Science.gov

Sample records for acid nitrogen dioxide

  1. Nitrogen dioxide

    Integrated Risk Information System (IRIS)

    Nitrogen dioxide ; CASRN 10102 - 44 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  2. Mechanisms of Nitrogen Dioxide Reactions: Initiation of Lipid Peroxidation and the Production of Nitrous Acid

    NASA Astrophysics Data System (ADS)

    Pryor, William A.; Lightsey, John W.

    1981-10-01

    The reactions of nitrogen dioxide with cyclohexene have been studied as a model for the reactions that occur between nitrogen dioxide in smoggy air and unsaturated fatty acids in pulmonary lipids. As predicted from earlier studies at high nitrogen dioxide concentrations, this gas reacts with cyclohexene predominantly by addition to the double bond at nitrogen dioxide concentrations of I percent (10,000 parts per million) to 40 percent in nitrogen; in the presence of air or oxygen, this reaction initiates the autoxidation of the alkene. However, at concentrations below 100 parts per million in nitrogen, nitrogen dioxide reacts with cyclohexene almost exclusively by abstraction of allylic hydrogen; this unexpected reaction also initiates the autoxidation of the alkene in the presence of oxygen or air, but it leads to the production of nitrous acid rather than of a product containing a nitro group attached to a carbon atom. The nitrous acid can react with amines to produce nitrosamines. Moreover, the nitrite ion produced by the hydrogen abstraction mechanism would be expected to diffuse throughout the body, unlike nitrated lipids that would be confined to the pulmonary cavity. These findings have been confirmed with methyl oleate, linoleate, and linolenate; some of the kinetic features of the nitrogen dioxideinitiated autoxidation of these unsaturated fatty acids have been studied.

  3. Interaction of glutathione and ascorbic acid in guinea pig lungs exposed to nitrogen dioxide

    SciTech Connect

    Leung, H.-W.; Morrow, P.E.

    1981-01-01

    The interaction of two important water-soluble antioxidants, glutathione and ascorbic acid, was studied. The perfused guinea pig lung was found to contain about twice as much reduced glutathione as ascorbic acid. Nitrogen dioxide exposure decreased the levels of the two antioxidants both in vitro and in vivo. Ascorbic acid concentration was lowered to a greater extent than glutathione. The pulmonary ascorbic acid level was identical in both control and glutathione-deficient guinea pigs exposed to nitrogen dioxide, suggesting that there was little interaction between the two antioxidants in the lungs during oxidant stress.

  4. NITROGEN DIOXIDE EXPOSURE AND LUNG ANTIOXIDANTS IN ASCORBIC ACID-DEFICIENT GUINEA PIGS

    EPA Science Inventory

    The authors have previously found that ascorbic acid (AA) deficiency in guinea pigs enhances the pulmonary toxicity of nitrogen dioxide (NO2). The present study showed that exposure to NO2 (4.8 ppm, 3 hr) significantly increased lung lavage fluid protein (a sensitive indicator of...

  5. Nitrogen dioxide detection

    DOEpatents

    Sinha, Dipen N.; Agnew, Stephen F.; Christensen, William H.

    1993-01-01

    Method and apparatus for detecting the presence of gaseous nitrogen dioxide and determining the amount of gas which is present. Though polystyrene is normally an insulator, it becomes electrically conductive in the presence of nitrogen dioxide. Conductance or resistance of a polystyrene sensing element is related to the concentration of nitrogen dioxide at the sensing element.

  6. Sustainable synthesis of aldehydes, ketones or acids from neat alcohols using nitrogen dioxide gas, and related reactions.

    PubMed

    Naimi-Jamal, M Reza; Hamzeali, Hamideh; Mokhtari, Javad; Boy, Jürgen; Kaupp, Gerd

    2009-01-01

    Benzylic alcohols are quantitatively oxidized by gaseous nitrogen dioxide to give pure aromatic aldehydes. The reaction gas mixtures are transformed to nitric acid, which renders the processes free of waste. The exothermic gas-liquid or gas-solid reactions profit from the solubility of nitrogen dioxide in the neat benzylic alcohols. The acid formed impedes further oxidation of the benzaldehydes. The neat isolated benzaldehydes and nitrogen dioxide quantitatively give the benzoic acids. Solid long-chain primary alcohols are directly and quantitatively oxidized with nitrogen dioxide gas to give the fatty acids in the solid state. The oxidations with ubiquitous nitrogen dioxide are extended to solid heterocyclic thioamides, which gives disulfides, and to diphenylamine, which gives tetraphenylhydrazine. These sustainable (green) specific oxidation procedures produce no dangerous residues from the oxidizing agent or from auxiliaries. PMID:19115303

  7. EFFECTS OF DEPLETION OF ASCORBIC ACID OR NONPROTEIN SULFYDRYLS ON THE ACUTE INHALATION TOXICITY OF NITROGEN DIOXIDE, OZONE, AND PHOSGENE

    EPA Science Inventory

    The effect of depleting lung ascorbic acid (AH2) and nonprotein sulfhydryls (NPSH) on the acute inhalation toxicity of nitrogen dioxide (N02), ozone (03), and phosgene (C0Cl2) was investigated in guinea pigs. he increase in bronchoalveolar lavage (BAL) fluid protein (an indicator...

  8. PERSONAL MONITOR FOR NITROGEN DIOXIDE

    EPA Science Inventory

    An attempt was made to develop a personal monitor to measure nitrogen dioxide. Sampling of nitrogen dioxide is accomplished by permeation through a silicone membrane into a alkaline thymol blue solution. The nitrogen dioxide is converted to nitrite and is then quantitated by colo...

  9. Uricase Inhibits Nitrogen Dioxide-Promoted Allergic Sensitization to Inhaled Ovalbumin Independent of Uric Acid Catabolism.

    PubMed

    Ather, Jennifer L; Burgess, Edward J; Hoyt, Laura R; Randall, Matthew J; Mandal, Mridul K; Matthews, Dwight E; Boyson, Jonathan E; Poynter, Matthew E

    2016-09-01

    Nitrogen dioxide (NO2) is an environmental air pollutant and endogenously generated oxidant that contributes to the exacerbation of respiratory disease and can function as an adjuvant to allergically sensitize to an innocuous inhaled Ag. Because uric acid has been implicated as a mediator of adjuvant activity, we sought to determine whether uric acid was elevated and participated in a mouse model of NO2-promoted allergic sensitization. We found that uric acid was increased in the airways of mice exposed to NO2 and that administration of uricase inhibited the development of OVA-driven allergic airway disease subsequent to OVA challenge, as well as the generation of OVA-specific Abs. However, uricase was itself immunogenic, inducing a uricase-specific adaptive immune response that occurred even when the enzymatic activity of uricase had been inactivated. Inhibition of the OVA-specific response was not due to the capacity of uricase to inhibit the early steps of OVA uptake or processing and presentation by dendritic cells, but occurred at a later step that blocked OVA-specific CD4(+) T cell proliferation and cytokine production. Although blocking uric acid formation by allopurinol did not affect outcomes, administration of ultra-clean human serum albumin at protein concentrations equivalent to that of uricase inhibited NO2-promoted allergic airway disease. These results indicate that, although uric acid levels are elevated in the airways of NO2-exposed mice, the powerful inhibitory effect of uricase administration on allergic sensitization is mediated more through Ag-specific immune deviation than via suppression of allergic sensitization, a mechanism to be considered in the interpretation of results from other experimental systems. PMID:27465529

  10. Antioxidative Reaction of Carotenes against Peroxidation of Fatty Acids Initiated by Nitrogen Dioxide: A Theoretical Study.

    PubMed

    Chen, Shau-Jiun; Huang, Li-Yen; Hu, Ching-Han

    2015-07-30

    In this study, we investigated the antioxidative functions of carotenes (CARs) against the peroxidation of lipids initiated by nitrogen dioxide using density functional theory. The hydrogen-atom transfer (HAT), radical adduct formation (RAF), and electron transfer (ET) mechanisms were investigated. We chose β-carotene (β-CAR) and lycopene (LYC) and compared their NO2(•) initiations and peroxidations with those of linoleic acid (LAH), the model of the lipid. We found that for CARs ET is more likely to occur in the most polar (water) environment than are HAT and RAF. In less polar environments, CARs react more readily with NO2(•) via HAT and RAF than does the lipid model, LAH. Comparatively, reaction barriers for the RAF between CARs and NO2(•) are smaller than those for the HAT. The additions of O2 to the radical intermediates O2N-CAR(•) and CAR(-H)(•) involve sizable barriers and are endergonic. Other than HAT of LAH, we revealed that lipid peroxidation is likely to be initiated by -NO2 addition and the subsequent barrierless addition of O2. Finally, LYC is a more effective antioxidative agent against NO2(•)-initiated lipid peroxidation than is β-CAR. PMID:26106906

  11. Nitrogen dioxide induced changes in level of free fatty acids, triglyceride, esterified fatty acid, ganglioside and lipase activity in the guinea pig brain

    SciTech Connect

    Farahani, H.; Hasan, M. )

    1992-02-01

    The biochemical response to controlled inhalation of nitrogen dioxide (NO2) was studied in 18 male guinea pigs. Animals were exposed to 2.5, 5.0, and 10 ppm NO2 for 2h daily for 35 consecutive days, and the results compared with six control animals exposed to filtered air for 2h daily for same period. Five biochemical parameters, including triglyceride, free fatty acids, esterified fatty acid, ganglioside and lipase activity were measured immediately after the last day of exposure. At 2.5 ppm NO2 inhalation no significant changes occurred in any region of the central nervous system (CNS). While as the dose concentration was increased to 5 and 10 ppm nitrogen dioxide, significant dose-related alteration were observed in the levels of triglyceride, free fatty acid, esterified fatty acid, ganglioside and lipase activity in the different regions of the guinea pig CNS.

  12. Release of nitrous acid and nitrogen dioxide from nitrate photolysis in acidic aqueous solutions.

    PubMed

    Scharko, Nicole K; Berke, Andrew E; Raff, Jonathan D

    2014-10-21

    Nitrate (NO3(-)) is an abundant component of aerosols, boundary layer surface films, and surface water. Photolysis of NO3(-) leads to NO2 and HONO, both of which play important roles in tropospheric ozone and OH production. Field and laboratory studies suggest that NO3¯ photochemistry is a more important source of HONO than once thought, although a mechanistic understanding of the variables controlling this process is lacking. We present results of cavity-enhanced absorption spectroscopy measurements of NO2 and HONO emitted during photodegradation of aqueous NO3(-) under acidic conditions. Nitrous acid is formed in higher quantities at pH 2-4 than expected based on consideration of primary photochemical channels alone. Both experimental and modeled results indicate that the additional HONO is not due to enhanced NO3(-) absorption cross sections or effective quantum yields, but rather to secondary reactions of NO2 in solution. We find that NO2 is more efficiently hydrolyzed in solution when it is generated in situ during NO3(-) photolysis than for the heterogeneous system where mass transfer of gaseous NO2 into bulk solution is prohibitively slow. The presence of nonchromophoric OH scavengers that are naturally present in the environment increases HONO production 4-fold, and therefore play an important role in enhancing daytime HONO formation from NO3(-) photochemistry. PMID:25271384

  13. Purification of crude hexafluoroacetone containing nitrogen oxides and sulfur dioxide

    SciTech Connect

    Bonfield, J. H.; Karsay, B. I.

    1984-09-25

    Crude hexafluoroacetone containing as impurities nitrogen oxides and sulfur dioxide is purified by admixing with water to form an aqueous solution, admixing the aqueous solution with concentrated sulfuric acid or oleum to form a vapor and scrubbing the vapor with liquid concentrated sulfuric acid to produce purified anhydrous hexafluoroacetone. The sulfur dioxide and nitrogen oxides interact with the aqueous solution and conc

  14. A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor

    NASA Astrophysics Data System (ADS)

    Min, K.-E.; Washenfelder, R. A.; Dubé, W. P.; Langford, A. O.; Edwards, P. M.; Zarzana, K. J.; Stutz, J.; Lu, K.; Rohrer, F.; Zhang, Y.; Brown, S. S.

    2015-10-01

    We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS) for aircraft measurements of glyoxal (CHOCHO), methylglyoxal (CH3COCHO), nitrous acid (HONO), nitrogen dioxide (NO2), and water (H2O). The instrument spans 361-389 and 438-468 nm, using two light emitting diodes (LEDs) and a grating spectrometer with a charge-coupled device (CCD) detector. Robust performance is achieved using a custom optical mounting system, high power LEDs with electronic on/off modulation, state-of-the-art cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO and NO2 are 34, 350 and 80 pptv in 5 s. The accuracy is 5.8, 9.0 and 5.0 % limited mainly by the available absorption cross sections.

  15. A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor

    NASA Astrophysics Data System (ADS)

    Min, K.-E.; Washenfelder, R. A.; Dubé, W. P.; Langford, A. O.; Edwards, P. M.; Zarzana, K. J.; Stutz, J.; Lu, K.; Rohrer, F.; Zhang, Y.; Brown, S. S.

    2016-02-01

    We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS) for aircraft measurements of glyoxal (CHOCHO), methylglyoxal (CH3COCHO), nitrous acid (HONO), nitrogen dioxide (NO2), and water (H2O). The instrument spans 361-389 and 438-468 nm, using two light-emitting diodes (LEDs) and a single grating spectrometer with a charge-coupled device (CCD) detector. Robust performance is achieved using a custom optical mounting system, high-power LEDs with electronic on/off modulation, high-reflectivity cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO and NO2 are 34, 350, and 80 parts per trillion (pptv) in 5 s. The accuracy is 5.8, 9.0, and 5.0 %, limited mainly by the available absorption cross sections.

  16. New Spectrophotometric Method for Determining Nitrogen Dioxide in Air Using 2,2-azino-bis(3-ethyl benzothiazoline)-6-Sulfonic Acid-Diammonium Salt and Passive Sampling

    PubMed Central

    Salem, Alaa A.; Soliman, Ahmed A.; El-Haty, Ismail A.

    2011-01-01

    A new simple and highly sensitive spectrophotometric method for determining nitrogen dioxide in air was developed. The method is based on converting atmospheric nitrogen dioxide to nitrite ions within the IVL passive samplers used for samples collection. Acidifying nitrite ions with concentrated HCl produced the peroxynitrous acid oxidizing agent which was measured using 2, 2-azino-bis(3-ethyl benzothiazoline)-6-sulfonic acid-diammonium salt (ABTS) as reducing coloring agent. A parallel series of collected samples were measured for its nitrite content using a validated ion chromatographic method. The results obtained using both methods were compared in terms of their sensitivity and accuracy. Developed spectrophotometric method was shown to be one order of magnitude higher in sensitivity compared to the ion chromatographic method. Quantitation limits of 0.05 ppm and 0.55 μg/m3 were obtained for nitrite ion and nitrogen dioxid, respectively. Standard deviations in the ranges of 0.05–0.59 and 0.63–7.92 with averages of 0.27 and 3.11 were obtained for determining nitrite and nitrogen dioxide, respectively. Student-t test revealed t-values less than 6.93 and 4.40 for nitrite ions and nitrogen dioxide, respectively. These values indicated insignificant difference between the averages of the newly developed method and the values obtained by ion chromatography at 95% confidence level. Compared to continuous monitoring techniques, the newly developed method has shown simple, accurate, sensitive, inexpensive and reliable for long term monitoring of nitrogen dioxide in ambient air. PMID:21760708

  17. Effects of nitrogen dioxide and its acid mist on reactive oxygen species production and antioxidant enzyme activity in Arabidopsis plants.

    PubMed

    Liu, Xiaofang; Hou, Fen; Li, Guangke; Sang, Nan

    2015-08-01

    Nitrogen dioxide (NO2) is one of the most common and harmful air pollutants. To analyze the response of plants to NO2 stress, we investigated the morphological change, reactive oxygen species (ROS) production and antioxidant enzyme activity in Arabidopsis thaliana (Col-0) exposed to 1.7, 4, 8.5, and 18.8 mg/m(3) NO2. The results indicate that NO2 exposure affected plant growth and chlorophyll (Chl) content, and increased oxygen free radical (O2(-)) production rate in Arabidopsis shoots. Furthermore, NO2 elevated the levels of lipid peroxidation and protein oxidation, accompanied by the induction of antioxidant enzyme activities and change of ascorbate (AsA) and glutathione (GSH) contents. Following this, we mimicked nitric acid mist under experimental conditions, and confirmed the antioxidant mechanism of the plant to the stress. Our results imply that NO2 and its acid mist caused pollution risk to plant systems. During the process, increased ROS acted as a signal to induce a defense response, and antioxidant status played an important role in plant protection against NO2/nitric acid mist-caused oxidative damage. PMID:26257351

  18. Improvements in the profiles and distributions of nitric acid and nitrogen dioxide with the LIMS version 6 dataset

    NASA Astrophysics Data System (ADS)

    Remsberg, E.; Natarajan, M.; Marshall, T.; Gordley, L. L.; Thompson, R. E.; Lingenfelser, G.

    2010-02-01

    The quality of the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) nitric acid (HNO3) and nitrogen dioxide (NO2) profiles and distributions of 1978/1979 is described after their processing with an updated, Version 6 (V6) algorithm and subsequent archival in 2002. Estimates of the precision and accuracy of both of those species are developed and provided herein. The character of the V6 HNO3 profiles is relatively unchanged from that of the earlier LIMS Version 5 (V5) profiles, except in the upper stratosphere where the interfering effects of CO2 are accounted for better with V6. The accuracy of the retrieved V6 NO2 is also significantly better in the middle and upper stratosphere, due to improvements in its spectral line parameters and in the reduced biases for the accompanying V6 temperature and water vapor profiles. As a result of these important updates, there is better agreement with theoretical calculations for profiles of the HNO3/NO2 ratio, day-to-night NO2 ratio, and with estimates of the production of NO2 in the mesosphere and its descent to the upper stratosphere during polar night. The improved precisions and more frequent retrievals of the profiles along the LIMS orbit tracks provide for better continuity and detail in map analyses of these two species on pressure surfaces. It is judged that the chemical effects of the oxides of nitrogen on ozone can be examined quantitatively throughout the stratosphere with the LIMS V6 data, and that the findings will be more compatible with those obtained from measurements of the same species from subsequent satellite sensors.

  19. Improvements in the profiles and distributions of nitric acid and nitrogen dioxide with the LIMS version 6 dataset

    NASA Astrophysics Data System (ADS)

    Remsberg, E.; Natarajan, M.; Marshall, B. T.; Gordley, L. L.; Thompson, R. E.; Lingenfelser, G.

    2010-05-01

    The quality of the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) nitric acid (HNO3) and nitrogen dioxide (NO2) profiles and distributions of 1978/1979 are described after their processing with an updated, Version 6 (V6) algorithm and subsequent archival in 2002. Estimates of the precision and accuracy of both of those species are developed and provided herein. The character of the V6 HNO3 profiles is relatively unchanged from that of the earlier LIMS Version 5 (V5) profiles, except in the upper stratosphere where the interfering effects of CO2 are accounted for better with V6. The accuracy of the retrieved V6 NO2 is also significantly better in the middle and upper stratosphere, due to improvements in its spectral line parameters and in the reduced biases for the accompanying V6 temperature and water vapor profiles. As a result of these important updates, there is better agreement with theoretical calculations for profiles of the HNO3/NO2 ratio, day-to-night NO2 ratio, and with estimates of the production of NO2 in the mesosphere and its descent to the upper stratosphere during polar night. In particular, the findings for middle and upper stratospheric NO2 should also be more compatible with those obtained from more recent satellite sensors because the effects of the spin-splitting of the NO2 lines are accounted for now with the LIMS V6 algorithm. The improved precisions and more frequent retrievals of the LIMS profiles along their orbit tracks provide for better continuity and detail in map analyses of these two species on pressure surfaces. It is judged that the chemical effects of the oxides of nitrogen on ozone can be studied quantitatively throughout the stratosphere with the LIMS V6 data.

  20. Effects of depletion of ascorbic acid or nonprotein sulfhydryls on the acute inhalation toxicity of nitrogen dioxide, ozone, and phosgene

    SciTech Connect

    Slade, R.; Highfill, J.W.; Hatch, G.E.

    1989-01-01

    The effect of depleting lung ascorbic acid (AH{sub 2}) and nonprotein sulfhydryls (NPSH) on the acute inhalation toxicity of nitrogen dioxide (NO{sub 2}), ozone (O{sub 3}), and phosgene (COCl{sub 2}) was investigated in guinea pigs. The increase in bronchoalveolar lavage (BAL) fluid protein (an indicator of alveolar-capillary damage leading to increased permeability) was measured 16 to 18 hr following a 4 hr exposure to the gas in animals deficient in (AH{sub 2}) or NPSH. Gas concentrations were chosen which produced low but significant increases in BAL protein. Lung (AH{sub 2}) was lowered to about 20% of control by feeding rabbit chow for 2 weeks. Lung NPSH was lowered to about 50% of control by injecting a mixture of buthionine S,R-sulfoximine (BSO) and diethylmaleate (DEM) (2.7 and 1.2 mmol/kg respectively). BSO/DEM did not affect the lung concentrations of (AH{sub 2}) or alpha-tocopherol. AH{sub 2} depletion caused a 6 fold and a 3 fold enhancement in the toxicity of 5 ppm and 10 ppm (NO{sub 2}), and a 6 fold enhancement in the toxicity of 0.5 ppm (O{sub 3}), but did not affect toxicity of 1.0 ppm (O{sub 3}). AH{sub 2} depletion did not affect phosgene toxicity (at 0.25 ppm and 0.5 ppm).

  1. LABORATORY AND FIELD EVALUATIONS OF EXTRANSENSITIVE SULFUR DIXOIDE AND NITROGEN DIOXIDE ANALYZERS FOR ACID DEPOSITION MONITORING

    EPA Science Inventory

    Studies of environmental acid deposition require monitoring of very low levels of several atmospheric pollutants. arious passive and active samplers have been used to collect integrated atmospheric samples for such studies. ontinuous analyzers offer an advantage because of their ...

  2. The photolysis of chlorine in the presence of ozone, nitric acid and nitrogen dioxide

    NASA Technical Reports Server (NTRS)

    Stuper, W. W.

    1979-01-01

    The following three systems were investigated: the Cl2-O3 system, the Cl2-O2-NO system and the Cl2-NO2-M system. In the first system, the reaction between ClO and O3, the reaction between OClO and O3, and the mechanism of the Cl2-O3 system were studied. In the second system, the reaction between ClOO and NO was investigated. In the last system, the reaction between Cl and NO2 was investigated as well as the kinetics of the chemiluminescence of the Cl-NO2-O3 reaction. In the first system, Cl2 was photolyzed at 366 nm in the presence of O3 within the temperature range 254-297 K. O3 was removed with quantum yields of 5.8 + or - 0.5, 4.0 + or - 0.3, 2.9 + or - 0.3 and 1.9 + or - 0.2 at 297, 283, 273, and 252 K respectively, invariant to changes in the initial O3 or Cl2 concentration, the extent of conversion or the absorbed intensity, I sub a. The addition of nitrogen had no effect on -phi(03). The Cl2 removal quantum yields were 0.11 + or - 0.02 at 297 K for Cl2 conversions of about 30%, much higher than expected from mass balance considerations based on the initial quantum yield of 0.089 + or - 0.013 for OClO formation at 297 K. The final chlorine-containing product was Cl2O7. It was produced at least in part through the formation of OClO as an intermediate which was also observed with an initial quantum yield of phi sub i(OClO) = 2500 exp(-(3025 + or - 625)/T) independent of (O3) or I sub a.

  3. Density functional studies of the formation of nitrous acid from the reaction of nitrogen dioxide and water vapor

    SciTech Connect

    Chou, A.; Li, Z.; Tao, F.M.

    1999-09-30

    Nitrous acid (HONO) has long been recognized as an important trace gas in the troposphere where its rapid photolysis represents a significant source of hydroxy (OH) radicals. During the night, HONO has been observed to accumulate to concentrations up to 15 ppb, and this accumulation of HONO has a profound impact on the daytime chemistry of the troposphere. Reaction mechanisms for the production of nitrous acid (HONO ) from the homogeneous gas-phase hydrolysis of nitrogen dioxide (NO{sub 2}) are examined by density functional theory calculations. The molecular structures and energies of the NO{sub 2}-(H{sub 2}O){sub n} (n = 1, 2, 3) and N{sub 2}O{sub 4}-(H{sub 2} O){sub n}(n = 1, 2) systems corresponding to the stationary points on the potential energy surface along the reaction pathways are calculated using the B3LYP method with the 6-311+G(2d,p) basis set. These reaction pathways represent the homogeneous hydrolysis of NO{sub 2} or N{sub 2}O{sub 4} with a varying number of water (H{sub 2}O) molecules. The reactions of NO{sub 2} with water produce HONO, along with the OH radical which was postulated to combine in the next step with a second NO{sub 2} to form nitric acid (HNO{sub 3}). The simple NO{sub 2} + H{sub 2}O bimolecular reaction leads to the highly unstable OH radical which reacts reversibly with HONO without an energy barrier. The introduction of single solvating H{sub 2}O molecule appears to stabilize the transition state as well as an intermediate that contains the OH radical. However, the energy barrier is found to be near 30 kcal mol{sup {minus}1} and is not affected by multiple additional H{sub 2}O molecules. On the other hand, the reaction of N{sub 2}O{sub 4} with water lead directly to HONO and HNO{sub 3}. the energy barrier for the N{sub 2}O{sub 4} reaction is above 30 kcal mol{sup {minus}1} and is also unaffected by additional H{sub 2}O molecules. The study demonstrates that the gas-phase hydrolysis of NO{sub 2} or N{sub 2}O{sub 4} is

  4. The effects of acetaldehyde, glyoxal and acetic acid on the heterogeneous reaction of nitrogen dioxide on gamma-alumina.

    PubMed

    Sun, Zhenyu; Kong, Lingdong; Ding, Xiaoxiao; Du, Chengtian; Zhao, Xi; Chen, Jianmin; Fu, Hongbo; Yang, Xin; Cheng, Tiantao

    2016-04-14

    Heterogeneous reactions of nitrogen oxides on the surface of aluminium oxide result in the formation of adsorbed nitrite and nitrate. However, little is known about the effects of other species on these heterogeneous reactions and their products. In this study, diffuse reflectance infrared spectroscopy (DRIFTS) was used to analyze the process of the heterogeneous reaction of NO2 on the surface of aluminium oxide particles in the presence of pre-adsorbed organic species (acetaldehyde, glyoxal and acetic acid) at 298 K and reveal the influence of these organic species on the formation of adsorbed nitrite and nitrate. It was found that the pre-adsorption of organic species (acetaldehyde, glyoxal and acetic acid) on γ-Al2O3 could suppress the formation of nitrate to different extents. Under the same experimental conditions, the suppression of the formation of nitrate by the pre-adsorption of acetic acid is much stronger than that by pre-adsorption of acetaldehyde and glyoxal, indicating that the influence of acetic acid on the heterogeneous reaction of NO2 is different from that of acetaldehyde and glyoxal. Surface nitrite is formed and identified to be an intermediate product. For the heterogeneous reaction of NO2 on the surface of γ-Al2O3 with and without the pre-adsorption of acetaldehyde and glyoxal, it is firstly formed and then gradually disappears as the reaction proceeds, but for the reaction with the pre-adsorption of acetic acid, it is the final main product besides nitrate. This indicates that the pre-adsorption of acetic acid would promote the formation of nitrite, while the others would not change the trend of the formation of nitrite. The possible influence mechanisms of the pre-adsorption of acetaldehyde, glyoxal and acetic acid on the heterogeneous conversion of NO2 on γ-Al2O3 are proposed and atmospheric implications based on these results are discussed. PMID:26745767

  5. Continuous analysis of nitrogen dioxide in gas streams of plants

    NASA Technical Reports Server (NTRS)

    Durkin, W. T.; Kispert, R. C.

    1969-01-01

    Analyzer and sampling system continuously monitors nitrogen dioxide concentrations in the feed and tail gas streams of a facility recovering nitric acid. The system, using a direct calorimetric approach, makes use of readily available equipment and is flexible and reliable in operation.

  6. Effects of acid irrigation on carbon dioxide evolution, extractable nitrogen, phosphorus, and aluminum in a deciduous forest soil

    SciTech Connect

    Johnson, D.W.; Todd, D.E.

    1984-01-01

    A study was initiated to determine the effects of sulfuric and nitric acid irrigation on CO/sub 2/ evolution, and N, P, and Al availability in a deciduous forest soil. Irrigation with H/sub 2/O, H/sub 2/SO/sub 4/, or HNO/sub 3/ at 0.05 mol (p/sup +/) m/sup -2/ and 0.5 mol (p/sup +/) m/sup -2/ for 1 yr had no consistent effect on CO/sub 2/ evolution, soil NH/sub 4//sup +/, extractable P, or extractable Al in a deciduous forest soil under field conditions. Irrigation with HNO/sub 3/ caused temporary increases in soil NO/sub 3//sup -/, but irrigation with H/sub 2/SO/sub 4/ had no effect on soil NO/sub 3//sup -/. Nitrogen mineralization and nitrification by aerobic incubation were also unaffected by treatments. Seasonal variations in CO/sub 2/ evolution, NH/sub 4//sup +/, and extractable P were pronounced, with peaks in CO/sub 2/ evolution, NH/sub 4//sup +/, in June and a peak extractable P in August. 19 references, 2 tables.

  7. The Development of a Nitrogen Dioxide Sonde

    NASA Astrophysics Data System (ADS)

    Sluis, Wesley; Allaart, Marc; Piters, Ankie; Gast, Lou

    2010-05-01

    Nitrogen dioxide is an important pollutant in the atmosphere, it is toxic for living species, it forms photochemical tropospheric ozone, and acid rain. There is a growing number of space-borne instruments to measure nitrogen dioxide concentrations in the atmosphere, but validation of these instruments is hampered by lack of ground-based and in-situ profile measurements. The Royal Netherlands Meteorological Institute (KNMI) has developed a working NO2 sonde. The sonde is attached to a small meteorological balloon and measures a tropospheric NO2 profile. The NO2 sonde has a vertical resolution of 5 meter, and a measurement range between 1 and 100 ppbv. The instrument is light in weight (±300 gram), cheap (disposable), energy efficient and not harmful to the environment or the person who finds the package after use. Therefore the popular molybdenum catalytic converter or a photomultiplier tube can not be used. Instead the sonde uses the chemiluminescent reaction of NO2 in an aqueous luminol solution. The NO2- luminol reaction produces a faint blue/purple light (± 425 nm), which is detected by an array of silicon photodiodes. The instrument is equipped with a reservoir filled with luminol solution. A small piezoelectric diaphragm pump, pumps the luminol solution into a reaction vessel. A Teflon air pump forces the ambient air into the reaction vessel. The NO2 in the ambient air reacts with the luminol solution, and the emitted light is detected by an array of silicon photodiodes which are mounted on the reaction vessel. The generated current in the photodiodes is amplified and relayed to the ground by a Vaisala (RS92) radiosonde. The reaction vessel and the amplifiers are mounted in a tin can, to shield against electrostatic and radio interference, and stray light. All the air tubes used for the instrument are made of Teflon. The luminol solution is optimised to be specific to NO2. Sodium sulphate, sodium EDTA and Triton X-100 are added to the luminol solution to

  8. NITROGEN DIOXIDE AND RESPIRATORY ILLNESS IN CHILDREN

    EPA Science Inventory

    Drs. Jonathan M. Samet, John D. Spengler, and colleagues conducted a prospective investigation of 1,205 health infants living in homes with gas or electric stoves in Albuquerque, NM. Nitrogen dioxide exposures were carefully estimated from repeated measurements in multiple ...

  9. 40 CFR 52.728 Control strategy: Nitrogen dioxide. - [Reserved

    Code of Federal Regulations, 2014 CFR

    1998-07-01

    ... 40 Protection of Environment 3 1998-07-01 1998-07-01 false 52.728 Control strategy: Nitrogen dioxide. Section 52.728 Control strategy: Nitrogen dioxide. AIR PROGRAMS-(CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Illinois § 52.728Control strategy: Nitrogen dioxide....

  10. 21 CFR § 868.2385 - Nitrogen dioxide analyzer.

    Code of Federal Regulations, 2011 CFR

    2015-04-01

    ... 21 Food and Drugs 8 2015-04-01 2015-04-01 false Nitrogen dioxide analyzer. § 868.2385 Section Â... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2385 Nitrogen dioxide analyzer. (a) Identification. The nitrogen dioxide analyzer is a device intended to measure the...

  11. 40 CFR 52.728 Control strategy: Nitrogen dioxide. - [Reserved

    Code of Federal Regulations, 2010 CFR

    1997-07-01

    ... 40 Protection of Environment 3 1997-07-01 1997-07-01 false 52.728 Control strategy: Nitrogen dioxide. Section 52.728 Control strategy: Nitrogen dioxide. AIR PROGRAMS-(CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Illinois § 52.728Control strategy: Nitrogen dioxide....

  12. 40 CFR 52.728 Control strategy: Nitrogen dioxide. - [Reserved

    Code of Federal Regulations, 2013 CFR

    1996-07-01

    ... 40 Protection of Environment 2 1996-07-01 1996-07-01 false 52.728 Control strategy: Nitrogen dioxide. Section 52.728 Control strategy: Nitrogen dioxide. AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Illinois § 52.728Control strategy: Nitrogen dioxide....

  13. 21 CFR 868.2385 - Nitrogen dioxide analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nitrogen dioxide analyzer. 868.2385 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2385 Nitrogen dioxide analyzer. (a) Identification. The nitrogen dioxide analyzer is a device intended to measure the concentration of...

  14. 21 CFR 868.2385 - Nitrogen dioxide analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nitrogen dioxide analyzer. 868.2385 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2385 Nitrogen dioxide analyzer. (a) Identification. The nitrogen dioxide analyzer is a device intended to measure the concentration of...

  15. 21 CFR 868.2385 - Nitrogen dioxide analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nitrogen dioxide analyzer. 868.2385 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2385 Nitrogen dioxide analyzer. (a) Identification. The nitrogen dioxide analyzer is a device intended to measure the concentration of...

  16. 21 CFR 868.2385 - Nitrogen dioxide analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nitrogen dioxide analyzer. 868.2385 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2385 Nitrogen dioxide analyzer. (a) Identification. The nitrogen dioxide analyzer is a device intended to measure the concentration of...

  17. 21 CFR 868.2385 - Nitrogen dioxide analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nitrogen dioxide analyzer. 868.2385 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2385 Nitrogen dioxide analyzer. (a) Identification. The nitrogen dioxide analyzer is a device intended to measure the concentration of...

  18. Vapor pressures and calculated heats of vaporization of concentrated nitric acid solutions in the composition range 71 to 89 percent nitrogen dioxide, 1 to 10 percent water, and in the temperature range 10 to 60 degrees C

    NASA Technical Reports Server (NTRS)

    Mckeown, A B; Belles, Frank E

    1954-01-01

    Total vapor pressures were measured for 16 acid mixtures of the ternary system nitric acid, nitrogen dioxide, and water within the temperature range 10 degrees to 60 degrees Celsius, and with the composition range 71 to 89 weight percent nitric acid, 7 to 20 weight percent nitrogen dioxide, and 1 to 10 weight percent water. Heats of vaporization were calculated from the vapor pressure measurements for each sample for the temperatures 25, 40, and 60 degrees Celsius. The ullage of the apparatus used for the measurements was 0.46. Ternary diagrams showing isobars as a function of composition of the system were constructed from experimental and interpolated data for the temperatures 25, 40, 45, and 60 degrees C and are presented herein.

  19. Comparison of Satellite Observations of Nitrogen Dioxide to Surface Monitor Nitrogen Dioxide Concentration

    NASA Technical Reports Server (NTRS)

    Kleb, Mary M.; Pippin, Margaret R.; Pierce, R. Bradley; Neil, Doreen O.; Lingenfelser, Gretchen; Szykman, James J.

    2006-01-01

    Nitrogen dioxide is one of the U. S. EPA s criteria pollutants, and one of the main ingredients needed for the production of ground-level ozone. Both ozone and nitrogen dioxide cause severe public health problems. Existing satellites have begun to produce observational data sets for nitrogen dioxide. Under NASAs Earth Science Applications Program, we examined the relationship between satellite observations and surface monitor observations of this air pollutant to examine if the satellite data can be used to facilitate a more capable and integrated observing network. This report provides a comparison of satellite tropospheric column nitrogen dioxide to surface monitor nitrogen dioxide concentration for the period from September 1996 through August 1997 at more than 300 individual locations in the continental US. We found that the spatial resolution and observation time of the satellite did not capture the variability of this pollutant as measured at ground level. The tools and processes developed to conduct this study will be applied to the analysis of advanced satellite observations. One advanced instrument has significantly better spatial resolution than the measurements studied here and operates with an afternoon overpass time, providing a more representative distribution for once-per-day sampling of this photochemically active atmospheric constituent.

  20. Increase in tropospheric nitrogen dioxide over China observed from space.

    PubMed

    Richter, Andreas; Burrows, John P; Nüss, Hendrik; Granier, Claire; Niemeier, Ulrike

    2005-09-01

    Emissions from fossil fuel combustion and biomass burning reduce local air quality and affect global tropospheric chemistry. Nitrogen oxides are emitted by all combustion processes and play a key part in the photochemically induced catalytic production of ozone, which results in summer smog and has increased levels of tropospheric ozone globally. Release of nitrogen oxide also results in nitric acid deposition, and--at least locally--increases radiative forcing effects due to the absorption of downward propagating visible light. Nitrogen oxide concentrations in many industrialized countries are expected to decrease, but rapid economic development has the potential to increase significantly the emissions of nitrogen oxides in parts of Asia. Here we present the tropospheric column amounts of nitrogen dioxide retrieved from two satellite instruments GOME and SCIAMACHY over the years 1996-2004. We find substantial reductions in nitrogen dioxide concentrations over some areas of Europe and the USA, but a highly significant increase of about 50 per cent-with an accelerating trend in annual growth rate-over the industrial areas of China, more than recent bottom-up inventories suggest. PMID:16136141

  1. Nitrogen dioxide reducing ascorbic acid technologies in the ventilator circuit leads to uniform NO concentration during inspiration.

    PubMed

    Pezone, Matthew J; Wakim, Matthew G; Denton, Ryan J; Gamero, Lucas G; Roscigno, Robert F; Gilbert, Richard J; Lovich, Mark A

    2016-08-31

    Conventional inhaled NO systems deliver NO by synchronized injection or continuous NO flow in the ventilator circuitry. Such methods can lead to variable concentrations during inspiration that may differ from desired dosing. NO concentrations in these systems are generally monitored through electrochemical methods that are too slow to capture this nuance and potential dosing error. A novel technology that reduces NO2 into NO via low-resistance ascorbic-acid cartridges just prior to inhalation has recently been described. The gas volume of these cartridges may enhance gas mixing and reduce dosing inconsistency throughout inhalation. The impact of the ascorbic-acid cartridge technology on NO concentration during inspiration was characterized through rapid chemiluminescence detection during volume control ventilation, pressure control ventilation, synchronized intermittent mandatory ventilation and continuous positive airway pressure using an in vitro lung model configured to simulate the complete uptake of NO. Two ascorbic acid cartridges in series provided uniform and consistent dosing during inspiration during all modes of ventilation. The use of one cartridge showed variable inspiratory concentration of NO at the largest tidal volumes, whereas the use of no ascorbic acid cartridge led to highly inconsistent NO inspiratory waveforms. The use of ascorbic acid cartridges also decreased breath-to-breath variation in SIMV and CPAP ventilation. The ascorbic-acid cartridges, which are designed to convert NO2 (either as substrate or resulting from NO oxidation during injection) into NO, also provide the benefit of minimizing the variation of inhaled NO concentration during inspiration. It is expected that the implementation of this method will lead to more consistent and predictable dosing. PMID:27264784

  2. 40 CFR 52.1876 - Control strategy: Nitrogen dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Nitrogen dioxide. (a) The condition to EPA's approval of the oxides of nitrogen State Implementation Plan (SIP) codified at 40 CFR 52.1870(c)(128) is satisfied by Ohio's November 26, 2003, submittal of the... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Nitrogen dioxide....

  3. 40 CFR 52.1576 - Control strategy: Nitrogen dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Nitrogen dioxide. 52... strategy: Nitrogen dioxide. (a) The requirements of § 52.14(c)(3) of this chapter as of May 8, 1974 (39 FR 16346), are not met since the plan does not provide for the degree of nitrogen oxides emission...

  4. 40 CFR 52.1876 - Control strategy: Nitrogen dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Nitrogen dioxide. (a) The condition to EPA's approval of the oxides of nitrogen State Implementation Plan (SIP) codified at 40 CFR 52.1870(c)(128) is satisfied by Ohio's November 26, 2003, submittal of the... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Control strategy: Nitrogen dioxide....

  5. 40 CFR 52.1876 - Control strategy: Nitrogen dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Nitrogen dioxide. (a) The condition to EPA's approval of the oxides of nitrogen State Implementation Plan (SIP) codified at 40 CFR 52.1870(c)(128) is satisfied by Ohio's November 26, 2003, submittal of the... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Control strategy: Nitrogen dioxide....

  6. 40 CFR 52.1876 - Control strategy: Nitrogen dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Nitrogen dioxide. (a) The condition to EPA's approval of the oxides of nitrogen State Implementation Plan (SIP) codified at 40 CFR 52.1870(c)(128) is satisfied by Ohio's November 26, 2003, submittal of the... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Control strategy: Nitrogen dioxide....

  7. 40 CFR 52.1876 - Control strategy: Nitrogen dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Nitrogen dioxide. (a) The condition to EPA's approval of the oxides of nitrogen State Implementation Plan (SIP) codified at 40 CFR 52.1870(c)(128) is satisfied by Ohio's November 26, 2003, submittal of the... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Nitrogen dioxide....

  8. Total nitrogen dioxide at the Arctic polar circle since 1990

    SciTech Connect

    Goutail, F.; Pommereau, J.P.; Sarkissian, A. ); Kyro, E. ); Dorokhov, V.

    1994-06-22

    This article presents results of nitrogen dioxide measurements from a station in northern Finland (67.3[degrees]N) since January 1990, and stations in Greenland, northern Atlantic, and eastern Siberia, during EASOE. The nitrogen dioxide levels are seen to have fallen at least 30 % since the arrival of the volcanic aerosols from the Mt. Pinatubo eruption. The winter results are not supportive of strong denitrification, or of the expected level of vapor nitrogen dioxide during winter months.

  9. Synergistic interaction between nitrogen dioxide and respirable aerosols of sulfuric acid or sodium chloride on rat lungs

    SciTech Connect

    Last, J.A.; Warren, D.L.

    1987-08-01

    We examined interactions in rats between NO/sub 2/ gas and respirable aerosols of sulfuric acid (H/sub 2/SO/sub 4/) or sodium chloride (NaCl). Rats were exposed for 1, 3, or 7 days to 5 ppm of NO/sub 2/ gas, alone or in combination with 1 mg/m3 of H/sub 2/SO/sub 4/ or NaCl aerosols. The apparent rate of collagen synthesis by lung minces was measured after 7 days of exposure, and the protein content of whole lung lavage fluid was measured after 1 or 3 days of exposure. Responses from rats exposed to 5 ppm of NO/sub 2/ alone were significantly different from controls by these assays. A synergistic interaction was demonstrated between 5 ppm of NO/sub 2/ and 1 mg/m3 of either H/sub 2/SO/sub 4/ or NaCl aerosol as evaluated by measurement of the rate of lung collagen synthesis. A synergistic interaction was also demonstrated by the criterion of increased protein content of lung lavage fluid in rats exposed to 5 ppm of NO/sub 2/ and 1 mg/m3 of H/sub 2/SO/sub 4/ aerosol after 1 day of exposure and between 5 ppm of NO/sub 2/ and 1 mg/m3 of NaCl aerosol after 3 days of exposure. These observations with 5 ppm of NO/sub 2/ alone and in combination with 1 mg/m3 of NaCl aerosol support the hypothesis that formation of nitrosyl chloride may contribute to a synergistic interaction between NO/sub 2/ gas and NaCl aerosol. These results suggest that, in general, combinations of oxidant gases with respirable acidic aerosols or with acidogenic gases will demonstrate interactive effects on rat lungs. Such a hypothesis is testable and makes specific predictions about effects of inhalation of pollutant mixtures.

  10. 40 CFR 52.1676 - Control strategy: Nitrogen dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... August 10, 1979, is disapproved because it is inconsistent with 40 CFR Subpart G, Control strategy... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Control strategy: Nitrogen dioxide. 52...: Nitrogen dioxide. (a) The requirements of § 52.14(c)(3) of this chapter as of May 8, 1974 (39 FR...

  11. 40 CFR 52.1676 - Control strategy: Nitrogen dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... August 10, 1979, is disapproved because it is inconsistent with 40 CFR Subpart G, Control strategy... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Nitrogen dioxide. 52...: Nitrogen dioxide. (a) The requirements of § 52.14(c)(3) of this chapter as of May 8, 1974 (39 FR...

  12. 40 CFR 52.1676 - Control strategy: Nitrogen dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... August 10, 1979, is disapproved because it is inconsistent with 40 CFR Subpart G, Control strategy... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Nitrogen dioxide. 52...: Nitrogen dioxide. (a) The requirements of § 52.14(c)(3) of this chapter as of May 8, 1974 (39 FR...

  13. 40 CFR 52.1676 - Control strategy: Nitrogen dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... August 10, 1979, is disapproved because it is inconsistent with 40 CFR Subpart G, Control strategy... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Control strategy: Nitrogen dioxide. 52...: Nitrogen dioxide. (a) The requirements of § 52.14(c)(3) of this chapter as of May 8, 1974 (39 FR...

  14. 40 CFR 52.1676 - Control strategy: Nitrogen dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... August 10, 1979, is disapproved because it is inconsistent with 40 CFR Subpart G, Control strategy... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Control strategy: Nitrogen dioxide. 52...: Nitrogen dioxide. (a) The requirements of § 52.14(c)(3) of this chapter as of May 8, 1974 (39 FR...

  15. Accurate Fourier transform infrared (FT-IR) spectroscopy measurements of nitrogen dioxide (NO2) and nitric acid (HNO3) calibrated with synthetic spectra.

    PubMed

    Flores, Edgar; Viallon, Joële; Moussay, Philippe; Wielgosz, Robert Ian

    2013-10-01

    A novel method for determining the accuracy of laboratory-based measurements of nitrogen dioxide (NO2) and nitric acid (HNO3) mole fractions using Fourier transform infrared (FT-IR) spectroscopy 1 cm(-1) resolution instruments calibrated with synthetic spectra has been developed. The traceability of these measurement results is to the reference line strength data contained within the high-resolution transmission molecular absorption (HITRAN) database. Incorporating a proper estimate of the uncertainty of this data into the measurement results will ensure that the SI traceable values are encompassed within the uncertainty of the measurement results. The major contributors to the uncertainties of the results are, in descending order of importance, the uncertainty in the line strength values (HITRAN 2004), the uncertainty attributed to the generation of reference spectra (including knowledge of the optical path length of the FT-IR gas cell), and temperature measurements of the gas. The stability of the FT-IR instrument itself is only a minor contributor to the overall uncertainty of the measurements. FT-IR measurements of NO2 mole fractions at nominal values of 10 μmol mol(-1) calibrated with synthetic spectra lead to standard uncertainties of 0.34 μmol mol(-1) (3.4% relative). In contrast, calibration of the FT-IR instrument with SI traceable gas standards generated by a dynamic weighing system resulted in measurements results with standard uncertainties of 0.04 μmol mol(-1) (0.4% relative). When comparing the consistency of measurement results based on the synthetic calibration method against those obtained by calibrations with SI traceable gas standards, the existence of a potential bias of ~5% was observed, although this was within the stated uncertainties of the results. The FT-IR measurements of HNO3 mole fractions at nominal values of 200 nmol mol(-1) calibrated with synthetic spectra resulted in values with standard uncertainties of 23 nmol mol(-1) (11

  16. Current nitrogen dioxide exposures among railroad workers

    SciTech Connect

    Woskie, S.R.; Hammond, S.K.; Smith, T.J.; Schenker, M.B. )

    1989-07-01

    As part of a series of epidemiologic studies of the mortality patterns of railroad workers, various air contaminants were measured to characterize the workers' current exposures to diesel exhaust. Nitrogen dioxide (NO{sub 2}), which is a constituent of diesel exhaust, was examined as one possible marker of diesel exposure. An adaptation of the Palmes personal passive sampler was used to measure the NO{sub 2} exposures of 477 U.S. railroad workers at four railroads. The range of NO{sub 2} exposures expressed as the arithmetic average +/- two standard errors for the five career job groups were as follows: signal maintainers, 16-24 parts per billion (ppb); clerks/dispatchers/station agents, 23-43 ppb; engineers/firers, 26-38 ppb; brakers/conductors, 50-74 ppb; and locomotive shop workers, 95-127 ppb. Variations among railroads and across seasons were not significant for most job groups.

  17. The development of a nitrogen dioxide sonde

    NASA Astrophysics Data System (ADS)

    Sluis, W. W.; Allaart, M. A. F.; Piters, A. J. M.; Gast, L. F. L.

    2010-12-01

    A growing number of space-borne instruments measures nitrogen dioxide (NO2) concentrations in the troposphere, but validation of these instruments is hampered by the lack of ground-based and in situ profile measurements. The Royal Netherlands Meteorological Institute (KNMI) has developed a working NO2 sonde. The sonde is attached to a small meteorological balloon and measures a tropospheric NO2 profile. The NO2 sonde has a vertical resolution of 5 m and a measurement range between 1 and 100 ppbv. The instrument is light in weight (0.7 kg), cheap (disposable), energy efficient and not harmful to the environment or the person who finds the package after use. The sonde uses the chemiluminescent reaction of NO2 in an aqueous luminol solution. The NO2-luminol reaction produces faint blue/purple light (at about 425 nm), which is detected by an array of silicon photodiodes. The luminol solution is optimised to be specific to NO2. An on-ground comparison with measurements from a Photolytic Analyser of The National Institute for Public Health and the Environment (RIVM) shows that both instruments measure similar NO2 variations in ambient air. During the Cabauw Intercomparison campaign of Nitrogen Dioxide measuring instruments (CINDI) in June/July 2009, six vertical profiles of NO2 from the ground to a 5 km altitude were measured, which clearly show that the largest amount of NO2 is measured in the boundary layer. The measured boundary layer heights of the NO2 sonde are in good agreement with boundary layer heights determined by a LD40 Ceilometer at Cabauw.

  18. Nitrogen dioxide and respiratory illnesses in infants

    SciTech Connect

    Samet, J.M.; Lambert, W.E.; Skipper, B.J.; Cushing, A.H.; Hunt, W.C.; Young, S.A.; McLaren, L.C.; Schwab, M.; Spengler, J.D. )

    1993-11-01

    Nitrogen dioxide is an oxidant gas that contaminates outdoor air and indoor air in homes with unvented gas appliances. A prospective cohort study was carried out to test the hypothesis that residential exposure to NO2 increases incidence and severity of respiratory illnesses during the first 18 months of life. A cohort of 1,205 healthy infants from homes without smokers was enrolled. The daily occurrence of respiratory symptoms and illnesses was reported by the mothers every 2 wk. Illnesses with wheezing or wet cough were classified as lower respiratory tract. Indoor NO2 concentrations were serially measured with passive samplers place in the subjects' bedrooms. In stratified analyses, illness incidence rates did not consistently increase with exposure to NO2 or stove type. In multivariate analyses that adjusted for potential confounding factors, odds ratios were not significantly elevated for current or lagged NO2 exposures, or stove type. Illness duration, a measure of illness severity, was not associated with NO2 exposure. The findings can be extended to homes with gas stoves in regions of the United States where the outdoor air is not heavily polluted by NO2.

  19. SAGE observations of stratospheric nitrogen dioxide

    NASA Technical Reports Server (NTRS)

    Chu, W. P.; Mccormick, M. P.

    1986-01-01

    The global distribution of nitrogen dioxide in the middle to upper stratosphere (25-45 km altitude) for the period February 1979 to November 1981 has been determined from observations of attenuated solar radiation in the visible region 0.385-0.45 micron by the Stratospheric Aerosol and Gas Experiment (SAGE) satellite instrument. The SAGE-derived NO2 vertical profiles compare well with observations by balloon- and aircraft-borne sensors. The global SAGE NO2 distributions generally show a maximum in mixing ratio of 8 parts per billion by volume at about 35 km altitude near the equatorial latitudes at local sunset. The location of the mixing ratio peak moves synchronously with the overhead sun for the four different seasons. High-latitude NO2 column content shows strong seasonal variation, with a maximum in local summer and a minimum in local winter. Selected data at high-latitude winter seasons are presented, suggesting that the large variation shown could be explained by the coupling of both dynamics and photochemistry of the NO(x) species. Finally, profiles of the ratio of sunset to sunrise NO2 mixing ratios, peaking at about a factor of two at 30 km, are shown.

  20. Ambient Pressure LIF Instrument for Nitrogen Dioxide

    NASA Astrophysics Data System (ADS)

    Parra, J.; George, L. A.

    2009-12-01

    Concerns about the health effects of nitrogen dioxide (NO2) and its role in forming deleterious atmospheric species have made it desirable to have low-cost, sensitive ambient measurements of NO2. A continuous-wave laser-diode Laser Induced Fluorescence (LIF) system for NO2 that operates at ambient pressure has been developed, thereby eliminating the need for an expensive pumping system. The use of high quality optical filters has facilitated low-concentration detection of NO2 using atmospheric pressure LIF by providing substantial discrimination against scattered laser photons without the use of time-gated electronics, which add complexity and cost to the LIF instrumentation. This improvement allows operation at atmospheric pressure with a low-cost diaphragm sampling pump. The current prototype system has achieved sensitivity several orders of magnitude beyond previous efforts at ambient pressure (LOD of 2 ppb, 60 s averaging time). Ambient measurements of NO2 were made in Portland, OR using both the standard NO2 chemiluminescence method (CL-NO2) and the LIF instrument and showed good agreement (r2 = 0.92). Our instrument is currently being developed as a “back-end” detector for a more field portable NOy system. In addition, we are currently utilizing this instrument to study surface chemistry involving NO2 at atmospherically relevant concentrations and pressures.

  1. PHOTOCHEMICAL REACTIONS AMONG FORMALDEHYDE, CHLORINE, AND NITROGEN DIOXIDE IN AIR

    EPA Science Inventory

    Photochemical reactions among chlorine, nitrogen dioxide, and formaldehyde were studied, using parts-per-million concentrations in 1 atm of air. The reactant mixtures were irradiated by ultraviolet fluorescent lamps and simultaneously analyzed by the Fourier transform infrared te...

  2. 49 CFR 173.336 - Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Nitrogen dioxide, liquefied, or dinitrogen....336 Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied. (a) Nitrogen dioxide, liquefied... with nitrogen dioxide. Each valve opening must be closed by a solid metal plug with tapered...

  3. 49 CFR 173.336 - Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Nitrogen dioxide, liquefied, or dinitrogen....336 Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied. (a) Nitrogen dioxide, liquefied... with nitrogen dioxide. Each valve opening must be closed by a solid metal plug with tapered...

  4. 49 CFR 173.336 - Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Nitrogen dioxide, liquefied, or dinitrogen....336 Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied. (a) Nitrogen dioxide, liquefied... with nitrogen dioxide. Each valve opening must be closed by a solid metal plug with tapered...

  5. 49 CFR 173.336 - Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Nitrogen dioxide, liquefied, or dinitrogen....336 Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied. (a) Nitrogen dioxide, liquefied... with nitrogen dioxide. Each valve opening must be closed by a solid metal plug with tapered...

  6. Low Energy, Low Emissions: Sulfur Dioxide; Nitrogen Oxides, and Carbon Dioxide in Western Europe.

    ERIC Educational Resources Information Center

    Alcamo, Joseph; De Vries, Bert

    1992-01-01

    Links proposed low-energy scenarios for different Western European countries with the amount of pollutants that may result from these scenarios. Sulfur dioxide, nitrogen oxide, and carbon dioxide emissions are calculated for the 10 countries for which low-energy scenarios are available, resulting in reductions of 54%, 37%, and 40%, respectively.…

  7. NITROGEN DIOXIDE, PULMONARY FUNCTION, AND RESPIRATORY DISEASE

    EPA Science Inventory

    Concern as to the toxicity of the oxides of nitrogen has been frequently expressed in clinical and toxicological literature. Oxides of nitrogen are highly reactive compounds and suggest toxic effects on biological systems. The earliest evidence for potential damage to man occurre...

  8. Simultaneous sulfur dioxide and nitrogen dioxide removal by calcium hydroxide and calcium silicate solids.

    PubMed

    Nelli, C H; Rochelle, G T

    1998-09-01

    At conditions typical of a bag filter exposed to a coal-fired flue gas that has been adiabatically cooled with water, calcium hydroxide and calcium silicate solids were exposed to a dilute, humidified gas stream of nitrogen dioxide (NO2) and sulfur dioxide (SO2) in a packed-bed reactor. A prior study found that NO2 reacted readily with surface water of alkaline and non-alkaline solids to produce nitrate, nitrite, and nitric oxide (NO). With SO2 present in the gas stream, NO2 also reacted with S(IV), a product of SO2 removal, on the exterior of an alkaline solid. The oxidation of S(IV) to S(VI) by oxygen reduced the availability of S(IV) and lowered removal of NO2. Subsequent acidification of the sorbent by the removal of NO2 and SO2 facilitated the production of NO. However, the conversion of nitrous acid to sulfur-nitrogen compounds reduced NO production and enhanced SO2 removal. A reactor model based on empirical and semi-empirical rate expressions predicted rates of SO2 removal, NO2 removal, and NO production by calcium silicate solids. Rate expressions from the reactor model were inserted into a second program, which predicted the removal of SO2 and NOx by a continuous process, such as the collection of alkaline solids in a baghouse. The continuous process model, depending upon inlet conditions, predicted 30-40% removal for NOx and 50-90% removal for SO2. These results are relevant to dry scrubbing technology for combined SO2 and NOx removal that first oxidizes NO to NO2 by the addition of methanol into the flue duct. PMID:9775761

  9. EFFECTS OF NITROGEN DIOXIDE ON PULMONARY FUNCTION IN HUMAN SUBJECTS

    EPA Science Inventory

    Twenty human subjects with asthma and chronic bronchitis and ten normal, healthy adults were exposed to 0.5 ppm of nitrogen dioxide (NO2) for two hours in an environmental chamber. They engaged in one 15-minute, light to medium-exercise stint on a bicycle ergometer during this pe...

  10. Ozone and nitrogen dioxide above the northern Tien Shan

    NASA Technical Reports Server (NTRS)

    Arefev, Vladimir N.; Volkovitsky, Oleg A.; Kamenogradsky, Nikita E.; Semyonov, Vladimir K.; Sinyakov, Valery P.

    1994-01-01

    The results of systematic perennial measurements of the total ozone (since 1979) and nitrogen dioxide column (since 1983) in the atmosphere in the European-Asian continent center above the mountainmass of the Tien Shan are given. This region is distinguished by a great number of sunny days during a year. The observation station is at the Northern shore of Issyk Kul Lake (42.56 N 77.04 E 1650 m above the sea level). The measurement results are presented as the monthly averaged atmospheric total ozone and NO2 stratospheric column abundances (morning and evening). The peculiarities of seasonal variations of ozone and nitrogen dioxide atmospheric contents, their regular variances with a quasi-biennial cycles and trends have been noticed. Irregular variances of ozone and nitrogen dioxide atmospheric contents, i.e. their positive and negative anomalies in the monthly averaged contents relative to the perennial averaged monthly means, have been analyzed. The synchronous and opposite in phase anomalies in variations of ozone and nitrogen dioxide atmospheric contents were explained by the transport and zonal circulation in the stratosphere (Kamenogradsky et al., 1990).

  11. NITROGEN DIOXIDE PHOTOLYTIC, RADIOMETRIC, AND METEOROLOGICAL FIELD DATA

    EPA Science Inventory

    Photolysis of nitrogen dioxide is a major reaction resulting in the formation of ozone in the troposphere. The rate constant, k1, for the photodissociation of NO2 is, under ambient conditions, a function of latitude, solar zenith angle, and cloud cover; therefore, k1 is highly va...

  12. TECHNICAL ASSISTANCE DOCUMENT FOR THE CHEMILUMINESCENCE MEASUREMENT OF NITROGEN DIOXIDE

    EPA Science Inventory

    Gas phase chemiluminescence has been designated as the reference measurement principle for the measurement of nitrogen dioxide (NO2) in the ambient atmosphere. Continuous analyzers based on this measurement principle may be calibrated with NO2 either from the gas phase titration ...

  13. 40 CFR 52.728 - Control strategy: Nitrogen dioxide. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control strategy: Nitrogen dioxide. 52.728 Section 52.728 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Illinois> § 52.728 Control strategy:...

  14. 40 CFR 52.728 - Control strategy: Nitrogen dioxide. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Nitrogen dioxide. 52.728 Section 52.728 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Illinois> § 52.728 Control strategy:...

  15. 40 CFR 52.728 - Control strategy: Nitrogen dioxide. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control strategy: Nitrogen dioxide. 52.728 Section 52.728 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Illinois> § 52.728 Control strategy:...

  16. 40 CFR 52.728 - Control strategy: Nitrogen dioxide. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Control strategy: Nitrogen dioxide. 52.728 Section 52.728 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Illinois> § 52.728 Control strategy:...

  17. 40 CFR 52.728 - Control strategy: Nitrogen dioxide. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control strategy: Nitrogen dioxide. 52.728 Section 52.728 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Illinois> § 52.728 Control strategy:...

  18. INFLUENCE OF NITROGEN DIOXIDE ON XENOBIOTIC METABOLISM IN ANIMALS

    EPA Science Inventory

    Potential extrapulmonary effects of nitrogen dioxide (NO2) on hepatic xenobiotic metabolism were examined. Initial studies were conducted using pentobarbital (PEN) induced sleeping time (S.T.) in mice as an indicator of integrated mechanisms of xenobiotic clearance. A 3 hr. expos...

  19. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected source or nitrogen oxide occur at an affected unit during any year, the owners and operators...

  20. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected source or nitrogen oxide occur at an affected unit during any year, the owners and operators...

  1. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected source or nitrogen oxide occur at an affected unit during any year, the owners and operators...

  2. Leaf nitrogen dioxide uptake coupling apoplastic chemistry, carbon/sulfur assimilation, and plant nitrogen status.

    PubMed

    Hu, Yanbo; Sun, Guangyu

    2010-10-01

    Emission and plant uptake of atmospheric nitrogen oxides (NO + NO(2)) significantly influence regional climate change by regulating the oxidative chemistry of the lower atmosphere, species composition and the recycling of carbon and nutrients, etc. Plant uptake of nitrogen dioxide (NO(2)) is concentration-dependent and species-specific, and covaries with environmental factors. An important factor determining NO(2) influx into leaves is the replenishment of the substomatal cavity. The apoplastic chemistry of the substomatal cavity plays crucial roles in NO(2) deposition rates and the tolerance to NO(2), involving the reactions between NO(2) and apoplastic antioxidants, NO(2)-responsive germin-like proteins, apoplastic acidification, and nitrite-dependent NO synthesis, etc. Moreover, leaf apoplast is a favorable site for the colonization by microbes, which disturbs nitrogen metabolism of host plants. For most plant species, NO(2) assimilation in a leaf primarily depends on the nitrate (NO(3) (-)) assimilation pathway. NO(2)-N assimilation is coupled with carbon and sulfur (sulfate and SO(2)) assimilation as indicated by the mutual needs for metabolic intermediates (or metabolites) and the NO(2)-caused changes of key metabolic enzymes such as phosphoenolpyruvate carboxylase (PEPc) and adenosine 5'-phosphosulfate sulfotransferase, organic acids, and photorespiration. Moreover, arbuscular mycorrhizal (AM) colonization improves the tolerance of host plants to NO(2) by enhancing the efficiency of nutrient absorption and translocation and influencing foliar chemistry. Further progress is proposed to gain a better understanding of the coordination between NO(2)-N, S and C assimilation, especially the investigation of metabolic checkpoints, and the effects of photorespiratory nitrogen cycle, diverse PEPc and the metabolites such as cysteine, O-acetylserine (OAS) and glutathione. PMID:20628880

  3. Solubility of Sulfur Dioxide in Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Chang, K. K.; Compton, L. E.; Lawson, D. D.

    1982-01-01

    The solubility of sulfur dioxide in 50% (wt./wt.) sulfuric acid was evaluated by regular solution theory, and the results verified by experimental measurements in the temperature range of 25 C to 70 C at pressures of 60 to 200 PSIA. The percent (wt./wt.) of sulfur dioxide in 50% (wt./wt.) sulfuric acid is given by the equation %SO2 = 2.2350 + 0.0903P - 0.00026P 10 to the 2nd power with P in PSIA.

  4. Highly accurate nitrogen dioxide (NO2) in nitrogen standards based on permeation.

    PubMed

    Flores, Edgar; Viallon, Joële; Moussay, Philippe; Idrees, Faraz; Wielgosz, Robert Ian

    2012-12-01

    The development and operation of a highly accurate primary gas facility for the dynamic production of mixtures of nitrogen dioxide (NO(2)) in nitrogen (N(2)) based on continuous weighing of a permeation tube and accurate impurity quantification and correction of the gas mixtures using Fourier transform infrared spectroscopy (FT-IR) is described. NO(2) gas mixtures in the range of 5 μmol mol(-1) to 15 μmol mol(-1) with a standard relative uncertainty of 0.4% can be produced with this facility. To achieve an uncertainty at this level, significant efforts were made to reduce, identify and quantify potential impurities present in the gas mixtures, such as nitric acid (HNO(3)). A complete uncertainty budget, based on the analysis of the performance of the facility, including the use of a FT-IR spectrometer and a nondispersive UV analyzer as analytical techniques, is presented in this work. The mixtures produced by this facility were validated and then selected to provide reference values for an international comparison of the Consultative Committee for Amount of Substance (CCQM), number CCQM-K74, (1) which was designed to evaluate the consistency of primary NO(2) gas standards from 17 National Metrology Institutes. PMID:23148702

  5. Effect of carbon monoxide and nitrogen dioxide on ICR mice

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Times to incapacitation and death and LC(50) values were determined for male ICR mice exposed to different concentration of carbon monoxide for 30 min and of nitrogen dioxide for 10 min in a 4.2 liter hemispherical chamber. The data indicate that ICR mice are more resistant to these two toxicants than Swiss albino mice. The carbon monoxide LC(50) for a 30-min exposure was about 8,000 ppm for ICR mice compared to 3,570 ppm for Swiss albino mice. The nitrogen dioxide LC(50) for a 10-min exposure was above 2,000 ppm for ICR mice compared to about 1,000 ppm for Swiss albino mice.

  6. Uptake rate of nitrogen dioxide by potato plants

    SciTech Connect

    Sinn, J.P.; Pell, E.J.; Kabel, R.L.

    1984-06-01

    Greenhouse-grown potato plants were exposed to nitrogen dioxide in an exposure chamber to determine the rate of NO/sub 2/ uptake at concentrations from 228 to 817 ..mu..g/m/sup 3/ (0.12-0.43 ppm). Results show that a consistent increase in uptake rate accompanied an increase in NO/sub 2/ exposure concentrations. Exposure in the range of concentration had no significant effect on leaf diffusive resistance.

  7. Curing preceramic polymers by exposure to nitrogen dioxide

    NASA Technical Reports Server (NTRS)

    Rabe, James A. (Inventor); Lipowitz, Jonathan (Inventor); Lu, Paul P. (Inventor)

    1991-01-01

    A rapid method of infusibilizing (curing) preceramic polymers comprising treatment said polymers with gaseous nitrogen dioxide. The infusibilized polymers may be pyrolyzed to temperatures in excess of about 800.degree. C. to yield ceramic materials with low oxygen content and, thus, good thermal stability. The methods are especially useful for the production of ceramic fibers and, more specifically, to the on-line production of ceramic fibers.

  8. Control of Nitrogen Dioxide in Stack Emission by Reaction with Ammonia

    NASA Technical Reports Server (NTRS)

    Metzler, A. J.; Stevenson, E. F.

    1970-01-01

    The development of an acid base gas-phase reaction system which utilizes anhydrous ammonia as the reactant to remove nitrogen dioxide from hydrazine-nitrogen tetroxide rocket combustion exhaust is reported. This reaction reduced NO2 levels in exhaust emissions so that the resulting stack emission is completely white instead of the earlier observed typical reddish-brown coloration. Preliminary analyses indicate the importance of reaction time and ammonia concentration on removal efficiency and elimination of the health hazard to individuals with respiratory problems.

  9. 40 CFR 52.230 - Control strategy and regulations: Nitrogen dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Nitrogen dioxide. 52.230 Section 52.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Control strategy and regulations: Nitrogen dioxide. (a) The requirements of § 52.14(c)(3) of this chapter... nitrogen oxides emission reduction attainable through application of reasonably available...

  10. 40 CFR 52.230 - Control strategy and regulations: Nitrogen dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Nitrogen dioxide. 52.230 Section 52.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Control strategy and regulations: Nitrogen dioxide. (a) The requirements of § 52.14(c)(3) of this chapter... nitrogen oxides emission reduction attainable through application of reasonably available...

  11. 40 CFR 52.230 - Control strategy and regulations: Nitrogen dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Nitrogen dioxide. 52.230 Section 52.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Control strategy and regulations: Nitrogen dioxide. (a) The requirements of § 52.14(c)(3) of this chapter... nitrogen oxides emission reduction attainable through application of reasonably available...

  12. 40 CFR 52.230 - Control strategy and regulations: Nitrogen dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Nitrogen dioxide. 52.230 Section 52.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Control strategy and regulations: Nitrogen dioxide. (a) The requirements of § 52.14(c)(3) of this chapter... nitrogen oxides emission reduction attainable through application of reasonably available...

  13. Evaluation of the effects of future controls on sulfur dioxide and nitrogen oxide emissions on the acid-base status of a northern forest ecosystem

    NASA Astrophysics Data System (ADS)

    Gbondo-Tugbawa, Solomon S.; Driscoll, Charles T.

    The integrated biogeochemical model, PnET-BGC, was used to simulate the response of soil and surface water at the reference watershed (W6) at the Hubbard Brook Experimental Forest, New Hampshire, to changes in atmospheric deposition. The performance of the model was assessed using two objective statistical criteria, the normalized mean absolute error, and the efficiency, in order to compare simulated results with observed values between 1980 and 1998. Model results showed good agreement with measured concentrations of stream Ca 2+, and SO 42-, while stream NO 3- and Al concentrations and soil solution Ca/Al ratios were over predicted after 1990. Model simulations showed that there was some improvement in soil and stream chemistry in response to the 1990 Amendments to the Clean Air Act (CAAA) compared to conditions without this legislation. However, the 1990 CAAA will not result in substantial changes in critical indicators (e.g. soil base saturation, soil solution Ca/Al, stream pH, acid neutralizing capacity (ANC) and Al concentrations). The slow recovery rates suggest that additional reduction in strong acid inputs will be required to significantly alleviate ecosystem stress from acidic deposition. Simulation of the impact of equivalent reductions in SO 42- and NO 3- deposition indicated slightly greater recovery under the SO 42- reductions compared with NO 3-. An inter-annual pattern of stream NO 3- concentrations suggests that nitrification under snowpack is a significant source of N in the ecosystem. Vegetation N uptake during summer greatly limits NO 3- loss, and as a result, summer utility controls of NO x emissions will not significantly mitigate stream NO 3- loss and associated surface water acidification.

  14. Hydraulic studies of drilling microbores with supercritical steam, nitrogen and carbon dioxide

    DOE Data Explorer

    Ken Oglesby

    2010-01-01

    Hydraulic studies of drilling microbores at various depths and with various hole sizes, tubing, fluids and rates showed theoretical feasibility. WELLFLO SIMULATIONS REPORT STEP 4: DRILLING 10,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE STEP 5: DRILLING 20,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE STEP 6: DRILLING 30,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE Mehmet Karaaslan, MSI

  15. Developmental and hematological responses to low level continuous exposure of nitrogen dioxide in mice

    NASA Technical Reports Server (NTRS)

    Singh, J.

    1977-01-01

    Young healthy mice were continuously exposed to 0ppm, 0.5ppm, 1.0ppm and 5ppm nitrogen dioxide gas for eight weeks. Nitrogen dioxide exposure for eight weeks decreased the average weight of mice, increased the average weight of lungs, heart, and brain and decreased the average weight of liver. Nitrogen dioxide exposure did not have any effects on the WBC and RBC in mice blood but it increased the HCT and HGB in mice blood. Nitrogen dioxide exposure increased the MCV and decreased the MCH and MCHC in mice blood.

  16. Impact of titanium dioxide nanomaterials on nitrogen fixation rate and intracellular nitrogen storage in Anabaena variabilis.

    PubMed

    Cherchi, Carla; Gu, April Z

    2010-11-01

    This study comprehensively investigated the impact of titanium dioxide nanomaterials (nTiO(2)) exposure on cell growth, nitrogen fixation activity, and nitrogen storage dynamics in the primary producer cyanobacteria Anabaena variabilis at various dose concentrations and exposure time lengths. The results indicated that both growth rate (EC(50)-96 h of 0.62 mgTiO(2)/L) and nitrogen fixation activity (EC(50)-96 h of 0.4 mgTiO(2)/L) were inhibited by nTiO(2) exposure. The Hom's law (C(n)T(m)) was used as inactivation model to predict the concentration- and time-dependent inhibition of growth and nitrogen fixation activity. The kinetic parameters determined suggested that the time of exposure has a greater influence than the nTiO(2) concentration in toxicity. We observed, for the first time, that nTiO(2) induced a dose (concentration and time)-dependent increase in both the occurrence and intracellular levels of the nitrogen-rich cyanophycin grana proteins (CGPs). The results implied that CGPs may play an important role in the stress response mechanisms of nTiO(2) exposure and can serve as a toxicity assessment endpoint indicator. This study demonstrated that nitrogen-fixing activity could be hampered by the release of nTiO(2) in aquatic environments; therefore it potentially impacts important biogeochemical processes, such as carbon and nitrogen cycling. PMID:20853867

  17. Nitrogen dioxide, sulfur dioxide, and ammonia detector for remote sensing of vehicle emissions

    NASA Astrophysics Data System (ADS)

    Burgard, Daniel A.; Dalton, Thomas R.; Bishop, Gary A.; Starkey, John R.; Stedman, Donald H.

    2006-01-01

    A remote sensor for measuring on-road vehicles passing the sensor in real time is described. This sensor expands upon previous technology that measured carbon monoxide, carbon dioxide, and exhaust hydrocarbons in the IR and nitric oxide in the UV. The design adds the capability to measure nitrogen dioxide in the UV with one spectrometer and to measure SO2 and NH3 along with NO in a second UV spectrometer. With these units operating side by side, the major mobile source precursors to secondary aerosol production can be measured simultaneously and in real time. Detection limits for NO2, SO2, and NH3 are 1.2, 0.72, and 0.78 g pollutant per kilogram of fuel, respectively.

  18. MAPPING CRITICAL LEVELS OF OZONE, SULPHUR DIOXIDE AND NITROGEN DIOXIDE FOR CROPS, FORESTS AND NATURAL VEGETATION IN THE UNITED STATES

    EPA Science Inventory

    Air pollution abatement strategies for controlling nitrogen dioxide, sulfur dioxide, and ozone emissions in the United States focus on a "Standards-based" approach. his approach places limits on air pollution by maintaining a baseline value for air quality, no matter what the eco...

  19. Nitrogen fixation rate and chlorophyll content of the lichen Peltigera canina exposed to sulfur dioxide

    SciTech Connect

    Henriksson, E.; Pearson, L.C.

    1981-01-01

    In general, the rate of nitrogen fixation decreased when the lichen Peltigera canina (L.) Willd. was exposed to sulfur dioxide gas at levels from 0.1 to 500 ppm; at 30 ppm, however, nitrogen fixation was stimulated. The chlorophyll content decreased as the level of sulfur dioxide increased.

  20. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Penalties for excess emissions of sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) EXCESS EMISSIONS § 77.6 Penalties for excess emissions of sulfur dioxide and nitrogen oxides. (a)(1)...

  1. High resolution nitrogen dioxide observations: retrieval, evaluation, and interpretation

    NASA Astrophysics Data System (ADS)

    Lamsal, L. N.; Janz, S. J.; Krotkov, N. A.; Pickering, K. E.; Kowalewski, M. G.; Loughner, C.; Spurr, R. J. D.; Crawford, J. H.

    2015-12-01

    The Airborne Compact Atmospheric Mapper (ACAM) deployed during the DISCOVER-AQ Maryland field campaign made hyperspectral remote sensing measurements in the 304-910 nm range allowing observations of several tropospheric pollutants including nitrogen dioxide (NO2) at an unprecedented spatial resolution of 1.5x0.75 km2. We apply the DOAS method, include high resolution information for surface reflectivity and vertical distributions of NO2 and aerosols, and account for temporal variation in atmospheric NO2 to retrieve lower tropospheric NO2 column. We compare NO2 from ACAM with observations from in-situ aircraft, ground-based PANDORA, and space-based OMI, and NO2 simulation from air quality models. The high resolution ACAM measurements offer not only new insights into our understanding of atmospheric composition and chemistry through observation of sub-sampling variability in typical satellite and model resolutions, but also opportunities for algorithm improvements for upcoming geostationary air quality missions.

  2. Pretreatment with nitrogen dioxide modifies plant response to ozone

    NASA Astrophysics Data System (ADS)

    Runeckles, V. C.; Palmer, K.

    Plant growth inhibition by ozone is significantly affected by previous exposure to nitrogen dioxide. Experiments on the early growth of four crop species showed that daily pretreatment with NO 2 (0.08-0.10 ppm for 3 h) immediately prior to exposure to O 3 (0.08-0.10 ppm for 6 h) increased the inhibition of radish and wheat growth, decreased the inhibition of bush bean growth, but had no effect on the growth of mint. The magnitudes of the interactive effects indicate that in regions where relatively high concentrations of O 3 are produced by photochemical processes, for example, downwind from urban centres, assessments of the impact of O 3 on vegetation based on knowledge of response to O 3 alone may be seriously flawed.

  3. Dosimetry of ozone and nitrogen dioxide in man and animals

    SciTech Connect

    Overton, J.H. Jr.; Miller, F.J.

    1984-01-01

    The health effects of ozone (O/sub 3/) and nitrogen dioxide (NO/sub 2/) are assessed from animal toxicological, controlled human, and epidemiological studies. These assessments will be strengthened when results of animal studies can be quantitatively extrapolated to man. To achieve quantitative extrapolation, improvements are needed in the areas of dosimetry and species sensitivity. And, of course, an adequate health effect data base must exist on which to make extrapolations. The focus of this paper is to review the regional dosimetry of O/sub 3/ and NO/sub 2/ in the respiratory tract of man and animals. Dosimetry relates to estimating the amount of pollutant reaching a specific target region of the respiratory tract as a function of exposure concentration. At present, there are two approaches to dosimetry, experimental and mathematical modeling, which are discussed.

  4. Remote sensing of ammonia, sulfur dioxide, and nitrogen dioxide emissions from cars and trucks

    NASA Astrophysics Data System (ADS)

    Burgard, Daniel Alexander

    This document describes the development of a remote sensor for mobile source ammonia (NH3), sulfur dioxide (SO2), and nitrogen dioxide (NO2) based on an instrument previously developed at the University of Denver. Significant optical upgrades allow for the detection of three new species. Detection and quantification of NH3 and SO 2 use wavelengths deeper into the ultraviolet region than previously possible. Currently NH3 is quantified from three peaks at 209 nm, 213 nm, and 217 nm; SO2 from three peaks at 219 nm, 221 nm, and 222 nm; NO2 using the spectral window 430--446 nm. The instrument was demonstrated in the measurement of emissions from both gasoline and diesel light duty vehicles and heavy duty diesel trucks (HDDT). The remote sensor was used for over 20,000 measurements of NH3 and SO2 emissions from motor vehicles in Denver and Tulsa in the summer of 2005. Nitrogen dioxide emissions were measured at the Denver site only. For the first time, on-road vehicle NH3 and SO2 emission trends versus model year were observed. Ammonia is a larger percentage of the exhaust than previously predicted for newer vehicles and its production reaches a maximum with approximately the 1996 model year. NH3 is the first pollutant observed to have lower emissions from the oldest model year. Sulfur dioxide emissions decrease with newer model year vehicles. Nearly 1200 NH3, SO2, and NO2 emission measurements with valid vehicle identification numbers were collected from in-use HDDTs in Golden and Dumont, CO. The Dumont weigh station site allowed emissions to be correlated with gross vehicle weight. No trends were apparent. The Golden site allowed emissions to be correlated with odometer and a trend of increasing oxides of nitrogen (NOx) emissions was apparent even near one million miles, when some vehicles should show lower emissions due to engine rebuild and computer reflash. For the first time HDDT on-road NO x emissions were shown versus vehicle model year and found to reach a

  5. Observations of ozone and nitrogen dioxide profiles in TROICA experiments

    NASA Astrophysics Data System (ADS)

    Postylyakov, O. V.; Elokhov, A. S.; Belikov, I. B.; Igaev, A. I.; Elansky, N. F.

    Several expeditions TROICA on atmosphere investigation over continental Russian has been carried out using mobile railway carriage-laboratory in zonal (between Moscow and Khabarovsk) and meridional (between Murmansk and Kislovodsk) directions. The first measurements of gas profiles aboard a carriage-laboratory were performed in the scientific expeditions TROICA-4 (April 1997) along way Moscow-Khabarovsk-Moscow. To determine the ozone and nitrogen dioxide profiles, the express Umkehr method and zenith sky twilight measurements were used, respectively. The UV and visible spectra was recorded with an MDR-23 spectrophotometer aboard the moving carriage-laboratory coupled just behind an electric locomotive of a passenger train. Data on the total content and vertical profiles of impurities are obtained. These data reflect mainly the large-scale impurity distribution influenced by planetary waves. Significant variations in the total content and vertical distribution of impurities in the cross-section of a deep low representing a part of a circumpolar vortex are analyzed. The results of measurements are compared with the data obtained by TOMS, GOME and ground-based stations. A new carriage-laboratory has been equipped by optical remote sensing system based on image spectrometer Oriel MS257. It is capable to measure UV and visual spectral radiance incoming from several directions to determine the slant columns of ozone, nitrogen dioxide and other small gases. Using observations at a few wavelengths and several solar zenith angles vertical distribution of gases is retrieved. The first expedition (TROICA-8) of a new carriage-laboratory with the new optical remote sensing system is scheduled for February-March 2004. Results of previous expeditions as well as the first results of TROICA-8 will be presented. Effectiveness of using a moving laboratory of such a kind for validation of network and space observational data is discussed.

  6. Response of radish to nitrogen dioxide, sulfur dioxide, and ozone, alone and in combination

    SciTech Connect

    Reinert, R.A.; Gray, T.N.

    1981-04-01

    Effects on radish (Raphanus sativus L.) cv. Cherry Belle of nitrogen dioxide (NO/sub 2/), sulfur dioxide (SO/sub 2/), and ozone (O/sub 3/) alone and in combination at 0.2 and 0.4 ppM of each pollutant were studied. There was no difference in foilage or root weight of radish between exposure durations of 3 to 6 hours, and no significant interaction of hours with air pollutant and concentration. Ozone reduced root dry weight more at 0.4 ppM than at 0.2 ppM. Sulfur dioxide depressed the root/shoot ratio at both 0.2 and 0.4 ppM; however, when NO/sub 2/ and SO/sub 2/ were both present there was synergistic depression of the root/shoot ratio at 0.4 ppM. The average O/sub 3/-induced reduction in root weight of radish (1.75 g fresh and 101 mg dry, per plant) was additive in the presence of NO/sub 2/ and SO/sub 2/. The weight of the root was reduced even though the foilage was the direct receptor of the pollutant stress.

  7. Long term changes of tropospheric Nitrogen Dioxide over Pakistan derived from Ozone Monitoring Instrument (OMI) during the time period of October 2004 to December 2014

    NASA Astrophysics Data System (ADS)

    Murtaza, Rabbia; Fahim Khokhar, Muhammad

    2016-07-01

    Urban air pollution is causing huge number of diseases and deaths annually. Nitrogen dioxide is an important component of urban air pollution and a precursor to particulate matter, ground level ozone, and acid rain. The satellite based measurements of nitrogen dioxide from Ozone Monitoring Instrument (OMI) can help in analyzing spatio temporal variability in ground level concentrations within a large urban area. In this study, the spatial and temporal distributions of tropospheric nitrogen dioxide Vertical Column Densities (VCDs) over Pakistan are presented from 2004 to 2014. The results showed that the winter season is having high nitrogen dioxide levels as compared to summers. The increase can be attributed to the anthropogenic activities especially thermal power generation and traffic count. Punjab is one of the major provinces with high nitrogen dioxide levels followed by Sindh, Khyber Pakhtunkhwa and Balochistan. Six hotspots have been examined in the present study such as Lahore, Islamabad, Karachi, Faisalabad, Okara and Multan. Emissions of nitrogen compounds from thermal power plants and transportation sector represent a significant fraction of the total nitrogen dioxide emissions to the atmosphere.

  8. Association of indoor nitrogen dioxide with respiratory symptoms and pulmonary function in children

    SciTech Connect

    Neas, L.M.; Dockery, D.W.; Ware, J.H.; Spengler, J.D.; Speizer, F.E.; Ferris, B.G. Jr. )

    1991-07-15

    The effect of indoor nitrogen dioxide on the cumulative incidence of respiratory symptoms and pulmonary function level was studied in a cohort of 1,567 white children aged 7-11 years examined in six US cities from 1983 through 1988. Week-long measurements of nitrogen dioxide were obtained at three indoor locations over 2 consecutive weeks in both the winter and the summer months. The household annual average nitrogen dioxide concentration was modeled as a continuous variable and as four ordered categories. Multiple logistic regression analysis of symptom reports from a questionnaire administered after indoor monitoring showed that a 15-ppb increase in the household annual nitrogen dioxide mean was associated with an increased cumulative incidence of lower respiratory symptoms (odds ratio (OR) = 1.4, 95% confidence interval (95% Cl) 1.1-1.7). The response variable indicated the report of one or more of the following symptoms: attacks of shortness of breath with wheeze, chronic wheeze, chronic cough, chronic phlegm, or bronchitis. Girls showed a stronger association (OR = 1.7, 95% Cl 1.3-2.2) than did boys (OR = 1.2, 95% Cl 0.9-1.5). An analysis of pulmonary function measurements showed no consistent effect of nitrogen dioxide. These results are consistent with earlier reports based on categorical indicators of household nitrogen dioxide sources and provide a more specific association with nitrogen dioxide as measured in children's homes.

  9. Analysis of Nitrogen Dioxide and Sulphur Dioxide in Lima, Peru: Trends and Seasonal Variations

    NASA Astrophysics Data System (ADS)

    Pacsi, S.; Rappenglueck, B.

    2007-12-01

    This research was carried out to show a general analysis of the monthly and yearly variation (1996-2002) and the tendency of the nitrogen dioxide (NO2) and sulfur dioxide (SO2) for the 5 stations of the air quality network of Lima. The SO2 and NO2 concentrations were measured by the Dirección General de Salud Ambiental (DIGESA), using the active sampling method and the chemical analysis has been determined by Turbidimetry and Colorimetry for the SO2 and NO2 respectively. The monthly average variation (1996-2001) of SO2 in the Lima Center station has a small annual range (32,4 mikrograms/m3) with maximum values in autumn (April) and minimum in winter (June). The NO2 presents a higher annual range (128,2 mikrograms/m3) and its minimum values occur in the summer and the maximum in spring. The annual averages analysis (2000-2002) of the air quality monitoring network of Lima shows that the SO2 and NO2 values are maximum in the Lima Center station and exceed the Peruvian air quality standard (ECAs) in 30% and 75% respectively. The yearly variation (1996-2001) in the Lima Center station show an increasing tendency in the SO2 (significant) and NO2 (not significant) values, which indicates the critical level of the air quality in Lima, therefore the implementation of the air pollution control programs is urgent.

  10. Growth of radish and marigold following repeated exposure to nitrogen dioxide, sulfur dioxide, and ozone

    SciTech Connect

    Reinert, R.A.; Sanders, J.S.

    1982-02-01

    Radish and marigold plants were exposed to 0.3 ppm of nitrogen dioxide (NO/sub 2/), sulfur dioxide (SO/sub 2/), and/or ozone (O/sub 3/) nine times during a 3-wk period. No interactions among NO/sub 2/, SO/sub 2/, and O/sub 3/ were detected in measurement of radish foliage and root dry weight. Treatments containing O/sub 3/ reduced radish foliage and root (hypocotyl) dry weight 356 and 531 mg/plant, respectively. Interactions among NO/sub 2/, SO/sub 2/, and O/sub 3/ occurred in shoots and roots of marigold. SO/sub 2/ alone reduced marigold shoot and root dry weight, but this effect was reversed in the presence of O/sub 3/. The suppressive effect of SO/sub 2/ on root weight was also reversed by NO/sub 3/. Treatments containing SO/sub 2/ reduced dry flower weight 0.17 g/plant, but effects of the pollutant interactions observed in shoots and roots were not present.

  11. Growth of radish and marigold following repeated exposure to nitrogen dioxide, sulfur dioxide, and ozone

    SciTech Connect

    Reinert, R.A.; Sanders, J.S.

    1982-02-01

    Radish and marigold plants were exposed to 0.3 ppM of nitrogen dioxide (NO/sub 2/), sulfur dioxide (SO/sub 2/), and /or ozone (O/sub 3/) nine times during a 3-wk period. No interactions among NO/sub 2/, SO/sub 2/, and O/sub 3/ were detected in measurement of radish foliage and root dry weight. Treatments containing O/sub 3/ reduced radish foliage and root (hypocotyl) dry weight 356 and 531 mg/plant, respectively. Interactions among NO/sub 2/, SO/sub 2/ and O/sub 3/ occurred in shoots and roots of marigold. SO/sub 2/ alone reduced marigold shoot and root dry weight, but this effect was reversed in the presence of O/sub 3/. The suppressive effect of SO/sub 2/ on root weight was also reversed by NO/sub 2/. Treatments containing SO/sub 2/ reduced dry flower weight 0.17 g/plant, but effects of the pollutant interactions observed in shoots and roots were not present. 8 references, 2 tables.

  12. NATIONAL PERFORMANCE AUDIT PROGRAM: 1979 PROFICIENCY SURVEYS FOR SULFUR DIOXIDE, NITROGEN DIOXIDE, CARBON MONOXIDE, SULFATE, NITRATE, LEAD AND HIGH VOLUME FLOW

    EPA Science Inventory

    The Quality Assurance Division of the Environmental Monitoring Systems Laboratory, Research Triangle Park, North Carolina, administers semiannual Surveys of Analytical Proficiency for sulfur dioxide, nitrogen dioxide, carbon monoxide, sulfate, nitrate and lead. Sample material, s...

  13. Hemispherical Scanning Imaging DOAS: Resolving nitrogen dioxide in the urban environment

    NASA Astrophysics Data System (ADS)

    Leigh, R. J.; Graves, R. R.; Lawrence, J.; Faloon, K.; Monks, P. S.

    2012-12-01

    Imaging DOAS techniques have been used for nitrogen dioxide and sulfer dioxide for a number of years. This presentation describes a novel system which images concentrations of nitrogen dioxide by scanning an imaging spectrometer 360 degrees azimuthally, covering a region from 5 degrees below the horizon, to the zenith. The instrument has been built at the University of Leicester (UK), on optical designs by Surrey Satellite Technologies Ltd, and incorporates an Offner relay with Schwarzchild fore-optics, in a rotating mount. The spectrometer offers high fidelity spectroscopic retrievals of nitrogen dioxide as a result of a reliable Gaussian line shape, zero smile and low chromatic aberration. The full hemispherical scanning provides complete coverage of nitrogen dioxide concentrations above approximately 5 ppbv in urban environments. Through the use of multiple instruments, the three-dimensional structure of nitrogen dioxide can be sampled and tomographically reconstructed, providing valuable information on nitrogen dioxide emissions and downwind exposure, in addition to new understanding of boundary layer dynamics through the use of nitrogen dioxide as a tracer. Furthermore, certain aerosol information can be retrieved through absolute intensity measurements in each azimuthal direction supplemented by traditional techniques of O4 spectroscopy. Such measurements provide a new tool for boundary layer measurement and monitoring at a time when air quality implications on human health and climate are under significant scrutiny. This presentation will describe the instrument and tomographic potential of this technique. First measurements were taken as part of the international PEGASOS campaign in Bologna, Italy. Results from these measurements will be shown, including imaging of enhanced NO2 in the Bologna urban boundary layer during a severe thunderstorm. A Hemispherical Scanning Imaging DOAS instrument operating in Bologna, Italy in June 2012. Visible in the background

  14. Low-energy positron and electron scattering from nitrogen dioxide

    NASA Astrophysics Data System (ADS)

    Chiari, Luca; Zecca, Antonio; García, Gustavo; Blanco, Francisco; Brunger, M. J.

    2013-12-01

    Total cross section (TCS) measurements for positron scattering from nitrogen dioxide (NO2) are presented in the energy range 0.2-40 eV. The TCS, the elastic integral and differential cross sections, and the integral cross section accounting of all the inelastic processes (including positronium formation) have also been computed using the independent atom model with screening corrected additivity rule (IAM-SCAR) for incident energies from 1 to 1000 eV. A qualitative level of agreement is found between the present TCS experiment and theory at the common energies. As no previous measurements or calculations for positron-NO2 scattering exist in the literature, we also computed the TCS for electron collisions with NO2 employing the IAM-SCAR method. A comparison of those results to the present positron cross sections and the earlier electron-impact data and calculations is provided. To investigate the role that chemical substitution plays in positron scattering phenomena, we also compare the present positron-NO2 data with the TCSs measured at the University of Trento for positron scattering from N2O and CO2.

  15. Indoor nitrogen dioxide in five Chattangooga, Tennessee public housing developments

    SciTech Connect

    Parkhurst, W.J.; Harper, J.P. ); Spengler, J.D.; Fraumeni, L.P.; Majahad, A.M. ); Cropp, J.W. )

    1988-01-01

    This report summarizes an indoor nitrogen dioxide (NO{sub 2}) sampling study conducted during January through March of 1987 in five Chattanooga public housing developments. The origins of this study date to the summer of 1983 when the Piney Woods Community Organization (a citizens action group) expressed concern about toxic industrial air pollution and the effects it might have on their community. In response to these concerns, the Chattanooga-Hamilton County Air Pollution Control Bureau (Bureau) requested assistance from the Tennessee Department of Health and Environment (TDHE) in conducting a community health survey and assistance from the Tennessee Valley Authority (TVA) in conducting a community air quality measurement program. The TDHE community health study did not find any significant differences between the mortality statistics for the Piney Woods community and a demographically similar control group. However, a health survey revealed that Piney Woods residents did not have a statistically significant higher self-reported prevalence of cough, wheezing, phlegm, breathlessness, colds, and respiratory illness.

  16. Home interventions are effective at decreasing indoor nitrogen dioxide concentrations

    PubMed Central

    Paulin, L. M.; Diette, G. B.; Scott, M.; McCormack, M. C.; Matsui, E. C.; Curtin-Brosnan, J.; Williams, D. L.; Kidd-Taylor, A.; Shea, M.; Breysse, P. N.; Hansel, N. N.

    2016-01-01

    Nitrogen dioxide (NO2), a by-product of combustion produced by indoor gas appliances such as cooking stoves, is associated with respiratory symptoms in those with obstructive airways disease. We conducted a three-armed randomized trial to evaluate the efficacy of interventions aimed at reducing indoor NO2 concentrations in homes with unvented gas stoves: (i) replacement of existing gas stove with electric stove; (ii) installation of ventilation hood over existing gas stove; and (iii) placement of air purifiers with high-efficiency particulate air (HEPA) and carbon filters. Home inspection and NO2 monitoring were conducted at 1 week pre-intervention and at 1 week and 3 months post-intervention. Stove replacement resulted in a 51% and 42% decrease in median NO2 concentration at 3 months of follow-up in the kitchen and bedroom, respectively (P = 0.01, P = 0.01); air purifier placement resulted in an immediate decrease in median NO2 concentration in the kitchen (27%, P < 0.01) and bedroom (22%, P = 0.02), but at 3 months, a significant reduction was seen only in the kitchen (20%, P = 0.05). NO2 concentrations in the kitchen and bedroom did not significantly change following ventilation hood installation. Replacing unvented gas stoves with electric stoves or placement of air purifiers with HEPA and carbon filters can decrease indoor NO2 concentrations in urban homes. PMID:24329966

  17. The reaction of hydrogen peroxide with nitrogen dioxide and nitric oxide.

    NASA Technical Reports Server (NTRS)

    Gray, D.; Lissi, E.; Heicklen, J.

    1972-01-01

    The reactions were studied with the aid of a mass spectrometer. A pinhole bleed system provided continuous sampling of the gas mixture in the cell during the reaction. It was found that the homogeneous reactions of nitric oxide and nitrogen dioxide with hydrogen peroxide are too slow to be of any significance in the upper atmosphere. However, the heterogeneous reactions may be important in the conversion of nitric oxide to nitrogen dioxide in the case of polluted urban atmospheres.

  18. Infrared spectrum of the complex of formaldehyde with carbon dioxide in argon and nitrogen matrices

    NASA Technical Reports Server (NTRS)

    Van Der Zwet, G. P.; Allamandola, Louis J.; Baas, F.; Greenberg, J. M.

    1989-01-01

    The complex of formaldehyde with carbon dioxide has been studied by infrared spectroscopy in argon and nitrogen matrices. The shifts relative to the free species show that the complex is weak and similar in argon and nitrogen. The results give evidence for T-shaped complexes, which are isolated in several configurations. Some evidence is also presented which indicates that, in addition to the two well-known sites in argon, carbon dioxide can be trapped in a third site.

  19. A Passive Sampler for Determination of Nitrogen Dioxide in Ambient Air

    ERIC Educational Resources Information Center

    Xiao, Dan; Lin, Lianzhi; Yuan, Hongyan; Choi, Martin M. F.; Chan, Winghong

    2005-01-01

    A passive sampler that provides a convenient, simple, and fast method for nitrogen dioxide determination is proposed. The experiment can be modified for determinations of other air pollutants like formaldehyde and sulfur dioxide for hands-on experience for students studying environmental pollution problems.

  20. An Improved Retrieval of Tropospheric Nitrogen Dioxide from GOME

    NASA Technical Reports Server (NTRS)

    Martin, Randall V.; Chance, Kelly; Jacob, Daniel J.; Kurosu, Thomas P.; Spurr, Robert J. D.; Bucsela, Eric; Gleason, James F.; Palmer, Paul I.; Bey, Isabelle; Fiore, Arlene M.

    2002-01-01

    We present a retrieval of tropospheric nitrogen dioxide (NO2) columns from the Global Ozone Monitoring Experiment (GOME) satellite instrument that improves in several ways over previous retrievals, especially in the accounting of Rayleigh and cloud scattering. Slant columns, which are directly fitted without low-pass filtering or spectral smoothing, are corrected for an artificial offset likely induced by spectral structure on the diffuser plate of the GOME instrument. The stratospheric column is determined from NO2 columns over the remote Pacific Ocean to minimize contamination from tropospheric NO2. The air mass factor (AMF) used to convert slant columns to vertical columns is calculated from the integral of the relative vertical NO2 distribution from a global 3-D model of tropospheric chemistry driven by assimilated meteorological data (Global Earth Observing System (GEOS)-CHEM), weighted by altitude dependent scattering weights computed with a radiative transfer model (Linearized Discrete Ordinate Radiative Transfer), using local surface albedos determined from GOME observations at NO2 wavelengths. The AMF calculation accounts for cloud scattering using cloud fraction, cloud top pressure, and cloud optical thickness from a cloud retrieval algorithm (GOME Cloud Retrieval Algorithm). Over continental regions with high surface emissions, clouds decrease the AMT by 20- 30% relative to clear sky. GOME is almost twice as sensitive to tropospheric NO2 columns over ocean than over land. Comparison of the retrieved tropospheric NO2 columns for July 1996 with GEOS-CHEM values tests both the retrieval and the nitrogen oxide radical (NOx) emissions inventories used in GEOS-CHEM. Retrieved tropospheric NO2 columns over the United States, where NOx emissions are particularly well known, are within 18% of GEOS-CHEM columns and are strongly spatially correlated (r = 0.78, n = 288, p less than 0.005). Retrieved columns show more NO2 than GEOS-CHEM columns over the Transvaal

  1. Nitrogen dioxide exposure and development of pulmonary emphysema

    SciTech Connect

    Stavert, D.M.; Archuleta, D.C.; Holland, L.M.; Lehnert, B.E.

    1986-01-01

    Lungs of adult Fischer-344 rats were evaluated for emphysematous changes after (1) a single intratracheal instillation of elastase (E), (2) a 25-d exposure to 35 ppm nitrogen dioxide (NO/sub 2/), and (3) elastase instillation followed by 25-d exposure to 35 ppm NO/sub 2/ (E + NO/sub 2/). Residual volumes (RV) of the NO/sub 2/ and NS groups were virtually identical, whereas the RV of the E and E + NO/sub 2/ lungs were significantly greater than those of the NS and NO/sub 2/ lungs. Directionally similar changes in the excised lung volumes and total lung capacities were obtained with the E and E + NO/sub 2/ groups; NO/sub 2/ alone, however, did not alter these volumetric parameters. No differences in arterial blood gases and pH values, minute ventilation, or breathing frequencies were found among the experimental groups. The mean linear intercept values (MLI) obtained with the NS and NO/sub 2/ exposed lungs were essentially identical with average values of approx. 62 ..mu..m. This morphometric parameter was substantially increased in the E- and E + NO/sub 2/-exposed lungs; no significant differences, however, were found between the MLI values obtained with the E and E + NO/sub 2/ lungs. From these data as well as histologic examinations of lung sections for evidence of emphysema, it was concluded that (1) a subchronic, moderately high level of NO/sub 2/ exposure does not produce an irreversible emphysematous lesion in the rat model and (2) exposure of rats to 35 ppm for 25 d after elastase instillation into the lungs does not potentiate protease-induced emphysema or bring about a progression in preexisting emphysema.

  2. Household levels of nitrogen dioxide and pediatric asthma severity

    PubMed Central

    Belanger, Kathleen; Holford, Theodore R.; Gent, Janneane F.; Hill, Melissa E.; Kezik, Julie M.; Leaderer, Brian P.

    2013-01-01

    Background Adverse respiratory effects in children with asthma are associated with exposures to nitrogen dioxide (NO2). Levels indoors can be much higher than outdoors. Primary indoor sources of NO2 are gas stoves, which are used for cooking by one-third of US households. We investigated effects of indoor NO2 exposure on asthma severity among an ethnically and economically diverse sample of children, controlling for season and indoor allergen exposure. Methods Children aged 5–10 years with active asthma (n=1,342), were recruited through schools in urban and suburban Connecticut and Massachusetts (2006–2009) for a prospective, year-long study with seasonal measurements of NO2 and asthma severity. Exposure to NO2 was measured passively for four, month-long, periods with Palmes tubes. Asthma morbidity was concurrently measured by a severity score and frequency of wheeze, night symptoms and use of rescue medication. We used adjusted, hierarchical ordered logistic regression models to examine associations between household NO2 exposure and health outcomes. Results Every 5 ppb increase in NO2 exposure above a threshold of 6 ppb was associated with a dose-dependent increase in risk of higher asthma severity score (odds ratio= 1.37 [95% confidence interval= 1.01 – 1.89]), wheeze (1.49 [1.09 – 2.03]), night symptoms (1.52 [1.16 – 2.00]) and rescue medication use (1.78 [1.33 – 2.38]). Conclusions Asthmatic children exposed to NO2 indoors, at levels well below the US Environmental Protection Agency outdoor standard (53 ppb), are at risk for increased asthma morbidity. Risks are not confined to inner-city children, but occur at NO2 concentrations common in urban and suburban homes. PMID:23337243

  3. Monitoring of nitrogen dioxide, ozone and halogens radicals in Antarctica

    NASA Astrophysics Data System (ADS)

    Bortoli, Daniele; Ravegnani, Fabrizio; Costa, Maria J.; Genco, Silvia; Kulkarni, Pavan K.; Mendes, Rui; Domingues, Ana Filipa; Anton, Manuel; Giovanelli, Giorgio; Silva, Ana Maria

    2013-10-01

    Monitoring of atmospheric compounds at high latitudes is a key factor for a better understanding of the processes driving the chemical cycles of ozone and related chemical species. In this frame, the GASCOD (Gas Analizer Spectrometer Correlating Optical Differences) equipment is installed at the Mario Zucchelli Station (MZS - 74.69S, 164.12E) since December 1995, carrying out observations of nitrogen dioxide (NO2) and ozone (O3). The recent advances in sensor technologies and processor capabilities, suggested the setup of a new equipment, based on the same optical layout of the 'old' GASCOD , with enhanced performances and improved capabilities for the measurements of solar radiation in the UV-visible spectral range (300-700nm). The efforts accomplished, allowed for the increase of the investigated tracers. Actually, mainly due to the enlargement of the covered spectral range and to the adoption of a CCD sensor, in addition to the NO2 and O3 compounds, others species can be monitored with the new instrumental setup such as bromine, chlorine and iodine oxides (BrO, OClO and IO). The innovative equipment called GASCODNG (GASCOD New Generation) was installed at MZS during the 2012/2013 Italian Antarctic expedition, in the framework of the research projects SAMOA (Automatic Station Monitoring Antarctic Ozonosphere) and MATAGRO (Monitoring Atmospheric Tracers in Antarctica with Ground Based Observations) funded by the Italian and Portuguese Antarctic programs respectively. In this paper a brief description of the new equipment is provided, highlighting the main improvements with regard to the 'old' one. Furthermore the full dataset (1996 - 2012) of NO2 total columns, obtained with the GASCOD installed at MZS, is compared with the data obtained with satellite borne equipments (GOME, SCIAMACHY, OMI and GOME2) and the main statistical parameters are analyzed and discussed in detail.

  4. Lung function and morphology of dogs after sublethal exposure to nitrogen dioxide

    SciTech Connect

    Johnson, W.K.; Mauderly, J.L.; Hahn, F.F.; Muggenburg, B.A.

    1982-08-01

    The relationship between respiratory function and morphological changes in 10 dogs exposed for 6 h to 69 ppm nitrogen dioxide was studied. Two additional dogs served as controls. Functional assessments included breathing pattern, breathing mechanics, forced expiration, gas exchange, and acid-base status. Gross, microscopic, and ultrastructural evaluations were made of lung tissues from dogs killed at 0.1, 1.0, 2.0, 3.0, 7.0 and 14.0 d after exposure. Functional changes were similar to those reported for man. The principal dysfunction was gas-exchange impairment, apparently resulting from foam in the airways. Breathing-pattern alterations appeared to result from stimulation of neural receptors. Gas-exchange measurements provided the most useful indicators of the pulmonary damage observed in this study.

  5. Spin coated unsubstituted copper phthalocyanine thin films for nitrogen dioxide sensors

    NASA Astrophysics Data System (ADS)

    Chakane, Sanjay; Datir, Ashok; Koinkar, Pankaj

    2015-03-01

    Copper phthalocyanine (CuPc) is synthesized chemically and used for making CuPc thin films using spin coating technique. Films were prepared from trifluroacetic acid (TFA) and chlorobenzene mixed solution on the glass substrate. Spin coated films of unsubstituted CuPc films were heat annealed at 150°C for 2 h duration and were used to study NO2 gas sensing characteristics. α-phase of CuPc is noted by UV-visible absorption spectra. IR spectra of undoped CuPc films and doped CuPc films with NO2 revealed that, doping of nitrogen dioxide modifies and deletes some of the bands. The effect of NO2 at various concentrations from 50 ppm to 500 ppm in atmospheric air at room temperature on the electrical conductivity of CuPc films was studied. Sensitivity, response time and repeatability of the CuPc sensor were discussed in this paper.

  6. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide.

    PubMed

    Xu, Junyuan; Kan, Yuhe; Huang, Rui; Zhang, Bingsen; Wang, Bolun; Wu, Kuang-Hsu; Lin, Yangming; Sun, Xiaoyan; Li, Qingfeng; Centi, Gabriele; Su, Dangsheng

    2016-05-23

    Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2 ). The investigation explores the origin of the catalyst's activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate-determining transfer of one electron to CO2 , which leads to the formation of carbon dioxide radical anion (CO2 (.-) ). The initial reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction. The doped nitrogen atoms stabilize the radical anion, thereby lowering the initial reduction barrier and improving the intrinsic activity. The most efficient nitrogen chemical state for this reaction is quaternary nitrogen, followed by pyridinic and pyrrolic nitrogen. PMID:27100272

  7. Sub-ambient carbon dioxide adsorption properties of nitrogen doped graphene

    SciTech Connect

    Tamilarasan, P.; Ramaprabhu, Sundara

    2015-04-14

    Carbon dioxide adsorption on carbon surface can be enhanced by doping the surface with heterogeneous atoms, which can increase local surface affinity. This study presents the carbon dioxide adsorption properties of nitrogen doped graphene at low pressures (<100 kPa). Graphene was exposed to nitrogen plasma, which dopes nitrogen atoms into carbon hexagonal lattice, mainly in pyridinic and pyrrolic forms. It is found that nitrogen doping significantly improves the CO{sub 2} adsorption capacity at all temperatures, due to the enrichment of local Lewis basic sites. In general, isotherm and thermodynamic parameters suggest that doped nitrogen sites have nearly same adsorption energy of surface defects and residual functional groups. The isosteric heat of adsorption remains in physisorption range, which falls with surface coverage, suggesting the distribution of magnitude of adsorption energy. The absolute values of isosteric heat and entropy of adsorption are slightly increased upon nitrogen doping.

  8. Novel nighttime free radical chemistry in severe nitrogen dioxide pollution episodes

    NASA Astrophysics Data System (ADS)

    Harrison, Roy M.; Shi, Ji Ping; Grenfell, J. Lee.

    During winter air pollution episodes, nitrogen dioxide concentrations can far exceed health based guidelines, but to date, there has been no wholly adequate explanation of the atmospheric chemical production of very high concentrations of nitrogen dioxide during such episodes, despite inclusion of the thermal oxidation of nitric oxide with dioxygen, as well as the well known reaction with ozone. In laboratory studies we have shown that both petrol engine exhaust and petrol vapour catalyse the thermal oxidation of nitric oxide to nitrogen dioxide and have identified certain dialkenes as the chemical agent responsible ( Shi and Harrison, 1997). It is postulated that addition of nitrogen dioxide to the dialkene forms a reactive free radical species which initiates a chain reaction during which peroxy species are formed which convert NO to NO 2. A numerical box model including explicit hydrocarbon chemistry and incorporating this mechanism, shows that rates of nitrogen dioxide production observed in London in December 1991 and hitherto unexplained, are explicable by the presence of conjugate dialkenes at concentrations comparable with those which have been observed in polluted urban atmospheres.

  9. Product selectivity of visible-light photocatalytic reduction of carbon dioxide using titanium dioxide doped by different nitrogen-sources

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoguo; Huang, Zhengfeng; Cheng, Xudong; Wang, Qingli; Chen, Yi; Dong, Peimei; Zhang, Xiwen

    2015-11-01

    The influence of nitrogen-source on the photocatalytic properties of nitrogen-doped titanium dioxide is herein first investigated from the perspective of the chemical bond form of the nitrogen element in the nitrogen-source. The definitive role of groups such as Nsbnd N from the nitrogen-source on the surface of as-prepared samples in the selectivity of the dominant product of photocatalytic reduction is demonstrated. Well-crystallized one-dimensional Nsbnd TiO2 nanorod arrays with a preferred orientation of the rutile (3 1 0) facet are manufactured via a hydrothermal treatment using hydrazine and ammonia variously as the source of nitrogen. Significant selectivity of the dominant reduced products has been exhibited for Nsbnd TiO2 prepared from different nitrogen-sources in carbon dioxide photocatalytic reduction under visible light illumination. CH4 is the main product with N2H4-doped Nsbnd TiO2, while CO is the main product with NH3-doped Nsbnd TiO2, which can be attributed to the existence of the reducing Nsbnd N groups in the N2H4-doped Nsbnd TiO2 surfaces after the hydrothermal treatment. Compared with the approaches previously reported, the facile one-step route utilized here accomplishes the fabrication of Nsbnd TiO2 possessing visible-light activity and attainment of selectivity of dominant photocatalytic reduction product simultaneously by choosing a nitrogen-source with appropriate chemical bond form, which provides a completely new approach to understanding the effects of doping treatment on photocatalytic properties.

  10. Nitrogen dioxide (NO2) uptake by vegetation controlled by atmospheric concentrations and plant stomatal aperture

    NASA Astrophysics Data System (ADS)

    Chaparro-Suarez, I. G.; Meixner, F. X.; Kesselmeier, J.

    2011-10-01

    Nitrogen dioxide (NO2) exchange between the atmosphere and five European tree species was investigated in the laboratory using a dynamic branch enclosure system (consisting of two cuvettes) and a highly specific NO2 analyzer. NO2 measurements were performed with a sensitive gas phase chemiluminescence NO detector combined with a NO2 specific (photolytic) converter, both from Eco-Physics (Switzerland). This highly specific detection system excluded bias from other nitrogen compounds. Investigations were performed at two light intensities (Photosynthetic Active Radiation, PAR, 450 and 900 μmol m-2 s-1) and NO2 concentrations between 0 and 5 ppb. Ambient parameters (air temperature and relative humidity) were held constant. The data showed dominant NO2 uptake by the respective tree species under all conditions. The results did not confirm the existence of a compensation point within a 95% confidence level, though we cannot completely exclude emission of NO2 under very low atmospheric concentrations. Induced stomatal stricture, or total closure, by changing light conditions, as well as by application of the plant hormone ABA (Abscisic Acid) caused a corresponding decrease of NO2 uptake. No loss of NO2 to plant surfaces was observed under stomatal closure and species dependent differences in uptake rates could be clearly related to stomatal behavior.

  11. Nitrogen dioxide and respiratory illness in children. Part I: Health outcomes

    SciTech Connect

    Samet, J.M.; Lambert, W.E.; Skipper, B.J.; Cushing, A.H.; Hunt, W.C.; Young, S.A.; McLaren, L.C.; Schwab, M.; Spengler, J.D. )

    1993-06-01

    We have carried out a prospective cohort study to test the hypothesis that exposure to nitrogen dioxide increases the incidence and severity of respiratory infections during the first 18 months of life. Between January 1988 and June 1990, 1,315 infants were enrolled into the study at birth and followed with prospective surveillance for the occurrence of respiratory infections and monitoring of nitrogen dioxide concentrations in their homes. The subjects were healthy infants from homes without smokers; they were selected with stratification by type of cooking stove at a ratio of four to one for gas and electric stoves. Illness experience was monitored by a daily diary of symptoms completed by the mother and a telephone interview conducted every two weeks. Illnesses with wheezing or wet cough were classified as involving the lower respiratory tract; all other respiratory illnesses were designated as involving the upper respiratory tract. Exposure to nitrogen dioxide was estimated by two-week average concentrations measured in the subjects' bedrooms with passive samplers. This analysis is limited to the 1,205 subjects completing at least one month of observation; of these, 823 completed the full protocol, contributing 82.8% of the total number of days during which the subjects were under observation. Incidence rates for all respiratory illnesses, all upper respiratory illness, all lower respiratory illnesses, and lower respiratory illness further divided into those with any wheezing, or wet cough without wheezing, were examined within strata of nitrogen dioxide exposure at the time of the illness, nitrogen dioxide exposure during the prior month, and type of cooking stove. Consistent trends of increasing illness incidence rates with increasing exposure to nitrogen dioxide were not evident for either the lagged or unlagged exposure variables.

  12. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  13. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program`s Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  14. 40 CFR Appendix F to Part 50 - Measurement Principle and Calibration Procedure for the Measurement of Nitrogen Dioxide in the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Procedure for the Measurement of Nitrogen Dioxide in the Atmosphere (Gas Phase Chemiluminescence) F Appendix...—Measurement Principle and Calibration Procedure for the Measurement of Nitrogen Dioxide in the Atmosphere (Gas... concentration standard. NO2 concentration standard. 2.1 Principle. Atmospheres containing accurately...

  15. 40 CFR Appendix F to Part 50 - Measurement Principle and Calibration Procedure for the Measurement of Nitrogen Dioxide in the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Procedure for the Measurement of Nitrogen Dioxide in the Atmosphere (Gas Phase Chemiluminescence) F Appendix...—Measurement Principle and Calibration Procedure for the Measurement of Nitrogen Dioxide in the Atmosphere (Gas... concentration standard. NO2 concentration standard. 2.1 Principle. Atmospheres containing accurately...

  16. 40 CFR Appendix F to Part 50 - Measurement Principle and Calibration Procedure for the Measurement of Nitrogen Dioxide in the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Procedure for the Measurement of Nitrogen Dioxide in the Atmosphere (Gas Phase Chemiluminescence) F Appendix...—Measurement Principle and Calibration Procedure for the Measurement of Nitrogen Dioxide in the Atmosphere (Gas... concentration standard. NO2 concentration standard. 2.1 Principle. Atmospheres containing accurately...

  17. Pulse radiolysis study of the reactions of catechins with nitrogen dioxide

    NASA Astrophysics Data System (ADS)

    Gebicki, Jerzy L.; Meisner, Piotr; Stawowska, Katarzyna; Gebicka, Lidia

    2012-12-01

    Nitrogen dioxide (•NO2), one of the oxidizing radicals formed in vivo is suspected to play a role in various pathophysiological processes. The reactions of •NO2 with dietary catechins, the group of flavonoids present in high amounts in green tea and red wine, have been investigated by pulse radiolysis method. The kinetics of the reaction of •NO2 with gallic acid have been also studied for comparison. The spectra of transient intermediates are presented. The rate constants of the reaction of •NO2 with catechin, epigallocatechin, epigallocatechin gallate and gallic acid determined by the competition method with 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate) at pH 7.0 and room temperature have been found to be 0.9, 1.0, 2.3 and 0.5×108 M-1 s-1, respectively. The values for catechins are among the highest reported for the reactions of •NO2 with non-radical compounds.

  18. The Strongest Acid: Protonation of Carbon Dioxide.

    PubMed

    Cummings, Steven; Hratchian, Hrant P; Reed, Christopher A

    2016-01-22

    The strongest carborane acid, H(CHB11F11), protonates CO2 while traditional mixed Lewis/Brønsted superacids do not. The product is deduced from IR spectroscopy and calculation to be the proton disolvate, H(CO2)2(+). The carborane acid H(CHB11F11) is therefore the strongest known acid. The failure of traditional mixed superacids to protonate weak bases such as CO2 can be traced to a competition between the proton and the Lewis acid for the added base. The high protic acidity promised by large absolute values of the Hammett acidity function (H0) is not realized in practice because the basicity of an added base is suppressed by Lewis acid/base adduct formation. PMID:26663640

  19. Responses of beech and spruce foliage to elevated carbon dioxide, increased nitrogen deposition and soil type.

    PubMed

    Günthardt-Goerg, Madeleine Silvia; Vollenweider, Pierre

    2015-01-01

    Although enhanced carbon fixation by forest trees may contribute significantly to mitigating an increase in atmospheric carbon dioxide (CO2), capacities for this vary greatly among different tree species and locations. This study compared reactions in the foliage of a deciduous and a coniferous tree species (important central European trees, beech and spruce) to an elevated supply of CO2 and evaluated the importance of the soil type and increased nitrogen deposition on foliar nutrient concentrations and cellular stress reactions. During a period of 4 years, beech (represented by trees from four different regions) and spruce saplings (eight regions), planted together on either acidic or calcareous forest soil in the experimental model ecosystem chambers, were exposed to single and combined treatments consisting of elevated carbon dioxide (+CO2, 590 versus 374 μL L(-1)) and elevated wet nitrogen deposition (+ND, 50 versus 5 kg ha(-1) a(-1)). Leaf size and foliage mass of spruce were increased by +CO2 on both soil types, but those of beech by +ND on the calcareous soil only. The magnitude of the effects varied among the tree origins in both species. Moreover, the concentration of secondary compounds (proanthocyanidins) and the leaf mass per area, as a consequence of cell wall thickening, were also increased and formed important carbon sinks within the foliage. Although the species elemental concentrations differed in their response to CO2 fertilization, the +CO2 treatment effect was weakened by an acceleration of cell senescence in both species, as shown by a decrease in photosynthetic pigment and nitrogen concentration, discolouration and stress symptoms at the cell level; the latter were stronger in beech than spruce. Hence, young trees belonging to a species with different ecological niches can show contrasting responses in their foliage size, but similar responses at the cell level, upon exposure to elevated levels of CO2. The soil type and its nutrient supply

  20. Responses of beech and spruce foliage to elevated carbon dioxide, increased nitrogen deposition and soil type

    PubMed Central

    Günthardt-Goerg, Madeleine Silvia; Vollenweider, Pierre

    2015-01-01

    Although enhanced carbon fixation by forest trees may contribute significantly to mitigating an increase in atmospheric carbon dioxide (CO2), capacities for this vary greatly among different tree species and locations. This study compared reactions in the foliage of a deciduous and a coniferous tree species (important central European trees, beech and spruce) to an elevated supply of CO2 and evaluated the importance of the soil type and increased nitrogen deposition on foliar nutrient concentrations and cellular stress reactions. During a period of 4 years, beech (represented by trees from four different regions) and spruce saplings (eight regions), planted together on either acidic or calcareous forest soil in the experimental model ecosystem chambers, were exposed to single and combined treatments consisting of elevated carbon dioxide (+CO2, 590 versus 374 μL L−1) and elevated wet nitrogen deposition (+ND, 50 versus 5 kg ha−1 a−1). Leaf size and foliage mass of spruce were increased by +CO2 on both soil types, but those of beech by +ND on the calcareous soil only. The magnitude of the effects varied among the tree origins in both species. Moreover, the concentration of secondary compounds (proanthocyanidins) and the leaf mass per area, as a consequence of cell wall thickening, were also increased and formed important carbon sinks within the foliage. Although the species elemental concentrations differed in their response to CO2 fertilization, the +CO2 treatment effect was weakened by an acceleration of cell senescence in both species, as shown by a decrease in photosynthetic pigment and nitrogen concentration, discolouration and stress symptoms at the cell level; the latter were stronger in beech than spruce. Hence, young trees belonging to a species with different ecological niches can show contrasting responses in their foliage size, but similar responses at the cell level, upon exposure to elevated levels of CO2. The soil type and its nutrient supply

  1. EFFECTS OF 0.1 PPM NITROGEN DIOXIDE ON AIRWAYS OF NORMAL AND ASTHMATIC SUBJECTS

    EPA Science Inventory

    It has been reported that inhalation of nitrogen dioxide (NO2) will enhance the bronchial reactivity of asthmatics. This study was designed to evaluate the respiratory effect of a 1-h exposure of normal subjects and of atopic asthmatics to 0.1 parts per million (ppm) NO2. Fifteen...

  2. Synergistic effects of exposure to concentrated ambient fine pollution particles and nitrogen dioxide in humans

    EPA Science Inventory

    Exposure to single pollutants such as ambient particulate matter (PM) is associated with adverse health effects. It is unclear, however, if simultaneous exposure to multiple air pollutants (e.g. PM and ozone or nitrogen dioxide), a more real world scenario, results in non-additiv...

  3. Near-road measurements for nitrogen dioxide and its association with traffic exposure zones

    EPA Science Inventory

    Near-road measurements for nitrogen dioxide (NO2) using passive air samplers were collected weekly in traffic exposure zones (TEZs) in the Research Triangle area of North Carolina (USA) during Fall 2014. Land use regression (LUR) analysis and pairwise comparisons of T...

  4. 49 CFR 173.336 - Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied. 173.336 Section 173.336 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS...

  5. 40 CFR 52.230 - Control strategy and regulations: Nitrogen dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy and regulations: Nitrogen dioxide. 52.230 Section 52.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... since adequate replacement rules have not been submitted and no analysis has been presented to show...

  6. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Penalties for excess emissions of sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) EXCESS EMISSIONS § 77.6 Penalties for excess emissions...

  7. Nitrogen dioxide produced by self-sustained pyrolysis of nitrous oxide

    NASA Technical Reports Server (NTRS)

    Sabol, A. P.

    1965-01-01

    Apparatus is developed for achieving continuous self-sustaining pyrolysis reaction in the production of nitrogen dioxide from nitrous oxide. The process becomes self-sustaining because of the exothermic reaction and the regenerative heating of the gases in the pyrolysis chamber.

  8. Ambient intercomparison of direct and indirect methods for ambient nitrogen dioxide

    EPA Science Inventory

    AbstractRecent advances in measurement techniques for nitrogen dioxide (NO2), along with known interferences in the current Federal Reference Method (FRM) have created the need for NO2 measurement method research within EPA’s Office of Research and Development. Current meth...

  9. HEALTH EFFECTS OF SHORT-TERM INHALATION OF NITROGEN DIOXIDE AND OZONE MIXTURES

    EPA Science Inventory

    The effects of single and multiple daily 3-hour exposures to nitrogen dioxide (NO2) and ozone (O3) mixtures on the resistance to streptococcal pneumonia were investigated. The concentrations of NO2 ranged from 1.5 to 5.0 ppm, and those of O3, from 0.05 to 0.5 ppm. The effect of a...

  10. INFLUENCE OF OZONE AND NITROGEN DIOXIDE ON HEPATIC MICROSOMAL ENZYMES IN MICE

    EPA Science Inventory

    Since ambient concentrations of ozone and nitrogen dioxide increase drug-induced sleeping time in female mice, potential mechanisms were sought by investigating the effects of these gases on hepatic microsomal mixed-function oxidases in female CD-1 mice. Exposure to ozone did not...

  11. Hydrogen Storage in the Carbon Dioxide - Formic Acid Cycle.

    PubMed

    Fink, Cornel; Montandon-Clerc, Mickael; Laurenczy, Gabor

    2015-01-01

    This year Mankind will release about 39 Gt carbon dioxide into the earth's atmosphere, where it acts as a greenhouse gas. The chemical transformation of carbon dioxide into useful products becomes increasingly important, as the CO(2) concentration in the atmosphere has reached 400 ppm. One approach to contribute to the decrease of this hazardous emission is to recycle CO(2), for example reducing it to formic acid. The hydrogenation of CO(2) can be achieved with a series of catalysts under basic and acidic conditions, in wide variety of solvents. To realize a hydrogen-based charge-discharge device ('hydrogen battery'), one also needs efficient catalysts for the reverse reaction, the dehydrogenation of formic acid. Despite of the fact that the overwhelming majority of these reactions are carried out using precious metals-based catalysts (mainly Ru), we review here developments for catalytic hydrogen evolution from formic acid with iron-based complexes. PMID:26842324

  12. Nitrogen dioxide assimilation as affected by light level

    SciTech Connect

    Srivastava, H. ); Ormond, D.; Marie, B. )

    1989-04-01

    The air pollutant NO{sub 2} is absorbed and assimilated by plants to serve as a source of nitrogen but only to a limited extent. The objective of this research was to identify the constraints on NO{sub 2} assimilation. Differential light levels were used to manipulate carbohydrate metabolites available for nitrogen assimilation. Bean plants were grown at four light levels with or without nutrient nitrate and exposed to 0.25 ppm NO{sub 2} for 6h each day. Growth of roots and shoots was inhibited by NO{sub 2} in both the presence and absence of nutrient nitrate. The inhibition was most pronounced at the lowest light level. Light level similarly influenced the effect of nitrate and of NO{sub 2} on soluble protein, nitrate nitrogen and Kjeldahl nitrogen in the root and shoot tissues. Two experiments demonstrated that the injurious effects of NO{sub 2} are more pronounced at low light than at high light and that more NO{sub 2} is assimilated into soluble shoot protein at higher light levels.

  13. Theoretical study of the hydrogen abstraction of substituted phenols by nitrogen dioxide as a source of HONO.

    PubMed

    Shenghur, Abraham; Weber, Kevin H; Nguyen, Nhan D; Sontising, Watit; Tao, Fu-Ming

    2014-11-20

    The mild yet promiscuous reactions of nitrogen dioxide (NO2) and phenolic derivatives to produce nitrous acid (HONO) have been explored with density functional theory calculations. The reaction is found to occur via four distinct pathways with both proton coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms available. While the parent reaction with phenol may not be significant in the gas phase, electron donating groups in the ortho and para positions facilitate the reduction of nitrogen dioxide by electronically stabilizing the product phenoxy radical. Hydrogen bonding groups in the ortho position may additionally stabilize the nascent resonantly stabilized radical product, thus enhancing the reaction. Catechol (ortho-hydroxy phenol) has a predicted overall free energy change ΔG(0) = -0.8 kcal mol(-1) and electronic activation energy Ea = 7.0 kcal mol(-1). Free amines at the ortho and para positions have ΔG(0) = -3.8 and -1.5 kcal mol(-1); Ea = 2.3 and 2.1 kcal mol(-1), respectively. The results indicate that the hydrogen abstraction reactions of these substituted phenols by NO2 are fast and spontaneous. Hammett constants produce a linear correlation with bond dissociation energy (BDE) demonstrating that the BDE is the main parameter controlling the dark abstraction reaction. The implications for atmospheric chemistry and ground-level nitrous acid production are discussed. PMID:25325182

  14. Tropospheric nitrogen dioxide column retrieval based on ground-based zenith-sky DOAS observations

    NASA Astrophysics Data System (ADS)

    Tack, Frederik; Hendrick, Francois; Goutail, Florence; Fayt, Caroline; Merlaud, Alexis; Pinardi, Gaia; Pommereau, Jean-Pierre; Van Roozendael, Michel

    2014-05-01

    Nitrogen dioxide (NO2) is one of the most important chemically active trace gases in the troposphere. Listed as primary pollutant, it is also a key precursor in the formation of tropospheric ozone, aerosols, and acid rain, and can contribute locally to radiative forcing. The long-term monitoring of this species is therefore of great relevance. Here we present a new method to retrieve tropospheric NO2 vertical column amounts from ground-based zenith-sky measurements of scattered sunlight. It is based on a four-step approach consisting of (1) the DOAS analysis of zenith radiance spectra using a fixed reference spectrum corresponding to low tropospheric NO2 content, (2) the determination of the residual amount in the reference spectrum using a Langley-plot-type method, (3) the removal of the stratospheric content from the daytime total slant column using stratospheric vertical columns measured at twilight and simulated stratospheric NO2 diurnal variation, (4) estimation of the tropospheric vertical columns by dividing the resulting tropospheric slant columns by appropriate air mass factors. The retrieval algorithm is tested on a 2 month dataset acquired from June to July 2009 by the BIRA MAX-DOAS instrument in the framework of the Cabauw (51.97° N, 4.93° E) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI). The tropospheric vertical column amounts derived from zenith-sky observations are compared to the vertical columns retrieved from the off-axis and direct-sun measurements of the same MAX-DOAS instrument as well as to data of a co-located SAOZ (Système d'Analyse par Observations Zénithales) spectrometer operated by LATMOS. First results show a good agreement between the different data sets with correlation coefficients and slopes close to or larger than 0.85. We observe that the main error sources arise from the uncertainties in the determination of the residual NO2 amount in the reference spectrum, the stratospheric NO2 abundance and

  15. The interaction of ozone and nitrogen dioxide in the stratosphere of East Antarctica

    NASA Astrophysics Data System (ADS)

    Bruchkouski, Ilya; Krasouski, Aliaksandr; Dziomin, Victar; Svetashev, Alexander

    2016-04-01

    At the Russian Antarctic station "Progress" (S69°23´, E76°23´) simultaneous measurements of trace gases using the MARS-B (Multi-Axis Recorder of Spectra) instrument and PION-UV spectro-radiometer for the time period from 05.01.2014 to 28.02.2014 have been performed. Both instruments were located outdoors. The aim of the measurements was to retrieve the vertical distribution of ozone and nitrogen dioxide in the atmosphere and to study their variability during the period of measurements. The MARS-B instrument, developed at the National Ozone Monitoring Research and Education Centre of the Belarusian State University (NOMREC BSU), successfully passed the procedure of international inter-comparison campaign MAD-CAT 2013 in Mainz, Germany. The instrument is able to record the spectra of scattered sunlight at different elevation angles within a maximum aperture of 1.3°. 12 elevation angles have been used in this study, including the zenith direction. Approximately 7000 spectra per day were registered in the range of 403-486 nm, which were then processed by DOAS technique aiming to retrieve differential slant columns of ozone, nitrogen dioxide and oxygen dimer. Furthermore, total nitrogen dioxide column values have been retrieved employing the Libradtran radiative transfer model. The PION-UV spectro-radiometer, also developed at NOMREC BSU, is able to record the spectra of scattered sunlight from the hemisphere in the range of 280-430 nm. The registered spectra have been used to retrieve the total ozone column values employing the Stamnes method. In this study observational data from both instruments is presented and analyzed. Furthermore, by combining analysis of this data with model simulations it is shown that decreases in nitrogen dioxide content in the upper atmosphere can be associated with increases in total ozone column values and rising of the ozone layer upper boundary. Finally, the time delay between changes in nitrogen dioxide and ozone values is

  16. Influence of experimental pulmonary emphysema on the toxicological effects from inhaled nitrogen dioxide and diesel exhaust.

    PubMed

    Mauderly, J L; Bice, D E; Cheng, Y S; Gillett, N A; Henderson, R F; Pickrell, J A; Wolff, R K

    1989-10-01

    This project examined the influence of preexisting, experimentally induced pulmonary emphysema on the adverse health effects in rats of chronic inhalation exposure to either nitrogen dioxide or automotive diesel-engine exhaust. Previous reports indicated that humans with chronic lung disease were among those most severely affected by episodic exposures to high concentrations of airborne toxicants. There were no previous reports comparing the effects of chronic inhalation exposure to components of automotive emissions in emphysematous and normal animals. The hypothesis tested in this project was that rats with preexisting pulmonary emphysema were more susceptible than rats with normal lungs to the adverse effects of the toxicant exposures. Young adult rats were housed continuously in inhalation exposure chambers and exposed seven hours per day, five days per week, for 24 months to nitrogen dioxide at 9.5 parts per million (ppm)2, or to diesel exhaust at 3.5 mg soot/m3, or to clean air as control animals. These concentrations were selected to produce mild, but distinct, effects in rats with normal lungs. Pulmonary emphysema was induced in one-half of the rats by intratracheal instillation of the proteolytic enzyme elastase six weeks before the toxicant exposures began. Health effects were evaluated after 12, 18, and 24 months of exposure. The measurements included respiratory function, clearance of inhaled radiolabeled particles, pulmonary immune responses to instilled antigen, biochemistry and cytology of airway fluid, total lung collagen, histopathology, lung morphometry, and lung burdens of diesel soot. The significance of influences of emphysema and toxicant exposure, and interactions between influences of the two treatments, were evaluated by analysis of variance. The elastase treatment resulted in pulmonary emphysema that was manifested by enlarged alveoli and alveolar ducts, and by ruptured alveolar septa. There was no accompanying inflammation and no

  17. Statistical summary and trend evaluation of air quality data for Cleveland, Ohio in 1967 to 1971: Total suspended particulate, nitrogen dioxide, and sulfur dioxide

    NASA Technical Reports Server (NTRS)

    Neustadter, H. E.; Sidik, S. M.; Burr, J. C., Jr.

    1972-01-01

    Air quality data for Cleveland, Ohio, for the period of 1967 to 1971 were collated and subjected to statistical analysis. The total suspended particulate component is lognormally distributed; while sulfur dioxide and nitrogen dioxide are reasonably approximated by lognormal distributions. Only sulfur dioxide, in some residential neighborhoods, meets Ohio air quality standards. Air quality has definitely improved in the industrial valley, while in the rest of the city, only sulfur dioxide has shown consistent improvement. A pollution index is introduced which displays directly the degree to which the environmental air conforms to mandated standards.

  18. Formation of strong airway irritants in mixtures of isoprene/ozone and isoprene/ozone/nitrogen dioxide.

    PubMed Central

    Wilkins, C K; Clausen, P A; Wolkoff, P; Larsen, S T; Hammer, M; Larsen, K; Hansen, V; Nielsen, G D

    2001-01-01

    We evaluated the airway irritation of isoprene, isoprene/ozone, and isoprene/ozone/nitrogen dioxide mixtures using a mouse bioassay, from which we calculated sensory irritation, bronchial constriction, and pulmonary irritation. We observed significant sensory irritation (approximately 50% reduction of mean respiratory rate) by dynamically exposing the mice, over 30 min, to mixtures of isoprene and O3 or isoprene, O3, and NO2. The starting concentrations were approximately 4 ppm O3 and 500 ppm isoprene (+ approximately 4 ppm NO2. The reaction mixtures after approximately 30 sec contained < 0.2 ppm O3. Addition of the effects of the residual reactants and the identified stable irritant products (formaldehyde, formic acid, acetic acid, methacrolein, and methylvinyl ketone) could explain only partially the observed sensory irritation. This suggests that one or more strong airway irritants were formed. It is thus possible that oxidation reactions of common unsaturated compounds may be relevant for indoor air quality. PMID:11673123

  19. The effects of rising atmospheric carbon dioxide on shoot-root nitrogen and water signaling

    PubMed Central

    Easlon, Hsien Ming; Bloom, Arnold J.

    2013-01-01

    Terrestrial higher plants are composed of roots and shoots, distinct organs that conduct complementary functions in dissimilar environments. For example, roots are responsible for acquiring water and nutrients such as inorganic nitrogen from the soil, yet shoots consume the majority of these resources. The success of such a relationship depends on excellent root–shoot communications. Increased net photosynthesis and decreased shoot nitrogen and water use at elevated CO2 fundamentally alter these source–sink relations. Lower than predicted productivity gains at elevated CO2 under nitrogen or water stress may indicate shoot–root signaling lacks plasticity to respond to rising atmospheric CO2 concentrations. The following presents recent research results on shoot–root nitrogen and water signaling, emphasizing the influence that rising atmospheric carbon dioxide levels are having on these source–sink interactions. PMID:23983674

  20. Nitrogen dioxide reaction with proteins: Evidence for peptide bond cleavage at lysine residues

    SciTech Connect

    Hood, D.B.

    1991-01-01

    Nitrogen dioxide (NO{sub 2}), an air pollutant produced by burning fossil fuels and a component of cigarette smoke, is thought to contribute to the pathogenesis of pulmonary diseases, such as emphysema. To gain information on the mechanism by which NO{sub 2} damages the lung, in vitro exposures of {alpha}{sub 1}-proteinase inhibitor ({alpha}{sub 1}-PI), elastin, bovine serum albumin (BSA), human serum albumin (HSA) and synthetic poly-L-lysine were performed. A genetic deficiency of {alpha}{sup 1}-PI predisposes humans to emphysema and NO{sub 2} has been hypothesized to damage {alpha}{sub 1}-PI, which would leave proteases such as human neutrophil elastase, (HNE) free to attack lung structural proteins. The ability of {alpha}{sub 1}-PI to inhibit HNE declined with exposure to 50% of the control value at molar ratios of NO{sub 2}:{alpha}{sub 1}-PI of 400:1 and greater. Exposure of {alpha}{sub 1}-PI to NO{sub 2} resulted in a 50% lose of immunoreactivity with either monoclonal or polyclonal antibodies in an enzyme-linked immunosorbent assay at molar ratios of NO{sub 2}:{alpha}{sub 1}-PI of essentially 100:1 and greater. The mechanisms of these effects were investigated via ultraviolet-visible spectroscopy and amino acid analysis. The remaining target molecules were labeled by reductive methylation of amino groups with {sup 3}H-HCHO prior to treatment with NO{sub 2} in aqueous solutions at physiological pH. Time course exposure of 5 mg {sup 3}H-insoluble bovine ligamentum nuchae elastin suspensions with up to 120 {mu}moles of NO{sub 2} resulted in 90% solubilization of the label. Amino acid analysis of the soluble and insoluble fractions from these exposures confirmed that 80% of the {sup 3}H-dimethyllysine residues were in the soluble fraction.

  1. Surface area of montmorillonite from the dynamic sorption of nitrogen and carbon dioxide

    USGS Publications Warehouse

    Thomas, J., Jr.; Bohor, B.F.

    1968-01-01

    Surface area determinations were made on a montmorillonite with various cations emplaced on the exchangeable sites, utilizing nitrogen and carbon dioxide as adsorbates at 77 ??K and 195 ??K, respectively, in a dynamic system. From the fraction of a Mississippi montmorillonite less than about 1 ?? in size, samples were prepared by replacing the original exchangeable cations with Li+, Na+, K+, Rb+, Cs+, Mg++, Ca++, Ba++, and NH4+, forming a series of homoionic montmorillonite species. Surface areas from 3-point B.E.T. plots (half-hour adsorption points), with nitrogen as the adsorbate, ranged from 61 m2/g for Li-montmorillonite to 138 m2/g for Cs-montmorillonite, thus reflecting a certain degree of nitrogen penetration between layers. Complete penetration should theoretically result in a surface area of over 300 m2/g for this clay with a nitrogen monolayer between each pair of platelets. The experimental data indicate that the extent of penetration is time-dependent and is also a function of the interlayer forces as governed by the size and charge of the replaceable cation. This finding negates the generally accepted concept that nitrogen at 77 ??K does not penetrate the layers and provides a measure only of the external surface of expandable clay minerals. A further measure of the variation of interlayer forces is provided by the adsorption of carbon dioxide at 195 ??K. Surface area values ranged from 99 m2/g for Li-montmorillonite to 315 m2/g for Csmontmorillonite. Although the carbon dioxide molecule is larger than the nitrogen molecule, its greater penetration apparently is a result of its being kinetically more energetic (with a larger diffusion coefficient) at its higher adsorption temperature. Similar differences have been found with both adsorbates in the study of microporous substances, such as coal, where activated diffusion is of considerable significance. ?? 1968.

  2. Ozone and nitrogen dioxide changes in the stratosphere during 1979-84

    NASA Technical Reports Server (NTRS)

    Callis, Linwood B.; Natarajan, Murali

    1986-01-01

    Analyses of stratospheric nitrogen dioxide distributions as measured by four different satellite experiments indicate midlatitude increases of up to 75 percent during the 1979-84 period. These increases are attributed to enhanced upper atmospheric formation of odd nitrogen during solar cycle 21 with downward transport to the stratosphere. The increases in NO2 provide an explanation for the recently observed dramatic springtime minima in the Antarctic ozone and suggest the reason for the reported midlatitude stratospheric ozone decreases observed by satellite and ground-based stations since the mid 1970s.

  3. Silicon dioxide thin film mediated single cell nucleic acid isolation.

    PubMed

    Bogdanov, Evgeny; Dominova, Irina; Shusharina, Natalia; Botman, Stepan; Kasymov, Vitaliy; Patrushev, Maksim

    2013-01-01

    A limited amount of DNA extracted from single cells, and the development of single cell diagnostics make it necessary to create a new highly effective method for the single cells nucleic acids isolation. In this paper, we propose the DNA isolation method from biomaterials with limited DNA quantity in sample, and from samples with degradable DNA based on the use of solid-phase adsorbent silicon dioxide nanofilm deposited on the inner surface of PCR tube. PMID:23874571

  4. Silicon Dioxide Thin Film Mediated Single Cell Nucleic Acid Isolation

    PubMed Central

    Bogdanov, Evgeny; Dominova, Irina; Shusharina, Natalia; Botman, Stepan; Kasymov, Vitaliy; Patrushev, Maksim

    2013-01-01

    A limited amount of DNA extracted from single cells, and the development of single cell diagnostics make it necessary to create a new highly effective method for the single cells nucleic acids isolation. In this paper, we propose the DNA isolation method from biomaterials with limited DNA quantity in sample, and from samples with degradable DNA based on the use of solid-phase adsorbent silicon dioxide nanofilm deposited on the inner surface of PCR tube. PMID:23874571

  5. Photodissociation of nitrogen dioxide by pulsed laser light at 6943 A.

    NASA Technical Reports Server (NTRS)

    Gerstmayr, J. W.; Harteck, P.; Reeves, R. R.

    1972-01-01

    Nitrogen dioxide was photodissociated using a pulsed ruby laser at 6943 A. The energy of a single photon at this wavelength was equivalent to only 57% of the dissociation energy. The mechanism proposed to account for the results was the consecutive absorption of two photons, the first resulting in a short-lived excited state. The second photon is then absorbed by the excited species resulting in dissociation.

  6. Children's exposure to nitrogen dioxide in Sweden: investigating environmental injustice in an egalitarian country

    PubMed Central

    Chaix, Basile; Gustafsson, Susanna; Jerrett, Michael; Kristersson, Håkan; Lithman, Thor; Boalt, Åke; Merlo, Juan

    2006-01-01

    Study objective Prior studies have shown that children are particularly sensitive to air pollution. This study examined whether children of low socioeconomic status suffered greater exposure to outdoor nitrogen dioxide than more affluent ones, both at their place of residence and at school, in a country with widespread state intervention for social equity. Design Local scale data on outdoor nitrogen dioxide obtained from a validated air pollution model were analysed, along with all school children accurately geocoded to their building of residence and school. Participants All 29 133 children in grades one through nine (aged 7 to 15 years) residing and attending school in Malmö, Sweden, in 2001. Main results Defining the socioeconomic status of children according to the mean income in their residential building, the spatial scan statistic technique allowed the authors to identify eight statistically significant clusters of low socioeconomic status children, all of which were located in the most polluted areas of Malmö. Four clusters of high socioeconomic status children were found, all of them located in the least polluted areas. The neighbourhood socioeconomic status better predicted the nitrogen dioxide exposure of children than the socioeconomic status of their building of residence. Exposure to nitrogen dioxide at the place of residence and school of attendance regularly increased as the socioeconomic status of a child's neighbourhood of residence decreased. Conclusions Evidence of environmental injustice was found, even in a country noted for its egalitarian welfare state. Enforcement of environmental regulations may be necessary to achieve a higher level of environmental equity. PMID:16476754

  7. Failure of ozone and nitrogen dioxide to enhance lung tumor development in hamsters

    SciTech Connect

    Witschi, H.; Breider, M.A.; Schuller, H.M. )

    1993-09-01

    We tested the hypothesis that the two common oxidant air pollutants, ozone and nitrogen dioxide, modulate the development of respiratory tract tumors in Syrian golden hamsters. The animals received subcutaneous injections of the carcinogen diethylnitrosamine (20 mg/kg) twice a week while being exposed continuously to an atmosphere of 0.8 parts per million (ppm)* of ozone or 15 ppm of nitrogen dioxide. Animals were killed 16 weeks or 24 to 32 weeks after the beginning of the treatment. Ozone delayed the appearance of tracheal tumors and reduced the incidence of tumors in the lung periphery. A suspected neuroendocrine differentiation of those lung tumors could not be established by immunocytochemistry due to overfixation of tissues. On the other hand, ozone seemed to mitigate development of hepatotoxic lesions mediated by diethylnitrosamine. In animals treated with diethylnitrosamine and exposed to nitrogen dioxide, fewer tracheal tumors and no lung tumors were found. Only a few lung tumors were produced in animals treated with diethylnitrosamine and kept in an atmosphere of 65% oxygen. The previously observed neuroendocrine nature of tumors induced by simultaneous exposure to diethylnitrosamine and hyperoxia could not be established because the long fixation of tissues precluded immunocytochemical stains. Animals treated with diethylnitrosamine and kept in filtered air while being housed in wire-mesh cages developed fewer lung tumors than animals given the same treatment and kept on conventional bedding in shoebox cages. Although all inhalants tested are known to produce substantial cell proliferation in the respiratory tract, it was not possible to document whether this would enhance lung tumor development. The role of the two common air pollutants, ozone and nitrogen dioxide, as possible additional risks in the pathogenesis of lung cancer in animals continues to remain uncertain.

  8. Interdigitated gate electrode field effect transistor for the selective detection of nitrogen dioxide and diisopropyl methylphosphonate

    SciTech Connect

    Kolesar, E.S. Jr.; Wiseman, J.M. )

    1989-11-01

    An interdigitated gate electrode field effect transistor (IGE-FET) coupled to an electron beam evaporated copper phthalocyanine thin film was used to selectively detect part-per-billion concentration levels of nitrogen dioxide (NO{sub 2}) and diisopropyl methylphosphonate (DIMP). The sensor is excited with a voltage pulse, and the time- and frequency-domain responses are measured. The envelopes of the magnitude of the normalized difference frequency spectrums reveal features that unambiguously distinguish NO{sub 2} and DIMP exposures.

  9. Validation of nitrogen dioxide measurements from the Improved Stratospheric and Mesospheric Sounder

    NASA Astrophysics Data System (ADS)

    Reburn, W. J.; Remedios, J. J.; Morris, P. E.; Rodgers, C. D.; Taylor, F. W.; Kerridge, B. J.; Knight, R. J.; Ballard, J.; Kumer, J. B.; Massie, S. T.

    1996-04-01

    Measurements of nitrogen dioxide (NO2) from the Improved Stratospheric and Mesospheric Sounder (ISAMS) on the Upper Atmosphere Research Satellite (UARS) are assessed. Channel 5 of the instrument was dedicated to observations of nitrogen dioxide and employed pressure-modulation and wideband radiometry to make measurements at 6.2 μm. This dual technique allows simultaneous determination of nitrogen dioxide mixing ratio and the aerosol extinction coefficient at this wavelength and therefore provides nitrogen dioxide data even in the presence of heavy aerosol loading. Approximately 180 days of data, in the period from September 1991 to July 1992, were obtained with, typically, over 2600 profiles per day for each retrieved species, covering an altitude range of 100-0.01 mbar. In this paper the version 10 data are assessed and a full error analysis is described. Comparisons with the Cryogenic Limb Array Etalon Spectrometer (CLAES) on UARS and the Limb Infrared Monitor of the Stratosphere (LIMS) on Nimbus 7 are also presented. It is concluded that the morphology of the retrieved ISAMS fields is robust and consistent with concurrent as well as previous infrared satellite measurements. Random errors are estimated to be of the order of 10% for nighttime and 15% for daytime NO2 near the maxima of the distributions, and systematic errors are estimated to be of a similar size. However, there remains an unresolved systematic difference of about a factor of 2 between ISAMS and CLAES. Both random and systematic errors are likely to be reduced in future versions of the processing.

  10. Evaluation of land use regression models (LURs) for nitrogen dioxide and benzene in four U.S. Cities.

    EPA Science Inventory

    Spatial analysis studies have included application of land use regression models (LURs) for health and air quality assessments. Recent LUR studies have collected nitrogen dioxide (NO2) and volatile organic compounds (VOCs) using passive samplers at urban air monitoring networks ...

  11. Effects of nitric oxide and nitrogen dioxide on bacterial growth

    NASA Technical Reports Server (NTRS)

    Mancinelli, R. L.; Mckay, C. P.

    1983-01-01

    While it is generally thought that the bactericidal effects of NO and NO2 derive from their reaction with water to form nitrous and nitric acids (Shank et al., 1962), this appears to be true only at high concentrations. The data presented here suggest that at low NO and NO2 concentrations, acids are not present in high enough concentrations to act as toxic agents. Reference is made to a study by Grant et al. (1979), which found that exposing acid forest soil to 1 ppm of NO2 did not cause the soil pH to drop. The results presented here show that at low concentrations of NO and NO2, the NO is bacteriostatic for some organisms and not for others, whereas NO2 may protect some bacteria from the inhibitory effects of NO. Since it has been shown that bacteria can divide while airborne (Dimmick et al., 1979), the present results suggest that NO at the low concentrations found in the atmosphere can select for resistant bacteria in the air and affect the viable airborne bacterial population.

  12. High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)

    NASA Astrophysics Data System (ADS)

    Lawrence, J. P.; Anand, J. S.; Vande Hey, J. D.; Leigh, R. R.; Monks, P. S.; Leigh, R. J.

    2015-06-01

    Nitrogen Dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI) remote sensing system. The ANDI system includes an imaging (UV)-vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2) concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK. Retrieved NO2 columns at a surface resolution of 80 m x 20 m revealed hot spots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands) and a power station (Ratcliffe-on-Soar). In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hot spots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.

  13. High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)

    NASA Astrophysics Data System (ADS)

    Lawrence, J. P.; Anand, J. S.; Vande Hey, J. D.; White, J.; Leigh, R. R.; Monks, P. S.; Leigh, R. J.

    2015-11-01

    Nitrogen dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI) remote sensing system. The ANDI system includes an imaging UV/Vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2) concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK on a cloud-free winter day in February 2013. Retrieved NO2 columns gridded to a surface resolution of 80 m × 20 m revealed hotspots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands) and a power station (Ratcliffe-on-Soar). In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hotspots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.

  14. Validation tests of a new high uptake rate passive sampler for nitrogen dioxide measurements.

    PubMed

    Piechocki-Minguy, A; Plaisance, H; Garcia-Fouqué, S; Galloo, J C; Guillermo, R

    2003-12-01

    This study explains the main characteristics of a new passive sampler which is able to give reliable nitrogen dioxide measurements for short time sampling. The sampling rate was found to be on average 0.89 cm3 s(-1) for indoor sampling and 1.00 cm3 s(-1) for outdoor sampling. The detection limit was evaluated at 11 microg m(-3) for a one-hour measurement. In field conditions, the passive sampler measurements were in agreement with those of the chemiluminescent NOx monitors. Measurement uncertainties were estimated at 34% and 38% for laboratory tests in conditions corresponding respectively to indoor and outdoor measurements and were evaluated at 28 to 37% depending on the nitrogen dioxide concentration for field experiments. The effects of various factors on the passive sampler were determined in an exposure chamber. The sampling rate of the retained sampler version was not significantly influenced by wind speeds superior to 0.3 m s(-1). A decrease of the uptake rate is observed for high nitrogen dioxide doses. The sampling rate increases linearly with temperature (2% per degree C). The relative humidity has only a weak effect. PMID:14977149

  15. Evaluation of doped phthalocyanines and a chemically-sensitive field effect transistor for detecting nitrogen dioxide

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas J.

    1989-12-01

    The design and fabrication of an integrated circuit microsensor for the detection of nitrogen dioxide is examined. Metal-doped phthalocyanine compounds were evaluated as a candidate chemically sensitive membrane, and their performance was compared with respect to sensitivity, reversibility, and specificity. The microsensor consisted of the integration of an array of 9 sensing elements with amplifiers, a reference amplifier, and an analog multiplexer. The 9 individual sensing elements used an interdigitated gate electrode field effect transistor (IGEFET) coupled to a serially connected pair of inverting amplifiers using metal oxide semiconductor field effect transistors(MOSFETs). The interdigitated gate electrodes were coated with thin films of cobalt (II) phthalocyanine (CoPc), copper phthalocyanine (CuPc), lead phthalocyanine (PbPc), nickel (II) phthalocyanine (NiPc), and (undoped) phthalocyanine (Pc). An excitation signal was applied to the integrated circuit, and the multiplexed electrical response was measured in the time-domain and the frequency-domain. The electrical response was evaluated upon exposure to 20-, 80-, and 320-ppb of nitrogen dioxide (NO2) and diisopropyl methylphosphonate (DIMP) using filtered room air (less than 5 percent relative humidity) as the diluent. The electrical response was evaluated for film thickness of approximately 1500 A and 500 A. The rank ordering of the sensitivity of the materials to nitrogen dioxide from the most to least sensitive was: CoPc, NiPc, CuPc, PbPc, and then (undoped) Pc.

  16. Study of solar variability impact on nitrogen dioxide: 2004-2013

    NASA Astrophysics Data System (ADS)

    Constantin, Daniel-Eduard; Voiculescu, Mirela; Merlaud, Alexis; Van Roozendael, Michel

    2015-04-01

    Nitrogen dioxide (NO2) locally plays an important role in the radiation budget by absorbing solar radiation at ultraviolet (UV) and visible wavelengths. The influence of solar variability on the inter-annual variability and trends in nitrogen dioxide is evaluated for a period of 10 years (2004-2013) using monthly mean tropospheric NO2 measurements of the Ozone Monitoring Instrument (OMI) version 2.0. Possible signatures of solar variability on nitrogen dioxide time series of NO2 over several cities were analyzed using various statistical methods. Various solar proxies were selected, in order to separate between possible links to solar irradiance and to solar wind. Several locations with different levels of pollution, located in different places of the world (Athens, Jungfraujoch, Lauder, Lisbon, Moscow, and Uccle), were selected. Observations show a clear 27 day period of the NO2 tropospheric Vertical Column Density (VCD) or total Slant Column Density (SCD). NO2 content decreases with increasing activity above polluted areas (e.g. Athens, Moscow) while for unpolluted areas there is no evident correlation (e.g. Lauder, Jungfraujoch). Possible effects of solar wind on NO2 content are observed as well, but the relationship is less clear, since polluted areas seem to respond differently to solar wind variations. The mechanism by which NO2 content can be affected by solar variations relate mainly to ozone production but other paths by which solar energy may be transferred to the lower atmosphere are investigated.

  17. The Limb Infrared Monitor of the Stratosphere /LIMS/ experiment - Temperature and nitrogen dioxide results

    NASA Technical Reports Server (NTRS)

    Gille, J. C.; Russell, J. M.; Bailey, P. L.

    1981-01-01

    The Limb Infrared Monitor of the Stratosphere (LIMS) is a satellite-borne radiometer which scans across the earth's limb, measuring infrared radiation emitted by specific atmospheric gases in a number of broad channels. Instrumentation includes a folded telescope, which focuses the radiation from the limb onto an array of six mercury-cadmium-telluride detectors. A scan mirror within the telescope sweeps the fields of view across the horizon, with each up or down scan lasting 12 seconds. The measurements are inverted to yield distributions of temperature and nitrogen dioxide. The temperature is determined from two channels covering the intervals 595-739 per cm and 645-673 per cm of the 15 micron bands of CO2, with maximum signal to noise ratio of 500-1000. Nitrogen dioxide is determined from measurements in a channel from 1580-1613 per cm, with an S/N of approximately 100. Results show that the LIMS temperature and nitrogen dioxide data are characterized by high precision.

  18. A survey of carbon monoxide and nitrogen dioxide in indoor ice arenas in Vermont

    SciTech Connect

    Paulozzi, L.J. ); Spengler, R.F.; Vogt, R.L.; Carney, J.K.

    1993-12-01

    Because of the history of health problems traceable to the exhaust of ice resurfacing machines, state sanitarians used detector tubes to measure carbon monoxide (CO) and nitrogen dioxide (NO[sub 2]) levels in enclosed ice arenas in Vermont during high school hockey games. Five of eight arenas had average game CO measurements of 30 ppm carbon monoxide or more. Two of the three periods of play had average CO readings in excess of 100 ppm in one arena. Only six arenas had the complete series of nitrogen dioxide measurements. One had an average game NO[sub 2] level of 1.2 ppm. Two had one or more periods of play that averaged in excess of 0.5 ppm. Despite the ample documentation of the hazards of operating combustion-powered resurfacing machines inside enclosed ice arenas, a significant portion of the arenas had undesirable levels of carbon monoxide or nitrogen dioxide. Ice arenas should be routinely monitored for air contaminants. Considerations should be given to the purchase of electric ice resurfacing machines for new arenas and arenas that have air contamination that cannot be resolved with ventilation.

  19. Effects of acid rain and sulfur dioxide on marble dissolution

    SciTech Connect

    Schuster, P.F.; Reddy, M.M. ); Sherwood, S.I. )

    1994-01-01

    Acid precipitation and the dry deposition of sulfur dioxide (SO[sub 2]) accelerate damage to carbonate-stone monuments and building materials. This study identified and quantified environmental damage to a sample of Vermont marble during storms and their preceding dry periods. Results from field experiments indicated the deposition of SO[sub 2] gas to the stone surface during dry periods and a twofold increase in marble dissolution during coincident episodes of low rain rate and decreased rainfall pH. The study is widely applicable to the analysis of carbonate-stone damage at locations affected by acid rain and air pollution.

  20. Effects of acid rain and sulfur dioxide on marble dissolution

    USGS Publications Warehouse

    Schuster, Paul F.; Reddy, Michael M.; Sherwood, Susan I.

    1994-01-01

    Acid precipitation and the dry deposition of sulfur dioxide (SO2) accelerate damage to carbonate-stone monuments and building materials. This study identified and quantified environmental damage to a sample of Vermont marble during storms and their preceding dry periods. Results from field experiments indicated the deposition of SO2 gas to the stone surface during dry periods and a twofold increase in marble dissolution during coincident episodes of low rain rate and decreased rainfall pH. The study is widely applicable to the analysis of carbonate-stone damage at locations affected by acid rain and air pollution.

  1. Amino Acid Synthesis in a Supercritical Carbon Dioxide - Water System

    PubMed Central

    Fujioka, Kouki; Futamura, Yasuhiro; Shiohara, Tomoo; Hoshino, Akiyoshi; Kanaya, Fumihide; Manome, Yoshinobu; Yamamoto, Kenji

    2009-01-01

    Mars is a CO2-abundant planet, whereas early Earth is thought to be also CO2-abundant. In addition, water was also discovered on Mars in 2008. From the facts and theory, we assumed that soda fountains were present on both planets, and this affected amino acid synthesis. Here, using a supercritical CO2/liquid H2O (10:1) system which mimicked crust soda fountains, we demonstrate production of amino acids from hydroxylamine (nitrogen source) and keto acids (oxylic acid sources). In this research, several amino acids were detected with an amino acid analyzer. Moreover, alanine polymers were detected with LC-MS. Our research lights up a new pathway in the study of life’s origin. PMID:19582225

  2. Abrupt recent trend changes in atmospheric nitrogen dioxide over the Middle East.

    PubMed

    Lelieveld, Jos; Beirle, Steffen; Hörmann, Christoph; Stenchikov, Georgiy; Wagner, Thomas

    2015-08-01

    Nitrogen oxides, released from fossil fuel use and other combustion processes, affect air quality and climate. From the mid-1990s onward, nitrogen dioxide (NO2) has been monitored from space, and since 2004 with relatively high spatial resolution by the Ozone Monitoring Instrument. Strong upward NO2 trends have been observed over South and East Asia and the Middle East, in particular over major cities. We show, however, that a combination of air quality control and political factors, including economical crisis and armed conflict, has drastically altered the emission landscape of nitrogen oxides in the Middle East. Large changes, including trend reversals, have occurred since about 2010 that could not have been predicted and therefore are at odds with emission scenarios used in projections of air pollution and climate change in the early 21st century. PMID:26601240

  3. Abrupt recent trend changes in atmospheric nitrogen dioxide over the Middle East

    PubMed Central

    Lelieveld, Jos; Beirle, Steffen; Hörmann, Christoph; Stenchikov, Georgiy; Wagner, Thomas

    2015-01-01

    Nitrogen oxides, released from fossil fuel use and other combustion processes, affect air quality and climate. From the mid-1990s onward, nitrogen dioxide (NO2) has been monitored from space, and since 2004 with relatively high spatial resolution by the Ozone Monitoring Instrument. Strong upward NO2 trends have been observed over South and East Asia and the Middle East, in particular over major cities. We show, however, that a combination of air quality control and political factors, including economical crisis and armed conflict, has drastically altered the emission landscape of nitrogen oxides in the Middle East. Large changes, including trend reversals, have occurred since about 2010 that could not have been predicted and therefore are at odds with emission scenarios used in projections of air pollution and climate change in the early 21st century. PMID:26601240

  4. Isotopic composition of passively collected nitrogen dioxide emissions: Vehicle, soil and livestock source signatures

    NASA Astrophysics Data System (ADS)

    Felix, J. David; Elliott, Emily M.

    2014-08-01

    Quantifying contributions of local and regional NOx emission sources is an important initial step towards accurately assessing improvements in NOx emission reduction efforts. Current global NOx inventories report large uncertainties in contributions of some NOx sources, especially diffuse sources (e.g. lightning and soil NOx). Examining the isotopic composition of NOx and its oxidation products (NOy) is one approach to further constrain contributions from these sources. While natural and anthropogenically-derived NOx emissions are reported to have relatively distinct δ15N values that could aid NOx source apportionment studies, existing δ15N-NOx source data is limited and variable collection approaches have been employed. To build on existing δ15N-NOx source data, inexpensive and easily deployable passive samplers were used to collect nitrogen dioxide (NO2) emissions and its oxidation product, nitric acid (HNO3), from multiple emission sources including livestock waste, fertilized soils, and vehicles. The resulting isotope data provides evidence that passive samplers can be used across a range of environmental conditions with widely varying NO2 concentrations and NO2 isotopic compositions. Using this approach, we report the first δ15N and δ18O-NO2 of livestock waste emissions, as well as the first measurements of δ18O-NO2 from biogenic soil and vehicle emissions. We observe the highest δ15N-NO2 values to date of vehicle emissions and investigate potential fractionations associated with oxidation and equilibrium processes. The large differences reported here between δ15N-NO2 values from fossil fuel-based sources and microbially-produced sources allows for identification and possible quantification of source contributions to ambient NOx concentrations.

  5. Development of a Hydrazine/Nitrogen Dioxide Fiber Optic Sensor

    NASA Technical Reports Server (NTRS)

    Andrawis, Alfred S.; Santiago, Josephine

    2003-01-01

    Bromothymol Blue (BT)/Bromocresol Green (BG) mixture (1/1) in hydrogel (l/l), produces a blue-green indicator for HZ and/or NO2. The stability over a two months period of this BT/BG (1/1) indicator solution was tested and no evidence of performance deterioration was detected. A dual HZ/NO2 prototype sensor utilizing an acid-base indicator was previously constructed. A monitor and control circuit are also designed, built d tested during the course of this project. The circuit is controlled with Motorola MC68HC II microcontroller evaluation board to monitor the voltage level out of the photodetector. Low-pass filter and amplifier are used to interface the sensor's small voltage with the microcontroller's AD input. The sensor, interface circuit and the microcontroller board are then all placed in one unit and powered with a single power supply. The unit is then tested several times and the response was consistent and proved the feasibility of dual "J@ leak detection. Other sensor types, suitable for silica glass fiber, smaller in size, more rugged and suitable for use on board of the Space Shuttle and missile canisters, are then proposed.

  6. Removal of pharmaceuticals in biologically treated wastewater by chlorine dioxide or peracetic acid.

    PubMed

    Hey, G; Ledin, A; Jansen, J la Cour; Andersen, H R

    2012-01-01

    Removal of six active pharmaceutical ingredients in wastewater was investigated using chlorine dioxide (ClO2) or peracetic acid (PAA) as chemical oxidants. Four non-steroidal anti-inflammatory drugs (ibuprofen, naproxen, diclofenac and mefenamic acid) and two lipid-regulating agents (gemfibrozil and clofibric acid, a metabolite of clofibrate) were used as target substances at 40 microg/L initial concentration. Three different wastewaters types originating from two wastewater treatment plants (WWTPs) were used. One wastewater was collected after extended nitrogen removal in activated sludge, one after treatment with high-loaded activated sludge without nitrification, and one from the final effluent from the same plant where nitrogen removal was made in trickling filters for nitrification and moving-bed biofilm reactors for denitrification following the high-loaded plant. Of the six investigated compounds, only clofibric acid and ibuprofen were not removed when treated with ClO2 up to 20 mg/L. With increasing PAA dose up to 50 mg/L, significant removal of most of the pharmaceuticals was observed except for the wastewater with the highest chemical oxygen demand (COD). This indicates that chemical oxidation with ClO2 could be used for tertiary treatment at WWTPs for active pharmaceutical ingredients, whereas PAA was not sufficiently efficient. PMID:22720432

  7. Surface area of vermiculite with nitrogen and carbon dioxide as adsorbates

    USGS Publications Warehouse

    Thomas, J., Jr.; Bohor, B.F.

    1969-01-01

    Surface-area studies were made on several homoionic vermiculites with both nitrogen and carbon dioxide as adsorbates. These studies show that only very slight penetration occurs between individual vermiculite platelets. This is in contrast to an earlier investigation of montmorillonite where it was found that the degree of penetration between layers is quite high, particularly for carbon dioxide, and is governed by the size and charge of the interlayer cation. The inability of these adsorbates to penetrate substantially between vermiculite platelets is due primarily to this mineral's high surface-charge density. The extent of penetration of nitrogen and carbon dioxide at the edges of vermiculite platelets, though slight, is influenced by the coordinated water retained within the sample at a given degassing temperature. Forces between layers are weakened with increasing water content, which permits slightly greater penetration by adsorbate gases. Thus, the surface area of vermiculite, as determined by gas adsorption, is larger than the calculated external surface area based upon particle size and shape considerations. In addition, "extra" surface is provided by the lifting and scrolling of terminal platelets. These morphological features are shown in scanning electron micrographs of a naturally occuring vermiculite. ?? 1969.

  8. A satellite-based analysis of temporal dynamics in tropospheric nitrogen dioxide levels over large urban agglomerations worldwide

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; van der A, Ronald; Valdebenito, Alvaro

    2014-05-01

    Satellite observations allow for a consistent perspective on tropospheric nitrogen dioxide at a global scale and their operational status facilitates studies on multi-annual to decadal temporal dynamics. Utilizing close to a decade of data from the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) and the Ozone Monitoring Instrument (OMI) sensors, we present in this contribution a global analysis of the temporal dynamics in tropospheric nitrogen dioxide over the worlds' major urban agglomerations during the last 10 years. The results indicate that while levels of nitrogen dioxide have been slowly declining in most areas of the United States and Europe over the last decade, very rapid increases in tropospheric nitrogen dioxide can be observed over many megacities and other large urban agglomerations throughout most of Asia, often with highly significant trends. Particularly in Eastern China, increases of 10 to 20 percent per year are quite widespread. Some of the large urban agglomerations with the most rapid increase in nitrogen dioxide pollution are Dhaka in Bangladesh, Kabul in Afghanistan, and Tianjin in China, and these are investigated in more detail. An inter-comparison of trends derived separately from SCIAMACHY and OMI shows that in terms of spatial patterns the resulting trends agree quite well between the two instruments, particularly in the more polluted areas. However, at the individual grid cell level substantial differences can be found. In addition, the satellite-based trends in tropospheric nitrogen dioxide levels were compared to those obtained from the European Monitoring and Evaluation Programme (EMEP) chemical transport model over the same time period, and furthermore sampling the model at the same time of day as the satellite overpass, thus eliminating the impact of the distinct diurnal cycle of nitrogen dioxide. While generally a good correspondence in the trends has been found between the two data sources

  9. Carbon dioxide level and form of soil nitrogen regulate assimilation of atmospheric ammonia in young trees.

    PubMed

    Silva, Lucas C R; Salamanca-Jimenez, Alveiro; Doane, Timothy A; Horwath, William R

    2015-01-01

    The influence of carbon dioxide (CO2) and soil fertility on the physiological performance of plants has been extensively studied, but their combined effect is notoriously difficult to predict. Using Coffea arabica as a model tree species, we observed an additive effect on growth, by which aboveground productivity was highest under elevated CO2 and ammonium fertilization, while nitrate fertilization favored greater belowground biomass allocation regardless of CO2 concentration. A pulse of labelled gases ((13)CO2 and (15)NH3) was administered to these trees as a means to determine the legacy effect of CO2 level and soil nitrogen form on foliar gas uptake and translocation. Surprisingly, trees with the largest aboveground biomass assimilated significantly less NH3 than the smaller trees. This was partly explained by declines in stomatal conductance in plants grown under elevated CO2. However, unlike the (13)CO2 pulse, assimilation and transport of the (15)NH3 pulse to shoots and roots varied as a function of interactions between stomatal conductance and direct plant response to the form of soil nitrogen, observed as differences in tissue nitrogen content and biomass allocation. Nitrogen form is therefore an intrinsic component of physiological responses to atmospheric change, including assimilation of gaseous nitrogen as influenced by plant growth history. PMID:26294035

  10. Carbon dioxide level and form of soil nitrogen regulate assimilation of atmospheric ammonia in young trees

    PubMed Central

    Silva, Lucas C. R.; Salamanca-Jimenez, Alveiro; Doane, Timothy A.; Horwath, William R.

    2015-01-01

    The influence of carbon dioxide (CO2) and soil fertility on the physiological performance of plants has been extensively studied, but their combined effect is notoriously difficult to predict. Using Coffea arabica as a model tree species, we observed an additive effect on growth, by which aboveground productivity was highest under elevated CO2 and ammonium fertilization, while nitrate fertilization favored greater belowground biomass allocation regardless of CO2 concentration. A pulse of labelled gases (13CO2 and 15NH3) was administered to these trees as a means to determine the legacy effect of CO2 level and soil nitrogen form on foliar gas uptake and translocation. Surprisingly, trees with the largest aboveground biomass assimilated significantly less NH3 than the smaller trees. This was partly explained by declines in stomatal conductance in plants grown under elevated CO2. However, unlike the 13CO2 pulse, assimilation and transport of the 15NH3 pulse to shoots and roots varied as a function of interactions between stomatal conductance and direct plant response to the form of soil nitrogen, observed as differences in tissue nitrogen content and biomass allocation. Nitrogen form is therefore an intrinsic component of physiological responses to atmospheric change, including assimilation of gaseous nitrogen as influenced by plant growth history. PMID:26294035

  11. Description of data on the Nimbus 7 LIMS map archive tape: Water vapor and nitrogen dioxide

    NASA Technical Reports Server (NTRS)

    Haggard, Kenneth V.; Marshall, B. T.; Kurzeja, Robert J.; Remsberg, Ellis E.; Russell, James M., III

    1988-01-01

    Described is the process by which the analysis of the Limb Infrared Monitor of the Stratosphere (LIMS) experiment data were used to produce estimates of synoptic maps of water vapor and nitrogen dioxide. In addition to a detailed description of the analysis procedure, also discussed are several interesting features in the data which are used to demonstrate how the analysis procedure produced the final maps and how one can estimate the uncertainties in the maps. In addition, features in the analysis are noted that would influence how one might use, or interpret, the results. These include subjects such as smoothing and the interpretation of wave components.

  12. Liquid crystal-based sensors for selective and quantitative detection of nitrogen dioxide.

    PubMed

    Sen, Avijit; Kupcho, Kurt A; Grinwald, Bart A; Vantreeck, Heidi J; Acharya, Bharat R

    2013-03-01

    A highly sensitive nitrogen dioxide (NO2) sensor based on orientational transition of a thin film of liquid crystal (LC) supported on a gold surface is reported. Transport of NO2 molecules through the LC film to the LC-gold interface induces an orientation transition in the LC film. The dynamic behavior of the sensor response exhibits a concentration-dependent response rate that is employed to generate an algorithm for quantitative determination of unknown concentrations. Sensitive, selective and reversible detection with minimal effects of environmental fluctuations suggest that these sensors can be used for quantitative NO2 detection for a number of applications. PMID:23526230

  13. Tuning the Carbon Dioxide Absorption in Amino Acid Ionic Liquids.

    PubMed

    Firaha, Dzmitry S; Kirchner, Barbara

    2016-07-01

    One of the possible solutions to prevent global climate change is the reduction of CO2 emissions, which is highly desired for the sustainable development of our society. In this work, the chemical absorption of carbon dioxide in amino acid ionic liquids was studied through first-principles methods. The use of readily accessible and biodegradable amino acids as building blocks for ionic liquids makes them highly promising replacements for the widely applied hazardous aqueous solutions of amines. A detailed insight into the reaction mechanism of the CO2 absorption was obtained through state-of-the-art theoretical methods. This allowed us to determine the reason for the specific CO2 capacities found experimentally. Moreover, we have also conducted a theoretical design of ionic liquids to provide valuable insights into the precise tuning of the energetic and kinetic parameters of the CO2 absorption. PMID:27214652

  14. Review of the US Consumer Product Safety Commission's health effects and exposure assessment documents on nitrogen dioxide. Report of the Clean Air Scientific Advisory Committee. Final report

    SciTech Connect

    Not Available

    1988-05-09

    At the request of the Consumer Product Safety Commission, the Clean Air Scientific Advisory Committee conducted a review on the potential health hazards associated with exposure to 0.1 to 1.0 ppm nitrogen dioxide generated by unvented indoor combustion sources. The committee concluded that: (1) repeated peak exposures at concentrations of 0.3 ppm of nitrogen dioxide may cause health effects in some individuals; (2) the population groups that appear most sensitive to nitrogen dioxide exposure include children, chronic bronchitics, asthmatics, and individuals with emphysema; and (3) the most direct evidence regarding lung damage associated with nitrogen dioxide is obtained from animal studies.

  15. Chemical modification of a porous silicon surface induced by nitrogen dioxide adsorption.

    PubMed

    Sharov, Constantine S; Konstantinova, Elizaveta A; Osminkina, Lyubov A; Timoshenko, Victor Yu; Kashkarov, Pavel K

    2005-03-17

    The effect of gaseous and liquid nitrogen dioxide on the composition and electronic properties of porous silicon (PS) is investigated by means of optical spectroscopy and electron paramagnetic resonance. It is detected that the interaction process is weak and strong forms of chemisorption on the PS surface, and the process may be regarded as an actual chemical reaction between PS and NO(2). It is found that NO(2) adsorption consists in forming different surface nitrogen-containing molecular groups and dangling bonds of Si atoms (P(b)-centers) as well as in oxidizing and hydrating the PS surface. Also observed are the formation of ionic complexes of P(b)-centers with NO(2) molecules and the generation of free charge carriers (holes) in the volume of silicon nanocrystals forming PS. PMID:16851549

  16. Nitrogen Dioxide Trend over the United States: the View from the Ground, the View from Space

    NASA Technical Reports Server (NTRS)

    Lamsal, Lok N.; Duncan, Bryan N.; Yoshida, Yasuko; Krotkov, Nickolay A.

    2014-01-01

    Emissions of nitrogen oxides (NOx) are decreasing over the US due to environmental policies and technological change. We use observations of tropospheric nitrogen dioxide (NO2) columns from the Ozone Monitoring Instrument (OMI) satellite instrument and surface NO2 in-situ measurements from the air quality system (AQS) to quantify the trends, and to establish the relationship between the trends in tropospheric column and surface concentration. Both observations show substantial downward trends from 2005 to 2013, with an average reduction of 35 percent according to OMI and 38 percent according to AQS. The annual reduction rates are largest in 2005-2009: -6.2 percent per year and -7 percent per year observed by OMI and AQS, respectively. We examine various factors affecting the estimated trend in OMI NO2 columns and in-situ NO2 observations. An improved understanding of trend offers valuable insights about effectiveness of emission reduction regulations on state and federal level.

  17. Synthesis of nitrogen doped faceted titanium dioxide in pure brookite phase with enhanced visible light photoactivity.

    PubMed

    Pan, Jian; Jiang, San Ping

    2016-05-01

    Brookite titanium dioxide (TiO2) is rarely studied, as compared with anatase and rutile phases TiO2, due to its comparatively lower photoactivity. It has been recently reported that brookite TiO2 with active facets exhibits excellent performance, however, synthesis of such faceted brookite TiO2 is difficult because of its low thermodynamic phase stability and low structural symmetric. Furthermore, like faceted anatase and rutile TiO2, faceted brookite TiO2 is not responsive to visible light due to its wide bandgap. In this study, a novel dopant, hydrazine, was introduced in the development of nitrogen doping. By applying this dopant, nitrogen doped brookite nanorods with active {120}, {111} and {011¯} facets were successfully synthesized. The resultant materials exhibited remarkably enhanced visible-light photoactivity in photodegradation. PMID:26866886

  18. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media

    PubMed Central

    Moret, Séverine; Dyson, Paul J.; Laurenczy, Gábor

    2014-01-01

    The chemical transformation of carbon dioxide into useful products becomes increasingly important as CO2 levels in the atmosphere continue to rise as a consequence of human activities. In this article we describe the direct hydrogenation of CO2 into formic acid using a homogeneous ruthenium catalyst, in aqueous solution and in dimethyl sulphoxide (DMSO), without any additives. In water, at 40 °C, 0.2 M formic acid can be obtained under 200 bar, however, in DMSO the same catalyst affords 1.9 M formic acid. In both solvents the catalysts can be reused multiple times without a decrease in activity. Worldwide demand for formic acid continues to grow, especially in the context of a renewable energy hydrogen carrier, and its production from CO2 without base, via the direct catalytic carbon dioxide hydrogenation, is considerably more sustainable than the existing routes. PMID:24886955

  19. Interference of oxygen, carbon dioxide, and water vapor on the analysis for oxides of nitrogen by chemiluminescence

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.

    1975-01-01

    The interference of small concentrations (less than 4 percent by volume) of oxygen, carbon dioxide, and water vapor on the analysis for oxides of nitrogen by chemiluminescence was measured. The sample gas consisted primarily of nitrogen, with less than 100 parts per million concentration of nitric oxide, and with small concentrations of oxygen, carbon dioxide, and water vapor added. Results obtained under these conditions indicate that although oxygen does not measurably affect the analysis for nitric oxide, the presence of carbon dioxide and water vapor causes the indicated nitric oxide concentration to be too low. An interference factor - defined as the percentage change in indicated nitric oxide concentration (relative to the true nitric oxide concentration) divided by the percent interfering gas present - was determined for carbon dioxide to be -0.60 + or - 0.04 and for water vapor to be -2.1 + or - 0.3.

  20. Ambient Fine Particulate Matter, Nitrogen Dioxide, and Term Birth Weight in New York, New York

    PubMed Central

    Savitz, David A.; Bobb, Jennifer F.; Carr, Jessie L.; Clougherty, Jane E.; Dominici, Francesca; Elston, Beth; Ito, Kazuhiko; Ross, Zev; Yee, Michelle; Matte, Thomas D.

    2014-01-01

    Building on a unique exposure assessment project in New York, New York, we examined the relationship of particulate matter with aerodynamic diameter less than 2.5 μm and nitrogen dioxide with birth weight, restricting the population to term births to nonsmokers, along with other restrictions, to isolate the potential impact of air pollution on growth. We included 252,967 births in 2008–2010 identified in vital records, and we assigned exposure at the residential location by using validated models that accounted for spatial and temporal factors. Estimates of association were adjusted for individual and contextual sociodemographic characteristics and season, using linear mixed models to quantify the predicted change in birth weight in grams related to increasing pollution levels. Adjusted estimates for particulate matter with aerodynamic diameter less than 2.5 μm indicated that for each 10-µg/m3 increase in exposure, birth weights declined by 18.4, 10.5, 29.7, and 48.4 g for exposures in the first, second, and third trimesters and for the total pregnancy, respectively. Adjusted estimates for nitrogen dioxide indicated that for each 10-ppb increase in exposure, birth weights declined by 14.2, 15.9, 18.0, and 18.0 g for exposures in the first, second, and third trimesters and for the total pregnancy, respectively. These results strongly support the association of urban air pollution exposure with reduced fetal growth. PMID:24218031

  1. Ambient fine particulate matter, nitrogen dioxide, and term birth weight in New York, New York.

    PubMed

    Savitz, David A; Bobb, Jennifer F; Carr, Jessie L; Clougherty, Jane E; Dominici, Francesca; Elston, Beth; Ito, Kazuhiko; Ross, Zev; Yee, Michelle; Matte, Thomas D

    2014-02-15

    Building on a unique exposure assessment project in New York, New York, we examined the relationship of particulate matter with aerodynamic diameter less than 2.5 μm and nitrogen dioxide with birth weight, restricting the population to term births to nonsmokers, along with other restrictions, to isolate the potential impact of air pollution on growth. We included 252,967 births in 2008-2010 identified in vital records, and we assigned exposure at the residential location by using validated models that accounted for spatial and temporal factors. Estimates of association were adjusted for individual and contextual sociodemographic characteristics and season, using linear mixed models to quantify the predicted change in birth weight in grams related to increasing pollution levels. Adjusted estimates for particulate matter with aerodynamic diameter less than 2.5 μm indicated that for each 10-µg/m(3) increase in exposure, birth weights declined by 18.4, 10.5, 29.7, and 48.4 g for exposures in the first, second, and third trimesters and for the total pregnancy, respectively. Adjusted estimates for nitrogen dioxide indicated that for each 10-ppb increase in exposure, birth weights declined by 14.2, 15.9, 18.0, and 18.0 g for exposures in the first, second, and third trimesters and for the total pregnancy, respectively. These results strongly support the association of urban air pollution exposure with reduced fetal growth. PMID:24218031

  2. Improved retrieval of nitrogen dioxide (NO2) column densities by means of MKIV Brewer spectrophotometers

    NASA Astrophysics Data System (ADS)

    Diémoz, H.; Siani, A. M.; Redondas, A.; Savastiouk, V.; McElroy, C. T.; Navarro-Comas, M.; Hase, F.

    2014-11-01

    A new algorithm to retrieve nitrogen dioxide (NO2) column densities using MKIV ("Mark IV") Brewer spectrophotometers is described. The method includes several improvements, such as a more recent spectroscopic data set, the reduction of measurement noise, interference by other atmospheric species and instrumental settings, and a better determination of the zenith sky air mass factor. The technique was tested during an ad hoc calibration campaign at the high-altitude site of Izaña (Tenerife, Spain) and the results of the direct sun and zenith sky geometries were compared to those obtained by two reference instruments from the Network for the Detection of Atmospheric Composition Change (NDACC): a Fourier Transform Infrared Radiometer (FTIR) and an advanced visible spectrograph (RASAS-II) based on the differential optical absorption spectrometry (DOAS) technique. To determine the extraterrestrial constant, an easily implementable extension of the standard Langley technique for very clean sites without tropospheric NO2 was developed which takes into account the daytime linear drift of stratospheric nitrogen dioxide due to photochemistry. The measurement uncertainty was thoroughly determined by using a Monte Carlo technique. Poisson noise and wavelength misalignments were found to be the most influential contributors to the overall uncertainty, and possible solutions are proposed for future improvements. The new algorithm is backward-compatible, thus allowing for the reprocessing of historical data sets.

  3. Nitrogen Dioxide Total Column Over Terra Nova Bay Station - Antarctica - During 2001

    NASA Astrophysics Data System (ADS)

    Bortoli, D.; Ravegnani, F.; Giovanelli, G.; Petritoli, A.; Kostadinov, I.

    GASCOD (Gas Analyzer Spectrometer Correlating Optical Differences), installed at the Italian Antarctic Station of Terra Nova Bay (TNB) - 74.69S, 164.12E - since 1995, carried out a full dataset of zenith scattered light measurements for the year 2001. The application of DOAS methodology to the collected data gave as final results, the slant column values for nitrogen dioxide. The seasonal variation shows a maxi- mum in the summer and it is in good agreement with the results obtained by other authors. The data analysis is performed by using different parameters like the po- tential vorticity (PV) at 500 K and the atmospheric temperatures at the same level. After the verification of the linear dependency between the NO2 slant column values and the temperature of NO2 cross section utilized in the DOAS algorithm, the actual stratospheric temperatures (from ECMWF) over TNB are applied to the results. The sensible changes in the nitrogen dioxide slant column values allow to highlight the good matching between the NO2 AM/PM ratio and the potential vorticity at 500 K. The NO2 slant column values follow the variations of the stratospheric temperature mainly during the spring season, when the lowest temperatures are observed and the ozone-hole phenomena mainly occur. ACKNOWLEDGMENTS: The author Daniele Bortoli was financially supported by the "Subprograma Ciência e Tecnologia do Ter- ceiro Quadro Comunitário de Apoio". The National Program for Antarctic Research (PNRA) supported this research.

  4. Passive dosimeters for nitrogen dioxide in personal/indoor air sampling: A review

    PubMed Central

    Yu, Chang Ho; Morandi, Maria T.; Weisel, Clifford P.

    2015-01-01

    Accurate measurement of nitrogen dioxide concentrations in both outdoor and indoor environments, including personal exposures, is a fundamental step for linking atmospheric nitrogen dioxide levels to potential health and ecological effects. The measurement has been conducted generally in two ways: active (pumped) sampling and passive (diffusive) sampling. Diffusion samplers, initially developed and used for workplace air monitoring, have been found to be useful and cost-effective alternatives to conventional pumped samplers for monitoring ambient, indoor and personal exposures at the lower concentrations found in environmental settings. Since the 1970s, passive samplers have been deployed for ambient air monitoring in urban and rural sites, and to determine personal and indoor exposure to NO2. This article reviews the development of NO2 passive samplers, the sampling characteristics of passive samplers currently available, and their application in ambient and indoor air monitoring and personal exposure studies. The limitations and advantages of the various passive sampler geometries (i.e., tube, badge, and radial type) are also discussed. This review provides researchers and risk assessors with practical information about NO2 passive samplers, especially useful when designing field sampling strategies for exposure and indoor/outdoor air sampling. PMID:18446185

  5. Failure of ozone and nitrogen dioxide to enhance lung tumor development in hamsters. Research report, January 1989-March 1992

    SciTech Connect

    Witschi, H.; Breider, M.A.; Schuller, H.M.

    1993-09-01

    The authors tested the hypothesis that ozone and nitrogen dioxide modulate the development of respiratory tract tumors, in particular neuroendocrine cell tumors, in Syrian golden hamsters. The animals received subcutaneous injections of the carcinogen N-diethylnitrosamine (20 mg/kg) twice a week while being exposed continuously to an atmosphere of 0.8 parts per million (ppm) of ozone or 15 ppm nitrogen dioxide. Animals were killed 16 weeks or 24 to 32 weeks after the beginning of the treatment. For positive controls, animals were treated with N-diethylnitrosamine and exposed to 65% oxygen. Ozone delayed the incidence of tumors in the lung periphery. Ozone also seemed to mitigate development of hepatoxic lesions mediated by N-diethylnitrosamine. The role of ozone and nitrogen dioxide as possible additional risks in the pathogenesis of lung cancer in animals continues to remain uncertain.

  6. A Simple Demonstration of Carbon Dioxide Fixation and Acid Production in CAM Plants

    ERIC Educational Resources Information Center

    Walker, John R. L.; McWha, James A.

    1976-01-01

    Described is an experiment investigating carbon dioxide fixation in the dark and the diurnal rhythm of acid production in plants exhibiting Crassulacean Acid Metabolism. Included are suggestions for four further investigations. (SL)

  7. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Chloric acid solution or chlorine dioxide hydrate, frozen. 173.229 Section 173.229 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When...

  8. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Chloric acid solution or chlorine dioxide hydrate, frozen. 173.229 Section 173.229 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When...

  9. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Chloric acid solution or chlorine dioxide hydrate, frozen. 173.229 Section 173.229 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When...

  10. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Chloric acid solution or chlorine dioxide hydrate, frozen. 173.229 Section 173.229 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When...

  11. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Chloric acid solution or chlorine dioxide hydrate, frozen. 173.229 Section 173.229 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When...

  12. Exogenous sodium sulfide improves morphological and physiological responses of a hybrid Populus species to nitrogen dioxide.

    PubMed

    Hu, Yanbo; Bellaloui, Nacer; Sun, Guangyu; Tigabu, Mulualem; Wang, Jinghong

    2014-06-15

    Gaseous nitrogen dioxide (NO2) can disturb normal plant growth and trigger complex physiological responses. NO2-induced responses are influenced by biotic or abiotic factors. In this study, we investigated the effects of exogenous sodium sulfide (Na2S, 5mmolL(-1)) on epidermis and stomata related physico-chemical responses of hybrid poplar cuttings (Pouplus alba×P. berolinensis) to gaseous NO2 (4μl1(-1)) for three time periods (0, 14 and 48h). We also investigated hydrogen sulfide (H2S), nitrate-nitrogen and nitrate reductase activity (NR) in control and Na2S treated plants. Our results showed that NO2 exposure for 48h led to the decline of NR, maximal PSII quantum yield (Fv/Fm), net photosynthetic rate (Pn), and dark respiration rate (Rd). The maximum rate for the post-illumination carbon dioxide burst (PIB) occurred in 48-h exposed leaves 13-15s after darkening. Moreover, NO2 exposure resulted in a significant increase in nitrogen percentage (from 0 to 33%) and a decrease in the macro and micro-elements of leaf surface. Spraying Na2S aqueous solution on the leaf surfaces significantly increased the thicknesses of palisade/spongy tissue and H2S content. Na2S pretreatment alleviated NO2-caused toxic effects as indicated by increased NR and higher values of Pn, Fv/Fm, and actual photochemical efficiency in light (ФPSII) compared with the control. Na2S pretreatment had no significant impacts on PIB-based photorespiration or elements composition of a leaf surface. PMID:24635903

  13. Study on Modification of Nano-Sized Anatase Titanium Dioxide by Nitrogen-Plasma

    NASA Astrophysics Data System (ADS)

    Liu, Changsheng; Ma, Zhibin; Li, Jun; Wang, Weihong

    2006-05-01

    The nano-sized particles of anatase titanium oxide (TiO2) were obtained by hydrolysis of titanium ester (TNB) in basic media and dehydrated in acid media. And then the anatase titanium oxide was treated with nitrogen plasma. The effect of nitrogen plasma treating time on the activity of photo-catalytic reduction of the Cr2O72- for sample obtained was investigated. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transmission Electron Microscope (TEM) and Ultraviolet (UV). A peak of 396 eV in the N 1 s XPS spectra of sample obtained with nitrogen plasma treated TiO2 showed that nitrogen-doped titanium oxide (TiO2-xNx) has been obtained. The spectra of UV showed that the light absorption of TiO2-xNx obtained by nitrogen plasma treated TiO2 for 10min. had moved to the visible region. The picture of TEM and spectra of XRD indicated that the crystallographic forms and particle dimension had no apparent change for both the modified and the unmodified TiO2. When the TiO2 sample was treated for 7 min with nitrogen plasma, it exhibited best photo-catalytic activity.

  14. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide

    PubMed Central

    Hutchins, David A.; Walworth, Nathan G.; Webb, Eric A.; Saito, Mak A.; Moran, Dawn; McIlvin, Matthew R.; Gale, Jasmine; Fu, Fei-Xue

    2015-01-01

    Nitrogen fixation rates of the globally distributed, biogeochemically important marine cyanobacterium Trichodesmium increase under high carbon dioxide (CO2) levels in short-term studies due to physiological plasticity. However, its long-term adaptive responses to ongoing anthropogenic CO2 increases are unknown. Here we show that experimental evolution under extended selection at projected future elevated CO2 levels results in irreversible, large increases in nitrogen fixation and growth rates, even after being moved back to lower present day CO2 levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained after returning to the ancestral environment. Constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, and increased activity of a potentially regulatory DNA methyltransferase enzyme. High CO2-selected cell lines also exhibit increased phosphorus-limited growth rates, suggesting a potential advantage for this keystone organism in a more nutrient-limited, acidified future ocean. PMID:26327191

  15. Chemical vapour deposition of nitrogen-doped titanium dioxide thin films.

    PubMed

    Alexandrov, S E; Baryshnikova, M V; Filatov, L A; Shahmin, A L; Andreeva, V D

    2011-09-01

    Nitrogen-doped titanium dioxide is often considered as a promising nanomaterial for photocatalytic applications. Here we report the first results of a study of APCVD of N-doped TiO2 thin films prepared with the use of ammonia as a source of nitrogen and titanium tetraisopropoxide (TTIP) as a source of Ti and O atoms. The obtained films were analyzed with X-ray diffraction, infrared spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy, UV-Vis spectroscopy, and ellipsometry. It was found that the film growth rate in the TTIP-NH3-Ar reaction system varied insignificantly with substrate temperature in the range of 450,..., 750 degrees C and did not exceed 4.4 nm/min. Yellow and orange layers with nitrogen content of about 7.6% were formed at the deposition temperature higher than 600 degrees C. The results of the structure analysis of the deposited films showed that addition of ammonia led to stabilization of the amorphous phase in the films. The effect of ammonia on optical and photocatalytic properties was also considered. PMID:22097568

  16. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hutchins, David A.; Walworth, Nathan G.; Webb, Eric A.; Saito, Mak A.; Moran, Dawn; McIlvin, Matthew R.; Gale, Jasmine; Fu, Fei-Xue

    2015-09-01

    Nitrogen fixation rates of the globally distributed, biogeochemically important marine cyanobacterium Trichodesmium increase under high carbon dioxide (CO2) levels in short-term studies due to physiological plasticity. However, its long-term adaptive responses to ongoing anthropogenic CO2 increases are unknown. Here we show that experimental evolution under extended selection at projected future elevated CO2 levels results in irreversible, large increases in nitrogen fixation and growth rates, even after being moved back to lower present day CO2 levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained after returning to the ancestral environment. Constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, and increased activity of a potentially regulatory DNA methyltransferase enzyme. High CO2-selected cell lines also exhibit increased phosphorus-limited growth rates, suggesting a potential advantage for this keystone organism in a more nutrient-limited, acidified future ocean.

  17. The application of artificial neural networks for discrete wavelength retrievals of atmospheric nitrogen dioxide from space

    NASA Astrophysics Data System (ADS)

    Lawrence, J.; Singh Anand, J.; Leigh, R.; Chang, M.; Monks, P. S.

    2012-12-01

    Despite emission reductions in Europe, air quality continues to be a major health and policy issue. Significant areas of uncertainty persist in relating emissions, atmospheric composition and human exposure within the urban atmosphere. Furthermore, air quality continues to worsen in some highly populated parts of the world. The current air quality monitoring framework is based upon bottom-up emission estimates coupled with sparse in situ monitoring. Research at the University of Leicester in the UK is being conducted to investigate the feasibility of using a technique of discrete wavelength sunlight spectroscopy to derive concentrations of the pollutant nitrogen dioxide from a satellite platform. This technique has the potential to enable very light and compact instrumentation and may subsequently provide abundant air quality data of significant value to users and policy makers. A back propagation multi-layered perceptron artificial neural network (ANN) has been developed to retrieve atmospheric slant columns of nitrogen dioxide from simulated measurements. The ANN approach enables retrievals to be performed much faster than other retrieval methods once the network has been appropriately trained, which is a particularly useful feature in instances where a large quantity of retrievals is required in near real time. To generate the required training data for the ANN to understand the necessary relationships a radiative transfer model SCIATRAN was run to provide millions of spectral intensities and slant column concentrations. To enable the radiative transfer simulations to realistically portray urban air quality the SCIATRAN model was fed atmospheric profile and aerosol data from modelled air quality forecasts over London to enable assimilation of the atmospheric composition of a typical urban environment. The training data produced by SCIATRAN was configured to span a range of solar azimuth and zenith angles to provide results which are applicable to all low earth

  18. The Cabauw Intercomparison Campaign for Nitrogen Dioxide Measuring Instruments (CINDI): Design, Execution, and Early Results

    NASA Technical Reports Server (NTRS)

    Piters, Ankie; Boersma, K.F.; Kroon, M.; Hains, J. C.; Roozendael, M. Van; Wittrock, F.; Abuhassan, N.; Adams, C.; Akrami, M.; Allaart, M. A. F.; Apituley, A.; Beirle, S.; Bergwerff, J. B.; Berkhout, A. J. C.; Brunner, D.; Cede, A.; Chong, J.; Clemer, K.; Fayt, C.; FrieB, U.; Gast, L. F. L.; Gil-Ojeda, M.; Goutail, F.; Graves, R.; Griesfeller, A.

    2012-01-01

    From June to July 2009 more than thirty different in-situ and remote sensing instruments from all over the world participated in the Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI). The campaign took place at KNMI's Cabauw Experimental Site for Atmospheric Research (CESAR) in the Netherlands. Its main objectives were to determine the accuracy of state-ofthe- art ground-based measurement techniques for the detection of atmospheric nitrogen dioxide (both in-situ and remote sensing), and to investigate their usability in satellite data validation. The expected outcomes are recommendations regarding the operation and calibration of such instruments, retrieval settings, and observation strategies for the use in ground-based networks for air quality monitoring and satellite data validation. Twenty-four optical spectrometers participated in the campaign, of which twenty-one had the capability to scan different elevation angles consecutively, the so-called Multi-axis DOAS systems, thereby collecting vertical profile information, in particular for nitrogen dioxide and aerosol. Various in-situ samplers and lidar instruments simultaneously characterized the variability of atmospheric trace gases and the physical properties of aerosol particles. A large data set of continuous measurements of these atmospheric constituents has been collected under various meteorological conditions and air pollution levels. Together with the permanent measurement capability at the CESAR site characterizing the meteorological state of the atmosphere, the CINDI campaign provided a comprehensive observational data set of atmospheric constituents in a highly polluted region of the world during summertime. First detailed comparisons performed with the CINDI data show that slant column measurements of NO2, O4 and HCHO with MAX-DOAS agree within 5 to 15%, vertical profiles of NO2 derived from several independent instruments agree within 25% of one another, and MAX

  19. Nitrogen dioxide monitoring with an automatic DOAS station at Terra Nova Bay, Antarctica

    NASA Astrophysics Data System (ADS)

    Ravegnani, Fabrizio; Kostadinov, Ivan K.; Giovanelli, Giorgio

    1998-08-01

    During the last few years UV-Vis spectrometers were developed at the FISBAT Institute and are used for application of differential optical absorption spectroscopy method to detect many atmospheric trace gases playing important roles in the stratospheric chemistry. After several test both in laboratory and in Antarctic region, one of the spectrometers, called GASCOD2/2, was modified in collaboration with ENEA for unattended and automatic measurement in extreme high-latitude environment. The instrument was installed in December 1995 in the Italian Station at Terra Nova Bay. The aim of this research is to study the dentrification processes during the formation of the so-called ozone hole over the Antarctic region. The preliminary results for the first year of nitrogen dioxide measurement are presented and discussed.

  20. Influence of photolysis on multispectral photoacoustic measurement of nitrogen dioxide concentration.

    PubMed

    Tian, Guoxun; Moosmüller, Hans; Arnott, W Patrick

    2013-09-01

    Multispectral photoacoustic instruments are commonly used to measure aerosol and nitrogen dioxide (NO2) light absorption coefficients to determine the radiation budget of the atmosphere. Here a new photoacoustic system is developed to explore the effect of photolysis on the measured signal in a multispectral photoacoustic spectrometer In this system, a 405-nm laser is used primarily as light source for photolysis. Additionally, a well-overlapped 532-nm laser, modulated at the resonant frequency of the photoacoustic instrument, is used to probe the NO2 concentration. As a result, the photolysis effect at 405 nm can be observed by the photoacoustic instrument through the 532-nm laser. This work determines an 11% reduction of the photoacoustic signal caused by the photolysis effect for typical conditions, which needs to be taken into account when calibrating multispectral photoacoustic spectrometers with NO2. PMID:24151684

  1. Concurrent multiaxis differential optical absorption spectroscopy system for the measurement of tropospheric nitrogen dioxide.

    PubMed

    Leigh, Roland J; Corlett, Gary K; Friess, Udo; Monks, Paul S

    2006-10-01

    The development of a new concurrent multiaxis (CMAX) sky viewing spectrometer to monitor rapidly changing urban concentrations of nitrogen dioxide is detailed. The CMAX differential optical absorption spectroscopy (DOAS) technique involves simultaneous spectral imaging of the zenith and off-axis measurements of spatially resolved scattered sunlight. Trace-gas amounts are retrieved from the measured spectra using the established DOAS technique. The potential of the CMAX DOAS technique to derive information on rapidly changing concentrations and the spatial distribution of NO2 in an urban environment is demonstrated. Three example data sets are presented from measurements during 2004 of tropospheric NO2 over Leicester, UK (52.62 degrees N, 1.12 degrees W). The data demonstrate the current capabilities and future potential of the CMAX DOAS method in terms of the ability to measure real-time spatially disaggregated urban NO2. PMID:16983440

  2. Ice hockey lung - a case of mass nitrogen dioxide poisoning in the Czech Republic.

    PubMed

    Brat, Kristian; Merta, Zdenek; Plutinsky, Marek; Skrickova, Jana; Stanek, Miroslav

    2013-01-01

    Nitrogen dioxide (NO₂) is a toxic gas, a product of combustion in malfunctioning ice-resurfacing machines. NO₂ poisoning is rare but potentially lethal. The authors report a case of mass NO₂ poisoning involving 15 amateur ice hockey players in the Czech Republic. All players were treated in the Department of Respiratory Diseases at Brno University Hospital in November 2010 - three as inpatients because they developed pneumonitis. All patients were followed-up until November 2011. Complete recovery in all but one patient was achieved by December 2010. None of the 15 patients developed asthma-like disease or chronic cough. Corticosteroids appeared to be useful in treatment. Electric-powered ice-resurfacing machines are preferable in indoor ice skating arenas. PMID:24032121

  3. Responses of susceptible subpopulations to nitrogen dioxide. Research report, June 1983-January 1988

    SciTech Connect

    Morrow, P.E.; Utell, M.J.

    1989-02-01

    Symptom responses and changes in pulmonary function were investigated in people with asthma or chronic obstructive pulmonary disease (COPD) exposed to 0.3 ppm nitrogen dioxide (NO{sub 2}) for four hours. Nonrespiratory-impaired (normal) subjects of comparable ages constituted the control groups. All exposures included periods of exercise and pulmonary function measurements. No significant symptomatic or physiological responses to NO{sub 2} could be detected in either the young or elderly control group. The asthmatic group did not manifest significant reductions in lung function after exposure to 0.3 ppm NO{sub 2}, compared to their preexposure baseline data or to their responses after a comparable four-hour exposure to air. During light exercise, subjects with COPD were progressively responsive to 0.3 ppm NO{sub 2}. Subgroup analyses within the asthmatic, COPD, and elderly normal subject groups and intergroup comparisons yielded significant findings and associations.

  4. Ice hockey lung – a case of mass nitrogen dioxide poisoning in the Czech Republic

    PubMed Central

    Brat, Kristian; Merta, Zdenek; Plutinsky, Marek; Skrickova, Jana; Ing, Miroslav Stanek

    2013-01-01

    Nitrogen dioxide (NO2) is a toxic gas, a product of combustion in malfunctioning ice-resurfacing machines. NO2 poisoning is rare but potentially lethal. The authors report a case of mass NO2 poisoning involving 15 amateur ice hockey players in the Czech Republic. All players were treated in the Department of Respiratory Diseases at Brno University Hospital in November 2010 – three as inpatients because they developed pneumonitis. All patients were followed-up until November 2011. Complete recovery in all but one patient was achieved by December 2010. None of the 15 patients developed asthma-like disease or chronic cough. Corticosteroids appeared to be useful in treatment. Electric-powered ice-resurfacing machines are preferable in indoor ice skating arenas. PMID:24032121

  5. Evaluation of Land Use Regression Models for Nitrogen Dioxide and Benzene in Four US Cities

    PubMed Central

    Mukerjee, Shaibal; Smith, Luther; Neas, Lucas; Norris, Gary

    2012-01-01

    Spatial analysis studies have included the application of land use regression models (LURs) for health and air quality assessments. Recent LUR studies have collected nitrogen dioxide (NO2) and volatile organic compounds (VOCs) using passive samplers at urban air monitoring networks in El Paso and Dallas, TX, Detroit, MI, and Cleveland, OH to assess spatial variability and source influences. LURs were successfully developed to estimate pollutant concentrations throughout the study areas. Comparisons of development and predictive capabilities of LURs from these four cities are presented to address this issue of uniform application of LURs across study areas. Traffic and other urban variables were important predictors in the LURs although city-specific influences (such as border crossings) were also important. In addition, transferability of variables or LURs from one city to another may be problematic due to intercity differences and data availability or comparability. Thus, developing common predictors in future LURs may be difficult. PMID:23226985

  6. Foliage plants for indoor removal of the primary combustion gases carbon monoxide and nitrogen dioxide

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Mcdonald, R. C.; Mesick, H. H.

    1985-01-01

    Foliage plants were evaluated for their ability to sorb carbon monoxide and nitrogen dioxide, the two primary gases produced during the combustion of fossil fuels and tobacco. The spider plant (Chlorophytum elatum var. vittatum) could sorb 2.86 micrograms CO/sq cm leaf surface in a 6 h photoperiod. The golden pothos (Scindapsus aureus) sorbed 0.98 micrograms CO/sq cm leaf surface in the same time period. In a system with the spider plant, greater than or equal to 99 percent of an initial concentration of 47 ppm NO2 could be removed in 6 h from a void volume of approximately 0.35 cu m. One spider plant potted in a 3.8 liter container can sorb 3300 micrograms CO and effect the removal of 8500 micrograms NO2/hour, recognizing the fact that a significant fraction of NO2 at high concentrations will be lost by surface sorption, dissolving in moisture, etc.

  7. The Response of Ozone and Nitrogen Dioxide to the Eruption of Mt. Pinatubo

    NASA Technical Reports Server (NTRS)

    Aquila, Valentina; Oman, Luke D.; Stolarski, R.; Douglass, A. R.; Newman, P. A.

    2012-01-01

    Observations have shown that the global mass of nitrogen dioxide decreased in both hemispheres in the year following the eruption of Mt. Pinatubo. In contrast, the observed ozone response was largely asymmetrical with respect to the equator, with a decrease in the northern hemisphere and little change and even a small increase in the southern hemisphere. Simulations including enhanced heterogeneous chemistry due to the presence of the volcanic aerosol reproduce a decrease of ozone in the northern hemisphere, but also produce a comparable ozone decrease in the southern hemisphere, contrary to observations. Our simulations show that the heating due to the volcanic aerosol enhanced both the tropical upwelling and the extratropical downwelling. The enhanced extratropical downwelling, combined with the time of the eruption relative to the phase of the Brewer-Dobson circulation, increased the ozone in the southern hemisphere and counteracted the ozone depletion due to heterogeneous chemistry on volcanic aerosol.

  8. The Chemical and Dynamical Responses of Ozone and Nitrogen Dioxide to the Eruption of Mt. Pinatubo

    NASA Technical Reports Server (NTRS)

    Aquila, V.; Oman, L. D.; Stolarski, R.; Douglass, A. R.

    2012-01-01

    Observations have shown that the concentration of nitrogen dioxide decreased in both hemispheres in the years following the eruption of Mt. Pinatubo. In contrast, the observed ozone response was largely asymmetrical with respect to the equator, with a decrease in the northern hemisphere and little or no change in the southern hemisphere. Simulations including enhanced heterogeneous chemistry due to the presence of the volcanic aerosol reproduce a decrease of ozone in the northern hemisphere, but also produce a comparable ozone decrease in the southern hemisphere contrary to observations. Our simulations show that the heating due to the volcanic aerosol enhanced both the tropical upwelling and the extratropical downwelling. The enhanced extratropical downwelling, combined with the time of the eruption relative to the seasonal phase of the Brewer-Dobson circulation, increased the ozone in the southern hemisphere and counteracted the ozone depletion due to heterogeneous chemistry on volcanic aerosol.

  9. The Response of Ozone and Nitrogen Dioxide to the Eruption of Mount Pinatubo

    NASA Technical Reports Server (NTRS)

    Aquila. Valentina; Oman, Luke D.; Stolarsk, Richard S.; Douglass, Anne R.; Newman, Paul A.

    2012-01-01

    Observations have shown that the global mass of nitrogen dioxide decreased in both hemispheres in the year following the eruption of Mt. Pinatubo, indicating an enhanced heterogeneous chemistry. In contrast, the observed ozone response was largely asymmetrical with respect to the equator, with a decrease in the northern hemisphere and little change in the southern hemisphere. Simulations including enhanced heterogeneous chemistry due to the presence of the volcanic aerosol reproduce a decrease of ozone in the northern hemisphere, but also produce a comparable ozone decrease in the southern hemisphere, contrary to observations. Our simulations show that the heating due to the volcanic aerosol enhanced both the tropical upwelling and the extratropical downwelling. The enhanced extratropical downwelling, combined with the time of the eruption relative to the phase of the Brewer-Dobson circulation, increased the ozone in the southern hemisphere and counteracted the ozone depletion due to heterogeneous chemistry on volcanic aerosol.

  10. LPG ammonia and nitrogen dioxide gas sensing properties of nanostructured polypyrrole thin film

    NASA Astrophysics Data System (ADS)

    Bagul, Sagar B.; Upadhye, Deepak S.; Sharma, Ramphal

    2016-05-01

    Nanostructured Polypyrrole thin film was synthesized by easy and economic chemical oxidative polymerization technique on glass at room temperature. The prepared thin film of Polypyrrole was characterized by optical absorbance study by UV-visible spectroscopy and electrical study by I-V measurement system. The optical absorbance spectrum of Polypyrrole shows two fundamental peaks in region of 420 and 890 nm, which confirms the formation of Polypyrrole on glass substrate. The I-V graph of nanostructured Polypyrrole represents the Ohmic nature. Furthermore, the thin film of Polypyrrole was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents spherical nanostructured morphology of Polypyrrole on glass substrate. In order to investigate gas sensing properties, 100 ppm of LPG, Ammonia and Nitrogen Dioxide were injected in the gas chamber and magnitude of resistance has been recorded as a function of time in second. It was observed that nanostructured Polypyrrole thin film shows good sensing behavior at room temperature.

  11. Susceptibility to virus infection with exposure to nitrogen dioxide. Research report, January 1984-July 1987

    SciTech Connect

    Kulle, T.J.; Clements, M.L.

    1988-01-01

    The interaction between nitrogen dioxide (NO/sub 2/) exposure and human susceptibility to respiratory virus infection was investigated in a placebo-controlled, randomized, blinded trial conducted in an environmentally controlled research chamber. Healthy, nonsmoking volunteers, 18 to 35 years old, who were seronegative to influenza A/Korea/82 (H/sub 3/N/sub 2/) virus, breathed either filtered air or NO/sub 2/ for two hours a day for three consecutive days. Live, attenuated cold-adapted influenza A/Korea/82 reassortant virus was administered intranasally to all subjects after the second day of exposure. No adverse changes in pulmonary function or nonspecific airway reaction to methacholine were observed after NO/sub 2/ exposure, virus infection, or both. Although the differences were not statistically significant, the groups exposed to NO/sub 2/ in year 3 became infected more often (91%) than those exposed only to air (71%).

  12. Review of the Primary National Ambient Air Quality Standards for Nitrogen Dioxide: Risk and Exposure Assessment Planning Document

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) is conducting a review of the air quality criteria and the primary (health-based) national ambient air quality standards (NAAQS) for nitrogen dioxide (NO2). The major phases of the process for reviewing NAAQS include the following: (...

  13. INFLUENCE OF EXPOSURE PATTERNS OF NITROGEN DIOXIDE AND MODIFICATIONS BY OZONE ON SUSCEPTIBILITY TO BACTERIAL INFECTIOUS DISEASE IN MICE

    EPA Science Inventory

    The nitrogen dioxide (NO2) diurnal cycle found in urban communities usually consists of a low basal concentration upon which are superimposed higher concentration peaks or spikes of short duration. Various components of the environmental exposure mode were examined to assess effe...

  14. ASSOCIATION OF INDOOR NITROGEN DIOXIDE WITH RESPIRATORY SYSMPTOMS IN CHILDREN: THE EFFECT OF MEASUREMENT ERROR CORRECTION WITH MULTIPLE SURROGATES

    EPA Science Inventory

    In 1991, Neas et al. reported that indoor nitrogen dioxide (N02), a by-product of high-temperature combustion, was significantly associated with lower respiratory symptoms among a cohort of 1159 white children ages 7-11 years in six US cities studied from 1983-1988. For each 15 p...

  15. Role of photoexcited nitrogen dioxide chemistry on ozone formation and emission control strategy over the Pearl River Delta, China

    EPA Science Inventory

    A new hydroxyl radical formation pathway via photo-excited nitrogen dioxide chemistry is incorporated into a chemistry-only box model as well as a 3D air quality model to examine its potential role on ozone formation and emission control strategy over the Pearl River Delta region...

  16. Effect of Same-day Sequential Exposure to Nitrogen Dioxide and Ozone on Cardiac and Ventilatory Function in Mice

    EPA Science Inventory

    This study examines the cardiac and ventilatory effects of sequential exposure to nitrogen dioxide and then ozone. The data show that mice exposed to both gases have increased arrhythmia and breathing changes not observed in the other groups. Although the mechanisms underlying ai...

  17. Effect of nitrogen supply on carbon dioxide-induced changes in competition between rice and barnyardgrass (Echinochloa crus-galli)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As atmospheric carbon dioxide concentration [CO2] increases, different plants will react differently. For agriculture it is anticipated that the competitive ability of C3 crops may be enhanced relative to C4 weeds in agricultural systems. However, given the different nitrogen use efficiencies of C3...

  18. COMPARISON OF BIOCHEMICAL EFFECTS OF NITROGEN DIOXIDE, OZONE AND THEIR COMBINATION IN MOUSE LUNG. 1. INTERMITTENT EXPOSURES

    EPA Science Inventory

    Swiss Webster mice were exposed to either 4.8 ppm (9024 micrograms/cu.m.) nitrogen dioxide (NO2), 0.45 ppm (882 micrograms/cu.m.) ozone (O3), or their combination intermittently (8 hr daily) for 7 days, and the effects were studied in the lung by a series of physical and biochemi...

  19. CHARACTERIZATION OF A SPATIAL GRADIENT OF NITROGEN DIOXIDE ACROSS A UNITED STATES-MEXICO BORDER CITY DURING WINTER

    EPA Science Inventory

    A gradient of ambient nitrogen dioxide (NO2) concentration is demonstrated across metropolitan El Paso, Texas (USA), a city located on the international border between the United States and Mexico. Integrated measurements of NO2 were collected over seven days at 20 elementary sc...

  20. NEAR-LIFETIME EXPOSURE OF THE RAT TO A SIMULATED URBAN PROFILE OF NITROGEN DIOXIDE: PULMONARY FUNCTION EVALUATION

    EPA Science Inventory

    To investigate the potential for near-ambient levels of nitrogen dioxide (NO2) to induce functional lung damage, groups of rats were exposed to air or a simulated urban profile of NO2 (0.5 ppm, 1.5 ppm peak) for 1, 3, 13, 52, or 78 weeks. The dynamic, static, and diffusional char...

  1. Nitrogen Dioxide long term trends at mid and high latitudes by means of ground based observations

    NASA Astrophysics Data System (ADS)

    Bortoli, D.; Petritoli, A.; Giovanelli, G.; Kostadinov, I.; Ravegnani, F.

    2003-04-01

    The interactions between mid- and high latitudes atmospheric changes are going to be one of the main issue for the future of stratospheric and tropospheric chemistry research. A more detailed study of the ozone trends as well as a wider comprehension of the interactions with lower and higher latitudes are maybe the main arguments to which scientist should address their works in order to build-up a more detailed picture of what scenarios we have to face in the near future. GASCODs type spectrometers (Gas Analyzer Spectrometer Correlating Optical Differences) are installed at the "Ottavio Vittori" research station (44.11N, 10.42E, 2165 m asl) since June 1993, at the Italian Antarctic Station (74.69S, 164.12E) since December 1995 and at the STIL-BAS station (42.42N, 25.63E) since 1999. The instruments measure zenith scattered solar radiation between 407 and 464 nm. Nitrogen dioxide total column is retrieved with DOAS methodology. The seasonal trend of NO2 vc values is reported and it shows the expected behaviour: maximum values during the summer period while the minimum occur in the winter season in both the hemispheres. A typical behaviour of the AMPM ratio at high latitudes is highlight. A Fourier analysis is proposed as a tool to investigate the long-term components of nitrogen dioxide stratospheric amount. Results are presented and the NO2 trend is evidenced and commented. ACKNOWLEDGMENTS: The author Daniele Bortoli was financially supported by the Subprograma Ciência e Tecnologia do 3° Quadro Comunitário de Apoio. The National Antarctic Research Program (PNRA) and the Quantification and Interpretation of Long-Term UV-Vis Observations of the Stratosphere (QUILT) project supported this research.

  2. Influence of experimental pulmonary emphysema on the toxicological effects from inhaled nitrogen dioxide and diesel exhaust

    SciTech Connect

    Mauderly, J.L.; Bice, D.E.; Cheng, Y.S.; Gillett, N.A.; Henderson, R.F.; Pickrell, J.A.; Wolff, R.K. )

    1989-10-01

    This project examined the influence of preexisting, experimentally induced pulmonary emphysema on the adverse health effects in rats of chronic inhalation exposure to either nitrogen dioxide or automotive diesel-engine exhaust. Previous reports indicated that humans with chronic lung disease were among those most severely affected by episodic exposures to high concentrations of airborne toxicants. There were no previous reports comparing the effects of chronic inhalation exposure to components of automotive emissions in emphysematous and normal animals. The hypothesis tested in this project was that rats with preexisting pulmonary emphysema were more susceptible than rats with normal lungs to the adverse effects of the toxicant exposures. Young adult rats were housed continuously in inhalation exposure chambers and exposed seven hours per day, five days per week, for 24 months to nitrogen dioxide at 9.5 parts per million (ppm)2, or to diesel exhaust at 3.5 mg soot/m3, or to clean air as control animals. These concentrations were selected to produce mild, but distinct, effects in rats with normal lungs. Pulmonary emphysema was induced in one-half of the rats by intratracheal instillation of the proteolytic enzyme elastase six weeks before the toxicant exposures began. Health effects were evaluated after 12, 18, and 24 months of exposure. The measurements included respiratory function, clearance of inhaled radiolabeled particles, pulmonary immune responses to instilled antigen, biochemistry and cytology of airway fluid, total lung collagen, histopathology, lung morphometry, and lung burdens of diesel soot. The significance of influences of emphysema and toxicant exposure, and interactions between influences of the two treatments, were evaluated by analysis of variance.

  3. High-pressure sorption of nitrogen, carbon dioxide, and their mixtures on Argonne Premium Coals

    SciTech Connect

    Andreas Busch; Yves Gensterblum; Bernhard M. Krooss

    2007-06-15

    Gas sorption isotherms have been measured for carbon dioxide and nitrogen and their binary mixture (N{sub 2}/CO{sub 2} {approximately} 80/20) on three different moisture-equilibrated coals from the Argonne Premium Coal Sample Program by the U.S. Department of Energy, varying in rank from 0.25 to 1.68% vitrinite reflectance (VR{sub r}). The measurements were conducted at 55 C and at pressures up to 27 MPa for the pure gases and up to 10 MPa for the gas mixture. The effects of the large differences in equilibrium moisture contents (0.8 to 32.2%) on sorption capacity were estimated on the basis of the aqueous solubility of CO{sub 2} and N{sub 2} at experimental conditions. Especially for the Beulah-Zap coal with an equilibrium moisture content of {approximately} 32%, the amount of dissolved CO{sub 2} contributes significantly to the overall storage capacity, whereas the amounts of N{sub 2} dissolved in the moisture water are low and can be neglected. Sorption measurements with nitrogen/carbon dioxide mixtures showed very low capacities for N{sub 2}. For Illinois coal, these excess sorption values were even slightly negative, probably due to small volumetric effects (changes in condensed phase volume). The evolution of the composition of the free gas phase in contact with the coal sample has been monitored continuously during each pressure step of the sorption tests. This composition changed strongly over time. Apparently, CO{sub 2} reaches sorption sites very quickly initially and is subsequently partly replaced by N{sub 2} molecules until concentration equilibration is reached. 18 refs., 10 figs., 2 tabs.

  4. Nitrogen Dioxide Sterilization in Low-Resource Environments: A Feasibility Study

    PubMed Central

    Avasthi, Trisha; Trilling, Ariel

    2015-01-01

    Access to sterilization is a critical need for global healthcare, as it is one of the prerequisites for safe surgical care. Lack of sterilization capability has driven up healthcare infection rates as well as limited access to healthcare, especially in low-resource environments. Sterilization technology has for the most part been static and none of the established sterilization methods has been so far successfully adapted for use in low-resource environments on a large scale. It is evident that healthcare facilities in low-resource settings require reliable, deployable, durable, affordable, easily operable sterilization equipment that can operate independently of scarce resources. Recently commercialized nitrogen dioxide (NO2) sterilization technology was analyzed and adapted into a form factor suitable for use in low-resource environments. Lab testing was conducted in microbiological testing facilities simulating low-resource environments and in accordance with the requirements of the international sterilization standard ANSI/AAMI/ISO 14937 to assess effectiveness of the device and process. The feasibility of a portable sterilizer based on nitrogen dioxide has been demonstrated, showing that sterilization of medical instruments can occur in a form factor suitable for use in low-resource environments. If developed and deployed, NO2 sterilization technology will have the twin benefits of reducing healthcare acquired infections and limiting a major constraint for access to surgical care on a global scale. Additional benefits are achieved in reducing costs and biohazard waste generated by current health care initiatives that rely primarily on disposable kits, increasing the effectiveness and outreach of these initiatives. PMID:26098905

  5. Light-induced degradation of perfluorocarboxylic acids in the presence of titanium dioxide.

    PubMed

    Dillert, Ralf; Bahnemann, Detlef; Hidaka, Hisao

    2007-03-01

    The UV-photon-induced degradation of heptafluorobutanoic acid was investigated in acidic aqueous solutions in the presence of titanium dioxide. Heptafluorobutanoic acid could be degraded with this photocatalyst in a light-induced reaction generating carbon dioxide and fluoride anions. Carbon dioxide evolution in a significant amount occurred only in the presence of molecular oxygen and the photocatalyst. The light-induced degradation of trifluoroacetic acid, pentafluoropropanoic acid, nonafluorobutanoic acid, pentadecafluorooctanoic acid, nonafluorobutanesulfonic acid, and heptadecafluorooctanesulfonic acid in the presence of titanium dioxide was also studied. The perfluorocarboxylic acids under investigation are degraded to generate CO(2) and fluoride anions while both perfluorinated sulfonic acids are persistent under the experimental conditions employed in this study. For all compounds photonic efficiencies of the mineralization reaction were estimated to be smaller than 1x10(-5). To increase the photocatalytic activity mixed systems containing homogeneous phosphotungstic acid and heterogeneous titanium dioxide catalysts were also investigated. In the mixtures of these two photocatalysts, the formation rate of CO(2) increased with illumination time. PMID:17126882

  6. Passive Chemiresistor Sensor Based on Iron (II) Phthalocyanine Thin Films for Monitoring of Nitrogen Dioxide

    NASA Astrophysics Data System (ADS)

    Shu, John Hungjen

    In this dissertation, an alternate, new approach was investigated to produce a nonreversible, passive, iron (II) phthalocyanine (FePc) thin film sensor that does not require continuous power for operation. The sensor was manufactured using standard microelectronics fabrication procedures, with emphasis on low cost and sensor consistency. The sensor substrate consists of a gold interdigitated electrode pattern deposited on an oxidized silicon or quartz wafer. The FePc thin film is then vacuum sublimed over the interdigitated electrodes to form the finalized sensor. Different thicknesses and morphologies of FePc thin films were fabricated. Once sensor fabrication was accomplished, the general response, temperature dependence, concentration dependence, specificity, and longevity of FePc thin film sensors were investigated. To evaluate general sensor reponse, sensors were exposed to 100 ppm nitrogen dioxide in nitrogen, with a flow rate of 0.25 liters per minute (L/min), at the temperatures of -46, 20, and 71 °C. For each case, the resistance of the sensor decreased exponentially as a function of exposure duration and reached saturation within 25 minutes. The resistance decrease was measured to be four, three, and two orders of magnitude for the exposure temperatures of -46, 20, and 71 .C respectively. In these experiments, sub-zero temperature detection of nitrogen dioxide with FePc thin films was reported for the first time. It was found that the response at -46 °C was greater than at 20 or 71 °C. To evaluate temperature dependence, sensors were thermal cycled in the range of -50 to 80 °C, first under ultra-high purity nitrogen gas at 0.25 L/min, and then under 100 ppm nitrogen dioxide gas at 0.25 L/min. Intrinsic FePc film conductivity was measured by thermal cycling sensors under nitrogen gas. Extrinsic FePc film conductivity was measured by thermal cycling sensors under nitrogen dioxide gas. Results from these tests indicated that the temperature dependence of

  7. Quantifying the impact of nitric oxide calibration gas mixture oxidation on reported nitrogen dioxide concentrations

    NASA Astrophysics Data System (ADS)

    Sweeney, Bryan P.; Quincey, Paul G.; Green, David; Fuller, Gary W.

    2015-03-01

    Chemiluminescent analysers for measuring nitric oxide (NO) and nitrogen dioxide (NO2) in ambient air are generally calibrated with certified gas standard cylinders of NO in nitrogen. Verification of the NOx and NO amount fractions has been carried out on many such 'on-site' calibration cylinders at air quality monitoring stations. These measurements indicate that significant numbers of these gas mixtures have become somewhat degraded, with several percent of the NO oxidised to NO2. The effect of not compensating for this degradation on reported concentrations is discussed. If such degradation is not quantified and corrected for, there will be a systematic under-reporting of NO2 concentrations, which, due to the non-linearity of the effect, could reduce high reported NO2 concentrations at kerbside sites by around 20%. This could significantly reduce the number of reported exceedances of the NO2 limit value at such sites, compared to results obtained where there is no degradation of the NO cylinder.

  8. Origin of photoactivity of nitrogen-doped titanium dioxide under visible light.

    PubMed

    Livraghi, Stefano; Paganini, Maria Cristina; Giamello, Elio; Selloni, Annabella; Di Valentin, Cristiana; Pacchioni, Gianfranco

    2006-12-13

    Nitrogen-doped titanium dioxide (N-TiO2), a photocatalytic material active in visible light, has been investigated by a combined experimental and theoretical approach. The material contains single-atom nitrogen impurities that form either diamagnetic (Nb-) or paramagnetic (Nb*) bulk centers. Both types of Nb centers give rise to localized states in the band gap of the oxide. The relative abundance of these species depends on the oxidation state of the solid, as, upon reduction, electron transfer from Ti3+ ions to Nb* results in the formation of Ti4+ and Nb-. EPR spectra measured under irradiation show that Nb centers are responsible for visible light absorption with promotion of electrons from the band gap localized states to the conduction band or to surface-adsorbed electron scavengers. These results provide a characterization of the electronic states associated with N impurities in TiO2 and, for the first time, a picture of the processes occurring in the solid under irradiation with visible light. PMID:17147376

  9. Exchanges of oxygen, carbon dioxide, nitrogen and water in the caecilian Dermophis mexicanus.

    PubMed

    Stiffler, D F; Talbot, C R

    2000-11-01

    Oxygen consumption was measured in five Dermophis mexicanus and averaged (+/- SEM) 0.047 +/- 0.004 ml O2 g(-1) x h(-1). Carbon dioxide production averaged 0.053 +/- 0.005 ml CO2 g(-1) x h(-1) in the same five animals 1 week later. This metabolic rate is similar to metabolic rates of other Gymnophionans but lower than metabolic rates reported for Anurans and Urodeles. Total nitrogen excretion averaged 1.37 micromol N g(-1) x h(-1) which is higher than that found for other amphibians. Of this, 82.5% (1.13 micromol N g(-1) x h(-1)) was in the form of urea while 17.5% (0.24 micromol N g(-1) h(-1)) was in the form of NH3 + NH4+. Such ureotelism is typical of terrestrial amphibians like D. mexicanus. Osmotic water flux averaged 0.0193 ml g(-1) x h(-1) in control (sham injected) animals and was not significantly altered by injection of either arginine vasotocin or mesotocin. This osmotic flux is similar to osmotic fluxes found for other terrestrial amphibians. The combined data suggest that metabolism in D. mexicanus is, like most other Gymnophionans, lower than other amphibians. The high rates of nitrogen (especially urea) excretion suggests that this fossorial animal accumulates urea like other burrowing amphibians. PMID:11128440

  10. Undoped and doped poly(tetraphenylbenzidine) as sensitive material for an impedimetric nitrogen dioxide gas dosimeter

    SciTech Connect

    Marr, I.; Moos, R.; Neumann, K.; Thelakkat, M.

    2014-09-29

    This article presents a nitrogen dioxide (NO{sub 2}) detecting gas dosimeter based on poly(tetraphenylbenzidine) poly(TPD) as nitrogen oxide (NO{sub x}) sensitive layer. Gas dosimeters are suitable devices to determine reliably low levels of analytes over a long period of time. During NO{sub x} exposure, the analyte molecules are accumulated irreversibly in the sensing layer of the dosimeter enhancing the conductivity of the hole conducting poly(TPD), which can be measured by impedance spectroscopy. Due to their possibility for low cost production by simple printing techniques and very good physical, photochemical, and electrochemical properties, poly(TPD)s are suitable for application in gas dosimeters operated at room temperature. We studied the effect of doping with a Co(III)-complex in combination with a conducting salt on the dosimeter behavior. Compared to the undoped material, a strong influence of the doping can be observed: the conductivity of the sensing material increases significantly, the noise of the signal decreases and an unwanted recovery of the sensor signal can be prevented, leading to a NO{sub x} detection limit <10 ppm.

  11. Nitrogen dioxide vapor penetration of chlorobutyl rubber SCAPE under operational conditions

    NASA Technical Reports Server (NTRS)

    Schehl, T. A.; Beall, T. W.

    1980-01-01

    Operational self contained atmospheric protective ensembles (SCAPE suits) and fabric from the suits were subjected to a series of tests designed to determine the amount of exposure a wearer of the suit would receive if a spill of the hypergolic oxidizer nitrogen tetroxide (N2O4) should occur nearby. The results of these tests show that a wearer of a "stock" SCAPE suit equipped with a standard liquid air pack, if exposed to a spill resulting in a 26 percent increase of oxidizer in the surrounding atmosphere, will experiment no detectable concentration of nitrogen dioxide (NO2) inside the suit for 15 minutes. Thereafter, the NO2 concentration within the suit will increase for 35 minutes at a rate of 0.07 ppm per minute and then at a gradually decreasing rate until an equilibrium concentration of 3.4 ppm is attained after 100 minutes. Momentary increases of as much as 1.6 ppm can be expected if the wearer were to rise quickly from a squatting position, but the additional NO2 would be dissipated within three minutes. The effect of liquid and vapor N2O4 and of liquid monomethylhydrazine on permeation rates and tensile strength of the SCAPE suit fabric was also investigated.

  12. Lung Cancer and Exposure to Nitrogen Dioxide and Traffic: A Systematic Review and Meta-Analysis

    PubMed Central

    Laden, Francine; Cohen, Aaron J.; Raaschou-Nielsen, Ole; Brauer, Michael; Loomis, Dana

    2015-01-01

    Background and objective Exposure to traffic-related air pollutants is an important public health issue. Here, we present a systematic review and meta-analysis of research examining the relationship of measures of nitrogen oxides (NOx) and of various measures of traffic-related air pollution exposure with lung cancer. Methods We conducted random-effects meta-analyses of studies examining exposure to nitrogen dioxide (NO2) and NOx and its association with lung cancer. We identified 20 studies that met inclusion criteria and provided information necessary to estimate the change in lung cancer per 10-μg/m3 increase in exposure to measured NO2. Further, we qualitatively assessed the evidence of association between distance to roadways and traffic volume associated with lung cancer. Results The meta-estimate for the change in lung cancer associated with a 10-μg/m3 increase in exposure to NO2 was 4% (95% CI: 1%, 8%). The meta-estimate for change in lung cancer associated with a 10-μg/m3 increase in NOx was similar and slightly more precise, 3% (95% CI: 1%, 5%). The NO2 meta-estimate was robust to different confounding adjustment sets as well as the exposure assessment techniques used. Trim-and-fill analyses suggest that if publication bias exists, the overall meta-estimate is biased away from the null. Forest plots for measures of traffic volume and distance to roadways largely suggest a modest increase in lung cancer risk. Conclusion We found consistent evidence of a relationship between NO2, as a proxy for traffic-sourced air pollution exposure, with lung cancer. Studies of lung cancer related to residential proximity to roadways and NOx also suggest increased risk, which may be attributable partly to air pollution exposure. The International Agency for Research on Cancer recently classified outdoor air pollution and particulate matter as carcinogenic (Group 1). These meta-analyses support this conclusion, drawing particular attention to traffic-sourced air

  13. Kinetic fractionation of stable nitrogen isotopes during amino acid transamination

    NASA Astrophysics Data System (ADS)

    Macko, Stephen A.; Estep, Marilyn L. Fogel; Engel, Michael H.; Hare, P. E.

    1986-10-01

    This study evaluates a kinetic isotope effect involving 15N, during the transamination reactions catalyzed by glutamic oxalacetic transaminase. During the transfer of amino nitrogen from glutamic acid to oxaloacetate to form aspartic acid, 14NH 2 reacted 1.0083 times faster than 14NH 2. In the reverse reaction transferring NH 2 from aspartic acid to α-ketoglutarate, 14NH 2 was incorporated 1.0017 times faster than 15NH 2. Knowledge of the magnitude and sign of these isotope effects will be useful in the interpretation of the distribution of 15N in biological and geochemical systems.

  14. Inorganic Nitrogen Cycling in an Extreme Acid Mine Drainage Site

    NASA Astrophysics Data System (ADS)

    Kalnejais, L. H.; Smith, R. L.; Nordstrom, D. K.; Banfield, J. F.

    2006-12-01

    Weathering of the massive sulfide ore body at Iron Mountain, northern California has generated sulfuric acid solutions with pH values ranging from 0.5 to 1, temperatures up to 50°C and high concentrations of toxic metals. Communities of microorganisms catalyze the oxidation of iron and sulfur that generates this extreme environment. The nitrogen requirements of these organisms and the nitrogen cycling within these waters are not understood. By adapting the chemiluminescence detection method of Baeseman (2004) we have constrained the stability of nitrate and nitrite species in acidic, high ferrous iron solutions and have measured a time series of the nitrate concentrations at sites within Iron Mountain. The half-life of nitrite is less than an hour due to reactions with ferrous ions, while nitrate is found at concentrations of up to 10 μM within the mine. By coupling this information with geochemical and microbial community information at each site together with culture enrichment studies using various nitrogen sources we hope to gain insight into the pathways of nitrogen utilization in this extreme environment. References Baeseman, J.L. (2004) Denitrification in acid-impacted mountain stream sediments. Ph.D. Dissertation, University of Colorado, Department of Civil, Environmental, and Architectural Engineering.

  15. HALOACETONITRILES VS. REGULATED HALOACETIC ACIDS: ARE NITROGEN CONTAINING DBPS MORE TOXIC?

    EPA Science Inventory

    Haloacetonitriles (HANs) are toxic nitrogenous drinking water disinfection by-products (N-DBPs) and are observed with chlorine, chloramine, or chlorine dioxide disinfection. Using microplate-based Chinese hamster ovary (CHO) cell assays for chronic cytotoxicity and acute genotoxi...

  16. Final report on international comparison EURO.QM-S5/1166: Carbon dioxide mixtures in nitrogen

    NASA Astrophysics Data System (ADS)

    Dias, Florbela A.; Baptista, Gonçalo; Rakowska, Agata; Chye, Teo Chin; Beng Keat, Teo; Cieciora, Darek; Augusto, Cristiane; Lin, Tsai-Yin; Niederhauser, Bernhard; Fükö, Judit; Sinweeruthai, Ratirat; Johri, Prabha; Akcadag, Fatma; Tarhan, Tanil; van der Veen, Adriaan M. H.; van Wijk, Janneke

    2013-01-01

    This supplementary comparison is designed to test the capabilities of the participants to measure and certify carbon dioxide in nitrogen, and to provide supporting evidence for the CMCs of institutes for carbon dioxide. Indeed this comparison aims to demonstrate the capabilities of IPQ in the production of primary gas mixtures of carbon dioxide in nitrogen and for the participant laboratories to demonstrate their capabilities on certifying primary gas mixtures of percent levels of carbon dioxide in nitrogen. Moreover, a number of NMIs had already participated in the key comparison CCQM-K52, but in a lower range. This EURAMET comparison offers an opportunity to the laboratories to submit CMC in a higher range. In this comparison the laboratories analysed the gas mixtures that are gravimetrically produced and analyzed by IPQ. Each cylinder had its own reference value calculated from the gravimetric preparation. The pressure in the cylinders was approximately 10 MPa; aluminum cylinders of 5 dm3 nominal volume were used. This comparison provides evidence in support of CMCs for carbon dioxide within the range of 1.0 × 10-2 mol/mol to 20.0 × 10-2 mol/mol in a nitrogen/air balance. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by EURAMET, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  17. Nitrogen incorporation into lignite humic acids during microbial degradation

    SciTech Connect

    Dong, L.H.; Yuan, H.L.

    2009-07-01

    Previous study showed that nitrogen content in lignite humic acids (HA) increased significantly during lignite biodegradation. In this paper we evaluated the factors responsible for the increased level of N in HA and the formation of new nitrogen compound following microbial degradation. When the ammonium sulfate concentration in lignite medium was 0.5%, the N-content in HA was higher than that in the crude lignite humic acid (cHA); when the ammonium sulfate concentration was epsilon 0.5%, both the biodegraded humic acid (bHA) N-content and the content of bHA in lignite increased significantly, but at 2.0% no increase was observed. This indicated that HA incorporated N existing in the lignite medium, and more HA can incorporate more N with the increase of bHA amount in lignite during microbial degradation. CP/MAS {sup 15}N NMR analysis showed that the N incorporated into HA during biotransformation was in the form of free or ionized NH{sub 2}-groups in amino acids and sugars, as well as NH{sub 4}{sup +}. We propose nitrogen can be incorporated into HA biotically and abiotically. The high N content bHA has a potential application in agriculture since N is essential for plant growth.

  18. Associations of Cough Prevalence with Ambient Polycyclic Aromatic Hydrocarbons, Nitrogen and Sulphur Dioxide: A Longitudinal Study.

    PubMed

    Anyenda, Enoch Olando; Higashi, Tomomi; Kambayashi, Yasuhiro; Nguyen, Thao Thi Thu; Michigami, Yoshimasa; Fujimura, Masaki; Hara, Johsuke; Tsujiguchi, Hiromasa; Kitaoka, Masami; Asakura, Hiroki; Hori, Daisuke; Yamada, Yohei; Hayashi, Koichiro; Hayakawa, Kazuichi; Nakamura, Hiroyuki

    2016-01-01

    Information on potential cough triggers including environmental irritants is vital for successful management of chronic cough in patients. We investigated the relationship between ambient levels of particulate polycyclic aromatic hydrocarbons (PAH), nitrogen dioxide (NO₂) and sulphur dioxide (SO₂) exposures with cough prevalence. Eighty-three adult patients, who had been physician diagnosed with at least asthma, cough variant asthma and/or atopic cough, were divided into asthma and non-asthma groups. They recorded daily cough symptoms during 4 January-30 June 2011 study period while daily samples of total suspended particles were simultaneously collected by use of glass fiber filters and the particulate PAH content determined by high performance liquid chromatography coupled with a fluorescence detector. Ambient concentrations of NO₂ and SO₂ were obtained from a local monitoring site. Logistic regression models using generalized estimating equations were used to determine population-averaged estimates of association between cough prevalence and ambient pollutant exposures for the two groups. Fully adjusted odds ratios from single pollutant models were 1.083 (95% confidence interval (CI): 1.029, 1.140) and 1.097 (95% CI: 1.016, 1.185) per 0.57 ng/m³ for lag2 PAH exposure, while only for asthma group had significant associations with NO₂ and SO₂ exposures for both lag2 and lag02. Similar associations were observed in multipollutant models. This finding suggests that ambient PAH, NO₂, and SO₂ exposure even at low levels is related to cough prevalence in adult chronic cough patients and may be considered as aggravating factor during clinical management of the condition. PMID:27517941

  19. Associations of Cough Prevalence with Ambient Polycyclic Aromatic Hydrocarbons, Nitrogen and Sulphur Dioxide: A Longitudinal Study

    PubMed Central

    Anyenda, Enoch Olando; Higashi, Tomomi; Kambayashi, Yasuhiro; Nguyen, Thao Thi Thu; Michigami, Yoshimasa; Fujimura, Masaki; Hara, Johsuke; Tsujiguchi, Hiromasa; Kitaoka, Masami; Asakura, Hiroki; Hori, Daisuke; Yamada, Yohei; Hayashi, Koichiro; Hayakawa, Kazuichi; Nakamura, Hiroyuki

    2016-01-01

    Information on potential cough triggers including environmental irritants is vital for successful management of chronic cough in patients. We investigated the relationship between ambient levels of particulate polycyclic aromatic hydrocarbons (PAH), nitrogen dioxide (NO2) and sulphur dioxide (SO2) exposures with cough prevalence. Eighty-three adult patients, who had been physician diagnosed with at least asthma, cough variant asthma and/or atopic cough, were divided into asthma and non-asthma groups. They recorded daily cough symptoms during 4 January–30 June 2011 study period while daily samples of total suspended particles were simultaneously collected by use of glass fiber filters and the particulate PAH content determined by high performance liquid chromatography coupled with a fluorescence detector. Ambient concentrations of NO2 and SO2 were obtained from a local monitoring site. Logistic regression models using generalized estimating equations were used to determine population-averaged estimates of association between cough prevalence and ambient pollutant exposures for the two groups. Fully adjusted odds ratios from single pollutant models were 1.083 (95% confidence interval (CI): 1.029, 1.140) and 1.097 (95% CI: 1.016, 1.185) per 0.57 ng/m3 for lag2 PAH exposure, while only for asthma group had significant associations with NO2 and SO2 exposures for both lag2 and lag02. Similar associations were observed in multipollutant models. This finding suggests that ambient PAH, NO2, and SO2 exposure even at low levels is related to cough prevalence in adult chronic cough patients and may be considered as aggravating factor during clinical management of the condition. PMID:27517941

  20. Ambient Fine Particulate Matter, Nitrogen Dioxide, and Preterm Birth in New York City

    PubMed Central

    Johnson, Sarah; Bobb, Jennifer F.; Ito, Kazuhiko; Savitz, David A.; Elston, Beth; Shmool, Jessie L.C.; Dominici, Francesca; Ross, Zev; Clougherty, Jane E.; Matte, Thomas

    2016-01-01

    Background: Recent studies have suggested associations between air pollution and various birth outcomes, but the evidence for preterm birth is mixed. Objective: We aimed to assess the relationship between air pollution and preterm birth using 2008–2010 New York City (NYC) birth certificates linked to hospital records. Methods: We analyzed 258,294 singleton births with 22–42 completed weeks gestation to nonsmoking mothers. Exposures to ambient fine particles (PM2.5) and nitrogen dioxide (NO2) during the first, second, and cumulative third trimesters within 300 m of maternal address were estimated using data from the NYC Community Air Survey and regulatory monitors. We estimated the odds ratio (OR) of spontaneous preterm (gestation < 37 weeks) births for the first- and second-trimester exposures in a logistic mixed model, and the third-trimester cumulative exposures in a discrete time survival model, adjusting for maternal characteristics and delivery hospital. Spatial and temporal components of estimated exposures were also separately analyzed. Results: PM2.5 was not significantly associated with spontaneous preterm birth. NO2 in the second trimester was negatively associated with spontaneous preterm birth in the adjusted model (OR = 0.90; 95% CI: 0.83, 0.97 per 20 ppb). Neither pollutant was significantly associated with spontaneous preterm birth based on adjusted models of temporal exposures, whereas the spatial exposures showed significantly reduced odds ratios (OR = 0.80; 95% CI: 0.67, 0.96 per 10 μg/m3 PM2.5 and 0.88; 95% CI: 0.79, 0.98 per 20 ppb NO2). Without adjustment for hospital, these negative associations were stronger. Conclusion: Neither PM2.5 nor NO2 was positively associated with spontaneous preterm delivery in NYC. Delivery hospital was an important spatial confounder. Citation: Johnson S, Bobb JF, Ito K, Savitz DA, Elston B, Shmool JL, Dominici F, Ross Z, Clougherty JE, Matte T. 2016. Ambient fine particulate matter, nitrogen dioxide, and

  1. Area-level socioeconomic deprivation, nitrogen dioxide exposure, and term birth weight in New York City.

    PubMed

    Shmool, Jessie L C; Bobb, Jennifer F; Ito, Kazuhiko; Elston, Beth; Savitz, David A; Ross, Zev; Matte, Thomas D; Johnson, Sarah; Dominici, Francesca; Clougherty, Jane E

    2015-10-01

    Numerous studies have linked air pollution with adverse birth outcomes, but relatively few have examined differential associations across the socioeconomic gradient. To evaluate interaction effects of gestational nitrogen dioxide (NO2) and area-level socioeconomic deprivation on fetal growth, we used: (1) highly spatially-resolved air pollution data from the New York City Community Air Survey (NYCCAS); and (2) spatially-stratified principle component analysis of census variables previously associated with birth outcomes to define area-level deprivation. New York City (NYC) hospital birth records for years 2008-2010 were restricted to full-term, singleton births to non-smoking mothers (n=243,853). We used generalized additive mixed models to examine the potentially non-linear interaction of nitrogen dioxide (NO2) and deprivation categories on birth weight (and estimated linear associations, for comparison), adjusting for individual-level socio-demographic characteristics and sensitivity testing adjustment for co-pollutant exposures. Estimated NO2 exposures were highest, and most varying, among mothers residing in the most-affluent census tracts, and lowest among mothers residing in mid-range deprivation tracts. In non-linear models, we found an inverse association between NO2 and birth weight in the least-deprived and most-deprived areas (p-values<0.001 and 0.05, respectively) but no association in the mid-range of deprivation (p=0.8). Likewise, in linear models, a 10 ppb increase in NO2 was associated with a decrease in birth weight among mothers in the least-deprived and most-deprived areas of -16.2g (95% CI: -21.9 to -10.5) and -11.0 g (95% CI: -22.8 to 0.9), respectively, and a non-significant change in the mid-range areas [β=0.5 g (95% CI: -7.7 to 8.7)]. Linear slopes in the most- and least-deprived quartiles differed from the mid-range (reference group) (p-values<0.001 and 0.09, respectively). The complex patterning in air pollution exposure and deprivation

  2. Repeated Nitrogen Dioxide Exposures and Eosinophilic Airway Inflammation in Asthmatics: A Randomized Crossover Study

    PubMed Central

    Guillossou, Gaëlle; Neukirch, Catherine; Dehoux, Monique; Koscielny, Serge; Bonay, Marcel; Cabanes, Pierre-André; Samet, Jonathan M.; Mure, Patrick; Ropert, Luc; Tokarek, Sandra; Lambrozo, Jacques; Aubier, Michel

    2014-01-01

    Background: Nitrogen dioxide (NO2), a ubiquitous atmospheric pollutant, may enhance the asthmatic response to allergens through eosinophilic activation in the airways. However, the effect of NO2 on inflammation without allergen exposure is poorly studied. Objectives: We investigated whether repeated peaks of NO2, at various realistic concentrations, induce changes in airway inflammation in asthmatics. Methods: Nineteen nonsmokers with asthma were exposed at rest in a double-blind, crossover study, in randomized order, to 200 ppb NO2, 600 ppb NO2, or clean air once for 30 min on day 1 and twice for 30 min on day 2. The three series of exposures were separated by 2 weeks. The inflammatory response in sputum was measured 6 hr (day 1), 32 hr (day 2), and 48 hr (day 3) after the first exposure, and compared with baseline values measured twice 10–30 days before the first exposure. Results: Compared with baseline measurements, the percentage of eosinophils in sputum increased by 57% after exposure to 600 ppb NO2 (p = 0.003) but did not change significantly after exposure to 200 ppb. The slope of the association between the percentage of eosinophils and NO2 exposure level was significant (p = 0.04). Eosinophil cationic protein in sputum was highly correlated with eosinophil count and increased significantly after exposure to 600 ppb NO2 (p = 0.001). Lung function, which was assessed daily, was not affected by NO2 exposure. Conclusions: We observed that repeated peak exposures of NO2 performed without allergen exposure were associated with airway eosinophilic inflammation in asthmatics in a dose-related manner. Citation: Ezratty V, Guillossou G, Neukirch C, Dehoux M, Koscielny S, Bonay M, Cabanes PA, Samet JM, Mure P, Ropert L, Tokarek S, Lambrozo J, Aubier M. 2014. Repeated nitrogen dioxide exposures and eosinophilic airway inflammation in asthmatics: a randomized crossover study. Environ Health Perspect 122:850–855; http://dx.doi.org/10.1289/ehp.1307240 PMID

  3. Tropospheric nitrogen dioxide column retrieval from ground-based zenith-sky DOAS observations

    NASA Astrophysics Data System (ADS)

    Tack, F.; Hendrick, F.; Goutail, F.; Fayt, C.; Merlaud, A.; Pinardi, G.; Hermans, C.; Pommereau, J.-P.; Van Roozendael, M.

    2015-01-01

    We present an algorithm for retrieving tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs) from ground-based zenith-sky (ZS) measurements of scattered sunlight. The method is based on a four-step approach consisting of (1) the Differential Optical Absorption Spectroscopy (DOAS) analysis of ZS radiance spectra using a fixed reference spectrum corresponding to low NO2 absorption, (2) the determination of the residual amount in the reference spectrum using a Langley-plot-type method, (3) the removal of the stratospheric content from the daytime total measured slant column based on stratospheric VCDs measured at sunrise and sunset, and simulation of the rapid NO2 diurnal variation, (4) the retrieval of tropospheric VCDs by dividing the resulting tropospheric slant columns by appropriate air mass factors (AMFs). These steps are fully characterized and recommendations are given for each of them. The retrieval algorithm is applied on a ZS dataset acquired with a Multi-AXis (MAX-) DOAS instrument during the Cabauw (51.97° N, 4.93° E, sea level) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI) held from the 10 June to the 21 July 2009 in the Netherlands. A median value of 7.9 × 1015 molec cm-2 is found for the retrieved tropospheric NO2 VCDs, with maxima up to 6.0 × 1016 molec cm-2. The error budget assessment indicates that the overall error σTVCD on the column values is less than 28%. In case of low tropospheric contribution, σTVCD is estimated to be around 39% and is dominated by uncertainties in the determination of the residual amount in the reference spectrum. For strong tropospheric pollution events, σTVCD drops to approximately 22% with the largest uncertainties on the determination of the stratospheric NO2 abundance and tropospheric AMFs. The tropospheric VCD amounts derived from ZS observations are compared to VCDs retrieved from off-axis and direct-sun measurements of the same MAX-DOAS instrument as well as to

  4. Tropospheric nitrogen dioxide column retrieval from ground-based zenith-sky DOAS observations

    NASA Astrophysics Data System (ADS)

    Tack, F.; Hendrick, F.; Goutail, F.; Fayt, C.; Merlaud, A.; Pinardi, G.; Hermans, C.; Pommereau, J.-P.; Van Roozendael, M.

    2015-06-01

    We present an algorithm for retrieving tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs) from ground-based zenith-sky (ZS) measurements of scattered sunlight. The method is based on a four-step approach consisting of (1) the differential optical absorption spectroscopy (DOAS) analysis of ZS radiance spectra using a fixed reference spectrum corresponding to low NO2 absorption, (2) the determination of the residual amount in the reference spectrum using a Langley-plot-type method, (3) the removal of the stratospheric content from the daytime total measured slant column based on stratospheric VCDs measured at sunrise and sunset, and simulation of the rapid NO2 diurnal variation, (4) the retrieval of tropospheric VCDs by dividing the resulting tropospheric slant columns by appropriate air mass factors (AMFs). These steps are fully characterized and recommendations are given for each of them. The retrieval algorithm is applied on a ZS data set acquired with a multi-axis (MAX-) DOAS instrument during the Cabauw (51.97° N, 4.93° E, sea level) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI) held from 10 June to 21 July 2009 in the Netherlands. A median value of 7.9 × 1015 molec cm-2 is found for the retrieved tropospheric NO2 VCDs, with maxima up to 6.0 × 1016 molec cm-2. The error budget assessment indicates that the overall error σTVCD on the column values is less than 28%. In the case of low tropospheric contribution, σTVCD is estimated to be around 39% and is dominated by uncertainties in the determination of the residual amount in the reference spectrum. For strong tropospheric pollution events, σTVCD drops to approximately 22% with the largest uncertainties on the determination of the stratospheric NO2 abundance and tropospheric AMFs. The tropospheric VCD amounts derived from ZS observations are compared to VCDs retrieved from off-axis and direct-sun measurements of the same MAX-DOAS instrument as well as to data

  5. Nitrate transporters in leaves and their potential roles in foliar uptake of nitrogen dioxide.

    PubMed

    Hu, Yanbo; Fernández, Victoria; Ma, Ling

    2014-01-01

    While plant roots are specialized organs for the uptake and transport of water and nutrients, the absorption of gaseous or liquid mineral elements by aerial plant parts has been recognized since more than one century. Nitrogen (N) is an essential macronutrient which generally absorbed either as nitrate (NO(-) 3) or ammonium (NH(+) 4) by plant roots. Gaseous nitrogen pollutants like N dioxide (NO2) can also be absorbed by plant surfaces and assimilated via the NO(-) 3 assimilation pathway. The subsequent NO(-) 3 flux may induce or repress the expression of various NO(-) 3-responsive genes encoding for instance, the transmembrane transporters, NO(-) 3/NO(-) 2 (nitrite) reductase, or assimilatory enzymes involved in N metabolism. Based on the existing information, the aim of this review was to theoretically analyze the potential link between foliar NO2 absorption and N transport and metabolism. For such purpose, an overview of the state of knowledge on the NO(-) 3 transporter genes identified in leaves or shoots of various species and their roles for NO(-) 3 transport across the tonoplast and plasma membrane, in addition to the process of phloem loading is briefly provided. It is assumed that a NO2-induced accumulation of NO(-) 3/NO(-) 2 may alter the expression of such genes, hence linking transmembrane NO(-) 3 transporters and foliar uptake of NO2. It is likely that NRT1/NRT2 gene expression and species-dependent apoplastic buffer capacity may be also related to the species-specific foliar NO2 uptake process. It is concluded that further work focusing on the expression of NRT1 (NRT1.1, NRT1.7, NRT1.11, and NRT1.12), NRT2 (NRT2.1, NRT2.4, and NRT2.5) and chloride channel family genes (CLCa and CLCd) may help us elucidate the physiological and metabolic response of plants fumigated with NO2. PMID:25126090

  6. Oxidation of diclofenac with chlorine dioxide in aquatic environments: influences of different nitrogenous species.

    PubMed

    Wang, Yingling; Liu, Haijin; Liu, Guoguang; Xie, Youhai; Ni, Tianjun

    2015-06-01

    The oxidation of diclofenac (DCF), a non-steroidal anti-inflammatory drug and emerging water pollutant, with chlorine dioxide was investigated under simulated water disinfection conditions. The reaction kinetics as functions of the initial concentrations of DCF, different nitrogenous species, and different pE values were experimentally determined. The results demonstrated that DCF reacted rapidly with ClO2, where more than 75 % of DCF (≤3.00 μM) was removed by 18.94 μM ClO2 within 60 s. All of the reactions followed pseudo first-order kinetics with respect to DCF, and the rate constant, k obs, exhibited a significant decrease from 4.21 × 10(-2) to 8.09 × 10(-3) s(-1), as the initial DCF concentration was increased from 1.00 to 5.00 μM. Furthermore, the degradation kinetics of DCF was clearly dependent on nitrogen-containing ion concentrations in the reaction solution. Ammonium and nitrite ions inhibited the DCF degradation by ClO2, whereas nitrate ion clearly initiated its promotion. In contrast, the inhibitory effect of NO2 (-) was more robust than that of NH4 (+). When the values of pE were gradually increased, the transformation of NH4 (+) to NO2 (-), and subsequently to NO3 (-), would occur, the rate constants were initially decreased, and then increased. When NH4 (+) and NO2 (-) coexisted, the inhibitory effect on the DCF degradation was less than the sum of the partial inhibitory effect. However, when NO2 (-) and NO3 (-) coexisted, the actual inhibition rate was greater than the theoretical estimate. These results indicated that the interaction of NH4 (+) and NO2 (-) was antagonistic, while the coexistence of NO2 (-) and NO3 (-) was observed to have a synergistic effect in aqueous environments. PMID:25604564

  7. The Response of Ozone and Nitrogen Dioxide to the Eruption of Mount Pinatubo at Southern and Northern Midlatitudes

    NASA Technical Reports Server (NTRS)

    Aquila, Valentina; Oman, Luke D.; Stolarski, Richard S.; Douglass, Anne R.; Newman, Paul A.

    2013-01-01

    Observations have shown that the mass of nitrogen dioxide decreased at both southern and northern midlatitudes in the year following the eruption of Mt. Pinatubo, indicating that the volcanic aerosol had enhanced nitrogen dioxide depletion via heterogeneous chemistry. In contrast, the observed ozone response showed a northern midlatitude decrease and a small southern midlatitude increase. Previous simulations that included an enhancement of heterogeneous chemistry by the volcanic aerosol but no other effect of this aerosol produce ozone decreases in both hemispheres, contrary to observations. The authors simulations show that the heating due to the volcanic aerosol enhanced both the tropical upwelling and Southern Hemisphere extratropical downwelling. This enhanced extratropical downwelling, combined with the time of the eruption relative to the phase of the Brewer Dobson circulation, increased Southern Hemisphere ozone via advection, counteracting the ozone depletion due to heterogeneous chemistry on the Pinatubo aerosol.

  8. Validation of nitrogen dioxide results measured by the limb infrared monitor of the stratosphere (LIMS) experiment on NIMBUS 7

    NASA Technical Reports Server (NTRS)

    Russell, J. M., III; Remsberg, E. E.; Gille, J. C.; Bailey, P. L.; Gordley, L. L.; Drayson, S. R.; Fischer, H.; Girard, A.; Harries, J. E.; Evans, W. F. J.

    1984-01-01

    The validation of results from the nitrogen dioxide channel and the quality of the data are examined in connection with the LIMS experiment which ran from late October 1978 to late May 1979. Factors studied include: channel characteristics, experiment errors due to instrument and spacecraft effects, predicted and measured precision, predicted accuracy, and comparisons with correlative measurements made in a series of balloon underflights. Features such as profile shape and slope of the mixing ratio altitude distribution are in good agreement. The LIMS data also fall within the range of previous mixing ratio measurements and are consistent with model estimates. The calculated on-orbit precision is about 0.3 ppbv and the estimated accuracy from simulations is about 2 ppbv over the 3-10-mbar range. Accuracy is less at higher and lower pressure levels. These results provide the first day-night set of nitrogen dioxide measurements from space.

  9. The Determination of Total Nitrogen Oxides in Stack Gases. Phenoldisulfonic Acid Method.

    ERIC Educational Resources Information Center

    Thorpe, Charles J. D.

    The well known Saltzman method for oxides of nitrogen is intended for the determination of these constituents in the ambient atmosphere in the range of a few parts per billion to about 5ppm. However, when sulfur dioxide is present in the gas to be sampled and/or the concentration range of the oxides of nitrogen is from five to several thousand…

  10. Aircraft measurements of nitrogen dioxide and peroxyacetyl nitrates using luminol chemiluminescence with fast capillary gas chromatography

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.; Steele, H.D.; Drayton, P.J.; Hubbe, J.M.

    1999-10-01

    Fast capillary gas chromatography with luminol detection has been used to make airborne measurements of nitrogen dioxide (NO{sub 2}) and peroxyacetyl nitrate (PAN). The analysis system allows for the simultaneous measurement of NO{sub 2} and peroxyacyl nitrates (PANs) with time resolution of less than 1 min, and improvement of a factor of 4--5 over previously reported methods using electron capture detection. Data presented were taken near Pasco, Washington, in August 1997, during a test flight onboard the US Department of Energy G-1 aircraft. The authors report measurements of NO{sub 2} in the boundary layer in a paper mill plume and a plume from a grass fire, in addition to analyses for free tropospheric NO{sub 2} and PAN. Ratios of PAN/NO{sub 2} were observed to increase with altitude (decreasing temperature) and to reach values of 2--4 above the boundary layer, consistent with the thermal equilibrium of the peroxyacetyl radical and NO{sub 2} and PAN. Estimates for the peroxyacetyl radical in the continental free troposphere, calculated from this equilibrium, were found to be in the range of 10{sup 4}--10{sup 5} molecules per cubic centimeter. These results demonstrate the application of this approach for airborne measurements of NO{sub 2} and PAN in a wide range of field study scenarios.

  11. Visible-Light-Induced Bactericidal Activity of Titanium Dioxide Co-doped with Nitrogen and Silver

    PubMed Central

    Wu, Pinggui; Xie, Rongcai; Imlay, Kari; Shang, Jian-Ku

    2011-01-01

    Titanium dioxide nanoparticles co-doped with nitrogen and silver (Ag2O/TiON) were synthesized by the sol-gel process and found to be an effective visible light driven photocatalyst. The catalyst showed strong bactericidal activity against Escherichia coli (E. coli) under visible light irradiation (λ> 400 nm). In x-ray photoelectron spectroscopy and x-ray diffraction characterization of the samples, the as-added Ag species mainly exist as Ag2O. Spin trapping EPR study showed Ag addition greatly enhanced the production of hydroxyl radicals (•OH) under visible light irradiation. The results indicate that the Ag2O species trapped eCB− in the process of Ag2O/TiON photocatalytic reaction, thus inhibiting the recombination of eCB− and hVB+ in agreement with the stronger photocatalytic bactericidal activity of Ag2O/TiON. The killing mechanism of Ag2O/TiON under visible light irradiation is shown to be related to oxidative damages in the forms of cell wall thinning and cell disconfiguration. PMID:20726520

  12. Aspects of nitrogen dioxide toxicity in environmental urban concentrations in human nasal epithelium

    SciTech Connect

    Koehler, C.; Ginzkey, C.; Friehs, G.; Hackenberg, S.; Froelich, K.; Scherzed, A.; Burghartz, M.; Kessler, M.; Kleinsasser, N.

    2010-06-01

    Cytotoxicity and genotoxicity of nitrogen dioxide (NO{sub 2}) as part of urban exhaust pollution are widely discussed as potential hazards to human health. This study focuses on toxic effects of NO{sub 2} in realistic environmental concentrations with respect to the current limit values in a human target tissue of volatile xenobiotics, the epithelium of the upper aerodigestive tract. Nasal epithelial cells of 10 patients were cultured as an air-liquid interface and exposed to 0.01 ppm NO{sub 2}, 0.1 ppm NO{sub 2}, 1 ppm NO{sub 2}, 10 ppm NO{sub 2} and synthetic air for half an hour. After exposure, genotoxicity was evaluated by the alkaline single-cell microgel electophoresis (Comet) assay and by induction of micronuclei in the micronucleus test. Depression of proliferation and cytotoxic effects were determined using the micronucleus assay and trypan blue exclusion assay, respectively. The experiments revealed genotoxic effects by DNA fragmentation starting at 0.01 ppm NO{sub 2} in the Comet assay, but no micronucleus inductions, no changes in proliferation, no signs of necrosis or apoptosis in the micronucleus assay, nor did the trypan blue exclusion assay show any changes in viability. The present data reveal a possible genotoxicity of NO{sub 2} in urban concentrations in a screening test. However, permanent DNA damage as indicated by the induction of micronuclei was not observed. Further research should elucidate the effects of prolonged exposure.

  13. Boosting sensitivity of boron nitride nanotube (BNNT) to nitrogen dioxide by Fe encapsulation.

    PubMed

    Zhang, Yu-qing; Liu, Yue-Jie; Liu, Yan-ling; Zhao, Jing-xiang

    2014-06-01

    The pristine boron nitride nanotube (BNNT) exhibits a poor chemical reactivity to some adsorbates, thus greatly limiting its application for the gas sensor. In the present work, using density functional theory (DFT) methods, we put forward a novel strategy to enhance the sensitivity of BNNT to nitrogen dioxide (NO2) by the encapsulation of a single Fe atom inside its cavity. The results suggest that the NO2 molecule can be only physically adsorbed on the pristine BNNT with a small adsorption energy (-0.10 eV). After the inclusion of the Fe atom inside BNNT (Fe@BNNT), the interaction of NO2 molecules with this tube is significantly enhanced, leading to a transformation from the physisorption of on pristine BNNT to the current chemisorption. Interestingly, up to five NO2 molecules can be adsorbed on this encapsulated BNNT along its circumference with the average adsorption energy of -0.52 eV, corresponding to a short recovery time (6 ms). Moreover, 0.38 electrons are transferred from the Fe@BNNT to the adsorbed NO2 molecules, which is enough to induce the obvious change of its electrical conductance. Thus, we predict that the encapsulation of Fe atom inside BNNT would greatly boosts its sensitivity to NO2 molecules, indicating its potential application as NO2 sensors. PMID:24837498

  14. Phase transition and chemical decomposition of liquid carbon dioxide and nitrogen mixture under extreme conditions

    NASA Astrophysics Data System (ADS)

    Xiao-Xu, Jiang; Guan-Yu, Chen; Yu-Tong, Li; Xin-Lu, Cheng; Cui-Ming, Tang

    2016-02-01

    Thermodynamic and chemical properties of liquid carbon dioxide and nitrogen (CO2-N2) mixture under the conditions of extremely high densities and temperatures are studied by using quantum molecular dynamic (QMD) simulations based on density functional theory including dispersion corrections (DFT-D). We present equilibrium properties of liquid mixture for 112 separate density and temperature points, by selecting densities ranging from ρ = 1.80 g/cm3 to 3.40 g/cm3 and temperatures from T = 500 K to 8000 K. In the range of our study, the liquid CO2-N2 mixture undergoes a continuous transition from molecular to atomic fluid state and liquid polymerization inferred from pair correlation functions (PCFs) and the distribution of various molecular components. The insulator-metal transition is demonstrated by means of the electronic density of states (DOS). Project supported by the National Natural Science Foundation of China (Grant Nos. 11374217, 11135012, and 11375262) and the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. 11176020).

  15. Ozone and nitrogen dioxide ground based monitoring by zenith sky visible spectrometry in Arctic and Antarctic

    NASA Technical Reports Server (NTRS)

    Pommereau, J. P.; Goutail, F.

    1988-01-01

    Unattended diode array spectrometers have been designed for ground based stratospheric trace species monitoring by zenith sky visible spectrometry. Measurements are performed with a 1.0 nm resolution between 290 nm and 590 nm in order to allow simultaneous evaluations of column densities of ozone, nitrogen dioxide. Field tests have shown that the species can be monitored with a precision of + or - 2 Dobson for the first and + or - 2.10 to the 15th mol/sq cm for the second, although the absolute accuracy of the method is limited by the error of the estimation of the atmospheric optical path of the scattered light. Two identical instruments were set up in January 1988, one in Antarctica at Dumont d'Urville (66 S, 140 E) to be operated all year and another one in the Arctic at ESRANGE at Kiruna (68 N; 22 E) which will operate to the final warming of spring 1988. The data are processed in real time at both stations. O3 and NO2 columns are transmitted together with surface and stratospheric temperature and winds. They are also recorded for further treatment and search for OClO and BrO. Only one month of data from Antarctica is available at the moment. Obtained during polar summer, they cannot show more than stable columns of O3 and NO2 and for the last species, the buildup of its diurnal variation.

  16. Mineral elements of subtropical tree seedlings in response to elevated carbon dioxide and nitrogen addition.

    PubMed

    Huang, Wenjuan; Zhou, Guoyi; Liu, Juxiu; Zhang, Deqiang; Liu, Shizhong; Chu, Guowei; Fang, Xiong

    2015-01-01

    Mineral elements in plants have been strongly affected by increased atmospheric carbon dioxide (CO2) concentrations and nitrogen (N) deposition due to human activities. However, such understanding is largely limited to N and phosphorus in grassland. Using open-top chambers, we examined the concentrations of potassium (K), calcium (Ca), magnesium (Mg), aluminum (Al), copper (Cu) and manganese (Mn) in the leaves and roots of the seedlings of five subtropical tree species in response to elevated CO2 (ca. 700 μmol CO2 mol(-1)) and N addition (100 kg N ha(-1) yr(-1)) from 2005 to 2009. These mineral elements in the roots responded more strongly to elevated CO2 and N addition than those in the leaves. Elevated CO2 did not consistently decrease the concentrations of plant mineral elements, with increases in K, Al, Cu and Mn in some tree species. N addition decreased K and had no influence on Cu in the five tree species. Given the shifts in plant mineral elements, Schima superba and Castanopsis hystrix were less responsive to elevated CO2 and N addition alone, respectively. Our results indicate that plant stoichiometry would be altered by increasing CO2 and N deposition, and K would likely become a limiting nutrient under increasing N deposition in subtropics. PMID:25794046

  17. Improving spatial nitrogen dioxide prediction using diffusion tubes: A case study in West Central Scotland

    NASA Astrophysics Data System (ADS)

    Pannullo, Francesca; Lee, Duncan; Waclawski, Eugene; Leyland, Alastair H.

    2015-10-01

    It has been well documented that air pollution adversely affects health, and epidemiological pollution-health studies utilise pollution data from automatic monitors. However, these automatic monitors are small in number and hence spatially sparse, which does not allow an accurate representation of the spatial variation in pollution concentrations required for these epidemiological health studies. Nitrogen dioxide (NO2) diffusion tubes are also used to measure concentrations, and due to their lower cost compared to automatic monitors are much more prevalent. However, even combining both data sets still does not provide sufficient spatial coverage of NO2 for epidemiological studies, and modelled concentrations on a regular grid from atmospheric dispersion models are also available. This paper proposes the first modelling approach to using all three sources of NO2 data to make fine scale spatial predictions for use in epidemiological health studies. We propose a geostatistical fusion model that regresses combined NO2 concentrations from both automatic monitors and diffusion tubes against modelled NO2 concentrations from an atmospheric dispersion model in order to predict fine scale NO2 concentrations across our West Central Scotland study region. Our model exhibits a 47% improvement in fine scale spatial prediction of NO2 compared to using the automatic monitors alone, and we use it to predict NO2 concentrations across West Central Scotland in 2006.

  18. Computation of Bond Dissociation Energies for Removal of Nitrogen Dioxide Groups in Certain Aliphatic Nitro Compounds

    NASA Astrophysics Data System (ADS)

    Shao, Ju-Xiang; Cheng, Xin-Lu; Yang, Xiang-Dong; Xiang, Shi-Kai

    2006-04-01

    Bond dissociation energies for removal of nitrogen dioxide groups in 10 aliphatic nitro compounds, including nitromethane, nitroethylene, nitroethane, dinitromethane, 1-nitropropane, 2-nitropropane, 1-nitrobutane, 2-methyl-2-nitropropane, nitropentane, and nitrohexane, are calculated using the highly accurate complete basis set (CBS-Q) and the three hybrid density functional theory (DFT) methods B3LYP, B3PW91 and B3P86 with 6-31G** basis set. By comparing the computed bond dissociation energies and experimental results, we find that the B3LYP/6-31G** and B3PW91/6-31G** methods are incapable of predicting the satisfactory bond dissociation energy (BDE). However, B3P86/6-31G** and CBS-Q computations are capable of giving the calculated BDEs, which are in extraordinary agreement with the experimental data. Nevertheless, since CBS-Q computational demands increase rapidly with the number of containing atoms in molecules, larger molecules soon become prohibitively expensive. Therefore, we suggest to take the B3P86/6-31G** method as a reliable method of computing the BDEs for removal of the NO2 groups in the aliphatic nitro compounds.

  19. Total Column Observation of Nitrogen Dioxide and Ozone in the Four Corners Region

    NASA Astrophysics Data System (ADS)

    Butterfield, Z.; Dubey, M.; Lindenmaier, R.; Herman, J. R.; Disterhoft, P.; Minschwaner, K.

    2013-12-01

    Nitrogen Dioxide (NO2) is a pollutant created by the burning of fossil fuels, which is intricately related to levels of ozone (O3), a tropospheric pollutant and greenhouse gas. Observing and understanding the behavior of these two chemicals in the atmosphere is essential to monitoring and verifying power plant emissions. In the Four Corners region, the San Juan and Four Corners power plants produce a total of 0.3 kilotonnes of NOX (combined Nitric Oxide (NO) and NO2) per day from burning fossil fuels. We compare NO2 column measurements from a ground-based solar spectrometer (Pandora) and from the satellite-based Ozone Monitoring Instrument (OMI). We also compare O3 column measurements obtained from Pandora and a Brewer Ozone Spectrophotometer. Using O3 profiles obtained with ozonesondes and by separating long and short time scale changes in total column measurements we isolate tropospheric ozone columns and explore their relationship with the troposphere-dominated total column measurements of NO2.

  20. Personal exposure to nitrogen dioxide and its association with respiratory illness in Hong Kong

    SciTech Connect

    Koo, L.C.; Ho, J.H.; Ho, C.Y.; Matsuki, H.; Shimizu, H.; Mori, T.; Tominaga, S. )

    1990-05-01

    In 1985, 362 primary schoolchildren and their 319 mothers were surveyed in Hong Kong to study the possible relationship of air pollution to respiratory illnesses. Using nitrogen dioxide (NO{sub 2}) measured by personal samplers as a measure of air pollution, the study aimed to identify the major sources of NO{sub 2} in the indoor environment and see whether its increased presence was associated with respiratory symptoms. The levels of NO{sub 2} among the mothers was found to increase by 21% if dust exposure was reported from the workplace, 18% if they used such cooking fuels as liquid petroleum gas or kerosene, 11% when kitchens did not have ventilating fans, and 10% when incense was burned at home. In terms of respiratory symptoms, an increase in NO{sub 2} levels of 19% was reported among those with allergic rhinitis and 18% among those with chronic cough. The levels of NO2 among children were correlated with levels measured in classrooms, all of which had opened windows so that the NO{sub 2} came from outdoors. No association was found between children's NO{sub 2} levels and respiratory symptoms. With the exception of smoking by the father and the children's NO{sub 2} levels, no association was found between smoking at home and NO{sub 2} levels.

  1. Revising the slant column density retrieval of nitrogen dioxide observed by the Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Marchenko, S.; Krotkov, N. A.; Lamsal, L. N.; Celarier, E. A.; Swartz, W. H.; Bucsela, E. J.

    2015-06-01

    Nitrogen dioxide retrievals from the Aura/Ozone Monitoring Instrument (OMI) have been used extensively over the past decade, particularly in the study of tropospheric air quality. Recent comparisons of OMI NO2 with independent data sets and models suggested that the OMI values of slant column density (SCD) and stratospheric vertical column density (VCD) in both the NASA OMNO2 and Royal Netherlands Meteorological Institute DOMINO products are too large, by around 10-40%. We describe a substantially revised spectral fitting algorithm, optimized for the OMI visible light spectrometer channel. The most important changes comprise a flexible adjustment of the instrumental wavelength shifts combined with iterative removal of the ring spectral features; the multistep removal of instrumental noise; iterative, sequential estimates of SCDs of the trace gases in the 402-465 nm range. These changes reduce OMI SCD(NO2) by 10-35%, bringing them much closer to SCDs retrieved from independent measurements and models. The revised SCDs, submitted to the stratosphere-troposphere separation algorithm, give tropospheric VCDs ˜10-15% smaller in polluted regions, and up to ˜30% smaller in unpolluted areas. Although the revised algorithm has been optimized specifically for the OMI NO2 retrieval, our approach could be more broadly applicable.

  2. Nitrogen Dioxide pollution and hazardous household environment: what impacts more congenital malformations.

    PubMed

    Landau, D; Novack, L; Yitshak-Sade, M; Sarov, B; Kloog, I; Hershkovitz, R; Grotto, I; Karakis, I

    2015-11-01

    Nitrogen Dioxide (NO2) is a product of fuel combustion originating mainly from industry and transportation. Studies suggest an association between NO2 and congenital malformations (CM). We investigated an independent effect of NO2 on CM by adjusting to individual factors and household environment in 1024 Bedouin-Arab pregnant women in southern Israel. This population is characterised by high rates of CMs, frequent consanguineous marriages, paternal smoking, temporary housing and usage of open fire for heat cooking. Information on household risk factors was collected during an interview. Ambient measurements of 24-h average NO2 and meteorological conditions were obtained from 13 local monitors. Median value of daily NO2 measured in the area was 6.78ppb. CM was diagnosed in 8.0% (82) of offspring. Maternal NO2 exposure during the 1st trimester >8.6ppb was significantly associated with minor CM (RR=2.68, p=0.029). Major CM were independently associated with maternal juvenile diabetes (RR=9.97, p-value=0.002) and heating by open fire (RR=2.00, p-value=0.049), but not NO2 exposure. We found that NO2 emissions had an independent impact only on minor malformations, whereas major malformations depended mostly on the household environment. Antepartum deaths were associated by maternal morbidity. PMID:26171819

  3. Mineral Elements of Subtropical Tree Seedlings in Response to Elevated Carbon Dioxide and Nitrogen Addition

    PubMed Central

    Huang, Wenjuan; Zhou, Guoyi; Liu, Juxiu; Zhang, Deqiang; Liu, Shizhong; Chu, Guowei; Fang, Xiong

    2015-01-01

    Mineral elements in plants have been strongly affected by increased atmospheric carbon dioxide (CO2) concentrations and nitrogen (N) deposition due to human activities. However, such understanding is largely limited to N and phosphorus in grassland. Using open-top chambers, we examined the concentrations of potassium (K), calcium (Ca), magnesium (Mg), aluminum (Al), copper (Cu) and manganese (Mn) in the leaves and roots of the seedlings of five subtropical tree species in response to elevated CO2 (ca. 700 μmol CO2 mol-1) and N addition (100 kg N ha-1 yr-1) from 2005 to 2009. These mineral elements in the roots responded more strongly to elevated CO2 and N addition than those in the leaves. Elevated CO2 did not consistently decrease the concentrations of plant mineral elements, with increases in K, Al, Cu and Mn in some tree species. N addition decreased K and had no influence on Cu in the five tree species. Given the shifts in plant mineral elements, Schima superba and Castanopsis hystrix were less responsive to elevated CO2 and N addition alone, respectively. Our results indicate that plant stoichiometry would be altered by increasing CO2 and N deposition, and K would likely become a limiting nutrient under increasing N deposition in subtropics. PMID:25794046

  4. Field Comparison of Passive Air Samplers with Reference Monitors for Ambient Volatile Organic Compounds and Nitrogen Dioxide Under Week-Long Integrals

    EPA Science Inventory

    This study evaluates performance of nitrogen dioxide NO2 and volatile organic compounds (VOC) passive samplers with corresponding reference monitors at two sites in the Detroit, Michigan area during the summer of 2005.

  5. Further studies on the effect of nitrogen dioxide on mast cells: The effect of the metabolite, nitrite

    SciTech Connect

    Fujimaki, Hidekazu ); Ozawa, Masashi ); Bissonnette, E.; Befus, A.D. )

    1993-05-01

    To evaluate the relationship between atmospheric nitrogen dioxide exposure and the development of allergic diseases, the effects of nitrite as a chemical product of inhaled nitrogen dioxide on mast cell functions were investigated. We have studied nitride-induced histamine release from two functionally distinct mast cell populations, namely peritoneal mast cells (PMC) and intestinal mucosal mast cells (IMMC) of Nippostrongylus brasiliensis-infected rats. High concentrations of nitrite alone (10, 20, and 50 mM) induced histamine release from IMMC, but not from PMC. Moreover, histamine release from PMC and IMMC stimulated with sensitizing antigen was significantly enhanced by pretreatment with 50 mM nitrite or nitrate. No differences in histamine release from nitrite-treated and control PMC were seen below 1 mM. To investigate the effect of nitrite on tumor cell cytotoxic activity, PMC were incubated with various concentrations of nitrite. Pretreatment with 5 and 50 mM nitrite markedly depressed tumor necrosis factor (TNF)-[alpha]-dependent natural cytotoxicity of PMC for the tumor target WEHI-164. Thus, high concentrations of nitrite enhanced mast cell histamine release, but depressed TNF-[alpha]-dependent cytotoxicity. However, low concentrations of nitrite (<1 mM) that would normally be produced by short-term atmospheric exposure to nitrogen dioxide may have no significant effects on mast cell functions. 27 refs., 3 figs., 1 tab.

  6. Heterogeneous Atmospheric Chemistry of Lead Oxide Particles with Nitrogen Dioxide Increases Lead Solubility: Environmental and Health Implications

    PubMed Central

    Baltrusaitis, Jonas; Chen, Haihan; Rubasinghege, Gayan

    2012-01-01

    Heterogeneous chemistry of nitrogen dioxide with lead-containing particles is investigated to better understand lead metal mobilization in the environment. In particular, PbO particles, a model lead-containing compound due to its wide spread presence as a component of lead paint and as naturally occurring minerals, massicot and litharge, are exposed to nitrogen dioxide at different relative humidity. X-ray photoelectron spectroscopy (XPS) shows that upon exposure to nitrogen dioxide the surface of PbO particles react to form adsorbed nitrates and lead nitrate thin films with the extent of formation of nitrate relative humidity dependent. Surface adsorbed nitrate increases the amount of dissolved lead. These reacted particles are found to have an increase in the amount of lead that dissolves in aqueous suspensions at circumneutral pH compared to unreacted particles. These results point to the potential importance and impact that heterogeneous chemistry with trace atmospheric gases can have on increasing solubility and therefore the mobilization of heavy metals, such as lead, in the environment. This study also show that surface intermediates, such as adsorbed nitrates, that form can yield higher concentrations of lead in water systems. In the environment, these water systems can include drinking water, ground water, estuaries and lakes. PMID:23057678

  7. Effect of carbon dioxide and nitrogen on the diffusivity of methane confined in nano-porous carbon aerogel

    SciTech Connect

    Mavila Chathoth, Suresh; He, Lilin; Mamontov, Eugene; Melnichenko, Yuri B

    2012-01-01

    The microscopic diffusivity of methane (CH{sub 4}) confined in nano-porous carbon aerogel was investigated as a function of added carbon dioxide (CO{sub 2}) and nitrogen (N{sub 2}) pressure using quasi-elastic neutron scattering (QENS). In the range of the external pressure of 1-2.5 MPa, the self-diffusivity of methane was found to increase with CO{sub 2} pressure and remain practically unchanged in the N{sub 2} environment. Increasing mobility of methane with CO{sub 2} pressure suggests that the adsorbed CH4 molecules become gradually replaced by CO{sub 2} on the surface of carbon aerogel pores, whereas the presence of N{sub 2} does not induce the replacement. The molecular mobility of the methane, with or without added carbon dioxide and nitrogen, is described by the unrestricted diffusion model, which is characteristic of methane compressed in small pores. On the other hand, both nitrogen and carbon dioxide molecules in carbon aerogel, when studied alone, with no methane present, follow a jump diffusion process, characteristic of the molecular mobility in the densified adsorbed layers on the surface of the aerogel pores.

  8. Importance of network density of nanotube: Effect on nitrogen dioxide gas sensing by solid state resistive sensor

    NASA Astrophysics Data System (ADS)

    Mishra, Prabhash; Grachyova, D. V.; Moskalenko, A. S.; Shcherbak, M. A.; Pavelyev, V. S.

    2016-04-01

    Dispersion of single-walled carbon nanotubes (SWCNTs) is an established fact, however, its effect on toxic gas sensing for the development of solid state resistive sensor was not well reported. In this report, the dispersion quality of SWCNTs has been investigated and improved, and this well-dispersed SWCNTs network was used for sensor fabrication to monitor nitrogen dioxide gas. Ultraviolet (UV)-visible spectroscopic studies shows the strength of SWNTs dispersion and scanning electron microscopy (SEM) imaging provides the morphological properties of the sensor device. In this gas sensor device, two sets of resistive type sensors were fabricated that consisting of a pair of interdigitated electrodes (IDEs) using dielectrophoresis technique with different SWCNTs network density. With low-density SWCNTs networks, this fabricated sensor exhibits a high response for nitrogen dioxide sensing. The sensing of nitrogen dioxide is mainly due to charge transfer from absorbed molecules to sidewalls of nanotube and tube-tube screening acting a major role for the transport properties of charge carriers.

  9. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid

    SciTech Connect

    O'Connor, William K.; Dahlin, David C.; Nilsen, David N.; Walters, Richard P.; Turner, Paul C.

    2000-01-01

    The Albany Research Center (ARC) of the U.S. Dept. of Energy (DOE) has been conducting a series of mineral carbonation tests at its Albany, Oregon, facility over the past 2 years as part of a Mineral Carbonation Study Program within the DOE. Other participants in this Program include the Los Alamos National Laboratory, Arizona State University, Science Applications International Corporation, and the DOE National Energy Technology Laboratory. The ARC tests have focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC utilizes a slurry of water mixed with a magnesium silicate mineral, olivine [forsterite end member (Mg2SiO4)], or serpentine [Mg3Si2O5(OH)4]. This slurry is reacted with supercritical carbon dioxide (CO2) to produce magnesite (MgCO3). The CO2 is dissolved in water to form carbonic acid (H2CO3), which dissociates to H+ and HCO3 -. The H+ reacts with the mineral, liberating Mg2+ cations which react with the bicarbonate to form the solid carbonate. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and for this reason, these results may also be applicable to in-situ geological sequestration regimes. Results of the baseline tests, conducted on ground products of the natural minerals, have been encouraging. Tests conducted at ambient temperature (22 C) and subcritical CO2 pressures (below 73 atm) resulted in very slow conversion to the carbonate. However, when elevated temperatures and pressures are utilized, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant reaction occurs within much shorter reaction times. Extent of reaction, as measured by the stoichiometric conversion of the silicate mineral (olivine) to the carbonate, is roughly 90% within 24 hours, using distilled water, and a reaction temperature of 185?C and a partial pressure of CO2 (PCO2) of 115 atm. Recent tests using a bicarbonate solution, under identical reaction

  10. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid

    SciTech Connect

    O'Connor, W.K.; Dahlin, D.C.; Nilsen, D.N.; Walters, R.P.; Turner, P.C.

    2000-07-01

    The Albany Research Center (ARC) of the US Department of Energy (DOE) has been conducting a series of mineral carbonation tests at its Albany, Oregon, facility over the past 2 years as part of a Mineral Carbonation Study Program within the DOE. The ARC tests have focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC utilizes a slurry of water mixed with a magnesium silicate mineral, olivine [forsterite and member (mg{sub 2}SiO{sub 4})], or serpentine [Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}]. This slurry is reacted with supercritical carbon dioxide (CO{sub 2}) to produce magnesite (MgCO{sub 3}). The CO{sub 2} is dissolved in water to form carbonic acid (H{sub 2}CO{sub 3}), which dissociates to H{sup +} and HCO{sub 3}{sup {minus}}. The H{sup +} reacts with the mineral, liberating Mg{sup 2+} cations which react with the bicarbonate to form the solid carbonate. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and for this reason, these results may also be applicable to in-situ geological sequestration regimes. Results of the baseline tests, conducted on ground products of the natural minerals, have been encouraging. Tests conducted at ambient temperature (22 C) and subcritical CO{sub 2} pressures (below 73 atm) resulted in very slow conversion to the carbonate. However, when elevated temperatures and pressures are utilized, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant reaction occurs within much shorter reaction times. Extent of reaction, as measured by the stoichiometric conversion of the silicate mineral (olivine) to the carbonate, is roughly 90% within 24 hours, using distilled water, and a reaction temperature of 185 C and a partial pressure of CO{sub 2} (P{sub CO{sub 2}}) of 115 atm. Recent tests using a bicarbonate solution, under identical reaction conditions, have achieved roughly 83% conversion of heat treated serpentine

  11. Influence of Nitrogen Source, Thiamine, and Light on Biosynthesis of Abscisic Acid by Cercospora rosicola Passerini

    PubMed Central

    Norman, Shirley M.; Maier, Vincent P.; Echols, Linda C.

    1981-01-01

    Abscisic acid production by Cercospora rosicola Passerini in liquid shake culture was measured with different amino acids in combination and singly as nitrogen sources and with different amounts of thiamine in the media. Production of abscisic acid was highest with aspartic acid-glutamic acid and aspartic acid-glutamic acid-serine mixtures as nitrogen sources. Single amino acids that supported the highest production of abscisic acid were asparagine and monosodium glutamate. Thiamine was important for abscisic acid production. Leucine inhibited abscisic acid production. C. rosicola produced abscisic acid in the dark, but production more than doubled in the presence of light. PMID:16345761

  12. Investigation of the Nitrogen Dioxide Pollution in Urban Areas using a New Portable ICAD Instrument

    NASA Astrophysics Data System (ADS)

    Horbanski, Martin; Pöhler, Denis; Adler, Tim; Lampel, Johannes; Kanatschnig, Florian; Oesterle, Tobias; Reh, Miriam; Platt, Ulrich

    2016-04-01

    Nitrogen oxides (NOx) and especially nitrogen dioxide (NO2), are still among of the most problematic pollutants in urban areas not only in developing, but also in industrialized countries. Despite the measures taken to reduce their emissions, NO2 concentrations in many urban areas exceed the WHO recommended limits of 40 μg/m3 for annual mean and 200 μg/m3 for 1 hour mean. Additionally it is known that the NO2 concentration in urban areas has a strong spatial and temporal variability, due to the large number of NOx emitting point sources (mainly traffic) found in densely populated areas. However, the layout of air monitoring networks in most urban areas, installed to continuously monitor the officially prescribed NO2 limits, does not reflect the high spatial variability because they only conduct measurements at a single or few selected sampling points, mainly on major roads, which are often not representative for the whole urban area. At present these uncertainties about the spatial NO2 distribution constitute severe limitations for the assessment of health risks, for the quality of chemical model calculations, and for developing effective measures to reduce NOx emissions. We developed a new light-weight and portable ICAD (Iterative Cavity Enhanced DOAS) instrument which detects NO2 at a detection limit as low as 0.2 μg/m3 with a high time resolution of seconds. The instrument is based on the Cavity Enhanced (CE-) DOAS technique, which directly identifies and quantifies NO2 by its differential optical absorption. Therefore, it does not suffer from interferences by other trace gas species like O3 or NOy. This is a great advantage over other NO2 instruments (e.g. solid state detectors or chemiluminescence instruments). We present the result of ICAD NO2 measurements, which we recently performed in more than 10 German cities. The ICAD instrument was mounted on mobile platforms like cars and bicycles, measuring the NO2 concentrations along carefully selected tracks

  13. Ambient fine particulate matter, nitrogen dioxide, and hypertensive disorders of pregnancy in New York City

    PubMed Central

    Savitz, David A.; Elston, Beth; Bobb, Jennifer F.; Clougherty, Jane E.; Dominici, Francesca; Ito, Kazuhiko; Johnson, Sarah; McAlexander, Tara; Ross, Zev; Shmool, Jessie L.C.; Matte, Thomas D.; Wellenius, Gregory A.

    2016-01-01

    BACKGROUND Previous studies suggested a possible association between fine particulate matter air pollution (PM2.5) and nitrogen dioxide (NO2) and the development of hypertensive disorders of pregnancy, but effect sizes have been small and methodologic weaknesses preclude firm conclusions. METHODS We linked birth certificates in New York City in 2008-2010 to hospital discharge diagnoses and estimated air pollution exposure based on maternal address. The New York City Community Air Survey provided refined estimates of PM2.5 and NO2 at the maternal residence. We estimated the association between exposures to PM2.5 and NO2 in the first and second trimester and risk of gestational hypertension, mild preeclampsia, and severe preeclampsia among 268,601 births. RESULTS In unadjusted analyses, we found evidence of a positive association between both pollutants and gestational hypertension. However, after adjustment for individual covariates, socioeconomic deprivation, and delivery hospital, we did not find evidence of an association between PM2.5 or NO2 in the first or second trimester and any of the outcomes. CONCLUSIONS Our data did not provide clear evidence of an effect of ambient air pollution on hypertensive disorders of pregnancy. Results need to be interpreted with caution considering the quality of the available exposure and health outcome measures and the uncertain impact of adjusting for hospital. Relative to previous studies, which have tended to identify positive associations with PM2.5 and NO2, our large study size, refined air pollution exposure estimates, hospital-based disease ascertainment, and little risk of confounding by socioeconomic deprivation, does not provide evidence for an association. PMID:26237745

  14. Stratospheric nitrogen dioxide in Antarctic regions from ground based and satellite observations during 2001

    NASA Astrophysics Data System (ADS)

    Bortoli, Daniele; Giovanelli, Giorgio; Ravegnani, Fabrizio; Kostadinov, Ivan K.; Petritoli, Andrea; Calzolari, Francescopiero; Costa, Maria J.; Silva, Ana M.

    2003-04-01

    The application of Differential Optical Absorption Spectroscopy (DOAS) methodology to the zenith scattered light data collected with the GASCOD spectrometer developed at the ISAC Institute allow for the detection of stratospheric trace gases involved in the ozone cycle such as NO2, OClO, BrO. The instrument was installed in December 1995 in the Italian Antarctic station at Terra Nova Bay (74°26'S, 164°03E', Ross Sea), after several tests both in laboratory and in Antarctic region, for unattended and continuous measurement in extreme high-latitude environment. The GASCOD is still working and producing very interesting data for the study of the denitrification processes during the formation of the so-called ozone hole over the Antarctic region. For the continuous NO2 monitoring for whole the year, also during winter when the station is unmanned, the [407 - 460] nm spectral region is investigated. The results for Nitrogen Dioxide, obtained by application of DOAS algorithms to the data recorded during the year 2001, are presented. ERS-2 was launched in April 1995 into a near-polar sun-synchronous orbit at a mean altitude of 795 km. The descending node crosses the equator at 10:30 local time. GOME is a nadir-scanning double monochromator covering the 237 nm to 794 nm wavelength range with a spectral resolution of 0.17-0.33 nm. The spectrum is split into four spectral channels, each recorded quasi-simultaneously by a 1024-pixel photodiode array. The global spatial coverage is obtained within 3 days at the equator by a 960 km across-track swath (4.5 s forward scan, 1.5 s back scan). The ground pixel size of the measurements is 320 X 40 km2. A comparison of GASCOD and GOME results for NO2 total column is performed.

  15. Recent satellite-based trends of tropospheric nitrogen dioxide over large urban agglomerations worldwide

    NASA Astrophysics Data System (ADS)

    Schneider, P.; Lahoz, W. A.; van der A, R.

    2014-09-01

    Trends in tropospheric nitrogen dioxide (NO2) concentrations over 66 large urban agglomerations worldwide have been computed using data from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument onboard the Envisat platform for the period August 2002 to March 2012. A seasonal model including a linear trend was fitted to the satellite-based time series over each site. The results indicate distinct spatial patterns in trends. While agglomerations in Europe, North America, and some locations in East Asia/Oceania show decreasing tropospheric NO2 levels on the order of -5 % yr-1, rapidly increasing levels of tropospheric NO2 are found for agglomerations in large parts of Asia, Africa, and South America. The site with the most rapidly increasing absolute levels of tropospheric NO2 was found to be Tianjin in China with a trend value of 3.04 (±0.47) × 1015 molecules cm-2 yr-1, whereas the site with the most rapidly increasing relative trend was Kabul in Afghanistan with 14.3 (±2.2) % yr-1. In total, 34 sites exhibited increasing trends of tropospheric NO2 throughout the study period, 24 of which were found to be statistically significant. A total of 32 sites showed decreasing levels of tropospheric NO2 during the study period, of which 20 sites did so at statistically significant magnitudes. Overall, going beyond the relatively small set of megacities investigated previously, this study provides the first consistent analysis of recent changes in tropospheric NO2 levels over most large urban agglomerations worldwide.

  16. Recent satellite-based trends of tropospheric nitrogen dioxide over large urban agglomerations worldwide

    NASA Astrophysics Data System (ADS)

    Schneider, P.; Lahoz, W. A.; van der A, R.

    2015-02-01

    Trends in tropospheric nitrogen dioxide (NO2) columns over 66 large urban agglomerations worldwide have been computed using data from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument onboard the Envisat platform for the period August 2002 to March 2012. A seasonal model including a~linear trend was fitted to the satellite-based time series over each site. The results indicate distinct spatial patterns in trends. While agglomerations in Europe, North America, and some locations in East Asia/Oceania show decreasing tropospheric NO2 levels on the order of -5% yr-1, rapidly increasing levels of tropospheric NO2 are found for agglomerations in large parts of Asia, Africa, and South America. The site with the most rapidly increasing absolute levels of tropospheric NO2 was found to be Tianjin in China with a trend of 3.04 (±0.47) × 1015 molecules cm-2yr-1, whereas the site with the most rapidly increasing relative trend was Kabul in Afghanistan with 14.3 (±2.2) % yr-1. In total, 34 sites exhibited increasing trends of tropospheric NO2 throughout the study period, 24 of which were found to be statistically significant. A total of 32 sites showed decreasing levels of tropospheric NO2 during the study period, of which 20 sites did so at statistically significant magnitudes. Overall, going beyond the relatively small set of megacities investigated previously, this study provides the first consistent analysis of recent changes in tropospheric NO2 levels over most large urban agglomerations worldwide, and indicates that changes in urban NO2 levels are subject to substantial regional differences as well as influenced by economic and demographic factors.

  17. Sources of variation for indoor nitrogen dioxide in rural residences of Ethiopia

    PubMed Central

    2009-01-01

    Background Unprocessed biomass fuel is the primary source of indoor air pollution (IAP) in developing countries. The use of biomass fuel has been linked with acute respiratory infections. This study assesses sources of variations associated with the level of indoor nitrogen dioxide (NO2). Materials and methods This study examines household factors affecting the level of indoor pollution by measuring NO2. Repeated measurements of NO2 were made using a passive diffusive sampler. A Saltzman colorimetric method using a spectrometer calibrated at 540 nm was employed to analyze the mass of NO2 on the collection filter that was then subjected to a mass transfer equation to calculate the level of NO2 for the 24 hours of sampling duration. Structured questionnaire was used to collect data on fuel use characteristics. Data entry and cleaning was done in EPI INFO version 6.04, while data was analyzed using SPSS version 15.0. Analysis of variance, multiple linear regression and linear mixed model were used to isolate determining factors contributing to the variation of NO2 concentration. Results A total of 17,215 air samples were fully analyzed during the study period. Wood and crop were principal source of household energy. Biomass fuel characteristics were strongly related to indoor NO2 concentration in one-way analysis of variance. There was variation in repeated measurements of indoor NO2 over time. In a linear mixed model regression analysis, highland setting, wet season, cooking, use of fire events at least twice a day, frequency of cooked food items, and interaction between ecology and season were predictors of indoor NO2 concentration. The volume of the housing unit and the presence of kitchen showed little relevance in the level of NO2 concentration. Conclusion Agro-ecology, season, purpose of fire events, frequency of fire activities, frequency of cooking and physical conditions of housing are predictors of NO2 concentration. Improved kitchen conditions and

  18. The effect of nitrogen dioxide on particle formation during ozonolysis of two abundant monoterpenes indoors

    NASA Astrophysics Data System (ADS)

    Nøjgaard, Jacob Klenø; Bilde, Merete; Stenby, Charlotte; Nielsen, Ole John; Wolkoff, Peder

    The effect of the nitrogen dioxide (NO 2) concentration on particle formation during ozonolysis of two abundant monoterpenes indoors, α-pinene and d-limonene, was studied in dry air in 1000 l Tedlar bags at 21±2 °C and ambient pressure. Particle size distributions were measured during 1 h after the reaction was initiated. In mixtures of 50 parts per billion volume (ppbv) of monoterpene and 50 ppbv of ozone (O 3), d-limonene produced about five times as many particles (10-350 nm) as α-pinene after 60 min. The presence of NO 2 introduced an additional loss term for O 3, resulting in formation of the nitrate radical. This affected particle formation, since the nucleation potential of NO 3 is much lower than O 3. Modeling showed that the observed decrease in particle concentration from d-limonene/O 3/NO 2 mixtures was likely to be ascribed to the O 3/NO 2 reaction at NO 2 concentrations <150 ppb, above which unknown mechanisms additionally reduced the particle formation. In similar experiments with α-pinene, the particle concentration and volume were substantially reduced in the presence of NO 2, e.g. 162 ppbv NO 2 reduced the particle number concentration by a factor of 10. In addition, the detection of particle formation was delayed as the NO 2 concentration increased, but the additional loss of O 3 in the O 3/NO 2 reaction could not explain the observation. The particle mode progressively increased with the NO 2 concentration for both monoterpenes. Oxidation of d-limonene may be highly relevant for new particle formation in indoor air, whereas ozonolysis products of α-pinene seem less likely to nucleate in indoor environments.

  19. Fine particulate air pollution, nitrogen dioxide, and systemic autoimmune rheumatic disease in Calgary, Alberta

    PubMed Central

    Bernatsky, Sasha; Smargiassi, Audrey; Johnson, Markey; Kaplan, Gilaad G.; Barnabe, Cheryl; Svenson, Larry; Brand, Allan; Bertazzon, Stefania; Hudson, Marie; Clarke, Ann E; Fortin, Paul; Edworthy, Steven; Bélisle, Patrick; Joseph, Lawrence

    2015-01-01

    Objective To estimate the association between fine particulate (PM2.5) and nitrogen dioxide (NO2) pollution and systemic autoimmune rheumatic diseases (SARDs). Methods Associations between ambient air pollution (PM2.5 and NO2) and SARDs were assessed using land-use regression models for Calgary, Alberta and administrative health data (1993-2007). SARD case definitions were based on ≥2 physician claims, or ≥1 rheumatology billing code; or ≥1 hospitalization code (for systemic lupus, Sjogren's Syndrome, scleroderma, polymyositis, dermatomyositis, or undifferentiated connective tissue disease). Bayesian hierarchical latent class regression models estimated the probability that each resident was a SARD case, based on these case definitions. The sum of individual level probabilities provided the estimated number of cases in each area. The latent class model included terms for age, sex, and an interaction term between age and sex. Bayesian logistic regression models were used to generate adjusted odds ratios (OR) for NO2 and PM2.5. pollutant models, adjusting for neighborhood income, age, sex, and an interaction between age and sex. We also examined models stratified for First-Nations (FN) and non-FN subgroups. Results Residents that were female and/or aged > 45 had a greater probability of being a SARD case, with the highest OR estimates for older females. Independently, the odds of being a SARDs case increased with PM2.5 levels, but the results were inconclusive for NO2. The results stratified by FN and Non-FN groups were not distinctly different. Conclusion In this urban Canadian sample, adjusting for demographics, exposure to PM2.5 was associated with an increased risk of SARDs. The results for NO2 were inconclusive. PMID:25988990

  20. Effects of nitrogen dioxide exposure on pulmonary function and airway reactivity in normal humans.

    PubMed

    Frampton, M W; Morrow, P E; Cox, C; Gibb, F R; Speers, D M; Utell, M J

    1991-03-01

    Nitrogen dioxide (NO2) is a product of combustion that has become recognized as a significant component of indoor air in some homes. Despite extensive study, it remains unresolved whether exposures to low levels of NO2 affect airway function or reactivity. These studies were designed to assess effects of various levels and patterns of NO2 exposure on pulmonary function and airway reactivity in normal humans. Normal volunteers screened for the absence of airway hyperreactivity were exposed for 3 h in an environmental chamber to purified air or NO2, separated by at least 2 wk, according to three protocols: (1) continuous 0.60 ppm NO2, (2) baseline 0.05 ppm NO2 with intermittent peaks of 2.0 ppm, and (3) continuous 1.5 ppm NO2. Subjects exercised for 10 min of each 30 min at a level sufficient to result in a minute ventilation near 40 L/min. Pulmonary function was measured before, during, and after exposure. Airway reactivity to increasing doses of carbachol was assessed 30 min after exposure. NO2 did not directly alter pulmonary function in any of the exposure protocols. In addition, airway reactivity was not altered by continuous exposure to 0.60 ppm or intermittent peaks of 2.0 ppm NO2. In contrast, continuous exposure to 1.5 ppm NO2 resulted in a greater fall in FVC and FEV1 in response to carbachol than after exposure to air (percent decrease in FVC: 1.5% after air, 3.9% after NO2, p less than 0.01). We conclude that for subjects without airway hyperreactivity, exposure to 1.5 ppm NO2 for 3 h increases airway reactivity, whereas repeated 15-min exposures to 2.0 ppm NO2 do not alter airway reactivity. PMID:2001061

  1. Laboratory study of asthmatic volunteers exposed to nitrogen dioxide and to ambient air pollution

    SciTech Connect

    Avol, E.L.; Linn, W.S.; Peng, R.C.; Valencia, G.; Little, D.; Hackney, J.D.

    1988-04-01

    Adult volunteers with moderate to severe asthma (N = 59) underwent dose-response studies to assess their reactivity to nitrogen dioxide (NO/sub 2/) in otherwise clean air. Exposure concentrations were 0.0 (control), 0.3 and 0.6 ppm. A subgroup (N = 36) also underwent exposures to Los Angeles area ambient air at times when NO/sub 2/ pollution was expected. Concentrations of NO/sub 2/ during ambient exposures were 0.086 +/- 0.024 ppm (mean +/- s.d.). All exposures took place in a movable chamber/laboratory facility. Each study lasted 2 hr, with alternating 10 min periods of exercise (mean ventilation rate 40 L/min) and rest. Lung function was measured prior to exposure and after 10 min, 1 hr and 2 hr of exposure. Symptoms were recorded prior to exposure, during exposure and for 1 week afterward. In some subjects bronchial reactivity to cold air was measured 1 hr after the end of exposure and again 24 hr later. Different exposure conditions were presented in randomized order, 1 week apart. No pollutant exposure produced statistically significant changes in lung function, symptoms, or bronchial reactivity, relative to clean air. Ambient air exposures produced the largest (still nonsignificant) mean changes in some lung function tests. Given the physiological and atmospheric variability, negative statistical results do not rule out a small unfavorable effect of ambient pollution on lung function. If any such effect occurred, it was not likely caused by NO/sub 2/. Statistical results remained negative when the analysis was restricted to the 20 subjects with most severe lung dysfunction. In conclusion at least in the Los Angeles area, sensitivity to ambient concentrations of NO/sub 2/ is not common, even among adult asthmatics with moderate to severe disease.

  2. Nitrogen Dioxide and Allergic Sensitization in the 2005–2006 National Health and Nutrition Examination Survey

    PubMed Central

    Weir, Charles H.; Yeatts, Karin B.; Sarnat, Jeremy A.; Vizuete, William; Salo, Päivi M.; Jaramillo, Renee; Cohn, Richard D.; Chu, Haitao; Zeldin, Darryl C.; London, Stephanie J.

    2014-01-01

    Background Allergic sensitization is a risk factor for asthma and allergic diseases. The relationship between ambient air pollution and allergic sensitization is unclear. Objective To investigate the relationship between ambient air pollution and allergic sensitization in a nationally representative sample of the US population. Methods We linked annual average concentrations of nitrogen dioxide (NO2), particulate matter ≤ 10 µm (PM10), particulate matter ≤ 2.5 µm (PM25), and summer concentrations of ozone (O3), to allergen-specific immunoglobulin E (IgE) data for participants in the 2005–2006 National Health and Nutrition Examination Survey (NHANES). In addition to the monitor-based air pollution estimates, we used the Community Multiscale Air Quality (CMAQ) model to increase the representation of rural participants in our sample. Logistic regression with population-based sampling weights was used to calculate adjusted prevalence odds ratios per 10 ppb increase in O3 and NO2, per 10 µg/m3 increase in PM10, and per 5 µg/m3 increase in PM2.5 adjusting for race, gender, age, socioeconomic status, smoking, and urban/rural status. Results Using CMAQ data, increased levels of NO2 were associated with positive IgE to any (OR 1.15, 95% CI 1.04, 1.27), inhalant (OR 1.17, 95% CI 1.02, 1.33), and outdoor (OR 1.16, 95% CI 1.03, 1.31) allergens. Higher PM2.5 levels were associated with positivity to indoor allergen-specific IgE (OR 1.24, 95% CI 1.13, 1.36). Effect estimates were similar using monitored data. Conclusions Increased ambient NO2 was consistently associated with increased prevalence of allergic sensitization. PMID:24045117

  3. Associations between daily mortality in London and combined oxidant capacity, ozone and nitrogen dioxide.

    PubMed

    Williams, M L; Atkinson, R W; Anderson, H R; Kelly, F J

    2014-01-01

    Both nitrogen dioxide (NO2) and ozone (O3) are powerful oxidants in ambient air that are intimately linked through atmospheric chemistry and which continuously interchange over very short timescales. Based upon atmospheric chemistry alone, there is a strong, a priori, reason for considering O3 and NO2 together in epidemiological studies, rather than either of the two pollutants separately in single-pollutant models. This paper compares two approaches to this, using Ox, defined as O3 + NO2, as a single metric and also using O3 and NO2 together in two-pollutant models. We hypothesised that the magnitude of the association between Ox and daily mortality would be greater than for NO2 and O3 individually. Using collocated hourly measurements for O3 and NO2 in London, from 2000 to 2005, we carried out a time series analysis of daily mortality. We investigated O3, NO2 and Ox individually in single-pollutant Poisson regression models and NO2 and O3 jointly in two-pollutant models in both all-year and season-specific analyses. We observed larger associations for mean 24-h concentrations of Ox (1.30 % increase in mortality per 10 ppb) than for O3 (0.87 %) and NO2 (0 %) individually. However, when analysed jointly in two-pollutant models, associations for O3 (1.54 %) and NO2 (1.07 %) were comparable to the Ox association. Season-specific analyses broadly followed this pattern irrespective of whether the Ox concentrations were driven by O3 production (summer) or depletion (winter). This novel approach in air pollution epidemiology captures the simultaneous impact of both oxidants whilst avoiding many of the statistical issues associated with two-pollutant models and potentially simplifies health impact calculations. PMID:25431629

  4. Effects of nitrogen dioxide on respiratory tract clearance in the ferret

    SciTech Connect

    Rasmussen, R.E.; Mannix, R.C.; Oldham, M.J.; Phalen, R.F. )

    1994-01-01

    During growth and development, young children are periodically exposed to relatively high concentrations of various air contaminants, including tobacco smoke and environmental pollutants generated by fossil fuel use. The effects of these exposures on respiratory function and lung development are difficult to determine because of interindividual variation and lack of accurate dosimetry. To provide information on the effects of chronic exposure to a common indoor and outdoor pollutant during lung development, a study was performed to assess the effects of exposure to two concentrations of nitrogen dioxide (NO[sub 2]; 0.5 or 10 ppm) on tracer particle clearance from the airways of ferrets exposed during postnatal respiratory tract development. Separate groups of ferrets were exposed nose-only to the test atmospheres or clean air 4 h/d, 5 d/wk, for either 8 or 15 wk. Those animals exposed for 8 wk were subsequently housed in a filtered air environment until the particle clearance measurements commenced at 3 wk prior to the end of the 15-wk exposure protocol. Radiolabeled ([sup 51]Cr) tracer particles were deposited in the respiratory tract of all animals by inhalation, and the clearance rates from the head and thoracic regions were separately monitored for 18 d. No significant effects of the NO[sub 2] exposure on head airways clearance were seen. In contrast, the rates of particle clearance from the thorax of both the 8- and 15-wk groups exposed to 10 ppm NO[sub 2] were significantly reduced, and did not differ from each other. Thoracic clearance was also reduced in animals exposed to 0.5 ppm, but the rate was not significantly different from that of the clean air exposed controls. These results show that NO[sub 2] at moderate concentrations caused highly significant changes in the deep lung of the juvenile ferret, and suggest that impairment of the clearance function may be only slowly recovered after chronic exposure. 35 refs., 1 fig., 1 tab.

  5. Combined nitrogen oxides/sulfur dioxide control in dry scrubber systems

    SciTech Connect

    Harkness, J. B.L.; Gorski, A. J.; Huang, H. S.

    1989-02-01

    Argonne National Laboratory (ANL) is investigating alternative control concepts that involve modifying existing SO{sub 2}-removal processes and sorbents, with the objective of achieving simultaneous removal of nitrogen oxides (NO{sub x}) and sulfur dioxide (SO{sub 2}). Laboratory-scale research conducted using a fixed-bed reactor and a spray-dryer/fabric-filter system has been paralleled by field tests at ANL's commercial-scale (20-MW electric equivalent) dry scrubber. In the fixed-bed experiments, a range of chemical reagents was surveyed, and the best-performing additives were studied in detail. Sodium chloride, sodium bisulfite, sodium hydroxide, and Fe(II)*EDTA were found to increase both NO{sub x} and SO{sub 2} removals; the additives did not appear to increase NO{sub x} removal directly, but they interacted strongly with the other primary variables to improve sorbent performance. The laboratory spray-dryer system was used to study the effects on combined NO{sub x}/SO{sub 2} removal of the best-performing fixed-bed additives and certain process modifications. The tests showed that sodium chloride increased NO{sub x} removal at all temperatures; sodium bisulfite was generally less effective, and calcium chloride was effective only at 65{degree}C. Up to 80{degree}C, all three additives significantly improved SO{sub 2} removal, but improvement ceased at higher temperatures. This report discusses the experimental results in terms of the effects the additives and principal process variables had on NO{sub x} and SO{sub 2} removals and the mechanistic implications. 14 refs., 74 figs., 33 tabs.

  6. Subacute effects of nitrogen dioxide on membrane constituents of lung, liver, and kidney of rats

    SciTech Connect

    Takahashi, Y.; Mochitate, K.; Miura, T.

    1986-10-01

    Male Wistar rats were exposed to 0.4, 1.2, and 4.0 ppm nitrogen dioxide (NO/sub 2/) for up to 14 weeks to examine subacute effects of NO/sub 2/ on membrane constituents of lung, liver, and kidney. In the lung, cytochrome P-450 decreased to 59% and 57% of the control values after 1 and 10 weeks of exposure to 4.0 ppm NO/sub 2/, respectively, and remained at control levels at other exposure periods. The activity of succinate-cytochrome c reductase also decreased to 75% of the control values after 2, 4, and 14 weeks of exposure to 4.0 ppm NO/sub 2/, respectively. Exposures to 0.4 and 1.2 ppm NO/sub 2/ resulted in similar patterns of alterations in these enzymes. In the liver, cytochrome P-450 decreased to 72%, 70%, and 73% of the control values after 1, 5, and 8 weeks of exposure to 4.0 ppm NO/sub 2/, respectively and remained at control levels at other exposure periods. The activity of NADPH-cytochrome P-450 reductase also decreased in a fashion similar to cytochrome P-450. Exposures to 0.4 and 1.2 ppm NO/sub 2/ resulted in similar patterns of alterations in these enzymes. In addition, cytochrome b/sub 5/ showed a reduced value between 5 and 12 weeks of exposures to 1.2 and 4.0 ppm NO/sub 2/ and then recovered. In the kidney, all components of the microsomal electron-transport systems increased during 12-week exposures to 1.2 and 4.0 ppm NO/sub 2/.

  7. Signature of tropospheric ozone and nitrogen dioxide from space: A case study for Athens, Greece

    NASA Astrophysics Data System (ADS)

    Varotsos, C.; Christodoulakis, J.; Tzanis, C.; Cracknell, A. P.

    2014-06-01

    The aim of the present study is to investigate the variability of the tropospheric ozone and nitrogen dioxide (NO2) columns over mainland Greece, by using observations carried out by satellite-borne instrumentation and Multi Sensor Reanalysis. The results obtained show that the tropospheric ozone residual (TOR) dispersed farther away than the tropospheric NO2 column (TNO), due to the longer TOR's lifetime in respect to that of TNO. This results in the influence of the air quality of the nearby southern islands from the air pollution of the greater Athens basin. Furthermore, the TOR and TNO columns over Athens, for the period October 2004 to December 2011 were found to be negatively correlated with a correlation coefficient -0.85, in contrast to recent findings which suggested strong positive correlation. Interestingly, this strong negative correlation into a slight positive correlation when the TNO concentration becomes higher than around 4 × 1015 molec cm-2, thus being best fitted by a quadratic relationship. In addition, the temporal evolution of TOR during 1979-1993 showed a decline of 0.2% per decade and just after 1993 it seems to obey a positive trend of 0.1% per decade, thus recovering during the period 1993-2011 almost 63% of the lost TOR amounts through the years 1979-1993. Finally, the association between TOR, the total ozone column (TOZ), the tropopause height and the outgoing longwave radiation (OLR) is presented by analysing observations during 1979-2011. An unexpected positive correlation between OLR and TOR was found, which may probably be attributed to the fact that enhanced abundance in tropospheric water vapor reduces the summertime TOR maximum by destructing ozone in the lower and middle troposphere through uptake mechanisms, thus emitting higher amounts of longwave radiation upwards.

  8. Recent advances in nitrogen-fixing acetic acid bacteria.

    PubMed

    Pedraza, Raúl O

    2008-06-30

    Nitrogen is an essential plant nutrient, widely applied as N-fertilizer to improve yield of agriculturally important crops. An interesting alternative to avoid or reduce the use of N-fertilizers could be the exploitation of plant growth-promoting bacteria (PGPB), capable of enhancing growth and yield of many plant species, several of agronomic and ecological significance. PGPB belong to diverse genera, including Azospirillum, Azotobacter, Herbaspirillum, Bacillus, Burkholderia, Pseudomonas, Rhizobium, and Gluconacetobacter, among others. They are capable of promoting plant growth through different mechanisms including (in some cases), the biological nitrogen fixation (BNF), the enzymatic reduction of the atmospheric dinitrogen (N(2)) to ammonia, catalyzed by nitrogenase. Aerobic bacteria able to oxidize ethanol to acetic acid in neutral or acid media are candidates of belonging to the family Acetobacteraceae. At present, this family has been divided into ten genera: Acetobacter, Gluconacetobacter, Gluconobacter, Acidomonas, Asaia, Kozakia, Saccharibacter, Swaminathania, Neoasaia, and Granulibacter. Among them, only three genera include N(2)-fixing species: Gluconacetobacter, Swaminathania and Acetobacter. The first N(2)-fixing acetic acid bacterium (AAB) was described in Brazil. It was found inside tissues of the sugarcane plant, and first named as Acetobacter diazotrophicus, but then renamed as Gluconacetobacter diazotrophicus. Later, two new species within the genus Gluconacetobacter, associated to coffee plants, were described in Mexico: G. johannae and G. azotocaptans. A salt-tolerant bacterium named Swaminathania salitolerans was found associated to wild rice plants. Recently, N(2)-fixing Acetobacter peroxydans and Acetobacter nitrogenifigens, associated with rice plants and Kombucha tea, respectively, were described in India. In this paper, recent advances involving nitrogen-fixing AAB are presented. Their natural habitats, physiological and genetic aspects

  9. The Effects of Nitrogen Enrichment and a Simulated Rainfall Event on Soil Carbon Dioxide Efflux in an Annual California Grassland

    NASA Astrophysics Data System (ADS)

    Johnson, T. P.; Strong, A. L.; Chiariello, N.; Field, C. B.

    2013-12-01

    Soils contain the largest pool of carbon in terrestrial ecosystems and play a critical role in the global carbon cycle. Previous studies have shown that enhanced precipitation (projected by climate models) and human activities (such as increased fertilizer use) may alter this cycle by enhancing soil microbial activity, although effects are often variable. Soils in semi-arid grasslands play a vital role in the global carbon cycle and may be responsive to environmental perturbations. Previous studies have demonstrated that wet-up treatments positively influence soil carbon dioxide efflux rates, which are otherwise low during dry summers. A preliminary study performed in a semi-arid annual grassland has shown that long-term nitrogen enrichment (equivalent to 70kg N per hectare) positively influences soil carbon dioxide efflux during peak biomass in the wet season. However, the combined effect and seasonal dynamics of these environmental changes is poorly understood. In order to assess this interaction, we explore the short-term response of soil carbon dioxide efflux rates in a semi-arid grassland to a combination of long-term nitrogen enrichment and a simulated 20-mm rainfall event in the Jasper Ridge Global Change Experiment (JRCGE), a long-term, multi-factorial experiment in a semi-arid annual grassland located in the foothills of the Santa Cruz mountains in central California. We measured soil carbon dioxide efflux rates from pre-installed soil respiration collars for forty-eight hours after a simulated rainfall event (20mm) during the dry season in late July 2013. Both the enhanced and non-enhanced nitrogen treatments had an immediate pronounced response to the wet-up stimulation in which efflux rates increased by an average of more than six-fold. In contrast with previous studies of soil carbon dioxide efflux at JRGCE during the wet season in which N enrichment elevated efflux rates relative to controls, however, the soil carbon dioxide efflux rates in response

  10. Evaluation of a chlorous acid-chlorine dioxide teat dip under experimental and natural exposure conditions.

    PubMed

    Drechsler, P A; Wildman, E E; Pankey, J W

    1990-08-01

    A postmilking teat dip containing chlorous acid-chlorine dioxide was evaluated by experimental challenge and in two herds under natural exposure. The test product had an efficacy of 78.9% against Staphylococcus aureus and 52.5% against Streptococcus agalactiae in the experimental challenge trial. The product was compared with a 1% iodine product in a 15-mo natural exposure study. Post-dipping with chlorous acid-chlorine dioxide reduced incidence of udder infection by major mastitis pathogens 36.1% when data were combined from the two herds. The 1% iodine and the chlorous acid-chlorine dioxide products were not equivalent for major mastitis pathogens; the test product was more effective. Incidence of udder infection by environmental mastitis pathogens was reduced 36.8% in both herds combined. Efficacy of the two teat dips was equivalent for environmental pathogens. PMID:2229601

  11. Powder containing 2H-type silicon carbide produced by reacting silicon dioxide and carbon powder in nitrogen atmosphere in the presence of aluminum

    NASA Technical Reports Server (NTRS)

    Kuramoto, N.; Takiguchi, H.

    1984-01-01

    The production of powder which contains silicon carbide consisting of 40% of 2H-type silicon carbide, beta type silicon carbide and less than 3% of nitrogen is discussed. The reaction temperature to produce the powder containing 40% of 2H-type silicon carbide is set at above 1550 degrees C in an atmosphere of aluminum or aluminum compounds and nitrogen gas or an antioxidation atmosphere containing nitrogen gas. The mixture ratio of silicon dioxide and carbon powder is 0.55 - 1:2.0 and the contents of aluminum or aluminum compounds within silicon dioxide is less than 3% in weight.

  12. Adsorption of carbon dioxide, methane and nitrogen on an ultramicroporous copper metal-organic framework.

    PubMed

    Wu, Xiaofei; Yuan, Bin; Bao, Zongbi; Deng, Shuguang

    2014-09-15

    An ultramicroporous copper metal-organic framework (Cu-MOF), Cu(hfipbb)(H2hfipbb)0.5 [H2hfipbb=4,4'-(hexafluoro-isopropylidene) bis(benzoic acid)] was successfully synthesized by a microwave-assisted method (1) with a shorter reaction time and higher MOFs yield. The obtained Cu-MOF sample was characterized with scanning electron microscopy for crystal structure, powder X-ray diffraction for phase structure, and carbon dioxide adsorption at 273 K for pore textural properties. Single-component adsorption (adsorption equilibrium and kinetics) of CO2, CH4, and N2 on 1 was measured using a Micromeritics ASAP 2020 adsorption porosimeter at 278, 298 and 318 K, and pressures up to 1 bar. Isosteric heats of adsorption, Henry's constants, and diffusion time constants were calculated and carefully analyzed. Adsorption equilibrium selectivity (α), adsorbent selection parameter for pressure swing adsorption processes (S), kinetic selectivity and combined separation selectivity (β) for CO2/CH4, CO2/N2 and CH4/N2 binary mixtures were estimated based on the single-component adsorption data. The relative high values of the adsorption selectivities suggest that Cu-MOF is a promising adsorbent for separating CO2/CH4, CO2/N2 and CH4/N2 gas pairs. PMID:24998057

  13. The impact of titanium dioxide nanoparticles on biological nitrogen removal from wastewater and bacterial community shifts in activated sludge.

    PubMed

    Li, Dapeng; Cui, Fuyi; Zhao, Zhiwei; Liu, Dongmei; Xu, Yongpeng; Li, Huiting; Yang, Xiaonan

    2014-04-01

    The potential impact of titanium dioxide nanoparticles (TiO2 NPs) on nitrogen removal from wastewater in activated sludge was investigated using a sequencing batch reactor. The addition of 2-50 mg L(-1) of TiO2 NPs did not adversely affect nitrogen removal. However, when the activated sludge was exposed to 100-200 mg L(-1) of TiO2 NPs, the effluent total nitrogen removal efficiencies were 36.5 % and 20.3 %, respectively, which are markedly lower than the values observed in the control test (80 %). Further studies showed that the decrease in biological nitrogen removal induced by higher concentrations of TiO2 NPs was due to an inhibitory effect on the de-nitrification process. Denaturing gradient gel electrophoresis profiles showed that 200 mg L(-1) of TiO2 NPs significantly reduced microbial diversity in the activated sludge. The effect of light on the antibacterial activity of TiO2 NPs was also investigated, and the results showed that the levels of TiO2-dependent inhibition of biological nitrogen removal were similar under both dark and light conditions. Additional studies revealed that different TiO2 concentrations had a significant effect on dehydrogenase activity, and this effect was most likely the result of decreased microbial activity. PMID:23660752

  14. DIRECT VERSES SEQUENTIAL ANALYSIS OF ACID-DETERGENT INSOLUBLE NITROGEN IN FORAGE LEGUME HAYS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acid-detergent insoluble nitrogen (ADIN) is thought to represent nitrogen that is not degraded during ruminal and post-ruminal digestion of forages by cattle. Forage ADIN can be determined following direct acid detergent extraction or following sequential extraction with neutral and acid detergents....

  15. Citizen science identifies the effects of nitrogen dioxide and other environmental drivers on tar spot of sycamore.

    PubMed

    Gosling, Laura; Ashmore, Mike; Sparks, Tim; Bell, Nigel

    2016-07-01

    Elevated sulphur dioxide (SO2) concentrations were the major cause of the absence of symptoms of tar spot (Rhytisma acerinum) of sycamore (Acer pseudoplatanus), in urban areas in the 1970s. The subsequent large decline in SO2 concentrations has not always been accompanied by increased tar spot symptoms, for reasons that have remained unresolved. We used a large citizen science survey, providing over 1000 records across England, to test two competing hypotheses proposed in earlier studies. We were able to demonstrate the validity of both hypotheses; tar spot symptoms were reduced where there were fewer fallen leaves as a source of inoculum, and elevated nitrogen dioxide concentrations reduced tar spot symptoms above a threshold concentration of about 20 μg m(-3). Symptom severity was also lower at sites with higher temperature and lower rainfall. Our findings demonstrate the power of citizen science to resolve competing hypotheses about the impacts of air pollution and other environmental drivers. PMID:27131814

  16. Interaction of soil type and carbon dioxide concentration in grassland soil pore water nitrogen concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing CO2 concentrations have been shown to limit soil nitrogen availability in terrestrial ecosystems, thereby limiting plant growth. Because changes in nitrogen availability can affect the composition of available nitrogen forms, we are interested in how changes in CO2 concentrations could af...

  17. Detection of atmospheric nitrogen dioxide using a miniaturised fibre-optic spectroscopy system and the ambient sunlight.

    PubMed

    Morales, J A; Walsh, J E

    2005-07-01

    A miniaturised fibre-optic spectrometer based system is presented for direct detection of one of the major atmospheric pollutants, nitrogen dioxide, by absorption spectroscopy using the ambient sunlight as light source. The detection system consists of a 10 cm collimator assembly, a fibre-optic cable and a portable diode-array spectrometer. The absorbance spectrum of the open-path is calculated using a reference spectrum recorded when the nitrogen dioxide (NO2) concentration in the atmosphere is low. The relative concentration of the pollutant is calculated normalising the detected spectra and subtracting the background broadband spectrum from the specific NO2 absorbance features, since the broadband spectrum changes according to atmospheric conditions and solar intensity. Wavelengths between 400 and 500 nm are used in order to maximise sensitivity and to avoid interference from other species. Calibration is carried out using Tedlar sample bags of known concentration of the pollutant. A commercial differential optical absorption spectroscopy (DOAS) system is used as a reference standard detection system to compare the results with the new system. Results show that detection of NO2 at typical urban atmospheric levels has been achieved using an inexpensive field based fibre-optic spectrometer and a readily available, easy to align, light source. In addition the new system can be used to get a semi-quantitative estimation of the nitrogen dioxide concentration within errors of 20%. While keeping the typical benefits of open-path techniques, the new system has important advantages over them such as cost, simplicity and portability. PMID:15911394

  18. Rapid growth in nitrogen dioxide pollution over Western China, 2005-2013

    NASA Astrophysics Data System (ADS)

    Cui, Yuanzheng; Lin, Jintai; Song, Chunqiao; Liu, Mengyao; Yan, Yingying; Xu, Yuan; Huang, Bo

    2016-05-01

    Western China has experienced rapid industrialization and urbanization since the implementation of the National Western Development Strategies (the "Go West" movement) in 1999. This transition has affected the spatial and temporal characteristics of nitrogen dioxide (NO2) pollution. In this study, we analyze the trends and variability of tropospheric NO2 vertical column densities (VCDs) from 2005 to 2013 over Western China, based on a wavelet analysis on monthly mean NO2 data derived from the Ozone Monitoring Instrument (OMI) measurements. We focus on the anthropogenic NO2 by subtracting region-specific "background" values dominated by natural sources. After removing the background influences, we find significant anthropogenic NO2 growth over Western China between 2005 and 2013 (8.6 ± 0.9 % yr-1 on average, relative to 2005), with the largest increments (15 % yr-1 or more) over parts of several city clusters. The NO2 pollution in most provincial-level regions rose rapidly from 2005 to 2011 but stabilized or declined afterwards. The NO2 trends were driven mainly by changes in anthropogenic emissions, as confirmed by a nested GEOS-Chem model simulation and a comparison with Chinese official emission statistics. The rate of NO2 growth during 2005-2013 reaches 11.3 ± 1.0 % yr-1 over Northwestern China, exceeding the rates over Southwestern China (5.9 ± 0.6 % yr-1) and the three well-known polluted regions in the east (5.3 ± 0.8 % yr-1 over Beijing-Tianjin-Hebei, 4.0 ± 0.6 % yr-1 over the Yangtze River Delta, and -3.3 ± 0.3 % yr-1 over the Pearl River Delta). Subsequent socioeconomic analyses suggest that the rapid NO2 growth over Northwestern China is likely related to the fast developing resource- and pollution-intensive industries along with the "Go West" movement as well as relatively weak emission controls. Further efforts should be made to alleviate NOx pollution to achieve sustainable development in Western China.

  19. Tropospheric nitrogen dioxide column retrieval based on ground-based zenith-sky DOAS observations

    NASA Astrophysics Data System (ADS)

    Tack, F. M.; Hendrick, F.; Pinardi, G.; Fayt, C.; Van Roozendael, M.

    2013-12-01

    A retrieval approach has been developed to derive tropospheric NO2 vertical column amounts from ground-based zenith-sky measurements of scattered sunlight. Zenith radiance spectra are observed in the visible range by the BIRA-IASB Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument and analyzed by the DOAS technique, based on a least-squares spectral fitting. In recent years, this technique has shown to be a well-suited remote sensing tool for monitoring atmospheric trace gases. The retrieval algorithm is developed and validated based on a two month dataset acquired from June to July 2009 in the framework of the Cabauw (51.97° N, 4.93° E) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI). Once fully operational, the retrieval approach can be applied to observations from stations of the Network for the Detection of Atmospheric Composition Change (NDACC). The obtained tropospheric vertical column amounts are compared with the multi-axis retrieval from the BIRA-IASB MAX-DOAS instrument and the retrieval from a zenith-viewing only SAOZ instrument (Système d'Analyse par Observations Zénithales), owned by Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS). First results show a good agreement for the whole time series with the multi-axis retrieval (R = 0.82; y = 0.88x + 0.30) as well as with the SAOZ retrieval (R = 0.85; y = 0.76x + 0.28 ). Main error sources arise from the uncertainties in the determination of tropospheric and stratospheric air mass factors, the stratospheric NO2 abundances and the residual amount in the reference spectrum. However zenith-sky measurements have been commonly used over the last decades for stratospheric monitoring, this study also illustrates the suitability for retrieval of tropospheric column amounts. As there are long time series of zenith-sky acquisitions available, the developed approach offers new perspectives with regard to the use of observations from the NDACC

  20. Improved spectral fitting of nitrogen dioxide from OMI in the 405-465 nm window

    NASA Astrophysics Data System (ADS)

    van Geffen, J. H. G. M.; Boersma, K. F.; Van Roozendael, M.; Hendrick, F.; Mahieu, E.; De Smedt, I.; Sneep, M.; Veefkind, J. P.

    2014-10-01

    An improved nitrogen dioxide (NO2) slant column density retrieval for the Ozone Monitoring Instrument (OMI) in the 405-465 nm spectral region is presented. Since the launch of OMI on board NASA's EOS-Aura satellite in 2004, DOAS retrievals of NO2 slant column densities have been the starting point for the KNMI DOMINO (v2.0) and NASA SP (v2.1) retrievals. However, recent intercomparisons between NO2 retrievals from OMI and other UV/Vis and limb spectrometers, as well as ground-based measurements, clearly suggested that OMI stratospheric NO2 is biased high. This study revises the OMI NO2 retrieval in detail. The representation of the OMI slit function to convolve high-resolution reference spectra onto the relevant spectral grid is improved. The window used for the wavelength calibration is optimised, leading to much-reduced fitting errors. Ozone and water vapour spectra used in the fit are updated, reflecting the recently improved knowledge on their absorption cross section as documented in the literature. The improved spectral fit also accounts for absorption by the O2-O2 collision complex and by liquid water over clear-water areas. The main changes in the improved spectral fitting result from the updates related to the wavelength calibration: the RMS error of the fit is reduced by 23% and the NO2 slant column by 0.85 × 1015 molec cm-2, independent of latitude, solar zenith angle and NO2 value. Including O2-O2 and liquid water absorption and updating the O3 and water vapour cross-section spectra further reduces NO2 slant columns on average by 0.35 × 1015 molec cm-2, accompanied with a further 9% reduction in the RMS error of the fit. The improved OMI NO2 slant columns are consistent with independent NO2 retrievals to within a range that can be explained by photo-chemically driven diurnal increases in stratospheric NO2 and by small differences in fitting window and fitting approach. The revisions indicate that current OMI NO2 slant columns suffered mostly from an

  1. Effect of nitrogen dioxide, ozone, and peroxyacetyl nitrate on metabolic and pulmonary function

    SciTech Connect

    Drechsler-Parks, D.M. )

    1987-04-01

    The metabolic and pulmonary function responses were investigated in 32 non-smoking men and women (8 men and 8 women 18-26 years of age, and 8 men and 8 women 51-76 years of age) who were exposed for 2 hours to each of 8 conditions: (1) filtered air (FA), (2) 0.13 ppm peroxyacetyl nitrate (PAN), (3) 0.45 ppm ozone (O3), (4) 0.60 ppm nitrogen dioxide (NO2), (5) 0.13 ppm PAN + 0.45 ppm O3 (PAN/O3), (6) 0.13 ppm PAN + 0.60 ppm NO2 (PAN/NO2), (7) 0.60 ppm NO2 + 0.45 ppm O3 (NO2/O3), and (8) 0.13 ppm PAN + 0.60 ppm NO2 + 0.45 ppm O3 (PAN/NO2/O3). The subjects alternated 20-min periods of rest (n = 3) and cycle ergometer exercise (n = 3) at a work load predetermined to elicit a ventilatory minute volume (VE) of approximately 25 L/min (BTPS). Functional residual capacity (FRC) was determined pre- and post-exposure. Forced vital capacity (FVC) was determined before and after exposure, and 5 min after each exercise period. Heart rate was monitored throughout each exposure, and VE was measured during the last 2 min of each exercise period. Exposure to FA, PAN, NO2, and PAN/NO2 had no effect on any measure of pulmonary or metabolic function. Ozone was primarily responsible for the pulmonary function effects observed. There was no significant difference between the responses to O3 exposure and the responses to the three O3 mixtures, indicating no interactions between the pollutants. The results suggest that women may be somewhat more responsive to O3 exposure than men, and that older people (51-76 years of age) may be less responsive to O3 than younger people (18-26 years of age).

  2. Indoor-outdoor relationships of airborne particles and nitrogen dioxide inside Parisian buses

    NASA Astrophysics Data System (ADS)

    Molle, Romain; Mazoué, Sophie; Géhin, Évelyne; Ionescu, Anda

    2013-04-01

    This study evaluated passengers' exposure to traffic air pollution inside the articulated buses of the line 91 in Paris during 10 working days in May, 2010. Twenty articulated buses were studied on 32 routes in order to determine the influence of the sampling position on the pollutant concentrations. This parameter is still poorly known for the rigid buses and is even less known for the articulated ones. However this parameter must be studied for articulated buses because the greater length may cause a pollutant concentration gradient in the cabin. Portable devices were used to measure pollutants in the presence of passengers from 8 a.m. to 9 a.m. and from 4 p.m. to 5 p.m., time periods corresponding to the peak traffic and travellers. PM2.5 mass concentration, particle number concentration between 0.3 and 20 μm and nitrogen dioxide concentration were simultaneously measured on three positions inside the buses (front, middle and rear) in order to study the spatial distribution of these compounds. These measurements inside the buses were compared to the outdoor concentrations at the same moment of the day provided by the Parisian air quality monitoring network; they were also compared to the results of a previous monitoring campaign performed in 2008. The results obtained during the 2010 campaign revealed that in-cabin NO2 mean concentrations were 1.5-3.5 times higher than the outside concentration levels; a maximum concentration of 234 ± 40 μg m-3 was found in the rear position (location of the engine and exhaust gas). Mean in-cabin PM2.5 mass concentrations varied from one week to another one, but they were globally the same at the three positions inside the instrumented buses. In order to determine the impact of outdoor levels, correlations have been calculated between the results measured inside the buses and those measured by the outdoor air monitoring stations. The highest Pearson correlation coefficient was 0.29 for NO2 data whereas the highest Pearson

  3. Improved spectral fitting of nitrogen dioxide from OMI in the 405-465 nm window

    NASA Astrophysics Data System (ADS)

    van Geffen, J. H. G. M.; Boersma, K. F.; Van Roozendael, M.; Hendrick, F.; Mahieu, E.; De Smedt, I.; Sneep, M.; Veefkind, J. P.

    2015-04-01

    An improved nitrogen dioxide (NO2) slant column density retrieval for the Ozone Monitoring Instrument (OMI) in the 405-465 nm spectral region is presented. Since the launch of OMI on board NASA's EOS-Aura satellite in 2004, differential optical absorption spectroscopy (DOAS) retrievals of NO2 slant column densities have been the starting point for the KNMI DOMINO and NASA SP NO2 vertical column data as well as the OMI NO2 data of some other institutes. However, recent intercomparisons between NO2 retrievals from OMI and other UV/Vis and limb spectrometers, as well as ground-based measurements, suggest that OMI stratospheric NO2 is biased high. This study revises and, for the first time, fully documents the OMI NO2 retrieval in detail. The representation of the OMI slit function to convolve high-resolution reference spectra onto the relevant spectral grid is improved. The window used for the wavelength calibration is optimised, leading to much-reduced fitting errors. Ozone and water vapour spectra used in the fit are updated, reflecting the recently improved knowledge of their absorption cross section in the literature. The improved spectral fit also accounts for absorption by the O2-O2 collision complex and by liquid water over clear-water areas. The main changes in the improved spectral fitting result from the updates related to the wavelength calibration: the RMS error of the fit is reduced by 23% and the NO2 slant column by 0.85 × 1015 molec cm-2, independent of latitude, solar zenith angle and NO2 value. Including O2-O2 and liquid water absorption and updating the O3 and water vapour cross-section spectra further reduces NO2 slant columns on average by 0.35 × 1015 molec cm-2, accompanied by a further 9% reduction in the RMS error of the fit. The improved OMI NO2 slant columns are consistent with independent NO2 retrievals from other instruments to within a range that can be explained by photochemically driven diurnal increases in stratospheric NO2 and by

  4. Rapid growth in nitrogen dioxide pollution over Western China, 2005-2013

    NASA Astrophysics Data System (ADS)

    Cui, Y.-Z.; Lin, J.-T.; Song, C.; Liu, M.-Y.; Yan, Y.-Y.; Xu, Y.; Huang, B.

    2015-12-01

    Western China has experienced rapid industrialization and urbanization since the implementation of the National Western Development Strategies (the "Go West" movement) in 1999. This transition has affected the spatial and temporal characteristics of nitrogen dioxide (NO2) pollution. In this study, we analyze the trends and variability of tropospheric NO2 vertical column densities (VCDs) from 2005 to 2013 over Western China, based on a wavelet analysis on monthly mean NO2 data derived from the Ozone Monitoring Instrument (OMI) measurements. We focus on the anthropogenic NO2 by subtracting region-specific "background" values dominated by natural sources. We find significant NO2 growth over Western China between 2005 and 2013 (8.6 ± 0.9 % yr-1 on average, relative to 2005), with the largest increments (15 % yr-1 or more) over parts of several city clusters. The NO2 pollution in most provincial regions rose rapidly from 2005 to 2011 but stabilized or declined afterwards. The NO2 trends were driven mainly by changes in anthropogenic emissions, as confirmed by a nested GEOS-Chem model simulation and a comparison with Chinese official emission statistics. The rate of NO2 growth during 2005-2013 reaches 11.3 ± 1.0 % yr-1 over Northwestern China, exceeding the rates over Southwestern China (5.9 ± 0.6 % yr-1) and the three well-known polluted regions in the east (5.3 ± 0.8 % yr-1 over Beijing-Tianjin-Hebei, 4.0 ± 0.6 % yr-1} over the Yangtze River Delta, and -3.3 ± 0.3 % yr-1 over the Pearl River Delta). Additional socioeconomic analyses suggest that the rapid NO2 growth in Northwestern China is likely related to the fast developing resource- and pollution-intensive industries along with the "Go West" movement as well as relatively weak emission controls. Further efforts should be made to alleviate NOx pollution to achieve sustainable development in Western China.

  5. Broadband cavity enhanced spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Rudich, Y.; Brown, S. S.

    2015-09-01

    Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity enhanced spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99933 ± 0.00003 (670 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.49 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device (CCD) array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity enhanced spectroscopy and cavity ringdown spectroscopy agree within 2 % (slope for linear fit = 0.98 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity enhanced spectroscopy and calculated based on flow dilution are also well-correlated, with r2 = 0.9998. During constant, mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1-min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically-based trace gas detection that may complement higher precision techniques based on non-absolute detection methods. In addition to trace gases, this approach will be appropriate for

  6. Partial oxidation of methane to methanol with nitrogen dioxide in dielectric barrier discharge plasma: experimental and molecular modeling

    NASA Astrophysics Data System (ADS)

    Indarto, Antonius

    2016-04-01

    Non-catalytic conversion of methane (CH4) and nitrogen dioxide (NO2) into methanol (CH3OH) has been conducted and presented in this paper. Experiments were carried out using dielectric barrier discharge as the reaction medium in atmospheric pressure and temperature conditions. High yield production of methanol was achieved (18-20% mol) by single-stage plasma reaction with maximum selectivity of 32% mol. Compared to other oxidants, such as O2, the presence of NO2 in the plasma reaction resulted in higher methanol selectivity. For better understanding of the reactions, density functional theory calculations were also performed and discussed.

  7. The impact of the choice of radiative transfer model and inversion method on the OSIRIS ozone and nitrogen dioxide retrievals

    NASA Astrophysics Data System (ADS)

    Haley, Craig; McLinden, Chris; Sioris, Christopher; Brohede, Samuel

    Key to the retrieval of stratospheric minor species information from limb-scatter measurements are the selections of a radiative transfer model (RTM) and inversion method (solver). Here we assess the impact of choice of RTM and solver on the retrievals of stratospheric ozone and nitrogen dioxide from the OSIRIS instrument using the ‘Ozone Triplet' and Differential Optical Absorption Spectroscopy (DOAS) techniques that are used in the operational Level 2 processing algorithms. The RTMs assessed are LIMBTRAN, VECTOR, SCIARAYS, and SASKTRAN. The solvers studied include the Maximum A Posteriori (MAP), Maximum Likelihood (ML), Iterative Least Squares (ILS), and Chahine methods.

  8. Development and optimization of a lab-on-a-chip device for the measurement of trace nitrogen dioxide gas in the atmosphere.

    PubMed

    Takabayashi, Yoshimasa; Uemoto, Michihisa; Aoki, Kenjiro; Odake, Tamao; Korenaga, Takashi

    2006-04-01

    We propose the use of lab-on-a-chip technology for measuring gaseous chemical pollutants, and describe the development of a microchip for the detection of nitrogen dioxide (NO2) in air. A microchip fabricated from quartz glass has been developed for handling the following three functions, gas absorption, chemical reaction and fluorescence detection. Channels constructed in the microchip were covered with porous glass plates, allowing nitrogen dioxide to penetrate into the triethanolamine (TEA) flowing within the microchannel beneath. The nitrogen dioxide was then mixed with TEA and reacted with a suitable fluorescence reagent in the chemical reaction chamber in the microchip. The reacted solution was then allowed to flow into the fluorescence detection area to be excited by an ultraviolet light-emitting diode (UV-LED), and the fluorescence was detected using a photomultiplier tube (PMT). The reaction time, reagent concentration, pH, flow rate and other measurement conditions were optimised for analysis of nitrogen dioxide in air. Preliminary studies with standardized test solutions revealed quantitative measurements of nitrite ion (NO2-), which corresponded to atmospheric nitrogen dioxide in the range of 10-80 ppbv. PMID:16568175

  9. Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles.

    PubMed

    Erhayem, Mohamed; Sohn, Mary

    2014-02-01

    In many studies, different humic acid (HA) sources are used interchangeably to evaluate the effect of organic matter on geochemical processes in the environment. This research looks more specifically at the effect of HA source on HA adsorption onto nano-TiO2 and how HA adsorption affects the fate and transport of nano-TiO2. In this study, six humic acids (HAs) were studied which were derived from soils (SLHA), or from sediments (SDHA) all originating from the state of Florida. Humic acid adsorption onto titanium dioxide nanoparticles (nano-TiO2) and the sedimentation of HA-coated and uncoated nano-TiO2 were monitored by Ultraviolet-visible (UV-vis) spectroscopy. Synchronous scan fluorescence (SSF) spectroscopy was used to complement the study of HA adsorption onto nano-TiO2. Phosphate buffer was found to reduce the amount of HA adsorbed onto nano-TiO2 relative to solutions of NaCl of the same pH and ionic strength. Adsorption constant values (Kads) for HAs varied in the order SLHA>FSDHA (freshwater sedimentary HA)>ESDHA (estuarine sedimentary HA). SSF results suggested that the more highly conjugated fractions of HA, which are more prevalent in SLHAs versus SDHAs, were preferentially adsorbed. In order to better understand the relationship between adsorption and aggregation, sedimentation studies were conducted and it was found that the percentage of nano-TiO2 sedimentation was preferentially enhanced in the order of the presence of SLHA>FSDHA>ESDHA. The extent of nano-TiO2 sedimentation was decreased with increasing HA concentration. TEM imaging of nano-TiO2 confirmed that nano-TiO2 was aggregated in the presence of HAs. The findings in this study suggest that HAs from different sources influence the fate and transport of nano-TiO2 in the environment differently. PMID:24140685

  10. Effects of nitrogen dioxide on growth and yield of black turtle bean (Phaseolus vulgaris L.) cv. 'Domino'.

    PubMed

    Sandhu, R; Gupta, G

    1989-01-01

    Twenty-six-day-old black turtle bean cv. 'Domino' plants were exposed to nitrogen dioxide (0.0, 0.025, 0.05 and 0.10 microl liter(-1)), 7 h per day for 5 days per week for 3 weeks, under controlled environment. Data were collected on net photosynthesis rate (PN), stomatal resistance (SR), and dark respiration rate (DR), immediately after exposure, 24 h after the termination of exposure and at maturity (when the leaves had just started turning yellow), using a LICOR 6000 Portable Photosynthesis System. Chlorophyll-a (Ch-a), chlorophyll-b (Ch-b), total chlorophyll (tot-Ch) and leaf nitrogen were measured immediately after exposure and at maturity. Growth characteristics-relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and root: shoot ratio (RSR)-were computed for treated plants. Net photosynthesis rate increased by 53% in 0.10 microl liter(-1) NO2 treated plants immediately after exposure compared to control plants. Dark respiration rates were also higher in treated plants. Ch-a, Ch-b and tot-Ch showed significant increases with 0.1 microl liter(-1) NO2 treatment immediately after exposure. Foliar nitrogen content showed an increase in treated plants both immediately after exposure and at maturity. Increases were also seen in RGR and NAR. Plant yield increased by 86% (number of pods), 29% (number of seeds) and 46% (weight of seeds), respectively. Nitrogen dioxide stimulated the overall plant growth and crop yield. PMID:15092401

  11. Photoproduction of glyoxylic acid in model wine: Impact of sulfur dioxide, caffeic acid, pH and temperature.

    PubMed

    Grant-Preece, Paris; Schmidtke, Leigh M; Barril, Celia; Clark, Andrew C

    2017-01-15

    Glyoxylic acid is a tartaric acid degradation product formed in model wine solutions containing iron and its production is greatly increased by exposure to UV-visible light. In this study, the combined effect of sulfur dioxide, caffeic acid, pH and temperature on the light-induced (⩾300nm) production of glyoxylic acid in model wine containing tartaric acid and iron was investigated using a Box-Behnken experimental design and response surface methodology (RSM). Glyoxylic acid produced in the irradiated model wine was present in free and hydrogen sulfite adduct forms and the measured total, free and percentage free glyoxylic acid values were modeled using RSM. Sulfur dioxide significantly decreased the total amount of glyoxylic acid produced, but could not prevent its production, while caffeic acid showed no significant impact. The interaction between pH and temperature was significant, with low pH values and low temperatures giving rise to higher levels of total glyoxylic acid. PMID:27542478

  12. Polymerization of euphorbia oil with Lewis acid in carbon dioxide media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Boron trifluoride diethyl etherate (BF3-OEt2) Lewis acid catalyzed ring-opening polymerization of euphorbia oil (EO), a natural epoxy oil, in liquid carbon dioxide was conducted in an effort to develop useful vegetable oil based polymers. The resulting polymers (RPEO) were characterized by FTIR, 1H-...

  13. Polymorph-dependent titanium dioxide nanoparticle dissolution in acidic and alkali digestions

    EPA Science Inventory

    Multiple polymorphs (anatase, brookite and rutile) of titanium dioxide nanoparticles (TiO2-NPs) with variable structures were quantified in environmental matrices via microwave-based hydrofluoric (HF) and nitric (HNO3) mixed acid digestion and muffle furnace (MF)-based potassium ...

  14. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2007-01-01

    Ammonia was produced by 15 companies at 25 plants in 16 states in the United States during 2006. Fifty-seven percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock. In 2006, U.S. producers operated at about 72 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies, Koch Nitrogen, Terra Industries, CF Industries, PCS Nitro-gen, and Agrium, in descending order, accounted for 79 percent U.S. ammonia production capacity. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  15. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson

    2012-05-15

    A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.

  16. Adsorption of caffeic acid on titanium dioxide: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Barreto, Wagner José; Ando, Rômulo A.; Estevão, Bianca Martins; Zanoni, Kassio Papi da Silva

    2012-06-01

    Caffeic acid is an ortho-phenol found in vegetable tissues presenting important properties such as carcinogenesis inhibitor, anti-oxidant, anti-viral, anti-inflammatory and anti-rheumatic actions. It was observed that caffeic acid was not degraded in daylight during the adsorption on TiO2 at pH 4.8. The adsorption fit very well to a Brunauer-Emmett-Teller isotherm equation with a monolayer coverage of 68.15 mg gTiO-1 and saturation coverage of 195.4 mg gTiO-1. A strong adsorption of caffeic acid was verified on TiO2 for the dry solid obtained from the mixture. The Raman and IR spectroscopies revealed that the adsorption should occur through the interaction of the diphenol oxygens with contribution of CC double bond of the acrylic group, however, the carboxylic acid group did not have participation in the adsorption.

  17. Near-lifetime exposure of the rat to a simulated urban profile of nitrogen dioxide: pulmonary function evaluation.

    PubMed

    Tepper, J S; Costa, D L; Winsett, D W; Stevens, M A; Doerfler, D L; Watkinson, W P

    1993-01-01

    To investigate the potential for up to a near-lifetime exposure to high-ambient levels of nitrogen dioxide (NO2) to induce functional lung damage, groups of rats were exposed to air or a simulated urban profile of NO2 (0.5 ppm background, 1.5 ppm peak) for 1, 3, 13, 52, or 78 weeks. The dynamic, static, and diffusional characteristics of the lung were evaluated postexposure in anesthetized rats. Furthermore, for the 13-, 52-, and 78-week groups, additional animals were tested after a 6-, 26-, or 17-week period in filtered air, respectively. No significant NO2 differences between exposed and control animals were found for the nitrogen washout, compliance, lung volume, or diffusion capacity of carbon monoxide measurements. At 78 weeks, however, a reduction in delta FEF25%, an estimate of convexity in the later portion of the forced expiratory flow volume curve, was observed. Breathing patterns and mechanisms were also assessed postexposure in a parallel group of similarly exposed unanesthetized rats. These rats were examined during a filtered air, 4 and 8% carbon dioxide (CO2) challenge. In the unanesthetized rat, frequency of breathing was significantly decreased and tidal volume, expiratory resistance, and inspiratory and expiratory times tended to increase. For several of these variables, the largest response also occurred at 78 weeks and seemed to be exacerbated by CO2 challenge.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8432431

  18. Characterization of a spatial gradient of nitrogen dioxide across a United States-Mexico border city during winter.

    PubMed

    Gonzales, Melissa; Qualls, Clifford; Hudgens, Edward; Neas, Lucas

    2005-01-20

    A gradient of ambient nitrogen dioxide (NO(2)) concentration is demonstrated across metropolitan El Paso, Texas (USA), a city located on the international border between the United States and Mexico. Integrated measurements of NO(2) were collected over 7 days at 20 elementary schools and 4 air quality monitoring stations located throughout the city during typical winter atmospheric conditions. Replicate passive monitors were co-located with chemiluminescence analyzers at the monitoring stations for two consecutive 7-day periods. The passive measurements correlated with the analyzer measurements (R(2)=0.74) with precision of 2.5+/-2.2 ppb. Nitrogen dioxide concentrations ranged from 11.0 to 37.5 ppb (mean 20.6+/-7.1 ppb). In a multivariate regression model, the site elevation and distances to a main highway and to an international port of entry from Mexico explained 81% of the variance in the passive measurements. The results of this pilot study indicate that proximity to vehicle-related sources of NO(2) and site elevation are key predictors for future, more detailed assessments of vehicle-related air pollution exposure in the El Paso region. PMID:15626387

  19. On the Hydrophobicity of Nitrogen Dioxide: Could there be a “lens” effect for NO2 reaction kinetics?

    PubMed Central

    Squadrito, Giuseppe L.; Postlethwait, Edward M.

    2009-01-01

    Solvent “lens” effects for the reaction kinetics of NO2 can be evaluated on the basis of published Henry’s law constants for nitrogen dioxide in various solvents. Water-to-organic solvent partition coefficients were derived from Henry’s law constants and used to assess the tendencies of NO2 toward fleeing the aqueous environments and concentrating in biological hydrophobic media. It is concluded, based only on the estimated aqueous medium-to-cell membrane partition coefficient for NO2, that such tendencies will be relatively small, and that they may account for an acceleration of chemical reactions in biological hydrophobic media with reaction kinetics that are first order on NO2 by a factor of approximately 3 ± 1. Thus, kinetic effects due to mass action will be relatively small but it is also important to recognize that because NO2 will tend to dissolve in cell membranes, reactions with cell membrane components will not be hindered by lack of physical solubility at these loci. In comparison to other gases, nitrogen dioxide is less hydrophobic than NO, O2 and N2. PMID:19540354

  20. Nitrogen dioxide effects on progression of mouse lymphoma, a blood cell malignancy. Final report, 17 July 1986-16 April 1988

    SciTech Connect

    Richters, A.

    1988-03-08

    Earlier studies employing the injection of cancer cells into mice indicated that nitrogen dioxide facilitated the spread and establishment of cancer. The study was initiated to verify that finding, using an animal model that has more similarities to human cancer. The model used was a strain of mouse (AKR/cum) that develops a spontaneous blood-cell malignancy. The results of the study showed that the malignancy tended to develop later and spread less extensively while the percentage of specific T-lymphocytes was reduced in mice exposed to 0.25-ppm nitrogen dioxide when compared to mice held in clean air. Mortality due to cancer in the exposed mice was also reduced. The investigators noted that the result is consistent with exposure causing impairment of immune cells, the T-lymphocytes that participate in the malignancy. These results suggest that, at least in the strain of mouse studied, ambient levels of nitrogen dioxide may affect the immune system.

  1. Distribution of Hydrogen Peroxide, Carbon Dioxide, and Sulfuric Acid in Europa's Icy Crust

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.

    2004-01-01

    Galileo's Near Infrared Mapping Spectrometer (NIMS) detected hydrogen peroxide, carbon dioxide and a hydrated material on Europa's surface, the latter interpreted as hydrated sulfuric acid (H2SO4*nH2O) or hydrated salts. Related compounds are molecular oxygen, sulfur dioxide, and two chromophores, one that is dark in the ultraviolet(UV) and concentrated on the trailing side, the other brighter in the UV and preferentially distributed in the leading hemisphere. The UV-dark material has been suggested to be sulfur.

  2. Carbonic Acid as a Reserve of Carbon Dioxide on Icy Moons: The Formation of Carbon Dioxide (CO2) in a Polar Environment

    NASA Astrophysics Data System (ADS)

    Jones, Brant M.; Kaiser, Ralf I.; Strazzulla, Giovanni

    2014-06-01

    Carbon dioxide (CO2) has been detected on the surface of several icy moons of Jupiter and Saturn via observation of the ν3 band with the Near-Infrared Mapping Spectrometer on board the Galileo spacecraft and the Visible-Infrared Mapping Spectrometer on board the Cassini spacecraft. Interestingly, the CO2 band for several of these moons exhibits a blueshift along with a broader profile than that seen in laboratory studies and other astrophysical environments. As such, numerous attempts have been made in order to clarify this abnormal behavior; however, it currently lacks an acceptable physical or chemical explanation. We present a rather surprising result pertaining to the synthesis of carbon dioxide in a polar environment. Here, carbonic acid was synthesized in a water (H2O)-carbon dioxide (CO2) (1:5) ice mixture exposed to ionizing radiation in the form of 5 keV electrons. The irradiated ice mixture was then annealed, producing pure carbonic acid which was then subsequently irradiated, recycling water and carbon dioxide. However, the observed carbon dioxide ν3 band matches almost exactly with that observed on Callisto; subsequent temperature program desorption studies reveal that carbon dioxide synthesized under these conditions remains in solid form until 160 K, i.e., the sublimation temperature of water. Consequently, our results suggest that carbon dioxide on Callisto as well as other icy moons is indeed complexed with water rationalizing the shift in peak frequency, broad profile, and the solid state existence on these relatively warm moons.

  3. Stunning pigs with nitrogen and carbon dioxide mixtures: effects on animal welfare and meat quality.

    PubMed

    Llonch, P; Rodríguez, P; Gispert, M; Dalmau, A; Manteca, X; Velarde, A

    2012-04-01

    The aim of this study was to assess the effect of exposure to the gas mixtures of 70% nitrogen (N2) and 30% carbon dioxide (CO2; 70N30C), 80% N2 and 20% CO2 (80N20C) and 85% N2 and 15% CO2 (85N15C) on aversion, stunning effectiveness and carcass, as well as meat quality in pigs, and to compare them with the commercial stunning of 90% CO2 (90C). A total of 68 female pigs were divided into four groups and stunned with one of the gas mixtures. During the exposure to the gas, behavioural variables (retreat attempts, escape attempts, gasping, loss of balance, muscular excitation and vocalizations) were recorded, and at the end of the stunning, corneal reflex and rhythmic breathing were assessed. After slaughter, meat quality parameters such as pH at 45 min post mortem (pH45) and at 24 h post mortem (pHu), electrical conductivity, drip loss and colour, in the Longissimus thoracis (LT) and Semimembranosus (SM) muscles were measured, and the presence of ecchymosis on the hams was noted. The PROC MIXED and the PROC GENMOD of SAS® were used to analyse the parametric and binomial variables, respectively. The 'gas mixture' was always considered a fixed effect and the 'live weight' as a covariate. To assess the correlation between meat quality and behaviour measures, PROC CORR was used. Pigs exposed to 90C showed a higher percentage of escape attempts and gasping, a lower percentage of vocalization and shorter muscular excitation phase than pigs exposed to the other N2 and CO2 mixtures (P < 0.05). After stunning, no pig exposed to 90C showed corneal reflex or rhythmic breathing, whereas 85% and 92% of the animals exposed to N2 and CO2 mixtures showed corneal reflex and rhythmic breathing, respectively. Animals stunned with 80N20C and 85N15C had a lower pH45 (P < 0.01) than animals exposed to 90C. Electrical conductivity in the SM muscle was lower (P < 0.001) in 90C and 70N30C pigs than in 80N20C and 85N15C pigs, whereas in LT, it was lower (P < 0.05) in 90C pigs than in 85N15C

  4. Identification of novel secreted fatty acids that regulate nitrogen catabolite repression in fission yeast

    PubMed Central

    Sun, Xiaoying; Hirai, Go; Ueki, Masashi; Hirota, Hiroshi; Wang, Qianqian; Hongo, Yayoi; Nakamura, Takemichi; Hitora, Yuki; Takahashi, Hidekazu; Sodeoka, Mikiko; Osada, Hiroyuki; Hamamoto, Makiko; Yoshida, Minoru; Yashiroda, Yoko

    2016-01-01

    Uptake of poor nitrogen sources such as branched-chain amino acids is repressed in the presence of high-quality nitrogen sources such as NH4+ and glutamate (Glu), which is called nitrogen catabolite repression. Amino acid auxotrophic mutants of the fission yeast Schizosaccharomyces pombe were unable to grow on minimal medium containing NH4Cl or Glu even when adequate amounts of required amino acids were supplied. However, growth of these mutant cells was recovered in the vicinity of colonies of the prototrophic strain, suggesting that the prototrophic cells secrete some substances that can restore uptake of amino acids by an unknown mechanism. We identified the novel fatty acids, 10(R)-acetoxy-8(Z)-octadecenoic acid and 10(R)-hydroxy-8(Z)-octadecenoic acid, as secreted active substances, referred to as Nitrogen Signaling Factors (NSFs). Synthetic NSFs were also able to shift nitrogen source utilization from high-quality to poor nitrogen sources to allow adaptive growth of the fission yeast amino acid auxotrophic mutants in the presence of high-quality nitrogen sources. Finally, we demonstrated that the Agp3 amino acid transporter was involved in the adaptive growth. The data highlight a novel intra-species communication system for adaptation to environmental nutritional conditions in fission yeast. PMID:26892493

  5. Identification of novel secreted fatty acids that regulate nitrogen catabolite repression in fission yeast.

    PubMed

    Sun, Xiaoying; Hirai, Go; Ueki, Masashi; Hirota, Hiroshi; Wang, Qianqian; Hongo, Yayoi; Nakamura, Takemichi; Hitora, Yuki; Takahashi, Hidekazu; Sodeoka, Mikiko; Osada, Hiroyuki; Hamamoto, Makiko; Yoshida, Minoru; Yashiroda, Yoko

    2016-01-01

    Uptake of poor nitrogen sources such as branched-chain amino acids is repressed in the presence of high-quality nitrogen sources such as NH4(+) and glutamate (Glu), which is called nitrogen catabolite repression. Amino acid auxotrophic mutants of the fission yeast Schizosaccharomyces pombe were unable to grow on minimal medium containing NH4Cl or Glu even when adequate amounts of required amino acids were supplied. However, growth of these mutant cells was recovered in the vicinity of colonies of the prototrophic strain, suggesting that the prototrophic cells secrete some substances that can restore uptake of amino acids by an unknown mechanism. We identified the novel fatty acids, 10(R)-acetoxy-8(Z)-octadecenoic acid and 10(R)-hydroxy-8(Z)-octadecenoic acid, as secreted active substances, referred to as Nitrogen Signaling Factors (NSFs). Synthetic NSFs were also able to shift nitrogen source utilization from high-quality to poor nitrogen sources to allow adaptive growth of the fission yeast amino acid auxotrophic mutants in the presence of high-quality nitrogen sources. Finally, we demonstrated that the Agp3 amino acid transporter was involved in the adaptive growth. The data highlight a novel intra-species communication system for adaptation to environmental nutritional conditions in fission yeast. PMID:26892493

  6. Nitrogen, Tillage, and Crop Rotation Effects On Carbon Dioxide and Methane Fluxes from Irrigated Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term effects of tillage intensity, N fertilization, and crop rotation on carbon dioxide (CO2) and methane (CH4) flux from semiarid irrigated soils are poorly understood. We evaluated effects of: a) tillage intensity [no-till (NT) and moldboard plow tillage (CT)] in a continuous corn rotation; b...

  7. Investigation of fatty acid accumulation in the engineered Saccharomyces cerevisiae under nitrogen limited culture condition.

    PubMed

    Tang, Xiaoling; Chen, Wei Ning

    2014-06-01

    In this study, the Saccharomyces cerevisiae wild type strain and engineered strain with an overexpressed heterologous ATP-citrate lyase (acl) were cultured in medium with different carbon and nitrogen concentrations, and their fatty acid production levels were investigated. The results showed that when the S. cerevisiae engineered strain was cultivated under nitrogen limited culture condition, the yield of mono-unsaturated fatty acids showed higher than that under non-nitrogen limited condition; with the carbon concentration increased, the accumulation become more apparent, whereas in the wild type strain, no such correlation was found. Besides, the citrate level in the S. cerevisiae under nitrogen limited condition was found to be much higher than that under non-nitrogen limited condition, which indicated a relationship between the diminution of nitrogen and accumulation of citrate in the S. cerevisiae. The accumulated citrate could be further cleaved by acl to provide substrate for fatty acid synthesis. PMID:24755317

  8. Effect of dietary supplementation of gallic acid on nitrogen balance, nitrogen excretion pattern and urinary nitrogenous constituents in beef cattle.

    PubMed

    Wei, Chen; Yang, Kai; Zhao, Guangyong; Lin, Shixin; Xu, Zhiwei

    2016-10-01

    The objective of the trial was to study the effects of dietary supplementation of gallic acid (GA) on nitrogen (N) balance, N excretion pattern and urinary N constituents in beef cattle. In a 4 × 4 Latin square design, four male 30-month-old Simmental cattle (443 ± 22 kg live weight) received four levels of GA (purity ≥ 98.5%), i.e. 0, 5.3, 10.5, 21.1 g/kg DM, added to a basal ration. Each experimental period lasted 17 d, consisting of 12 d adaptation and 5 d sampling. The results showed that supplementation of GA at 5.3, 10.5 or 21.1 g/kg DM did not affect the N balance but regulated the N excretion pattern by increasing the ratio of faecal N/urinary N and decreasing the ratio of urinary urea N/total urinary N in beef cattle fed at maintenance level. PMID:27494638

  9. Solubility of small-chain carboxylic acids in supercritical carbon dioxide

    SciTech Connect

    Sparks, Darrell L.; Estevez, L. Antonio; Hernandez, Rafael; McEwen, Jason; French, Todd

    2010-07-08

    The solubility of heptanoic acid and octanoic acid in supercritical carbon dioxide has been determined at temperatures of (313.15, 323.15, and 333.15) K over a pressure range of (8.5 to 30.0) MPa, depending upon the solute. The solubility of heptanoic acid ranged from a solute concentration of (0.08 ± 0.03) kg • m-3 (T = 323.15 K, p = 8.5 MPa) to (147 ± 0.2) kg • m-3 (T = 323.15 K, p = 20.0 MPa). The lowest octanoic acid solubility obtained was a solute concentration of (0.40 ± 0.1) kg • m-3 (T = 333.15 K, p = 10.0 MPa), while the highest solute concentration was (151 ± 2) kg • m-3 (T = 333.15 K, p = 26.7 MPa). In addition, solubility experiments were performed for nonanoic acid in supercritical carbon dioxide at 323.15 K and pressures of (10.0 to 30.0) MPa to add to the solubility data previously published by the authors. In general, carboxylic acid solubility increased with increasing solvent density. The results also showed that the solubility of the solutes decreased with increasing molar mass at constant supercritical-fluid density. Additionally, the efficacy of Chrastil's equation and other density-based models was evaluated for each fatty acid.

  10. Solubility of small-chain carboxylic acids in supercritical carbon dioxide

    DOE PAGESBeta

    Sparks, Darrell L.; Estevez, L. Antonio; Hernandez, Rafael; McEwen, Jason; French, Todd

    2010-07-08

    The solubility of heptanoic acid and octanoic acid in supercritical carbon dioxide has been determined at temperatures of (313.15, 323.15, and 333.15) K over a pressure range of (8.5 to 30.0) MPa, depending upon the solute. The solubility of heptanoic acid ranged from a solute concentration of (0.08 ± 0.03) kg • m-3 (T = 323.15 K, p = 8.5 MPa) to (147 ± 0.2) kg • m-3 (T = 323.15 K, p = 20.0 MPa). The lowest octanoic acid solubility obtained was a solute concentration of (0.40 ± 0.1) kg • m-3 (T = 333.15 K, p = 10.0more » MPa), while the highest solute concentration was (151 ± 2) kg • m-3 (T = 333.15 K, p = 26.7 MPa). In addition, solubility experiments were performed for nonanoic acid in supercritical carbon dioxide at 323.15 K and pressures of (10.0 to 30.0) MPa to add to the solubility data previously published by the authors. In general, carboxylic acid solubility increased with increasing solvent density. The results also showed that the solubility of the solutes decreased with increasing molar mass at constant supercritical-fluid density. Additionally, the efficacy of Chrastil's equation and other density-based models was evaluated for each fatty acid.« less

  11. Phosphorus constrains accelerated nitrogen cycling in limed acidic forests

    NASA Astrophysics Data System (ADS)

    Deforest, J. L.; Shaw, A. N.; Kluber, L. A.; Burke, D. J.; Carrino-Kyker, S. R.; Smemo, K. A.

    2011-12-01

    Anthropogenic deposition can increase phosphorus (P) limitation by abiotic and biotic means. Soil acidification can remove P from available pools and nitrogen (N) deposition can increase the demand for P. We reason that chronic acidic deposition is promoting P limitation in acidic hardwood forests and thereby altering N cycling. The objectives of this study were to investigate the interactive influence of P availability and soil pH on N and P cycling and availability to determine if the response varies between two physiographic regions experiencing similar chronic acidic deposition. We addressed these objectives by experimentally manipulating soil pH, P, or both in strongly acidic glaciated and unglaciated hardwood forests in eastern Ohio, USA. Our results suggest complex interactions between P, soil pH, and the N cycle. Glaciated soils were found to be more N-saturated with nitrification rates 18 times greater than in unglaciated soils. Elevating pH, with or without added P, doubled nitrification rates in glaciated soils. For unglaciated soils, raising pH increased nitrification 10-fold, but increased nitrification only 5-fold in combination with P. This result suggests raising soil pH lowered the demand of soil N, or directly stimulated nitrifying activity, and that increasing P availability could limit N availability. To various degrees, readily available P was geochemically or biologically immobilized in all treatments, suggesting chronic P deficiency in these ecosystems. Phosphorus immobilization decreased as soil pH was elevated, but elevated P either had no effect (glaciated) or doubled P immobilization rates (unglaciated). These results suggest that raising soil pH reduces microbial P limitation for phosphate, whereas adding P appears to make phosphate scarcer. We suggest that P plays an important role in N transformations and cycling, but appears more important in unglaciated soils than in glaciated soils. Chronic soil acidification may have a greater

  12. Simultaneous inhibition of carbon and nitrogen mineralization in a forest soil by simulated acid precipitation

    SciTech Connect

    Klein, T.M.; Novick, N.J.; Kreitinger, J.P.; Alexander, M.

    1984-06-01

    One method to simulate the long-term exposure of soil to acid rain involves the addition of single doses of concentrated acid. The inhibition of carbon mineralization accompanied by a stimulation of nitrogen mineralization may result from this severe, unnatural treatment. The present study was designed to determine whether the inhibition of carbon mineralization and the accompanying enhanced nitrogen mineralization would occur when soils are treated with more dilute acid for long periods of time, as takes place in nature.

  13. Response of marine and freshwater algae to nitric acid and elevated carbon dioxide levels simulating environmental effects of bolide impact

    NASA Technical Reports Server (NTRS)

    Boston, P. J.

    1988-01-01

    One of the intriguing facets of the Cretaceous-Tertiary extinction is the apparently selective pattern of mortality amongst taxa. Some groups of organisms were severely affected and some remained relatively unscathed as they went through the K/T boundary. While there is argument concerning the exact interpretation of the fossil record, one of the best documented extinctions at the Cretaceous-Tertiary boundary is that of the calcareous nannoplankton. These organisms include coccolithic algae and foraminiferans. Attempts to explain their decline at the K/T boundary center around chemistry which could affect their calcium carbonate shells while leaving their silica-shelled cousins less affected or unaffected. Two environmental consequences of an extraterrestrial body impact which were suggested are the production of large quantities of nitrogen oxides generated by the shock heating of the atmosphere and the possible rise in CO2 from the dissolution of CaCO3 shells. Both of these phenomena would acidify the upper layers of the oceans and bodies of freshwater not otherwise buffered. The effects of nitric acid, carbon dioxide, or both factors on the growth and reproduction of calcareous marine coccoliths and non-calcareous marine and freshwater species of algae were considered. These experiments demonstrate that nitric acid and carbon dioxide have significant effects on important aspects of the physiology and reproduction of modern algae representative of extinct taxa thought to have suffered significant declines at the Cretaceous-Tertiary boundary. Furthermore, calcareous species showed more marked effects than siliceous species and marine species tested were more sensitive than freshwater species.

  14. Nitrogen Dioxide Variations Caused by Penetration of Solar Protons into the High-Latitude Atmosphere

    NASA Astrophysics Data System (ADS)

    Kasatkina, E. A.; Shumilov, O. I.; Kyro, E.; Fadel, K.; Turyansky, V. A.; Kivi, R.

    2003-03-01

    The results of spectroscopic measurements of the NO2 total content during the solar proton event of the GLE (Ground Level Event) type on May 2, 1998, at the Murmansk (Φ" = 64.5°) and Sodankyla (Φ" = 63.7°) stations are presented. The vertical profiles of the nitrogen oxide (NO) distribution in the stratosphere according to the UARS satellite data during another GLE event on July 14, 2000, are also presented. It is shown that the high-energy solar protons penetrating into the atmosphere lead to a considerable increase in the nitrogen oxide concentration and the GLE on May 2, 1998, resulted in an increase of the NO2 total content according to the ground-based observations at high latitudes. It is worth noting that no decrease of the total ozone content (TOC) was recorded during these proton events according to the ground-based measurements at high latitudes. The corresponding calculations of the nitrogen oxide changes during proton events based on the homogeneous photochemical theory are presented. The interrelation between all the quantities measured, as well as their relation to the calculated values, is considered. It is shown that a considerable increase of nitrogen oxides in the atmosphere does not always result in an ozone concentration depletion. The results presented indicate a need to provide simultaneous ground-based and satellite measurements of nitrogen oxides and ozone at high latitudes.

  15. The Odin-OSIRIS Data Sets - Twelve Years of Ozone, Bromine Monoxide, Nitrogen Dioxide and Stratospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Lloyd, N. D.; Bourassa, A. E.; Degenstein, D. A.; McLinden, C. A.

    2013-12-01

    The Canadian built OSIRIS instrument has just finished its twelfth full year of operation on-board the Swedish led spacecraft Odin. During these twelve years OSIRIS has measured the limb radiance profile of spectrally dispersed scattered sunlight in the wavelength range from 280 nm to 810 nm with approximately 1 nm spectral resolution. These measurements have been used to retrieve vertical number density profiles of ozone, nitrogen dioxide and bromine monoxide as well as vertical profiles of the stratospheric aerosol extinction at 750 nm. The OSIRIS data sets have been extensively used for process studies and have been included in many international initiatives including the SPARC DI, SPIN, the ozone_cci, the aerosol_cci and the SI2N. This paper details the data products and their availability as well as presenting OSIRIS related scientific highlights and contributions to the above mentioned initiatives

  16. Sulfur dioxide and nitrogen oxides emissions from U.S. pulp and paper mills, 1980-2005.

    PubMed

    Pinkerton, John E

    2007-08-01

    Comprehensive surveys conducted at 5-yr intervals were used to estimate sulfur dioxide (SO,) and nitrogen oxides (NO.) emissions from U.S. pulp and paper mills for 1980, 1985, 1990, 1995, 2000, and 2005. Over the 25-yr period, paper production increased by 50%, whereas total SO, emissions declined by 60% to 340,000 short tons (t) and total NO, emissions decreased approximately 15% to 230,000 t. The downward emission trends resulted from a combination of factors, including reductions in oil and coal use, steadily declining fuel sulfur content, lower pulp and paper production in recent years, increased use of flue gas desulfurization systems on boilers, growing use of combustion modifications and add-on control systems to reduce boiler and gas turbine NO, emissions, and improvements in kraft recovery furnace operations. PMID:17824280

  17. Evaluation of nitrogen dioxide photolysis rates in an urban area using data from the 1997 Southern California Ozone Study

    NASA Astrophysics Data System (ADS)

    Vuilleumier, Laurent; Bamer, Jeffrey T.; Harley, Robert A.; Brown, Nancy J.

    The photolysis of nitrogen dioxide and formaldehyde are two of the most influential reactions in the formation of photochemical air pollution, and their rates are computed using actinic flux determined from a radiative transfer model. In this study, we compare predicted and measured nitrogen dioxide photolysis rate coefficients ( jNO 2). We used the Tropospheric Ultraviolet-Visible (TUV) radiation transfer model to predict jNO 2 values corresponding to measurements performed in Riverside, California as part of the 1997 Southern California Ozone Study (SCOS'97). Spectrally resolved irradiance measured at the same site allowed us to determine atmospheric optical properties, such as aerosol optical depth and total ozone column, that are needed as inputs for the radiative transfer model. Matching measurements of aerosol optical depth, ozone column, and jNO 2 were obtained for 14 days during SCOS'97. By using collocated measurements of the light extinction caused by aerosols and ozone over the full height of the atmosphere as model input, it was possible to predict sudden changes in jNO 2 resulting from atmospheric variability. While the diurnal profile of the rate coefficient was readily reproduced, jNO 2 model predicted values were found to be consistently higher than measured values. The bias between measured and predicted values was 17-36%, depending on the assumed single scattering albedo. By statistical analysis, we restricted the most likely values of the single scattering albedo to a range that produced bias on the order of 20-25%. It is likely that measurement error is responsible for a significant part of the bias. The aerosol single scattering albedo was found to be a major source of uncertainty in radiative transfer model predictions. Our best estimate indicates its average value at UV-wavelengths for the period of interest is between 0.77 and 0.85.

  18. Measurement of nitrogen dioxide in cigarette smoke using quantum cascade tunable infrared laser differential absorption spectroscopy (TILDAS)

    NASA Astrophysics Data System (ADS)

    Shorter, Joanne H.; Nelson, David D.; Zahniser, Mark S.; Parrish, Milton E.; Crawford, Danielle R.; Gee, Diane L.

    2006-04-01

    Although nitrogen dioxide (NO 2) has been previously reported to be present in cigarette smoke, the concentration estimates were derived from kinetic calculations or from measurements of aged smoke, where NO 2 was formed some time after the puff was taken. The objective of this work was to use tunable infrared laser differential absorption spectroscopy (TILDAS) equipped with a quantum cascade (QC) laser to determine if NO 2 could be detected and quantified in a fresh puff of cigarette smoke. A temporal resolution of ˜0.16 s allowed measurements to be taken directly as the NO 2 was formed during the puff. Sidestream cigarette smoke was sampled to determine if NO 2 could be detected using TILDAS. Experiments were conducted using 2R4F Kentucky Reference cigarettes with and without a Cambridge filter pad. NO 2 was detected only in the lighting puff of whole mainstream smoke (without a Cambridge filter pad), with no NO 2 detected in the subsequent puffs. The measurement precision was ˜1.0 ppbV Hz -1/2, which allows a detection limit of ˜0.2 ng in a 35 ml puff volume. More NO 2 was generated in the lighting puff using a match or blue flame lighter (29 ± 21 ng) than when using an electric lighter (9 ± 3 ng). In the presence of a Cambridge filter pad, NO 2 was observed in the gas phase mainstream smoke for every puff (total of 200 ± 30 ng/cigarette) and is most likely due to smoke chemistry taking place on the Cambridge filter pad during the smoke collection process. Nitrogen dioxide was observed continuously in the sidestream smoke starting with the lighting puff.

  19. Studies on air pollution: Effects of nitrogen dioxide on airway caliber and reactivity in asthmatic subjects; effects of nitrogen dioxide on lung lymphocytes and macrophage products in healthy subjects; nasal and bronchial effects of sulfur dioxide in asthmatic subjects. Final report, 26 June 1987-26 November 1988

    SciTech Connect

    Boushey, H.A.; Rubinstein, I.; Bigby, B.G.

    1988-12-13

    The investigators performed three studies of the effects of NO/sub 2/ and SO/sub 2/ on airway function in human subjects. In 9 exercising asthmatic subjects, a 30-min exposure to 0.3 ppm nitrogen dioxide did not alter specific airway resistance, maximal expiratory flow, or the slope of phase III on the single breath test of nitrogen distribution and had no effect on airway hyperresponsiveness to sulfur dioxide. In the second study, repeated exposure of 5 healthy subjects to nitrogen dioxide was associated neither with any significant change in pulmonary function nor in the levels of secretory product of lung macrophages in bronchoalveolar lavage fluid. Analysis of the numbers and types of lymphocytes in venous blood and bronchoalveolar lavage fluid revealed no change apart from a small, possibly artifactual increase in natural killer cells in bronchoalveolar lavage fluid after NO/sub 2/ exposure. The third study examined whether brief exposures to moderately high concentrations of SO/sub 2/ caused acute increases in nasal symptoms and nasal resistance in 8 subjects with a history of both asthma and allergic rhinitis and with demonstrable bronchial hyperreactivity to SO/sub 2/.

  20. AIR QUALITY CRITERIA FOR OXIDES OF NITROGEN (Final, 1993)

    EPA Science Inventory

    This criteria document focuses on a review and assessment of the effects on human health and welfare of the nitrogen oxides, nitric oxide (NO) and nitrogen dioxide (NO2), and the related compounds, nitrites, nitrates, nitrogenous acids, and nitrosamines. Although the emphasis is ...

  1. Free amino acid formula: nitrogen utilization and metabolic effects in normal subjects.

    PubMed

    Heller, P A; Shronts, E; Akrabawi, S; Heymsfield, S B

    1987-01-01

    A previous study indicated increased urea production and low nitrogen (N) retention on a free amino acid elemental formula (FAA; Vivonex-HN). The limitations of this earlier study were: irregular nitrogen absorption in the malabsorption patients, high nitrogen intake, and failure to match FAA to control formula (hydrolyzed casein; CAS; Criticare-HN) with respect to kcal/nitrogen. A more critical test of FAA quality was sought in the current study. Four healthy males received the minimal daily nitrogen requirements (0.6 g protein/kg) from either FAA or CAS in a 10-day balance study; a second balance on the alternate formula followed. Maintenance energy, minerals, and vitamins were supplied in each period. The results indicated a higher apparent nitrogen absorption (p less than 0.05) from FAA relative to CAS in the first 5 days of the balance, although these differences were no longer present in the remaining 5 days of the period. Urinary total nitrogen increased on FAA, most of which could be accounted for by urea nitrogen; urinary creatinine nitrogen, ammonia nitrogen, and uric acid nitrogen were nearly identical between formulas. The unmeasured fraction of urinary nitrogen was markedly diminished on FAA while the urea nitrogen to total nitrogen ratio was significantly increased (p less than 0.05) compared to CAS. During the initial 5 days of study nitrogen balance was lower on FAA than on CAS and this difference became significant during the last 5 days of the period (mean +/- SD for FAA = -0.42 +/- 0.59 g/D vs CAS = 0.98 +/- 0.30 g/day, p less than 0.001). Hyperglycinemia was consistently present during FAA infusion.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3430685

  2. Removal of hexenuronic acid by xylanase to reduce adsorbable organic halides formation in chlorine dioxide bleaching of bagasse pulp.

    PubMed

    Nie, Shuangxi; Wang, Shuangfei; Qin, Chengrong; Yao, Shuangquan; Ebonka, Johnbull Friday; Song, Xueping; Li, Kecheng

    2015-11-01

    Xylanase-aided chlorine dioxide bleaching of bagasse pulp was investigated. The pulp was pretreated with xylanase and followed a chlorine dioxide bleaching stage. The ATR-FTIR and XPS were employed to determine the surface chemistry of the control pulp, xylanase treated and chlorine dioxide treated pulps. The hexenuronic acid (HexA) could obviously be reduced after xylanase pretreatment, and the adsorbable organic halides (AOX) were reduced after chlorine dioxide bleaching. Compared to the control pulp, AOX could be reduced by 21.4-26.6% with xylanase treatment. Chlorine dioxide demand could be reduced by 12.5-22% to achieve the same brightness. The ATR-FTIR and XPS results showed that lignin and hemicellulose (mainly HexA) were the main source for AOX formation. Xylanase pretreatment could remove HexA and expose more lignin, which decreased the chlorine dioxide demand and thus reduced formation of AOX. PMID:26263004

  3. Characterization of narrow micropores in almond shell biochars by nitrogen, carbon dioxide, and hydrogen adsorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Characterization of biochars usually includes surface area and pore volume determination by nitrogen adsorption. In this study, we show that there is a substantial pore volume in biochars created via slow pyrolysis from low- and high-ash almond shells that cannot be characterized in this fashion due...

  4. Microbiological degradation of bile acids. Nitrogenous hexahydroindane derivatives formed from cholic acid by Streptomyces rubescens.

    PubMed Central

    Hayakawa, S; Hashimoto, S; Onaka, T

    1976-01-01

    The metabolism of cholic acid (I) by Streptomyces rubescens was investigated. This organism effected ring A cleavage, side-chain shortening and amide bond formation and gave the following metabolites: (4R)-4-[4alpha-(2-carboxyethyl)-3aalpha-hexahydro-7abeta-methyl-5-oxoindan-1 beta-yl]valeric acid (IIa) and its mono-amide (valeramide) (IIb); and 2,3,4,6, 6abeta,7,8,9,9aalpha,9bbeta-decahydro-6abeta-methyl-1H-cyclopenta[f]quinoline-3,7-dione(IIIe)and its homologues with the beta-oriented side chains, valeric acid, valeramide, butanone and propionic acid, in the place of the oxo group at C-7, i.e.compounds (IIIa), (IIIb), (IIIc) and (IIId) respectively. All the nitrogenous metabolites were new compounds, and their structures were established by partial synthesis except for the metabolite (IIIc). The mechanism of formation of these metabolites is considered. A degradative pathway of cholic acid (I) into the metabolites is also tentatively proposed. PMID:1016253

  5. Effects of inhaled acids on lung biochemistry

    SciTech Connect

    Last, J.A.

    1989-02-01

    Effects of respirable aerosols of sulfuric acid, ammonium sulfate, sodium sulfite, and ammonium persulfate on lungs of rats are reviewed. The literature regarding interactions between ozone or nitrogen dioxide and acidic aerosols (ammonium sulfate, sulfuric acid) is discussed. An unexpected interaction between nitrogen dioxide and sodium chloride aerosol is also discussed. An attempt is made to identify bases for prediction of how and when acid aerosols might potentiate effects of inhaled gases.

  6. Nitrogen dioxide pollution in the Po basin: a quantitative analysis based on ground-based and satellite measurements

    NASA Astrophysics Data System (ADS)

    Petritoli, A.; Bonasoni, P.; Weiss, A.; Schaub, D.; Fortezza, F.

    2003-04-01

    Nitrogen dioxide (NO2) is an active nitrogen constituent playing a key role in tropospheric chemistry leading the photochemical production of ozone and influencing the concentration of the primary tropospheric oxidant, the hydroxyl radical (OH). The main source of tropospheric NO2 is the human activity so that it could be considered a pollutant for the atmosphere that is its concentration should be monitored and kept lower than threshold values. The use of measurements carried out from satellite platform could provide significant improvements to study and check the environmental pollution in a regional scale but an assessment of the quality of such measurements for tropospheric application is required. In this work we report in situ and tropospheric column measurements of NO2 in the Po-valley (the basin of the Po river in the northern Italy) region. The aim of the work was to provide a quantitative intercomparison between ground-based and satellite measurements and study the seasonal behaviour of the NO2 hot spot detected in the Po-valley. The study is carried out using in-situ chemiluminescent instrumentation installed in the Po-valley, a Uv/vis spectrometer installed at Mt. Cimone (44N, 11E) and tropospheric column measurements obtained from GOME (Global Ozone Monitoring Experiment) spectrometer. Results are presented and discussed.

  7. Carbon Monoxide, Nitric Oxide, and Nitrogen Dioxide Levels in Gas Ovens Related to Surface Pinking of Cooked Beef and Turkey.

    PubMed

    Cornforth; Rabovitser; Ahuja; Wagner; Hanson; Cummings; Chudnovsky

    1998-01-19

    Carbon monoxide (CO) and total nitrogen oxide (NO(x)()) levels were monitored during meat cookery with a standard Ovenpak and a new ultralow-NO(x)() (ULN) cyclonic gas burner. With the standard burner, CO varied from 103 to 152 ppm, NO(x)() was 1.3-10.7 ppm, and surface pinking was observed on both beef and turkey. The ULN burner at optimal efficiency produced only 6.7 ppm of CO and 1 ppm of NO(x)(), insufficient to cause surface pinking. To determine the relative contribution of CO and NO(x)() to pinking, trials were also conducted in an electric oven with various pure gases. Pinking was not observed with up to 149 ppm of CO or 5 ppm of NO. However, as little as 0.4 ppm of nitrogen dioxide (NO(2)) caused pinking of turkey rolls. Beef roasts were pink at >2.5 ppm of NO(2). Thus, pinking previously attributed to CO and NO in gas ovens is instead due to NO(2), which has much greater reactivity than NO with moisture at meat surfaces. PMID:10554228

  8. Methanol Droplet Extinction in Oxygen/Carbon-dioxide/Nitrogen Mixtures in Microgravity: Results from the International Space Station Experiments

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha; Dietrich, Daniel L.; Ferkul, Paul V.; Hicks, Michael C.; Williams, Forman A.

    2012-01-01

    Motivated by the need to understand the flammability limits of condensed-phase fuels in microgravity, isolated single droplet combustion experiments were carried out in the Combustion Integrated Rack Facility onboard the International Space Station. Experimental observations of methanol droplet combustion and extinction in oxygen/carbon-dioxide/nitrogen mixtures at 0.7 and 1 atmospheric pressure in quiescent microgravity environment are reported for initial droplet diameters varying between 2 mm to 4 mm in this study.The ambient oxygen concentration was systematically lowered from test to test so as to approach the limiting oxygen index (LOI) at fixed ambient pressure. At one atmosphere pressure, ignition and some burning were observed for an oxygen concentration of 13% with the rest being nitrogen. In addition, measured droplet burning rates, flame stand-off ratios, and extinction diameters are presented for varying concentrations of oxygen and diluents. Simplified theoretical models are presented to explain the observed variations in extinction diameter and flame stand-off ratios.

  9. Electrodeposited nanostructured lead dioxide as a thin film electrode for a lightweight lead-acid battery

    NASA Astrophysics Data System (ADS)

    Egan, D. R. P.; Low, C. T. J.; Walsh, F. C.

    Thin films of nanostructured lead dioxide are investigated as a positive electrode material for a lightweight lead-acid battery. The films are obtained by constant current deposition from electrolytes of lead methanesulfonate in methanesulfonic acid. The films are tested in two conditions namely (a) cyclic voltammetry and (b) constant current battery cycling in sulfuric acid. The charge and discharge current density, charge density and charge efficiency are measured as a function of cycle number. The effect of deposition conditions, such as solution temperature (295 and 333 K), type of substrate and electrolyte additive (hexadecyltrimethylammonium hydroxide), on the electrochemical performance of the PbO 2 in sulfuric acid is investigated. It is found that the as-deposited lead dioxide film is compact and nanostructured β-phase structure. Following successive cycling in sulfuric acid, the compact thin film gradually transforms into a porous microstructure consisting of positive active material (PbO 2 and PbSO 4), several tens of nanometres size. The charge density, discharge density and peak discharge current density of the PbO 2 improve with cycling of the thin film electrode.

  10. The spatial and seasonal variation of nitrogen dioxide and sulfur dioxide in Cape Breton Highlands National Park, Canada, and the association with lichen abundance

    NASA Astrophysics Data System (ADS)

    Gibson, Mark D.; Heal, Mathew R.; Li, Zhengyan; Kuchta, James; King, Gavin H.; Hayes, Alex; Lambert, Sheldon

    2013-01-01

    Over 200,000 tourists per year visit Cape Breton Highlands National Park, Nova Scotia, Canada. The forests within the park are home to many rare epiphytic lichens, the species diversity of which has declined in some areas. The primary motivation for this study was to gain insight into the concentrations and potential local and long-range sources of air pollution, but its association with lichen species diversity was also examined. Ogawa passive diffusion samplers were used to measure nitrogen dioxide (NO2) and sulfur dioxide (SO2) in the park at 19 sites in the winter and 20 sites in the summer of 2011. An improvement in the sensitivity of the sampler analytical protocol was developed. The mean concentrations in the park of winter and summer NO2 (0.81 and 0.16 ppb) and SO2 (0.24 and 0.21 ppb) are not at levels known to be phytotoxic to lichen. The NO2 concentrations in winter were significantly (p = 0.001) higher than those in summer whilst the SO2 concentrations did not differ significantly between winter and summer (p = 0.429). Highest NO2 concentrations in both seasons were observed in the Grand Anse Valley, presumably due to the steep road, emissions from the Pleasant Bay community at the foot of the valley and the enclosed topography of this area reducing dispersion of primary emissions. The SO2 concentrations in the park tended to be greater at elevated sites than valley sites, consistent with dispersion from long-range, rather than local, sources for this pollutant. Significant predictors in a multilinear regression for an index of air purity (lichen based measure of air quality) were lichen species number (p = 0.009), forest old growth index (p = 0.001) and distance from roads (p < 0.001) (model R2 = 0.8, model p = 0.004). The study suggests that local sources of pollution (roads emissions) are adversely associated with lichen species diversity in this National Park, compared with long-range transport, and that monitoring programs such as a lichen

  11. Acid Rain Demonstration: The Formation of Nitrogen Oxides as a By-Product of High-Temperature Flames in Connection with Internal Combustion Engines

    NASA Astrophysics Data System (ADS)

    Driscoll, Jerry A.

    1997-12-01

    This demonstration illustrates the formation of nitrogen oxides resulting from a high temperature flame. The procedure is to burn hydrogen from a delivery tube in a 6 liter erlenmeyer flask filled with oxygen. (see original paper for safety precautions.) As the burning proceeds the water from the combustion condenses on the wall of the flask and eventually drips from the mouth of the flask. Air displaces the oxygen consumed. The nitrogen from the air reacts with the oxygen in the presence of the high temperature flame in the flask forming colorless nitric oxide which reacts further to form visible brown nitrogen dioxide in the flask. After the burn water can be introduced into the flask , capped, and shaken. An acid mist forms which slowly dissolves. An acid-base indicator will show that the solution is acid at about a pH 1-2 from nitrous and nitric acid. Nitrogen oxides do not form until the temperature is at least 1300 °C. The hydrogen flame in this demonstration is in the neighborhood of 3000 °C. Editor's Note: Please read Charles Braun's letter regarding the safety issues of the demonstration (JCE 1999, 76, 757).

  12. Airborne Measurements of Nitric Oxide, Nitrogen Dioxide, Ozone, and Total Reactive Nitrogen During the NASA Global Tropospheric Experiment

    NASA Technical Reports Server (NTRS)

    Carroll, Mary Anne

    2000-01-01

    Fabrication of the University of Michigan Multichannel Chemiluminescence Instrument (UMMCI) was completed in early 1996 and the instrument participated in test flights on the NASA P3B at Wallops Island prior to integration and deployment for the PEM- Tropics A Mission. The UMMCI consists of 4 channels for simultaneous measurements of ozone and NO with the option for measurements of NO2 and NOy (total reactive nitrogen) when converters are placed upstream of the NO channels. Each NO channel consists of a zeroing volume and reaction vessel, while the ozone channel consists of an ozone catalyst (or scrubber) trap that is not in line with the reaction vessel. The detectors in all for channels are Hamamatsu photomultiplier tubes, which are followed by pulse amplifier discriminators on the NO channels and an electrometer on the ozone channel. Schematics of the Detector Module and NOx/03 Probe Insert and Diagrams of the Control and Data System, the Power and Ground System, the Gas Flow System, and the Calibration System Flow are attached. Intercomparisons were conducted with G. Gregory, NASA/Langley, during the test flights (following prior calibration of the ozone generator/calibrators at the Wallops Long-Path Absorption facility). Initial test results appeared to be reasonable, and instrument characterization studies proceeded for the ozone channel and the 3 NO channels until deployment for integration for the PEM-Tropics Mission. Ozone data was obtained for Flights #4, and 6-2 1, and finalized data was submitted to the PEM-Tropics Data Archive and to the Science Team during the April 1997 Data Workshop. Although it initially appeared that the instrument sensitivity varied, subsequent tests showed that this was the fault of a leak in the ozone calibrator. In fact; the instrument sensitivity has not been observed to vary in a large number of tests over the years since the PEM-Tropics mission. We have, therefore, a very high degree of confidence in the O3 data that we

  13. Carbonic acid as a reserve of carbon dioxide on icy moons: The formation of carbon dioxide (CO{sub 2}) in a polar environment

    SciTech Connect

    Jones, Brant M.; Kaiser, Ralf I.; Strazzulla, Giovanni

    2014-06-20

    Carbon dioxide (CO{sub 2}) has been detected on the surface of several icy moons of Jupiter and Saturn via observation of the ν{sub 3} band with the Near-Infrared Mapping Spectrometer on board the Galileo spacecraft and the Visible-Infrared Mapping Spectrometer on board the Cassini spacecraft. Interestingly, the CO{sub 2} band for several of these moons exhibits a blueshift along with a broader profile than that seen in laboratory studies and other astrophysical environments. As such, numerous attempts have been made in order to clarify this abnormal behavior; however, it currently lacks an acceptable physical or chemical explanation. We present a rather surprising result pertaining to the synthesis of carbon dioxide in a polar environment. Here, carbonic acid was synthesized in a water (H{sub 2}O)-carbon dioxide (CO{sub 2}) (1:5) ice mixture exposed to ionizing radiation in the form of 5 keV electrons. The irradiated ice mixture was then annealed, producing pure carbonic acid which was then subsequently irradiated, recycling water and carbon dioxide. However, the observed carbon dioxide ν{sub 3} band matches almost exactly with that observed on Callisto; subsequent temperature program desorption studies reveal that carbon dioxide synthesized under these conditions remains in solid form until 160 K, i.e., the sublimation temperature of water. Consequently, our results suggest that carbon dioxide on Callisto as well as other icy moons is indeed complexed with water rationalizing the shift in peak frequency, broad profile, and the solid state existence on these relatively warm moons.

  14. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson

    2014-07-01

    A system for forming metal hydroxide from a metal carbonate utilizes a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide.

  15. Pantethine inhibits cholesterol and fatty acid syntheses and stimulates carbon dioxide formation in isolated rat hepatocytes.

    PubMed

    Cighetti, G; Del Puppo, M; Paroni, R; Fiorica, E; Galli Kienle, M

    1987-02-01

    The effects of pantethine on cholesterol and fatty acid metabolism were investigated in isolated rat hepatocytes. Preincubation of the cells with pantethine induced a concentration-dependent decrease of the radioactivity incorporated into carbon dioxide and lipids in incubations with [2-14C]acetate. When pantethine and the labeled substrate were simultaneously added to the cell suspension, there was an enhancement of carbon dioxide radioactivity at short incubation time (5 min) whereas, at longer incubation time, values were comparable to those of controls; lipid radioactivity, instead, was dramatically reduced by pantethine even at short incubation time and decreased further during the incubation, being 23% of that of controls at 60 min. Analysis of the incubation medium showed that pantethine induced a concentration- and time-dependent release of acetate into the medium. Results of the effect of the acetate concentration on the incorporation of [2-14C]acetate radioactivity into CO2 and lipids in control hepatocytes allowed the conclusion that the above-described modifications induced by pantethine are only partially attributable to the dilution of the labeled substrate, and that catabolism of acetate to carbon dioxide is stimulated by the disulphide pantethine, whereas cholesterol and fatty acid syntheses are inhibited. PMID:3106549

  16. The McConnell missile accident: clinical spectrum of nitrogen dioxide exposure

    SciTech Connect

    Yockey, C.C.; Eden, B.M.; Byrd, R.B.

    1980-09-12

    Technical report:Twenty-four men were refueling a missile when a large spill of oxidizer occurred. Three men were exposed to very high concentrations of nitrogen oxides; one died within minutes, and severe respiratory distress symptoms developed in the other two. The rest of the crew members were exposed to moderate concentrations. Persisting headaches and visual disturbances were some prevalent disorders resulting from the accident. (1 diagram, 7 references, 1 table)

  17. Photocatalytic equipment with nitrogen-doped titanium dioxide for air cleaning and disinfecting

    NASA Astrophysics Data System (ADS)

    Son Le, Thanh; Buu Ngo, Quoc; Dung Nguyen, Viet; Chau Nguyen, Hoai; Hien Dao, Trong; Tin Tran, Xuan; Kabachkov, E. N.; Balikhin, I. L.

    2014-03-01

    Nitrogen-doped TiO2 nanoparticle photocatalysts were synthesized by a sol-gel procedure using tetra-n-butyl orthotitanate as a titanium precursor and urea as a nitrogen source. Systematic studies for the preparation parameters and their impact on the material's structure were carried out by multiple techniques: thermogravimetric and differential scanning calorimetric analysis, x-ray diffraction, scanning electron microscope, transmission electron microscopy, energy dispersive x-ray spectroscopy and UV-Vis diffuse reflectance spectrophotometry showed that the nitrogen-doped TiO2 calcined at 500 °C for 3 h exhibited a spherical form with a particle size about 15-20 nm and crystal phase presented a mixture of 89.12% anatase. The obtained product was deposited on a porous quartz tube (D = 74 mm l = 418 mm) to manufacture an air photocatalytic cleaner as a prototype of the TIOKRAFT company's equipment. The created air cleaner was able to remove 60% of 10 ppm acetone within 390 min and degrade 98.5% of bacteria (total aerobic bacteria and fungi, 300 cfu m-3) within 120 min in a 10 m3 box. These photodegradation activities of N-TiO2 are higher than that of the commercial nano-TiO2 (Skyspring Inc., USA, particle size of 5-10 nm).

  18. Oxidative damage by ozone and nitrogen dioxide: synergistic toxicity in vivo but no evidence of synergistic oxidative damage in an extracellular fluid.

    PubMed

    O'Neill, C A; van der Vliet, A; Eiserich, J P; Last, J A; Halliwell, B; Cross, C E

    1995-01-01

    Inhalation of ozone (O3) and/or nitrogen dioxide (.NO2) is associated with the development of inflammation in the respiratory tract and various alterations in pulmonary functions. Respiratory tract lining fluids (RTLFs) represent the first biological fluids coming into contact with these inhaled toxicants. Using plasma as a surrogate for RTLFs, we have previously shown that O3 [Cross, Motchnik, Bruener, Jones, Kaur, Ames and Halliwell (1992) FEBS Lett. 298, 269-272] and .NO2 [Halliwell, Hu, Louie, Duvall, Tarkington, Motchnik and Cross (1992) FEBS Lett. 313, 62-66] are both capable of depleting antioxidants and damaging proteins and lipids. O3 particularly damages proteins, whereas .NO2 induces the peroxidation of lipids and nitrates aromatic amino acids. It has been reported that O3 and .NO2 cause synergistic toxicity in rodents [Gielzleichter, Witschi and Last (1992) Tox. Appl. Pharmacol. 116, 1-9]. In the present chapter, we review evidence showing that combined exposure of these two oxidant gases to human plasma fails to exert synergistic oxidative damage to plasma constituents, and in fact, O3 and .NO2 antagonize each other's actions. We conclude that the potentiating effect of these two gases on morbidity and mortality in rodents represents a complex interactive biological effect rather than a simple synergistic oxidative effect in extracellular fluids. PMID:8660391

  19. Solar driven nitrous acid formation on building material surfaces containing titanium dioxide: A concern for air quality in urban areas?

    NASA Astrophysics Data System (ADS)

    Langridge, Justin M.; Gustafsson, R. Joel; Griffiths, Paul T.; Cox, R. Anthony; Lambert, Richard M.; Jones, Roderic L.

    The photoenhanced uptake of nitrogen dioxide (NO 2) to the surface of commercially available self-cleaning window glass has been studied under controlled laboratory conditions. This material is one of an array of modern building products which incorporate titanium dioxide (TiO 2) nanoparticles and are finding increasing use in populated urban areas. Amongst the principal drivers for the use of these materials is that they are thought to facilitate the irreversible removal of pollutants such as NO 2 and organic molecules from the atmosphere and thus act to remediate air quality. While it appears that TiO 2 materials do indeed remove organic molecules from built environments, in this study we show that the photoenhanced uptake of NO 2 to one example material, self-cleaning window glass, is in fact accompanied by the substantial formation (50-70%) of gaseous nitrous acid (HONO). This finding has direct and serious implications for the use of these materials in urban areas. Not only is HONO a harmful respiratory irritant, it is also readily photolysed by solar radiation leading to the formation of hydroxyl radicals (OH) together with the re-release of NO x as NO. The net effect of subsequent OH initiated chemistry can then be the further degradation of air quality through the formation of secondary pollutants such as ozone and VOC oxidation products. In summary, we suggest that a scientifically conceived technical strategy for air quality remediation based on this technology, while widely perceived as universally beneficial, could in fact have effects precisely opposite to those intended.

  20. Microwave Effect for Glycosylation Promoted by Solid Super Acid in Supercritical Carbon Dioxide

    PubMed Central

    Hinou, Hiroshi; Saito, Naohiro; Ogawa, Masato; Maeda, Takahiko; Nishimura, Shin-Ichiro

    2009-01-01

    The effects of microwave irradiation (2.45 GHz, 200 W) on glycosylation promoted by a solid super acid in supercritical carbon dioxide was investigated with particular attention paid to the structure of the acceptor substrate. Because of the symmetrical structure and high diffusive property of supercritical carbon dioxide, microwave irradiation did not alter the temperature of the reaction solution, but enhanced reaction yield when aliphatic acceptors are employed. Interestingly, the use of a phenolic acceptor under the same reaction conditions did not show these promoting effects due to microwave irradiation. In the case of aliphatic diol acceptors, the yield seemed to be dependent on the symmetrical properties of the acceptors. The results suggest that microwave irradiation do not affect the reactivity of the donor nor promoter independently. We conclude that the effect of acceptor structure on glycosylation yield is due to electric delocalization of hydroxyl group and dielectrically symmetric structure of whole molecule. PMID:20054471

  1. Formation of nitrate and ammonium ions in titanium dioxide mediated photocatalytic degradation of organic compounds containing nitrogen atoms

    SciTech Connect

    Low, G.K.-C.; McEvoy, S.R.; Matthews, R.W. )

    1991-03-01

    The photocatalytic oxidation of a related series of primary, secondary, and tertiary amines and other nitrogen- and sulfur-containing organic compounds over a UV-illuminated film of TiO{sub 2} has been studied. The compounds were as follows: n-pentylamine, piperidine, pyridine, phenylalanine, desipramine, thioridazine, penicillamine, isosorbide dinitrate, 4-nitrocatechol, 2,4-dinitrophenol, cyclophosphamide, 5-fluorouracil, atrazine, ethylenediaminetetracetic acid, and tetrabutylammonium phosphate. Both ammonium and nitrate ions were formed. The relative concentration of the two ions depended on the nature of the nitrogen in a compound, but was also influenced by the illumination time and concentration of the solute. It was found that for n-pentylamine, piperidine and pyridine, the rate of formation of ammonium ions was n-pentylamine {much gt} pyridine > piperidine. The order of rates of nitrate formation was pyridine = piperidine {much gt} pentylamine. For n-pentylamine the rate of formation of ammonium ions was {approximately}100 times that of nitrate.

  2. Nitrogen fertilizer factory effects on the amino acid and nitrogen content in the needles of Scots pine.

    PubMed

    Kupsinskiene, E

    2001-12-01

    The aim of the research was to evaluate the content of amino acids in the needles of Pinus sylvestris growing in the area affected by a nitrogen fertilizer factory and to compare them with other parameters of needles, trees, and sites. Three young-age stands of Scots pine were selected at a distance of 0.5 km, 5 km, and 17 km from the factory. Examination of the current-year needles in winter of the year 2000 revealed significant (p < 0.05) differences between the site at a 0.5-km distance from the factory and the site at a 17-km distance from the factory--with the site closest to the factory showing the highest concentrations of protein (119%), total arginine (166%), total other amino acids (depending on amino acid, the effect ranged between 119 and 149%), free arginine (771%), other free amino acids (glutamic acid, threonine, serine, lysine--depending on amino acid, the effect ranged between 162 and 234%), also the longest needles, widest diameter, largest surface area, and heaviest dry weight (respectively, 133, 110, 136, and 169%). The gradient of nitrogen concentration in the needles was assessed on the selected plots over the period of 1995-2000, with the highest concentration (depending on year, 119 to 153%) documented in the site located 0.5 km from the factory. Significant correlations were determined between the total amino acid contents (r = 0.448 -0.939, p < 0.05), some free amino acid (arginine, aspartic acid, glutamic acid, lysine, threonine, and serine) contents (r = 0.418 - 0.975, p < 0.05), and air pollutant concentration at the sites, the distance between the sites and the factory, and characteristics of the needles. No correlation was found between free or total arginine content and defoliation or retention of the needles. In conclusion, it was revealed that elevated mean monthly concentration of ammonia (26 microg m(-3)) near the nitrogen fertilizer factory caused changes in nitrogen metabolism, especially increasing (nearly eight times

  3. An accurate benchmark description of the interactions between carbon dioxide and polyheterocyclic aromatic compounds containing nitrogen.

    PubMed

    Li, Sicheng; Smith, Daniel G A; Patkowski, Konrad

    2015-07-01

    We assessed the performance of a large variety of modern density functional theory approaches for the adsorption of carbon dioxide on molecular models of pyridinic N-doped graphene. Specifically, we selected eight polyheterocyclic aromatic compounds ranging from pyridine and pyrazine to 1,6-diazacoronene and investigated their complexes with CO2 for a large range of intermolecular distances and including both in-plane and stacked orientations. The benchmark interaction energies were computed at the complete-basis-set limit MP2 level plus a CCSD(T) coupled-cluster correction in a moderate but carefully selected basis set. Using a set of 96 benchmark CCSD(T)-level interaction energies as a reference, we investigated the accuracy of DFT-based approaches as a function of the density functional, the dispersion correction, the basis set, and the counterpoise correction or lack thereof. While virtually all DFT variants exhibit some deterioration of accuracy for distances slightly shorter than the van der Waals minima, we were able to identify several schemes such as B2PLYP-D3 and M05-2X-D3 whose average errors on the entire benchmark data set are in the 5-10% range. The top DFT performers were subsequently used to investigate the energy profile for a carbon dioxide transition through model N-doped graphene pores. All investigated methods confirmed that the largest, N4H4 pore allows for a barrierless CO2 transition to the other side of a graphene sheet. PMID:26055458

  4. Bi-phasic titanium dioxide nanoparticles doped with nitrogen and neodymium for enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Gomez, Virginia; Bear, Joseph C.; McNaughter, Paul D.; McGettrick, James D.; Watson, Trystan; Charbonneau, Cecile; O'Brien, Paul; Barron, Andrew R.; Dunnill, Charles W.

    2015-10-01

    Bi-phasic or multi-phasic composite nanoparticles for use in photocatalysis have been produced by a new synthetic approach. Sol-gel methods are used to deposit multiple layers of active material onto soluble substrates. In this work, a layer of rutile (TiO2) was deposited onto sodium chloride pellets followed by an annealing step and a layer of anatase. After dissolving the substrate, bi-phasic nanoparticles containing half anatase and half rutile TiO2; with ``Janus-like'' characteristics are obtained. Nitrogen and neodymium doping of the materials were observed to enhance the photocatalytic properties both under UV and white light irradiation. The unique advantage of this synthetic method is the ability to systematically dope separate sides of the nanoparticles. Nitrogen doping was found to be most effective on the anatase side of the nanoparticle while neodymium was found to be most effective on the rutile side. Rhodamine B dye was effectively photodegraded by co-doped particles under white light.Bi-phasic or multi-phasic composite nanoparticles for use in photocatalysis have been produced by a new synthetic approach. Sol-gel methods are used to deposit multiple layers of active material onto soluble substrates. In this work, a layer of rutile (TiO2) was deposited onto sodium chloride pellets followed by an annealing step and a layer of anatase. After dissolving the substrate, bi-phasic nanoparticles containing half anatase and half rutile TiO2; with ``Janus-like'' characteristics are obtained. Nitrogen and neodymium doping of the materials were observed to enhance the photocatalytic properties both under UV and white light irradiation. The unique advantage of this synthetic method is the ability to systematically dope separate sides of the nanoparticles. Nitrogen doping was found to be most effective on the anatase side of the nanoparticle while neodymium was found to be most effective on the rutile side. Rhodamine B dye was effectively photodegraded by co

  5. Amino acid nitrogen isotopic composition patterns in lacustrine sedimenting matter

    NASA Astrophysics Data System (ADS)

    Carstens, Dörte; Lehmann, Moritz F.; Hofstetter, Thomas B.; Schubert, Carsten J.

    2013-11-01

    Amino acids (AAs) comprise a large fraction of organic nitrogen (N) in plankton and sedimenting matter. Aquatic studies of organic N compounds in general and of AAs in particular, mostly concentrate on marine environments. In order to study the cycling and fate of organic N and AAs in lakes, we measured the N isotopic composition (δ15N) of bulk organic matter (OM) and of single hydrolysable AAs in sediment trap and sediment samples from two Swiss lakes with contrasting trophic state: Lake Brienz, an oligotrophic lake with an oxic water column, and Lake Zug a eutrophic, meromictic lake. We also measured the N isotopic composition of water column nitrate, the likely inorganic N source during biosynthesis in both lakes. The δ15N-AA patterns found for the sediment trap material were consistent with published δ15N-AA data for marine plankton. The AA composition and primary δ15N-AA signatures are preserved until burial in the sediments. During early sedimentary diagenesis, the δ15N values of single AAs appear to increase, exceeding those of the bulk OM. This increase in δ15N-AA is paralleled by a decreased contribution of AAs to the total OM pool with progressed degradation, suggesting preferential AA degradation associated with a significant N isotope fractionation. Indicators for trophic level based on δ15N-AAs were determined, for the first time in lacustrine systems. In our samples, the trophic AAs were generally enriched in 15N compared to source AAs and higher trophic δ15N-AA values in Lake Zug were consistent with a higher trophic level of the bulk biomass compared to Lake Brienz. Especially the difference between average trophic δ15N-AAs and average source δ15N-AAs was sensitive to the trophic states of the two lakes. A proxy for total heterotrophic AA re-synthesis (ΣV), which is strongly associated with heterotrophic microbial reworking of the OM, was calculated based on δ15N values of trophic AAs. Higher ΣV in Lake Brienz indicate enhanced

  6. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  7. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste... nitrogen oxides in excess of the emission limits listed in table 2 of this subpart for affected...

  8. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  9. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... limits for nitrogen oxides at least as protective as the emission limits listed in table 1 of...

  10. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... limits for nitrogen oxides at least as protective as the emission limits listed in table 1 of...

  11. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste... nitrogen oxides in excess of the emission limits listed in table 2 of this subpart for affected...

  12. Utilization of ammonium as a nitrogen source: effects of ambient acidity on growth and nitrogen accumulation by soybean

    NASA Technical Reports Server (NTRS)

    Tolley-Henry, L.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1986-01-01

    Dry matter accumulation of plants utilizing NH4+ as the sole nitrogen source generally is less than that of plants receiving NO3- unless acidity of the root-zone is controlled at a pH of about 6.0. To test the hypothesis that the reduction in growth is a consequence of nitrogen stress within the plant in response to effects of increased acidity during uptake of NH4+ by roots, nonnodulated soybean plants (Glycine max [L.] Merr. cv Ransom) were grown for 24 days in flowing nutrient culture containing 1.0 millimolar NH4+ as the nitrogen source. Acidities of the culture solutions were controlled at pH 6.1, 5.1, and 4.1 +/- 0.1 by automatic additions of 0.01 N H2SO4 or Ca(OH)2. Plants were sampled at intervals of 3 to 4 days for determination of dry matter and nitrogen accumulation. Rates of NH4+ uptake per gram root dry weight were calculated from these data. Net CO2 exchange rates per unit leaf area were measured on attached leaves by infrared gas analysis. When acidity of the culture solution was increased from pH 6.1 to 5.1, dry matter and nitrogen accumulation were reduced by about 40% within 14 days. Net CO2 exchange rates per unit leaf area, however, were not affected, and the decreased growth was associated with a reduction in rates of appearance and expansion of new leaves. The uptake rates of NH4+ per gram root were about 25% lower throughout the 24 days at pH 5.1 than at 6.1. A further increase in solution acidity from pH 5.1 to 4.1 resulted in cessation of net dry matter production and appearance of new leaves within 10 days. Net CO2 exchange rates per unit leaf area declined rapidly until all viable leaves had abscised by 18 days. Uptake rates of NH4+, which were initially about 50% lower at pH 4.1 than at 6.1 continued to decline with time of exposure until net uptake ceased at 10 days. Since these responses also are characteristic of the sequence of responses that occur during onset and progression of a nitrogen stress, they corroborate our hypothesis.

  13. NOx and N2O precursors from biomass pyrolysis: nitrogen transformation from amino acid.

    PubMed

    Ren, Qiangqiang; Zhao, Changsui

    2012-04-01

    Large quantities of NO(x) and N(2)O emissions can be produced from biomass burning. Understanding nitrogen behavior during biomass pyrolysis is crucial. Nitrogen in biomass is mainly in forms of proteins (amino acids). Phenylalanine, aspartic acid, and glutamic acid were used as the model compounds for the nitrogen in biomass. Release behavior tests of nitrogen species from the three amino acids during pyrolysis in argon and gasification with O(2) and CO(2) were performed using a thermogravimetric analyzer (TGA) coupled with a Fourier transform infrared (FTIR) spectrometer. The results indicate that although the influence of oxygen and CO(2) in the atmosphere on nitrogen behavior is different for the amino acids, it is interesting to find some phenomenon in common. The presence of oxygen promotes NO and HNCO formation for all the three amino acids; HCN and HNCO formation are suppressed by introduced CO(2) for all the three amino acids. This can reveal the N-conversion mechanism from biomass in depth under the same conditions. PMID:22439902

  14. Volatile fatty acid impacts on nitrite oxidation and carbon dioxide fixation in activated sludge.

    PubMed

    Oguz, Merve T; Robinson, Kevin G; Layton, Alice C; Sayler, Gary S

    2006-02-01

    Batch test were performed to assess nitrite removal, nitrate formation, CO2 fixation, gaseous nitrogen production and microbial density in activated sludge exposed to volatile fatty acid (VFA) mixtures. Nitrite removal and nitrate formation were both affected by the presence of VFAs, but to different degrees. Nitrate formation rates were reduced to a greater extent (79%) than nitrite removal rates (36%) resulting in an apparent unbalanced nitrite oxidation reaction. Since the total bacterial density and the nitrite oxidizing bacteria (NOB, Nitrospira) concentration remained essentially constant under all test conditions, the reduction in rates was not due to heterotrophic uptake of nitrogen or to a decrease in the NOB population. In contrast to the nitrogen results, VFAs were not found to impact CO2 fixation efficiency. It appeared that nitrite oxidation occurred when VFAs were present since the oxidation of nitrite provides energy for CO2 fixation. However, nitrate produced from the oxidation of nitrite was reduced to gaseous nitrogen products. N2O gas was detected in the presence of VFAs which was a clear indication that VFAs stimulated an alternative pathway, such as aerobic denitrification, during biotransformation of nitrogen in activated sludge. PMID:16436292

  15. Efficiency of a Photoreactor Packed with Immobilized Titanium Dioxide Nanoparticles in the Removal of Acid Orange 7.

    PubMed

    Sheidaei, Behnaz; Behnajady, Mohammad A

    2016-05-01

    In this paper, the removal efficiency of Color Index Acid Orange 7 (AO7) as a model contaminant was investigated in a batch-recirculated photoreactor packed with immobilized titanium dioxide type P25 nanoparticles on glass beads. The effects of different operational parameters such as the initial concentration of AO7, the volume of solution, the volumetric flowrate, and the light source power in the photoreactor were investigated. The results indicate that the removal percent increased with the rise in volumetric flowrate and power of the light source, but decreased with the rise of the initial concentration of AO7 and the volume of solution. The AO7 degradation was followed through total organic carbon, gas chromatography/mass spectroscopy (GC/MS), and mineralization products analysis. The ammonium and sulfate ions were analyzed as mineralization products of nitrogen and sulfur heteroatoms, respectively. The results of GC/MS revealed the production of 1-indanone, 1-phthalanone, and 2-naphthalenol as intermediate products for the removal of AO7 in this process. PMID:27131308

  16. Ground-based measurements of anthropogenic column sulfur dioxide and nitrogen dioxide at Frostburg, MD in November 2010 and comparison with aircraft and OMI/AURA satellite measurements

    NASA Astrophysics Data System (ADS)

    Spinei, E.; Mount, G. H.; Herman, J. R.; Cede, A.; Abuhassan, N.; Stehr, J. W.; Brent, L. C.; He, H.; Arkinson, H.; Dickerson, R. R.; Krotkov, N. A.; Yang, K.; Castro, M.; Baker, D.; Hoffman, J.

    2011-12-01

    Sulfur dioxide, a trace gas regulated by the USEPA, affects human health, causes acid rain, and contributes to the production of sulfate aerosols. The largest sources of SO2 emissions in the US are coal-fired power plants in the Ohio river valley region. Strong anthropogenic emissons and transport of SO2 have been globally observed by the Dutch-Finnish Ozone Monitoring Instrument (OMI) on the NASA AURA satellite since October 2004. The derivation of satellite vertical columns of SO2 is difficult due to lower sensor sensitivity in the PBL, uncertainties associated with aerosol loading, cloud cover, and other factors. In November 2010, the first combined ground/AURA OMI measurements of anthropogenic SO2 and other trace gases were made from Frostburg State University, MD downwind of large power plants by ground-based instruments observing the direct sun and multi-axis scattered skylight, airborne instrumentation, and ground-based insitu instruments to validate the OMI SO2 measurements. The weather was generally clear and aerosol optical thickness was generally low during the campaign and well characterized by the measurements. This presentation will describe the use of SO2 profile measurements from the aircraft and combined direct sun/MAX-DOAS measurements from the ground to derive SO2 vertical column density for comparison with OMI SO2. Similar comparisons from ground-based observations will be made for NO2.

  17. Conversion of carbon dioxide to resorcylic acid under ultrasonication by Kolbe-Schmitt reaction.

    PubMed

    Shanthi, B; Palanivelu, K

    2015-11-01

    The present work focuses on a new approach for the synthesis of β-resorcylic acid based on Kolbe-Schmitt reaction using carbon dioxide under ultrasonic and mild condition. The Kolbe-Schmitt reaction is a process for the synthesis of β-resorcylic acid (2,4-dihydroxybenzoic acid) from resorcinol in aqueous potassium hydroxide solution with gaseous CO2. The influences of carbonation time, flow rate of CO2 and the molar ratio of resorcinol/potassium hydroxide on the yield percentage of resorcylic acid were investigated. The study was assessed with the conventional thermal method (non ultrasonic method) for Kolbe-Schmitt reaction and it was observed that applying ultrasound to save more than 95% and 38.6% energy as shown by energy consumption calculations in bath type and horn type sonicator respectively. β-Resorcylic acid formed was characterized by (1)H NMR, (13)C NMR, DEPT NMR and FTIR spectroscopy. The amount of CO2 utilized in the reaction was evaluated from the yield percentage of β-resorcylic acid yield. The maximum yield of resorcylic acid of 30% and 65% was obtained at the resorcinol/potassium hydroxide ratio of 1:3, carbonation time of 150 min and the CO2 flow rate of 2L/min in bath type and horn type ultrasonicator, respectively. The applicability of the research work was examined in two different positional isomers of resorcinol under optimum conditions. PMID:26186845

  18. Isolation of anacardic acid from natural cashew nut shell liquid (CNSL) using supercritical carbon dioxide.

    PubMed

    Philip, Joseph Y N; Da Cruz Francisco, José; Dey, Estera S; Buchweishaija, Joseph; Mkayula, Lupituko L; Ye, Lei

    2008-10-22

    Solvent extracted cashew nut shell liquid (CNSL), conventionally known as natural CNSL, is a mixture of several alkenyl phenols. One of these alkenyl phenols is anacardic acid, which is present at the highest concentration. In view of anticipated industrial applications of anacardic acid, the objective of this work was to isolate anacardic acid from natural CNSL by supercritical carbon dioxide (scCO 2). In this study, the solubility data for natural CNSL in scCO 2 under a range of operating conditions of pressure (100, 200, and 300 bar), temperature (40 and 50 degrees C), and CO 2 flow rate (5, 10, and 15 g min (-1)) were established. The best scCO 2 working conditions were found to be 50 degrees C and 300 bar at a flow rate of 5 g min (-1) CO 2. Using 3 g of sample (CNSL/solid adsorbent = 1/2) under these scCO 2 conditions, it was possible to quantitatively isolate high purity anacardic acid from crude natural CNSL (82% of total anacardic acid) within 150 min. The anacardic acid isolated by scCO 2 was analyzed by different spectroscopic techniques (UV-vis, FT-IR, and (1)H NMR) and HPLC analysis, indicating that the anacardic acid isolated by scCO 2 has better quality than that obtained through a conventional method involving several chemical conversion steps. PMID:18811166

  19. Fate of microbial nitrogen, carbon, hydrolysable amino acids, monosaccharides, and fatty acids in sediment

    NASA Astrophysics Data System (ADS)

    Veuger, Bart; van Oevelen, Dick; Middelburg, Jack J.

    2012-04-01

    The fate of microbial carbon, nitrogen, hydrolysable amino acids (HAAs), monosaccharides, and fatty acids in sediment was investigated experimentally. The microbial community of a tidal flat sediment was labeled with 13C-enriched glucose and 15N-enriched ammonium, and sediment was incubated for up to 371 days. Analysis of total concentrations and 13C- and 15N content of bulk sediment, hydrolysable amino acids (including D-alanine), monosaccharides, total fatty acids (TFAs), and phospholipid-derived fatty acids (PLFAs) allowed us to trace the fate of microbial biomass and -detritus and the major biochemical groups therein (proteins, carbohydrates, and lipids) over intermediate time scales (weeks-months). Moreover, the unidentified fraction of the labeled material (i.e. not analyzed as HAA, FA, or carbohydrate) provided information on the formation and fate of molecularly uncharacterizable organic matter. Loss of 13C and 15N from the sediment was slow (half live of 433 days) which may have been due to the permanently anoxic conditions in the experiment. Loss rates for the different biochemical groups were also low with the following order of loss rate constants: PLFA > TFA > HAA > monosaccharides. The unidentified 13C-pool was rapidly formed (within days) and then decreased relatively slowly, resulting in a gradual relative accumulation of this pool over time. Degradation and microbial reworking of the labeled material resulted in subtle, yet consistent, diagenetic changes within the different biochemical groups. In the HAA pool, glycine, lysine, and proline were lost relatively slowly (i.e. best preserved) while there was no accumulation of D-alanine relative to L-alanine, indicating no relative accumulation of bacterial macromolecules rich in D-alanine. In the fatty acid pool, there was very little difference between PLFAs and TFAs, indicating a very similar lability of these pools. Differences between individual fatty acids included a relatively slow loss of i15

  20. Carbon dioxide enrichment: Data on the response of cotton to varying CO{sub 2}, irrigation, and nitrogen

    SciTech Connect

    Sepanski, R.J.; Kimball, B.A.; Mauney, J.R.; La Morte, R.L.; Guinn, G.; Nakayama, F.S.; Radin, J.W.; Mitchell, S.T.; Parker, L.L.; Peresta, G.J.; Nixon, P.E. III; Savoy, B.; Harris, S.M.; MacDonald, R.; Pros, H.; Martinez, J.; Lakatos, E.A.

    1992-06-01

    This document presents results from field CO{sub 2}-enrichment experiments conducted over five consecutive growing seasons, 1983--1987. These results comprise data concerning the effects of continuous CO{sub 2} enrichment on the growth of cotton under optimal and limiting levels of water and nitrogen. Unlike many prior C0{sub 2} enrichment experiments in growth chambers or greenhouses, these studies were conducted on field-planted cotton at close to natural conditions using the open-top chamber approach. Measurements were made on a variety of crop response variables at intervals during the growing season and upon crop harvest. The initial experiment examined the effects of varying C0{sub 2} concentration only. In the following two seasons, the interactive effects of C0{sub 2} concentration and water availability were studied. In the final two seasons, the effects of the three-way interaction between C0{sub 2} concentration, water availability, and nitrogen fertility were investigated. The data comprise three types of information: identification variables (such as year, institution and situ codes, and treatment regimens), intermediate growth measurements (such as plant height, leaf area index, number of flowers, and dry weight of leaves) taken at various times during the growing season, and crop harvest results (such as lint yield, seed yield, and total aboveground dry biomass). They are available free of charge as a numeric data package (NAP) from the Carbon Dioxide Information Analysis Center. The NAP consists of this document and a magnetic tape (or a floppy diskette, upon request) containing machine-readable files. This document provides sample listings of the CO{sub 2} enrichment response data as they appear on the magnetic tape or floppy diskette and provides detailed descriptions of the design and methodology of these experiments, as well as a complete hard copy listing of all of the data in the form of a supplemental text provided as an appendix.

  1. Carbon dioxide enrichment: Data on the response of cotton to varying CO sub 2 , irrigation, and nitrogen

    SciTech Connect

    Sepanski, R.J. . Energy, Environment and Resources Center); Kimball, B.A.; Mauney, J.R.; La Morte, R.L.; Guinn, G.; Nakayama, F.S.; Radin, J.W.; Mitchell, S.T.; Parker, L.L.; Peresta, G.J.; Nixon, P.E. III; Savoy, B.; Harris, S.M.; MacDonald, R.; Pros, H.; Martinez, J. ); Lakatos, E.A. (Arizona Univ., Tucs

    1992-06-01

    This document presents results from field CO{sub 2}-enrichment experiments conducted over five consecutive growing seasons, 1983--1987. These results comprise data concerning the effects of continuous CO{sub 2} enrichment on the growth of cotton under optimal and limiting levels of water and nitrogen. Unlike many prior C0{sub 2} enrichment experiments in growth chambers or greenhouses, these studies were conducted on field-planted cotton at close to natural conditions using the open-top chamber approach. Measurements were made on a variety of crop response variables at intervals during the growing season and upon crop harvest. The initial experiment examined the effects of varying C0{sub 2} concentration only. In the following two seasons, the interactive effects of C0{sub 2} concentration and water availability were studied. In the final two seasons, the effects of the three-way interaction between C0{sub 2} concentration, water availability, and nitrogen fertility were investigated. The data comprise three types of information: identification variables (such as year, institution and situ codes, and treatment regimens), intermediate growth measurements (such as plant height, leaf area index, number of flowers, and dry weight of leaves) taken at various times during the growing season, and crop harvest results (such as lint yield, seed yield, and total aboveground dry biomass). They are available free of charge as a numeric data package (NAP) from the Carbon Dioxide Information Analysis Center. The NAP consists of this document and a magnetic tape (or a floppy diskette, upon request) containing machine-readable files. This document provides sample listings of the CO{sub 2} enrichment response data as they appear on the magnetic tape or floppy diskette and provides detailed descriptions of the design and methodology of these experiments, as well as a complete hard copy listing of all of the data in the form of a supplemental text provided as an appendix.

  2. Evaluating the uncertainties of thermal catalytic conversion in measuring atmospheric nitrogen dioxide at four differently polluted sites in China

    NASA Astrophysics Data System (ADS)

    Xu, Zheng; Wang, Tao; Xue, L. K.; Louie, Peter K. K.; Luk, Connie W. Y.; Gao, J.; Wang, S. L.; Chai, F. H.; Wang, W. X.

    2013-09-01

    A widely used method for measuring nitrogen dioxide (NO2) in the atmosphere is the conversion of NO2 to nitric oxide (NO) on the hot surface of a molybdenum oxide (MoO) catalyst followed by the chemiluminescence detection of NO. Although it has long been recognized that this type of conversion may suffer from the positive interference of other oxidized nitrogen compounds, evaluations of such interference in the atmosphere are scarce, thus rendering it difficult to make use of a large portion of the NO2 or NOx data obtained via this method (often denoted as NO2* or NOx*). In the present study, we compared the MoO converter with a selective, more accurate photolytic approach at four differently polluted sites in China. The converter worked well at the urban site, which was greatly affected by fresh emissions, but, on average, overestimated NO2 by 30%-50% at the two suburban sites and by more than 130% at the mountain-top site during afternoon hours, with a much larger positive bias seen during the top 10% of ozone events. The degree of overestimation depended on both air-parcel age and the composition of the oxidation products/intermediates of NOx (NOz). We attempted to derive an empirical formula to correct for this overestimation using concurrently measured O3, NO, and NO2* at the two suburban sites. Although the formula worked well at each individual site, the different NOz partitions at the sites made it difficult to obtain a universal formula. In view of the difficulty of assessing the uncertainties of the conventional conversion method, thus limiting the usability of data obtained via this method in atmospheric research, we suggest that, in areas away from fresh NOx emission sources, either a more selective NO2 measurement method or a NOy (NOx and its reaction products and intermediates) instrument should be adopted.

  3. Indoor-outdoor nitric oxide and nitrogen dioxide concentrations at three sites in Riyadh, Saudi Arabia

    SciTech Connect

    Rowe, D.R. ); Al-Dhowalia, K.H.; Mansour, M.E. )

    1991-08-01

    The objective of this study was to evaluate the nitric oxide and nitrogen oxide concentrations indoors and outdoors at three sites in Riyadh, Saudi Arabia. Results show that the outdoor and indoor concentrations for NO were at least 270 and 16 times the reported average worldwide NO concentrations, respectively. The NO(sub 2) concentrations were about 14 times reported outdoor worldwide levels; however, NO(sub 2) concentrations indoors were generally below those reported in the literature. The data presented, in combination with information presented in previous articles, will provide a valuable background database for use in dispersion models to determine the effect of the Kuwaiti oil well fires on the air quality of Riyadh.

  4. The photosynthesis - leaf nitrogen relationship at ambient and elevated atmospheric carbon dioxide: a meta-analysis

    SciTech Connect

    Andrew G. Peterson; J. Timothy Ball; Yiqi Luo; Christopher B. Field; Peter B. Reich; Peter S. Curtis; Kevin L. Griffin; Carla S Gunderson; Richard J. Norby; David T. Tissue; Manfred Forstreuter; Ana Rey; Christoph S. Vogel; CMEAL collaboration

    1998-09-25

    Estimation of leaf photosynthetic rate (A) from leaf nitrogen content (N) is both conceptually and numerically important in models of plant, ecosystem and biosphere responses to global change. The relationship between A and N has been studied extensively at ambient CO{sub 2} but much less at elevated CO{sub 2}. This study was designed to (1) assess whether the A-N relationship was more similar for species within than between community and vegetation types, and (2) examine how growth at elevated CO{sub 2} affects the A-N relationship. Data were obtained for 39 C{sub 3} species grown at ambient CO{sub 2} and 10 C{sub 3} species grown at ambient and elevated CO{sub 2}. A regression model was applied to each species as well as to species pooled within different community and vegetation types. Cluster analysis of the regression coefficients indicated that species measured at ambient CO{sub 2} did not separate into distinct groups matching community or vegetation type. Instead, most community and vegetation types shared the same general parameter space for regression coefficients. Growth at elevated CO{sub 2} increased photosynthetic nitrogen use efficiency for pines and deciduous trees. When species were pooled by vegetation type, the A-N relationship for deciduous trees expressed on a leaf-mass bask was not altered by elevated CO{sub 2}, while the intercept increased for pines. When regression coefficients were averaged to give mean responses for different vegetation types, elevated CO{sub 2} increased the intercept and the slope for deciduous trees but increased only the intercept for pines. There were no statistical differences between the pines and deciduous trees for the effect of CO{sub 2}. Generalizations about the effect of elevated CO{sub 2} on the A-N relationship, and differences between pines and deciduous trees will be enhanced as more data become available.

  5. Role of fatty acid composites in the toxicity of titanium dioxide nanoparticles used in cosmetic products.

    PubMed

    Chang, JuOae; Lee, Chang-Woo; Alsulimani, Helal Hussain; Choi, Jee Eun; Lee, Joo-Kyung; Kim, AhYoung; Park, Bae Ho; Kim, Jonghan; Lee, HeaYeon

    2016-01-01

    It has been recognized that the use of nanoparticles (NPs) in the cosmetic industry results in products with better efficacy and functionality. However, recent advances in molecular toxicology have revealed that NP exposure can promote cytotoxicity and oxidative damage, which has raised health concerns in the use of NPs in personal care products. Nevertheless, the mechanistic basis for the toxicity and safety of cosmetic NPs is poorly understood. The goal of the study was to determine the cytotoxicity and intracellular distribution of titanium dioxide (TiO2) NPs containing fatty acid composites (palmitoleic acid, palmitic acid, stearic acid and oleic acid) commonly used in cosmetic products. Two types of cells, human fibroblast skin cells and adenocarcinoma lung cells, were exposed to either bare TiO2 NPs or TiO2 NPs mixed with fatty acids for up to 48 hr. NMR analysis confirmed that the fatty acid composites remained in the NPs after wash. The cytotoxicity of TiO2 NPs was determined by cell viability measurement using quantitative confocal microscopy, and the localization of two different forms of TiO2 NPs were assessed using electron spectroscopic imaging with transmission electron microscopy. TiO2 NPs containing fatty acids posed significantly reduced cytotoxicity (80-88% decreases) than bare NPs in both cell types. Furthermore, there was less intracellular penetration of the NPs containing fatty acid composites compared with bare NPs. These results provide important insights into the role of fatty acids in protecting the cells from possible toxicity caused by NPs used in the production of cosmetic products. PMID:27432239

  6. The economic benefits of reducing the levels of nitrogen dioxide (NO2) near primary schools: The case of London.

    PubMed

    Guerriero, Carla; Chatzidiakou, Lia; Cairns, John; Mumovic, Dejan

    2016-10-01

    Providing a healthy school environment is a priority for child health. The aim of this study is to develop a methodology that allows quantification of the potential economic benefit of reducing indoor exposure to nitrogen dioxide (NO2) in children attending primary schools. Using environmental and health data collected in primary schools in London, this study estimates that, on average, 82 asthma exacerbations per school can be averted each year by reducing outdoor NO2 concentrations. The study expands upon previous analyses in two ways: first it assesses the health benefits of reducing children's exposure to indoor NO2 while at school, second it considers the children's perspective in the economic evaluation. Using a willingness to pay approach, the study quantifies that the monetary benefits of reducing children's indoor NO2 exposure while at school would range between £2.5 k per school if a child's perspective based on child's budget is adopted up to £60 k if a parent's perspective is considered. This study highlights that designers, engineers, policymakers and stakeholders need to consider the reduction of outdoor pollution, and particularly NO2 levels, near primary schools as there may be substantial health and monetary benefits. PMID:27451292

  7. Analysis of Mexico City urban air pollution using nitrogen dioxide column density measurements from UV/Visible spectroscopy

    NASA Astrophysics Data System (ADS)

    Garcia Payne, D. G.; Grutter, M.; Melamed, M. L.

    2010-12-01

    The differential optical absorption spectroscopy method (DOAS) was used to get column densities of nitrogen dioxide (NO2) from the analysis of zenith sky UV/visible spectra. Since the optical path length provides critical information in interpreting NO2 column densities, in conjunction with NO2 column densities, the oxygen dimer (O4) column density was retrieved to give insight into the optical path length. We report observations of year round NO2 and O4 column densities (from august 2009 to september 2010) from which the mean seasonal levels and the daily evolution, as well as the occurrence of elevated pollution episodes are examined. Surface nitric oxide (NO) and NO2 from the local monitoring network, as well as wind data and the vertical aerosol density from continuous Lidar measurements are used in the analysis to investigate specific events in the context of local emissions from vehicular traffic, photochemical production and transport from industrial emissions. The NO2 column density measurements will enhance the understanding Mexico City urban air pollution. Recent research has begun to unravel the complexity of the air pollution problem in Mexico City and its effects not only locally but on a regional and global scale as well.

  8. Mutagenic activity of the products of ozone reaction with propylene in the presence and absence of nitrogen dioxide

    SciTech Connect

    Shepson, P.B.; Kleindienst, T.E.; Edney, E.O.; Cupitt, L.T.; Claxton, L.D.

    1985-01-01

    In a 22.7 cu.m. flow mode smog chamber, 5.4 ppm proylene was allowed to react with 0.9 ppm ozone either in the presence or absence of 0.2 ppm nitrogen dioxide. The steady-state reactant and product distribution was then tested for total mutagenic activity by exposing Salmonella typhimurium strain TA100 to the gasphase chamber effluent. The total product dosage in the test plates was varied by exposing them for 0, 5, 10, 15, and 20 h. Salmonella typhimurium survivor levels were obtained at each length of exposure. The number of revertants/plate increased at a rate of approx. 4-5 per hour, while the survivor level decreased throughout the exposure. Most of the total mutagenic activity can be accounted for by the presence of formaldehyde. This work clearly demonstrates that a gas-phase exposure of Salmonella typhimurium can be effectively employed as an alternative to the standard plate incorporation test for volatile species and for complex gas phase mixtures.

  9. Mutagenic activity of the products of ozone reaction with propylene in the presence and absence of nitrogen dioxide

    SciTech Connect

    Shepson, P.B.; Kleindienst, T.E.; Edney, E.O.; Cuplitt, L.T.; Claxton, L.D.

    1985-11-01

    This study was performed to determine if propylene reaction with ozone could account for the large mutagenic activity we have observed in irradiated propylene/NO/sub x/ mixtures. In a 22.7-m/sup 3/ flow mode smog chamber, 5.4 ppm of propylene was allowed to react with 0.9 ppm of ozone either in the presence or in the absence of 0.2 ppm of nitrogen dioxide (at 25 /sup 0/C in the dark). The steady-state reactant and product distribution was then tested for total mutagenic activity by exposing Salmonella typhimurium strain TA100 to the gas-phase chamber effluent. The total product dosage in the test plates was varied by exposing them for 0, 5, 10, 15, and 20 h. Salmonella typhimurium survivor levels were obtained at each length of exposure. The number of revertants per plate increased at a rate of approx. 4-5 per hour, while the survivor level decreased throughout the exposure. Most of the total mutagenic activity can be accounted for by the presence of formaldehyde. The total mutagenic activity observed was, however, much smaller than that observed in the irradiated propylene/NO/sub x/ system, for comparable amounts of propylene consumed.

  10. Assessing traffic and industrial contributions to ambient nitrogen dioxide and volatile organic compounds in a low pollution urban environment.

    PubMed

    Oiamo, Tor H; Johnson, Markey; Tang, Kathy; Luginaah, Isaac N

    2015-10-01

    Land use regression (LUR) modeling is an effective method for estimating fine-scale distributions of ambient air pollutants. The objectives of this study are to advance the methodology for use in urban environments with relatively low levels of industrial activity and provide exposure assessments for research on health effects of air pollution. Intraurban distributions of nitrogen dioxide (NO2) and the volatile organic compounds (VOCs) benzene, toluene and m- and p-xylene were characterized based on spatial monitoring and LUR modeling in Ottawa, Ontario, Canada. Passive samplers were deployed at 50 locations throughout Ottawa for two consecutive weeks in October 2008 and May 2009. Land use variables representing point, area and line sources were tested as predictors of pooled pollutant distributions. LUR models explained 96% of the spatial variability in NO2 and 75-79% of the variability in the VOC species. Proximity to highways, green space, industrial and residential land uses were significant in the final models. More notably, proximity to industrial point sources and road network intersections were significant predictors for all pollutants. The strong contribution of industrial point sources to VOC distributions in Ottawa suggests that facility emission data should be considered whenever possible. The study also suggests that proximity to road network intersections may be an effective proxy in areas where reliable traffic data are not available. PMID:26022404

  11. Impact of personal and ambient-level exposures to nitrogen dioxide and particulate matter on cardiovascular function

    PubMed Central

    Williams, Ron; Brook, Rob; Bard, Rob; Conner, Teri; Shin, Hwashin; Burnett, Rick

    2011-01-01

    This work explored the association between nitrogen dioxide (NO2) and PM2.5 components with changes in cardiovascular function in an adult non-smoking cohort. The cohort consisted of 65 volunteers participating in the US EPA’s Detroit Exposure and Aerosol Research Study (DEARS) and a University of Michigan cardiovascular sub-study. Systolic and diastolic blood pressure (SBP, DBP), heart rate (HR), brachial artery diameter (BAD), brachial artery flow-mediated dilatation (FMD) and nitroglycerin-mediated arterial dilatation (NMD) were collected by in-home examinations. A maximum of 336 daily environmental and health effect observations were obtained. Daily potassium air concentrations were associated with significant decreases in DBP (−0.0447 mmHg/ng/m3 ± 0.0132, p = 0.0016, lag day 0) among participants compliant with the personal monitoring protocol. Personal NO2 exposures resulted in significant changes in BAD (e.g., 0.0041 mm/ppb ± 0.0019, p = 0.0353, lag day 1) and FMD (0.0612 ±0.0235, p = 0.0103, lag day 0) among other findings. PMID:21711166

  12. Experimental exposures of young asthmatic volunteers to 0. 3 ppm nitrogen dioxide and to ambient air pollution

    SciTech Connect

    Avol, E.L.; Linn, W.S.; Peng, R.C.; Whynot, J.D.; Shamoo, D.A.; Little, D.E.; Smith, M.N.; Hackney, J.D. )

    1989-12-01

    Asthmatic volunteers aged 8 to 16 (N = 34) were exposed on separate occasions to clean air (control), to 0.30 ppm nitrogen dioxide (NO{sub 2}) in otherwise clean air, and to polluted Los Angeles area ambient air on summer mornings when NO2 pollution was expected. Exposures lasted 3 hr, with alternating 10-min periods of exercise and rest. In ambient pollution exposures, 3-hr average NO{sub 2} concentrations ranged from 0.01 to 0.26 ppm, with a mean of 0.09 ppm. Ambient exposures did not significantly affect lung function, symptoms, or bronchial reactivity to cold air, relative to the control condition. Responses to 0.3 ppm NO{sub 2} exposures were equivocal. Asthma symptoms were more severe during 1-week periods before 0.3 ppm exposures, and lung function was decreased immediately before 0.3 ppm exposures, compared to other conditions. Lung function declined slightly during the first hour at 0.3 ppm, but improved over the remaining 2 hr. Compared to other conditions, symptoms were not increased during 0.3 ppm exposures, but were increased during 1-week periods afterward. These observations may reflect untoward effects of 0.3 ppm NO{sub 2}, or may reflect chance increases in asthma severity prior to 0.3 ppm exposures.

  13. GASP - THERMODYNAMIC AND TRANSPORT PROPERTIES OF HELIUM, METHANE, NEON, NITROGEN, CARBON MONOXIDE, CARBON DIOXIDE, OXYGEN, AND ARGON

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    1994-01-01

    A computer program, GASP, has been written to calculate the thermodynamic and transport properties of argon, carbon dioxide, carbon monoxide, fluorine, methane, neon, nitrogen, and oxygen. GASP accepts any two of pressure, temperature, or density as input. In addition, entropy and enthalpy are possible inputs. Outputs are temperature, density, pressure, entropy, enthalpy, specific heats, expansion coefficient, sonic velocity, viscosity, thermal conductivity, and surface tension. A special technique is provided to estimate the thermal conductivity near the thermodynamic critical point. GASP is a group of FORTRAN subroutines. The user typically would write a main program that invoked GASP to provide only the described outputs. Subroutines are structured so that the user may call only those subroutines needed for his particular calculations. Allowable pressures range from 0.l atmosphere to 100 to l,000 atmospheres, depending on the fluid. Similarly, allowable pressures range from the triple point of each substance to 300 degrees K to 2000 degrees K, depending on the substance. The GASP package was developed to be used with heat transfer and fluid flow applications. It is particularly useful in applications of cryogenic fluids. Some problems associated with the liquefication, storage, and gasification of liquefied natural gas and liquefied petroleum gas can also be studied using GASP. This program is written in FORTRAN IV for batch execution and is available for implementation on IBM 7000 series computers. GASP was developed in 1971.

  14. Measurement of nitrogen dioxide diffusive sampling rates for Palmes diffusion tubes using a controlled atmosphere test facility (CATFAC)

    NASA Astrophysics Data System (ADS)

    Martin, Nicholas A.; Helmore, Jonathan J.; White, Samual; Barker Snook, Ieuan L.; Parish, Andy; Gates, Linda S.

    2014-09-01

    We report measurements of the 28 day NO2 diffusive sampling rates for seven designs of Palmes diffusion tubes (PDTs), which were exposed in a controlled atmosphere test facility (CATFAC) containing traceable concentrations of nitrogen dioxide, nitric oxide and water vapour under defined conditions of temperature (20 °C) and wind speed. One of the aims of the work was to implement low cost modifications to the conventional open tube PDT design, using either meshes or filters. This would potentially reduce some of the undesirable bias effects due to wind, which may lead to an over estimation of the NO2 concentration. Exposure tests in the CATFAC were carried out over a wide concentration range applicable to ambient monitoring, and also over a range of wind speeds at a constant concentration. For a given PDT design, the measured NO2 diffusive sampling rates were found to be effectively constant over the conditions tested. These rates were then applied to NO2 field measurements carried out at a monitoring station in central London, and three of the modified PDT designs were found to deliver improved repeatability and consequently reduced measurement uncertainty over the conventional open tubes.

  15. Tropospheric Nitrogen Dioxide Column Density Trends Seen from the 10-year Record of OMI Measurements over East Asia

    NASA Astrophysics Data System (ADS)

    Irie, H.; Muto, T.; Itahashi, S.; Kurokawa, J. I.

    2015-12-01

    The Ozone Monitoring Instrument (OMI) aboard the Aura satellite recorded the 10-year (2005-2014) of tropospheric nitrogen dioxide (NO2) vertical column density (VCD) data. The data set taken over East Asia was analyzed to estimate linear trends on national and grid bases for two periods of 2005-2011 and 2011-2014. The most striking features are leveling-off or decreasing trends seen in NO2 VCDs over China for 2011-2014 after continuous increases for 2005-2011. In particular, a significant reduction by ~14% occurred from 2013 through 2014, attaining to the level of 2009. The grid-basis trend analysis implies that the turnaround seen in the trends occurred on a province or larger spatial scale and was likely due mainly to the technical improvement such as the widespread use of de-NOx units. Another prominent features are seen in Japan, where NO2 VCDs decreased at a rate of ~4% per year from 2005 to 2011. The rate was almost unchanged between the two periods 2005-2011 and 2011-2014, while the significant power substitution of thermal power generation for the nuclear power generation took place in Japan after 2011, when a massive earthquake occurred off the Pacific coast of northern Japan. This reflects a less contribution of NOx emissions from the power plant sector than that from the transport sector in the Pacific Belt Zone lying over metropolitan areas.

  16. MAX-DOAS measurements of nitrogen dioxide at the high altitude sites Zugspitze (2964 m) and Pico Espejo (4765 m)

    NASA Astrophysics Data System (ADS)

    Schreier, Stefan F.; Richter, Andreas; Wittrock, Folkard; Burrows, John P.

    2015-04-01

    Spectral measurements at two mountain sites were performed with a MAX-DOAS (Multi AXis Differential Optical Absorption Spectroscopy) instrument from February to July 2003 (Zugspitze, Germany) and from March 2004 to November 2008 (Pico Espejo, Venezuela). Here, these measurements are used for the retrieval of slant column densities (SCDs) of nitrogen dioxide (NO2). While at the altitude of observations the NO2 levels are usually small, uplifting of anthropogenic emissions from the valley and in Venezuela also transport of emissions from biomass burning can lead to significant enhancements. Daily, weekly, and seasonal cycles of NO2 SCDs are shown for the two stations, linked to different meteorological conditions and compared between the two sites. In a next step, a preliminary approach to derive vertical column densities (VCDs) is presented. VCDs of NO2 from ground-based MAX-DOAS instruments provide useful information for the validation of satellite instruments such as SCIAMACHY, OMI, and GOME-2. Comparisons between ground-based and satellite-based NO2 VCDs are shown for selected periods.

  17. Spatial variance and assessment of nitrogen dioxide pollution in major cities of Pakistan along N5-Highway.

    PubMed

    Shabbir, Yasir; Khokhar, Muhammad Fahim; Shaiganfar, Reza; Wagner, Thomas

    2016-05-01

    This paper discusses the findings of the first car MAX-DOAS (multi-axis differential optical absorption spectroscopy) field campaign (300km long) along the National Highway-05 (N5-Highway) of Pakistan conducted on 13 and 14 November, 2012. The main objective of the field campaign was to assess the spatial distribution of tropospheric nitrogen dioxide (NO2) columns and corresponding concentrations along the N5-Highway from Islamabad to Lahore. Source identification of NO2 revealed that the concentrations were higher within major cities along the highway. The highest NO2 vertical column densities (NO2 VCDs) were found around two major cities of Rawalpindi and Lahore. This study also presents a comparison of NO2 VCDs measured by the ozone monitoring instrument (OMI) and car MAX-DOAS observations. The comparison revealed similar spatial distribution of the NO2 columns with both car MAX-DOAS and satellite observations, but the car MAX-DOAS observations show much more spatial details. Maximum NO2 VCD retrieved from car MAX-DOAS observations was up to an order of magnitude larger than the OMI observations in urban areas. PMID:27155404

  18. Correlation of white female breast cancer incidence trends with nitrogen dioxide emission levels and motor vehicle density patterns.

    PubMed

    Chen, Fan; Bina, William F

    2012-02-01

    The long-term trend of female breast cancer incidence rates in the United States and some European countries demonstrates a similar pattern: an increasing trend in the last century followed by a declining trend in this century. The well-known risk factors cannot explain this trend. We compared the breast cancer incidence trends obtained from SEER data with the trend of nitrogen dioxides (NOx) emission and monitoring data as well as motor vehicle density data. The upward followed by downward trend of NOx is similar to the breast cancer incidence trend but with an offset of 20 years earlier. Motor vehicles are the major source of NOx emissions. The geographic distribution of motor vehicles density in 1970 in the observed US counties is positively correlated with breast cancer incidence rates (R(2) 0.8418, the correlation coefficient = 0.9175) in 1980-1995. Because both the time trend and geographic pattern are associated with breast cancer incidence rates, further studies on the relationship between breast cancer and air pollution are needed. PMID:22076479

  19. Tropospheric ozone and nitrogen dioxide measurements in urban and rural regions as seen by IASI and GOME-2

    NASA Astrophysics Data System (ADS)

    Safieddine, S.; Clerbaux, C.; George, M.; Hadji-Lazaro, J.; Hurtmans, D.; Coheur, P.-F.; Wespes, C.; Loyola, D.; Valks, P.; Hao, N.

    2013-09-01

    ozone (O3) columns in urban and rural regions as seen by the Infrared Atmospheric Sounding Interferometer (IASI) are analyzed along with the Global Ozone Monitoring Experiment (GOME-2) tropospheric nitrogen dioxide (NO2) columns. Results over nine cities of the Northern Hemisphere for the period 2008-2011 show a typical seasonal behavior of tropospheric O3, with a first maximum reached in late spring because of stratospheric intrusion mainly and a continuous rise till the summer because of the anthropogenic-based ozone production. Over the East Asian cities, a decrease in the O3 tropospheric column is detected during the monsoon period. Seasonal cycling of tropospheric NO2 shows consistent higher values during winter because of the higher anthropogenic sources and longer lifetime. In rural regions, a complex relation between the O3 and NO2 columns is found, with good correlation in summer and winter. O3 concentrations in rural sites are found to be comparable to those closest to the anthropogenic emission sources, with peak values in spring and summer. Furthermore, the effect of the reduction of pollutant emissions in the Beijing region during the Olympic Games of 2008 compared to the same summer period in the following 3 years is studied. GOME-2 NO2 measurements show a reduction up to 54% above Beijing during this period compared to the following 3 years. IASI O3 measurements show an increase of 12% during July 2008 followed by a decrease of 5-6% during the months of August and September.

  20. Nitrogen oxides reduction by carbonaceous materials and carbon dioxide separation using regenerative metal oxides from fossil fuel based flue gas

    NASA Astrophysics Data System (ADS)

    Gupta, Himanshu

    The ever-growing energy demands due to rising global population and continuing lifestyle improvements has placed indispensable emphasis on fossil fuels. Combustion of fossil fuels leads to the emission of harmful gaseous pollutants such as oxides of sulfur (SOx) and nitrogen (NOx), carbon dioxide (CO2), mercury, particulate matter, etc. Documented evidence has proved that this air pollution leads to adverse environmental health. This dissertation focuses on the development of technologies for the control of NOx and CO2 emissions. The first part of the thesis (Chapters 2--6) deals with the development of carbon based post combustion NOx reduction technology called CARBONOX process. High temperature combustion oxidizes both atmospheric nitrogen and organic nitrogen in coal to nitric oxide (NO). The reaction rate between graphite and NO is slow and requires high temperature (>900°C). The presence of metallic species in coal char catalyzes the reaction. The reaction temperature is lowered in the presence of oxygen to about 600--850°C. Chemical impregnation, specifically sodium compounds, further lowers the reaction temperature to 350--600°C. Activated high sodium lignite char (HSLC) provided the best performance for NO reduction. The requirement of char for NOx reduction is about 8--12 g carbon/g NO reduced in the presence of 2% oxygen in the inlet gas. The second part of this dissertation (chapter 7--8) focuses on the development of a reaction-based process for the separation of CO2 from combustion flue gas. Certain metal oxides react with CO2 forming metal carbonates under flue gas conditions. They can be calcined separately to yield CO2. Calcium oxide (CaO) has been identified as a viable metal oxide for the carbonation-calcination reaction (CCR) scheme. CaO synthesized from naturally occurring precursors (limestone and dolomite) attained 45--55% of their stoichiometric conversion due to the susceptibility of their microporous structure. High surface area

  1. Inter-Comparison of Nitrogen Dioxide Column Densities Retrieved by Ground-Based Max-Doas Under Different Instrumental Conditions Over Mainz

    NASA Astrophysics Data System (ADS)

    Bruchkouski, I.; Dziomin, V.; Ortega, I.; Volkamer, R.; Krasouski, A.

    2013-12-01

    This study is dedicated to the instrumental differences between ground-based MAX-DOAS measurement devices. Our MAX-DOAS instrument, which has been developed at the National Ozone Monitoring Research & Education Center of the Belarusian State University for the purpose of nitrogen dioxide and other atmospheric trace gases monitoring over Belarus, features a rotating mirror and a telescope directly connected to the spectrometer with a two-dimensional CCD detector. Using a mirror instead of an optical fibre makes it possible to change the field of view of the telescope, and the whole instrument is rather compact and all its components are placed outdoors in the open air. However, this makes it quite difficult to ensure a top-quality thermostabilization. In the course of the MAX-DOAS campaign, which took place in the Max Planck Institute for Chemistry in Mainz, Germany in summer of 2013, we had a great opportunity to compare our instrument with other devices of different types. In the present study we make a comparison of nitrogen dioxide slant column densities (SCDs) during several days obtained by our instrument with that measured by the device from the Department of Chemistry and Biochemistry, University of Colorado (Boulder), which has a thermostabilization level of about 0.01 degrees Celsius. We investigate the influence of the spectrometer parts thermostabilization on nitrogen dioxide SCDs retrieval. Furthermore, it was possible to modify the telescope field of view for our instrument from 0.005 to 1.3 degrees, so we performed nitrogen dioxide SCDs retrieval for different fields of view at the same angle of elevation. We analyze these measurement results and obtain an optimal field of view with the aim to achieve the highest possible signal to noise ratio.

  2. Processes regulating progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Liang, J.; Qi, X.; Souza, L.; Luo, Y.

    2015-10-01

    Nitrogen (N) cycle has the potential to regulate climate change through its influence on carbon (C) sequestration. Although extensive researches have been done to explore whether or not progressive N limitation (PNL) occurs under CO2 enrichment, a comprehensive assessment of the processes that regulate PNL is still lacking. Here, we quantitatively synthesized the responses of all major processes and pools in terrestrial N cycle with meta-analysis of CO2 experimental data available in the literature. The results showed that CO2 enrichment significantly increased N sequestration in plant and litter pools but not in soil pool. Thus, the basis of PNL occurrence partially exists. However, CO2 enrichment also significantly increased the N influx via biological N fixation, but decreased the N efflux via leaching. In addition, no general diminished CO2 fertilization effect on plant growth over time was observed. Overall, our analyses suggest that the extra N supply by the increased biological N fixation and decreased leaching may potentially alleviate PNL under elevated CO2 conditions. Moreover, our synthesis showed that CO2 enrichment increased soil ammonium (NH4+) but decreased nitrate (NO3-). The different responses of NH4+ and NO3-, and the consequent biological processes, may result in changes in soil microenvironment, community structures and above-belowground interactions, which could potentially affect the terrestrial biogeochemical cycles and the feedback to climate change.

  3. Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes?

    SciTech Connect

    Rogers, A.; Ainsworth, E. A.; Leakey, A. D. B.

    2009-11-01

    Growth at elevated [CO{sub 2}] stimulates photosynthesis and increases carbon (C) supply in all C3 species. A sustained and maximal stimulation in productivity at elevated [CO{sub 2}] requires an enhanced nutrient supply to match the increase in C acquisition. The ability of legumes to exchange C for nitrogen (N) with their N{sub 2}-fixing symbionts has led to the hypothesis that legumes will have a competitive advantage over nonleguminous species when grown at elevated [CO{sub 2}]. On balance, evidence suggests that in managed systems, legumes are more responsive to elevated [CO{sub 2}] than other plants (e.g. Ainsworth and Long, 2005); however, in natural ecosystems, nutrient availability can limit the response of legumes to elevated [CO{sub 2}] (Hungate et al., 2004; van Groenigen et al., 2006). Here, we consider these observations, outline the mechanisms that underlie them, and examine recent work that advances our understanding of how legumes respond to growth at elevated [CO{sub 2}]. First we highlight the global importance of legumes and provide a brief overview of the symbiotic relationship.

  4. Enhanced sulfate formation by nitrogen dioxide: Implications from in situ observations at the SORPES station

    NASA Astrophysics Data System (ADS)

    Xie, Yuning; Ding, Aijun; Nie, Wei; Mao, Huiting; Qi, Ximeng; Huang, Xin; Xu, Zheng; Kerminen, Veli-Matti; Petäjä, Tuukka; Chi, Xuguang; Virkkula, Aki; Boy, Michael; Xue, Likun; Guo, Jia; Sun, Jianning; Yang, Xiuqun; Kulmala, Markku; Fu, Congbin

    2015-12-01

    Investigating sulfate formation processes is important not only for air pollution control but also for understanding the climate system. Although the mechanisms of secondary sulfate production have been widely studied, in situ observational evidence implicating an important role of NO2 in SO2 oxidation in the real atmosphere has been rare. In this study, we report two unique cases, from an intensive campaign conducted at the Station for Observing Regional Processes of the Earth System (SORPES) in East China, showing distinctly different mechanisms of sulfate formation by NO2 and related nitrogen chemistry. The first case occurred in an episode of mineral dust mixed with anthropogenic pollutants and especially high concentrations of NOx. It reveals that NO2 played an important role, not only in surface catalytic reactions of SO2 but also in dust-induced photochemical heterogeneous reactions of NO2, which produced additional sources of OH radicals to promote new particle formation and growth. The second case was caused by aqueous oxidation of S(IV) by NO2 under foggy/cloudy conditions with high NH3 concentration. As a by-product, the formed nitrite enhanced HONO formation and further promoted the gas-phase formation of sulfate in the downwind area. This study highlights the effect of NOx in enhancing the atmospheric oxidizing capacity and indicates a potentially very important impact of increasing NOx on particulate pollution formation and regional climate change in East Asia.

  5. Response of carbon dioxide emissions to sheep grazing and nitrogen application in an alpine grassland

    NASA Astrophysics Data System (ADS)

    Gong, Y. M.; Mohammat, A.; Liu, X. J.; Li, K. H.; Christie, P.; Fang, F.; Song, W.; Chang, Y. H.; Han, W. X.; Lü, X. T.; Liu, Y. Y.; Hu, Y. K.

    2013-07-01

    Previous work has failed to address fully the response of (autotrophic and heterotrophic) respiration to grazing and nitrogen (N) addition in different ecosystems, particularly in alpine grasslands outside the growing season. From 2010 to 2011, we combined two methods (static closed chambers and a closed dynamic soil CO2 flux system) in a controlled field experiment in an alpine grassland in the Tianshan Mountains. We examined the effects of grazing and N application on ecosystem respiration (Re) both outside (NGS) and during (GS) the growing season and determined the pattern of Re in relation to climate change. There was no significant change in CO2 emissions under grazing or N application. Heterotrophic respiration (Rh) accounted for 78.5% of Re. Re, Rh and autotrophic respiration (Ra) outside the growing season were equivalent to 12.9, 14.1 and 11.4% of the respective CO2 fluxes during the growing season. In addition, our results indicate that precipitation (soil water content) plays a critical role in Ra in this cold and arid environment. Both Rh and Re were sensitive to soil temperature. Moreover, our results suggest that grazing and N addition exert no significant effect on CO2 emissions in alpine grassland but may alter soil carbon stocks in alpine grassland.

  6. Processes regulating progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Liang, Junyi; Qi, Xuan; Souza, Lara; Luo, Yiqi

    2016-05-01

    The nitrogen (N) cycle has the potential to regulate climate change through its influence on carbon (C) sequestration. Although extensive research has explored whether or not progressive N limitation (PNL) occurs under CO2 enrichment, a comprehensive assessment of the processes that regulate PNL is still lacking. Here, we quantitatively synthesized the responses of all major processes and pools in the terrestrial N cycle with meta-analysis of CO2 experimental data available in the literature. The results showed that CO2 enrichment significantly increased N sequestration in the plant and litter pools but not in the soil pool, partially supporting one of the basic assumptions in the PNL hypothesis that elevated CO2 results in more N sequestered in organic pools. However, CO2 enrichment significantly increased the N influx via biological N fixation and the loss via N2O emission, but decreased the N efflux via leaching. In addition, no general diminished CO2 fertilization effect on plant growth was observed over time up to the longest experiment of 13 years. Overall, our analyses suggest that the extra N supply by the increased biological N fixation and decreased leaching may potentially alleviate PNL under elevated CO2 conditions in spite of the increases in plant N sequestration and N2O emission. Moreover, our syntheses indicate that CO2 enrichment increases soil ammonium (NH4+) to nitrate (NO3-) ratio. The changed NH4+/NO3- ratio and subsequent biological processes may result in changes in soil microenvironments, above-belowground community structures and associated interactions, which could potentially affect the terrestrial biogeochemical cycles. In addition, our data synthesis suggests that more long-term studies, especially in regions other than temperate ones, are needed for comprehensive assessments of the PNL hypothesis.

  7. Processes regulating progressive nitrogen limitation under elevated carbon dioxide: A meta-analysis

    DOE PAGESBeta

    Liang, Junyi; Qi, Xuan; Souza, Lara; Luo, Yiqi

    2016-05-10

    Here, the nitrogen (N) cycle has the potential to regulate climate change through its influence on carbon (C) sequestration. Although extensive research has explored whether or not progressive N limitation (PNL) occurs under CO2 enrichment, a comprehensive assessment of the processes that regulate PNL is still lacking. Here, we quantitatively synthesized the responses of all major processes and pools in the terrestrial N cycle with meta-analysis of CO2 experimental data available in the literature. The results showed that CO2 enrichment significantly increased N sequestration in the plant and litter pools but not in the soil pool, partially supporting one ofmore » the basic assumptions in the PNL hypothesis that elevated CO2 results in more N sequestered in organic pools. However, CO2 enrichment significantly increased the N influx via biological N fixation and the loss via N2O emission, but decreased the N efflux via leaching. In addition, no general diminished CO2 fertilization effect on plant growth was observed over time up to the longest experiment of 13 years. Overall, our analyses suggest that the extra N supply by the increased biological N fixation and decreased leaching may potentially alleviate PNL under elevated CO2 conditions in spite of the increases in plant N sequestration and N2O emission. Moreover, our syntheses indicate that CO2 enrichment increases soil ammonium (NH4+) to nitrate (NO3–) ratio. The changed NH4+/NO3– ratio and subsequent biological processes may result in changes in soil microenvironments, above-belowground community structures and associated interactions, which could potentially affect the terrestrial biogeochemical cycles. In addition, our data synthesis suggests that more long-term studies, especially in regions other than temperate ones, are needed for comprehensive assessments of the PNL hypothesis.« less

  8. Processes regulating progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis

    DOE PAGESBeta

    Liang, Junyi; Qi, Xuan; Souza, Lara; Luo, Yiqi

    2016-05-10

    The nitrogen (N) cycle has the potential to regulate climate change through its influence on carbon (C) sequestration. Although extensive research has explored whether or not progressive N limitation (PNL) occurs under CO2 enrichment, a comprehensive assessment of the processes that regulate PNL is still lacking. Here, we quantitatively synthesized the responses of all major processes and pools in the terrestrial N cycle with meta-analysis of CO2 experimental data available in the literature. The results showed that CO2 enrichment significantly increased N sequestration in the plant and litter pools but not in the soil pool, partially supporting one of themore » basic assumptions in the PNL hypothesis that elevated CO2 results in more N sequestered in organic pools. However, CO2 enrichment significantly increased the N influx via biological N fixation and the loss via N2O emission, but decreased the N efflux via leaching. In addition, no general diminished CO2 fertilization effect on plant growth was observed over time up to the longest experiment of 13 years. Overall, our analyses suggest that the extra N supply by the increased biological N fixation and decreased leaching may potentially alleviate PNL under elevated CO2 conditions in spite of the increases in plant N sequestration and N2O emission. Moreover, our syntheses indicate that CO2 enrichment increases soil ammonium (NH4+) to nitrate (NO3−) ratio. The changed NH4+/NO3− ratio and subsequent biological processes may result in changes in soil microenvironments, above-belowground community structures and associated interactions, which could potentially affect the terrestrial biogeochemical cycles. In addition, our data synthesis suggests that more long-term studies, especially in regions other than temperate ones, are needed for comprehensive assessments of the PNL hypothesis.« less

  9. Non-biological fixation of atmospheric nitrogen to nitrate on titanium dioxide and desert soil surfaces

    NASA Astrophysics Data System (ADS)

    Al-Taani, Ahmed A.

    Elevated nitrate levels have frequently been observed in soils and the associated groundwater in arid regions of the U.S, many of which are distant from anthropogenic sources. Although these elevated nitrate concentrations have generally been linked to atmospheric precipitation, the current study indicates that at least a portion of these nitrates may have been formed through photochemical and thermal transformation reactions on soil surfaces. Photochemical nitrogen fixation to nitrate was observed on pure TiO 2 (both anatase and rutile) and desert soil surfaces when exposed to sunlight from 2 to 80 days. The yields of nitrate were generally proportional to irradiation time and increased substantially when sodium hydroxide was added. Larger surface films of soils or TiO2 generated higher yields of nitrate. Soils with higher content of both titanium and calcium exhibit higher photoactivities, and the production rate varied slightly with particle size. Traces of nitrite and ammonia detected on irradiated TiO2 surface were similar to background levels, and are probably not intermediates in the formation of nitrate. TiO2 and soils obtained from Atacama Desert in northern Chile and Pyramid Lake, NV were irradiated with sunlight for 32 days in either 15N labeled or unlabeled nitrogen and produced nitrates enriched in 15N and that nearly all isotopic values were higher than that of atmospheric 15N. Nitrate produced photochemically on Atacama Desert soils have isotopic values that are similar to those of the subsoil nitrates of the Atacama Desert. During our experimental investigation and while preparing thin films of TiO2 by thermal evaporation of an aqueous suspension in Petri dishes, we consistently observed an increase in nitrate concentrations in all samples (even the controls) whenever TiO2 slurries came in contact with heat and air. An expanded series of experiments was carried out in a conventional oven in the absence of light; photocatalytic reactions are not

  10. Etching of uranium dioxide in nitrogen trifluoride RF plasma glow discharge

    NASA Astrophysics Data System (ADS)

    Veilleux, John Mark

    1999-10-01

    A series of room temperature, low pressure (10.8 to 40 Pa), low power (25 to 210 W) RF plasma glow discharge experiments with UO2 were conducted to demonstrate that plasma treatment is a viable method for decontaminating UO2 from stainless steel substrates. Experiments were conducted using NF3 gas to decontaminate depleted uranium dioxide from stainless-steel substrates. Results demonstrated that UO2 can be completely removed from stainless-steel substrates after several minutes processing at under 200 W. At 180 W and 32.7 Pa gas pressure, over 99% of all UO2 in the samples was removed in just 17 minutes. The initial etch rate in the experiments ranged from 0.2 to 7.4 mum/min. Etching increased with the plasma absorbed power and feed gas pressure in the range of 10.8 to 40 Pa. A different pressure effect on UO2 etching was also noted below 50 W in which etching increased up to a maximum pressure, ˜23 Pa, then decreased with further increases in pressure. A computer simulation, CHEMKIN, was applied to predict the NF3 plasma species in the experiments. The code was validated first by comparing its predictions of the NF3 plasma species with mass spectroscopy etching experiments of silicon. The code predictions were within +/-5% of the measured species concentrations. The F atom radicals were identified as the primary etchant species, diffusing from the bulk plasma to the UO2 surface and reacting to form a volatile UF6, which desorbed into the gas phase to be pumped away. Ions created in the plasma were too low in concentration to have a major effect on etching, but can enhance the etch rate by removing non-volatile reaction products blocking the reaction of F with UO2. The composition of these non-volatile products were determined based on thermodynamic analysis and the electronic structure of uranium. Analysis identified possible non-volatile products as the uranium fluorides, UF2-5, and certain uranium oxyfluorides UO2F, UO2F2, UOF3, and UOF 4 which form over the

  11. Food contact surfaces coated with nitrogen-doped titanium dioxide: effect on Listeria monocytogenes survival under different light sources

    NASA Astrophysics Data System (ADS)

    Rodrigues, D.; Teixeira, P.; Tavares, C. J.; Azeredo, J.

    2013-04-01

    Improvement of food safety is a very important issue, and is on the basis of production and application of new/modified food contact surfaces. Titanium dioxide (TiO2) and, more recently, nitrogen-doped titanium dioxide (N-TiO2) coatings are among the possible forms to enhance food contact surfaces performance in terms of higher hygiene and easier sanitation. In this context, the present work aimed at evaluating the bactericidal activity of an N-TiO2 coating on glass and stainless steel under two different sources of visible light - fluorescent and incandescent - and ultraviolet (UV) irradiation. Listeria monocytogenes was chosen as representative of major foodborne pathogens and its survival was tested on N-TiO2 coated coupons. In terms of survival percentage, good results were obtained after exposure of coated surfaces to all light types since, apart from the value obtained after exposing glass to fluorescent light (56.3%), survival rates were always below 50%. However, no effective disinfection was obtained, given that for a disinfectant or sanitizing agent to be claimed as effective it needs to be able to promote at least a 3-log reduction of the microbial load, which was not observed for any of the experimental conditions assessed. Even so, UV irradiation was the most successful on eliminating cells on coated surfaces, since the amount of bacteria was reduced to 1.49 × 106 CFU/ml on glass and 2.37 × 107 on stainless steel. In contrast, both visible light sources had only slightly decreased the amount of viable cells, which remained in the range of 8 log CFU/ml. Hence, although some bactericidal effect was accomplished under visible light, UV was the most effective light source on promoting photocatalytic reactions on N-TiO2 coated coupons and none of the experimental conditions have reached a satisfactory disinfection level. Thus, this surface coating needs further research and improvement in order to become truly effective against foodborne pathogens and

  12. Nitrogen mineralization rates of the acidic, xeric soils of the New Jersey Pinelands: laboratory studies

    SciTech Connect

    Poovarodom, S.; Tate, R.L. III

    1988-05-01

    In a series of laboratory incubation studies, the authors evaluated the effects of temperature, moisture, and nitrogen amendment on nitrogen mineralization rates in the acidic Lakehurst and Atsion sands of the New Jersey Pinelands. The average potentially mineralizable nitrogen (N/sub 0/) values for the Lakehurst and Atsion sands were 87 and 94 ..mu..g/g, respectively. Mineralization constants (k) were 0.0501 and 0.0756/wk at 25 and 35/degrees/C, respectively, for the Lakehurst sand and were 0.0327 and 0.0452/wk for the Atsion sand. Maximum mineralization occurred at 35/degrees/C for both soils with Q/sub 10/ values ranging from 1.8 to 2.1. Optimal soil moisture tensions for nitrogen mineralization were between /minus/0.01 and /minus/0.03 MPa. A soil moisture tension of /minus/0.01 MPa reduced nitrogen mineralization with the Lakehurst sand, but not with the Atsion sand. Amendment of the soil with ammonium sulfate increased mineralization with the Atsion sand, but had no effect on the Lakehurst soil. Conversely, ammonium chloride amendment increased the nitrogen mineralization rates in the Lakehurst, but not the Atsion sand. Urea amendment inhibited nitrogen mineralization with both soils. No nitrate accumulation was observed in any of the nitrogen-amended samples.

  13. Carbon dioxide and organic acids: origin and role in burial diagenesis (Texas Gulf Coast Tertiary)

    SciTech Connect

    Lundegard, P.D.

    1985-01-01

    Carbon dioxide produced by decarboxylation of organic matter is not a dominant factor in secondary porosity development. Material balance calculations indicate the amount of feldspar and carbonate dissolution that has taken place in Tertiary sandstones of the Texas Gulf Coast far exceeds that which is explainable by decarboxylation. Other potential sources of acid for dissolution reactions include reverse weathering reactions in shales, an hydrous pyrolysis reactions between organic carbon and oxygen in H/sub 2/O to yield CO/sub 2/ or organic acids. Considerations of CO/sub 2/ solubility and the temperature distribution of organic acids imply that these species must be generated locally to cause significant dissolution. The CO/sub 2/ content of gas from Gulf Coast Tertiary sandstones is proportional to reservoir age, and increases with depth and temperature at a rate that is approximately exponential. In the Wilcox Formation the increase in CO/sub 2/ content continues beyond depths where dissolved organic acids are abundant and where kerogen has lost its oxygen from functional groups that are readily liberated as CO/sub 2/. In this formation the /sup 13/C of CO/sub 2/ and CH/sub 4/ are proportional to temperature and to each other. Either mixing with fluids derived from the Mesozoic carbonate section of deep CO/sub 2/ generation by kinetically controlled organic reactions may explain these data. Organic acid concentration with depth and temperature indicates a non-biological origin by thermal cracking of kerogen during burial. Continued burial leads to their thermal decomposition. Cessation of burial may lead to meteoric water invasion and organic acid destruction by biological processes. The effect of time on organic acid production is minor compared to temperature.

  14. Chamber exposures of children to mixed ozone, sulfur dioxide, and sulfuric acid.

    PubMed

    Linn, W S; Gong, H; Shamoo, D A; Anderson, K R; Avol, E L

    1997-01-01

    To help assess acute health effects of summer air pollution in the eastern United States, we simulated ambient "acid summer haze" as closely as was practical in a laboratory chamber. We exposed young volunteers who were thought to be sensitive to this pollutant mixture on the basis of previous epidemiologic evidence. Specifically, we exposed 41 subjects aged 9-12 y to mixed ozone (0.10 ppm), sulfur dioxide (0.10 ppm), and 0.6-microm sulfuric acid aerosol (100 +/- 40 microg/m3, mean +/- standard deviation) for 4 h, during which there was intermittent exercise. Fifteen subjects were healthy, and 26 had allergy or mild asthma. The entire group responded nonsignificantly (p > .05) to pollution exposure (relative to clean air), as determined by spirometry, symptoms, and overall discomfort level during exercise. Subjects with allergy/asthma showed a positive association (p = .01) between symptoms and acid dose; in healthy subjects, that association was negative (p = .08). In these chamber-exposure studies, we noted less of an effect than was reported in previous epidemiologic studies of children exposed to ambient "acid summer haze." PMID:9169627

  15. Increased fatty acid synthesis inhibits nitrogen starvation-induced autophagy in lipid droplet-deficient yeast.

    PubMed

    Régnacq, Matthieu; Voisin, Pierre; Sere, Yves Y; Wan, Bin; Soeroso, Venty M S; Bernard, Marianne; Camougrand, Nadine; Bernard, François-Xavier; Barrault, Christine; Bergès, Thierry

    2016-08-12

    Macroautophagy is a degradative pathway whereby cells encapsulate and degrade cytoplasmic material within endogenously-built membranes. Previous studies have suggested that autophagosome membranes originate from lipid droplets. However, it was recently shown that rapamycin could induce autophagy in cells lacking these organelles. Here we show that lipid droplet-deprived cells are unable to perform autophagy in response to nitrogen-starvation because of an accelerated lipid synthesis that is not observed with rapamycin. Using cerulenin, a potent inhibitor of fatty acid synthase, and exogenous addition of palmitic acid we could restore nitrogen-starvation induced autophagy in the absence of lipid droplets. PMID:27270031

  16. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2006-01-01

    In 2005, ammonia was produced by 15 companies at 26 plants in 16 states in the United States. Of the total ammonia production capacity, 55% was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas. US producers operated at 66% of their rated capacity. In descending order, Koch Nitrogen, Terra Industries, CF Industries, Agrium and PCS Nitrogen accounted for 81% of the US ammonia production capacity.

  17. The retrieval of the concentrations of nitric oxide and nitrogen dioxide from satellite solar occultation measurements at sunset and sunrise

    SciTech Connect

    Cartalis, C.I.

    1989-01-01

    HALOE (Halogen Occultation Experiment), scheduled to fly on the Upper Atmosphere Research Satellite (UARS) in 1991, aims to retrieve the vertical concentration profiles of seven minor stratospheric constituents in order to improve the understanding of ozone's photochemistry. This dissertation concentrates on the retrieval of the concentrations of nitric oxide and nitrogen dioxide, which both play an active role in the photochemistry of ozone. The investigation is complicated because of their large diurnal changes which are intensified at sunrise and sunset. Consequently, the retrieval of NO and NO{sub 2} from solar occultation measurements at twilight needs to take into account the lifetimes and the rapid interconversion of NO and NO{sub 2}. If the temporal and spatial variations of NO and NO{sub 2} are neglected, the resulting errors for altitudes less than 20 km reach 100 and 5% respectively and for both sunset and sunrise. A photochemical scheme is developed and a separate code calculates the photodissociation rates of the species involved in photochemical reactions, as a function of latitude, temperature, altitude and season. A retrieval code is developed combining an iterative inversion algorithm, working from top of the atmosphere downwards, and a parameterization of the variability of NO and NO{sub 2}. The method is used to examine the accuracy of the retrieval of the vertical concentration profiles and results show that the recovered profiles are in good agreement with measured ones, reflect the trends of NO and NO{sub 2} at sunset and sunrise and satisfy the accuracy expectations of the HALOE experiment.

  18. Predictors of concentrations of nitrogen dioxide, fine particulate matter, and particle constituents inside of lower socioeconomic status urban homes.

    PubMed

    Baxter, Lisa K; Clougherty, Jane E; Laden, Francine; Levy, Jonathan I

    2007-08-01

    Air pollution exposure patterns may contribute to known spatial patterning of asthma morbidity within urban areas. While studies have evaluated the relationship between traffic and outdoor concentrations, few have considered indoor exposure patterns within low socioeconomic status (SES) urban communities. In this study, part of a prospective birth cohort study assessing asthma etiology in urban Boston, we collected indoor and outdoor 3-4 day samples of nitrogen dioxide (NO2) and fine particulate matter (PM2.5) in 43 residences across multiple seasons from 2003 to 2005. Homes were chosen to represent low SES households, including both cohort and non-cohort residences in similar neighborhoods, and consisted almost entirely of multiunit residences. Reflectance analysis and X-ray fluorescence spectroscopy were performed on the particle filters to determine elemental carbon (EC) and trace element concentrations, respectively. Additionally, information on home characteristics (e.g. type, age, stove fuel) and occupant behaviors (e.g. smoking, cooking, cleaning) were collected via a standardized questionnaire. The contributions of outdoor and indoor sources to indoor concentrations were quantified with regression analyses using mass balance principles. For NO2 and most particle constituents (except outdoor-dominated constituents like sulfur and vanadium), the addition of selected indoor source terms improved the model's predictive power. Cooking time, gas stove usage, occupant density, and humidifiers were identified as important contributors to indoor levels of various pollutants. A comparison between cohort and non-cohort participants provided another means to determine the influence of occupant activity patterns on indoor-outdoor ratios. Although the groups had similar housing characteristics and were located in similar neighborhoods, cohort members had significantly higher indoor concentrations of PM2.5 and NO2, associated with indoor activities. We conclude that the

  19. Ozone and nitrogen dioxide total columns and vertical distributions at the Italian Antarctic station during 1996-2008

    NASA Astrophysics Data System (ADS)

    Bortoli, D.; Ravegnani, F.; Giovanelli, G.; Kostadinov, Iv.; Petritoli, A.; Masieri, S.; Premuda, M.; Martins, H. T.; Silva, A. M.

    2009-09-01

    The GASCOD (Gas Analyzer Spectrometer Correlating Optical Differences) has been installed at the 'Mario Zucchelli' Antarctic station since 1996. It measures the zenith sky radiation in the 405-465 nm spectral range in unattended and automatic mode. The application to the spectral data of the DOAS (Differential Optical Absorption Spectroscopy) algorithms coupled with a Radiative Transfer Model (RTM) for the computation of the Air Mass Factor (AMF), allows for the retrieval of the total content of the main absorber in this spectral range, namely nitrogen dioxide (NO2). Moreover, the application of sophisticated inversion schemes to the output of the DOAS program, using the AMF matrix as the kernel of the inversion algorithm, permits the determination of the vertical distribution of the above mentioned compound. The full dataset of the spectral data obtained with GASCOD during the period 1996-2008, was re-analyzed with a modified version of the software tool previously utilized. Even if the spectral range examined with GASCOD is not the most favorable for the ozone total column and vertical profile retrieval, the re-processing of the spectral data allowed for the determination of the total ozone columns (TOC). The uncertainties range from 4% to 8% for ozone and 3% to 6% for NO2. The peculiar features of the seasonal variation of NO2 total columns (i.e. the normal decreasing during the austral fall and the irregular growing towards the summer month) are presented and discussed. The confirmations of the significant declining of the ozone total columns during the 'Ozone Hole' periods (mid-August to mid-October) are reported. The vertical distributions obtained for the preceding atmospheric compounds are shown and examined.

  20. Development and transferability of a nitrogen dioxide land use regression model within the Veneto region of Italy

    NASA Astrophysics Data System (ADS)

    Marcon, Alessandro; de Hoogh, Kees; Gulliver, John; Beelen, Rob; Hansell, Anna L.

    2015-12-01

    When measurements or other exposure models are unavailable, air pollution concentrations could be estimated by transferring land-use regression (LUR) models from other areas. No studies have looked at transferability of LUR models from regions to cities. We investigated model transferability issues. We developed a LUR model for 2010 using annual average nitrogen dioxide (NO2) concentrations retrieved from 47 regulatory stations of the Veneto region, Northern Italy. We applied this model to 40 independent sites in Verona, a city inside the region, where NO2 had been monitored in the European Study of Cohorts for Air Pollution Effects (ESCAPE) during 2010. We also used this model to estimate average NO2 concentrations at the regulatory network in 2008, 2009 and 2011. Of 33 predictor variables offered, five were retained in the LUR model (R2 = 0.75). The number of buildings in 5000 m buffers, industry surface area in 1000 m buffers and altitude, mainly representing large-scale air pollution dispersion patterns, explained most of the spatial variability in NO2 concentrations (R2 = 0.68), while two local traffic proxy indicators explained little of the variability (R2 = 0.07). The performance of this model transferred to urban sites was poor overall (R2 = 0.18), but it improved when only predicting inner-city background concentrations (R2 = 0.52). Recalibration of LUR coefficients improved model performance when predicting NO2 concentrations at the regulatory sites in 2008, 2009 and 2011 (R2 between 0.67 and 0.80). Models developed for a region using NO2 regulatory data are unable to capture small-scale variability in NO2 concentrations in urban traffic areas. Our study documents limitations in transferring a regional model to a city, even if it is nested within that region.

  1. EOS7C Version 1.0 TOUGH2 Module for Carbon Dioxide or Nitrogen in Natural Gas

    2008-01-11

    EOS7C is a TOUGH2 module for multicomponent gas mixtures in the systems methane-carbon dioxide (CH{sub 4}-CO{sub 2}) or methane-nitrogen (CH{sub 4}-N{sub 2}) with or without an aqueous phase and H{sub 2}O vapor. EOS7C uses a cubic equation of state and an accurate solubility formulation along with a multiphase Darcy's Law to model flow and transport of gas and aqueous phase mixtures over a wide range of pressures and temperatures appropriate to subsurface geologic carbon sequestrationmore » sites and natural gas reservoirs. EOS7C models supercritical CO{sub 2{ and subcritical CO{sub 2} as a non-condensible gas, hence EOS7C does not model the transitions to liquid or solid CO{sub 2} conditions. The components modeled in EOS7C are water, brine, non-condensible gas, gas tracer, methane, and optional heat. The non-condensible gas (NCG) can be selected by the user to be CO{sub 2} or N{sub 2}. The real gas properties module has options for Peng-Robinson, Redlich-Kwong, or Soave-Redlich-Kwong equations of state to calculate gas mixture density, enthalpy departure, and viscosity. Partitioning of the NCG and CH{sub 4} between the aqueous and gas phases is calculated using a very accurate chemical equilibrium approach. Transport of the gaseous and dissolved components is by advection and Fickian molecular diffusion. EOS7C is written in FORTAN77.« less

  2. Association of short-term exposure to fine particulate matter and nitrogen dioxide with acute cardiovascular effects.

    PubMed

    Wu, Chang-Fu; Shen, Fu-Hui; Li, Ya-Ru; Tsao, Tsung-Ming; Tsai, Ming-Jer; Chen, Chu-Chih; Hwang, Jing-Shiang; Hsu, Sandy Huey-Jen; Chao, Hsing; Chuang, Kai-Jen; Chou, Charles C K; Wang, Ya-Nan; Ho, Chi-Chang; Su, Ta-Chen

    2016-11-01

    This study evaluated whether exposure to fine particulate matter (PM2.5) and nitrogen dioxide (NO2) is associated with cardiovascular effects by examining a panel of 89 healthy subjects in Taipei, Taiwan. The subjects received two health examinations approximately 8months apart in 2013. Brachial-ankle pulse wave velocity (baPWV), a physiological indicator of arterial stiffness, and high-sensitivity C-reactive protein (hsCRP), a biomarker of vascular inflammations, were measured during each examination. Two exposure assessment methods were used for estimating the subjects' exposure to PM2.5 and NO2. The first method involved constructing daily land use regression (LUR) models according to measurements collected at ambient air quality monitoring stations. The second method required combining the LUR estimates with indoor monitoring data at the workplace of the subjects. Linear mixed models were used to examine the association between the exposure estimates and health outcomes. The results showed that a 10-μg/m(3) increase in PM2.5 concentration at a 1-day lag was associated with 2.1% (95% confidence interval: 0.7%-3.6%) and 2.4% (0.8%-4.0%) increases in baPWV based on the two exposure assessment methods, whereas no significant association was observed for NO2. The significant effects of PM2.5 remained in the two-pollutant models. By contrast, NO2, but not PM2.5, was significantly associated with increased hsCRP levels (16.0%-37.3% in single-pollutant models and 26.4%-44.6% in two-pollutant models, per 10-ppb increase in NO2). In conclusion, arterial stiffness might be more sensitive to short-term PM2.5 exposure than is inflammation. PMID:27344119

  3. The effects of rapid urbanization on the levels in tropospheric nitrogen dioxide and ozone over East China

    NASA Astrophysics Data System (ADS)

    Huang, Jianping; Zhou, Chenhong; Lee, Xuhui; Bao, Yunxuan; Zhao, Xiaoyan; Fung, Jimmy; Richter, Andreas; Liu, Xiong; Zheng, Yiqi

    2013-10-01

    Over the past few decades, China has experienced a rapid increase in urbanization. The urban built-up areas (population) in Beijing, Shanghai, and Guangzhou increased by 197% (87%), 148% (65%), and 273% (25%), respectively, from 1996 to 2011. We use satellite retrieval data to quantify the effects of rapid urbanization on the yearly and seasonal changes in tropospheric nitrogen dioxide (NO2) over East China. The results show that rapid urbanization has a profound effect on tropospheric columns of NO2. During 1996-2011, the tropospheric columns of NO2 over the surrounding areas of Guangzhou, Shanghai, and Beijing increased by 82%, 292%, and 307%, respectively. The tropospheric columns of NO2 reach their maximum in winter and minimum in spring. The anthropogenic emissions related to urbanization are a dominant factor in the long-term changes in the yearly and seasonal mean tropospheric columns of NO2, whereas meteorological conditions such as the prevailing winds and precipitation account for the unique spatial patterns. Around the time of the 2008 Beijing Olympic Games, the tropospheric columns of NO2 over Beijing urban area significantly reduced by 48% in July, 35% in August, and 49% in September, relative to the same monthly averages over 2005-2007. However, this trend was reversed after the Games, and the increased rate was even larger than before. Our results show that the tropospheric NO2 above the three regions increased at rates 1.3-8 times faster than the rates in a recent inventory estimate of NOx emissions for 2000-2010. We also discuss the influence of urbanization on tropospheric ozone and find that the Ozone Monitoring Instrument (OMI) retrieval tropospheric column shows that ozone levels are relatively insensitive to urbanization and changes in tropospheric NO2.

  4. Slant column MAX-DOAS measurements of nitrogen dioxide, formaldehyde, glyoxal and oxygen dimer in the urban environment of Athens

    NASA Astrophysics Data System (ADS)

    Gratsea, Myrto; Vrekoussis, Mihalis; Richter, Andreas; Wittrock, Folkard; Schönhardt, Anja; Burrows, John; Kazadzis, Stelios; Mihalopoulos, Nikos; Gerasopoulos, Evangelos

    2016-06-01

    Slant column (SC) densities of nitrogen dioxide (NO2), formaldehyde (HCHO), glyoxal (CHOCHO) and oxygen dimer (O4) were successfully retrieved for the first time in Athens, by using spectral measurements from a ground-based multi-azimuth Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) system. The data span the period from October 2012 to March 2014 and measurements were conducted at NOA's (National Observatory of Athens) station in Penteli (38.0°N, 23.9°E, 527 m a.s.l.) at eight azimuth angles and eight off-axis elevation angles. The SCNO2, SCHCHO and SCCHOCHO measurements at +1ο elevation angle, pointing towards the urban area, range from 0.6 to 24·1016, 0.8-9.6·1016 and 0.3-5.2·1015 molec cm-2 (mean daily values throughout the whole period), respectively. Seasonal modulation characterised by summertime maximum and wintertime minimum was observed for HCHO and CHOCHO, while for NO2 the maximum values were recorded during winter. Changes in the diurnal variability of all trace gases with season and day of the week are investigated suggesting a strong link to primary anthropogenic sources for NO2 and a weaker one, compared to photochemistry, for HCHO and CHOCHO. In addition, the impact of the reduced anthropogenic emissions during weekends on the measured SC values was quantified and 30%-50% lower SCNO2 values were found during weekends. The contribution of local urban emissions to the overall recorded amounts of the selected species was assessed. Using meteorological data from NOA's station in Penteli, the impact of the local circulation patterns on the SC levels was estimated, and a strong relation between western wind direction, which is related to the industrial area, and enhanced SC measurements was found.

  5. Long-term effects of ozone and nitrogen dioxide on the metabolism and population of alveolar macrophages

    SciTech Connect

    Mochitate, K.; Ishida, K.; Ohsumi, T.; Miura, T. )

    1992-04-01

    To investigate how alveolar macrophages adapt themselves to oxidative pollutants in the long term, rats were exposed to a strong oxidant, ozone (O3), or a weak oxidant, nitrogen dioxide (NO2), for a maximum duration of 12 wk. After exposures, alveolar macrophages were collected by pulmonary lavage. Throughout 11 wk of exposure to 0.2 ppm O3, the specific activities of glucose-6-phosphate dehydrogenase (G6PDH) and glutathione peroxidase of the peroxidative metabolic pathway and pyruvate kinase and hexokinase of the glycolytic pathway were 40-70% elevated over the controls in alveolar macrophages. The population of alveolar macrophages was consistently 60% higher than the controls. The small-sized macrophages, immature macrophages, preferentially increased. To the contrary, the thymidine incorporation per cell was always 20-30% lower than in the controls, although the total incorporation remained unchanged. No infiltration of polymorphonuclear leukocytes occurred. By 12 wk of exposures to 1.2 and 4.0 ppm NO2, the population of alveolar macrophages increased 30% over the control. Among the enzymes examined, however, only the G6PDH activity increased 10% for 4.0 ppm NO2. No increase in the enzyme activities occurred for 1.2 ppm NO2. Based on these results, alveolar macrophages adapt themselves to the long-term exposure of O3 or NO2 by recruiting immature macrophages through an apparent influx of monocytes. During the exposure to O3, the peroxidative metabolic and glycolytic pathways are enhanced persistently in alveolar macrophages, whereas both pathways were not enhanced by the exposures to NO2.

  6. Surface exchange of nitric oxide, nitrogen dioxide, and ozone at a cattle pasture in Rondônia, Brazil

    NASA Astrophysics Data System (ADS)

    Kirkman, G. A.; Gut, A.; Ammann, C.; Gatti, L. V.; Cordova, A. M.; Moura, M. A. L.; Andreae, M. O.; Meixner, F. X.

    2002-10-01

    Measurements of NO-NO2-O3 trace gas exchange were performed for two transition season periods during the La Niña year 1999 (30 April to 17 May, "wet-dry," and 24 September to 27 October, "dry-wet") over a cattle pasture in Rondônia. A dynamic chamber system (applied during the dry-wet season) was used to directly measure emission fluxes of nitric oxide (NO) and surface resistances for nitrogen dioxide (NO2) and ozone (O3) deposition. A companion study was simultaneously performed in an old-growth forest. In order to determine ecosystem-representative NO2 and O3 deposition fluxes for both measurement periods, an inferential method (multiresistance model) was applied to measure ambient NO2 and O3 concentrations using observed quantities of turbulent transport. Supplementary measurements included soil NO diffusivity and soil nutrient analysis. The observed NO soil emission fluxes were nine times lower than old-growth rain forest emissions under similar soil moisture and temperature conditions and were attributed to the combination of a reduced soil N cycle and lower effective soil NO diffusion at the pasture. Canopy resistances (Rc) of both gases controlled the deposition processes during the day for both measurement periods. Day and night NO2 canopy resistances were significantly similar (α = 0.05) during the dry-wet period. Ozone canopy resistances revealed significantly higher daytime resistances of 106 s m-1 versus 65 s m-1 at night because of plant, soil, and wet skin uptake processes, enhanced by stomatal activity at night and aqueous phase chemistry on vegetative and soil surfaces. The surface of the pasture was a net NOx sink during 1999, removing seven times more NO2 from the atmosphere than was emitted as NO.

  7. Tropospheric ozone and nitrogen dioxide measurements in urban and rural regions as seen by IASI and GOME-2

    NASA Astrophysics Data System (ADS)

    Safieddine, S.; Clerbaux, C.; George, M.; Hadji-Lazaro, J.; Hurtmans, D.; Coheur, P.; Wespes, C.; Layola, D.; Valks, P.; Hao, N.

    2013-05-01

    Tropospheric ozone (O3) columns in urban and rural regions as seen by the infrared sounder IASI are analyzed along with GOME-2 tropospheric nitrogen dioxide (NO2) columns. Results over nine cities of the Northern Hemisphere for the period 2008-2011 show a typical seasonal behavior of tropospheric O3, with a first maximum reached in late spring because of stratospheric intrusion mainly, and a continuous rise till the summer because of the anthropogenic based ozone production. Over the East Asian cities, a decrease in the O3 tropospheric column is detected during monsoon period. Seasonal cycling of tropospheric NO2 shows consistent higher values during winter because of the higher anthropogenic sources and longer lifetime. In rural regions, a complex relation between the O3 and NO2 column is found, with higher linearity in summer. O3 concentrations in rural sites are found to be comparable to those found closest to the anthropogenic emission sources, with peak values in spring and summer. Furthermore, the effect of the reduction of pollutant emissions in China during the Olympic games of 2008 is studied. GOME-2 NO2 measurements show a reduction up to 54% above Beijing during this period compared to the following three years. IASI O3 measurements show an increase of 12% during July 2008 followed by a decrease of 5-6% during the months of August and September. A significant reduction in O3 tropospheric column values is also detected in the area downwind, few hundreds of kilometers to the south of Beijing.

  8. Increased Risk of Dementia in Patients Exposed to Nitrogen Dioxide and Carbon Monoxide: A Population-Based Retrospective Cohort Study

    PubMed Central

    Chang, Kuang-Hsi; Chang, Mei-Yin; Muo, Chih-Hsin; Wu, Trong-Neng; Chen, Chiu-Ying; Kao, Chia-Hung

    2014-01-01

    Background The air pollution caused by vehicular emissions is associated with cognitive decline. However, the associations between the levels of nitrogen dioxide (NO2) and carbon monoxide (CO) exposure and dementia remain poorly defined and have been addressed in only a few previous studies. Materials and Methods In this study, we obtained data on 29547 people from the National Health Insurance Research Database (NHIRD) of Taiwan, including data on 1720 patients diagnosed with dementia between 2000 and 2010, and we evaluated the risk of dementia among four levels of air pollutant. Detailed data on daily air pollution were available from January 1, 1998 to December 31, 2010. Yearly average concentrations of pollutants were calculated from the baseline to the date of dementia occurrence, withdrawal of patients, or the end of the study, and these data were categorized into quartiles, with Q1 being the lowest level and Q4 being the highest. Results In the case of NO2, the adjusted hazard ratios (HRs) of dementia for all participants in Q2, Q3, and Q4 compared to Q1 were 1.10 (95% confidence interval (CI), 0.96–1.26), 1.01 (95% CI, 0.87–1.17), and 1.54 (95% CI, 1.34–1.77), and in the case of CO, the adjusted HRs were 1.07 (95% CI, 0.92–1.25), 1.37 (95% CI, 1.19–1.58), and 1.61 (95% CI, 1.39–1.85). Conclusion The results of this large retrospective, population-based study indicate that exposure to NO2 and CO is associated with an increased risk of dementia in the Taiwanese population. PMID:25115939

  9. Photocatalytic oxidation of VOC, nitrogen oxide and atrazine using titanium dioxide modified with perovskite materials

    NASA Astrophysics Data System (ADS)

    Vajifdar, Kayzad Jimmy

    Photocatalysis utilizes near-UV or visible light to break down organic pollutants into innocuous compounds at room temperatures and has gained much attention in air and water pollution control. Chapter 1 introduces the use of semiconducting optical crystals as an additive to a photocatalyst. The perovskite optical material BaTiO3 (band gap of 3.7-3.8 eV) is found to increase VOC destruction when black light is used. The best composition found is 0.1 wt% BaTiO3 with the balance being TiO2. This photocatalyst increases perchloroethylene (PCE) conversion by 12% to 32% for space times between 1.4 and 17.2 seconds and inlet concentrations of 40 to 130 ppm with a 4 W black light. The average enhancement is approximately 25%. For butyraldehyde conversion the maximum enhancement is 20% at 130 ppm in 3.6 seconds. The UV/Vis spectroscopy data indicate a lower absorbance with the additive. The reaction parameters studied are space velocity, inlet concentration and light source. Oxidation by-products are identified using a GCMS. Chapter 2 introduces photocatalysis as an emerging green technology for environmental protection to oxidize NOx. The experimental results indicate that the coating of photocatalytic materials on concrete pavements can harvest the light energy for NOx pollution control. The photocatalytic coating has the potential to reduce NOx concentration in the atmosphere economically, nearly maintenance-free. NOx will be oxidized to nitric acid, neutralized by the alkaline base materials in concrete, and washed away by rain. The reduction in the number of high ozone days can be significant to allow sustainable economic developments in the many ozone-non-attainment areas worldwide. One of the foci will be pavement coated with photocatalysts enhanced with perovskites/ferroelectric optical crystals such as BaTiO3 via increased transmission/scattering and electron-hole pair stabilization. The developed technology can be transferred to the cement and coating industries

  10. Application of the joint multifractal analysis for describing the influence of nitrogen dioxide on ground-level ozone concentrations

    NASA Astrophysics Data System (ADS)

    Ariza-Villaverde, Ana B.; Pavon-Dominguez, Pablo; Jimenez-Hornero, Francisco J.; Gutierrez de Rave, Eduardo

    2010-05-01

    High concentrations of ground-level ozone have a negative impact on human health and the environment. Detailed knowledge on the effects of nitrogen dioxide on the ozone seasonal pattern is convenient to prevent these undesirable effects. Thus, the joint multifractal approach has been used to complete the information provided by descriptive statistics. The joint multifractal spectra were obtained for 10-minute [O3] and [NO2] time series, recorded at Córdoba (southern Spain) in 2007, revealing the presence of two main seasonal patterns: autumn-winter and spring-summer. It could be verified that the joint multifractal spectra were convex surfaces confirming the presence of the multifractal nature in the time series. There was similitude in the shapes of the joint multifractal spectra corresponding to spring-summer months. A comparable looking was also found for the spectra of the autumn-winter months. This fact evidenced the influence of [NO2] on the [O3] seasonal pattern. According to the recorded data, the concentrations of ozone and nitrogen dioxide were negatively correlated. This circumstance was caused by the presence of high and low [O3] at low and high [NO2] values, respectively. In all the cases, the spectra exhibited a clear orientation from top left region, where high [NO2] and low [O3] values were found, to bottom right part, corresponding to low [NO2] and high [O3]. The single multifractal spectra exhibited a longer tail to the right of the maximum value for all the months indicating that there was a greater heterogeneity in the lower values in the ozone concentration time series. This heterogeneity was lower for autumn-winter months, especially for January due to the shorter lengths shown by their spectra right tails, compared to those obtained for the spring-summer season. The left tails of the spectra corresponding to the spring-summer and autumn-winter months tended to be overlapped, confirming that there was a seasonal similarity in scaling

  11. Chemical and biological consequences of using carbon dioxide versus acid additions in ocean acidification experiments

    USGS Publications Warehouse

    Yates, Kimberly K.; DuFore, Christopher M.; Robbins, Lisa L.

    2013-01-01

    Use of different approaches for manipulating seawater chemistry during ocean acidification experiments has confounded comparison of results from various experimental studies. Some of these discrepancies have been attributed to whether addition of acid (such as hydrochloric acid, HCl) or carbon dioxide (CO2) gas has been used to adjust carbonate system parameters. Experimental simulations of carbonate system parameter scenarios for the years 1766, 2007, and 2100 were performed using the carbonate speciation program CO2SYS to demonstrate the variation in seawater chemistry that can result from use of these approaches. Results showed that carbonate system parameters were 3 percent and 8 percent lower than target values in closed-system acid additions, and 1 percent and 5 percent higher in closed-system CO2 additions for the 2007 and 2100 simulations, respectively. Open-system simulations showed that carbonate system parameters can deviate by up to 52 percent to 70 percent from target values in both acid addition and CO2 addition experiments. Results from simulations for the year 2100 were applied to empirically derived equations that relate biogenic calcification to carbonate system parameters for calcifying marine organisms including coccolithophores, corals, and foraminifera. Calculated calcification rates for coccolithophores, corals, and foraminifera differed from rates at target conditions by 0.5 percent to 2.5 percent in closed-system CO2 gas additions, from 0.8 percent to 15 percent in the closed-system acid additions, from 4.8 percent to 94 percent in open-system acid additions, and from 7 percent to 142 percent in open-system CO2 additions.

  12. Analysis of the effect of evergreen and deciduous trees on urban nitrogen dioxide levels in the U.S. using land-use regression

    NASA Astrophysics Data System (ADS)

    Rao, M.; George, L. A.

    2012-12-01

    Nitrogen dioxide (NO2), an atmospheric pollutant generated primarily by anthropogenic combustion processes, is typically found at higher concentrations in urban areas compared to non-urbanized environments. Elevated NO2 levels have multiple ecosystem effects at different spatial scales. At the local scale, elevated levels affect human health directly and through the formation of secondary pollutants such as ozone and aerosols; at the regional scale secondary pollutants such as nitric acid and organic nitrates have deleterious effects on non-urbanized areas; and, at the global scale, nitrogen oxide emissions significantly alter the natural biogeochemical nitrogen cycle. As cities globally become larger and larger sources of nitrogen oxide emissions, it is important to assess possible mitigation strategies to reduce the impact of emissions locally, regionally and globally. In this study, we build a national land-use regression (LUR) model to compare the impacts of deciduous and evergreen trees on urban NO2 levels in the United States. We use the EPA monitoring network values of NO2 levels for 2006, the 2006 NLCD tree canopy data for deciduous and evergreen canopies, and the US Census Bureau's TIGER shapefiles for roads, railroads, impervious area & population density as proxies for NO2 sources on-road traffic, railroad traffic, off-road and area sources respectively. Our preliminary LUR model corroborates previous LUR studies showing that the presence of trees is associated with reduced urban NO2 levels. Additionally, our model indicates that deciduous and evergreen trees reduce NO2 to different extents, and that the amount of NO2 reduced varies seasonally. The model indicates that every square kilometer of deciduous canopy within a 2km buffer is associated with a reduction in ambient NO2 levels of 0.64 ppb in summer and 0.46ppb in winter. Similarly, every square kilometer of evergreen tree canopy within a 2 km buffer is associated with a reduction in ambient NO2 by

  13. Amino acid diagenesis, organic carbon and nitrogen mineralization in surface sediments from the inner Oslofjord, Norway

    SciTech Connect

    Haugen, J.E. ); Lichtentaler, R. )

    1991-06-01

    Total hydrolyzed amino acids (THAA), total organic carbon (TOC), and total nitrogen (TN) have been measured in an oxic and anoxic surface sediment from the inner Oslofjord. Downcore variations of these parameters are ascribed to both diagenesis and changes in organic matter supply, the latter being most important. These changes are most prominent in the anoxic sediment, which reflects the eutrophication history of the innermost part of the fjord. Downcore, THAA content decreased from 3.8 to 2.0 mg/g (salt-free dry weight) in the oxic sediment and from 22.3 to 3.8 mg/g in the anoxic sediment. Total amino acid nitrogen varied between 17 and 34% of total nitrogen in the oxic, and 25 and 54% in the anoxic, sediment. Organic carbon and organic nitrogen accumulation rates and depth integrated mineralization rates are about three times higher in the anoxic sediment than in the oxic sediment. Recycling of amino acids accounted for 4 to 12% of the total organic carbon and 13 to 40% of the total organic nitrogen regenerated in these sediments.

  14. Nitrogen mineralization rates of the acidic, xeric soils of the New Jersey Pinelands: field rates

    SciTech Connect

    Poovarodom, S.; Tate, R.L. III; Bloom, R.A.

    1988-04-01

    Using the buried-bag procedure, the authors quantified nitrogen mineralization rates in the xeric, acidic Lakehurst, and Atsion sands of the New Jersey Pine Barrens. Average annual nitrogen yields in the upper 15 cm for the Lakehurst and the Atsion sands were 38.4 and 53.0 kg N/ha, corresponding to 4.5 and 2.5% of the total nitrogen, respectively. Net nitrogen mineralization in both soils exhibited distinct seasonal patterns with maxima in summer and minimum rates in the winter. Nitrification accounted for only 5% of the total N mineralized in both soils. This is consistent with the finding of low populations of autotrophic nitrifiers in these soils.

  15. Extreme carbon dioxide concentrations in acidic pit lakes provoked by water/rock interaction.

    PubMed

    Sánchez-España, Javier; Boehrer, Bertram; Yusta, Iñaki

    2014-04-15

    We quantify the gas pressure and concentration of a gas-charged acidic pit lake in SW Spain. We measured total dissolved gas pressure, carbon dioxide (CO2) concentration, major ion concentration, isotopic composition of dissolved inorganic carbon (δ(13)C(DIC)), and other physicochemical parameters. CO2 is the dominant dissolved gas in this lake and results mainly from carbonate dissolution during the interaction of acidic water with wall rocks, followed by diffusive and advective transport through the water column. The δ(13)C(DIC) values suggest that the biological contribution is comparatively small. Maximum CO2 concentrations higher than 0.1 M (∼5000 mg/L) have been measured, which are only comparable to those found in volcanic crater lakes. The corresponding gas pressures of CO2 alone (pCO2 ∼3.6 bar) imply 60% saturation relative to local pressure at 50 m depth. High CO2 concentrations have been observed in other pit lakes of the region. We recommend gas-specific monitoring in acidic pit lakes and, if necessary, the design of feasible degassing strategies. PMID:24628479

  16. Carbon dioxide generated from carbonates and acids for sampling blood-feeding arthropods.

    PubMed

    Burkett-Cadena, Nathan D; Blosser, Erik M; Young, Ryan M; Toé, Laurent D; Unnasch, Thomas R

    2015-09-01

    Carbon dioxide (CO2) is utilized to attract mosquitoes and other blood-feeding arthropods to traps around the world. Commercial forms of CO2 (e.g., dry ice and compressed gas) are often unavailable or extremely expensive in developing nations, where vector surveillance is essential to make life-saving decisions. We developed and tested inexpensive and reproducible methods of CO2 production from the combination of acids and carbonates, ranging from very basic (crushed seashells and vinegar) to relatively elaborate (a device that controls the timing of the acid-carbonate reaction and extends the reaction over several hours). When utilized with mosquito traps in Florida, USA and black fly traps in Region des Cascades, Burkina Faso, these carbonate-acid CO2 sources attracted significantly greater numbers of both vector groups, than did unbaited traps. CO2 was generated for more than four hours at levels sufficient to attract vectors over the entire period. The utility of this simple methodology in developing nations should be further evaluated. PMID:26103427

  17. Field assessment of yeast- and oxalic Acid-generated carbon dioxide for mosquito surveillance.

    PubMed

    Harwood, James F; Richardson, Alec G; Wright, Jennifer A; Obenauer, Peter J

    2014-12-01

    Carbon dioxide (CO2) sources improve the efficacy of mosquito traps. However, traditional CO2 sources (dry ice or compressed gas) may be difficult to acquire for vector surveillance during military contingency operations. For this reason, a new and convenient source of CO2 is required. Two novel CO2 generators were evaluated in order to address this capability gap: 1) an electrolyzer that converts solid oxalic acid into CO2 gas, and 2) CO2 produced by yeast as it metabolizes sugar. The flow rate and CO2 concentration produced by each generator were measured, and each generator's ability to attract mosquitoes to BG-Sentinel™ traps during day surveillance and to Centers for Disease Control and Prevention light traps with incandescent bulbs during night surveillance was compared to dry ice and compressed gas in Jacksonville, FL. The electrolyzed oxalic acid only slightly increased the number of mosquitoes captured compared to unbaited traps. Based on the modest increase in mosquito collection for traps paired with the oxalic acid, it is not a suitable stand-in for either of the 2 traditional CO2 sources. Conversely, the yeast-generated CO2 resulted in collections with mosquito abundance and species richness more closely resembling those of the traditional CO2 sources, despite achieving a lower CO2 flow rate. Therefore, if dry ice or compressed gas cannot be acquired for vector surveillance, yeast-generated CO2 can significantly improve trap capability. PMID:25843133

  18. Visible light caffeic acid degradation by carbon-doped titanium dioxide.

    PubMed

    Venditti, Francesco; Cuomo, Francesca; Ceglie, Andrea; Avino, Pasquale; Russo, Mario Vincenzo; Lopez, Francesco

    2015-03-31

    The removal of the phenolic compound, caffeic acid, by photodegradation has been investigated using carbon-doped titanium dioxide particles as a photocatalyst under visible light. UV-vis absorption spectroscopy and gas chromatography-ion trap mass spectrometry analyses revealed a substrate concentration dependence of the removal of caffeic acid from a water solution. The k2 and t(0.5) parameters of each reaction were calculated by fitting kinetics data to a second-order kinetic adsorption model. To evaluate the photodegradation event, the effect of the adsorption process on the whole degradation was also monitored in the absence of light. Adsorption isotherm studies supported by ζ potential and scanning electron microscopy data demonstrated the pivotal role of the absorption mechanism. It was found that the whole photodegradation process is governed by a synergic mechanism in which adsorption and photodegradation are involved. This study, centered on the removal of caffeic acid from aqueous solutions, highlights the potential application of this technology for the elimination of phenolic compounds from olive mill wastewater, a fundamental goal in both the agronomical and environmental fields. PMID:25763603

  19. Nitrogen Derivatives of Soybean Oil and Fatty Acid Methyl Esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oil based products are eco-friendly and non-toxic in nature, which is increasing their utilization in lot of applications. The presence of double bonds in some of the fatty acids, are attractive sites for functionalization. In this study we have used these sites for functionalization usi...

  20. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China.

    PubMed

    Cao, Xiaochuang; Ma, Qingxu; Zhong, Chu; Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan

    2016-01-01

    Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3--N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many

  1. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China

    PubMed Central

    Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan

    2016-01-01

    Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3−-N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many

  2. Artificial photosynthesis of. beta. -ketocarboxylic acids from carbon dioxide and ketones via enolate complexes of aluminum porphyrin

    SciTech Connect

    Hirai, Yasuhiro; Aida, Takuzo; Inoue, Shohei )

    1989-04-12

    Photochemical fixation of carbon dioxide is of much interest in connection with biological photosynthesis by green plants as well as from the viewpoint of carbon resource utilization. One of the important steps in the assimilation of carbon dioxide is the carboxylation of a carbonyl compound into ketocarboxylic acid, where the reaction proceeds via an enolate species as reactive intermediate. For example, in four carbon (C{sub 4}) pathway and Crassulacean acid metabolism (CAM) processes, pyruvate is converted with the aid of ATP into phosphoenolpyruvate, which is subsequently carboxylated to give oxaloacetate by the action of pyruvate carboxylase. In relation to this interesting biological process, some artificial systems have been exploited for the synthesis of {beta}-ketocarboxylic acid derivatives from carbon dioxide and ketones using nucleophiles such as metal carbonates, thiazolates, phenolates, alkoxides, and strong organic as well as inorganic basis, which promote the enolization of ketones in the intermediate step. We wish to report here a novel, visible light-induced fixation of carbon dioxide with the enolate complex of aluminum porphyrin, giving {beta}-ketocarboxylic acid under mild conditions.

  3. Lewis acid catalyzed ring-opening polymerization of natural epoxy oil (Euphorbia oil) in carbon dioxide media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an attempt to build up useful application of plant oil based polymers, natural epoxy oil (euphorbia oil-EuO) was polymerized in liquid carbon dioxide in the presence of Lewis acid catalyst [Boron trifluoride diethyl etherate (BF3•OEt2)]. The resulting polymers (RPEuO) were characterized by FTIR ...

  4. NATIONAL PERFORMANCE AUDIT PROGRAM: 1980 PROFICIENCY SURVEY FOR SULFUR DIOXIDE, NITROGEN DIOXIDE, CARBON MONOXIDE, SULFATE, NITRATE, LEAD AND HIGH VOLUME FLOW

    EPA Science Inventory

    Based on authority granted by provisions of the Clean Air Act (42 U.S.C 7410, et seq.), the Quality Assurance Division of the Environmental Monitoring Systems Laboratory, Research Triangle Park, NC administers periodic surveys of analytical proficiency for sulfur dioxide, nitroge...

  5. Organic acids and selected nitrogen species for ABLE-3

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.

    1991-01-01

    The NASA Global Tropospheric Experiment (GTE) executed airborne science missions aboard the NASA Wallops Electra (NA429) in the North American high latitude (greater than 45 deg North) atmosphere during Jul. to Aug. 1988 and Jul. to Aug. 1990. These missions were part of GTE's Atmospheric Boundary Layer Experiment (ABLE). The 1988 mission , ABLE-3A, examined the ecosystems of Alaska as a source and/or sink for important tropospheric gases and particles, and gained new information on the chemical composition of the Arctic atmosphere during the summertime. During 1990 the second high latitude mission, ABLE-3B, focused on the Hudson Bay Lowland and Labrador regions of Canada. Both of these missions provided benchmark data sets on atmosphere biosphere exchange and atmospheric chemistry over largely uninhabited regions of North America. In support of the GTE/ABLE-3A and -3B field missions, the University of New Hampshire flew instrumentation aboard the Wallops Electra research aircraft to provide measurements of the trace gases nitric (HNO3), formic (HCOOH), and acetic (CH3COOH) acid. In addition, measurements were conducted to determine the major water soluble ionic composition of the atmospheric aerosol. For ABLE-3B, groundbased measurements of the acidic trace gases were also performed from the NASA micrometerological tower situated at Schefferville, Laborador. These measurements were aimed at assessing dry deposition of acidic gases to the taiga ecosystem in the Laborador region of Canada.

  6. Nitrogen cycling in s subarctic Alaskan watershed: the role of lichens and the potential effects of acid deposition

    SciTech Connect

    Gunther, A.J.

    1987-01-01

    It has been hypothesized that the loss of nitrogen-fixing lichens due to stress from air pollution could have adverse effects upon nitrogen availability, and thus primary productivity, in some ecosystems. There is general agreement, however, that the ecological role of these lichens has not been sufficiently well defined to determine whether they are keystone species. The objectives of this study were: (1) to examine the importance of nitrogen-fixing lichens to the nitrogen cycle in the drainage of Brooks Lake, Alaska, a nitrogen-limited nursery lake for the commercially important sockeye salmon (Oncorhychus nerka); and (2) to investigate the sensitivity of nitrogen fixation by lichens in this ecosystem to acid deposition. Biological nitrogen fixation was found to be the major source of new nitrogen to the Brooks Lake drainage. The rate of fixation is approximately 3 kg N/ha-yr, which compares to 0.3 kg N/ha-yr in precipitation and only 0.02 kg N/ha-yr in returning adult salmon. Cyanophillic lichens contribute about 0.21 kg N/ha-yr. The low levels of nitrogen in precipitation, combined with a lack of nitrogen-fixation activity in open lake waters, indicates that nitrogen in tributary streams is the major source of new nitrogen for Brooks Lake. The measurements of nitrogen inputs, along with estimates of other stocks and flows of nitrogen, were used to construct a steady-state box model of the nitrogen cycle in the drainage.

  7. Analysis of trace amounts of carbon dioxide, oxygen and carbon monoxide in nitrogen using dual capillary columns and a pulsed discharge helium ionisation detector.

    PubMed

    Janse van Rensburg, M; Botha, A; Rohwer, E

    2007-10-01

    Gas mixtures of trace amounts of carbon dioxide (CO(2)), dioxygen (O(2)), and carbon monoxide (CO) in dinitrogen (N(2)) were separated and quantified using parallel dual capillary columns and pulsed discharge helium ionisation detection (PDHID). The detection limits (9 x 10(-9) mol mol(-1) for CO(2), 7 x 10(-9) mol mol(-1) for O(2) and 37 x 10(-9) mol mol(-1) for CO) were lower than those reported previously for similar methods. Uncertainties were calculated and results were validated by comparison of the CO and CO(2) results with those obtained using conventional methods. The method was also used to analyse nitrogen, carbon dioxide and carbon monoxide in oxygen. PMID:17765907

  8. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2004-01-01

    Ammonia is the principal source of fixed nitrogen. It was produced by 17 companies at 34 plants in the United States during 2003. Fifty-three percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock.

  9. Monitoring of atmospheric ozone and nitrogen dioxide over the south of Portugal by ground-based and satellite observations.

    PubMed

    Bortoli, Daniele; Silva, Ana Maria; Costa, Maria João; Domingues, Ana Filipa; Giovanelli, Giorgio

    2009-07-20

    The SPATRAM (Spectrometer for Atmospheric TRAcers Monitoring) instrument has been developed as a result of the collaboration between CGE-UE, ISAC-CNR and Italian National Agency for New Technologies, Energy and the Environment (ENEA). SPATRAM is a multi-purpose UV-Vis-scanning spectrometer (250 - 950 nm) and it is installed at the Observatory of the CGE, in Evora, since April 2004. A brief description of the instrument is given, highlighting the technological innovations with respect to the previous version of similar equipment. The need for such measurements automatically taken on a routine basis in south-western European regions, specifically in Portugal, has encouraged the development and installation of the equipment and constitutes a major driving force for the present work. The main features and some improvements introduced in the DOAS (Differential Optical Absorption Spectroscopy) algorithms are discussed. The results obtained applying DOAS methodology to the SPATRAM spectrometer measurements of diffused spectral sky radiation are presented in terms of diurnal and seasonal variations of nitrogen dioxide (NO(2)) and ozone (O(3)). NO(2) confirms the typical seasonal cycle reaching the maximum of (6.5 +/- 0.3) x 10(+15) molecules cm(-2) for the sunset values (PM), during the summer season, and the minimum of (1.55 +/- 0.07) x 10(+15) molecules cm(-2) for the sunrise values (AM) in winter. O(3) presents the maximum total column of (433 +/- 5) Dobson Unit (DU) in the spring season and the minimum of (284 +/- 3) DU during the fall period. The huge daily variations of the O(3) total column during the spring season are analyzed and discussed. The ground-based results obtained for NO(2) and O(3) column contents are compared with data from satellite-borne equipment (GOME - Global Ozone Monitoring Experiment; SCIAMACHY - Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY; TOMS - Total Ozone Monitoring Spectrometer) and it is shown that the two data

  10. Effects of nitrogen dioxide on human health: systematic review of experimental and epidemiological studies conducted between 2002 and 2006.

    PubMed

    Latza, Ute; Gerdes, Silke; Baur, Xaver

    2009-05-01

    In order to assess health effects in humans caused by environmental nitrogen dioxide (NO(2)) a systematic review of studies in humans was conducted. MEDLINE database was searched for epidemiological studies and experiments on adverse effects of NO(2) published between 2002 and 2006. The evidence with regard to NO(2) exposure limits was assessed using the Scottish Intercollegiate Guidelines Network (SIGN) grading system and the modified three star system. Of the 214 articles retrieved 112 fulfilled the inclusion criteria. There was limited evidence that short-term exposure to a 1-h mean value below 200 microg NO(2)/m(3) is associated with adverse health effects provided by only one study on mortality in patients with severe asthma (*2+). The effect remained after adjusting for other air pollutants. There was moderate evidence that short-term exposure below a 24-h mean value of 50 microg NO(2)/m(3) at monitor stations increases hospital admissions and mortality (**2+). Evidence was also moderate when the search was restricted to susceptible populations (children, adolescents, elderly, and asthmatics). There was moderate evidence that long-term exposure to an annual mean below 40 microg NO(2)/m(3) was associated with adverse health effects (respiratory symptoms/diseases, hospital admissions, mortality, and otitis media) provided by generally consistent findings in five well-conducted cohort and case-control studies with some shortcomings in the study quality (**2+). Evidence was also moderate when the search was restricted to studies in susceptible populations (children and adolescents) and for the combination with other air pollutants. The most frequent reasons for decreased study quality were potential misclassification of exposure and selection bias. None of the high-quality observational studies evaluated was informative for the key questions due to the choice of the dose parameter (e.g., 1-week mean) and exposure levels above the limit values. Inclusion of study

  11. A survey of nitrogen dioxide concentrations in the United Kingdom using diffusion tubes, July-December 1991

    NASA Astrophysics Data System (ADS)

    Campbell, G. W.; Stedman, J. R.; Stevenson, K.

    Palmes diffusion tubes have been used to measure nitrogen dioxide concentration at 363 urban sites throughout the United Kingdom during the period of July-December 1991. Average concentrations over the period ranged from les than 10 ppb in northern Scotland to around 50 ppb at near-road sites in London. A total of 243 sites provided valid data for both this survey and an earlier, similar, study in 1986. On average, concentrations were about 34% larger in 1991. Increases occurred throughout the country and were not confined to any particular area or region, although the percentage change tended to be larger in the north and west and where concentrations were small. The observed difference in concentrations was consistent with differences in meteorological conditions between the periods covered by the two surveys and the 38% increase in emissions of NO x from motor vehicles over the period. However, there is no evidence from continuous monitoring between 1987 and 1991 of a marked trend in concentration at any one site. The shortening of the diffusion path in the diffusion tube due to wind effects has been demonstrated. This leads to a tendency for diffusion tubes to overread relative to chemiluminescent analysers. However, if the tubes are mounted in a sheltered location the overestimate is small. Since, in this survey, most of the samplers were mounted close to the sides of buildings, the data were not corrected, although the concentrations may be overestimates at some sites. In order to provide information on the spatial distribution of NO 2 over the whole country, population density (related to vehicle density) was used along with the survey results together with additional data on rural concentrations, to map NO 2 concentrations over Great Britain. This suggests that around one third of the population lives in regions where the mean concentration exceeds the European Community Directive Guide Value for median concentration. However this proportion would be

  12. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Zarzana, K. J.; Rudich, Y.; Brown, S. S.

    2016-01-01

    Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and it strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99930 ± 0.00003 (1- reflectivity = 700 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.43 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity-enhanced absorption spectroscopy and cavity ring-down spectroscopy agree within 2 % (slope for linear fit = 1.02 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity-enhanced absorption spectroscopy and calculated based on flow dilution are also well correlated, with r2 = 0.9998. During constant mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1 min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically based trace gas detection that may complement higher precision techniques based on non

  13. Raman spectroscopy of solutions and interfaces containing nitrogen dioxide, water, and 1,4 dioxane: Evidence for repulsion of surface water by NO{sub 2} gas

    SciTech Connect

    Murdachaew, Garold; Varner, Mychel E.; Veer, Wytze E. van der; Gerber, R. Benny; Phillips, Leon F.

    2014-05-14

    The interaction of water, 1,4 dioxane, and gaseous nitrogen dioxide, has been studied as a function of distance measured through the liquid-vapour interface by Raman spectroscopy with a narrow (<0.1 mm) laser beam directed parallel to the interface. The Raman spectra show that water is present at the surface of a dioxane-water mixture when gaseous NO{sub 2} is absent, but is virtually absent from the surface of a dioxane-water mixture when gaseous NO{sub 2} is present. This is consistent with recent theoretical calculations that show NO{sub 2} to be mildly hydrophobic.

  14. Engineering of nitrogen metabolism and its regulation in Corynebacterium glutamicum: influence on amino acid pools and production.

    PubMed

    Rehm, Nadine; Burkovski, Andreas

    2011-01-01

    Nitrogen is one of the macronutrients necessary for living cells, and consequently, assimilation of nitrogen is a crucial step for metabolism. To satisfy their nitrogen demand and to ensure a sufficient nitrogen supply even in situations of nitrogen limitation, microorganisms have evolved sophisticated uptake and assimilation mechanisms for different nitrogen sources. This mini-review focuses on nitrogen metabolism and its control in the biotechnology workhorse Corynebacterium glutamicum, which is used for the industrial production of more than 2 million tons of L: -amino acids annually. Ammonium assimilation and connected control mechanisms on activity and transcription level are summarized, and the influence of mutations on amino acid pools and production is described with emphasis on L: -glutamate, L: -glutamine, and L: -lysine. PMID:20922371

  15. Amino Acids as a Source of Organic Nitrogen in Antarctic Endolithic Microbial Communities

    NASA Astrophysics Data System (ADS)

    McDonald, G. D.; Sun, H. J.

    2002-12-01

    In the Antarctic Dry Valleys, cryptoendolithic microbial communities occur within porous sandstone rocks. Current understanding of the mechanisms of physiological adaptation of these communities to the harsh Antarctic environment is limited, because traditional methods of studying microbial physiology are very difficult to apply to organisms with extremely low levels of metabolic activity. In order to fully understand carbon and nitrogen cycling and nutrient uptake in cryptoendolithic communities, and the metabolic costs that the organisms incur in order to survive, it is necessary to employ molecular geochemical techniques such as amino acid analysis in addition to physiological methods. Low-molecular-weight biomolecules such as amino acids can be used as tracers of carbon and nitrogen uptake and loss by microbial communities living in solid-state matrices such as rock or sediment. We have measured the concentrations and D/L ratios for several amino acids as a function of depth in a large sandstone boulder. Concentrations of both free and bound amino acids decrease by more than two orders of magnitude from the surface to the visible base of the community (approximately 1.2 cm depth), while the D/L ratios of the amino acids increase from near zero to 0.2 or greater over the same depth interval. We interpret these data as an indication that one or more community members are selectively scavenging L-amino acids as the amino acids are transported through the rock by intermittently percolating meltwater. This is consistent with the known preference of lichens for amino acids as nitrogen sources rather than inorganic nitrogen under conditions of nutrient limitation. It is not yet clear whether there is also a contribution to amino acid uptake from heterotropic bacteria associated with the cryptoendolithic community. The increase in D/L ratios with depth observed in the rock is too great to be attributable solely to the natural occurrence of D-amino acids in bacteria

  16. Nitric Acid-Sea Salt Reactions: Implications for Nitrogen Deposition to Water Surfaces.

    NASA Astrophysics Data System (ADS)

    Pryor, S. C.; Sørensen, L. L.

    2000-05-01

    Many previous studies have indicated the importance of nitric acid (HNO3) reactions on sea salt particles for flux divergence of HNO3 in the marine surface layer. The potential importance of this reaction in determining the spatial and temporal patterns of nitrogen dry deposition to marine ecosystems is investigated using models of sea spray generation and particle- and gas-phase dry deposition. Under horizontally homogeneous conditions with near-neutral stability and for wind speeds between 3.5 and 10 m s1, transfer of HNO3 to the particle phase to form sodium nitrate may decrease the deposition velocity of nitrogen by over 50%, leading to greater horizontal transport prior to deposition to the sea surface. Conversely, for wind speeds above 10 m s1, transfer of nitrogen to the particle phase would increase the deposition rate and hence decrease horizontal transport prior to surface removal.

  17. Stratospheric ozone and nitrogen dioxide amount obtained with GASCOD-type DOAS spectrometer at Terra Nova Bay Station (Antarctica) during December 2000 - January 2001

    NASA Astrophysics Data System (ADS)

    Bortoli, Daniele; Ravegnani, Fabrizio; Kostadinov, Ivan K.; Giovanelli, Giorgio; Petritoli, Andrea

    2002-01-01

    GASCODs are UV-Visible ground-based spectrometers developed at the ISAO Institute and used to detect stratospheric trace gases involved in the ozone cycle such as NO2, OClO, BrO, by application of Differential Optical Absorption Spectroscopy (DOAS) methodology to the zenith scattered light collected data. After several tests both in laboratory and in Antarctic region, one of the spectrometers was modified for unattended and continuous measurement in extreme high-latitude environment. The instrument was installed in December 1995 in the Italian Station at Terra Nova Bay (74 degree(s)26'S, 164 degree(s)03E', Ross Sea). The GASCOD is still working and causing very interesting data for the study of the denitrification processes during the formation of the so-called ozone hole over the Antarctic region. When the station is unmanned, to allow for the continuous NO2 monitoring for whole the year without mechanical problems, the fixed [407 - 460] nm spectral region is investigated. The results for Nitrogen Dioxide, obtained by application of DOAS algorithms to the data recorded during the year 2000, are presented. During a leg (December 2000 - January 2001) of the 16th Italian Antarctic Expedition, after the usual instrument check, many measurements were carried out in other spectral regions, with the aim to obtain information about the stratospheric tracers contents. The results obtained for Ozone, Nitrogen dioxide and Formaldehyde at different Solar Zenith Angle are presented.

  18. Influence of experimental pulmonary emphysema on toxicological effects from inhaled nitrogen dioxide and diesel exhaust. Research report, January 1984-September 1987

    SciTech Connect

    Mauderly, J.L.; Bice, D.E.; Cheng, Y.S.; Gillett, N.A.; Henderson, R.F.

    1990-02-01

    The hypothesis tested in the project was that rats with preexisting experimentally-induced pulmonary emphysema were more susceptible than rats with normal lungs to the adverse effects of exposure to NO(sub 2) or diesel exhaust. Rats were exposed by inhalation seven hr/day, five day/wk, for 24 months to NO(sub 2) at 9.5 ppm, or to diesel exhaust at 3.5 mg soot/cu m, or to clean air. Pulmonary emphysema was induced in one-half of the rats by intratracheal instillation of elastase, six weeks before exposures. Nonneoplastic endpoints were evaluated after 12, 18, and 24 months of exposure. Nitrogen dioxide exposure of normal rats caused mild epithelial hyperplasia and inflammation in proximal alveoli. Significant interactions between the influences of emphysema and nitrogen dioxide were demonstrated to be additive for four parameters (out of 61 parameters). Diesel-exhaust exposure of normal rats caused progressive, focal inflammation, and epithelial proliferation. The final soot lung burden was only one-third of that in nonemphysematous lungs.

  19. Investigation of the sensitivity, selectivity, and reversibility of the chemically-sensitive field-effect transistor (CHEMFET) to detect nitrogen dioxide, dimethyl methylphosphonate, and boron trifluoride. Master's thesis

    SciTech Connect

    Hauschild, N.T.

    1993-09-01

    This study investigated the sensitivity, selectivity, and reversibility of a chemically-sensitive field-effect transistor (CHEMFET) gas microsensor. Various physical operating parameters were tested to determine which produced the most significant sensitivity, selectivity, and reversibility which were computed from response changes generated from electrical conductivity modulations when exposed to challenge gases. The variable operating parameters included: thinfilm material, film thickness, challenge gas specie, challenge gas concentration, and operating temperature. Copper phthalocyanine and lead phthalocyanine were used as thin films to detect the following challenge gases: nitrogen dioxide, dimethyl methylphosphonate, boron trifluoride, methanol, carbon monoxide, vinyl chloride, and trichloroethylene. Tests revealed that copper phthalocyanine was the most sensitive to dimethyl methylphosphonate and boron trifluoride, whereas lead phthalocyanine was the most sensitive to the remaining challenge gases. The CHEMFET was selective to the binary challenge gas combinations. The films were most selective for nitrogen dioxide. The CHEMFET was fully reversibly, and the time duration for full reversibility increased with increasing challenge gas concentrations and increasing time of exposure.

  20. Retrieval of stratospheric ozone and nitrogen dioxide profiles from Odin Optical Spectrograph and Infrared Imager System (OSIRIS) limb-scattered sunlight measurements

    NASA Astrophysics Data System (ADS)

    Haley, Craig Stuart

    2009-12-01

    Key to understanding and predicting the effects of global environmental problems such as ozone depletion and global warming is a detailed understanding of the atmospheric processes, both dynamical and chemical. Essential to this understanding are accurate global data sets of atmospheric constituents with adequate temporal and spatial (vertical and horizontal) resolutions. For this purpose the Canadian satellite instrument OSIRIS (Optical Spectrograph and Infrared Imager System) was launched on the Odin satellite in 2001. OSIRIS is primarily designed to measure minor stratospheric constituents, including ozone (O3) and nitrogen dioxide (NO2), employing the novel limb-scattered sunlight technique, which can provide both good vertical resolution and near global coverage. This dissertation presents a method to retrieve stratospheric O 3 and NO2 from the OSIRIS limb-scatter observations. The retrieval method incorporates an a posteriori optimal estimator combined with an intermediate spectral analysis, specifically differential optical absorption spectroscopy (DOAS). A detailed description of the retrieval method is presented along with the results of a thorough error analysis and a geophysical validation exercise. It is shown that OSIRIS limb-scatter observations successfully produce accurate stratospheric O3 and NO2 number density profiles throughout the stratosphere, clearly demonstrating the strength of the limb-scatter technique. The OSIRIS observations provide an extremely useful data set that is of particular importance for studies of the chemistry of the middle atmosphere. The long OSIRIS record of stratospheric ozone and nitrogen dioxide may also prove useful for investigating variability and trends.

  1. Application of INEPT nitrogen-15 and silicon-29 nuclear magnetic resonance spectrometry to derivatized fulvic acids

    USGS Publications Warehouse

    Thorn, K.A.; Folan, D.W.; Arterburn, J.B.; Mikita, M.A.; MacCarthy, P.

    1989-01-01

    Use of the INEPT experiment has been examined in two derivatization studies of the Suwannee River fulvic acid. In the first study, the fulvic acid was derivatized with 15N enriched hydroxylamine. The quantitative 15N NMR spectrum, acquired with a 45° pulse angle, 2.0 second pulse delay and inverse gated decoupling, showed that oximes (390-340 ppm) were the major derivatives, followed by nitriles (270-240 ppm), hydroxamic acids (170-160 ppm), secondary amides (150-115 ppm), and lactams (115-90 ppm). The INEPT 15N NMR spectrum was acquired using refocussing delays and polarization transfer times optimized for signal enhancement of singly protonated nitrogens. INEPT greatly enhanced the amide and lactam resonances, and showed that resonances downfield of 180 ppm in the quantitative spectrum represented nonprotonated nitrogens. In the second study, the fulvic acid was first methylated with diazomethane and then silylated with hexamethyldisilazane. The 29Si NMR spectra exhibited two major peaks, from approximately 33 to 22 ppm, representing silyl esters of carboxylic acids, and from 22 to 13 ppm, representing silyl ethers of alcohols and phenols. The INEPT 29Si NMR spectrum was virtually identical to the quantitative 29Si spectrum, acquired with a 90° pulse angle, 5.0 second pulse delay, inverse gated decoupling, and relaxation reagent. INEPT therefore can be used for quantitative analysis of trimethylsilyl derivatives of the fulvic acid, saving spectrometer time and eliminating the need for relaxation reagents.

  2. Characterizing the sensitivity, selectivity, and reversibility of the metal-doped phthalocyanine thin-films used with the Interdigitated Gate Electrode Field-Effect Transistor (IGEFET) to detect organophosphorous compounds and nitrogen dioxide

    NASA Astrophysics Data System (ADS)

    Howe, Clayton P.

    1991-12-01

    This study investigated the sensitivity, reversibility, and selectivity of the thin film coatings used on the interdigitated gate electrode field effect transistor (IGEFET) gas microsensor. These responses were quantified based on the dc resistance changes and frequency domain responses of the microsensor. The thin film materials included: copper phthalocyanine (CuPc), nickel phthalocyanine (NiPc), and cobalt phthalocyanine (CoPc). The challenge gases included: diisopropyl methylphosphonate (DIMP), dimethyl methylphosphonate (DMMP), nitrogen dioxide, ammonia, and boron trifluoride. Tests of the CuPc thin films and nitrogen dioxide challenges established the primary set of test parameters expected to maximize the selectivity, sensitivity, and reversibility of the thin film coatings. A series of experiments performed at 150 C tested the other thin film materials, on the IGEFET sensors, when challenged by listed gases. At 150 C, the nitrogen dioxide and ammonia interacted with all three film types, the boron trifluoride interacted weakly, the DIMP and DMMP show no response.

  3. The effects of climate change on the nitrogen cycle and acid deposition

    SciTech Connect

    Penner, J.E.; Walton, J.J. ); Graboske, B.C. )

    1990-09-01

    Increases in greenhouse gases are expected to lead to a number of changes to the atmosphere which may impact regional and global chemical cycles. With the increasing awareness of climate change and the possibility of global chemical changes to the atmosphere, it becomes important to ask whether these changes to global climate and chemical cycles might benefit or hinder control programs aimed at reducing acid deposition. In the following, we review several possible changes to climate that may be expected to impact the global cycle of reactive nitrogen. We then use our global model of the reactive nitrogen cycle to estimate the effects of several of the more important changes on the continental-scale deposition of nitric acid. 7 refs., 1 tab.

  4. Co/Mo bimetallic addition to electrolytic manganese dioxide for oxygen generation in acid medium.

    PubMed

    Delgado, Dario; Minakshi, Manickam; McGinnity, Justin; Kim, Dong-Jin

    2015-01-01

    An efficient electrocatalyst comprising inexpensive and earth-abundant materials for the oxygen evolution reaction (OER) is crucial for the development of water electrolysis. In this work, in-situ addition of cobalt/molybdenum ions to the electrolytic manganese dioxide has been shown to be beneficial for the OER in acid solution as its overpotential performed better (305 mV) than that of the commercial DSA(®) (341 mV) at 100 mA cm(-2). The OER was investigated at ambient temperature in 2 M H2SO4 solution on the modified EMD (MnMoCoO) electrodes. The energy efficiency of the MnMoCoO electrodes improved significantly with the amount of Co in the plating solution. For the electrodeposited catalysts, physico-chemical and electrochemical measurements were conducted including static overpotentials. The better performance of the modified EMD was attributed to an improved charge transfer resistance (Rct; 0.290 Ω cm(2)), average roughness factor (rf; 429) and decrease in water content in the electrodeposited catalysts. The kinetic parameters obtained on MnMoCoO catalysts were compared and discussed according to the cobalt concentration. PMID:26469204

  5. Co/Mo bimetallic addition to electrolytic manganese dioxide for oxygen generation in acid medium

    PubMed Central

    Delgado, Dario; Minakshi, Manickam; McGinnity, Justin; Kim, Dong-Jin

    2015-01-01

    An efficient electrocatalyst comprising inexpensive and earth-abundant materials for the oxygen evolution reaction (OER) is crucial for the development of water electrolysis. In this work, in-situ addition of cobalt/molybdenum ions to the electrolytic manganese dioxide has been shown to be beneficial for the OER in acid solution as its overpotential performed better (305 mV) than that of the commercial DSA® (341 mV) at 100 mA cm−2. The OER was investigated at ambient temperature in 2 M H2SO4 solution on the modified EMD (MnMoCoO) electrodes. The energy efficiency of the MnMoCoO electrodes improved significantly with the amount of Co in the plating solution. For the electrodeposited catalysts, physico-chemical and electrochemical measurements were conducted including static overpotentials. The better performance of the modified EMD was attributed to an improved charge transfer resistance (Rct; 0.290 Ω cm2), average roughness factor (rf; 429) and decrease in water content in the electrodeposited catalysts. The kinetic parameters obtained on MnMoCoO catalysts were compared and discussed according to the cobalt concentration. PMID:26469204

  6. Co/Mo bimetallic addition to electrolytic manganese dioxide for oxygen generation in acid medium

    NASA Astrophysics Data System (ADS)

    Delgado, Dario; Minakshi, Manickam; McGinnity, Justin; Kim, Dong-Jin

    2015-10-01

    An efficient electrocatalyst comprising inexpensive and earth-abundant materials for the oxygen evolution reaction (OER) is crucial for the development of water electrolysis. In this work, in-situ addition of cobalt/molybdenum ions to the electrolytic manganese dioxide has been shown to be beneficial for the OER in acid solution as its overpotential performed better (305 mV) than that of the commercial DSA® (341 mV) at 100 mA cm-2. The OER was investigated at ambient temperature in 2 M H2SO4 solution on the modified EMD (MnMoCoO) electrodes. The energy efficiency of the MnMoCoO electrodes improved significantly with the amount of Co in the plating solution. For the electrodeposited catalysts, physico-chemical and electrochemical measurements were conducted including static overpotentials. The better performance of the modified EMD was attributed to an improved charge transfer resistance (Rct; 0.290 Ω cm2), average roughness factor (rf; 429) and decrease in water content in the electrodeposited catalysts. The kinetic parameters obtained on MnMoCoO catalysts were compared and discussed according to the cobalt concentration.

  7. Ancient low–molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw

    PubMed Central

    Drake, Travis W.; Wickland, Kimberly P.; Spencer, Robert G. M.; McKnight, Diane M.; Striegl, Robert G.

    2015-01-01

    Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high–temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low–molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters. PMID:26504243

  8. Grafting of poly (lactic acid) with maleic anhydride using supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Khankrua, R.; Pivsa-Art, S.; Hiroyuki, H.; Suttiruengwong, S.

    2015-07-01

    The aim of this work was to modify poly lactic acid (PLA) via free radical grafting with maleic anhydride (MA) by using supercritical carbon dioxide (SCCO2). Benzoyl peroxide (BPO) was used as an initiator. The solubility of MA in SCCO2 was first determined to estimate the suitable grafting conditions and equilibrium. From the solubility study of MA in SCCO2, it was found that the solubility of MA in SCCO2 increased with the increasing pressure and dissolution time. PLA films were first prepared by compression molding. The ratio of MA to BPO was 2:1. The reaction temperature and pressure were 70°C and 100 bar respectively. The grafting reaction and the degree of grafting were characterized by nuclear magnetic resonance (NMR) spectroscopy and titration, respectively. Scanning electron microscope (SEM) technique and contact angle were used to confirm the changes in physical properties of PLA film grafted MA. NMR spectrum indicated that the grafting of MA onto PLA was successively achieved. Degree of grafting by using SCCO2 was as high as 0.98%. This provided rather high grafting degree compared with other processes. SEM pictures showed the rough surface structure on modified PLA film. In addition, contact angle results showed an improvement of the hydrophilicity by maleic anhydride grafting onto polymers.

  9. Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw.

    PubMed

    Drake, Travis W; Wickland, Kimberly P; Spencer, Robert G M; McKnight, Diane M; Striegl, Robert G

    2015-11-10

    Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high-temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low-molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters. PMID:26504243

  10. Amino acid-mediated impacts of elevated carbon dioxide and simulated root herbivory on aphids are neutralized by increased air temperatures

    PubMed Central

    Ryalls, James M. W.; Moore, Ben D.; Riegler, Markus; Gherlenda, Andrew N.; Johnson, Scott N.

    2015-01-01

    Changes in host plant quality, including foliar amino acid concentrations, resulting from global climate change and attack from multiple herbivores, have the potential to modify the pest status of insect herbivores. This study investigated how mechanically simulated root herbivory of lucerne (Medicago sativa) before and after aphid infestation affected the pea aphid (Acyrthosiphon pisum) under elevated temperature (eT) and carbon dioxide concentrations (eCO2). eT increased plant height and biomass, and eCO2 decreased root C:N. Foliar amino acid concentrations and aphid numbers increased in response to eCO2, but only at ambient temperatures, demonstrating the ability of eT to negate the effects of eCO2. Root damage reduced aboveground biomass, height, and root %N, and increased root %C and C:N, most probably via decreased biological nitrogen fixation. Total foliar amino acid concentrations and aphid colonization success were higher in plants with roots cut early (before aphid arrival) than those with roots cut late (after aphid arrival); however, this effect was counteracted by eT. These results demonstrate the importance of amino acid concentrations for aphids and identify individual amino acids as being potential factors underpinning aphid responses to eT, eCO2, and root damage in lucerne. Incorporating trophic complexity and multiple climatic factors into plant–herbivore studies enables greater insight into how plants and insects will interact in the future, with implications for sustainable pest control and future crop security. PMID:25403916

  11. Influence of various nitrogen applications on protein and amino acid profiles of amaranth and quinoa.

    PubMed

    Thanapornpoonpong, Sa-nguansak; Vearasilp, Suchada; Pawelzik, Elke; Gorinstein, Shela

    2008-12-10

    The effect of nitrogen application levels (0.16 and 0.24 g N kg(-1) soil) on seed proteins and their amino acid compositions of amaranth (Amaranthus spp.) and quinoa (Chenopodium quinoa Willd) was studied. Total proteins of amaranth and quinoa had high contents of lysine (6.3-8.2 g 100 g(-1) protein) but low contents of methionine (1.2-1.8 g 100 g(-1) protein). Seed proteins were fractionated on the basis of different solubility in water, saline, and buffer as albumin-1 (Albu-1), albumin-2 (Albu-2), globulin (Glob), and glutelin (Glu) and were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Albu-1 was high in lysine (5.4-8.6 g 100 g(-1) protein), while Albu-2, which is a part of storage proteins, had a high leucine content (7.2-8.9 g 100 g(-1) protein) as an effect of different nitrogen application levels. Glu fractions were well-balanced in their essential amino acids with the exception of methionine. In conclusion, nitrogen application can be used for the nutritional improvement in human diet by increasing and maintaining protein and essential amino acid contents. PMID:19006392

  12. Characterization of lipid and fatty acids composition of Chlorella zofingiensis in response to nitrogen starvation.

    PubMed

    Zhu, Shunni; Wang, Yajie; Shang, Changhua; Wang, Zhongming; Xu, Jingliang; Yuan, Zhenhong

    2015-08-01

    Cellular biochemical composition of the microalga Chlorella zofingiensis was studied under favorable and nitrogen starvation conditions, with special emphasis on lipid classes and fatty acids distribution. When algal cells were grown in nitrogen-free medium (N stress), the increase in the contents of lipid and carbohydrate while a decrease in protein content was detected. Glycolipids were the major lipid fraction (50.7% of total lipids) under control condition, while neutral lipids increased to be predominant (86.7% of total lipids) under N stress condition. Triacylglycerol (TAG) content in N stressed cells was 27.3% dw, which was over three times higher than that obtained under control condition. Within neutral lipids fraction, monounsaturated fatty acids (MUFA) were the main group (40.6%) upon N stress, in which oleic acid was the most representative fatty acids (34.5%). Contrarily, glycolipids and phospholipids showed a higher percentage of polyunsaturated fatty acids (PUFA). Lipid quality assessment indicated the potential of this alga as a biodiesel feedstock when its neutral lipids were a principal lipid fraction. The results demonstrate that the neutral lipids content is key to determine the suitability of the microalga for biodiesel, and the stress cultivation is essential for lipid quality. PMID:25782619

  13. Stability constants of europium complexes with a nitrogen heterocycle substituted methane-1,1-diphosphonic acid

    SciTech Connect

    Jensen, M.P.; Rickert, P.G.; Schmidt, M.A.; Nash, K.L.

    1996-06-01

    Even in moderately acidic solutions ([H{sup +}] > 0.01 M), N-piperidinomethane-1,1-diphosphonic acid (H{sub 4}PMDPA) is a strong complexant of trivalent lanthanide ions that shows enhanced complex solubility over previously studied 1,1-diphosphonic acids. The protonation constants of PMDPA in 2.0 M H/NaClO{sub 4} were determined by potentiometric and NMR titrations, and the stability constants for formation of complexes with Eu{sup 3+} were determined by solvent extraction. Difference in protonation equilibria induced by addition of the nitrogen heterocycle results in an increase in the complexation strength of PMDPA. In solutions containing 0.1 M H{sup +} and ligand concentrations greater than 0.02 M, PMDPA is the most effective 1,1-diphosphonic acid for europium complexation studied thus far.

  14. Prevention of bovine mastitis by a postmilking teat disinfectant containing chlorous acid and chlorine dioxide in a soluble polymer gel.

    PubMed

    Oliver, S P; King, S H; Torre, P M; Shull, E P; Dowlen, H H; Lewis, M J; Sordillo, L M

    1989-11-01

    A natural exposure study was conducted in a herd of 150 lactating dairy cows for 18 mo to determine the effectiveness of chlorous acid and chlorine dioxide in a soluble polymer gel as a postmilking teat disinfectant for the prevention of bovine mastitis. Right quarters of cows were dipped in the experimental teat dip after milking machine removal. Left quarters were not dipped and served as within-cow negative controls. The experimental teat dip reduced Staphylococcus aureus infections 67.4%, Streptococcus dysgalactiae infections 63.8%, and Streptococcus uberis infections 27.8%. Overall efficacy of the chlorous acid and chlorine dioxide teat dip against major mastitis pathogens was 52.2%. The experimental teat dip reduced Corynebacterium bovis infections and coagulase-negative staphylococcal infections also by 45.8 and 38.7%, respectively. Overall efficacy against minor mastitis pathogens was 43.4%. Under conditions of this trial, the experimental teat dip containing chlorous acid and chlorine dioxide was effective in preventing new intramammary infections against a variety of mastitis pathogens. PMID:2625499

  15. USING THE REGIONAL ACID DEPOSITION MODEL TO DETERMINE THE NITROGEN DEPOSITION AIRSHED OF THE CHESAPEAKE BAY WATERSHED

    EPA Science Inventory

    The Regional Acid Deposition Model, RADM, an advanced Eulerian model, is used to develop an estimate of the primary airshed of nitrogen oxide (NOx) emissions that is contributing nitrogen deposition to the Chesapeake Bay watershed. rief description of RADM together with a summary...

  16. Hybrid process for nitrogen oxides reduction

    SciTech Connect

    Epperly, W.R.; Sprague, B.N.

    1991-09-10

    This patent describes a process for reducing the nitrogen oxide concentration in the effluent from the combustion of a carbonaceous fuel. It comprises introducing into the effluent a first treatment agent comprising a nitrogenous composition selected from the group consisting of urea, ammonia, hexamethylenetetramine, ammonium salts of organic acids, 5- or 6-membered heterocyclic hydrocarbons having at least one cyclic nitrogen, hydroxy amino hydrocarbons, NH{sub 4}-lignosulfonate, fur-furylamine, tetrahydrofurylamine, hexamethylenediamine, barbituric acid, guanidine, guanidine carbonate, biguanidine, guanylurea sulfate, melamine, dicyandiamide, biuret, 1.1{prime}-azobisformamide, methylol urea, methylol urea-urea condensation product, dimethylol urea, methyl urea, dimethyl urea, calcium cyanamide, and mixtures thereof under conditions effective to reduce the nitrogen oxides concentration and ensure the presence of ammonia in the effluent; introducing into the effluent a second treatment agent comprising an oxygenated hydrocarbon at an effluent temperature of about 500{degrees} F. to about 1600{degrees} F. under conditions effective to oxidize nitric oxide in the effluent to nitrogen dioxide and ensure the presence of ammonia at a weight ratio of ammonia to nitrogen dioxide of about 1:5 to about 5:1; and contacting the effluent with an aqueous scrubbing solution having a pH of 12 or lower under conditions effective to cause nitrogen dioxide to be absorbed therein.

  17. Amino acid compositions in heated carbonaceous chondrites and their compound-specific nitrogen isotopic ratios

    NASA Astrophysics Data System (ADS)

    Chan, Queenie Hoi Shan; Chikaraishi, Yoshito; Takano, Yoshinori; Ogawa, Nanako O.; Ohkouchi, Naohiko

    2016-01-01

    A novel method has been developed for compound-specific nitrogen isotope compositions with an achiral column which was previously shown to offer high precision for nitrogen isotopic analysis. We applied the method to determine the amino acid contents and stable nitrogen isotopic compositions of individual amino acids from the thermally metamorphosed (above 500 °C) Antarctic carbonaceous chondrites Ivuna-like (CI)1 (or CI-like) Yamato (Y) 980115 and Ornans-like (CO)3.5 Allan Hills (ALH) A77003 with the use of gas chromatography/combustion/isotope ratio mass spectrometry. ALHA77003 was deprived of amino acids due to its extended thermal alteration history. Amino acids were unambiguously identified in Y-980115, and the δ15N values of selected amino acids (glycine +144.8 ‰; α-alanine +121.2 ‰) are clearly extraterrestrial. Y-980115 has experienced an extended period of aqueous alteration as indicated by the presence of hydrous mineral phases. It has also been exposed to at least one post-hydration short-lived thermal metamorphism. Glycine and alanine were possibly produced shortly after the accretion event of the asteroid parent body during the course of an extensive aqueous alteration event and have abstained from the short-term post-aqueous alteration heating due to the heterogeneity of the parent body composition and porosity. These carbonaceous chondrite samples are good analogs that offer important insights into the target asteroid Ryugu of the Hayabusa-2 mission, which is a C-type asteroid likely composed of heterogeneous materials including hydrated and dehydrated minerals.

  18. Global trophic position comparison of two dominant mesopelagic fish families (Myctophidae, Stomiidae) using amino acid nitrogen isotopicanalyses

    EPA Science Inventory

    We examined the biogeochemical and ecological mechanisms responsible for variability in bulk tissue and amino acid (AA) stable nitrogen isotope compositions in two groups of important mesopelagic fish families, Myctophidae (lanternfishes) and Stomiidae (dragonfishes), from five d...

  19. Methane hydrate behavior when exposed to a 23% carbon dioxide 77% nitrogen gas under conditions similar to the ConocoPhillips 2012 Ignik Sikumi Gas Hydrate Field Trial

    NASA Astrophysics Data System (ADS)

    Borglin, S. E.; Kneafsey, T. J.; Nakagawa, S.

    2013-12-01

    In-situ replacement of methane hydrate by carbon dioxide hydrate is considered to be a promising technique for producing natural gas, while simultaneously sequestering greenhouse gas in deep geological formations. For effective application of this technique in the field, kinetic models of gas exchange rates in hydrate under a variety of environmental conditions need to be established, and the impact of hydrate substitution on geophysical (seismic) properties has to be quantified in order to optimize monitoring techniques. We performed a series of laboratory tests in which we monitored changes in methane hydrate-bearing samples while a nitrogen/carbon dioxide gas mixture was flowed through. These experiments were conducted to gain insights into data obtained from a field test in which the same mixture of carbon dioxide and nitrogen was injected into a methane hydrate-bearing unit beneath the north slope of the Brooks Range in northern Alaska (ConocoPhillips 2012 Ignik Sikumi gas hydrate field trial). We have measured the kinetic gas exchange rate for a range of hydrate saturations and different test configurations, to provide an estimate for comparison to numerical model predictions. In our tests, the exchange rate decreased over time during the tests as methane was depleted from the system. Following the elution of residual gaseous methane, the exchange rate ranged from 3.8×10-7 moles methane/(mole water*s) to 5×10-8 moles methane/(mole water*s) (Note that in these rates, the moles of water refers to water originally held in the hydrate.). In addition to the gas exchange rate, we also monitored changes in permeability occurring due to the gas substitution. Further, we determined the seismic P and S wave velocities and attenuations using our Split Hopkinson Resonant Bar apparatus (e.g. Nakagawa, 2012, Rev. Sci. Instr.). In addition to providing geophysical signatures, changes in the seismic properties can also be related to changes in the mechanical strength of

  20. Production of oxalic acid from sugar beet molasses by formed nitrogen oxides.

    PubMed

    Gürü, M; Bilgesü, A Y; Pamuk, V

    2001-03-01

    Production of oxalic acid from sugar beet molasses was developed in a series of three reactors. Nitrogen oxides formed were used to manufacture oxalic acid in the second and third reactor. Parameters affecting the reaction were determined to be, air flow rate, temperature, the amount of V2O5 catalyst and the concentrations of molasses and H2SO4. The maximum yields in the second and third reactors were 78.9% and 74.6% of theoretical yield, respectively. Also, kinetic experiments were performed and the first-order rate constants were determined for the glucose consumption rate. Nitrogen oxides in off-gases from the final reactor were absorbed in water and concentrated sulphuric acid and reused in the following reactors giving slightly lower yields under similar conditions. In this novel way, it was possible to recover NO(x) and to prevent air pollution. Meanwhile, it was possible to reduce the unit cost of reactant for oxalic acid production. A maximum 77.5% and 74.1% of theoretical yield was obtained by using the absorption solutions with NO(x). PMID:11211079