01

    The molten carbonate fuel cell (MCFC), a high-temperature fuel cell, is a promising energy conversion product for generating electricity. Natural gas availability appears to play a key role in MCFC commercialization; natural gas MCFC and Integrated gasification MCFC (IGMCFC) are emerging power generation options that are responsive to requirements of Clean Air Act amendments and to guidance in National Energy Strategy. Goal of DOE IGMCFC program is to demonstrate the commercial readiness of this technology by the year 2010. DOE MCFC development objectives and planned activities are outlined.

  1. Determination of optimum electrolyte composition for molten carbonate fuel cells

    SciTech Connect

    Yuh, C.Y.; Pigeaud, A.

    1987-01-01

    The goal of this program is the development of a molten carbonate fuel cell (MCFC) anode which is more tolerant of sulfur contaminants in the fuel than the current state-of-the-art nickel-based anode structures. This program addresses two different but related aspects of the sulfur contamination problem. The primary aspect is concerned with the development of a sulfur tolerant electrocatalyst for the fuel oxidation reaction. A secondary issue is the development of a sulfur tolerant water-gas-shift reaction catalyst and an investigation of potential steam reforming catalysts which also have some sulfur tolerant capabilities. These two aspects are being addressed as two separate tasks.

  2. Cathode preparation method for molten carbonate fuel cell

    DOEpatents

    Smith, James L.; Sim, James W.; Kucera, Eugenia H.

    1988-01-01

    A method of preparing a porous cathode structure for use in a molten carbonate fuel cell begins by providing a porous integral plaque of sintered nickel oxide particles. The nickel oxide plaque can be obtained by oxidizing a sintered plaque of nickel metal or by compacting and sintering finely divided nickel oxide particles to the desired pore structure. The porous sintered nickel oxide plaque is contacted with a lithium salt for a sufficient time to lithiate the nickel oxide structure and thus enhance its electronic conductivity. The lithiation can be carried out either within an operating fuel cell or prior to assembling the plaque as a cathode within the fuel cell.

  3. All ceramic structure for molten carbonate fuel cell

    DOEpatents

    Smith, James L.; Kucera, Eugenia H.

    1992-01-01

    An all-ceramic molten carbonate fuel cell having a composition formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The structure includes an anode and cathode separated by an electronically conductive interconnect. The electrodes and interconnect are compositions ceramic materials. Various combinations of ceramic compositions for the anode, cathode and interconnect are disclosed. The fuel cell exhibits stability in the fuel gas and oxidizing environments. It presents reduced sealing and expansion problems in fabrication and has improved long-term corrosion resistance.

  4. Model of cathode reaction resistance in molten carbonate fuel cells

    SciTech Connect

    Morita, H.; Mugikura, Y.; Izaki, Y.; Watanabe, T.; Abe, T.

    1998-05-01

    A model of the performance of a molten carbonate fuel cell (MCFC) is required to estimate the efficiency of an MCFC power plant or to simulate the internal state of a stack. The model should provide an accurate representation of the performance under various operating conditions. However, the performance estimated by previous models has been found to deviate from the measured performance under low oxygen and carbon dioxide cathode partial pressures. To solve this problem, the authors carried out a systematic analysis of the performance of several bench-scale cells operated under various cathode gas conditions and investigated a model of cathode polarization according to the oxygen reduction mechanism in molten carbonate. As a result, it has been clarified that the behavior of cathode polarization under various conditions is described well by the dependence of mixed diffusion of superoxide ion O{sub 2}{sup {minus}} and CO{sub 2} in the melt on the assumed partial pressures at each total operating pressure.

  5. Reactive collisions of sulfur dioxide with molten carbonates

    PubMed Central

    Krebs, Thomas; Nathanson, Gilbert M.

    2010-01-01

    Molecular beam scattering experiments are used to investigate reactions of SO2 at the surface of a molten alkali carbonate eutectic at 683 K. We find that two-thirds of the SO2 molecules that thermalize at the surface of the melt are converted to gaseous CO2 via the reaction . The CO2 product is formed from SO2 in less than 10-6 s, implying that the reaction takes place in a shallow liquid region less than 100 Å deep. The reaction probability does not vary between 683 and 883 K, further implying a compensation between decreasing SO2 residence time in the near-interfacial region and increasing reactivity at higher temperatures. These results demonstrate the remarkable efficiency of SO2 → CO2 conversion by molten carbonates, which appear to be much more reactive than dry calcium carbonate or wet slurries commonly used for flue gas desulfurization in coal-burning power plants. PMID:20133648

  6. Lithium-ferrate-based cathodes for molten carbonate fuel cells

    SciTech Connect

    Lanagan, M.T.; Bloom, I.; Kaun, T.D.

    1996-12-31

    Argonne National Laboratory is developing advanced cathodes for pressurized operation of the molten carbonate fuel cell (MCFC) at {approximately}650{degrees}C. To be economically viable for stationary power generation, molten carbonate fuel cells must have lifetimes of more than 25,000 h while exhibiting superior cell performance. In the present technology, lithiated NiO is used as the cathode. Over the lifetime of the cell, however, N{sup 2+} ions tend to transport to the anode, where they are reduced to metallic Ni. With increased CO{sub 2} partial pressure, the transport of Ni increases because of the increased solubility of NiO in the carbonate electrolyte. Although this process is slow in MCFCs operated at 1 atm and a low CO{sub 2} partial pressure (about 0.1 atm), transport of nickel to the anode may be excessive at a higher pressure (e.g., 3 atm) and a high CO{sub 2} partial pressure (e.g., about 0.3 arm). This transport is expected to lead eventually to poor MCFC performance and/or short circuiting. Several alternative cathode compositions have been explored to reduce cathode solubility in the molten salt electrolyte. For example, LiCoO{sub 2} has been studied extensively as a potential cathode material. The LiCoO{sub 2} cathode has a low resistivity, about 10-cm, and can be used as a direct substitute for NiO. Argonne is developing advanced cathodes based on lithium ferrate (LiFeO{sub 2}), which is attractive because of its very low solubility in the molten (Li,K){sub 2}CO{sub 3} electrolyte. Because of its high resistivity (about 3000-cm), however, LiFeO{sub 2} cannot be used as a direct substitute for NiO. Cation substitution is, therefore, necessary to decrease resistivity. We determined the effect of cation substitution on the resistivity and deformation of LiFeO{sub 2}. The substituents were chosen because their respective oxides as well as LiFeO{sub 2} crystallize with the rock-salt structure.

  7. Effect of Carbonic Anhydrase II in Molten Globule State on Physical Properties of Dimyristoylphosphatidylcholine Liposome

    NASA Astrophysics Data System (ADS)

    Sakai, Hiroko; Tanaka, Michiko; Imai, Kenichiro; Sonoyama, Masashi; Mitaku, Shigeki

    2001-05-01

    Ultrasonic relaxation measurement was employed for confirmation of the interaction between dimyristoylphosphatidylcholine (DMPC) membrane and a soluble protein, carbonic anhydrase II (CA II). The enhancement of the fluctuation of DMPC membrane structure was observed in the presence of CA II under acidic condition, pH 3.6-4, indicating the interaction between DMPC and CA II@. The pyrene fluorescence spectrum of CA II solution clearly showed that this protein adopted an unfolding intermediate called the molten globule state under the low pH condition, in which CA II interacted with DMPC@. However, CA II in the molten globule state did not cause membrane lysis in contrast to the high lytic activity of α-lactalbumin on DMPC liposomes.

  8. Removal of H2S using molten carbonate at high temperature.

    PubMed

    Kawase, Makoto; Otaka, Maromu

    2013-12-01

    Gasification is considered to be an effective process for energy conversion from various sources such as coal, biomass, and waste. Cleanup of the hot syngas produced by such a process may improve the thermal efficiency of the overall gasification system. Therefore, the cleanup of hot syngas from biomass gasification using molten carbonate is investigated in bench-scale tests. Molten carbonate acts as an absorbent during desulfurization and dechlorination and as a thermal catalyst for tar cracking. In this study, the performance of molten carbonate for removing H2S was evaluated. The temperature of the molten carbonate was set within the range from 800 to 1000 °C. It is found that the removal of H2S is significantly affected by the concentration of CO2 in the syngas. When only a small percentage of CO2 is present, desulfurization using molten carbonate is inadequate. However, when carbon elements, such as char and tar, are continuously supplied, H2S removal can be maintained at a high level. To confirm the performance of the molten carbonate gas-cleaning system, purified biogas was used as a fuel in power generation tests with a molten carbonate fuel cell (MCFC). The fuel cell is a high-performance sensor for detecting gaseous impurities. When purified gas from a gas-cleaning reactor was continuously supplied to the fuel cell, the cell voltage remained stable. Thus, the molten carbonate gas-cleaning reactor was found to afford good gas-cleaning performance. PMID:24035726

  9. Effect of blowing agents on the oxidation resistance of carbon foams prepared from molten sucrose

    NASA Astrophysics Data System (ADS)

    Narasimman, R.; Prabhakaran, K.

    2013-06-01

    We have prepared low density carbon foams from molten sucrose using aluminium nitrate and boric acid blowing agents. A comparative study of the oxidation resistance of the carbon foams prepared using the two blowing agents are reported in the present paper. Oxidation of the carbon foams was evaluated under isothermal and non-isothermal conditions in air atmosphere using thermogravimetric analysis (TGA). We have observed that the alumina produced from the aluminium nitrate blowing agent acts as a catalyst whereas the boron produced from boric acid inhibits the oxidation of the carbon foams. The oxidation resistance of carbon foams increases with boron concentration. The oxidation onset temperature for the carbon foams prepared using boric acid blowing agent was nearly 60°C higher than that prepared using aluminium nitrate blowing agent. Carbon foams prepared using aluminium nitrate blowing agent undergoes complete oxidation at temperature less than 700°C. Whereas that prepared using boric acid blowing agent leave ˜ 50 wt.% residue at 900°C. Further evidence is provided by the kinetic analysis of the TGA using Coats-Redfern (CR) equation.

  10. Industry support for molten carbonate fuel cell commercialization

    SciTech Connect

    Nimmons, J.T.

    1996-12-31

    The Alliance to Commercialize Carbonate Technology (ACCT) is a working alliance of utilities and industry, created to help bring molten carbonate fuel cell (MCFC) technology into commercial markets by the year 2000. Its principal focus is the IMHEX{reg_sign} MCFC power plant under development by the team of M-C Power Corporation, the Institute of Gas Technology, The Bechtel Corporation, and Stewart & Stevenson Services, Inc. (the {open_quotes}Development Team{close_quotes}), although many ACCT members are also interested in other fuel cell technologies. This paper will describe ACCT`s background, mission, approach and activities, as well as opportunities for those interested to join in ACCT`s ongoing work toward MCFC commercialization.

  11. Harvesting capacitive carbon by carbonization of waste biomass in molten salts.

    PubMed

    Yin, Huayi; Lu, Beihu; Xu, Yin; Tang, Diyong; Mao, Xuhui; Xiao, Wei; Wang, Dihua; Alshawabkeh, Akram N

    2014-07-15

    Conversion of waste biomass to value-added carbon is an environmentally benign utilization of waste biomass to reduce greenhouse gas emissions and air pollution caused by open burning. In this study, various waste biomasses are converted to capacitive carbon by a single-step molten salt carbonization (MSC) process. The as-prepared carbon materials are amorphous with oxygen-containing functional groups on the surface. For the same type of waste biomass, the carbon materials obtained in Na2CO3-K2CO3 melt have the highest Brunauer-Emmett-Teller (BET) surface area and specific capacitance. The carbon yield decreases with increasing reaction temperature, while the surface area increases with increasing carbonization temperature. A working temperature above 700 °C is required for producing capacitive carbon. The good dissolving ability of alkaline carbonate molten decreases the yield of carbon from waste biomasses, but helps to produce high surface area carbon. The specific capacitance data confirm that Na2CO3-K2CO3 melt is the best for producing capacitive carbon. The specific capacitance of carbon derived from peanut shell is as high as 160 F g(-1) and 40 μF cm(-2), and retains 95% after 10,000 cycles at a rate of 1 A g(-1). MSC offers a simple and environmentally sound way for transforming waste biomass to highly capacitive carbon as well as an effective carbon sequestration method. PMID:24983414

  12. A Direct Carbon Fuel Cell with a Molten Antimony Anode

    SciTech Connect

    Jayakumar, Abhimanyu; Kungas, Rainer; Roy, Sounak; Javadekar, Ashay; Buttrey, Douglas J.; Vohs, John M.; Gorte, Raymond J.

    2011-01-01

    The direct utilization of carbonaceous fuels is examined in a solid oxide fuel cell (SOFC) with a molten Sb anode at 973 K. It is demonstrated that the anode operates by oxidation of metallic Sb at the electrolyte interface, with the resulting Sb₂O₃ being reduced by the fuel in a separate step. Although the Nernst Potential for the Sb-Sb₂O₃ mixture is only 0.75 V, the electrode resistance associated with molten Sb is very low, approximately 0.06 Ωcm², so that power densities greater than 350 mW cm⁻² were achieved with an electrolyte-supported cell made from Sc-stabilized zirconia (ScSZ). Temperature programmed reaction measurements of Sb₂O₃ with sugar char, rice starch, carbon black, and graphite showed that the Sb₂O₃ is readily reduced by a range of carbonaceous solids at typical SOFC operating conditions. Finally, stable operation with a power density of 300 mW cm⁻² at a potential of 0.5 V is demonstrated for operation on sugar char.

  13. Research issues in molten carbonate fuel cells: Pressurization

    SciTech Connect

    Williams, M.C.; George, T.J.

    1992-05-01

    The issue of pressurization is a complex and controversial one involving many engineering design variables. There are among the molten carbonate fuel cell (MCFC) developers and researchers differences in the relative perceived importance of these variables in the MCFC power plant systems determined to be of interest. These variables significantly affect MCFC system economics and commercial viability. While developing at pressure at this time may not be necessary to commercialize the MCFC, there are potential benefits of operating MCFC`s at pressure. In this paper, the authors identify the advantages and disadvantages of operating the MCFC at pressure. Potential problems are discussed. The large and small power plant system implications of operating at pressure are qualified. Some recommendations are made. The overall goal of this paper is to create interest and motivate research in the area. (VC)

  14. Research issues in molten carbonate fuel cells: Pressurization

    SciTech Connect

    Williams, M.C.; George, T.J.

    1992-01-01

    The issue of pressurization is a complex and controversial one involving many engineering design variables. There are among the molten carbonate fuel cell (MCFC) developers and researchers differences in the relative perceived importance of these variables in the MCFC power plant systems determined to be of interest. These variables significantly affect MCFC system economics and commercial viability. While developing at pressure at this time may not be necessary to commercialize the MCFC, there are potential benefits of operating MCFC's at pressure. In this paper, the authors identify the advantages and disadvantages of operating the MCFC at pressure. Potential problems are discussed. The large and small power plant system implications of operating at pressure are qualified. Some recommendations are made. The overall goal of this paper is to create interest and motivate research in the area. (VC)

  15. Removal of H{sub 2}S using molten carbonate at high temperature

    SciTech Connect

    Kawase, Makoto Otaka, Maromu

    2013-12-15

    Highlights: • The performance of molten carbonate for the removal of H{sub 2}S improves at higher temperatures. • The degree of H{sub 2}S removal is significantly affected by the CO{sub 2} concentration in syngas. • Addition of carbon elements, such as char and tar, decrease the negative effects of CO{sub 2}. • Continuous addition of carbon elements into molten carbonate enables continuous desulfurization. • Desulfurization using molten carbonate is suitable for gasification gas. - Abstract: Gasification is considered to be an effective process for energy conversion from various sources such as coal, biomass, and waste. Cleanup of the hot syngas produced by such a process may improve the thermal efficiency of the overall gasification system. Therefore, the cleanup of hot syngas from biomass gasification using molten carbonate is investigated in bench-scale tests. Molten carbonate acts as an absorbent during desulfurization and dechlorination and as a thermal catalyst for tar cracking. In this study, the performance of molten carbonate for removing H{sub 2}S was evaluated. The temperature of the molten carbonate was set within the range from 800 to 1000 °C. It is found that the removal of H{sub 2}S is significantly affected by the concentration of CO{sub 2} in the syngas. When only a small percentage of CO{sub 2} is present, desulfurization using molten carbonate is inadequate. However, when carbon elements, such as char and tar, are continuously supplied, H{sub 2}S removal can be maintained at a high level. To confirm the performance of the molten carbonate gas-cleaning system, purified biogas was used as a fuel in power generation tests with a molten carbonate fuel cell (MCFC). The fuel cell is a high-performance sensor for detecting gaseous impurities. When purified gas from a gas-cleaning reactor was continuously supplied to the fuel cell, the cell voltage remained stable. Thus, the molten carbonate gas-cleaning reactor was found to afford good gas

  16. Wetting characteristics and performance of molten carbonate fuel cell electrode

    NASA Astrophysics Data System (ADS)

    Hong, Suk-Gi

    For the wetting studies of the molten carbonates, the meniscus height due to polarization was experimentally measured in the oxidant and reducing atmospheres and its dependence on polarization, gas environment, electrolyte melt composition and temperature was thoroughly investigated. A stochastic electrode structure was introduced to simulate the MCFC porous electrodes. In building the structure, the porosity was employed for the assignment of particles and the fixed-volume capillary equilibrium concept was adopted for the distribution of electrolyte. The wetting properties determined from the experiment were used for the capillary equilibrium approach. By virtue of the structure, the porous electrode was visualized and the (cumulative) pore size distribution was estimated. The electrolyte fill level within the porous electrode was predicted and polarization effect on electrolyte distribution was examined. The stochastic structure model was combined with an agglomerate-type porous electrode performance model. The agglomerates were defined by combining the particle, electrolyte, and pore cells in the structure according to well-defined rules and the structure-dependent model parameters were determined. Using the agglomerate model, a performance of porous MCFC electrode was predicted with the solution technique based on the finite element method.

  17. LCA of a molten carbonate fuel cell system

    NASA Astrophysics Data System (ADS)

    Lunghi, Piero; Bove, Roberto; Desideri, Umberto

    Fuel cells are recognized by all the scientific community to be ultra low emission energy conversion systems, because the pollutants associated with their operation are very low in concentration, compared to traditional energy systems. On the other hand, fuel cells are mainly fed with hydrogen, a chemical component that is not available as a pure component, but it must be extracted from other compounds. This practice involves energy consumption and emissions related to extraction of fuel, hydrogen conversion, transportation and clean up. In order to evaluate the environmental impact related to the energy production by the use of a fuel cell it is imperative to consider all the processes related to the fuel cell operation, and not only the FC operation itself. Life-cycle assessment (LCA) is a unique approach for evaluating the environmental impact related to the whole life of the system, i.e. considering all the processes associated to the system itself, including construction and decommissioning. In the present study a molten carbonate fuel cell (MCFC) system for electric energy production is considered and the related life-cycle environmental impact is considered. Finally a comparison between traditional energy conversion systems and the MCFC systems is conducted, in order to evaluate which are the advantages and the disadvantages that each supposed scenario can lead to.

  18. Development of electrolyte plate for molten carbonate fuel cell

    SciTech Connect

    Shoji, C.; Matsuo, T.; Suzuki, A.; Yamamasu, Y.

    1998-07-01

    It is important for the commercialization of molten carbonate fuel cell (MCFC) to improve the endurance and the reliability of the electrolyte plate. The electrolyte-loss in the electrolyte plate increases the cell resistance and deteriorates the cell voltage. The formulation of cracks in the electrolyte plate causes a gas cross leakage between the fuel gas and the oxidizer gas. The pore structure of electrolyte plate must be stable and fine to support liquid electrolyte under MCFC operation. It is necessary to prevent the formation of cracks in electrolyte plate during thermal cycling. The authors have improved the stability of electrolyte plate using advanced LiAlO{sub 2} powder and improved the durability of electrolyte plate for thermal cycling by the addition of the ceramic fiber. The initial cell voltage using electrolyte plate with advanced LiAlO{sub 2} powder was 820 mV at current density 150mA/cm{sup 2} and the decay rate of cell voltage was under 0.5%/1,000h for 8,800h. According to the post analyses, the pore structure of the electrolyte plate did not change. The stability of advanced LiAlO{sub 2} powder was confirmed. It was proved that the electrolyte plate reinforced with ceramic fiber is effective for thermal cycling.

  19. Overview of molten carbonate fuel cell technology development

    SciTech Connect

    Williams, M.C.; Parsons, E.L. Jr.; Mayfield, M.J.

    1993-11-01

    The molten carbonate fuel cell (MCFC) has been identified as a promising energy conversion product for development and commercialization. Overall DOE MCFC program goal is to develop and commercialize low-cost, simple fuel cell systems. Objective of the MCFC program is to develop and demonstrate MCFC power plant systems. Significant progress has already been made in developing the MCFC technology in the US. Manufacturing and test facility development and testing by the MCFC developers has also been significant. Product improvement issues that need to be resolved to vector the MCFC technology from its current status to a multi-fuel, integrated, simple, low-cost, modular, market-responsive power plant product. MCFC`s must undergo continuing product refinement to ensure that durability and cost reduction through modularization and stack manufacturing scale-up occurs. MCFC developers need to continue to be responsive to end-users in potential markets. MCFC`s appear to have a place in a decentralized power industry future. Natural gas availability appears to play a key role in MCFC commercialization.

  20. Molten carbonate fuel cell power plant systems studies

    SciTech Connect

    Johnson, W.H.

    1990-06-01

    The goal of the DOE and IFC Molten Carbonate Fuel Cell (MCFC) Program is to develop a MCFC technology base capable of providing clean electrical energy at competitive cost when integrated with coal gasification systems. To be successful, a coal-fueled MCFC system must provide cost of electricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long range electric generating systems. The strategy for the study was to initially evaluate the status of non-fuel cell systems to establish the basis for a competitive CG/MCFC power plant and the corresponding MCFC subsystem goals. Secondly, an iterative and comparative analysis of potential CG/MCFC systems was conducted. This analysis included a detailed examination of MCFC integration with gasifier technology in which the technical basis for MCFC compatibility with a broad range of gasifiers was established. Lastly, a detailed conceptual design was prepared for the most desirable CG/MCFC system. The design established the potential of the CG/MCFC power plant to meet the goals and provide a competitive cost of electricity at very high efficiency and significantly reduced emissions. The design also provided focus for the technical issues still outstanding and required for commercialization of the CG/MCFC technology. 27 figs., 23 tabs.

  1. Critical issues and future prospects for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Joon, K.

    The molten carbonate fuel cell (MCFC) has several potential advantages over low-temperature fuel cells by virtue of its operating temperature of 650°C. This temperature allows the reforming of, for examples, methane from natural gas in the fuel cell stack itself, resulting in reduced systems cost and increased efficiency. In addition, high temperature waste heat is available for industrial processes or bottoming cycles. Furthermore, CO, which is produced in almost all fossil fuel conversion processes, can be used as fuel instead of acting as a poison as in other types of fuel cell. Drawbacks of MCFCs are the high corrosivity of the electrolyte at the operating temperature and the need for a continuous supply of CO 2 to the cathode. Research into and development of MCFCs actually started in 1950 by Ketelaar and Broers when they investigated an earlier idea of Davtyan. Since then, a lot of progress has been made with respect to understanding the cell mechanisms, improving the materials, the performance, the manufacturing techniques and up-scaling. This resulted a few years ago in proof-of-principle tests at the 100 kWe level. At present, the MCFC is the first demonstration phase with full-scale systems at the 250 kWe to 2 MWe level, marking the transition from fundamental and applied R&D to product development or from a technology push to a market pull situation. This paper reviews the most important remaining as well as expected new issues to be resolved.

  2. Assessment of commercial prospects of molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Dicks, Andrew; Siddle, Angie

    The commercial prospects of molten carbonate fuel cells have been evaluated. Market applications, and the commercial criteria that the MCFC will need to satisfy for these applications, were identified through interviews with leading MCFC developers. Strengths, weaknesses, opportunities and threats (SWOT) analyses were carried out to critically evaluate the prospects for commercialisation. There are many competing technologies, but it is anticipated that MCFCs can make significant penetration into markets where their attributes, such as quality of power, low emissions and availability, give them a leading position in comparison with, for example, engine and turbine-based power generation systems. Analysis suggests that choosing the size for MCFC plant is more important than the target market sector/niche. Opportunities will exist in many market sectors, though the commercial market would be easier to penetrate initially. Developers are optimistic about the commercial prospects for the MCFC. Most believe that early commercial MCFC plants may start to appear in the first decade of the next century, the earliest date suggested for initial market entry being 2002.

  3. Pack aluminization of nickel anode for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Chun, H. S.; Park, G. P.; Lim, J. H.; Kim, K.; Lee, J. K.; Moon, K. H.; Youn, J. H.

    1994-04-01

    The aluminum pack cementation (pack aluminization) process on a porous nickel anode for molten carbonate fuel cells has been studied to improve anode creep resistance. The porous nickel substrates used in this study were fabricated by doctor blade equipment followed by sintering (850 C). Packs surrounding the Ni anode were made by mixing Al2O3 powder, Al powder, and NaCl as activator. The pack aluminization was performed at 700 to 850 C for 0.5-5.0 h. After pack aluminization, the principal Ni-Al intermetallic compounds detected were Ni3Al at 700 C, NiAl at 750 C and Ni3Al2 at 800 C. The aluminum content in the aluminized Ni anode was proportional to the square root of pack aluminizing time. With increasing the Al content in the anode, the creep of the anode decreased. It was nearly constant (2.0%) when the Al content was above 5.0%. Although the exchange current density (24 mA/sq cm) for the aluminized (2.5 wt.%) Ni anode was somewhat lower than that of the pure Ni anode (40 mA/sq cm), the performance of a single cell using an aluminized Ni anode was similar to that of the one with pure Ni anode.

  4. Molten Carbonate Fuel Cell (MCFC) product development test

    NASA Astrophysics Data System (ADS)

    1995-02-01

    M-C Power Corporation will design, fabricate, install, test, and evaluate a 250 kW Proof-of-Concept Molten Carbonate Fuel Cell (MCFC) Power Plant. The plant is to be located at the Naval Air Station Miramar in San Diego, California. This report summarizes the technical progress that has occurred in conjunction with this project in 1994. M-C Power has completed the tape casting and sintering of cathodes and is proceeding with the tape casting and sintering of anodes for the first 250 cell stack. M-C Power and San Diego Gas and Electric (SDG&E) relocated the fuel cell demonstration project to an alternate site at the Naval Air Station Miramar. For the new project location, an Environmental Assessment has been prepared by the Department of Energy in compliance with the National Environmental Policy Act of 1969. The Environmental Assessment resulted in a categorical exclusion of the proposed action from all environmental permit requirements. Bechtel Corporation has completed the reformer process design coordination, a Process Description, the Pipe and Instrumentation Diagrams, a Design Criteria Document and General Project Requirement Document. Bechtel developed the requirements for soils investigation report and issued the following equipment bid packages to the suppliers for bids: inverter, reformer, desulfurization vessels, hot gas recycle blower, heat recovery steam generator, and recycle gas cooler. SDG&E has secured necessary site permits, conducted soils investigations, and is working on the construction plan. They are in final negotiations with the US Navy on a site agreement. Site drawings are required for finalization of the agreement.

  5. Carbon Solubility of Molten Sulfides at 2-3 GPa

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Hirschmann, M. M.

    2012-12-01

    Sulfide is molten through much of Earth's upper mantle and so could have an important influence on geochemical and geophysical properties. For example, liquid sulfide could dissolve appreciable carbon, and thereby be a significant sink for reduced carbon in the mantle and perhaps be associated with carbon transport, including diamond precipitation. Here we present experimental data on the phase relations and carbon solubility of sulfides at 2-3 GPa in graphite capsules. Carbon was analyzed by EMPA using an LDE2 crystal and a 10 kV, 80 nA beam, and secondary steel and carbide standards. Repeated analyses of 99.995 wt% Fe indicate a C blank of 0.47 ± 0.12 wt.% (n=38), which was subtracted from the analyses. The limit of detection is therefore likely near 0.1-0.15 wt.%, but we take a more conservative value of 0.27 wt.%, which is the concentration in NIST C1248 steel, the lowest standard for which we unambiguously measure C. FeS monosulfide melts coexist with crystalline sulfide at 2GPa and 1100°C, and at 3GPa and 1200°C, respectively. Lower temperatures are subsolidus and higher temperatures produce only liquids (+graphite). For Fe-S liquids at 2GPa,1500-1600°C and 3GPa, 1600°C, at low bulk S content (5-10 wt.%), a carbide melt coexists with the sulfide. More sulfur-rich bulk compositions produce two immiscible liquids which are approximately (Fe~93%S2~3%C2~4%) and (Fe~70%S~30%)., but Ni addition diminishes the miscibility gap. Carbon solubility in (Fe0.5,Ni0.5)-S liquids diminishes with decreasing metal/sulfide ratio; up to 10 wt.% S, solubility is 2 wt.% C, but diminishes to <1 wt.% at 15 wt% S and is below detection at >20 wt.% S. At 2GPa and 1600°C, other graphite-saturated monosulfide compositions, (Fe1-x,Nix)S (x=0.33,0.50,0.67), FeCuS2 NiS, CuS, and CoS, dissolve less C than detection limit. We detect <0.5 wt.% C in Ni metal and Cu metal in graphite-saturated compositions. In the shallow mantle, where sulfide liquid approximates monosulfide stoichiometry

  6. Carbon dioxide transport in molten calcium carbonate occurs through an oxo-Grotthuss mechanism via a pyrocarbonate anion

    NASA Astrophysics Data System (ADS)

    Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe

    2016-05-01

    The reactivity, speciation and solvation structure of CO2 in carbonate melts are relevant for both the fate of carbon in deep geological formations and for its electroreduction to CO (to be used as fuel) when solvated in a molten carbonate electrolyte. In particular, the high solubility of CO2 in carbonate melts has been tentatively attributed to the formation of the pyrocarbonate anion, C2O52–. Here we study, by first-principles molecular dynamics simulations, the behaviour of CO2 in molten calcium carbonate. We find that pyrocarbonate forms spontaneously and the identity of the CO2 molecule is quickly lost through O2– exchange. The transport of CO2 in this molten carbonate thus occurs in a fashion similar to the Grotthuss mechanism in water, and is three times faster than molecular diffusion. This shows that Grotthuss-like transport is more general than previously thought.

  7. Carbon dioxide transport in molten calcium carbonate occurs through an oxo-Grotthuss mechanism via a pyrocarbonate anion.

    PubMed

    Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe

    2016-05-01

    The reactivity, speciation and solvation structure of CO2 in carbonate melts are relevant for both the fate of carbon in deep geological formations and for its electroreduction to CO (to be used as fuel) when solvated in a molten carbonate electrolyte. In particular, the high solubility of CO2 in carbonate melts has been tentatively attributed to the formation of the pyrocarbonate anion, C2O5(2-). Here we study, by first-principles molecular dynamics simulations, the behaviour of CO2 in molten calcium carbonate. We find that pyrocarbonate forms spontaneously and the identity of the CO2 molecule is quickly lost through O(2-) exchange. The transport of CO2 in this molten carbonate thus occurs in a fashion similar to the Grotthuss mechanism in water, and is three times faster than molecular diffusion. This shows that Grotthuss-like transport is more general than previously thought. PMID:27102679

  8. Porous electrolyte retainer for molten carbonate fuel cell

    DOEpatents

    Singh, Raj N.; Dusek, Joseph T.

    1983-06-21

    A porous tile for retaining molten electrolyte within a fuel cell is prepared by sintering particles of lithium aluminate into a stable structure. The tile is assembled between two porous metal plates which serve as electrodes with fuels gases such as H.sub.2 and CO opposite to oxidant gases such as O.sub.2 and CO.sub.2. The tile is prepared with a porosity of 55-65% and a pore size distribution selected to permit release of sufficient molten electrolyte to wet but not to flood the adjacent electrodes.

  9. Porous electrolyte retainer for molten carbonate fuel cell. [lithium aluminate

    DOEpatents

    Singh, R.N.; Dusek, J.T.

    1979-12-27

    A porous tile for retaining molten electrolyte within a fuel cell is prepared by sintering particles of lithium aluminate into a stable structure. The tile is assembled between two porous metal plates which serve as electrodes with fuels gases such as H/sub 2/ and CO opposite to oxidant gases such as O/sub 2/ and CO/sub 2/. The tile is prepared with a porosity of 55 to 65% and a pore size distribution selected to permit release of sufficient molten electrolyte to wet but not to flood the adjacent electrodes.

  10. Oxygen electrode reaction in molten carbonate fuel cells. Final report, September 15, 1987--September 14, 1990

    SciTech Connect

    Appleby, A.J.; White, R.E.

    1992-07-07

    Molten carbonate fuel cell system is a leading candidate for the utility power generation because of its high efficiency for fuel to AC power conversion, capability for an internal reforming, and a very low environmental impact. However, the performance of the molten carbonate fuel cell is limited by the oxygen reduction reaction and the cell life time is limited by the stability of the cathode material. An elucidation of oxygen reduction reaction in molten alkali carbonate is essential because overpotential losses in the molten carbonate fuel cell are considerably greater at the oxygen cathode than at the fuel anode. Oxygen reduction on a fully-immersed gold electrode in a lithium carbonate melt was investigated by electrochemical impedance spectroscopy and cyclic voltammetry to determine electrode kinetic and mass transfer parameters. The dependences of electrode kinetic and mass transfer parameters on gas composition and temperature were examined to determine the reaction orders and the activation energies. The results showed that oxygen reduction in a pure lithium carbonate melt occurs via the peroxide mechanism. A mass transfer parameter, D{sub O}{sup 1/2}C{sub O}, estimated by the cyclic voltammetry concurred with that calculated by the EIS technique. The temperature dependence of the exchange current density and the product D{sub O}{sup 1/2}C{sub O} were examined and the apparent activation energies were determined to be about 122 and 175 kJ/ mol, respectively.

  11. Electrolytic synthesis of carbon nanotubes from carbon dioxide in molten salts and their characterization

    NASA Astrophysics Data System (ADS)

    Novoselova, I. A.; Oliinyk, N. F.; Volkov, S. V.; Konchits, A. A.; Yanchuk, I. B.; Yefanov, V. S.; Kolesnik, S. P.; Karpets, M. V.

    2008-05-01

    Carbon nanotubes (CNTs) were synthesized from CO 2 dissolved in molten salts using the novel electrolytic method developed by the authors. The electrolysis were carried out under current and potential controls. To establish the actual current and potential ranges, the electroreduction of carbon dioxide dissolved in the halide melts under an excess pressure up to 15 bar was studied by cyclic voltammetry on glassy-carbon (GC) electrode at a temperature of 550 °C. The electrochemical-chemical-electrochemical mechanism of CO 2 electroreduction was offered for explanation of the obtained results. The structure, morphology, and electronic properties of the CNTs obtained were studied using SEM, TEM, X-ray and electron diffraction analysis, Raman and ESR spectroscopy. It was found that the majority of the CNTs are multi-walled (MWCNTs), have curved form, and most often agglomerate into bundles. Almost all CNTs are filled partly with electrolyte salt. Except MWCNTs the cathode product contains carbon nanofibers, nanographite, and amorphous carbon. The dependences of CNT's yield, their diameter, and structure peculiarities against the electrolysis regimes were established.

  12. Carboxyl functionalization of carbon fibers via aryl diazonium reaction in molten urea to enhance interfacial shear strength

    NASA Astrophysics Data System (ADS)

    Wang, Yuwei; Meng, Linghui; Fan, Liquan; Wu, Guangshun; Ma, Lichun; Zhao, Min; Huang, Yudong

    2016-01-01

    Using molten urea as the solvent, carbon fibers were functionalized with carboxylic acid groups via aryl diazonium reaction in 15 min to improve their interfacial bonding with epoxy resin. The surface functionalization was quantified by X-ray photoelectron spectroscopy, which showed that the relative surface coverage of carboxylic acid groups increased from an initial percentage of 3.17-10.41%. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 66%. Meanwhile, the technique did not adopt any pre-oxidation step to produce functional groups prior to grafting and was shown to maintain the tensile strength of the fibers. This methodology provided a rapid, facile and economically viable route to produce covalently functionalized carbon fibers in large quantities with an eco-friendly method.

  13. Electrochemistry of acetylides, nitrides and carbon cathodes in molten halides. Progress report

    SciTech Connect

    Selman, J. R.

    1980-04-01

    Additional experimental data on acetylide solutions in contact with graphite and carbon indicate that intercalation occurs not only in Li/sup +/-containing melts but also in Ca/sup 2 +/ melts. Emf measurements are being carried out to determine the calcium activity in Ca-Al alloys. Proposed work include carbonate reduction to acetylides and the mechanism of the corrosion resistance of Mo in molten halides. (DLC)

  14. Molten Carbonate Fuel Cell (MCFC) Product Development Test. Second annual report

    SciTech Connect

    Not Available

    1994-12-15

    This is the second annual report covering progress made under DOE cooperative agreement DE-FC21-92MC29237, Molten Carbonate Fuel Cell Product Development Test. The project is for the design, construction, and testing of a 2MW carbonate fuel cell power plant in the City of Santa Clara, California. The report is divided into sections which describe the progress in various program activities, and provides an overview of the program, including the project objectives, site location, and schedule.

  15. Effect of the graphite electrode material on the characteristics of molten salt electrolytically produced carbon nanomaterials

    SciTech Connect

    Kamali, Ali Reza Schwandt, Carsten; Fray, Derek J.

    2011-10-15

    The electrochemical erosion of a graphite cathode during the electrolysis of molten lithium chloride salt may be used for the preparation of nano-structured carbon materials. It has been found that the structures and morphologies of these carbon nanomaterials are dependent on those of the graphite cathodes employed. A combination of tubular and spherical carbon nanostructures has been produced from a graphite with a microstructure of predominantly planar micro-sized grains and a minor fraction of more irregular nano-sized grains, whilst only spherical carbon nanostructures have been produced from a graphite with a microstructure of primarily nano-sized grains. Based on the experimental results, a best-fit regression equation is proposed that relates the crystalline domain size of the graphite reactants and the carbon products. The carbon nanomaterials prepared possess a fairly uniform mesoporosity with a sharp peak in pore size distribution at around 4 nm. The results are of crucial importance to the production of carbon nanomaterials by way of the molten salt electrolytic method. - Highlights: {yields} Carbon nanomaterials are synthesised by LiCl electrolysis with graphite electrodes. {yields} The degree of crystallinity of graphite reactant and carbon product are related. {yields} A graphite reactant is identified that enables the preparation of carbon nanotubes. {yields} The carbon products possess uniform mesoporosity with narrow pore size distribution.

  16. Direct Conversion of Carbon Fuels in a Molten Carbonate Fuel Cell

    SciTech Connect

    Cherepy, N J; Fiet, K J; Krueger, R; Jankowski, A F; Cooper, J F

    2004-01-28

    Anodes of elemental carbon may be discharged in a galvanic cell using a molten carbonate electrolyte, a nickel-foam anode-current collector, and a porous nickel air cathode to achieve power densities of 40-100 mW/cm{sup 2}. We report cell and anode polarization, surface area, primary particle size and a crystallization index for nine particulate carbon samples derived from fuel oil, methane, coal, charred biological material and petroleum coke. At 800 C, current densities of 50-125 mA/cm{sup 2} were measured at a representative cell voltage of 0.8 V. Power densities for cells with two carbon-anode materials were found to be nearly the same on scales of 2.8- and 60 cm{sup 2} active area. Constant current operation of a small cell was accompanied by constant voltage during multiple tests of 10-30 hour duration. Cell voltage fell off after the carbon inventory was consumed. Three different cathode structures are compared, indicating that an LLNL fabricated porous nickel electrode with <10 {micro}m pores provides improved rates compared with nickel foam with 100-300 {micro}m pores. Petroleum coke containing substantial sulfur and ash discharges at a slightly lower rate than purified petroleum coke. The sulfur leads to degradation of the anode current collector over time. A conceptual model for electrochemical reactivity of carbon is presented which indicates the importance of (1) bulk lattice disorder, which continually provides surface reactive sites during anodic dissolution and (2) electrical conductivity, which lowers the ohmic component of anode polarization.

  17. Demixing and effective volatility of molten alkali carbonate melts in MCFCs

    SciTech Connect

    Brenscheidt, T.; Wendt, H.

    1996-12-31

    Since the early investigation of A. Klemm, the demixing of the cations of molten binary salt mixtures with a common anion due to the different mobilities of two different cations had been investigated in numerous experiments and the respective results interpreted in terms of structural features of the melts. 1-1 electrolytes had been preferentially investigated. Okada also reported investigations on lithium carbonate/potassium carbonate mixtures in the temperature range from 980 to 1070 K. From this investigation it is known that the heavier potassium cation is faster than lithium in mixtures which are more concentrated in potassium than x{sub K2CO3} = 0,32 (Chemla effect) whereas below this isotachic concentration lithium is faster. This paper investigates demixing in molten carbonate fuel cells.

  18. Solubility of LiCoO{sub 2} in molten carbonates

    SciTech Connect

    Higashino, Masae; Yanagida, Masahiro; Tanimoto, Kazumi; Kojima, Toshikatsu; Tamiya, Yukiko; Matsumoto, Hajime; Asai, Takashi; Miyazaki, Yoshinori; Takigawa, Yasuo

    1997-12-31

    The molten carbonate fuel cell (MCFC) has been widely researched and developed from the viewpoints of the high efficiency for electric power generation and low impact for environment. NiO is used for the cathode of MCFC but the dissolution of NiO into the carbonate electrolyte melt followed by deposition as Ni metal brings about short circuit between cathode and anode. LiCoO{sub 2} is expected to be an alternative cathode material. The solubility is a key factor for the evaluation of the stability of cathode materials. The solubility of LiCoO{sub 2} was proportional to P{sub CO{sub 2}}{sup 3/2} and P{sub O{sub 2}}{sup {minus}1/4} in (Li{sub 0.52}Na{sub 0.48}){sub 2}CO{sub 3}. It obeys the acidic dissolution mechanism. This result was the same dependence as that in (Li{sub 0.62}K{sub 0.38}){sub 2}CO{sub 3}. The solubility of LiCoO{sub 2} in (Li{sub 0.52}Na{sub 0.48}){sub 2}CO{sub 3} was about a half of that in (Li{sub 0.62}K{sub 0.38}){sub 2}CO{sub 3}. The solubility of LiCoO{sub 2} decreased with Li content in Li-K carbonate system. Their solubility of LiCoO{sub 2} was lower than that of NiO even under the pressurized cathode condition of MCFC.

  19. Lewis-Acid/Base Effects on Gallium Volatility in Molten Chlorides

    SciTech Connect

    Williams, D.F.

    2001-02-26

    It has been proposed that GaCl{sub 3} can be removed by direct volatilization from a Pu-Ga alloy that is dissolved in a molten chloride salt. Although pure GaCl{sub 3} is quite volatile (boiling point, 201 C), the behavior of GaCl{sub 3} dissolved in chloride salts is different due to solution effects and is critically dependent on the composition of the solvent salt (i.e., its Lewis-acid/base character). In this report, the behavior of gallium in prototypical Lewis-acid and Lewis-base salts is compared. It was found that gallium volatility is suppressed in basic melts and enhanced in acidic melts. The implications of these results on the potential for simple gallium removal in molten salt systems are significant.

  20. Effect of galactose on acid induced molten globule state of Soybean Agglutinin: Biophysical approach

    NASA Astrophysics Data System (ADS)

    Alam, Parvez; Naseem, Farha; Abdelhameed, Ali Saber; Khan, Rizwan Hasan

    2015-11-01

    In the present study the formation of molten globule-like unfolding intermediate Soybean Agglutinin (SBA) in acidic pH range has been established with the help of acrylamide quenching, intrinsic fluorescence, ANS fluorescence measurement, far UV CD and dynamic light scattering measurement. A marked increase in ANS fluorescence was observed at pH 2.2. Ksv of acrylamide quenching was found to be higher at pH 2.2 than that of native SBA at pH 7. Far UV CD spectra of pH induced state suggest that SBA shows significant retention of secondary structure closure to native. Hydrodynamic radius of SBA at pH 2.2 was found be more as compared to native state and also in other pH induced states. Further we checked the effect of galactose on the molten globule state of SBA. This study suggests that SBA exist as molten globule at pH 2.2 and this study will help in acid induced molten globule state of other proteins.

  1. Stability and characterization of oxygen species in alkali molten carbonated: A thermodynamic and electrochemical approach

    SciTech Connect

    Cassir, M.; Moutiers, G.; Devynck, J. . Lab d'Electrochimie)

    1993-11-01

    The study of the chemical and electrochemical properties of molten carbonate has been widely discussed in the last 20 years because of the necessity for optimizing molten carbonate fuel cell (MCFC) performance. The stability and electrochemical behavior of reduced oxygen species were investigated in several alkali molten carbonates at different oxoacidity levels and temperatures. Theoretical predictions and experimental results were in good agreement and show that, in Na-K, Li-Na, Li-K, and Li-Na-K melts, peroxide species can only be stabilized in basic media. Superoxide species, unstable in lithium-containing carbonate, can be stabilized in Na-K under slightly basic conditions. Peroxide/oxide and superoxide/oxide redox systems were characterized by voltammetric and convolution potential sweep techniques. It was shown that CO[sub 2] does not participate in the rate-determining reduction mechanisms of both superoxide and peroxide species. Electrochemical parameters relative to the cited systems (D, [delta], E[sup 0], E[sub 1/2]), as well as the solubility of reduced oxygen species were determined.

  2. The study of integrated coal-gasifier molten carbonate fuel cell systems

    NASA Astrophysics Data System (ADS)

    1983-07-01

    A novel integration concept for a coal-fueled coal gasifier-molten carbonate fuel cell power plant was studied. Effort focused on determining the efficiency potential of the concept, design, and development requirements of the processes in order to achieve the efficiency. The concept incorporates a methane producing catalytic gasifier of the type previously under development by Exxon Research and Development Corp., a reforming molten carbonate fuel cell power section of the type currently under development by United Technologies Corp., and a gasifier-fuel cell recycle loop. The concept utilizes the fuel cell waste heat, in the form of hydrogen and carbon monoxide, to generate additional fuel in the coal gasifier, thereby eliminating the use of both an O2 plant and a stream bottoming cycle from the power plant. The concept has the potential for achieving coal-pile-to-busbar efficiencies of 50-59%, depending on the process configuration and degree of process configuration and degree of process development requirements. This is significantly higher than any previously reported gasifier-molten carbonate fuel cell system.

  3. Study of integrated coal-gasifier molten carbonate fuel cell systems

    SciTech Connect

    Not Available

    1983-07-01

    A novel integration concept for a coal-fueled coal gasifier-molten carbonate fuel cell power plant was studied. Effort focused on determining the efficiency potential of the concept, design, and development requirements of the processes in order to achieve the efficiency. The concept incorporates a methane producing catalytic gasifier of the type previously under development by Exxon Research and Development Corp., a reforming molten carbonate fuel cell power section of the type currently under development by United Technologies Corp., and a gasifier-fuel cell recycle loop. The concept utilizes the fuel cell waste heat, in the form of hydrogen and carbon monoxide, to generate additional fuel in the coal gasifier, thereby eliminating the use of both an O2 plant and a stream bottoming cycle from the power plant. The concept has the potential for achieving coal-pile-to-busbar efficiencies of 50-59%, depending on the process configuration and degree of process configuration and degree of process development requirements. This is significantly higher than any previously reported gasifier-molten carbonate fuel cell system.

  4. The study of integrated coal-gasifier molten carbonate fuel cell systems

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A novel integration concept for a coal-fueled coal gasifier-molten carbonate fuel cell power plant was studied. Effort focused on determining the efficiency potential of the concept, design, and development requirements of the processes in order to achieve the efficiency. The concept incorporates a methane producing catalytic gasifier of the type previously under development by Exxon Research and Development Corp., a reforming molten carbonate fuel cell power section of the type currently under development by United Technologies Corp., and a gasifier-fuel cell recycle loop. The concept utilizes the fuel cell waste heat, in the form of hydrogen and carbon monoxide, to generate additional fuel in the coal gasifier, thereby eliminating the use of both an O2 plant and a stream bottoming cycle from the power plant. The concept has the potential for achieving coal-pile-to-busbar efficiencies of 50-59%, depending on the process configuration and degree of process configuration and degree of process development requirements. This is significantly higher than any previously reported gasifier-molten carbonate fuel cell system.

  5. Various supercritical carbon dioxide cycle layouts study for molten carbonate fuel cell application

    NASA Astrophysics Data System (ADS)

    Bae, Seong Jun; Ahn, Yoonhan; Lee, Jekyoung; Lee, Jeong Ik

    2014-12-01

    Various supercritical carbon dioxide (S-CO2) cycles for a power conversion system of a Molten Carbonate Fuel Cell (MCFC) hybrid system are studied in this paper. Re-Compressing Brayton (RCB) cycle, Simple Recuperated Brayton (SRB) cycle and Simple Recuperated Transcritical (SRT) cycle layouts were selected as candidates for this study. In addition, a novel concept of S-CO2 cycle which combines Brayton cycle and Rankine cycle is proposed and intensively studied with other S-CO2 layouts. A parametric study is performed to optimize the total system to be compact and to achieve wider operating range. Performances of each S-CO2 cycle are compared in terms of the thermal efficiency, net electricity of the MCFC hybrid system and approximate total volumes of each S-CO2 cycle. As a result, performance and total physical size of S-CO2 cycle can be better understood for MCFC S-CO2 hybrid system and especially, newly suggested S-CO2 cycle shows some success.

  6. High temperature corrosion of metallic materials in molten carbonate fuel cells environment

    NASA Astrophysics Data System (ADS)

    Durante, G.; Vegni, S.; Capobianco, P.; Golgovici, F.

    Molten carbonate fuel cells (MCFCs) are electrochemical devices that convert energy of a chemical reaction into electricity without any kind of combustion. So, MCFCs are promising for their high efficiency and their low environmental pollution. A limiting aspect for reaching the goal of 40,000 h of life-time is the corrosion of metallic parts of MCFC, especially for current collectors and separator plates. Generally, this corrosion leads to metal loss and to an important increase of the electrical resistance due to the formation of resistive oxides. One of the most critic components in a MCFC is the anodic side metallic components. More used choice for these components is actually a sheet of AISI310S cladded at both sides by a Ni layer. The analysis of the behaviour of this material after different steps of corrosion in a typical molten carbonate fuel cell environment could be important to understand some phenomena that cause the damage of the anodic current collector.

  7. Performance of an internal reforming molten carbonate fuel cell supplied with ethanol/water mixture

    SciTech Connect

    Freni, S.; Maggio, G.; Barone, F.

    1996-12-31

    The state of an on the field of molten carbonate fuel cell (MCFC) systems covers many technological aspects related to the use of these systems for the production of electricity. In this respect, extensive research efforts have been made to develop a technology using the methane based on the steam reforming process, and different configurations have been analyzed and their performance determined for several operative cell conditions. However, the operative temperature (T-923 K) of the MCFC. that allows the direct conversion of hydrocarbons or alcohols into H{sub 2} and CO, promotes researches in the field of alternative fuels, more easily transported and reformed compared to methane. In this paper are described the most indicative results obtained by a study that considers the use of water/ethanol mixture as an attractive alternative to the methane for a molten carbonate fuel cell.

  8. Molten carbonate fuel cells: A high temperature fuel cell on the edge to commercialization

    NASA Astrophysics Data System (ADS)

    Bischoff, Manfred

    The Molten Carbonate Fuel Cell (MCFC) technology has been developed in USA, Japan, Korea and Europe for many years. What has started about 30 years ago as an interesting laboratory object has now matured to a potential alternative to conventional power generation systems. Especially the combined heat and power (CHP) generation is an area, where MCFC power plants can be applied with great advantage, due to the high efficiencies which can be achieved. It was demonstrated by several manufacturers that in the sub-MW region MCFC power plants can reach electrical efficiencies of 47%. By making use of the heat generated by the system, total efficiencies of more than 80% can be achieved. The present paper will discuss some aspects of the development work going on with a focus on the role of the molten carbonate contained in the cells. An outlook will be given for the future prospects of this young technology in a changing energy market.

  9. Lithium ferrate and lithium cobaltate cathodes for molten carbonate fuel cells

    SciTech Connect

    Krumpelt, M.; Roche, M.; Bloom, I.; Indacochea, J.E.; Kucera, G.

    1994-08-01

    The objective of this research is to develop cathodes for the molten carbonate fuel cells (MCFC) having a performance approaching that of the lithiated nickel oxide cathode and a significantly greater life, particularly in pressurized MCFCs. To meet this objective, cathodes containing either doubly doped lithium ferrate or lithium cobaltate are being developed. In this project, the authors are optimizing the composition, microstructure, and loading density of the doubly doped lithium ferrate cathode and the lithium cobaltate cathodes.

  10. Molten carbonate fuel cell product development test environmental assessment/protection plan

    SciTech Connect

    Brunton, Jack; Furukawa, Vance; Frost, Grant; Danna, Mike; Figueroa, Al; Scroppo, Joseph

    1992-11-01

    Objective of proposed action is to conduct a 250-kW product development test of M-C Power Corporation's molten carbonate fuel cell concept, at the Kaiser Permanente San Diego Medical Center. Review of environmental impacts of this test indicate the following: no impact on solid waste disposal, water quality, noise levels, floodplains, wetlands, ecology, historic areas, or socioeconomic resources. Impact on air quality are expected to be positive.

  11. Molten carbonate fuel cell product development test environmental assessment/protection plan

    SciTech Connect

    Not Available

    1992-11-01

    Objective of proposed action is to conduct a 250-kW product development test of M-C Power Corporation`s molten carbonate fuel cell concept, at the Kaiser Permanente San Diego Medical Center. Review of environmental impacts of this test indicate the following: no impact on solid waste disposal, water quality, noise levels, floodplains, wetlands, ecology, historic areas, or socioeconomic resources. Impact on air quality are expected to be positive.

  12. Ethanol steam reforming in a molten carbonate fuel cell: a thermodynamic approach

    NASA Astrophysics Data System (ADS)

    Freni, S.; Maggio, G.; Cavallaro, S.

    The economy of the world energy sources is showing interest in the utilization of oxygenated products whose purpose is to improve the storage and the transfer of hydrogen as a non-polluting fuel with a high heat power density. An interesting field of utilization of these products is represented by the fuel cell systems for production of electricity. In this respect, the use of the water/ethanol mixture has been investigated as an alternative fuel for molten carbonate fuel cells. Some thermodynamic calculations have been carried out by a mathematical model to determine the energy and mass balances for a water/ethanol fuelled molten carbonate fuel cell. The thermodynamic efficiencies determined for this system have been correlated with the main operative parameters that give some interesting findings indicating encouraging aspects on the utilization of these systems to the production of electricity and heat. Lastly, attractive operative conditions have been determined and compared with that of a molten carbonate fuel cell with methane direct internal reforming.

  13. Tunnelling in carbonic acid.

    PubMed

    Wagner, J Philipp; Reisenauer, Hans Peter; Hirvonen, Viivi; Wu, Chia-Hua; Tyberg, Joseph L; Allen, Wesley D; Schreiner, Peter R

    2016-06-14

    The cis,trans-conformer of carbonic acid (H2CO3), generated by near-infrared radiation, undergoes an unreported quantum mechanical tunnelling rotamerization with half-lives in cryogenic matrices of 4-20 h, depending on temperature and host material. First-principles quantum chemistry at high levels of theory gives a tunnelling half-life of about 1 h, quite near those measured for the fastest rotamerizations. PMID:27248671

  14. CO[sub 2] recovery in molten carbonate fuel cell system by pressure swing adsorption

    SciTech Connect

    Sasaki, A.; Matsumoto, S.; Fujitsuka, M.; Shinoki, T.; Tanaka, T. ); Ohtsuki, J. )

    1993-03-01

    The carbon dioxide recycle configuration by pressure swing adsorption (PSA) is examined in the indirect internal reforming molten carbonate fuel cell (IIR-MCFC) system, theoretically and experimentally. It is the result of system studies that the CO[sub 2] PSA makes the system efficiency higher than ordinary combustion process. A test plant is fabricated in order to evaluate the PSA performance in the IIR-MCFC system operation. The experimental results with respect to CO[sub 2] recovery ratio, purity and pressure fluctuations in both electrode chambers are acceptable. The system integration is necessary in order to decrease the auxiliary power still more and to give the control logic robust.

  15. Effect of chloride content of molten nitrate salt on corrosion of A516 carbon steel.

    SciTech Connect

    Bradshaw, Robert W.; Clift, W. Miles

    2010-11-01

    The corrosion behavior of A516 carbon steel was evaluated to determine the effect of the dissolved chloride content in molten binary Solar Salt. Corrosion tests were conducted in a molten salt consisting of a 60-40 weight ratio of NaNO{sub 3} and KNO{sub 3} at 400{sup o}C and 450{sup o}C for up to 800 hours. Chloride concentrations of 0, 0.5 and 1.0 wt.% were investigated to determine the effect on corrosion of this impurity, which can be present in comparable amounts in commercial grades of the constituent salts. Corrosion rates were determined by descaled weight losses, corrosion morphology was examined by metallographic sectioning, and the types of corrosion products were determined by x-ray diffraction. Corrosion proceeded by uniform surface scaling and no pitting or intergranular corrosion was observed. Corrosion rates increased significantly as the concentration of dissolved chloride in the molten salt increased. The adherence of surface scales, and thus their protective properties, was degraded by dissolved chloride, fostering more rapid corrosion. Magnetite was the only corrosion product formed on the carbon steel specimens, regardless of chloride content or temperature.

  16. Major design issues of molten carbonate fuel cell power generation unit

    SciTech Connect

    Chen, T.P.

    1996-04-01

    In addition to the stack, a fuel cell power generation unit requires fuel desulfurization and reforming, fuel and oxidant preheating, process heat removal, waste heat recovery, steam generation, oxidant supply, power conditioning, water supply and treatment, purge gas supply, instrument air supply, and system control. These support facilities add considerable cost and system complexity. Bechtel, as a system integrator of M-C Power`s molten carbonate fuel cell development team, has spent substantial effort to simplify and minimize these supporting facilities to meet cost and reliability goals for commercialization. Similiar to other fuels cells, MCFC faces design challenge of how to comply with codes and standards, achieve high efficiency and part load performance, and meanwhile minimize utility requirements, weight, plot area, and cost. However, MCFC has several unique design issues due to its high operating temperature, use of molten electrolyte, and the requirement of CO2 recycle.

  17. Performance analysis of molten carbonate fuel cell using a Li/Na electrolyte

    NASA Astrophysics Data System (ADS)

    Morita, H.; Komoda, M.; Mugikura, Y.; Izaki, Y.; Watanabe, T.; Masuda, Y.; Matsuyama, T.

    Several years ago, Li/Na carbonate (Li 2CO 3/Na 2CO 3) was developed as the electrolyte of molten carbonate fuel cells (MCFCs) in place of the usual Li/K carbonate (Li 2CO 3/K 2CO 3) to the advantage of a higher ionic conductivity and lower rate of cathode NiO dissolution. To estimate the potential of Li/Na carbonate as the MCFC electrolyte, the dependence of the cell performance on the operating conditions and the behavior during long-term performance was investigated in several bench-scale cell operations. The obtained data on the performance of Li/Na cells was analyzed to estimate the impact of voltage losses by using a performance model and discussed in comparison with the data of conventional Li/K cell performance.

  18. Hot-gas cleanup for molten carbonate fuel cells-dechlorination and soot formation

    NASA Astrophysics Data System (ADS)

    Ham, D.; Gelb, A.; Lord, G.; Simons, G.

    1984-01-01

    Two separate aspects of hot-gas conditioning for molten carbonate fuel cells (MCFC) were investigated: potential high temperature chloride sorbent materials were screened and tested and carbon deposition on MCFC components was studied experimentally to determine guidelines for maximizing MCFC efficiency while avoiding carbon fouling. Natural minerals containing sodium carbonate were identified as the most promising candidates for economical removal of chlorides from coal gasifier effluents at temperatures of about 800 K (980 F). The mineral Shortite was tested in a fixed bed and found to perform remarkably well with no calcination. Measurements showed that carbon deposition can occur in the equilibrium carbon free region because of the relative rates of the relevant reactions. On all surfaces tested, the Boudouard carbon formation reaction is much faster than the water-gas shift reaction which is much faster than the methanation reaction. This means that the normal practice of adding steam to prevent carbon formation will only succeed if flows are slow enough for the water shift reaction to go substantially to completion. More direct suppression of carbon formation can be achieved by CO2 addition through anode recycle to force the Boudouard reaction backward.

  19. Phase stability of LiAlO{sub 2} in molten carbonate

    SciTech Connect

    Tomimatsu, N.; Ohzu, H.; Akasaka, Y.; Nakagawa, K.

    1997-12-01

    In current molten carbonate fuel cells (MCFCs), submicron {gamma}-LiAlO{sub 2} powder is used as the electrolyte-retaining material because of its stability at high temperatures. However, it is recognized that {gamma}-LiAlO{sub 2} transforms to mainly {alpha}-LiAlO{sub 2} during MCFC operation. This suggests that {gamma}-LiAlO{sub 2} behavior in molten carbonate is different from that in air. To confirm the stable allotropic phase under actual MCFC conditions, the authors investigated the phase transformation of LiAlO{sub 2} in the presence of molten carbonate. It was found that essentially the {alpha}-phase is stable in a low-temperature and high-p{sub CO{sub 2}} environment, whereas the {gamma}-phase is stable in a high-temperature and low-p{sub CO{sub 2}} environment. In addition, there exists relative particle size dependence of the allotropic transformation when {alpha}- and {gamma}-LiAlO{sub 2} powders coexist. Further, the authors confirmed that the phase composition and structure of a matrix which consists of the {alpha}-LiAlO{sub 2} powder is stable up to 7,550 h at 700 C when the powder particle diameter is 0.3 {micro}m. These results suggest that {alpha}-LiAlO{sub 2} powder with 0.3 {micro}m diam is preferred over conventional {gamma}-LiAlO{sub 2} powder as an electrolyte-retaining material in MCFCs.

  20. Molten carbonate fuel cell (MCFC) porous electrode and kinetic studies. Final report

    SciTech Connect

    Selman, J.R.

    1992-10-01

    This report sumarizes a research project undertaken to improve the performance and understand the limitations of porous electrodes for molten carbonate fuel cells (MCFCs). Using a novel MCFC ``rotating-disk`` electrode, the electrode kinetic and mass transfer properties of commonly used electrode materials were determined, and a practical performance model for MCFC electrodes was developed. The report also outlines a general strategy for designing a high-performance MCFC electrode, assesses the current understanding of porous electrode operation, and discusses some of the unresolved questions of the field. An appendix gives a complete list of the many theses, journal articles, and symposium contributions based on this research.

  1. Simulation of process for electrical energy production based on molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    De Simon, G.; Parodi, F.; Fermeglia, M.; Taccani, R.

    A global molten carbonate fuel cells (MCFC) power plant steady-state simulation is presented. A performance fuel cell numerical model is developed and integrated as a custom block in Aspen plus™for the whole process simulation. The burner/reformer compact unit is built assembling existing Aspen plus™internal blocks. A simulation is obtained with the preliminary input specification to get to the base case and a sensitivity analysis is conducted, in order to find the process parameters whose change improves the global efficiency.

  2. A three-phase homogeneous model for porous electrodes in molten-carbonate fuel cells

    SciTech Connect

    Prins-Jansen, J.A.; Hemmes, K.; Wit, J.H.W. de; Fehribach, J.D.

    1996-05-01

    In this paper a new model for porous electrodes in molten-carbonate fuel cells (MCFC) is presented. The model is based on an averaging technique commonly used in porous-media problems. Important disadvantages of the existing agglomerate model caused by geometric assumptions and restrictions are eliminated in this new model. Unlike the agglomerate model, the new model is suitable for studying three-dimensional and anisotropic problems and incorporating the degree of electrolyte fill. Different reaction mechanisms can easily be incorporated. The validity of the new model is checked and compared with the agglomerate model by fitting the two models to ac-impedance spectra recorded from porous MCFC cathodes.

  3. The U.S. molten carbonate fuel-cell development and commercialization effort

    SciTech Connect

    Williams, M.C.; Parsons, E.L. Jr.; Mayfield, M.J.

    1995-03-01

    The authors discuss the status of molten carbonate fuel-cell (MCFC) development in the US, including the role of the US Department of Energy (DOE) in commercializing MCFC power-plant products for use by gas utility and electric power industries. The authors describe major fundamental stack research issues, as well as MCFC power-plant network and system issues, that need to be resolved before MCFC technology can be commercialized. A significant initiative in MCFC research is the spatial configuration of MCFC stacks into networks in a fuel-cell power plant.

  4. The U.S. molten carbonate fuel-cell development and commercialization effort

    SciTech Connect

    Williams, M.C.; Parsons, E.L. Jr.; Mayfield, M.J.

    1994-09-01

    The authors discuss the status of molten carbonate fuel-cell (MCFC) development in the U.S., including the role of the U.S. Department of Energy (DOE) in commercializing MCFC power-plant products for use by gas utility and electric power industries. They describe major fundamental stack research issues, as well as MCF power-plant network and system issues, that need to be resolved before MCFC technology can be commercialized. A significant initiative in MCFC research is the spatial configuration of MCFC stacks into networks in a fuel-cell power plant.

  5. Method of preparing a dimensionally stable electrode for use in a molten carbonate fuel cell

    DOEpatents

    Swarr, T.E.; Wnuck, W.G.

    1986-01-29

    A method is disclosed for preparing a dimensionally stable electrode structure, particularly nickel-chromium anodes, for use in a molten carbonate fuel cell stack. A low-chromium to nickel alloy is provided and oxidized in a mildly oxidizing gas of sufficient oxidation potential to oxidize chromium in the alloy structure. Typically, a steam/H/sub 2/ gas mixture in a ratio of about 100/1 and at a temperature below 800/sup 0/C is used as the oxidizing medium. This method permits the use of less than 5 wt % chromium in nickel alloy electrodes while obtaining good resistance to creep in the electrodes of a fuel cell stack.

  6. An electrolyte distribution model in consideration of the electrode wetting in the molten carbonate fuel cell

    SciTech Connect

    Kawase, Makoto; Mugikura, Yoshihiro; Watanabe, Takao

    2000-03-01

    In the molten carbonate fuel cell, the electrolyte distribution in the electrode is one of the major factors affecting cell performance. An electrolyte distribution model was developed in consideration of the electrode's wetting properties and the pore size distribution within the electrode. Because wettability data, e.g., contact angles, are required for model calculations, the meniscus heights of (Li/K)CO{sub 3} and (Li/Na)CO{sub 3} on Ni were measured under various anode gas conditions, and contact angles were derived.

  7. Oxygen reduction on Ni, Ag, and Cu meniscus electrodes in molten carbonate

    SciTech Connect

    Ogura, Hiroyuki; Shirogami, Tamotsu

    1994-12-31

    The oxygen reduction pathways in molten carbonates have been investigated by analyzing the charge transfer resistances of the i-V curves on the meniscus electrodes of Ni, Cu, and Ag screens at 550 C. The electrochemical reduction pathways of oxygen at the meniscus electrode were found to be different depending on the electrode materials. For the Ni meniscus electrode system, the reactive material of charge transfer is the lithium doped nickel oxide, for the Ag system that is the silver oxide ion, and for the Cu system that is peroxide ion, respectively.

  8. Hot gas cleanup using solid supported molten salt for integrated coal gasification/molten carbonate fuel cell power plants. Topical report, October 1982-December 1983

    SciTech Connect

    Lyke, S.E.; Sealock, L.J. Jr.; Roberts, G.L.

    1983-12-01

    Battelle, Pacific Northwest Laboratories is developing a solid supported molten salt (SSMS) hot gas cleanup process for integrated coal gasification/molten carbonate fuel cell (MCFC) power plants. Exploratory and demonstration experiments have been completed to select a salt composition and evaluate its potential for simultaneous hydrogen sulfide (H/sub 2/S) and hydrogen chloride (HCl) removal under the conditions projected for the MCFC plants. Results to date indicate that equilibrium capacity and removal efficiencies may be adequate for one step H/sub 2/S and HCl removal. Regeneration produced a lower H/sub 2/S concentration than expected, but one from which sulfur could be recovered. Bench scale experiments will be designed to confirm laboratory results, check carbonyl sulfide removal, refine dual cycle (sulfide-chloride) regeneration techniques and obtain data for engineering/economic evaluation and scale-up. 8 references, 24 figures, 7 tables.

  9. The redox combustion of carbon monoxide for recovering pure carbon dioxide by using molten (Na+,K+)2(CO32-,SO42-) mixtures.

    PubMed

    Shimano, Satoshi; Asakura, Shukuji

    2006-06-01

    Large-scale combustion systems, such as thermal power plants, emit large amounts of carbon dioxide, which can increase global warming. A molten salt redox combustion system was proposed to recover pure carbon dioxide exhausted from the combustion of fossil fuels. This system is composed of two successive processes by using reactions occurring in a molten salt. The molten salt is the mixture of the molten alkali metal sulfates and carbonates. The sulfate ions oxidize the fuels in first processes, being changed to reductive species such as sulfide ions. In this process, carbon dioxide and water are exclusively exhausted. The reductive species of sulfur compounds are oxidized to regenerate the sulfate ions by air in the second process. In this study, these above two processes were tried by using molten [(Na(+))(0.5),(K(+))(0.5)](2)[(CO(3)(2-))(0.9),(SO(4)(2-))(0.1)] alternatively. The oxidation of carbon monoxide as fuel by sulfate ions and the regeneration of sulfate ions by air were investigated in the temperature range of 700-950 degrees C, respectively. These reactions were exothermic. The rate of the regeneration of the sulfate ions was extremely high. During the oxidation of carbon monoxide, the reaction was first order in carbon monoxide with an activation energy of 101 kJ mol(-1). The optimum condition to recover pure carbon dioxide on practical operation was discussed. PMID:16337672

  10. Evaluation of corrosion resistance of aluminium coating with and without annealing against molten carbonate using electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Ni, C. S.; Lu, L. Y.; Zeng, C. L.; Niu, Y.

    2014-09-01

    An arc ion plating (AIP) was used to fabricate a FeAl layer on 310S stainless steel to protect the sealing area being corroded by the molten carbonate in molten carbonate fuel cells (MCFCs). The degradation of aluminide coatings comes from both the corrosion of the coating in contact with the molten carbonate and the aluminium depletion due to the interdiffusion of aluminium and the substrate. The in-situ forming of aluminide in molten carbonate at 650 °C could be a possible way to reduce the inward diffusion of aluminium in the conventional pre-annealing at 850 °C. Electrochemical impedance spectroscopy (EIS) measurements were performed to model the corrosion of this pre-formed FeAl coating in comparison with the one formed in-situ in molten (0.62 Li+0.38 K)2CO3 at 650 °C. Although α-LiAlO2 is the corrosion product in both cases, the impedance spectra show distinct rate-limiting steps; the former is controlled by the charged particles passing through the scale, while the latter by their diffusion in the melt. The microstructure of the scale might be the reason for the difference in corrosion mechanism.

  11. Efficiency of non-optimized direct carbon fuel cell with molten alkaline electrolyte fueled by carbonized biomass

    NASA Astrophysics Data System (ADS)

    Kacprzak, A.; Kobyłecki, R.; Włodarczyk, R.; Bis, Z.

    2016-07-01

    The direct carbon fuel cells (DCFCs) belong to new generation of energy conversion devices that are characterized by much higher efficiencies and lower emission of pollutants than conventional coal-fired power plants. In this paper the DCFC with molten hydroxide electrolyte is considered as the most promising type of the direct carbon fuel cells. Binary alkali hydroxide mixture (NaOH-LiOH, 90-10 mol%) is used as electrolyte and the biochar of apple tree origin carbonized at 873 K is applied as fuel. The performance of a lab-scale DCFC with molten alkaline electrolyte is investigated and theoretical, practical, voltage, and fuel utilization efficiencies of the cell are calculated and discussed. The practical efficiency is assessed on the basis of fuel HHV and LHV and the values are estimated at 40% and 41%, respectively. The average voltage efficiency is calculated as roughly 59% (at 0.65 V) and it is in a relatively good agreement with the values obtained by other researchers. The calculated efficiency of fuel utilization exceeds 95% thus indicating a high degree of carbon conversion into the electric power.

  12. Thermodynamic and structural properties of the acid molten globule state of horse cytochrome C.

    PubMed

    Nakamura, Shigeyoshi; Seki, Yasutaka; Katoh, Etsuko; Kidokoro, Shun-ichi

    2011-04-19

    To understand the stabilization, folding, and functional mechanisms of proteins, it is very important to understand the structural and thermodynamic properties of the molten globule state. In this study, the global structure of the acid molten globule state, which we call MG1, of horse cytochrome c at low pH and high salt concentrations was evaluated by solution X-ray scattering (SXS), dynamic light scattering, and circular dichroism measurements. MG1 was globular and slightly (3%) larger than the native state, N. Calorimetric methods, such as differential scanning calorimetry and isothermal acid-titration calorimetry, were used to evaluate the thermodynamic parameters in the transitions of N to MG1 and MG1 to denatured state D of horse cytochrome c. The heat capacity change, ΔC(p), in the N-to-MG1 transition was determined to be 2.56 kJ K(-1) mol(-1), indicating the increase in the level of hydration in the MG1 state. Moreover, the intermediate state on the thermal N-to-D transition of horse cytochrome c at pH 4 under low-salt conditions showed the same structural and thermodynamic properties of the MG1 state in both SXS and calorimetric measurements. The Gibbs free energy changes (ΔG) for the N-to-MG1 and N-to-D transitions at 15 °C were 10.9 and 42.2 kJ mol(-1), respectively. PMID:21388230

  13. Carbonic Acid Retreatment of Biomass

    SciTech Connect

    Baylor university

    2003-06-01

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. (1) Solidify the theoretical understanding of the binary CO{sub 2}/H{sub 2}O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. (2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. (3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. (4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. (5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for

  14. Carbonic Acid Pretreatment of Biomass

    SciTech Connect

    G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

    2003-05-31

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic

  15. Creep resistant, metal-coated LiFeO.sub.2 anodes for molten carbonated fuel cells

    DOEpatents

    Khandkar, Ashok C.

    1994-01-01

    A porous, creep-resistant, metal-coated, LiFeO.sub.2 ceramic electrode for fuel cells is disclosed. The electrode is particularly useful for molten carbonate fuel cells (MCFC) although it may have utilities in solid oxide fuel cells (SOFC) as well.

  16. Creep resistant, metal-coated LiFeO[sub 2] anodes for molten carbonated fuel cells

    DOEpatents

    Khandkar, A.C.

    1994-08-23

    A porous, creep-resistant, metal-coated, LiFeO[sub 2] ceramic electrode for fuel cells is disclosed. The electrode is particularly useful for molten carbonate fuel cells (MCFC) although it may have utilities in solid oxide fuel cells (SOFC) as well. 11 figs.

  17. Molten carbonate fuel cell product design & improvement - 2nd quarter, 1996. Quarterly report, April 1--June 30, 1996

    SciTech Connect

    1997-05-01

    The main objective of this project is to establish the commercial readiness of a molten carbonate fuel cell power plant for distributed power generation, cogeneration, and compressor station applications. This effort includes marketing, systems design and analysis, packaging and assembly, test facility development, and technology development, improvement, and verification.

  18. Fundamental stack and system issues in molten carbonate fuel cell development

    SciTech Connect

    Williams, M.C.; Parsons, E.L. Jr.; Mayfield, M.J.

    1993-12-31

    Stack research and system issues in molten carbonate fuel cell (MCFC) technology development and commercialization are discussed within context of status of MCFC development and commercialization in US. Status of MCFC development is addressed. Major known fundamental stack research issues remaining for the MCFC technology are identified and discussed. The cathode remains a focal point of performance improvement and cost reduction. The various aspects of MCFC power plant network and systems issues are also addressed and discussed. These include cost, heat loss management, startup and shutdown modes, dynamic response, footprint, packaging and integration, parasitic power losses, pressurization and reforming. Potential of MCFC networks is discussed. With the initial demonstration of full-area, fullheight 250-kW to 2-MW MCFC power plants, the spatial configuration of the MCFC stacks into networks in the fuel cell power plant takes on importance for the first time.

  19. Effects of water-gas shift reaction on simulated performance of a molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Mi-Hyun; Park, Hong-Kyu; Chung, Gui-Yung; Lim, Hee-Chun; Nam, Suk-Woo; Lim, Tae-Hoon; Hong, Seong-Ahn

    A molten carbonate fuel cell (MCFC) is simulated. In order to determine the effects of the water-gas shift reaction, the calculated results such as temperature distribution, voltage distribution, conversion and performance, are compared with those calculated excluding the shift reaction. Uniformity in the temperature profile is deteriorated due to the shift reaction. At the entrance, hydrogen is consumed rapidly in order to reach the equilibrium state of the shift reaction. The conversion of hydrogen decreases along the direction of gas flow because of hydrogen generated by the shift reaction. Therefore, when the shift reaction is excluded, the conversion of hydrogen is higher than that in a practical cell. Additionally, at the same current density, the voltage calculated without the shift reaction would be higher than the real value. The effect of the shift reaction on the voltage distribution and cell performances is quite small.

  20. Pressure losses at dividing and combining junctions in a molten carbonate fuel cell stack

    NASA Astrophysics Data System (ADS)

    Hirata, Haruhiko; Nakagaki, Takao; Hori, Michio

    The pressure losses at manifold junctions in a molten carbonate fuel cell (MCFC) stack depend on the stacking positions of the cells and the flow rate in the manifold. These pressure losses affect the uniformity of gas flow rate in each stacked cell and consequently also affect the cell performance. In this study, the pressure losses at dividing and combining junctions in a plate heat-exchanger type MCFC stack were examined by numerical analysis. A stack consisting of 100 cells was assumed, and the junction pressure losses at various stacking positions of cells were calculated under various flow rate conditions ranging from the minimum possible flow rate (80% utilization of fuel gas) to the maximum possible flow rate (10% utilization of oxidant gas). The results were arranged according to the equations for loss coefficients, and were compared with the experimental results of previous studies.

  1. Studies on the initial behaviours of the molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Lee, Ye-Ro; Kim, In-Goo; Chung, Gui-Yung; Lee, Choong-Gon; Lim, Hee-Chun; Lim, Tae-Hoon; Nam, Suk-Woo; Hong, Seong-Ahn

    Mathematical modelling of the unsteady-state of a unit molten carbonate fuel cell (MCFC) has been made. The behaviour of the fuel cell at the beginning of the operation is observed. The effects of the molar flow rates of gases and the utilization of fuel gas are studied. The current density decreases with time and reaches a steady-state value of 0.14 A cm -2 at 0.58 s for the chosen reference conditions. As the inlet gas-flow rates or the hydrogen utilization are increased, the time required to reach a steady-state decreases. With increased flow rates of the anode and cathode gases, the average current density is high and the total concentration is low. The current density increases with increasing utilization of hydrogen.

  2. Ceramic anode catalyst for dry methane type molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Tagawa, T.; Yanase, A.; Goto, S.; Yamaguchi, M.; Kondo, M.

    Oxide catalyst materials for methane oxidation were examined in order to develop the anode electrode for molten carbonate type fuel cell (MCFC). As a primary selection, oxides such as lanthanum (La 2O 3) and samarium (Sm 2O 3) were selected from screening experiments of TPD, TG and tubular reactor. Composite materials of these oxides with titanium fine powder were assembled into a cell unit for MCFC as the anode electrode. Steady-state activities were observed with these anode electrode materials when hydrogen was used as a fuel. When methane was directly charged to anode as a fuel (dry methane operation), a power generation with steady state was observed on both lanthanum and samarium composites after gradual decrease of open circuit electromotive force (OCV) and closed circuit current (CCI). The steady-state activity held as long as 144 h of continuous operation.

  3. Study of molten carbonate fuel cell—microturbine hybrid power cycles

    NASA Astrophysics Data System (ADS)

    Jurado, Francisco

    The interaction realized by fuel cell—microturbine hybrids derive primarily from using the rejected thermal energy and combustion of residual fuel from a fuel cell in driving the gas turbine. This leveraging of thermal energy makes the high temperature molten carbonate fuel cells (MCFCs) ideal candidates for hybrid systems. Use of a recuperator contributes to thermal efficiency by transferring heat from the gas turbine exhaust to the fuel and air used in the system. Traditional control design approaches, consider a fixed operating point in the hope that the resulting controller is robust enough to stabilize the system for different operating conditions. On the other hand, adaptive control incorporates the time-varying dynamical properties of the model (a new value of gas composition) and considers the disturbances acting at the plant (load power variation).

  4. Three-dimensional and dynamical performance of a molten carbonate fuel cell stack

    SciTech Connect

    He, W.; Chen, Q.

    1996-12-31

    The three-dimensional and dynamic performance of a molten carbonate fuel cell (MCFC) stack operating under load-following modes have been investigated by using dynamic simulation. The major processes with regard to an MCFC`s safe and efficient operation in power-generation systems, such as the mass and heat transport, chemical reactions and electrical power generation, are formulated in a three-dimensional, time-dependent form using the computational-fluid-dynamics (CFD) technique. The grid definitions have been explained, and a simple test to determine whether the simulation results being acceptable has been introduced. In this paper, the model performance is demonstrated by applying it to calculate the distributions of current density and temperature under a step change.

  5. Development of sulfur-tolerant components for the molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Sammells, A. F.; Nicholson, S. B.; Ang, P. G. P.

    1980-02-01

    The sulfur tolerance of candidate anode and anode current collector materials for the molten carbonate fuel cell were evaluated in an electrochemical half-cell using both steady-state and transient potentiostatic techniques. Hydrogen sulfide was introduced into the fuel at concentrations of 50 and 1000 ppm; at the higher sulfur concentration nickel and cobalt underwent a negative shift in their open-circuit potentials, and high anodic and cathodic currents were observed compared with clean fuels. Exchange currents were not greatly affected by 50 ppm H2S; but, at higher sulfur concentrations, higher apparent exchange currents were observed, indicating a probable sulfidation reaction. New anode materials including TiC showed good stability in the anodic region. Of the anode current collector materials evaluated, high stabilities were found for 410 and 310 stainless steels.

  6. Effects of H/sub 2/S on molten carbonate fuel cells

    SciTech Connect

    Remick, R. J.; Anderson, G. L.

    1984-04-01

    This report summarizes the results of a literature survey conducted by the Institute of Gas Technology (IGT) under Phase I of a multi-phase program to investigate and identify the mechanism(s) responsible for molten carbonate fuel cell (MCFC) performance losses when operating on sulfur-containing gases. The objective of this literature survey was twofold: (1) to review the reported data on the interaction of H/sub 2/S with nickel-containing materials; and (2) to review reported investigations on the specific effects of H/sub 2/S on the electrochemical oxidation of H/sub 2/ in MCFC. The ultimate goal of this literature review is to determine the poisoning mechanism. 21 references.

  7. Thermodynamic performance analysis of a molten carbonate fuel cell at very high current densities

    NASA Astrophysics Data System (ADS)

    Ramandi, M. Y.; Dincer, I.

    2011-10-01

    This study is basically composed of two sections. In the first section, a CFD analysis is used to provide a better insight to molten carbonate fuel cell operation and performance characteristics at very high current densities. Therefore, a mathematical model is developed by employing mass and momentum conservation, electrochemical reaction mechanisms and electric charges. The model results are then compared with the available data for an MCFC unit, and a good agreement is observed. In addition, the model is applied to predict the unit cell behaviour at various operating pressures, temperatures, and cathode gas stoichiometric ratios. In the second section, a thermodynamic model is utilized to examine energy efficiency, exergy efficiency and entropy generation of the MCFC. At low current densities, no considerable difference in output voltage and power is observed; however, for greater values of current densities, the difference is not negligible. If the molten carbonate fuel cell is to operate at current densities smaller than 2500 A m-2, there is no point to pressurize the system. If the fuel cell operates at pressures greater than atmospheric pressure, the unit cell cost could be minimized. In addition, various partial pressure ratios at the cathode side demonstrated nearly the same effect on the performance of the fuel cell. With a 60 K change in operating temperature, almost 10% improvement in energy and exergy efficiencies is obtained. Both efficiencies initially increase at lower current densities and then reach their maximum values and ultimately decrease with the increase of current density. By elevating the pressure, both energy and exergy efficiencies of the cell enhance. In addition, higher operating pressure and temperature decrease the unit cell entropy generation.

  8. Development of molten-carbonate fuel-cell technology. Final report, February-December 1980

    SciTech Connect

    Not Available

    1980-01-01

    The objective of the work was to focus on the basic technology for producing molten carbonate fuel cell (MCFC) components. This included the development and fabrication of stable anode structures, preparation of lithiated nickel oxide cathodes, synthesis and characterization of a high surface area (gamma-lithium-aluminate) electrolyte support, pressurized cell testing and modeling of the overall electrolyte distribution within a cell to aid performance optimization of the different cell components. The electrode development program is highlighted by two successful 5000 hour bench-scale tests using stabilized anode structures. One of these provided better performance than in any previous state-of-the-art, bench-scale cell (865 mV at 115 mA/cm/sup 2/ under standard conditions). Pressurized testing at 10 atmosphere of a similar stabilized, high surface area, Ni/Co anode structure in a 300 cm/sup 2/ cell showed that the 160 mA/cm/sup 2/ performance goal of 850 mV on low Btu fuel (80% conversion) can be readily met. A study of the H/sub 2/S-effects on molten carbonate fuel cells showed that ERC's Ni/Co anode provided better tolerance than a Ni/Cr anode. Prelithiated nickel oxide plaques were prepared from materials made by a low temperature and a high temperature powder-production process. The methods for fabricating handleable cathodes of various thicknesses were also investigated. In electrolyte matrix development, accelerated out-of-cell and in-cell tests have confirmed the superior stability of ..gamma..-LiAlO/sub 2/.

  9. Corrosion behavior of stainless steel and nickel-base alloys in molten carbonate

    SciTech Connect

    Vossen, J.P.T.; Plomp, L.; Rietveld, G.; Wit, J.H.W. de

    1995-10-01

    The corrosion behavior of five commercially available alloys (AISI 316L, AISI 310S, Inconel 601, Thermax 4762, and Kanthal A1) in molten carbonate under reducing gas atmospheres was investigated with cyclic voltammetry and quasi-stationary polarization curve measurements. The reactions that proceed on these materials at distinct potentials could be deduced by comparison of the cyclic voltammograms and polarization curves with those of pure metals and model alloys. The shape of the polarization curves of all materials strongly depends on the preceding electrochemical treatment. A polarization curve recorded immediately after immersion of a sample resulted in a high anodic current. This implies that the passivation of the materials is poor. When a specimen was conditioned at {minus}1,060 mV for 10 h before recording the polarization curve, the anodic current diminished, which indicates passivation. This occurred for all materials except AISI 316L. A ranking of the corrosion properties was determined from polarization curves of samples that had been conditioned assuming the current densities to be representative. The resistance against corrosion of the alloys increases in the order: AISI 316Lmolten carbonate fuel cell (MCFC) anode potentials, this order may also apply for real MCFC operation conditions. The order determined from electrochemical experiments is in agreement with the results of exposure tests which are more time-consuming. This study confirms that the presence of large amounts of chromium and significant additions of aluminium have a beneficial effect on the corrosion resistance of stainless steel and nickel-base alloys.

  10. Development and characterization of novel cathode materials for molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Giorgi, L.; Carewska, M.; Patriarca, M.; Scaccia, S.; Simonetti, E.; Dibartolomeo, A.

    1994-04-01

    In the development of molten carbonate fuel cell (MCFC) technology, the corrosion of materials is a serious problem for long-term operation. Indeed, slow dissolution of lithiated-NiO cathode in molten carbonates is the main obstacle for the commercialization of MCFCs. In the search of new, more stable, cathode materials, alternative compounds such as LiFeO2, Li2MnO3, and La(1-x)Sr(x)CoO3 are presently under investigation to replace the currently used lithiated-NiO. The aim of the present work was to investigate the possibility to produce electrode based on LiCoO2, a promising cathode material. At first, Li(x)CoO2 powder samples (0.8 less than x less than 1.1) were made by thermal decomposition of carbonate precursors in air. The synthesis processes were monitored by thermal analysis (TGA, DTA). The calcined and sintered powder samples were characterized by x ray diffraction (XRD) andatomic absorption spectrophotometry (F-AAS). A single phase was detected in all the samples, without any change in crystal structure as a function of lithium content. Porous sintered electrodes were prepared starting from lithium cobaltite powders mixed with different pore-formers by cold pressing and sintering. A bimodal pore-size distribution with a mean pore diameter in the range of 0.15 to 8 micron, a surface area of 2 to 12 sq m/g and a porosity of 10 to 65%, determined by the Hg-intrusion technique, were observed in all the materials. Conductivity measurements were carried out in the temperature range of 500-700 C, in air. The influence of the deviations from stoichiometry on the electronic properties was determined, the conductivity value of the stoichiometric compound being the lowest. A linear relationship between the electronic conductivity and the sample porosity was found. Solubility testing of the materials was carried out to evaluate their chemical stability in the electrolyte. The sampling method (F-AAS) and square wave voltammetry (SWV) were used to determine the

  11. The feasibility of using molten carbonate corrosion for separating a nuclear surrogate for plutonium oxide from silicon carbide inert matrix

    NASA Astrophysics Data System (ADS)

    Cheng, Ting; Baney, Ronald H.; Tulenko, James

    2010-10-01

    Silicon carbide is one of the prime candidates as a matrix material in inert matrix fuels (IMF) being designed to reduce the plutonium inventories. Since complete fission and transmutation is not practical in a single in-core run, it is necessary to separate the non-transmuted actinide materials from the silicon carbide matrix for recycling. In this work, SiC was corroded in sodium carbonate (Na 2CO 3) and potassium carbonate (K 2CO 3), to form water soluble sodium or potassium silicate. Separation of the transuranics was achieved by dissolving the SiC corrosion product in boiling water. Ceria (CeO 2), which was used as a surrogate for plutonium oxide (PuO 2), was not corroded in these molten salt environments. The molten salt depth, which is a distance between the salt/air interface to the upper surface of SiC pellets, significantly affected the rate of corrosion. The corrosion was faster in K 2CO 3 than in Na 2CO 3 molten salt at 1050 °C, when the initial molten salt depths were kept the same for both salts.

  12. Corrosion of 304 stainless steel in molten-carbonate fuel cells

    SciTech Connect

    Keijzer, M.; Hemmes, K.; Put, P.J.J.M. van der; Schoonman, J.; Wit, J.H.W. de; Lindbergh, G.

    1999-07-01

    The corrosion behavior of 304 stainless steel was characterized with cyclic voltammetry in a eutectic Li/K and Li/Na carbonate melt under anode and cathode gas of the molten-carbonate fuel cell (MCFC). The corrosion rate of 304 steel was determined in four different environments of the MCFC with electrochemical methods and from cross-sectional analysis of corrosion layers. These four environments were open-circuit and MCFC-load conditions both under anode and cathode gas. At open-circuit conditions corrosion was more severe under the oxidizing cathode gas then under the reducing anode gas. On the contrary, at load conditions corrosion was more severe under anode than under cathode gas. The anodic polarization under anode gas enhances corrosion, whereas the high anodic polarization under cathode gas leads to anodic protection. Corrosion currents were measured with chronoamperometry and determined with Tafel extrapolation from quasi-stationary polarization-curve measurements. The difference between the corrosion layer thickness estimated from these corrosion currents and the corrosion layer thickness determined from cross-sectional analysis is mainly die to contributing currents of either the MCFC-anode gas reaction under anode gas or the MCFC-cathode gas reaction under cathode gas.

  13. Corrosion behavior and interfacial resistivity of bipolar plate materials under simulated molten carbonate fuel cell conditions.

    SciTech Connect

    Schoeler, A. C.; Kaun, T. D.; Bloom, I.; Lanagan, M.; Krumpelt, M.

    2000-03-01

    A material is needed for bipolar plate materials in molten carbonate fuel cells (MCFCs) that combines the low oxide resistivity of 316L stainless steel (SS) with the low corrosion rate of the type 310 SS. We tested a group of materials that included Nitronic 50 SS and a newly developed high-temperature nickel-rich alloy, having chromium contents ranging from 16 to 31 wt %. Our results indicate that chromium content is the primary determinant of oxide scale composition and resistivity. In the MCFC cathode compartment, all tested alloys formed a duplex structure with an inner Cr-rich layer and an outer Fe-rich one. The composition of the inner Cr-rich layer was determined by the chromium content of the base alloy and has a controlling effect on scale resistivity. Oxide scale resistivity was measured for three electrolyte compositions: Li/K, Li/Na, and newly developed (Li, Na, Ca, Ba) carbonates. Changes in the physical/mechanical properties (spallation/cracking) in the oxide scale of 316L SS provided an understanding of its resistivity fluctuations over time.

  14. Corrosion behavior and interfacial resistivity of bipolar plate materials under molten carbonate fuel cell cathode conditions

    SciTech Connect

    Schoeler, A.C.; Kaun, T.D.; Bloom, I.; Lanagan, M.; Krumpelt, M.

    2000-03-01

    A material is needed for bipolar plate materials in molten carbonate fuel cells (MCFCs) that combines the low oxide resistivity of 316L stainless steel (SS) with the low corrosion rate of the type 310 SS. The authors tested a group of materials that included Nitronic 50 SS and a newly developed high-temperature nickel-rich alloy, having chromium contents ranging from 16 to 31 wt %. Their results indicate that chromium content is the primary determinant of oxide scale composition and resistivity. In the MCFC cathode compartment, all tested alloys formed a duplex structure with an inner Cr-rich layer and an outer Fe-rich one. The composition of the inner Cr-rich layer was determined by the chromium content of the base alloy and has a controlling effect on scale resistivity. Oxide scale resistivity was measured for three electrolyte compositions: Li/K, Li/Na, and newly developed (Li, Na, Ca, Ba) carbonates. Changes in the physical/mechanical properties (spallation/cracking) in the oxide scale of 316L SS provided an understanding of its resistivity fluctuations over time.

  15. Cycle Analysis of Micro Gas Turbine-Molten Carbonate Fuel Cell Hybrid System

    NASA Astrophysics Data System (ADS)

    Kimijima, Shinji; Kasagi, Nobuhide

    A hybrid system based on a micro gas turbine (µGT) and a high-temperature fuel cell, i.e., molten carbonate fuel cell (MCFC) or solid oxide fuel cell (SOFC), is expected to achieve a much higher efficiency than conventional distributed power generation systems. In this study, a cycle analysis method and the performance evaluation of a µGT-MCFC hybrid system, of which the power output is 30kW, are investigated to clarify its feasibility. We developed a general design strategy in which a low fuel input to a combustor and higher MCFC operating temperature result in a high power generation efficiency. A high recuperator temperature effectiveness and a moderate steam-carbon ratio are the requirements for obtaining a high material strength in a turbine. In addition, by employing a combustor for complete oxidation of MCFC effluents without additional fuel input, i.e., a catalytic combustor, the power generation efficiency of a µGT-MCFC is achieved at over 60%(LHV).

  16. Resistivity of bipolar plate materials at the cathode interface in molten carbonate fuel cells.

    SciTech Connect

    Kaun, T. D.

    1998-11-18

    Measurements of oxide scale resistivity for prospective bipolar plate materials in the molten carbonate fuel cell (MCFC) are coupled with observations of microstructural/compositional change over time. This work searches for a compromise to the high corrosion rate of Type 316L and the high oxide scale resistance of Type 310S. We tested a group of materials having chromium content ranging from 16 to 31 wt%, including Nitronic 50 and NKK, a Ni-Cr-Fe alloy. Chromium content was found to be the primary determinant of oxide scale composition. In the MCFC cathode compartment, stainless steels generally formed a duplex structure with an inner Cr-rich layer and an outer, Fe-rich layer. The composition of the inner Cr-rich layer was related to the base alloy and had a controlling effect on scale resistivity. Oxide scale resistivity was measured for two electrolyte compositions: Li/K and Li/Na carbonates. Changes in the physical/mechanical properties (spallation/cracking) in the oxide scale of Type 316L provided an understanding of its resistivity fluctuations over time.

  17. Integration of a molten carbonate fuel cell with a direct exhaust absorption chiller

    NASA Astrophysics Data System (ADS)

    Margalef, Pere; Samuelsen, Scott

    A high market value exists for an integrated high-temperature fuel cell-absorption chiller product throughout the world. While high-temperature, molten carbonate fuel cells are being commercially deployed with combined heat and power (CHP) and absorption chillers are being commercially deployed with heat engines, the energy efficiency and environmental attributes of an integrated high-temperature fuel cell-absorption chiller product are singularly attractive for the emerging distributed generation (DG) combined cooling, heating, and power (CCHP) market. This study addresses the potential of cooling production by recovering and porting the thermal energy from the exhaust gas of a high-temperature fuel cell (HTFC) to a thermally activated absorption chiller. To assess the practical opportunity of serving an early DG-CCHP market, a commercially available direct fired double-effect absorption chiller is selected that closely matches the exhaust flow and temperature of a commercially available HTFC. Both components are individually modeled, and the models are then coupled to evaluate the potential of a DG-CCHP system. Simulation results show that a commercial molten carbonate fuel cell generating 300 kW of electricity can be effectively coupled with a commercial 40 refrigeration ton (RT) absorption chiller. While the match between the two "off the shelf" units is close and the simulation results are encouraging, the match is not ideal. In particular, the fuel cell exhaust gas temperature is higher than the inlet temperature specified for the chiller and the exhaust flow rate is not sufficient to achieve the potential heat recovery within the chiller heat exchanger. To address these challenges, the study evaluates two strategies: (1) blending the fuel cell exhaust gas with ambient air, and (2) mixing the fuel cell exhaust gases with a fraction of the chiller exhaust gas. Both cases are shown to be viable and result in a temperature drop and flow rate increase of the

  18. Studies of the effects of the reformer in an internal-reforming molten carbonate fuel cell by mathematical modeling

    NASA Astrophysics Data System (ADS)

    Park, Hong-Kyu; Lee, Ye-Ro; Kim, Mi-Hyun; Chung, Gui-Yung; Nam, Suk-Woo; Hong, Seong-Ahn; Lim, Tae-Hoon; Lim, Hee-Chun

    The effects of the reformer in an internal-reforming molten carbonate fuel cell (IR-MCFC) are studied by mathematical modeling. Temperature distributions, conversion of methane and compositions of gases are analyzed through mathematical modeling of the reformer and the cell. In the reformer, the methane-reforming reaction and the water-gas shift reaction occur simultaneously and the conversion of methane to hydrogen, calculated including the thermodynamic equilibrium of the reaction, reaches 99%. Additionally, the endothermic-reforming reaction contributes to a uniform temperature distribution. The voltage and the power of the IR-MCFC are similar to those of an external-reforming molten carbonate fuel cell (ER-MCFC), when the compositions at the inlet of the ER-MCFC are set as those at the outlet of the reformer in IR-MCFC. As the molar ratio of methane to water-gas decreases at a fixed total flow rate, the working voltage decreases.

  19. Meniscus behavior of metals and oxides in molten carbonate under oxidant and reducing atmospheres. 1: Contact angle and electrolyte displacement

    SciTech Connect

    Mugikura, Y.; Selman, J.R.

    1996-08-01

    The wetting of metals and oxides by molten carbonate is an important factor affecting the performance of a molten carbonate fuel cell (MCFC). The distribution of the electrolyte among electrodes and matrix in the MCFC is dominated by the pore characteristics and wetting properties of these components. However, data on wetting, especially under load (current passage), are limited. In this study, the behavior of the meniscus at a metal is used to obtain information on wetting and electrochemical reactions. Meniscus height and current were measured under various atmospheres. The contact angle was calculated from the meniscus height. The electrolyte distribution in the MCFC was estimated using contact angles thus obtained in oxidant and reducing atmospheres. The results suggest that upon application of load the electrolyte moves from the anode to the cathode and that capillary effects can worsen the performance of a cell, especially if it is in an unbalanced state of electrolyte filling.

  20. Concentration polarisation in heterogeneous electrochemical reactions: a consistent kinetic evaluation and its application to molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Bosio, B.; Arato, E.; Costa, P.

    Aim of this work is to focus attention on how the concentration polarization, in all electrochemistry applications, is often formulated on the basis of only thermodynamic statements and how it should be written in a kinetic more consistent expression. Moreover, the application of this study to the analysis of molten carbonate fuel cell (MCFC) behaviour has been discussed with reference to diffusion limited operating conditions.

  1. Operation of molten carbonate fuel cells with different biogas sources: A challenging approach for field trials

    NASA Astrophysics Data System (ADS)

    Trogisch, S.; Hoffmann, J.; Daza Bertrand, L.

    In the past years research in the molten carbonate fuel cells (MCFC) area has been focusing its efforts on the utilisation of natural gas as fuel (S. Geitmann, Wasserstoff- & Brennstoffzellen-Projekte, 2002, ISBN 3-8311-3280-1). In order to increase the advantages of this technology, an international consortium has worked on the utilisation of biogas as fuel in MCFC. During the 4 years lasting RTD project EFFECTIVE two different gas upgrading systems have been developed and constructed together with two mobile MCFC test beds which were operated at different locations for approximately 2.000-5.000 h in each run with biogas from different origins and quality. The large variety of test locations has enabled to gather a large database for assessing the effect of the different biogas qualities on the complete system consisting of the upgrading and the fuel cell systems. The findings are challenging. This article also aims at giving an overview of the advantages of using biogas as fuel for fuel cells.

  2. Experimental study on the dynamic characteristics of kW-scale molten carbonate fuel cell systems

    NASA Astrophysics Data System (ADS)

    Kang, Byoung Sam; Koh, Joon-Ho; Lim, Hee Chun

    The aim of this work is to develop dynamic models for two types of kW-scale molten carbonate fuel cell (MCFC) systems on the basis of experimental data. The dynamic models are represented as a 3×3 transfer function matrix for a multi-input and multi-output (MIMO) system with three inputs and three outputs. The three controlled variables which severely affect the stack performance and lifetime are the temperature difference in the stack and the pressure drop at the anode and the cathode. Three manipulated variables, namely, current load, fuel and oxidant utilization, are selected to keep the three controlled variables within their safety limits for the reliable operation and protection of the system in case of emergency. Each element in the transfer function matrix is in the form of a first-order model using a simple, unit step, response test during operation. The non-zero off-diagonal elements in the transfer function matrix show that some interactions exist among the operating variables, and two zeros show no interaction between fuel and oxidant flow without gas cross-over. The stability of both dynamic models is analyzed using the relative gain array (RGA) method. Large diagonal elements in the RGA matrix show that the pairing between the manipulated and controlled variables is appropriate. Proper pairing is also proven by the singular value analysis (SVA) method with a smaller singular value in each system.

  3. Manufacturing method for tubular molten carbonate fuel cells and basic cell performance

    NASA Astrophysics Data System (ADS)

    Kawase, Makoto

    2015-07-01

    The combination of syngas from gasification and high-temperature fuel cells is a candidate for high-efficiency power generation systems. Reducing the production cost of fuel cells and gas-cleaning devices is an important issue for commercial application. This study focuses on molten carbonate fuel cells (MCFCs), which are relatively durable against poisoning by impurities in syngas. However, the development of MCFC systems has come to a halt in Japan because the production cost of MCFCs made them commercially infeasible. To reduce the production cost significantly, a tubular MCFC has been developed instead of the conventional planar type. The tubular MCFC requires neither a complex separator nor cell components with high dimensional accuracy. However, there have been no reports about tubular MCFCs because the electrolytes used for these MCFCs are liquid, which makes it difficult to fasten the fuel cell stack without a fastener. In this study, a fastening method is developed by using the self-shrinking effect of anodes during sintering. Using this technique, the tubular MCFC was successfully manufactured. The results of a power generation test for 1000 h show that the cell voltage was kept stable. Moreover, the cell performance was close to that of a conventional planar MCFC.

  4. Simulated Coal-Gas-Fueled Molten Carbonate Fuel Cell Development Program. Final report

    SciTech Connect

    Not Available

    1992-08-01

    This final report summarizes the technical work performed under Department of Energy Contract DE-AC21-91MC27393, ``Simulated Coal- Gas-Fueled Molten Carbonate Fuel Cell Development Program.`` This work consists of five major tasks and their respective subtasks as listed below. A brief description of each task is also provided. The Stack Design Requirements task focused on requirements and specification for designing, constructing, and testing a nominal 100-kilowatt integrated stack and on requirements for the balance-of-plant equipment to support a 1000-kilowatt integrated stack demonstrator. The Stack Design Preparation task focused on the mechanical design of a 100-kilowatt stack comprised of 8-ft{sup 2} cells incorporating the new cell configuration and component technology improvements developed in the previous DOE MCFC contract. Electrode Casting focused on developing a faster drying solvent for use in the electrode tape casting process. Electrode Heat Treatment was directed at scaling up the laboratory continuous debinding process to a new full-size IFC debinding oven coupled to a continuous belt furnace that will both debind and sinter the electrodes in one continuous process train. Repeat Part Quality Assurance and Testing provided the appropriate effort to ensure consistent, high-quality, reproducible and comparable repeat parts.

  5. Simulated Coal-Gas-Fueled Molten Carbonate Fuel Cell Development Program

    SciTech Connect

    Not Available

    1992-08-01

    This final report summarizes the technical work performed under Department of Energy Contract DE-AC21-91MC27393, Simulated Coal- Gas-Fueled Molten Carbonate Fuel Cell Development Program.'' This work consists of five major tasks and their respective subtasks as listed below. A brief description of each task is also provided. The Stack Design Requirements task focused on requirements and specification for designing, constructing, and testing a nominal 100-kilowatt integrated stack and on requirements for the balance-of-plant equipment to support a 1000-kilowatt integrated stack demonstrator. The Stack Design Preparation task focused on the mechanical design of a 100-kilowatt stack comprised of 8-ft[sup 2] cells incorporating the new cell configuration and component technology improvements developed in the previous DOE MCFC contract. Electrode Casting focused on developing a faster drying solvent for use in the electrode tape casting process. Electrode Heat Treatment was directed at scaling up the laboratory continuous debinding process to a new full-size IFC debinding oven coupled to a continuous belt furnace that will both debind and sinter the electrodes in one continuous process train. Repeat Part Quality Assurance and Testing provided the appropriate effort to ensure consistent, high-quality, reproducible and comparable repeat parts.

  6. Molten carbonate fuel cells fed with biogas: combating H(2)S.

    PubMed

    Ciccoli, R; Cigolotti, V; Lo Presti, R; Massi, E; McPhail, S J; Monteleone, G; Moreno, A; Naticchioni, V; Paoletti, C; Simonetti, E; Zaza, F

    2010-06-01

    The use of biomass and waste to produce alternative fuels, due to environmental and energy security reasons, is a high-quality solution especially when integrated with high efficiency fuel cell applications. In this article we look into the coupling of an anaerobic digestion process of organic residues to electrochemical conversion to electricity and heat through a molten carbonate fuel cell (MCFC). In particular the pathway of the exceedingly harmful compound hydrogen sulphide (H(2)S) in these phases is analysed. Hydrogen sulphide production in the biogas is strongly interrelated with methane and/or hydrogen yield, as well as with operating conditions like temperature and pH. When present in the produced biogas, this compound has multiple negative effects on the performance and durability of an MCFC. Therefore, there are important issues of integration to be solved. Three general approaches to solve the sulphur problem in the MCFC are possible. The first is to prevent the formation of hydrogen sulphide at the source: favouring conditions that inhibit its production during fermentation. Secondly, to identify the sulphur tolerance levels of the fuel cell components currently in use and develop sulphur-tolerant components that show long-term electrochemical performance and corrosion stability. The third approach is to remove the generated sulphur species to very low levels before the gas enters the fuel cell. PMID:20211554

  7. Modeling and simulation of NiO dissolution and Ni deposition in molten carbonate fuel cells

    SciTech Connect

    Nam, Suk Woo; Choi, Hyung-Joon; Lim, Tae Hoon

    1996-12-31

    Dissolution of NiO cathode into the electrolyte matrix is an important phenomena limiting the lifetime of molten carbonate fuel cell (MCFC). The dissolved nickel diffuses into the matrix and is reduced by dissolved hydrogen leading to the formation of metallic nickel films in the pores of the matrix. The growth of Ni films in the electrolyte matrix during the continuous cell operation results eventually in shorting between cathode and anode. Various mathematical and empirical models have been developed to describe the NiO dissolution and Ni deposition processes, and these models have some success in estimating the lifetime of MCFC by correlating the amount of Ni deposited in the matrix with shorting time. Since the exact mechanism of Ni deposition was not well understood, deposition reaction was assumed to be very fast in most of the models and the Ni deposition region was limited around a point in the matrix. In fact, formation of Ni films takes place in a rather broad region in the matrix, the location and thickness of the film depending on operating conditions as well as matrix properties. In this study, we assumed simple reaction kinetics for Ni deposition and developed a mathematical model to get the distribution of nickel in the matrix.

  8. Molten carbonate fuel cell powerplant desulfurization systems. Final report, November 1978-November 1979

    SciTech Connect

    Jalan, V.; Wu, D.

    1980-01-01

    With an objective to contribute to the integration of coal gasifier with advanced power generation systems, such as molten carbonate fuel cells, this study has investigated high-temperature, regenerable, desulfurization processes in which the H/sub 2/s content of coal gases is reduced from 200 ppM to 1 ppM. Commercially available processes involve very low temperature scrubbing prior to use in the fuel cells and, consequently, introduce penalties in capital cost and system efficiency. As a result of a systematic thermodynamic screening, four candidates (ZnO, V/sub 2/O/sub 3/, Cu and WO/sub 2/) show feasibility for intermediate to high temperature (350 to 700/sup 0/C) desulfurization of fuel gases derived from coal. Of these, ZnO was experimentally studied using a bench scale, isothermal packed bed reactor. It was demonstrated that ZnO can reduce the sulfur levels to less than 1 ppM from coal gases at 650/sup 0/C, and it can be completely regenerated to ZnO. However, severe decrease in sulfur capacity at high temperatures and further degradation upon regeneration were observed. Electron microscopy, microanalysis, and surface area measurements were obtained and examined in conjunction with a pore plugging model for this type of gas-solid reaction. Evidence is presented to conclude that the combination of pore plugging during sulfurization and sintering during regeneration reaction are two major causes for the observed decrease in its activity of the sorbent.

  9. Measurement of thermophysical properties of molten salts: Mixtures of alkaline carbonate salts

    SciTech Connect

    Araki, N.; Matsuura, M.; Makino, A.; Hirata, T.; Kato, Y.

    1988-11-01

    The purpose of this study is to develop measuring methods for the thermal diffusivity, the specific heat capacity, and the density of molten salts, as well as to measure these properties of mixtures of alkaline carbonate salts. The thermal diffusivity is measured by the stepwise heating method. The sample salt is poured into a thin container, and as a result, a three-layered cell is formed. The thermal diffusivity is obtained from the ratio of temperature rises at different times measured at the rear surface of the cell when the front surface is heated by the stepwise energy from an iodine lamp. The specific heat capacity is measured using an adiabatic scanning calorimeter. The density is measured by Archimedes' principle. Thermal conductivity is determined from the above properties. Measured samples are Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/ (42.7-57.3, 50.0-50.0, and 62.0-38.0 mol%).

  10. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    SciTech Connect

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  11. Simulated coal-gas-fueled molten carbonate fuel cell development program. Topical report: Cathode compatibility tests

    SciTech Connect

    Johnson, W.H.

    1992-07-01

    In previous work, International Fuel Cells Corporation (EFC) found interactions between molten carbonate fuel cell cathode materials being considered as replacements for the presently used nickel oxide and matrix materials. Consequently, this work was conducted to screen additional new materials for mutual compatibility. As part of this program, experiments were performed to examine the compatibility of several candidate, alternative cathode materials with the standard lithium aluminate matrix material in the presence of electrolyte at cell potentials. Initial cathode candidates were materials lithium ferrite, yttrium iron garnet, lithium manganite and doped ceria which were developed by universities, national laboratories, or contractors to DOE, EPRI, or GRI. These investigations were conducted in laboratory scale experiments. None of the materials tested can directly replace nickel oxide or indicate greater stability of cell performance than afforded by nickel oxide. Specifically: (1) no further work on niobium doped ceria is warranted; (2) cobalt migration was found in the lithium ferrite cathode tested. This could possibly lead to shorting problems similiar to those encountered with nickel oxide; (3) Possible shorting problems may also exist with the proprietary dopant in YIG; (4) lithium ferrite and YIG cathode were not single phase materials. Assessment of the chemical stability, i.e., dopant loss, was severely impeded by dissolution of these second phases in the electrolyte; and (5) Magnesium doped lithium manganite warrants further work. Electrolytes should contain Mg ions to suppress dopant loss.

  12. Simulated coal-gas-fueled molten carbonate fuel cell development program

    SciTech Connect

    Johnson, W.H.

    1992-07-01

    In previous work, International Fuel Cells Corporation (EFC) found interactions between molten carbonate fuel cell cathode materials being considered as replacements for the presently used nickel oxide and matrix materials. Consequently, this work was conducted to screen additional new materials for mutual compatibility. As part of this program, experiments were performed to examine the compatibility of several candidate, alternative cathode materials with the standard lithium aluminate matrix material in the presence of electrolyte at cell potentials. Initial cathode candidates were materials lithium ferrite, yttrium iron garnet, lithium manganite and doped ceria which were developed by universities, national laboratories, or contractors to DOE, EPRI, or GRI. These investigations were conducted in laboratory scale experiments. None of the materials tested can directly replace nickel oxide or indicate greater stability of cell performance than afforded by nickel oxide. Specifically: (1) no further work on niobium doped ceria is warranted; (2) cobalt migration was found in the lithium ferrite cathode tested. This could possibly lead to shorting problems similiar to those encountered with nickel oxide; (3) Possible shorting problems may also exist with the proprietary dopant in YIG; (4) lithium ferrite and YIG cathode were not single phase materials. Assessment of the chemical stability, i.e., dopant loss, was severely impeded by dissolution of these second phases in the electrolyte; and (5) Magnesium doped lithium manganite warrants further work. Electrolytes should contain Mg ions to suppress dopant loss.

  13. Development of molten carbonate fuel cell technology at M-C Power Corporation

    SciTech Connect

    Dilger, D.

    1996-04-01

    M-C Power Corporation was founded in 1987 with the mission to further develop and subsequently commercialize molten carbonate fuel cells (MCFC). The technology chosen for commercialization was initially developed by the Institute of Gas technology (IGT). At the center of this MCFC technology is the Internally Manifolded Heat EXchange (IMHEX) separator plate design. The IMHEX technology design provides several functions within one component assembly. These functions include integrating the gas manifold structure into the fuel cell stack, separating the fuel gas stream from the oxidant gas stream, providing the required electrical contact between cells to achieve desired power output, and removing excess heat generated in the electrochemical process. Development of this MCFC technology from lab-scale sizes too a commercial area size of 1m{sup 2} has focused our efforts an demonstrating feasibility and evolutionary progress. The development effort will culminate in a proof-of-concept- 250kW power plant demonstration in 1996. The remainder of our commercialization program focuses upon lowering the costs associated with the MCFC power plant system in low production volumes.

  14. Molten metal reactors

    SciTech Connect

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

    2013-11-05

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  15. Development of internal manifold heat exchanger (IMHEX reg sign ) molten carbonate fuel cell stacks

    SciTech Connect

    Marianowski, L.G.; Ong, E.T.; Petri, R.J.; Remick, R.J.

    1991-01-01

    The Institute of Gas Technology (IGT) has been in the forefront of molten carbonate fuel cell (MCFC) development for over 25 years. Numerous cell designs have been tested and extensive tests have been performed on a variety of gas manifolding alternatives for cells and stacks. Based upon the results of these performance tests, IGT's development efforts started focusing on an internal gas manifolding concept. This work, initiated in 1988, is known today as the IMHEX{reg sign} concept. MCP has developed a comprehensive commercialization program loading to the sale of commercial units in 1996. MCP's role is in the manufacture of stack components, stack assembly, MCFC subsystem testing, and the design, marketing and construction of MCFC power plants. Numerous subscale (1 ft{sup 2}) stacks have been operated containing between 3 and 70 cells. These tests verified and demonstrated the viability of internal manifolding from technical (no carbonate pumping), engineering (relaxed part dimensional tolerance requirements), and operational (good gas sealing) aspects. Simplified fabrication, ease of assembly, the elimination of external manifolds and all associated clamping requirements has significantly lowered anticipated stack costs. Ongoing 1 ft{sup 2} stack testing is generating performance and endurance characteristics as a function of system specified operating conditions. Commercial-sized, full-area stacks (10 ft{sup 2}) are in the process of being assembled and will be tested in November. This paper will review the recent developments the MCFC scale-up and manufacture work of MCP, and the research and development efforts of IGT which support those efforts. 17 figs.

  16. OPTIMIZATION OF THE CATHODE LONG TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect

    Anand Durairajan; Bala Haran; Branko N. Popov; Ralph E. White

    2000-05-01

    The cathode materials for molten carbonate fuel cells (MCFCs) must have low dissolution rate, high structural strength and good electrical conductivity. Currently available cathodes are made of lithiated NiO which have acceptable structural strength and conductivity. However a study carried out by Orfeld et al. and Shores et al. indicated that the nickel cathodes dissolved, then precipitated and reformed as dendrites across the electrolyte matrix. This results in a decrease in cell utilization and eventually leads to shorting of the cell. The solubility of NiO was found to depend upon the acidity/basicity of the melt (basicity is directly proportional to log P{sub CO2}), carbonate composition, H{sub 2}O partial pressure and temperature. Urushibata et al. found that the dissolution of the cathode is a primary life limiting constraint of MCFCs, particularly in pressurized operation. With currently available NiO cathodes, the goal of 40,000 hours for the lifetime of MCFC appears achievable with cell operation at atmospheric pressure. However, the cell life at 10 atm and higher cell pressures is in the range between 5,000 to 10,000 hours. The overall objective of this research is to develop a superior cathode for MCFC's with improved catalytic ability, enhanced corrosion resistance with low ohmic losses, improved electronic conductivity. We also plan to understand the corrosion processes occurring at the cathode/molten carbonate interface. The following cathode materials will be subjected to detailed electrochemical, performance, structural and corrosion studies. (i) Passivated NiO alloys using chemical treatment with yttrium ion implantation and anodic yttrium molybdate treatment; (ii) Novel composite materials based on NiO and nanosized Ce, Yt, Mo; (iii) Co doped LiNiO{sub 2} LiNiO{sub 2} doped with 10 to 20% Co (LiCo{sub 0.2}NiO{sub 2}) and NiO cathodes; and (iv) CoO as a replacement for NiO. Passivation treatments will inhibit corrosion and increase the stability

  17. Determination of optimum electrolyte composition for molten carbonate fuel cells. Quarterly technical progress report, January--March 1987

    SciTech Connect

    Yuh, C.Y.; Pigeaud, A.

    1987-12-31

    The objective of this study is to determine the optimum electrolyte composition for molten carbonate fuel cells. To accomplish this, the contractor will provide: (1) Comprehensive reports of on-going efforts to optimize carbonate composition. (2) A list of characteristics affected by electrolyte composition variations (e.g. ionic conductivity, vapor pressure, melting range, gas solubility, exchange current densities on NiO, corrosion and cathode dissolution effects). (3) Assessment of the overall effects that these characteristics have state-of-the-art cell voltage and lifetime.

  18. Evaluation of gasification and gas-cleanup processes for use in molten-carbonate fuel-cell power plants

    SciTech Connect

    Vidt, E.J.; Jablonski, G.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

    1981-12-01

    This interim report satisfies the Task B requirement to define process configurations for systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants. The configurations studied include entrained, fluidized-bed, gravitating-bed, and molten salt gasifiers, both air and oxygen blown. Desulfurization systems utilizing wet scrubbing processes, such as Selexol and Rectisol II, and dry sorbents, such as iron oxide and dolomite, were chosen for evaluation. Cleanup systems not chosen by DOE's MCFC contractors, General Electric and United Technologies, Inc., for their MCFC power plant work by virtue of the resource requirements of those systems for commercial development were chosen for detailed study in Tasks C and D of this contract. Such systems include Westinghouse fluidized-bed gasification, air and oxygen blown, Rockwell molten carbonate air-blown gasification, METC iron oxide desulfurization, and dolomitic desulfurization. In addition, for comparison, gasification systems such as the Texaco entrained and the British Gas/Lurgi slagging units, along with wet scrubbing by Rectisol II, have also been chosen for detailed study.

  19. Liquid Metal Corrosion of 316L Stainless Steel, 410 Stainless Steel, and 1015 Carbon Steel in a Molten Zinc Bath

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Bright, Mark A.; Liu, Xingbo; Barbero, Ever

    2007-11-01

    Corrosion tests of 1015 low-carbon steel and two stainless steels (410 and 316L) were conducted in a pure zinc bath (99.98 wt pct Zn) in order to better understand the reaction mechanisms that occur during the degradation of submerged hardware at industrial general (batch) galvanizing operations. Through this testing, it was found that, in general, 316L stainless steel showed the best dissolution resistance among these three alloys, while 1015 carbon steel provided a lower solubility than 410 stainless steel. Investigating the failure mechanisms, both metallurgical composition and lattice structure played important roles in the molten metal corrosion behaviors of these alloys. High contents of nickel combined with the influence of chromium improved the resistance to molten zinc corrosion. Moreover, a face-centered-cubic (fcc) structure was more corrosion resistant than body-centered-cubic (bcc) possibly due to the compactness of the atomic structure. Analogously, the body-centered-tetragonal (bct) martensite lattice structure possessed enhanced susceptibility to zinc corrosion as a result of the greater atomic spacing and high strain energy. Finally, an increased bath temperature played an important role in molten metal corrosion by accelerating the dissolution process and changing the nature of intermetallic layers.

  20. A simple high-performance matrix-free biomass molten carbonate fuel cell without CO2 recirculation

    PubMed Central

    Lan, Rong; Tao, Shanwen

    2016-01-01

    In previous reports, flowing CO2 at the cathode is essential for either conventional molten carbonate fuel cells (MCFCs) based on molten carbonate/LiAlO2 electrolytes or matrix-free MCFCs. For the first time, we demonstrate a high-performance matrix-free MCFC without CO2 recirculation. At 800°C, power densities of 430 and 410 mW/cm2 are achieved when biomass—bamboo charcoal and wood, respectively–is used as fuel. At 600°C, a stable performance is observed during the measured 90 hours after the initial degradation. In this MCFC, CO2 is produced at the anode when carbon-containing fuels are used. The produced CO2 then dissolves and diffuses to the cathode to react with oxygen in open air, forming the required CO32− or CO42− ions for continuous operation. The dissolved O2− ions may also take part in the cell reactions. This provides a simple new fuel cell technology to directly convert carbon-containing fuels such as carbon and biomass into electricity with high efficiency. PMID:27540588

  1. A simple high-performance matrix-free biomass molten carbonate fuel cell without CO2 recirculation.

    PubMed

    Lan, Rong; Tao, Shanwen

    2016-08-01

    In previous reports, flowing CO2 at the cathode is essential for either conventional molten carbonate fuel cells (MCFCs) based on molten carbonate/LiAlO2 electrolytes or matrix-free MCFCs. For the first time, we demonstrate a high-performance matrix-free MCFC without CO2 recirculation. At 800°C, power densities of 430 and 410 mW/cm(2) are achieved when biomass-bamboo charcoal and wood, respectively-is used as fuel. At 600°C, a stable performance is observed during the measured 90 hours after the initial degradation. In this MCFC, CO2 is produced at the anode when carbon-containing fuels are used. The produced CO2 then dissolves and diffuses to the cathode to react with oxygen in open air, forming the required [Formula: see text] or [Formula: see text] ions for continuous operation. The dissolved [Formula: see text] ions may also take part in the cell reactions. This provides a simple new fuel cell technology to directly convert carbon-containing fuels such as carbon and biomass into electricity with high efficiency. PMID:27540588

  2. Conceptual designs of advanced high-temperature desulfurization processes: Volume 1, Molten carbonate fuel cell power plants: Final report

    SciTech Connect

    Klett, M.G.; Boulay, R.B.; Buchanan, T.L.; Chen, H.T.; Fischer, W.H.; Hirschenhofer, J.H.; Losovsky, M.L.; Underkoffler, V.S.

    1986-12-01

    Purpose of this effort is to provide conceptual commercial-scale designs, including engineering, relative cost, and economic information for high-temperature desulfurization processes. The commercial-scale processes were designed as an integral part of a nominal 100-MW(e) power plant. Two types of power plants were considered, a coal gasification molten carbonate fuel cell (MCFC) power plant and an integrated gasification combined-cycle (IGCC) power plant. Three desulfurization processes combined with three different gasification processes were evaluated, for a total of 16 cases for the MCFC power plant. The three desulfurization processes evaluated were: METC's zinc ferrite process, Battelle Pacific Northwest Laboratory's solid-supported molten salt process, and Institute of Gas Technology's mixed metal oxide process. Volume I of this report presents the results for the MCFC power plant.

  3. Natural-gas-fueled molten carbonate fuel cell power plant development

    SciTech Connect

    Reiser, C.A. )

    1990-12-01

    The high temperature molten carbonate fuel cell (MCFC) operating on natural gas fuel offers an exceptional opportunity for providing economically competitive, high efficiency, low emissions power generators for utilities and industrial and commercial cogenerators. The primary goal of this project is to establish a path to develop competitive natural gas fueled MCFC products with goals of less than $1000 per kW and 6000 Btu/kWhr heat rate (based on higher heating value). A coal fueled MCFC system study funded by DOE under contract AC21-MC23270 was used as a basis to define natural gas fuel products with a high degree of commonality with the coal gas systems. In this way, the natural gas systems could be derived from the DOE coal-fueled system with a minimum of non-recurring cost. The effort was carried out in three technical tasks. Task 1, Conceptual System Design Studies -- provides a conceptual design definition of a multimegawatt power plant system adapted from DOE coal-gas/natural gas design data and provides a preliminary design definition of a truck and/or rail transportable, megawatt scale power plant derived from a DOE coal-gas/natural gas power unit; Task 2, Integrated System Test Design -- provides a preliminary design of a kW-scale integrated system to resolve critical component and system integration issues specific to the natural gas products defined in Task 1; and Task 3, Critical Element Evaluation -- provides the analytical and experimental assessments of the critical non-stack components identified in Tasks 1 and 2. 32 figs., 22 tabs.

  4. Molten carbonate fuel cell (MCFC) product development test. Annual report, September 1993--September 1994

    SciTech Connect

    1995-02-01

    M-C Power Corporation will design, fabricate, install, test and evaluate a 250 kW Proof-of-Concept Molten Carbonate Fuel Cell (MCFC) Power Plant. The plant is to be located at the Naval Air Station Miramar in San Diego, California. This report summarizes the technical progress that has occurred in conjunction with this project in 1994. M-C Power has completed the tape casting and sintering of cathodes and is proceeding with the tape casting and sintering of anodes for the first 250 cell stack. M-C Power and San Diego Gas and Electric relocated the fuel cell demonstration project to an alternate site at the Naval Air Station Miramar. For the new project location at the Naval Air Station Miramar, an Environmental Assessment has been prepared by the Department of Energy in compliance with the National Environmental Policy Act of 1969. The Environmental Assessment resulted in a categorical exclusion of the proposed action from all environmental permit requirements. Bechtel Corporation has completed the reformer process design coordination, a Process Description, the Pipe and Instrumentation Diagrams, a Design Criteria Document and General Project Requirement Document. Bechtel developed the requirements for soils investigation report and issued the following equipment bid packages to the suppliers for bids: Inverter, Reformer, Desulfurization Vessels, Hot Gas Recycle Blower, Heat Recovery Steam Generator, and Recycle Gas Cooler. SDG and E has secured necessary site permits, conducted soils investigations, and is working on the construction plan. They are in final negotiations with the US Navy on a site agreement. Site drawings are required for finalization of the agreement.

  5. Molten carbonate fuel cell product development test. Final report, September 30, 1992--March 31, 1997

    SciTech Connect

    1997-12-31

    This report summarizes the work performed for manufacturing and demonstrating the performance of its 250-kW molten carbonate fuel cell (MCFC) stack in an integrated system at the Naval Air Station Miramar (NAS Miramar) located in San Diego, California. The stack constructed for the demonstration test at the NAS Miramar consisted of 250 cells. It was manufactured using M-C Power`s patented Internally Manifolded Heat Exchanger (IMHEX{reg_sign}) stack design. The demonstration test at NAS Miramar was designed to operate the 250-kW MCFC stack in a cogeneration mode. This test represented the first attempt to thermally integrate an MCFC stack in a cogeneration system. The test was started on January 10, 1997, and voluntarily terminated on May 12, 1997, after 2,350 hours of operation at temperatures above 1,100 F and at a pressure of three atmospheres. It produced 160 MWh of d.c. power and 346,000 lbs of 110 psig steam for export during 1,566 hours of on-load operations. The test demonstrated a d.c. power output of 206 kW. Most of the balance of the plant (BOP) equipment operated satisfactorily. However, the off-the-shelf automotive turbocharger used for supplying air to the plant failed on numerous occasions and the hot gas blower developed seal leakage problems which impacted continuous plant operations. Overall the demonstration test at NAS Miramar was successful in demonstrating many critical features of the IMHEX technology. Lessons learned from this test will be very useful for improving designs and operations for future MCFC power plants.

  6. Evaluation of the feasibility of ethanol steam reforming in a molten carbonate fuel cell

    SciTech Connect

    Cavallaro, S.; Passalacqua, E.; Maggio, G.; Patti, A.; Freni, S.

    1996-12-31

    The molten carbonate fuel cells (MCFCs) utilizing traditional fuels represent a suitable technological progress in comparison with pure hydrogen-fed MCFCs. The more investigated fuel for such an application is the methane, which has the advantages of low cost and large availability; besides, several authors demonstrated the feasibility of a methane based MCFC. In particular, the methane steam-reforming allows the conversion of the fuel in hydrogen also inside the cell (internal reforming configuration), utilizing the excess heat to compensate the reaction endothermicity. In this case, however, both the catalyst and the cell materials are subjected to thermal stresses due to the cold spots arising near to the reaction sites MCFC. An alternative, in accordance with the recent proposals of other authors, may be to produce hydrogen from methane by the partial oxidation reaction, rather than by steam reforming. This reaction is exothermic ({Delta}H{degrees}=-19.1 kJ/mol H{sub 2}) and it needs to verify the possibility to obtain an acceptable distribution of the temperature inside the cell. The alcohols and, in particular, methanol shows the gas reformed compositions as a function of the steam/ethanol molar ratio, ranging from 1.0 to 3.5. The hydrogen production enhances with this ratio, but it presents a maximum at S/EtOH of about 2.0. Otherwise, the increase of S/EtOH depresses the production of CO and CH{sub 4}, and ethanol may be a further solution for the hydrogen production inside a MCFC. In this case, also, the reaction in cell is less endothermic compared with the methane steam reforming with the additional advantage of a liquid fuel more easily storable and transportable. Aim of the present work is to perform a comparative evaluation of the different solutions, with particular reference to the use of ethanol.

  7. Performance assessment of natural gas and biogas fueled molten carbonate fuel cells in carbon capture configuration

    NASA Astrophysics Data System (ADS)

    Barelli, Linda; Bidini, Gianni; Campanari, Stefano; Discepoli, Gabriele; Spinelli, Maurizio

    2016-07-01

    The ability of MCFCs as carbon dioxide concentrator is an alternative solution among the carbon capture and storage (CCS) technologies to reduce the CO2 emission of an existing plant, providing energy instead of implying penalties. Moreover, the fuel flexibility exhibited by MCFCs increases the interest on such a solution. This paper provides the performance characterization of MCFCs operated in CCS configuration and fed with either natural gas or biogas. Experimental results are referred to a base CCS unit constituted by a MCFC stack fed from a reformer and integrated with an oxycombustor. A comparative analysis is carried out to evaluate the effect of fuel composition on energy efficiency and CO2 capture performance. A higher CO2 removal ability is revealed for the natural feeding case, bringing to a significant reduction in MCFC total area (-11.5%) and to an increase in produced net power (+13%). Moreover, the separated CO2 results in 89% (natural gas) and 86.5% (biogas) of the CO2 globally delivered by the CCS base unit. Further investigation will be carried out to provide a comprehensive assessment of the different solutions eco-efficiency considering also the biogas source and availability.

  8. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect

    Dr. Ralph E. White; Dr. Branko N. Popov

    2002-04-01

    The dissolution of NiO cathodes during cell operation is a limiting factor to the successful commercialization of molten carbonate fuel cells (MCFCs). Lithium cobalt oxide coating onto the porous nickel electrode has been adopted to modify the conventional MCFC cathode which is believed to increase the stability of the cathodes in the carbonate melt. The material used for surface modification should possess thermodynamic stability in the molten carbonate and also should be electro catalytically active for MCFC reactions. Two approaches have been adopted to get a stable cathode material. First approach is the use of LiNi{sub 0.8}Co{sub 0.2}O{sub 2}, a commercially available lithium battery cathode material and the second is the use of tape cast electrodes prepared from cobalt coated nickel powders. The morphology and the structure of LiNi{sub 0.8}Co{sub 0.2}O{sub 2} and tape cast Co coated nickel powder electrodes were studied using scanning electron microscopy and X-Ray diffraction studies respectively. The electrochemical performance of the two materials was investigated by electrochemical impedance spectroscopy and polarization studies. A three phase homogeneous model was developed to simulate the performance of the molten carbonate fuel cell cathode. The homogeneous model is based on volume averaging of different variables in the three phases over a small volume element. The model gives a good fit to the experimental data. The model has been used to analyze MCFC cathode performance under a wide range of operating conditions.

  9. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect

    Dr. Ralph E. White; Dr. Branko N. Popov

    2001-10-01

    The dissolution of NiO cathodes during cell operation is a limiting factor to the successful commercialization of molten carbonate fuel cells (MCFCs). Lithium cobalt oxide coating onto the porous nickel electrode has been adopted to modify the conventional MCFC cathode which is believed to increase the stability of the cathodes in the carbonate melt. The material used for surface modification should possess thermodynamic stability in the molten carbonate and also should be electro catalytically active for MCFC reactions. Lithium Cobalt oxide was coated on Ni cathode by a sol-gel coating. The morphology and the LiCoO{sub 2} formation of LiCoO{sub 2} coated NiO was studied using scanning electron microscopy and X-Ray diffraction studies respectively. The electrochemical performance lithium cobalt oxide coated NiO cathodes were investigated with open circuit potential measurement and current-potential polarization studies. These results were compared to that of bare NiO. Dissolution of nickel into the molten carbonate melt was less in case of lithium cobalt oxide coated nickel cathodes. LiCoO{sub 2} coated on the surface prevents the dissolution of Ni in the melt and thereby stabilizes the cathode. Finally, lithium cobalt oxide coated nickel shows similar polarization characteristics as nickel oxide. Conventional theoretical models for the molten carbonate fuel cell cathode are based on the thin film agglomerate model. The principal deficiency of the agglomerate model, apart from the simplified pore structure assumed, is the lack of measured values for film thickness and agglomerate radius. Both these parameters cannot be estimated appropriately. Attempts to estimate the thickness of the film vary by two orders of magnitude. To avoid these problems a new three phase homogeneous model has been developed using the volume averaging technique. The model considers the potential and current variation in both liquid and solid phases. Using this approach, volume averaged

  10. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect

    Dr. Ralph E. White

    2000-09-30

    The dissolution of NiO cathodes during cell operation is a limiting factor to the successful commercialization of molten carbonate fuel cells (MCFCs). Microencapsulation of the NiO cathode has been adopted as a surface modification technique to increase the stability of NiO cathodes in the carbonate melt. The material used for surface modification should possess thermodynamic stability in the molten carbonate and also should be electro catalytically active for MCFC reactions. A simple first principles model was developed to understand the influence of exchange current density and conductivity of the electrode material on the polarization of MCFC cathodes. The model predictions suggest that cobalt can be used to improve the corrosion resistance of NiO cathode without affecting its performance. Cobalt was deposited on NiO cathode by electroless deposition. The morphology and thermal oxidation behavior of Co coated NiO was studied using scanning electron microscopy and thermal gravimetric analysis respectively. The electrochemical performance of cobalt encapsulated NiO cathodes were investigated with open circuit potential measurement and current-potential polarization studies. These results were compared to that of bare NiO. The electrochemical oxidation behavior of cobalt-coated electrodes is similar to that of the bare NiO cathode. Dissolution of nickel into the molten carbonate melt was less in case of cobalt encapsulated nickel cathodes. Co coated on the surface prevents the dissolution of Ni in the melt and thereby stabilizes the cathode. Finally, cobalt coated nickel shows similar polarization characteristics as nickel oxide. A similar surface modification technique has been used to improve the performance of the SS 304 current collectors used in MCFC cells. SS 304 was encapsulated with nanostructured layers of NiCo and NiMo by electroless deposition. The corrosion behavior of bare and surface modified SS 304 in molten carbonate under cathode gas atmosphere was

  11. An example of innovative application in fuel cell system development: CO 2 segregation using Molten Carbonate Fuel Cells

    NASA Astrophysics Data System (ADS)

    Lusardi, M.; Bosio, B.; Arato, E.

    CO 2 is one of the main causes of the greenhouse effect and serious attention is being given to CO 2 abatement at the moment. In this work, the feasibility of segregating CO 2 from the exhaust of a Gas Turbine using a Molten Carbonate Fuel Cell system is studied. In particular, different plant configurations are simulated using a commercial code integrated with proprietary MCFC Fortran blocks. The opportunity of an additional CO 2 separation stage downstream MCFC is also discussed. The results of the simulations are presented and the possibility of producing electrical energy and being able to respect Kyoto Protocol and IPCC environmental requirements is analysed.

  12. Determination of optimum electrolyte composition for molten carbonate fuel cells. Quarterly technical progress report, October--December 1987

    SciTech Connect

    Yuh, C.Y.; Pigeaud, A.

    1987-12-31

    The goal of this program is the development of a molten carbonate fuel cell (MCFC) anode which is more tolerant of sulfur contaminants in the fuel than the current state-of-the-art nickel-based anode structures. This program addresses two different but related aspects of the sulfur contamination problem. The primary aspect is concerned with the development of a sulfur tolerant electrocatalyst for the fuel oxidation reaction. A secondary issue is the development of a sulfur tolerant water-gas-shift reaction catalyst and an investigation of potential steam reforming catalysts which also have some sulfur tolerant capabilities. These two aspects are being addressed as two separate tasks.

  13. Novel band gap-tunable K-Na co-doped graphitic carbon nitride prepared by molten salt method

    NASA Astrophysics Data System (ADS)

    Zhao, Jiannan; Ma, Lin; Wang, Haoying; Zhao, Yanfeng; Zhang, Jian; Hu, Shaozheng

    2015-03-01

    Novel band gap-tunable K-Na co-doped graphitic carbon nitride was prepared by molten salt method using melamine, KCl, and NaCl as precursor. X-ray diffraction (XRD), N2 adsorption, Scanning electron microscope (SEM), UV-vis spectroscopy, Photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared catalysts. The CB and VB potentials of graphitic carbon nitride could be tuned from -1.09 and +1.55 eV to -0.29 and +2.25 eV by controlling the weight ratio of eutectic salts to melamine. Besides, ions doping inhibited the crystal growth of graphitic carbon nitride, enhanced the surface area, and increased the separation rate of photogenerated electrons and holes. The visible-light-driven Rhodamine B (RhB) photodegradation and mineralization performances were significantly improved after K-Na co-doping.

  14. The effect of coal type and pyrolysis temperature on the electrochemical activity of coal at a solid carbon anode in molten carbonate media

    NASA Astrophysics Data System (ADS)

    Allen, J. A.; Glenn, M.; Donne, S. W.

    2015-04-01

    A systematic assessment of the electrochemical activity of two different parent coal types, pyrolysed at temperatures between 500 and 900 °C higher heating temperature (HHT), is presented in this work. Analysis shows that certain coal chars are catalytically activated in molten carbonate media at 600 °C, however activity does not appear to follow trends established for ashless carbon sources. It is seen here that it is not possible to predict activity based solely on electrical resistance, surface functionalization, or the BET surface area of pyrolysed coals. Instead, it is suggested that coal ash type, abundance and distribution plays a pivotal role in activating the coal char to allow fast electrochemical oxidation through a catalytically enhanced pathway. Activation from ash influence is discussed to result from wetting of the molten carbonate media with the carbon surface (change in polarity of electrode surface), through ash mediated oxide adsorption and transfer to carbon particles, or possibly through another catalytic pathway not yet able to be predicted from current results.

  15. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect

    Dr. Ralph E. White

    2001-03-31

    SS 304 was encapsulated with thin layers of Co-Ni by an electroless deposition process. The corrosion behavior of SS304 and Co-Ni-SS304 was investigated in molten carbonate under cathode gas atmosphere with electrochemical and surface characterization tools. Surface modification of SS304 reduced the dissolution of chromium and nickel into the molten carbonate melt. Composition of the corrosion scale formed in case of Co-Ni-SS304 is different from SS304 and shows the presence of Co and Ni oxides while the latter shows the presence of lithium ferrite. Polarization resistance for oxygen reduction reaction and conductivity of corrosion values for the corrosion scales were obtained using impedance analysis and current-potential plots. The results indicated lower polarization resistance for oxygen reduction reaction in the case of Co-Ni-SS304 when compared to SS304. Also, the conductivity of the corrosion scales was considerably higher in case of Co-Ni-SS304 than the SS304. This study shows that modifying the current collector surface with Co-Ni coatings leads to the formation of oxide scales with improved barrier properties and electronic conductivity.

  16. Conductivity measurements of molten metal oxide electrolytes and their evaluation in a direct carbon fuel cell (DCFC)

    NASA Astrophysics Data System (ADS)

    Yarlagadda, Venkata Raviteja

    2011-12-01

    Since Direct Carbon Fuel Cell (DCFC) technology is in a beginning stage, emphasis should be laid on addressing the fundamental aspects. A molten electrolyte is required to facilitate ionic contact between solid carbon fuel and electrolyte in a DCFC Three different metal oxide electrolytes (Bi2O3 , V2O5, and TeO2) have been chosen based on their ability to form stable liquids in air at higher temperatures. Conductivity data beyond their melting points was not readily available for most of the metal oxides. Conductivity studies concerning the above mentioned molten metal oxides have been thoroughly investigated in this study. A four probe measurement method using an AC milliohm-meter at 1 KHz validated by Electrochemical Impedance Spectroscopy (EIS) was used to acquire the conductivity data because of its accuracy when compared to two probe measurement widely used in literature. Also, a DC ohmmeter was used to check whether these metal oxides exhibit electronic conductivity. Experimental results corresponding to the accuracy of DC ohmmeter showed that, it accurately detected the electronic component of the electrolyte. These conductivity studies revealed that the molten oxide electrolytes exhibit high ionic conductivity, in particular, beyond their melting points. Of all the three metal oxides, Bi2O 3 demonstrated high ionic conductivity but with minor stability issues under CO2 environment. Under CO2 environment Bi 2O3 showed a slight decrease in the conductivity. EDX analysis revealed an increase in carbon content by 50 percent per one mole of bismuth which can be attributed to possible carbonate formation. V2O 5 exhibited lower ionic conductivity when compared to Bi2O 3 but had the advantage of lower cost and higher abundance. Also, the higher volumetric expansion of V2O5 upon cooling from its melting point i.e. 690°C caused the alumina crucible containing the metal oxide to break leading to leakage problems. Investigating further, quartz was found to be the best

  17. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid

    SciTech Connect

    O'Connor, William K.; Dahlin, David C.; Nilsen, David N.; Walters, Richard P.; Turner, Paul C.

    2000-01-01

    The Albany Research Center (ARC) of the U.S. Dept. of Energy (DOE) has been conducting a series of mineral carbonation tests at its Albany, Oregon, facility over the past 2 years as part of a Mineral Carbonation Study Program within the DOE. Other participants in this Program include the Los Alamos National Laboratory, Arizona State University, Science Applications International Corporation, and the DOE National Energy Technology Laboratory. The ARC tests have focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC utilizes a slurry of water mixed with a magnesium silicate mineral, olivine [forsterite end member (Mg2SiO4)], or serpentine [Mg3Si2O5(OH)4]. This slurry is reacted with supercritical carbon dioxide (CO2) to produce magnesite (MgCO3). The CO2 is dissolved in water to form carbonic acid (H2CO3), which dissociates to H+ and HCO3 -. The H+ reacts with the mineral, liberating Mg2+ cations which react with the bicarbonate to form the solid carbonate. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and for this reason, these results may also be applicable to in-situ geological sequestration regimes. Results of the baseline tests, conducted on ground products of the natural minerals, have been encouraging. Tests conducted at ambient temperature (22 C) and subcritical CO2 pressures (below 73 atm) resulted in very slow conversion to the carbonate. However, when elevated temperatures and pressures are utilized, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant reaction occurs within much shorter reaction times. Extent of reaction, as measured by the stoichiometric conversion of the silicate mineral (olivine) to the carbonate, is roughly 90% within 24 hours, using distilled water, and a reaction temperature of 185?C and a partial pressure of CO2 (PCO2) of 115 atm. Recent tests using a bicarbonate solution, under identical reaction

  18. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid

    SciTech Connect

    O'Connor, W.K.; Dahlin, D.C.; Nilsen, D.N.; Walters, R.P.; Turner, P.C.

    2000-07-01

    The Albany Research Center (ARC) of the US Department of Energy (DOE) has been conducting a series of mineral carbonation tests at its Albany, Oregon, facility over the past 2 years as part of a Mineral Carbonation Study Program within the DOE. The ARC tests have focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC utilizes a slurry of water mixed with a magnesium silicate mineral, olivine [forsterite and member (mg{sub 2}SiO{sub 4})], or serpentine [Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}]. This slurry is reacted with supercritical carbon dioxide (CO{sub 2}) to produce magnesite (MgCO{sub 3}). The CO{sub 2} is dissolved in water to form carbonic acid (H{sub 2}CO{sub 3}), which dissociates to H{sup +} and HCO{sub 3}{sup {minus}}. The H{sup +} reacts with the mineral, liberating Mg{sup 2+} cations which react with the bicarbonate to form the solid carbonate. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and for this reason, these results may also be applicable to in-situ geological sequestration regimes. Results of the baseline tests, conducted on ground products of the natural minerals, have been encouraging. Tests conducted at ambient temperature (22 C) and subcritical CO{sub 2} pressures (below 73 atm) resulted in very slow conversion to the carbonate. However, when elevated temperatures and pressures are utilized, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant reaction occurs within much shorter reaction times. Extent of reaction, as measured by the stoichiometric conversion of the silicate mineral (olivine) to the carbonate, is roughly 90% within 24 hours, using distilled water, and a reaction temperature of 185 C and a partial pressure of CO{sub 2} (P{sub CO{sub 2}}) of 115 atm. Recent tests using a bicarbonate solution, under identical reaction conditions, have achieved roughly 83% conversion of heat treated serpentine

  19. Bipolar plate materials in molten carbonate fuel cells. Final CRADA report.

    SciTech Connect

    Krumpelt, M. Gorelov, A. M.

    2004-06-01

    Advantages of implementation of power plants based on electrochemical reactions are successfully demonstrated in the USA and Japan. One of the msot promising types of fuel cells (FC) is a type of high temperature fuel cells. At present, thanks to the efforts of the leading countries that develop fuel cell technologies power plants on the basis of molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC) are really close to commercialization. One of the problems that are to be solved for practical implementation of MCFC and SOFC is a problem of corrosion of metal components of stacks that are assembled of a number of fuel cells. One of the major components of MCFC and SOFC stacks is a bipolar separator plate (BSP) that performs several functions - it is separation of reactant gas flows sealing of the joints between fuel cells, and current collection from the surface of electrodes. The goal of Task 1 of the project is to develop new cost-effective nickel coatings for the Russian 20X23H18 steel for an MCFC bipolar separator plate using technological processes usually implemented to apply corrosion stable coatings onto the metal parts for products in the defense. There was planned the research on production of nickel coatings using different methods, first of all the galvanic one and the explosion cladding one. As a result of the works, 0.4 x 712 x 1296 mm plates coated with nickel on one side were to be made and passed to ANL. A line of 4 galvanic baths 600 liters was to be built for the galvanic coating applications. The goal of Task 2 of the project is the development of a new material of an MCFC bipolar separator plate with an upgraded corrosion stability, and development of a technology to produce cold roll sheets of this material the sizes of which will be 0.8 x 712x 1296 mm. As a result of these works, a pilot batch of the rolled material in sheets 0.8 x 712 x 1296 mm in size is to be made (in accordance with the norms and standards of the Russian

  20. High-Temperature Interaction Between Molten AlSr10 Alloy and Glass-Like Carbon Substrate

    NASA Astrophysics Data System (ADS)

    Siewiorek, A.; Sobczak, N.; Sobczak, J.; Kudyba, A.; Kozera, R.; Boczkowska, A.

    2016-03-01

    Wettability of glass-like carbon substrate (Cglc) by molten Al-10 wt.% Sr alloy (AlSr10) has been examined by a sessile drop method at 700-800 °C for 120 min under vacuum. Non-contact heating to the test temperature combined with the removal of oxide film from the alloy drop was done using capillary purification procedure by squeezing the liquid alloy from a capillary. The influence of the type of capillary on wetting behavior of AlSr10/Cglc couples was noticed. Molten AlSr10 alloy does not wet Cglc at about 700 °C forming the contact angles of 111° with graphite capillary and 141° with alumina capillary. At 800 °C with alumina capillary, non-wetting-to-wetting transition takes place resulting in a final contact angle of 70°. After testing at 800 °C, the AlSr10/Cglc interface was revealed at the test temperature directly in the vacuum chamber by the drop suction procedure. Structural characterization of the interfaces by scanning and transmission electron microscopy combined with energy-dispersive x-ray spectroscopy and by scanning probe microscopy combined with Auger electron spectrometry did not show any new phases formed with Sr. It suggests that the dominant role in wettability improvement by alloying Al with 10 wt.% Sr was related with significant lowering of the surface tension of liquid metal and adsorption of Sr at the interface.

  1. Molten-salt treatment of waste biomass for preparation of carbon with enhanced capacitive properties and electrocatalytic activity towards oxygen reduction.

    PubMed

    Lu, Beihu; Zhou, Jing; Song, Yuqiao; Wang, Hailong; Xiao, Wei; Wang, Dihua

    2016-08-15

    Carbon powders are building blocks for electrochemical energy storage/conversion devices. Green, cost-affordable and facile preparation of carbon with applicable electrochemical properties is therefore essential for effective utilization of fluctuating renewable energy. Herein, the preparation of carbon nanoflakes via impregnation of waste biomass i.e. boiled coffee beans in molten Na2CO3-K2CO3 (with equal mass) at 800 °C and molten CaCl2 at 850 °C is reported. The microstructure and surface chemistry of the obtained carbons are specified. The correlations between synthetic conditions and microstructure/surface chemistry of the obtained carbons are rationalized. The derived carbon nanosheets are tested and compared as active materials for supercapacitors in a configuration of symmetric full cells in 1 M MeEt3NBF4 in acetonitrile and electrocatalysts towards the oxygen reduction reaction (ORR) in O2-saturated 0.1 M aqueous KOH. Despite the lower surface area, the carbon nanosheets derived in molten Na2CO3-K2CO3 exhibit enhanced capacitive properties and electrocatalytic ORR activity. The present study highlights the importance of thermal media on the microstructure, surface chemistry and electrochemistry of carbon from biomass. PMID:27193579

  2. Reductive smelting of spent lead-acid battery colloid sludge in a molten Na2CO3 salt

    NASA Astrophysics Data System (ADS)

    Hu, Yu-jie; Tang, Chao-bo; Tang, Mo-tang; Chen, Yong-ming

    2015-08-01

    Lead extraction from spent lead-acid battery paste in a molten Na2CO3 salt containing ZnO as a sulfur-fixing agent was studied. Some influencing factors, including smelting temperature, reaction time, ZnO and salt dosages, were investigated in detail using single-factor experiments. The optimum conditions were determined as follows: T = 880°C; t = 60 min; Na2CO3/paste mass ratio = 2.8:1; and the ZnO dosage is equal to the stoichiometric requirement. Under the optimum conditions, the direct recovery rate of lead reached 98.14%. The results suggested that increases in temperature and salt dosage improved the direct recovery rate of lead. XRD results and thermodynamic calculations indicated that the reaction approaches of lead and sulfur were PbSO4→Pb and PbSO4→ZnS, respectively. Sulfur was fixed in the form of ZnS, whereas the molten salt did not react with other components, serving only as a reaction medium.

  3. Temperature and voltage responses of a molten carbonate fuel cell in the presence of a hydrogen fuel leakage

    NASA Astrophysics Data System (ADS)

    Law, M. C.; Liang, G. V. Y.; Lee, V. C. C.; Wee, S. K.

    2015-04-01

    A two dimensional (2-D), dynamic model of a molten carbonate fuel cell (MCFC) was developed using COMSOL Multi-physics. The model was used to investigate the dynamic behaviour of the MCFC in the presence of hydrogen fuel leakage. A leakage was modelled as a known outflow velocity at the anode gas channel. The effects of leakage velocity and the leakage location were investigated. The simulations show that anode electrode temperature increases as the leakage velocity increases. The voltage generated is shown to decrease at the start of the leakage occurrence due to loss of hydrogen gas. Later the voltage increases as the anode temperature increases. The results also show that the changes of temperature and voltage are more significant if a leakage occurs nearer to the inlet compared to that at the outlet of anode gas channel.

  4. Internal reforming for natural gas fueled molten carbonate fuel cells. Final report 1 May 80-30 Jun 81

    SciTech Connect

    Baker, B.; Burns, D.; Lee, C.; Maru, H.; Patel, P.

    1981-12-01

    A natural gas fueled molten carbonate fuel cell (MCFC) is an attractive system for efficient electricity generation. The system yields maximum efficiency while operating on internal reforming mode. Among the various configurations evaluated for internal reforming MCFC, direct internal reforming appears to be most promising. Compared to the conventional baseline external reformer system, it can save as much as 20% natural gas at reduced capital and operating costs. The feasibility of internal reforming in MCFC has been verified through laboratory-scale (10 sq cm) cell tests followed by a successful scale-up to bench-scale (300 sq cm) cell. Bench-scale cells have been operated with direct methane feed up to 2000 hours. The results of system analysis and experimental work show that a successful development of the internal reforming MCFC will result in significant savings of natural gas and a cost effective electricity generation.

  5. Development of 1000 kW molten carbonate fuel cell (MCFC) pilot plant and 250 kW stack

    SciTech Connect

    Mochizuki, Kenichi

    1999-07-01

    The molten carbonate fuel cell (MCFC) is expected to be ready for commercial use early in the next century. This new power generation system has a higher thermal efficiency and can reduce CO{sub 2} emissions. IHI has participated in the Ministry of International Trade and Industry's New Sunshine Program since 1993. Since joining the program, IHI has undertaken the development of the MCFC stack and 1,000 kW class power generation system under the supervision of the New Energy and Industrial Technology Development Organization and the MCFC Research Association. The development outline of the 1,000 kW MCFC pilot plant constructed at the Kawagoe test site and the present development stage of the plant control system and the 250 kW stacks developed and manufactured by IHI are described here.

  6. Determination and evaluation of the thermophysical properties of an alkali carbonate eutectic molten salt.

    PubMed

    An, Xuehui; Cheng, Jinhui; Zhang, Peng; Tang, Zhongfeng; Wang, Jianqiang

    2016-08-15

    The thermal physical properties of Li2CO3-Na2CO3-K2CO3 eutectic molten salt were comprehensively investigated. It was found that the liquid salt can remain stable up to 658 °C (the onset temperature of decomposition) by thermal analysis, and so the investigations on its thermal physical parameters were undertaken from room temperature to 658 °C. The density was determined using a self-developed device, with an uncertainty of ±0.00712 g cm(-3). A cooling curve was obtained from the instrument, giving the liquidus temperature. For the first time, we report the obtainment of the thermal diffusivity using a laser flash method based on a special crucible design and establishment of a specific sample preparation method. Furthermore, the specific heat capacity was also obtained by use of DSC, and combined with thermal diffusivity and density, was used to calculate the thermal conductivity. We additionally built a rotating viscometer with high precision in order to determine the molten salt viscosity. All of these parameters play an important part in the energy storage and transfer calculation and safety evaluation for a system. PMID:27203821

  7. Utility experience with a 250-kW molten carbonate fuel cell cogeneration power plant at NAS Miramar, San Diego

    NASA Astrophysics Data System (ADS)

    Figueroa, R. A.; Otahal, J.

    This paper focuses on the strategy and experience of San Diego Gas and Electric with the development and demonstration of a proof of concept 250-kW internally manifolded heat exchanger (IMHEX®) carbonate fuel cell power plant. The plant was installed, commissioned, and operated by San Diego Gas and Electric (SDG&E) in a cogeneration mode at the Naval Air Station (NAS) at Miramar in San Diego. These activities were part of a collaborative effort between SDG&E and M-C Power's Program team (IMHEX® Team). The IMHEX® Team consists of M-C Power, Bechtel Engineering, Stewart and Stevenson, and the Institute of Gas Technology (IGT). The technical aspects of the plant's commissioning and operation were addressed by my colleague, J. Otahal, in a poster presentation. Our activities in carbonate fuel cell development are unique because of the level of involvement by an investor-owned utility in the development, engineering, installation, operation and maintenance of a fuel cell demonstration plant. The following topics are discussed in this paper: (i) SDG&E's involvement in the development of molten carbonate fuel cell (MCFC) technology; (ii) the active role in engineering and specification of the IMHEX® MCFC demonstration plant; (iii) responsibility for installation, commissioning, and operation; (iv) utility role in technology development and application of MCFC in a restructured and competitive environment; (v) summary.

  8. Raman evidence of the formation of LT-LiCoO 2 thin layers on NiO in molten carbonate at 650°C

    NASA Astrophysics Data System (ADS)

    Mendoza, L.; Baddour-Hadjean, R.; Cassir, M.; Pereira-Ramos, J. P.

    2004-03-01

    The structural evolution of thin layers of Co 3O 4 elaborated on nickel-based substrates in the Li 2CO 3-Na 2CO 3 carbonate eutectic at 650 °C as a function of time immersion is reported. Raman microspectrometry has been applied in order to provide more information on the nature of the protective cobalt oxide layers. The typical Raman fingerprint of the LT-LiCoO 2 compound has been obtained, with four well defined bands at 449, 484, 590 and 605 cm -1, while XRD data are unable to distinguish the layered phase (HT) from the spinel one (LT). The mechanical stability of such films does not exceed 10 h in direct contact with the molten carbonate bulk at 650 °C; nevertheless, these conditions are much more corrosive than in a molten carbonate fuel cell (MCFC).

  9. Degradation behaviour of Al-Fe coatings in wet-seal area of molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Jun, JaeHo; Jun, JoongHwan; Kim, KyooYoung

    The corrosion resistance of Al-Fe coatings increases as a protective LiAlO 2 layer forms. If, however, the Al-Fe coatings lack sufficient aluminium for maintaining this protective layer, the corrosion resistance of the coating is degraded by the growth of non-protective scales, such as LiFeO 2. In this study, the degradation behaviour of Al-Fe coatings is investigated in the wet-seal environment of molten carbonate fuel cells (MCFC). Al-Fe coated specimens with various amounts of aluminium in the range 8-70 at.% and bulk specimens of Fe-23.9 Al (at.%) are prepared. A corrosion test is performed in Li/K carbonate systems at 650 °C with a single-cell and an immersion test. Test results reveal that aluminium contents in the coatings should be higher than 25 at.% in order to form and maintain a protective LiAlO 2 layer. In addition to aluminium content, the influence of microstructural features on the degradation behaviour of Al-Fe coatings is discussed.

  10. Characteristics of aluminum-reinforced γ-LiAlO2 matrices for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Jin; Choi, Hyun-Jong; Hyun, Sang-Hoon; Im, Hee-Chun

    2008-05-01

    A key component in molten carbonate fuel cells (MCFCs) is the electrolyte matrix, which provides both ionic conduction and gas sealing. During initial MCFC stack start-up and operation (650 °C), the matrix experiences both mechanical and thermal stresses as a result of the difference in thermal expansion coefficients between the LiAlO2 ceramic particles and the carbonate electrolyte that causes cracking of the matrix. A pure γ-LiAlO2 matrix, however, has poor mechanical strength and low thermal expansion coefficients. In this study, fine γ-LiAlO2 powders and pure Al (3/20/50 μm)/Li2CO3 particles are used as a matrix and as reinforcing materials, respectively. The Al phase transforms completely into γ-LiAlO2 at 650 °C within 10 h. The mechanical strength of these matrices (283.48 gf mm-2) increases nearly threefold relative to that of a pure γ-LiAlO2 matrix (104.01 gf mm-2). The mismatch of the thermal expansion coefficient between the matrix and electrolyte phases can be controlled by adding Al particles, which results in improved thermal stability in the initial heating-up step. In unit-cell and thermal-cycling tests, the optimized matrix demonstrates superior performance over pure γ-LiAlO2 matrices.

  11. Corrosion testing of zirconia, beryllia and magnesia ceramics in molten alkali metal carbonates at 900 °C

    NASA Astrophysics Data System (ADS)

    Kaplan, Valery; Bendikov, Tatyana; Feldman, Yishay; Gartsman, Konstantin; Wachtel, Ellen; Lubomirsky, Igor

    2016-01-01

    An electrochemical cell containing molten Li2CO3-Li2O at 900 °C has been proposed for the conversion of the greenhouse gas CO2 to CO for chemical energy storage. In the current work, we have examined the corrosion resistance of zirconia, beryllia and magnesia ceramics at 900 °C in the Li2CO3-Li2O and Li-Na-K carbonate eutectic mixtures to identify suitable electrically insulating materials. Conclusions regarding material stability were based on elemental analysis of the melt, primarily via X-ray photoelectron spectroscopy, a particularly sensitive technique. It was found that magnesia is completely stable for at least 33 h in a Li2CO3-Li2O melt, while a combined lithium titanate/lithium zirconate layer forms on the zirconia ceramic as detected by XRD. Under the same melt conditions, beryllia shows considerable leaching into solution. In a Li-Na-K carbonate eutectic mixture containing 10.2 mol% oxide at 900 °C under standard atmospheric conditions, magnesia showed no signs of degradation. Stabilization of the zirconia content of the eutectic mixture at 0.01-0.02 at% after 2 h is explained by the formation of a lithium zirconate coating on the ceramic. On the basis of these results, we conclude that only magnesia can be satisfactorily used as an insulating material in electrolysis cells containing Li2CO3-Li2O melts.

  12. Electrode kinetics of the NiO porous electrode for oxygen production in the molten carbonate electrolysis cell (MCEC).

    PubMed

    Hu, Lan; Lindbergh, Göran; Lagergren, Carina

    2015-01-01

    The performance of a molten carbonate electrolysis cell (MCEC) is to a great extent determined by the anode, i.e. the oxygen production reaction at the porous NiO electrode. In this study, stationary polarization curves for the NiO electrode were measured under varying gas compositions and temperatures. The exchange current densities were calculated numerically from the slopes at low overpotential. Positive dependency on the exchange current density was found for the partial pressure of oxygen. When the temperature was increased in the range 600-650 °C, the reaction order of oxygen decreased from 0.97 to 0.80. However, there are two different cases for the partial pressure dependency of carbon dioxide within this temperature range: positive values, 0.09-0.30, for the reaction order at lower CO2 concentration, and negative values, -0.26-0.01, with increasing CO2 content. A comparison of theoretically obtained data indicates that the oxygen-producing reaction in MCEC could be reasonably satisfied by the reverse of oxygen reduction by the oxygen mechanism I, an n = 4 electron reaction, assuming a low coverage of oxide ions at high CO2 content and an intermediate coverage for a low CO2 concentration. PMID:26211875

  13. Molten salt CO2 capture and electro-transformation (MSCC-ET) into capacitive carbon at medium temperature: effect of the electrolyte composition.

    PubMed

    Deng, Bowen; Chen, Zhigang; Gao, Muxing; Song, Yuqiao; Zheng, Kaiyuan; Tang, Juanjuan; Xiao, Wei; Mao, Xuhui; Wang, Dihua

    2016-08-15

    Electrochemical transformation of CO2 into functional materials or fuels (i.e., carbon, CO) in high temperature molten salts has been demonstrated as a promising way of carbon capture, utilisation and storage (CCUS) in recent years. In a view of continuous operation, the electrolysis process should match very well with the CO2 absorption kinetics. At the same time, in consideration of the energy efficiency, a molten salt electrochemical cell running at lower temperature is more beneficial to a process powered by the fluctuating renewable electricity from solar/wind farms. Ternary carbonates (Li : Na : K = 43.5 : 31.5 : 25.0) and binary chlorides (Li : K = 58.5 : 41.5), two typical kinds of eutectic melt with low melting points and a wide electrochemical potential window, could be the ideal supporting electrolyte for the molten salt CO2 capture and electro-transformation (MSCC-ET) process. In this work, the CO2 absorption behaviour in Li2O/CaO containing carbonates and chlorides were investigated on a home-made gas absorption testing system. The electrode processes as well as the morphology and properties of carbon obtained in different salts are compared to each other. It was found that the composition of molten salts significantly affects the absorption of CO2, electrode processes and performance of the product. Furthermore, the relationship between the absorption and electro-transformation kinetics are discussed based on the findings. PMID:27193751

  14. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect

    Hector Colonmer; Prabhu Ganesan; Nalini Subramanian; Dr. Bala Haran; Dr. Ralph E. White; Dr. Branko N. Popov

    2002-09-01

    This project focused on addressing the two main problems associated with state of art Molten Carbonate Fuel Cells, namely loss of cathode active material and stainless steel current collector deterioration due to corrosion. We followed a dual approach where in the first case we developed novel materials to replace the cathode and current collector currently used in molten carbonate fuel cells. In the second case we improved the performance of conventional cathode and current collectors through surface modification. States of art NiO cathode in MCFC undergo dissolution in the cathode melt thereby limiting the lifetime of the cell. To prevent this we deposited cobalt using an electroless deposition process. We also coated perovskite (La{sub 0.8}Sr{sub 0.2}CoO{sub 3}) in NiO thorough a sol-gel process. The electrochemical oxidation behavior of Co and perovskites coated electrodes is similar to that of the bare NiO cathode. Co and perovskite coatings on the surface decrease the dissolution of Ni into the melt and thereby stabilize the cathode. Both, cobalt and provskites coated nickel oxide, show a higher polarization compared to that of nickel oxide, which could be due to the reduced surface area. Cobalt substituted lithium nickel oxide (LiNi{sub 0.8}Co{sub 0.2}O{sub 2}) and lithium cobalt oxide were also studied. LiNi{sub x}Co{sub 1-x}O{sub 2} was synthesized by solid-state reaction procedure using lithium nitrate, nickel hydroxide and cobalt oxalate precursor. LiNi{sub x}Co{sub 1-x}O{sub 2} showed smaller dissolution of nickel than state of art nickel oxide cathode. The performance was comparable to that of nickel oxide. The corrosion of the current collector in the cathode side was also studied. The corrosion characteristics of both SS304 and SS304 coated with Co-Ni alloy were studied. This study confirms that surface modification of SS304 leads to the formation of complex scales with better barrier properties and better electronic conductivity at 650 C. A three

  15. Al/Pb lightweight grids prepared by molten salt electroless plating for application in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Hong, Bo; Jiang, Liangxing; Hao, Ketao; Liu, Fangyang; Yu, Xiaoying; Xue, Haitao; Li, Jie; Liu, Yexiang

    2014-06-01

    In this paper, a lightweight Pb plated Al (Al/Pb) grid was prepared by molten salt electroless plating. The SEM and bonding strength test show that the lead coating is deposited with a smooth surface and firm combination. CV test shows that the electrochemical properties of Al/Pb electrodes are stable. 2.0 V single-cell flooded lead-acid batteries with Al/Pb grids as negative collectors are assembled and the performances including 20 h capacity, rate capacity, cycle life, internal resistance are investigated. The results show that the cycle life of Al/Pb-grid cells is about 475 cycles and can meet the requirement of lead-acid batteries. Al/Pb grids are conducive to the refinement of PbSO4 grain, and thereby reduce the internal resistance of battery and advance the utilization of active mass. Moreover, weight of Al/Pb grid is only 55.4% of the conventional-grid. In this way, mass specific capacity of Al/Pb-grid negatives is 17.8% higher and the utilization of active mass is 6.5% higher than conventional-grid negatives.

  16. LiCoO 2 sub-microns particles obtained from micro-precipitation in molten stearic acid

    NASA Astrophysics Data System (ADS)

    Lala, S. M.; Montoro, L. A.; Rosolen, J. M.

    The present work reports a novel emulsion method for preparation of lithium cobalt oxide based on the micro-precipitation of lithium and cobalt salts in molten stearic acid. The precursors consist of micro-aggregated powders of CoOOH and CH 3(CH 2) 16COOLi whose formation depends on the concentration of stearic acid used in the synthesis. The micro-aggregated of CoOOH and CH 3(CH 2) 16COOLi when calcined at 800 °C yielded well-crystalline sub-microns particles of LiCoO 2 ( R-3 m) with a very uniform shape (quasi-hexagonal pellets), a very narrow grain size distribution ( d10=0.31, d50=3.14, d90=6.30 μm) and high specific surface area (7.4 m 2 g -1). The long life reversible specific capacity of the mp-LiCoO 2 composite electrode subsequently made was 110 mAh g -1 for initial deinsertion 165 mAh g -1.

  17. Role of acid diffusion in matrix acidizing of carbonates

    SciTech Connect

    Hoefner, M.L.; Fogler, H.S.; Stenius, P.; Sjoblom, J.

    1987-02-01

    To increase the efficiency of matrix treatments in carbonates, a new type of retarded acid-in-oil microemulsion system has ben developed. The microemulsion is of low viscosity but can exhibit acid diffusion rates two orders of magnitude lower than aqueous HCl. Decreased acid diffusion delays spending and allows live acid to penetrate the rock matrix more uniformly and to greater distances. Coreflood results show that the microemulsion can stimulate cores in fewer PV's and under conditions of low injection rates where aqueous HCl fails completely. The microemulsion could also conceivably increase acid penetration along any natural fractures and fissures that may be present, thus increasing acidizing efficiency in this type of treatment. The relationship between the acid diffusion rate and the ability of the fluid to matrix-stimulate limestone is investigated.

  18. Synthesis of carbon-13-labeled tetradecanoic acids.

    PubMed

    Sparrow, J T; Patel, K M; Morrisett, J D

    1983-07-01

    The synthesis of tetradecanoic acid enriched with 13C at carbons 1, 3, or 6 is described. The label at the carbonyl carbon was introduced by treating 1-bromotridecane with K13CN (90% enriched) to form the 13C-labeled nitrile, which upon hydrolysis yielded the desired acid. The [3-13C]tetradecanoic acid was synthesized by alkylation of diethyl sodio-malonate with [1-13C]1-bromododecane; the acid was obtained upon saponification and decarboxylation. The label at the 6 position was introduced by coupling the appropriately labeled alkylcadmium chloride with the half acid chloride methyl ester of the appropriate dioic acid, giving the corresponding oxo fatty acid ester. Formation of the tosylhydrazone of the oxo-ester followed by reduction with sodium cyanoborohydride gave the labeled methyl tetradecanoate which, upon hydrolysis, yielded the desired tetradecanoic acid. All tetradecanoic acids were identical to unlabeled analogs as evaluated by gas-liquid chromatography and infrared or NMR spectroscopy. These labeled fatty acids were used subsequently to prepare the correspondingly labeled diacyl phosphatidylcholines. PMID:6631228

  19. Numerical analysis of molten carbonate fuel cell stack performance: diagnosis of internal conditions using cell voltage profiles

    NASA Astrophysics Data System (ADS)

    Yoshiba, F.; Abe, T.; Watanabe, T.

    A numerical model to diagnose the internal conditions of a molten carbonate fuel cell (MCFC) has been developed to calculate both the temperature and performance of stacks. The performance of the stack is evaluated by applying a `formula for MCFC performance' which has been derived from tests on single small cells with the same active components as the stack. Concerning the separator temperature and the cell performance, calculated results are compared with experimental data acquired during the operation of a 100-kW class stack. Good agreement is obtained. The applied numerical electric circuit model is modified to analyse the voltage distribution within each individual cell. The purpose of the model is to identify the cause of unexpected voltage differences within each cell during operation of a 100-kW class stack. Two causes are identified, namely, increase in the partial internal resistance (IR) and insufficient supply of fuel gas to the cell. The calculated cell voltage distribution and the observed voltage difference for a given cell exhibit similar behaviour.

  20. CO 2 adsorption on porous NiO as a cathode material for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Özkan, Göksel; Özçelik, Emre

    Molten carbonate fuel cells (MCFC) are the systems suitable for large-scale energy production. The cathode material used in these cells is NiO. In this study the NiO cathode was synthesized by tape-casting method and the adsorption of CO 2, one of the cathode feeding gases, was investigated on it. The adsorption studies were carried out by the use of packed column and the adsorption analysis were performed using pulse response technique. There were two 1/4 in. diameter and 5 and 10 cm length columns prepared for the experiments and they were packed with 3 mm average particle sized NiO. The experiments were carried out with gas chromatography using He as a carrier gas. The response curves were taken after pulsing the columns with CO 2. The equilibrium constants and heat of adsorption of CO 2 on NiO were determined by the use of the first absolute moment equations corresponding to retention times. It was observed that the adsorption was physical in nature. From the adsorption constants determined at different temperatures and the heat of adsorption, Δ H0, was found as -1299 cal mol -1.

  1. Wetting of Ni and NiO by alternative molten carbonate fuel cell electrolytes. 2. Influence of the electrode overpotential

    SciTech Connect

    Godula-Jopek, A.; Suski, L.

    2000-03-01

    As a continuation of the investigation of Ni and lithiated NiO single-crystal wettability by alternative electrolytes for molten carbonate fuel cells (MCFCs), the increment of contact angles has been studied when anodic or cathodic overpotential, respectively, was applied to these solids. This investigation was carried out at 650 C under hydrogen- or oxygen-containing atmospheres, respectively, within the overpotential ranges corresponding to usual operating parameters of the MCFC stacks. Using contact angle values for NiO single crystals determined in the first part of this investigation, the optimal ratio of anodic to cathodic pore size values for porous MCFC electrodes has been calculated according to the Mugikura-Selman relationship [Mugikura, Y. and Selman, J.R., J.Electrochem.Soc., 143, 2442 (1996)]. When considering in these calculations the contact angle values for smooth, NiO single-crystal surfaces, one should conclude that the equilibrium of capillary forces should be obtained a quite identical mean pore sizes in both porous electrodes. The electrode polarization should show only negligible effect on this equilibrium.

  2. Effects of H/sub 2/S on molten carbonate fuel cells. Progress report, January 1-March 31, 1984

    SciTech Connect

    Remick, R.J.

    1984-07-01

    The overall program objective is to identify the poisoning mechanism(s) responsible for performance losses of molten carbonate fuel cells (MCFC) when operating on sulfur-containing gases. This objective is being addressed by focusing out-of-cell and in-cell experiments on single mechanistic issues, followed by incorporation of the results into a model that correlates cell potential decline to contaminant(s) concentration. When coupled with gas cleanup cost projectons, the model can be used to conduct trade-off studies leading to the selection of optimum feed-gas compositions for MCFC power plants. The importance of this program is that the degree to which H/sub 2/S and other contaminants must be removed from typical MCFC fuels can have a profound effect on the cost of cleaning the fuel gas, especially if contaminant levels lower than 0.1 ppM are required. The anticipated product from the overall program is a justifiable specification for gas cleanup requirements for MCFC power plants. Progress is reported. (WHK)

  3. A comparative study on life cycle analysis of molten carbon fuel cells and diesel engines for marine application

    NASA Astrophysics Data System (ADS)

    Alkaner, Selim; Zhou, Peilin

    The study performed a life cycle assessment (LCA) of a molten carbonate fuel cell (MCFC) plant for marine applications. The results are compared to a benchmark conventional diesel engine (DE) which operates as an auxiliary power generating unit. The LCA includes manufacturing of MCFC and DE, fuel supply, operation and decommissioning stages of the system's life cycle. As a new technology in its very early stages of commercialisation, some detailed data for the FC systems are not available. In order to overcome this problem, a series of scenario analysis has also been performed to evaluate the effect of various factors on the overall impact, such as change in power load factors and effect of recycling credit at the end of life cycle. Environmental benefits from fuel cell operation are maximised with the use of hydrogen as an input fuel. For the manufacturing stage of the life cycle, input material and process energy required for fuel cell stack assemblies and balance-of-plants (BOP) represent a bigger impact than that of conventional benchmark mainly due to special materials used in the stack and the weights of the BOP components. Additionally, recovering valuable materials through re-use or re-cycle will reduce the overall environmental burden of the system over its life cycle.

  4. Development of molten carbonate fuel cell power plant technology. Quarterly technical progress report No. 2, January 1-March 31, 1980

    SciTech Connect

    Healy, H. C.; Sanderson, R. A.; Wertheim, F. J.; Farris, P. F.; Mientek, A. P.; Maricle, D. L.; Briggs, T. A.; Preston, Jr., J. L.; Louis, G. A.; Abrams, M. L.; Bushnell, C. L.; Nickols, R. C.; Gelting, R. L.; Katz, M.; Stewart, R. C.; Kunz, H. R.; Gruver, G. A.; Bregoli, L. J.; Steuernagel, W. H.; Smith, R.; Smith, S. W.; Szymanski, S. T.

    1980-08-01

    The overall objective of this 29-month program is to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of 1990's competitive coal-fired electrical utility central station or industrial cogeneration power plants. During this quarter, effort was continued in all four major task areas: Task 1 - system studies to define the reference power plant design; Task 2 - cell and stack design, development and verification; Task 3 - preparation for fabrication and testing of the full-scale prototype stack; and Task 4 - developing the capability for operation of stacks on coal-derived gas. In the system study activity of Task 1, preliminary module and cell stack design requirements were completed. Fuel processor characterization has been completed by Bechtel National, Inc. Work under Task 2 defined design approaches for full-scale stack busbars and electrical isolation of reactant manifolds and reactant piping. Preliminary design requirements were completed for the anode. Conductive nickel oxide for cathode fabrication has been made by oxidation and lithiation of porous nickel sheet stock. A method of mechanizing the tape casting process for increased production rates was successfully demonstrated under Task 3. In Task 4, theoretical calculations indicated that hydrogen cyanide and ammonia, when present as impurities in the stack fuel gas, will have no harmful effects. Laboratory experiments using higher than anticipated levels of ethylene showed no harmful effects. Components for the mobile test facility are being ordered.

  5. The effects of H{sub 2}S on electrolyte distribution and cell performance in the molten carbonate fuel cell

    SciTech Connect

    Kawase, Makoto; Mugikura, Yoshihiro; Watanabe, Takao

    2000-04-01

    To evaluate the effects of H{sub 2}S on the performance of molten carbonate fuel cells, bench-scale cell tests were performed and the meniscus heights of the electrolyte on Ni were measured with fuel gases containing various amounts of H{sub 2}S. In bench-scale cell tests, H{sub 2}S in the fuel gas had a large effect on cell voltage in the early operating stages, but this effect showed a tendency to decrease with operating time. Basic wetting property measurements revealed that Ni becomes better wetted at higher H{sub 2}S concentrations. In calculations of the electrolyte distributions, the electrolyte fill of the anode with {sub 2}S was found to be higher than that without H{sub 2}S. This study simulates the electrolyte distributions taking into account the effects of H{sub 2}S levels, the electrolyte loss and the change in pore size distributions of the electrodes, and discusses the relation between electrolyte distribution and cell performance.

  6. Life cycle assessment of molten carbonate fuel cells: State of the art and strategies for the future

    NASA Astrophysics Data System (ADS)

    Mehmeti, Andi; Santoni, Francesca; Della Pietra, Massimiliano; McPhail, Stephen J.

    2016-03-01

    This study aims to review and provide an up to date international life cycle thinking literature with particular emphasis on life cycle assessment (LCA), applied to Molten Carbonate Fuel Cells (MCFCs), a technology forcefully entering the field of decentralized heat and power generation. Critical environmental issues, comparison of results between studies and improvement strategies are analyzed and highlighted. The findings stress that MCFC environmental performance is heavily influenced by the current use of non-renewable energy and high material demand of rare minerals which generate high environmental burdens in the manufacturing stage, thereby confirming the prominent role of these processes in a comprehensive LCA study. The comparison of operational phases highlights that MCFCs are robust and able to compete with other mature technologies contributing substantially to airborne emissions reduction and promoting a switch to renewable fuels, however, further progress and market competitiveness urges adoption of an eco-efficiency philosophy to forge the link between environmental and economic concerns. Adopting a well-organized systematic research driven by life cycle models and eco-efficiency principles stakeholders will glean valuable information to make well balanced decisions for improving performance towards the concept 'producing more quality with less resources' and accelerate market penetration of the technology.

  7. A comparison between molten carbonate fuel cells based hybrid systems using air and supercritical carbon dioxide Brayton cycles with state of the art technology

    NASA Astrophysics Data System (ADS)

    Sánchez, D.; Muñoz de Escalona, J. M.; Chacartegui, R.; Muñoz, A.; Sánchez, T.

    A proposal for high efficiency hybrid systems based on molten carbonate fuel cells is presented in this paper. This proposal is based on adopting a closed cycle bottoming gas turbine using supercritical carbon dioxide as working fluid as opposed to open cycle hot air turbines typically used in this type of power generators. First, both bottoming cycles are compared for the same operating conditions, showing that their performances do not differ as much as initially expected, even if the initial objective of reducing compression work is accomplished satisfactorily. In view of these results, a profound review of research and industrial literature is carried out in order to determine realistic specifications for the principal components of the bottoming systems. From this analysis, it is concluded that an appropriate set of specifications must be developed for each bottoming cycle as the performances of compressor, turbine and recuperator differ significantly from one working fluid to another. Thus, when the operating conditions are updated, the performances of the resulting systems show a remarkable advantage of carbon dioxide based systems over conventional air units. Actually, the proposed hybrid system shows its capability to achieve 60% net efficiency, what represents a 10% increase with respect to the reference system.

  8. Effects of H/sub 2/S on molten carbonate fuel cells. Progress report, October 1-December 31, 1983

    SciTech Connect

    Remick, R.J.; Anderson, G.L.

    1984-06-01

    The overall program objective is to identify the poisoning mechanism(s) responsible for performance losses of molten carbonate fuel cells (MCFC) when operating on sulfur-containing gases. This objective is being addressed by focusing out-of-cell and in-cell experiments on single mechanistic issues, followed by incorporation of the results into a model that correlates cell potential decline to contaminant(s) concentration. When coupled with gas cleanup cost projections, the model can be used to conduct trade-off studies leading to the selection of optimum feed-gas compositions for MCFC power plants. The importance of this program is that the degree to which H/sub 2/S and other contaminants must be removed from typical MCFC fuels can have a profound effect on the cost of cleaning the fuel gas, especially when contaminant levels lower than 0.1 ppM are required. The anticipated product from the overall program is a justifiable specification for gas cleanup requirements for MCFC power plants. During the second quarter, considerable progress was made in understanding the relationship between gas composition and the poisoning phenomenon. Three bench-scale fuel cells have been operated on the 10% hydrogen/90% helium fuel mixtures this quarter, bringing to four the total number of cells which have operated on this gas. Results reinforce the hypothesis put forth in the last quarterly report that the carbon dioxide and water vapor partial pressures also influence the extent of the poisoning of the fuel cell, not simply the hydrogen sulfide to hydrogen ratio. (WHK)

  9. Effects of coal-derived trace species on the performance of molten carbonate fuel cells

    SciTech Connect

    Pigeaud, A.

    1991-10-01

    The overall objective of the present study was to determine in detail the interaction effects of 10 simultaneously present, coal-gas contaminants, both on each other and on components of the Carbonate Fuel Cell. The primary goal was to assess underlying chemistries and reaction mechanisms which may cause decay in fuel cell performance or endurance as a result of both physics-chemical and/or mechanical interactions with the cell components and internal fuel cell parts. It was found, both from theory and cell test evidence, that trace contaminant interactions may occur with: Fuel-cell Electrodes (e.g., in this study with the Ni-anode), Lithium/Potassium Carbonate Electrolyte, Nickel and SS-Hardware, and by Mechanical Obstruction of Gas Flow in the Anode Plenum.

  10. Effects of coal-derived trace species on performance of molten carbonate fuel cells

    SciTech Connect

    Not Available

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  11. Effects of coal-derived trace species on performance of molten carbonate fuel cells. Final report

    SciTech Connect

    Not Available

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  12. Acid-induced molten globule state of a prion protein: crucial role of Strand 1-Helix 1-Strand 2 segment.

    PubMed

    Honda, Ryo P; Yamaguchi, Kei-ichi; Kuwata, Kazuo

    2014-10-31

    The conversion of a cellular prion protein (PrP(C)) to its pathogenic isoform (PrP(Sc)) is a critical event in the pathogenesis of prion diseases. Pathogenic conversion is usually associated with the oligomerization process; therefore, the conformational characteristics of the pre-oligomer state may provide insights into the conversion process. Previous studies indicate that PrP(C) is prone to oligomer formation at low pH, but the conformation of the pre-oligomer state remains unknown. In this study, we systematically analyzed the acid-induced conformational changes of PrP(C) and discovered a unique acid-induced molten globule state at pH 2.0 termed the "A-state." We characterized the structure of the A-state using far/near-UV CD, 1-anilino-8-naphthalene sulfonate fluorescence, size exclusion chromatography, and NMR. Deuterium exchange experiments with NMR detection revealed its first unique structure ever reported thus far; i.e. the Strand 1-Helix 1-Strand 2 segment at the N terminus was preferentially unfolded, whereas the Helix 2-Helix 3 segment at the C terminus remained marginally stable. This conformational change could be triggered by the protonation of Asp(144), Asp(147), and Glu(196), followed by disruption of key salt bridges in PrP(C). Moreover, the initial population of the A-state at low pH (pH 2.0-5.0) was well correlated with the rate of the β-rich oligomer formation, suggesting that the A-state is the pre-oligomer state. Thus, the specific conformation of the A-state would provide crucial insights into the mechanisms of oligomerization and further pathogenic conversion as well as facilitating the design of novel medical chaperones for treating prion diseases. PMID:25217639

  13. Corrosion resistance of 316L stainless steel with surface layer of Ni 2Al 3 or NiAl in molten carbonates

    NASA Astrophysics Data System (ADS)

    Moon, Youngjoon; Lee, Dokyol

    Double layers of nickel and aluminum are electroplated on a 316L stainless steel (316L SS) plate, which is routinely used as a separator in molten carbonate fuel cell (MCFC) stacks, and then heat-treated at 650 or 800 °C for 1 h. This results in the respective formation of a surface layer of Ni 2Al 3 or NiAl intermetallic compound, which are known to be highly corrosion-resistant in molten carbonate electrolyte. The corrosion behaviour of each plate in a molten electrolyte of (Li 0.62K 0.38) 2CO 3 or (Li 0.52Na 0.48) 2CO 3 is evaluated through immersion tests and polarisation measurements. The surface layer of Ni 2Al 3 or NiAl maintains good adhesion to the stainless steel substrate and no corrosion product is detected in any of the plates with a surface layer after immersion tests. Polarisation measurements reveal that, regardless of experimental conditions, the corrosion potentials of the plates with a surface layer shift to more positive values and the passive currents are lower than that for a bare SS plate. The corrosion rate of the NiAl surface layer is slightly lower than that of Ni 2Al 3.

  14. Electrochemical investigation of lithium/potassium carbonate eutectic for application in modeling the molten carbonate fuel cell cathode

    NASA Astrophysics Data System (ADS)

    McCoy, L.; Schuman, M.

    1986-04-01

    A program involving the design, construction, and operation of a high-temperature cell equipped with a rotating gold disk electrode has been carried out with the objective of identifying and quantifying the principal oxide species present in molten LiKCO3 electrolytes using electrochemical measurements. The dependence of the current on electrode rotational speed at 750 to 800 C indicates that the data are typical of the convective/diffusive transport of an electroactive species from the bulk electrolyte. The reverse is true at 650 C, where the current increases with an increasing voltage sweep rate but is little affected by the speed of electrode rotation. In the latter case, a current by chemical reaction occurring within the electrode boundary layer is indicated. The linear current-voltage increase observed at the lower temperature in the presence of about 20 mol % 02 has not been accounted for. Graphical analysis of the data taken with air and CO2 sparged electrolyte at 750 and 800C indicates the electroactive species to be the superoxide ion. Computer studies of the same data usi ng regression analysis methodology indicate that the current may instead arise from the reduction of the peroxide ion concurrently with other electroactive material derived from secondary catalytic reactions or electrolyte impurities. Additional data will be required to support either conclusion with certainty. Detailed studies of the electrochemistry of the LiKCO3 electrolyte over a broader range of temperatures and sparge gas compositions are recommended as a means of providing a second basis for identifying the electrode reactions.

  15. Evaluation of gasification and gas cleanup processes for use in molten-carbonate fuel-cell power plants. Task B interim report

    SciTech Connect

    Not Available

    1981-12-01

    This interim report satisfies the Task B requirement for DOE Contract DE-AC21-81MC16220 to define process configurations for systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants. The information and data necessary for this study were extracted from sources in the public domain, including reports from DOE, EPRI, and EPA; work sponsored in whole or in part by Federal agencies; and from trade journals, MCFC developers, and manufacturers. The configurations include entrained, fluidized-bed, gravitating-bed, and molten salt gasifiers, both air and oxygen blown. Desulfurization systems utilizing wet scrubbing processes, such as Selexol and Rectisol II, and dry sorbents, such as iron oxide and dolomite, were chosen for evaluation.

  16. Graphene and nano-diamond synthesis in expansions of molten liquid carbon

    SciTech Connect

    Ileri, Nazar; Goldman, Nir

    2014-10-28

    Despite their widespread use in high-pressure experiments, little is known about the physical and chemical properties of carbon-containing materials as they expand and cool to ambient conditions. As a result, interpretation of experiments can rely on use of unconstrained models with poor accuracy for the ensuing equation of state properties and final chemical products. To this end, we use quantum simulations to study the free expansion and cooling of carbon from metallic liquid states achieved during shock compression. Expansions from three different sets of shock conditions yielded of a variety of chain and ring structures. We then quantify the relative amounts of graphite-like and diamond-like particles formed during cooling and equilibration. We observe that for all cases, graphene sheets are the majority product formed with more extreme initial conditions producing increasingly larger amounts of diamond particles. Our results can address key needs for future meso-scale models of experiments, where knowledge of material properties and chemical end products can have a pronounced effect on interpreting experimental observables.

  17. Graphene and nano-diamond synthesis in expansions of molten liquid carbon

    NASA Astrophysics Data System (ADS)

    Ileri, Nazar; Goldman, Nir

    2014-10-01

    Despite their widespread use in high-pressure experiments, little is known about the physical and chemical properties of carbon-containing materials as they expand and cool to ambient conditions. As a result, interpretation of experiments can rely on use of unconstrained models with poor accuracy for the ensuing equation of state properties and final chemical products. To this end, we use quantum simulations to study the free expansion and cooling of carbon from metallic liquid states achieved during shock compression. Expansions from three different sets of shock conditions yielded of a variety of chain and ring structures. We then quantify the relative amounts of graphite-like and diamond-like particles formed during cooling and equilibration. We observe that for all cases, graphene sheets are the majority product formed with more extreme initial conditions producing increasingly larger amounts of diamond particles. Our results can address key needs for future meso-scale models of experiments, where knowledge of material properties and chemical end products can have a pronounced effect on interpreting experimental observables.

  18. Graphene and nano-diamond synthesis in expansions of molten liquid carbon.

    PubMed

    Ileri, Nazar; Goldman, Nir

    2014-10-28

    Despite their widespread use in high-pressure experiments, little is known about the physical and chemical properties of carbon-containing materials as they expand and cool to ambient conditions. As a result, interpretation of experiments can rely on use of unconstrained models with poor accuracy for the ensuing equation of state properties and final chemical products. To this end, we use quantum simulations to study the free expansion and cooling of carbon from metallic liquid states achieved during shock compression. Expansions from three different sets of shock conditions yielded of a variety of chain and ring structures. We then quantify the relative amounts of graphite-like and diamond-like particles formed during cooling and equilibration. We observe that for all cases, graphene sheets are the majority product formed with more extreme initial conditions producing increasingly larger amounts of diamond particles. Our results can address key needs for future meso-scale models of experiments, where knowledge of material properties and chemical end products can have a pronounced effect on interpreting experimental observables. PMID:25362334

  19. Proceedings of the 2nd symposium on molten carbonate fuel cell technology

    SciTech Connect

    Selman, J.R. ); Maru, H.C. ); Shores, D.A. ); Uchida, I. )

    1990-01-01

    This book contains papers presented at the International Symposium on Carbonate Fuel Cells held at the 178th meeting of the Electrochemical Society in Seattle, WA, October 1990. The development of the MCFC has been rapidly accelerating during the last decade, and MCFC commercialization has become an international goal. As the emphasis of development has been shifting from single-cell testing to stack design and long-term performance, the role of basic research also has broadened. This volume provides an overview of recent advances in the fundamental knowledge base supporting MCFC development and is intended to help define the future directions of research. As the commercialization of the MCFC becomes a reality, issues of manufacturing technology as well as the need to further improve long-term performance will dictate those directions.

  20. Arterial Blood Carbonic Acid Inversely Determines Lactic and Organic Acids

    PubMed Central

    Aiken, Christopher Geoffrey Alexander

    2013-01-01

    Objective: To establish that arterial blood carbonic acid varies inversely with lactic acid in accordance with bicarbonate exchanging for lactate across cell membranes through the anion exchange mechanism to maintain the Gibbs-Donnan equilibrium. Study Design: Over 5 years, lactate was measured on all blood gases taken from neonatal admissions, as well as organic acid whenever electrolytes were required. Results: Arterial blood gases from 63 infants given high calcium TPN were analyzed. Twenty two needed continuous positive airways pressure (CPAP) only and 31 intermittent positive pressure ventilation (IPPV) and surfactant followed by CPAP to treat respiratory distress syndrome in 51 and meconium aspiration syndrome in 2. All survived and were free of infection. Excluded gases were those with high and falling lactate soon after delivery representing perinatal asphyxia, and those on dexamethasone. Strong inverse relations between carbonic and lactic acids were found at all gestational ages and, independent of glomerular filtration, between carbonic and organic acids. Lactate (mmol/L) = 62.53 X PCO2 -0.96(mmHg) r2 0.315, n 1232, p <0.001. Sixty divided by PCO2 is a convenient measure of physiological lactate at any given PCO2. In the first week, 9.13 ± 2.57% of arterial gases from infants on IPPV had lactates above 120/PCO2, significantly more than 4.74 ± 2.73% on CPAP (p<0.05) and 2.47 ± 2.39% on no support. Conclusion: Changes in arterial blood carbonic acid cause immediate inverse changes in lactic acid, because their anions interchange across cell membranes according to the Gibbs –Donnan equilibrium. Increasing PCO2 from 40 to 120 mmHg decreased lactate from 1.5 mmol/L to 0.5 mmol/L, so that the sum of carbonic and lactic acids increased from 2.72 mmol/L to only 4.17 mmol/L. This helps explain the neuroprotective effect of hypercapnoea and highlights the importance of avoiding any degree of hypocapnoea in infants on IPPV. PMID:24392387

  1. Effects of H/sub 2/S on molten carbonate fuel cells. Progress report, April 1-June 30, 1984

    SciTech Connect

    Remick, R.J.

    1985-03-01

    This report summarizes work accomplished to identify the poisoning mechanism(s) responsible for performance losses of molten carbonate fuel cells (MCFC) when operating on sulfur-containing gases. This objective is being addressed by focusing out-of-cell and in-cell experiments on single mechanistic issues, followed by incorporation of the results into a model that correlates cell potential decline to contaminant(s) concentration. When coupled with gas cleanup cost projections, the model can be used to conduct trade-off studies leading to the selection of optimum feed-gas compositions for MCFC power plants. The importance of this program is that the degree to which H/sub 2/S and other contaminants must be removed from typical MCFC fuels can have a profound effect on the cost of cleaning the fuel gas, especially if contaminant levels lower than 0.1 ppM are required. The anticipated product from the overall program is a justifiable specification for gas cleanup requirements for MCFC power plants. The loss in performance experienced by fuel cells operating on contaminated fuels has been traced to the electrochemical formation of a layer of nickel sulfide on the fuel cell electrode. This layer forms as the result of a reaction between the nickel electrode and dissolved sulfide ions in the electrolyte, not as the result of a nickel/hydrogen sulfide interaction as previously supposed. A formula was derived that can be used to calculate the potential at which this layer can form based upon local gas phase concentrations. This formula provides a satisfactory explanation of the results observed in the half-cell experiments and can be applied to various performance models to calculate the conditions at which the onset of performance losses would occur. However, this formula by itself does not provide enough information to allow the performance of a partially contaminated cell to be modeled. Appendix A has been entered separately. 26 refs., 4 figs., 3 tabs.

  2. Molten carbonate fuel cell product design improvement. Annual report, December 20, 1996--December 20, 1997

    SciTech Connect

    Maru, H.C.; Farooque, M.

    1998-09-01

    This program is designed to advance the carbonate fuel cell technology from the current full-size field test to the commercial design by the turn of the century. The specific objectives selected to attain the overall program goal are: Define power plant requirements and specifications; Establish the design for a multifuel, low-cost, modular, market-responsive power plant; Resolve power plant manufacturing issues and define the design for the commercial-scale manufacturing facility; Define the stack and balance-of-plant (BOP) equipment packaging arrangement and module designs; Acquire capability to support developmental testing of stacks and critical BOP equipment to prepare for commercial design; and Resolve stack and BOP equipment technology issues, and design, build, and field test a modular prototype power plant to demonstrate readiness for commercial entry. ERC is currently in the third year of the multiyear program for development and demonstration of a MW-class power plant. The product definition and specification have been derived with input from potential users, including the Fuel Cell Commercialization Group (FCCG). The baseline power plant final design has been completed. Detailed power plant system and packaging designs are being developed using stack and BOP development results. A MW-scale prototype modular power plant representative of the commercial design is planned. Based on the experience and data generated in the current program, ERC also plans to acquire manufacturing capability for market-entry products through expansion of the existing Torrington production facility.

  3. MOLTEN CARBONATE FUEL CELL POWER PLANT LOCATED AT TERMINAL ISLAND WASTEWATER TREATMENT PLANT

    SciTech Connect

    William W. Glauz

    2004-09-01

    The Los Angeles Department of Water and Power (LADWP) has developed one of the most recognized fuel cell demonstration programs in the United States. In addition to their high efficiencies and superior environmental performance, fuel cells and other generating technologies that can be located at or near the load, offers several electric utility benefits. Fuel cells can help further reduce costs by reducing peak electricity demand, thereby deferring or avoiding expenses for additional electric utility infrastructure. By locating generators near the load, higher reliability of service is possible and the losses that occur during delivery of electricity from remote generators are avoided. The potential to use renewable and locally available fuels, such as landfill or sewage treatment waste gases, provides another attractive outlook. In Los Angeles, there are also many oil producing areas where the gas by-product can be utilized. In June 2000, the LADWP contracted with FCE to install and commission the precommercial 250kW MCFC power plant. The plant was delivered, installed, and began power production at the JFB in August 2001. The plant underwent manufacturer's field trials up for 18 months and was replace with a commercial plant in January 2003. In January 2001, the LADWP contracted with FCE to provide two additional 250kW MCFC power plants. These commercial plants began operations during mid-2003. The locations of these plants are at the Terminal Island Sewage Treatment Plant at the Los Angeles Harbor (for eventual operation on digester gas) and at the LADWP Main Street Service Center east of downtown Los Angeles. All three carbonate fuel cell plants received partial funding through the Department of Defense's Climate Change Fuel Cell Buydown Program. This report covers the technical evaluation and benefit-cost evaluation of the Terminal Island 250kW MCFC power plant during its first year of operation from June 2003 to July 2004.

  4. Preparation of pyrolytic carbon coating on graphite for inhibiting liquid fluoride salt and Xe135 penetration for molten salt breeder reactor

    NASA Astrophysics Data System (ADS)

    Song, Jinliang; Zhao, Yanling; He, Xiujie; Zhang, Baoliang; Xu, Li; He, Zhoutong; Zhang, DongSheng; Gao, Lina; Xia, Huihao; Zhou, Xingtai; Huai, Ping; Bai, Shuo

    2015-01-01

    A fixed-bed deposition method was used to prepare rough laminar pyrolytic carbon coating (RLPyC) on graphite for inhibiting liquid fluoride salt and Xe135 penetration during use in molten salt breeder reactor. The RLPyC coating possessed a graphitization degree of 44% and had good contact with graphite substrate. A high-pressure reactor was constructed to evaluate the molten salt infiltration in the isostatic graphite (IG-110, TOYO TANSO CO., LTD.) and RLPyC coated graphite under 1.01, 1.52, 3.04, 5.07 and 10.13 × 105 Pa for 12 h. Mercury injection and molten-salt infiltration experiments indicated the porosity and the salt-infiltration amount of 18.4% and 13.5 wt% under 1.52 × 105 Pa of IG-110, which was much less than 1.2% and 0.06 wt% under 10.13 × 105 Pa of the RLPyC, respectively. A vacuum device was constructed to evaluate the Xe135 penetration in the graphite. The helium diffusion coefficient of RLPyC coated graphite was 2.16 × 10-12 m2/s, much less than 1.21 × 10-6 m2/s of the graphite. Thermal cycle experiment indicated the coatings possessed excellent thermal stability. The coated graphite could effectively inhibit the liquid fluoride salt and Xe135 penetration.

  5. MOLTEN CARBONATE FUEL CELL POWER PLANT LOCATED AT LADWP MAIN STREET SERVICE CENTER

    SciTech Connect

    William W. Glauz

    2004-09-10

    The Los Angeles Department of Water and Power (LADWP) has developed one of the most recognized fuel cell demonstration programs in the United States. In addition to their high efficiencies and superior environmental performance, fuel cells and other generating technologies that can be located at or near the load, offers several electric utility benefits. Fuel cells can help further reduce costs by reducing peak electricity demand, thereby deferring or avoiding expenses for additional electric utility infrastructure. By locating generators near the load, higher reliability of service is possible and the losses that occur during delivery of electricity from remote generators are avoided. The potential to use renewable and locally available fuels, such as landfill or sewage treatment waste gases, provides another attractive outlook. In Los Angeles, there are also many oil producing areas where the gas by-product can be utilized. In June 2000, the LADWP contracted with FCE to install and commission the precommercial 250kW MCFC power plant. The plant was delivered, installed, and began power production at the JFB in August 2001. The plant underwent manufacturer's field trials up for 18 months and was replace with a commercial plant in January 2003. In January 2001, the LADWP contracted with FCE to provide two additional 250kW MCFC power plants. These commercial plants began operations during mid-2003. The locations of these plants are at the Terminal Island Sewage Treatment Plant at the Los Angeles Harbor (for eventual operation on digester gas) and at the LADWP Main Street Service Center east of downtown Los Angeles. All three carbonate fuel cell plants received partial funding through the Department of Defense's Climate Change Fuel Cell Buydown Program. This report covers the technical evaluation and benefit-cost evaluation of the Main Street 250kW MCFC power plant during its first year of operation from September 2003 to August 2004. The data for the month of

  6. Development of molten carbonate fuel cell power plant technology. Quarterly technical progress report No. 9, October 1, 1981-December 31, 1981

    SciTech Connect

    Not Available

    1981-01-01

    The overall objective of this 29-month program is to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of a 1990's-competitive coal-fired electrical utility central station or industrial cogeneration power plants. During this quarter, activity continued in three of the four task areas: Task 2-cell and stack design, development and verification; Task 3 - preparation for fabrication and testing of the full-scale prototype stack; and Task 4 - development of the capability to operate stacks on coal-derived gas. Progress is reported. (WHK)

  7. Development of molten carbonate fuel cell power plant technology. Quarterly technical progress report No. 5, October 1, 1980-December 31, 1980

    SciTech Connect

    Not Available

    1980-01-01

    The overall objective of this program is to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of a 1990's-competitive coal-fired electrical utility central station or industrial cogeneratin power plants. During this quarter, activity continued in all four task areas: Task 1 - system studies to define the reference power plant design; Task 2 - cell and stack design, development and verification; Task 3 - preparation for fabrication and testing of the full-scale prototype stack; and Task 4 - development of the capability to operate stacks on coal-derived gas.

  8. Study of multistage oxidation by flowsheet calculations on a combined heat and power molten carbonate fuel cell plant

    NASA Astrophysics Data System (ADS)

    Au, S. F.; Woudstra, N.; Hemmes, K.

    The multistage oxidation configuration consists of a set of serially connected fuel cell stacks. By connecting the stacks serially, more homogenous current distribution over the cell surface can be achieved resulting in lower irreversible losses. This article presents a detailed assessment of multistage oxidation by flowsheet calculations in which the influence of operating temperature and gas composition on the fuel cell performance is incorporated. A 250 kW molten carbonate fuel cell (MCFC) combined heat and power (CHP) plant is used as reference and the fuel cell stack unit is substituted by two serially connected units ( N=2). Two multistage configurations are examined: (A) both anode and cathode flows are serially connected; (B) only the anode flow is serially connected while the cathode flow is parallel connected. For all systems, the total cell active area, cell current density, overall fuel utilization and gas temperature at the inlet and outlet of the fuel cell array are kept constant. Fuel cell performance at the operating conditions is calculated using a numerical model of the flowsheeting program. Influences of operating temperature and gas composition on the cell performance are incorporated using empirical relations that describe irreversible losses of the cell as function of these parameters. System performances are compared in order to assess the benefits of the multistage oxidation configurations. Differences in performance between the two multistage oxidation configurations are studied by analyzing the difference in exergy loss of stacks, stack power output, cooling requirement and cathode gas massflow and composition. Detailed flowsheet calculations show that the improvement in efficiency is about 0.6% for configuration A, and 0.8% for configuration B. Improvements are obtained by the enhanced fuel cell power output while the expander power output is slightly reduced. Heat output is slightly reduced due to the improved fuel cell conversion

  9. Examining of the segmented electrode use from the viewpoint of the electrolyte volatilizing in molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Sugiura, Kimihiko; Yamauchi, Makoto; Soga, Masatsugu; Tanimoto, Kazumi

    Molten carbonate fuel cells (MCFCs) have entered the pre-commercialization phase, and have been experimentally demonstrated in real world applications, including beer brewery, etc. However, though MCFCs have a high potential and an enough operating experience as an energy supply system, they are not explosively widespread. One of these reasons is cost of cell components. Because the thickness of both electrodes is 0.8 mm and both electrodes are made of porous plates of 1 m 2 of the electrode area, they are often broken by a thermal stress in the sintering process of an electrode and by a worker's carelessness at the cell assembly process. Generally, because these cracking electrodes can potentially cause electrolyte leakage and gas crossover, they are not used to a MCFC stack and are disposed of. Therefore, it made the cost of MCFC be raised. The performance of a cell that uses a mosaic electrode has been evaluated. However, the causal relation between the cracking of an electrode and an electrolyte-leakage has not been yet confirmed. If this causal relationship is elucidated, a cracking electrode or a mosaic electrode can be used to MCFC, such that the cost of MCFC systems would consequently decrease. Therefore, we studied the causal relation between the cracking of an electrode and electrolyte leakage and gas crossover using a visualization technique. In the case of an anode electrode where the centre section of a cell has crack of about 1 mm, the electrolyte leakage from this crack could not be observed by the visualization technique. Moreover, the gas crossover could not be also observed by the visualization technique, and nitrogen in the anode exhaust gas was not detected by a gas chromatography. However, the electrolyte leakage observed from the wet-seal section though the gap between the separator and the electrode was always 1 mm or less. Therefore, electrolyte leakage hardly occurs, even if a cracked anode electrode is installed into the centre section of

  10. Spectroscopic and electrochemical studies of selected lanthanides and actinides in concentrated aqueous carbonate and carbonate-hydroxide solutions and in molten dimethyl sulfone

    SciTech Connect

    Varlashkin, P.G.

    1985-03-01

    Electrochemical and spectroscopic studies of neptunium, plutonium, americium, californium, and terbium in concentrated aqueous carbonate and carbonate-hydroxide solutions have been carried out. Changes in the absorption spectra of Np(VII), Np(V), Pu(VI), Pu(V), Am(VI), and Am(V) in concentrated Na/sub 2/CO/sub 3/ solution and in the formal potentials of the Np(VI)/Np(V) and Pu(VI)/Pu(V) couples as a function of pH were observed. Heptavalent neptunium in concentrated Na/sub 2/CO/sub 3/ solution could only be producted at pH values close to or greater than 14. Plutonium(VII) in 2 M Na/sub 2/CO/sub 3/ solution could only be produced at hydroxide ion concentrations in excess of about 2.5 M. The complexation of Np(VII) and Pu(VII) in Na/sub 2/CO/sub 3/-NaOH solution seems to be mainly by hydroxide ions. Neptunium(IV) and plutonium(IV) are insoluble in Na/sub 2/CO/sub 3/ solution above ca. pH 11-12. Neptunium(III) in carbonate solution is rapidly oxidized by water to Np(IV). Plutonium(III) is insoluble in Na/sub 2/CO/sub 3/ solution. In K/sub 2/CO/sub 3/ solution Pu(III) is stable to oxidation by water but is very sensitive to air oxidation. The redox properties of Cf(III) in Na/sub 2/CO/sub 3/ and K/sub 2/CO/sub 3/ solutions at pH values from 8 to 14 were investigated. The oxidation of terbium(III) in K/sub 2/CO/sub 3/-KOH solution was studied. Spectroscopic and electrochemical studies of cerium, samarium, europium, ytterbium, uranium, neptunium, plutonium, and americium in molten dimethyl sulfone (DMSO/sub 2/) at 400 K were performed. Differences in the DMSO/sub 2/ solution absorption spectra of trivalent Sm, Eu, and Yb and divalent Eu compared with those in aqueous solution were observed. Complexation effects on the spectra of Ce(III), Ce(IV), U(VI), Np(VI), Pu(VI), and Am(VI) are more noticeable in poorly coordinating DMSO/sub 2/ than they are in water. 123 references, 54 figures, 11 tables.

  11. Hot-gas cleanup for molten carbonate fuel cells-dechlorination and soot formation. Final report, May 19, 1981-July 19, 1983

    SciTech Connect

    Ham, D.; Gelb, A.; Lord, G.; Simons, G.

    1984-01-01

    Two separate aspects of hot-gas conditioning for molten carbonate fuel cells (MCFC) were investigated under this contract: potential high temperature chloride sorbent materials were sreened and tested and carbon deposition on MCFC components was studied experimentally to determine guidelines for maximizing MCFC efficiency while avoiding carbon fouling. Natural minerals containing sodium carbonate were identified as the most promising candidates for economical removal of chlorides from coal gasifier effluents at temperatures of about 800 K (980/sup 0/F). The mineral Shortite was tested in a fixed bed and found to perform remarkably well with no calcination. Using Shortite we were able to achieve the program goal of less than 1 ppmV chlorides at 800 K. Shortite is an abundant mineral with no competing commercial demand, so it should provide an economical chloride cleanup sorbent. Measurements showed that carbon deposition can occur in the equilibrium carbon freee region because of the relative rates of the relevant reactions. On all surfaces tested, the Boudouard carbon formation reaction is much faster than the water-gas shift reaction which is much faster than the methanation reaction. This means that the normal practice of adding steam to prevent carbon formation will only succeed if flows are slow enough for the water shift reaction to go substantially to completion. More direct suppression of carbon formation can be achieved by CO/sub 2/ addition through anode recycle to force the Boudouard reaction backward. Addition of steam or CO/sub 2/ must be minimized to attain the highest possible MCFC efficiency. 28 references, 31 figures, 22 tables.

  12. Isotope composition of carbon in amino acids of solid bitumens

    NASA Astrophysics Data System (ADS)

    Shanina, S. N.; Bushnev, D. A.

    2014-06-01

    Primary data are presented on the isotope composition of carbon in individual amino acids from solid bitumens and several biological objects. The amino acids of biological objects are characterized by wide variations of the isotope composition of carbon. This fact occurs owing to the difference in biochemical paths of metabolism resulting in the synthesis of individual amino acids. The δ13C values are somewhat decreased for individual amino acids in asphaltenes, varying from -7.7 to -31.7‰. The carbon of amino acids is weighted in kerits from Bad'el' compared to asphaltenes. All the natural bitumens retain the characteristic trend for natural substances: the isotopically heavy and light amino acids by carbon are glycine and leucine, respectively. The isotope composition of amino-acid carbon is lightened compared to natural bitumens in the samples formed under a pronounced thermal impact (asphalt-like crust and kirishite).

  13. Solubilities of NiO and LaNiO 3 in Li/Na eutectic carbonate with rare-earth oxide

    NASA Astrophysics Data System (ADS)

    Matsuzawa, Koichi; Akinaga, Yoji; Mitsushima, Shigenori; Ota, Ken-ichiro

    For the commercial application of molten carbonate fuel cells (MCFCs) under high-pressure operation, the problem of Ni shorting should be solved that is closely related to the solubility of cathode material. In order to improve the MCFC cathode stability, effects of the addition of rare-earth metal oxides to the molten carbonates have been quantitatively investigated. Especially, La 2O 3 addition to the molten carbonate significantly decreased the solubility of NiO. Such low solubility of NiO was caused by effects of both the acid-base equilibrium of molten carbonate and the activity of Ni in solid by the formation of complex oxide. Solubilities of LaNiO 3 and Nd 2NiO 4 were also smaller than that of NiO in molten carbonate as the same reason as that of NiO in the molten carbonates with saturated La 2O 3. Based on the data of solubility, a new parameter was proposed to evaluate the solubility of metal ion in molten carbonates. This parameter concerned with the acid-base equilibrium of melts and the activity of solid for the metal oxide. A linear relationship with the measured solubility of metal oxide in molten carbonates was obtained by this parameter. It would be indicated that the parameter is useful for the prediction of metal oxide solubilities in molten carbonates.

  14. The Perils of Carbonic Acid and Equilibrium Constants.

    ERIC Educational Resources Information Center

    Jencks, William P.; Altura, Rachel A.

    1988-01-01

    Discusses the effects caused by small amounts of carbon dioxide usually present in water and acid-base equilibria of dilute solutions. Notes that dilute solutions of most weak acids and bases undergo significant dissociation or protonation. (MVL)

  15. Feasibility study of wood biomass gasification/molten carbonate fuel cell power system—comparative characterization of fuel cell and gas turbine systems

    NASA Astrophysics Data System (ADS)

    Morita, H.; Yoshiba, F.; Woudstra, N.; Hemmes, K.; Spliethoff, H.

    The conversion of biomass by means of gasification into a fuel suitable for a high-temperature fuel cell has recently received more attention as a potential substitute for fossil fuels in electric power production. However, combining biomass gasification with a high-temperature fuel cell raises many questions with regard to efficiency, feasibility and process requirements. In this study, a biomass gasification/molten carbonate fuel cell (MCFC) system is modelled and compared with a relatively well-established biomass gasification/gas turbine (GT), in order to understand the peculiarities of biomass gasification/MCFC power systems and to develop a reference MCFC system as a future biomass gasification/MCFC power station.

  16. The kinetics of the O2/CO2 reaction in molten carbonate - Reaction orders for O2 and CO2 on NiO. [in fuel cells

    NASA Technical Reports Server (NTRS)

    Winnick, J.; Ross, P. N.

    1980-01-01

    The kinetics of the O2/CO2 reaction in molten carbonate is investigated using paste electrolytes and nickel sinter electrodes. A two-step approach to the determination of reaction orders is employed. First, exchange currents at various P(CO2) and P(O2) were measured using the low polarization method. Second, alpha(+) and alpha(-) values were obtained from the slope of the Allen-Hickling plot for current densities low enough so that concentration polarization within the electrode can be neglected. The reaction orders are + 1/4 in CO2 and + 5/8 in O2 in the cathodic direction, and - 3/4 in CO2 and + 1/8 in O2 in the anodic direction.

  17. Engineering analyses for evaluation of gasification and gas-cleanup processes for use in molten-carbonate fuel-cell power plants. Task C

    SciTech Connect

    Hamm, J.R.; Vidt, E.J.

    1982-02-01

    This report satisfies the Task C requirement for DOE contract DE-AC21-81MC16220 to provide engineering analyses of power systems utilizing coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants. The process information and data necessary for this study were extracted from sources in the public domain, including reports from DOE, EPRI, and EPA; work sponsored in whole or in part by Federal agencies; and from trade journals, MCFC developers, and manufacturers. The computer model used by Westinghouse, designated AHEAD, is proprietary and so is not provided in this report. The engineering analyses provide relative power system efficiency data for ten gasifier/gas cleanup fuel supply systems, including air- and oxygen-blown gasification, hot and cold desulfurization, and a range of MCFC operating pressure from 345 kPaa (50 psia) to 2069 kPaa (300 psia).

  18. Development of molten carbonate fuel cell power plant technology. Quarterly technical progress report No. 1, October 1, 1979-December 31, 1979

    SciTech Connect

    Healy, H. C.; Sanderson, R. A.; Wertheim, R. J.; Farris, P. F.; Mientek, A. P.; Nickols, R. C.; Katz, M.; Iczkowski, R. P.; Fredley, R. R.; Stewart, R. C.; Kunz, H. R.; Gruver, G. A.; Bregoli, L. J.; Smith, S. W.; Steuernagel, W. H.; Szymanski, S. T.

    1980-03-01

    The overall objective of this 29-month program is to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of 1990's competitive coal-fired electrical utility central station or industrial cogeneration power plants. During the first quarter, effort was initiated in all four major task areas: Task 1 - system studies to define the reference power plant design; Task 2 - cell and stack design, development and verification; Task 3 - preparation for fabrication and testing of the full-scale prototype stack; and Task-4 developing the capability for operation of stacks on coal-derived gas. In the system study task, a study baseline fuel cell system and module configuration were established. Studies to determine user requirements and to characterize the fuel cell power block and coal gasifier subsystems were initiated. Cell stack design was initiated with completion of preliminary design requirements for the cell cathodes. Laboratory tests were also initiated to identify alternative materials for separator plates, reactant manifold seals, and electrolyte tile fillers. A mechanical tape casting technique for producing 18 x 24 inch sheets of electrolyte matrix tape was successfully demonstrated in Task 3. In Task 4, theoretical and experimental studies were initiated to define the effects of known sulfur contaminants on cell performance. A literature survey was initiated to identify other possible contaminants. Planning and design efforts for construction of a mobile cell test unit were initiated. The mobile unit will be used to verify the molten carbonate cell's ability to operate on gasified coal by tests at a gasifier site.

  19. Optimization of the electrolyte composition in a (Li 0.52Na 0.48) 2-2 xAE xCO 3 (AE = Ca and Ba) molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Tanimoto, K.; Kojima, T.; Yanagida, M.; Nomura, K.; Miyazaki, Y.

    We report that the addition of the alkaline-earth carbonates CaCO 3, SrCO 3 and BaCO 3, to an alkali carbonate mixture effectively reduced the solubility of nickel oxide in a molten carbonate. In addition, we discuss the molten carbonate fuel cell (MCFC) performance with a ternary system of (Li 0.52Na 0.48) 2-2 xAE xCO 3 (AE = Ca, Sr and Ba). Although the solubility of nickel oxide in the molten carbonate was reduced with an increase in the amount of additives, large amount of additives bring a low cell performance. We have made progress in the optimization of the carbonate composition through investigations as to durability by small-sized cell testing under a pressurized condition. The addition of SrCO 3 was deemed inadequate by the failure of cell voltage within a 1000-h operating period. From the single cell operation results of periods up to 5000 h, we concluded that the addition of 9 mol% CaCO 3 and 9 mol% BaCO 3 to 52 mol% Li 2CO 3-Na 2CO 3 preserved the cell performance. This electrolyte composition is expected to yield an efficiently performing and durable MCFC.

  20. System calculation of integrated coal gasification/molten carbonate fuel cell combined cycle. Reflection of electricity generating performances of practical cell

    NASA Astrophysics Data System (ADS)

    Yoshiba, Fumihiko; Izaki, Yoshiyuki; Watanabe, Takao

    Materials and heat balance of integrated coal gasification/molten carbonate fuel cell (IG/MCFC) combined system are calculated considering the electricity generating performance of the practical cell. The considered gas conditions that are required to stabilise the electricity generation of MCFCs are the non-carbon deposition condition, the lower limit of H 2 concentration at the anode outlet of 1 mol% and the upper limit of CO 2 partial pressure on the cathode inlet gas of 0.1 MPa. The anode gas recycling system and the anode heat exchange system have been studied supposing a not-equilibrium state of water-gas shift reaction in anode gas channel. From the investigation on carbon deposition at the anode inlet gas, the anode gas recycling system requires approximately 80% re-circulation of the anode outlet gas, whereas the anode heat exchange system needs 60% humidity of the fuel gas. The fuel utilisation in the anode gas recycling system should be set lower than in the anode heat exchange system. The net thermal efficiency of the anode gas recycling system has a peak for CO 2 partial pressure where the net thermal efficiency of the anode heat exchange system increases as the CO 2 partial pressure of the cathode gas decreases.

  1. A comparative study of NiO(Li), LiFeO[sub 2], and LiCoO[sub 2] porous cathodes for molten carbonate fuel cells

    SciTech Connect

    Makkus, R.C. ); Hemmes, K.; Wit, J.H.W. de . Lab. for Materials Science)

    1994-12-01

    Porous cathodes of NiO(Li), Co-doped LiFeO[sub 2], and LiCoO[sub 2] for the molten carbonate fuel cell (MCFC) were examined in a comparative study using electrochemical impedance spectroscopy at temperature of 923, 973, and 1023 K. Using this technique the contributions of charge transfer and diffusion to the impedance could be separated. The impedance results as a function of gas composition were compared with theoretical predictions using the thin-film model leading to the conclusion that the most predominant diffusing species in porous MCFC electrodes are molecular oxygen and carbon dioxide. The reaction mechanism is probably the same for all three cathodes involving either the reduction of peroxy-carbonate or the reduction of dissociated oxygen. The remaining difference in gas dependencies can then be explained by assuming a low coverage of oxide ions on LiFeO[sub 2] while NiO(Li) and LiCoO[sub 2] have intermediate coverage by oxide ions. From the temperature dependence of the impedance an estimate may be given of the activation energies of the polarization processes.

  2. The effects of halides on the performance of coal gas-fueled molten carbonate fuel cells: Final report, October 1986-October 1987

    SciTech Connect

    Magee, T.P.; Kunz, H.R.; Krasij, M.; Cote, H.A.

    1987-10-01

    This report presents the results of a program to determine the probable tolerable limits of hydrogen chloride and hydrogen fluoride present in the fuel and oxidant streams of molten carbonate fuel cells that are operating on gasified coal. A literature survey and thermodynamic analyses were performed to determine the likely effects of halides on cell performance and materials. Based on the results of these studies, accelerated corrosion experiments and electrode half-cell performance tests were conducted using electrolyte which contained chloride and fluoride. These data and the results of previous in-cell tests were used to develop a computer for predicting the performance decay due to these halides. The tolerable limits were found to be low (less than 1 PPM) and depend on the power plant system configuration, the operating conditions of the fuel cell stack, the cell design and initial electrolyte inventory, and the ability of the cell to scrub low levels of halide from the reactant streams. The primary decay modes were conversion of the electrolyte from pure carbonate to a carbonate-halide mixture and accelerated electrolyte evaporation. 75 figs., 16 tabs.

  3. Carbon-based strong solid acid for cornstarch hydrolysis

    SciTech Connect

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-15

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.

  4. Molten salt electrolyte separator

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

  5. Reduction of Plutonium in Acidic Solutions by Mesoporous Carbons

    SciTech Connect

    Parsons-Moss, Tashi; Jones, Stephen; Wang, Jinxiu; Wu, Zhangxiong; Uribe, Eva; Zhao, Dongyuan; Nitsche, Heino

    2015-12-19

    Batch contact experiments with several porous carbon materials showed that carbon solids spontaneously reduce the oxidation state of plutonium in 1-1.5 M acid solutions, without significant adsorption. The final oxidation state and rate of Pu reduction varies with the solution matrix, and also depends on the surface chemistry and surface area of the carbon. It was demonstrated that acidic Pu(VI) solutions can be reduced to Pu(III) by passing through a column of porous carbon particles, offering an easy alternative to electrolysis with a potentiostat.

  6. Electrolytic Generation of Nano-Scale Carbon Phases with Framework Structures in Molten Salts on Metal Cathodes

    NASA Astrophysics Data System (ADS)

    Novoselova, Inessa A.; Oliinyk, Nikolai F.; Voronina, Anastasiya B.; Volkov, Sergei V.

    2008-08-01

    An electrochemical study of mechanisms of electrodeposition of carbon solid phases from halide melts (Na,K|Cl; Na,K,Cs|Cl), saturated with carbon dioxide under an excessive pressure of up to 1.5 MPa, has been carried out in the temperature range 550 - 850 °C by cyclic voltammetry. It has been found that the cathode process occurs in three steps at sweep rates of less than 0.1 Vs-1, and its electrochemical-chemical-electrochemical (ECE) mechanism is suggested. It has furthermore been found that cathodic deposits contain nano-sized carbon particles of different forms and structure: blocks of amorphous carbon, crystalline graphite, carbon nanotubes (CNT), and nanofibres. The outer diameter of the tubes is 5 - 250 nm, and the internal diameter is 2 - 140 nm. A correlation between the product structure and yield against electrolysis conditions and regimes has been established.

  7. Observation of Oxide Formation for Molten Fe-Cr-C Alloy at a High Carbon Region by Oxygen Top Blowing

    NASA Astrophysics Data System (ADS)

    Mihara, Ryosuke; Gao, Xu; Kaneko, Shigeru; Kim, Sunjoong; Ueda, Shigeru; Shibata, Hiroyuki; Seok, Min Oh; Kitamura, Shin-ya

    2016-04-01

    The oxide formation behavior during decarburization by top blowing for molten Fe-Cr-C alloy was directly observed. For 11 mass pct Cr alloy at 1673 K to 1723 K (1400 °C to 1450 °C), as well as for 14 mass pct Cr alloy at 1623 K to 1673 K (1350 °C to 1400 °C), oxide particles always formed within several minutes after decarburization started. Also, unstable oxide film followed by stable oxide film formed after C content was decreased to certain levels. For 11 mass pct Cr alloy at 1773 K (1500 °C) and 14 mass pct Cr alloy at 1723 K (1450 °C), only the oxide particle and stable oxide film were observed. For 18 mass pct Cr-5 mass pct C alloy at 1723 K (1450 °C), stable oxide film formed twice. By comparing the critical C and Cr contents of alloy when oxides started to form with the equilibrium relation, the formation of the oxide particle and unstable oxide film was found to be under a nonequilibrium condition, whereas the stable oxide film that formed was near an equilibrium condition. For 11 and 14 mass pct Cr alloy, the decarburization rate stayed constant and was not affected by the formation of the oxide particle or unstable oxide film, but it started to decrease after the formation of the stable oxide film.

  8. Independent of Their Localization in Protein the Hydrophobic Amino Acid Residues Have No Effect on the Molten Globule State of Apomyoglobin and the Disulfide Bond on the Surface of Apomyoglobin Stabilizes This Intermediate State

    PubMed Central

    Melnik, Tatiana N.; Majorina, Maria A.; Larina, Daria S.; Kashparov, Ivan A.; Samatova, Ekaterina N.; Glukhov, Anatoly S.; Melnik, Bogdan S.

    2014-01-01

    At present it is unclear which interactions in proteins reveal the presence of intermediate states, their stability and formation rate. In this study, we have investigated the effect of substitutions of hydrophobic amino acid residues in the hydrophobic core of protein and on its surface on a molten globule type intermediate state of apomyoglobin. It has been found that independent of their localization in protein, substitutions of hydrophobic amino acid residues do not affect the stability of the molten globule state of apomyoglobin. It has been shown also that introduction of a disulfide bond on the protein surface can stabilize the molten globule state. However in the case of apomyoglobin, stabilization of the intermediate state leads to relative destabilization of the native state of apomyoglobin. The result obtained allows us not only to conclude which mutations can have an effect on the intermediate state of the molten globule type, but also explains why the introduction of a disulfide bond (which seems to “strengthen” the protein) can result in destabilization of the protein native state of apomyoglobin. PMID:24892675

  9. Independent of their localization in protein the hydrophobic amino acid residues have no effect on the molten globule state of apomyoglobin and the disulfide bond on the surface of apomyoglobin stabilizes this intermediate state.

    PubMed

    Melnik, Tatiana N; Majorina, Maria A; Larina, Daria S; Kashparov, Ivan A; Samatova, Ekaterina N; Glukhov, Anatoly S; Melnik, Bogdan S

    2014-01-01

    At present it is unclear which interactions in proteins reveal the presence of intermediate states, their stability and formation rate. In this study, we have investigated the effect of substitutions of hydrophobic amino acid residues in the hydrophobic core of protein and on its surface on a molten globule type intermediate state of apomyoglobin. It has been found that independent of their localization in protein, substitutions of hydrophobic amino acid residues do not affect the stability of the molten globule state of apomyoglobin. It has been shown also that introduction of a disulfide bond on the protein surface can stabilize the molten globule state. However in the case of apomyoglobin, stabilization of the intermediate state leads to relative destabilization of the native state of apomyoglobin. The result obtained allows us not only to conclude which mutations can have an effect on the intermediate state of the molten globule type, but also explains why the introduction of a disulfide bond (which seems to "strengthen" the protein) can result in destabilization of the protein native state of apomyoglobin. PMID:24892675

  10. Molten salt technology

    SciTech Connect

    Lovering, D.G.

    1982-01-01

    In this volume, the historical background, scope, problems, economics, and future applications of molten salt technologies are discussed. Topics presented include molten salts in primary production of aluminum, general principles and handling and safety of the alkali metals, first-row transition metals, group VIII metals and B-group elements, solution electrochemistry, transport phenomena, corrosion in different molten salts, cells with molten salt electrolytes and reactants, fuel cell design, hydrocracking and liquefaction, heat storage in phase change materials, and nuclear technologies.

  11. Molten globule of bovine alpha-lactalbumin at neutral pH induced by heat, trifluoroethanol, and oleic acid: a comparative analysis by circular dichroism spectroscopy and limited proteolysis.

    PubMed

    Polverino de Laureto, Patrizia; Frare, Erica; Gottardo, Rossella; Fontana, Angelo

    2002-11-15

    The calcium-depleted form of alpha-lactalbumin (alpha-LA) at neutral pH can be induced to adopt a partly folded state or molten globule upon moderate heating, by dissolving the protein in aqueous TFE or by adding oleic acid. This last folding variant of the protein, named HAMLET, can induce apoptosis in tumor cells. The aim of the present work was to unravel from circular dichroism (CD) measurements and proteolysis experiments structural features of the molten globule of apo-alpha-LA at neutral pH. CD spectra revealed that the molten globule of apo-alpha-LA can be obtained upon mild heating at 45 degrees C, as well as at room temperature in the presence of 15% TFE or by adding to the protein solution 7.5 equivalents of oleic acid. Under these various conditions the far- and near-UV CD spectra of apo-alpha-LA are essentially identical to those of the most studied molten globule of alpha-LA at pH 2.0 (A-state). Proteolysis of the 123-residue chain of apo-alpha-LA by proteinase K at 4 degrees C occurs slowly as an all-or-none process leading to small peptides only. At 37 degrees C, proteinase K preferentially cleaves apo-alpha-LA at peptide bonds Ser34-Gly35, Gln39-Ala40, Gln43-Asn44, Phe53-Gln54, and Asn56-Asn57. All these peptide bonds are located at level of the beta-subdomain of the protein (chain region 34-57). Similar sites of preferential cleavage have been observed with the TFE- and oleic acid-induced molten globule of apo-alpha-LA. A protein species given by the N-terminal fragment 1-34 linked via the four disulfide bridges to the C-terminal fragment 54-123 or 57-123 can be isolated from the proteolytic mixture. The results of this study indicate that the same molten globule state of apo-alpha-LA can be obtained at neutral pH under mildly denaturing conditions, as indicated by using a classical spectroscopic technique such as CD and a simple biochemical approach as limited proteolysis. We conclude that the molten globule of alpha-LA maintains a native

  12. Carbon-based strong solid acid for cornstarch hydrolysis

    NASA Astrophysics Data System (ADS)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-01

    Highly sulfonated carbonaceous spheres with diameter of 100-500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO3H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO3H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst.

  13. The effects of oxygen, carbon dioxide and water vapor on reprocessing silicon carbide inert matrix fuels by corrosion in molten potassium carbonate

    NASA Astrophysics Data System (ADS)

    Cheng, Ting; Baney, Ronald H.; Tulenko, James

    2011-04-01

    The molten salt reaction/dissolution method for reprocessing silicon carbide based inert matrix fuels (IMF) is further developed in this paper through comparison of the corrosion rate in multiple gases and gas mixtures. Water vapor was firstly introduced in the SiC/K 2CO 3 corrosion system. The SiC corrosion rate in the H 2O atmosphere was dramatically enhanced 3-4-fold compared to the rate under an O 2 atmosphere. The corrosion rates in different atmospheres of O 2, CO 2, O 2/CO 2, H 2O, O 2/H 2O and CO 2/H 2O with various partial pressures were compared in order to determine the optimal reaction atmosphere and to better understand the reaction mechanism. The SiC pellets with 5 wt.% of CeO 2, a surrogate for PuO 2 were fabricated. CeO 2 was successfully separated from the SiC matrix by using the molten salt reaction/dissolution strategy.

  14. Phosphorylated Mesoporous Carbon as a Solid Acid Catalyst

    SciTech Connect

    Dai, Sheng; Mayes, Richard T; Fulvio, Pasquale F; Ma, Zhen

    2011-01-01

    Mesoporous carbon catalyst supports are attractive due to their wide chemical stability while potentially increasing masstransport through and providing a path for larger molecules to access catalytic sites. Herein we report the synthesis of a 10 phosphorylated mesoporous carbon solid-acid catalyst characterized by NH3-TPD and isopropanol dehydration.

  15. Electrolysis of a molten semiconductor.

    PubMed

    Yin, Huayi; Chung, Brice; Sadoway, Donald R

    2016-01-01

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides. PMID:27553525

  16. Electrolysis of a molten semiconductor

    PubMed Central

    Yin, Huayi; Chung, Brice; Sadoway, Donald R.

    2016-01-01

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides. PMID:27553525

  17. The Strongest Acid: Protonation of Carbon Dioxide.

    PubMed

    Cummings, Steven; Hratchian, Hrant P; Reed, Christopher A

    2016-01-22

    The strongest carborane acid, H(CHB11F11), protonates CO2 while traditional mixed Lewis/Brønsted superacids do not. The product is deduced from IR spectroscopy and calculation to be the proton disolvate, H(CO2)2(+). The carborane acid H(CHB11F11) is therefore the strongest known acid. The failure of traditional mixed superacids to protonate weak bases such as CO2 can be traced to a competition between the proton and the Lewis acid for the added base. The high protic acidity promised by large absolute values of the Hammett acidity function (H0) is not realized in practice because the basicity of an added base is suppressed by Lewis acid/base adduct formation. PMID:26663640

  18. Modeling the flow of molten silicon in porous carbon preforms and the subsequent formation of silicon carbide

    SciTech Connect

    Rajesh, G.; Bhagat, R.B.; Nelson, E.

    1995-10-01

    In this investigation, the authors have modeled the formation of silicon carbide during the infiltration of porous carbon preforms, and predicted the amount of SiC formed only due to reaction between Si and C, coupled with diffusion. For a two-dimensional representative volume element (RVE) of a carbon preform with 30% volume fraction of carbon, they have numerically predicted the concentration profiles of Si and SiC, based on coupled reaction and diffusion. Consideration of only reaction and diffusion as a mechanism of formation of SiC in the model is not adequate for an efficient conversion of Si to SiC, leading thereby to the presence of residual Si. Finally, a two-dimensional approach to predict the transient permeability in the preform in relation to the transient change in porosity in an RVE, was discussed.

  19. Determination of the acidic sites of purified single-walled carbon nanotubes by acid base titration

    NASA Astrophysics Data System (ADS)

    Hu, H.; Bhowmik, P.; Zhao, B.; Hamon, M. A.; Itkis, M. E.; Haddon, R. C.

    2001-09-01

    We report the measurement of the acidic sites in three different samples of commercially available full-length purified single-walled carbon nanotubes (SWNTs) - as obtained from CarboLex (CLI), Carbon Solutions (CSI) and Tubes@Rice (TAR) - by simple acid-base titration methods. Titration of the purified SWNTs with NaOH and NaHCO 3 solutions was used to determine the total percentage of acidic sites and carboxylic acid groups, respectively. The total percentage of acidic sites in full length purified SWNTs from TAR, CLI and CSI are about 1-3%.

  20. Molten salts and energy related materials.

    PubMed

    Fray, Derek

    2016-08-15

    Molten salts have been known for centuries and have been used for the extraction of aluminium for over one hundred years and as high temperature fluxes in metal processing. This and other molten salt routes have gradually become more energy efficient and less polluting, but there have been few major breakthroughs. This paper will explore some recent innovations that could lead to substantial reductions in the energy consumed in metal production and in carbon dioxide production. Another way that molten salts can contribute to an energy efficient world is by creating better high temperature fuel cells and novel high temperature batteries, or by acting as the medium that can create novel materials that can find applications in high energy batteries and other energy saving devices, such as capacitors. Carbonate melts can be used to absorb carbon dioxide, which can be converted into C, CO and carbon nanoparticles. Molten salts can also be used to create black silicon that can absorb more sunlight over a wider range of wavelengths. Overall, there are many opportunities to explore for molten salts to play in an efficient, low carbon world. PMID:27276650

  1. Feasibility study of the co-generation system with direct internal reforming-molten carbonate fuel cell (DIR-MCFC) for residential use

    NASA Astrophysics Data System (ADS)

    Sugiura, Kimihiko; Naruse, Ichiro

    The possibility of introducing a co-generation system with a direct internal reforming-molten carbonate fuel cell (DIR-MCFC) for residential use is examined by a feasibility study. First, the structure of a system, which can maintain the cell temperature (650 °C) without the heat supply, is constructed by calculating heat and material balances among the system components. Secondly, a model family, which might use the co-generation system with a DIR-MCFC, is constructed from the results of a questionnaire on room layout, number of family members, and the number of electric appliances and consumption of electric power in Osaka. Thirdly, calculating the electric power and hot-water demand supply balance optimizes the scale of the co-generation system with a DIR-MCFC for residential use. Finally, the running costs of this optimum system using city gas or propane gas are considered. As a result, the optimum scale of a co-generation system a with DIR-MCFC and using city gas is 3 kW, while it is 6 kW for the case using propane gas. The co-generation system using city gas is suitable for a house. On the other hand, the system using propane gas is suitable for an apartment.

  2. Hybrid systems for distributed power generation based on pressurisation and heat recovering of an existing 100 kW molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Grillo, Olivia; Magistri, Loredana; Massardo, Aristide F.

    In this paper, different pressurisation and heat recovering techniques for an existing 100 kW molten carbonate fuel cell developed by Ansaldo fuel cells (formerly Ansaldo Ricerche) such as electrically driven compressors for anode (fuel) and cathode side (air), turbocharger, simple cycle gas turbine and regenerated gas turbine are analysed and discussed. The analysis has been carried out using for the FCS-MCFC stack simulation a model developed by the Thermochemical Power Group of the University of Genoa carefully tested with available experimental design point data. The design point hybrid system configurations have been analysed in detail using the code HS-MCFC based on the cited MCFC stack model and developed using Simulink language [Master Thesis, University of Genoa, 2001]. The different hybrid systems design point performance are presented and discussed in great detail, taking into account efficiency, specific power, costs, feasibility, and the need of modification of the existing FC-MCFC systems. Due to the size of the hybrid systems investigated (100-150 kW) they are very interesting for distributed power generation applications.

  3. Analysis of the design and economics of molten carbonate fuel cell tri-generation systems providing heat and power for commercial buildings and H2 for FC vehicles

    NASA Astrophysics Data System (ADS)

    Li, Xuping; Ogden, Joan; Yang, Christopher

    2013-11-01

    This study models the operation of molten carbonate fuel cell (MCFC) tri-generation systems for “big box” store businesses that combine grocery and retail business, and sometimes gasoline retail. Efficiency accounting methods and parameters for MCFC tri-generation systems have been developed. Interdisciplinary analysis and an engineering/economic model were applied for evaluating the technical, economic, and environmental performance of distributed MCFC tri-generation systems, and for exploring the optimal system design. Model results show that tri-generation is economically competitive with the conventional system, in which the stores purchase grid electricity and NG for heat, and sell gasoline fuel. The results are robust based on sensitivity analysis considering the uncertainty in energy prices and capital cost. Varying system sizes with base case engineering inputs, energy prices, and cost assumptions, it is found that there is a clear tradeoff between the portion of electricity demand covered and the capital cost increase of bigger system size. MCFC Tri-generation technology provides lower emission electricity, heat, and H2 fuel. With NG as feedstock the CO2 emission can be reduced by 10%-43.6%, depending on how the grid electricity is generated. With renewable methane as feedstock CO2 emission can be further reduced to near zero.

  4. A 10kW class molten carbonate fuel cell test: The stack with electrolyte plate prepared with paper-making method

    NASA Astrophysics Data System (ADS)

    Izaki, Y.; Watanabe, T.; Mugikura, Y.; Hayasaka, T.; Shimazu, K.; Hamamatsu, T.; Abe, T.; Ishikawa, H.; Kusunose, N.; Shundo, Y.

    1989-10-01

    In Central Research Institute of Electric Power Industry (CRIEPI) , 10kW class Molten Carbonate Fuel Cell (MCFC) Test Facility has been installed at Yokosuka Laboratory, and operation experiments have been performed. The experimental results are described. An operation experiment of about 250 hours was carried out, using large MCFC stack with the Electrolyte Plate prepared with a Paper Making Method made by Fuji Electric Co. Ltd. The test stack was designed by adopting internal manifold and co-flow type as gas flow structure. It was clarified that high fuel utilization operation is very important, because the energy conversion efficiency depends on fuel utilization ratio. Output power of the stack depends on the partial pressure of oxygen in cathode oxidizing agent gas, but the amount of dependency is not clear. It was recognized that the temperature control for keeping operation without any outside heater is possible, as the amount of producing heat by power generation becomes more than heat loss and gas removal heat at the electric current over 200A (2/3 load).

  5. The Path of Carbon in Photosynthesis II. Amino Acids

    DOE R&D Accomplishments Database

    Stepka, W.; Benson, A. A.; Calvin, M.

    1948-05-25

    The radioactive amino acid's synthesized from C{sup 14}O{sub 2} by green algae both in the light and in the dark after CO{sub 2}-free preillumination have been separated and identified using paper chromatography and radioautography. The radioactive amino acids identified were aspartic acid, alanine and smaller amounts of 3- and 4-carbon amino acids. This finding as well as the total absence of radioactive glutamic acid substantiates the mechanism for reduction of CO{sub 2} previously postulated by members of this laboratory.

  6. Reaction of folic acid with single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ellison, Mark D.; Chorney, Matthew

    2016-10-01

    The oxygen-containing functional groups on oxidized single-walled carbon nanotubes (SWNTs) are used to covalently bond folic acid molecules to the SWNTs. Infrared spectroscopy confirms intact molecular binding to the SWNTs through the formation of an amide bond between a carboxylic acid group on an SWNT and the primary amine group of folic acid. The folic acid-functionalized SWNTs are readily dispersible in water and phosphate-buffered saline, and the dispersions are stable for a period of two weeks or longer. These folic acid-functionalized SWNTs offer potential for use as biocompatible SWNTs.

  7. Field evaluation of gelled acid for carbonate formations

    SciTech Connect

    Church, D.C.; Quisenberry, J.L.; Fox, K.B.

    1981-12-01

    A new gelled acid was evaluated in the west Texas, southeast New Mexico, and Oklahoma areas. The purpose of this evaluation was to determine how successful a gelled acid, prepared from xanthan polymer, would be in several carbonate formations. Several types of acidizing techniques were employed. These treatments vary from one to nine stages, with and without diverting agents. More than 20 treatments are summarized. Production figures for the wells treated are discussed, as well as pertinent related information. 5 refs.

  8. Characterization of carbon black modified by maleic acid

    NASA Astrophysics Data System (ADS)

    Asokan, Vijayshankar; Kosinski, Pawel; Skodvin, Tore; Myrseth, Velaug

    2013-09-01

    We present here a method for modifying the surface of carbon black (CB) using a simple heat treatment in the presence of a carboxylic acid as well as water or ethylene glycol as a solvent. CB was mixed with maleic acid and either water or ethylene glycol, and heated at 250°C. Unlike the traditional surface modification processes which use heat treatment of carbon with mineral acids the present modification method using a carboxylic acid proved to be simple and time efficient. CB from two different vendors was used, and the modified samples were characterized by TGA, BET surface area measurement, XRD, particle size and zeta potential measurements, and FTIR. It was found that several material properties, including thermal stability and surface area, of the modified CB are significantly altered relative to the parental carbon samples. This method provides a rapid and simple route to tailor new materials with desired properties.

  9. Effects of coal-derived trace species on the performance of molten carbonate fuel cells. Topical report on thermochemical studies

    SciTech Connect

    Pigeaud, A.

    1991-10-01

    The overall objective of the present study was to determine in detail the interaction effects of 10 simultaneously present, coal-gas contaminants, both on each other and on components of the Carbonate Fuel Cell. The primary goal was to assess underlying chemistries and reaction mechanisms which may cause decay in fuel cell performance or endurance as a result of both physics-chemical and/or mechanical interactions with the cell components and internal fuel cell parts. It was found, both from theory and cell test evidence, that trace contaminant interactions may occur with: Fuel-cell Electrodes (e.g., in this study with the Ni-anode), Lithium/Potassium Carbonate Electrolyte, Nickel and SS-Hardware, and by Mechanical Obstruction of Gas Flow in the Anode Plenum.

  10. Low temperature oxidation using support molten salt catalysts

    DOEpatents

    Weimer, Alan W.; Czerpak, Peter J.; Hilbert, Patrick M.

    2003-05-20

    Molten salt reactions are performed by supporting the molten salt on a particulate support and forming a fluidized bed of the supported salt particles. The method is particularly suitable for combusting hydrocarbon fuels at reduced temperatures, so that the formation NO.sub.x species is reduced. When certain preferred salts are used, such as alkali metal carbonates, sulfur and halide species can be captured by the molten salt, thereby reducing SO.sub.x and HCl emissions.

  11. Effect of sintering procedures in development of LiCoO 2-cathodes for the molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Lundblad, Anders; Schwartz, Stephan; Bergman, Bill

    LiCoO 2-powder was synthesized from carbonate precursors by calcination in air. Greentapes were tape-cast using a non-aqueous slurry and 10 μm plastic spheres as pore formers. Sintering was carried out in air at 850-950°C and in argon/air at 500/750°C. The two sintering procedures led to very different sub-micron morphologies, with the primary particles being much smaller in the latter case. The electrochemical performance at 650°C, in terms of overpotential at 160 mA/cm 2, for the air- and argon/air-sintered electrodes was 57 and 81 mV, respectively. The potential drop due to contact resistance between electrode and current collector was estimated to be 100 and 70 mV, respectively. The electrode materials were characterized by scanning electron microscopy (SEM), Hg-porosimetry, the BET-method (N 2-adsorption), X-ray diffractometry (XRD), flame atomic absorption spectrometry (F-AAS), carbon analysis and a van der Pauw conductivity measurement set-up.

  12. Corrosion of Mullite by Molten Salts

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Lee, Kang N.; Yoshio, Tetsuo

    1996-01-01

    The interaction of molten salts of different Na2O activities and mullite is examined with furnace and burner tests. The more-acidic molten salts form small amounts of Al2O3; the more-basic molten salts form various Na2O-Al2O3-SiO2 compounds. The results are interpreted using the Na2O-Al203-SiO2 ternary phase diagram, and some possible diffusion paths are discussed. The generally higher melting points of Na2O-Al2O3-SiO2 compounds lead to better behavior of mullite in molten salts, as compared to SiO2-protected ceramics such as SiC. Mullite-coated SiC is discussed, and the corrosion behavior is evaluated.

  13. USE OF FATTY ACID STABLE CARBON ISOTOPE RATIO TO INDICATE MICROBIAL CARBON SOURCE IN TROPICAL SOILS

    EPA Science Inventory


    We use measurements of the concentration and stable carbon isotope ratio of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels, broad microbial community structure, and microbial carbon source. For studies of soil o...

  14. Hydrogen Storage in the Carbon Dioxide - Formic Acid Cycle.

    PubMed

    Fink, Cornel; Montandon-Clerc, Mickael; Laurenczy, Gabor

    2015-01-01

    This year Mankind will release about 39 Gt carbon dioxide into the earth's atmosphere, where it acts as a greenhouse gas. The chemical transformation of carbon dioxide into useful products becomes increasingly important, as the CO(2) concentration in the atmosphere has reached 400 ppm. One approach to contribute to the decrease of this hazardous emission is to recycle CO(2), for example reducing it to formic acid. The hydrogenation of CO(2) can be achieved with a series of catalysts under basic and acidic conditions, in wide variety of solvents. To realize a hydrogen-based charge-discharge device ('hydrogen battery'), one also needs efficient catalysts for the reverse reaction, the dehydrogenation of formic acid. Despite of the fact that the overwhelming majority of these reactions are carried out using precious metals-based catalysts (mainly Ru), we review here developments for catalytic hydrogen evolution from formic acid with iron-based complexes. PMID:26842324

  15. Surface growth for molten silicon infiltration into carbon millimeter-sized channels: Lattice-Boltzmann simulations, experiments and models

    NASA Astrophysics Data System (ADS)

    Sergi, Danilo; Camarano, Antonio; Molina, José Miguel; Ortona, Alberto; Narciso, Javier

    2016-01-01

    The process of liquid silicon (Si) infiltration is investigated for channels with radii from 0.25[mm] to 0.75[mm] drilled in compact carbon (C) preforms. The advantage of this setup is that the study of the phenomenon results can be simplified. For comparison purposes, attempts are made in order to work out a framework for evaluating the accuracy of simulations. The approach relies on dimensionless numbers involving the properties of the surface reaction. It turns out that complex hydrodynamic behavior derived from second Newton law can be made consistent with Lattice-Boltzmann (LB) simulations. The experiments give clear evidence that the growth of silicon carbide (SiC) proceeds in two different stages and basic mechanisms are highlighted. LB simulations prove to be an effective tool for the description of the growing phase. Namely, essential experimental constraints can be implemented. As a result, the existing models are useful to gain more insight on the process of reactive infiltration into porous media in the first stage of penetration, i.e. up to pore closure because of surface growth. A way allowing one to implement the resistance from chemical reaction in Darcy law is also proposed.

  16. A mechanistic model of wormhole growth in carbonate matrix acidizing and acid fracturing

    SciTech Connect

    Hung, K.M.; Hill, A.D.; Sepehrnoorl, K.

    1989-01-01

    A mathematical model that describes the growth and competition of wormholes during ann acidizing treatment in a carbonate formation was developed. The model is initialized with the distribution of largest pores. Wormhole characteristics (size, length, and distribution) were found too be controlled by acid-injection, diffusion, and fluid-loss rates.

  17. Fluorescent carbon dots capped with PEG200 and mercaptosuccinic acid.

    PubMed

    Gonçalves, Helena; Esteves da Silva, Joaquim C G

    2010-09-01

    The synthesis and functionalization of carbon nanoparticles with PEG(200) and mercaptosuccinic acid, rendering fluorescent carbon dots, is described. Fluorescent carbon dots (maximum excitation and emission at 320 and 430 nm, respectively) with average dimension 267 nm were obtained. The lifetime decay of the functionalized carbon dots is complex and a three component decay time model originated a good fit with the following lifetimes: τ(1) = 2.71 ns; τ(2) = 7.36 ns; τ(3) = 0.38 ns. The fluorescence intensity of the carbon dots is affected by the solvent, pH (apparent pK(a) of 7.4 ± 0.2) and iodide (Stern-Volmer constant of 78 ± 2 M(-1)). PMID:20352303

  18. Electrodeposition of molten silicon

    DOEpatents

    De Mattei, Robert C.; Elwell, Dennis; Feigelson, Robert S.

    1981-01-01

    Silicon dioxide is dissolved in a molten electrolytic bath, preferably comprising barium oxide and barium fluoride. A direct current is passed between an anode and a cathode in the bath to reduce the dissolved silicon dioxide to non-alloyed silicon in molten form, which is removed from the bath.

  19. Molten salt electrolyte separator

    DOEpatents

    Kaun, T.D.

    1996-07-09

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  20. Electrochemical investigation of lithium/potassium carbonate eutectic for application in modeling the molten carbonate fuel cell cathode. Final progress report

    SciTech Connect

    McCoy, L.; Schuman, M.

    1986-04-01

    A program involving the design, construction, and operation of a high-temperature cell equipped with a rotating gold disk electrode has been carried out with the objective of identifying and quantifying the principal oxide species present in molten LiKCO/sub 3/ electrolytes using electrochemical measurements. The dependence of the current on electrode rotational speed at 750 to 800/sup 0/C indicates that the data are typical of the convective/diffusive transport of an electroactive species from the bulk electrolyte. The reverse is true at 650/sup 0/C, where the current increases with an increasing voltage sweep rate but is little affected by the speed of electrode rotation. In the latter case, a current by chemical reaction occurring within the electrode boundary layer is indicated. The linear current-voltage increase observed at the lower temperature in the presence of about 20 mol % 0/sub 2/ has not been accounted for. Graphical analysis of the data taken with air and C/sub 2/ sparged electrolyte at 750 and 800/sup 0/C indicates the electroactive species to be the superoxide ion. Computer studies of the same data using regression analysis methodology indicate that the current may instead arise from the reduction of the peroxide ion concurrently with other electroactive material derived from secondary catalytic reactions or electrolyte impurities. Additional data will be required to support either conclusion with certainty. Detailed studies of the electrochemistry of the LiKCO/sub 3/ electrolyte over a broader range of temperatures and sparge gas compositions are recommended as a means of providing a second basis for identifying the electrode reactions. 29 refs., 47 figs., 3 tabs.

  1. ELEMENTAL MERCURY ADSORPTION BY ACTIVATED CARBON TREATED WITH SULFURIC ACID

    EPA Science Inventory

    The paper gives results of a study of the adsorption of elemental mercury at 125 C by a sulfuric-acid (H2S04, 50% w/w/ solution)-treated carbon for the removal of mercury from flue gas. The pore structure of the sample was characterized by nitrogen (N2) at -196 C and the t-plot m...

  2. Suicidal chemistry: combined intoxication with carbon monoxide and formic acid.

    PubMed

    Bakovic, Marija; Nestic, Marina; Mayer, Davor

    2016-05-01

    Herein, we present a rare case of suicidal intoxication with carbon monoxide produced via reaction of formic and sulphuric acid with additional toxic effect of formic acid. The deceased was a 22-year-old men found dead in the bathroom locked from the inside. A bucket filled with liquid was found next to him, together with an almost empty canister labeled "formic acid" and another empty unlabeled canister. The postmortem examination revealed corrosive burns of the face, neck and chest, cherry-pink livor mortis, corrosive injury to the oropharyngeal area and trachea, subpleural petechiae, 100 mL of blood in stomach and superficial erosions of stomach mucosa. Toxicology analysis revealed 30% of carboxyhemoglobin in the femoral blood and the presence of the formic acid in various samples. Quantitative analysis of formic acid was performed by measuring methyl ester derivative of formic acid by using headspace gas chromatography with flame ionization detection. The highest concentration of formic acid was measured in the lungs (0.55 g/kg), gastric content (0.39 g/L), and blood (0.28 g/L). In addition, it was established that content of the unlabeled canister had a pH value of 0.79 and contained sulphuric ions. Morphological and toxicology findings suggested that the main route of exposure to formic acid was inhalation of vapors with a possible ingestion of only small amount of liquid acid. The cause of death was determined to be combined intoxication with carbon monoxide and formic acid. PMID:26041513

  3. CARBON CONTRIBUTION AND CHARACTERISTICS OF HUMIC ACID, FULVIC ACID, PARTICULATE ORGANIC MATTER AND GLOMALIN IN DIVERSE ECOSYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global climate change and soil carbon sequestration issues are entering the forefront of public policy, and emphasis is growing for research on carbon sinks and long-term terrestrial carbon stabilization. Humic acid (HA), fulvic acid (FA), humin and particulate organic matter (POM) have traditionall...

  4. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media

    PubMed Central

    Moret, Séverine; Dyson, Paul J.; Laurenczy, Gábor

    2014-01-01

    The chemical transformation of carbon dioxide into useful products becomes increasingly important as CO2 levels in the atmosphere continue to rise as a consequence of human activities. In this article we describe the direct hydrogenation of CO2 into formic acid using a homogeneous ruthenium catalyst, in aqueous solution and in dimethyl sulphoxide (DMSO), without any additives. In water, at 40 °C, 0.2 M formic acid can be obtained under 200 bar, however, in DMSO the same catalyst affords 1.9 M formic acid. In both solvents the catalysts can be reused multiple times without a decrease in activity. Worldwide demand for formic acid continues to grow, especially in the context of a renewable energy hydrogen carrier, and its production from CO2 without base, via the direct catalytic carbon dioxide hydrogenation, is considerably more sustainable than the existing routes. PMID:24886955

  5. Carbon nanotubes and nucleic acids: tools and targets

    NASA Astrophysics Data System (ADS)

    Onoa, Bibiana; Zheng, Ming; Dresselhaus, Mildred S.; Diner, Bruce A.

    2006-05-01

    Nucleic acids, with their intrinsic structural properties as well as their high specificity, are playing an important role in the rapid development of nano-technologies. In turn, these new technologies and their efficient performance enable fast and precise methods for detection of nucleic acids, improving the diagnosis of diseases and identification of pathogens. We discuss the use of nucleic acids to disperse and sort single walled carbon nanotubes (SWNTs), and carbon nanotube-based field effect transistors (CNT-FETs) to electrically detect specific nucleic acid sequences. Both DNA and RNA are efficient agents for dispersion and separation of SWNTs by diameter and chirality. Fractions enriched in a narrow band gap distribution of DNA:SWNT hybrids do not alter the electronic performance of field effect transistors. A CNT-FET fulfills the requirements for a nanosensing device that can greatly exceed the existing technologies. Electrical detection of specific nucleic acid sequence could potentially overcome the current limitations of optical detection, by increasing sensitivity and speed, while reducing sample manipulation, size, and cost.

  6. Amino acids of the Murchison meteorite. III - Seven carbon acyclic primary alpha-amino alkanoic acids

    NASA Technical Reports Server (NTRS)

    Cronin, John R.; Pizzarello, Sandra

    1986-01-01

    All of the eighteen possible seven-carbon acyclic primary alpha-amino alkanoic acids have been positively identified in a hot-water extract of the Murchison meteorite by the combined use of gas chromatography-mass spectrometry, ion exchange chromatography and reversed-phase chromatography. None of these amino acids has previously been found in meteorites or in any other natural material. They range in concentration from less than or equal to 0.5 to 5.3 nmol/g. Configuration assignments were made for 2-amino-3,4-dimethylpentanoic acid and allo-2-amino-3,4-dimethylpentanoic acid and the diasteromer ratio was determined. Fifty-five amino acids have now been positively identified in the Murchison meteorite, 36 of which are unknown in terrestrial materials. This unique suite of amino acids is characterized by the occurrence of all structural isomers within the two major classes of amino acids represented, by the predominance of branched chain isomers, and by an exponential decline in amount with increasing carbon chain length within homologous series. These characteristics of the Murchison amino acids are suggestive of synthesis before incorporation into a parent body.

  7. Karstification without carbonic acid: bedrock dissolution by gypsum- driven dedolomitization

    USGS Publications Warehouse

    Bischoff, J.L.; Julia, R.; Shanks, Wayne C.; Rosenbauer, R.J.

    1994-01-01

    The primary karst-forming process at Lake Banyoles is dedolomitization of basement rocks driven by gypsum dissolution. Karstification takes place along the subsurface contact between the gypsiferous Beuda Formation and the dolomitic Perafita Formation. This process is here recognized for the first time to cause karstification on a large scale; this is significant because it proceeds without the addition of soil-generated carbonic acid. -from Authors

  8. Sodium-tetravalent sulfur molten chloroaluminate cell

    DOEpatents

    Mamantov, Gleb

    1985-04-02

    A sodium-tetravalent sulfur molten chloroaluminate cell with a .beta."-alumina sodium ion conductor having a S-Al mole ratio of above about 0.15 in an acidic molten chloroaluminate cathode composition is disclosed. The cathode composition has an AlCl.sub.3 -NaCl mole percent ratio of above about 70-30 at theoretical full charge. The cell provides high energy densities at low temperatures and provides high energy densities and high power densities at moderate temperatures.

  9. Acid neutralisation capacity of accelerated carbonated stainless steel slag.

    PubMed

    Johnson, D C; MacLeod, C L; Hills, C D

    2003-05-01

    The acid neutralisation capacity test is widely used to assess the long-term performance of waste materials prior to disposal. Samples of fixed mass are exposed to increasing additions of nitric add in sealed containers and the resultant pH is plotted as a titration curve. In this work, the add neutralisation capacity test was used in the assessment of an accelerated carbonated stainless steel slag. Difficulties arose in applying the test procedure to this material. This was largely because of the raised pressure from significant volumes of released carbon dioxide trapped in the sealed sample containers, causing an alteration to leachate pH values. Consequently, the add neutralisation capacity test was modified to enable testing of samples in equilibrium with the atmosphere. No adverse effects on the results from testing of a carbonate free material were recorded. PMID:12803247

  10. Adsorption of naphthenic acids on high surface area activated carbons.

    PubMed

    Iranmanesh, Sobhan; Harding, Thomas; Abedi, Jalal; Seyedeyn-Azad, Fakhry; Layzell, David B

    2014-01-01

    In oil sands mining extraction, water is an essential component; however, the processed water becomes contaminated through contact with the bitumen at high temperature, and a portion of it cannot be recycled and ends up in tailing ponds. The removal of naphthenic acids (NAs) from tailing pond water is crucial, as they are corrosive and toxic and provide a substrate for microbial activity that can give rise to methane, which is a potent greenhouse gas. In this study, the conversion of sawdust into an activated carbon (AC) that could be used to remove NAs from tailings water was studied. After producing biochar from sawdust by a slow-pyrolysis process, the biochar was physically activated using carbon dioxide (CO2) over a range of temperatures or prior to producing biochar, and the sawdust was chemically activated using phosphoric acid (H3PO4). The physically activated carbon had a lower surface area per gram than the chemically activated carbon. The physically produced ACs had a lower surface area per gram than chemically produced AC. In the adsorption tests with NAs, up to 35 mg of NAs was removed from the water per gram of AC. The chemically treated ACs showed better uptake, which can be attributed to its higher surface area and increased mesopore size when compared with the physically treated AC. Both the chemically produced and physically produced AC provided better uptake than the commercially AC. PMID:24766592

  11. Biosynthesis of 2-hydroxyisobutyric acid (2-HIBA) from renewable carbon

    PubMed Central

    2010-01-01

    Nowadays a growing demand for green chemicals and cleantech solutions is motivating the industry to strive for biobased building blocks. We have identified the tertiary carbon atom-containing 2-hydroxyisobutyric acid (2-HIBA) as an interesting building block for polymer synthesis. Starting from this carboxylic acid, practically all compounds possessing the isobutane structure are accessible by simple chemical conversions, e. g. the commodity methacrylic acid as well as isobutylene glycol and oxide. During recent years, biotechnological routes to 2-HIBA acid have been proposed and significant progress in elucidating the underlying biochemistry has been made. Besides biohydrolysis and biooxidation, now a bioisomerization reaction can be employed, converting the common metabolite 3-hydroxybutyric acid to 2-HIBA by a novel cobalamin-dependent CoA-carbonyl mutase. The latter reaction has recently been discovered in the course of elucidating the degradation pathway of the groundwater pollutant methyl tert-butyl ether (MTBE) in the new bacterial species Aquincola tertiaricarbonis. This discovery opens the ground for developing a completely biotechnological process for producing 2-HIBA. The mutase enzyme has to be active in a suitable biological system producing 3-hydroxybutyryl-CoA, which is the precursor of the well-known bacterial bioplastic polyhydroxybutyrate (PHB). This connection to the PHB metabolism is a great advantage as its underlying biochemistry and physiology is well understood and can easily be adopted towards producing 2-HIBA. This review highlights the potential of these discoveries for a large-scale 2-HIBA biosynthesis from renewable carbon, replacing conventional chemistry as synthesis route and petrochemicals as carbon source. PMID:20184738

  12. REACTIONS OF CHLORITE WITH ACTIVATED CARBON AND WITH VANILLIC ACID AND INDAN ADSORBED ON ACTIVATED CARBON

    EPA Science Inventory

    The reaction between chlorite (CO2(-1)) and vanillic acid, at pH 6.0 in the presence of granular activated carbon (GAC), yielded several reaction products identifiable by GC/MS; no products were found in the absence of GAC. Indan and ClO2 or ClO2(-1) reacted in aqueous solution a...

  13. Acetylene-mediated alkylation of monoalkyl carbonates and carbamic acids with tert-amines

    SciTech Connect

    Sasaki, Yoshiyuki

    1996-12-31

    Carbonic acid diesters and carbamic acid esters are useful organic substances as intermediates for the syntheses of several chemicals. They are currently synthesized in industry using the processes based on phosgene or carbon monoxide. On the other hand, since carbon dioxide is an abundant and cheap carbonyl carbon source, and is much less toxic than those raw materials, substantial efforts have been focused on its fixation into carbonyl compounds including carbonic acid diesters and carbamic acid esters. However, their syntheses based on carbon dioxide reported so far require rather expensive substrates like alkyl halides, and are not competitive with the currently adopted industrial processes.

  14. Suicidal carbon monoxide poisoning by combining formic acid and sulfuric acid within a confined space.

    PubMed

    Lin, Peter T; Dunn, William A

    2014-01-01

    Suicide by inhalation of carbon monoxide produced by mixing formic acid and sulfuric acid within a confined space is a rare method of suicide. This method is similar to the so-called "detergent suicide" method where an acid-based detergent is mixed with a sulfur source to produce hydrogen sulfide. Both methods produce a toxic gas that poses significant hazards for death investigators, first responders and bystanders. Carbon monoxide is an odorless gas, while hydrogen sulfide has a characteristic rotten eggs odor, so the risks associated with carbon monoxide are potentially greater due to lack of an important warning signal. While detergent suicides have become increasingly common in the USA, suicide with formic acid and sulfuric acid is rare with only three prior cases being reported. Greater awareness of this method among death investigators is warranted because of the special risks of accidental intoxication by toxic gas and the possibility that this method of suicide will become more common in the future. PMID:24328850

  15. Black Carbon in Sedimentary Organic Carbon in the Northeast Pacific using the Benzene Polycarboxylic Acid Method

    NASA Astrophysics Data System (ADS)

    Coppola, A. I.; Ziolkowski, L. A.; Druffel, E. R.

    2010-12-01

    Black carbon (BC) in the Northeast Pacific ultrafiltered dissolved organic matter (UDOM) was found to be surprisingly old with a 14C age of 18,000 +/-3,000 14C years (Ziolkowski and Druffel, 2010) using the Benzene Polycarboxylic Acid (BPCA) method, while BC in sedimentary organic carbon (SOC) was found to be 2,400-12,900 14C years older than non-BC SOC (Masiello and Druffel, 1998) with a different method. Using the dichromate-sulfuric acid oxidation method (Wolbach and Anders, 1989), Masiello and Druffel (1998) estimated that 12-31% of SOC in the Northeast Pacific and the Southern Ocean surface sediments was black carbon (BC). However, the dichromate-sulfuric acid oxidation may over-estimate the concentration of BC, because this method is more biased toward modern (char) material (Currie et al., 2002). Alternatively, the BPCA method isolates aromatic components of BC as benzene rings substituted with carboxylic acid groups, and provides structural information about the BC. Recent modifications to the BPCA method by Ziolkowski and Druffel (2009) involve few biases in quantifying BC in the continuum between char and soot in UDOM. Here we use the BPCA method to determine the concentrations and 14C values of BC in sediments from three sites in the Northeast Pacific Ocean. Constraining the difference between non-BC SOC and BC-SOC using the BPCA method allows for a more precise estimate of how much BC is present in the sediments and its 14C age. Presumably, the intermediate reservoir of BC is oceanic dissolved organic carbon (DOC) and is, in part, responsible for DOC’s great 14C age. These results can be utilized to better constrain the oceanic carbon budget as a possible sink of BC. References: Currie, L. A., Benner Jr., B. A., Kessler, J.D., et al (2002), A critical evaluation of interlaboratory data on total, elemental, and isotopic carbon in the carbonaceous particle reference material, nist srm 1649a, J. Res. Natl. Inst. Stand. Technol., 107, 279-298. Masiello, C

  16. Amino acids of the Murchison meteorite. II - Five carbon acyclic primary beta-, gamma-, and delta-amino alkanoic acids

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Pizzarello, S.; Yuen, G. U.

    1985-01-01

    The five-carbon acyclic primary beta, gamma, and delta amino alkanoic acids of the Murchison meteorite are studied using gas chromatography-mass spectrometry and ion exchange chromatography. The chromatograms reveal that alpha is the most abundant monoamino alkanoic acid followed by gamma and beta, and an exponential increase in the amount of amino acid is observed as the carbon number increases in the homologous series. The influence of frictional heating, spontaneous thermal decomposition, and radiation of the synthesis of amino acids is examined. The data obtained support an amino acid synthesis process involving random combination of single-carbon precursors.

  17. Carbon dioxide generated from carbonates and acids for sampling blood-feeding arthropods.

    PubMed

    Burkett-Cadena, Nathan D; Blosser, Erik M; Young, Ryan M; Toé, Laurent D; Unnasch, Thomas R

    2015-09-01

    Carbon dioxide (CO2) is utilized to attract mosquitoes and other blood-feeding arthropods to traps around the world. Commercial forms of CO2 (e.g., dry ice and compressed gas) are often unavailable or extremely expensive in developing nations, where vector surveillance is essential to make life-saving decisions. We developed and tested inexpensive and reproducible methods of CO2 production from the combination of acids and carbonates, ranging from very basic (crushed seashells and vinegar) to relatively elaborate (a device that controls the timing of the acid-carbonate reaction and extends the reaction over several hours). When utilized with mosquito traps in Florida, USA and black fly traps in Region des Cascades, Burkina Faso, these carbonate-acid CO2 sources attracted significantly greater numbers of both vector groups, than did unbaited traps. CO2 was generated for more than four hours at levels sufficient to attract vectors over the entire period. The utility of this simple methodology in developing nations should be further evaluated. PMID:26103427

  18. Carbon fluxes in an acid rain impacted boreal headwater catchment

    NASA Astrophysics Data System (ADS)

    Marx, Anne; Hintze, Simone; Jankovec, Jakub; Sanda, Martin; Dusek, Jaromir; Vogel, Tomas; van Geldern, Robert; Barth, Johannes A. C.

    2016-04-01

    Terrestrial carbon export via inland aquatic systems is a key process in the budget of the global carbon cycle. This includes loss of carbon to the atmosphere via gas evasion from rivers or reservoirs as well as carbon fixation in freshwater sediments. Headwater streams are the first endmembers of the transition of carbon between soils, groundwater and surface waters and the atmosphere. In order to quantify these processes the experimental catchment Uhlirska (1.78 km2) located in the northern Czech Republic was studied. Dissolved inorganic, dissolved organic and particulate organic carbon (DIC, DOC, POC) concentrations and isotopes were analyzed in ground-, soil -and stream waters between 2014 and 2015. In addition, carbon dioxide degassing was quantified via a stable isotope modelling approach. Results show a discharge-weighted total carbon export of 31.99 g C m‑2 yr‑1 of which CO2 degassing accounts 79 %. Carbon isotope ratios (δ13C) of DIC, DOC, and POC (in ‰ VPDB) ranged from -26.6 to -12.4 ‰ from -29.4 to -22.7 ‰ and from -30.6 to -26.6 ‰ respectively. The mean values for DIC are -21.8 ±3.8 ‰ -23.6 ±0.9 ‰ and -19.5 ±3.0 ‰ for soil, shallow ground and surface water compartments. For DOC, these compartments have mean values of -27.1 ±0.3 ‰ -27.0 ±0.8 ‰ and -27.4 ±0.7 ‰Ṁean POC value of shallow groundwaters and surface waters are -28.8 ±0.8 ‰ and -29.3 ±0.5 ‰ respectively. These isotope ranges indicate little turnover of organic material and predominant silicate weathering. The degassing of CO2 caused an enrichment of the δ13C-DIC values of up to 6.8 ‰ between a catchment gauge and the catchment outlet over a distance of 866 m. In addition, the Uhlirska catchment has only negligible natural sources of sulphate, yet SO42‑ accounts for 21 % of major stream water ions. This is most likely a remainder from acid rain impacts in the area.

  19. Effects of acid treatment duration and sulfuric acid molarity on purification of multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mortazavi, Seyedeh; Novinrooz, Abdul; Reyhani, Ali; Mirershadi, Soghra

    2010-12-01

    Multi-walled carbon nanotubes were synthesized using a Fe-Ni bimetallic catalyst supported by MgO using thermal chemical vapor deposition. Purification processes to remove unwanted carbon structures and other metallic impurities were carried out by boiling in sulfuric acid solution. Various analytical techniques such as TGA/DSC, Raman spectroscopy, SEM, HRTEM and EDAX were employed to investigate the morphology, graphitization and quality of the carbon nanotubes. The obtained results reveal the molarity of sulfuric acid and immersed time of the carbon nanotubes in the acid solution is very effective at purifying multi-walled carbon nanotubes. It was also found that 5 M concentration of boiling sulfuric acid for a 3 h treatment duration led to the highest removal of the impurities with the least destructive effect. Moreover, it was observed that acid treatment results in decreasing of CNTs' diameter.

  20. Effects of acid treatment duration and sulfuric acid molarity on purification of multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mortazavi, Seyedeh Z.; Novinrooz, Abdul J.; Reyhani, Ali; Mirershadi, Soghra

    2010-12-01

    Multi-walled carbon nanotubes were synthesized using a Fe-Ni bimetallic catalyst supported by MgO using thermal chemical vapor deposition. Purification processes to remove unwanted carbon structures and other metallic impurities were carried out by boiling in sulfuric acid solution. Various analytical techniques such as TGA/DSC, Raman spectroscopy, SEM, HRTEM and EDAX were employed to investigate the morphology, graphitization and quality of the carbon nanotubes. The obtained results reveal the molarity of sulfuric acid and immersed time of the carbon nanotubes in the acid solution is very effective at purifying multi-walled carbon nanotubes. It was also found that 5 M concentration of boiling sulfuric acid for a 3 h treatment duration led to the highest removal of the impurities with the least destructive effect. Moreover, it was observed that acid treatment results in decreasing of CNTs’ diameter.

  1. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson

    2012-05-15

    A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.

  2. Tuning the Carbon Dioxide Absorption in Amino Acid Ionic Liquids.

    PubMed

    Firaha, Dzmitry S; Kirchner, Barbara

    2016-07-01

    One of the possible solutions to prevent global climate change is the reduction of CO2 emissions, which is highly desired for the sustainable development of our society. In this work, the chemical absorption of carbon dioxide in amino acid ionic liquids was studied through first-principles methods. The use of readily accessible and biodegradable amino acids as building blocks for ionic liquids makes them highly promising replacements for the widely applied hazardous aqueous solutions of amines. A detailed insight into the reaction mechanism of the CO2 absorption was obtained through state-of-the-art theoretical methods. This allowed us to determine the reason for the specific CO2 capacities found experimentally. Moreover, we have also conducted a theoretical design of ionic liquids to provide valuable insights into the precise tuning of the energetic and kinetic parameters of the CO2 absorption. PMID:27214652

  3. Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid.

    PubMed

    Lin, Ya-Ting; Liang, Chenju

    2015-10-01

    Alkaline ascorbic acid (AA) was recently discovered as a novel in-situ chemical reduction (ISCR) reagent for remediating chlorinated solvents in the subsurface. For this ISCR process, the maintenance of an alkaline pH is essential. This study investigated the possibility of the reduction of carbon tetrachloride (CT) using alkaline AA solution buffered by phosphate and by NaOH. The results indicated that CT was reduced by AA, and chloroform (CF) was a major byproduct at a phosphate buffered pH of 12. However, CT was completely reduced by AA in 2M NaOH without CF formation. In the presence of iron/soil minerals, iron could be reduced by AA and Fe(2+) tends to precipitate on the mineral surface to accelerate CT degradation. A simultaneous transfer of hydrogenolysis and dichloroelimination would occur under phosphate buffered pH 12. This implies that a high alkaline environment is a crucial factor for maintaining the dominant pathway of two electron transfer from dianionic AA to dehydroascorbic acid, and to undergo dichloroelimination of CT. Moreover, threonic acid and oxalic acid were identified to be the major AA decomposition products in alkaline solutions. PMID:25912910

  4. Respiratory CO(2) as Carbon Source for Nocturnal Acid Synthesis at High Temperatures in Three Species Exhibiting Crassulacean Acid Metabolism.

    PubMed

    Winter, K; Schröppel-Meier, G; Caldwell, M M

    1986-06-01

    TEMPERATURE EFFECTS ON NOCTURNAL CARBON GAIN AND NOCTURNAL ACID ACCUMULATION WERE STUDIED IN THREE SPECIES OF PLANTS EXHIBITING CRASSULACEAN ACID METABOLISM: Mamillaria woodsii, Opuntia vulgaris, and Kalanchoë daigremontiana. Under conditions of high soil moisture, nocturnal CO(2) gain and acid accumulation had temperature optima at 15 to 20 degrees C. Between 5 and 15 degrees C, uptake of atmospheric CO(2) largely accounted for acid accumulation. At higher tissue temperatures, acid accumulation exceeded net carbon gain indicating that acid synthesis was partly due to recycling of respiratory CO(2). When plants were kept in CO(2)-free air, acid accumulation based on respiratory CO(2) was highest at 25 to 35 degrees C. Net acid synthesis occurred up to 45 degrees C, although the nocturnal carbon balance became largely negative above 25 to 35 degrees C. Under conditions of water stress, net CO(2) exchange and nocturnal acid accumulation were reduced. Acid accumulation was proportionally more decreased at low than at high temperatures. Acid accumulation was either similar over the whole temperature range (5-45 degrees C) or showed an optimum at high temperatures, although net carbon balance became very negative with increasing tissue temperatures. Conservation of carbon by recycling respiratory CO(2) was temperature dependent. At 30 degrees C, about 80% of the dark respiratory CO(2) was conserved by dark CO(2) fixation, in both well irrigated and water stressed plants. PMID:16664827

  5. Activated carbon passes tests for acid-gas cleanup

    SciTech Connect

    Harruff, L.G.; Bushkuhl, S.J.

    1996-06-24

    Use of activated carbon to remove hydrocarbon contaminants from the acid-gas feed to Claus sulfur-recovery units has been successfully pilot tested in Saudi Arabia. Pilot plant results are discussed here along with issues involved in scale-up to commercial size. Heavy hydrocarbons, particularly benzene, toluene, and xylene (BTX) have been linked to coke formation and catalyst deactivation in Claus converters. This deactivation results in reduced sulfur recovery and increased sulfur emissions from these plants. This clean-up process was proven to be capable of removing 95% of the BTX and other C{sub 6}+s from acid gas over a wide range of actual plant conditions. Following the adsorption step, the activated carbon was easily regenerated by use of low-pressure steam. A post-regeneration drying step using plant fuel gas also proved beneficial. The paper discusses feed contaminants, vapor-phase cleanup, testing design, test parameters and results, bed drying after regeneration, regeneration conditions, basic flow, system control, and full-scale installation.

  6. Easy modification of glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid.

    PubMed

    Thiagarajan, Soundappan; Tsai, Tsung-Hsuan; Chen, Shen-Ming

    2009-04-15

    A glassy carbon electrode (GCE) has been modified by electrochemical oxidation in mild acidic media (0.1 mol l(-1) H(2)SO(4)) and could be applied for individual and simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Oxidized GCE shows a single redox couple (E(0)'=-2.5 mV) which is based on the formation functional groups during the electrochemical pretreatment process. Proposed GCE successfully decreases the over potentials for the oxidation process of these species (AA, DA and UA) comparing with bare GCE. The oxidized GCE has its own simplicity, stability, high sensitivity and possesses the potential for simultaneous determination of AA, DA and UA. PMID:19162467

  7. Amino acids of the Murchison meteorite. I - Six carbon acyclic primary alpha-amino alkanoic acids

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Gandy, W. E.; Pizzarello, S.

    1981-01-01

    Six of the seven chain isomers of six-carbon acyclic primary alpha-amino alkanoic acids (leucine isomers) have been either identified or confirmed in hot-water extracts of the Murchison meteorite using combined gas chromatography-mass spectrometry (GC-MS) and ion exchange chromatography. 2-Amino-2-ethylbutyric acid, 2-amino-2,3-dimethylbutyric acid, pseudoleucine, and 2-methylnorvaline were positively identified by GC-MS. These amino acids have not been previously reported to occur in natural materials and may be uniquely meteoritic in origin. The presence of leucine and isoleucine (including the diastereoisomer, alloisoleucine) was confirmed. Peaks corresponding to norleucine were seen by ion-exchange and gas chromatography but characteristic mass spectra were not obtained. The alpha-branched chain isomers in this series are quantitatively the most significant. These results are compared with literature data on amino acid synthesis by electrical discharge and Fischer-Tropsch-type catalysis. Neither model system produces an amino acid suite that is completely comparable to that found in the Murchison meteorite.

  8. Apparatus for making molten silicon

    NASA Technical Reports Server (NTRS)

    Levin, Harry (Inventor)

    1988-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  9. Carbon composite micro- and nano-tubes-based electrodes for detection of nucleic acids

    PubMed Central

    2011-01-01

    The first aim of this study was to fabricate vertically aligned multiwalled carbon nanotubes (MWCNTs). MWCNTs were successfully prepared by using plasma enhanced chemical vapour deposition. Further, three carbon composite electrodes with different content of carbon particles with various shapes and sizes were prepared and tested on measuring of nucleic acids. The dependences of adenine peak height on the concentration of nucleic acid sample were measured. Carbon composite electrode prepared from a mixture of glassy and spherical carbon powder and MWCNTs had the highest sensitivity to nucleic acids. Other interesting result is the fact that we were able to distinguish signals for all bases using this electrode. PMID:21711910

  10. Carbon composite micro- and nano-tubes-based electrodes for detection of nucleic acids.

    PubMed

    Prasek, Jan; Huska, Dalibor; Jasek, Ondrej; Zajickova, Lenka; Trnkova, Libuse; Adam, Vojtech; Kizek, Rene; Hubalek, Jaromir

    2011-01-01

    The first aim of this study was to fabricate vertically aligned multiwalled carbon nanotubes (MWCNTs). MWCNTs were successfully prepared by using plasma enhanced chemical vapour deposition. Further, three carbon composite electrodes with different content of carbon particles with various shapes and sizes were prepared and tested on measuring of nucleic acids. The dependences of adenine peak height on the concentration of nucleic acid sample were measured. Carbon composite electrode prepared from a mixture of glassy and spherical carbon powder and MWCNTs had the highest sensitivity to nucleic acids. Other interesting result is the fact that we were able to distinguish signals for all bases using this electrode. PMID:21711910

  11. A Simple Demonstration of Carbon Dioxide Fixation and Acid Production in CAM Plants

    ERIC Educational Resources Information Center

    Walker, John R. L.; McWha, James A.

    1976-01-01

    Described is an experiment investigating carbon dioxide fixation in the dark and the diurnal rhythm of acid production in plants exhibiting Crassulacean Acid Metabolism. Included are suggestions for four further investigations. (SL)

  12. Increased fracture penetration and productivity using xanthan gelled acid in massive carbonate formations

    SciTech Connect

    Molon, J.P.; Fox, K.B.

    1983-03-01

    A measurable improvement in productivity can be achieved using xanthan gelled acid to stimulate carbonate formations. Well productivity results were compared to conventional acid fracture treatments. The significant improvements over classical acid fracturing techniques are due to the improved control of acid leakoff rates, retarded reaction rate and improved fracture width maintenance. The difficulties involved in acid fracturing massive Middle East carbonate formations are discussed and solutions are proposed using gelled acid technology. Some limitations in computer predictions of acid fracturing results are also discussed.

  13. An investigation of the effect of carbon support on ruthenium/carbon catalysts for lactic acid and butanone hydrogenation.

    PubMed

    Jones, Daniel R; Iqbal, Sarwat; Kondrat, Simon A; Lari, Giacomo M; Miedziak, Peter J; Morgan, David J; Parker, Stewart F; Hutchings, Graham J

    2016-06-29

    A series of ruthenium catalysts supported on two different carbons were tested for the hydrogenation of lactic acid to 1,2-propanediol and butanone to 2-butanol. The properties of the carbon supports were investigated by inelastic neutron scattering and correlated with the properties of the ruthenium deposited onto the carbons by wet impregnation or sol-immobilisation. It was noted that the rate of butanone hydrogenation was highly dependent on the carbon support, while no noticeable difference in rates was observed between different catalysts for the hydrogenation of lactic acid. PMID:27079275

  14. Molten core retention assembly

    DOEpatents

    Lampe, Robert F.

    1976-06-22

    Molten fuel produced in a core overheating accident is caught by a molten core retention assembly consisting of a horizontal baffle plate having a plurality of openings therein, heat exchange tubes having flow holes near the top thereof mounted in the openings, and a cylindrical, imperforate baffle attached to the plate and surrounding the tubes. The baffle assembly is supported from the core support plate of the reactor by a plurality of hanger rods which are welded to radial beams passing under the baffle plate and intermittently welded thereto. Preferably the upper end of the cylindrical baffle terminates in an outwardly facing lip to which are welded a plurality of bearings having slots therein adapted to accept the hanger rods.

  15. In situ synthesis carbonated hydroxyapatite layers on enamel slices with acidic amino acids by a novel two-step method.

    PubMed

    Wu, Xiaoguang; Zhao, Xu; Li, Yi; Yang, Tao; Yan, Xiujuan; Wang, Ke

    2015-09-01

    In situ fabrication of carbonated hydroxyapatite (CHA) remineralization layer on an enamel slice was completed in a novel, biomimetic two-step method. First, a CaCO3 layer was synthesized on the surface of demineralized enamel using an acidic amino acid (aspartic acid or glutamate acid) as a soft template. Second, at the same concentration of the acidic amino acid, rod-like carbonated hydroxyapatite was produced with the CaCO3 layer as a sacrificial template and a reactant. The morphology, crystallinity and other physicochemical properties of the crystals were characterized using field emission scanning electron microscopy (FESEM), Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy-dispersive X-ray analysis (EDAX), respectively. Acidic amino acid could promote the uniform deposition of hydroxyapatite with rod-like crystals via absorption of phosphate and carbonate ions from the reaction solution. Moreover, compared with hydroxyapatite crystals coated on the enamel when synthesized by a one-step method, the CaCO3 coating that was synthesized in the first step acted as an active bridge layer and sacrificial template. It played a vital role in orienting the artificial coating layer through the template effect. The results show that the rod-like carbonated hydroxyapatite crystals grow into bundles, which are similar in size and appearance to prisms in human enamel, when using the two-step method with either aspartic acid or acidic glutamate (20.00 mmol/L). PMID:26046278

  16. Electrochemical Determination of Glycoalkaloids Using a Carbon Nanotubes-Phenylboronic Acid Modified Glassy Carbon Electrode

    PubMed Central

    Wang, Huiying; Liu, Mingyue; Hu, Xinxi; Li, Mei; Xiong, Xingyao

    2013-01-01

    A versatile strategy for electrochemical determination of glycoalkaloids (GAs) was developed by using a carbon nanotubes-phenylboronic acid (CNTs-PBA) modified glassy carbon electrode. PBA reacts with α-solanine and α-chaconine to form a cyclic ester, which could be utilized to detect GAs. This method allowed GA detection from 1 μM to 28 μM and the detection limit was 0.3 μM. Affinity interaction of GAs and immobilized PBA caused an essential change of the peak current. The CNT-PBA modified electrodes were sensitive for detection of GAs, and the peak current values were in quite good agreement with those measured by the sensors. PMID:24287539

  17. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production

    SciTech Connect

    Zeikus, J.G.; Jain, M.

    1993-12-31

    The project deals with understanding the fundamental biochemical mechanisms that physiologically control and regulate carbon and electron flow in anaerobic chemosynthetic bacteria that couple metabolism of single carbon compounds and hydrogen to the production of organic acids (formic, acetic, butyric, and succinic) or methane. The authors compare the regulation of carbon dioxide and hydrogen metabolism by fermentation, enzyme, and electron carrier analysis using Butyribacterium methylotrophicum, Anaeroblospirillum succiniciproducens, Methanosarcina barkeri, and a newly isolated tri-culture composed of a syntrophic butyrate degrader strain IB, Methanosarcina mazei and Methanobacterium formicicum as model systems. To understand the regulation of hydrogen metabolism during butyrate production or acetate degradation, hydrogenase activity in B. methylotrophicum or M. barkeri is measured in relation to growth substrate and pH; hydrogenase is purified and characterized to investigate number of hydrogenases; their localization and functions; and, their sequences are determined. To understand the mechanism for catabolic CO{sub 2} fixation to succinate the PEP carboxykinase enzyme and gene of A. succiniciproducens are purified and characterized. Genetically engineered strains of Escherichia coli containing the phosphoenolpyruvate (PEP) carboxykinase gene are examined for their ability to produce succinate in high yield. To understand the mechanism of fatty acid degradation by syntrophic acetogens during mixed culture methanogenesis formate and hydrogen production are characterized by radio tracer studies. It is intended that these studies provide strategies to improve anaerobic fermentations used for the production of organic acids or methane and, new basic understanding on catabolic CO{sub 2} fixation mechanisms and on the function of hydrogenase in anaerobic bacteria.

  18. A Molten Salt Lithium-Oxygen Battery.

    PubMed

    Giordani, Vincent; Tozier, Dylan; Tan, Hongjin; Burke, Colin M; Gallant, Betar M; Uddin, Jasim; Greer, Julia R; McCloskey, Bryan D; Chase, Gregory V; Addison, Dan

    2016-03-01

    Despite the promise of extremely high theoretical capacity (2Li + O2 ↔ Li2O2, 1675 mAh per gram of oxygen), many challenges currently impede development of Li/O2 battery technology. Finding suitable electrode and electrolyte materials remains the most elusive challenge to date. A radical new approach is to replace volatile, unstable and air-intolerant organic electrolytes common to prior research in the field with alkali metal nitrate molten salt electrolytes and operate the battery above the liquidus temperature (>80 °C). Here we demonstrate an intermediate temperature Li/O2 battery using a lithium anode, a molten nitrate-based electrolyte (e.g., LiNO3-KNO3 eutectic) and a porous carbon O2 cathode with high energy efficiency (∼95%) and improved rate capability because the discharge product, lithium peroxide, is stable and moderately soluble in the molten salt electrolyte. The results, supported by essential state-of-the-art electrochemical and analytical techniques such as in situ pressure and gas analyses, scanning electron microscopy, rotating disk electrode voltammetry, demonstrate that Li2O2 electrochemically forms and decomposes upon cycling with discharge/charge overpotentials as low as 50 mV. We show that the cycle life of such batteries is limited only by carbon reactivity and by the uncontrolled precipitation of Li2O2, which eventually becomes electrically disconnected from the O2 electrode. PMID:26871485

  19. Pulsed power molten salt battery development

    NASA Astrophysics Data System (ADS)

    Argade, S. D.; Boos, D. L.; Ryan, D. M.

    The authors describe a program aimed at developing a primary-reserve pulse-power battery design. The program focus at the present time is on developing high-rate chlorine cathodes for the lithium-aluminum/chlorine system. A novel activation treatment has been developed to use porous carbon and graphite materials as chlorine cathodes in this battery system. Results obtained with these electrodes in molten-salt cells are discussed. In molten LiCl-KCl at 450 C, these chlorine electrodes deliver remarkable pulse-power performance, 20-25 W/cm2. The IR-free cell polarization with Li-Al/chlorine cells appears to be ohmic, which is desirable for the pulse power application.

  20. Molten salt spectroelectrochemistry: recent developments

    SciTech Connect

    Mamantov, G.; Chapman, D.M.; Harward, B.L.; Klatt, L.N.; Smith, G.P.

    1985-01-01

    Molten salt spectroelectrochemistry will be reviewed in this paper. UV-visible transmission, infrared reflectance, resonance and normal Raman, and electron spin resonance spectroelectrochemistry have been used for molten salt studies. Two recent applications of uv-visible transmission spectroelectrochemistry to studies of organic and inorganic solutes in molten SbCl/sub 3/-AlCl/sub 3/-N-(1-butyl)pyridinium chloride and AlCl/sub 3/-NaCl will be described.

  1. Molten fluoride fuel salt chemistry

    SciTech Connect

    Toth, L.M.; Del Cul, G.D.; Dai, S.; Metcalf, D.H.

    1994-09-01

    The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Fission product behavior is described along with processing experience. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior, processing and recycle of the fuel components is a necessary factor if future systems are to be established.

  2. Advanced heat exchanger development for molten salts

    SciTech Connect

    Sabharwall, Piyush; Clark, Denis; Glazoff, Michael; Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark

    2014-12-01

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically <10 mils per year. For materials of construction, nickel and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of contaminant type and alloy composition with respect to chromium and carbon to better define the optimal chromium and carbon composition, independent of galvanic or differential solubility effects. Also presented is the division of the nuclear reactor and high temperature components per ASME standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.

  3. Advanced heat exchanger development for molten salts

    DOE PAGESBeta

    Sabharwall, Piyush; Clark, Denis; Glazoff, Michael; Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark

    2014-12-01

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet materialmore » in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically <10 mils per year. For materials of construction, nickel and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of contaminant type and alloy composition with respect to chromium and carbon to better define the optimal chromium and carbon composition, independent of galvanic or differential solubility effects. Also presented is the division of the nuclear reactor and high temperature components per ASME standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.« less

  4. USE OF STABLE CARBON ISOTOPE RATIOS OF FATTY ACIDS TO EVALUATE MICROBIAL CARBON SOURCES IN TERRESTRIAL ENVIRONMENTS

    EPA Science Inventory

    We use measurements of the concentration and stable carbon isotopic ratio (D 13C) of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels and microbial carbon source. We found that intensive sugar cane cultivation leads to ...

  5. USE OF THE COMPOSITION AND STABLE CARBON ISOTOPE RATIO OF MICROBIAL FATTY ACIDS TO STUDY CARBON CYCLING

    EPA Science Inventory

    We use measurements of the concentration and stable carbon isotopic ratio (Gamma 13C) of individual microbial phospholipid fatty acids (PLFAS) in soils and sediments as indicators of live microbial biomass levels and microbial carbon source. For studies of soil organic matter (SO...

  6. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson

    2014-07-01

    A system for forming metal hydroxide from a metal carbonate utilizes a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide.

  7. Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid.

    PubMed

    Du, Jiao; Yue, Ruirui; Ren, Fangfang; Yao, Zhangquan; Jiang, Fengxing; Yang, Ping; Du, Yukou

    2014-03-15

    A novel and sensitive carbon fiber electrode (CFE) modified by graphene flowers was prepared and used to simultaneously determine ascorbic acid (AA), dopamine (DA) and uric acid (UA). SEM images showed that beautiful and layer-petal graphene flowers homogeneously bloomed on the surface of CFE. Moreover, sharp and obvious oxidation peaks were found at the obtained electrode when compared with CFE and glassy carbon electrode (GCE) for the oxidation of AA, DA and UA. Also, the linear calibration plots for AA, DA and UA were observed, respectively, in the ranges of 45.4-1489.23 μM, 0.7-45.21 μM and 3.78-183.87 μM in the individual detection of each component. By simultaneously changing the concentrations of AA, DA and UA, their oxidation peaks appeared at -0.05 V, 0.16 V and 2.6 V, and the good linear responses ranges were 73.52-2305.53 μM, 1.36-125.69 μM and 3.98-371.49 μM, respectively. In addition, the obtained electrode showed satisfactory results when applied to the determination of AA, DA and UA in urine and serum samples. PMID:24140872

  8. Detection and removal of molten salts from molten aluminum alloys

    SciTech Connect

    K. Butcher; D. Smith; C. L. Lin; L. Aubrey

    1999-08-02

    Molten salts are one source of inclusions and defects in aluminum ingots and cast shapes. A selective adsorption media was used to remove these inclusions and a device for detection of molten salts was tested. This set of experiments is described and the results are presented and analyzed.

  9. 13. VIEW OF THE MOLTEN SALT EXTRACTION LINE. THE MOLTEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF THE MOLTEN SALT EXTRACTION LINE. THE MOLTEN SALT EXTRACTION PROCESS WAS USED TO PURIFY PLUTONIUM BY REMOVING AMERICIUM, A DECAY BY-PRODUCT OF PLUTONIUM. (1/98) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  10. Fate of microbial nitrogen, carbon, hydrolysable amino acids, monosaccharides, and fatty acids in sediment

    NASA Astrophysics Data System (ADS)

    Veuger, Bart; van Oevelen, Dick; Middelburg, Jack J.

    2012-04-01

    The fate of microbial carbon, nitrogen, hydrolysable amino acids (HAAs), monosaccharides, and fatty acids in sediment was investigated experimentally. The microbial community of a tidal flat sediment was labeled with 13C-enriched glucose and 15N-enriched ammonium, and sediment was incubated for up to 371 days. Analysis of total concentrations and 13C- and 15N content of bulk sediment, hydrolysable amino acids (including D-alanine), monosaccharides, total fatty acids (TFAs), and phospholipid-derived fatty acids (PLFAs) allowed us to trace the fate of microbial biomass and -detritus and the major biochemical groups therein (proteins, carbohydrates, and lipids) over intermediate time scales (weeks-months). Moreover, the unidentified fraction of the labeled material (i.e. not analyzed as HAA, FA, or carbohydrate) provided information on the formation and fate of molecularly uncharacterizable organic matter. Loss of 13C and 15N from the sediment was slow (half live of 433 days) which may have been due to the permanently anoxic conditions in the experiment. Loss rates for the different biochemical groups were also low with the following order of loss rate constants: PLFA > TFA > HAA > monosaccharides. The unidentified 13C-pool was rapidly formed (within days) and then decreased relatively slowly, resulting in a gradual relative accumulation of this pool over time. Degradation and microbial reworking of the labeled material resulted in subtle, yet consistent, diagenetic changes within the different biochemical groups. In the HAA pool, glycine, lysine, and proline were lost relatively slowly (i.e. best preserved) while there was no accumulation of D-alanine relative to L-alanine, indicating no relative accumulation of bacterial macromolecules rich in D-alanine. In the fatty acid pool, there was very little difference between PLFAs and TFAs, indicating a very similar lability of these pools. Differences between individual fatty acids included a relatively slow loss of i15

  11. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  12. Molten salt lithium cells

    DOEpatents

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  13. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  14. Simultaneous inhibition of carbon and nitrogen mineralization in a forest soil by simulated acid precipitation

    SciTech Connect

    Klein, T.M.; Novick, N.J.; Kreitinger, J.P.; Alexander, M.

    1984-06-01

    One method to simulate the long-term exposure of soil to acid rain involves the addition of single doses of concentrated acid. The inhibition of carbon mineralization accompanied by a stimulation of nitrogen mineralization may result from this severe, unnatural treatment. The present study was designed to determine whether the inhibition of carbon mineralization and the accompanying enhanced nitrogen mineralization would occur when soils are treated with more dilute acid for long periods of time, as takes place in nature.

  15. Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon.

    PubMed

    Zhang, Di; Luo, Qi; Gao, Bin; Chiang, Sheau-Yun Dora; Woodward, David; Huang, Qingguo

    2016-02-01

    The sorption of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluoroheptanoic acid (PFHpA) on granular activated carbon (GAC) was characterized and compared to explore the underlying mechanisms. Sorption of the three perfluoroalkyl acids (PFAAs) on GAC appeared to be a rapid intra-particle diffusion process, which were well represented by the pseudo-second-order rate model with the sorption rate following the order PFOS > PFOA > PFHpA. Sorption isotherm data were well fitted by the Freundlich model with the sorption capacity (Kf) of PFOS, PFOA and PFHpA being 4.45, 2.42 and 1.66 respectively. This suggests that the hydrophilic head group on PFAAs, i.e. sulfonate vs carboxylic, has a strong influence on their sorption. Comparison between PFOA and PFHpA revealed that hydrophobicity could also play a role in the sorption of PFAAs on GAC when the fluorocarbon chain length is different. Analyses using Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy suggested possible formation of a negative charge-assisted H-bond between PFAAs and the functionalities on GAC surfaces, including non-aromatic ketones, sulfides, and halogenated hydrocarbons. PMID:26606188

  16. Screen printing of nucleic acid detecting carbon electrodes.

    PubMed

    Dequaire, Murielle; Heller, Adam

    2002-09-01

    A large fraction of the presently mass-manufactured (> 10(8) units/year) electrochemical biosensors, used mostly by diabetic people to monitor their blood glucose levels, have screen-printed carbon working electrodes. An earlier study (Campbell, C. N., et al. Anal. Chem. 2002, 74, 158-162) showed that nucleic acids can be assayed at 1 nM concentrations by a sandwich-type amperometric method. The assay was performed with vitreous carbon working electrodes on which an electron-conducting polycationic redox polymer and avidin were coelectrodeposited. Because the rate of the electrodeposition increases with the surface density of the polycationic redox polymer, its practicality depends on pretreatment of the surface, which adds anionic functions. (Gao, Z., et al. Angew. Chem. Int. Ed. 2002, 41, 810-813). Here it is shown that the required conducting redox polymer films can be electrodeposited on potentially mass manufacturable electrodes made by screen-printing hydrophilic carbon inks on polyester sheets. The modified electrodes are made in two steps. First a polycationic electron-conducting redox polymer is cross-linked and electrodeposited by applying a negative potential. Next, an amine-terminated 20-base single-stranded oligonucleotide is electrodeposited by ligand-exchange. Both steps involve exchange of a labile inner sphere chloride ligand of the polymer-bound osmium-complex: Cross-linking and electrodeposition of the redox polymer result when inner-sphere chloride anions of the osmium complexes are exchanged by imidazole functions of neighboring chains. Incorporation of the oligonucleotide in the redox polymer results in the formation of a coordinative bond between the terminal amine (attached through a spacer to the oligonucleotide) and the osmium complex. In testing for the presence of a 38-base oligonucleotide, the analyte, in a 15- or 25-microL droplet of hybridization solution, is hybridized with and captured by the 20-base electrode-bound sequence; then

  17. Removing Dross From Molten Solder

    NASA Technical Reports Server (NTRS)

    Webb, Winston S.

    1990-01-01

    Automatic device helps to assure good solder connections. Machine wipes dross away from area on surface of molten solder in pot. Sweeps across surface of molten solder somewhat in manner of windshield wiper. Each cycle of operation triggered by pulse from external robot. Equipment used wherever precise, automated soldering must be done to military specifications.

  18. Cathode for molten salt batteries

    DOEpatents

    Mamantov, Gleb; Marassi, Roberto

    1977-01-01

    A molten salt electrochemical system for battery applications comprises tetravalent sulfur as the active cathode material with a molten chloroaluminate solvent comprising a mixture of AlCl.sub.3 and MCl having a molar ratio of AlCl.sub.3 /MCl from greater than 50.0/50.0 to 80/20.

  19. Sequestering CO(2) by mineral carbonation: stability against acid rain exposure.

    PubMed

    Allen, Daniel J; Brent, Geoff F

    2010-04-01

    Mineral carbonation is a potentially attractive alternative to storage of compressed CO(2) in underground repositories, known as geosequestration. Processes for the conversion of basic ores, such as magnesium silicates, to carbonates have been proposed by various researchers, with storage of the carbonate as backfill in the original mine representing a solid carbon sink. The stability of such carbon sinks against acid rain and other sources of strong acids is examined here. It is acknowledged that in the presence of strong acid, carbonates will dissolve and release carbon dioxide. A sensitivity analysis covering annual average rainfall and pH that may be encountered in industrialized areas of the United States, China, Europe, and Australia was conducted to determine maximum CO(2) rerelease rates from mineral carbonation carbon sinks. This analysis is based on a worst-case premise that is equivalent to assuming infinitely rapid kinetics of dissolution of the carbonate. The analysis shows that under any likely conditions of pH and rainfall, leakage rates of stored CO(2) are negligible. This is illustrated in a hypothetical case study under Australian conditions. It is thus proposed that sequestration by mineral carbonation can be considered to be permanent on practical human time scales. Other possible sources of acid have also been considered. PMID:20199068

  20. Heat capacity of molten halides.

    PubMed

    Redkin, Alexander A; Zaikov, Yurii P; Korzun, Iraida V; Reznitskikh, Olga G; Yaroslavtseva, Tatiana V; Kumkov, Sergey I

    2015-01-15

    The heat capacities of molten salts are very important for their practical use. Experimental investigation of this property is challenging because of the high temperatures involved and the corrosive nature of these materials. It is preferable to combine experimental investigations with empirical relationships, which allows for the evaluation of the heat capacity of molten salt mixtures. The isobaric molar heat capacities of all molten alkali and alkaline-earth halides were found to be constant for each group of salts. The value depends on the number of atoms in the salt, and the molar heat capacity per atom is constant for all molten halide salts with the exception of the lithium halides. The molar heat capacities of molten halides do not change when the anions are changed. PMID:25530462

  1. Wetting and infiltration of graphite materials by molten silicon

    SciTech Connect

    Li, J.G.; Hausner, H.

    1995-02-01

    Wetting-assisted infiltration without the application of external pressure has advantages for the production of complex shaped metal-ceramic composites to near net shape with very low residual porosity. A class of fibrous Si/SiC composites was formed by infiltrating molten silicon into densely packed carbon fibers in preformed shapes. The liquid silicon/solid carbon system may be considered to be a model for reactive wetting and infiltration which is accompanied by the heterogeneous chemical reaction between silicon and carbon to form a solid SiC product layer at the silicon/carbon interface. The wetting behavior of various carbon materials by molten silicon has been extensively investigated recently with the sessile drop method. Some results of this investigation will be reported in the present paper. Attention will be paid to the surface roughness of the substrates on the wetting behavior. The eventual infiltration of silicon into the graphites will be discussed with relation to the wetting.

  2. A new alkali-resistant Ni/Al2O3-MSU-1 core-shell catalyst for methane steam reforming in a direct internal reforming molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Zhang, Xiongfu; Liu, Weifeng; Liu, Haiou; Qiu, Jieshan; Yeung, King Lun

    2014-01-01

    An alkali-resistant catalyst for direct internal reforming molten carbonate fuel cell (DIR-MCFC) is prepared by growing a thin shell of mesoporous MSU-1 membrane on Ni/Al2O3 catalyst beads. The MSU-1 shell is obtained by first depositing a monolayer of colloidal silicalite-1 (Sil-1) on the catalyst bead as linkers and then using NaF stored in the beads to catalyze the growth of the MSU-1 layer. The resulting core-shell catalysts display excellent alkali-resistance and deliver stable methane conversion and hydrogen yield in an out-of-cell test simulating the operating conditions of an operating DIR-MCFC. Higher conversion and yield (i.e., up to over 70%) are obtained from the new core-shell catalyst with MSU-1 shell compared to the catalyst with microporous Sil-1 shell. A mathematical model of the reaction and poisoning of the core-shell catalyst is used to predict the optimum shell thickness for its reliable use in a DIR-MCFC.

  3. Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes

    SciTech Connect

    Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

    1982-01-01

    This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

  4. The Formation and Stability of Carbonic Acid on Outer Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Peeters, Z.; Hudson, R. L.; Moore, M. H.; Lewis, Ariel

    2009-01-01

    The radiation chemistry, thermal stability, and vapor pressure of solid-phase carbonic acid (H2CO3) have been studied with mid-infrared spectroscopy. A new procedure for measuring this molecule's radiation stability has been used to obtain intrinsic IR band strengths and half-lives for radiolytic destruction. Results are compared to literature values. We report, for the first time, measurements of carbonic acid's vapor pressure and its heat of sublimation. We also report the first observation of a chemical reaction involving solid-phase carbonic acid. Possible applications of these findings are discussed, with an emphasis on the outer Solar System.

  5. Method for producing hydrocarbon fuels and fuel gas from heavy polynuclear hydrocarbons by the use of molten metal halide catalysts

    DOEpatents

    Gorin, Everett

    1979-01-01

    In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst in a hydrocracking zone, thereafter separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide and thereafter regenerating the spent molten metal halide by incinerating the spent molten metal halide by combustion of carbon and sulfur compounds in the spent molten metal halide in an incineration zone, the improvement comprising: (a) contacting the heavy feedstocks and hydrogen in the presence of the molten metal halide in the hydrocracking zone at reaction conditions effective to convert from about 60 to about 90 weight percent of the feedstock to lighter hydrocarbon fuels; (b) separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide; (c) contacting the spent molten metal halide with oxygen in a liquid phase gasification zone at a temperature and pressure sufficient to vaporize from about 25 to about 75 weight percent of the spent metal halide, the oxygen being introduced in an amount sufficient to remove from about 60 to about 90 weight percent of the carbon contained in the spent molten metal halide to produce a fuel gas and regenerated metal halide; and (d) incinerating the spent molten metal halide by combusting carbon and sulfur compounds contained therein.

  6. Gasification characteristics of organic waste by molten salt

    NASA Astrophysics Data System (ADS)

    Sugiura, Kimihiko; Minami, Keishi; Yamauchi, Makoto; Morimitsu, Shinsuke; Tanimoto, Kazumi

    Recently, along with the growth in economic development, there has been a dramatic accompanying increase in the amount of sludge and organic waste. The disposal of such is a significant problem. Moreover, there is also an increased in the consumption of electricity along with economic growth. Although new energy development, such as fuel cells, has been promoted to solve the problem of power consumption, there has been little corresponding promotion relating to the disposal of sludge and organic waste. Generally, methane fermentation comprises the primary organic waste fuel used in gasification systems. However, the methane fermentation method takes a long time to obtain the fuel gas, and the quality of the obtained gas is unstable. On the other hand, gasification by molten salt is undesirable because the molten salt in the gasification gas corrodes the piping and turbine blades. Therefore, a gasification system is proposed by which the sludge and organic waste are gasified by molten salt. Moreover, molten carbonate fuel cells (MCFC) are needed to refill the MCFC electrolyte volatilized in the operation. Since the gasification gas is used as an MCFC fuel, MCFC electrolyte can be provided with the fuel gas. This paper elucidates the fundamental characteristics of sludge and organic waste gasification. A crucible filled with the molten salt comprising 62 Li 2CO 3/38 K 2CO 3, is installed in the reaction vessel, and can be set to an arbitrary temperature in a gas atmosphere. In this instance, the gasifying agent gas is CO 2. Sludge or the rice is supplied as organic waste into the molten salt, and is gasified. The chemical composition of the gasification gas is analyzed by a CO/CO 2 meter, a HC meter, and a SO x meter gas chromatography. As a result, although sludge can generate CO and H 2 near the chemical equilibrium value, all of the sulfur in the sludge is not fixed in the molten salt, because the sludge floats on the surface of the carbonate by the specific

  7. Sulfonated mesoporous silica-carbon composites and their use as solid acid catalysts

    NASA Astrophysics Data System (ADS)

    Valle-Vigón, Patricia; Sevilla, Marta; Fuertes, Antonio B.

    2012-11-01

    The synthesis of highly functionalized porous silica-carbon composites made up of sulfonic groups attached to a carbon layer coating the pores of three types of mesostructured silica (i.e. SBA-15, KIT-6 and mesocellular silica) is presented. The synthesis procedure involves the following steps: (a) removal of the surfactant, (b) impregnation of the silica pores with a carbon precursor, (c) carbonization and (d) sulfonation. The resulting silica-carbon composites contain ˜30 wt % of carbonaceous matter with a high density of acidic groups attached to the deposited carbon (i.e.sbnd SO3H, sbnd COOH and sbnd OH). The structural characteristics of the parent silica are retained in the composite materials, which exhibit a high surface area, a large pore volume and a well-ordered porosity made up uniform mesopores. The high density of the sulfonic groups in combination with the mesoporous structure of the composites ensures that a large number of active sites are easily accessible to reactants. These sulfonated silica-carbon composites behave as eco-friendly, active, selective, water tolerant and recyclable solid acids. In this study we demonstrate the usefulness of these composites as solid acid catalysts for the esterification of maleic anhydride, succinic acid and oleic acid with ethanol. These composites exhibit a superior intrinsic catalytic activity to other commercial solid acids such as Amberlyst-15.

  8. Humic acid adsorption on fly ash and its derived unburned carbon.

    PubMed

    Wang, Shaobin; Zhu, Z H

    2007-11-01

    Fly ash is solid waste from combustion process, containing oxide minerals and unburned carbon. In this investigation, fly ash has been separated into metal oxide mineral section and unburned carbon. The fly ash with different contents of unburned carbon was employed for humic acid adsorption to investigate the influence of unburned carbon on adsorption. It is found that metal oxides and unburned carbon in fly ash exhibit significant difference in humic acid adsorption. The unburned carbon plays the major role in adsorption. Higher content of unburned carbon in fly ash results in higher surface area and thus higher humic acid adsorption. Fly ash and unburned carbon exhibit adsorption capacity of humic acid of 11 and 72 mg/g, respectively, at 30 degrees C, pH 7. Humic acid adsorption is also affected by ion strength, pH, and temperature. The thermodynamic calculations indicate that the adsorption is endothermic nature with DeltaH(0) and DeltaS(0) as 5.79 kJ/mol and 16.0 J/K mol, respectively. PMID:17628583

  9. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid

    PubMed Central

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-01-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA. PMID:26924080

  10. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid.

    PubMed

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-01-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA. PMID:26924080

  11. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid

    NASA Astrophysics Data System (ADS)

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-02-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA.

  12. Imprinted zeolite modified carbon paste electrode as a potentiometric sensor for uric acid

    NASA Astrophysics Data System (ADS)

    Khasanah, Miratul; Widati, Alfa Akustia; Fitri, Sarita Aulia

    2016-03-01

    Imprinted zeolite modified carbon paste electrode (carbon paste-IZ) has been developed and applied to determine uric acid by potentiometry. The imprinted zeolite (IZ) was synthesized by the mole ratio of uric acid/Si of 0.0306. The modified electrode was manufactured by mass ratio of carbon, IZ and solid paraffin was 40:25:35. The modified electrode had shown the measurement range of 10-5 M to 10-2 M with Nernst factor of 28.6 mV/decade, the detection limit of 5.86 × 10-6 M and the accuracy of 95.3 - 105.0%. Response time of the electrode for uric acid 10-5 M - 10-2 M was 25 - 44 s. The developed electrode showed the high selectivity toward uric acid in the urea matrix. Life time of the carbon paste-IZ electrode was 10 weeks.

  13. Determination of primary and secondary sources of organic acids and carbonaceous aerosols using stable carbon isotopes

    NASA Astrophysics Data System (ADS)

    Fisseha, Rebeka; Saurer, Matthias; Jäggi, Maya; Siegwolf, Rolf T. W.; Dommen, Josef; Szidat, Sönke; Samburova, Vera; Baltensperger, Urs

    Stable carbon isotope ratio ( δ13C) data can provide important information regarding the sources and the processing of atmospheric organic carbon species. Formic, acetic and oxalic acid were collected from Zurich city in August-September 2002 and March 2003 in the gas and aerosol phase, and the corresponding δ13C analysis was performed using a wet oxidation method followed by isotope ratio mass spectrometry. In August, the δ13C values of gas phase formic acid showed a significant correlation with ozone (coefficient of determination ( r2) = 0.63) due to the kinetic isotope effect (KIE). This indicates the presence of secondary sources (i.e. production of organic acids in the atmosphere) in addition to direct emission. In March, both gaseous formic and acetic acid exhibited similar δ13C values and did not show any correlation with ozone, indicating a predominantly primary origin. Even though oxalic acid is mainly produced by secondary processes, the δ13C value of particulate oxalic acid was not depleted and did not show any correlation with ozone, which may be due to the enrichment of 13C during the gas - aerosol partitioning. The concentrations and δ13C values of the different aerosol fractions (water soluble organic carbon, water insoluble organic carbon, carbonate and black carbon) collected during the same period were also determined. Water soluble organic carbon (WSOC) contributed about 60% to the total carbon and was enriched in 13C compared to other fractions indicating a possible effect of gas - aerosol partitioning on δ13C of carbonaceous aerosols. The carbonate fraction in general was very low (3% of the total carbon).

  14. A Functional Tricarboxylic Acid Cycle Operates during Growth of Bordetella pertussis on Amino Acid Mixtures as Sole Carbon Substrates

    PubMed Central

    Garnier, Dominique; Speck, Denis

    2015-01-01

    It has been claimed that citrate synthase, aconitase and isocitrate dehydrogenase activities are non-functional in Bordetella pertussis and that this might explain why this bacterium’s growth is sometimes associated with accumulation of polyhydroxybutyrate (PHB) and/or free fatty acids. However, the sequenced genome includes the entire citric acid pathway genes. Furthermore, these genes were expressed and the corresponding enzyme activities detected at high levels for the pathway when grown on a defined medium imitating the amino acid content of complex media often used for growth of this pathogenic microorganism. In addition, no significant PHB or fatty acids could be detected. Analysis of the carbon balance and stoichiometric flux analysis based on specific rates of amino acid consumption, and estimated biomass requirements coherent with the observed growth rate, clearly indicate that a fully functional tricarboxylic acid cycle operates in contrast to previous reports. PMID:26684737

  15. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and fatty acids: Implications for atmospheric processing of organic aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Lin; Kawamura, Kimitaka; Cao, Fang; Lee, Meehye

    2016-04-01

    Stable carbon isotopic compositions (δ13C) were measured for 23 individual organic species including 9 dicarboxylic acids, 7 oxocarboxylic acids, 1 tricarboxylic acid, 2 α-dicarbonyls, and 4 fatty acids in the aerosols from Gosan background site in East Asia. δ13C values of particle phase glyoxal and methylglyoxal are significantly larger than those previously reported for isoprene and other precursors. The values are consistently less negative in oxalic acid (C2, average -14.1‰), glyoxylic acid (-13.8‰), pyruvic acid (-19.4‰), glyoxal (-13.5‰), and methylglyoxal (-18.6‰) compared to other organic species (e.g., palmitic acid, -26.3‰), which can be explained by the kinetic isotope effects during atmospheric oxidation of pre-aged precursors (e.g., isoprene) and the subsequent gas-particle partitioning after the evaporation of clouds or wet aerosols. The δ13C values of C2 is positively correlated with C2 to organic carbon ratio, indicating that photochemical production of C2 is more pronounced than its degradation during long-range atmospheric transport. The isotopic results also suggest that aqueous phase oxidation of glyoxal and methylglyoxal is a major formation process of oxalic acid via the intermediates such as glyoxylic acid and pyruvic acid. This study provides evidence that organic aerosols are intensively photochemically aged in the western North Pacific rim.

  16. USE OF THE COMPOSITION AND STABLE CARBONIISOTOPE RATIO OF MICROBIAL FATTY ACIDS TO STUDY CARBON CYCLING

    EPA Science Inventory

    We use measurements of the concentration and stable carbon isotopic ratio (*13C) of individual microbial phospholipid fatty acids (PLFAs) in soils and sediments as indicators of live microbial biomass levels and microbial carbon source. For studies of soil organic matter (SOM) cy...

  17. Batteries using molten salt electrolyte

    DOEpatents

    Guidotti, Ronald A.

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  18. Reconciling Empirical Carbonate Clumped Isotope Calibrations: A Comparison of Calcite Precipitation and Acid Digestion Methods

    NASA Astrophysics Data System (ADS)

    Kelson, J.; Huntington, K. W.; Schauer, A. J.; Saenger, C.; Lechler, A. R.

    2015-12-01

    An accurate empirical calibration is necessary to confidently apply the carbonate clumped isotope (Δ47) thermometer. Previous synthetic carbonate calibrations disagree in temperature sensitivity, with one group of calibrations displaying a shallow Δ47-temperature slope (e.g., Dennis & Schrag, GCA, 2010), and the other a steep slope (e.g., Zaarur et al., EPSL, 2013). These calibrations differ in both the method of mineral precipitation and the temperature of the phosphoric acid used to digest carbonates for analysis, making it difficult to isolate the cause of the discrepancy. Here, we precipitate synthetic carbonates at temperatures of 6-80ºC using 4 different precipitation methods, and analyze the samples using both 90 and 25°C acid digestion. Precipitation experiments varied the use of salts (NaHCO3 and CaCl2) vs. dissolved CaCO3 as a starting solution, the use of carbonic anhydrase to promote isotopic equilibrium among dissolved inorganic carbon species in solution, and the method by which CO2 degasses to force carbonate precipitation. Carbonates precipitated by using salts and allowing CO2 to passively degas produce a shallow calibration slope that we hypothesize to approach isotopic equilibrium. Precipitation methods that bubble CO2 into solution then degas that CO2 (either passively or actively by bubbling N2) produce carbonates with consistently lower Δ47 and higher δ18O values for a given growth temperature. We infer that these carbonates grew in disequilibrium during rapid CO2 degassing. Varying acid digestion temperature does not change the results; acid fractionation factor is not correlated with grain size, Δ47, or d47 values. No precipitation method produces a steep calibration slope. Our large sample set of >60 carbonates lend confidence to a shallow slope calibration, and inform interpretations of Δ47 and δ18O values of natural carbonates that grow under conditions of isotopic disequilibrium.

  19. Enhancing the performance of lead-acid batteries with carbon - In pursuit of an understanding

    NASA Astrophysics Data System (ADS)

    Moseley, Patrick T.; Rand, David A. J.; Peters, Ken

    2015-11-01

    The inherently poor dynamic charge-acceptance of the lead-acid battery can be greatly improved by the incorporation of additional carbon to the negative plate. An analysis is undertaken of the various ways by which the carbon may be introduced, and of the proposed mechanisms whereby its presence proves to be beneficial. It is intended that such an investigation should provide a guide to the selection of the optimum carbon inventory.

  20. Preparation of a novel carbon-based solid acid from cassava stillage residue and its use for the esterification of free fatty acids in waste cooking oil.

    PubMed

    Wang, Lingtao; Dong, Xiuqin; Jiang, Haoxi; Li, Guiming; Zhang, Minhua

    2014-04-01

    A novel carbon-based solid acid catalyst was prepared by the sulfonation of incompletely carbonized cassava stillage residue (CSR) with concentrated sulfuric acid, and employed to catalyze the esterification of methanol and free fatty acids (FFAs) in waste cooking oil (WCO). The effects of the carbonization and the sulfonation temperatures on the pore structure, acid density and catalytic activity of the CSR-derived catalysts were systematically investigated. Low temperature carbonization and high temperature sulfonation can cause the collapse of the carbon framework, while high temperature carbonization is not conducive to the attachment of SO3H groups on the surface. The catalyst showed high catalytic activity for esterification, and the acid value for WCO is reduced to below 2mg KOH/g after reaction. The activity of catalyst can be well maintained after five cycles. CSR can be considered a promising raw material for the production of a new eco-friendly solid acid catalyst. PMID:24661813

  1. Predicting the Sorption of Aromatic Acids to Noncarbonized and Carbonized Sorbents.

    PubMed

    Sigmund, Gabriel; Sun, Huichao; Hofmann, Thilo; Kah, Melanie

    2016-04-01

    Approaches based on the octanol-water partition coefficient are commonly used to describe sorption of neutral organic compounds in environmental systems, but they are not suitable for organic acids, which can dissociate to form anions. We here investigate the applicability of an alternative approach based on the pH-dependent distribution ratio (DOW) to describe sorption of aromatic acids to sorbents representing different degrees of carbonization. Sorption isotherms for four structurally similar acids ((2,4-dichlorophenoxy)acetic acid (2,4-D), 4-chloro-2-15 methylphenoxy)acetic acid (MCPA), 4-(2,4-dichlorophenoxy)butanoic16 acid (2,4-DB), and 5-chloro-2-(2,4-dichlorophenoxy)phenol (triclosan)) were measured for 15 sorbents: fresh and carbonized wood shavings, pig manure, sewage sludge, carbon nanotubes, and activated carbon. Dissociation greatly affected the sorption of all acids. Sorption coefficients measured in the high pH range indicated that sorption of the anions ranged over several orders of magnitude and should not be neglected. Sorption trends for all sorbates and carbonized sorbents could be very well described by a single regression equation that included DOW of the sorbate and the specific surface area of the sorbent (R(2) > 0.89). PMID:26949216

  2. Carbonic Acid as a Reserve of Carbon Dioxide on Icy Moons: The Formation of Carbon Dioxide (CO2) in a Polar Environment

    NASA Astrophysics Data System (ADS)

    Jones, Brant M.; Kaiser, Ralf I.; Strazzulla, Giovanni

    2014-06-01

    Carbon dioxide (CO2) has been detected on the surface of several icy moons of Jupiter and Saturn via observation of the ν3 band with the Near-Infrared Mapping Spectrometer on board the Galileo spacecraft and the Visible-Infrared Mapping Spectrometer on board the Cassini spacecraft. Interestingly, the CO2 band for several of these moons exhibits a blueshift along with a broader profile than that seen in laboratory studies and other astrophysical environments. As such, numerous attempts have been made in order to clarify this abnormal behavior; however, it currently lacks an acceptable physical or chemical explanation. We present a rather surprising result pertaining to the synthesis of carbon dioxide in a polar environment. Here, carbonic acid was synthesized in a water (H2O)-carbon dioxide (CO2) (1:5) ice mixture exposed to ionizing radiation in the form of 5 keV electrons. The irradiated ice mixture was then annealed, producing pure carbonic acid which was then subsequently irradiated, recycling water and carbon dioxide. However, the observed carbon dioxide ν3 band matches almost exactly with that observed on Callisto; subsequent temperature program desorption studies reveal that carbon dioxide synthesized under these conditions remains in solid form until 160 K, i.e., the sublimation temperature of water. Consequently, our results suggest that carbon dioxide on Callisto as well as other icy moons is indeed complexed with water rationalizing the shift in peak frequency, broad profile, and the solid state existence on these relatively warm moons.

  3. Primary and secondary room temperature molten salt electrochemical cells

    NASA Astrophysics Data System (ADS)

    Reynolds, G. F.; Dymek, C. J., Jr.

    1985-07-01

    Three novel primary cells which use room temperature molten salt electrolytes are examined and found to have high open circuit potentials in the 1.75-2.19 V range, by comparison with the Al/AlCl3-MEICl concentration cell; their cathodes were of FeCl3-MEICl, WCl6-MEICl, and Br2/reticulated vitreous carbon together with Pt. Also, secondary electrochemical cell candidates were examined which combined the reversible Al/AlCl3-MEICl electrode with reversible zinc and cadmium molten salt electrodes to yield open circuit potentials of about 0.7 and 1.0 V, respectively. Room temperature molten salts' half-cell reduction potentials are given.

  4. Inhibition of nitrobenzene adsorption by water cluster formation at acidic oxygen functional groups on activated carbon.

    PubMed

    Kato, Yuichi; Machida, Motoi; Tatsumoto, Hideki

    2008-06-15

    The inhibition effect of nitrobenzene adsorption by water clusters formed at the acidic groups on activated carbon was examined in aqueous and n-hexane solution. The activated carbon was oxidized with nitric acid to introduce CO complexes and then outgassed in helium flow at 1273 K to remove them completely without changing the structural properties of the carbon as a reference adsorbent. The amounts of acidic functional groups were determined by applying Boehm titration. A relative humidity of 95% was used to adsorb water onto the carbon surface. Strong adsorption of water onto the oxidized carbon can be observed by thermogravimetric analysis. The adsorption kinetic rate was estimated to be controlled by diffusion from the kinetic analysis. Significant decline in both capacity and kinetic rate for nitrobenzene adsorption onto the oxidized carbon was also observed in n-hexane solution by preadsorption of water to the carbon surface, whereas it was not detected for the outgassed carbons. These results might reveal that water molecules forming clusters at the CO complexes inhibited the entrance of nitrobenzene into the interparticles of the carbon. PMID:18440013

  5. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and fatty acids: implications for atmospheric processing of organic aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Kawamura, K.; Cao, F.; Lee, M.

    2015-12-01

    Stable carbon isotopic compositions (δ13C) were measured for 23 individual organic species including 9 dicarboxylic acids, 7 oxocarboxylic acids, 1 tricarboxylic acid, 2 α-dicarbonyls and 4 fatty acids in the aerosols from Gosan background site in East Asia. δ13C of particle-phase glyoxal and methylglyoxal are significantly higher than those previously reported for isoprene and other precursors, associated with isotope fractionation during atmospheric oxidation. 13C is consistently more enriched for oxalic acid (C2), glyoxylic acid, pyruvic acid, glyoxal and methylglyoxal compared to other organic compounds identified, which can be explained by the kinetic isotope effects during aqueous-phase processing and the subsequent gas-particle partitioning after clouds or wet aerosols evaporation δ13C of C2 is positively correlated with C2 and organic carbon ratio, indicating that a photochemical production of C2 is more pronounced than its degradation process during long-range transport. The 13C results also suggest that aqueous-phase oxidation of glyoxal and methylglyoxal is major formation process of oxalic acid production via the major intermediates glyoxylic acid and pyruvic acid. This study provides evidence that organic aerosols are intensively photo-chemically aged in this region.

  6. PERFORMANCE AND MODELING OF A HOT POTASSIUM CARBONATE ACID GAS REMOVAL SYSTEM IN TREATING COAL GAS

    EPA Science Inventory

    The report discusses the performance and modeling of a hot potassium carbonate (K2CO3) acid gas removal system (AGRS) in treating coal gas. Aqueous solutions of K2CO3, with and without amine additive, were used as the acid gas removal solvent in the Coal Gasification/Gas Cleaning...

  7. Amino Acid Synthesis in a Supercritical Carbon Dioxide - Water System

    PubMed Central

    Fujioka, Kouki; Futamura, Yasuhiro; Shiohara, Tomoo; Hoshino, Akiyoshi; Kanaya, Fumihide; Manome, Yoshinobu; Yamamoto, Kenji

    2009-01-01

    Mars is a CO2-abundant planet, whereas early Earth is thought to be also CO2-abundant. In addition, water was also discovered on Mars in 2008. From the facts and theory, we assumed that soda fountains were present on both planets, and this affected amino acid synthesis. Here, using a supercritical CO2/liquid H2O (10:1) system which mimicked crust soda fountains, we demonstrate production of amino acids from hydroxylamine (nitrogen source) and keto acids (oxylic acid sources). In this research, several amino acids were detected with an amino acid analyzer. Moreover, alanine polymers were detected with LC-MS. Our research lights up a new pathway in the study of life’s origin. PMID:19582225

  8. Hexavalent chromium [Cr(VI)] removal by acid modified waste activated carbons.

    PubMed

    Ghosh, Pranab Kumar

    2009-11-15

    Fresh activated carbon (AC) and waste activated carbon (WAC) were pretreated by heating with mineral acids (sulfuric acid and nitric acid) at high temperature to prepare several grades of adsorbents to evaluate their performance on Cr(VI) removal from aqueous phase. Effects of temperature, agitation speed and pH were tested, and optimum conditions were evaluated. Kinetic study was performed under optimum conditions with several grades of modified adsorbents to know the rates of adsorption. Batch adsorption equilibrium data followed both, Freuindlich and Langmuir isotherms. Maximum adsorption capacity (q(max)) of the selected adsorbents treated with sulfuric acid (MWAC 1) and nitric acid (MWAC 2), calculated from Langmuir isotherm are 7.485 and 10.929 mg/g, respectively. Nitric acid treated adsorbent (MWAC 2) was used for column study to determine the constants of bed depth service time (BDST) model for adsorption column design. PMID:19553008

  9. Molten salt synthesis and localized surface plasmon resonance study of vanadium dioxide nanopowders

    SciTech Connect

    Wang Fu; Liu Yun; Liu Chunyan

    2009-12-15

    Rutile-type vanadium dioxide nanopowders with four different sizes were successfully synthesized by carbothermal reducing V{sub 2}O{sub 5} in KCl-LiCl molten salt. XRD and TEM characterizations suggested that vanadium dioxide particles formed by a broken and reunited process of vanadium oxide. Molten salt and organic carbon sources are crucial to the size of final particles. In the presence of the molten salt, the organic carbon with a shorter chain length would induce smaller particles. The UV-VIS-IR spectral measurements for as-prepared vanadium dioxide announced an obvious localized surface plasmon resonance band in the near infrared region at 90 deg. C. - Graphical abstract: Schematic illustration of the formation mechanism of VO{sub 2}(M) nanoparticles in molten salt, particles size can be controlled by choosing organic carbon sources with different chain length.

  10. Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions.

    PubMed

    Zhi, Yue; Liu, Jinxia

    2016-02-01

    The objective of the research was to examine the effect of increasing carbon surface basicity on uptake of perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) by activated carbon. Granular activated carbons made from coal, coconut shell, wood, and phenolic-polymer-based activated carbon fibers were modified through high-temperature and ammonia gas treatments to facilitate systematical evaluation of the impact of basicity of different origins. Comparison of adsorption isotherms and adsorption distribution coefficients showed that the ammonia gas treatment was more effective than the high-temperature treatment in enhancing surface basicity. The resultant higher point of zero charges and total basicity (measured by total HCl uptake) correlated with improved adsorption affinity for PFOS and PFOA. The effectiveness of surface modification to enhance adsorption varied with carbon raw material. Wood-based carbons and activated carbon fibers showed enhancement by one to three orders of magnitudes while other materials could experience reduction in adsorption towards either PFOS or PFOA. PMID:26469934

  11. [Some considerations about the use of carbon sources in jasmonic acid production.].

    PubMed

    Almeida González, G; Klibansky Delgado, M; Altuna Seijas, B; Eng Sánchez, F; Legrá Mora, S; Armenteros Galarraga, S

    1999-09-01

    The effect of different carbon sources as sucrose, fructose, glucose and molasses were studied in relation to jasmonic acid production. The best results were obtained with a simple medium made up by final molasses, potassium nitrate and acid potassium phosphate, without the addition of other salts like Fe, Zn, Cu, Mo, etc. This alternative guaranteed a 100% increase in jasmonic acid production, compared to pattern medium, since a concentration of 2.08 g/l was obtained. PMID:18473562

  12. Highly ordered three dimensional macroporous carbon spheres and their acid catalytic properties

    NASA Astrophysics Data System (ADS)

    Huang, Hui; Zhang, Jianming; Zhang, Yuxiao; Lian, Suoyuan; Liu, Yang

    2013-10-01

    Highly ordered three dimensional macroporous carbon spheres bearing sulfonic acid groups (MPCS-SO3H) were prepared by incomplete carbonization of glucose in silica crystal bead template, followed by sulfonation and removal of the template. The composition and porous structure of the obtained carbon spheres were investigated by physical adsorption of nitrogen, scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. The catalytic properties of the MPCS-SO3H were evaluated by esterification of ethanol with acetic acid, indicating that MPCS-SO3H possess remarkable catalytic performance (high stability and acid catalytic ability) for the esterification.

  13. Molten metal injector system and method

    DOEpatents

    Meyer, Thomas N.; Kinosz, Michael J.; Bigler, Nicolas; Arnaud, Guy

    2003-04-01

    Disclosed is a molten metal injector system including a holder furnace, a casting mold supported above the holder furnace, and a molten metal injector supported from a bottom side of the mold. The holder furnace contains a supply of molten metal having a metal oxide film surface. The bottom side of the mold faces the holder furnace. The mold defines a mold cavity for receiving the molten metal from the holder furnace. The injector projects into the holder furnace and is in fluid communication with the mold cavity. The injector includes a piston positioned within a piston cavity defined by a cylinder for pumping the molten metal upward from the holder furnace and injecting the molten metal into the mold cavity under pressure. The piston and cylinder are at least partially submerged in the molten metal when the holder furnace contains the molten metal. The cylinder further includes a molten metal intake for receiving the molten metal into the piston cavity. The molten metal intake is located below the metal oxide film surface of the molten metal when the holder furnace contains the molten metal. A method of injecting molten metal into a mold cavity of a casting mold is also disclosed.

  14. Photochemical functionalization of diamond films using a short carbon chain acid

    NASA Astrophysics Data System (ADS)

    Wang, Chun; Huang, Nan; Zhuang, Hao; Yang, Bing; Zhai, Zhaofeng; Jiang, Xin

    2016-02-01

    Diamond is recognized as a promising semiconductor material for biological applications, because of its high chemical stability and biocompatibility. Here, we report an acid with only three carbon chain, acrylic acid (AA), for the functionalization of H-terminated diamond film via photochemical method. The successfully modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy and contact angle analyzer. Our functionalization approach was proven to be simple and facile, which shows a new potential opportunity for the photochemical modification of diamond surface with short carbon chain acid.

  15. X-ray microtomography of hydrochloric acid propagation in carbonate rocks.

    PubMed

    Machado, A C; Oliveira, T J L; Cruz, F B; Lopes, R T; Lima, I

    2015-02-01

    Acid treatments are used in the oil and gas industry, to increase the permeability of the carbonate reservoirs by creating preferential channels, called wormholes. Channels formation is strongly influenced by acid type and injection rate. The aim of this study is to evaluate some characteristics of the microporous system of carbonate rocks, before and after acidizing. For that purpose X-ray high-resolution microtomography was used. The results show that this technique can be used as a reliable method to analyze microstructural characteristics of the wormholes. PMID:25485884

  16. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob

    NASA Astrophysics Data System (ADS)

    Sych, N. V.; Trofymenko, S. I.; Poddubnaya, O. I.; Tsyba, M. M.; Sapsay, V. I.; Klymchuk, D. O.; Puziy, A. M.

    2012-11-01

    Active carbons have been prepared from corncob using chemical activation with phosphoric acid at 400 °C using varied ratio of impregnation (RI). Porous structure of carbons was characterized by nitrogen adsorption and scanning electron microscopy. Surface chemistry was studied by IR and potentiometric titration method. It has been shown that porosity development was peaked at RI = 1.0 (SBET = 2081 m2/g, Vtot = 1.1 cm3/g), while maximum amount of acid surface groups was observed at RI = 1.25. Acid surface groups of phosphoric acid activated carbons from corncob includes phosphate and strongly acidic carboxylic (pK = 2.0-2.6), weakly acidic carboxylic (pK = 4.7-5.0), enol/lactone (pK = 6.7-7.4; 8.8-9.4) and phenol (pK = 10.1-10.7). Corncob derived carbons showed high adsorption capacity to copper, especially at low pH. Maximum adsorption of methylene blue and iodine was observed for carbon with most developed porosity (RI = 1.0).

  17. Dissimilation of Carbon Monoxide to Acetic Acid by Glucose-Limited Cultures of Clostridium thermoaceticum

    PubMed Central

    Martin, Douglas R.; Misra, Arun; Drake, Harold L.

    1985-01-01

    Clostridium thermoaceticum was cultivated in glucose-limited media, and the dissimilation of CO to acetic acid was evaluated. We found that cultures catalyzed the rapid dissimilation of CO to acetic acid and CO2, with the stoichiometry obtained for conversion approximating that predicted from the following reaction: 4CO + 2H2O → CH3CO2H + 2CO2. Growing cultures formed approximately 50 mmol (3 g) of CO-derived acetic acid per liter of culture, with the rate of maximal consumption approximating 9.1 mmol of CO consumed/h per liter of culture. In contrast, resting cells were found not to dissimilate CO to acetic acid. 14CO was incorporated, with equal distribution between the carboxyl and methyl carbons of acetic acid when the initial cultivation gas phase was 100% CO, whereas 14CO2 preferentially entered the carboxyl carbon when the initial gas phase was 100% CO2. Significantly, in the presence of saturating levels of CO, 14CO2 preferentially entered the methyl carbon, whereas saturating levels of CO2 yielded 14CO-derived labeling predominantly in the carboxyl carbon. These findings are discussed in relation to the path of carbon flow to acetic acid. PMID:16346807

  18. Adsorption of perfluoroalkyl acids by carbonaceous adsorbents: Effect of carbon surface chemistry.

    PubMed

    Zhi, Yue; Liu, Jinxia

    2015-07-01

    Adsorption by carbonaceous sorbents is among the most feasible processes to remove perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) from drinking and ground waters. However, carbon surface chemistry, which has long been recognized essential for dictating performance of such sorbents, has never been considered for PFOS and PFOA adsorption. Thus, the role of surface chemistry was systematically investigated using sorbents with a wide range in precursor material, pore structure, and surface chemistry. Sorbent surface chemistry overwhelmed physical properties in controlling the extent of uptake. The adsorption affinity was positively correlated carbon surface basicity, suggesting that high acid neutralizing or anion exchange capacity was critical for substantial uptake of PFOS and PFOA. Carbon polarity or hydrophobicity had insignificant impact on the extent of adsorption. Synthetic polymer-based Ambersorb and activated carbon fibers were more effective than activated carbon made of natural materials in removing PFOS and PFOA from aqueous solutions. PMID:25827692

  19. Metabolic carbon fluxes and biosynthesis of polyhydroxyalkanoates in Ralstonia eutropha on short chain fatty acids.

    PubMed

    Yu, Jian; Si, Yingtao

    2004-01-01

    Short chain fatty acids such as acetic, propionic, and butyric acids can be synthesized into polyhydroxyalkanoates (PHAs) by Ralstonia eutropha. Metabolic carbon fluxes of the acids in living cells have significant effect on the yield, composition, and thermomechanical properties of PHA bioplastics. Based on the general knowledge of central metabolism pathways and the unusual metabolic pathways in R. eutropha, a metabolic network of 41 bioreactions is constructed to analyze the carbon fluxes on utilization of the short chain fatty acids. In fed-batch cultures with constant feeding of acid media, carbon metabolism and distribution in R. eutropha were measured involving CO2, PHA biopolymers, and residual cell mass. As the cells underwent unsteady state metabolism and PHA biosynthesis under nitrogen-limited conditions, accumulative carbon balance was applied for pseudo-steady-state analysis of the metabolic carbon fluxes. Cofactor NADP/NADPH balanced between PHA synthesis and the C3/C4 pathway provided an independent constraint for solution of the underdetermined metabolic network. A major portion of propionyl-CoA was directed to pyruvate via the 2-methylcitrate cycle and further decarboxylated to acetyl-CoA. Only a small amount of propionate carbon (<15% carbon) was directly condensed with acetyl-CoA for 3-hydroxyvalerate. The ratio of glyoxylate shunt to TCA cycle varies from 0 to 0.25, depending on the intracellular acetyl-CoA level and acetic acid in the medium. Malate is the node of the C3/C4 pathway and TCA cycle and its decarboxylation to dehydrogenation ranges from 0.33 to 1.28 in response to the demands on NADPH and oxaloacetate for short chain fatty acids utilization. PMID:15296425

  20. Inhibition Effect of Dodecylamine on Carbon Steel Corrosion in Hydrochloric Acid Solution

    NASA Astrophysics Data System (ADS)

    Chen, Zhenyu; Huang, Ling; Qiu, Yubing; Guo, Xingpeng

    2012-12-01

    Dodecylamine spontaneously adsorbs on carbon steel via its polar group (-NH2) in hydrochloric acid solution. Furthermore, it forms a monolayer film on carbon steel surface. The inhibition mechanism of dodecylamine for carbon steel is geometric blocking effect. The adsorption of dodecylamine on carbon steel surface follows Arrhenius equation. The adsorption slightly increases activated energy, but greatly reduces pre-exponential factor value. Atomic force microscopy force curves indicate that at the area without adsorbed dodecylamine, no obvious adhere force occurs. At the area with adsorbed dodecylamine, however, an average 1.3 nN adhere force is observed.

  1. Fumaric acid: an overlooked form of fixed carbon in Arabidopsis and other plant species

    SciTech Connect

    Chia, D.W.; Yoder, T.J.; Reiter, W.D.; Gibson, S.I.

    2000-10-01

    Photoassimilates are used by plants for production of energy, as carbon skeletons and in transport of fixed carbon between different plant organs. Many studies have been devoted to characterizing the factors that. regulate photoassimilate concentrations in different plant species. Most studies examining photoassimilate concentrations in C{sub 3} plants have focused on analyzing starch and soluble sugars. However, work presented here demonstrates that a number of C{sub 3} plants, including the popular model organism Arabidopsis thaliana (L.) Heynh., and agriculturally important plants, such as soybean [Glycine ma (L.) Merr.], contain significant quantities of furnaric acid. In fact, furnaric acid can accumulate to levels of several mg per g fresh weight in A-abidopsis leaves, often exceeding starch and soluble sugar levels. Furnaric acid is a component of the tricarboxylic acid cycle and, like starch and soluble sugars, can be metabolized to yield energy and carbon skeletons for production of other compounds. Fumaric acid concentrations increase with plant age and light intensity in Arabidopsis leaves. Arabidopsis phloem exudates contain significant quantities of fumaric acid, raising the possibility that fumaric acid may function in carbon transport.

  2. Effects of simulated acid precipitation on decomposition and leaching of organic carbon in forest soils

    SciTech Connect

    Chang, F.H.; Alexander, M.

    1984-09-01

    Soil samples from three watersheds of New York State were treated with simulated rain at pH 3.5, 4.1, and 5.6 daily for 14 d, at 12 3-d intervals in three separate tests, or at 22 7-d intervals. Except for one system of treating the three forest soils, simulated acid rain reduced the amount of organic matter leached from samples of soil from which more than 0.05% of the organic carbon was leached during the exposure period. In the soil samples representing the exceptions, acid rain enhanced the leaching of organic matter. Samples from the organic layer of the treated samples of acid soil were taken at two equal depths, and the rates of organic matter decomposition in the two layers were studied. As compared with simulated rain at pH 5.6, simulated acid rain reduced the decomposition of organic matter in the three soils at both depths in three of the five tests and at both depths of two of the soils in the fourth test. In some instances, organic matter decomposition was enhanced by the simulated acid rain. Except for the sample of soil at the highest initial pH, carbon mineralization was inhibited in soils and treatments in which simulated acid rain reduced the amount of organic carbon leached, and it was stimulated in soils and treatments in which the quantity of organic carbon leached was increased by the simulated acid rain. 12 references, 3 figures, 8 tables.

  3. Field evaluation of gelled acid for carbonate formations

    SciTech Connect

    Church, D.C.; Quisenberry, J.L.; Fox, K.B.

    1981-01-01

    A new gelled acid was evaluated in W. Texas, S.E. New Mexico, and Oklahoma. The evaluation determined how successful a gelled acid, prepared from xanthan polymer, would be in the following formations: Ellenburger, Blinebry, San Andres, Clearfork, Canyon Lime, Strawn Lime, Grayburg, Devonian, Drinkard Dolomite, Viola and Chester. Treatment depths vary from 4000 to 22,000 ft. Treatment temperatures vary from 70 to 310 F. Treatments were performed on both oil and gas wells. The age of the wells stimulated varies from new to 30 yr old. The concentration of gelled acid remained constant at 15% HCl. The concentration of gelling agent remained constant at 60 lb/1000 gal. The size of the treatments varied from 5000 to 80,000 gal of gelled acid. More than 20 treatments are summarized. Production figures for the well treated are summarized. Production figures for the wells treated are discussed, as well as pertinent related information.

  4. Treatment of plutonium process residues by molten salt oxidation

    SciTech Connect

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J.; Heslop, M.; Wernly, K.

    1999-04-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

  5. Catalytic Decarboxylation of Fatty Acids to Aviation Fuels over Nickel Supported on Activated Carbon

    NASA Astrophysics Data System (ADS)

    Wu, Jianghua; Shi, Juanjuan; Fu, Jie; Leidl, Jamie A.; Hou, Zhaoyin; Lu, Xiuyang

    2016-06-01

    Decarboxylation of fatty acids over non-noble metal catalysts without added hydrogen was studied. Ni/C catalysts were prepared and exhibited excellent activity and maintenance for decarboxylation. Thereafter, the effects of nickel loading, catalyst loading, temperature, and carbon number on the decarboxylation of fatty acids were investigated. The results indicate that the products of cracking increased with high nickel loading or catalyst loading. Temperature significantly impacted the conversion of stearic acid but did not influence the selectivity. The fatty acids with large carbon numbers tend to be cracked in this reaction system. Stearic acid can be completely converted at 370 °C for 5 h, and the selectivity to heptadecane was around 80%.

  6. Catalytic Decarboxylation of Fatty Acids to Aviation Fuels over Nickel Supported on Activated Carbon

    PubMed Central

    Wu, Jianghua; Shi, Juanjuan; Fu, Jie; Leidl, Jamie A.; Hou, Zhaoyin; Lu, Xiuyang

    2016-01-01

    Decarboxylation of fatty acids over non-noble metal catalysts without added hydrogen was studied. Ni/C catalysts were prepared and exhibited excellent activity and maintenance for decarboxylation. Thereafter, the effects of nickel loading, catalyst loading, temperature, and carbon number on the decarboxylation of fatty acids were investigated. The results indicate that the products of cracking increased with high nickel loading or catalyst loading. Temperature significantly impacted the conversion of stearic acid but did not influence the selectivity. The fatty acids with large carbon numbers tend to be cracked in this reaction system. Stearic acid can be completely converted at 370 °C for 5 h, and the selectivity to heptadecane was around 80%. PMID:27292280

  7. Influence of Sodium Carbonate on Decomposition of Formic Acid by Discharge inside Bubble in Water

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Masashi; Takahashi, Katsuyuki; Takaki, Koichi; Satta, Naoya

    2015-09-01

    An influence of sodium carbonate on decomposition of formic acid by discharge inside bubble in water was investigated. Oxygen or argon gases were injected into the water through a vertically positioned glass tube, in which the high-voltage wire electrode was placed to generate plasmas at low applied voltage. The concentration of formic acid was determined by ion chromatography. In the case of addition of sodium carbonate, the pH value increased with decomposition of the formic acid. In the case of oxygen injection, the increase of pH value contributed to improve an efficiency of the formic acid decomposition because the reaction rate of ozone and formic acid increased with increasing pH value. In the case of argon injection, the decomposition rate was not affected by the pH value owing to the high rate constants for loss of hydroxyl radicals.

  8. Catalytic Decarboxylation of Fatty Acids to Aviation Fuels over Nickel Supported on Activated Carbon.

    PubMed

    Wu, Jianghua; Shi, Juanjuan; Fu, Jie; Leidl, Jamie A; Hou, Zhaoyin; Lu, Xiuyang

    2016-01-01

    Decarboxylation of fatty acids over non-noble metal catalysts without added hydrogen was studied. Ni/C catalysts were prepared and exhibited excellent activity and maintenance for decarboxylation. Thereafter, the effects of nickel loading, catalyst loading, temperature, and carbon number on the decarboxylation of fatty acids were investigated. The results indicate that the products of cracking increased with high nickel loading or catalyst loading. Temperature significantly impacted the conversion of stearic acid but did not influence the selectivity. The fatty acids with large carbon numbers tend to be cracked in this reaction system. Stearic acid can be completely converted at 370 °C for 5 h, and the selectivity to heptadecane was around 80%. PMID:27292280

  9. In vitro toxicity of carbon nanotubes, nano-graphite and carbon black, similar impacts of acid functionalization.

    PubMed

    Figarol, Agathe; Pourchez, Jérémie; Boudard, Delphine; Forest, Valérie; Akono, Céline; Tulliani, Jean-Marc; Lecompte, Jean-Pierre; Cottier, Michèle; Bernache-Assollant, Didier; Grosseau, Philippe

    2015-12-25

    Carbon nanotubes (CNT) and nano-graphite (NG) are graphene-based nanomaterials which share exceptional physicochemical properties, but whose health impacts are unfortunately still not well understood. On the other hand, carbon black (CB) is a conventional and widely studied material. The comparison of these three carbon-based nanomaterials is thus of great interest to improve our understanding of their toxicity. An acid functionalization was carried out on CNT, NG and CB so that, after a thorough characterization, their impacts on RAW 264.7 macrophages could be compared for a similar surface chemistry (15 to 120 μg·mL(-1) nanomaterials, 90-min to 24-h contact). Functionalized nanomaterials triggered a weak cytotoxicity similar to the pristine nanomaterials. Acid functionalization increased the pro-inflammatory response except for CB which did not trigger any TNF-α production before or after functionalization, and seemed to strongly decrease the oxidative stress. The toxicological impact of acid functionalization appeared thus to follow a similar trend whatever the carbon-based nanomaterial. At equivalent dose expressed in surface and equivalent surface chemistry, the toxicological responses from murine macrophages to NG were higher than for CNT and CB. It seemed to correspond to the hypothesis of a platelet and fiber paradigm. PMID:26381085

  10. Chemical and biological consequences of using carbon dioxide versus acid additions in ocean acidification experiments

    USGS Publications Warehouse

    Yates, Kimberly K.; DuFore, Christopher M.; Robbins, Lisa L.

    2013-01-01

    Use of different approaches for manipulating seawater chemistry during ocean acidification experiments has confounded comparison of results from various experimental studies. Some of these discrepancies have been attributed to whether addition of acid (such as hydrochloric acid, HCl) or carbon dioxide (CO2) gas has been used to adjust carbonate system parameters. Experimental simulations of carbonate system parameter scenarios for the years 1766, 2007, and 2100 were performed using the carbonate speciation program CO2SYS to demonstrate the variation in seawater chemistry that can result from use of these approaches. Results showed that carbonate system parameters were 3 percent and 8 percent lower than target values in closed-system acid additions, and 1 percent and 5 percent higher in closed-system CO2 additions for the 2007 and 2100 simulations, respectively. Open-system simulations showed that carbonate system parameters can deviate by up to 52 percent to 70 percent from target values in both acid addition and CO2 addition experiments. Results from simulations for the year 2100 were applied to empirically derived equations that relate biogenic calcification to carbonate system parameters for calcifying marine organisms including coccolithophores, corals, and foraminifera. Calculated calcification rates for coccolithophores, corals, and foraminifera differed from rates at target conditions by 0.5 percent to 2.5 percent in closed-system CO2 gas additions, from 0.8 percent to 15 percent in the closed-system acid additions, from 4.8 percent to 94 percent in open-system acid additions, and from 7 percent to 142 percent in open-system CO2 additions.

  11. Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice

    SciTech Connect

    Tong Haiyan McGee, John K.; Saxena, Rajiv K.; Kodavanti, Urmila P.; Devlin, Robert B.; Gilmour, M. Ian

    2009-09-15

    Engineered carbon nanotubes are being developed for a wide range of industrial and medical applications. Because of their unique properties, nanotubes can impose potentially toxic effects, particularly if they have been modified to express functionally reactive chemical groups on their surface. The present study was designed to evaluate whether acid functionalization (AF) enhanced the cardiopulmonary toxicity of single-walled carbon nanotubes (SWCNT) as well as control carbon black particles. Mice were exposed by oropharyngeal aspiration to 10 or 40 {mu}g of saline-suspended single-walled carbon nanotubes (SWCNTs), acid-functionalized SWCNTs (AF-SWCNTs), ultrafine carbon black (UFCB), AF-UFCB, or 2 {mu}g LPS. 24 hours later, pulmonary inflammatory responses and cardiac effects were assessed by bronchoalveolar lavage and isolated cardiac perfusion respectively, and compared to saline or LPS-instilled animals. Additional mice were assessed for histological changes in lung and heart. Instillation of 40 {mu}g of AF-SWCNTs, UFCB and AF-UFCB increased percentage of pulmonary neutrophils. No significant effects were observed at the lower particle concentration. Sporadic clumps of particles from each treatment group were observed in the small airways and interstitial areas of the lungs according to particle dose. Patches of cellular infiltration and edema in both the small airways and in the interstitium were also observed in the high dose group. Isolated perfused hearts from mice exposed to 40 {mu}g of AF-SWCNTs had significantly lower cardiac functional recovery, greater infarct size, and higher coronary flow rate than other particle-exposed animals and controls, and also exhibited signs of focal cardiac myofiber degeneration. No particles were detected in heart tissue under light microscopy. This study indicates that while acid functionalization increases the pulmonary toxicity of both UFCB and SWCNTs, this treatment caused cardiac effects only with the AF-carbon

  12. Supported molten-metal catalysts

    DOEpatents

    Datta, Ravindra; Singh, Ajeet; Halasz, Istvan; Serban, Manuela

    2001-01-01

    An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

  13. Ceramics for Molten Materials Transfer

    NASA Technical Reports Server (NTRS)

    Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.

    2009-01-01

    The paper reviews the main issues associated with molten materials transfer and handling on the lunar surface during the operation of a hig h temperature electrowinning cell used to produce oxygen, with molten iron and silicon as byproducts. A combination of existing technolog ies and purposely designed technologies show promise for lunar exploi tation. An important limitation that requires extensive investigation is the performance of refractory currently used for the purpose of m olten metal containment and transfer in the lunar environment associa ted with electrolytic cells. The principles of a laboratory scale uni t at a scale equivalent to the production of 1 metric ton of oxygen p er year are introduced. This implies a mass of molten materials to be transferred consistent with the equivalent of 1kg regolithlhr proces sed.

  14. The Path of Carbon in Photosynthesis VIII. The Role of Malic Acid

    DOE R&D Accomplishments Database

    Bassham, James A.; Benson, Andrew A.; Calvin, Melvin

    1950-01-25

    Malonate has been found to inhibit the formation of malic acid during short periods of photosynthesis with radioactive carbon dioxide. This result, together with studies which show the photosynthetic cycle to be operating normally at the same time, indicates that malic acid is not an intermediate in photosynthesis but is probably closely related to some intermediate of the cycle. Absence of labeled succinic and fumaric acids in these experiments, in addition to the failure of malonate to inhibit photosynthesis, precludes the participation of these acids as intermediates in photosynthesis.

  15. Fuel production from wastes using molten salts

    SciTech Connect

    Gay, R.L.; Barclay, K.M.; Grantham, L.F.; Yosim, S.J.

    1980-01-01

    The Rockwell International molten salt process for gasification of wastes with resource recovery has been shown here to be well-suited for the processing of a variety of wastes. A variety of waste forms may be processed, that is, solids, liquids, and solid-liquid mixtures. The process is suitable for applications which involve either small or large throughputs. The gasification medium, sodium carbonate, is stable, non-volatile, inexpensive, and nontoxic. Sulfur-containing pollutants are retained in the melt when sulfur-containing wastes are gasified. In the same manner, halogen-containing pollutants are retained during gasification of halogen-containing wastes. The gasification of a high-nitrogen-content waste (leather scraps) produces very little NO/sub x/ in the off-gas. Valuable minerals may be recovered by processing of the salt after gasification of mineral-laden wastes. In general, the molten salt process is best applied to waste materials involving potential pollutants (such as sulfur or chromium) or to wastes where gasification and resource recovery are important (such as the recovery of silver with simultaneous gasification of x-ray film).

  16. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    SciTech Connect

    Chang, Binbin Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  17. Monodispersed Hollow SO3H-Functionalized Carbon/Silica as Efficient Solid Acid Catalyst for Esterification of Oleic Acid.

    PubMed

    Wang, Yang; Wang, Ding; Tan, Minghui; Jiang, Bo; Zheng, Jingtang; Tsubaki, Noritatsu; Wu, Mingbo

    2015-12-01

    SO3H-functionalized monodispersed hollow carbon/silica spheres (HS/C-SO3H) with primary mesopores were prepared with polystyrene as a template and p-toluenesulfonic acid (TsOH) as a carbon precursor and -SO3H source simultaneously. The physical and chemical properties of HS/C-SO3H were characterized by N2 adsorption, TEM, SEM, XPS, XRD, Raman spectrum, NH3-TPD, element analysis and acid-base titration techniques. As a solid acid catalyst, HS/C-SO3H shows excellent performance in the esterification of oleic acid with methanol, which is a crucial reaction in biodiesel production. The well-defined hollow architecture and enhanced active sites accessibility of HS/C-SO3H guarantee the highest catalytic performance compared with the catalysts prepared by activation of TsOH deposited on the ordered mesoporous silicas SBA-15 and MCM-41. At the optimized conditions, high conversion (96.9%) was achieved and no distinct activity drop was observed after 5 recycles. This synthesis strategy will provide a highly effective solid acid catalyst for green chemical processes. PMID:26588826

  18. Formation of Carbonic Acid in Impact of CO2 on Ice and Water.

    PubMed

    Hirshberg, Barak; Gerber, R Benny

    2016-08-01

    A new mode of formation is proposed for carbonic acid in the atmosphere. It involves impact of vibrationally excited gas-phase CO2 molecules on water or ice particles. This is a first mechanism that supports formation on ice as well as on liquid water surfaces. Results of ab initio molecular dynamics simulations are presented on collisions of CO2 with (H2O)n clusters (n = 1, 4, 8, 12). Efficient formation of carbonic acid is seen with product lifetimes exceeding 100 ps. The reaction is feasible even for collision of CO2 with a single water molecule but in a different mechanism than for larger clusters. For clusters, the transition state shows charge separation into H3O(+)···HCO3(-), which transforms into neutral carbonic acid as the product, hydrated by the remaining waters. Possible atmospheric implications of the results are discussed. PMID:27420400

  19. Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Yuen, G.; Blair, N.; Des Marais, D. J.; Chang, S.

    1984-01-01

    Carbon isotopic compositions have been measured for individual hydrocarbons and monocarboxylic acids from the Murchison meteorite, a C2 carbonaceous chondrite which fell in Australia in 1969. With few exceptions, notably benzene, the volatile products are substantially isotopically heavier than their terrestrial counterparts, signifying their extraterrestrial origin. For both classes of compounds, the ratio of C-13 to C-12 decreases with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic ratio than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with the kinetically controlled synthesis of higher homologues from lower ones. The results suggest the possibility that the production mechanisms for hydrocarbons and carboxylic acids may be similar, and impose constraints on the identity of the reactant species.

  20. Study of the influence of carbon on the negative lead-acid battery electrodes

    NASA Astrophysics Data System (ADS)

    Bača, Petr; Micka, Karel; Křivík, Petr; Tonar, Karel; Tošer, Pavel

    Experiments were made with negative lead-acid battery electrodes doped with different concentrations of powdered carbon. It turned out that the rate of formation decreased with the rising concentration of carbon added into the active material. During accelerated cycling in the PSoC regime, the cycle life showed a maximum at a concentration of carbon near 1%, whereas at lower or higher concentrations the cycle life was profoundly lower. A marked increase of the active mass resistance with the cycle number was recorded at carbon concentrations above 2%. Orientation experiments showed that compression of the lead-acid laboratory cells caused an increase of the cycle life of the negative electrode in the studied regime.

  1. One-Pot synthesis of phosphorylated mesoporous carbon heterogeneous catalysts with tailored surface acidity

    SciTech Connect

    Fulvio, Pasquale F; Mahurin, Shannon Mark; Mayes, Richard T; Bauer, Christopher; Wang, Xiqing; Veith, Gabriel M; Dai, Sheng

    2012-01-01

    Soft-templated phosphorylated mesoporous carbons with homogeneous distributions of phosphate groups were prepared by a 'one-pot' synthesis method using mixtures of phosphoric acid with hydrochloric, or nitric acids in the presence of Pluronic F127 triblock copolymer. Adjusting the various ratios of phosphoric acid used in these mixtures resulted in carbons with distinct adsorption, structural and surface acidity properties. The pore size distributions (PSDs) from nitrogen adsorption at -196 C showed that mesoporous carbons exhibit specific surface areas as high as 551 m{sup 2}/g and mesopores as large as 13 nm. Both structural ordering of the mesopores and the final phosphate contents were strongly dependent on the ratios of H{sub 3}PO{sub 4} in the synthesis gels, as shown by transmission electron microscopy (TEM), X-ray photoelectron (XPS) and energy dispersive X-ray spectroscopy (EDS). The number of surface acid sites determined from temperature programmed desorption of ammonia (NH{sub 3}-TPD) were in the range of 0.3-1.5 mmol/g while the active surface areas are estimated to comprise 5-54% of the total surface areas. Finally, the conversion temperatures for the isopropanol dehydration were lowered by as much as 100 C by transitioning from the least acidic to the most acidic catalysts surface.

  2. Conversion of carbon dioxide to resorcylic acid under ultrasonication by Kolbe-Schmitt reaction.

    PubMed

    Shanthi, B; Palanivelu, K

    2015-11-01

    The present work focuses on a new approach for the synthesis of β-resorcylic acid based on Kolbe-Schmitt reaction using carbon dioxide under ultrasonic and mild condition. The Kolbe-Schmitt reaction is a process for the synthesis of β-resorcylic acid (2,4-dihydroxybenzoic acid) from resorcinol in aqueous potassium hydroxide solution with gaseous CO2. The influences of carbonation time, flow rate of CO2 and the molar ratio of resorcinol/potassium hydroxide on the yield percentage of resorcylic acid were investigated. The study was assessed with the conventional thermal method (non ultrasonic method) for Kolbe-Schmitt reaction and it was observed that applying ultrasound to save more than 95% and 38.6% energy as shown by energy consumption calculations in bath type and horn type sonicator respectively. β-Resorcylic acid formed was characterized by (1)H NMR, (13)C NMR, DEPT NMR and FTIR spectroscopy. The amount of CO2 utilized in the reaction was evaluated from the yield percentage of β-resorcylic acid yield. The maximum yield of resorcylic acid of 30% and 65% was obtained at the resorcinol/potassium hydroxide ratio of 1:3, carbonation time of 150 min and the CO2 flow rate of 2L/min in bath type and horn type ultrasonicator, respectively. The applicability of the research work was examined in two different positional isomers of resorcinol under optimum conditions. PMID:26186845

  3. An Examination of the Carbon Isotope Effects Associated with Amino Acid Biosynthesis

    NASA Astrophysics Data System (ADS)

    Scott, James H.; O'Brien, Diane M.; Emerson, David; Sun, Henry; McDonald, Gene D.; Salgado, Antonio; Fogel, Marilyn L.

    2006-12-01

    Stable carbon isotope ratios (δ13C) were determined for alanine, proline, phenylalanine, valine, leucine, isoleucine, aspartate (aspartic acid and asparagine), glutamate (glutamic acid and glutamine), lysine, serine, glycine, and threonine from metabolically diverse microorganisms. The microorganisms examined included fermenting bacteria, organotrophic, chemolithotrophic, phototrophic, methylotrophic, methanogenic, acetogenic, acetotrophic, and naturally occurring cryptoendolithic communities from the Dry Valleys of Antarctica. Here we demonstrated that reactions involved in amino acid biosynthesis can be used to distinguish amino acids formed by life from those formed by nonbiological processes. The unique patterns of δ13C imprinted by life on amino acids produced a biological bias. We also showed that, by applying discriminant function analysis to the δ13C value of a pool of amino acids formed by biological activity, it was possible to identify key aspects of intermediary carbon metabolism in the microbial world. In fact, microorganisms examined in this study could be placed within one of three metabolic groups: (1) heterotrophs that grow by oxidizing compounds containing three or more carbon-to-carbon bonds (fermenters and organotrophs), (2) autotrophs that grow by taking up carbon dioxide (chemolitotrophs and phototrophs), and (3) acetoclastic microbes that grow by assimilation of formaldehyde or acetate (methylotrophs, methanogens, acetogens, and acetotrophs). Furthermore, we demonstrated that cryptoendolithic communities from Antarctica grouped most closely with the autotrophs, which indicates that the dominant metabolic pathways in these communities are likely those utilized for CO2 fixation. We propose that this technique can be used to determine the dominant metabolic types in a community and reveal the overall flow of carbon in a complex ecosystem.

  4. Dissolution rates of carbonated hydroxyapatite in hydrochloric acid.

    PubMed

    Hankermeyer, Christine R; Ohashi, Kevin L; Delaney, David C; Ross, John; Constantz, Brent R

    2002-02-01

    Osteoclasts have been shown to dissolve efficiently and effectively the mineral phase of bone by locally controlling the environment surrounding the cell. Although this mineral phase has been identified and well characterized as carbonated hydroxyapatite, there is little understanding of the factors that affect the dissolution properties of this mineral phase. Mimicking the mechanism by which osteoclasts dissolve the mineral phase of bone may provide insight into methods for the decalcification of atherosclerotic mineral deposits in the vascular system. Accordingly, a detailed characterization of the effects of various chemical and mechanical parameters on the dissolution of carbonated hydroxyapatite mineral was investigated in this study. Increases in the mineral dissolution rate (2-10 times) were associated with increases in dissolving solution [H+], osmolality, temperature, and flow rate. Mineral dissolution rate increases (5-8 times) were associated with greater surface area of the mineral and mechanical agitation of the dissolving solution. PMID:11771694

  5. Carbonic acid as a reserve of carbon dioxide on icy moons: The formation of carbon dioxide (CO{sub 2}) in a polar environment

    SciTech Connect

    Jones, Brant M.; Kaiser, Ralf I.; Strazzulla, Giovanni

    2014-06-20

    Carbon dioxide (CO{sub 2}) has been detected on the surface of several icy moons of Jupiter and Saturn via observation of the ν{sub 3} band with the Near-Infrared Mapping Spectrometer on board the Galileo spacecraft and the Visible-Infrared Mapping Spectrometer on board the Cassini spacecraft. Interestingly, the CO{sub 2} band for several of these moons exhibits a blueshift along with a broader profile than that seen in laboratory studies and other astrophysical environments. As such, numerous attempts have been made in order to clarify this abnormal behavior; however, it currently lacks an acceptable physical or chemical explanation. We present a rather surprising result pertaining to the synthesis of carbon dioxide in a polar environment. Here, carbonic acid was synthesized in a water (H{sub 2}O)-carbon dioxide (CO{sub 2}) (1:5) ice mixture exposed to ionizing radiation in the form of 5 keV electrons. The irradiated ice mixture was then annealed, producing pure carbonic acid which was then subsequently irradiated, recycling water and carbon dioxide. However, the observed carbon dioxide ν{sub 3} band matches almost exactly with that observed on Callisto; subsequent temperature program desorption studies reveal that carbon dioxide synthesized under these conditions remains in solid form until 160 K, i.e., the sublimation temperature of water. Consequently, our results suggest that carbon dioxide on Callisto as well as other icy moons is indeed complexed with water rationalizing the shift in peak frequency, broad profile, and the solid state existence on these relatively warm moons.

  6. Recovery of calcium carbonate from steelmaking slag and utilization for acid mine drainage pre-treatment.

    PubMed

    Mulopo, J; Mashego, M; Zvimba, J N

    2012-01-01

    The conversion of steelmaking slag (a waste product of the steelmaking process) to calcium carbonate (CaCO(3)) was tested using hydrochloric acid, ammonium hydroxide and carbon dioxide via a pH-swing process. Batch reactors were used to assess the technical feasibility of calcium carbonate recovery and its use for pre-treatment of acid mine drainage (AMD) from coal mines. The effects of key process parameters, such as the amount of acid (HCl/calcium molar ratio), the pH and the CO(2) flow rate were considered. It was observed that calcium extraction from steelmaking slag significantly increased with an increase in the amount of hydrochloric acid. The CO(2) flow rate also had a positive effect on the carbonation reaction rate but did not affect the morphology of the calcium carbonate produced for values less than 2 L/min. The CaCO(3) recovered from the bench scale batch reactor demonstrated effective neutralization ability during AMD pre-treatment compared with the commercial laboratory grade CaCO(3). PMID:22643421

  7. Carbon isotopic fractionation in the biosynthesis of bacterial fatty acids. Ozonolysis of unsaturated fatty acids as a means of determining the intramolecular distribution of carbon isotopes

    NASA Astrophysics Data System (ADS)

    Monson, K. David; Hayes, J. M.

    1982-02-01

    Methods for the determination of 13C abundances at individual olefinic carbon positions have been developed, tested, and shown to perform accurately. (1) The double bond is oxidized with ozone; (2) silver oxide is used to cleave the resulting ozonide quantitatively to carboxylic-acid fragments; (3) a modified Schmidt decarboxylation is used to produce CO 2 quantitatively from the carboxyl groups of the separated cleavage products; (4) the CO 2 is utilized for mass spectrometric analysis. The results of intramolecular isotopic analyses are combined with molecular-average isotopic compositions determined by total combustion in order to show that fatty acids biosynthesized by Escherichia coli grown aerobically with glucose as the sole carbon source and harvested at late log phase are depleted by approximately 3%. in 13C relative to the glucose. This fractionation arises in the formation of acetylcoenzyme A by pyruvate dehydrogenase and is localized at the carboxyl position in the acetyl-CoA product. The isotopic order in that two-carbon subunit is carried through the biosynthesis of fatty acids so that alternate positions in the fatty-acid chains are depleted in 13C by an amount equal to twice the molecular-average depletion. The kinetic isotope effect at C-2 for pyruvate dehydrogenase in vivo is shown to be approximately 2.3%. While it appears that no other fractionation mechanism has controlled the overall depletion of 13C in these fatty acids, a separate process responsible for control of isotopic abundances in the carboxyl groups has been identified and described elsewhere [Monson K.D. and Hayes J.M. (1980) J. Biol. Chem. 255, 11435-11441]. It is concluded that kinetic, rather than thermodynamic, factors have controlled isotopic distributions in these cells and that kinetic factors will be dominant in most biological reactions.

  8. Multi-walled carbon nanotubes in aqueous phytic acid for enhancing biosensor

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyu; Miao, Yun; Ye, Pingping; Wen, Ying; Yang, Haifeng

    2014-04-01

    The poor dispersion of carbon based nanomaterials without strong acid pretreatment in aqueous solution is a fundamental problem, limiting its applications in biology-related fields. A good dispersion of multi-walled carbon nanotubes (MWCNTs) in water was realized by 50 wt.% phytic acid (PA) solution. As an application case, the PA-MWCNTs dispersion in aqueous solution was used for the immobilization of horseradish peroxidase (HRP) and its direct electrochemistry was realized. The constructed biosensor has a sound limit of detection, wide linear range, and high affinity for hydrogen peroxide (H2O2) as well as being free from interference of co-existing electro-active species.

  9. Removal of free fatty acid in Palm Fatty Acid Distillate using sulfonated carbon catalyst derived from biomass wastefor biodiesel production

    NASA Astrophysics Data System (ADS)

    Hidayat, Arif; Rochmadi; Wijaya, Karna; Budiman, Arief

    2016-01-01

    In this research, the esterification of PFAD using the sulfonatedcoconut shell biochar catalyst was studied. Carbon solid catalysts were prepared by a sulfonation of carbonized coconut shells. The performances of the catalysts were evaluated in terms of the reaction temperatures, the molar ratios of methanol to PFAD, the catalyst loading and the reaction times. The reusability of the solid acid carbon catalysts was also studied in this work. The results indicated that the FFA conversion was significantly increased with increasing catalyst loading and reaction times. It can be concluded that the optimal conditions were an PFAD to methanol molar ratio of 1:12, the amount of catalyst of 10%w, and reaction temperature of 60oC.At this optimum condition, the conversion to biodieselreached 88%.

  10. Carbon honeycomb grids for advanced lead-acid batteries. Part III: Technology scale-up

    NASA Astrophysics Data System (ADS)

    Kirchev, A.; Serra, L.; Dumenil, S.; Brichard, G.; Alias, M.; Jammet, B.; Vinit, L.

    2015-12-01

    The carbon honeycomb grid technology employs new carbon/carbon composites with ordered 3D structure instead of the classic lead-acid battery current collectors. The technology is laboratory scaled up from small size grids corresponding to electrodes with a capacity of 3 Ah to current collectors suitable for assembly of lead-acid batteries covering the majority of the typical lead-acid battery applications. Two series of 150 grids each (one positive and one negative) are manufactured using low-cost lab-scale equipment. They are further subjected to pasting with active materials and the resulting battery plates are assembled in 12 V AGM-VLRA battery mono-blocks for laboratory testing and outdoor demonstration in electric scooter replacing its original VRLAB pack. The obtained results demonstrate that the technology can replace successfully the state of the art negative grids with considerable benefits. The use of the carbon honeycomb grids as positive plate current collectors is limited by the anodic corrosion of the entire structure attacking both the carbon/carbon composite part and the electroplated lead-tin alloy coating.

  11. Rhizosphere bacterial carbon turnover is higher in nucleic acids than membrane lipids: implications for understanding soil carbon cycling

    PubMed Central

    Malik, Ashish A.; Dannert, Helena; Griffiths, Robert I.; Thomson, Bruce C.; Gleixner, Gerd

    2015-01-01

    Using a pulse chase 13CO2 plant labeling experiment we compared the flow of plant carbon into macromolecular fractions of rhizosphere soil microorganisms. Time dependent 13C dilution patterns in microbial cellular fractions were used to calculate their turnover time. The turnover times of microbial biomolecules were found to vary: microbial RNA (19 h) and DNA (30 h) turned over fastest followed by chloroform fumigation extraction-derived soluble cell lysis products (14 days), while phospholipid fatty acids (PLFAs) had the slowest turnover (42 days). PLFA/NLFA 13C analyses suggest that both mutualistic arbuscular mycorrhizal and saprophytic fungi are dominant in initial plant carbon uptake. In contrast, high initial 13C enrichment in RNA hints at bacterial importance in initial C uptake due to the dominance of bacterial derived RNA in total extracts of soil RNA. To explain this discrepancy, we observed low renewal rate of bacterial lipids, which may therefore bias lipid fatty acid based interpretations of the role of bacteria in soil microbial food webs. Based on our findings, we question current assumptions regarding plant-microbe carbon flux and suggest that the rhizosphere bacterial contribution to plant assimilate uptake could be higher. This highlights the need for more detailed quantitative investigations with nucleic acid biomarkers to further validate these findings. PMID:25914679

  12. Advanced Thermal Storage System with Novel Molten Salt: December 8, 2011 - April 30, 2013

    SciTech Connect

    Jonemann, M.

    2013-05-01

    Final technical progress report of Halotechnics Subcontract No. NEU-2-11979-01. Halotechnics has demonstrated an advanced thermal energy storage system with a novel molten salt operating at 700 degrees C. The molten salt and storage system will enable the use of advanced power cycles such as supercritical steam and supercritical carbon dioxide in next generation CSP plants. The salt consists of low cost, earth abundant materials.

  13. Effect of acid rain on calcium carbonate saturation in the Albemarle sound of North Carolina

    SciTech Connect

    Rudolph, K.A.; Burgess, S.K.; Willey, J.D.; Kieber, R.J.

    1996-10-01

    The effects of acidic rainwater additions on calcium carbonate solubility and alkalinity in the poorly buffered, biologically active and commercially important waters of the Albemarle Sound, NC are reported. Samples collected monthly at four sites were analyzed for salinity, pK total alkalinity, and calcium concentrations. Five percent and 10% dilutions of sulfuric acid at pH 4, mimicking acid rain additions, were added and total alkalinity and calcium concentrations again determined. The addition of acid decreased the alkalinity in the Albemarle samples by as much as 15%, although the magnitude of the impact depended both on site and season. The effects of acid additions on dissolved calcium concentrations were more variable,. and also displayed a site and season dependency. Calcium concentrations, alkalinity, and pH values were also determined during controlled laboratory experiments, where 25 mg/L Callinectes sapidus shells were added to Albemarle Sound water. All three analytes increased significantly upon acid additions relative to controls.

  14. Stable carbon isotopic compositions of organic acids in total suspended particles and dusts from Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Ma, Shexia; Peng, Ping'an; Song, Jianzhong; Zhao, Jinping; He, Lulu; Sheng, Guoying; Fu, Jiamo

    2010-10-01

    Stable carbon isotopic compositions of individual organic acids were determined in total suspended particles and dusts from Guangzhou. The δ 13C values of high molecular weight n-alkanoic acids (C 20-C 28) varied from -34.1‰ to -32.4‰ and tended to be heavier in summer and lighter in winter. These δ 13C values indicate that high molecular weight n-alkanoic acids were derived mainly from emission by C 3 plants. Reduced biological synthesis of high molecular weight n-alkanoic acids in winter may be the reason for the light carbon isotopic composition. The δ 13C values of low molecular weight n-alkanoic acids (C 10-C 18) changed from -31.7‰ to -30.3‰ and exhibited a reverse seasonal trend, i.e., heavier in winter and lighter in summer. Slightly heavier δ 13C values of low molecular weight n-alkanoic acids than those of high molecular weight n-alkanoic acids suggested that they may be emitted from blended sources, e.g., anthropogenic sources and vegetation waxes. Lighter δ 13C values in summer may be attributed to relatively low anthropogenic sources and high botanic sources in summer. Dicarboxylic acids and aromatic acids have been proposed as secondary products from photochemical degradation. The average δ 13C values of dicarboxylic acids and aromatic acids were heavier, and ranged from -25.2‰ to -22.9‰ and from -30.0‰ to -27.6‰, respectively. Both dicarboxylic acids and aromatic acids displayed the same temporal variations in the δ 13C values, i.e., negative δ 13C in the summer samples and positive in the winter samples, which may be controlled by photochemical reactions; they are generally severe in winter in Guangzhou under the monsoon weather system. The heaviest δ 13C values were observed in dicarboxylic acids, indicating that dicarboxylic acids were formed by fast and more complete oxidation reactions. These results indicate that the stable carbon isotopic composition of organic acids may provide important information about sources and

  15. Stability of Molten Core Materials

    SciTech Connect

    Layne Pincock; Wendell Hintze

    2013-01-01

    The purpose of this report is to document a literature and data search for data and information pertaining to the stability of nuclear reactor molten core materials. This includes data and analysis from TMI-2 fuel and INL’s LOFT (Loss of Fluid Test) reactor project and other sources.

  16. Hierarchical carbon nanotube assemblies created by sugar-boric or boronic acid interactions.

    PubMed

    Tamesue, Shingo; Numata, Munenori; Kaneko, Kenji; James, Tony D; Shinkai, Seiji

    2008-10-01

    We previously found that polysaccharide "schizophyllan (SPG)" can entrap as-grown and cut single-walled carbon nanotubes (as-SWNTs and c-SWNTs, respectively): we here reported that the c-SWNT-s-SPG (single stranded SPG) composites thus obtained can be aligned regularly using the covalent bond formation between boric acid or boronic acid derivatives and the 4,6-dihydroxyl group of the glucose side-chain unit. PMID:18802596

  17. Highly efficient extraction of cellular nucleic acid associated proteins in vitro with magnetic oxidized carbon nanotubes.

    PubMed

    Zhang, Yi; Hu, Zhengyan; Qin, Hongqiang; Wei, Xiaoluan; Cheng, Kai; Liu, Fangjie; Wu, Ren'an; Zou, Hanfa

    2012-12-01

    Nucleic acid associated proteins (NAaP) play the essential roles in gene regulation and protein expression. The global analysis of cellular NAaP would give a broad insight to understand the interaction between nucleic acids and the associated proteins, such as the important proteinous regulation factors on nucleic acids. Proteomic analysis presents a novel strategy to investigate a group of proteins. However, the large scale analysis of NAaP is yet impossible due to the lack of approaches to harvest target protein groups with a high efficiency. Herein, a simple and efficient method was developed to collect cellular NAaP using magnetic oxidized carbon nanotubes based on the strong interaction between carbon nanotubes and nucleic acids along with corresponding associated proteins. We found that the magnetic oxidized carbon nanotubes demonstrated a nearly 100% extraction efficiency for intracellular nucleic acids from cells in vitro. Importantly, the proteins associated on nucleic acids could be highly efficiently harvested using magnetic oxidized carbon nanotubes due to the binding of NAaP on nucleic acids. 1594 groups of nuclear NAaP and 2595 groups of cellular NAaP were extracted and identified from about 1,000,000 cells, and 803 groups of NAaP were analyzed with only about 10,000 cells, showing a promising performance for the proteomic analysis of NAaP from minute cellular samples. This highly efficient extraction strategy for NAaP is a simple approach to identify cellular nucleic acid associated proteome, and we believed this strategy could be further applied in systems biology to understand the gene expression and regulation. PMID:23121485

  18. Molten salt oxidation of mixed waste: Preliminary bench-scale experiments without radioactivity

    SciTech Connect

    Haas, P.A.; Rudolph, J.C.; Bell, J.T.

    1994-06-01

    Molten salt oxidation (MSO) is a process in which organic wastes are oxidized by sparging them with air through a bed of molten sodium carbonate (bp 851 {degrees}C) at {ge} 900{degrees}C. This process is readily applicable to the mixed waste because acidic products from Cl, S, P, etc., in the waste, along with most metals and most radionuclides, are retained within the melt as oxides or salts. Rockwell International has studied the application of MSO to various wastes, including some mixed waste. A unit used by Rockwell to study the mixed waste treatment is presently in use at Oak Ridge National Laboratory (ORNL). ORNL`s studies to date have concentrated on chemical flowsheet questions. Concerns that were studied included carbon monoxide (CO) emissions, NO{sub x}, emissions, and metal retention under a variety of conditions. Initial experiments show that CO emissions increase with increasing NaCl content in the melt, increasing temperature, and increasing airflow. Carbon monoxide content is especially high (> 2000 ppm) with high chlorine content (> 10%). Thermal NO{sub x}, emissions are relatively low ( < 5 ppm) at temperatures < 1000{degrees}C. However, most (85--100%) of the nitrogen in the feed as organic nitrate or amine was released as NO{sub x}, The metal contents of the melt and of knockout pot samples of condensed salt show high volatilities of Cs as CsCl. Average condensed salt concentrations were 60% for barium and 100% for strontium and cobalt. The cerium disappeared -- perhaps from deposition on the alumina reactor walls.

  19. On the neutralization of acid rock drainage by carbonate and silicate minerals

    NASA Astrophysics Data System (ADS)

    Sherlock, E. J.; Lawrence, R. W.; Poulin, R.

    1995-02-01

    The net result of acid-generating and-neutralizing reactions within mining wastes is termed acid rock drainage (ARD). The oxidation of sulfide minerals is the major contributor to acid generation. Dissolution and alteration of various minerals can contribute to the neutralization of acid. Definitions of alkalinity, acidity, and buffer capacity are reviewed, and a detailed discussion of the dissolution and neutralizing capacity of carbonate and silicate minerals related to equilibium conditions, dissolution mechanism, and kinetics is provided. Factors that determine neutralization rate by carbonate and silicate minerals include: pH, PCO 2, equilibrium conditions, temperature, mineral composition and structure, redox conditions, and the presence of “foreign” ions. Similar factors affect sulfide oxidation. Comparison of rates shows sulfides react fastest, followed by carbonates and silicates. The differences in the reaction mechanisms and kinetics of neutralization have important implications in the prediction, control, and regulation of ARD. Current static and kinetic prediction methods upon which mine permitting, ARD control, and mine closure plans are based do not consider sample mineralogy or the kinetics of the acid-generating and-neutralizing reactions. Erroneous test interpretations and predictions can result. The importance of considering mineralogy for site-specific interpretation is highlighted. Uncertainty in prediction leads to difficulties for the mine operator in developing satisfactory and cost-effective control and remediation measures. Thus, the application of regulations and guidelines for waste management planning need to beflexible.

  20. Efficient optical resolution of amino acid by alanine racemaze chiral analogue supported on mesoporous carbon

    NASA Astrophysics Data System (ADS)

    Jang, D.; Kim, K.; Park, D.; Kim, G.

    2012-09-01

    Optically pure D-amino acids are industrially important chiral building blocks for the synthesis of pharmaceuticals, food ingredients, and drug intermediates. Chemoenzymatic dynamic kinetic-resolution processes have recently been developed for deracemization of amino acids. S-ARCA would be a good candidate for the selective adsorption of D amino acid through the imine formation reaction. The organic phase containing S-ARCA adsorbent, TPPC or Ionic Liquid (as a phase transfer catalyst) in MC were coated on the surfaces of mesoporous carbon C-SBA-15(CMK). The aqueous solution of racemic D/L-amino acid and NaOH were added to the carbon support coated with ARCA. The D/L ratios on ARCA and in solution were determined with increasing reaction time. S-ARCA has a unique property for the selective adsorption of D- amino acid (up to 90% selcetivity) in the racemic mixture. The fixed bed reactor containing ARCA/carbon support was also adopted successfully for the selective separation of amino acid.

  1. High power density molten carbonate fuel cells

    SciTech Connect

    Bloom, I.; Johnson, S.A.; Geyer, H.K.; Roche, M.F.; Krumpelt, M.; Myles, K.M.

    1995-07-01

    Our results to date indicate that the specific power of the MCFC can be increased from 1200 W/m{sup 2} to above 2000W/m{sup 2} through the use of advanced components such as the double doped LiFeO{sub 2} cathode and pressurized operation. Its volumetric power density can also be increased by an additional 60% by multiple manifolding. Therefore, MCFCs with two to three times the power density of the current generation of MCFCs are possible.

  2. Molten carbonate fuel cell product design improvement

    SciTech Connect

    P. Voyentzie; T. Leo; A. Kush; L. Christner; G. Carlson; C. Yuh

    1998-12-20

    Drawing on the manufacture, field test, and post-test experience of the sixteen Santa Clara Demonstration Project (SCDP) stacks, ERC is finalizing the next generation commercial entry product design. The second generation cells are 50% larger in area, 40% lighter on equal geometric area basis, and 30% thinner than the earlier design. These improvements have resulted in doubling of the full-height stack power. A low-cost and high-strength matrix has also been developed for improving product ruggedness. The low-cost advanced cell design incorporating these improvements has been refined through six short stack tests. Power production per cell of two times the SCDP maximum power operation, over ten thermal cycles, and overall operating flexibility with respect to load and thermal changes have been demonstrated in these short stack tests. An internally insulated stack enclosure has been designed and fabricated to eliminate the need for an inert gas environment during operation. ERC has acquired the capability for testing 400kW full-height direct fuel ceil (DFC) stack and balance-of-plant equipment. With the readiness of the power plant test facility, the cell package design, and the stack module, full-height stack testing has begun. The first full- height stack incorporating the post-SCDP second generation design was completed. The stack reached a power level of 253 kW, setting a world record for the highest power production from the advanced fuel cell system. Excellent performance uniformity at this power level affirmed manufacturing reproducibility of the components at the factory. This unoptimized small size test has achieved pipeline natural gas to DC electricity conversion efficiency of 47% (based on lower heating value - LHV) including the parasitic power consumed by the BOP equipment; that should translate to more than 50% efficiency in commercial operation, before employing cogeneration. The power plant system also operated smoothly. With the success of this test confirming the full-height stack basic design and with the completion of SCDP stacks post-test feedback, manufacture of the full-height stack representing the commercial prototype design has been completed and system demonstration is planned to start in the first quarter of 1999. These developments as well as manufacturing advances are discussed in this report.

  3. Molten carbonate fuel cell product development test

    SciTech Connect

    Scroppo, J.A.; Camara, E.H.; Figueroa, R.A.

    1993-11-01

    M-C Power Corp. will design, fabricate, install, test, and evaluate a 250 kW Proof-of-Concept MCFC Power Plant. The plant will be located at Kaiser Permanente`s San Diego Medical Center; it will be designed and built by Bechtel Corp. Two 250 keV MCFC stacks will be assembled and tested at M-C Power; one stack will be used to support the San Diego field demonstration. This report outlines 6 tasks: project management/permitting, demonstration design, stack manufacturing, BOP fabrication, site work, and testing.

  4. Predicting sorption of organic acids to a wide range of carbonized sorbents

    NASA Astrophysics Data System (ADS)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2016-04-01

    Many contaminants and infochemicals are organic acids that undergo dissociation under environmental conditions. The sorption of dissociated anions to biochar and other carbonized sorbents is typically lower than that of neutral species. It is driven by complex processes that are not yet fully understood. It is known that predictive approaches developed for neutral compounds are unlikely to be suitable for organic acids, due to the effects of dissociation on sorption. Previous studies on the sorption of organic acids to soils have demonstrated that log Dow, which describes the decrease in hydrophobicity of acids upon dissociation, is a useful alternative to log Kow. The aim of the present study was to adapt a log Dow based approach to describe the sorption of organic acids to carbonized sorbents. Batch experiments were performed with a series of 9 sorbents (i.e., carbonized wood shavings, pig manure, and sewage sludge, carbon nanotubes and activated carbon), and four acids commonly used for pesticidal and biocidal purposes (i.e., 2,4-D, MCPA, 2,4-DB, and triclosan). Sorbents were comprehensively characterized, including by N2 and CO2 physisorption, Fourier transform infrared spectroscopy, and elemental analysis. The wide range of sorbents considered allows (i) discussing the mechanisms driving the sorption of neutral and anionic species to biochar, and (ii) their dependency on sorbate and sorbent properties. Results showed that the sorption of the four acids was influenced by factors that are usually not considered for neutral compounds (i.e., pH, ionic strength). Dissociation affected the sorption of the four compounds, and sorption of the anions ranged over five orders of magnitude, thus substantially contributing to sorption in some cases. For prediction purposes, most of the variation in sorption to carbonized sorbents (89%) could be well described with a two-parameter regression equation including log Dow and sorbent specific surface area. The proposed model

  5. The electrochemistry of metals in room-temperature chloroaluminate molten salts

    SciTech Connect

    Xu, Xiao-Hong.

    1992-01-01

    The room-temperature chloroaluminate molten salt, aluminum chloride-1-methyl-3-ethylimidazolium chloride has proven to be useful electrolyte for the electrodeposition and electrodissolution of metals. The electrodeposition of lead, tin, silver, gold, and mercury was studied in this melt. Evidence for the underpotential deposition of lead and silver in acidic (66.7-33.3 mol%) melt and tin in acidic and basic (44.4-55.6 mol%) melt was found at polycrystalline gold. Nucleation overpotentials were observed for the deposition of mercury on gold in basic melt. The deposition of lead and silver from acidic melt and the deposition of gold from basic melt on glassy carbon involves progressive 3-D nucleation on a large number of active sites with hemispherical diffusion-controlled growth of the nuclei. The deposition of tin and and mercury from acidic melt exhibits progressive 3-D nucleation on a finite number of active sites. The deposition of tin and mercury from basic melt on glassy carbon involves instantaneous 3-D nucleation. The electrode-position of lead and silver from acidic melt on tungsten involves instantaneous 3-D nucleation, whereas the electrodeposition of gold and mercury from basic melt exhibits 3-D progressive nucleation. The deposition of lead and silver from acidic melt and the deposition of tin from both acidic and basic melt on platinum does not exhibit obvious evidence for either UPD or nucleation. The electrodeposition of gold and mercury on platinum from basic melt involves progressive 3-D nucleation. The voltammetric oxidation of Sn(II) to Sn(IV) is hindered by the weak adsorption of Sn(II). Sn(IV) is complexed as [SnCl[sub 6

  6. Molten-Metal Electrodes for Solid Oxide Fuel Cells

    SciTech Connect

    Jayakumar, A.; Vohs, J. M.; Gorte, R. J.

    2010-11-03

    Molten In, Pb, and Sb were examined as anodes in solid oxide fuel cells (SOFC) that operate between 973 and 1173 K. The results for these metals were compared with those reported previously for molten Sn electrodes. Cells were operated under “battery” conditions, with dry He or N2 flow in the anode compartment, to characterize the electrochemical oxidation of the metals at the yttria-stabilized zirconia (YSZ)-electrolyte interface. In most cases, the open-circuit voltages (OCVs) were close to that based on equilibrium between the metals and their oxides. With Sn and In, the cell impedances increased dramatically at all temperatures after drawing current due to formation of insulating, oxide barriers at the electrolyte interface. Similar results were observed for Pb at 973 and 1073 K, but the impedance remained low even after PbO formation at 1173 K because this is above the melting temperature of PbO. Similarly, the impedances of molten Sb electrodes at 973 K were low and unaffected by current flow because of the low melting temperature of Sb{sub 2}O{sub 3}. The potential of using molten-metal electrodes for direct-carbon fuel cells and for energy-storage systems is discussed.

  7. CO2 decomposition using electrochemical process in molten salts

    NASA Astrophysics Data System (ADS)

    Otake, Koya; Kinoshita, Hiroshi; Kikuchi, Tatsuya; Suzuki, Ryosuke O.

    2012-08-01

    The electrochemical decomposition of CO2 gas to carbon and oxygen gas in LiCl-Li2O and CaCl2-CaO molten salts was studied. This process consists of electrochemical reduction of Li2O and CaO, as well as the thermal reduction of CO2 gas by the respective metallic Li and Ca. Two kinds of ZrO2 solid electrolytes were tested as an oxygen ion conductor, and the electrolytes removed oxygen ions from the molten salts to the outside of the reactor. After electrolysis in both salts, the aggregations of nanometer-scale amorphous carbon and rod-like graphite crystals were observed by transmission electron microscopy. When 9.7 %CO2-Ar mixed gas was blown into LiCl-Li2O and CaCl2-CaO molten salts, the current efficiency was evaluated to be 89.7 % and 78.5 %, respectively, by the exhaust gas analysis and the supplied charge. When a solid electrolyte with higher ionic conductivity was used, the current and carbon production became larger. It was found that the rate determining step is the diffusion of oxygen ions into the ZrO2 solid electrolyte.

  8. Carbon dioxide and organic acids: origin and role in burial diagenesis (Texas Gulf Coast Tertiary)

    SciTech Connect

    Lundegard, P.D.

    1985-01-01

    Carbon dioxide produced by decarboxylation of organic matter is not a dominant factor in secondary porosity development. Material balance calculations indicate the amount of feldspar and carbonate dissolution that has taken place in Tertiary sandstones of the Texas Gulf Coast far exceeds that which is explainable by decarboxylation. Other potential sources of acid for dissolution reactions include reverse weathering reactions in shales, an hydrous pyrolysis reactions between organic carbon and oxygen in H/sub 2/O to yield CO/sub 2/ or organic acids. Considerations of CO/sub 2/ solubility and the temperature distribution of organic acids imply that these species must be generated locally to cause significant dissolution. The CO/sub 2/ content of gas from Gulf Coast Tertiary sandstones is proportional to reservoir age, and increases with depth and temperature at a rate that is approximately exponential. In the Wilcox Formation the increase in CO/sub 2/ content continues beyond depths where dissolved organic acids are abundant and where kerogen has lost its oxygen from functional groups that are readily liberated as CO/sub 2/. In this formation the /sup 13/C of CO/sub 2/ and CH/sub 4/ are proportional to temperature and to each other. Either mixing with fluids derived from the Mesozoic carbonate section of deep CO/sub 2/ generation by kinetically controlled organic reactions may explain these data. Organic acid concentration with depth and temperature indicates a non-biological origin by thermal cracking of kerogen during burial. Continued burial leads to their thermal decomposition. Cessation of burial may lead to meteoric water invasion and organic acid destruction by biological processes. The effect of time on organic acid production is minor compared to temperature.

  9. Carbon Isotopic Ratios of Amino Acids in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2009-01-01

    NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here. we present the carbon isotopic ratios of glycine and E-aminocaproic acid (EACH), the two most abundant amino acids observed, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio crass spectrometry coupled with quadrupole mass spectrometry (GC-QMS/IRMS).

  10. Carbon Isotopic Measurements of Amino Acids in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie

    2009-01-01

    NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here, we present the carbon isotopic ratios of glycine and e-aminocaproic acid (EACA), the two most abundant amino acids, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio mass spectrometry coupled with quadrupole mass spectrometry (GC-CAMS/IRMS).

  11. Modeling and optimizing the design of matrix treatments in carbonate reservoirs with self-diverting acid systems

    NASA Astrophysics Data System (ADS)

    Bulgakova, G. T.; Kharisov, R. Ya; Sharifullin, A. R.; Pestrikov, A. V.

    2015-01-01

    Application of a self-diverting-acid based on viscoelastic surfactant (SDVA) is a promising technology for improving the efficacy of acid treatment in oil and gas-bearing carbonate reservoirs. In this study, we present a mathematical model for assessing SDVA flow and reaction with carbonate rock using the SDVA rheological characteristics. The model calculates the technological parameters for acidizing operations and the prediction of well productivity after acid treatment, in addition to technical and economic optimization of the acidizing process by modeling different acid treatment options with varying volumes, injection rates, process fluids stages and initial economic scenarios.

  12. Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Min Huang, Wei

    2013-06-01

    The present work studies the synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotube (CNT) and carbon fiber on the electrical property and electro-activated recovery behavior of shape memory polymer (SMP) nanocomposites. The combination of CNT and carbon fiber results in improved electrical conductivity in the SMP nanocomposites. Carboxylic acid-functionalized CNTs are grafted onto the carbon fibers and then self-assembled by deposition to significantly enhance the reliability of the bonding between carbon fiber and SMP via van der Waals and covalent crosslink. Furthermore, the self-assembled carboxylic acid-functionalized CNTs and carbon fibers enable the SMP nanocomposites for Joule heating triggered shape recovery.

  13. Carbon and Oxygen Isotope Measurements of Ordinary Chondrite (OC) Meteorites from Antarctica Indicate Distinct Terrestrial Carbonate Species using a Stepped Acid Extraction Procedure Impacting Mars Carbonate Research

    NASA Astrophysics Data System (ADS)

    Evans, M. E.; Niles, P. B.; Locke, D.

    2015-12-01

    The purpose of this study is to characterize the stable isotope values of terrestrial, secondary carbonate minerals from five OC meteorites collected in Antarctica. These samples were selected for analysis based upon their size and collection proximity to known Martian meteorites. They were also selected based on petrologic type (3+) such that they were likely to be carbonate-free before falling to Earth. This study has two main tasks: 1) characterize the isotopic composition of terrestrial, secondary carbonate minerals formed on meteorites in Antarctica, and 2) study the mechanisms of carbonate formation in cold and arid environments with Antarctica as an analog for Mars. Two samples from each meteorite, each ~0.5g, was crushed and dissolved in pure phosphoric acid for 3 sequential reactions: a) Rx0 for 1 hour at 30°C, b) Rx1 for 18 hours at 30°C, and c) Rx2 for 3 hours at 150°C. CO2 was distilled by freezing with liquid nitrogen from each sample tube, then separated from organics and sulfides with a TRACE GC using a Restek HayeSep Q 80/100 6' 2mm stainless column, and then analyzed on a Thermo MAT 253 IRMS in Dual Inlet mode. This system was built at NASA/JSC over the past 3 years and proof tested with known carbonate standards to develop procedures, assess yield, and quantify expected uncertainties. Two distinct species of carbonates are found based on the stepped extraction technique: 1) Ca-rich carbonate released at low temperatures, and 2) Mg, or Fe-rich carbonate released at high temperatures. Preliminary results indicate that most of the carbonates present in the ordinary chondrites analyzed have δ13C=+5‰, which is consistent with formation from atmospheric CO2 δ13C=-7‰ at -20°C. The oxygen isotopic compositions of the carbonates vary between +4‰ and +34‰ with the Mg-rich and/or Fe-rich carbonates possessing the lowest δ18O values. This suggests that the carbonates formed under a wide range of temperatures. However, the carbonate oxygen

  14. Microbial mediated formation of Fe-carbonate minerals under extreme acidic conditions

    PubMed Central

    Sánchez-Román, Mónica; Fernández-Remolar, David; Amils, Ricardo; Sánchez-Navas, Antonio; Schmid, Thomas; Martin-Uriz, Patxi San; Rodríguez, Nuria; McKenzie, Judith A.; Vasconcelos, Crisogono

    2014-01-01

    Discovery of Fe-carbonate precipitation in Rio Tinto, a shallow river with very acidic waters, situated in Huelva, South-western Spain, adds a new dimension to our understanding of carbonate formation. Sediment samples from this low-pH system indicate that carbonates are formed in physico-chemical conditions ranging from acid to neutral pH. Evidence for microbial mediation is observed in secondary electron images (Fig. 1), which reveal rod-shaped bacteria embedded in the surface of siderite nanocrystals. The formation of carbonates in Rio Tinto is related to the microbial reduction of ferric iron coupled to the oxidation of organic compounds. Herein, we demonstrate for the first time, that Acidiphilium sp. PM, an iron-reducing bacterium isolated from Rio Tinto, mediates the precipitation of siderite (FeCO3) under acidic conditions and at a low temperature (30°C). We describe nucleation of siderite on nanoglobules in intimate association with the bacteria cell surface. This study has major implications for understanding carbonate formation on the ancient Earth or extraterrestrial planets. PMID:24755961

  15. EFFECT OF ACID TREATMENT ON DISSOLVED ORGANIC CARBON RETENTION BY A SPODIC HORIZON

    EPA Science Inventory

    Processes involving the movement of organic substances in forest soils are not well understood. This study was conducted to examine the role of acidic inputs on dissolved organic carbon (DOC) mobility, processes affecting the retention of DOV by a B horizon, and SO2-4 adsorption....

  16. Polymerization of euphorbia oil with Lewis acid in carbon dioxide media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Boron trifluoride diethyl etherate (BF3-OEt2) Lewis acid catalyzed ring-opening polymerization of euphorbia oil (EO), a natural epoxy oil, in liquid carbon dioxide was conducted in an effort to develop useful vegetable oil based polymers. The resulting polymers (RPEO) were characterized by FTIR, 1H-...

  17. FATTY ACID STABLE ISOTOPE INDICATORS OF MICROBIAL CARBON SOURCE IN TROPICAL SOILS

    EPA Science Inventory

    The soil microbial community plays an important role in tropical ecosystem functioning because of its importance in the soil organic matter (SOM) cycle. We have measured the stable carbon isotopic ratio (delta13C) of individual phospholipid fatty acids (PLFAs) in a variety of tr...

  18. Numbers of bacteria recovered from broiler carcasses and chiller water treated with hypochlorous and carbonic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to determine the effects of treating poultry chiller water with a mixture of hypochlorous and carbonic acids. Broiler carcasses and chiller water were obtained from a commercial processing facility which had recently installed a TOMCO Pathogen Management SystemJ to recycle wat...

  19. Neutralizing Carbonic Acid in Deep Carbonate Strata below the North Atlantic

    SciTech Connect

    Daniel P. Schrag

    2005-12-01

    Our research is aimed at investigating several technical issues associated with carbon dioxide sequestration in calcium carbonate sediments below the sea floor through laboratory experiments and chemical transport modeling. Our goal is to evaluate the basic feasibility of this approach, including an assessment of optimal depths, sediment types, and other issues related to site selection. Through laboratory and modeling efforts, we are studying the flow of liquid carbon dioxide and carbon dioxide-water mixtures through calcium carbonate sediments to better understand the geomechanical and structural stability of the sediments during and after injection. Our modeling efforts in the first year show that the idea is feasible, but requires more sophisticated analysis of fluid flow at high pressure in deep sea sediments. In addition, we are investigating the kinetics of calcium carbonate dissolution in the presence of CO{sub 2}-water fluids, which is a critical feature of the system as it allows for increased permeability during injection. Our experimental results from the first year of work have shown that the kinetics are likely to be fast enough to create dissolution which will affect permeability. However, additional experiments are needed at high pressures, which will be a focus for years 2 and 3. We are also investigating the possibility of carbon dioxide hydrate formation in the pore fluid, which might complicate the injection procedure by reducing sediment permeability but might also provide an upper seal in the sediment-pore fluid system, preventing release of CO{sub 2} into the deep ocean, particularly if depth and temperature at the injection point rule out immediate hydrate formation. Finally, we are in the beginning stages of an economic analysis to estimate costs of drilling and gas injection, site monitoring as well as the availability of potential disposal sites with particular emphasis on those sites that are within the 200-mile economic zone of the

  20. Acid rain damage to carbonate stone: a quantitative assessment based on the aqueous geochemistry of rainfall runoff from stone

    USGS Publications Warehouse

    Reddy, M.M.

    1988-01-01

    An onsite experimental procedure was used to identify and quantify acid rain damage to carbonate stone, based on the change in rain runoff chemical composition. Onsite data obtained during the summer and fall of 1984 at three locations in the northeastern United States indicate that carbonate stone surface recession is related to acid deposition. -from Author

  1. Solubility of small-chain carboxylic acids in supercritical carbon dioxide

    SciTech Connect

    Sparks, Darrell L.; Estevez, L. Antonio; Hernandez, Rafael; McEwen, Jason; French, Todd

    2010-07-08

    The solubility of heptanoic acid and octanoic acid in supercritical carbon dioxide has been determined at temperatures of (313.15, 323.15, and 333.15) K over a pressure range of (8.5 to 30.0) MPa, depending upon the solute. The solubility of heptanoic acid ranged from a solute concentration of (0.08 ± 0.03) kg • m-3 (T = 323.15 K, p = 8.5 MPa) to (147 ± 0.2) kg • m-3 (T = 323.15 K, p = 20.0 MPa). The lowest octanoic acid solubility obtained was a solute concentration of (0.40 ± 0.1) kg • m-3 (T = 333.15 K, p = 10.0 MPa), while the highest solute concentration was (151 ± 2) kg • m-3 (T = 333.15 K, p = 26.7 MPa). In addition, solubility experiments were performed for nonanoic acid in supercritical carbon dioxide at 323.15 K and pressures of (10.0 to 30.0) MPa to add to the solubility data previously published by the authors. In general, carboxylic acid solubility increased with increasing solvent density. The results also showed that the solubility of the solutes decreased with increasing molar mass at constant supercritical-fluid density. Additionally, the efficacy of Chrastil's equation and other density-based models was evaluated for each fatty acid.

  2. Solubility of small-chain carboxylic acids in supercritical carbon dioxide

    DOE PAGESBeta

    Sparks, Darrell L.; Estevez, L. Antonio; Hernandez, Rafael; McEwen, Jason; French, Todd

    2010-07-08

    The solubility of heptanoic acid and octanoic acid in supercritical carbon dioxide has been determined at temperatures of (313.15, 323.15, and 333.15) K over a pressure range of (8.5 to 30.0) MPa, depending upon the solute. The solubility of heptanoic acid ranged from a solute concentration of (0.08 ± 0.03) kg • m-3 (T = 323.15 K, p = 8.5 MPa) to (147 ± 0.2) kg • m-3 (T = 323.15 K, p = 20.0 MPa). The lowest octanoic acid solubility obtained was a solute concentration of (0.40 ± 0.1) kg • m-3 (T = 333.15 K, p = 10.0more » MPa), while the highest solute concentration was (151 ± 2) kg • m-3 (T = 333.15 K, p = 26.7 MPa). In addition, solubility experiments were performed for nonanoic acid in supercritical carbon dioxide at 323.15 K and pressures of (10.0 to 30.0) MPa to add to the solubility data previously published by the authors. In general, carboxylic acid solubility increased with increasing solvent density. The results also showed that the solubility of the solutes decreased with increasing molar mass at constant supercritical-fluid density. Additionally, the efficacy of Chrastil's equation and other density-based models was evaluated for each fatty acid.« less

  3. Comparison of inhibition effects of some benzoic acid derivatives on sheep heart carbonic anhydrase

    NASA Astrophysics Data System (ADS)

    Kiliç, Deryanur; Yildiz, Melike; Şentürk, Murat; Erdoǧan, Orhan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Carbonic anhydrase (CA) is a family of metalloenzymes that requires Zn as a cofactor and catalyze the quick conversion of CO2 to HCO3- and H+. Inhibitors of the carbonic anhydrases (CAs) have medical usage of significant diseases such as glaucoma, epilepsy, gastroduodenal ulcers, acid-base disequilibria and neurological disorders. In the present study, inhibition of CA with some benzoic derivatives (1-6) were investigated. Sheep heart CA (shCA) enzyme was isolated by means of designed affinity chromatography gel (cellulose-benzyl-sulfanylamide) 42.45-fold in a yield of 44 % with 564.65 EU/mg. Purified shCA enzyme was used in vitro studies. In the studies, IC50 values were calculated for 3-aminobenzoic acid (1), 4-aminobenzoic acid (2), 2-hydroxybenzoic acid (3), 2-benzoylbenzoic acid (4), 2,3-dimethoxybenzoic acid (5), and 3,4,5-trimethoxybenzoic acid (6), showing the inhibition effects on the purified enzyme. Such molecules can be used as pioneer for discovery of novel effective CA inhibitors for medicinal chemistry applications.

  4. Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter.

    PubMed

    Gao, Yaohuan; Deshusses, Marc A

    2011-12-01

    The adsorption of two acidic pharmaceutically active compounds (PhACs), clofibric acid and ketoprofen, onto powdered activated carbon (PAC) was investigated with a particular focus on the influence of natural organic matter (NOM) on the adsorption of the PhACs. Suwannee River humic acids (SRHAs) were used as a substitute for NOM. Batch adsorption experiments were conducted to obtain adsorption kinetics and adsorption isotherms with and without SRHAs in the system. The adsorption isotherms and adsorption kinetics showed that the adsorption ofclofibric acid was not significantly affected by the presence of SRHAs at a concentration of 5 mg (as carbon) L(-1). An adsorption capacity of 70 to 140 mg g(-1) was observed and equilibrium was reached within 48 h. In contrast, the adsorption of ketoprofen was markedly decreased (from about 120 mg g(-1) to 70-100 mg g(-1)) in the presence of SRHAs. Higher initial concentrations of clofibric acid than ketoprofen during testing may explain the different behaviours that were observed. Also, the more hydrophobic ketoprofen molecules may have less affinity for PAC when humic acids (which are hydrophilic) are present. The possible intermolecular forces that could account for the different behaviour of clofibric acid and ketoprofen adsorption onto PAC are discussed. In particular, the relevance of electrostatic forces, electron donor-acceptor interaction, hydrogen bonding and London dispersion forces are discussed PMID:22439557

  5. Dissolution of single-walled carbon nanotubes in alkanol-cholic acid mixtures

    NASA Astrophysics Data System (ADS)

    Dyshin, A. A.; Eliseeva, O. V.; Bondarenko, G. V.; Kiselev, M. G.

    2015-09-01

    A procedure for dispersing the single-walled carbon nanotubes (SWCNTs) for preparing stable suspensions with high concentrations of individual nanotubes in various alcohols was described. The obtained suspensions were studied by Raman spectroscopy. The solubility of the single-walled carbon nanotubes in alcohols was found to depend on the concentration of cholic acid. The ethanol-surfactant mixture was shown to be the best solvent for all alkanol-cholic acid mixtures (0.018 mol/kg) under study used for preparing time-stable suspensions of single-walled carbon nanotubes. The dissolving ability of aliphatic alcohols was found to decrease in the series: ethanol-isopropanol- tert-butanol-butanol-propanol.

  6. Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption.

    PubMed

    Valix, M; Cheung, W H; McKay, G

    2004-08-01

    Activated carbons were prepared from bagasse through a low temperature (160 degrees C) chemical carbonisation treatment and gasification with carbon dioxide at 900 degrees C. The merit of low temperature chemical carbonisation in preparing chars for activation was assessed by comparing the physical and chemical properties of activated carbons developed by this technique to conventional methods involving the use of thermal and vacuum pyrolysis of bagasse. In addition, the adsorption properties (acid blue dye) of these bagasse activated carbons were also compared with a commercial activated carbon. The results suggest that despite the high ash content of the precursor, high surface areas (614-1433 m2 g(-1)) and microporous (median pore size from 0.45 to 1.2 nm) activated carbons can be generated through chemical carbonisation and gasification. The micropore area of the activated carbon developed from chars prepared by the low temperature chemical carbonisation provides favourable adsorption sites to acid blue dye (391 mg g(-1) of carbon). The alkalinity of the carbon surface and total surface area were shown to have complementary effects in promoting the adsorption of acid blue dye. Adsorption of the anionic coloured component of the acid dye was shown to be promoted in carbon exhibiting alkaline or positively charged surfaces. This study demonstrates that activated carbons with high acid dye adsorption capacities can be prepared from high ash bagasse based on low temperature chemical carbonisation and gasification. PMID:15212915

  7. Enhancing adsorption efficiency of dichloroacetic acid onto mesoporous carbons: Procedure optimization, mechanism and characterization.

    PubMed

    Ding, Ying; Zhu, Jianzhong; Ji, Dongliang; Cao, Yang; Ling, Xiaojia; Chen, Wei

    2015-08-15

    Highly ordered mesoporous carbon may be directly synthesized via supramolecular self-assembly with in situ evaporation-induced crystallization process by controlling thermal reaction temperatures and carbon mass loading. In the present study, the effects of thermal reaction temperatures on the structural characterization and adsorption capacity of mesoporous carbon have been investigated and analyzed with orthogonal test experiments. The results show the carbonization temperature (R=32.1) plays a more important role than the self-assembly temperature (R=8.5) and thermal polymerization temperature (R=10.1) in manipulating the pore texture structures. The optimization grouping temperature was 40-110-500 °C. The optimum mesoporous carbon sample had the highest BET specific surface area (474 m(2)/g), the largest pore volume (0.46 cm(3)/g), and with reasonable uniform pore size distribution. The adsorption evaluation also shows the adsorption capacity is strongly correlated with the pore structure of mesoporous carbon, the optimized mesoporous carbon sample displayed the largest adsorption capacity (350 mg/g) at an initial concentration of 20.0 mg/L of dichloroacetic acid. The study results indicate optimization of thermal reaction parameters is an effective approach for synthesis of ordered mesoporous carbons. PMID:25935284

  8. Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides.

    PubMed

    Huang, Xiang-Feng; Liu, Jia-Nan; Lu, Li-Jun; Peng, Kai-Ming; Yang, Gao-Xiang; Liu, Jia

    2016-04-01

    Rhodosporidium toruloides AS 2.1389 was tested using different concentrations of acetic acid as a low-cost carbon source for the production of microbial lipids, which are good raw materials for biodiesel production. It grew and had higher lipid contents in media containing 4-20g/L acetic acid as the sole carbon source, compared with that in glucose-containing media under the same culture conditions. At acetic acid concentrations as high as 20g/L and the optimal carbon-to-nitrogen ratio (C/N) of 200 in a batch culture, the highest biomass production was 4.35g/L, with a lipid content of 48.2%. At acetic acid concentrations as low as 4g/L, a sequencing batch culture (SBC) with a C/N of 100 increased biomass production to 4.21g/L, with a lipid content of 38.6%. These results provide usable culture strategies for lipid production by R. toruloides AS 2.1389 when using diverse waste-derived volatile fatty acids. PMID:26851898

  9. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China.

    PubMed

    Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2016-02-15

    With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China. PMID:26657252

  10. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    NASA Astrophysics Data System (ADS)

    Chang, Binbin; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-01

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl2 using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl2 at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of -SO3H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N2 adsorption-desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of -SO3H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of -SO3H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and -SO3H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles.

  11. [Studies on carbonization of saccharides by using aqueous solution of various acids].

    PubMed

    Zhang, Xin; He, An-Qi; Kang, Ting-Guo; Xia, Jin-Ming; Weng, Shi-Fu; Xu, Yi-Zhuang; Wu, Jin-Guang

    2014-09-01

    The authors tried to establish an approach to use acids to convert biomass into a fuel with higher carbon content and lower oxygen content in a zero-energy-consumption fashion. Considering that biomass is composed of monosaccharide, we used aqueous solutions of variation acids including hydrochloric acid, sulfuric acid and perchloric acid to treat 2-deoxy-ribose and fructose at ambient temperature and pressure. Black substances were produced after a period of time when 2-deoxy-ribose and fructose were mixed with aqueous solutions containing 8 mol · L(-1) acids. The black substance was collected and characterized by using elemental analysis, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Elemental analysis results indicate that the contents of carbon increases significantly in the black substances in comparison with 2-deoxy-ribose and fructose. Moreover, XPS results indicate that the content of oxygen in the black substance undergoes a significant decrease compared with pure 2-deoxy-ribose and fructose. In the XPS spectra, the is peaks of 2-deoxy-ribose, strong sub peak at 286. 05 eV, which is assigned to carbon linked to oxygen directly, dominate in the C is peak envelop. After treatment by HClO4, the peak decreased dramatically. This result also supports the conclusion that the content of oxygen in mono-saccharide is significantly reduced after treatment by acids. In the FTIR spectra of the black substances, strong peaks can be observed around 1 600 cm(-1), indicating that C==C bond is formed in the product. The above results suggest that treatments with acids may be developed as a new zero-energy-consumption approach to convert biomass in a new fuel with improved energy output efficiency. PMID:25532323

  12. Controlled exposures of volunteers to respirable carbon and sulfuric acid aerosols

    SciTech Connect

    Anderson, K.R.; Avol, E.L.; Edwards, S.A.; Shamoo, D.A.; Ruchuan Peng; Linn, W.S.; Hackney, J.D. )

    1992-06-01

    Respirable carbon or fly ash particles are suspected to increase the respiratory toxicity of coexisting acidic air pollutants, by concentrating acid on their surfaces and so delivering it efficiently to the lower respiratory tract. To investigate this issue, the authors exposed 15 healthy and 15 asthmatic volunteers in a controlled-environment chamber to four test atmospheres: (1) clean air; (2) 0.5-{mu}m H{sub 2}SO{sub 4} aerosol at {approx}100 {mu}g/m{sup 3}, generated from water solution; (3) 0.5-{mu}m carbon aerosol at {approx}250 {mu}g/m{sup 3}, generated from highly pure carbon black with specific surface area comparable to ambient pollution particles; and (4) carbon as in (3) plus {approx}100 {mu}g/m{sup 3} of ultrafine H{sub 2}SO{sub 4} aerosol generated from fuming sulfuric acid. Electron microscopy showed that nearly all acid in (4) became attached to carbon particle surfaces, and that most particles remained in the sub-{mu}m size range. Exposures were performed double-blind, 1 week apart. They lasted 1 hr each, with alternate 10-min periods of heavy exercise (ventilation {approx}50 L/min) and rest. Subjects gargled citrus juice before exposure to suppress airway ammonia. Lung function and symptoms were measured pre-exposure, after initial exercise, and at end-exposure. Bronchial reactivity to methacholine was measured after exposure. Statistical analyses tested for effects of H{sub 2}SO{sub 4} or carbon, separate or interactive, on health measures.

  13. Carbonate precipitation under bulk acidic conditions as a potential biosignature for searching life on Mars

    NASA Astrophysics Data System (ADS)

    Fernández-Remolar, David C.; Preston, Louisa J.; Sánchez-Román, Mónica; Izawa, Matthew R. M.; Huang, L.; Southam, Gordon; Banerjee, Neil R.; Osinski, Gordon R.; Flemming, Roberta; Gómez-Ortíz, David; Prieto Ballesteros, Olga; Rodríguez, Nuria; Amils, Ricardo; Darby Dyar, M.

    2012-10-01

    Recent observations of carbonate minerals in ancient Martian rocks have been interpreted as evidence for the former presence of circumneutral solutions optimal for carbonate precipitation. Sampling from surface and subsurface regions of the low-pH system of Río Tinto has shown, unexpectedly, that carbonates can form under diverse macroscopic physicochemical conditions ranging from very low to neutral pH (1.5-7.0). A multi-technique approach demonstrates that carbonate minerals are closely associated with microbial activity. Carbonates occur in the form of micron-size carbonate precipitates under bacterial biofilms, mineralization of subsurface colonies, and possible biogenic microstructures including globules, platelets and dumbbell morphologies. We propose that carbonate precipitation in the low-pH environment of Río Tinto is a process enabled by microbially-mediated neutralization driven by the reduction of ferric iron coupled to the oxidation of biomolecules in microbially-maintained circumneutral oases, where the local pH (at the scale of cells or cell colonies) can be much different than in the macroscopic environment. Acidic conditions were likely predominant in vast regions of Mars over the last four billion years of planetary evolution. Ancient Martian microbial life inhabiting low-pH environments could have precipitated carbonates similar to those observed at Río Tinto. Preservation of carbonates at Río Tinto over geologically significant timescales suggests that similarly-formed carbonate minerals could also be preserved on Mars. Such carbonates could soon be observed by the Mars Science Laboratory, and by future missions to the red planet.

  14. Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves.

    PubMed

    Gallyamov, Marat O; Chaschin, Ivan S; Khokhlova, Marina A; Grigorev, Timofey E; Bakuleva, Natalia P; Lyutova, Irina G; Kondratenko, Janna E; Badun, Gennadii A; Chernysheva, Maria G; Khokhlov, Alexei R

    2014-04-01

    Calcification of bovine pericardium dramatically shortens typical lifetimes of biological prosthetic heart valves and thus precludes their choice for younger patients. The aim of the present work is to demonstrate that the calcification is to be mitigated by means of treatment of bovine pericardium in solutions of chitosan in carbonic acid, i.e. water saturated with carbon dioxide at high pressure. This acidic aqueous fluid unusually combines antimicrobial properties with absolute biocompatibility as far as at normal pressure it decomposes spontaneously and completely into H2O and CO2. Yet, at high pressures it can protonate and dissolve chitosan materials with different degrees of acetylation (in the range of 16-33%, at least) without any further pretreatment. Even exposure of the bovine pericardium in pure carbonic acid solution without chitosan already favours certain reduction in calcification, somewhat improved mechanical properties, complete biocompatibility and evident antimicrobial activity of the treated collagen tissue. The reason may be due to high extraction ability of this peculiar compressed fluidic mixture. Moreover, exposure of the bovine pericardium in solutions of chitosan in carbonic acid introduces even better mechanical properties and highly pronounced antimicrobial activity of the modified collagen tissue against adherence and biofilm formation of relevant Gram-positive and Gram-negative strains. Yet, the most important achievement is the detected dramatic reduction in calcification for such modified collagen tissues in spite of the fact that the amount of the thus introduced chitosan is rather small (typically ca. 1wt.%), which has been reliably detected using original tritium labelling method. We believe that these improved properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurised solutions in carbonic acid. PMID:24582232

  15. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with covalently-bound hexafluoroisopropanol groups

    SciTech Connect

    Fifield, Leonard S.; Grate, Jay W.

    2010-06-01

    Fluorinated hydrogen-bond acidic groups are directly attached to the backbone of single walled carbon nanotubes (SWCNTs) without the introduction of intermediate electron donating surface groups. Hexafluoroalcohol functional groups are exceptionally strong hydrogen bond acids, and are added to the nanotube surface using the aryl diazonium approach to create hydrogen-bond acidic carbon nanotube (CNT) surfaces. These groups can promote strong hydrogen-bonding interactions with matrix materials in composites or with molecular species to be concentrated and sensed. In the latter case, this newly developed material is expected to find useful application in chemical sensors and in CNT-based preconcentrator devices for the detection of pesticides, chemical warfare agents and explosives.

  16. Maintenance carbon cycle in crassulacean Acid metabolism plant leaves : source and compartmentation of carbon for nocturnal malate synthesis.

    PubMed

    Kenyon, W H; Severson, R F; Black, C C

    1985-01-01

    The reciprocal relationship between diurnal changes in organic acid and storage carbohydrate was examined in the leaves of three Crassulacean acid metabolism plants. It was found that depletion of leaf hexoses at night was sufficient to account quantitatively for increase in malate in Ananas comosus but not in Sedum telephium or Kalanchoë daigremontiana. Fructose and to a lesser extent glucose underwent the largest changes. Glucose levels in S. telephium leaves oscillated diurnally but were not reciprocally related to malate fluctuations.Analysis of isolated protoplasts and vacuoles from leaves of A. comosus and S. telephium revealed that vacuoles contain a large percentage (>50%) of the protoplast glucose, fructose and malate, citrate, isocitrate, ascorbate and succinate. Sucrose, a major constituent of intact leaves, was not detectable or was at extremely low levels in protoplasts and vacuoles from both plants.In isolated vacuoles from both A. comosus and S. telephium, hexose levels decreased at night at the same time malate increased. Only in A. comosus, however, could hexose metabolism account for a significant amount of the nocturnal increase in malate. We conclude that, in A. comosus, soluble sugars are part of the daily maintenance carbon cycle and that the vacuole plays a dynamic role in the diurnal carbon assimilation cycle of this Crassulacean acid metabolism plant. PMID:16664005

  17. Facile Carbon Fixation to Performic Acids by Water-Sealed Dielectric Barrier Discharge.

    PubMed

    Kawasaki, Mitsuo; Morita, Tatsuo; Tachibana, Kunihide

    2015-01-01

    Carbon fixation refers to the conversion of carbon dioxide (CO2) to organic materials, as commonly performed in nature through photosynthesis by plants and other autotrophic organisms. The creation of artificial carbon fixation processes is one of the greatest challenges for chemistry to solve the critical environmental issue concerning the reduction of CO2 emissions. We have developed an electricity-driven facile CO2 fixation process that yields performic acid, HCO2OH, from CO2 and water at neutral pH by dielectric barrier discharge with an input electric power conversion efficiency of currently 0.2-0.4%. This method offers a promising future technology for artificial carbon fixation on its own, and may also be scaled up in combination with e.g., the post-combustion CO2 capture and storage technology. PMID:26439402

  18. Facile Carbon Fixation to Performic Acids by Water-Sealed Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Kawasaki, Mitsuo; Morita, Tatsuo; Tachibana, Kunihide

    2015-10-01

    Carbon fixation refers to the conversion of carbon dioxide (CO2) to organic materials, as commonly performed in nature through photosynthesis by plants and other autotrophic organisms. The creation of artificial carbon fixation processes is one of the greatest challenges for chemistry to solve the critical environmental issue concerning the reduction of CO2 emissions. We have developed an electricity-driven facile CO2 fixation process that yields performic acid, HCO2OH, from CO2 and water at neutral pH by dielectric barrier discharge with an input electric power conversion efficiency of currently 0.2-0.4%. This method offers a promising future technology for artificial carbon fixation on its own, and may also be scaled up in combination with e.g., the post-combustion CO2 capture and storage technology.

  19. Facile Carbon Fixation to Performic Acids by Water-Sealed Dielectric Barrier Discharge

    PubMed Central

    Kawasaki, Mitsuo; Morita, Tatsuo; Tachibana, Kunihide

    2015-01-01

    Carbon fixation refers to the conversion of carbon dioxide (CO2) to organic materials, as commonly performed in nature through photosynthesis by plants and other autotrophic organisms. The creation of artificial carbon fixation processes is one of the greatest challenges for chemistry to solve the critical environmental issue concerning the reduction of CO2 emissions. We have developed an electricity-driven facile CO2 fixation process that yields performic acid, HCO2OH, from CO2 and water at neutral pH by dielectric barrier discharge with an input electric power conversion efficiency of currently 0.2−0.4%. This method offers a promising future technology for artificial carbon fixation on its own, and may also be scaled up in combination with e.g., the post-combustion CO2 capture and storage technology. PMID:26439402

  20. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  1. Neutralizing Carbonic Acid in Deep Carbonate Strata below the North Atlantic

    SciTech Connect

    Daniel P. Schrag

    2006-07-14

    Our research is aimed at investigating several technical issues associated with carbon dioxide sequestration in calcium carbonate sediments below the sea floor through laboratory experiments and chemical transport modeling. Our goal is to evaluate the basic feasibility of this approach, including an assessment of optimal depths, sediment types, and other issues related to site selection. The results of our modeling efforts were published this past summer in the Proceedings of the National Academy of Sciences. We are expanding on that work through a variety of laboratory and modeling efforts. In the laboratories at Columbia and at Harvard, we are studying the flow of liquid carbon dioxide and carbon dioxide-water mixtures through calcium carbonate sediments to better understand the geomechanical and structural stability of the sediments during and after injection. We are currently preparing the results of these findings for publication. In addition, we are investigating the kinetics of calcium carbonate dissolution in the presence of CO{sub 2}-water fluids, which is a critical feature of the system as it allows for increased permeability during injection. We are also investigating the possibility of carbon dioxide hydrate formation in the pore fluid, which might complicate the injection procedure by reducing sediment permeability but might also provide an upper seal in the sediment-pore fluid system, preventing release of CO{sub 2} into the deep ocean, particularly if depth and temperature at the injection point rule out immediate hydrate formation. This is done by injecting liquid CO{sub 2} into various types of porous media, and then monitoring the changes in permeability. Finally, we are performing an economic analysis to estimate costs of drilling and gas injection, site monitoring as well as the availability of potential disposal sites with particular emphasis on those sites that are within the 200-mile economic zone of the United States. We present some

  2. MOLTEN FLUORIDE NUCLEAR REACTOR FUEL

    DOEpatents

    Barton, C.J.; Grimes, W.R.

    1960-01-01

    Molten-salt reactor fuel compositions consisting of mixtures of fluoride salts are reported. In its broadest form, the composition contains an alkali fluoride such as sodium fluoride, zirconium tetrafluoride, and a uranium fluoride, the latter being the tetrafluoride or trifluoride or a mixture of the two. An outstanding property of these fuel compositions is a high coeffieient of thermal expansion which provides a negative temperature coefficient of reactivity in reactors in which they are used.

  3. Analysis of the stable carbon isotope composition of formic and acetic acids.

    PubMed

    Lee, Xinqing; Zhang, Like; Huang, Daikuan; An, Ning; Yang, Fang; Jiang, Wei; Fang, Bin

    2013-05-15

    Formic and acetic acids are ubiquitous in the environment and in many biological processes. Analysis of the stable carbon isotope composition (δ(13)C) of formic and acetic acids is important to understanding their biogeochemical cycles. However, it has been faced with poor accuracy and high detection limits due to their low carbon number, high hydrophilicity, and semi-volatility. Here we developed an analytical technique by needle trap and gas chromatography-isotope ratio mass spectrometry (GC-IRMS). The organic acids in aqueous solution were extracted using a NeedlEx needle through purge-and-trap and were analyzed by GC-IRMS for δ(13)C. The procedures incur no isotope fractionation. Defined as the point at which the mean δ(13)C is statistically the same as the given value and the analytical error starts rising, the method's detection limits are 200 and 100 mg/L for formic and acetic acids, respectively, with an uncertainty of approximately 0.5‰ in direct extraction and analysis. They were lowered to 1 mg/L with precision of 0.9‰ after samples were subjected to preconcentration. The method was successfully applied to natural samples as diverse as precipitation, vinegars, ant plasma, and vehicle exhaust, which vary considerably in concentration and matrix of the organic acids. It is applicable to the organic acids in not only aqueous solution but also gaseous phase. PMID:23395975

  4. Partially molten magma ocean model

    SciTech Connect

    Shirley, D.N.

    1983-02-15

    The properties of the lunar crust and upper mantle can be explained if the outer 300-400 km of the moon was initially only partially molten rather than fully molten. The top of the partially molten region contained about 20% melt and decreased to 0% at 300-400 km depth. Nuclei of anorthositic crust formed over localized bodies of magma segregated from the partial melt, then grew peripherally until they coverd the moon. Throughout most of its growth period the anorthosite crust floated on a layer of magma a few km thick. The thickness of this layer is regulated by the opposing forces of loss of material by fractional crystallization and addition of magma from the partial melt below. Concentrations of Sr, Eu, and Sm in pristine ferroan anorthosites are found to be consistent with this model, as are trends for the ferroan anorthosites and Mg-rich suites on a diagram of An in plagioclase vs. mg in mafics. Clustering of Eu, Sr, and mg values found among pristine ferroan anorthosites are predicted by this model.

  5. [Effects of simulated acid rain on decomposition of soil organic carbon and crop straw].

    PubMed

    Zhu, Xue-Zhu; Huang, Yao; Yang, Xin-Zhong

    2009-02-01

    To evaluate the effects of acid rain on the organic carbon decomposition in different acidity soils, a 40-day incubation test was conducted with the paddy soils of pH 5.48, 6.70 and 8.18. The soils were amended with 0 and 15 g x kg(-1) of rice straw, adjusted to the moisture content of 400 g x kg(-1) air-dried soil by using simulated rain of pH 6.0, 4.5, and 3.0, and incubated at 20 degrees C. The results showed that straw, acid rain, and soil co-affected the CO2 emission from soil system. The amendment of straw increased the soil CO2 emission rate significantly. Acid rain had no significant effects on soil organic carbon decomposition, but significantly affected the straw decomposition in soil. When treated with pH 3.0 acid rain, the amount of decomposed straw over 40-day incubation in acid (pH 5.48) and alkaline (pH 8.18) soils was 8% higher, while that in neutral soil (pH 6.70) was 15% lower, compared to the treatment of pH 6.0 rain. In the treatment of pH 3.0 acid rain, the decomposition rate of soil organic C in acid (pH 5.48) soil was 43% and 50% (P < 0.05) higher than that in neutral (pH 6.70) and alkaline (pH 8.18) soils, while the decomposition rate of straw in neutral soil was 17% and 16% (P < 0.05) lower than that in acid and alkaline soils, respectively. PMID:19459394

  6. Ancient low–molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw

    PubMed Central

    Drake, Travis W.; Wickland, Kimberly P.; Spencer, Robert G. M.; McKnight, Diane M.; Striegl, Robert G.

    2015-01-01

    Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high–temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low–molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters. PMID:26504243

  7. Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw.

    PubMed

    Drake, Travis W; Wickland, Kimberly P; Spencer, Robert G M; McKnight, Diane M; Striegl, Robert G

    2015-11-10

    Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high-temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low-molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters. PMID:26504243

  8. The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.

    SciTech Connect

    Zalupski, Peter R.; McDowell, Rocklan; Dutech, Guy

    2014-08-05

    Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces. The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.

  9. The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.

    DOE PAGESBeta

    Zalupski, Peter R.; McDowell, Rocklan; Dutech, Guy

    2014-08-05

    Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces.more » The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.« less

  10. Large discharge capacity from carbon electrodes in sulfuric acid with oxidant

    NASA Astrophysics Data System (ADS)

    Inagaki, M.; Iwashita, N.

    The discharge performance of the graphite intercalation compounds in sulfuric acid containing nitric acid (H 2SO 4-GICs) was studied by focusing on the effects of oxidant and carbon nanotexture. A large discharge capacity from H 2SO 4-GICs synthesized by using an excess amount of HNO 3, more than 150 times of the theoretical value (93 mAh/g carbon), was obtained depending on the amount of oxidant added, the discharge current, and the nanotexture of carbon electrode. The experimental results are explained in terms of competition between the de-intercalation of sulfuric acid due to galvanostatic reduction and the re-intercalation due to chemical oxidation by HN03 during discharging. However, a subsidiary reaction decreases the effective amount of HNO 3 on the discharge by a small current and also on the cycle of chemical charging and electrochemical discharging. The oxidant KMnO 4 gave only a little larger capacity for discharge than the theoretical one, because it was reduced to the manganese oxide precipitates during the oxidation of the carbon electrode.

  11. Fabrication and characterization of polylactic acid and polylactic acid/multi-walled carbon nanotube nanofibers through centrifugal spinning

    NASA Astrophysics Data System (ADS)

    Patlan, Richard

    Biocompatible polymer nanofibers hold great potential in the biomedical engineering field. Their biodegradable nature and enhanced properties could help solve a wide array of health related problems, particularly in the areas of tissue regeneration, drug delivery, and biosensor design. The novel Forcespinning™ method allows the production of submicron fibers without many of the drawbacks found in electrospinning, while also providing a substantial increase in fiber production. The aim of the study was to utilize this method to fabricate non-woven nanofibrous mats composed of polylactic acid (PLA) and polylactic acid/multi-walled carbon nanotube composite fibers. The morphology, thermal properties, and crystalline structure of the resulting nanofibers were then characterized using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and X-Ray Diffraction (XRD).

  12. Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon availability.

    PubMed

    Figueroa, Carlos M; Feil, Regina; Ishihara, Hirofumi; Watanabe, Mutsumi; Kölling, Katharina; Krause, Ursula; Höhne, Melanie; Encke, Beatrice; Plaxton, William C; Zeeman, Samuel C; Li, Zhi; Schulze, Waltraud X; Hoefgen, Rainer; Stitt, Mark; Lunn, John E

    2016-02-01

    Trehalose 6-phosphate (Tre6P) is an essential signal metabolite in plants, linking growth and development to carbon metabolism. The sucrose-Tre6P nexus model postulates that Tre6P acts as both a signal and negative feedback regulator of sucrose levels. To test this model, short-term metabolic responses to induced increases in Tre6P levels were investigated in Arabidopsis thaliana plants expressing the Escherichia coli Tre6P synthase gene (otsA) under the control of an ethanol-inducible promoter. Increased Tre6P levels led to a transient decrease in sucrose content, post-translational activation of nitrate reductase and phosphoenolpyruvate carboxylase, and increased levels of organic and amino acids. Radio-isotope ((14)CO2) and stable isotope ((13)CO2) labelling experiments showed no change in the rates of photoassimilate export in plants with elevated Tre6P, but increased labelling of organic acids. We conclude that high Tre6P levels decrease sucrose levels by stimulating nitrate assimilation and anaplerotic synthesis of organic acids, thereby diverting photoassimilates away from sucrose to generate carbon skeletons and fixed nitrogen for amino acid synthesis. These results are consistent with the sucrose-Tre6P nexus model, and implicate Tre6P in coordinating carbon and nitrogen metabolism in plants. PMID:26714615

  13. Trihalomethane formation potential of aquatic and terrestrial fulvic and humic acids: Sorption on activated carbon.

    PubMed

    Abouleish, Mohamed Y Z; Wells, Martha J M

    2015-07-15

    Humic substances (HSs) are precursors for the formation of hazardous disinfection by-products (DBPs) during chlorination of water. Various surrogate parameters have been used to investigate the generation of DBPs by HS precursors and the removal of these precursors by activated carbon treatment. Dissolved organic carbon (DOC)- and ultraviolet absorbance (UVA254)-based isotherms are commonly reported and presumed to be good predictors of the trihalomethane formation potential (THMFP). However, THMFP-based isotherms are rarely published such that the three types of parameters have not been compared directly. Batch equilibrium experiments on activated carbon were used to generate constant-initial-concentration sorption isotherms for well-characterized samples obtained from the International Humic Substances Society (IHSS). HSs representing type (fulvic acid [FA], humic acid [HA]), origin (aquatic, terrestrial), and geographical source (Nordic, Suwannee, Peat, Soil) were examined at pH6 and pH9. THMFP-based isotherms were generated and compared to determine if DOC- and UVA254-based isotherms were good predictors of the THMFP. The sorption process depended on the composition of the HSs and the chemical nature of the activated carbon, both of which were influenced by pH. Activated carbon removal of THM-precursors was pH- and HS-dependent. In some instances, the THMFP existed after UVA254 was depleted. PMID:25847173

  14. Discrete carbon nanotubes increase lead acid battery charge acceptance and performance

    NASA Astrophysics Data System (ADS)

    Swogger, Steven W.; Everill, Paul; Dubey, D. P.; Sugumaran, Nanjan

    2014-09-01

    Performance demands placed upon lead acid batteries have outgrown the technology's ability to deliver. These demands, typically leading to Negative Active Material (NAM) failure, include: short, high-current surges; prolonged, minimal, overvoltage charging; repeated, Ah deficit charging; and frequent deep discharges. Research shows these failure mechanisms are attenuated by inclusion of carbon allotropes into the NAM. Addition of significant quantities of carbon, however, produces detrimental changes in paste rheology, leading to lowered industrial throughput. Additionally, capacity, cold-cranking performance, and other battery metrics are negatively affected at high carbon loads. Presented here is Molecular Rebar® Lead Negative, a new battery additive comprising discrete carbon nanotubes (dCNT) which uniformly disperse within battery pastes during mixing. NS40ZL batteries containing dCNT show enhanced charge acceptance, reserve capacity, and cold-cranking performance, decreased risk of polarization, and no detrimental changes to paste properties, when compared to dCNT-free controls. This work focuses on the dCNT as NAM additives only, but early-stage research is underway to test their functionality as a PAM additive. Batteries infused with Molecular Rebar® Lead Negative address the needs of modern lead acid battery applications, produce none of the detrimental side effects associated with carbon additives, and require no change to existing production lines.

  15. Carbon isotope composition of dissolved humic and fulvic acids in the Tokachi River system.

    PubMed

    Nagao, Seiya; Kodama, Hiroki; Aramaki, Takafumi; Fujitake, Nobuhide; Uchida, Masao; Shibata, Yasuyuki

    2011-07-01

    This study reports carbon isotopic ratios (Δ(14)C and δ(13)C) of dissolved humic and fulvic acids in the Tokachi River system, northern Japan. These acids have a refractory feature and they represent the largest fraction of dissolved organic matter in aquatic environments. The acids were isolated using the XAD extraction method from river water samples collected at three sites (on the upper and lower Tokachi River, and from one of its tributaries) in June 2004 and 2005. δ(13)C values were -27.8 to -26.9 ‰ for humic and fulvic acids. On the other hand, the Δ(14)C values ranged from -247 to +26 ‰ and the average values were -170 ± 79 ‰ for humic acid and -44 ± 73 ‰ for fulvic acid. The difference was attributed to the residence time of fulvic acid in the watershed being shorter than that of humic acid. The large variation suggested that humic substances have a different pathway in each watershed environment. PMID:21515623

  16. Merging photoredox catalysis with Lewis acid catalysis: activation of carbon-carbon triple bonds.

    PubMed

    Jin, Ruiwen; Chen, Yiyong; Liu, Wangsheng; Xu, Dawen; Li, Yawei; Ding, Aishun; Guo, Hao

    2016-08-01

    Here, we demonstrate that merging photoredox catalysis with Lewis acid catalysis provides a fundamentally new activation mode of C-C triple bonds, to achieve the bond-forming reaction of alkynes with weak nucleophiles. Using a synergistic merger of Eosin Y and Cu(OTf)2, a highly efficient cyclization reaction of arene-ynes was developed. PMID:27432542

  17. Colloidal methods for the fabrication of carbon nanotube-manganese dioxide and carbon nanotube-polypyrrole composites using bile acids.

    PubMed

    Ata, M S; Zhitomirsky, I

    2015-09-15

    Nature inspired strategies have been developed for the colloidal processing of advanced composites for supercapacitor applications. New approach was based on the use of commercially available bile acid salts, such as sodium cholate (ChNa) and taurocholic acid sodium salt (TChNa). It was demonstrated that cholic acid (ChH) films can be obtained by electrophoretic deposition (EPD) from ChNa solutions. The analysis of deposition yield, quartz crystal microbalance and cyclic voltammetry data provided an insight into the anodic deposition mechanism. The outstanding suspension stability of multiwalled carbon nanotubes (MWCNT), achieved using bile acids as anionic dispersants, allowed the fabrication of MWCNT films by EPD. The use of ChNa for EPD offered advantages of binding and film forming properties of this material. Composite MnO2-MWCNT films, prepared using ChNa as a dispersant and film forming agent for EPD, showed promising capacitive behavior. In another colloidal strategy, TChNa was used as a dispersant for MWCNT for the fabrication of polypyrrole (PPy) coated MWCNT. The use of PPy coated MWCNT allowed the fabrication of electrodes with high active mass loading, high capacitance and excellent capacitance retention at high charge-discharge rates. PMID:26001135

  18. Effect of magnesium carbonate on the solubility, dissolution and oral bioavailability of fenofibric acid powder as an alkalising solubilizer.

    PubMed

    Kim, Kyeong Soo; Kim, Jeong Hyun; Jin, Sung Giu; Kim, Dong Wuk; Kim, Dong Shik; Kim, Jong Oh; Yong, Chul Soon; Cho, Kwan Hyung; Li, Dong Xun; Woo, Jong Soo; Choi, Han-Gon

    2016-04-01

    To investigate the possibility of developing a novel oral pharmaceutical product using fenofibric acid instead of choline fenofibrate, the powder properties, solubility, dissolution and pharmacokinetics in rats of fenofibrate, choline fenofibrate and fenofibric acid were compared. Furthermore, the effect of magnesium carbonate, an alkalising agent on the solubility, dissolution and oral bioavailability of fenofibric acid was assessed, a mixture of fenofibric acid and magnesium carbonate being prepared by simple blending at a weight ratio of 2/1. The three fenofibrate derivatives showed different particle sizes and melting points with similar crystalline shape. Fenofibric acid had a significantly higher aqueous solubility and dissolution than fenofibrate, but significantly lower solubility and dissolution than choline fenofibrate. However, the fenofibric acid/magnesium carbonate mixture greatly improved the solubility and dissolution of fenofibric acid with an enhancement to levels similar with those for choline fenofibrate. Fenofibric acid gave lower plasma concentrations, AUC and Cmax values compared to choline fenofibrate in rats. However, the mixture resulted in plasma concentrations, AUC and Cmax values levels not significantly different from those for choline fenofibrate. Specifically, magnesium carbonate increased the aqueous solubility, dissolution and bioavailability of fenofibric acid by about 7.5-, 4- and 1.6-fold, respectively. Thus, the mixture of fenofibric acid and magnesium carbonate at the weight ratio of 2/1 might be a candidate for an oral pharmaceutical product with improved oral bioavailability. PMID:26992922

  19. Selective Acidic Leaching of Spent Zinc-Carbon Batteries Followed by Zinc Electrowinning

    NASA Astrophysics Data System (ADS)

    Shalchian, Hossein; Rafsanjani-Abbasi, Ali; Vahdati-Khaki, Jalil; Babakhani, Abolfazl

    2015-02-01

    In this work, a selective acidic leaching procedure was employed for recycling zinc from spent zinc-carbon batteries. Leaching experiments were carried out in order to maximize zinc recovery and minimize manganese recovery in diluted sulfuric acid media. Response surface methodology and analysis of variance were employed for experimental design, data analysis, and leaching optimization. The experimental design has 28 experiments that include 24 main runs and four replicate in center point. The optimal conditions obtained from the selective acidic leaching experiments, were sulfuric acid concentration of 1 pct v/v, leaching temperature of 343 K (70 °C), pulp density of 8 pct w/v, and stirring speed of 300 rpm. The results show that the zinc and manganese recoveries after staged selective leaching are about 92 and 15 pct, respectively. Finally, metallic zinc with purity of 99.9 pct and electrolytic manganese dioxide were obtained by electrowinning.

  20. Covalently linked deoxyribonucleic acid with multi-walled carbon nanotubes: synthesis and characterization.

    PubMed

    Chen, Weiwei; Yi, Changqing; Chi-Hung, Tzang; Lee, Shuit-Tong; Yang, Mengsu

    2010-01-01

    In this chapter, a multi-step protocol for covalently linking functionalized multi-walled carbon nanotubes (MWCNT) to deoxyribonucleic acid (DNA) oligonucleotides is provided. X-ray photoelectron spectroscopy (XPS) is used to characterize the initially formed amine-terminated MWCNTs, to which DNA is covalently anchored. Atomic force microscopy (AFM) investigation of the DNA-MWCNT conjugates reveals that the chemical functionalization occurs at both the ends and sidewalls of the nanotubes. The described methodology represents an important step toward the realization of DNA-guided self-assembly for carbon nanotubes. PMID:20422378