Science.gov

Sample records for acid o-methyl transferase

  1. The putative-farnesoic acid O-methyl transferase (FAMeT) gene of Ceratitis capitata: characterization and pre-imaginal life expression.

    PubMed

    Vannini, Laura; Ciolfi, Silvia; Spinsanti, Giacomo; Panti, Cristina; Frati, Francesco; Dallai, Romano

    2010-02-01

    Farnesoic acid O-methyl transferase (FAMeT) is the enzyme involved in the penultimate step of insect juvenile hormone (JH) biosynthesis and is thus a key regulator in insect development and reproduction. We report the characterization of the putative-FAMeT in the medfly or Mediterranean fruit fly, Ceratitis capitata. This gene was identified by suppressive subtractive hybridization and completely sequenced by the screening of a medfly cDNA library. The obtained sequence was analyzed for conserved protein domain identification and its expression profile was evaluated by quantitative Real-Time PCR in medfly pre-imaginal life. The tissue expression of the isolated gene was verified by in situ hybridization on third instar larvae sections. The characterization of the isolated gene pointed out several typical features of methyl transferase genes. The pre-imaginal putative-FAMeT expression levels were consistent with JH titer change in Diptera. As recognized in some crustaceans, this gene seems to be widely expressed in the medfly as well. Ceratitis capitata is one of the most relevant agricultural pests against which insecticides and the sterile insect technique (SIT) are extensively used in spite of the well-known limitations of these approaches. Although results are not conclusive for the physiological role of the isolated gene, they suggest the characterization of a new gene in the Mediterranean fruit fly potentially involved in JH biosynthesis and may, therefore, have implications for pest control.

  2. Effects of Catechol O-Methyl Transferase Inhibition on Anti-Inflammatory Activity of Luteolin Metabolites.

    PubMed

    Ha, Sang Keun; Lee, Jin-Ah; Cho, Eun Jung; Choi, Inwook

    2017-02-01

    Although luteolin is known to have potent anti-inflammatory activities, much less information has been provided on such activities of its hepatic metabolites. Luteolin was subjected to hepatic metabolism in HepG2 cells either without or with catechol O-methyl transferase (COMT) inhibitor. To identify hepatic metabolites of luteolin without (luteolin metabolites, LMs) or with COMT inhibitor (LMs+CI), metabolites were treated by β-glucuronidase and sulfatase, and found that they were composed of glucuronide and sulfate conjugates of diosmetin in LMs or these conjugates of luteolin in LMs+CI. LMs and LMs+CI were examined for their anti-inflammatory activities on LPS stimulated Raw 264.7 cells. Expression of iNOS and production of nitric oxide and pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 were suppressed more effectively by the treatment with LMs+CI than LMs. Our data provide a new insight on possible improvement in functional properties of luteolin on target cells by modifying their metabolic pathway in hepatocytes.

  3. Methionine sulfoxide reductase regulates brain catechol-O-methyl transferase activity

    PubMed Central

    Moskovitz, Jackob; Walss-Bass, Consuelo; Cruz, Dianne A; Thompson, Peter M.; Bortolato, Marco

    2015-01-01

    Catechol-O-methyl transferase (COMT) plays a key role in the degradation of brain dopamine (DA). Specifically, low COMT activity results in higher DA levels in the prefrontal cortex (PFC), thereby reducing the vulnerability for attentional and cognitive deficits in both psychotic and healthy individuals. COMT activity is markedly reduced by a non-synonymous SNP that generates a valine-to-methionine substitution on the residue 108/158, by means of as-yet incompletely understood posttranslational mechanisms. One posttranslational modification is methionine sulfoxide, which can be reduced by the methionine sulfoxide reductase (Msr) A and B enzymes. We used recombinant COMT proteins (Val/Met108) and mice (wild-type (WT) and MsrA knockout) to determine the effect of methionine oxidation on COMT activity and COMT interaction with Msr, through a combination of enzymatic activity and Western blot assays. Recombinant COMT activity is positively regulated by MsrA, especially under oxidative conditions, while brains of MsrA knockout mice exhibited lower COMT activity (as compared with their WT counterparts). These results suggest that COMT activity may be reduced by methionine oxidation, and point to Msr as a key molecular determinant for the modulation of COMT activity in the brain. The role of Msr in modulating cognitive functions in healthy individuals and schizophrenia patients is yet to be determined. PMID:24735585

  4. Sildenafil citrate rescues fetal growth in the catechol-O-methyl transferase knockout mouse model.

    PubMed

    Stanley, Joanna L; Andersson, Irene J; Poudel, Rajan; Rueda-Clausen, Christian F; Sibley, Colin P; Davidge, Sandra T; Baker, Philip N

    2012-05-01

    Preeclampsia and fetal growth restriction are responsible for the majority of maternal and perinatal morbidity and mortality associated with complicated pregnancies. Although their etiologies are complex and multifactorial, both are associated with increased uterine artery resistance. Sildenafil citrate is able to rescue the dysfunction observed ex vivo in uterine arteries of women with preeclampsia. The ability of sildenafil citrate to increase uterine artery vasodilation, thereby decreasing uterine artery resistance and, hence, ameliorated preeclampsia and fetal growth restriction, was tested in a mouse model of preeclampsia, the catechol-O-methyl transferase knockout mouse (COMT(-/-)). COMT(-/-) and C57BL/6J mice were treated (0.2 mg/mL in drinking water, n=6-12) from gestational day 12.5 to 18.5. Measures of pup growth, including body weight, crown/rump length, and abdominal circumference, were reduced in COMT(-/-) mice; this was normalized after treatment with Sildenafil. COMT(-/-) mice also demonstrated abnormal umbilical Doppler waveforms, including reverse arterial blood flow velocity. This was normalized after treatment with Sildenafil. Abnormal uterine artery Doppler waveforms were not demonstrated in COMT(-/-) mice, although ex vivo responses of uterine arteries to phenylephrine were increased; moreover, treatment with Sildenafil did improve ex vivo sensitivity to an endothelium-dependent vasodilator. The data presented here demonstrate that Sildenafil can rescue pup growth and improve abnormal umbilical Doppler waveforms, providing support for a potential new therapeutic strategy targeting fetal growth restriction.

  5. Chronic pain after lower abdominal surgery: do catechol-O-methyl transferase/opioid receptor μ-1 polymorphisms contribute?

    PubMed Central

    2013-01-01

    Background Preoperative pain, type of operation and anesthesia, severity of acute postoperative pain, and psychosocial factors have been identified as risk factors for chronic postsurgical pain (CPP). Recently, it has been suggested that genetic factors also contribute to CPP. In this study, we aimed to determine whether the catechol-O-methyl transferase (COMT) and opioid receptor μ-1 (OPRM1) common functional polymorphisms rs4680 and rs1799971 were associated with the incidence, intensity, or duration of CPP in patients after lower abdominal surgery. Methods One hundred and two patients with American Society of Anesthesiologists (ASA) physical status I/II underwent either abdominal radical prostatectomy (n = 45) or hysterectomy (n = 57). The incidences of CPP in the pelvic and scar areas were evaluated in all patients three months after surgery. Results Thirty-five (34.3%) patients experienced CPP after lower abdominal surgery. Within this group, six (17.1%) patients demonstrated symptoms of neuropathic pain. For COMT rs4680, 22 (21.6%) patients had Met158Met, 55 (53.9%) patients had Val158Met, and 25 (24.5%) patients had Val158Val. No association was found between CPP phenotypes (incidence, intensity, and duration) and different rs4680 genotypes. For OPRM1 rs1799971, only CPP patients carrying at least one copy of the G allele had higher pain intensity than A118A carriers (p=0.02). No associations with other phenotypes were found. No combined effect of COMT/OPRM1 polymorphisms on CPP phenotypes was observed. Conclusions OPRM1 genotype influences CPP following lower abdominal surgery. COMT didn’t affect CPP, suggesting its potential modality-specific effects on human pain. PMID:23566343

  6. Generation of membrane-bound catechol-O-methyl transferase deficient mice with disctinct sex dependent behavioral phenotype.

    PubMed

    Tammimaki, A; Aonurm-Helm, A; Zhang, F P; Poutanen, M; Duran-Torres, G; Garcia-Horsman, A; Mannisto, P T

    2016-12-01

    Catechol-O-methyltransferase (COMT) has two isoforms: soluble (S-COMT), which resides in the cytoplasm, and membrane-bound (MB-MT), anchored to intracellular membranes. COMT is involved in the O-methylation of L-DOPA, dopamine and other catechols. The exact role of MB-COMT is still mostly unclear. We wanted to create a novel genetically modified mouse model that specifically lacks MB-COMT activity and to study their behavioral phenotype. MB-COMT knock-in mutant mice were generated by introducing two point mutations in exon 2 of the Comt gene (ATGCTG->GAGCTC disabling the function of the P2 promoter and allowing only the P1-regulated S-COMT transcription. The first mutation changes methionine to glutamic acid whereas the second one does not affect coding. The expression of the two COMT isoforms, total COMT activity in several areas of the brain and peripheral tissues and extracellular dopamine concentrations after L-DOPA (10 mg/kg) and carbidopa (30 mg/kg) subcutaneous administration were assessed. A battery of behavioral tests was performed to compare MB-COMT deficient mice and their wild type littermates of both sexes. MB-COMT deficient mice were seemingly normal, bred usually and had unaltered COMT activity in the brain and periphery despite a complete lack of the MB-COMT protein. MB-COMT deficient male mice showed higher extracellular dopamine levels than their wild-type littermates in the striatum, but not in the mPFC. In addition, the MB-COMT deficient male mice exhibited a distinct endophenotype characterized by schizophrenia-related behaviors like aggressive behavior and reduced prepulse inhibition. They also had prolonged immobility in the tail suspension test. Both sexes were sensitized to acute pain and had normal motor activity but disturbed short-term memory. Hence the behavioral phenotype was not limited to schizophrenia-related endophenotype and some behavioural findings were not sex-dependent. Our findings indicate that MB-COMT is critical for

  7. 2′-O-Methyl RNA/Ethylene-Bridged Nucleic Acid Chimera Antisense Oligonucleotides to Induce Dystrophin Exon 45 Skipping

    PubMed Central

    Lee, Tomoko; Awano, Hiroyuki; Yagi, Mariko; Matsumoto, Masaaki; Watanabe, Nobuaki; Goda, Ryoya; Koizumi, Makoto; Takeshima, Yasuhiro; Matsuo, Masafumi

    2017-01-01

    Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disease characterized by dystrophin deficiency from mutations in the dystrophin gene. Antisense oligonucleotide (AO)-mediated exon skipping targets restoration of the dystrophin reading frame to allow production of an internally deleted dystrophin protein with functional benefit for DMD patients who have out-of-frame deletions. After accelerated US approval of eteplirsen (Exondys 51), which targets dystrophin exon 51 for skipping, efforts are now focused on targeting other exons. For improved clinical benefits, this strategy requires more studies of the delivery method and modification of nucleic acids. We studied a nucleotide with a 2′-O,4′-C-ethylene-bridged nucleic acid (ENA), which shows high nuclease resistance and high affinity for complementary RNA strands. Here, we describe the process of developing a 2′-O-methyl RNA(2′-OMeRNA)/ENA chimera AO to induce dystrophin exon 45 skipping. One 18-mer 2′-OMeRNA/ENA chimera (AO85) had the most potent activity for inducing exon 45 skipping in cultured myotubes. AO85 was administered to mdx mice without significant side effects. AO85 transfection into cultured myotubes from 13 DMD patients induced exon 45 skipping in all samples at different levels and dystrophin expression in 11 patients. These results suggest the possible efficacy of AO-mediated exon skipping changes in individual patients and highlight the 2′-OMeRNA/ENA chimera AO as a potential fundamental treatment for DMD. PMID:28208626

  8. Layered Calcium Structures of p-Phosphonic Acid O-Methyl-Calix[6]arene

    PubMed Central

    Clark, Thomas E.; Martin, Adam; Makha, Mohamed; Sobolev, Alexandre N.; Su, Dian; Rohrs, Henry W.; Gross, Michael L.; Raston, Colin L.

    2010-01-01

    Hexamethoxy-calix[6]arene has been fully functionalized with p-phosphonic acid groups on the upper rim in 57% yield over three steps, and has been authenticated in the solid state by X-ray diffraction as either a nitrate salt or one of two calcium complexes. The latter differ by the ratio of calcium ions per calixarene, either 3:1 or 4:1. In both structures the coordination sphere of the calcium ions is made up of oxygen atoms from the phosphonic acid groups and from water of crystallization, as part of extended polymeric layers in the extended 3D packing. Hirshfeld surface analysis shows extensive O…H and O…Ca interactions for the phosphonic acid moieties in both calcium structures. MALDI-TOF MS of the hexaphosphonic acid shows nano-arrays consisting of up to a maximum of 28 calixarene units. PMID:20657793

  9. Inhibition of Catechol-O-methyl Transferase (COMT) by Tolcapone Restores Reductions in Microtubule-associated Protein 2 (MAP2) and Synaptophysin (SYP) Following Exposure of Neuronal Cells to Neurotropic HIV

    PubMed Central

    Lee, Ting Ting; Chana, Gursharan; Gorry, Paul R.; Ellett, Anne; Bousman, Chad A.; Churchill, Melissa J.; Gray, Lachlan R.; Everall, Ian P.

    2015-01-01

    This investigation aimed to assess whether inhibition of cathecol-O-methyl transferase (COMT) by Tolcapone could provide neuroprotection against HIV-associated neurodegenerative effects. This study was conducted based on previous work, which showed that a single nucleotide polymorphism (SNP) at position 158 (val158met) in COMT, resulted in 40% lower COMT activity. Importantly, this reduction confers a protective effect against HIV-associated neurocognitive disorders (HAND), which have been linked to HIV-associated brain changes. SH-SY5Y differentiated neurons were exposed to macrophage-propagated HIV (neurotropic MACS2-Br strain) in the presence or absence of Tolcapone for 6 days. RNA was extracted and qPCR was performed using Qiagen RT2-custom-array consisting of genes for neuronal and synaptic integrity, COMT and pro-inflammatory markers. Immunofluorescence was conducted to validate the gene expression changes at the protein level. Our findings demonstrated that HIV significantly increased the mRNA expression of COMT while reduced the expression of microtubule-associated protein 2 (MAP2) (p=0.0015) and synaptophysin (SYP) (p=0.012) compared to control. A concomitant exposure of Tolcapone ameliorated the perturbed expression of MAP2 (p=0.009) and COMT (p=0.024) associated with HIV. Immunofluorescence revealed a trend reduction of SYP and MAP2 with exposure to HIV, and that concomitant exposure of Tolcapone increased SYP (p=0.016) compared to HIV alone. Our findings demonstrated in vitro that inhibition of COMT can ameliorate HIV-associated neurodegenerative changes that resulted in the decreased expression of the structural and synaptic components MAP2 and SYP. As HIV-associated dendritic and synaptic damage are contributors to HAND, inhibition of COMT may represent a potential strategy for attenuating or preventing some of the symptoms of HAND. PMID:26037113

  10. Inhibition of catechol-O-methyl transferase (COMT) by tolcapone restores reductions in microtubule-associated protein 2 (MAP2) and synaptophysin (SYP) following exposure of neuronal cells to neurotropic HIV.

    PubMed

    Lee, Ting Ting; Chana, Gursharan; Gorry, Paul R; Ellett, Anne; Bousman, Chad A; Churchill, Melissa J; Gray, Lachlan R; Everall, Ian P

    2015-10-01

    This investigation aimed to assess whether inhibition of cathecol-O-methyl transferase (COMT) by tolcapone could provide neuroprotection against HIV-associated neurodegenerative effects. This study was conducted based on a previous work, which showed that a single nucleotide polymorphism (SNP) at position 158 (val158met) in COMT, resulted in 40 % lower COMT activity. Importantly, this reduction confers a protective effect against HIV-associated neurocognitive disorders (HAND), which have been linked to HIV-associated brain changes. SH-SY5Y-differentiated neurons were exposed to macrophage-propagated HIV (neurotropic MACS2-Br strain) in the presence or absence of tolcapone for 6 days. RNA was extracted, and qPCR was performed using Qiagen RT2 custom array consisting of genes for neuronal and synaptic integrity, COMT and pro-inflammatory markers. Immunofluorescence was conducted to validate the gene expression changes at the protein level. Our findings demonstrated that HIV significantly increased the messenger RNA (mRNA) expression of COMT while reducing the expression of microtubule-associated protein 2 (MAP2) (p = 0.0015) and synaptophysin (SYP) (p = 0.012) compared to control. A concomitant exposure of tolcapone ameliorated the perturbed expression of MAP2 (p = 0.009) and COMT (p = 0.024) associated with HIV. Immunofluorescence revealed a trend reduction of SYP and MAP2 with exposure to HIV and that concomitant exposure of tolcapone increased SYP (p = 0.016) compared to HIV alone. Our findings demonstrated in vitro that inhibition of COMT can ameliorate HIV-associated neurodegenerative changes that resulted in the decreased expression of the structural and synaptic components MAP2 and SYP. As HIV-associated dendritic and synaptic damage are contributors to HAND, inhibition of COMT may represent a potential strategy for attenuating or preventing some of the symptoms of HAND.

  11. The Role of Catechol-O-Methyl Transferase Val(108/158)Met Polymorphism (rs4680) in the Effect of Green Tea on Resting Energy Expenditure and Fat Oxidation: A Pilot Study

    PubMed Central

    Hursel, Rick; Janssens, Pilou L. H. R.; Bouwman, Freek G.; Mariman, Edwin C.; Westerterp-Plantenga, Margriet S.

    2014-01-01

    Introduction Green tea(GT) is able to increase energy expenditure(EE) and fat oxidation(FATox) via inhibition of catechol-O-methyl transferase(COMT) by catechins. However, this does not always appear unanimously because of large inter-individual variability. This may be explained by different alleles of the functional COMT Val108/158Met polymorphism that are associated with COMT enzyme activity; high-activity enzyme, COMTH(Val/Val genotype), and low-activity COMTL(Met/Met genotype). Methods Fourteen Caucasian subjects (BMI: 22.2±2.3 kg/m2, age: 21.4±2.2 years) of whom 7 with the COMTH-genotype and 7 with the COMTL-genotype were included in a randomized, cross-over study in which EE and substrate oxidation were measured with a ventilated-hood system after decaffeinated GT and placebo(PL) consumption. Results At baseline, EE, RQ, FATox and carbohydrate oxidation(CHOox) did not differ between groups. Significant interactions were observed between COMT genotypes and treatment for RQ, FATox and CHOox (p<0.05). After GT vs. PL, EE(GT: 62.2 vs. PL: 35.4 kJ.3.5 hrs; p<0.01), RQ(GT: 0.80 vs. PL: 0.83; p<0.01), FATox(GT: 18.3 vs. PL: 15.3 g/d; p<0.001) and CHOox(GT: 18.5 vs. PL: 24.3 g/d; p<0.001) were significantly different for subjects carrying the COMTH genotype, but not for subjects carrying the COMTL genotype (EE, GT: 60.3 vs. PL: 51.7 kJ.3.5 hrs; NS), (RQ, GT: 0.81 vs. PL: 0.81; NS), (FATox, GT: 17.3 vs. PL: 17.0 g/d; NS), (CHOox, GT: 22.1 vs. PL: 21.4 g/d; NS). Conclusion Subjects carrying the COMTH genotype increased energy expenditure and fat-oxidation upon ingestion of green tea catechins vs, placebo, whereas COMTL genotype carriers reacted similarly to GT and PL ingestion. The differences in responses were due to the different responses on PL ingestion, but similar responses to GT ingestion, pointing to different mechanisms. The different alleles of the functional COMT Val108/158Met polymorphism appear to play a role in the inter-individual variability for EE

  12. Observation of the side chain O-methylation of glutamic acid or aspartic acid containing model peptides by electrospray ionization-mass spectrometry.

    PubMed

    Atik, A Emin; Guray, Melda Z; Yalcin, Talat

    2017-03-15

    O-methylation of the side chains of glutamic acid (E) and aspartic acid (D) residues is generally observed modification when an acidified methanol/water (MeOH/dH2O) mixture is used as a solvent system during sample preparation for proteomic research. This chemical modification may result misidentification with endogenous protein methylation; therefore, a special care should be taken during sample handling prior to mass spectrometric analysis. In the current study, we systematically examined the extent of E/D methylation and C-terminus carboxyl group of synthetic model peptides in terms of different incubation temperatures, storage times, and added acid types as well as its percentages. To monitor these effects, C-terminus amidated and free acid forms of synthetic model peptides comprised of E or D residue(s) have been analyzed by electrospray ionization-mass spectrometry (ESI-MS). Additionally, LC-MS/MS experiments were performed to confirm the formation of methylated peptide product. The results showed that the rate of methylation was increased as the temperature increases along with prolong incubation times. Moreover, the extent of methylation was remarkably high when formic acid (FA) used as a protonation agent instead of acetic acid (AA). In addition, it was found that the degree of methylation was significantly decreased by lowering acid percentages in ESI solution. More than one acidic residue containing model peptides have been also used to explore the extent of multiple methylation reaction. Lastly, the ethanol (EtOH) and isopropanol (iPrOH) have been substituted separately with MeOH in sample preparation step to investigate the extent of esterification reaction under the same experimental conditions. However, in the positive perspective of view, this method can be used as a simple, rapid and cheap method for methylation of acidic residues under normal laboratory conditions.

  13. Peripheral Aromatic L-Amino Acids Decarboxylase Inhibitor in Parkinsonism. I. EFFECT ON O-METHYLATED METABOLITES OF L-DOPA-2-14C

    PubMed Central

    Messiha, F. S.; Hsu, T. H.; Bianchine, J. R.

    1972-01-01

    The effects of MK-486, an inhibitor of peripheral aromatic L-amino acids decarboxylase, on the urinary metabolites derived from orally administered L-Dopa-2-14C were studied in three Parkinsonian patients. Treatment with MK-486 before L-Dopa-2-14C markedly reduced radioactivity found in catecholamines fraction by 70-80% during 48 hr, but increased 3-O-methyldopa fraction by threefold, as compared with a nonpretreated base line value. Pretreatment with MK-486 for a period of 1 wk resulted in less inhibition of O-methylated amine and acid metabolite fractions than that measured after a single dose of the inhibitor. PMID:5009125

  14. Mapping of amino acid substitutions conferring herbicide resistance in wheat glutathione transferase.

    PubMed

    Govindarajan, Sridhar; Mannervik, Bengt; Silverman, Joshua A; Wright, Kathy; Regitsky, Drew; Hegazy, Usama; Purcell, Thomas J; Welch, Mark; Minshull, Jeremy; Gustafsson, Claes

    2015-03-20

    We have used design of experiments (DOE) and systematic variance to efficiently explore glutathione transferase substrate specificities caused by amino acid substitutions. Amino acid substitutions selected using phylogenetic analysis were synthetically combined using a DOE design to create an information-rich set of gene variants, termed infologs. We used machine learning to identify and quantify protein sequence-function relationships against 14 different substrates. The resulting models were quantitative and predictive, serving as a guide for engineering of glutathione transferase activity toward a diverse set of herbicides. Predictive quantitative models like those presented here have broad applicability for bioengineering.

  15. The synthesis of ethacrynic acid thiazole derivatives as glutathione S-transferase pi inhibitors.

    PubMed

    Li, Ting; Liu, Guyue; Li, Hongcai; Yang, Xinmei; Jing, Yongkui; Zhao, Guisen

    2012-04-01

    Glutathione S-transferase pi (GSTpi) is a phase II enzyme which protects cells from death and detoxifies chemotherapeutic agents in cancer cells. Ethacrynic acid (EA) is a weak GSTpi inhibitor. Structure modifications were done to improve the ability of EA to inhibit GSTpi activity. Eighteen EA thiazole derivatives were designed and synthesized. Compounds 9a, 9b and 9c with a replacement of carboxyl group of EA by a heterocyclic thiazole exhibited improvement over EA to inhibit GSTpi activity.

  16. Tetra-O-Methyl Nordihydroguaiaretic Acid Broadly Suppresses Cancer Metabolism and Synergistically Induces Strong Anticancer Activity in Combination with Etoposide, Rapamycin and UCN-01.

    PubMed

    Kimura, Kotohiko; Huang, Ru Chih C

    2016-01-01

    The ability of Tetra-O-methyl nordihydroguaiaretic acid (M4N) to induce rapid cell death in combination with Etoposide, Rapamycin, or UCN-01 was examined in LNCaP cells, both in cell culture and animal experiments. Mice treated with M4N drug combinations with either Etoposide or Rapamycin showed no evidence of tumor and had a 100% survival rate 100 days after tumor implantation. By comparison all other vehicles or single drug treated mice failed to survive longer than 30 days after implantation. This synergistic improvement of anticancer effect was also confirmed in more than 20 cancer cell lines. In LNCaP cells, M4N was found to reduce cellular ATP content, and suppress NDUFS1 expression while inducing hyperpolarization of mitochondrial membrane potential. M4N-treated cells lacked autophagy with reduced expression of BNIP3 and ATG5. To understand the mechanisms of this anticancer activity of M4N, the effect of this drug on three cancer cell lines (LNCaP, AsPC-1, and L428 cells) was further examined via transcriptome and metabolomics analyses. Metabolomic results showed that there were reductions of 26 metabolites essential for energy generation and/or production of cellular components in common with these three cell lines following 8 hours of M4N treatment. Deep RNA sequencing analysis demonstrated that there were sixteen genes whose expressions were found to be modulated following 6 hours of M4N treatment similarly in these three cell lines. Six out of these 16 genes were functionally related to the 26 metabolites described above. One of these up-regulated genes encodes for CHAC1, a key enzyme affecting the stress pathways through its degradation of glutathione. In fact M4N was found to suppress glutathione content and induce reactive oxygen species production. The data overall indicate that M4N has profound specific negative impacts on a wide range of cancer metabolisms supporting the use of M4N combination for cancer treatments.

  17. Tetra-O-Methyl Nordihydroguaiaretic Acid Broadly Suppresses Cancer Metabolism and Synergistically Induces Strong Anticancer Activity in Combination with Etoposide, Rapamycin and UCN-01

    PubMed Central

    Kimura, Kotohiko; Huang, Ru Chih C.

    2016-01-01

    The ability of Tetra-O-methyl nordihydroguaiaretic acid (M4N) to induce rapid cell death in combination with Etoposide, Rapamycin, or UCN-01 was examined in LNCaP cells, both in cell culture and animal experiments. Mice treated with M4N drug combinations with either Etoposide or Rapamycin showed no evidence of tumor and had a 100% survival rate 100 days after tumor implantation. By comparison all other vehicles or single drug treated mice failed to survive longer than 30 days after implantation. This synergistic improvement of anticancer effect was also confirmed in more than 20 cancer cell lines. In LNCaP cells, M4N was found to reduce cellular ATP content, and suppress NDUFS1 expression while inducing hyperpolarization of mitochondrial membrane potential. M4N-treated cells lacked autophagy with reduced expression of BNIP3 and ATG5. To understand the mechanisms of this anticancer activity of M4N, the effect of this drug on three cancer cell lines (LNCaP, AsPC-1, and L428 cells) was further examined via transcriptome and metabolomics analyses. Metabolomic results showed that there were reductions of 26 metabolites essential for energy generation and/or production of cellular components in common with these three cell lines following 8 hours of M4N treatment. Deep RNA sequencing analysis demonstrated that there were sixteen genes whose expressions were found to be modulated following 6 hours of M4N treatment similarly in these three cell lines. Six out of these 16 genes were functionally related to the 26 metabolites described above. One of these up-regulated genes encodes for CHAC1, a key enzyme affecting the stress pathways through its degradation of glutathione. In fact M4N was found to suppress glutathione content and induce reactive oxygen species production. The data overall indicate that M4N has profound specific negative impacts on a wide range of cancer metabolisms supporting the use of M4N combination for cancer treatments. PMID:26886430

  18. Phylogenetic analysis, homology modelling, molecular dynamics and docking studies of caffeoyl-CoA-O- methyl transferase (CCoAOMT 1 and 2) isoforms isolated from subabul (Leucaena leucocephala).

    PubMed

    Sekhar Pagadala, Nataraj; Arha, Manish; Reddy, P S; Kumar, Ranadheer; Sirisha, V L; Prashant, S; Janardhan Reddy, K; Khan, Bashir; Rawal, S K; Kavi Kishor, P B

    2009-02-01

    Caffeoyl coenzyme A O-methyltransferase (CCoAOMT) is an important enzyme that participates in lignin biosynthesis especially in the formation of cell wall ferulic esters of plants. It plays a pivotal role in the methylation of the 3-hydroxyl group of caffeoyl CoA. Two cDNA clones that code CCoAOMT were isolated earlier from subabul and in the present study; 3D models of CCoAOMT1 and CCoAOMT2 enzymes were built using the MODELLER7v7 software to find out the substrate binding sites. These two proteins differed only in two amino acids and may have little or no functional redundancy. Refined models of the proteins were obtained after energy minimization and molecular dynamics in a solvated water layer. The models were further assessed by PROCHECK, WHATCHECK, Verify_3D and ERRAT programs and the results indicated that these models are reliable for further active site and docking analysis. The refined models showed that the two proteins have 9 and 10 alpha-helices, 6 and 7 beta-sheets respectively. The models were used for docking the substrates CoA, SAM, SAH, caffeoyl CoA, feruloyl CoA, 5-hydroxy feruloyl CoA and sinapyl CoA which showed that CoA and caffeoyl CoA are binding with high affinity with the enzymes in the presence and absence of SAM. It appears therefore that caffeoyl CoA is the substrate for both the isoenzymes. The results also indicated that CoA and caffeoyl CoA are binding with higher affinity to CCoAOMT2 than CCoAOMT1. Therefore, CCoAOMT2 conformation is thought to be the active form that exists in subabul. Docking studies indicated that conserved active site residues Met58, Thr60, Val63, Glu82, Gly84, Ser90, Asp160, Asp162, Thr169, Asn191 and Arg203 in CCoAOMT1 and CCoAOMT2 enzymes create the positive charge to balance the negatively charged caffeoyl CoA and play an important role in maintaining a functional conformation and are directly involved in donor-substrate binding.

  19. A pseudaminic acid or a legionaminic acid derivative transferase is strain-specifically implicated in the general protein O-glycosylation system of the periodontal pathogen Tannerella forsythia.

    PubMed

    Tomek, Markus B; Janesch, Bettina; Maresch, Daniel; Windwarder, Markus; Altmann, Friedrich; Messner, Paul; Schäffer, Christina

    2017-03-16

    The occurrence of nonulosonic acids in bacteria is wide-spread and linked to pathogenicity. However, the knowledge of cognate nonulosonic acid transferases is scarce. In the periodontopathogen Tannerella forsythia, several proposed virulence factors carry strain-specifically either a pseudaminic or a legionaminic acid derivative as terminal sugar on an otherwise structurally identical, protein-bound oligosaccharide. This study aims to shed light on the transfer of either nonulosonic acid derivative on a proximal N-acetylmannosaminuronic acid residue within the O-glycan structure, exemplified with the bacterium's abundant S-layer glycoproteins. Bioinformatic analyses provided the candidate genes Tanf_01245 (strain ATCC 43037) and TFUB4_00887 (strain UB4), encoding a putative pseudaminic and a legionaminic acid derivative transferase, respectively. These transferases have identical C-termini and contain motifs typical of glycosyltransferases (DXD) and bacterial sialyltransferases (D/E-D/E-G and HP). They share homology to type B glycosyltransferases and TagB, an enzyme catalyzing glycerol transfer to an N-acetylmannosamine residue in teichoic acid biosynthesis. Analysis of a cellular pool of nucleotide-activated sugars confirmed the presence of the CMP-activated nonulosonic acid derivatives, which are most likely serving as substrates for the corresponding transferase. Single gene knock-out mutants targeted at either transferase were analyzed for S-layer O-glycan composition by ESI-MS, confirming the loss of the nonulosonic acid derivative. Cross-complementation of the mutants with the nonnative nonulosonic acid transferase was not successful indicating high stringency of the enzymes. This study identified plausible candidates for a pseudaminic and a legionaminic acid derivative transferase; these may serve as valuable tools for engineering of novel sialoglycoconjugates.

  20. Potent and sustained cellular inhibition of miR-122 by lysine-derivatized peptide nucleic acids (PNA) and phosphorothioate locked nucleic acid (LNA)/2'-O-methyl (OMe) mixmer anti-miRs in the absence of transfection agents

    PubMed Central

    Torres, Adrian G.; Threlfall, Richard N.

    2011-01-01

    Efficient cell delivery of antisense oligonucleotides (ONs) is a key issue for their potential therapeutic use. It has been shown recently that some ONs can be delivered into cells without the use of transfection agents (gymnosis), but this generally requires cell incubation over several days and high amounts of ONs (micromolar concentrations). Here we have targeted microRNA 122 (miR-122), a small non-coding RNA involved in regulation of lipid metabolism and in the replication of hepatitis C virus, with ONs of different chemistries (anti-miRs) by gymnotic delivery in cell culture. Using a sensitive dual-luciferase reporter assay, anti-miRs were screened for their ability to enter liver cells gymnotically and inhibit miR-122 activity. Efficient miR-122 inhibition was obtained with cationic PNAs and 2'-O-methyl (OMe) and Locked Nucleic Acids (LNA)/OMe mixmers containing either phosphodiester (PO) or phosphorothioate (PS) linkages at sub-micromolar concentrations when incubated with cells for just 4 hours. Furthermore, PNA and PS-containing anti-miRs were able to sustain miR-122 inhibitory effects for at least 4 days. LNA/OMe PS anti-miRs were the most potent anti-miR chemistry tested in this study, an ON chemistry that has been little exploited so far as anti-miR agents towards therapeutics. PMID:22567190

  1. Three CoA Transferases Involved in the Production of Short Chain Fatty Acids in Porphyromonas gingivalis

    PubMed Central

    Sato, Mitsunari; Yoshida, Yasuo; Nagano, Keiji; Hasegawa, Yoshiaki; Takebe, Jun; Yoshimura, Fuminobu

    2016-01-01

    Butyryl-CoA:acetate CoA transferase, which produces butyrate and acetyl-CoA from butyryl-CoA and acetate, is responsible for the final step of butyrate production in bacteria. This study demonstrates that in the periodontopathogenic bacterium Porphyromonas gingivalis this reaction is not catalyzed by PGN_1171, previously annotated as butyryl-CoA:acetate CoA transferase, but by three distinct CoA transferases, PGN_0725, PGN_1341, and PGN_1888. Gas chromatography/mass spectrometry (GC-MS) and spectrophotometric analyses were performed using crude enzyme extracts from deletion mutant strains and purified recombinant proteins. The experiments revealed that, in the presence of acetate, PGN_0725 preferentially utilized butyryl-CoA rather than propionyl-CoA. By contrast, this preference was reversed in PGN_1888. The only butyryl-CoA:acetate CoA transferase activity was observed in PGN_1341. Double reciprocal plots revealed that all the reactions catalyzed by these enzymes follow a ternary-complex mechanism, in contrast to previously characterized CoA transferases. GC-MS analysis to determine the concentrations of short chain fatty acids (SCFAs) in culture supernatants of P. gingivalis wild type and mutant strains revealed that PGN_0725 and PGN_1888 play a major role in the production of butyrate and propionate, respectively. Interestingly, a triple deletion mutant lacking PGN_0725, PGN_1341, and PGN_1888 produced low levels of SCFAs, suggesting that the microorganism contains CoA transferase(s) in addition to these three enzymes. Growth rates of the mutant strains were mostly slower than that of the wild type, indicating that many carbon compounds produced in the SCFA synthesis appear to be important for the biological activity of this microorganism. PMID:27486457

  2. Understanding the effect of locked nucleic acid and 2'-O-methyl modification on the hybridization thermodynamics of a miRNA-mRNA pair in the presence and absence of AfPiwi protein.

    PubMed

    Kumar, Santosh; Mapa, Koyeli; Maiti, Souvik

    2014-03-18

    miRNAs are some of the key epigenetic regulators of gene expression. They act through hybridization with their target mRNA and modulate the level of respective proteins via different mechanisms. Various cancer conditions are known to be associated with up- and downregulation of the oncogenic and tumor suppressor miRNAs, respectively. The levels of aberrantly expressed oncogenic miRNAs can be downregulated in different ways. Similarly, restoration of tumor suppressor miRNAs to their normal levels can be achieved using miRNA mimics. However, the use of miRNA mimics is limited by their reduced biostability and function. We have studied the hybridization thermodynamics of the miRNA 26a (11-mer, including the seed sequence) guide strand with the mRNA (11-mer) target strand in the absence and presence of AfPiwi protein. We have also inserted locked nucleic acids (LNAs) and 2'-O-methyl-modified nucleotides into the guide strand, in a walk-through manner, to assess their effect on the binding efficiency between guide and target RNA. Insertion of LNA and 2'-O-methyl-modified nucleotides into the guide strand helped to strengthen the binding affinity irrespective of the position of insertion. However, in the presence of AfPiwi protein, these modifications reduced the binding affinity to different extents depending on the position of insertion. Insertion of a modification leads to an increase in the enthalpic contribution with an increased unfavorable entropic contribution, which negatively compensates for the higher favorable enthalpy.

  3. Aedes aegypti juvenile hormone acid methyl transferase, the ultimate enzyme in the biosynthetic pathway of juvenile hormone III, exhibits substrate control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report on the cloning, sequencing, characterization, 3D modeling and docking of Aedes aegypti juvenile hormone acid methyl transferase (AeaJHAMT), the enzyme that converts juvenile hormone acid (JHA) into juvenile hormone (JH). Purified recombinant AeaJHAMT was extensively characterized for enzym...

  4. In vitro binding of acetic acid and its chlorinated derivatives by the soluble glutathione S-transferases from rat liver.

    PubMed

    Dierickx, P J

    1984-05-01

    The in vitro interaction of acetic acid and its chlorinated derivatives with rat liver glutathione S-transferases (GST) was studied, using glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB) as substrates. The investigated compounds inhibited the GST activity in crude extracts in a dose dependent manner. Each of the different GST isoenzymes was inhibited by each of the compounds under study, albeit at very different degrees. Kinetic studies never revealed competitive inhibition kinetics, with GSH nor CDNB as the variable substrate. Titration of remaining GSH in appropriate incubation mixtures revealed no GST catalyzed conjugation with GSH. It is concluded that acetic acid and its chlorinated derivatives interact with GST by direct binding to these proteins. This binding could have a protective function against these compounds.

  5. Purification and properties of an O-acetyl-transferase from Escherichia coli that can O-acetylate polysialic acid sequences

    SciTech Connect

    Higa, H.; Varki, A.

    1986-05-01

    Certain strains of bacteria synthesize an outer polysialic acid (K1) capsule. Some strains of K1/sup +/ E.coli are also capable of adding O-acetyl-esters to the exocyclic hydroxyl groups of the sialic acid residues. Both the capsule and the O-acetyl modification have been correlated with differences in antigenicity and pathogenicity. The authors have developed an assay for an O-acetyl-transferase in E.coli that transfers O-(/sup 3/H)acetyl groups from (/sup 3/H)acetyl-Coenzyme A to colominic acid (fragments of the polysialic acid capsule). Using this assay, the enzyme was solubilized, and purified approx. 600-fold using a single affinity chromatography step with Procion Red-A Agarose. The enzyme also binds to Coenzyme A Sepharose, and can be eluted with high salt or Coenzyme A. The partially purified enzyme has a pH optimum of 7.0 - 7.5, is unaffected by divalent cations, is inhibited by high salt concentrations, is inhibited by Coenzyme A (50% inhibition at 100 ..mu..M), and shows an apparent Km for colominic acid of 3.7 mM (sialic acid concentration). This enzyme could be involved in the O-acetyl +/- form variation seen in some strains of K1/sup +/ E.coli.

  6. Participation of analogues of lysophosphatidic acid (LPA): oleoyl-sn-glycero-3-phosphate (L-alpha-LPA) and 1-oleoyl-2-O-methyl-rac-glycerophosphothionate (OMPT) in uterine smooth muscle contractility of the pregnant pigs.

    PubMed

    Markiewicz, W; Kamińska, K; Bogacki, M; Maślanka, T; Jaroszewski, J

    2012-01-01

    Recent studies show that a representative of phospholipids, namely lysophosphatidic acid (LPA) and its receptors (LPA1.3) play a significant role in the reproductive processes, i. a, in the modulation of the uterine contractility. The participation of LPA3 in the reproductive processes has been revealed in mice and has not been studied in gilts. Therefore, in the present study we investigated the role/action of LPA and its receptors LPA1, LPA2 and LPA3 on the contraction activity in the porcine uterus. The study was conducted on an experimental model in which the pig uterus consisted of the one whole uterine horn and a part of the second horn, both connected with the uterine corpus. Uterine strips consisting of the endometrium with the myometrium (ENDO/MYO) and myometrium (MYO) alone were collected on days 12-14 of the estrous cycle (control group; n = 5) or pregnancy (experimental group; n = 5). Two analogues of LPA at increasing doses were used: oleoyl-sn-glycero-3-phosphate (L-alpha-LPA, a selective agonist of LPA1 and LPA2 receptors; 10(-7) M; 10(-6) M and 10(-5) M) and 1-oleoyl-2-O-methyl-rac-glycerophosphothionate (OMPT, a selective agonist of LPA3 receptor; 68 nM; 136 nM and 680 nM). L-alpha-LPA caused an increase in the contraction tension, amplitude and frequency of ENDO/MYO from the uterine horn with the developing embryos. This effect was not observed in MYO in both groups examined. In the ENDO/MYO strips of the uterine horn with developing embryos, OMPT significantly increased the contraction tension at the highest dose (680 nM) and amplitude at all doses examined, while frequency of contractions was decreased at doses of 136 nM and 680 nM. In the MYO strips of the uterine horn with embryos a significant increase in the contraction tension and amplitude after the highest dose of OMPT was observed. The results obtained imply the important role of receptors LPA1, LPA2 and LPA3 in the contraction activity of the porcine uterus during early pregnancy.

  7. Arabidopsis Deficient in Cutin Ferulate encodes a transferase required for feruloylation of ω-hydroxy fatty acids in cutin polyester.

    PubMed

    Rautengarten, Carsten; Ebert, Berit; Ouellet, Mario; Nafisi, Majse; Baidoo, Edward E K; Benke, Peter; Stranne, Maria; Mukhopadhyay, Aindrila; Keasling, Jay D; Sakuragi, Yumiko; Scheller, Henrik Vibe

    2012-02-01

    The cuticle is a complex aliphatic polymeric layer connected to the cell wall and covers surfaces of all aerial plant organs. The cuticle prevents nonstomatal water loss, regulates gas exchange, and acts as a barrier against pathogen infection. The cuticle is synthesized by epidermal cells and predominantly consists of an aliphatic polymer matrix (cutin) and intracuticular and epicuticular waxes. Cutin monomers are primarily C(16) and C(18) unsubstituted, ω-hydroxy, and α,ω-dicarboxylic fatty acids. Phenolics such as ferulate and p-coumarate esters also contribute to a minor extent to the cutin polymer. Here, we present the characterization of a novel acyl-coenzyme A (CoA)-dependent acyl-transferase that is encoded by a gene designated Deficient in Cutin Ferulate (DCF). The DCF protein is responsible for the feruloylation of ω-hydroxy fatty acids incorporated into the cutin polymer of aerial Arabidopsis (Arabidopsis thaliana) organs. The enzyme specifically transfers hydroxycinnamic acids using ω-hydroxy fatty acids as acyl acceptors and hydroxycinnamoyl-CoAs, preferentially feruloyl-CoA and sinapoyl-CoA, as acyl donors in vitro. Arabidopsis mutant lines carrying DCF loss-of-function alleles are devoid of rosette leaf cutin ferulate and exhibit a 50% reduction in ferulic acid content in stem insoluble residues. DCF is specifically expressed in the epidermis throughout all green Arabidopsis organs. The DCF protein localizes to the cytosol, suggesting that the feruloylation of cutin monomers takes place in the cytoplasm.

  8. Brain-specific carnitine palmitoyl-transferase-1c: role in CNS fatty acid metabolism, food intake, and body weight.

    PubMed

    Wolfgang, Michael J; Cha, Seung Hun; Millington, David S; Cline, Gary; Shulman, Gerald I; Suwa, Akira; Asaumi, Makoto; Kurama, Takeshi; Shimokawa, Teruhiko; Lane, M Daniel

    2008-05-01

    While the brain does not utilize fatty acids as a primary energy source, recent evidence shows that intermediates of fatty acid metabolism serve as hypothalamic sensors of energy status. Increased hypothalamic malonyl-CoA, an intermediate in fatty acid synthesis, is indicative of energy surplus and leads to the suppression of food intake and increased energy expenditure. Malonyl-CoA functions as an inhibitor of carnitine palmitoyl-transferase 1 (CPT1), a mitochondrial outer membrane enzyme that initiates translocation of fatty acids into mitochondria for oxidation. The mammalian brain expresses a unique homologous CPT1, CPT1c, that binds malonyl-CoA tightly but does not support fatty acid oxidation in vivo, in hypothalamic explants or in heterologous cell culture systems. CPT1c knockout (KO) mice under fasted or refed conditions do not exhibit an altered CNS transcriptome of genes known to be involved in fatty acid metabolism. CPT1c KO mice exhibit normal levels of metabolites and of hypothalamic malonyl-CoA and fatty acyl-CoA levels either in the fasted or refed states. However, CPT1c KO mice exhibit decreased food intake and lower body weight than wild-type littermates. In contrast, CPT1c KO mice gain excessive body weight and body fat when fed a high-fat diet while maintaining lower or equivalent food intake. Heterozygous mice display an intermediate phenotype. These findings provide further evidence that CPT1c plays a role in maintaining energy homeostasis, but not through altered fatty acid oxidation.

  9. Regiocomplementary O-Methylation of Catechols by Using Three-Enzyme Cascades.

    PubMed

    Siegrist, Jutta; Aschwanden, Simon; Mordhorst, Silja; Thöny-Meyer, Linda; Richter, Michael; Andexer, Jennifer N

    2015-12-01

    S-Adenosylmethionine (SAM)-dependent enzymes have great potential for selective alkylation processes. In this study we investigated the regiocomplementary O-methylation of catechols. Enzymatic methylation is often hampered by the need for a stoichiometric supply of SAM and the inhibitory effect of the SAM-derived byproduct on most methyltransferases. To counteract these issues we set up an enzyme cascade. Firstly, SAM was generated from l-methionine and ATP by use of an archaeal methionine adenosyltransferase. Secondly, 4-O-methylation of the substrates dopamine and dihydrocaffeic acid was achieved by use of SafC from the saframycin biosynthesis pathway in 40-70 % yield and high selectivity. The regiocomplementary 3-O-methylation was catalysed by catechol O-methyltransferase from rat. Thirdly, the beneficial influence of a nucleosidase on the overall conversion was demonstrated. The results of this study are important milestones on the pathway to catalytic SAM-dependent alkylation processes.

  10. Clinical usefulness of alterations in sialic acid, sialyl transferase and sialoproteins in breast cancer.

    PubMed

    Raval, G N; Parekh, L J; Patel, D D; Jha, F P; Sainger, R N; Patel, P S

    2004-07-01

    Sialic acid, the end moieties of the carbohydrate chains are biologically important and essential for functions of glycoconjugates and are reported to be altered in cancer patients. Two hundred and twenty five breast cancer (BC) patients, 100 patients with benign breast disease (BBD) and 100 healthy females (controls) were enrolled for the study. Eight hundred and twenty four follow-up samples of 225 breast carcinoma patients were also evaluated. The association of sialic acid forms, sialyltransferase and α-2-6 sialoproteins levels with presence and extent as well as prognosis of breast carcinoma was studied. Serum sialic acid forms and sialyltransferase revealed significantly elevated levels among untreated breast cancer patients as compared to the controls, patients with BBD as well as cancer patients in remission. Non-responders showed comparable levels of the markers with those found in breast cancer patients at the time of diagnosis. Higher levels of sialic acid forms at diagnosis were associated with poor prognosis. A positive correlation between serum levels of different forms of sialic acids and extent of malignant disease was observed. The changes in serum proteins with terminal α-2-6 sialic acid correlated well with alterations in the levels of sialic acid forms and sialyltransferase. Malignant tissues showed elevated levels of sialic acid and sialyltransferase as compared to surrounding normal tissues.The results suggested potential utility of these markers in evaluation of clinical outcome.

  11. Inactivation of mouse liver glutathione S-transferase YfYf (Pi class) by ethacrynic acid and 5,5'-dithiobis-(2-nitrobenzoic acid).

    PubMed Central

    Phillips, M F; Mantle, T J

    1993-01-01

    Mouse liver glutathione S-transferase YfYf (Pi class) reacts with [14C]ethacrynic acid to form a covalent adduct with a stoichiometry of 1 mol per mol of subunit. Proteolytic digestion of the enzyme-[14C]ethacrynic acid adduct with V8 protease produced an 11 kDa fragment containing radioactivity. Sequencing revealed this to be an N-terminal peptide (minus the first 15 residues, terminating at Glu-112) which contains only one cysteine residue (Cys-47). This is tentatively identified as the site of ethacrynic attachment. Kinetic studies reveal that glutathione S-conjugates protect against inactivation by ethacrynic acid, but the level of protection is not consistent with their potency as product inhibitors. A model is proposed in which glutathione S-conjugates and ethacrynic acid compete for the free enzyme, and a second molecule of ethacrynic acid reacts covalently with the enzyme-ethacrynic acid complex. The native protein contains one thiol reactive with 5,5'-dithiobis-(2-nitrobenzoic acid) at neutral pH. The resultant mixed disulphide, like the ethacrynic acid adduct, is inactive, but treatment with cyanide (which incorporates on a mol for mol basis) restores activity to 35% of that of the native enzyme. Images Figure 4 PMID:8363586

  12. Control of larval and egg development in Aedes aegypti with RNA interference against juvenile hormone acid methyl transferase.

    PubMed

    Van Ekert, Evelien; Powell, Charles A; Shatters, Robert G; Borovsky, Dov

    2014-11-01

    RNA interference (RNAi) is a powerful approach for elucidating gene functions in a variety of organisms, including mosquitoes and many other insects. Little has been done, however, to harness this approach in order to control adult and larval mosquitoes. Juvenile hormone (JH) plays a pivotal role in the control of reproduction in adults and metamorphism in larval mosquitoes. This report describes an approach to control Aedes aegypti using RNAi against JH acid methyl transferase (AeaJHAMT), the ultimate enzyme in the biosynthetic pathway of JH III that converts JH acid III (JHA III) into JH III. In female A. aegypti that were injected or fed jmtA dsRNA targeting the AeaJHAMT gene (jmtA) transcript, egg development was inhibited in 50% of the treated females. In mosquito larvae that were fed transgenic Pichia pastoris cells expressing long hair pin (LHP) RNA, adult eclosion was delayed by 3 weeks causing high mortality. Northern blot analyses and qPCR studies show that jmtA dsRNA causes inhibition of jmtA transcript in adults and larvae, which is consistent with the observed inhibition of egg maturation and larval development. Taken together, these results suggest that jmtA LHP RNA expressed in heat inactivated genetically modified P. pastoris cells could be used to control mosquito populations in the marsh.

  13. Influence of chemical treatments on glutathione S-transferases of maize with activity towards metolachlor and cinnamic acid.

    PubMed

    Cottingham, C K; Hatzios, K K; Meredith, S

    1998-01-01

    The subcellular distribution of glutathione S-transferase (GST) activity extracted from shoots of 3-day-old etiolated seedlings of maize (Zea mays L., Northrup-King 9283 hybrid) and the induction of soluble and membrane-bound GST activity by the safener benoxacor, the herbicide metolachlor and their combination (CGA-180937) were investigated. GST activity extracted from maize shoots was detected in both cytosolic and microsomal fractions and utilized 1-chloro-2,4-dinitrobenzene (CDNB), metolachlor, and trans-cinnamic acid (CA) as substrates. Soluble GST activity extracted from maize shoots was greater than microsomal with CDNB or metolachlor as substrate. Membrane-bound GST activity was greater than soluble with cinnamic acid as substrate. Washing the microsomal preparations from maize shoots with Triton X-100 increased GST(CA) activity. Pretreatment with the safener benoxacor or a formulated combination of the herbicide metolachlor with benoxacor induced soluble GST(CDNB), GST(metolachlor) and GST(CA) activities in maize shoots. Benoxacor and CGA-180937 induced also membrane-bound GST(CDNB) and GST(CA) activities in maize shoots, but did not affect membrane-bound GST(metolachlor) activity. These results confirm that maize contains multiple GST isozymes that differ in their substrate specificity and inducibility by safeners or other chemicals.

  14. Rapid development of glutathione-S-transferase-dependent drug resistance in vitro and its prevention by ethacrynic acid.

    PubMed

    Caffrey, P B; Zhu, M; Zhang, Y; Chinen, N; Frenkel, G D

    1999-02-08

    Exposure of A2780 human ovarian tumor cells to a low concentration of melphalan in vitro for 7 days resulted in the development of melphalan resistance. This resistance was not a stable characteristic of the cells since it was lost after 2 weeks in culture in the absence of drug. The melphalan-resistant cells exhibited significant cross-resistance to cisplatin but only minor cross-resistance to doxorubicin. The resistant cells had elevated levels of glutathione-S-transferase activity and mRNA. Exposure of the cells to the ethacrynic acid resulted in a decrease in enzyme activity as well as a reversal of their drug-resistant phenotype, indicating that the enzyme is involved in the resistance. When ethacrynic acid was present during the 7-day exposure of the cells to melphalan, the development of drug resistance was prevented. This system may serve as a useful preliminary step in screening for agents which can prevent the development of chemotherapy-induced drug resistance in human cancer.

  15. Perennial peanut (Arachis glabrata Benth.) leaves contain hydroxycinnamoyl-CoA:tartaric acid hydroxycinnamoyl transferase activity and accumulate hydroxycinnamoyl-tartaric acid esters.

    PubMed

    Sullivan, Michael L

    2014-05-01

    Many plants accumulate hydroxycinnamoyl esters to protect against abiotic and biotic stresses. Caffeoyl esters in particular can be substrates for endogenous polyphenol oxidases (PPOs). Recently, we showed that perennial peanut (Arachis glabrata Benth.) leaves contain PPO and identified one PPO substrate, caftaric acid (trans-caffeoyl-tartaric acid). Additional compounds were believed to be cis- and trans-p-coumaroyl tartaric acid and cis- and trans-feruloyl-tartaric acid, but lack of standards prevented definitive identifications. Here we characterize enzymatic activities in peanut leaves to understand how caftaric acid and related hydroxycinnamoyl esters are made in this species. We show that peanut leaves contain a hydroxycinnamoyl-CoA:tartaric acid hydroxycinnamoyl transferase (HTT) activity capable of transferring p-coumaroyl, caffeoyl, and feruloyl moieties from CoA to tartaric acid (specific activities of 11 ± 2.8, 8 ± 1.8, 4 ± 0.8 pkat mg(-1) crude protein, respectively). The HTT activity was used to make cis- and trans-p-coumaroyl- and -feruloyl-tartaric acid in vitro. These products allowed definitive identification of the corresponding cis- and trans-hydroxycinnamoyl esters extracted from leaves. We tentatively identified sinapoyl-tartaric acid as another major phenolic compound in peanut leaves that likely participates in secondary reactions with PPO-generated quinones. These results suggest hydroxycinnamoyl-tartaric acid esters are made by an acyltransferase, possibly a BAHD family member, in perennial peanut. Identification of a gene encoding HTT and further characterization of the enzyme will aid in identifying determinants of donor and acceptor substrate specificity for this important class of biosynthetic enzymes. An HTT gene could also provide a means by genetic engineering for producing caffeoyl- and other hydroxycinnamoyl-tartaric acid esters in forage crops that lack them.

  16. Induction of glutathione-S-transferase-pi by short-chain fatty acids in the intestinal cell line Caco-2.

    PubMed

    Stein, J; Schröder, O; Bonk, M; Oremek, G; Lorenz, M; Caspary, W F

    1996-01-01

    Glutathione S-transferases (GSTs) are a multigene family of detoxification and metabolizing enzymes that have been linked with the susceptibility of tissues to environmental carcinogens. In addition to their role as the main energy source in the colonic mucosa, short-chain fatty acids (SCFAs) have been found to act as potent antiproliferative and differentiating agents in various cancer cell lines. The objective of this study was to evaluate the effects of SCFAs on the induction of GSTpi in the intestine as a possible new anticarcinogenic mechanism of SCFAs. Studies were performed in Caco-2 cells, a cell line resembling functionally normal enterocytes. Cells, cultured in DMEM supplemented with 10% fetal calf serum, were studied from day 0 dpc (days post confluence) until 21 dpc and culture. SCFAs (acetate, propionate, butyrate) were added to give a final concentration of 5 mmol L(-1). At 0, 3, 6, 9, 15, and 21 dpc, protein, lactate dehydrogenase (LDH), alkaline phosphatase (AP) and GSTpi were measured. Butyrate supplementation significantly (P < or = 0.01) increased GSTpi levels compared with controls in a concentration-dependent manner. The effect was detectable within 3 dpc with a maximum at 15 dpc. In contrast to butyrate, the other SCFAs tested had no (acetate) or little effect (propionate). In conclusion, the data suggest that the anticancer effect of butyrate in part may be based on the induction of GSTpi activity, resulting in an enhanced detoxification capacity of the gut.

  17. Hibiscus cannabinus feruloyl-coa:monolignol transferase

    SciTech Connect

    Wilkerson, Curtis; Ralph, John; Withers, Saunia; Mansfield, Shawn D.

    2016-11-15

    The invention relates to isolated nucleic acids encoding a feruloyl-CoA:monolignol transferase and feruloyl-CoA:monolignol transferase enzymes. The isolated nucleic acids and/or the enzymes enable incorporation of monolignol ferulates into the lignin of plants, where such monolignol ferulates include, for example, p-coumaryl ferulate, coniferyl ferulate, and/or sinapyl ferulate. The invention also includes methods and plants that include nucleic acids encoding a feruloyl-CoA:monolignol transferase enzyme and/or feruloyl-CoA:monolignol transferase enzymes.

  18. The three-dimensional structure of the human Pi class glutathione transferase P1-1 in complex with the inhibitor ethacrynic acid and its glutathione conjugate.

    PubMed

    Oakley, A J; Rossjohn, J; Lo Bello, M; Caccuri, A M; Federici, G; Parker, M W

    1997-01-21

    The potent diuretic drug ethacrynic acid has been tested in clinical trials as an adjuvant in chemotherapy. Its target is the detoxifying enzyme glutathione transferase which is often found overexpressed in cancer tissues. We have solved the crystal structures of human pi class glutathione transferase P1-1 in complex with the inhibitor ethacrynic acid and its glutathione conjugate. Ethacrynic acid is found to bind in a nonproductive mode to one of the ligand binding sites of the enzyme (the H site) while the glutathione binding site (G site) is occupied by solvent molecules. There are no structural rearrangements of the G site in the absence of ligand. The structure indicates that bound glutathione is required for ethacrynic acid to dock into the H site in a productive binding mode. The binding of the ethacrynic acid-glutathione conjugate shows that the contacts of the glutathione moiety with the protein are identical to those observed in crystal structures of the enzyme with other glutathione-based substrates and inhibitors. The ethacrynic acid moiety of the conjugate binds in the H site in a fashion that has not been observed in crystal structures of other glutathione-based inhibitor complexes. The crystal structures implicate Tyr 108 as an electrophilic participant in the Michael addition of glutathione to ethacrynic acid.

  19. Perfluorooctanoic acid induces gene promoter hypermethylation of glutathione-S-transferase Pi in human liver L02 cells.

    PubMed

    Tian, Meiping; Peng, Siyuan; Martin, Francis L; Zhang, Jie; Liu, Liangpo; Wang, Zhanlin; Dong, Sijun; Shen, Heqing

    2012-06-14

    Perfluorooctanoic acid (PFOA) is one of the most commonly used perfluorinated compounds. Being a persistent environmental pollutant, it can accumulate in human tissues via various exposure routes. PFOA may interfere in a toxic fashion on the immune system, liver, development, and endocrine systems. In utero human exposure had been associated with cord serum global DNA hypomethylation. In light of this, we investigated possible PFOA-induced DNA methylation alterations in L02 cells in order to shed light into its epigenetic-mediated mechanisms of toxicity in human liver. L02 cells were exposed to 5, 10, 25, 50 or 100 mg/L PFOA for 72h. Global DNA methylation levels were determined by LC/ESI-MS, glutathione-S-transferase Pi (GSTP) gene promoter DNA methylation was investigated by methylation-specific polymerase chain reaction (PCR) with bisulfite sequencing, and consequent mRNA expression levels were measured with quantitative real-time reverse transcriptase PCR. A dose-related increase of GSTP promoter methylation at the transcription factor specificity protein 1 (SP1) binding site was observed. However, PFOA did not significantly influence global DNA methylation; nor did it markedly alter the promoter gene methylation of p16 (cyclin-dependent kinase inhibitor 2A), ERα (estrogen receptor α) or PRB (progesterone receptor B). In addition, PFOA significantly elevated mRNA transcript levels of DNMT3A (which mediates de novo DNA methylation), Acox (lipid metabolism) and p16 (cell apoptosis). Considering the role of GSTP in detoxification, aberrant methylation may be pivotal in PFOA-mediated toxicity response via the inhibition of SP1 binding to GSTP promoter.

  20. The glutathione conjugate of ethacrynic acid can bind to human pi class glutathione transferase P1-1 in two different modes.

    PubMed

    Oakley, A J; Lo Bello, M; Mazzetti, A P; Federici, G; Parker, M W

    1997-12-08

    The diuretic drug ethacrynic acid, an inhibitor of pi class glutathione S-transferase, has been tested in clinical trials as an adjuvant in chemotherapy. We recently solved the crystal structure of this enzyme in complex with ethacrynic acid and its glutathione conjugate. Here we present a new structure of the ethacrynic-glutathione conjugate complex. In this structure the ethacrynic moiety of the complex is shown to bind in a completely different orientation to that previously observed. Thus there are at least two binding modes possible, an observation of great importance to the design of second generation inhibitors of the enzyme.

  1. Control of larval and egg development in Aedes aegypti with Ribonucleic acid interference (RNAi) against juvenile hormone acid methyl transferase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ribonucleic acid interference (RNAi) is a powerful approach for elucidating gene functions in a variety of organisms, including mosquitoes and many other insects. Little has been done, however, to harness this approach in order to control adult and larval mosquitoes. Juvenile hormone (JH) plays a pi...

  2. Glutathione Transferases

    PubMed Central

    Dixon, David P.; Edwards, Robert

    2010-01-01

    The 55 Arabidopsis glutathione transferases (GSTs) are, with one microsomal exception, a monophyletic group of soluble enzymes that can be divided into phi, tau, theta, zeta, lambda, dehydroascorbate reductase (DHAR) and TCHQD classes. The populous phi and tau classes are often highly stress inducible and regularly crop up in proteomic and transcriptomic studies. Despite much study on their xenobiotic-detoxifying activities their natural roles are unclear, although roles in defence-related secondary metabolism are likely. The smaller DHAR and lambda classes are likely glutathione-dependent reductases, the zeta class functions in tyrosine catabolism and the theta class has a putative role in detoxifying oxidised lipids. This review describes the evidence for the functional roles of GSTs and the potential for these enzymes to perform diverse functions that in many cases are not “glutathione transferase” activities. As well as biochemical data, expression data from proteomic and transcriptomic studies are included, along with subcellular localisation experiments and the results of functional genomic studies. PMID:22303257

  3. Two pear glutathione S-transferases genes are regulated during fruit development and involved in response to salicylic acid, auxin, and glucose signaling.

    PubMed

    Shi, Hai-Yan; Li, Zheng-Hong; Zhang, Yu-Xing; Chen, Liang; Xiang, Di-Ying; Zhang, Yu-Feng

    2014-01-01

    Two genes encoding putative glutathione S-transferase proteins were isolated from pear (Pyrus pyrifolia) and designated PpGST1 and PpGST2. The deduced PpGST1 and PpGST2 proteins contain conserved Glutathione S-transferase N-terminal domain (GST_N) and Glutathione S-transferase, C-terminal domain (GST_C). Using PCR amplification technique, the genomic clones corresponding to PpGST1 and PpGST2 were isolated and shown to contain two introns and a singal intron respectively with typical GT/AG boundaries defining the splice junctions. Phylogenetic analysis clearly demonstrated that PpGST1 belonged to Phi class of GST superfamilies and had high homology with apple MdGST, while PpGST2 was classified into the Tau class of GST superfamilies. The expression of PpGST1 and PpGST2 genes was developmentally regulated in fruit. Further study demonstrated that PpGST1 and PpGST2 expression was remarkably induced by glucose, salicylic acid (SA) and indole-3-aceticacid (IAA) treatments in pear fruit, and in diseased fruit. These data suggested that PpGST1 and PpGST2 might be involved in response to sugar, SA, and IAA signaling during fruit development of pear.

  4. Identification of O-methyl-(-)-epicatechin-O-sulphate metabolites by mass-spectrometry after O-methylation with trimethylsilyldiazomethane.

    PubMed

    Actis-Goretta, Lucas; Lévèques, Antoine; Giuffrida, Francesca; Destaillats, Frédéric; Nagy, Kornél

    2012-07-06

    (-)-Epicatechin, an abundant dietary polyphenol found mainly in cocoa and tea, is known to extensively undergo metabolism after ingestion giving rise to a complex series of conjugated metabolites including numerous isomers. In the present study, the combination of fractionation, chemical derivatization and various mass spectrometric approaches is described to determine the exact position of sulphate group in methylated epicatechin metabolites. Four O-methyl-(-)-epicatechin-O-sulphate metabolites isolated from human urine samples were derivatized under mild condition using trimethylsilyldiazomethane (TMSD) in the presence of methanol. The resulting methylated reaction products were then analyzed by high resolution and multistage mass spectrometry for the subsequent identification of the sulphate positional isomers. Results show that O-methylation affects the charge delocalization in negatively charged ions and hereby the fragmentation pattern of the sulphate isomers allowing the identification of diagnostic ions. In addition, this study demonstrates that methoxy derivatives of polyphenol metabolites can be prepared using TMSD. Subsequently, the localization of the sulphate group in the polyphenol metabolites can be achieved by analyzing the methoxy derivatives by multistage mass spectrometry. Using an enzymatic reaction for identification of the O-methyl position, and a chemical O-methylation with TMSD follow by high resolution and multistage tandem MS for the identification of the sulphate group position, we were able to identify the previously unknown O-methyl-(-)-epicatechin-O-sulphate. Accordingly, we identified 3'-O-methyl-(-)-epicatechin-5-O-sulphate and 3'-O-methyl-(-)-epicatechin-7-O-sulphate as the main O-methyl-(-)-epicatechin-sulfates(-)-epicatechin metabolites in humans.

  5. Pharmacological profile of opicapone, a thirdgeneration nitrocatechol catechol-O-methyl transferase inhibitor, in the rat

    PubMed Central

    Bonifácio, M J; Torrão, L; Loureiro, A I; Palma, P N; Wright, L C; Soares-da-Silva, P

    2015-01-01

    Background and Purpose Catechol-O-methyltransferase (COMT) is an important target in the levodopa treatment of Parkinson's disease; however, the inhibitors available have problems, and not all patients benefit from their efficacy. Opicapone was developed to overcome those limitations. In this study, opicapone's pharmacological properties were evaluated as well as its potential cytotoxic effects. Experimental Approach The pharmacodynamic effects of opicapone were explored by evaluating rat COMT activity and levodopa pharmacokinetics, in the periphery through microdialysis and in whole brain. The potential cytotoxicity risk of opicapone was explored in human hepatocytes by assessing cellular ATP content and mitochondrial membrane potential. Key Results Opicapone inhibited rat peripheral COMT with ED50 values below 1.4 mg⋅kg−1 up to 6 h post-administration. The effect was sustained over the first 8 h and by 24 h COMT had not returned to control values. A single administration of opicapone resulted in increased and sustained plasma levodopa levels with a concomitant reduction in 3-O-methyldopa from 2 h up to 24 h post-administration, while tolcapone produced significant effects only at 2 h post-administration. The effects of opicapone on brain catecholamines after levodopa administration were sustained up to 24 h post-administration. Opicapone was also the least potent compound in decreasing both the mitochondrial membrane potential and the ATP content in human primary hepatocytes after a 24 h incubation period. Conclusions and Implications Opicapone has a prolonged inhibitory effect on peripheral COMT, which extends the bioavailability of levodopa, without inducing toxicity. Thus, it exhibits some improved properties compared to the currently available COMT inhibitors. PMID:25409768

  6. Driving carbon flux through exogenous butyryl-CoA: Acetate CoA-transferase to produce butyric acid at high titer in Thermobifida fusca.

    PubMed

    Deng, Yu; Mao, Yin; Zhang, Xiaojuan

    2015-12-20

    Butyric acid, a 4-carbon short chain fatty acid, is widely used in chemical, food, and pharmaceutical industries. The low activity of butyryl-CoA: acetate CoA-transferase in Thermobifida fusca muS, a thermophilic actinobacterium whose optimal temperature was 55°C, was found to hinder the accumulation of high yield of butyric acid. In order to solve this problem, an exogenous butyryl-CoA: acetate CoA-transferase gene (actA) from Thermoanaerobacterium thermosaccharolyticum DSM571 was integrated into the chromosome of T. fusca muS by replacing celR gene, forming T. fusca muS-1. We demonstrated that on 5g/L cellulose, the yield of butyric acid by the engineered muS-1 strain was increased by 42.9 % compared to the muS strain. On 100g/L of cellulose, the muS-1 strain could consume 90.5% of total cellulose in 144h, with 33.2g/L butyric acid produced. Furthermore, on the mix substrates including the major components of biomass: cellulose, xylose, mannose and galactose, 70.4g/L butyric acid was produced in 168h by fed-batch fermentation. To validate the ability of fermenting biomass, the muS-1 strain was grown on the milled corn stover ranging from 200 to 250μm. The muS-1 strain had the highest butyrate titer 17.1g/L on 90g/L corn stover.

  7. Feruloyl-CoA:monolignol transferase

    DOEpatents

    Wilkerson, Curtis; Ralph, John; Withers, Saunia; Mansfield, Shawn D.

    2016-09-13

    The invention relates to nucleic acids encoding a feruloyl-CoA:monolignol transferase and the feruloyl-CoA:monolignol transferase enzyme that enables incorporation of monolignol ferulates, for example, including p-coumaryl ferulate, coniferyl ferulate, and sinapyl ferulate, into the lignin of plants.

  8. Feruloyl-CoA:monolignol transferase

    DOEpatents

    Wilkerson, Curtis; Ralph, John; Withers, Saunia; Mansfield, Shawn D.

    2016-11-08

    The invention relates to nucleic acids encoding a feruloyl-CoA:monolignol transferase and the feruloyl-CoA:monolignol transferase enzyme that enables incorporation of monolignol ferulates, for example, including p-coumaryl ferulate, coniferyl ferulate, and sinapyl ferulate, into the lignin of plants.

  9. Precocious leaf senescence by functional loss of PROTEIN S-ACYL TRANSFERASE14 involves the NPR1-dependent salicylic acid signaling.

    PubMed

    Zhao, Xin-Ying; Wang, Jia-Gang; Song, Shi-Jian; Wang, Qun; Kang, Hui; Zhang, Yan; Li, Sha

    2016-02-04

    We report here that Arabidopsis PROTEIN S-ACYL TRANSFERASE14 (PAT14), through its palmitate transferase activity, acts at the vacuolar trafficking route to repress salicylic acid (SA) signaling, thus mediating age-dependent but not carbon starvation-induced leaf senescence. Functional loss of PAT14 resulted in precocious leaf senescence and its transcriptomic analysis revealed that senescence was dependent on salicylic acid. Overexpressing PAT14 suppressed the expression of SA responsive genes. Introducing the SA deficient mutants, npr1-5 and NahG, but not other hormonal mutants, completely suppressed the precocious leaf senescence of PAT14 loss-of-function, further supporting the epistatic relation between PAT14 and the SA pathway. By confocal fluorescence microscopy, we showed that PAT14 is localized at the Golgi, the trans-Golg network/early endosome, and prevacuolar compartments, indicating its roles through vacuolar trafficking. By reporter analysis and real time PCRs, we showed that the expression PAT14, unlike most of the senescence associated genes, is not developmentally regulated, suggesting post-transcriptional regulatory mechanisms on its functionality. We further showed that the maize and wheat homologs of PAT14 fully rescued the precocious leaf senescence of pat14-2, demonstrating that the role of PAT14 in suppressing SA signaling during age-dependent leaf senescence is evolutionarily conserved between dicots and monocots.

  10. Synthesis and structure-activity relationship of ethacrynic acid analogues on glutathione-s-transferase P1-1 activity inhibition.

    PubMed

    Zhao, Guisen; Yu, Tao; Wang, Rui; Wang, Xiaobing; Jing, Yongkui

    2005-06-02

    Ethacrynic acid (EA) is a glutathione-s-transferase pi (GSTP1-1) inhibitor. Fifteen of EA analogues were designed and synthesized and their inhibition on GSTP1-1 activity was tested in lysate of human leukemia HL-60 cells. These compounds were synthesized using substituted phenol as precursors through reacting with 2-chlorocarboxylic acid and acylation. Structure-activity analysis indicates that replacements of chlorides of EA by methyl, bromide, and fluoride at 3' position remain the GSTP1-1 inhibitory effect. The compounds without any substitute at 3' position lose the activity on GSTP1-1 inhibition. These data suggest that the substitution of 3' position of EA is necessary for inhibiting GSTP1-1 activity.

  11. Effect of ethacrynic acid, a glutathione-S-transferase inhibitor, on nitroglycerin-mediated cGMP elevation and vasorelaxation of rabbit aortic strips.

    PubMed

    Kenkare, S R; Benet, L Z

    1993-07-20

    The effects of ethacrynic acid (ECA), an inhibitor of glutathione-S-transferase, on both the pharmacologic and biochemical responses of aortic tissue to nitroglycerin (GTN) were evaluated. Using the rabbit aortic strip model, relaxation responses to 0.6 microM GTN were measured with and without ECA (0.2 mM) pretreatment. These same strips were frozen, and the concentrations of cGMP in the strips were measured using a 3H-labeled radioimmunoassay. Both the relaxation response and the increase in cGMP upon GTN treatment were reduced significantly by pretreatment of the strips with ECA. A correlation was observed between the decreases in the pharmacodynamic and biochemical responses upon ECA pretreatment. cGMP levels in strips treated with sodium nitroprusside, which generates nitric oxide by mechanisms distinct from that for organic nitrates, were not decreased by ECA pretreatment. These observations suggest that the mechanism of GTN action involves a glutathione-S-transferase-mediated metabolic step for GTN and that the isozyme(s) involved in this activation process may be inhibited by ECA.

  12. Biological Roles of the O-Methyl Phosphoramidate Capsule Modification in Campylobacter jejuni

    PubMed Central

    Richards, Michele R.; Fodor, Christopher; Ashmus, Roger A.; Stahl, Martin; Karlyshev, Andrey V.; Wren, Brendan W.; Stintzi, Alain; Miller, William G.; Lowary, Todd L.; Szymanski, Christine M.

    2014-01-01

    Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide, and the capsular polysaccharide (CPS) of this organism is required for persistence and disease. C. jejuni produces over 47 different capsular structures, including a unique O-methyl phosphoramidate (MeOPN) modification present on most C. jejuni isolates. Although the MeOPN structure is rare in nature it has structural similarity to some synthetic pesticides. In this study, we have demonstrated, by whole genome comparisons and high resolution magic angle spinning NMR, that MeOPN modifications are common to several Campylobacter species. Using MeOPN biosynthesis and transferase mutants generated in C. jejuni strain 81–176, we observed that loss of MeOPN from the cell surface correlated with increased invasion of Caco-2 epithelial cells and reduced resistance to killing by human serum. In C. jejuni, the observed serum mediated killing was determined to result primarily from activation of the classical complement pathway. The C. jejuni MeOPN transferase mutant showed similar levels of colonization relative to the wild-type in chickens, but showed a five-fold drop in colonization when co-infected with the wild-type in piglets. In Galleria mellonella waxmoth larvae, the MeOPN transferase mutant was able to kill the insects at wild-type levels. Furthermore, injection of the larvae with MeOPN-linked monosaccharides or CPS purified from the wild-type strain did not result in larval killing, indicating that MeOPN does not have inherent insecticidal activity. PMID:24498018

  13. Engineering Propionibacterium freudenreichii subsp. shermanii for enhanced propionic acid fermentation: effects of overexpressing propionyl-CoA:Succinate CoA transferase.

    PubMed

    Wang, Zhongqiang; Ammar, Ehab M; Zhang, An; Wang, Liqun; Lin, Meng; Yang, Shang-Tian

    2015-01-01

    Propionibacterium freudenreichii subsp. shermanii naturally forms propionic acid as the main fermentation product with acetate and succinate as two major by-products. In this study, overexpressing the native propionyl-CoA:succinate CoA transferase (CoAT) in P. shermanii was investigated to evaluate its effects on propionic acid fermentation with glucose, glycerol, and their mixtures as carbon source. In general, the mutant produced more propionic acid, with up to 10% increase in yield (0.62 vs. 0.56g/g) and 46% increase in productivity (0.41 vs. 0.28g/Lh), depending on the fermentation conditions. The mutant also produced less acetate and succinate, with the ratios of propionate to acetate (P/A) and succinate (P/S) in the final product increased 50% and 23%, respectively, in the co-fermentation of glucose/glycerol. Metabolic flux analysis elucidated that CoAT overexpression diverted more carbon fluxes toward propionic acid, resulting in higher propionic acid purity and a preference for glycerol over glucose as carbon source.

  14. Arabidopsis Deficient in Cutin Ferulate Encodes a Transferase Required for Feruloylation of ω-Hydroxy Fatty Acids in Cutin Polyester1[W][OA

    PubMed Central

    Rautengarten, Carsten; Ebert, Berit; Ouellet, Mario; Nafisi, Majse; Baidoo, Edward E.K.; Benke, Peter; Stranne, Maria; Mukhopadhyay, Aindrila; Keasling, Jay D.; Sakuragi, Yumiko; Scheller, Henrik Vibe

    2012-01-01

    The cuticle is a complex aliphatic polymeric layer connected to the cell wall and covers surfaces of all aerial plant organs. The cuticle prevents nonstomatal water loss, regulates gas exchange, and acts as a barrier against pathogen infection. The cuticle is synthesized by epidermal cells and predominantly consists of an aliphatic polymer matrix (cutin) and intracuticular and epicuticular waxes. Cutin monomers are primarily C16 and C18 unsubstituted, ω-hydroxy, and α,ω-dicarboxylic fatty acids. Phenolics such as ferulate and p-coumarate esters also contribute to a minor extent to the cutin polymer. Here, we present the characterization of a novel acyl-coenzyme A (CoA)-dependent acyl-transferase that is encoded by a gene designated Deficient in Cutin Ferulate (DCF). The DCF protein is responsible for the feruloylation of ω-hydroxy fatty acids incorporated into the cutin polymer of aerial Arabidopsis (Arabidopsis thaliana) organs. The enzyme specifically transfers hydroxycinnamic acids using ω-hydroxy fatty acids as acyl acceptors and hydroxycinnamoyl-CoAs, preferentially feruloyl-CoA and sinapoyl-CoA, as acyl donors in vitro. Arabidopsis mutant lines carrying DCF loss-of-function alleles are devoid of rosette leaf cutin ferulate and exhibit a 50% reduction in ferulic acid content in stem insoluble residues. DCF is specifically expressed in the epidermis throughout all green Arabidopsis organs. The DCF protein localizes to the cytosol, suggesting that the feruloylation of cutin monomers takes place in the cytoplasm. PMID:22158675

  15. Effects of mace (Myristica fragrans, Houtt.) on cytosolic glutathione S-transferase activity and acid soluble sulfhydryl level in mouse liver.

    PubMed

    Kumari, M V; Rao, A R

    1989-07-15

    The aril of plant Myristica fragrans Houtt. commonly known as mace, which is consumed as a spice as well as used as a folk-medicine, was screened for its effects on the levels of cytosolic glutathione S-transferase (GST) and acid-soluble sulfhydryl (SH) groups in the liver of young adult male and female Swiss albino mice. Animals were assorted into 4 groups comprised of either sex and received either normal diet (negative control), 1% 2,3-tert-butyl-4-hydroxyanisole (BHA) diet (positive control), 1% mace diet or 2% mace diet for 10 days. There was a significant increase in the GST activity in the liver of mice exposed to BHA or mace. In addition, there was a significant increase in the SH content in the liver of mice fed on 1% BHA and 2% mace diets.

  16. Post-translational enzyme modification by the phosphopantetheinyl transferase is required for lysine and penicillin biosynthesis but not for roquefortine or fatty acid formation in Penicillium chrysogenum.

    PubMed

    García-Estrada, Carlos; Ullán, Ricardo V; Velasco-Conde, Tania; Godio, Ramiro P; Teijeira, Fernando; Vaca, Inmaculada; Feltrer, Raúl; Kosalková, Katarina; Mauriz, Elba; Martín, Juan F

    2008-10-15

    NRPSs (non-ribosomal peptide synthetases) and PKSs (polyketide synthases) require post-translational phosphopantetheinylation to become active. This reaction is catalysed by a PPTase (4'-phosphopantetheinyl transferase). The ppt gene of Penicillium chrysogenum, encoding a protein that shares 50% similarity with the stand-alone large PPTases, has been cloned. This gene is present as a single copy in the genome of the wild-type and high-penicillin-producing strains (containing multiple copies of the penicillin gene cluster). Amplification of the ppt gene produced increases in isopenicillin N and benzylpenicillin biosynthesis. A PPTase-defective mutant (Wis54-PPT(-)) was obtained. It required lysine and lacked pigment and penicillin production, but it still synthesized normal levels of roquefortine. The biosynthesis of roquefortine does not appear to involve PPTase-mediated modification of the synthesizing enzymes. The PPT(-) mutant did not require fatty acids, which indicates that activation of the fatty acid synthase is performed by a different PPTase. Complementation of Wis54-PPT(-) with the ppt gene restored lysine biosynthesis, pigmentation and penicillin production, which demonstrates the wide range of processes controlled by this gene.

  17. The gene coding for 3-deoxy-manno-octulosonic acid transferase and the rfaQ gene are transcribed from divergently arranged promoters in Escherichia coli.

    PubMed Central

    Clementz, T

    1992-01-01

    The gene kdtA in Escherichia coli codes for 3-deoxy-D-manno-octulosonic acid transferase, the enzyme responsible for attachment of the two 3-deoxy-D-manno-octulosonic acid residues that constitute the link between lipid A and the core oligosaccharide of the lipopolysaccharide. Cloning and subsequent sequencing of the region upstream of kdtA revealed an open reading frame identified as the first gene (rfaQ) in an rfa gene cluster. The kdtA and rfaQ transcripts were identified, and the 5' ends of the transcripts were mapped by primer extension. Two main, divergently arranged promoters were found. These promoters generated transcripts with 5' ends separated by 289 bases. That the two divergent transcripts from the identified promoters represent the kdtA and rfaQ transcripts was confirmed by fusing different parts of the intergenic region between the promoterless lacZ and phoA genes in promoter-screening plasmid pCB267. Images PMID:1447141

  18. The potato suberin feruloyl transferase FHT which accumulates in the phellogen is induced by wounding and regulated by abscisic and salicylic acids

    PubMed Central

    Soler, Marçal; Molinas, Marisa; Figueras, Mercè

    2013-01-01

    The present study provides new insights on the role of the potato (Solanum tuberosum) suberin feruloyl transferase FHT in native and wound tissues, leading to conclusions about hitherto unknown properties of the phellogen. In agreement with the enzymatic role of FHT, it is shown that its transcriptional activation and protein accumulation are specific to tissues that undergo suberization such as the root boundary layers of the exodermis and the endodermis, along with the tuber periderm. Remarkably, FHT expression and protein accumulation within the periderm is restricted to the phellogen derivative cells with phellem identity. FHT levels in the periderm are at their peak near harvest during periderm maturation, with the phellogen becoming meristematically inactive and declining thereafter. However, periderm FHT levels remain high for several months after harvest, suggesting that the inactive phellogen retains the capacity to synthesize ferulate esters. Tissue wounding induces FHT expression and the protein accumulates from the first stages of the healing process onwards. FHT is up-regulated by abscisic acid and down-regulated by salicylic acid, emphasizing the complex regulation of suberin synthesis and wound healing. These findings open up new prospects important for the clarification of the suberization process and yield important information with regard to the skin quality of potatoes. PMID:23918964

  19. The potato suberin feruloyl transferase FHT which accumulates in the phellogen is induced by wounding and regulated by abscisic and salicylic acids.

    PubMed

    Boher, Pau; Serra, Olga; Soler, Marçal; Molinas, Marisa; Figueras, Mercè

    2013-08-01

    The present study provides new insights on the role of the potato (Solanum tuberosum) suberin feruloyl transferase FHT in native and wound tissues, leading to conclusions about hitherto unknown properties of the phellogen. In agreement with the enzymatic role of FHT, it is shown that its transcriptional activation and protein accumulation are specific to tissues that undergo suberization such as the root boundary layers of the exodermis and the endodermis, along with the tuber periderm. Remarkably, FHT expression and protein accumulation within the periderm is restricted to the phellogen derivative cells with phellem identity. FHT levels in the periderm are at their peak near harvest during periderm maturation, with the phellogen becoming meristematically inactive and declining thereafter. However, periderm FHT levels remain high for several months after harvest, suggesting that the inactive phellogen retains the capacity to synthesize ferulate esters. Tissue wounding induces FHT expression and the protein accumulates from the first stages of the healing process onwards. FHT is up-regulated by abscisic acid and down-regulated by salicylic acid, emphasizing the complex regulation of suberin synthesis and wound healing. These findings open up new prospects important for the clarification of the suberization process and yield important information with regard to the skin quality of potatoes.

  20. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl salicylate (MeSA) is a volatile plant secondary metabolite that is an important contributor to taste and scent of many fruits and flowers. It is synthesized from salicylic acid (SA), a phytohormone that contributes to plant pathogen defense. MeSA is synthesized by members of a family of O-met...

  1. Engineering alfalfa to accumulate useful caffeic acid derivatives and characterization of hydroxycinnamoyl-CoA transferases from legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some forages crops, such as red clover, accumulate high levels of caffeic acid derivatives. Oxidation of these o-diphenols to quinones by endogenous polyphenol oxidases (PPOs) and the subsequent reactions of these quinones (probably with endogenous plant proteases) result in a significant reduction ...

  2. Enzymatic Glycosylation by Transferases

    NASA Astrophysics Data System (ADS)

    Blixt, Ola; Razi, Nahid

    Glycosyltransferases are important biological catalysts in cellular systems generating complex cell surface glycans involved in adhesion and signaling processes. Recent advances in glycoscience have increased the demands to access significant amount of glycans representing the glycome. Glycosyltransferases are now playing a key role for in vitro synthesis of oligosaccharides and the bacterial genome are increasingly utilized for cloning and over expression of active transferases in glycosylation reactions. This chapter highlights the recent progress towards preparative synthesis of oligosaccharides representing terminal sequences of glycoproteins and glycolipids using recombinant transferases. Transferases are also being explored in the context of solid-phase synthesis, immobilized on resins and over expression in vivo by engineered bacteria.

  3. Three-dimensional structure of Schistosoma japonicum glutathione S-transferase fused with a six-amino acid conserved neutralizing epitope of gp41 from HIV

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Ho, Joseph X.; Keeling, Kim; Gilliland, Gary L.; Ji, Xinhua; Rueker, Florian; Carter, Daniel C.

    1994-01-01

    The 3-dimensional crystal structure of glutathione S-transferase (GST) of Schistosoma japonicum (Sj) fused with a conserved neutralizing epitope on gp41 (glycoprotein, 41 kDa) of human immunodeficiency virus type 1 (HIV-1) was determined at 2.5 A resolution. The structure of the 3-3 isozyme rat GST of the mu gene class was used as a molecular replacement model. The structure consists of a 4-stranded beta-sheet and 3 alpha-helices in domain 1 and 5 alpha-helices in domain 2. The space group of the Sj GST crystal is P4(sub 3)2(sub 1)2 with unit cell dimensions of a = b = 94.7 A, and c = 58.1 A. The crystal has 1 GST monomer per asymmetric unit, and 2 monomers that form an active dimer are related by crystallographic 2-fold symmetry. In the binding site, the ordered structure of reduced glutathione is observed. The gp41 peptide (Glu-Leu-Asp-Lys-Trp-Ala) fused to the C-terminus of Sj GST forms a loop stabilized by symmetry-related GSTs. The Sj GST structure is compared with previously determined GST structures of mammalian gene classes mu, alpha, and pi. Conserved amino acid residues among the 4 GSTs that are important for hydrophobic and hydrophilic interactions for dimer association and glutathione binding are discussed.

  4. Induction of the pi class of glutathione S-transferase by carnosic acid in rat Clone 9 cells via the p38/Nrf2 pathway.

    PubMed

    Lin, Chia-Yuan; Wu, Chi-Rei; Chang, Shu-Wei; Wang, Yu-Jung; Wu, Jia-Jiuan; Tsai, Chia-Wen

    2015-06-01

    Induction of phase II enzymes is important in cancer chemoprevention. We compared the effect of rosemary diterpenes on the expression of the pi class of glutathione S-transferase (GSTP) in rat liver Clone 9 cells and the signaling pathways involved. Culturing cells with 1, 5, 10, or 20 μM carnosic acid (CA) or carnosol (CS) for 24 h in a dose-dependent manner increased the GSTP expression. CA was more potent than CS. The RNA level and the enzyme activity of GSTP were also enhanced by CA treatment. Treatment with 10 μM CA highly induced the reporter activity of the enhancer element GPEI. Furthermore, CA markedly increased the translocation of nuclear factor erythroid-2 related factor 2 (Nrf2) from the cytosol to the nucleus after 30 to 60 min. CA the stimulated the protein induction of p38, nuclear Nrf2, and GSTP was diminished in the presence of SB203580 (a p38 inhibitor). In addition, SB203580 pretreatment or silencing of Nrf2 by siRNA suppressed the CA-induced GPEI-DNA binding activity and GSTP protein expression. Knockdown of p38 or Nrf2 by siRNA abolished the activation of p38 and Nrf2 as well as the protein induction and enzyme activity of GSTP by CA. These results suggest that CA up-regulates the expression and enzyme activity of GSTP via the p38/Nrf2/GPEI pathway.

  5. Identification, characterization, and developmental expression of a novel alpha 2-->8-KDN-transferase which terminates elongation of alpha 2-->8-linked oligo-polysialic acid chain synthesis in trout egg polysialoglycoproteins.

    PubMed

    Angata, T; Kitazume, S; Terada, T; Kitajima, K; Inoue, S; Troy, F A; Inoue, Y

    1994-10-01

    A novel glycosyltransferase which catalyses transfer of deaminated neuraminic acid, KDN (2-keto-3-deoxy-D-glycero-D-galacto-nononic acid) from CMP-KDN to the non-reducing termini of oligo-polysialyl chains of polysialoglycoprotein (PSGP), was discovered in the ovary of rainbow trout (Oncorhynchus mykiss). The KDN-transferase activity was optimal at neutral pH, and stimulated 2 to 2.5-fold by 2-5 mM Mg2+ or Mn2+. Expression of KDN-transferase was developmentally regulated in parallel with expression of the alpha 2-->8-polysialyltransferase, which catalyses synthesis of the oligo-polysialyl chains in PSGP. Incorporation of the KDN residues into the oligo-polysialyl chains prevented their further elongation, resulting in 'capping' of the oligo-polysialyl chains. This is the first example of a glycosyltransferase that catalyses termination of alpha 2-->8-polysialylation in glycoproteins.

  6. Genetic Analysis of Natural Variation in Antirrhinum Scent Profiles Identifies BENZOIC ACID CARBOXYMETHYL TRANSFERASE As the Major Locus Controlling Methyl Benzoate Synthesis

    PubMed Central

    Ruiz-Hernández, Victoria; Hermans, Benjamin; Weiss, Julia; Egea-Cortines, Marcos

    2017-01-01

    The Antirrhinum genus has a considerable complexity in the scent profiles produced by different species. We have analyzed the genetic differences between A. majus and A. linkianum, two species divergent in the emission of methyl benzoate, methyl cinnamate, acetophenone, and ocimene. The genetic analysis showed that all compounds segregated in a Mendelian fashion attributable to one or two loci with simple or epistatic interactions. Several lines lacked methyl benzoate, a major Volatile Organic Compound emitted by A. majus but missing in A. linkianum. Using a candidate gene approach, we found that the BENZOIC ACID CARBOXYMETHYL TRANSFERASE from A. linkianum appeared to be a null allele as we could not detect mRNA expression. The coding region did not show significant differences that could explain the loss of expression. The intron-exon boundaries was also conserved indicating that there is no alternative splicing in A. linkianum as compared to A. majus. However, it showed multiple polymorphisms in the 5′ promoter region including two insertions, one harboring an IDLE MITE transposon with additional sequences with high homology to the PLENA locus and a second one with somewhat lower homology to the regulatory region of the VENOSA locus. It also had a 778 bp deletion as compared to the A. majus BAMT promoter region. Our results show that the differences in scent emission between A. majus and A. linkianum may be traced back to single genes involved in discrete biosynthetic reactions such as benzoic acid methylation. Thus, natural variation of this complex trait maybe the result of combinations of wild type, and loss of function alleles in different genes involved in discrete VOCs biosynthesis. Furthermore, the presence of active transposable elements in the genus may account for rapid evolution and instability, raising the possibility of adaptation to local pollinators. PMID:28154577

  7. Genetic Analysis of Natural Variation in Antirrhinum Scent Profiles Identifies BENZOIC ACID CARBOXYMETHYL TRANSFERASE As the Major Locus Controlling Methyl Benzoate Synthesis.

    PubMed

    Ruiz-Hernández, Victoria; Hermans, Benjamin; Weiss, Julia; Egea-Cortines, Marcos

    2017-01-01

    The Antirrhinum genus has a considerable complexity in the scent profiles produced by different species. We have analyzed the genetic differences between A. majus and A. linkianum, two species divergent in the emission of methyl benzoate, methyl cinnamate, acetophenone, and ocimene. The genetic analysis showed that all compounds segregated in a Mendelian fashion attributable to one or two loci with simple or epistatic interactions. Several lines lacked methyl benzoate, a major Volatile Organic Compound emitted by A. majus but missing in A. linkianum. Using a candidate gene approach, we found that the BENZOIC ACID CARBOXYMETHYL TRANSFERASE from A. linkianum appeared to be a null allele as we could not detect mRNA expression. The coding region did not show significant differences that could explain the loss of expression. The intron-exon boundaries was also conserved indicating that there is no alternative splicing in A. linkianum as compared to A. majus. However, it showed multiple polymorphisms in the 5' promoter region including two insertions, one harboring an IDLE MITE transposon with additional sequences with high homology to the PLENA locus and a second one with somewhat lower homology to the regulatory region of the VENOSA locus. It also had a 778 bp deletion as compared to the A. majus BAMT promoter region. Our results show that the differences in scent emission between A. majus and A. linkianum may be traced back to single genes involved in discrete biosynthetic reactions such as benzoic acid methylation. Thus, natural variation of this complex trait maybe the result of combinations of wild type, and loss of function alleles in different genes involved in discrete VOCs biosynthesis. Furthermore, the presence of active transposable elements in the genus may account for rapid evolution and instability, raising the possibility of adaptation to local pollinators.

  8. Rapid quantification of O-acetyl and O-methyl residues in pectin extracts.

    PubMed

    Bédouet, Laurent; Courtois, Bernard; Courtois, Josiane

    2003-02-07

    A rapid method for the determination of the degrees of methylation (DM) and acetylation (DA) of pectins was developed. The polymer substitution degree as determined after saponification at 80 degrees C with NaOD during 1H NMR analysis. Under alkaline conditions, the cleavage of O-acetyl and O-methyl linkages allows the detection and the integration of the H-4 signal from galacturonic acid residues in the newly unesterified pectins. So, after a 10-min NMR recording, sodium acetate and sodium methanolate can be easily quantified relative to the clearly identified H-4 signal in galacturonic acid residues. Protons signals from pectin neutral sugars do not interfere with H-4. During the analysis, a limited (<3%) methanol evaporation leading to a weak reduced signal from the methanolate protons was observed. The proposed method allows in few minutes an accurate simultaneous quantification of DM and DA from few mg of pectin extracts, without the need of external standards.

  9. The in vitro biological activities of synthetic 18-O-methyl mycalamide B, 10-epi-18-O-methyl mycalamide B and pederin.

    PubMed

    Richter, A; Kocienski, P; Raubo, P; Davies, D E

    1997-04-01

    Mycalamides A and B, which were originally isolated from a marine sponge, show close structural similarity to the insect toxin pederin, and exhibit potent cytotoxicity and antitumour activity. Detailed investigation of the clinical potential of these compounds has been hampered because they are available in only minute quantities from natural sources. We now describe the biological activities of 18-O-methyl mycalamide B, 10-epi-18-O-methyl mycalamide and pederin, all prepared by total synthesis. The activities of 18-O-methyl mycalamide B and pederin were virtually indistinguishable when evaluated in DNA or protein synthesis assays, and in cytotoxicity assays using human carcinoma cell lines (IC50s 0.2-0.6 nM). In all assays, 10-epi-18-O-methyl mycalamide B was 10(3) times less toxic than its diastereoisomer, demonstrating that the cytotoxicity of 18-O-methyl mycalamide B is inseparable from its ability to inhibit protein synthesis. Short-term exposure of squamous carcinoma cells to 18-O-methyl mycalamide B or pederin caused an irreversible inhibition of cellular proliferation and induced cellular necrosis. In contrast, the antiproliferative effects of the compounds on human fibroblasts were reversible and there was no evidence of necrosis. Demonstration that 18-O-methyl mycalamide B and the synthetically less complex molecule, pederin, show some tumour cell toxicity indicates that this novel class of compounds should be subjected to preclinical evaluation.

  10. Three-dimensional structure of Schistosoma japonicum glutathione S-transferase fused with a six-amino acid conserved neutralizing epitope of gp41 from HIV.

    PubMed Central

    Lim, K.; Ho, J. X.; Keeling, K.; Gilliland, G. L.; Ji, X.; Rüker, F.; Carter, D. C.

    1994-01-01

    The 3-dimensional crystal structure of glutathione S-transferase (GST) of Schistosoma japonicum (Sj) fused with a conserved neutralizing epitope on gp41 (glycoprotein, 41 kDa) of human immunodeficiency virus type 1 (HIV-1) (Muster T et al., 1993, J Virol 67:6642-6647) was determined at 2.5 A resolution. The structure of the 3-3 isozyme rat GST of the mu gene class (Ji X, Zhang P, Armstrong RN, Gilliland GL, 1992, Biochemistry 31:10169-10184) was used as a molecular replacement model. The structure consists of a 4-stranded beta-sheet and 3 alpha-helices in domain 1 and 5 alpha-helices in domain 2. The space group of the Sj GST crystal is P4(3)2(1)2, with unit cell dimensions of a = b = 94.7 A, and c = 58.1 A. The crystal has 1 GST monomer per asymmetric unit, and 2 monomers that form an active dimer are related by crystallographic 2-fold symmetry. In the binding site, the ordered structure of reduced glutathione is observed. The gp41 peptide (Glu-Leu-Asp-Lys-Trp-Ala) fused to the C-terminus of Sj GST forms a loop stabilized by symmetry-related GSTs. The Sj GST structure is compared with previously determined GST structures of mammalian gene classes mu, alpha, and pi. Conserved amino acid residues among the 4 GSTs that are important for hydrophobic and hydrophilic interactions for dimer association and glutathione binding are discussed. PMID:7538846

  11. Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid.

    PubMed

    Csiszár, Jolán; Horváth, Edit; Váry, Zsolt; Gallé, Ágnes; Bela, Krisztina; Brunner, Szilvia; Tari, Irma

    2014-05-01

    A family tree of the multifunctional proteins, glutathione transferases (GSTs, EC 2.5.1.18) was created in Solanum lycopersicum based on homology to known Arabidopsis GSTs. The involvement of selected SlGSTs was studied in salt stress response of tomato primed with salicylic acid (SA) or in un-primed plants by real-time qPCR. Selected tau GSTs (SlGSTU23, SlGSTU26) were up-regulated in the leaves, while GSTs from lambda, theta, dehydroascorbate reductase and zeta classes (SlGSTL3, SlGSTT2, SlDHAR5, SlGSTZ2) in the root tissues under salt stress. Priming with SA exhibited a concentration dependency; SA mitigated the salt stress injury and caused characteristic changes in the expression pattern of SlGSTs only at 10(-4) M concentration. SlGSTF4 displayed a significant up-regulation in the leaves, while the abundance of SlGSTL3, SlGSTT2 and SlGSTZ2 transcripts were enhanced in the roots of plants primed with high SA concentration. Unexpectedly, under high salinity the SlDHAR2 expression decreased in primed roots as compared to the salt-stressed plants, however, the up-regulation of SlDHAR5 isoenzyme contributed to the maintenance of DHAR activity in roots primed with high SA. The members of lambda, theta and zeta class GSTs have a specific role in salt stress acclimation of tomato, while SlGSTU26 and SlGSTF4, the enzymes with high glutathione conjugating activity, characterize a successful priming in both roots and leaves. In contrast to low concentration, high SA concentration induced those GSTs in primed roots, which were up-regulated under salt stress. Our data indicate that induction of GSTs provide a flexible tool in maintaining redox homeostasis during unfavourable conditions.

  12. Three-dimensional structure of Schistosoma japonicum glutathione S-transferase fused with a six-amino acid conserved neutralizing epitope of gp41 from HIV

    NASA Technical Reports Server (NTRS)

    Lim, K.; Ho, J. X.; Keeling, K.; Gilliland, G. L.; Ji, X.; Ruker, F.; Carter, D. C.

    1994-01-01

    The 3-dimensional crystal structure of glutathione S-transferase (GST) of Schistosoma japonicum (Sj) fused with a conserved neutralizing epitope on gp41 (glycoprotein, 41 kDa) of human immunodeficiency virus type 1 (HIV-1) (Muster T et al., 1993, J Virol 67:6642-6647) was determined at 2.5 A resolution. The structure of the 3-3 isozyme rat GST of the mu gene class (Ji X, Zhang P, Armstrong RN, Gilliland GL, 1992, Biochemistry 31:10169-10184) was used as a molecular replacement model. The structure consists of a 4-stranded beta-sheet and 3 alpha-helices in domain 1 and 5 alpha-helices in domain 2. The space group of the Sj GST crystal is P4(3)2(1)2, with unit cell dimensions of a = b = 94.7 A, and c = 58.1 A. The crystal has 1 GST monomer per asymmetric unit, and 2 monomers that form an active dimer are related by crystallographic 2-fold symmetry. In the binding site, the ordered structure of reduced glutathione is observed. The gp41 peptide (Glu-Leu-Asp-Lys-Trp-Ala) fused to the C-terminus of Sj GST forms a loop stabilized by symmetry-related GSTs. The Sj GST structure is compared with previously determined GST structures of mammalian gene classes mu, alpha, and pi. Conserved amino acid residues among the 4 GSTs that are important for hydrophobic and hydrophilic interactions for dimer association and glutathione binding are discussed.

  13. Ethacrynic acid butyl-ester induces apoptosis in leukemia cells through a hydrogen peroxide mediated pathway independent of glutathione S-transferase P1-1 inhibition.

    PubMed

    Wang, Rui; Li, Chunmin; Song, Dandan; Zhao, Guisen; Zhao, Linxiang; Jing, Yongkui

    2007-08-15

    Ethacrynic acid (EA), a glutathione S-transferase inhibitor and diuretic agent, inhibits cell growth and induces apoptosis in cancer cells. To improve the activities, the structure of EA has been modified, and it has been shown that EA esters had an increased cell growth inhibitory ability compared with nonesterified analogue. EA butyl-ester (EABE) was synthesized, and its apoptosis induction ability was studied. The efficacy of EABE was compared with that of EA, and the mechanisms of action were studied in HL-60 leukemia cells. EABE exhibited greater cell growth inhibitory and apoptosis induction abilities than did EA. EABE-induced apoptosis in HL-60 cells correlated with increased levels of reactive oxygen species, the death receptor 5 (DR5), and caspase activation and decreased levels of the mitochondrial membrane potential. Pretreatment with antioxidants, either N-acetylcysteine or catalase, completely blocked EABE-induced apoptosis, H2O2 accumulation, and up-regulation of DR5 levels. RG19, a subclone of Raji cells stably transfected with a GSTpi expression vector, and K562 cells with high endogenous GSTP1-1 activity were less sensitive to EABE-induced apoptosis. EABE was more rapidly taken up than EA by HL-60 cells as determined by high-performance liquid chromatography (HPLC) measurements of intracellular concentrations. These results suggest that (a) H2O2 production is a mediator of EABE and EA-induced apoptosis; (b) GSTP1-1 plays a negative role in EABE and EA-induced apoptosis; and (c) the activity of EABE is greater than EA due to its more rapid entry into cells.

  14. Benzene Uptake and Glutathione S-transferase T1 Status as Determinants of S-Phenylmercapturic Acid in Cigarette Smokers in the Multiethnic Cohort

    PubMed Central

    Haiman, Christopher A.; Patel, Yesha M.; Stram, Daniel O.; Carmella, Steven G.; Chen, Menglan; Wilkens, Lynne R.; Le Marchand, Loic; Hecht, Stephen S.

    2016-01-01

    Research from the Multiethnic Cohort (MEC) demonstrated that, for the same quantity of cigarette smoking, African Americans and Native Hawaiians have a higher lung cancer risk than Whites, while Latinos and Japanese Americans are less susceptible. We collected urine samples from 2,239 cigarette smokers from five different ethnic groups in the MEC and analyzed each sample for S-phenylmercapturic acid (SPMA), a specific biomarker of benzene uptake. African Americans had significantly higher (geometric mean [SE] 3.69 [0.2], p<0.005) SPMA/ml urine than Whites (2.67 [0.13]) while Japanese Americans had significantly lower levels than Whites (1.65 [0.07], p<0.005). SPMA levels in Native Hawaiians and Latinos were not significantly different from those of Whites. We also conducted a genome-wide association study in search of genetic risk factors related to benzene exposure. The glutathione S-transferase T1 (GSTT1) deletion explained between 14.2–31.6% (p = 5.4x10-157) and the GSTM1 deletion explained between 0.2%-2.4% of the variance (p = 1.1x10-9) of SPMA levels in these populations. Ethnic differences in levels of SPMA remained strong even after controlling for the effects of these two deletions. These results demonstrate the powerful effect of GSTT1 status on SPMA levels in urine and show that uptake of benzene in African American, White, and Japanese American cigarette smokers is consistent with their lung cancer risk in the MEC. While benzene is not generally considered a cause of lung cancer, its metabolite SPMA could be a biomarker for other volatile lung carcinogens in cigarette smoke. PMID:26959369

  15. A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti.

    PubMed

    Mullins, Elwood A; Francois, Julie A; Kappock, T Joseph

    2008-07-01

    Microbes tailor macromolecules and metabolism to overcome specific environmental challenges. Acetic acid bacteria perform the aerobic oxidation of ethanol to acetic acid and are generally resistant to high levels of these two membrane-permeable poisons. The citric acid cycle (CAC) is linked to acetic acid resistance in Acetobacter aceti by several observations, among them the oxidation of acetate to CO2 by highly resistant acetic acid bacteria and the previously unexplained role of A. aceti citrate synthase (AarA) in acetic acid resistance at a low pH. Here we assign specific biochemical roles to the other components of the A. aceti strain 1023 aarABC region. AarC is succinyl-coenzyme A (CoA):acetate CoA-transferase, which replaces succinyl-CoA synthetase in a variant CAC. This new bypass appears to reduce metabolic demand for free CoA, reliance upon nucleotide pools, and the likely effect of variable cytoplasmic pH upon CAC flux. The putative aarB gene is reassigned to SixA, a known activator of CAC flux. Carbon overflow pathways are triggered in many bacteria during metabolic limitation, which typically leads to the production and diffusive loss of acetate. Since acetate overflow is not feasible for A. aceti, a CO(2) loss strategy that allows acetic acid removal without substrate-level (de)phosphorylation may instead be employed. All three aar genes, therefore, support flux through a complete but unorthodox CAC that is needed to lower cytoplasmic acetate levels.

  16. Dual Catalytic Activity of Hydroxycinnamoyl-Coenzyme A Quinate Transferase from Tomato Allows It to Moonlight in the Synthesis of Both Mono- and Dicaffeoylquinic Acids1[W][OPEN

    PubMed Central

    Moglia, Andrea; Lanteri, Sergio; Comino, Cinzia; Hill, Lionel; Knevitt, Daniel; Cagliero, Cecilia; Rubiolo, Patrizia; Bornemann, Stephen

    2014-01-01

    Tomato (Solanum lycopersicum), like other Solanaceous species, accumulates high levels of antioxidant caffeoylquinic acids, which are strong bioactive molecules and protect plants against biotic and abiotic stresses. Among these compounds, the monocaffeoylquinic acids (e.g. chlorogenic acid [CGA]) and the dicaffeoylquinic acids (diCQAs) have been found to possess marked antioxidative properties. Thus, they are of therapeutic interest both as phytonutrients in foods and as pharmaceuticals. Strategies to increase diCQA content in plants have been hampered by the modest understanding of their biosynthesis and whether the same pathway exists in different plant species. Incubation of CGA with crude extracts of tomato fruits led to the formation of two new products, which were identified by liquid chromatography-mass spectrometry as diCQAs. This chlorogenate:chlorogenate transferase activity was partially purified from ripe fruit. The final protein fraction resulted in 388-fold enrichment of activity and was subjected to trypsin digestion and mass spectrometric sequencing: a hydroxycinnamoyl-Coenzyme A:quinate hydroxycinnamoyl transferase (HQT) was selected as a candidate protein. Assay of recombinant HQT protein expressed in Escherichia coli confirmed its ability to synthesize diCQAs in vitro. This second activity (chlorogenate:chlorogenate transferase) of HQT had a low pH optimum and a high Km for its substrate, CGA. High concentrations of CGA and relatively low pH occur in the vacuoles of plant cells. Transient assays demonstrated that tomato HQT localizes to the vacuole as well as to the cytoplasm of plant cells, supporting the idea that in this species, the enzyme catalyzes different reactions in two subcellular compartments. PMID:25301886

  17. Characterisation of the Broadly-Specific O-Methyl-transferase JerF from the Late Stages of Jerangolid Biosynthesis.

    PubMed

    Friedrich, Steffen; Hemmerling, Franziska; Lindner, Frederick; Warnke, Anna; Wunderlich, Johannes; Berkhan, Gesche; Hahn, Frank

    2016-10-29

    We describe the characterisation of the O-methyltransferase JerF from the late stages of jerangolid biosynthesis. JerF is the first known example of an enzyme that catalyses the formation of a non-aromatic, cyclic methylenolether. The enzyme was overexpressed in E. coli and the cell-free extracts were used in bioconversion experiments. Chemical synthesis gave access to a series of substrate surrogates that covered a broad structural space. Enzymatic assays revealed a broad substrate tolerance and high regioselectivity of JerF, which makes it an attractive candidate for an application in chemoenzymatic synthesis with particular usefulness for late stage application on 4-methoxy-5,6-dihydro-2H-pyran-2-one-containing natural products.

  18. Cathecol-O-methyl transferase Val158Met genotype is not a risk factor for conversion disorder.

    PubMed

    Armagan, E; Almacıoglu, M L; Yakut, T; Köse, A; Karkucak, M; Köksal, O; Görükmez, O

    2013-03-19

    Alterations in catechol-O-methyltransferase (COMT) activity are involved in various types of neurological disorders. We examined a possible association between the COMT Val158Met polymorphism and conversion disorder in a study of 48 patients with conversion disorder and 48 control patients. In the conversion disorder group, 31 patients were Val/Met heterozygotes, 15 patients were Val/Val homozygotes and 2 patients were Met/Met homozygotes. In the control group, 32 patients were Val/Met heterozygotes and 16 patients were Val/Val homozygotes. There was no significant difference between the groups. We conclude that the COMT Val158Met genotype is quite common in Turkey and that it is not a risk factor for conversion disorder in the Turkish population.

  19. Farnesyl transferase inhibitors as anticancer agents.

    PubMed

    Haluska, P; Dy, G K; Adjei, A A

    2002-09-01

    Protein farnesylation catalysed by the enzyme farnesyl protein transferase involves the addition of a 15-carbon farnesyl group to conserved amino acid residues at the carboxyl terminus of certain proteins. Protein substrates of farnesyl transferase include several G-proteins, which are critical intermediates of cell signalling and cytoskeletal organisation such as Ras, Rho, PxF and lamins A and B. Activated Ras proteins trigger a cascade of phosphorylation events through sequential activation of the PI3 kinase/AKT pathway, which is critical for cell survival, and the Raf/Mek/Erk kinase pathway that has been implicated in cell proliferation. Ras mutations which encode for constitutively activated proteins are found in 30% of human cancers. Because farnesylation of Ras is required for its transforming and proliferative activity, the farnesyl protein transferase inhibitors were designed as anticancer agents to abrogate Ras function. However, current evidence suggests that the anticancer activity of the farnesyl transferase inhibitors may not be simply due to Ras inhibition. This review will discuss available clinical data on three of these agents that are currently undergoing clinical trials.

  20. Structural elucidation of polysaccharide containing 3-O-methyl galactose from fruiting bodies of Pleurotus citrinopileatus.

    PubMed

    He, Pengfei; Zhang, Anqiang; Zhou, Saijing; Zhang, Fuming; Linhardt, Robert J; Sun, Peilong

    2016-11-03

    A water-soluble polysaccharide containing 3-O-methyl galactose (PCP60W) was isolated from fruiting bodies of Pleurotus citrinopileatus and purified by anion-exchange and gel column chromatography. This polysaccharide has an average molecular weight of 2.74 × 10(4) Da and its structure was elucidated using monosaccharide composition and methylation analysis combined with one- and two-dimensional (COSY, TOCSY, NOESY, HMQC and HMBC) NMR spectroscopy. PCP60W was shown to be a linear partially 3-O-methylated α-galactopyranan comprised of 6-linked galactose, 6-linked 3-O-methyl galactose and 4-linked glucose in a ratio of 3.0:1.0:0.6. This work provides additional evidence for the view that 3-O-methyl galactose is common to the genus Pleurotus.

  1. Synthesis, chiral high performance liquid chromatographic resolution and enantiospecific activity of a potent new geranylgeranyl transferase inhibitor, 2-hydroxy-3-imidazo[1,2-a]pyridin-3-yl-2-phosphonopropionic acid.

    PubMed

    McKenna, Charles E; Kashemirov, Boris A; Błazewska, Katarzyna M; Mallard-Favier, Isabelle; Stewart, Charlotte A; Rojas, Javier; Lundy, Mark W; Ebetino, Frank H; Baron, Rudi A; Dunford, James E; Kirsten, Marie L; Seabra, Miguel C; Bala, Joy L; Marma, Mong S; Rogers, Michael J; Coxon, Fraser P

    2010-05-13

    3-(3-Pyridyl)-2-hydroxy-2-phosphonopropanoic acid (3-PEHPC, 1) is a phosphonocarboxylate (PC) analogue of 2-(3-pyridyl)-1-hydroxyethylidenebis(phosphonic acid) (risedronic acid, 2), an osteoporosis drug that decreases bone resorption by inhibiting farnesyl pyrophosphate synthase (FPPS) in osteoclasts, preventing protein prenylation. 1 has lower bone affinity than 2 and weakly inhibits Rab geranylgeranyl transferase (RGGT), selectively preventing prenylation of Rab GTPases. We report here the synthesis and biological studies of 2-hydroxy-3-imidazo[1,2-a]pyridin-3-yl-2-phosphonopropionic acid (3-IPEHPC, 3), the PC analogue of minodronic acid 4. Like 1, 3 selectively inhibited Rab11 vs. Rap 1A prenylation in J774 cells, and decreased cell viability, but was 33-60x more active in these assays. After resolving 3 by chiral HPLC (>98% ee), we found that (+)-3-E1 was much more potent than (-)-3-E2 in an isolated RGGT inhibition assay, approximately 17x more potent (LED 3 microM) than (-)-3-E2 in inhibiting Rab prenylation in J774 cells and >26x more active in the cell viability assay. The enantiomers of 1 exhibited a 4-fold or smaller potency difference in the RGGT and prenylation inhibition assays.

  2. Production of 7-O-methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli.

    PubMed

    Malla, Sailesh; Koffas, Mattheos A G; Kazlauskas, Romas J; Kim, Byung-Gee

    2012-02-01

    7-O-Methyl aromadendrin (7-OMA) is an aglycone moiety of one of the important flavonoid-glycosides found in several plants, such as Populus alba and Eucalyptus maculata, with various medicinal applications. To produce such valuable natural flavonoids in large quantity, an Escherichia coli cell factory has been developed to employ various plant biosynthetic pathways. Here, we report the generation of 7-OMA from its precursor, p-coumaric acid, in E. coli for the first time. Primarily, naringenin (NRN) (flavanone) synthesis was achieved by feeding p-coumaric acid and reconstructing the plant biosynthetic pathway by introducing the following structural genes: 4-coumarate-coenzyme A (CoA) ligase from Petroselinum crispum, chalcone synthase from Petunia hybrida, and chalcone isomerase from Medicago sativa. In order to increase the availability of malonyl-CoA, a critical precursor of 7-OMA, genes for the acyl-CoA carboxylase α and β subunits (nfa9890 and nfa9940), biotin ligase (nfa9950), and acetyl-CoA synthetase (nfa3550) from Nocardia farcinica were also introduced. Thus, produced NRN was hydroxylated at position 3 by flavanone-3-hydroxylase from Arabidopsis thaliana, which was further methylated at position 7 to produce 7-OMA in the presence of 7-O-methyltransferase from Streptomyces avermitilis. Dihydrokaempferol (DHK) (aromadendrin) and sakuranetin (SKN) were produced as intermediate products. Overexpression of the genes for flavanone biosynthesis and modification pathways, along with malonyl-CoA overproduction in E. coli, produced 2.7 mg/liter (8.9 μM) 7-OMA upon supplementation with 500 μM p-coumaric acid in 24 h, whereas the strain expressing only the flavanone modification enzymes yielded 30 mg/liter (99.2 μM) 7-OMA from 500 μM NRN in 24 h.

  3. Epimerization of tea catechins and O-methylated derivatives of (-)-epigallocatechin-3-O-gallate: relationship between epimerization and chemical structure.

    PubMed

    Suzuki, Masazumi; Sano, Mitsuaki; Yoshida, Risa; Degawa, Masakuni; Miyase, Toshio; Maeda-Yamamoto, Mari

    2003-01-15

    Epimerization at C-2 of O-methylated catechin derivatives and four major tea catechins were investigated. The epimeric isomers of (-)-epicatechin (I), (-)-epicatechin-3-O-gallate (II), (-)-epigallocatechin (III), (-)-epigallocatechin-3-O-gallate (IV), and (-)-epigallocatechin-3-O-(3-O-methyl)gallate (V) in green tea extracts increased time-dependently at 90 degrees C. The epimerization rates of authentic tea catechins in distilled water are much lower than those in tea infusion or in pH 6.0 buffer solution. The addition of tea infusion to the authentic catechin solution accelerated the epimerization, and the addition of ethylenediaminetetraacetic acid, disodium salt (Na(2)EDTA) decreased the epimerization in the pH 6.0 buffer solution. Therefore, the metal ions in tea infusion may affect the rate of epimerization. The proportions of the epimers to authentic tea catechins [III, IV, V, and (-)-epigallocatechin-3-O-(4-O-methyl)gallate (VI)] in pH 6.0 buffer solution after heating at 90 degrees C for 30 min were 42.4%, 37.0%, 41.7%, and 30.4%, respectively. These values were higher than those of I and II (23.5% and 23.6%, respectively). The O-methylated derivatives at the 4'-position on the B ring of IV and VI were hardly epimerized. These results suggest that the hydroxyl moiety on the B ring of catechins plays an important role in the epimerization in the order 3',4',5'-triol type > 3',4'-diol type > 3',5'-diol type.

  4. Plant glutathione transferases

    PubMed Central

    Dixon, David P; Lapthorn, Adrian; Edwards, Robert

    2002-01-01

    The soluble glutathione transferases (GSTs, EC 2.5.1.18) are encoded by a large and diverse gene family in plants, which can be divided on the basis of sequence identity into the phi, tau, theta, zeta and lambda classes. The theta and zeta GSTs have counterparts in animals but the other classes are plant-specific and form the focus of this article. The genome of Arabidopsis thaliana contains 48 GST genes, with the tau and phi classes being the most numerous. The GST proteins have evolved by gene duplication to perform a range of functional roles using the tripeptide glutathione (GSH) as a cosubstrate or coenzyme. GSTs are predominantly expressed in the cytosol, where their GSH-dependent catalytic functions include the conjugation and resulting detoxification of herbicides, the reduction of organic hydroperoxides formed during oxidative stress and the isomerization of maleylacetoacetate to fumarylacetoacetate, a key step in the catabolism of tyrosine. GSTs also have non-catalytic roles, binding flavonoid natural products in the cytosol prior to their deposition in the vacuole. Recent studies have also implicated GSTs as components of ultraviolet-inducible cell signaling pathways and as potential regulators of apoptosis. Although sequence diversification has produced GSTs with multiple functions, the structure of these proteins has been highly conserved. The GSTs thus represent an excellent example of how protein families can diversify to fulfill multiple functions while conserving form and structure. PMID:11897031

  5. Rubber transferase in guayule plants. [Parthenium argentatum

    SciTech Connect

    Rosenfield, C.L.; Foster, M.A.; Benedict, C.R.

    1986-04-01

    Rubber transferase catalyzes the transfer of cis-1,4-polyprenyl-PP to isopentenyl-PP (IPP) with the elimination of PP/sub i/. Rubber transferase activity in guayule (Parthenium argentatum Gray) stems was localized in the lipid fraction of the homogenate following centrifugation in buffer and 0.4M Mannitol. Washed rubber particles were obtained by the chromatography of the lipid fraction on Ultrogel columns with an exclusion limit of 750,000 daltons by the procedure of B.G. Audley (private communication). The rubber particles catalyzed the incorporation of /sup 14/C-IPP into cis-polyisoprene. The radioactive cis-polyisoprene was identified by ozonolysis and chromatography of the resulting /sup 14/C-levulinic acid. The synthesis of cis-polyisoprene in the rubber particles required Mg/sup 2 +/ and IPP and was stimulated 2-fold with the addition of DMAPP. Rubber synthesis in guayule plants growing in the Permian Basin of West Texas does not occur during summer months but is induced by the cold night temperatures of the fall and winter. From August to December individual plants (which were transplanted in May) accumulated from 66mg to 11,800mg or rubber. During this period there was a 4-fold increase in rubber transferase activity in stem homogenates induced by the low temperatures.

  6. Molecular Cloning of Adenosinediphosphoribosyl Transferase.

    DTIC Science & Technology

    1987-09-08

    ACCESSION NO.D,. 03261102F 2312 A~5 11. TITLE (include Securqt Classification) 0 Molecular Cloning of Adenosinediphosphoribosyl Transferase 12. PERSONAL...I’:- AFOSR.Tlt. 8 7 - 0 9 8,2 0IL * pi AFOSR- 85 -0377 PROGRESS REPORT Molecular Cloning of Adenosinediphosphoribosyl Transferase 5." Period of...Pharmacology and the Cardiovascular Research Institute September 8, 1987 .’, 5.’- "’S ". -f, AFOSR - 85 -0377 PROGRESS REPORT Molecular Cloning of

  7. Recognition of 2'-O-methylated 3'-end of piRNA by the PAZ domain of a Piwi protein.

    PubMed

    Simon, Bernd; Kirkpatrick, John P; Eckhardt, Stephanie; Reuter, Michael; Rocha, Elsa A; Andrade-Navarro, Miguel A; Sehr, Peter; Pillai, Ramesh S; Carlomagno, Teresa

    2011-02-09

    Piwi proteins are germline-specific Argonautes that associate with small RNAs called Piwi-interacting RNAs (piRNAs), and together with these RNAs are implicated in transposon silencing. The PAZ domain of Argonaute proteins recognizes the 3'-end of the RNA, which in the case of piRNAs is invariably modified with a 2'-O-methyl group. Here, we present the solution structure of the PAZ domain from the mouse Piwi protein, MIWI, in complex with an 8-mer piRNA mimic. The methyl group is positioned in a hydrophobic cavity made of conserved amino acids from strand β7 and helix α3, where it is contacted by the side chain of methionine-382. Our structure is similar to that of Ago-PAZ, but subtle differences illustrate how the PAZ domain has evolved to accommodate distinct 3' ends from a variety of RNA substrates.

  8. Effect of 2′-O-methyl/thiophosphonoacetate-modified antisense oligonucleotides on huntingtin expression in patient-derived cells

    PubMed Central

    Matsui, Masayuki; Threlfall, Richard N; Caruthers, Marvin H; Corey, David R

    2014-01-01

    ABSTRACT Optimizing oligonucleotides as therapeutics will require exploring how chemistry can be used to enhance their effects inside cells. To achieve this goal it will be necessary to fully explore chemical space around the native DNA/RNA framework to define the potential of diverse chemical modifications. In this report we examine the potential of thiophosphonoacetate (thioPACE)-modified 2′-O-methyl oligoribonucleotides as inhibitors of human huntingtin (HTT) expression. Inhibition occurred, but was less than with analogous locked nucleic acid (LNA)-substituted oligomers lacking the thioPACE modification. These data suggest that thioPACE oligonucleotides have the potential to control gene expression inside cells. However, advantages relative to other modifications were not demonstrated. Additional modifications are likely to be necessary to fully explore any potential advantages of thioPACE substitutions. PMID:26865404

  9. Cocaine inhibits extraneuronal O-methylation of exogenous norepinephrine in nasal and oral tissues of the rabbit

    SciTech Connect

    de la Lande, I.S.; Parker, D.A.S.; Proctor, C.H.; Marino, V.; Mackay-Sim, A.

    1987-11-30

    Nasal mucosa (respirator and olfactory) and lingual gingiva of the rabbit were depleted of their sympathetic nerves by superior cervical ganglionectomy. In the innervated nasal mucosa, exogenous tritiated norepinephrine (/sup 3/H-NE) was metabolized mainly to tritiated 3,4-dihydroxyphenylethylene glycol (/sup 3/HDOPEG) and 3,4-dihydroxy mandelic acid (/sup 3/HDOMA), whereas after denervation it was metabolized mainly to tritiated normetanephrine (/sup 3/HNMN). In the denervated mucosa, cocaine(30umol/l) inhibited /sup 3/HNMN formation by 50-60%. Cocaine also inhibited /sup 3/HNMN formation by 60% in the denervated lingual gingiva. It is concluded that the tissues metabolize /sup 3/H-NE via a cocaine-sensitive extraneuronal uptake and O-methylating system similar to that which has been shown to be present in dental pulp. 17 references, 1 table.

  10. Drought and Salt Stress Tolerance of an Arabidopsis Glutathione S-Transferase U17 Knockout Mutant Are Attributed to the Combined Effect of Glutathione and Abscisic Acid1[C][W][OA

    PubMed Central

    Chen, Jui-Hung; Jiang, Han-Wei; Hsieh, En-Jung; Chen, Hsing-Yu; Chien, Ching-Te; Hsieh, Hsu-Liang; Lin, Tsan-Piao

    2012-01-01

    Although glutathione S-transferases (GSTs) are thought to play major roles in oxidative stress metabolism, little is known about the regulatory functions of GSTs. We have reported that Arabidopsis (Arabidopsis thaliana) GLUTATHIONE S-TRANSFERASE U17 (AtGSTU17; At1g10370) participates in light signaling and might modulate various aspects of development by affecting glutathione (GSH) pools via a coordinated regulation with phytochrome A. Here, we provide further evidence to support a negative role of AtGSTU17 in drought and salt stress tolerance. When AtGSTU17 was mutated, plants were more tolerant to drought and salt stresses compared with wild-type plants. In addition, atgstu17 accumulated higher levels of GSH and abscisic acid (ABA) and exhibited hyposensitivity to ABA during seed germination, smaller stomatal apertures, a lower transpiration rate, better development of primary and lateral root systems, and longer vegetative growth. To explore how atgstu17 accumulated higher ABA content, we grew wild-type plants in the solution containing GSH and found that they accumulated ABA to a higher extent than plants grown in the absence of GSH, and they also exhibited the atgstu17 phenotypes. Wild-type plants treated with GSH also demonstrated more tolerance to drought and salt stresses. Furthermore, the effect of GSH on root patterning and drought tolerance was confirmed by growing the atgstu17 in solution containing l-buthionine-(S,R)-sulfoximine, a specific inhibitor of GSH biosynthesis. In conclusion, the atgstu17 phenotype can be explained by the combined effect of GSH and ABA. We propose a role of AtGSTU17 in adaptive responses to drought and salt stresses by functioning as a negative component of stress-mediated signal transduction pathways. PMID:22095046

  11. Inhibition of glutathione S-transferase activity in human melanoma cells by alpha,beta-unsaturated carbonyl derivatives. Effects of acrolein, cinnamaldehyde, citral, crotonaldehyde, curcumin, ethacrynic acid, and trans-2-hexenal.

    PubMed

    Iersel, M L; Ploemen, J P; Struik, I; van Amersfoort, C; Keyzer, A E; Schefferlie, J G; van Bladeren, P J

    1996-10-21

    The glutathione S-transferase (GST) activity towards 1-chloro-2,4-dinitrobenzene in intact human IGR-39 melanoma cells was determined by the quantification by HPLC-analysis of the excreted glutathione (GSH) conjugate (S-(2,4-dinitrophenyl)glutathione; DNPSG). The major GST subunit expressed in these melanoma cells is the pi-class GST subunit P1. Using this system, the effect of exposure for 1 h to a series of alpha, beta-unsaturated carbonyl compounds at non-toxic concentrations was studied. Curcumin was the most potent inhibitor (96% inhibition at 25 microM), while 67 and 61% inhibition at 25 microM was observed for ethacrynic acid and trans-2-hexenal, respectively. Moderate inhibition was observed for cinnamaldehyde and crotonaldehyde, while no inhibition was found for citral. The reactive acrolein did not inhibit the DNPSG-excretion at 2.5 microM, the highest non-toxic concentration. Up to about 50% GSH-depletion was found after treatment with crotonaldehyde, curcumin and ethacrynic acid, however the consequences for GST conjugation are presumably small. Reversible inhibition of GST was the major mechanism of inhibition of DNPSG-excretion in melanoma cells, except in the cases of curcumin and ethacrynic acid, which compounds also inactivated GSTP1-1 by covalent modification. This was clear from the fact that depending on the dose between 30 and 80% inhibition was still observed after lysis of the cells, under which conditions reversible inhibition was is absent. Intracellular levels of DNPSG remained relatively high in the case of ethacrynic acid. It is possible that ethacrynic acid also inhibits the transport of DNPSG by inhibition of the multidrug resistance-associated protein gene encoding glutathione conjugate export pump (MRP/GS-X pump) in some way.

  12. Glucuronidation of lipophilic substrates: preparation of 3-benzo[a]pyrenyl-beta-D-glucopyranosiduronic acid in multimilligram quantities by microsomal UDP-glucuronyl transferase.

    PubMed

    Johnson, D B; Swanson, M J; Barker, C W; Fanska, C B; Murrill, E E

    1979-01-01

    A convenient method for the enzymic conversion of multimilligram quantities of 3-hydroxybenzo[a]pyrene to 3-benzo[a]pyrenyl-beta-D-glucopyranosiduronic acid in 90% yield is described. Commercially available freeze-dried rabbit liver microsomes were incubated in the presence of UDPGA, 3-hydroxybenzo[a]pyrene, and Triton X-100 detergent (Figure 1). The course of the biosynthetic reaction was followed by fluorimetry. The glucuronide product was extracted from the acidified incubation supernate with ethyl acetate and the acid function of the glucuronide was utilized in an acid-base extraction procedure to purify the glucuronide from biological and unreacted starting material. The glucuronide precipitated from ethyl acetate and was collected by centrifugation. High pressure liquid chromatography and spectroscopic techniques were used to verify the structure and purity of 3-benzo[a]pyrenyl-beta-D-glucopyranosiduronic acid.

  13. Biological roles of the O-methyl phosphoramidate capsule modification in Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide, and the capsular polysaccharide (CPS) of this organism is required for persistence and disease. C. jejuni produces over 47 different capsular structures, including a unique O-methyl phosphoramidate (MeOPN) modification pre...

  14. Biosynthesis of 8-O-methylated benzoxazinoid defense compounds in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benzoxazinoids are important defense compounds in grasses. Here, we investigated the biosynthesis and biological roles of the 8-O-methylated benzoxazinoids, DIM2BOA-Glc and HDM2BOA-Glc. Using quantitative trait locus mapping and heterologous expression, we identified a 2-oxoglutarate-dependent dioxy...

  15. Hydrogen bond formation in regioselectively functionalized 3-mono-O-methyl cellulose.

    PubMed

    Kondo, Tetsuo; Koschella, Andreas; Heublein, Brigitte; Klemm, Dieter; Heinze, Thomas

    2008-10-13

    The hydrogen bond systems of cellulose and its derivatives are one of the most important factors regarding their physical- and chemical properties such as solubility, crystallinity, gel formation, and resistance to enzymatic degradation. In this paper, it was attempted to clarify the intra- and intermolecular hydrogen bond formation in regioselectively functionalized 3-mono-O-methyl cellulose (3MC). First, the 3MC was synthesized and the cast film thereof was characterized in comparison to 2,3-di-O-methyl cellulose, 6-mono-O-methyl cellulose, and 2,3,6-tri-O-methyl cellulose by means of wide angle X-ray diffraction (WAXD) and (13)C cross polarization/magic angle spinning NMR spectroscopy. Second, the hydrogen bonds in the 3MC film were analyzed by means of FTIR spectroscopy in combination with a curve fitting method. After deconvolution, the resulting two main bands (Fig. 3) indicated that instead of intramolecular hydrogen bonds between position OH-3 and O-5 another intramolecular hydrogen bond between OH-2 and OH-6 may exist. The large deconvoluted band at 3340cm(-1) referred to strong interchain hydrogen bonds involving the hydroxyl groups at C-6. The crystallinity of 54% calculated from the WAXD supports also the dependency of the usually observed crystallization in cellulose of the hydroxyl groups at C-6 to engage in interchain hydrogen bonding.

  16. Rational design of a flavivirus vaccine by abolishing viral RNA 2'-O methylation.

    PubMed

    Li, Shi-Hua; Dong, Hongping; Li, Xiao-Feng; Xie, Xuping; Zhao, Hui; Deng, Yong-Qiang; Wang, Xiao-Yu; Ye, Qing; Zhu, Shun-Ya; Wang, Hong-Jiang; Zhang, Bo; Leng, Qi-Bin; Zuest, Roland; Qin, E-De; Qin, Cheng-Feng; Shi, Pei-Yong

    2013-05-01

    Viruses that replicate in the cytoplasm cannot access the host nuclear capping machinery. These viruses have evolved viral methyltransferase(s) to methylate N-7 and 2'-O cap of their RNA; alternatively, they "snatch" host mRNA cap to form the 5' end of viral RNA. The function of 2'-O methylation of viral RNA cap is to mimic cellular mRNA and to evade host innate immune restriction. A cytoplasmic virus defective in 2'-O methylation is replicative, but its viral RNA lacks 2'-O methylation and is recognized and eliminated by the host immune response. Such a mutant virus could be rationally designed as a live attenuated vaccine. Here, we use Japanese encephalitis virus (JEV), an important mosquito-borne flavivirus, to prove this novel vaccine concept. We show that JEV methyltransferase is responsible for both N-7 and 2'-O cap methylations as well as evasion of host innate immune response. Recombinant virus completely defective in 2'-O methylation was stable in cell culture after being passaged for >30 days. The mutant virus was attenuated in mice, elicited robust humoral and cellular immune responses, and retained the engineered mutation in vivo. A single dose of immunization induced full protection against lethal challenge with JEV strains in mice. Mechanistically, the attenuation phenotype was attributed to the enhanced sensitivity of the mutant virus to the antiviral effects of interferon and IFIT proteins. Collectively, the results demonstrate the feasibility of using 2'-O methylation-defective virus as a vaccine approach; this vaccine approach should be applicable to other flaviviruses and nonflaviviruses that encode their own viral 2'-O methyltransferases.

  17. HCT2, a Novel Hydroxycinnamoyl-Malate Transferase, is Responsible for Phaselic Acid (2-O-Caffeoyl-L-Malate) Biosynthesis in Red Clover

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In red clover, post-harvest oxidation of o-diphenol caffeic acid derivatives to o-quinones by an endogenous polyphenol oxidase (PPO) prevents breakdown of forage protein during storage (1). Agronomically important forages like alfalfa lack both PPO and o-diphenols. Consequently, breakdown of their p...

  18. Combined expression of multidrug resistance protein (MRP) and glutathione S-transferase P1-1 (GSTP1-1) in MCF7 cells and high level resistance to the cytotoxicities of ethacrynic acid but not oxazaphosphorines or cisplatin.

    PubMed

    Morrow, C S; Smitherman, P K; Townsend, A J

    1998-10-15

    We tested the hypothesis that combined increased expression of human glutathione S-transferase P1-1 (GSTP1-1), an enzyme that catalyzes the conjugation with glutathione of several toxic electrophiles, and the glutathione-conjugate efflux pump, multidrug resistance protein (MRP), confers high level resistance to the cytotoxicities of anticancer and other drugs. To accomplish this, we developed MCF7 breast carcinoma cell derivatives that express high levels of GSTP1-1 and MRP, alone and in combination. Parental MCF7 cells, which express no GSTP1-1 and negligible MRP, served as control cells. We found that either MRP or GSTP1-1 alone conferred significant resistance to ethacrynic acid cytotoxicity. Moreover, combined expression of GSTP1-1 and MRP conferred a high level of resistance to ethacrynic acid that was greater than resistance conferred by either protein alone. Increased MRP was also associated with modest resistance to the oxazaphosphorine compounds mafosfamide, 4-hydroxycyclophosphamide, and 4-hydroperoxycyclophosphamide. However, coordinated expression of GSTP1-1 with MRP failed to augment this modest resistance. Similarly, GSTP1-1 had no effect on the sensitivities to cisplatin of MCF7 cells regardless of MRP expression. These results establish that coordinated expression of MRP and GSTP1-1 can confer high level resistance to the cytotoxicities of some drugs, including ethacrynic acid, but that such resistance is variable and does not apply to all toxic drugs that can potentially form glutathione conjugates in either spontaneous or GSTP1-1-catalyzed reactions.

  19. Novel oxadiazole analogues derived from ethacrynic acid: design, synthesis, and structure-activity relationships in inhibiting the activity of glutathione S-transferase P1-1 and cancer cell proliferation.

    PubMed

    Yang, Xinmei; Liu, Guyue; Li, Hongcai; Zhang, Yun; Song, Dandan; Li, Chunmin; Wang, Rui; Liu, Bo; Liang, Wen; Jing, Yongkui; Zhao, Guisen

    2010-02-11

    Ethacrynic acid (EA) is a glutathione S-transferase P1-1 (GST P1-1) inhibitor with weak antiproliferative ability in tumor cells. By use of the principle of bioisosterism, a series of novel EA oxadiazole analogues were designed and synthesized. The structure-activity relationships of inhibiting GST P1-1 activity and cell proliferation of those EA analogues were investigated in human leukemia HL-60 cells. Our data revealed that those EA oxadiazole analogues had improved antiproliferative activity and most of them had similar or better inhibitory effects on GST P1-1 activity than EA. Compound 6u was one of the potent antiproliferative agents without inhibition of GST P1-1 activity. Compounds 6r and 6s were two potent cell growth inhibitors in several solid tumor cell lines with the concentrations inhibiting half of cell growth of less than 5 microM. Our data suggest that these EA oxadiazole analogues are promising antitumor agents that may act through GST P1-1 inhibition-dependent and/or -independent pathways.

  20. Glutathione transferases and neurodegenerative diseases.

    PubMed

    Mazzetti, Anna Paola; Fiorile, Maria Carmela; Primavera, Alessandra; Lo Bello, Mario

    2015-03-01

    There is substantial agreement that the unbalance between oxidant and antioxidant species may affect the onset and/or the course of a number of common diseases including Parkinson's and Alzheimer's diseases. Many studies suggest a crucial role for oxidative stress in the first phase of aging, or in the pathogenesis of various diseases including neurological ones. Particularly, the role exerted by glutathione and glutathione-related enzymes (Glutathione Transferases) in the nervous system appears more relevant, this latter tissue being much more vulnerable to toxins and oxidative stress than other tissues such as liver, kidney or muscle. The present review addresses the question by focusing on the results obtained by specimens from patients or by in vitro studies using cells or animal models related to Parkinson's and Alzheimer's diseases. In general, there is an association between glutathione depletion and Parkinson's or Alzheimer's disease. In addition, a significant decrease of glutathione transferase activity in selected areas of brain and in ventricular cerebrospinal fluid was found. For some glutathione transferase genes there is also a correlation between polymorphisms and onset/outcome of neurodegenerative diseases. Thus, there is a general agreement about the protective effect exerted by glutathione and glutathione transferases but no clear answer about the mechanisms underlying this crucial role in the insurgence of neurodegenerative diseases.

  1. Antioxidant evaluation of O-methylated metabolites of catechin, epicatechin and quercetin.

    PubMed

    Dueñas, Montserrat; González-Manzano, Susana; González-Paramás, Ana; Santos-Buelga, Celestino

    2010-01-20

    Catechins and quercetin are major polyphenols in many plant foods that have been related to health promotion. In the human organism they are largely metabolized to different metabolites, which are further found in plasma and should contribute to the biological effects associated to the intake of the parent compounds. An important step in quercetin and catechins metabolism is the O-methylation of the catechol group, which can be expected to have an effect on their antioxidant and scavenging properties. In the present work, the 3'- and 4'-methylethers of catechin and epicatechin have been prepared and characterised and their antioxidant activity evaluated and compared to that of the corresponding quercetin derivatives. The antioxidant activity was assessed using the ferric reducing power (FRAP) assay and two methods based on the ability to scavenge the ABTS(+) radical cation at different pH values. In these assays the three flavonoids behave as better radical scavengers and reducing compounds than usually recognised antioxidants like alpha-tocopherol. The O-methylation of the hydroxyls of the catechol B-ring resulted in a decrease of the antioxidant activity with regard to the parent compounds. However, the methylated metabolites still retain significant radical scavenging activity at pH 7.4, suggesting that they could act as potential antioxidants in physiological conditions. Quercetin and its methylated metabolites showed, in general, greater activity than (epi)catechin and their O-methyl derivatives, although a relatively high antioxidant activity was found in the case of 3'-O-methyl catechin at pH 7.4, comparable to those of its parent compound and the quercetin metabolites. It was confirmed that the antioxidant activity of the flavonoids assayed was strongly dependent on the pH of the medium, showing higher activity at greater pH values. The results obtained are expected to contribute to the understanding of the mechanisms involved in the biological effects

  2. Interaction of antimicrobial peptide with mycolyl transferase in Mycobacterium tuberculosis.

    PubMed

    Banerjee, Devjani I; Gohil, Tejas P

    2016-03-01

    It is estimated that about 40% of the Indian population are infected with tuberculosis (TB) and that ∼3,000,000 people die as a result of TB annually. TB is caused by Mycobacterium tuberculosis. In 2011, the World Health Organization declared India as having the highest TB burden worldwide. An important criteria for pathogenicity is the presence of mycolic acid linked to the protective outer membrane of bacteria. Mycolyl transferase catalyzes the transfer of mycolic acid and promotes cell wall synthesis. This is also considered as a novel target for drug-mediated intervention strategies. Here, we have attempted to understand the interaction between the antimicrobial peptide (AMP), dermcidin, and mycolyl transferase in M. tuberculosis using a computational approach. The present study was undertaken in order to elucidate the capability of AMPs to treat this bacteria, which is less sensitive to available antibiotics, and to design a novel method for new therapies.

  3. Enhancement of ribozyme catalytic activity by a contiguous oligodeoxynucleotide (facilitator) and by 2'-O-methylation.

    PubMed Central

    Goodchild, J

    1992-01-01

    RNA catalysts (ribozymes) designed to cleave sequences unique to viral RNA's might be developed as therapeutics. For this purpose, they would require high catalytic efficiency and resistance to nucleases. Reported here are two approaches that can be used in combination to improve these properties. First, catalytic efficiency can be improved by oligonucleotides (facilitators) that bind to the substrate contiguously with the 3'-end of the ribozyme. Second, 2'-O-methylation of flanking sequences of the ribozyme increases catalytic activity as well as resistance to nucleases. In combination with a facilitator oligodeoxynucleotide, the cleavage rate was increased 20 fold over that of the unmodified ribozyme. Images PMID:1383929

  4. Investigation of 6-O-methyl-scutellarein metabolites in rats by ultra-flow liquid chromatography/quadrupole-time-of-flight mass spectrometry.

    PubMed

    Zhang, Wei; Li, Nian-Guang; Tang, Yu-Ping; Dong, Ze-Xi; Gu, Ting; Wu, Wen-Yu; Zhang, Peng-Xuan; Yu, Shao-Peng; Duan, Jin-Ao; Shi, Zhi-Hao

    2016-10-01

    Context Scutellarin (1) has been widely used in China to treat acute cerebral infarction and paralysis induced by cerebrovascular diseases. However, scutellarin (1) has unstable metabolic characteristics. Objective The metabolic profile of 6-O-scutellarein was studied to determine its metabolic stability in vivo. Materials and methods In this study, a method of UFLC/Q-TOF MS was used to study the 6-O-methyl-scutellarein metabolites in rat plasma, urine, bile and faeces after oral administration of 6-O-methyl-scutellarein (3). One hour after oral administration of 6-O-methyl-scutellarein (3) (34 mg/kg), approximately 1 mL blood samples were collected in EP tubes from all groups. Bile, urine and faeces samples were collected from eight SD rats during 0-24 h after oral administration. The mass defect filtering, dynamic background subtraction and information dependent acquisition techniques were also used to identify the 6-O-methyl-scutellarein metabolites. Results The parent compound 6-O-methyl-scutellarein (3) was found in rat urine, plasma, bile and faeces. The glucuronide conjugate of 6-O-methyl-scutellarein (M1, M2), diglucuronide conjugate of 6-O-methyl-scutellarein (M3), sulphate conjugate of 6-O-methyl-scutellarein (M4), glucuronide and sulphate conjugate of 6-O-methyl-scutellarein (M5), methylated conjugate of 6-O-methyl-scutellarein (M6) were detected in rat urine. M1, M2 and M3 were detected in rat bile. M1 was found in rat plasma and M7 was detected in faeces. Discussion and conclusion Because the parent compound 6-O-methyl-scutellarein (3) was found in rat urine, plasma, bile and faeces, we speculate that 6-O-methyl-scutellarein (3) had good metabolic stability in vivo. This warrants further study to develop it as a promising candidate for the treatment of ischemic cerebrovascular disease.

  5. Innate immune restriction and antagonism of viral RNA lacking 2'-O methylation

    SciTech Connect

    Hyde, Jennifer L.; Diamond, Michael S.

    2015-05-15

    N-7 and 2′-O methylation of host cell mRNA occurs in the nucleus and results in the generation of cap structures (cap 0, m{sup 7}GpppN; cap 1, m{sup 7}GpppNm) that control gene expression by modulating nuclear export, splicing, turnover, and protein synthesis. Remarkably, RNA cap modification also contributes to mammalian cell host defense as viral RNA lacking 2′-O methylation is sensed and inhibited by IFIT1, an interferon (IFN) stimulated gene (ISG). Accordingly, pathogenic viruses that replicate in the cytoplasm have evolved mechanisms to circumvent IFIT1 restriction and facilitate infection of mammalian cells. These include: (a) generating cap 1 structures on their RNA through cap-snatching or virally-encoded 2′-O methyltransferases, (b) using cap-independent means of translation, or (c) using RNA secondary structural motifs to antagonize IFIT1 binding. This review will discuss new insights as to how specific modifications at the 5′-end of viral RNA modulate host pathogen recognition responses to promote infection and disease.

  6. Multiphasic Absorption of Glucose and 3-O-Methyl Glucose by Aged Potato Slices 1

    PubMed Central

    Linask, Juri; Laties, George G.

    1973-01-01

    The isotherm for glucose absorption by aged potato (Solanum tuberosum var. Russet Burbank) discs shows four distinct phases in the concentration ranges 1.0 to 75 μm, 75 μm to 1.5 mm, 1.5 to 15 mm, and 15 to 100 mm, respectively. Each segment of the multiphasic isotherm, when plotted reciprocally by the method of Lineweaver and Burk or of Hofstee, without regard for uptake in earlier phases, indicates absorption rate to be a hyperbolic function of concentration. The observations suggest that glucose uptake is carrier-mediated, and that the transport barrier undergoes a series of all-or-none transformations at critical external concentrations, yielding successive new and higher values for the parameters Km and Vmax 3-O-Methyl glucose, a nonmetabolizable analogue of glucose, shows the same multiphasic absorption isotherm, with Km values essentially similar to those for glucose uptake, and Vmax values somewhat lower than those for glucose absorption. Whereas the first three phases of the absorption isotherm are taken to reflect passage across the plasma membrane, the fourth phase may reflect kinetics of glucose or 3-O-methyl glucose transport to the vacuole. PMID:16658317

  7. Association study of polymorphisms in the alpha 7 nicotinic acetylcholine receptor subunit and catechol-o-methyl transferase genes with sensory gating in first-episode schizophrenia.

    PubMed

    Liu, Xia; Hong, Xiaohong; Chan, Raymond C K; Kong, Fanzhi; Peng, Zhizhen; Wan, Xiaona; Wang, Changqing; Cheng, Lu

    2013-10-30

    The purpose of the current study was to explore the association of auditory P50 sensory gating (P50) and prepulse inhibition (PPI) of schizophrenia with polymorphisms in the CHRNA7 and COMT genes. One hundred and fourty patients with schizophrenia participated in this study. They were administered the tests P50 and PPI. Moreover, three single nucleotide polymorphisms (SNPs) (rs2337980, rs1909884 and rs883473) in CHRNA7 and three SNPs (rs4680, rs737865 and rs165599) in COMT were selected to be genotyped by polyacrylamide gel microarray techniques. P50 index showed significant reduction in S2 amplitude between wild-type and mutation groups in the COMT rs4680. S1 amplitude of mutation group in the COMT rs737865 was also lower compared to wild-type group. PPI index revealed a shorter pulse latency of mutation group in the rs4680. The suppression ratio of mutation group was lower in COMT rs165599. Negative findings were shown between comparisons in all the CHRNA7 SNPs. We find that P50 and PPI may be influenced by COMT rs4680 polymorphisms in schizophrenia; more excitingly, we find that P50 might be influenced by COMT rs737865 polymorphisms and PPI may be influenced by COMT rs165599 polymorphisms in schizophrenia, and their mutations are associated with the reduction of the risk of P50 or PPI defects in schizophrenia. Futher studies with a larger number of subjects are needed to verify the present findings.

  8. Ribose 2'-O methylation of the vesicular stomatitis virus mRNA cap precedes and facilitates subsequent guanine-N-7 methylation by the large polymerase protein.

    PubMed

    Rahmeh, Amal A; Li, Jianrong; Kranzusch, Philip J; Whelan, Sean P J

    2009-11-01

    During conventional mRNA cap formation, two separate methyltransferases sequentially modify the cap structure, first at the guanine-N-7 (G-N-7) position and subsequently at the ribose 2'-O position. For vesicular stomatitis virus (VSV), a prototype of the nonsegmented negative-strand RNA viruses, the two methylase activities share a binding site for the methyl donor S-adenosyl-l-methionine and are inhibited by individual amino acid substitutions within the C-terminal domain of the large (L) polymerase protein. This led to the suggestion that a single methylase domain functions for both 2'-O and G-N-7 methylations. Here we report a trans-methylation assay that recapitulates both ribose 2'-O and G-N-7 modifications by using purified recombinant L and in vitro-synthesized RNA. Using this assay, we demonstrate that VSV L typically modifies the 2'-O position of the cap prior to the G-N-7 position and that G-N-7 methylation is diminished by pre-2'-O methylation of the substrate RNA. Amino acid substitutions in the C terminus of L that prevent all cap methylation in recombinant VSV (rVSV) partially retain the ability to G-N-7 methylate a pre-2'-O-methylated RNA, therefore uncoupling the effect of substitutions in the C terminus of the L protein on the two methylations. In addition, we show that the 2'-O and G-N-7 methylase activities act specifically on RNA substrates that contain the conserved elements of a VSV mRNA start at the 5' terminus. This study provides new mechanistic insights into the mRNA cap methylase activities of VSV L, demonstrates that 2'-O methylation precedes and facilitates subsequent G-N-7 methylation, and reveals an RNA sequence and length requirement for the two methylase activities. We propose a model of regulation of the activity of the C terminus of L protein in 2'-O and G-N-7 methylation of the cap structure.

  9. Synthesis of (2-amino)ethyl derivatives of quercetin 3-O-methyl ether and their antioxidant and neuroprotective effects.

    PubMed

    Lee, Young Hun; Kim, Hyoung Ja; Yoo, Ho; Jung, Seo Yun; Kwon, Bong Jin; Kim, Nam-Jung; Jin, Changbae; Lee, Yong Sup

    2015-08-01

    Reactive oxygen species have been implicated in several diseases, particularly in ischemia-reperfusion injury. Quercetin 3-O-methyl ether has been reported to show potent antioxidant and neuroprotective activity against neuronal damage induced by reactive oxygen species. Several aminoethyl-substituted derivatives of quercetin 3-O-methyl ether have been synthesized to increase water solubility while retaining antioxidant and neuroprotective activity. Among such derivatives, compound 3a shows potent and well-balanced antioxidant activity in three types of cell-free assay systems and has in vivo neuroprotective effects on transient focal ischemic injury induced by the occlusion of the middle cerebral artery in rats.

  10. Bioconversion of α-linolenic acid to n-3 LCPUFA and expression of PPAR-alpha, acyl Coenzyme A oxidase 1 and carnitine acyl transferase I are incremented after feeding rats with α-linolenic acid-rich oils.

    PubMed

    González-Mañán, Daniel; Tapia, Gladys; Gormaz, Juan Guillermo; D'Espessailles, Amanda; Espinosa, Alejandra; Masson, Lilia; Varela, Patricia; Valenzuela, Alfonso; Valenzuela, Rodrigo

    2012-07-01

    High dietary intake of n-6 fatty acids in relation to n-3 fatty acids may generate health disorders, such as cardiovascular and other chronic diseases. Fish consumption rich in n-3 fatty acids is low in Latin America, it being necessary to seek other alternatives to provide α-linolenic acid (ALA), precursor of n-3 LCPUFA (EPA and DHA). Two innovative oils were assayed, chia (Salvia hispanica) and rosa mosqueta (Rosa rubiginosa). This study evaluated hepatic bioconversion of ALA to EPA and DHA, expression of PPAR-α, acyl-Coenzyme A oxidase 1 (ACOX1) and carnitine acyltransferase I (CAT-I), and accumulation of EPA and DHA in plasma and adipose tissue in Sprague-Dawley rats. Three experimental groups were fed 21 days: sunflower oil (SFO, control); chia oil (CO); rosa mosqueta oil (RMO). Fatty acid composition of total lipids and phospholipids from plasma, hepatic and adipose tissue was assessed by gas-liquid chromatography and TLC. Expression of PPAR-α (RT-PCR) and ACOX1 and CAT-I (Western blot). CO and RMO increased plasma, hepatic and adipose tissue levels of ALA, EPA and DHA and decreased n-6:n-3 ratio compared to SFO (p < 0.05, One-way ANOVA and Newman-Keuls test). CO increased levels of ALA and EPA compared to RMO (p < 0.05). No significant differences were observed for DHA levels. CO also increased the expression of PPAR-α, ACOX1 and CAT-I. Only CAT-I levels were increased by RO. CO and RMO may be a nutritional alternative to provide ALA for its bioconversion to EPA and DHA, and to increase the expression of PPAR-α, ACOX1 and CAT-I, especially CO-oil.

  11. 21 CFR 862.1535 - Ornithine carbamyl transferase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... carbamyl transferase (OCT) in serum. Ornithine carbamyl transferase measurements are used in the diagnosis and treatment of liver diseases, such as infectious hepatitis, acute cholecystitis (inflammation...

  12. Targeting vertebrate intron-encoded box C/D 2'-O-methylation guide RNAs into the Cajal body.

    PubMed

    Marnef, Aline; Richard, Patrica; Pinzón, Natalia; Kiss, Tamás

    2014-06-01

    Post-transcriptional pseudouridylation and 2'-O-methylation of splicesomal small nuclear ribonucleic acids (snRNAs) is mediated by box H/ACA and box C/D small Cajal body (CB)-specific ribonucleoproteins (scaRNPs), respectively. The WD-repeat protein 79 (WDR79) has been proposed to interact with both classes of modification scaRNPs and target them into the CB. The box H/ACA scaRNAs carry the common CAB box motif (consensus, ugAG) that is required for both WDR79 binding and CB-specific accumulation. Thus far, no cis-acting CB-localization element has been reported for vertebrate box C/D scaRNAs. In this study, systematic mutational analysis of the human U90 and another newly identified box C/D scaRNA, mgU2-47, demonstrated that the CB-specific accumulation of vertebrate intron-encoded box C/D scaRNAs relies on GU- or UG-dominated dinucleotide repeat sequences which are predicted to form the terminal stem-loop of the RNA apical hairpin. While the loop nucleotides are unimportant, the adjacent terminal helix that is composed mostly of consecutive G.U and U.G wobble base-pairs is essential for CB-specific localization of box C/D scaRNAs. Co-immunoprecipitation experiments confirmed that the newly identified CB localization element, called the G.U/U.G wobble stem, is crucial for in vivo association of box C/D scaRNPs with WDR79.

  13. RTL-P: a sensitive approach for detecting sites of 2′-O-methylation in RNA molecules

    PubMed Central

    Dong, Zhi-Wei; Shao, Peng; Diao, Li-Ting; Zhou, Hui; Yu, Chun-Hong; Qu, Liang-Hu

    2012-01-01

    2′-O-methylation is present within various cellular RNAs and is essential to RNA biogenesis and functionality. Several methods have been developed for the identification and localization of 2′-O-methylated sites in RNAs; however, the detection of RNA modifications, especially in low-abundance RNAs and small non-coding RNAs with a 2′-O-methylation at the 3′-end, remains a difficult task. Here, we introduce a new method to detect 2′-O-methylated sites in diverse RNA species, referred to as RTL-P [Reverse Transcription at Low deoxy-ribonucleoside triphosphate (dNTP) concentrations followed by polymerase chain reaction (PCR)] that demonstrates precise mapping and superior sensitivity compared with previous techniques. The main procedures of RTL-P include a site-specific primer extension by reverse transcriptase at a low dNTP concentration and a semi-quantitative PCR amplification step. No radiolabeled or fluorescent primers are required. By designing specific RT primers, we used RTL-P to detect both previously identified and novel 2′-O-methylated sites in human and yeast ribosomal RNAs (rRNAs), as well as mouse piwi-interacting RNAs (piRNAs). These results demonstrate the powerful application of RTL-P for the systematic analysis of fully or partially methylated residues in diverse RNA species, including low-abundance RNAs or small non-coding RNAs such as piRNAs and microRNAs (miRNAs). PMID:22833606

  14. The determination of tRNALeu recognition nucleotides for Escherichia coli L/F transferase

    PubMed Central

    Fung, Angela Wai Shan; Leung, Charles Chung Yun; Fahlman, Richard Peter

    2014-01-01

    Escherichia coli leucyl/phenylalanyl-tRNA protein transferase catalyzes the tRNA-dependent post-translational addition of amino acids onto the N-terminus of a protein polypeptide substrate. Based on biochemical and structural studies, the current tRNA recognition model by L/F transferase involves the identity of the 3′ aminoacyl adenosine and the sequence-independent docking of the D-stem of an aminoacyl-tRNA to the positively charged cluster on L/F transferase. However, this model does not explain the isoacceptor preference observed 40 yr ago. Using in vitro-transcribed tRNA and quantitative MALDI-ToF MS enzyme activity assays, we have confirmed that, indeed, there is a strong preference for the most abundant leucyl-tRNA, tRNALeu (anticodon 5′-CAG-3′) isoacceptor for L/F transferase activity. We further investigate the molecular mechanism for this preference using hybrid tRNA constructs. We identified two independent sequence elements in the acceptor stem of tRNALeu (CAG)—a G3:C70 base pair and a set of 4 nt (C72, A4:U69, C68)—that are important for the optimal binding and catalysis by L/F transferase. This maps a more specific, sequence-dependent tRNA recognition model of L/F transferase than previously proposed. PMID:24935875

  15. Preservation of Mouse Sperm by Convective Drying and Storing in 3-O-Methyl-D-Glucose

    PubMed Central

    Liu, Jie; Lee, Gloria Y.; Lawitts, Joel A.; Toner, Mehmet; Biggers, John D.

    2012-01-01

    With the fast advancement in the genetics and bio-medical fields, the vast number of valuable transgenic and rare genetic mouse models need to be preserved. Preservation of mouse sperm by convective drying and subsequent storing at above freezing temperatures could dramatically reduce the cost and facilitate shipping. Mouse sperm were convectively dried under nitrogen gas in the Na-EGTA solution containing 100 mmol/L 3-O-methyl-D-glucose and stored in LiCl sorption jars (Relative Humidity, RH, 12%) at 4°C and 22°C for up to one year. The functionality of these sperm samples after storage was tested by intracytoplasmic injection into mouse oocytes. The percentages of blastocysts produced from sperm stored at 4°C for 1, 2, 3, 6, and 12 months were 62.6%, 53.4%, 39.6%, 33.3%, and 30.4%, respectively, while those stored at 22°C for 1, 2, and 3 months were 28.8%, 26.6%, and 12.2%, respectively. Transfer of 38 two- to four-cell embryos from sperm stored at 4°C for 1 year produced two live pups while 59 two- to four-cell embryos from sperm stored at 22°C for 3 months also produced two live pups. Although all the pups looked healthy at 3 weeks of age, normality of offspring produced using convectively dried sperm needs further investigation. The percentages of blastocyst from sperm stored in the higher relative humidity conditions of NaBr and MgCl2 jars and driest condition of P2O5 jars at 4°C and 22°C were all lower. A simple method of mouse sperm preservation is demonstrated. Three-O-methyl-D-glucose, a metabolically inactive derivative of glucose, offers significant protection for dried mouse sperm at above freezing temperatures without the need for poration of cell membrane. PMID:22272261

  16. Gamma-glutamyl transferase and cardiovascular disease

    PubMed Central

    Kastrati, Adnan

    2016-01-01

    Gamma-glutamyl transferase (GGT) is an enzyme located on the external surface of cellular membranes. GGT contributes in maintaining the physiological concentrations of cytoplasmic glutathione and cellular defense against oxidative stress via cleavage of extracellular glutathione and increased availability of amino acids for its intracellular synthesis. Increased GGT activity is a marker of antioxidant inadequacy and increased oxidative stress. Ample evidence suggests that elevated GGT activity is associated with increased risk of cardiovascular disease (CVD) such as coronary heart disease (CHD), stroke, arterial hypertension, heart failure, cardiac arrhythmias and all-cause and CVD-related mortality. The evidence is weaker for an association between elevated GGT activity and acute ischemic events and myocardial infarction. The risk for CVD or CVD-related mortality mediated by GGT may be explained by the close correlation of GGT with conventional CVD risk factors and various comorbidities, particularly non-alcoholic fatty liver disease, alcohol consumption, oxidative stress, metabolic syndrome, insulin resistance and systemic inflammation. The finding of GGT activity in atherosclerotic plaques and correlation of intra-plaque GGT activity with histological indexes of plaque instability may suggest a participation of GGT in the pathophysiology of CVD, particularly atherosclerosis. However, whether GGT has a direct role in the pathophysiology of CVD or it is an epiphenomenon of coexisting CVD risk factors or comorbidities remains unknown and Hill’s criteria of causality relationship between GGT and CVD are not fulfilled. The exploration whether GGT provides prognostic information on top of the information provided by known cardiovascular risk factors regarding the CVD or CVD-related outcome and exploration of molecular mechanisms of GGT involvement in the pathophysiology of CVD and eventual use of interventions to reduce circulating GGT activity remain a duty of

  17. Effects of 2'-O-methyl nucleotide on ligation capability of T4 DNA ligase.

    PubMed

    Zhao, Bin; Tong, Zhaoxue; Zhao, Guojie; Mu, Runqing; Shang, Hong; Guan, Yifu

    2014-09-01

    To further understand the ligation mechanism, effects of 2'-O-methyl nucleotide (2'-OMeN) on the T4 DNA ligation efficiency were investigated. Fluorescence resonance energy transfer assay was used to monitor the nick-joining process by T4 DNA ligase. Results showed that substitutions at 5'- and 3'-ends of the nick decreased the ligation efficiency by 48.7% ± 6.7% and 70.6% ± 4.0%, respectively. Substitutions at both 5'- and 3'-ends decreased the ligation efficiency by 76.6% ± 1.3%. Corresponding kinetic parameters, Vmax, Km, and kcat, have been determined in each case by using the Michaelis-Menten equation. The kinetic data showed that the 2'-OMeN substitutions reduced the maximal initial velocity and increased the Michaelis constant of T4 DNA ligase. Mismatches at 5'- and 3'-ends of the nick have also shown different influences on the ligation. Results here showed that the sugar pucker conformation at 3'-end impairs the ligation efficiency more profoundly than that at 5'-end. Different concentrations of Mg(2+), Ca(2+), K(+), Na(+), and ATP were also demonstrated to affect the T4 DNA ligase activity. These results enriched our knowledge about the effects of 2'-OMeN substitutions on the T4 DNA ligase.

  18. O-Methylated flavonol isorhamnetin prevents acute inflammation through blocking of NF-κB activation.

    PubMed

    Yang, Ji Hye; Kim, Sang Chan; Shin, Bo Yeon; Jin, So Hee; Jo, Mi Jeong; Jegal, Kyung Hwan; Kim, Young Woo; Lee, Jong Rok; Ku, Sae Kwang; Cho, Il Je; Ki, Sung Hwan

    2013-09-01

    Here, we isolated isorhamnetin, a natural 3'-O-methylated flavonoid, from water dropwort (Oenanthe javanica, Umbelliferae) and investigated its ability to protect against acute inflammation in vivo and in vitro. To induce paw swelling, the hind paw of each rat was injected with a carrageenan 1h after vehicle or isorhamnetin treatment. In vitro effect and mechanism studies were performed in lipopolysaccharide (LPS)-activated macrophages. Administration of isorhamnetin markedly inhibited the swelling volume and the thickness of hind paws. Moreover, isorhamnetin significantly reduced inflammatory cell infiltration and pro-inflammatory gene expression in rats. Isorhamnetin pretreatment inhibited inducible nitric oxide synthase (iNOS) expression and NO release in LPS-stimulated cells. Activation of nuclear factor-kappa B (NF-κB) and activating protein-1 (AP-1) is the key step in the iNOS gene induction. Isorhamnetin specifically inhibited NF-κB luciferase activity, but not AP-1. Pretreatment with isorhamnetin suppressed NF-κB nuclear translocation in accordance with decreased phosphorylation and degradation of inhibitory-κB. Consistently, TNF-α, IL-1β and IL-6 expression, representative NF-κB target genes, were almost completely prohibited by isorhamnetin. Furthermore, isorhamnetin inhibited LPS-induced JNK and AKT/IKKα/β phosphorylation. Our results suggest that isorhamnetin inhibited JNK, and AKT/IKKα/β activation, leading to NF-κB inactivation, which might contribute to the inhibition of the acute inflammatory response.

  19. Roles for glutathione transferases in antioxidant recycling

    PubMed Central

    Dixon, David P; Steel, Patrick G

    2011-01-01

    Uniquely among the plant glutathione transferases, two classes possess a catalytic cysteine capable of performing glutathione-dependent reductions. These are the dehydroascorbate reductases (DHARs) and the lambda-class glutathione transferases (GSTLs). Using immobilized GSTLs probed with crude plant extracts we have identified flavonols as high affinity ligands and subsequently demonstrated a novel glutathione-dependent role for these enzymes in recycling oxidized quercetin. By comparing the activities of DHARs and GSTLs we now propose a unified catalytic mechanism that suggests oxidized anthocyanidins and tocopherols may be alternative polyphenolic substrates of GSTLs. PMID:21778824

  20. Investigations on computed 13C NMR one-dimensional non-refocused INEPT experiments for structural determinations in O-methylated glycosides

    NASA Astrophysics Data System (ADS)

    Pouységu, Laurent; Nobert, Philippe; Deffieux, Denis; De Jéso, Bernard; Lartigue, Jean-Claude; Pétraud, Michel; Ratier, Max

    1999-10-01

    A new one-dimensional 13C NMR approach for the determination of methoxyl substituents configuration in O-methylated glycosides is presented. Assignments are based on structural investigations by non-refocused INEPT experiments associated with numerical methods.

  1. Theoretical spectroscopic characterization at low temperatures of S-methyl thioformate and O-methyl thioformate

    SciTech Connect

    Senent, M. L.; Puzzarini, C.; Hochlaf, M.; Domínguez-Gómez, R.; Carvajal, M.

    2014-09-14

    Highly correlated ab initio methods are employed to determine spectroscopic properties at low temperatures of two S-analogs of methyl formate: S-methyl thioformate CH{sub 3}-S-CHO (MSCHO) and O-methyl thioformate CH{sub 3}-O-CHS (MOCHS). Both species are detectable and they are expected to play an important role in Astrochemistry. Molecular properties are compared with those of the O-analog, methyl formate. Both isomers present two conformers cis and trans. cis-CH{sub 3}-S-CHO represents the most stable structure lying 4372.2 cm{sup −1} below cis-CH{sub 3}-O-CHS. The energy difference between the cis and trans forms is drastically lower for MSCHO (1134 cm{sup −1}) than for MOCHS (1963.6 cm{sup −1}). Harmonic and anharmonic fundamentals and the corresponding intensities, as well as the rotational constants for the ground vibrational and first excited torsional states and the centrifugal distortions constants, are provided. Low torsional energy levels have been obtained by solving variationally a two dimensional Hamiltonian expressed in terms of the two torsional degrees of freedom. The corresponding 2D potential energy surfaces have been computed at the CCSD(T)/aug-cc-pVTZ level of theory. The methyl torsional barriers V{sub 3}(cis) are determined to be 139.7 cm{sup −1} (CH{sub 3}-S-CHO) and 670.4 cm{sup −1} (CH{sub 3}-O-CHS). The A/E splitting of ground torsional state has been estimated to be 0.438 cm{sup −1} for CH{sub 3}-S-CHO and negligible for CH{sub 3}-O-CHS.

  2. Theoretical spectroscopic characterization at low temperatures of S-methyl thioformate and O-methyl thioformate.

    PubMed

    Senent, M L; Puzzarini, C; Hochlaf, M; Domínguez-Gómez, R; Carvajal, M

    2014-09-14

    Highly correlated ab initio methods are employed to determine spectroscopic properties at low temperatures of two S-analogs of methyl formate: S-methyl thioformate CH3-S-CHO (MSCHO) and O-methyl thioformate CH3-O-CHS (MOCHS). Both species are detectable and they are expected to play an important role in Astrochemistry. Molecular properties are compared with those of the O-analog, methyl formate. Both isomers present two conformers cis and trans. cis-CH3-S-CHO represents the most stable structure lying 4372.2 cm(-1) below cis-CH3-O-CHS. The energy difference between the cis and trans forms is drastically lower for MSCHO (1134 cm(-1)) than for MOCHS (1963.6 cm(-1)). Harmonic and anharmonic fundamentals and the corresponding intensities, as well as the rotational constants for the ground vibrational and first excited torsional states and the centrifugal distortions constants, are provided. Low torsional energy levels have been obtained by solving variationally a two dimensional Hamiltonian expressed in terms of the two torsional degrees of freedom. The corresponding 2D potential energy surfaces have been computed at the CCSD(T)/aug-cc-pVTZ level of theory. The methyl torsional barriers V3(cis) are determined to be 139.7 cm(-1) (CH3-S-CHO) and 670.4 cm(-1) (CH3-O-CHS). The A/E splitting of ground torsional state has been estimated to be 0.438 cm(-1) for CH3-S-CHO and negligible for CH3-O-CHS.

  3. Purification and characterization of the Oligosaccharyl transferase

    SciTech Connect

    Kapoor, T.M.

    1990-11-01

    Oligosaccharyl transferase was characterized to be a glycoprotein with at least one saccharide unit that had a D-manno or D- glucopyranose configuration with unmodified hydroxy groups at C-3, C-4 and C-6, using a Concanavalin A affinity column. This afforded a 100 fold increase in the transferase purity in the solubilized microsomal sample and also removed over 90% of the microsomal proteins (the cytosolic ones being removed before solubilization). The detergent, N,N-Dimethyldodecylamine N-oxide (LDAO) was used for solubilization and it yielded a system compatible with the assay and the purification steps. An efficient method for detergent extraction without dilution of sample or protein precipitation was also developed.

  4. Sugar composition of the pectic polysaccharides of charophytes, the closest algal relatives of land-plants: presence of 3-O-methyl-d-galactose residues

    PubMed Central

    O’Rourke, Christina; Gregson, Timothy; Murray, Lorna; Sadler, Ian H.; Fry, Stephen C.

    2015-01-01

    Background and Aims During evolution, plants have acquired and/or lost diverse sugar residues as cell-wall constituents. Of particular interest are primordial cell-wall features that existed, and in some cases abruptly changed, during the momentous step whereby land-plants arose from charophytic algal ancestors. Methods Polysaccharides were extracted from four charophyte orders [Chlorokybales (Chlorokybus atmophyticus), Klebsormidiales (Klebsormidium fluitans, K. subtile), Charales (Chara vulgaris, Nitella flexilis), Coleochaetales (Coleochaete scutata)] and an early-diverging land-plant (Anthoceros agrestis). ‘Pectins’ and ‘hemicelluloses’, operationally defined as extractable in oxalate (100 °C) and 6 m NaOH (37 °C), respectively, were acid- or Driselase-hydrolysed, and the monosaccharides analysed chromatographically. One unusual monosaccharide, ‘U’, was characterized by 1H/13C-nuclear magnetic resonance spectroscopy and also enzymically. Key Results ‘U’ was identified as 3-O-methyl-d-galactose (3-MeGal). All pectins, except in Klebsormidium, contained acid- and Driselase-releasable galacturonate, suggesting homogalacturonan. All pectins, without exception, released rhamnose and galactose on acid hydrolysis; however, only in ‘higher’ charophytes (Charales, Coleochaetales) and Anthoceros were these sugars also efficiently released by Driselase, suggesting rhamnogalacturonan-I. Pectins of ‘higher’ charophytes, especially Chara, contained little arabinose, instead possessing 3-MeGal. Anthoceros hemicelluloses were rich in glucose, xylose, galactose and arabinose (suggesting xyloglucan and arabinoxylan), none of which was consistently present in charophyte hemicelluloses. Conclusions Homogalacturonan is an ancient streptophyte feature, albeit secondarily lost in Klebsormidium. When conquering the land, the first embryophytes already possessed rhamnogalacturonan-I. In contrast, charophyte and land-plant hemicelluloses differ

  5. Isopentenyl Pyrophosphate cis-1,4-Polyisoprenyl Transferase from Guayule (Parthenium argentatum Gray).

    PubMed

    Madhavan, S; Benedict, C R

    1984-08-01

    Electron micrographs of the mesophyll cells of guayule Parthenium argentatum Gray leaves show deposits of cis-polyisoprene (rubber) in the cytoplasm in the vicinity of mitochondria and chloroplasts and demonstrate that the rubber-synthesizing enzymes are present in guayule leaves. The terminal step in the synthesis of cis-polyisoprene from isopentenyl pyrophosphate (IPP) catalyzed by isopentenyl pyrophosphate cis-1,4-polyisoprenyl transferase has been demonstrated in crude leaf extracts by the enzymic incorporation of [(14)C]isopentenyl pyrophosphate into the polymer and the recovery of [(14)C]levulinic acid following ozonolysis. The rubber transferase activity in the crude extracts of guayule leaves was 5.8 nanomoles isopentenyl pyrophosphate incorporated per milligram protein per hour. This is the first description of the rubber transferase from a nonlaticiferous plant.The specific activity (in units of nanomoles IPP converted per milligram protein per hour) of the partially purified enzyme following chromatography on diethylaminoethyl-cellulose columns was 41.7 units and contained 0.29 units of IPP isomerase activity and 0.08 units of farnesyl pyrophosphate synthetase activity. The rubber transferase requires reduced glutathione and Mg(2+) for maximal activity. There was no incorporation of IPP into cis-1,4-polyisoprene in the absence of rubber particles as primer, and Langmuir isotherm plots showed that the specific activity of the enzyme was proportional to the concentration of the enzyme on the surface of the rubber particles. For a given rubber particle distribution, enzyme activity was proportional to time, IPP concentration, and rubber concentration. The addition of 0.4 millimolar dimethylallyl pyrophosphate to the rubber transferase reaction resulted in a 2-fold increase in the incorporation of IPP into rubber. A comparison was made of the relative activities of rubber transferase in different species of Parthenium, Ficus, and Euphorbia.

  6. Isopentenyl Pyrophosphate cis-1,4-Polyisoprenyl Transferase from Guayule (Parthenium argentatum Gray) 1

    PubMed Central

    Madhavan, S.; Benedict, Chauncey R.

    1984-01-01

    Electron micrographs of the mesophyll cells of guayule Parthenium argentatum Gray leaves show deposits of cis-polyisoprene (rubber) in the cytoplasm in the vicinity of mitochondria and chloroplasts and demonstrate that the rubber-synthesizing enzymes are present in guayule leaves. The terminal step in the synthesis of cis-polyisoprene from isopentenyl pyrophosphate (IPP) catalyzed by isopentenyl pyrophosphate cis-1,4-polyisoprenyl transferase has been demonstrated in crude leaf extracts by the enzymic incorporation of [14C]isopentenyl pyrophosphate into the polymer and the recovery of [14C]levulinic acid following ozonolysis. The rubber transferase activity in the crude extracts of guayule leaves was 5.8 nanomoles isopentenyl pyrophosphate incorporated per milligram protein per hour. This is the first description of the rubber transferase from a nonlaticiferous plant. The specific activity (in units of nanomoles IPP converted per milligram protein per hour) of the partially purified enzyme following chromatography on diethylaminoethyl-cellulose columns was 41.7 units and contained 0.29 units of IPP isomerase activity and 0.08 units of farnesyl pyrophosphate synthetase activity. The rubber transferase requires reduced glutathione and Mg2+ for maximal activity. There was no incorporation of IPP into cis-1,4-polyisoprene in the absence of rubber particles as primer, and Langmuir isotherm plots showed that the specific activity of the enzyme was proportional to the concentration of the enzyme on the surface of the rubber particles. For a given rubber particle distribution, enzyme activity was proportional to time, IPP concentration, and rubber concentration. The addition of 0.4 millimolar dimethylallyl pyrophosphate to the rubber transferase reaction resulted in a 2-fold increase in the incorporation of IPP into rubber. A comparison was made of the relative activities of rubber transferase in different species of Parthenium, Ficus, and Euphorbia. Images Fig. 2 Fig. 3

  7. Glutathione S-transferase class {pi} polymorphism in baboons

    SciTech Connect

    Aivaliotis, M.J.; Cantu, T.; Gilligan, R.

    1995-02-01

    Glutathione S-transferase (GST) comprises a family of isozymes with broad substrate specificities. One or more GST isozymes are present in most animal tissues and function in several detoxification pathways through the conjugation of reduced glutathione with various electrophiles, thereby reducing their potential toxicity. Four soluble GST isozymes encoded by genes on different chromosomes have been identified in humans. The acidic class pi GST, GSTP (previously designated GST-3), is widely distributed in adult tissues and appears to be the only GST isozyme present in leukocytes and placenta. Previously reported electrophoretic analyses of erythrocyte and leukocyte extracts revealed single bands of activity, which differed slightly in mobility between the two cell types, or under other conditions, a two-banded pattern. To our knowledge, no genetically determined polymorphisms have previously been reported in GSTP from any species. We now report a polymorphism of GSTP in baboon leukocytes, and present family data that verifies autosomal codominant inheritance. 14 refs., 2 figs., 1 tab.

  8. Red clover HCT2, a hydroxycinnamoyl-coenzyme A:malate hydroxycinnamoyl transferase, plays a crucial role in biosynthesis of phaselic acid and other hydroxycinnamoyl-malate esters in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In red clover (Trifolium pratense) leaves, phaselic acid (2-O-caffeoyl-L-malate) accumulates to several mmol kg-1 fresh weight and is a crucial component of a natural system that prevents protein breakdown during harvest and storage of this forage crop. Previously, we identified HCT2, a red clover g...

  9. O-Methylated Metabolite of 7,8-Dihydroxyflavone Activates TrkB Receptor and Displays Antidepressant Activity

    PubMed Central

    Liu, Xia; Qi, Qi; Xiao, Ge; Li, Jingyu; Luo, Hongbo R.; Ye, Keqiang

    2016-01-01

    7,8-Dihydroxyflavone (7,8-DHF) acts as a TrkB receptor-specific agonist. It mimics the physiological actions of brain-derived neurotrophic factor (BDNF) and demonstrates remarkable therapeutic efficacy in animal models of various neurological diseases. Nonetheless, its in vivo pharmacokinetic profiles and metabolism remain unclear. Here we report that 7,8-DHF and its O-methylated metabolites distribute in mouse brain after oral administration. Both hydroxy groups can be mono-methylated, and the mono-methylated metabolites activate TrkB in vitro and in vivo. Blocking methylation, using COMT inhibitors, diminishes the agonistic effect of TrkB activation by 7,8-DHF or 4′-dimethylamino-7,8-DHF, supporting the contribution of the methylated metabolite to TrkB activation in mouse brain. Moreover, we have synthesized several methylated metabolite derivatives, and they also potently activate the TrkB receptor and reduce immobility in both forced swim test and tail suspension test, indicating that these methylated metabolites may possess antidepressant activity. Hence, our data demonstrate that 7,8-DHF is orally bioavailable and can penetrate the brain-blood barrier. The O-methylated metabolites are implicated in TrkB receptor activation in the brain. PMID:23445871

  10. Consumption of fructose- but not glucose-sweetened beverages for 10 weeks increases circulating concentrations of uric acid, retinol binding protein-4, and gamma-glutamyl transferase activity in overweight/obese humans

    PubMed Central

    2012-01-01

    Background Prospective studies in humans examining the effects of fructose consumption on biological markers associated with the development of metabolic syndrome are lacking. Therefore we investigated the relative effects of 10 wks of fructose or glucose consumption on plasma uric acid and RBP-4 concentrations, as well as liver enzyme (AST, ALT, and GGT) activities in men and women. Methods As part of a parallel arm study, older (age 40–72), overweight and obese male and female subjects (BMI 25–35 kg/m2) consumed glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 wks. Fasting and 24-h blood collections were performed at baseline and following 10 wks of intervention and plasma concentrations of uric acid, RBP-4 and liver enzyme activities were measured. Results Consumption of fructose, but not glucose, led to significant increases of 24-h uric acid profiles (P < 0.0001) and RBP-4 concentrations (P = 0.012), as well as plasma GGT activity (P = 0.04). Fasting plasma uric acid concentrations increased in both groups; however, the response was significantly greater in subjects consuming fructose (P = 0.002 for effect of sugar). Within the fructose group male subjects exhibited larger increases of RBP-4 levels than women (P = 0.024). Conclusions These findings suggest that consumption of fructose at 25% of energy requirements for 10 wks, compared with isocaloric consumption of glucose, may contribute to the development of components of the metabolic syndrome by increasing circulating uric acid, GGT activity, suggesting alteration of hepatic function, and the production of RBP-4. PMID:22828276

  11. Crystallographic trapping of the glutamyl-CoA thioester intermediate of family I CoA transferases

    SciTech Connect

    Rangarajan,E.; Li, Y.; Ajamian, E.; Iannuzzi, P.; Kernaghan, S.; Fraser, M.; Cygler, M.; Matte, A.

    2005-01-01

    Coenzyme A transferases are involved in a broad range of biochemical processes in both prokaryotes and eukaryotes, and exhibit a diverse range of substrate specificities. The YdiF protein from Escherichia coli O157:H7 is an acyl-CoA transferase of unknown physiological function, and belongs to a large sequence family of CoA transferases, present in bacteria to humans, which utilize oxoacids as acceptors. In vitro measurements showed that YdiF displays enzymatic activity with short-chain acyl-CoAs. The crystal structures of YdiF and its complex with CoA, the first co-crystal structure for any Family I CoA transferase, have been determined and refined at 1.9 and 2.0 Angstrom resolution, respectively. YdiF is organized into tetramers, with each monomer having an open {alpha}/{beta} structure characteristic of Family I CoA transferases. Co-crystallization of YdiF with a variety of CoA thioesters in the absence of acceptor carboxylic acid resulted in trapping a covalent {gamma}-glutamyl-CoA thioester intermediate. The CoA binds within a well defined pocket at the N- and C-terminal domain interface, but makes contact only with the C-terminal domain. The structure of the YdiF complex provides a basis for understanding the different catalytic steps in the reaction of Family I CoA transferases.

  12. O-Alkylated heavy atom carbohydrate probes for protein X-ray crystallography: Studies towards the synthesis of methyl 2-O-methyl-L-selenofucopyranoside

    PubMed Central

    Sommer, Roman; Hauck, Dirk; Varrot, Annabelle; Imberty, Anne; Künzler, Markus

    2016-01-01

    Selenoglycosides are used as reactive glycosyl donors in the syntheses of oligosaccharides. In addition, such heavy atom analogs of natural glycosides are useful tools for structure determination of their lectin receptors using X-ray crystallography. Some lectins, e.g., members of the tectonin family, only bind to carbohydrate epitopes with O-alkylated ring hydroxy groups. In this context, we report the first synthesis of an O-methylated selenoglycoside, specifically methyl 2-O-methyl-L-selenofucopyranoside, a ligand of the lectin tectonin-2 from the mushroom Laccaria bicolor. The synthetic route required a strategic revision and further optimization due to the intrinsic lability of alkyl selenoglycosides, in particular for the labile fucose. Here, we describe a successful synthetic access to methyl 2-O-methyl-L-selenofucopyranoside in 9 linear steps and 26% overall yield starting from allyl L-fucopyranoside. PMID:28144356

  13. O-Alkylated heavy atom carbohydrate probes for protein X-ray crystallography: Studies towards the synthesis of methyl 2-O-methyl-L-selenofucopyranoside.

    PubMed

    Sommer, Roman; Hauck, Dirk; Varrot, Annabelle; Imberty, Anne; Künzler, Markus; Titz, Alexander

    2016-01-01

    Selenoglycosides are used as reactive glycosyl donors in the syntheses of oligosaccharides. In addition, such heavy atom analogs of natural glycosides are useful tools for structure determination of their lectin receptors using X-ray crystallography. Some lectins, e.g., members of the tectonin family, only bind to carbohydrate epitopes with O-alkylated ring hydroxy groups. In this context, we report the first synthesis of an O-methylated selenoglycoside, specifically methyl 2-O-methyl-L-selenofucopyranoside, a ligand of the lectin tectonin-2 from the mushroom Laccaria bicolor. The synthetic route required a strategic revision and further optimization due to the intrinsic lability of alkyl selenoglycosides, in particular for the labile fucose. Here, we describe a successful synthetic access to methyl 2-O-methyl-L-selenofucopyranoside in 9 linear steps and 26% overall yield starting from allyl L-fucopyranoside.

  14. Syn- and anti-conformations of 5'-deoxy- and 5'-O-methyl-uridine 2',3'-cyclic monophosphate.

    PubMed

    Grabarkiewicz, Tomasz; Hoffmann, Marcin

    2006-01-01

    Two uridine 2',3'-cyclic monophosphate (cUMP) derivatives, 5'-deoxy (DcUMP) and 5'-O-methyl (McUMP), were studied by means of quantum chemical methods. Aqueous solvent effects were estimated based on the isodensity-surface polarized-continuum model (IPCM). Gas phase calculations revealed only slight energy differences between the syn- and anti-conformers of both compounds: the relative energies of the syn-structure are -0.9 and 0.2 kcal mol(-1) for DcUMP and McUMP, respectively. According to the results from the IPCM calculations, however, both syn-conformers become about 14 kcal mol(-1) more stable in aqueous solution than their corresponding anti-structures. Additionally, the effects of a countercation and protonation on DcUMP were studied, revealing that the syn-structure is also favored over the anti-one for these systems.

  15. Total synthesis of siphonazole and its O-methyl derivative, structurally unusual bis-oxazole natural products.

    PubMed

    Linder, Jörg; Blake, Alexander J; Moody, Christopher J

    2008-11-07

    The details of the first syntheses of the unusual bis-oxazole natural products siphonazole and its O-methyl derivative are reported. The cinnamyl substituted oxazole was constructed using diazocarbonyl chemistry, whereby the cinnamamide was reacted with the rhodium carbene derived from methyl 2-diazo-3-oxobutanoate to give a beta-ketoamide that was cyclodehydrated to the corresponding oxazole-4-ester. Reduction to the corresponding aldehyde was followed by coupling with a zinc reagent derived from methyl 2-iodomethyl-5-methyloxazole-4-carboxylate, also prepared using rhodium carbene chemistry, to give, after oxidation of the resulting secondary alcohol, the desired bis-oxazole ketone. The syntheses were completed by hydrolysis of the ester and coupling of the 2,4-pentadienylamine side chain.

  16. Synthesis and immunodetection of 6-O-methyl-phosphoramidyl-α-D-galactose: a Campylobacter jejuni antigenic determinant.

    PubMed

    Jiao, Yuening; Ma, Zuchao; Ewing, Cheryl P; Guerry, Patricia; Monteiro, Mario A

    2015-12-11

    Campylobacter jejuni is a leading cause of traveler's diarrhea. Previously, we have shown that a C. jejuni capsule polysaccharide (CPS) conjugate vaccine can fully prevent C.jejuni diarrhea in non-human primates. C.jejuni CPSs are decorated with non-stoichiometric amounts of O-methyl phosphoramidate (MeOPN) units that are key serospecific markers. In the case of C.jejuni serotype complex HS23/36, the MeOPN are at positions 2 and 6 of the CPS galactose (Gal). We describe here the synthesis of the p-methoxyphenyl glycoside of MeOPN→6-α-D-Galp, and its immunodetection by antisera raised by C.jejuni CPS conjugates with MeOPN at primary positions. The synthetic approach in this work served as the foundation for a similar MeOPN→6-Gal construct used in a conjugate vaccine, whose synthesis, immunogenicity and efficacy will be described elsewhere.

  17. Effective incorporation of 2'-O-methyl-oligoribonucleotides into liposomes and enhanced cell association through modification with thiocholesterol.

    PubMed

    Oberhauser, B; Wagner, E

    1992-02-11

    Cholesterol was linked to 2'-O-methyl-oligoribonucleotides (2'-OMe-RNA) via a disulfide bond by reacting the 3'-(pyridyldithio)-modified 2'-OMe-RNA with thiocholesterol in dichloromethane-methanol solution. This ligation reaction was made possible by a novel strategy in which the highly charged oligonucleotide was rendered soluble in nonaqueous solvent through conversion to a lipophilic amidinium salt. The biodegradable lipophilic modification of 2'-OMe-RNA resulted in a large increase in incorporation of such oligonucleotides into liposomes prepared by reversephase evaporation. Furthermore, association of these modified oligonucleotides with cultured TIB 73 cells was 100-fold higher than that seen with unmodified 2'-OMe-RNA in serum-free medium and about 10 to 30-fold higher in the presence of 10% calf serum. During incubation with cells, release of the internalized oligonucleotide from the thiocholesteryl moiety can be demonstrated.

  18. Effective incorporation of 2'-O-methyl-oligoribonucleotides into liposomes and enhanced cell association through modification with thiocholesterol.

    PubMed Central

    Oberhauser, B; Wagner, E

    1992-01-01

    Cholesterol was linked to 2'-O-methyl-oligoribonucleotides (2'-OMe-RNA) via a disulfide bond by reacting the 3'-(pyridyldithio)-modified 2'-OMe-RNA with thiocholesterol in dichloromethane-methanol solution. This ligation reaction was made possible by a novel strategy in which the highly charged oligonucleotide was rendered soluble in nonaqueous solvent through conversion to a lipophilic amidinium salt. The biodegradable lipophilic modification of 2'-OMe-RNA resulted in a large increase in incorporation of such oligonucleotides into liposomes prepared by reversephase evaporation. Furthermore, association of these modified oligonucleotides with cultured TIB 73 cells was 100-fold higher than that seen with unmodified 2'-OMe-RNA in serum-free medium and about 10 to 30-fold higher in the presence of 10% calf serum. During incubation with cells, release of the internalized oligonucleotide from the thiocholesteryl moiety can be demonstrated. PMID:1741287

  19. IFIT1: A dual sensor and effector molecule that detects non-2'-O methylated viral RNA and inhibits its translation

    PubMed Central

    Diamond, Michael S.

    2014-01-01

    Our understanding of the antiviral actions of IFIT1, one of the most strongly induced interferon stimulated genes (ISGs), has advanced remarkably within the last few years. This review focuses on the recent cellular, biochemical, and structural discoveries that have provided new insight as to how IFIT1 functions as both a sensor and effector molecule of the cellular innate immune system. IFIT1 can detect viral RNA lacking 2’-O methylation on their cap structures or displaying a 5’-triphosphate moiety and inhibit their translation or sequester them from active replication. Because of these inhibitory actions, many viruses have evolved unique mechanisms to evade IFIT1 to facilitate replication, spread of infection, and disease pathogenesis. PMID:24909568

  20. Live Cell Analysis and Mathematical Modeling Identify Determinants of Attenuation of Dengue Virus 2’-O-Methylation Mutant

    PubMed Central

    Ruggieri, Alessia; Acosta, Eliana Gisela; Bartenschlager, Marie; Reuter, Antje; Fischl, Wolfgang; Harder, Nathalie; Bergeest, Jan-Philip; Flossdorf, Michael; Rohr, Karl; Höfer, Thomas; Bartenschlager, Ralf

    2015-01-01

    Dengue virus (DENV) is the most common mosquito-transmitted virus infecting ~390 million people worldwide. In spite of this high medical relevance, neither a vaccine nor antiviral therapy is currently available. DENV elicits a strong interferon (IFN) response in infected cells, but at the same time actively counteracts IFN production and signaling. Although the kinetics of activation of this innate antiviral defense and the timing of viral counteraction critically determine the magnitude of infection and thus disease, quantitative and kinetic analyses are lacking and it remains poorly understood how DENV spreads in IFN-competent cell systems. To dissect the dynamics of replication versus antiviral defense at the single cell level, we generated a fully viable reporter DENV and host cells with authentic reporters for IFN-stimulated antiviral genes. We find that IFN controls DENV infection in a kinetically determined manner that at the single cell level is highly heterogeneous and stochastic. Even at high-dose, IFN does not fully protect all cells in the culture and, therefore, viral spread occurs even in the face of antiviral protection of naïve cells by IFN. By contrast, a vaccine candidate DENV mutant, which lacks 2’-O-methylation of viral RNA is profoundly attenuated in IFN-competent cells. Through mathematical modeling of time-resolved data and validation experiments we show that the primary determinant for attenuation is the accelerated kinetics of IFN production. This rapid induction triggered by mutant DENV precedes establishment of IFN-resistance in infected cells, thus causing a massive reduction of virus production rate. In contrast, accelerated protection of naïve cells by paracrine IFN action has negligible impact. In conclusion, these results show that attenuation of the 2’-O-methylation DENV mutant is primarily determined by kinetics of autocrine IFN action on infected cells. PMID:26720415

  1. Cloning, expression and properties of porcine trachea UDP-galnac: polypeptide N-acetylgalactosaminyl transferase.

    PubMed

    Sangadala, Sreedhara; Swain, Ja Baris; McNear, Adrian; Mendicino, Joseph

    2004-11-01

    A UDP-GalNAc:polypeptide N-acetyl-galactosaminyl transferase which catalyses the transfer of GalNAc from UDP-GalNAc to serine and threonine residues in mucin polypeptide chains was purified to homogeneity from swine trachea epithelium (Mendicino J, Sangadala S: Mol Cell Biochem 185: 135-145, 1998). Peptides obtained by proteolysis of the purified enzyme were isolated, sequenced and used to prepare degenerate oligonucleotide primers. Amplified segments of a gene encoding GalNAc transferase were synthesised using the primers and a swine trachea epithelial cDNA library. Selected cDNA fragments were then used to screen the cDNA library, and a clone containing an open reading frame encoding 559 amino acids was isolated. The predicted amino acid sequence contains type II transmembrane region, three potential N-glycosylation sites as well as all of the isolated peptide sequences. The nucleotide sequence and predicted primary protein structure of the transferase were very similar to those of type T-1 GalNAc transferases. The isolated clone was transiently expressed in COS 7 cells and the recombinant enzyme, which contained an N-terminal hexa-histidine tag, was purified to homogeneity and its enzymatic properties were examined. The Vmax of the recombinant enzyme, 2.08 micromol/(min mg), was nearly the same as the native enzyme, 2.12 micromol/(min mg), when assayed with partially deglycosylated mucins as glycosyl acceptors. Both enzymes showed much higher activities when assayed with peptides prepared by limited acid hydrolysis of incompletely deglycosylated Cowper's gland, swine, and human respiratory mucins and tryptic peptides isolated from deglycosylated mucin polypeptide chains. However, as noted earlier (Mendicino J, Sangadala S: Mol Cell Biochem 185: 135-145, 1998), these enzymes showed very little activity with completely deglycosylated mucin polypeptide chains. When completely deglycosylated polypeptide chains were partially glycosylated by incubation with microsome

  2. Synergistic and independent actions of multiple terminal nucleotidyl transferases in the 3' tailing of small RNAs in Arabidopsis.

    PubMed

    Wang, Xiaoyan; Zhang, Shuxin; Dou, Yongchao; Zhang, Chi; Chen, Xuemei; Yu, Bin; Ren, Guodong

    2015-04-01

    All types of small RNAs in plants, piwi-interacting RNAs (piRNAs) in animals and a subset of siRNAs in Drosophila and C. elegans are subject to HEN1 mediated 3' terminal 2'-O-methylation. This modification plays a pivotal role in protecting small RNAs from 3' uridylation, trimming and degradation. In Arabidopsis, HESO1 is a major enzyme that uridylates small RNAs to trigger their degradation. However, U-tail is still present in null hen1 heso1 mutants, suggesting the existence of (an) enzymatic activities redundant with HESO1. Here, we report that UTP: RNA uridylyltransferase (URT1) is a functional paralog of HESO1. URT1 interacts with AGO1 and plays a predominant role in miRNA uridylation when HESO1 is absent. Uridylation of miRNA is globally abolished in a hen1 heso1 urt1 triple mutant, accompanied by an extensive increase of 3'-to-5' trimming. In contrast, disruption of URT1 appears not to affect the heterochromatic siRNA uridylation. This indicates the involvement of additional nucleotidyl transferases in the siRNA pathway. Analysis of miRNA tailings in the hen1 heso1 urt1 triple mutant also reveals the existence of previously unknown enzymatic activities that can add non-uridine nucleotides. Importantly, we show HESO1 may also act redundantly with URT1 in miRNA uridylation when HEN1 is fully competent. Taken together, our data not only reveal a synergistic action of HESO1 and URT1 in the 3' uridylation of miRNAs, but also independent activities of multiple terminal nucleotidyl transferases in the 3' tailing of small RNAs and an antagonistic relationship between uridylation and trimming. Our results may provide further insight into the mechanisms of small RNA 3' end modification and stability control.

  3. Studies of the relationship between the catalytic activity and binding of non-substrate ligands by the glutathione S-transferases.

    PubMed Central

    Boyer, T D; Vessey, D A; Holcomb, C; Saley, N

    1984-01-01

    The dimeric enzyme glutathione S-transferase B is composed of two dissimilar subunits, referred to as Ya and Yc. Transferase B (YaYc) and two other transferases that are homodimers of the individual Ya and Yc subunits were purified from rat liver. Inhibition of these three enzymes by Indocyanine Green, biliverdin and several bile acids was investigated at different values of pH (range 6.0-8.0). Indocyanine Green, biliverdin and chenodeoxycholate were found to be effective inhibitors of transferases YaYc and YcYc at low (pH 6.0) but not high (pH 8.0) values of pH. Between these extremes of pH intermediate degrees of inhibition were observed. Cholate and taurochenodeoxycholate, however, were ineffective inhibitors of transferase YcYc at all values of pH. The observed differences in bile acids appeared to be due, in part, to differences in their state of ionization. In contrast with the above results, transferase YaYa was inhibited by at least 80% by the non-substrate ligands at all values of pH. These effects of pH on the three transferases could not be accounted for by pH-induced changes in the enzyme's affinity for the inhibitor. Thus those glutathione S-transferases that contain the Yc subunit are able to act simultaneously as both enzymes and binding proteins. In addition to enzyme structure, the state of ionization of the non-substrate ligands may also influence whether the transferases can perform both functions simultaneously. PMID:6696720

  4. O-METHYL PHOSPHORAMIDATE MODIFICATIONS ON THE CAPSULAR POLYSACCHARIDE OF CAMPYLOBACTER JEJUNI ARE INVOLVED IN SERUM RESISTANCE, INFECTION, AND INSECTICIDAL ACTIVITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is the most commonly reported cause of bacterial foodborne illness in North America. C. jejuni decorates its surface polysaccharides with a variety of variable phosphorylated structures, including O-methyl phosphoramidate (MeOPN) modifications on the capsular polysaccharide. Alt...

  5. Flash Photolysis Experiment of o-Methyl Red as a Function of pH: A Low-Cost Experiment for the Undergraduate Physical Chemistry Lab

    ERIC Educational Resources Information Center

    Larsen, Molly C.; Perkins, Russell J.

    2016-01-01

    A low-cost, time-resolved spectroscopy experiment appropriate for third year physical chemistry students is presented. Students excite o-methyl red in basic solutions with a laser pointer and use a modular spectrometer with a CCD array detector to monitor the transient spectra as the higher-energy cis conformer of the molecule converts back to the…

  6. Enantioselective syntheses and configuration assignments of gamma-chiral butenolides from Plagiomnium undulatum: butenolide synthesis from tetronic acids.

    PubMed

    Kapferer, Tobias; Brückner, Reinhard; Herzig, Axel; König, Wilfried A

    2005-03-18

    Both enantiomers of the gamma-chiral alpha,beta-dimethylated butyrolactones nat-1 and nat-2 from the moss Plagiomnium undulatum were synthesized stereoselectively through butenolides and tetronic acids, respectively. The configuration of the natural products was determined by GLC comparisons with mono(3-O-acetyl-6-O-tert-butyldimethylsilyl-2-O-methyl)hexakis(6-O-tert-butyldimethylsilyl-2,3-di-O-methyl)-beta-cyclodextrin as a stationary phase.

  7. Identification of a diazinon-metabolizing glutathione S-transferase in the silkworm, Bombyx mori

    PubMed Central

    Yamamoto, Kohji; Yamada, Naotaka

    2016-01-01

    The glutathione S-transferase superfamily play key roles in the metabolism of numerous xenobiotics. We report herein the identification and characterization of a novel glutathione S-transferase in the silkworm, Bombyx mori. The enzyme (bmGSTu2) conjugates glutathione to 1-chloro-2,4-dinitrobenzene, as well as metabolizing diazinon, one of the organophosphate insecticides. Quantitative reverse transcription–polymerase chain reaction analysis of transcripts demonstrated that bmGSTu2 expression was induced 1.7-fold in a resistant strain of B. mori. Mutagenesis of putative amino acid residues in the glutathione-binding site revealed that Ile54, Glu66, Ser67, and Asn68 are crucial for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTu2 and into the detoxification of organophosphate insecticides. PMID:27440377

  8. Cloning and expression of clostridium acetobutylicum ATCC 824 acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase in Escherichia coli

    SciTech Connect

    Cary, J.W.; Petersen, D.J.; Bennett, G.N. ); Papoutsakis, E.T. )

    1990-06-01

    Coenzyme A (CoA)-transferase (acetoacetyl-CoA:acetate/butyrate:CoA-transferase (butyrate-acetoacetate CoA-transferase) (EC 2.8.3.9)) of Clostridium acetobutylicum ATCC 824 is an important enzyme in the metabolic shift between the acid-producing and solvent-forming states of this organism. The genes encoding the two subunits of this enzyme have been cloned and subsequent subcloning experiments established the position of the structural genes for CoA-transferase. Complementation of Escherichia coli ato mutants with the recombinant plasmid pCoAT4 (pUC19 carrying a 1.8-kilobase insert of C. acetobutylicum DNA encoding CoA-transferase activity) enabled the transformants to grow on butyrate as a sole carbon source. Despite the ability of CoA-transferase to complement the ato defect in E. coli mutants, Southern blot and Western blot (immunoblot) analyses showed showed that neither the C. acetobutylicum genes encoding CoA-transferase nor the enzyme itself shared any apparent homology with its E. coli counterpart. Polypeptides of M{sub r} of the purified CoA-transferase subunits were observed by Western blot and maxicell analysis of whole-cell extracts of E.coli harboring pCoAT4. The proximity and orientation of the genes suggest that the genes encoding the two subunits of CoA-transferase may form an operon similar to that found in E. coli. In the plasmid, however, transcription appears to be primarily from the lac promoter of the vector.

  9. Crystal structure of E. coli lipoprotein diacylglyceryl transferase.

    PubMed

    Mao, Guotao; Zhao, Yan; Kang, Xusheng; Li, Zhijie; Zhang, Yan; Wang, Xianping; Sun, Fei; Sankaran, Krishnan; Zhang, Xuejun C

    2016-01-05

    Lipoprotein biogenesis is essential for bacterial survival. Phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt) is an integral membrane enzyme that catalyses the first reaction of the three-step post-translational lipid modification. Deletion of the lgt gene is lethal to most Gram-negative bacteria. Here we present the crystal structures of Escherichia coli Lgt in complex with phosphatidylglycerol and the inhibitor palmitic acid at 1.9 and 1.6 Å resolution, respectively. The structures reveal the presence of two binding sites and support the previously reported structure-function relationships of Lgt. Complementation results of lgt-knockout cells with different mutant Lgt variants revealed critical residues, including Arg143 and Arg239, that are essential for diacylglyceryl transfer. Using a GFP-based in vitro assay, we correlated the activities of Lgt with structural observations. Together, the structural and biochemical data support a mechanism whereby substrate and product, lipid-modified lipobox-containing peptide, enter and leave the enzyme laterally relative to the lipid bilayer.

  10. Inactivation of Anopheles gambiae Glutathione Transferase ε2 by Epiphyllocoumarin

    PubMed Central

    Marimo, Patience; Hayeshi, Rose; Mukanganyama, Stanley

    2016-01-01

    Glutathione transferases (GSTs) are part of a major family of detoxifying enzymes that can catalyze the reductive dehydrochlorination of dichlorodiphenyltrichloroethane (DDT). The delta and epsilon classes of insect GSTs have been implicated in conferring resistance to this insecticide. In this study, the inactivation of Anopheles gambiae GSTε2 by epiphyllocoumarin (Tral 1) was investigated. Recombinant AgGSTε2 was expressed in Escherichia coli cells containing a pET3a-AGSTε2 plasmid and purified by affinity chromatography. Tral 1 was shown to inactivate GSTε2 both in a time-dependent manner and in a concentration-dependent manner. The half-life of GSTε2 in the presence of 25 μM ethacrynic acid (ETA) was 22 minutes and with Tral 1 was 30 minutes, indicating that Tral 1 was not as efficient as ETA as an inactivator. The inactivation parameters kinact and KI were found to be 0.020 ± 0.001 min−1 and 7.5 ± 2.1 μM, respectively, after 90 minutes of incubation. Inactivation of GSTε2 by Tral 1 implies that Tral 1 covalently binds to this enzyme in vitro and would be expected to exhibit time-dependent effects on the enzyme in vivo. Tral 1, therefore, would produce irreversible effects when used together with dichlorodiphenyltrichloroethane (DDT) in malaria control programmes where resistance is mediated by GSTs. PMID:26925266

  11. The Genetic Architecture of Murine Glutathione Transferases

    PubMed Central

    Lu, Lu; Pandey, Ashutosh K.; Houseal, M. Trevor; Mulligan, Megan K.

    2016-01-01

    Glutathione S-transferase (GST) genes play a protective role against oxidative stress and may influence disease risk and drug pharmacokinetics. In this study, massive multiscalar trait profiling across a large population of mice derived from a cross between C57BL/6J (B6) and DBA2/J (D2)—the BXD family—was combined with linkage and bioinformatic analyses to characterize mechanisms controlling GST expression and to identify downstream consequences of this variation. Similar to humans, mice show a wide range in expression of GST family members. Variation in the expression of Gsta4, Gstt2, Gstz1, Gsto1, and Mgst3 is modulated by local expression QTLs (eQTLs) in several tissues. Higher expression of Gsto1 in brain and liver of BXD strains is strongly associated (P < 0.01) with inheritance of the B6 parental allele whereas higher expression of Gsta4 and Mgst3 in brain and liver, and Gstt2 and Gstz1 in brain is strongly associated with inheritance of the D2 parental allele. Allele-specific assays confirmed that expression of Gsto1, Gsta4, and Mgst3 are modulated by sequence variants within or near each gene locus. We exploited this endogenous variation to identify coexpression networks and downstream targets in mouse and human. Through a combined systems genetics approach, we provide new insight into the biological role of naturally occurring variants in GST genes. PMID:26829228

  12. Evaluation of a di-O-methylated glycan as a potential antigenic target for the serodiagnosis of human toxocariasis.

    PubMed

    Elefant, G R; Roldán, W H; Seeböck, A; Kosma, P

    2016-04-01

    Serodiagnosis of human toxocariasis is based on the detection of specific IgG antibodies by the enzyme-linked immunosorbent assay (ELISA) using Toxocara larvae excretory-secretory (TES) antigens, but its production is a laborious and time-consuming process being also limited by the availability of adult females of T. canis as source for ova to obtain larvae. Chemical synthesis of the di-O-methylated (DiM) glycan structure found in the TES antigens has provided material for studying the antibody reactivity in a range of mammalian hosts, showing reactivity with human IgM and IgG. In this study, we have evaluated the performance of the DiM glycan against a panel of sera including patients with toxocariasis (n = 60), patients with other helminth infections (n = 75) and healthy individuals (n = 94), showing that DiM is able to detect IgG antibodies with a sensitivity and specificity of 91·7% and 94·7%, respectively, with a very good agreement with the TES antigens (kappa = 0·825). However, cross-reactivity was observed in some sera from patients with ascariasis, hymenolepiasis and fascioliasis. These results show that the DiM glycan could be a promising antigenic tool for the serodiagnosis of human toxocariasis.

  13. Intramolecular Oxidative O-Demethylation of an Oxoferryl Porphyrin Complexed with a Per-O-methylated β-Cyclodextrin Dimer.

    PubMed

    Kitagishi, Hiroaki; Kurosawa, Shun; Kano, Koji

    2016-11-22

    The intramolecular oxidation of ROCH3 to ROCH2 OH, where the latter compound spontaneously decomposed to ROH and HCHO, was observed during the reaction of the supramolecular complex (met-hemoCD3) with cumene hydroperoxide in aqueous solution. Met-hemoCD3 is composed of meso-tetrakis(4-sulfonatophenyl)porphinatoiron(III) (Fe(III) TPPS) and a per-O-methylated β-cyclodextrin dimer having an -OCH2 PyCH2 O- linker (Py=pyridine-3,5-diyl). The O=Fe(IV) TPPS complex was formed by the reaction of met-hemoCD3 with cumene hydroperoxide, and isolated by gel-filtration chromatography. Although the isolated O=Fe(IV) TPPS complex in the cyclodextrin cage was stable in aqueous solution at 25 °C, it was gradually converted to Fe(II) TPPS (t1/2 =7.6 h). This conversion was accompanied by oxidative O-demethylation of an OCH3 group in the cyclodextrin dimer. The results indicated that hydrogen abstraction by O=Fe(IV) TPPS from ROCH3 yields HO-Fe(III) TPPS and ROCH2(.) . This was followed by radical coupling to afford Fe(II) TPPS and ROCH2 OH. The hemiacetal (ROCH2 OH) immediately decomposed to ROH and HCHO. This study revealed the ability of oxoferryl porphyrin to induce two-electron oxidation.

  14. Isolation, purification and identification of ellagic acid derivatives, catechins, and procyanidins from the root bark of Anisophyllea dichostyla R. Br.

    PubMed

    Khallouki, F; Haubner, R; Hull, W E; Erben, G; Spiegelhalder, B; Bartsch, H; Owen, R W

    2007-03-01

    The root bark of Anisophyllea dichostyla R. Br. is traditionally used in the Democratic Republic Congo for the treatment of several conditions such as anorexia, fatigue and intestinal infections. We have identified and quantitated several polyphenol antioxidants in the methanol extract of the root bark (120g). The polyphenol content (3.32g/kg) was predominantly ellagitannins (25%) and polyhydroxyflavan-3-ols (catechins and procyanidins, 75%) with 3'-O-methyl-3,4-methylenedioxo ellagic acid 4'-O-beta-d-glucopyranoside and (-)-epicatechin as the major species in each class. These two compounds and the following species were identified unequivocally by NMR spectroscopy: (+)-catechin, (-)-epicatechin 3-O-gallate, 3-O-methyl ellagic acid, 3,3'-di-O-methyl ellagic acid, 3'-O-methyl-3,4-methylenedioxo ellagic acid, 3'-O-methyl-3,4-methylenedioxo ellagic acid 4'-O-beta-d-glucopyranoside, and 3'-O-methyl ellagic acid 4-O-beta-d-xylopyranoside. The following additional compounds were purified by semi-preparative HPLC and tentatively identified on the basis of UV spectra, HPLC-ESI-MS and nano-ESI-MS-MS: (+)-catechin-3-O-beta-d-glucopyranoside, epicatechin-(4beta-->8)-catechin (procyanidin B(1)), epicatechin-(4beta-->8)-epicatechin (procyanidin B(2)), an (epi)catechin trimer, 3-O-methyl ellagic acid 4-O-beta-d-glucopyranoside, (-)-epicatechin 3-O-vanillate, 3,4-methylenedioxo ellagic acid 4'-O- beta-d-glucopyranoside, and 3,3'-di-O-methyl ellagic acid 4-O-beta-d-xylopyranoside. Fractionation of the raw extract by column chromatography on silicic acid yielded 10 fractions. In the hypoxanthine/xanthine oxidase antioxidant assay system, CC-9 which contained a range of polyphenols dominated by (-)-epicatechin-O-gallate proved to be the most potent antioxidant fraction (IC(50)=52 micro g/mL) in terms of ROS scavenging. In terms of XO inhibition CC-8, dominated by (epi)catechin trimer and which also contained appreciable amounts of 3'-O-methyl ellagic acid 4'-O

  15. Characterization of Affinity-Purified Isoforms of Acinetobacter calcoaceticus Y1 Glutathione Transferases

    PubMed Central

    Chee, Chin-Soon; Tan, Irene Kit-Ping; Alias, Zazali

    2014-01-01

    Glutathione transferases (GST) were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW) of 23 kDa. 2-dimensional (2-D) gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5) and GST2 (pI 6.2) with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase) and F0KKB0 (glutathione S-transferase III) of Acinetobacter calcoaceticus strain PHEA-2, respectively. PMID:24892084

  16. Euphorbia characias latex: micromorphology of rubber particles and rubber transferase activity.

    PubMed

    Spanò, Delia; Pintus, Francesca; Esposito, Francesca; Loche, Danilo; Floris, Giovanni; Medda, Rosaria

    2015-02-01

    We have recently characterized a natural rubber in the latex of Euphorbia characias. Following that study, we here investigated the rubber particles and rubber transferase in that Mediterranean shrub. Rubber particles, observed by scanning electron microscopy, are spherical in shape with diameter ranging from 0.02 to 1.2 μm. Washed rubber particles exhibit rubber transferase activity with a rate of radiolabeled [(14)C]IPP incorporation of 4.5 pmol min(-1)mg(-1). Denaturing electrophoresis profile of washed rubber particles reveals a single protein band of 37 kDa that is recognized in western blot analysis by antibodies raised against the synthetic peptide whose sequence, DVVIRTSGETRLSNF, is included in one of the five regions conserved among cis-prenyl chain elongation enzymes. The cDNA nucleotide sequence of E. characias rubber transferase (GenBank JX564541) and the deduced amino acid sequence appear to be highly homologous to the sequence of several plant cis-prenyltransferases.

  17. Molecular characterization of a glutathione transferase from Pinus tabulaeformis (Pinaceae).

    PubMed

    Zeng, Qing-Yin; Lu, Hai; Wang, Xiao-Ru

    2005-05-01

    Glutathione transferases (GSTs) play important roles in stress tolerance and detoxification metabolism in plants. To date, studies on GSTs in higher plants have focused largely on agricultural plants. In contrast, there is virtually no information on the molecular characteristics of GSTs in gymnosperms. The present study reports for the first time the cloning, expression and characteristics of a GST gene (PtGSTU1) from a pine, Pinus tabulaeformis, which is widely distributed from northern to central China covering cold temperate and drought regions. The PtGSTU1 gene encodes a protein of 228 amino acid residues with a calculated molecular mass of 26.37 kDa. Reverse transcription PCR revealed that PtGSTU1 was expressed in different tissues, both above and below ground, of P. tabulaeformis. The over-expressed recombinant PtGSTU1 showed high activity towards the substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). Kinetic analysis with respect to CDNB as substrate revealed a Km of 0.47 mM and Vmax of 169.1 micromol/min per mg of protein. The recombinant PtGSTU1 retained more than 60% of its maximum enzymatic activity from 15 degrees C to 45 degrees C with a broad optimum Tm range of 25 degrees C - 35 degrees C. The enzyme had a maximum activity at approximately pH 8.5 - 9.0. Site-directed mutagenesis revealed that Ser13 in the N-terminal domain is a critical catalytic residue, responsible for stabilisation of the thiolate anion of enzyme-bound glutathione. Based on comparative analyses of its amino acid sequence, phylogeny and predicted three-dimensional structure, the PtGSTU1 should be classified as a tau class GST.

  18. An alternative mechanism for the catalysis of peptide bond formation by L/F transferase: substrate binding and orientation.

    PubMed

    Fung, Angela W; Ebhardt, H Alexander; Abeysundara, Heshani; Moore, Jack; Xu, Zhizhong; Fahlman, Richard P

    2011-06-17

    Eubacterial leucyl/phenylalanyl tRNA protein transferase (L/F transferase) catalyzes the transfer of a leucine or a phenylalanine from an aminoacyl-tRNA to the N-terminus of a protein substrate. This N-terminal addition of an amino acid is analogous to that of peptide synthesis by ribosomes. A previously proposed catalytic mechanism for Escherichia coli L/F transferase identified the conserved aspartate 186 (D186) and glutamine 188 (Q188) as key catalytic residues. We have reassessed the role of D186 and Q188 by investigating the enzymatic reactions and kinetics of enzymes possessing mutations to these active-site residues. Additionally three other amino acids proposed to be involved in aminoacyl-tRNA substrate binding are investigated for comparison. By quantitatively measuring product formation using a quantitative matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based assay, our results clearly demonstrate that, despite significant reduction in enzymatic activity as a result of different point mutations introduced into the active site of L/F transferase, the formation of product is still observed upon extended incubations. Our kinetic data and existing X-ray crystal structures result in a proposal that the critical roles of D186 and Q188, like the other amino acids in the active site, are for substrate binding and orientation and do not directly participate in the chemistry of peptide bond formation. Overall, we propose that L/F transferase does not directly participate in the chemistry of peptide bond formation but catalyzes the reaction by binding and orientating the substrates for reaction in an analogous mechanism that has been described for ribosomes.

  19. Human glutathione S-transferases. Characterization of the anionic forms from lung and placenta.

    PubMed Central

    Dao, D D; Partridge, C A; Kurosky, A; Awasthi, Y C

    1984-01-01

    Anionic glutathione S-transferases were purified from human lung and placenta. Chemical and immunochemical characterization, including polyacrylamide-gel electrophoresis, gave strong evidence that the anionic lung and placental enzymes are chemically similar, if not identical, proteins. The electrophoretic mobilities of both proteins were identical in conventional alkaline gels as well as in gels containing sodium dodecyl sulphate. Gel filtration of the intact active enzyme established an Mr value of 45000; however, with sodium dodecyl sulphate/polyacrylamide-gel electrophoresis under dissociating conditions a subunit Mr of 22500 was obtained. Amino acid sequence analysis of the N-terminal region of the placental enzyme revealed a single polypeptide sequence identical with that of lung. Results obtained from immunoelectrophoresis, immunotitration, double immunodiffusion and rocket immunoelectrophoresis also indicated the anionic lung and placental enzymes to be closely similar. The chemical similarity of these two proteins was further supported by protein compositional analysis and fragment analysis after chemical hydrolysis. Immunochemical comparison of the anionic lung and placental enzymes with human liver glutathione S-transferases revealed cross-reactivity with the anionic omega enzyme, but no cross-reactivity was detectable with the cationic enzymes. Comparison of the N-terminal region of the human anionic enzyme with reported sequences of rat liver glutathione S-transferases gave strong evidence of chemical similarity, indicating that these enzymes are evolutionarily related. However, computer analysis of the 30-residue N-terminal sequence did not show any significant chemical similarity to any other reported protein sequence, pointing to the fact that the glutathione S-transferases represent a unique class of proteins. Images Fig. 2. Fig. 5. Fig. 6. Fig. 7. PMID:6466318

  20. Systematic analysis of O-methyltransferase gene family and identification of potential members involved in the formation of O-methylated flavonoids in Citrus.

    PubMed

    Liu, Xiaogang; Luo, Yan; Wu, Hongkun; Xi, Wanpeng; Yu, Jie; Zhang, Qiuyun; Zhou, Zhiqin

    2016-01-10

    The O-methylation of various secondary metabolites is mainly catalyzed by S-adenosyl-l-methionine (SAM)-dependent O-methyltransferase (OMT) proteins that are encoded by the O-methyltransferase gene family. Citrus fruits are a rich source of O-methylated flavonoids that have a broad spectrum of biological activities, including anti-inflammatory, anticarcinogenic, and antiatherogenic properties. However, little is known about this gene family and its members that are involved in the O-methylation of flavonoids and their regulation in Citrus. In this study, 58 OMT genes were identified from the entire Citrus sinensis genome and compared with those from 3 other representative dicot plants. A comprehensive analysis was performed, including functional/substrate predictions, identification of chromosomal locations, phylogenetic relationships, gene structures, and conserved motifs. Distribution mapping revealed that the 58 OMT genes were unevenly distributed on the 9 citrus chromosomes. Phylogenetic analysis of 164 OMT proteins from C.sinensis, Arabidopsis thaliana, Populus trichocarpa, and Vitis vinifera showed that these proteins were categorized into group I (COMT subfamily) and group II (CCoAOMT subfamily), which were further divided into 10 and 2 subgroups, respectively. Finally, digital gene expression and quantitative real-time polymerase chain reaction analyses revealed that citrus OMT genes had distinct temporal and spatial expression patterns in different tissues and developmental stages. Interestingly, 18 and 11 of the 27 genes predicted to be involved in O-methylation of flavonoids had higher expression in the peel and pulp during fruit development, respectively. The citrus OMT gene family identified in this study might help in the selection of appropriate candidate genes and facilitate functional studies in Citrus.

  1. Microbially mediated O-methylation of bisphenol A results in metabolites with increased toxicity to the developing zebrafish (Danio rerio) embryo.

    PubMed

    McCormick, Jessica M; Van Es, Theo; Cooper, Keith R; White, Lori A; Häggblom, Max M

    2011-08-01

    Bisphenol A (BPA) is used in the manufacture of plastics, and has been identified in various environmental matrices, including human serum and breast milk. The prevalence of BPA in the environment and the potential exposure to humans underscores the need to more fully understand the fate of BPA in the environment and the resulting effects and toxicity to humans and other organisms. Here we demonstrate that Mycobacterium species, including Mycobacterium vanbaalenii strain PYR-1, are able to O-methylate BPA to its mono- and dimethyl ether derivatives (BPA MME and BPA DME, respectively). The O-methylation of BPA results in metabolites with increased toxicity as shown from differences in survival and occurrence of developmental lesions in developing zebrafish embryos exposed to BPA, BPA MME, and BPA DME. The mono- and dimethyl ether derivatives were more toxic than BPA, resulting in increased mortality at 5 (LC(50) = 0.66 and 1.2 mg L(-1)) and 28 (LC(50) = 0.38, <0.5 mg L(-1)) days post fertilization. Furthermore, exposure to either of the O-methylated metabolites resulted in an increase in the incidence of developmental lesions as compared to BPA exposure. These data illustrate a new mechanism for microbial transformation of BPA, producing metabolites warranting further study to understand their prevalence and effects in the environment.

  2. Genetic Variation in the Catechol-O-Methyl Transferase Val108/158Met Is Linked to the Caudate and Posterior Cingulate Cortex Volume in Healthy Subjects: Voxel-Based Morphometry Analysis of Brain Magnetic Resonance Imaging

    PubMed Central

    Watanabe, Keita; Kakeda, Shingo; Yoshimura, Reiji; Ide, Satoru; Hayashi, Kenji; Katsuki, Asuka; Umene-Nakano, Wakako; Watanabe, Rieko; Abe, Osamu; Korogi, Yukunori

    2015-01-01

    The effect of the catechol-O-methyltransferase (COMT) Val158Met polymorphism on brain morphology has been investigated but remains controversial. We hypothesized that a comparison between Val/Val and Val/Met individuals, which may represent the most different combinations concerning the effects of the COMT genotype, may reveal new findings. We investigated the brain morphology using 3-Tesla magnetic resonance imaging in 27 Val/Val and 22 Val/Met individuals. Voxel-based morphometry revealed that the volumes of the bilateral caudate and posterior cingulate cortex were significantly smaller in Val/Val individuals than in Val/Met individuals [right caudate: false discovery rate (FDR)-corrected p = 0.048; left caudate: FDR-corrected p = 0.048; and bilateral posterior cingulate cortex: FDR-corrected p = 0.048]. This study demonstrates that interacting functional variants of COMT affect gray matter regional volumes in healthy subjects. PMID:26566126

  3. Relationship between the catechol-O-methyl transferase Val108/158Met genotype and brain volume in treatment-naive major depressive disorder: Voxel-based morphometry analysis.

    PubMed

    Watanabe, Keita; Kakeda, Shingo; Yoshimura, Reiji; Abe, Osamu; Ide, Satoru; Hayashi, Kenji; Katsuki, Asuka; Umene-Nakano, Wakako; Watanabe, Rieko; Nakamura, Jun; Korogi, Yukunori

    2015-09-30

    Catechol-O-methyltransferase (COMT) is a methylation enzyme engaged in the degradation of dopamine and noradrenaline by catalyzing the transfer of a methyl group from S-adenosylmethionine. An association was found between the Valine (Val) 108/158Methionine (Met) COMT polymorphism (rs4680) and major depressive disorder (MDD). The authors prospectively investigated the relationship between the Val108/158Met COMT genotype and voxel-based morphometry (VBM) findings for patients with first-episode and treatment-naïve MDD and healthy subjects (HS). Participants comprised 30 MDD patients and 48 age- and sex-matched HS who were divided according to the COMT genotype. Effects of diagnosis, COMT genotype, and the genotype-diagnosis interaction in relation to brain morphology in the Val/Met and Val/Val individuals were evaluated using a VBM analysis of high-resolution magnetic resonance imaging findings. Among the Val/Met individuals, the volume of the bilateral caudate was significantly smaller for MDD patients than for HS. In the Val/Val individuals, the caudate volume was comparable between MDD patients and HS. Significant genotype-diagnosis interaction effects on brain morphology were noted in the right caudate.

  4. Inhibition of human catechol-O-methyltransferase-mediated dopamine O-methylation by daphnetin and its Phase II metabolites.

    PubMed

    Liang, Si-Cheng; Ge, Guang-Bo; Xia, Yang-Liu; Pei-Pei, Dong; Ping, Wang; Qi, Xiao-Yi; Cai-Xia, Tu; Ling, Yang

    2016-07-20

    1. Finding and developing inhibitors of catechol-O-methyltransferase (COMT) from natural products is highly recommended. Daphnetin, a naturally occurring catechol from the family thymelaeaceae, has a chemical structure similar to several potent COMT inhibitors reported previously. Here the potential of daphnetin and its Phase II metabolites as inhibitors of COMT was investigated with human liver cytosol (HLC). 2. Daphnetin and its methylated metabolite (8-O-methyldaphnetin) were found to inhibit COMT-mediated dopamine O-methylation in a dose-dependent manner. The IC50 values for daphnetin (0.51∼0.53 μM) and 8-O-methyldaphnetin (22.5∼24.3 μM) were little affected by changes in HLC concentrations. Further kinetic analysis showed the differences in inhibition type and parameters (Ki) between daphnetin (competitive, 0.37 μM) and 8-O-methyldaphnetin (noncompetitive, 25.7 μM). Other metabolites, including glucuronidated and sulfated species, showed negligible inhibition against COMT. By using in vitro-in vivo extrapolation (IV-IVE), a 24.3-fold increase in the exposure of the COMT substrates was predicted when they are co-administrated with daphnetin. 3. With high COMT-inhibiting activity, daphnetin could serve as a lead compound for the design and development of new COMT inhibitors. Also, much attention should be paid to the clinical impact of combination of daphnetin and herbal preparations containing daphnetin with the drugs primarily cleared by COMT.

  5. Detoxication of structurally diverse polycyclic aromatic hydrocarbon (PAH) o-quinones by human recombinant catechol-O-methyltransferase (COMT) via O-methylation of PAH catechols.

    PubMed

    Zhang, Li; Jin, Yi; Chen, Mo; Huang, Meng; Harvey, Ronald G; Blair, Ian A; Penning, Trevor M

    2011-07-22

    Polycyclic aromatic hydrocarbons (PAH) are environmental and tobacco carcinogens. Metabolic activation of intermediate PAH trans-dihydrodiols by aldo-keto reductases (AKRs) leads to the formation of electrophilic and redox-active o-quinones. We investigated whether O-methylation by human recombinant soluble catechol-O-methyltransferase (S-COMT) is a feasible detoxication step for a panel of structurally diverse PAH-catechols produced during the redox-cycling process. Classes of PAH non-K-region o-quinones (bay region, methylated bay region, and fjord region o-quinones) produced by AKRs were employed in the studies. PAH o-quinones were reduced to the corresponding catechols by dithiothreitol under anaerobic conditions and then further O-methylated by human S-COMT in the presence of S-[³H]adenosyl-l-methionine as a methyl group donor. The formation of the O-methylated catechols was detected by HPLC-UV coupled with in-line radiometric detection, and unlabeled products were also characterized by LC-MS/MS. Human S-COMT was able to catalyze O-methylation of all of the PAH-catechols and generated two isomeric metabolites in different proportions. LC-MS/MS showed that each isomer was a mono-O-methylated metabolite. ¹H NMR was used to assign the predominant positional isomer of benzo[a]pyrene-7,8-catechol as the O-8-monomethylated catechol. The catalytic efficiency (k(cat)/K(m)) varied among different classes of PAH-catechols by 500-fold. The ability of S-COMT to produce two isomeric products from PAH-catechols was rationalized using the crystal structure of the enzyme. We provide evidence that O-8-monomethylated benzo[a]pyrene-7,8-catechol is formed in three different human lung cell lines. It is concluded that human S-COMT may play a critical role in the detoxication of PAH o-quinones generated by AKRs.

  6. Glutathione-S-transferase selective release of metformin from its sulfonamide prodrug.

    PubMed

    Rautio, Jarkko; Vernerová, Monika; Aufderhaar, Imke; Huttunen, Kristiina M

    2014-11-01

    In this study, three sulfonamide prodrugs of metformin were designed and synthesized. The bioconversion of the sulfonamide prodrugs by glutathione-S-transferase (GST) was evaluated in rat and human liver S9 fractions as well as with recombinant human GST forms. One of the prodrugs (3) was bioactivated by GST and released metformin in a quantitative manner, whereas the two others were enzymatically stable. Prodrug 3 had a much higher logD value relative to metformin and it was reasonably stable in both acidic buffer and rat small intestine homogenate, which indicates that this prodrug has the potential to increase the oral absorption of metformin.

  7. Phosphonocarboxylates Inhibit the Second Geranylgeranyl Addition by Rab Geranylgeranyl Transferase*

    PubMed Central

    Baron, Rudi A.; Tavaré, Richard; Figueiredo, Ana C.; Błażewska, Katarzyna M.; Kashemirov, Boris A.; McKenna, Charles E.; Ebetino, Frank H.; Taylor, Adam; Rogers, Michael J.; Coxon, Fraser P.; Seabra, Miguel C.

    2009-01-01

    Rab geranylgeranyl transferase (RGGT) catalyzes the post-translational geranylgeranyl (GG) modification of (usually) two C-terminal cysteines in Rab GTPases. Here we studied the mechanism of the Rab geranylgeranylation reaction by bisphosphonate analogs in which one phosphonate group is replaced by a carboxylate (phosphonocarboxylate, PC). The phosphonocarboxylates used were 3-PEHPC, which was previously reported, and 2-hydroxy-3-imidazo[1,2-a]pyridin-3-yl-2-phosphonopropionic acid ((+)-3-IPEHPC), a >25-fold more potent related compound as measured by both IC50 and Ki.(+)-3-IPEHPC behaves as a mixed-type inhibitor with respect to GG pyrophosphate (GGPP) and an uncompetitive inhibitor with respect to Rab substrates. We propose that phosphonocarboxylates prevent only the second GG transfer onto Rabs based on the following evidence. First, geranylgeranylation of Rab proteins ending with a single cysteine motif such as CAAX, is not affected by the inhibitors, either in vitro or in vivo. Second, the addition of an -AAX sequence onto Rab-CC proteins protects the substrate from inhibition by the inhibitors. Third, we demonstrate directly that in the presence of (+)-3-IPEHPC, Rab-CC and Rab-CXC proteins are modified by only a single GG addition. The presence of (+)-3-IPEHPC resulted in a preference for the Rab N-terminal cysteine to be modified first, suggesting an order of cysteine geranylgeranylation in RGGT catalysis. Our results further suggest that the inhibitor binds to a site distinct from the GGPP-binding site on RGGT. We suggest that phosphonocarboxylate inhibitors bind to a GG-cysteine binding site adjacent to the active site, which is necessary to align the mono-GG-Rab for the second GG addition. These inhibitors may represent a novel therapeutic approach in Rab-mediated diseases. PMID:19074143

  8. Studies on interactions between plant secondary metabolites and glutathione transferase using fluorescence quenching method.

    PubMed

    Zhang, Xian; Cheng, Xinsheng; Wang, Chuanqin; Xue, Zechun; Yang, Liwen; Xi, Zheng

    2007-04-01

    The interactions between plant secondary metabolites (tannic acid, rutin, cinnamic acid and catechin) and glutathione transferase (GST) were investigated by fluorescence and UV-Vis absorption spectroscopy. Intrinsic fluorescence of GST was measured by selectively exciting their tryptophan (Trp) residues and quenching constants were determined using the Stern-Volmer equation. The binding affinity was found to be strongest for tannic acid and ranked in the order tannic acid>rutin>cinnamic acid>catechin. The pH values in the range of 6.7-7.9, except for tannic acid, did not affect significantly the affinity of rutin, cinnamic acid and catechin with GST. Results showed that the fluorescence quenching of GST was a static_quenching. Fluorescence quenching and UV-Vis absorption spectroscopy suggested that only the tannic acid changed the microenvironment of the Trp residues. Furthermore, the number of binding sites and binding constants at different pH values showed that tannic acid had strongest affinity towards GST and hydrogen bonding played an important role in the affinity between GST and the metabolites.

  9. Effects of O-methylated metabolites of quercetin on oxidative stress, thermotolerance, lifespan and bioavailability on Caenorhabditis elegans.

    PubMed

    Surco-Laos, Felipe; Cabello, Juan; Gómez-Orte, Eva; González-Manzano, Susana; González-Paramás, Ana M; Santos-Buelga, Celestino; Dueñas, Montserrat

    2011-08-01

    Quercetin is a major flavonoid in the human diet and the most commonly used in studies of biological activity. Most of the knowledge about its biological effects has originated from in vitro studies while in vivo data are scarce. Quercetin mostly occurs in foodstuffs as glycosides that are deglycosylated during absorption and further submitted to different conjugation reactions. Methylation to isorhamnetin (quercetin 3'-O-methylether) or tamarixetin (quercetin 4'-O-methylether) seems to be an important conjugation process in quercetin metabolism. In this work, the effects of quercetin and its 3'- and 4'-O-methylated metabolites on the phenotypic characteristics, stress oxidative resistance, thermotolerance and lifespan of the model organism Caenorhabditis elegans have been assessed. The three assayed flavonols significantly prolonged the lifespan of this nematode with an increase from 11% to 16% in the mean lifespan with respect to controls. However, only quercetin significantly increased the reproductive capacity of the worm and enlarged the body size. Exposure to the assayed flavonols also increased significantly the resistance against thermal and juglone-induced oxidative stress, although differences were found depending on the stage of development of the worm. Thus, quercetin offered greater protection when thermal stress was applied in the 1st day of adulthood, whereas tamarixetin was more efficient in worms submitted to stress in the 6th day of adulthood. Similarly, significantly greater protection was provided by quercetin than by its methylated derivatives at the 1st day of adulthood, whilst quercetin and isorhamnetin were equally efficient when the oxidative stress was induced in the 6th of day of adulthood. Further evidence of antioxidant protection was obtained checking the oxidation status of proteins by the OxyBlot™ detection kit. Analyses by HPLC-DAD-ESI/MS confirmed that the three flavonols were taken up by C. elegans leading to the formation of

  10. Bifunctional effects of O-methylated flavones from Scutellaria baicalensis Georgi on melanocytes: Inhibition of melanin production and intracellular melanosome transport.

    PubMed

    Kudo, Michiko; Kobayashi-Nakamura, Kumiko; Tsuji-Naito, Kentaro

    2017-01-01

    The growing interest in skin lightening has recently renewed attention on the esthetic applications of Chinese herbal medicine. Although Scutellaria baicalensis Georgi is used for antipyretic and antiinflammatory purposes, its whitening effect remains unclear. This study reports three major findings: (1) S. baicalensis has a potent inhibitory effect on melanogenesis; (2) wogonin and its glycoside are the active components of S. baicalensis; and (3) O-methylated flavones from S. baicalensis, such as wogonin, inhibit intracellular melanosome transport. Using a melanin quantification assay, we showed that S. baicalensis potently inhibits melanogenesis in B16F10 cells. Componential analyses revealed that the main components of S. baicalensis are baicalin, wogonoside, baicalein, wogonin, and oroxylin A. Among these five flavones, wogonin and wogonoside consistently inhibited melanogenesis in both B16F10 melanoma cells and primary melanocytes. Wogonin exhibited the strongest inhibition of melanin production and markedly lightened the color of skin equivalents. We identified microphthalmia-associated transcription factor and tyrosinase-related proteins as potential targets of wogonin- and wogonoside-induced melanogenesis suppression. In culture, we found that the melanosomes in wogonin-treated B16F10 cells were localized to the perinuclear region. Immunoblotting analyses revealed that wogonin significantly reduced in melanophilin protein, which is required for actin-based melanosome transport. Other actin-based melanosome transport-related molecules, i.e., Rab27A and myosin Va, were not affected by wogonin. Cotreatment with MG132 blocked the wogonin-induced decrease in melanophilin, suggesting that wogonin promotes the proteolytic degradation of melanophilin via the calpain/proteasomal pathway. We determined that the structural specificities of the mono-O-methyl group in the flavone A-ring and the aglycone form were responsible for reducing melanosome transport

  11. Crystal structure of 1,2,3,4-di-O-methyl­ene-α-d-galacto­pyran­ose

    PubMed Central

    Tiritiris, Ioannis; Tussetschläger, Stefan; Kantlehner, Willi

    2015-01-01

    The title compound, C8H12O6, was synthesized by de­acetyl­ation of 6-acetyl-1,2,3,4-di-O-methyl­ene-α-d-galactose with sodium methoxide. The central part of the mol­ecule consists of a six-membered C5O pyran­ose ring with a twist-boat conformation. Both fused dioxolane rings adopt an envelope conformation with C and O atoms as the flap. In the crystal, O—H⋯O and C—H⋯O hydrogen bonds are present between adjacent mol­ecules, generating a three-dimensional network. PMID:26870551

  12. Volumetric Properties of the Mixture Butan-1-ol C4H10O + C7H8O Methyl phenyl ether (VMSD1511, LB4559_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Butan-1-ol C4H10O + C7H8O Methyl phenyl ether (VMSD1511, LB4559_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  13. Volumetric Properties of the Mixture Butan-1-ol C4H10O + C7H8O Methyl phenyl ether (VMSD1412, LB4565_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Butan-1-ol C4H10O + C7H8O Methyl phenyl ether (VMSD1412, LB4565_V)' providing data by calculation of isentropic compressibility from low-pressure density and thermodynamic speed of sound data at variable mole fraction and constant temperature, in the single-phase region(s).

  14. Volumetric Properties of the Mixture Pentan-1-ol C5H12O + C7H8O Methyl phenyl ether (VMSD1412, LB4566_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Pentan-1-ol C5H12O + C7H8O Methyl phenyl ether (VMSD1412, LB4566_V)' providing data by calculation of isentropic compressibility from low-pressure density and thermodynamic speed of sound data at variable mole fraction and constant temperature, in the single-phase region(s).

  15. Volumetric Properties of the Mixture Pentan-1-ol C5H12O + C7H8O Methyl phenyl ether (VMSD1511, LB4560_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Pentan-1-ol C5H12O + C7H8O Methyl phenyl ether (VMSD1511, LB4560_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  16. Volumetric Properties of the Mixture Benzene C6H6 + C7H8O Methyl phenyl ether (VMSD1412, LB4561_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Benzene C6H6 + C7H8O Methyl phenyl ether (VMSD1412, LB4561_V)' providing data by calculation of isentropic compressibility from low-pressure density and thermodynamic speed of sound data at variable mole fraction and constant temperature, in the single-phase region(s).

  17. Volumetric Properties of the Mixture Toluene C7H8 + C7H8O Methyl phenyl ether (VMSD1511, LB4556_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Toluene C7H8 + C7H8O Methyl phenyl ether (VMSD1511, LB4556_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  18. Volumetric Properties of the Mixture Cyclohexane C6H12 + C7H8O Methyl phenyl ether (VMSD1511, LB4558_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexane C6H12 + C7H8O Methyl phenyl ether (VMSD1511, LB4558_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  19. Volumetric Properties of the Mixture Toluene C7H8 + C7H8O Methyl phenyl ether (VMSD1412, LB4562_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Toluene C7H8 + C7H8O Methyl phenyl ether (VMSD1412, LB4562_V)' providing data by calculation of isentropic compressibility from low-pressure density and thermodynamic speed of sound data at variable mole fraction and constant temperature, in the single-phase region(s).

  20. Volumetric Properties of the Mixture Benzene C6H6 + C7H8O Methyl phenyl ether (VMSD1511, LB4555_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Benzene C6H6 + C7H8O Methyl phenyl ether (VMSD1511, LB4555_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  1. Volumetric Properties of the Mixture Cyclohexane C6H12 + C7H8O Methyl phenyl ether (VMSD1412, LB4564_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexane C6H12 + C7H8O Methyl phenyl ether (VMSD1412, LB4564_V)' providing data by calculation of isentropic compressibility from low-pressure density and thermodynamic speed of sound data at variable mole fraction and constant temperature, in the single-phase region(s).

  2. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8O Methyl phenyl ether (VMSD1511, LB4833_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8O Methyl phenyl ether (VMSD1511, LB4833_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  3. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8O Methyl phenyl ether (VMSD1212, LB4828_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8O Methyl phenyl ether (VMSD1212, LB4828_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  4. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8O Methyl phenyl ether (VMSD1111, LB4823_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8O Methyl phenyl ether (VMSD1111, LB4823_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  5. Urinary recovery of orally administered chromium 51-labeled EDTA, lactulose, rhamnose, d-xylose, 3-O-methyl-d-glucose, and sucrose in healthy adult male Beagles.

    PubMed

    Frias, Rafael; Steiner, Jörg M; Williams, David A; Sankari, Satu; Westermarck, Elias

    2012-05-01

    Objective-To provide values for gastrointestinal permeability and absorptive function tests (GIPFTs) with chromium 51 ((51)Cr)-labeled EDTA, lactulose, rhamnose, d-xylose, 3-O-methyl-d-glucose, and sucrose in Beagles and to evaluate potential correlations between markers. Animals-19 healthy adult male Beagles. Procedures-A test solution containing 3.7 MBq of (51)Cr-labeled EDTA, 2 g of lactulose, 2 g of rhamnose, 2 g of d-xylose, 1 g of 3-O-methyl-d-glucose, and 8 g of sucrose was administered intragastrically to each dog. Urinary recovery of each probe was determined 6 hours after administration. Results-Mean ± SD (range) percentage urinary recovery was 6.3 ± 1.6% (4.3% to 9.7%) for (51)Cr-labeled EDTA, 3.3 ± 1.1% (1.7% to 5.3%) for lactulose, 25.5 ± 5.0% (16.7% to 36.9%) for rhamnose, and 58.8% ± 11.0% (40.1% to 87.8%) for 3-O-methyl-d-glucose. Mean (range) recovery ratio was 0.25 ± 0.06 (0.17 to 0.37) for (51)Cr-labeled EDTA to rhamnose, 0.13 ± 0.04 (0.08 to 0.23) for lactulose to rhamnose, and 0.73 ± 0.09 (0.60 to 0.90) for d-xylose to 3-O-methyl-d-glucose. Median (range) percentage urinary recovery was 40.3% (31.6% to 62.7%) for d-xylose and 0% (0% to 0.8%) for sucrose. Conclusions and Clinical Relevance-Reference values in healthy adult male Beagles for 6 of the most commonly used GIPFT markers were determined. The correlation between results for (51)Cr-labeled EDTA and lactulose was not as prominent as that reported for humans and cats; thus, investigators should be cautious in the use and interpretation of GIPFTs performed with sugar probes in dogs with suspected intestinal dysbiosis.

  6. Late onset ornithine carbamoyl transferase deficiency in males.

    PubMed Central

    Drogari, E; Leonard, J V

    1988-01-01

    Six boys with ornithine carbamoyl transferase deficiency presenting in infancy or later childhood are described. There was wide variation in both the time of presentation and the symptoms, which may initially suggest a neurological, behavioural, or gastroenterological problem. Two patients died, as did two male siblings who were probably affected, but with early recognition of the hyperammonaemia the outlook is good. PMID:3202644

  7. Histamine N-methyl transferase: inhibition by drugs.

    PubMed Central

    Pacifici, G M; Donatelli, P; Giuliani, L

    1992-01-01

    1. Histamine N-methyl transferase activity was measured in samples of human liver, brain, kidney, lung and intestinal mucosa. The mean (+/- s.d.) rate (nmol min-1 mg-1 protein) of histamine N-methylation was 1.78 +/- 0.59 (liver, n = 60), 1.15 +/- 0.38 (renal cortex, n = 8), 0.79 +/- 0.14 (renal medulla, n = 8), 0.35 +/- 0.08 (lung, n = 20), 0.47 +/- 0.18 (human intestine, n = 30) and 0.29 +/- 0.14 (brain, n = 13). 2. Inhibition of histamine N-methyl transferase by 15 drugs was investigated in human liver. The IC50 for the various drugs ranged over three orders of magnitude; chloroquine was the most potent inhibitor. 3. The average IC50 values for chloroquine were 12.6, 22.0, 19.0, 21.6 microM in liver, renal cortex, brain and colon, respectively. These values are lower than the Michaelis-Menten constant for histamine N-methyltransferase in liver (43.8 microM) and kidney (45.5 microM). Chloroquine carried a mixed non-competitive inhibition of hepatic histamine N-methyl transferase. Some side-effects of chloroquine may be explained by inhibition of histamine N-methyl transferase. PMID:1457266

  8. Rational design of an organometallic glutathione transferase inhibitor

    SciTech Connect

    Ang, W.H.; Parker, L.J.; De Luca, A.; Juillerat-Jeanneret, L.; Morton, C.J.; LoBello, M.; Parker, M.W.; Dyson, P.J.

    2010-08-17

    A hybrid organic-inorganic (organometallic) inhibitor was designed to target glutathione transferases. The metal center is used to direct protein binding, while the organic moiety acts as the active-site inhibitor. The mechanism of inhibition was studied using a range of biophysical and biochemical methods.

  9. Homogentisate solanesyl transferase (HST) cDNA’s in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize white seedling 3 (w3) has served as a model albino-seedling mutant since its discovery in 1923. We show that the w3 phenotype is caused by disruptions in homogentisate solanesyl transferase (HST), an enzyme that catalyzes the committed step in plastoquinone-9 (PQ9) biosynthesis. This reaction ...

  10. GLUTATHIONE S-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE

    EPA Science Inventory

    GLUTATHIONE s-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE. M K Ross1 and R A Pegram2. 1Curriculum in Toxicology, University of North Carolina at Chapel Hill; 2Experimental Toxicology Division, NHEERL/ORD, United States Environmental Protection Agency, Research Triangl...

  11. Inhibitory impact of 3'-terminal 2'-O-methylated small silencing RNA on target-primed polymerization and unbiased amplified quantification of the RNA in Arabidopsis thaliana.

    PubMed

    Chen, Feng; Fan, Chunhai; Zhao, Yongxi

    2015-09-01

    3'-terminal 2'-O-methylation has been found in several kinds of small silencing RNA, regarded as a protective mechanism against enzymatic 3' → 5' degradation and 3'-end uridylation. The influence of this modification on enzymatic polymerization, however, remains unknown. Herein, a systematic investigation is performed to explore this issue. We found these methylated small RNAs exhibited a suppression behavior in target-primed polymerization, revealing biased result for the manipulation of these small RNAs by conventional polymerization-based methodology. The related potential mechanism is investigated and discussed, which is probably ascribed to the big size of modified group and its close location to 3'-OH. Furthermore, two novel solutions each utilizing base-stacking hybridization and three-way junction structure have been proposed to realize unbiased recognition of small RNAs. On the basis of phosphorothioate against nicking, a creative amplified strategy, phosphorothioate-protected polymerization/binicking amplification, has also been developed for the unbiased quantification of methylated small RNA in Arabidopsis thaliana, demonstrating its promising potential for real sample analysis. Collectively, our studies uncover the polymerization inhibition by 3'-terminal 2'-O-methylated small RNAs with mechanistic discussion, and propose novel unbiased solutions for amplified quantification of small RNAs in real sample.

  12. Synthesis and Insecticidal Activity of Spinosyns with C9-O-Benzyl Bioisosteres in Place of the 2',3',4'-Tri-O-methyl Rhamnose.

    PubMed

    Oliver, M Paige; Crouse, Gary D; Demeter, David A; Sparks, Thomas C

    2015-06-17

    The spinosyns are fermentation-derived natural products active against a wide range of insect pests. They are structurally complex, consisting of two sugars (forosamine and rhamnose) coupled to a macrocyclic tetracycle. Removal of the rhamnose sugar results in a >100-fold reduction in insecticidal activity. C9-O-benzyl analogues of spinosyn D were synthesized to determine if the 2',3',4'-tri-O-methyl rhamnose moiety could be replaced with a simpler, synthetic bioisostere. Insecticidal activity was evaluated against larvae of Spodoptera exigua (beet armyworm) and Helicoverpa zea (corn earworm). Whereas most analogues were far less active than spinosyn D, a few of the C9-O-benzyl analogues, such as 4-CN, 4-Cl, 2-isopropyl, and 3,5-diOMe, were within 3-15 times the activity of spinosyn D for larvae of S. exigua and H. zea. Thus, although not yet quite as effective, synthetic bioisosteres can substitute for the naturally occurring 2',3',4'-tri-O-methyl rhamnose moiety.

  13. Polyketide family of novel antibacterial 7-O-methyl-5'-hydroxy-3'-heptenoate-macrolactin from seaweed-associated Bacillus subtilis MTCC 10403.

    PubMed

    Chakraborty, Kajal; Thilakan, Bini; Raola, Vamshi Krishna

    2014-12-17

    Seaweed-associated heterotrophic bacterial communities were screened to isolate potentially useful antimicrobial strains, which were characterized by phylogenetic analysis. The bacteria were screened for the presence of metabolite genes involved in natural product biosynthetic pathway, and the structural properties of secondary metabolites were correlated with the genes. Bioactivity-guided isolation of polyene antibiotic 7-O-methyl-5'-hydroxy-3'-heptenoate-macrolactin from Bacillus subtilis MTCC10403 associated with seaweed Anthophycus longifolius using mass spectrometry and extensive 2D-NMR studies was carried out. The newly isolated macrolactin compound is a bactericidal antibiotic with broad spectrum activity against human opportunistic clinical pathogens. The biosynthetic pathway of 7-O-methyl-5'-hydroxy-3'-heptenoate-macrolactin by means of a stepwise, decarboxylative condensation pathway established the PKS-assisted biosynthesis of the parent macrolactin and the side-chain 5-hydroxyhept-3-enoate moiety attached to the macrolactin ring system at C-7. Antimicrobial activity analysis combined with the results of amplifying genes encoding for polyketide synthetase and nonribosomal peptide synthetase showed that seaweed-associated bacteria had broad-spectrum antimicrobial activity. The present work may have an impact on the exploitation of macrolactins for pharmaceutical and biotechnological applications.

  14. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Galactose-1-phosphate uridyl transferase test... Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a) Identification. A galactose-1-phosphate uridyl transferase test system is a device intended to measure the...

  15. STT3, a highly conserved protein required for yeast oligosaccharyl transferase activity in vivo.

    PubMed Central

    Zufferey, R; Knauer, R; Burda, P; Stagljar, I; te Heesen, S; Lehle, L; Aebi, M

    1995-01-01

    N-linked glycosylation is a ubiquitous protein modification, and is essential for viability in eukaryotic cells. A lipid-linked core-oligosaccharide is assembled at the membrane of the endoplasmic reticulum and transferred to selected asparagine residues of nascent polypeptide chains by the oligosaccharyl transferase (OTase) complex. Based on the synthetic lethal phenotype of double mutations affecting the assembly of the lipid-linked core-oligosaccharide and the OTase activity, we have performed a novel screen for mutants in Saccharomyces cerevisiae with altered N-linked glycosylation. Besides novel mutants deficient in the assembly of the lipid-linked oligosaccharide (alg mutants), we identified the STT3 locus as being required for OTase activity in vivo. The essential STT3 protein is approximately 60% identical in amino acid sequence to its human homologue. A mutation in the STT3 locus affects substrate specificity of the OTase complex in vivo and in vitro. In stt3-3 cells very little glycosyl transfer occurs from incomplete lipid-linked oligosaccharide, whereas the transfer of full-length Glc3Man9GlcNAc2 is hardly affected as compared with wild-type cells. Depletion of the STT3 protein results in loss of transferase activity in vivo and a deficiency in the assembly of OTase complex. Images PMID:7588624

  16. Endothelial cell palmitoylproteomics identifies novel lipid modified targets and potential substrates for protein acyl transferases

    PubMed Central

    Marin, Ethan P.; Derakhshan, Behrad; Lam, TuKiet T.; Davalos, Alberto; Sessa, William C.

    2012-01-01

    Rationale Protein S-palmitoylation is the post-translational attachment of a saturated 16-carbon palmitic acid to a cysteine side chain via a thioester bond. Palmitoylation can affect protein localization, trafficking, stability, and function. The extent and roles of palmitoylation in endothelial cell (EC) biology is not well understood, in part due to technological limits on palmitoylprotein detection. Objective To develop a method using acyl-biotinyl exchange (ABE) technology coupled with mass spectrometry to globally isolate and identify palmitoylproteins in EC. Methods and Results More than 150 putative palmitoyl proteins were identified in EC using ABE and mass spectrometry. Among the novel palmitoylproteins identified is superoxide dismutase 1 (SOD1), an intensively studied enzyme that protects all cells from oxidative damage. Mutation of cysteine 6 prevents palmitoylation, leads to reduction in SOD1 activity in vivo and in vitro, and inhibits nuclear localization, thereby supporting a functional role for SOD1 palmitoylation. Moreover, we used ABE to search for substrates of particular protein acyl transferases in EC. We found that palmitoylation of the cell adhesion protein PECAM1 is dependent on the protein acyl transferase ZDHHC21. We show that knockdown of ZDHHC21 leads to reduced levels of PECAM1 at the cell surface. Conclusions Our data demonstrate the utility of EC palmitoylproteomics to reveal new insights into the role of this important post-translational lipid modification in EC biology. PMID:22496122

  17. Mice Deficient in Glutathione Transferase Zeta/Maleylacetoacetate Isomerase Exhibit a Range of Pathological Changes and Elevated Expression of Alpha, Mu, and Pi Class Glutathione Transferases

    PubMed Central

    Lim, Cindy E.L.; Matthaei, Klaus I.; Blackburn, Anneke C.; Davis, Richard P.; Dahlstrom, Jane E.; Koina, Mark E.; Anders, M.W.; Board, Philip G.

    2004-01-01

    Glutathione transferase zeta (GSTZ1-1) is the major enzyme that catalyzes the metabolism of α-halo acids such as dichloroacetic acid, a carcinogenic contaminant of chlorinated water. GSTZ1-1 is identical with maleylacetoacetate isomerase, which catalyzes the penultimate step in the catabolic pathways for phenylalanine and tyrosine. In this study we have deleted the Gstz1 gene in BALB/c mice and characterized their phenotype. Gstz1−/− mice do not have demonstrable activity with maleylacetone and α-halo acid substrates, and other GSTs do not compensate for the loss of this enzyme. When fed a standard diet, the GSTZ1-1-deficient mice showed enlarged liver and kidneys as well as splenic atrophy. Light and electron microscopic examination revealed multifocal hepatitis and ultrastructural changes in the kidney. The addition of 3% (w/v) phenylalanine to the drinking water was lethal for young mice (<28 days old) and caused liver necrosis, macrovesicular steatosis, splenic atrophy, and a significant loss of circulating leukocytes in older surviving mice. GSTZ1-1-deficient mice showed constitutive induction of alpha, mu, and pi class GSTs as well as NAD(P)H:quinone oxidoreductase 1. The overall response is consistent with the chronic accumulation of a toxic metabolite(s). We detected the accumulation of succinylacetone in the serum of deficient mice but cannot exclude the possibility that maleylacetoacetate and maleylacetone may also accumulate. PMID:15277241

  18. [Glutathione S-transferase of alpha class from pike liver].

    PubMed

    Borvinskaia, E V; Smirnov, L P; Nemova, N N

    2013-01-01

    In this study, glutathione S-transferase (GST) was isolated from the liver of pike Esox lucius, which was homogenous according to SDS-PAGE and isoelectrofocusing. It is a homodimer with subunits mass 25235.36 Da (according to HPLC-MS/MS) and pI about 6.4. Substrate specificity, thermostability, some kinetic characteristics and optimum pH were determined. The enzyme was identified as Alpha class GST.

  19. Bifunctional effects of O-methylated flavones from Scutellaria baicalensis Georgi on melanocytes: Inhibition of melanin production and intracellular melanosome transport

    PubMed Central

    Tsuji-Naito, Kentaro

    2017-01-01

    The growing interest in skin lightening has recently renewed attention on the esthetic applications of Chinese herbal medicine. Although Scutellaria baicalensis Georgi is used for antipyretic and antiinflammatory purposes, its whitening effect remains unclear. This study reports three major findings: (1) S. baicalensis has a potent inhibitory effect on melanogenesis; (2) wogonin and its glycoside are the active components of S. baicalensis; and (3) O-methylated flavones from S. baicalensis, such as wogonin, inhibit intracellular melanosome transport. Using a melanin quantification assay, we showed that S. baicalensis potently inhibits melanogenesis in B16F10 cells. Componential analyses revealed that the main components of S. baicalensis are baicalin, wogonoside, baicalein, wogonin, and oroxylin A. Among these five flavones, wogonin and wogonoside consistently inhibited melanogenesis in both B16F10 melanoma cells and primary melanocytes. Wogonin exhibited the strongest inhibition of melanin production and markedly lightened the color of skin equivalents. We identified microphthalmia-associated transcription factor and tyrosinase-related proteins as potential targets of wogonin- and wogonoside-induced melanogenesis suppression. In culture, we found that the melanosomes in wogonin-treated B16F10 cells were localized to the perinuclear region. Immunoblotting analyses revealed that wogonin significantly reduced in melanophilin protein, which is required for actin-based melanosome transport. Other actin-based melanosome transport-related molecules, i.e., Rab27A and myosin Va, were not affected by wogonin. Cotreatment with MG132 blocked the wogonin-induced decrease in melanophilin, suggesting that wogonin promotes the proteolytic degradation of melanophilin via the calpain/proteasomal pathway. We determined that the structural specificities of the mono-O-methyl group in the flavone A-ring and the aglycone form were responsible for reducing melanosome transport

  20. Purification and kinetic mechanism of the major glutathione S-transferase from bovine brain.

    PubMed Central

    Young, P R; Briedis, A V

    1989-01-01

    The major glutathione S-transferase isoenzyme from bovine brain was isolated and purified approx. 500-fold. The enzyme has a pI of 7.39 +/- 0.02 and consists of two non-identical subunits having apparent Mr values of 22,000 and 24,000. The enzyme is uniformly distributed in brain, and kinetic data at pH 6.5 with 1-chloro-2,4-dinitrobenzene (CDNB) as substrate suggest a random rapid-equilibrium mechanism. The kinetics of inhibition by product, by GSH analogues and by NADH are consistent with the suggested mechanism and require inhibitor binding to several different enzyme forms. Long-chain fatty acids are excellent inhibitors of the enzyme, and values of 1nKi for hexanoic acid, octanoic acid, decanoic acid and lauric acid form a linear series when plotted as a function of alkyl chain length. A free-energy change of -1900 J/mol (-455 cal/mol) per CH2 unit is calculated for the contribution of hydrophobic binding energy to the inhibition constants. The turnover number of the purified enzyme dimer is approx. 3400/min. When compared with the second-order rate constant for the reaction between CDNB and GSH, the enzyme is providing a rate acceleration of about 1000-fold. The role of entropic contributions to this small rate acceleration is discussed. PMID:2930465

  1. Inhibition of the recombinant cattle tick Rhipicephalus (Boophilus) annulatus glutathione S-transferase.

    PubMed

    Guneidy, Rasha A; Shahein, Yasser E; Abouelella, Amira M K; Zaki, Eman R; Hamed, Ragaa R

    2014-09-01

    Rhipicephalus (Boophilus) annulatus is a bloodsucking ectoparasite that causes severe production losses in the cattle industry. This study aims to evaluate the in vitro effects of tannic acid, hematin (GST inhibitors) and different plant extracts (rich in tannic acid) on the activity of the recombinant glutathione S-transferase enzyme of the Egyptian cattle tick R. annulatus (rRaGST), in order to confirm their ability to inhibit the parasitic essential detoxification enzyme glutathione S-transferase. Extraction with 70% ethanol of Hibiscus cannabinus (kenaf flowers), Punica granatum (red and white pomegranate peel), Musa acuminata (banana peel) (Musaceae), Medicago sativa (alfalfa seeds), Tamarindus indicus (seed) and Cuminum cyminum (cumin seed) were used to assess: (i) inhibitory capacities of rRaGST and (ii) their phenolic and flavonoid contents. Ethanol extraction of red pomegranate peel contained the highest content of phenolic compounds (29.95mg gallic acid/g dry tissue) compared to the other studied plant extracts. The highest inhibition activities of rRaGST were obtained with kenaf and red pomegranate peel (P. granatum) extracts with IC50 values of 0.123 and 0.136mg dry tissue/ml, respectively. Tannic acid was the more effective inhibitor of rRaGST with an IC50 value equal to 4.57μM compared to delphinidine-HCl (IC50=14.9±3.1μM). Gossypol had a weak inhibitory effect (IC50=43.7μM), and caffeic acid had almost no effect on tick GST activity. The IC50 values qualify ethacrynic acid as a potent inhibitor of rRaGST activity (IC50=0.034μM). Cibacron blue and hematin showed a considerable inhibition effect on rRaGST activity, and their IC50 values were 0.13μM and 7.5μM, respectively. The activity of rRaGST was highest for CDNB (30.2μmol/min/mg protein). The enzyme had also a peroxidatic activity (the specific activity equals 26.5μmol/min/mg protein). Both tannic acid and hematin inhibited rRaGST activity non-competitively with respect to GSH and

  2. Treatment of idiopathic parkinsonism with L-dopa in the absence and presence of decarboxylase inhibitors: effects on plasma levels of L-dopa, dopa decarboxylase, catecholamines and 3-O-methyl-dopa.

    PubMed

    Boomsma, F; Meerwaldt, J D; Man in't Veld, A J; Hovestadt, A; Schalekamp, M A

    1989-05-01

    The effect of levodopa (L-dopa), alone or in combination with a peripheral decarboxylase inhibitor (PDI), on plasma levels of aromatic-L-amino acid decarboxylase (ALAAD, = dopa decarboxylase), L-dopa, 3-O-methyl-dopa (3-OMD), dopamine (DA), noradrenaline, adrenaline and dopamine beta-hydroxylase has been studied. In healthy subjects and in patients with parkinsonism plasma ALAAD level fell after administration of L-dopa + benserazide, but returned to previous levels within 90 min. In a cross-sectional study blood was obtained, 2 h after dosing, from 104 patients with idiopathic parkinsonism, divided into four groups: no L-dopa treatment (group 1), L-dopa alone (group 2), L-dopa + benserazide (Madopar) (group 3) and L-dopa + carbidopa (Sinemet) (group 4). Plasma ALAAD, which was normal in groups 1 and 2, was increased 3-fold in groups 3 and 4, indicating that there was induction of ALAAD by the co-administration of PDI. Despite this induction of ALAAD, in groups 3 and 4, with half the daily L-dopa dose compared with group 2, plasma L-dopa and 3-OMD levels were 5 times higher, while plasma DA levels were not different. The DA/L-dopa ratio was decreased 5-fold in group 2 and 16-fold in groups 3 and 4 as compared with group 1. Neither 3-OMD levels nor 3-OMD/L-dopa ratios correlated with the occurrence of on-off fluctuations. In a longitudinal study of three patients started on Madopar treatment the induction of plasma ALAAD was found to occur gradually over 3-4 weeks. Further detailed pharmacokinetic studies in plasma and cerebrospinal fluid are required in order to elucidate whether the ALAAD induction by PDI may be related to the loss of clinical efficacy of combination therapy in some patients and how it is related to end-of-dose deterioration and on-off phenomena.

  3. A 49 kDa microtubule cross-linking protein from Artemia franciscana is a coenzyme A-transferase.

    PubMed

    Oulton, Mindy M; Amons, Reinout; Liang, Ping; MacRae, Thomas H

    2003-12-01

    Embryos and larvae of the brine shrimp, Artemia franciscana, were shown previously to possess a protein, now termed p49, which cross-links microtubules in vitro. Molecular characteristics of p49 were described, but the protein's identity and its role in the cell were not determined. Degenerate oligonucleotide primers designed on the basis of peptide sequence obtained by Edman degradation during this study were used to generate p49 cDNAs by RT-PCR and these were cloned and sequenced. Comparison with archived sequences revealed that the deduced amino acid sequence of p49 resembled the Drosophila gene product CG7920, as well as related proteins encoded in the genomes of Anopheles and Caenorhabditis. Similar proteins exist in several bacteria but no evident homologues were found in vertebrates and plants, and only very distant homologues resided in yeast. When evolutionary relationships were compared, p49 and the homologues from Drosophila, Anopheles and Caenorhabditis formed a distinct subcluster within phylogenetic trees. Additionally, the predicted secondary structures of p49, 4-hydroxybutyrate CoA-transferase from Clostridium aminobutyricum and glutaconate CoA-transferase from Acidaminococcus fermentans were similar and the enzymes may possess related catalytic mechanisms. The purified Artemia protein exhibited 4-hydroxybutyrate CoA-transferase activity, thereby establishing p49 as the first crustacean CoA-transferase to be characterized. Probing of Western blots with an antibody against p49 revealed a cross-reactive protein in Drosophila that associated with microtubules, but to a lesser extent than did p49 from Artemia.

  4. Biochemical properties of an omega-class glutathione S-transferase of the silkmoth, Bombyx mori.

    PubMed

    Yamamoto, Kohji; Nagaoka, Sumiharu; Banno, Yutaka; Aso, Yoichi

    2009-05-01

    A cDNA encoding an omega-class glutathione S-transferase of the silkmoth, Bombyx mori (bmGSTO), was cloned by reverse transcriptase-polymerase chain reaction. The resulting clone was sequenced and deduced for amino acid sequence, which revealed 40, 40, and 39% identities to omega-class GSTs from human, pig, and mouse, respectively. A recombinant protein (rbmGSTO) was functionally overexpressed in Escherichia coli cells in a soluble form and purified to homogeneity. rbmGSTO was able to catalyze the biotranslation of glutathione with 1-chloro-2,4-dinitrobenzene, a model substrate for GST, as well as with 4-hydroxynonenal, a product of lipid peroxidation. This enzyme was shown to have high affinity for organophosphorus insecticide and was present abundantly in silkmoth strain exhibiting fenitrothion resistance. These results indicate that bmGSTO could be involved in the increase in level of insecticide resistance for lepidopteran insects.

  5. Purification and properties of 4-hydroxybutyrate coenzyme A transferase from Clostridium aminobutyricum.

    PubMed Central

    Scherf, U; Buckel, W

    1991-01-01

    A new coenzyme A (CoA)-transferase from the anaerobe Clostridium aminobutyricum catalyzing the formation of 4-hydroxybutyryl-CoA from 4-hydroxybutyrate and acetyl-CoA is described. The enzyme was purified to homogeneity by standard techniques, including fast protein liquid chromatography under aerobic conditions. Its molecular mass was determined to be 110 kDa, and that of the only subunit was determined to be 54 kDa, indicating a homodimeric structure. Besides acetate and acetyl-CoA, the following substrates were detected (in order of decreasing kcat/Km): 4-hydroxybutyryl-CoA, butyryl-CoA and propionyl-CoA, vinyl-acetyl-CoA (3-butenoyl-CoA), and 5-hydroxyvaleryl-CoA. In an indirect assay the corresponding acids were also found to be substrates; however, DL-lactate, DL-2-hydroxybutyrate, DL-3-hydroxybutyrate, crotonate, and various dicarboxylates were not. PMID:1768145

  6. Structure of human IFIT1 with capped RNA reveals adaptable mRNA binding and mechanisms for sensing N1 and N2 ribose 2'-O methylations.

    PubMed

    Abbas, Yazan M; Laudenbach, Beatrice Theres; Martínez-Montero, Saúl; Cencic, Regina; Habjan, Matthias; Pichlmair, Andreas; Damha, Masad J; Pelletier, Jerry; Nagar, Bhushan

    2017-03-14

    IFIT1 (IFN-induced protein with tetratricopeptide repeats-1) is an effector of the host innate immune antiviral response that prevents propagation of virus infection by selectively inhibiting translation of viral mRNA. It relies on its ability to compete with the translation initiation factor eIF4F to specifically recognize foreign capped mRNAs, while remaining inactive against host mRNAs marked by ribose 2'-O methylation at the first cap-proximal nucleotide (N1). We report here several crystal structures of RNA-bound human IFIT1, including a 1.6-Å complex with capped RNA. IFIT1 forms a water-filled, positively charged RNA-binding tunnel with a separate hydrophobic extension that unexpectedly engages the cap in multiple conformations (syn and anti) giving rise to a relatively plastic and nonspecific mode of binding, in stark contrast to eIF4E. Cap-proximal nucleotides encircled by the tunnel provide affinity to compete with eIF4F while allowing IFIT1 to select against N1 methylated mRNA. Gel-shift binding assays confirm that N1 methylation interferes with IFIT1 binding, but in an RNA-dependent manner, whereas translation assays reveal that N1 methylation alone is not sufficient to prevent mRNA recognition at high IFIT1 concentrations. Structural and functional analysis show that 2'-O methylation at N2, another abundant mRNA modification, is also detrimental for RNA binding, thus revealing a potentially synergistic role for it in self- versus nonself-mRNA discernment. Finally, structure-guided mutational analysis confirms the importance of RNA binding for IFIT1 restriction of a human coronavirus mutant lacking viral N1 methylation. Our structural and biochemical analysis sheds new light on the molecular basis for IFIT1 translational inhibition of capped viral RNA.

  7. Quantification of butyryl CoA:acetate CoA-transferase genes reveals different butyrate production capacity in individuals according to diet and age.

    PubMed

    Hippe, Berit; Zwielehner, Jutta; Liszt, Kathrin; Lassl, Cornelia; Unger, Frank; Haslberger, Alexander G

    2011-03-01

    The gastrointestinal microbiota produces short-chain fatty acids, especially butyrate, which affect colonic health, immune function and epigenetic regulation. To assess the effects of nutrition and aging on the production of butyrate, the butyryl-CoA:acetate CoA-transferase gene and population shifts of Clostridium clusters lV and XlVa, the main butyrate producers, were analysed. Faecal samples of young healthy omnivores (24 ± 2.5 years), vegetarians (26 ± 5 years) and elderly (86 ± 8 years) omnivores were evaluated. Diet and lifestyle were assessed in questionnaire-based interviews. The elderly had significantly fewer copies of the butyryl-CoA:acetate CoA-transferase gene than young omnivores (P=0.014), while vegetarians showed the highest number of copies (P=0.048). The thermal denaturation of the butyryl-CoA:acetate CoA-transferase gene variant melting curve related to Roseburia/Eubacterium rectale spp. was significantly more variable in the vegetarians than in the elderly. The Clostridium cluster XIVa was more abundant in vegetarians (P=0.049) and in omnivores (P<0.01) than in the elderly group. Gastrointestinal microbiota of the elderly is characterized by decreased butyrate production capacity, reflecting increased risk of degenerative diseases. These results suggest that the butyryl-CoA:acetate CoA-transferase gene is a valuable marker for gastrointestinal microbiota function.

  8. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of the enzyme galactose-1-phosphate uridyl transferase in erythrocytes (red blood cells... hereditary disease galactosemia (disorder of galactose metabolism) in infants. (b) Classification. Class II....

  9. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of the enzyme galactose-1-phosphate uridyl transferase in erythrocytes (red blood cells... hereditary disease galactosemia (disorder of galactose metabolism) in infants. (b) Classification. Class II....

  10. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a)...

  11. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a)...

  12. Nucleotidyl transferase assisted DNA labeling with different click chemistries.

    PubMed

    Winz, Marie-Luise; Linder, Eva Christina; André, Timon; Becker, Juliane; Jäschke, Andres

    2015-09-30

    Here, we present a simple, modular and efficient strategy that allows the 3'-terminal labeling of DNA, regardless of whether it has been chemically or enzymatically synthesized or isolated from natural sources. We first incorporate a range of modified nucleotides at the 3'-terminus, using terminal deoxynucleotidyl transferase. In the second step, we convert the incorporated nucleotides, using either of four highly efficient click chemistry-type reactions, namely copper-catalyzed azide-alkyne cycloaddition, strain-promoted azide-alkyne cycloaddition, Staudinger ligation or Diels-Alder reaction with inverse electron demand. Moreover, we create internal modifications, making use of either ligation or primer extension, after the nucleotidyl transferase step, prior to the click reaction. We further study the influence of linker variants on the reactivity of azides in different click reactions. We find that different click reactions exhibit distinct substrate preferences, a fact that is often overlooked, but should be considered when labeling oligonucleotides or other biomolecules with click chemistry. Finally, our findings allowed us to extend our previously published RNA labeling strategy to the use of a different copper-free click chemistry, namely the Staudinger ligation.

  13. Characterization of glutathione S-transferase of Taenia solium.

    PubMed

    Vibanco-Pérez, N; Jiménez, L; Merchant, M T; Landa, A

    1999-06-01

    A Taenia solium glutathione-S-transferase fraction (SGSTF) was isolated from a metacestode crude extract by affinity chromatography on reduced glutathione (GSH)-sepharose. The purified fraction displayed a specific glutathione S-transferase (GST) activity of 2.8 micromol/min/mg and glutathione peroxidase selenium-independent activity of 0.22 micromol/min/mg. Enzymatic characterization of the fraction suggested that the activity was closer to the mammalian mu-class GSTs. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, gel filtration, and enzyme activity analysis showed that the fraction was composed of a major band of Mr = 26 kd and that the active enzyme was dimeric. Immunohistochemical studies using specific antibodies against the major 26-kd band of the SGSTF indicated that GST protein was present in the tegument, parenchyma, protonephridial, and tegumentary cytons of the T. solium metacestode. Antibodies generated against the SGSTF tested in western blot showed cross-reactivity against GSTs purified from Taenia saginata, T. taeniaeformis, and T. crassiceps, but did not react with GSTs from Schistosoma mansoni, or mice, rabbit, and pig liver tissue. Furthermore, immunization of mice with SGSTF reduced the metacestode burden up to 74.2%. Our findings argue in favor of GST having an important role in the survival of T. solium in its hosts.

  14. Characterization of two Arabidopsis thaliana glutathione S-transferases.

    PubMed

    Nutricati, Eliana; Miceli, Antonio; Blando, Federica; De Bellis, Luigi

    2006-09-01

    Glutathione S-transferases (GST) are multifunctional proteins encoded by a large gene family, divided on the basis of sequence identity into phi, tau, theta, zeta and lambda classes. The phi and tau classes are present only in plants. GSTs appear to be ubiquitous in plants and are involved in herbicide detoxification and stress response, but little is known about the precise role of GSTs in normal plant physiology and during biotic and abiotic stress response. Two cDNAs representing the two plant classes tau and phi, AtGSTF9 and AtGSTU26, were expressed in vitro and the corresponding proteins were analysed. Both GSTs were able to catalyse a glutathione conjugation to 1-chloro-2,4-dinitrobenzene (CDNB), but they were inactive as transferases towards p-nitrobenzylchloride (pNBC). AtGSTF9 showed activity towards benzyl isothiocyanate (BITC) and an activity as glutathione peroxidase with cumene hydroperoxide (CumHPO). AtGSTU26 was not active as glutathione peroxidase and towards BITC. RT-PCR analysis was used to evaluate the expression of the two genes in response to treatment with herbicides and safeners, chemicals, low and high temperature. Our results reveal that AtGSTU26 is induced by the chloroacetanilide herbicides alachlor and metolachlor and the safener benoxacor, and after exposure to low temperatures. In contrast, AtGSTF9 seems not to be influenced by the treatments employed.

  15. Nucleotidyl transferase assisted DNA labeling with different click chemistries

    PubMed Central

    Winz, Marie-Luise; Linder, Eva Christina; André, Timon; Becker, Juliane; Jäschke, Andres

    2015-01-01

    Here, we present a simple, modular and efficient strategy that allows the 3′-terminal labeling of DNA, regardless of whether it has been chemically or enzymatically synthesized or isolated from natural sources. We first incorporate a range of modified nucleotides at the 3′-terminus, using terminal deoxynucleotidyl transferase. In the second step, we convert the incorporated nucleotides, using either of four highly efficient click chemistry-type reactions, namely copper-catalyzed azide-alkyne cycloaddition, strain-promoted azide-alkyne cycloaddition, Staudinger ligation or Diels-Alder reaction with inverse electron demand. Moreover, we create internal modifications, making use of either ligation or primer extension, after the nucleotidyl transferase step, prior to the click reaction. We further study the influence of linker variants on the reactivity of azides in different click reactions. We find that different click reactions exhibit distinct substrate preferences, a fact that is often overlooked, but should be considered when labeling oligonucleotides or other biomolecules with click chemistry. Finally, our findings allowed us to extend our previously published RNA labeling strategy to the use of a different copper-free click chemistry, namely the Staudinger ligation. PMID:26013812

  16. Next-Generation Sequencing-Based RiboMethSeq  Protocol for Analysis of tRNA 2'-O-Methylation.

    PubMed

    Marchand, Virginie; Pichot, Florian; Thüring, Kathrin; Ayadi, Lilia; Freund, Isabel; Dalpke, Alexander; Helm, Mark; Motorin, Yuri

    2017-02-09

    Analysis of RNA modifications by traditional physico-chemical approaches is labor  intensive,  requires  substantial  amounts  of  input  material  and  only  allows  site-by-site  measurements.  The  recent  development  of  qualitative  and  quantitative  approaches  based  on   next-generation sequencing (NGS) opens new perspectives for the analysis of various cellular RNA  species.  The  Illumina  sequencing-based  RiboMethSeq  protocol  was  initially  developed  and  successfully applied for mapping of ribosomal RNA (rRNA) 2'-O-methylations. This method also  gives excellent results in the quantitative analysis of rRNA modifications in different species and  under varying growth conditions. However, until now, RiboMethSeq was only employed for rRNA,  and the whole sequencing and analysis pipeline was only adapted to this long and rather conserved  RNA species. A deep understanding of RNA modification functions requires large and global  analysis datasets for other important RNA species, namely for transfer RNAs (tRNAs), which are  well known to contain a great variety of functionally-important modified residues. Here, we  evaluated the application of the RiboMethSeq protocol for the analysis of tRNA 2'-O-methylation in  Escherichia coli and in Saccharomyces cerevisiae. After a careful optimization of the bioinformatic  pipeline, RiboMethSeq proved to be suitable for relative quantification of methylation rates for  known modified positions in different tRNA species.

  17. Contribution of liver mitochondrial membrane-bound glutathione transferase to mitochondrial permeability transition pores

    SciTech Connect

    Hossain, Quazi Sohel; Ulziikhishig, Enkhbaatar; Lee, Kang Kwang; Yamamoto, Hideyuki; Aniya, Yoko

    2009-02-15

    We recently reported that the glutathione transferase in rat liver mitochondrial membranes (mtMGST1) is activated by S-glutathionylation and the activated mtMGST1 contributes to the mitochondrial permeability transition (MPT) pore and cytochrome c release from mitochondria [Lee, K.K., Shimoji, M., Quazi, S.H., Sunakawa, H., Aniya, Y., 2008. Novel function of glutathione transferase in rat liver mitochondrial membrane: role for cytochrome c release from mitochondria. Toxcol. Appl. Pharmacol. 232, 109-118]. In the present study we investigated the effect of reactive oxygen species (ROS), generator gallic acid (GA) and GST inhibitors on mtMGST1 and the MPT. When rat liver mitochondria were incubated with GA, mtMGST1 activity was increased to about 3 fold and the increase was inhibited with antioxidant enzymes and singlet oxygen quenchers including 1,4-diazabicyclo [2,2,2] octane (DABCO). GA-mediated mtMGST1 activation was prevented by GST inhibitors such as tannic acid, hematin, and cibacron blue and also by cyclosporin A (CsA). In addition, GA induced the mitochondrial swelling which was also inhibited by GST inhibitors, but not by MPT inhibitors CsA, ADP, and bongkrekic acid. GA also released cytochrome c from the mitochondria which was inhibited completely by DABCO, moderately by GST inhibitors, and somewhat by CsA. Ca{sup 2+}-mediated mitochondrial swelling and cytochrome c release were inhibited by MPT inhibitors but not by GST inhibitors. When the outer mitochondrial membrane was isolated after treatment of mitochondria with GA, mtMGST1 activity was markedly increased and oligomer/aggregate of mtMGST1 was observed. These results indicate that mtMGST1 in the outer mitochondrial membrane is activated by GA through thiol oxidation leading to protein oligomerization/aggregation, which may contribute to the formation of ROS-mediated, CsA-insensitive MPT pore, suggesting a novel mechanism for regulation of the MPT by mtMGST1.

  18. Properties of Succinyl-Coenzyme A:l-Malate Coenzyme A Transferase and Its Role in the Autotrophic 3-Hydroxypropionate Cycle of Chloroflexus aurantiacus

    PubMed Central

    Friedmann, Silke; Steindorf, Astrid; Alber, Birgit E.; Fuchs, Georg

    2006-01-01

    The 3-hydroxypropionate cycle has been proposed to operate as the autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus. In this pathway, acetyl coenzyme A (acetyl-CoA) and two bicarbonate molecules are converted to malate. Acetyl-CoA is regenerated from malyl-CoA by l-malyl-CoA lyase. The enzyme forming malyl-CoA, succinyl-CoA:l-malate coenzyme A transferase, was purified. Based on the N-terminal amino acid sequence of its two subunits, the corresponding genes were identified on a gene cluster which also contains the gene for l-malyl-CoA lyase, the subsequent enzyme in the pathway. Both enzymes were severalfold up-regulated under autotrophic conditions, which is in line with their proposed function in CO2 fixation. The two CoA transferase genes were cloned and heterologously expressed in Escherichia coli, and the recombinant enzyme was purified and studied. Succinyl-CoA:l-malate CoA transferase forms a large (αβ)n complex consisting of 46- and 44-kDa subunits and catalyzes the reversible reaction succinyl-CoA + l-malate → succinate + l-malyl-CoA. It is specific for succinyl-CoA as the CoA donor but accepts l-citramalate instead of l-malate as the CoA acceptor; the corresponding d-stereoisomers are not accepted. The enzyme is a member of the class III of the CoA transferase family. The demonstration of the missing CoA transferase closes the last gap in the proposed 3-hydroxypropionate cycle. PMID:16547052

  19. Purification and characterization of UDP-GalNAc:polypeptide N-acetylgalactosaminyl transferase from swine trachea epithelium.

    PubMed

    Mendicino, J; Sangadala, S

    1998-08-01

    UDP-GalNac: polypeptide N-acetylgalactosaminyltransferase from swine trachea epithelium was purified to homogeneity by procedures which included affinity chromatography on Sepharose 4B columns containing bound deglycosylated Cowper's gland mucin. The enzyme, purified 12,000-fold from microsomes with a yield of 40%, showed only a single band on dodecyl sulfate polyacrylamide gel electrophoresis. The homogenous enzyme has an apparent molecular mass of 70,000 Da, as determined by gel electrophoresis or gel filtration. The transferase has a broad pH optimum between 6.7-7.8 with maximal activity at pH 7.2, and required Mn2+ for activity with maximal activity at 5-7.5 mM. Higher concentrations of Mn2+, inhibited the enzyme. The purified transferase was specific for UDPGalNAc and glycosylated both threonine and serine residues in tryptic peptides prepared from deglycosylated Cowper's gland and swine and human trachea mucins. The apparent Km of the transferase for UDPGalNAc was 6.3 microM, and the Km values for deglycosylated Cowper's gland and human and swine trachea mucins were 0.83, 1.12 and 0.94 mg/ml, respectively. The Vmax of the purified enzyme was 2.1 micromol/min/mg with deglycosylated Cowper's gland mucin, as the glycosyl acceptor. However, the activities with peptides prepared from deglycosylated mucins by limited acid hydrolysis were 20-fold greater than the intact glycoprotein under identical conditions. The deglycosylated mucins and larger peptides aggregated with time of storage and precipitated from solution. Aggregation was accompanied by a corresponding loss of enzymatic activity even after dispersion of the aggregate by sonication. The deglycosylated mucins which were prepared by chemical treatment and periodate oxidation still contained about 20% of the N-acetylgalactosamine present in the intact mucin. When this residual amino sugar was removed by periodate oxidation the completely deglycosylated mucins became very poor substrates for the purified

  20. Structural basis for piRNA 2'-O-methylated 3'-end recognition by Piwi PAZ (Piwi/Argonaute/Zwille) domains.

    PubMed

    Tian, Yuan; Simanshu, Dhirendra K; Ma, Jin-Biao; Patel, Dinshaw J

    2011-01-18

    Argonaute and Piwi proteins are key players in the RNA silencing pathway, with the former interacting with micro-RNAs (miRNAs) and siRNAs, whereas the latter targets piwi-interacting RNAs (piRNAs) that are 2'-O-methylated (2(')-OCH(3)) at their 3' ends. Germline-specific piRNAs and Piwi proteins play a critical role in genome defense against transposable elements, thereby protecting the genome against transposon-induced defects in gametogenesis and fertility. Humans contain four Piwi family proteins designated Hiwi1, Hiwi2, Hiwi3, and Hili. We report on the structures of Hili-PAZ (Piwi/Argonaute/Zwille) domain in the free state and Hiwi1 PAZ domain bound to self-complementary 14-mer RNAs (12-bp + 2-nt overhang) containing 2(')-OCH(3) and 2'-OH at their 3' ends. These structures explain the molecular basis underlying accommodation of the 2(')-OCH(3) group within a preformed Hiwi1 PAZ domain binding pocket, whose hydrophobic characteristics account for the preferential binding of 2(')-OCH(3) over 2'-OH 3' ends. These results contrast with the more restricted binding pocket for the human Ago1 PAZ domain, which exhibits a reverse order, with preferential binding of 2'-OH over 2(')-OCH(3) 3' ends.

  1. Single-molecule detection and tracking of RNA transcripts in living cells using phosphorothioate-optimized 2'-O-methyl RNA molecular beacons.

    PubMed

    Zhao, Dan; Yang, Yantao; Qu, Na; Chen, Mingming; Ma, Zhao; Krueger, Christopher J; Behlke, Mark A; Chen, Antony K

    2016-09-01

    Molecular Beacons (MBs) composed of 2'-O-methyl RNA (2Me) and phosphorothioate (PS) linkages throughout the backbone (2Me/PSFULL MBs) have enabled long-term imaging of RNA in living cells, but excess PS modification can induce nonspecific binding, causing false-positive signals. In this study, we evaluate the intracellular stability of MBs composed of 2Me with various PS modifications, and found that false-positive signals could be reduced to marginal levels when the MBs possess a fully PS-modified loop domain and a phosphodiester stem (2Me/PSLOOP MB). Additionally, 2Me/PSLOOP MBs exhibited uncompromised hybridization kinetics, prolonged functionality and >88% detection accuracy for single RNA transcripts, and could do so without interfering with gene expression or cell growth. Finally, 2Me/PSLOOP MBs could image the dynamics of single mRNA transcripts in the nucleus and the cytoplasm simultaneously, regardless of whether the MBs targeted the 5'- or the 3'-UTR. Together, these findings demonstrate the effectiveness of loop-domain PS modification in reducing nonspecific signals and the potential for sensitive and accurate imaging of individual RNAs at the single-molecule level. With the growing interest in the role of RNA localization and dynamics in health and disease, 2Me/PSLOOP MBs could enable new discoveries in RNA research.

  2. Characterization and In Vitro Evaluation of the Complexes of Posaconazole with β- and 2,6-di-O-methyl-β-cyclodextrin.

    PubMed

    Tang, Peixiao; Wang, Lei; Ma, Xiaoli; Xu, Kailin; Xiong, Xinnuo; Liao, Xiaoxiang; Li, Hui

    2017-01-01

    Posaconazole is a triazole antifungal drug that with extremely poor aqueous solubility. Up to now, this drug can be administered via intravenous injection and oral suspension. However, its oral bioavailability is greatly limited by the dissolution rate of the drug. This study aimed to improve water solubility and dissolution of posaconazole through characterizing the inclusion complexes of posaconazole with β-cyclodextrin (β-CD) and 2,6-di-O-methyl-β-cyclodextrin (DM-β-CD). Phase solubility studies were performed to calculate the stability constants in solution. The results of FT-IR, PXRD, (1)H and ROESY 2D NMR, and DSC all verified the formation of the complexes in solid state. The complexes showed remarkably improved water solubility and dissolution rate than pure posaconazole. Especially, the aqueous solubility of the DM-β-CD complex is nine times higher than that of the β-CD complex. Preliminary in vitro antifungal susceptibility tests showed that the two inclusion complexes maintained high antifungal activities. These results indicated that the DM-β-CD complexes have great potential for application in the delivery of poorly water-soluble antifungal agents, such as posaconazole.

  3. Distribution and kinetics of 3-O-methyl-6-(18F)fluoro-L-dopa in the rhesus monkey brain

    SciTech Connect

    Doudet, D.J.; McLellan, C.A.; Carson, R.; Adams, H.R.; Miyake, H.; Aigner, T.G.; Finn, R.T.; Cohen, R.M. )

    1991-09-01

    Most attempts to model accurately (18F)-DOPA imaging of the dopamine system are based on the assumptions that its main peripheral metabolite, 3-O-methyl-6-(18F)fluoro-L-DOPA ((18F)3-OM-DOPA), crosses the blood-brain barrier but is present as a homogenous distribution throughout the brain, in part because it is not converted into (18F)DOPA in significant quantities. These assumptions were based mainly on data in rodents. Little information is available in the primate. To verify the accuracy of the above assumptions, the authors administered 18F-labeled 3-OM-DOPA to normal rhesus monkeys and animals with lesions of the DA nigrostriatal system. No selective 18F regional accumulation in brain was apparent in normal or lesioned animals. The plasma metabolite analysis revealed that only the negatively charged metabolites (e.g., sulfated conjugates) that do not cross the blood-brain barrier were found in significant quantities in the plasma. A one-compartment, three-parameter model was adequate to describe the kinetics of (18F)3-OM-DOPA. In conclusion, assumptions concerning (18F)3-OM-DOPA's behavior in brain appear acceptable for (18F)DOPA modeling purposes.

  4. Suppression of c-Myc induces apoptosis via an AMPK/mTOR-dependent pathway by 4-O-methyl-ascochlorin in leukemia cells.

    PubMed

    Shin, Jae-Moon; Jeong, Yun-Jeong; Cho, Hyun-Ji; Magae, Junji; Bae, Young-Seuk; Chang, Young-Chae

    2016-05-01

    4-O-Methyl-ascochlorin (MAC) is a methylated derivative of the prenyl-phenol antibiotic ascochlorin, which was isolated from an incomplete fungus, Ascochyta viciae. Although the effects of MAC on apoptosis have been reported, the underlying mechanisms remain unknown. Here, we show that MAC promoted apoptotic cell death and downregulated c-Myc expression in K562 human leukemia cells. The effect of MAC on apoptosis was similar to that of 10058-F4 (a c-Myc inhibitor) or c-Myc siRNA, suggesting that the downregulation of c-Myc expression plays a role in the apoptotic effect of MAC. Further investigation showed that MAC downregulated c-Myc by inhibiting protein synthesis. MAC promoted the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR) and its target proteins, including p70S6 K and 4E-BP-1. Treatment of cells with AICAR (an AMPK activator), rapamycin (an mTOR inhibitor), or mTOR siRNA downregulated c-Myc expression and induced apoptosis to a similar extent to that of MAC. These results suggest that the effect of MAC on apoptosis induction in human leukemia cells is mediated by the suppression of c-Myc protein synthesis via an AMPK/mTOR-dependent mechanism.

  5. Pluronic-PEI copolymers enhance exon-skipping of 2'-O-methyl phosphorothioate oligonucleotide in cell culture and dystrophic mdx mice.

    PubMed

    Wang, M; Wu, B; Lu, P; Tucker, J D; Milazi, S; Shah, S N; Lu, Q L

    2014-01-01

    A series of small-size polyethylenimine (PEI)-conjugated pluronic polycarbamates (PCMs) have been investigated for the ability to modulate the delivery of 2'-O-methyl phosphorothioate RNA (2'-OMePS) in vitro and in dystrophic mdx mice. The PCMs retain strong binding capacity to negatively charged oligomer as demonstrated by agarose gel retardation assay, with the formation of condensed polymer/oligomer complexes at a wide-range weight ratio from 1:1 to 20:1. The condensed polymer/oligomer complexes form 100-300 nm nanoparticles. Exon-skipping effect of 2'-OMePS was dramatically enhanced with the use of the most effective PCMs in comparison with 2'-OMePS alone in both cell culture and in vivo, respectively. More importantly, the effective PCMs, especially those composed of moderate size (2k-5kDa) and intermediate hydrophilic-lipophilic balance (7-23) of pluronics, enhanced exon-skipping of 2'-OMePS with low toxicity as compared with Lipofectamine-2000 in vitro or PEI 25k in vivo. The variability of individual PCM for delivery of antisense oligomer and plasmid DNA indicate the complexity of interaction between polymer and their cargos. Our data demonstrate the potential of PCMs to mediate delivery of modified antisense oligonucleotides to the muscle for treating muscular dystrophy or other appropriate myodegenerative diseases.

  6. The phytohormone precursor OPDA is isomerized in the insect gut by a single, specific glutathione transferase

    PubMed Central

    Dąbrowska, Paulina; Freitak, Dalial; Vogel, Heiko; Heckel, David G.; Boland, Wilhelm

    2009-01-01

    Oxylipins play important roles in stress signaling in plants. The compound 12-oxophytodienoic acid (cis-OPDA) is an early biosynthetic precursor of jasmonic acid (JA), the key phytohormone orchestrating the plant anti-herbivore defense. When consumed by feeding Lepidopteran larvae, plant-derived cis-OPDA suffers rapid isomerization to iso-OPDA in the midgut and is excreted in the frass. Unlike OPDA epimerization (yielding trans-OPDA), the formation of iso-OPDA is enzyme-dependent, and is catalyzed by an inducible glutathione transferase (GSTs) from the larval gut. Purified GST fractions from the gut of Egyptian cotton leafworm (Spodoptera littoralis) and cotton bollworm (Helicoverpa armigera) both exhibited strong OPDA isomerization activity, most likely via transient formation of a glutathione-OPDA conjugate. Out of 16 cytosolic GST proteins cloned from the gut of cotton bollworm larvae and expressed in E. coli, only one catalyzed the OPDA isomerization. The biological function of the double bond shift might be seen in an inactivation of cis-OPDA, similar to the inactivation of prostaglandin A1 to prostaglandin B1 in mammalian tissue. The enzymatic isomerization is particularly widespread among generalist herbivores that have to cope with various amounts of cis-OPDA in their spectrum of host plants. PMID:19805297

  7. Rhabdomyolysis and respiratory failure: rare presentation of carnitine palmityl-transferase II deficiency.

    PubMed

    Gentili, A; Iannella, E; Masciopinto, F; Latrofa, M E; Giuntoli, L; Baroncini, S

    2008-05-01

    Carnitine palmityl-transferase (CPT) II deficiency is a rare disorder of the fatty acid beta-oxidation cycle. CPT II deficiency can be associated with rhabdomyolysis in particular conditions that increase the requirement for fatty acid oxidation, such as low-carbohydrate and high-fat diet, fasting, exposure to excessive cold, lack of sleep and prolonged exercise. The best known CPT II deficiency is the muscular form with episodic muscle necrosis and paroxysmal myoglobinuria after prolonged exercise. We report a case of a four-year-old male child, who, after one day of hyperthermia and fasting, developed a massive rhabdomyolysis beginning with acute respiratory failure and later complicated by acute renal failure. Appropriate management in Pediatric Intensive Care Unit (PICU) (mechanical ventilatory support, fluid supply combined with mannitol and bicarbonate infusions, administration of acetaminophen and antibiotics, and continuous venovenous haemofiltration) brought about complete resolution with an excellent outcome. Biochemical investigation of muscle biopsy and genetic analysis showed a deficiency of CPT II. The onset of CPT II deficiency with respiratory failure is extremely rare, but a correct and early diagnosis of rhabdomyolysis is the key to successful treatment. A metabolic myopathy such as CPT II deficiency should be suspected in children affected by rhabdomyolysis if trauma, crash, infections, drugs or extreme exertion can be excluded.

  8. Identification, characterization and structure of a new Delta class glutathione transferase isoenzyme

    PubMed Central

    2005-01-01

    The insect GST (glutathione transferase) supergene family encodes a varied group of proteins belonging to at least six individual classes. Interest in insect GSTs has focused on their role in conferring insecticide resistance. Previously from the mosquito malaria vector Anopheles dirus, two genes encoding five Delta class GSTs have been characterized for structural as well as enzyme activities. We have obtained a new Delta class GST gene and isoenzyme from A. dirus, which we name adGSTD5-5. The adGSTD5-5 isoenzyme was identified and was only detectably expressed in A. dirus adult females. A putative promoter analysis suggests that this GST has an involvement in oogenesis. The enzyme displayed little activity for classical GST substrates, although it possessed the greatest activity for DDT [1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane] observed for Delta GSTs. However, GST activity was inhibited or enhanced in the presence of various fatty acids, suggesting that the enzyme may be modulated by fatty acids. We obtained a crystal structure for adGSTD5-5 and compared it with other Delta GSTs, which showed that adGSTD5-5 possesses an elongated and more polar active-site topology. PMID:15717864

  9. Endophilin and CtBP/BARS are not acyl transferases in endocytosis or Golgi fission.

    PubMed

    Gallop, Jennifer L; Butler, P Jonathan G; McMahon, Harvey T

    2005-12-01

    Endophilins have been proposed to have an enzymatic activity (a lysophosphatidic acid acyl transferase or LPAAT activity) that can make phosphatidic acid in membranes. This activity is thought to change the bilayer asymmetry in such a way that negative membrane curvature at the neck of a budding vesicle will be stabilized. An LPAAT activity has also been proposed for CtBP/BARS (carboxy-terminal binding protein/brefeldin A-ribosylated substrate), a transcription co-repressor that is implicated in dynamin-independent endocytosis and fission of the Golgi in mitosis. Here we show that the LPAAT activity associated with endophilin is a contaminant of the purification procedure and can be also found associated with the pleckstrin homology domain of dynamin. Likewise, the LPAAT activity associated with CtBP/BARS is also a co-purification artefact. The proposed locus of activity in endophilins includes the BAR domain, which has no catalytic site but instead senses positive membrane curvature. These data will prompt a re-evaluation of the molecular details of membrane budding.

  10. MOF Acetyl Transferase Regulates Transcription and Respiration in Mitochondria.

    PubMed

    Chatterjee, Aindrila; Seyfferth, Janine; Lucci, Jacopo; Gilsbach, Ralf; Preissl, Sebastian; Böttinger, Lena; Mårtensson, Christoph U; Panhale, Amol; Stehle, Thomas; Kretz, Oliver; Sahyoun, Abdullah H; Avilov, Sergiy; Eimer, Stefan; Hein, Lutz; Pfanner, Nikolaus; Becker, Thomas; Akhtar, Asifa

    2016-10-20

    A functional crosstalk between epigenetic regulators and metabolic control could provide a mechanism to adapt cellular responses to environmental cues. We report that the well-known nuclear MYST family acetyl transferase MOF and a subset of its non-specific lethal complex partners reside in mitochondria. MOF regulates oxidative phosphorylation by controlling expression of respiratory genes from both nuclear and mtDNA in aerobically respiring cells. MOF binds mtDNA, and this binding is dependent on KANSL3. The mitochondrial pool of MOF, but not a catalytically deficient mutant, rescues respiratory and mtDNA transcriptional defects triggered by the absence of MOF. Mof conditional knockout has catastrophic consequences for tissues with high-energy consumption, triggering hypertrophic cardiomyopathy and cardiac failure in murine hearts; cardiomyocytes show severe mitochondrial degeneration and deregulation of mitochondrial nutrient metabolism and oxidative phosphorylation pathways. Thus, MOF is a dual-transcriptional regulator of nuclear and mitochondrial genomes connecting epigenetics and metabolism.

  11. Thermodynamics of Enzyme-Catalyzed Reactions: Part 2. Transferases

    NASA Astrophysics Data System (ADS)

    Goldberg, Robert N.; Tewari, Yadu B.

    1994-07-01

    Equilibrium constants and enthalpy changes for reactions catalyzed by the transferase class of enzymes have been compiled. For each reaction the following information is given: the reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement [temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used]; the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it or any calculations for which the data have been used. The data from 285 references have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.

  12. Enzymatic synthesis of 2'-modified nucleic acids: identification of important phosphate and ribose moieties in RNase P substrates.

    PubMed Central

    Conrad, F; Hanne, A; Gaur, R K; Krupp, G

    1995-01-01

    For the first time mosaic nucleic acids composed of 50% RNA and 50% DNA can be obtained as transcripts with T7 RNA polymerase. Two NTPs could be replaced simultaneously in a transcription reaction. This means more than 40 deoxynucleotides were inserted in one transcript. Previously, a maximum of two deoxynucleotides could be incorporated and 2'-O-methyl-NTPs were not substrates at all. We obtained reasonable transcript yields with a maximal level of 99% 2'-O-methyl-NTPs, and the products contained up to 58% 2'-O-methylnucleotides at more than 20 positions. Sequence-specific nucleotide incorporation was monitored by sequence ladders (partial alkali or iodine cleavage). No base misincorporations were detected with 100% dGTP, dCTP and dTTP, and with partial incorporation of dATP alpha S, 2'-O-methyl-GTP alpha S and 2'-O-methyl-CTP alpha S, whereas they were found with dATP, 2'-O-methyl-ATP alpha S and 2'-O-methyl-UTP alpha S. Quantitative data allow predetermined modification levels of partially modified transcripts. Highly modified transcripts can be used for structural and functional studies, in modification interference approaches and for in vitro evolution procedures. Modification interference studies revealed a small number of important phosphate and ribose moieties in RNase P substrates. The conversion of T7 RNA polymerase to a DNA polymerase extends the observation that there is no absolute distinction between RNA and DNA polymerases. Accordingly, an adapted concept of a primordial RNA world is presented. Images PMID:7541130

  13. Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents.

    PubMed

    Higgins, Larry G; Hayes, John D

    2011-05-01

    Glutathione transferase (GST) isoezymes are encoded by three separate families of genes (designated cytosolic, microsomal and mitochondrial transferases), with distinct evolutionary origins, that provide mammalian species with protection against electrophiles and oxidative stressors in the environment. Members of the cytosolic class Alpha, Mu, Pi and Theta GST, and also certain microsomal transferases (MGST2 and MGST3), are up-regulated by a diverse spectrum of foreign compounds typified by phenobarbital, 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, pregnenolone-16α-carbonitrile, 3-methylcholanthrene, 2,3,7,8-tetrachloro-dibenzo-p-dioxin, β-naphthoflavone, butylated hydroxyanisole, ethoxyquin, oltipraz, fumaric acid, sulforaphane, coumarin, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole, 12-O-tetradecanoylphorbol-13-acetate, dexamethasone and thiazolidinediones. Collectively, these compounds induce gene expression through the constitutive androstane receptor (CAR), the pregnane X receptor (PXR), the aryl hydrocarbon receptor (AhR), NF-E2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor-γ (PPARγ) and CAATT/enhancer binding protein (C/EBP) β. The microsomal T family includes 5-lipoxygenase activating protein (FLAP), leukotriene C(4) synthase (LTC4S) and prostaglandin E(2) synthase (PGES-1), and these are up-regulated by tumour necrosis factor-α, lipopolysaccharide and transforming growth factor-β. Induction of genes encoding FLAP, LTC4S and PGES-1 is mediated by the transcription factors C/EBPα, C/EBPδ, C/EBPϵ, nuclear factor-κB and early growth response-1. In this article we have reviewed the literature describing the mechanisms by which cytosolic and microsomal GST are up-regulated by xenobiotics, drugs, cytokines and endotoxin. We discuss cross-talk between the different induction mechanisms, and have employed bioinformatics to identify cis-elements in the upstream regions of GST genes to which the various transcription

  14. The automated radiosynthesis and purification of the opioid receptor antagonist, [6-O-methyl-11C]diprenorphine on the GE TRACERlab FXFE radiochemistry module.

    PubMed

    Fairclough, Michael; Prenant, Christian; Brown, Gavin; McMahon, Adam; Lowe, Jonathan; Jones, Anthony

    2014-05-15

    [6-O-Methyl-(11)C]diprenorphine ([(11)C]diprenorphine) is a positron emission tomography ligand used to probe the endogenous opioid system in vivo. Diprenorphine acts as an antagonist at all of the opioid receptor subtypes, that is, μ (mu), κ (kappa) and δ (delta). The radiosynthesis of [(11)C]diprenorphine using [(11)C]methyl iodide produced via the 'wet' method on a home-built automated radiosynthesis set-up has been described previously. Here, we describe a modified synthetic method to [(11)C]diprenorphine performed using [(11)C]methyl iodide produced via the gas phase method on a GE TRACERlab FXFE radiochemistry module. Also described is the use of [(11)C]methyl triflate as the carbon-11 methylating agent for the [(11)C]diprenorphine syntheses. [(11)C]Diprenorphine was produced to good manufacturing practice standards for use in a clinical setting. In comparison to previously reported [(11)C]diprenorphine radiosyntheisis, the method described herein gives a higher specific activity product which is advantageous for receptor occupancy studies. The radiochemical purity of [(11)C]diprenorphine is similar to what has been reported previously, although the radiochemical yield produced in the method described herein is reduced, an issue that is inherent in the gas phase radiosynthesis of [(11)C]methyl iodide. The yields of [(11)C]diprenorphine are nonetheless sufficient for clinical research applications. Other advantages of the method described herein are an improvement to both reproducibility and reliability of the production as well as simplification of the purification and formulation steps. We suggest that our automated radiochemistry route to [(11)C]diprenorphine should be the method of choice for routine [(11)C]diprenorphine productions for positron emission tomography studies, and the production process could easily be transferred to other radiochemistry modules such as the TRACERlab FX C pro.

  15. Reduced 3-O-methyl-dopa levels in OCD patients and their unaffected parents is associated with the low activity M158 COMT allele

    PubMed Central

    Delorme, Richard; Betancur, Catalina; Chaste, Pauline; Kernéis, Solen; Stopin, Astrid; Mouren, Marie-Christine; Collet, Corinne; Bourgeron, Thomas; Leboyer, Marion; Launay, Jean-Marie

    2010-01-01

    Background The catechol-O-methyltransferase (COMT) gene is considered as a candidate gene in obsessive-compulsive disorder (OCD). Specifically, the COMT low-activity M158 allele has been suggested to be associated with OCD. However, there is no study reporting that COMT activity is decreased in OCD patients and that the decrease is mediated by the V158M polymorphism. Therefore, the purpose of our study was to assess COMT activity in OCD by measuring plasma levels of 3-O-methyl-dopa (3-OMD), which result from the methylation of levodopa by COMT, and to investigate the relationship between 3-OMD levels and the V158M polymorphism. We also examined whether 3-OMD levels represented an endophenotype, associated with the genetic liability to OCD, by assessing unaffected relatives of OCD patients. Method We assessed plasma 3-OMD levels in a sample of drug-free OCD probands (n = 34) and their unaffected parents (n = 63), and compared them with controls (n = 85). The COMT V158M polymorphism was genotyped in all participants. Results Lower plasma 3-OMD levels were found in OCD probands and their unaffected parents compared to controls. The COMT M158 allele was associated with reduced plasma 3-OMD levels in a co-dominant manner, both in OCD probands and their relatives, but not in controls. Conclusion Our results suggest that COMT activity could act as a limiting factor for the production of 3-OMD in OCD patients and in their relatives. These findings further support a role of COMT in the susceptibility to OCD and provide evidence that 3-OMD levels could represent an endophenotype in OCD. PMID:19676096

  16. Antioxidant and hepatoprotective effect of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me) from Chinese oolong tea.

    PubMed

    Zhang, Xin; Wu, Zufang; Weng, Peifang

    2014-10-15

    (-)-Epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me) has exhibited various biological activities in oolong tea. However, little information about its hepatoprotective activity is available. The objectives of the present study, therefore, were to determine the hepatoprotective activity of EGCG3″Me. First, high-purity EGCG3″Me was prepared from Chinese oolong tea by column chromatography. In antioxidant assay in vitro, EGCG3″Me exhibited potential antioxidant activity. For hepatoprotective activity in vitro, it was observed that EGCG3″Me effectively alleviated the changes induced by alcohol in a concentration-dependent manner. For hepatoprotective activity in vivo, the administration of EGCG3″Me at a dose of 100 mg/kg BW per day significantly decreased the serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) from 64.6 ± 3.17 and 97.6 ± 3.78 to 39.6 ± 2.72 and 59.6 ± 3.02 U/L, decreased the liver level of malondialdehyde (MDA) from 1.14 ± 0.08 to 0.77 ± 0.03 nmol/mg protein, and remarkably restored the liver activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) from 247 ± 20.1 U/mg and 6.12 ± 0.17 nmol/mg protein to 261 ± 9.98 U/mg and 8.10 ± 0.03 nmol/mg protein, respectively, in alcohol-induced liver injury mice. This suggested that the protective effect of EGCG3″Me against alcohol-induced liver injury is possibly via its antioxidant activity to protect biological systems against oxidative stress.

  17. Thermotropic phase properties of 1,2-di-O-tetradecyl-3-O-(3-O-methyl- beta-D-glucopyranosyl)-sn-glycerol.

    PubMed Central

    Trouard, T P; Mannock, D A; Lindblom, G; Rilfors, L; Akiyama, M; McElhaney, R N

    1994-01-01

    The hydration properties and the phase structure of 1,2-di-O-tetradecyl-3-O(3-O-methyl-beta-D-glucopyranosyl)-sn-glycerol (3-O-Me-beta-D-GlcDAIG) in water have been studied via differential scanning calorimetry, 1H-NMR and 2H-NMR spectroscopy, and x-ray diffraction. Results indicate that this lipid forms a crystalline (Lc) phase up to temperatures of 60-70 degrees C, where a transition through a metastable reversed hexagonal (Hll) phase to a reversed micellar solution (L2) phase occurs. Experiments were carried out at water concentrations in a range from 0 to 35 wt%, which indicate that all phases are poorly hydrated, taking up < 5 mol water/mol lipid. The absence of a lamellar liquid crystalline (L alpha) phase and the low levels of hydration measured in the discernible phases suggest that the methylation of the saccharide moiety alters the hydrogen bonding properties of the headgroup in such a way that the 3-O-Me-beta-D-GlcDAIG headgroup cannot achieve the same level of hydration as the unmethylated form. Thus, in spite of the small increase in steric bulk resulting from methylation, there is an increase in the tendency of 3-O-Me-beta-D-GlcDAIG to form nonlamellar structures. A similar phase behavior has previously been observed for the Acholeplasma laidlawii A membrane lipid 1,2-diacyl-3-O-(6-O-acyl-alpha-D-glucopyranosyl)-sn-glycerol in water (Lindblom et al. 1993. J. Biol. Chem. 268:16198-16207). The phase behavior of the two lipids suggests that hydrophobic substitution of a hydroxyl group in the sugar ring of the glucopyranosylglycerols has a very strong effect on their physicochemical properties, i.e., headgroup hydration and the formation of different lipid aggregate structures. PMID:7811919

  18. Carnitine palmitoyl transferase-1A (CPT1A): a new tumor specific target in human breast cancer

    PubMed Central

    Zonetti, Maria Josè; Fisco, Tommaso; Polidoro, Chiara; Bocchinfuso, Gianfranco; Palleschi, Antonio; Novelli, Giuseppe; Spagnoli, Luigi G.

    2016-01-01

    Transcriptional mechanisms epigenetically-regulated in tumoral tissues point out new targets for anti-cancer therapies. Carnitine palmitoyl transferase I (CPT1) is the rate-limiting enzyme in the transport of long-chain fatty acids for β-oxidation. Here we identified the tumor specific nuclear CPT1A as a product of the transcript variant 2, that doesn't retain the classical transferase activity and is strongly involved in the epigenetic regulation of cancer pro-survival, cell death escaping and tumor invasion pathways. The knockdown of CPT1A variant 2 by small interfering RNAs (siRNAs), was sufficient to induce apoptosis in MCF-7, SK-BR3 and MDA-MB-231 breast cancer cells. The cell death triggered by CPT1A silencing correlated with reduction of HDAC activity and histone hyperacetylation. Docking experiments and molecular dynamics simulations confirmed an high binding affinity of the variant 2 for HDAC1. The CPT1A silenced cells showed an up-regulated transcription of pro-apoptotic genes (BAD, CASP9, COL18A1) and down-modulation of invasion and metastasis related-genes (TIMP-1, PDGF-A, SERPINB2). These findings provide evidence of the CPT1 variant 2 involvement in breast cancer survival, cell death escape and invasion. Thus, we propose nuclear CPT1A as a striking tumor specific target for anticancer therapeutics, more selective and effective as compared with the well-known HDAC inhibitors. PMID:26799588

  19. Pharmacological stimulation of brain carnitine palmitoyl-transferase-1 decreases food intake and body weight.

    PubMed

    Aja, Susan; Landree, Leslie E; Kleman, Amy M; Medghalchi, Susan M; Vadlamudi, Aravinda; McFadden, Jill M; Aplasca, Andrea; Hyun, Jayson; Plummer, Erica; Daniels, Khadija; Kemm, Matthew; Townsend, Craig A; Thupari, Jagan N; Kuhajda, Francis P; Moran, Timothy H; Ronnett, Gabriele V

    2008-02-01

    Inhibition of brain carnitine palmitoyl-transferase-1 (CPT-1) is reported to decrease food intake and body weight in rats. Yet, the fatty acid synthase (FAS) inhibitor and CPT-1 stimulator C75 produces hypophagia and weight loss when given to rodents intracerebroventricularly (icv). Thus roles and relative contributions of altered brain CPT-1 activity and fatty acid oxidation in these phenomena remain unclarified. We administered compounds that target FAS or CPT-1 to mice by single icv bolus and examined acute and prolonged effects on feeding and body weight. C75 decreased food intake rapidly and potently at all doses (1-56 nmol) and dose dependently inhibited intake on day 1. Dose-dependent weight loss on day 1 persisted through 4 days of postinjection monitoring. The FAS inhibitor cerulenin produced dose-dependent (560 nmol) hypophagia for 1 day, weight loss for 2 days, and weight regain to vehicle control by day 3. The CPT-1 inhibitor etomoxir (32, 320 nmol) did not alter overall day 1 feeding. However, etomoxir attenuated the hypophagia produced by C75, indicating that CPT-1 stimulation is important for C75's effect. A novel compound, C89b, was characterized in vitro as a selective stimulator of CPT-1 that does not affect fatty acid synthesis. C89b (100, 320 nmol) decreased feeding in mice for 3 days and produced persistent weight loss for 6 days without producing conditioned taste aversion. Similarly, intraperitoneal administration decreased feeding and body weight without producing conditioned taste aversion. These results suggest a role for brain CPT-1 in the regulation of energy balance and implicate CPT-1 stimulation as a pharmacological approach to weight loss.

  20. Erythrocyte glutathione transferase: a general probe for chemical contaminations in mammals.

    PubMed

    Bocedi, A; Fabrini, R; Lai, O; Alfieri, L; Roncoroni, C; Noce, A; Pedersen, J Z; Ricci, G

    2016-01-01

    Glutathione transferases (GSTs) are enzymes devoted to the protection of cells against many different toxins. In erythrocytes, the isoenzyme (e-GST) mainly present is GSTP1-1, which is overexpressed in humans in case of increased blood toxicity, as it occurs in nephrophatic patients or in healthy subjects living in polluted areas. The present study explores the possibility that e-GST may be used as an innovative and highly sensitive biomarker of blood toxicity also for other mammals. All distinct e-GSTs from humans, Bos taurus (cow), Sus scrofa (pig), Capra hircus (goat), Equus caballus (horse), Equus asinus (donkey) and Ovis aries (sheep), show very similar amino acid sequences, identical kinetics and stability properties. Reference values for e-GST in all these mammals reared in controlled farms span from 3.5±0.2 U/gHb in the pig to 17.0±0.9 U/gHb in goat; such activity levels can easily be determined with high precision using only a few microliters of whole blood and a simple spectrophotometric assay. Possibly disturbing factors have been examined to avoid artifact determinations. This study provides the basis for future screening studies to verify if animals have been exposed to toxicologic insults. Preliminary data on cows reared in polluted areas show increased expression of e-GST, which parallels the results found for humans.

  1. Biochemical characterization and distribution of glutathione S-transferases in leaping mullet (Liza saliens).

    PubMed

    Sen, A; Kirikbakan, A

    2004-09-01

    In this study, feral leaping mullet (Liza saliens) liver cytosolic glutathione S-transferases (GSTs) were investigated and characterized using 1-chloro-2,4-dinitrobenzene (CDNB) and ethacrynic acid (EA) as substrates. The average GST activities towards CDNB and EA were found to be 1365 +/- 41 and 140 +/- 20 nmol/min per mg protein, respectively. The effects of cytosolic protein amount and temperature ranging from 4 to 70 degrees C on enzyme activities were examined. While both activities towards CDNB and EA showed similar dependence on protein amount, temperature optima were found as 37 and 42 degrees C, respectively. In addition, the effects of pH on GST-CDNB and -EA activities were studied and different pH activity profiles were observed. For both substrates, GST activities were found to obey Michaelis-Menten kinetics with apparent V(max) and K(m) values of 1661 nmol/min per mg protein and 0.24 mM and 157 nmol/min per mg protein and 0.056 mM for CDNB and EA, respectively. Distribution of GST in Liza saliens tissues was investigated and compared with other fish species. Very high GST activities were measured in tissues from Liza saliens such as liver, kidney, testis, proximal intestine, and gills. Moreover, our results suggested that GST activities from Liza saliens would be a valuable biomarker for aquatic pollution.

  2. Development of pyrethroid-like fluorescent substrates for glutathione S-transferase

    PubMed Central

    Huang, Huazhang; Yao, Hongwei; Liu, Jun-Yan; Samra, Aman I.; Kamita, Shizuo G.; Cornel, Anthony J.; Hammock, Bruce D.

    2012-01-01

    The availability of highly sensitive substrates is critical for the development of precise and rapid assays for detecting changes in glutathione S-transferase (GST) activity that are associated with GST-mediated metabolism of insecticides. In this study, six pyrethroid-like compounds were synthesized and characterized as substrates for insect and mammalian GSTs. All of the substrates were esters composed of the same alcohol moiety, 7-hydroxy-4-methylcoumarin, and acid moieties that structurally mimic some commonly used pyrethroid insecticides including cypermethrin and cyhalothrin. CpGSTD1, a recombinant Delta class GST from the mosquito Culex pipiens, metabolized our pyrethroid-like substrates with both chemical and geometric (i.e., the cis-isomers were metabolized at 2- to 5-fold higher rates than the corresponding trans-isomers) preference. A GST preparation from mouse liver also metabolized most of our pyrethroid-like substrates with both chemical and geometric preference but at 10- to 170-fold lower rates. CpGSTD1 and mouse GSTs metabolized CDNB, a general GST substrate, at more than 200-fold higher rates than our novel pyrethroid-like substrates. There was a 10-fold difference in the specificity constant (kcat/KM ratio) of CpGSTD1 for CDNB and those of CpGSTD1 for cis-DCVC and cis-TFMCVC suggesting that cis-DCVC and cis-TFMCVC may be useful for the detection of GST-based metabolism of pyrethroids in mosquitoes. PMID:23000005

  3. Comprehensive X-Ray Structural Studies of the Quinolinate Phosphoribosyl Transferase (BNA6) From Saccharomyces Cerevisiae

    SciTech Connect

    di Luccio, E.; Wilson, D.K.

    2009-05-14

    Quinolinic acid phosphoribosyl transferase (QAPRTase, EC 2.4.2.19) is a 32 kDa enzyme encoded by the BNA6 gene in yeast and catalyzes the formation of nicotinate mononucleotide from quinolinate and 5-phosphoribosyl-1-pyrophosphate (PRPP). QAPRTase plays a key role in the tryptophan degradation pathway via kynurenine, leading to the de novo biosynthesis of NAD{sup +} and clearing the neurotoxin quinolinate. To improve our understanding of the specificity of the eukaryotic enzyme and the course of events associated with catalysis, we have determined the crystal structures of the apo and singly bound forms with the substrates quinolinate and PRPP. This reveals that the enzyme folds in a manner similar to that of various prokaryotic forms which are {approx}30% identical in sequence. In addition, the structure of the Michaelis complex is approximated by PRPP and the quinolinate analogue phthalate bound to the active site. These results allow insight into the kinetic mechanism of QAPRTase and provide an understanding of structural diversity in the active site of the Saccharomyces cerevisiae enzyme when compared to prokaryotic homologues.

  4. Rat liver nucleotide pyrophosphatase/phosphodiesterase is an efficient adenylyl transferase.

    PubMed Central

    Ribeiro, J M; López-Gómez, J; Vergeles, J M; Costas, M J; García-Díaz, M; Fernández, A; Flores, A; Cameselle, J C

    2000-01-01

    Rat liver nucleotide pyrophosphatase/phosphodiesterase I (NPP/PDE) catalysed efficiently the transfer of adenylate from ATP to alcohols (methanol, ethanol, propanol, ethylene glycol, glycerol, 2, 2-dichloroethanol and glycerol 2-phosphate), which acted as adenylate acceptors competing with water with different efficiencies. NPP/PDE kinetics in alcohol/water mixtures were accounted for by rate equations for competitive substrates, modified to include alcohol negative co-operativity and, depending on the nature of the alcohol, enzyme denaturation by high alcohol concentrations or activation by low alcohol concentrations. The correlation of alcohol efficiencies with alcohol acidities, the comparison of rat liver with snake venom NPP/PDE, and the different effects of ionic additives on the efficiencies of glycerol 2-phosphate and glycerol provided evidence for interaction of the alcohols with a base catalyst, a non-polar and a cationic subsite in the active centre of rat liver NPP/PDE. The enzyme thus appears to be well suited to act as transferase, and we propose that NPP/PDE could be an adenylylating agent in the membrane. PMID:10657235

  5. Legionella shows a diverse secondary metabolism dependent on a broad spectrum Sfp-type phosphopantetheinyl transferase

    PubMed Central

    Tobias, Nicholas J.; Ahrendt, Tilman; Schell, Ursula; Miltenberger, Melissa; Hilbi, Hubert

    2016-01-01

    Several members of the genus Legionella cause Legionnaires’ disease, a potentially debilitating form of pneumonia. Studies frequently focus on the abundant number of virulence factors present in this genus. However, what is often overlooked is the role of secondary metabolites from Legionella. Following whole genome sequencing, we assembled and annotated the Legionella parisiensis DSM 19216 genome. Together with 14 other members of the Legionella, we performed comparative genomics and analysed the secondary metabolite potential of each strain. We found that Legionella contains a huge variety of biosynthetic gene clusters (BGCs) that are potentially making a significant number of novel natural products with undefined function. Surprisingly, only a single Sfp-like phosphopantetheinyl transferase is found in all Legionella strains analyzed that might be responsible for the activation of all carrier proteins in primary (fatty acid biosynthesis) and secondary metabolism (polyketide and non-ribosomal peptide synthesis). Using conserved active site motifs, we predict some novel compounds that are probably involved in cell-cell communication, differing to known communication systems. We identify several gene clusters, which may represent novel signaling mechanisms and demonstrate the natural product potential of Legionella. PMID:27904811

  6. Erythrocyte glutathione transferase: a general probe for chemical contaminations in mammals

    PubMed Central

    Bocedi, A; Fabrini, R; Lai, O; Alfieri, L; Roncoroni, C; Noce, A; Pedersen, JZ; Ricci, G

    2016-01-01

    Glutathione transferases (GSTs) are enzymes devoted to the protection of cells against many different toxins. In erythrocytes, the isoenzyme (e-GST) mainly present is GSTP1-1, which is overexpressed in humans in case of increased blood toxicity, as it occurs in nephrophatic patients or in healthy subjects living in polluted areas. The present study explores the possibility that e-GST may be used as an innovative and highly sensitive biomarker of blood toxicity also for other mammals. All distinct e-GSTs from humans, Bos taurus (cow), Sus scrofa (pig), Capra hircus (goat), Equus caballus (horse), Equus asinus (donkey) and Ovis aries (sheep), show very similar amino acid sequences, identical kinetics and stability properties. Reference values for e-GST in all these mammals reared in controlled farms span from 3.5±0.2 U/gHb in the pig to 17.0±0.9 U/gHb in goat; such activity levels can easily be determined with high precision using only a few microliters of whole blood and a simple spectrophotometric assay. Possibly disturbing factors have been examined to avoid artifact determinations. This study provides the basis for future screening studies to verify if animals have been exposed to toxicologic insults. Preliminary data on cows reared in polluted areas show increased expression of e-GST, which parallels the results found for humans. PMID:27551520

  7. Ghrelin O-Acyl Transferase in Zebrafish Is an Evolutionarily Conserved Peptide Upregulated During Calorie Restriction

    PubMed Central

    Hatef, Azadeh; Yufa, Roman

    2015-01-01

    Abstract Ghrelin is a multifunctional orexigenic hormone with a unique acyl modification enabled by ghrelin O-acyl transferase (GOAT). Ghrelin is well-characterized in nonmammals, and GOAT sequences of several fishes are available in the GenBank. However, endogenous GOAT in non-mammals remains poorly understood. In this research, GOAT sequence comparison, tissue-specific GOAT expression, and its regulation by nutrient status and exogenous ghrelin were studied. It was found that the bioactive core of zebrafish GOAT amino acid sequence share high identity with that of mammals. GOAT mRNA was most abundant in the gut. GOAT-like immunoreactivity (i.r.) was found colocalized with ghrelin in the gastric mucosa. Food deprivation increased, and feeding decreased GOAT and preproghrelin mRNA expression in the brain and gut. GOAT and ghrelin peptides in the gut and brain showed corresponding decrease in food-deprived state. Intraperitoneal injection of acylated fish ghrelin caused a significant decrease in GOAT mRNA expression, suggesting a feedback mechanism regulating its abundance. Together, these results provide the first in-depth characterization of GOAT in a non-mammal. Our results demonstrate that endogenous GOAT expression is responsive to metabolic status and availability of acylated ghrelin, providing further evidences for GOAT in the regulation of feeding in teleosts. PMID:26226634

  8. A glutathione S-transferase gene associated with antioxidant properties isolated from Apis cerana cerana

    NASA Astrophysics Data System (ADS)

    Liu, Shuchang; Liu, Feng; Jia, Haihong; Yan, Yan; Wang, Hongfang; Guo, Xingqi; Xu, Baohua

    2016-06-01

    Glutathione S-transferases (GSTs) are an important family of multifunctional enzymes in aerobic organisms. They play a crucial role in the detoxification of exogenous compounds, especially insecticides, and protection against oxidative stress. Most previous studies of GSTs in insects have largely focused on their role in insecticide resistance. Here, we isolated a theta class GST gene designated AccGSTT1 from Apis cerana cerana and aimed to explore its antioxidant and antibacterial attributes. Analyses of homology and phylogenetic relationships suggested that the predicted amino acid sequence of AccGSTT1 shares a high level of identity with the other hymenopteran GSTs and that it was conserved during evolution. Quantitative real-time PCR showed that AccGSTT1 is most highly expressed in adult stages and that the expression profile of this gene is significantly altered in response to various abiotic stresses. These results were confirmed using western blot analysis. Additionally, a disc diffusion assay showed that a recombinant AccGSTT1 protein may be roughly capable of inhibiting bacterial growth and that it reduces the resistance of Escherichia coli cells to multiple adverse stresses. Taken together, these data indicate that AccGSTT1 may play an important role in antioxidant processes under adverse stress conditions.

  9. Characterization of the safener-induced glutathione S-transferase isoform II from maize.

    PubMed

    Holt, D C; Lay, V J; Clarke, E D; Dinsmore, A; Jepson, I; Bright, S W; Greenland, A J

    1995-01-01

    The safener-induced maize (Zea mays L.) glutathione S-transferase, GST II (EC 2.5.1.18) and another predominant isoform, GST I, were purified from extracts of maize roots treated with the safeners R-25788 (N,N-diallyl-2-dichloroacetamide) or R-29148 (3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazolidone). The isoforms GST I and GST II are respectively a homodimer of 29-kDa (GST-29) subunits and a heterodimer of 29- and 27-kDa (GST-27) subunits, while GST I is twice as active with 1-chloro-2,4-dinitrobenzene as GST II, GST II is about seven times more active against the herbicide, alachlor. Western blotting using antisera raised against GST-29 and GST-27 showed that GST-29 is present throughout the maize plant prior to safener treatment. In contrast, GST-27 is only present in roots of untreated plants but is induced in all the major aerial organs of maize after root-drenching with safener. The amino-acid sequences of proteolytic fragments of GST-27 show that it is related to GST-29 and identical to the 27-kDa subunit of GST IV.

  10. Characterization of Discrete Phosphopantetheinyl Transferases in Streptomyces tsukubaensis L19 Unveils a Complicate Phosphopantetheinylation Network

    PubMed Central

    Wang, Yue-Yue; Zhang, Xiao-Sheng; Luo, Hong-Dou; Ren, Ni-Ni; Jiang, Xin-Hang; Jiang, Hui; Li, Yong-Quan

    2016-01-01

    Phosphopantetheinyl transferases (PPTases) play essential roles in both primary metabolisms and secondary metabolisms via post-translational modification of acyl carrier proteins (ACPs) and peptidyl carrier proteins (PCPs). In this study, an industrial FK506 producing strain Streptomyces tsukubaensis L19, together with Streptomyces avermitilis, was identified to contain the highest number (five) of discrete PPTases known among any species thus far examined. Characterization of the five PPTases in S. tsukubaensis L19 unveiled that stw ACP, an ACP in a type II PKS, was phosphopantetheinylated by three PPTases FKPPT1, FKPPT3, and FKACPS; sts FAS ACP, the ACP in fatty acid synthase (FAS), was phosphopantetheinylated by three PPTases FKPPT2, FKPPT3, and FKACPS; TcsA-ACP, an ACP involved in FK506 biosynthesis, was phosphopantetheinylated by two PPTases FKPPT3 and FKACPS; FkbP-PCP, an PCP involved in FK506 biosynthesis, was phosphopantetheinylated by all of these five PPTases FKPPT1-4 and FKACPS. Our results here indicate that the functions of these PPTases complement each other for ACPs/PCPs substrates, suggesting a complicate phosphopantetheinylation network in S. tsukubaensis L19. Engineering of these PPTases in S. tsukubaensis L19 resulted in a mutant strain that can improve FK506 production. PMID:27052100

  11. Identification, genomic organization and expression pattern of glutathione S-transferase in the silkworm, Bombyx mori.

    PubMed

    Yu, Quanyou; Lu, Cheng; Li, Bin; Fang, Shoumin; Zuo, Weidong; Dai, Fangyin; Zhang, Ze; Xiang, Zhonghuai

    2008-12-01

    Glutathione S-transferases (GSTs) are a multifunctional supergene family and some play an important role in insecticide resistance. We have identified 23 putative cytosolic GSTs by searching the new assembly of the Bombyx mori genome sequence. Phylogenetic analyses on the amino acid sequences reveal that 21 of the B. mori GSTs fall into six classes represented in other insects, the other two being unclassified. The majority of the silkworm GSTs belong to the Delta, Epsilon, and Omega classes. Most members of each class are tandemly arranged in the genome, except for the Epsilon GSTs. Expressed sequence tags (ESTs) corresponding to 19 of the 23 GSTs were found in available databases. Furthermore RT-PCR experiments detected expression of all the GSTs in multiple tissues on day 3 of fifth instar larvae. Surprisingly, we found little or no expression of most Delta and Epsilon GSTs in the fat body, which is thought to be the main detoxification organ. This may explain the sensitivity of the silkworm to certain insecticides. Our data provide some insights into the evolution of the B. mori GST family and the functions of individual GST enzymes.

  12. Family of glycosyl transferases needed for the synthesis of succinoglycan by Rhizobium meliloti.

    PubMed Central

    Glucksmann, M A; Reuber, T L; Walker, G C

    1993-01-01

    Rhizobium meliloti produces an acidic exopolysaccharide, termed succinoglycan or EPS I, that is important for invasion of the nodules that it elicits on its host, Medicago sativa. Succinoglycan is a high-molecular-weight polymer composed of repeating octasaccharide subunits. These subunits are synthesized on membrane-bound isoprenoid lipid carriers, beginning with a galactose residue followed by seven glucose residues, and modified by the addition of acetate, succinate, and pyruvate. Biochemical characterizations of lipid-linked succinoglycan biosynthetic intermediates from previously identified exo mutant strains have been carried out in our laboratory (T. L. Reuber and G. C. Walker, Cell 74:269-280, 1993) to determine where each mutation blocks the biosynthetic pathway. We have carried out a fine structure genetic analysis of a portion of the cluster of exo genes present on the second symbiotic megaplasmid of R. meliloti and have identified several new genes. In addition, the DNA sequence of 16 kb of the exo cluster was determined and the genetic map was correlated with the DNA sequence. In this paper we present the sequence of a family of glycosyl transferases required for the synthesis of succinoglycan and discuss their functions. PMID:8226645

  13. Glutathione S-transferase polymorphisms in thyroid cancer patients.

    PubMed

    Hernández, Alba; Céspedes, Walkiria; Xamena, Noel; Surrallés, Jordi; Creus, Amadeu; Galofré, Pere; Marcos, Ricardo

    2003-02-10

    Glutathione S-transferases (GST) are enzymes involved in the metabolism of many carcinogens and mutagens, also acting as important free-radical scavengers. The existence of different genetic polymorphisms in human populations has proven to be a susceptibility factor for different tumours. Nevertheless, as far as we know, for thyroid cancer no study has been conducted until now linking its incidence to genetic susceptibility biomarkers. The present investigation has been conducted to detect the possible association between polymorphism at the GSTM1, GSTT1 and GSTP1 genes and thyroid cancer incidence. Thus, 134 thyroid cancer patients and 116 controls, all from the urban district of Barcelona (Spain), have been included in this study. The results indicate that, according to the calculated odds ratio, the frequencies of the different genotypes found in the group of cancer patients do not significantly differ from those values obtained in the controls. This is true for the overall data as well as for the tumour characterization as follicular and papillar types. In addition, none of the possible combinations of mutant genotypes were shown to be risk factors. Finally, when the sex of the patients, the age of tumour onset, and life-style habits were also taken into account, no influence was observed related to the different genotypes. In conclusion, the results obtained in this study clearly suggest that those susceptibility factors related to the different GST polymorphic enzymes are not a predisposing factor in thyroid cancer disease.

  14. Ethylenediaminetetraacetic acid (EDTA) as an auxiliary tool in the electrospray ionization mass spectrometry analysis of native and derivatized beta-cyclodextrins, maltoses, and fructans contaminated with Ca and/or Mg.

    PubMed

    Giudicessi, Silvana L; Fatema, M Kaniz; Nonami, Hiroshi; Erra-Balsells, Rosa

    2010-09-01

    The effect of Ca(2+) (and Mg(2+)) and the disodium salt of ethylenediaminetetraacetic acid (EDTA), a well known Ca(2+) (and Mg(2+)) chelating agent, on the volatilization/ionization of carbohydrates by using electrospray ionization mass spectrometry has been studied. Model compounds such as maltoses (maltose to maltoheptaose), beta-cyclodextrins (beta-cyclodextrin, methyl-beta-cyclodextrin, heptakis(2,6-di-O-methyl)-beta-cyclodextrin, heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin, and 2-hydroxypropyl-beta-cyclodextrin) and fructans (sucrose, 1-ketose, nystose, and 1F-fructofuranosylnystose) were used.

  15. Carnitine palmitoyl transferase deficiency with an atypical presentation and ultrastructural mitochondrial abnormalities.

    PubMed Central

    Carey, M P; Poulton, K; Hawkins, C; Murphy, R P

    1987-01-01

    A case of carnitine palmitoyl transferase deficiency presenting in a 72 year old woman with the clinical picture of ophthalmoplegia plus other muscle weakness is reported. Histological and ultrastructural examination showed the features of a mitochondrial myopathy. Images PMID:3655814

  16. Characterization and functional analysis of four glutathione S-transferases from the migratory locust, Locusta migratoria.

    PubMed

    Qin, Guohua; Jia, Miao; Liu, Ting; Zhang, Xueyao; Guo, Yaping; Zhu, Kun Yan; Ma, Enbo; Zhang, Jianzhen

    2013-01-01

    Glutathione S-transferases (GSTs) play an important role in detoxification of xenobiotics in both prokaryotic and eukaryotic cells. In this study, four GSTs (LmGSTd1, LmGSTs5, LmGSTt1, and LmGSTu1) representing different classes were identified from the migratory locust, Locusta migratoria. These four proteins were heterologously expressed in Escherichia coli as soluble fusion proteins, purified by Ni(2+)-nitrilotriacetic acid agarose column and biochemically characterized. LmGSTd1, LmGSTs5, and LmGSTu1 showed high activities with 1-chloro-2, 4-dinitrobenzene (CDNB), detectable activity with p-nitro-benzyl chloride (p-NBC) and 1, 2-dichloro-4-nitrobenzene (DCNB), whereas LmGSTt1 showed high activity with p-NBC and detectable activity with CDNB. The optimal pH of the locust GSTs ranged between 7.0 to 9.0. Ethacrynic acid and reactive blue effectively inhibited all four GSTs. LmGSTs5 was most sensitive to heavy metals (Cu(2+) and Cd(2+)). The maximum expression of the four GSTs was observed in Malpighian tubules and fat bodies as evaluated by western blot. The nymph mortalities after carbaryl treatment increased by 28 and 12% after LmGSTs5 and LmGSTu1 were silenced, respectively. The nymph mortalities after malathion and chlorpyrifos treatments increased by 26 and 18% after LmGSTs5 and LmGSTu1 were silenced, respectively. These results suggest that sigma GSTs in L. migratoria play a significant role in carbaryl detoxification, whereas some of other GSTs may also involve in the detoxification of carbaryl and chlorpyrifos.

  17. Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase.

    PubMed

    Watanabe, Kazunori; Toh, Yukimatsu; Suto, Kyoko; Shimizu, Yoshihiro; Oka, Natsuhisa; Wada, Takeshi; Tomita, Kozo

    2007-10-18

    Eubacterial leucyl/phenylalanyl-tRNA protein transferase (LF-transferase) catalyses peptide-bond formation by using Leu-tRNA(Leu) (or Phe-tRNA(Phe)) and an amino-terminal Arg (or Lys) of a protein, as donor and acceptor substrates, respectively. However, the catalytic mechanism of peptide-bond formation by LF-transferase remained obscure. Here we determine the structures of complexes of LF-transferase and phenylalanyl adenosine, with and without a short peptide bearing an N-terminal Arg. Combining the two separate structures into one structure as well as mutation studies reveal the mechanism for peptide-bond formation by LF-transferase. The electron relay from Asp 186 to Gln 188 helps Gln 188 to attract a proton from the alpha-amino group of the N-terminal Arg of the acceptor peptide. This generates the attacking nucleophile for the carbonyl carbon of the aminoacyl bond of the aminoacyl-tRNA, thus facilitating peptide-bond formation. The protein-based mechanism for peptide-bond formation by LF-transferase is similar to the reverse reaction of the acylation step observed in the peptide hydrolysis reaction by serine proteases.

  18. Identification of the nuclear localisation signal of O-GlcNAc transferase and its nuclear import regulation

    PubMed Central

    Seo, Hyeon Gyu; Kim, Han Byeol; Kang, Min Jueng; Ryum, Joo Hwan; Yi, Eugene C.; Cho, Jin Won

    2016-01-01

    Nucleocytoplasmic O-GlcNAc transferase (OGT) attaches a single GlcNAc to hydroxyl groups of serine and threonine residues. Although the cellular localisation of OGT is important to regulate a variety of cellular processes, the molecular mechanisms regulating the nuclear localisation of OGT is unclear. Here, we characterised three amino acids (DFP; residues 451–453) as the nuclear localisation signal of OGT and demonstrated that this motif mediated the nuclear import of non-diffusible β-galactosidase. OGT bound the importin α5 protein, and this association was abolished when the DFP motif of OGT was mutated or deleted. We also revealed that O-GlcNAcylation of Ser389, which resides in the tetratricopeptide repeats, plays an important role in the nuclear localisation of OGT. Our findings may explain how OGT, which possesses a NLS, exists in the nucleus and cytosol simultaneously. PMID:27713473

  19. Quercetin 3-O-methyl ether protects FL83B cells from copper induced oxidative stress through the PI3K/Akt and MAPK/Erk pathway

    SciTech Connect

    Tseng, Hsiao-Ling; Li, Chia-Jung; Huang, Lin-Huang; Chen, Chun-Yao; Tsai, Chun-Hao; Lin, Chun-Nan; Hsu, Hsue-Yin

    2012-10-01

    Quercetin is a bioflavonoid that exhibits several biological functions in vitro and in vivo. Quercetin 3-O-methyl ether (Q3) is a natural product reported to have pharmaceutical activities, including antioxidative and anticancer activities. However, little is known about the mechanism by which it protects cells from oxidative stress. This study was designed to investigate the mechanisms by which Q3 protects against Cu{sup 2+}-induced cytotoxicity. Exposure to Cu{sup 2+} resulted in the death of mouse liver FL83B cells, characterized by apparent apoptotic features, including DNA fragmentation and increased nuclear condensation. Q3 markedly suppressed Cu{sup 2+}-induced apoptosis and mitochondrial dysfunction, characterized by reduced mitochondrial membrane potential, caspase-3 activation, and PARP cleavage, in Cu{sup 2+}-exposed cells. The involvement of PI3K, Akt, Erk, FOXO3A, and Mn-superoxide dismutase (MnSOD) was shown to be critical to the survival of Q3-treated FL83B cells. The liver of both larval and adult zebrafish showed severe damage after exposure to Cu{sup 2+} at a concentration of 5 μM. Hepatic damage induced by Cu{sup 2+} was reduced by cotreatment with Q3. Survival of Cu{sup 2+}-exposed larval zebrafish was significantly increased by cotreatment with 15 μM Q3. Our results indicated that Cu{sup 2+}-induced apoptosis in FL83B cells occurred via the generation of ROS, upregulation and phosphorylation of Erk, overexpression of 14-3-3, inactivation of Akt, and the downregulation of FOXO3A and MnSOD. Hence, these results also demonstrated that Q3 plays a protective role against oxidative damage in zebrafish liver and remarked the potential of Q3 to be used as an antioxidant for hepatocytes. Highlights: ► Protective effects of Q3 on Cu{sup 2+}-induced oxidative stress in vitro and in vivo. ► Cu{sup 2+} induced apoptosis in FL83B cells via ROS and the activation of Erk. ► Q3 abolishes Cu{sup 2+}-induced apoptosis through the PI3K/Akt and MAPK

  20. Glutathione S-transferase from the spruce budworm, Choristoneura fumiferana: identification, characterization, localization, cDNA cloning, and expression.

    PubMed

    Feng, Q L; Davey, K G; Pang, A S; Primavera, M; Ladd, T R; Zheng, S C; Sohi, S S; Retnakaran, A; Palli, S R

    1999-09-01

    A 23-kDa protein that was present at higher levels in diapausing 2nd instar larvae than in feeding 2nd instar larvae of Choristoneura fumiferana was purified, and polyclonal antibodies were raised against this protein. The antibodies were subsequently used to screen a cDNA library that was constructed using RNA from 2nd instar larvae. Eight identical cDNA clones were isolated. The cDNA clone had a 665-bp insert and the longest open reading frame coded for a 203-amino acid protein with a predicted molecular mass of 23.37 kDa. The deduced amino acid sequence showed high similarity to glutathione S-transferases and therefore, the cDNA clone was named C. fumiferana glutathione S-transferase (CfGST). Identity of CfGST was confirmed by using affinity-purification as well as enzyme activity assay. CfGST was closer in similarity to insect GST2 members than GST1 members. The apparent Vmax of the purified CfGST towards the substrates glutathione and 1-chloro-2,4-dinitrobenezene (CDNB) were similar. However, the enzyme had a three-fold higher affinity towards CDNB than glutathione. Analyses using Northern blot, immunoblot and immunocytochemistry demonstrated that the fat body was the major tissue where the enzyme was synthesized and stored. Higher levels of CfGST protein were present in diapausing 2nd instar larvae compared to feeding 2nd and 6th instar larvae, suggesting that besides detoxification CfGST may have other roles during insect development that are not readily apparent at present. The CfGST cDNA was expressed in a recombinant baculovirus expression system and an active enzyme was produced.

  1. Cloning and expressing a highly functional and substrate specific farnesoic acid o-methyltransferase from the Asian citrus psyllid (Diaphorina citri Kuwayama)

    PubMed Central

    Van Ekert, Evelien; Shatters, Robert G.; Rougé, Pierre; Powell, Charles A.; Smagghe, Guy; Borovsky, Dov

    2015-01-01

    The Asian citrus psyllid, Diaphorina citri, transmits a phloem-limited bacterium, Candidatus ‘Liberibacter’ asiaticus that causes citrus greening disease. Because juvenile hormone (JH) plays an important role in adult and nymphal development, we studied the final steps in JH biosynthesis in D. citri. A putative JH acid methyltransferase ortholog gene (jmtD) and its cognate cDNA were identified by searching D. citri genome database. Expression analysis shows expression in all life stages. In adults, it is expressed in the head-thorax, (containing the corpora allata), and the abdomen (containing ovaries and male accessory glands). A 3D protein model identified the catalytic groove with catalytically active amino acids and the S-adenosyl methionine (SAM)-binding loop. The cDNA was expressed in Escherichia coli cells and the purified enzyme showed high preference for farnesoic acid (FA) and homoFA (kcat of 0.752 × 10−3 and 0.217 × 10−3 s−1, respectively) as compared to JH acid I (JHA I) (cis/trans/cis; 2Z, 6E, 10cis), JHA III (2E, 6E, 10cis), and JHA I (trans/cis/cis; 2E, 2Z, 10cis) (kcat of 0.081 × 10−3, 0.013 × 10−3, and 0.003 × 10−3 s−1, respectively). This suggests that this ortholog is a DcFA-o-methyl transferase gene (fmtD), not a jmtD, and that JH biosynthesis in D. citri proceeds from FA to JH III through methyl farnesoate (MF). DcFA-o-MT does not require Ca2+, Mg2+ or Zn2+, however, Zn2+ (1 mM) completely inhibits the enzyme probably by binding H115 at the active groove. This represents the first purified FA-o-MT from Hemiptera with preferred biological activity for FA and not JHA. PMID:25893162

  2. Evaluation of the non-catalytic binding function of Ts26GST a glutathione transferase isoform of Taenia solium.

    PubMed

    Plancarte, A; Romero, J R; Nava, G; Reyes, H; Hernández, M

    2014-03-01

    Taenia solium glutathione transferase isoform of 26.5 kDa (Ts26GST) was observed to bind non-catalytically to porphyrins, trans-trans-dienals, bile acids and fatty acids, as assessed by inhibition kinetics, fluorescence spectroscopy and competitive fluorescence assays with 8-anilino-1-naphthalene sulfonate (ANS). The quenching of Ts26GST intrinsic fluorescence allowed for the determination of the dissociation constants (KD) for all ligands. Obtained data indicate that Ts26GST binds to all ligands but with different affinity. Porphyrins and lipid peroxide products inhibited Ts26GST catalytic activity up to 100% in contrast with only 20-30% inhibition observed for bile acids and two saturated fatty acids. Non-competitive type inhibition was observed for all enzyme inhibitor ligands except for trans-trans-2,4-decadienal, which exhibited uncompetitive type inhibition. The dissociation constant value KD = 0.7 μM for the hematin ligand, determined by competitive fluorescence assays with ANS, was in good agreement with its inhibition kinetic value Ki = 0.3 μM and its intrinsic fluorescence quenching KD = 0.7 μM. The remaining ligands did not displace ANS from the enzyme suggesting the existence of different binding sites. In addition to the catalytic activity of Ts26GST the results obtained suggest that the enzyme exhibits a ligandin function with broad specificity towards nonsubstrate ligands.

  3. Isolation and Characterization of Glutathione S-Transferase Isozymes from Sorghum1

    PubMed Central

    Gronwald, John W.; Plaisance, Kathryn L.

    1998-01-01

    Two glutathione S-transferase (GST) isozymes, A1/A1 and B1/B2, were purified from etiolated, O-1,3-dioxolan-2-yl-methyl-2,2,2,-trifluoro-4′-chloroacetophenone-oxime-treated sorghum (Sorghum bicolor L. Moench) shoots. GST A1/A1, a constitutively expressed homodimer, had a subunit molecular mass of 26 kD and an isoelectric point of 4.9. GST A1/A1 exhibited high activity with 1-chloro-2, 4,dinitrobenzene (CDNB) but low activity with the chloroacetanilide herbicide metolachlor. For GST A1/A1, the random, rapid-equilibrium bireactant kinetic model provided a good description of the kinetic data for the substrates CDNB and glutathione (GSH). GST B1/B2 was a heterodimer with subunit molecular masses of 26 kD (designated the B1 subunit) and 28 kD (designated the B2 subunit) and a native isoelectric point of 4.8. GST B1/B2 exhibited low activity with CDNB and high activity with metolachlor as the substrate. The kinetics of GST B1/B2 activity with GSH and metolachlor fit a model describing a multisite enzyme having two binding sites with different affinities for these substrates. Both GST A1/A1 and GST B1/B2 exhibited GSH-conjugating activity with ethacrynic acid and GSH peroxidase activity with cumene hydroperoxide, 9-hydroperoxy-trans-10,cis-12-octadecadienoic acid and 13-hydroperoxy-cis-9,trans-11-octadecadienoic acid. Both GST A1/A1 and GST B1/B2 are glycoproteins, as indicated by their binding of concanavalin A. Polyclonal antibodies raised against GST A1/A1 exhibited cross-reactivity with the B1 subunit of GST B1/B2. Comparisons of the N-terminal amino acid sequences of the GST A1, B1, and B2 subunits with other type I θ-GSTs indicated a high degree of homology with the maize GST I subunit and a sugarcane GST. PMID:9662530

  4. Pro-Lipogenic Action of Lysophosphatidic Acid in Ovarian Cancer

    DTIC Science & Technology

    2013-07-01

    One of the key mediators of fatty acid b-oxidation is carnitine pamitoyl transferase 1A (CPT1A), which is overexpressed in malignant ovarian...phospholipases is consistent with our previous observation that exogenously supplemented LPA did not fully reverse the effect of the iPLA2b inhibitor BEL on...MAGL, inhibits growth of ovarian cancer cell lines. Most interestingly, inhibition of carnitine palmitoyl transferase 1 (CPT1), the rate-limiting

  5. Induction of Glutathione S-Transferase Isozymes in Sorghum by Herbicide Antidotes 1

    PubMed Central

    Dean, John V.; Gronwald, John W.; Eberlein, Charlotte V.

    1990-01-01

    Certain chemicals referred to as herbicide antidotes protect sorghum from injury by chloroacetanilide herbicides such as metolachlor. The effect of herbicide antidotes on the glutathione S-transferase isozyme complement of etiolated sorghum (Sorghum bicolor [L.] Moench) shoots was examined. Elution profiles of glutathione S-transferase isozymes from untreated and antidote-treated seedlings were generated by fast protein liquid chromatography utilizing an anion exchange (Mono Q) column. In untreated seedlings, there were two glutathione S-transferase isozymes, a major isozyme which exhibited activity toward 1-chloro-2,4-dinitrobenzene and a minor isozyme which exhibited activity toward metolachlor. Treating sorghum seedlings with various antidotes (flurazole, oxabetrinil, CGA-133205, naphthalic anhydride, dichlormid) resulted in the appearance of four to five additional glutathione S-transferase isozymes (de-pending on the particular antidote) which exhibited activity toward metolachlor as a substrate and little or no activity with 1-chloro-2,4-dinitrobenzene. Treating etiolated sorghum shoots with metolachlor was also found to induce at least four isozymes which exhibited activity toward the herbicide. An increase in glutathione S-transferase activity, measured with metolachlor as substrate, was detected within 4 h after treatment with 30 micromolar oxabetrinil, but 36 hours were required for maximum expression of activity. Addition of either the transcription inhibitor cordycepin or the translation inhibitor cycloheximide inhibited the appearance of glutathione S-transferase activity measured with metolachlor as substrate. The results are consistent with the hypothesis that antidotes confer protection against metolachlor injury in sorghum by inducing the de novo synthesis of glutathione S-transferase isozymes which catalyze the detoxification of the herbicide. PMID:16667299

  6. Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction.

    PubMed

    Huenchuguala, Sandro; Muñoz, Patricia; Zavala, Patricio; Villa, Mónica; Cuevas, Carlos; Ahumada, Ulises; Graumann, Rebecca; Nore, Beston F; Couve, Eduardo; Mannervik, Bengt; Paris, Irmgard; Segura-Aguilar, Juan

    2014-04-01

    U373MG cells constitutively express glutathione S-transferase mu 2 (GSTM2) and exhibit (3)H-dopamine uptake, which is inhibited by 2 µM of nomifensine and 15 µM of estradiol. We generated a stable cell line (U373MGsiGST6) expressing an siRNA against GSTM2 that resulted in low GSTM2 expression (26% of wild-type U373MG cells). A significant increase in cell death was observed when U373MGsiGST6 cells were incubated with 50 µM purified aminochrome (18-fold increase) compared with wild-type cells. The incubation of U373MGsiGST6 cells with 75 µM aminochrome resulted in the formation of autophagic vacuoles containing undigested cellular components, as determined using transmission electron microscopy. A significant increase in autophagosomes was determined by measuring endogenous LC3-II, a significant decrease in cell death was observed in the presence of bafilomycin A 1, and a significant increase in cell death was observed in the presence of trehalose. A significant increase in LAMP2 immunostaining was observed, a significant decrease in bright red fluorescence of lysosomes with acridine orange was observed, and bafilomycin A 1 pretreatment reduced the loss of lysosome acidity. A significant increase in cell death was observed in the presence of lysosomal protease inhibitors. Aggregation of TUBA/α-tubulin (tubulin, α) and SQSTM1 protein accumulation were also observed. Moreover, a significant increase in the number of lipids droplets was observed compared with U373MG cells with normal expression of GSTM2. These results support the notion that GSTM2 is a protective enzyme against aminochrome toxicity in astrocytes and that aminochrome cell death in U373MGsiGST6 cells involves autophagic-lysosomal dysfunction.

  7. Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction

    PubMed Central

    Huenchuguala, Sandro; Muñoz, Patricia; Zavala, Patricio; Villa, Mónica; Cuevas, Carlos; Ahumada, Ulises; Graumann, Rebecca; Nore, Beston F; Couve, Eduardo; Mannervik, Bengt; Paris, Irmgard; Segura-Aguilar, Juan

    2014-01-01

    U373MG cells constitutively express glutathione S-transferase mu 2 (GSTM2) and exhibit 3H-dopamine uptake, which is inhibited by 2 µM of nomifensine and 15 µM of estradiol. We generated a stable cell line (U373MGsiGST6) expressing an siRNA against GSTM2 that resulted in low GSTM2 expression (26% of wild-type U373MG cells). A significant increase in cell death was observed when U373MGsiGST6 cells were incubated with 50 µM purified aminochrome (18-fold increase) compared with wild-type cells. The incubation of U373MGsiGST6 cells with 75 µM aminochrome resulted in the formation of autophagic vacuoles containing undigested cellular components, as determined using transmission electron microscopy. A significant increase in autophagosomes was determined by measuring endogenous LC3-II, a significant decrease in cell death was observed in the presence of bafilomycin A1, and a significant increase in cell death was observed in the presence of trehalose. A significant increase in LAMP2 immunostaining was observed, a significant decrease in bright red fluorescence of lysosomes with acridine orange was observed, and bafilomycin A1 pretreatment reduced the loss of lysosome acidity. A significant increase in cell death was observed in the presence of lysosomal protease inhibitors. Aggregation of TUBA/α-tubulin (tubulin, α) and SQSTM1 protein accumulation were also observed. Moreover, a significant increase in the number of lipids droplets was observed compared with U373MG cells with normal expression of GSTM2. These results support the notion that GSTM2 is a protective enzyme against aminochrome toxicity in astrocytes and that aminochrome cell death in U373MGsiGST6 cells involves autophagic-lysosomal dysfunction. PMID:24434817

  8. The poplar Phi class glutathione transferase: expression, activity and structure of GSTF1

    PubMed Central

    Pégeot, Henri; Koh, Cha San; Petre, Benjamin; Mathiot, Sandrine; Duplessis, Sébastien; Hecker, Arnaud; Didierjean, Claude; Rouhier, Nicolas

    2014-01-01

    Glutathione transferases (GSTs) constitute a superfamily of enzymes with essential roles in cellular detoxification and secondary metabolism in plants as in other organisms. Several plant GSTs, including those of the Phi class (GSTFs), require a conserved catalytic serine residue to perform glutathione (GSH)-conjugation reactions. Genomic analyses revealed that terrestrial plants have around ten GSTFs, eight in the Populus trichocarpa genome, but their physiological functions and substrates are mostly unknown. Transcript expression analyses showed a predominant expression of all genes both in reproductive (female flowers, fruits, floral buds) and vegetative organs (leaves, petioles). Here, we show that the recombinant poplar GSTF1 (PttGSTF1) possesses peroxidase activity toward cumene hydroperoxide and GSH-conjugation activity toward model substrates such as 2,4-dinitrochlorobenzene, benzyl and phenetyl isothiocyanate, 4-nitrophenyl butyrate and 4-hydroxy-2-nonenal but interestingly not on previously identified GSTF-class substrates. In accordance with analytical gel filtration data, crystal structure of PttGSTF1 showed a canonical dimeric organization with bound GSH or 2-(N-morpholino)ethanesulfonic acid molecules. The structure of these protein-substrate complexes allowed delineating the residues contributing to both the G and H sites that form the active site cavity. In sum, the presence of GSTF1 transcripts and proteins in most poplar organs especially those rich in secondary metabolites such as flowers and fruits, together with its GSH-conjugation activity and its documented stress-responsive expression suggest that its function is associated with the catalytic transformation of metabolites and/or peroxide removal rather than with ligandin properties as previously reported for other GSTFs. PMID:25566286

  9. Synthetic mucin fragments: synthesis of O-sulfo and O-methyl derivatives of allyl O-(beta-D-galactopyranosyl)-(1-->3)-2-acetamido-2-deoxy-alpha-D- galactopyranoside as potential compounds for sulfotransferases.

    PubMed

    Jain, R K; Piskorz, C F; Matta, K L

    1995-10-02

    Allyl 2-acetamido-4,6-O-(4-methoxybenzylidene)-2-deoxy-alpha-D-galact opy ranoside (1) was condensed with either 2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl bromide (2) or 2,3,4-tri-O-benzoyl-6-O-bromoacetyl-alpha-D-galactopyranosyl bromide (14) in the presence of mercuric cyanide. Selective substitution with methyl, sulfo or both at desired positions, followed by the removal of protecting groups, afforded allyl O-(beta-D-galactopyranosyl)-(1-->3)-2-acetamido-2-deoxy-6-O-methyl-alpha -D- galactopyranoside (5), allyl O-(6-O-sulfo-beta-D-galactopyranosyl sodium salt)-(1-->3)-2-acetamido-2-deoxy-6- O-methyl-alpha-D-galactopyranoside (10), allyl O-(beta-D-galactopyranosyl)-(1-->3)-2-acetamido-2-deoxy-6-O-sulfo-alpha- D- galactopyranoside sodium salt (13), allyl O-(6-O-sulfo-beta-D-galactopyranosyl sodium salt)-(1-->3)-2-acetamido-2-deoxy- alpha-D-galactopyranoside (17) and allyl O-(3-O-sulfo-beta-D-galactopyranosyl sodium salt)-(1-->3)-2-acetamido-2-deoxy- alpha-D-galactopyranoside (22). The structures of compounds 5, 10, 13, 17 and 22 were established by 13C NMR and FAB mass spectroscopy.

  10. Defective Pollen Wall 2 (DPW2) Encodes an Acyl Transferase Required for Rice Pollen Development1[OPEN

    PubMed Central

    Shi, Jianxin; Rautengarten, Carsten; Yang, Li; Uzair, Muhammad; Zhu, Lu; Luo, Qian; An, Gynheung; Waßmann, Fritz

    2017-01-01

    Aliphatic and aromatic lipids are both essential structural components of the plant cuticle, an important interface between the plant and environment. Although cross links between aromatic and aliphatic or other moieties are known to be associated with the formation of leaf cutin and root and seed suberin, the contribution of aromatic lipids to the biosynthesis of anther cuticles and pollen walls remains elusive. In this study, we characterized the rice (Oryza sativa) male sterile mutant, defective pollen wall 2 (dpw2), which showed an abnormal anther cuticle, a defective pollen wall, and complete male sterility. Compared with the wild type, dpw2 anthers have increased amounts of cutin and waxes and decreased levels of lipidic and phenolic compounds. DPW2 encodes a cytoplasmically localized BAHD acyltransferase. In vitro assays demonstrated that recombinant DPW2 specifically transfers hydroxycinnamic acid moieties, using ω-hydroxy fatty acids as acyl acceptors and hydroxycinnamoyl-CoAs as acyl donors. Thus, The cytoplasmic hydroxycinnamoyl-CoA:ω-hydroxy fatty acid transferase DPW2 plays a fundamental role in male reproduction via the biosynthesis of key components of the anther cuticle and pollen wall. PMID:27246096

  11. In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs)

    PubMed Central

    Otto, Helge; Reche, Pedro A; Bazan, Fernando; Dittmar, Katharina; Haag, Friedrich; Koch-Nolte, Friedrich

    2005-01-01

    Background ADP-ribosylation is an enzyme-catalyzed posttranslational protein modification in which mono(ADP-ribosyl)transferases (mARTs) and poly(ADP-ribosyl)transferases (pARTs) transfer the ADP-ribose moiety from NAD onto specific amino acid side chains and/or ADP-ribose units on target proteins. Results Using a combination of database search tools we identified the genes encoding recognizable pART domains in the public genome databases. In humans, the pART family encompasses 17 members. For 16 of these genes, an orthologue exists also in the mouse, rat, and pufferfish. Based on the degree of amino acid sequence similarity in the catalytic domain, conserved intron positions, and fused protein domains, pARTs can be divided into five major subgroups. All six members of groups 1 and 2 contain the H-Y-E trias of amino acid residues found also in the active sites of Diphtheria toxin and Pseudomonas exotoxin A, while the eleven members of groups 3 – 5 carry variations of this motif. The pART catalytic domain is found associated in Lego-like fashion with a variety of domains, including nucleic acid-binding, protein-protein interaction, and ubiquitylation domains. Some of these domain associations appear to be very ancient since they are observed also in insects, fungi, amoebae, and plants. The recently completed genome of the pufferfish T. nigroviridis contains recognizable orthologues for all pARTs except for pART7. The nearly completed albeit still fragmentary chicken genome contains recognizable orthologues for twelve pARTs. Simpler eucaryotes generally contain fewer pARTs: two in the fly D. melanogaster, three each in the mosquito A. gambiae, the nematode C. elegans, and the ascomycete microfungus G. zeae, six in the amoeba E. histolytica, nine in the slime mold D. discoideum, and ten in the cress plant A. thaliana. GenBank contains two pART homologues from the large double stranded DNA viruses Chilo iridescent virus and Bacteriophage Aeh1 and only a single entry

  12. The secretory omega-class glutathione transferase OvGST3 from the human pathogenic parasite Onchocerca volvulus.

    PubMed

    Liebau, Eva; Höppner, Jana; Mühlmeister, Mareike; Burmeister, Cora; Lüersen, Kai; Perbandt, Markus; Schmetz, Christel; Büttner, Dietrich; Brattig, Norbert

    2008-07-01

    Onchocerciasis or river blindness, caused by the filarial nematode Onchocerca volvulus, is the second leading cause of blindness due to infectious diseases. The protective role of the omega-class glutathione transferase 3 from O. volvulus (OvGST3) against intracellular and environmental reactive oxygen species has been described previously. In the present study, we continue our investigation of the highly stress-responsive OvGST3. Alternative splicing of two exons and one intron retention generates five different transcript isoforms that possess a spliced leader at their 5'-end, indicating that the mechanism of mature mRNA production involves alternative-, cis- and trans-splicing processes. Interestingly, the first two exons of the ovgst3 gene encode a signal peptide before sequence identity to other omega-class glutathione transferases begins. Only the recombinant expression of the isoform that encodes the longest deduced amino acid sequence (OvGST3/5) was successful, with the purified enzyme displaying modest thiol oxidoreductase activity. Significant IgG1 and IgG4 responses against recombinantly expressed OvGST3/5 were detected in sera from patients with the generalized as well as the chronic hyperreactive form of onchocerciasis, indicating exposure of the secreted protein to the human host's immune system and its immunogenicity. Immunohistological localization studies performed at light and electron microscopy levels support the extracellular localization of the protein. Intensive labeling of the OvGST3 was observed in the egg shell at the morula stage of the embryo, indicating extremely defined, stage-specific expression for a short transient period only.

  13. Functional Characterization of UDP-Glucose:Undecaprenyl-Phosphate Glucose-1-Phosphate Transferases of Escherichia coli and Caulobacter crescentus

    PubMed Central

    Patel, Kinnari B.; Toh, Evelyn; Fernandez, Ximena B.; Hanuszkiewicz, Anna; Hardy, Gail G.; Brun, Yves V.; Bernards, Mark A.

    2012-01-01

    Escherichia coli K-12 WcaJ and the Caulobacter crescentus HfsE, PssY, and PssZ enzymes are predicted to initiate the synthesis of colanic acid (CA) capsule and holdfast polysaccharide, respectively. These proteins belong to a prokaryotic family of membrane enzymes that catalyze the formation of a phosphoanhydride bond joining a hexose-1-phosphate with undecaprenyl phosphate (Und-P). In this study, in vivo complementation assays of an E. coli K-12 wcaJ mutant demonstrated that WcaJ and PssY can complement CA synthesis. Furthermore, WcaJ can restore holdfast production in C. crescentus. In vitro transferase assays demonstrated that both WcaJ and PssY utilize UDP-glucose but not UDP-galactose. However, in a strain of Salmonella enterica serovar Typhimurium deficient in the WbaP O antigen initiating galactosyltransferase, complementation with WcaJ or PssY resulted in O-antigen production. Gas chromatography-mass spectrometry (GC-MS) analysis of the lipopolysaccharide (LPS) revealed the attachment of both CA and O-antigen molecules to lipid A-core oligosaccharide (OS). Therefore, while UDP-glucose is the preferred substrate of WcaJ and PssY, these enzymes can also utilize UDP-galactose. This unexpected feature of WcaJ and PssY may help to map specific residues responsible for the nucleotide diphosphate specificity of these or similar enzymes. Also, the reconstitution of O-antigen synthesis in Salmonella, CA capsule synthesis in E. coli, and holdfast synthesis provide biological assays of high sensitivity to examine the sugar-1-phosphate transferase specificity of heterologous proteins. PMID:22408159

  14. Separation of glutathione transferase subunits from Proteus vulgaris by two-dimensional gel electrophoresis.

    PubMed

    Hong, Giaming; Chien, Yi-Chih; Chien, Cheng-I

    2003-10-01

    Cytosolic glutathione transferases of Proteus vulgaris were purified by affinity chromatography and characterized by two-dimensional gel electrophoresis. Four different subunits were identified, and each subunit contained a different molecular mass, ranging from 26.2 kDa to 28.5 kDa; a different pI value, ranging from 8.2 to 9.4; and a different amount of protein fraction, ranging from 10% to 56%. All four subunits existed as basic proteins (pI > 7.0). From these results, we concluded that multiple forms of glutathione transferase enzymes existed in Proteus vulgaris, and four different glutathione transferase subunits were separated by 2-D gel electrophoresis.

  15. The Making of a Sweet Modification: Structure and Function of O-GlcNAc Transferase*

    PubMed Central

    Janetzko, John; Walker, Suzanne

    2014-01-01

    O-GlcNAc transferase is an essential mammalian enzyme responsible for transferring a single GlcNAc moiety from UDP-GlcNAc to specific serine/threonine residues of hundreds of nuclear and cytoplasmic proteins. This modification is dynamic and has been implicated in numerous signaling pathways. An unexpected second function for O-GlcNAc transferase as a protease involved in cleaving the epigenetic regulator HCF-1 has also been reported. Recent structural and biochemical studies that provide insight into the mechanism of glycosylation and HCF-1 cleavage will be described, with outstanding questions highlighted. PMID:25336649

  16. Cloning and functional analysis of a phosphopantetheinyl transferase superfamily gene associated with jadomycin biosynthesis in Streptomyces venezuelae ISP5230.

    PubMed

    Wang, L; McVey, J; Vining, L C

    2001-06-01

    Sequence analysis of a XhoI/SacI fragment of chromosomal DNA downstream of jadL in the Streptomyces venezuelae ISP5230 gene cluster for jadomycin biosynthesis detected a partial ORF similar in its deduced amino acid sequence to the hetI product involved in synthesizing a regulator of heterocyst spacing in ANABAENA: By probing a phage library of S. venezuelae DNA with the XhoI/SacI fragment, the authors identified and isolated a hybridizing clone. The nucleotide sequence of its DNA contained three complete ORFs (jadM, N and X) and one incomplete ORF (jadO). The jadM ORF lay immediately downstream of, and partially overlapped, jadL. It contained 786 nucleotides encoding an amino acid sequence like those of enzymes in the phosphopantetheinyl transferase family. The jadN ORF contained 1794 nucleotides and encoded an amino acid sequence resembling acyl-CoA decarboxylases, thus suggesting a role in polyketide condensation reactions. The jadX ORF was not identified, but the partial jadO showed marked similarities in its deduced amino acid sequence to NDP-hexose-2,3-dehydratases, indicating a role in forming the sugar component of jadomycin B. Expression of jadM in Escherichia coli and examination of the product by SDS-PAGE established that the ORF encoded a 29.1 kDa protein, corresponding in size to the 262 amino acid polypeptide deduced from the jadM sequence. Evidence from a Northern hybridization indicated that jadM expression is correlated with jadomycin B synthesis. Cultures of S. venezuelae ISP5230 disrupted in jadM produced only 2-5% of the wild-type titre of jadomycin B, but grew well and produced chloramphenicol normally. The authors conclude that jadM encodes a holo-ACP synthase needed primarily for jadomycin B biosynthesis.

  17. Degradation of aromatics and chloroaromatics by Pseudomonas sp. strain B13: purification and characterization of 3-oxoadipate:succinyl-coenzyme A (CoA) transferase and 3-oxoadipyl-CoA thiolase.

    PubMed

    Kaschabek, Stefan R; Kuhn, Bernd; Müller, Dagmar; Schmidt, Eberhard; Reineke, Walter

    2002-01-01

    The degradation of 3-oxoadipate in Pseudomonas sp. strain B13 was investigated and was shown to proceed through 3-oxoadipyl-coenzyme A (CoA) to give acetyl-CoA and succinyl-CoA. 3-Oxoadipate:succinyl-CoA transferase of strain B13 was purified by heat treatment and chromatography on phenyl-Sepharose, Mono-Q, and Superose 6 gels. Estimation of the native molecular mass gave a value of 115,000 +/- 5,000 Da with a Superose 12 column. Polyacrylamide gel electrophoresis under denaturing conditions resulted in two distinct bands of equal intensities. The subunit A and B values were 32,900 and 27,000 Da. Therefore it can be assumed that the enzyme is a heterotetramer of the type A2B2 with a molecular mass of 120,000 Da. The N-terminal amino acid sequences of both subunits are as follows: subunit A, AELLTLREAVERFVNDGTVALEGFTHLIPT; subunit B, SAYSTNEMMTVAAARRLKNGAVVFV. The pH optimum was 8.4. Km values were 0.4 and 0.2 mM for 3-oxoadipate and succinyl-CoA, respectively. Reversibility of the reaction with succinate was shown. The transferase of strain B13 failed to convert 2-chloro- and 2-methyl-3-oxoadipate. Some activity was observed with 4-methyl-3-oxoadipate. Even 2-oxoadipate and 3-oxoglutarate were shown to function as poor substrates of the transferase. 3-oxoadipyl-CoA thiolase was purified by chromatography on DEAE-Sepharose, blue 3GA, and reactive brown-agarose. Estimation of the native molecular mass gave 162,000 +/- 5,000 Da with a Superose 6 column. The molecular mass of the subunit of the denatured protein, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was 42 kDa. On the basis of these results, 3-oxoadipyl-CoA thiolase should be a tetramer of the type A4. The N-terminal amino acid sequence of 3-oxoadipyl-CoA thiolase was determined to be SREVYI-DAVRTPIGRFG. The pH optimum was 7.8. Km values were 0.15 and 0.01 mM for 3-oxoadipyl-CoA and CoA, respectively. Sequence analysis of the thiolase terminus revealed high percentages of identity

  18. Purification and Biochemical Characterization of Glutathione S-Transferase from Down Syndrome and Normal Children Erythrocytes: A Comparative Study

    ERIC Educational Resources Information Center

    Hamed, Ragaa R.; Maharem, Tahany M.; Abdel-Meguid, Nagwa; Sabry, Gilane M.; Abdalla, Abdel-Monem; Guneidy, Rasha A.

    2011-01-01

    Down syndrome (DS) is the phenotypic manifestation of trisomy 21. Our study was concerned with the characterization and purification of glutathione S-transferase enzyme (GST) from normal and Down syndrome (DS) erythrocytes to illustrate the difference in the role of this enzyme in the cell. Glutathione S-transferase and glutathione (GSH) was…

  19. Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of N-end rule targets.

    PubMed

    White, Mark D; Klecker, Maria; Hopkinson, Richard J; Weits, Daan A; Mueller, Carolin; Naumann, Christin; O'Neill, Rebecca; Wickens, James; Yang, Jiayu; Brooks-Bartlett, Jonathan C; Garman, Elspeth F; Grossmann, Tom N; Dissmeyer, Nico; Flashman, Emily

    2017-03-23

    Crop yield loss due to flooding is a threat to food security. Submergence-induced hypoxia in plants results in stabilization of group VII ETHYLENE RESPONSE FACTORs (ERF-VIIs), which aid survival under these adverse conditions. ERF-VII stability is controlled by the N-end rule pathway, which proposes that ERF-VII N-terminal cysteine oxidation in normoxia enables arginylation followed by proteasomal degradation. The PLANT CYSTEINE OXIDASEs (PCOs) have been identified as catalysts of this oxidation. ERF-VII stabilization in hypoxia presumably arises from reduced PCO activity. We directly demonstrate that PCO dioxygenase activity produces Cys-sulfinic acid at the N terminus of an ERF-VII peptide, which then undergoes efficient arginylation by an arginyl transferase (ATE1). This provides molecular evidence of N-terminal Cys-sulfinic acid formation and arginylation by N-end rule pathway components, and a substrate of ATE1 in plants. The PCOs and ATE1 may be viable intervention targets to stabilize N-end rule substrates, including ERF-VIIs, to enhance submergence tolerance in agriculture.

  20. Characterization of glutathione S-transferases from Sus scrofa, Cydia pomonella and Triticum aestivum: their responses to cantharidin.

    PubMed

    Yang, Xue-Qing; Zhang, Ya-Lin

    2015-02-01

    Glutathione S-transferases (GSTs) play a key role in detoxification of xenobiotics in organisms. However, their other functions, especially response to the natural toxin cantharidin produced by beetles in the Meloidae and Oedemeridae families, are less known. We obtained GST cDNAs from three sources: Cydia pomonella (CpGSTd1), Sus scrofa (SsGSTα1), and Triticum aestivum (TaGSTf3). The predicted molecular mass is 24.19, 25.28 and 24.49 kDa, respectively. These proteins contain typical N-terminal and C-terminal domains. Recombinant GSTs were heterologously expressed in Escherichia coli as soluble fusion proteins. Their optimal activities are exhibited at pH 7.0-7.5 at 30 °C. Activity of CpGSTd1 is strongly inhibited by cantharidin and cantharidic acid, but is only slightly suppressed by the demethylated analog of cantharidin and cantharidic acid. Enzymatic assays revealed that cantharidin has no effect on SsGSTα1 activity, while it significantly stimulates TaGSTf3 activity, with an EC50 value of 0.3852 mM. Activities of these proteins are potently inhibited by the known GST competitive inhibitor: S-hexylglutathione (GTX). Our results suggest that these GSTs from different sources share similar structural and biochemical characteristics. Our results also suggest that CpGSTd1 might act as a binding protein with cantharidin and its analogs.

  1. Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism and induction of plant defense responses.

    PubMed

    Velazquez-Robledo, R; Contreras-Cornejo, H A; Macias-Rodriguez, L; Hernandez-Morales, A; Aguirre, J; Casas-Flores, S; Lopez-Bucio, J; Herrera-Estrella, A

    2011-12-01

    Trichoderma virens is a ubiquitous soil fungus successfully used in biological control due to its efficient colonization of plant roots. In fungi, 4-phosphopantetheinyl transferases (PPTases) activate enzymes involved in primary and secondary metabolism. Therefore, we cloned the PPTase gene ppt1 from T. virens and generated PPTase-deficient (?ppt1) and overexpressing strains to investigate the role of this enzyme in biocontrol and induction of plant defense responses. The ?ppt1 mutants were auxotrophic for lysine, produced nonpigmented conidia, and were unable to synthesize nonribosomal peptides. Although spore germination was severely compromised under both low and high iron availability, mycelial growth occurred faster than the wild type, and the mutants were able to efficiently colonize plant roots. The ?ppt1 mutants were unable of inhibiting growth of phytopathogenic fungi in vitro. Arabidopsis thaliana seedlings co-cultivated with wild-type T. virens showed increased expression of pPr1a:uidA and pLox2:uidA markers, which correlated with enhanced accumulation of salicylic acid (SA), jasmonic acid, camalexin, and resistance to Botrytis cinerea. Co-cultivation of A. thaliana seedlings with ?ppt1 mutants compromised the SA and camalexin responses, resulting in decreased protection against the pathogen. Our data reveal an important role of T. virens PPT1 in antibiosis and induction of SA and camalexin-dependent plant defense responses.

  2. Enzymic feruloylation of arabinoxylan-trisaccharide by feruloyl-CoA:arabinoxylan-trisaccharide O-hydroxycinnamoyl transferase from Oryza sativa.

    PubMed

    Yoshida-Shimokawa, T; Yoshida, S; Kakegawa, K; Ishii, T

    2001-02-01

    Feruloyl-CoA:arabinoxylan-trisaccharide O-hydroxycinnamoyl transferase, which catalyzes the transfer of ferulic acid from Fer-CoA to arabinoxylan-trisaccharide in the formation of feruloyl arabinoxylan-trisaccharide (Fer-AXX), has been found in an ionically bound fraction and a cytosol fraction of suspension-cultured rice (Oriza sativa L. cv. Nipponbare) cells. Analysis of reaction products by high-performance liquid chromatography showed the formation of product A, which is one of the transfer products having the same retention time as authentic Fer-AXX. Product A was purified by reverse-phase chromatographies to characterize its structure. The isolated product A showed the same ultraviolet spectrum and molecular weight on fast atom bombardment mass spectrometric analysis as those of authentic Fer-AXX. Alakaline saponification of product A released ferulic acid and oligosaccharide. The released oligosaccharide consisted of arabinose and xylose in a molar ratio of 1:2. These results support the identity of product A as feruloylated arabinoxylan-trisaccharide and show the existence of a feruloyltransferase catalyzing the feruloylation of a hemicellulosic fragment.

  3. Interaction of the electrophilic ketoprofenyl-glucuronide and ketoprofenyl-coenzyme A conjugates with cytosolic glutathione S-transferases.

    PubMed

    Osbild, Sandra; Bour, Jérome; Maunit, Benoît; Guillaume, Cécile; Asensio, Carine; Muller, Jean-François; Netter, Patrick; Kirsch, Glbert; Bagrel, Denyse; Lapicque, Françoise; Battaglia, Eric

    2008-02-01

    Carboxylic acid-containing drugs are metabolized mainly through the formation of glucuronide and coenzyme A esters. These conjugates have been suspected to be responsible for the toxicity of several nonsteroidal anti-inflammatory drugs because of the reactivity of the electrophilic ester bond. In the present study we investigated the reactivity of ketoprofenyl-acylglucuronide (KPF-OG) and ketoprofenyl-acyl-coenzyme A (KPF-SCoA) toward cytosolic rat liver glutathione S-transferases (GST). We observed that KPF-SCoA, but not KPF-OG inhibited the conjugation of 1-chloro-2,4-dinitrobenzene and 4-nitroquinoline N-oxide catalyzed by both purified cytosolic rat liver GST and GST from FAO and H5-6 rat hepatoma cell lines. Photoaffinity labeling with KPF-SCoA suggested that the binding of this metabolite may overlap the binding site of 4-methylumbelliferone sulfate. Furthermore, high-performance liquid chromatography and mass spectrometry analysis showed that both hydrolysis and transacylation reactions were observed in the presence of GST and glutathione. The formation of ketoprofenyl-S-acyl-glutathione could be kinetically characterized (apparent K(m) = 196.0 +/- 70.6 microM). It is concluded that KPF-SCoA is both a GST inhibitor and a substrate of a GST-dependent transacylation reaction. The reactivity and inhibitory potency of thioester CoA derivatives toward GST may have potential implications on the reported in vivo toxicity of some carboxylic acid-containing drugs.

  4. The pleiotropic effects of ethacrynic acid.

    PubMed

    Somberg, John C; Molnar, Janos

    2009-01-01

    Ethacrynic acid (EC), an effective loop diuretic especially in patients allergic to sulfa-containing drugs, possesses a number of potentially useful actions in addition to the inhibition of the Na⁺-K⁺-2Cl⁻ kidney symport. Inhibition of the enzyme glutathione S-transferase plays an important role in reducing chemotherapy drug resistance. Chemical modifications of EC increase inhibition of glutathione S-transferase and reduce toxicity due to diuretic action (hypotension and hypovolemia). This work may lead to effective therapies in reducing chemotherapy resistance in cancer chemotherapeutics. In addition, EC or conjurers may be a radiation enhancer, an anti-inflammatory agent, or a treatment for glaucoma.

  5. Insight into the carboxyl transferase domain mechanism of pyruvate carboxylase from Rhizobium etli†

    PubMed Central

    Zeczycki, Tonya N.; Maurice, Martin St.; Jitrapakdee, Sarawut; Wallace, John C.; Attwood, Paul V.; Cleland, W. Wallace

    2009-01-01

    The effects of mutations in the active site of the carboxyl transferase domain of R. etli pyruvate carboxylase have been determined for the forward reaction to form oxaloacetate, the reverse reaction to form MgATP, the oxamate-induced decarboxylation of oxaloacetate, the phosphorylation of MgADP by carbamoyl phosphate and the bicarbonate-dependent ATPase reaction. Additional studies with these mutants examined the effect of pyruvate and oxamate on the reactions of the biotin carboxylase domain. From these mutagenic studies, putative roles for catalytically relevant active site residues were assigned and a more accurate description of the mechanism of the carboxyl transferase domain is presented. The T882A mutant showed no catalytic activity for reactions involving the carboxyl transferase domain, but surprisingly showed a 7- and 3.5-fold increase in activity, as compared to the wild-type enzyme, for the ADP phosphorylation and bicarbonate-dependent ATPase reactions, respectively. Furthermore, the partial inhibition of the T882A catalyzed BC domain reactions by oxamate and pyruvate further supports the critical role of Thr882 in the proton transfer between biotin and pyruvate in the carboxyl transferase domain. The catalytic mechanism appears to involve the decarboxylation of carboxybiotin and proton removal from Thr882 by the resulting biotin enolate with either a concerted or subsequent transfer of a proton from pyruvate to Thr882. The resulting enolpyruvate then reacts with CO2 to form oxaloacetate and complete the reaction. PMID:19341298

  6. GLUTATHIONE S-TRANSFERASE THETA 1-1-DEPENDENT METABOLISM OF THE DISINFECTION BYPRODUCT BROMODICHLOROMETHANE

    EPA Science Inventory

    ABSTRACT
    Bromodichloromethane (BDCM), a prevalent drinking water disinfection by-product, was previously shown to be mutagenic in Salmonella expressing glutathione S-transferase (GST) theta 1-1 (GST T1-1). In the present study, in vitro experiments were performed to study the...

  7. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed conditions... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  8. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed conditions... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  9. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed conditions... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  10. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed conditions... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  11. Plasmodium spp. membrane glutathione S-transferases: detoxification units and drug targets

    PubMed Central

    Lisewski, Andreas M.

    2014-01-01

    Membrane glutathione S-transferases from the class of membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG) form a superfamily of detoxification enzymes that catalyze the conjugation of reduced glutathione (GSH) to a broad spectrum of xenobiotics and hydrophobic electrophiles. Evolutionarily unrelated to the cytosolic glutathione S-transferases, they are found across bacterial and eukaryotic domains, for example in mammals, plants, fungi and bacteria in which significant levels of glutathione are maintained. Species of genus Plasmodium, the unicellular protozoa that are commonly known as malaria parasites, do actively support glutathione homeostasis and maintain its metabolism throughout their complex parasitic life cycle. In humans and in other mammals, the asexual intraerythrocytic stage of malaria, when the parasite feeds on hemoglobin, grows and eventually asexually replicates inside infected red blood cells (RBCs), is directly associated with host disease symptoms and during this critical stage GSH protects the host RBC and the parasite against oxidative stress from parasite-induced hemoglobin catabolism. In line with these observations, several GSH-dependent Plasmodium enzymes have been characterized including glutathione reductases, thioredoxins, glyoxalases, glutaredoxins and glutathione S-transferases (GSTs); furthermore, GSH itself have been found to associate spontaneously and to degrade free heme and its hydroxide, hematin, which are the main cytotoxic byproducts of hemoglobin catabolism. However, despite the apparent importance of glutathione metabolism for the parasite, no membrane associated glutathione S-transferases of genus Plasmodium have been previously described. We recently reported the first examples of MAPEG members among Plasmodium spp. PMID:28357217

  12. The TIP GROWTH DEFECTIVE1 S-acyl transferase regulates plant cell growth in Arabidopsis.

    PubMed

    Hemsley, Piers A; Kemp, Alison C; Grierson, Claire S

    2005-09-01

    TIP GROWTH DEFECTIVE1 (TIP1) of Arabidopsis thaliana affects cell growth throughout the plant and has a particularly strong effect on root hair growth. We have identified TIP1 by map-based cloning and complementation of the mutant phenotype. TIP1 encodes an ankyrin repeat protein with a DHHC Cys-rich domain that is expressed in roots, leaves, inflorescence stems, and floral tissue. Two homologues of TIP1 in yeast (Saccharomyces cerevisiae) and human (Homo sapiens) have been shown to have S-acyl transferase (also known as palmitoyl transferase) activity. S-acylation is a reversible hydrophobic protein modification that offers swift, flexible control of protein hydrophobicity and affects protein association with membranes, signal transduction, and vesicle trafficking within cells. We show that TIP1 binds the acyl group palmitate, that it can rescue the morphological, temperature sensitivity, and yeast casein kinase2 localization defects of the yeast S-acyl transferase mutant akr1Delta, and that inhibition of acylation in wild-type Arabidopsis roots reproduces the Tip1- mutant phenotype. Our results demonstrate that S-acylation is essential for normal plant cell growth and identify a plant S-acyl transferase, an essential research tool if we are to understand how this important, reversible lipid modification operates in plant cells.

  13. DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1

    EPA Science Inventory


    DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1. R A Pegram1 and M K Ross2. 2Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC; 1Pharmacokinetics Branch, NHEERL, ORD, United States Environmental Protection Ag...

  14. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.130 Aminoglycoside 3′-phospho- transferase II. The...) which catalyzes the phosphorylation of certain aminoglycoside antibiotics, including kanamycin,...

  15. Maize white seedling 3 results from disruption of homogentisate solanesyl transferase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize white seedling 3 (w3) has served as a model albino-seedling mutant since its discovery in 1923. We show here that the w3 phenotype is caused by disruptions in homogentisate solanesyl transferase (HST), an enzyme that catalyzes the committed step in plastoquinone-9 (PQ9) biosynthesis. This re...

  16. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  17. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  18. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  19. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  20. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  1. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  2. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  3. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  4. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  5. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  6. Glutathione S-transferases and UDP-glycosyltransferases Are Involved in Response to Aluminum Stress in Flax

    PubMed Central

    Dmitriev, Alexey A.; Krasnov, George S.; Rozhmina, Tatiana A.; Kishlyan, Natalya V.; Zyablitsin, Alexander V.; Sadritdinova, Asiya F.; Snezhkina, Anastasiya V.; Fedorova, Maria S.; Yurkevich, Olga Y.; Muravenko, Olga V.; Bolsheva, Nadezhda L.; Kudryavtseva, Anna V.; Melnikova, Nataliya V.

    2016-01-01

    About 30% of the world's ice-free land area is occupied by acid soils. In soils with pH below 5, aluminum (Al) releases to the soil solution, and becomes highly toxic for plants. Therefore, breeding of varieties that are resistant to Al is needed. Flax (Linum usitatissimum L.) is grown worldwide for fiber and seed production. Al toxicity in acid soils is a serious problem for flax cultivation. However, very little is known about mechanisms of flax resistance to Al and the genetics of this resistance. In the present work, we sequenced 16 transcriptomes of flax cultivars resistant (Hermes and TMP1919) and sensitive (Lira and Orshanskiy) to Al, which were exposed to control conditions and aluminum treatment for 4, 12, and 24 h. In total, 44.9–63.3 million paired-end 100-nucleotide reads were generated for each sequencing library. Based on the obtained high-throughput sequencing data, genes with differential expression under aluminum exposure were revealed in flax. The majority of the top 50 up-regulated genes were involved in transmembrane transport and transporter activity in both the Al-resistant and Al-sensitive cultivars. However, genes encoding proteins with glutathione transferase and UDP-glycosyltransferase activity were in the top 50 up-regulated genes only in the flax cultivars resistant to aluminum. For qPCR analysis in extended sampling, two UDP-glycosyltransferases (UGTs), and three glutathione S-transferases (GSTs) were selected. The general trend of alterations in the expression of the examined genes was the up-regulation under Al stress, especially after 4 h of Al exposure. Moreover, in the flax cultivars resistant to aluminum, the increase in expression was more pronounced than that in the sensitive cultivars. We speculate that the defense against the Al toxicity via GST antioxidant activity is the probable mechanism of the response of flax plants to aluminum stress. We also suggest that UGTs could be involved in cell wall modification and protection

  7. Proteomic and Immunochemical Characterization of Glutathione Transferase as a New Allergen of the Nematode Ascaris lumbricoides

    PubMed Central

    Acevedo, Nathalie; Mohr, Jens; Zakzuk, Josefina; Samonig, Martin; Briza, Peter; Erler, Anja; Pomés, Anna; Huber, Christian G.; Ferreira, Fatima; Caraballo, Luis

    2013-01-01

    Helminth infections and allergy have evolutionary and clinical links. Infection with the nematode Ascaris lumbricoides induces IgE against several molecules including invertebrate pan-allergens. These antibodies influence the pathogenesis and diagnosis of allergy; therefore, studying parasitic and non-parasitic allergens is essential to understand both helminth immunity and allergy. Glutathione transferases (GSTs) from cockroach and house dust mites are clinically relevant allergens and comparative studies between them and the GST from A. lumbricoides (GSTA) are necessary to evaluate their allergenicity. We sought to analyze the allergenic potential of GSTA in connection with the IgE response to non-parasitic GSTs. IgE to purified GSTs from Ascaris (nGSTA and rGSTA), house dust mites (rDer p 8, nBlo t 8 and rBlo t 8), and cockroach (rBla g 5) was measured by ELISA in subjects from Cartagena, Colombia. Also, multidimensional proteomic approaches were used to study the extract of A. lumbricoides and investigate the existence of GST isoforms. We found that among asthmatics, the strength of IgE levels to GSTA was significantly higher than to mite and cockroach GSTs, and there was a strong positive correlation between IgE levels to these molecules. Specific IgE to GSTA was found in 13.2% of controls and 19.5% of asthmatics. In addition nGSTA induced wheal and flare in skin of sensitized asthmatics indicating that it might be of clinical relevance for some patients. Frequency and IgE levels to GSTA were higher in childhood and declined with age. At least six GST isoforms in A. lumbricoides bind human IgE. Four isoforms were the most abundant and several amino acid substitutions were found, mainly on the N-terminal domain. In conclusion, a new allergenic component of Ascaris has been discovered; it could have clinical impact in allergic patients and influence the diagnosis of mite and cockroach allergy in tropical environments. PMID:24223794

  8. Proteomic and immunochemical characterization of glutathione transferase as a new allergen of the nematode Ascaris lumbricoides.

    PubMed

    Acevedo, Nathalie; Mohr, Jens; Zakzuk, Josefina; Samonig, Martin; Briza, Peter; Erler, Anja; Pomés, Anna; Huber, Christian G; Ferreira, Fatima; Caraballo, Luis

    2013-01-01

    Helminth infections and allergy have evolutionary and clinical links. Infection with the nematode Ascaris lumbricoides induces IgE against several molecules including invertebrate pan-allergens. These antibodies influence the pathogenesis and diagnosis of allergy; therefore, studying parasitic and non-parasitic allergens is essential to understand both helminth immunity and allergy. Glutathione transferases (GSTs) from cockroach and house dust mites are clinically relevant allergens and comparative studies between them and the GST from A. lumbricoides (GSTA) are necessary to evaluate their allergenicity. We sought to analyze the allergenic potential of GSTA in connection with the IgE response to non-parasitic GSTs. IgE to purified GSTs from Ascaris (nGSTA and rGSTA), house dust mites (rDer p 8, nBlo t 8 and rBlo t 8), and cockroach (rBla g 5) was measured by ELISA in subjects from Cartagena, Colombia. Also, multidimensional proteomic approaches were used to study the extract of A. lumbricoides and investigate the existence of GST isoforms. We found that among asthmatics, the strength of IgE levels to GSTA was significantly higher than to mite and cockroach GSTs, and there was a strong positive correlation between IgE levels to these molecules. Specific IgE to GSTA was found in 13.2% of controls and 19.5% of asthmatics. In addition nGSTA induced wheal and flare in skin of sensitized asthmatics indicating that it might be of clinical relevance for some patients. Frequency and IgE levels to GSTA were higher in childhood and declined with age. At least six GST isoforms in A. lumbricoides bind human IgE. Four isoforms were the most abundant and several amino acid substitutions were found, mainly on the N-terminal domain. In conclusion, a new allergenic component of Ascaris has been discovered; it could have clinical impact in allergic patients and influence the diagnosis of mite and cockroach allergy in tropical environments.

  9. Comprehensive characterization of three glutathione S-transferase family proteins from black rockfish (Sebastes schlegelii).

    PubMed

    Jayasinghe, J D H E; Bathige, S D N K; Nam, Bo-Hye; Noh, Jae Koo; Lee, Jehee

    2016-11-01

    Glutathione S-transferases (GSTs, EC 2.5.1.18) are categorized as phase II enzymes, which form an important multifunctional family associated with a wide variety of catalytic activities. GSTω, GSTρ, and GSTθ are cytosolic GSTs which have been extensively studied in a variety of organisms; however, few studies have focused on teleosts. Those paralogs from black rockfish (Sebastes schlegelii; RfGSTω, RfGSTρ, and RfGSTθ, respectively) were molecularly, biochemically, and functionally characterized to determine their antioxidant extent and protective aptitudes upon pathogenic stress. RfGSTω, RfGSTρ, and RfGSTθ, contained open reading frames of 717bp, 678bp, and 720bp respectively, which encoded respective proteins of 239, 226, and 240 amino acids in length. In silico analysis revealed that all RfGSTs possessed characteristic N-terminal domains bearing glutathione (GSH)-binding sites, and C-terminal domains containing substrate-binding sites. Recombinant RfGSTω (rRfGSTω) catalyzed the conjugation of GSH to dehydroascorbate (DHA), while rRfGSTθ and rRfGSTρ catalyzed to the model GST substrate 1-Chloro-2,4-dinitrobenzene (CDNB). Kinetic analysis revealed variation in Km and Vmax values for each rRfGST, indicating their different conjugation rates. The optimum conditions (pH and temperature) and inhibition assays of each protein demonstrated different optimal ranges showing their wide range of activity as an assembly. RfGSTω and RfGSTθ paralogs demonstrated their antioxidant potential towards H2O2 and heavy metals (Cd, Zn, and Cu) in vitro, while RfGSTρ had an antioxidant potential only towards heavy metals (Zn and Cu). Though all the paralogs were ubiquitously expressed in different magnitudes, RfGSTω was highly expressed in blood, whereas RfGSTρ and RfGSTθ were highly expressed in liver. The mRNA expression of RfGSTω and RfGSTθ, upon Streptococcus iniae and poly I:C stimulation, revealed a significantly up-regulated expression, whereas RfGSTρ m

  10. Cloning and characterization of a biotic-stress-inducible glutathione transferase from Phaseolus vulgaris.

    PubMed

    Chronopoulou, Evangelia; Madesis, Panagiotis; Tsaftaris, Athanasios; Labrou, Nikolaos E

    2014-01-01

    Glutathione transferases (GSTs, EC 2.5.1.18) are ubiquitous proteins in plants that play important roles in stress tolerance and in the detoxification of toxic chemicals and metabolites. In this study, we systematically examined the catalytic diversification of a GST isoenzyme from Phaseolus vulgaris (PvGST) which is induced under biotic stress treatment (Uromyces appendiculatus infection). The full-length cDNA of this GST isoenzyme (termed PvGSTU3-3) with complete open reading frame, was isolated using RACE-RT and showed that the deduced amino acid sequence shares high homology with the tau class plant GSTs. PvGSTU3-3 catalyzes several different reactions and exhibits wide substrate specificity. Of particular importance is the finding that the enzyme shows high antioxidant catalytic function and acts as hydroperoxidase, thioltransferase, and dehydroascorbate reductase. In addition, its K m for GSH is about five to ten times lower compared to other plant GSTs, suggesting that PvGSTU3-3 is able to perform efficient catalysis under conditions where the concentration of reduced glutathione is low (e.g., oxidative stress). Its ability to conjugate GSH with isothiocyanates may provide an additional role for this enzyme to act as a regulator of the released isothiocyanates from glucosinolates as a response of biotic stress. Molecular modeling showed that PvGSTU3-3 shares the same overall fold and structural organization with other plant cytosolic GSTs, with major differences at their hydrophobic binding sites (H-sites) and some differences at the level of C-terminal domain and the linker between the C- and N-terminal domains. PvGSTU3-3, in general, exhibits restricted ability to bind xenobiotics in a nonsubstrate manner, suggesting that the biological role of PvGSTU3-3, is restricted mainly to the catalytic function. Our findings highlight the functional and catalytic diversity of plant GSTs and demonstrate their pivotal role for addressing biotic stresses in Phaseolus

  11. In vitro kinetics of hepatic glutathione s-transferase conjugation in largemouth bass and brown bullheads

    SciTech Connect

    Gallagher, E.P.; Sheehy, K.M.; Lame, M.W.; Segall, H.J.

    2000-02-01

    The kinetics of glutathione 5-transferase (GST) catalysis were investigated in largemouth bass (Micropterus salmoides) and brown bullheads (Amerius nebulosus), two freshwater fish species found in a variety of polluted waterways in the eastern US. The initial rates of hepatic GST activity toward four GST substrates, including 1-chloro-2,4-dinitrobenzene, ethacrynic acid, {Delta}5-androstene-17-dione, and nitrobutyl chloride, were significantly higher in brown bullheads than in largemouth bass. Hepatic GST activity toward 1,2-dichloro-4-nitrobenzene, a {mu}-class GST substrate in rodents, was not detectable in either species. Liver cytosolic GSTs were more efficient in bullheads than in bass at catalyzing 1-chloro-2,4-dinitrobenzene-reduced glutathione (CDNB-GSH) conjugation over a broad range of electrophile (CDNB) concentrations, including those representative of environmental exposure. In contrast, largemouth bass maintained higher ambient concentrations of GSH, the nucleophilic cofactor for GST-mediated conjugation, than brown bullheads. Biphasic kinetics for GST-CDNB conjugation under conditions of variable GSH concentration were apparent in Eadie-Hofstee plots of the kinetic data, suggesting the presence of at least two hepatic GST isozymes with markedly different K{sub m} values for GSH in both species. The GST-CDNB reaction rate data obtained under conditions of variable GSH were well fitted (R{sup 2} = 0.999) by the two-enzyme Michaelis-Menten equation. In addition, Western blotting experiments confirmed the presence of two different hepatic GST-like proteins in both largemouth bass and brown bullhead liver. Collectively, these findings indicate that largemouth bass and brown bullhead GSTs catalyze the conjugation of structurally diverse, class-specific GST substrates, and that brown bullheads exhibit higher initial rates of GST activity than largemouth bass. The relatively higher rates of in vitro liver GST activity at the low substrate concentrations

  12. Substrate recognition by the cell surface palmitoyl transferase DHHC5.

    PubMed

    Howie, Jacqueline; Reilly, Louise; Fraser, Niall J; Vlachaki Walker, Julia M; Wypijewski, Krzysztof J; Ashford, Michael L J; Calaghan, Sarah C; McClafferty, Heather; Tian, Lijun; Shipston, Michael J; Boguslavskyi, Andrii; Shattock, Michael J; Fuller, William

    2014-12-09

    The cardiac phosphoprotein phospholemman (PLM) regulates the cardiac sodium pump, activating the pump when phosphorylated and inhibiting it when palmitoylated. Protein palmitoylation, the reversible attachment of a 16 carbon fatty acid to a cysteine thiol, is catalyzed by the Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases. The cell surface palmitoyl acyltransferase DHHC5 regulates a growing number of cellular processes, but relatively few DHHC5 substrates have been identified to date. We examined the expression of DHHC isoforms in ventricular muscle and report that DHHC5 is among the most abundantly expressed DHHCs in the heart and localizes to caveolin-enriched cell surface microdomains. DHHC5 coimmunoprecipitates with PLM in ventricular myocytes and transiently transfected cells. Overexpression and silencing experiments indicate that DHHC5 palmitoylates PLM at two juxtamembrane cysteines, C40 and C42, although C40 is the principal palmitoylation site. PLM interaction with and palmitoylation by DHHC5 is independent of the DHHC5 PSD-95/Discs-large/ZO-1 homology (PDZ) binding motif, but requires a ∼ 120 amino acid region of the DHHC5 intracellular C-tail immediately after the fourth transmembrane domain. PLM C42A but not PLM C40A inhibits the Na pump, indicating PLM palmitoylation at C40 but not C42 is required for PLM-mediated inhibition of pump activity. In conclusion, we demonstrate an enzyme-substrate relationship for DHHC5 and PLM and describe a means of substrate recruitment not hitherto described for this acyltransferase. We propose that PLM palmitoylation by DHHC5 promotes phospholipid interactions that inhibit the Na pump.

  13. Functional Dissection of the Bipartite Active Site of the Class I Coenzyme A (CoA)-Transferase Succinyl-CoA:Acetate CoA-Transferase

    PubMed Central

    Murphy, Jesse R.; Mullins, Elwood A.; Kappock, T. Joseph

    2016-01-01

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates <3 Å apart. In this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analog dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analog of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. The ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA. PMID:27242998

  14. Functional dissection of the bipartite active site of the class I coenzyme A (CoA)-transferase succinyl-CoA:acetate CoA-transferase

    NASA Astrophysics Data System (ADS)

    Murphy, Jesse; Mullins, Elwood; Kappock, T.

    2016-05-01

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates less than 3 Å apart. In this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analogue dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analogue of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. The ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA.

  15. Functional dissection of the bipartite active site of the class I coenzyme A (CoA)-transferase succinyl-CoA:acetate CoA-transferase

    DOE PAGES

    Murphy, Jesse R.; Mullins, Elwood A.; Kappock, T. Joseph

    2016-05-23

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates <3 Å apart. Here in this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes andmore » orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analog dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analog of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. Finally, the ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA.« less

  16. Functional dissection of the bipartite active site of the class I coenzyme A (CoA)-transferase succinyl-CoA:acetate CoA-transferase

    SciTech Connect

    Murphy, Jesse R.; Mullins, Elwood A.; Kappock, T. Joseph

    2016-05-23

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates <3 Å apart. Here in this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analog dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analog of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. Finally, the ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA.

  17. The three-dimensional structure of the RNA-binding domain of ribosomal protein L2; a protein at the peptidyl transferase center of the ribosome.

    PubMed Central

    Nakagawa, A; Nakashima, T; Taniguchi, M; Hosaka, H; Kimura, M; Tanaka, I

    1999-01-01

    Ribosomal protein L2 is the largest protein component in the ribosome. It is located at or near the peptidyl transferase center and has been a prime candidate for the peptidyl transferase activity. It binds directly to 23S rRNA and plays a crucial role in its assembly. The three-dimensional structure of the RNA-binding domain of L2 from Bacillus stearothermophilus has been determined at 2.3 A resolution by X-ray crystallography using the selenomethionyl MAD method. The RNA-binding domain of L2 consists of two recurring motifs of approximately 70 residues each. The N-terminal domain (positions 60-130) is homologous to the OB-fold, and the C-terminal domain (positions 131-201) is homologous to the SH3-like barrel. Residues Arg86 and Arg155, which have been identified by mutation experiments to be involved in the 23S rRNA binding, are located at the gate of the interface region between the two domains. The molecular architecture suggests how this important protein has evolved from the ancient nucleic acid-binding proteins to create a 23S rRNA-binding domain in the very remote past. PMID:10075918

  18. Molecular cloning and differential expression patterns of sigma and omega glutathione S-transferases from Venerupis philippinarum to heavy metals and benzo[a]pyrene exposure

    NASA Astrophysics Data System (ADS)

    Zhang, Linbao; Wu, Huifeng; Liu, Xiaoli; Chen, Leilei; Wang, Qing; Zhao, Jianmin; You, Liping

    2012-05-01

    Glutathione S-transferases (GSTs) are a class of enzymes that facilitate the detoxification of xenobiotics, and also play important roles in antioxidant defense. We identified two glutathione S-transferase isoforms (VpGSTS, sigma GST; VpGSTO, omega GST) from Venerupis philippinarum by RACE approaches. The open reading frames of VpGSTS and VpGSTO were of 612 bp and 729 bp, encoding 203 and 242 amino acids with an estimated molecular mass of 22.88 and 27.94 kDa, respectively. The expression profiles of VpGSTS and VpGSTO responded to heavy metals and benzo[a]pyrene (B[a]P) exposure were investigated by quantitative real-time RT-PCR. The expression of VpGSTS and VpGSTO were both rapidly up-regulated, however, they showed differential expression patterns to different toxicants. Cd displayed stronger induction of VpGSTS expression with an approximately 12-fold increase than that of VpGSTO with a maximum 6.4-fold rise. Cu exposure resulted in similar expression patterns for both VpGSTS and VpGSTO. For B[a]P exposure, the maximum induction of VpGSTO was approximately two times higher than that of VpGSTS. Altogether, these findings implied the involvement of VpGSTS and VpGSTO in host antioxidant responses, and highlighted their potential as a biomarker to Cd and B[a]P exposure.

  19. Characterization of spermidine hydroxycinnamoyl transferases from eggplant (Solanum melongena L.) and its wild relative Solanum richardii Dunal

    PubMed Central

    Peng, Hui; Yang, Tianbao; Whitaker, Bruce D; Trouth, Frances; Shangguan, Lingfei; Dong, Wen; Jurick, Wayne M

    2016-01-01

    Eggplant produces a variety of hydroxycinnamic acid amides (HCAAs) that have an important role in plant development and adaptation to environmental changes. In this study, we identified and characterized a spermidine hydroxycinnamoyl transferase (SHT) from eggplant (Solanum melongena) and its wild relative S. richardii, designated as SmSHT and SrSHT, respectively. SmSHT was abundant in flowers and fruits, whereas the level of SrSHT was remarkably low in all tissues. Heat-shock/drought treatment stimulated the expression of SmSHT in both leaves and fruits, indicating its involvement in plant stress response. Both SHT polypeptides had extremely high identity with just five amino-acid substitutions. Recombinant SmSHT catalyzed the synthesis of mono-, bi- and tri- acylated polyamines. Using caffeoyl-CoA as the acyl donor, SmSHT preferred spermidine as the acyl acceptor. When spermidine was the acyl acceptor, the donor preference order for SmSHT was caffeoyl-CoA>feruloyl-CoA>ρ-coumaroyl-CoA. SrSHT exhibited the same substrate specificity as SmSHT, yet exhibited significantly higher catalytic activity than SmSHT. For example, under caffeoyl-CoA and spermidine, Kcat of SrSHT was 37.3% higher than SmSHT. Molecular modeling suggests that five amino-acid substitutions in SrSHT result in four alterations in their predicted 3D structures. In particular, the conserved Lys402 adjacent to the DFGWG motif, and Cys200 in the crossover loop in SmSHT were replaced by Glu and Ser in SrSHT. These substitutions may contribute to the enhanced activity in SrSHT. Our study provides a platform to generate HCAA rich fruits for eggplant and other solanaceous crops. PMID:28018606

  20. Identification of an Arabidopsis Feruloyl-Coenzyme A Transferase Required for Suberin Synthesis1[W][OA

    PubMed Central

    Molina, Isabel; Li-Beisson, Yonghua; Beisson, Fred; Ohlrogge, John B.; Pollard, Mike

    2009-01-01

    All plants produce suberin, a lipophilic barrier of the cell wall that controls water and solute fluxes and restricts pathogen infection. It is often described as a heteropolymer comprised of polyaliphatic and polyaromatic domains. Major monomers include ω-hydroxy and α,ω-dicarboxylic fatty acids, glycerol, and ferulate. No genes have yet been identified for the aromatic suberin pathway. Here we demonstrate that Arabidopsis (Arabidopsis thaliana) gene AT5G41040, a member of the BAHD family of acyltransferases, is essential for incorporation of ferulate into suberin. In Arabidopsis plants transformed with the AT5G41040 promoter:YFP fusion, reporter expression is localized to cell layers undergoing suberization. Knockout mutants of AT5G41040 show almost complete elimination of suberin-associated ester-linked ferulate. However, the classic lamellar structure of suberin in root periderm of at5g41040 is not disrupted. The reduction in ferulate in at5g41040-knockout seeds is associated with an approximate stoichiometric decrease in aliphatic monomers containing ω-hydroxyl groups. Recombinant AT5G41040p catalyzed acyl transfer from feruloyl-coenzyme A to ω-hydroxyfatty acids and fatty alcohols, demonstrating that the gene encodes a feruloyl transferase. CYP86B1, a cytochrome P450 monooxygenase gene whose transcript levels correlate with AT5G41040 expression, was also investigated. Knockouts and overexpression confirmed CYP86B1 as an oxidase required for the biosynthesis of very-long-chain saturated α,ω-bifunctional aliphatic monomers in suberin. The seed suberin composition of cyp86b1 knockout was surprisingly dominated by unsubstituted fatty acids that are incapable of polymeric linkages. Together, these results challenge our current view of suberin structure by questioning both the function of ester-linked ferulate as an essential component and the existence of an extended aliphatic polyester. PMID:19759341

  1. Characterization of spermidine hydroxycinnamoyl transferases from eggplant (Solanum melongena L.) and its wild relative Solanum richardii Dunal.

    PubMed

    Peng, Hui; Yang, Tianbao; Whitaker, Bruce D; Trouth, Frances; Shangguan, Lingfei; Dong, Wen; Jurick, Wayne M

    2016-01-01

    Eggplant produces a variety of hydroxycinnamic acid amides (HCAAs) that have an important role in plant development and adaptation to environmental changes. In this study, we identified and characterized a spermidine hydroxycinnamoyl transferase (SHT) from eggplant (Solanum melongena) and its wild relative S. richardii, designated as SmSHT and SrSHT, respectively. SmSHT was abundant in flowers and fruits, whereas the level of SrSHT was remarkably low in all tissues. Heat-shock/drought treatment stimulated the expression of SmSHT in both leaves and fruits, indicating its involvement in plant stress response. Both SHT polypeptides had extremely high identity with just five amino-acid substitutions. Recombinant SmSHT catalyzed the synthesis of mono-, bi- and tri- acylated polyamines. Using caffeoyl-CoA as the acyl donor, SmSHT preferred spermidine as the acyl acceptor. When spermidine was the acyl acceptor, the donor preference order for SmSHT was caffeoyl-CoA>feruloyl-CoA>ρ-coumaroyl-CoA. SrSHT exhibited the same substrate specificity as SmSHT, yet exhibited significantly higher catalytic activity than SmSHT. For example, under caffeoyl-CoA and spermidine, Kcat of SrSHT was 37.3% higher than SmSHT. Molecular modeling suggests that five amino-acid substitutions in SrSHT result in four alterations in their predicted 3D structures. In particular, the conserved Lys402 adjacent to the DFGWG motif, and Cys200 in the crossover loop in SmSHT were replaced by Glu and Ser in SrSHT. These substitutions may contribute to the enhanced activity in SrSHT. Our study provides a platform to generate HCAA rich fruits for eggplant and other solanaceous crops.

  2. Succinyl-CoA:3-Sulfinopropionate CoA-Transferase from Variovorax paradoxus Strain TBEA6, a Novel Member of the Class III Coenzyme A (CoA)-Transferase Family

    PubMed Central

    Schürmann, Marc; Hirsch, Beatrice; Wübbeler, Jan Hendrik; Stöveken, Nadine

    2013-01-01

    The act gene of Variovorax paradoxus TBEA6 encodes a succinyl-CoA:3-sulfinopropionate coenzyme A (CoA)-transferase, ActTBEA6 (2.8.3.x), which catalyzes the activation of 3-sulfinopropionate (3SP), an intermediate during 3,3′-thiodipropionate (TDP) degradation. In a previous study, accumulation of 3SP was observed in a Tn5::mob-induced mutant defective in growth on TDP. In contrast to the wild type and all other obtained mutants, this mutant showed no growth when 3SP was applied as the sole source of carbon and energy. The transposon Tn5::mob was inserted in a gene showing high homology to class III CoA-transferases. In the present study, analyses of the translation product clearly allocated ActTBEA6 to this protein family. The predicted secondary structure indicates the lack of a C-terminal α-helix. ActTBEA6 was heterologously expressed in Escherichia coli Lemo21(DE3) and was then purified by Ni-nitrilotriacetic acid (NTA) affinity chromatography. Analytical size exclusion chromatography revealed a homodimeric structure with a molecular mass of 96 ± 3 kDa. Enzyme assays identified succinyl-CoA, itaconyl-CoA, and glutaryl-CoA as potential CoA donors and unequivocally verified the conversion of 3SP to 3SP-CoA. Kinetic studies revealed an apparent Vmax of 44.6 μmol min−1 mg−1 for succinyl-CoA, which corresponds to a turnover number of 36.0 s−1 per subunit of ActTBEA6. For 3SP, the apparent Vmax was determined as 46.8 μmol min−1 mg−1, which corresponds to a turnover number of 37.7 s−1 per subunit of ActTBEA6. The apparent Km values were 0.08 mM for succinyl-CoA and 5.9 mM for 3SP. Nonetheless, the V. paradoxus Δact mutant did not reproduce the phenotype of the Tn5::mob-induced mutant. This defined deletion mutant was able to utilize TDP or 3SP as the sole carbon source, like the wild type. Complementation of the Tn5::mob-induced mutant with pBBR1MCS5::acdDPN7 partially restored growth on 3SP, which indicated a polar effect of the Tn5::mob transposon

  3. Succinyl-CoA:3-sulfinopropionate CoA-transferase from Variovorax paradoxus strain TBEA6, a novel member of the class III coenzyme A (CoA)-transferase family.

    PubMed

    Schürmann, Marc; Hirsch, Beatrice; Wübbeler, Jan Hendrik; Stöveken, Nadine; Steinbüchel, Alexander

    2013-08-01

    The act gene of Variovorax paradoxus TBEA6 encodes a succinyl-CoA:3-sulfinopropionate coenzyme A (CoA)-transferase, Act(TBEA6) (2.8.3.x), which catalyzes the activation of 3-sulfinopropionate (3SP), an intermediate during 3,3'-thiodipropionate (TDP) degradation. In a previous study, accumulation of 3SP was observed in a Tn5::mob-induced mutant defective in growth on TDP. In contrast to the wild type and all other obtained mutants, this mutant showed no growth when 3SP was applied as the sole source of carbon and energy. The transposon Tn5::mob was inserted in a gene showing high homology to class III CoA-transferases. In the present study, analyses of the translation product clearly allocated Act(TBEA6) to this protein family. The predicted secondary structure indicates the lack of a C-terminal α-helix. Act(TBEA6) was heterologously expressed in Escherichia coli Lemo21(DE3) and was then purified by Ni-nitrilotriacetic acid (NTA) affinity chromatography. Analytical size exclusion chromatography revealed a homodimeric structure with a molecular mass of 96 ± 3 kDa. Enzyme assays identified succinyl-CoA, itaconyl-CoA, and glutaryl-CoA as potential CoA donors and unequivocally verified the conversion of 3SP to 3SP-CoA. Kinetic studies revealed an apparent V(max) of 44.6 μmol min(-1) mg(-1) for succinyl-CoA, which corresponds to a turnover number of 36.0 s(-1) per subunit of Act(TBEA6). For 3SP, the apparent V(max) was determined as 46.8 μmol min(-1) mg(-1), which corresponds to a turnover number of 37.7 s(-1) per subunit of Act(TBEA6). The apparent K(m) values were 0.08 mM for succinyl-CoA and 5.9 mM for 3SP. Nonetheless, the V. paradoxus Δact mutant did not reproduce the phenotype of the Tn5::mob-induced mutant. This defined deletion mutant was able to utilize TDP or 3SP as the sole carbon source, like the wild type. Complementation of the Tn5::mob-induced mutant with pBBR1MCS5::acdDPN7 partially restored growth on 3SP, which indicated a polar effect of the Tn5

  4. Restoration of Hypoxanthine Phosphoribosyl Transferase Activity in Mouse 1R Cells After Fusion with Chick-Embryo Fibroblasts

    PubMed Central

    Bakay, Bohdan; Croce, Carlo M.; Koprowski, Hilary; Nyhan, William L.

    1973-01-01

    Fusion of the 1R mouse cell, which lacks activity of hypoxanthine phosphoribosyl transferase (EC 2.4.2.8), with chick-embryo fibroblasts yielded progeny cells that survived in hypoxanthine-aminopterin-thymidine selective medium. This property and the failure of the progeny to survive in 8-azaguanine indicated that hypoxanthine phosphoribosyl transferase activity was present. Electrophoretic analysis revealed that the enzyme was of mouse, not chick, origin. These observations are consistent with the operation of a regulator gene responsible for the absence of hypoxanthine phosphoribosyl-transferase activity in the 1R cell and its presence in the progeny. Images PMID:4516198

  5. The Plasmodium palmitoyl-S-acyl-transferase DHHC2 is essential for ookinete morphogenesis and malaria transmission

    PubMed Central

    Santos, Jorge M.; Kehrer, Jessica; Franke-Fayard, Blandine; Frischknecht, Friedrich; Janse, Chris J.; Mair, Gunnar R.

    2015-01-01

    The post-translational addition of C-16 long chain fatty acids to protein cysteine residues is catalysed by palmitoyl-S-acyl-transferases (PAT) and affects the affinity of a modified protein for membranes and therefore its subcellular localisation. In apicomplexan parasites this reversible protein modification regulates numerous biological processes and specifically affects cell motility, and invasion of host cells by Plasmodium falciparum merozoites and Toxoplasma gondii tachyzoites. Using inhibitor studies we show here that palmitoylation is key to transformation of zygotes into ookinetes during initial mosquito infection with P. berghei. We identify DHHC2 as a unique PAT mediating ookinete formation and morphogenesis. Essential for life cycle progression in asexual blood stage parasites and thus refractory to gene deletion analyses, we used promoter swap (ps) methodology to maintain dhhc2 expression in asexual blood stages but down regulate expression in sexual stage parasites and during post-fertilization development of the zygote. The ps mutant showed normal gamete formation, fertilisation and DNA replication to tetraploid cells, but was characterised by a complete block in post-fertilisation development and ookinete formation. Our report highlights the crucial nature of the DHHC2 palmitoyl-S-acyltransferase for transmission of the malaria parasite to the mosquito vector through its essential role for ookinete morphogenesis. PMID:26526684

  6. UDP-N-Acetylglucosamine enolpyruvyl transferase (MurA) of Acinetobacter baumannii (AbMurA): Structural and functional properties.

    PubMed

    Sonkar, Amit; Shukla, Harish; Shukla, Rohit; Kalita, Jupitara; Pandey, Tripti; Tripathi, Timir

    2017-04-01

    Peptidoglycan (PG) is the key component of the bacterial cell wall. The enzyme UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA) catalyzes the transfer of enolpyruvate from phosphoenolpyruvate (PEP) to uridinediphospho-N-acetylglucosamine (UNAG), which is the first committed step of PG biosynthesis. Here, we present the biochemical and structural features of the MurA enzyme of the opportunistic pathogen Acinetobacter baumannii (AbMurA). The recombinant AbMurA exists as a monomer in solution and shows optimal activity at pH 7.5 and 37°C. The Km for UDP-N-acetylglucosamine was 1.062±0.09mM and for PEP was 1.806±0.23mM. The relative enzymatic activity was inhibited ∼3 fold in the presence of 50mM fosfomycin (FFQ). Superimposition of the AbMurA model with E. coli demonstrated key structural similarity in the FFQ-binding site. AbMurA also has a surface loop that contains the active site Cys116 that interact with FFQ. Sequence analysis indicates the presence of the five conserved amino acids, i.e., K22, C116, D306, D370 and L371, required for the functional activity like other MurA enzymes from different bacteria. MurA enzymes are indispensable for cell integrity and their lack of counterparts in eukaryotes suggests them to be a promising drug target.

  7. Spatio-temporal patterning of arginyl-tRNA protein transferase (ATE) contributes to gametophytic development in a moss.

    PubMed

    Schuessele, Christian; Hoernstein, Sebastian N W; Mueller, Stefanie J; Rodriguez-Franco, Marta; Lorenz, Timo; Lang, Daniel; Igloi, Gabor L; Reski, Ralf

    2016-02-01

    The importance of the arginyl-tRNA protein transferase (ATE), the enzyme mediating post-translation arginylation of proteins in the N-end rule degradation (NERD) pathway of protein stability, was analysed in Physcomitrella patens and compared to its known functions in other eukaryotes. We characterize ATE:GUS reporter lines as well as ATE mutants in P. patens to study the impact and function of arginylation on moss development and physiology. ATE protein abundance is spatially and temporally regulated in P. patens by hormones and light and is highly abundant in meristematic cells. Further, the amount of ATE transcript is regulated during abscisic acid signalling and downstream of auxin signalling. Loss-of-function mutants exhibit defects at various levels, most severely in developing gametophores, in chloroplast starch accumulation and senescence. Thus, arginylation is necessary for moss gametophyte development, in contrast to the situation in flowering plants. Our analysis further substantiates the conservation of the N-end rule pathway components in land plants and highlights lineage-specific features. We introduce moss as a model system to characterize the role of the NERD pathway as an additional layer of complexity in eukaryotic development.

  8. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines

    PubMed Central

    López-Cruz, Roberto I.; Crocker, Daniel E.; Gaxiola-Robles, Ramón; Bernal, Jaime A.; Real-Valle, Roberto A.; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements. PMID:27375492

  9. Molecular cloning, characterization and positively selected sites of the glutathione S-transferase family from Locusta migratoria.

    PubMed

    Zhang, Xueyao; Wang, Jianxin; Zhang, Min; Qin, Guohua; Li, Daqi; Zhu, Kun Yan; Ma, Enbo; Zhang, Jianzhen

    2014-01-01

    Glutathione S-transferases (GSTs) are multifunctional enzymes that are involved in the metabolism of endogenous and exogenous compounds and are related to insecticide resistance. The purpose of this study was to provide new information on the molecular characteristics and the positive selection of locust GSTs. Based on the transcriptome database, we sequenced 28 cytosolic GSTs and 4 microsomal GSTs from the migratory locust (Locusta migratoria). We assigned the 28 cytosolic GSTs into 6 classes--sigma, epsilon, delta, theta, omega and zeta, and the 4 microsomal GSTs into 2 subclasses--insect and MGST3. The tissue- and stage-expression patterns of the GSTs differed at the mRNA level. Further, the substrate specificities and kinetic constants of the cytosolic GSTs differed markedly at the protein level. The results of likelihood ratio tests provided strong evidence for positive selection in the delta class. The result of Bayes Empirical Bayes analysis identified 4 amino acid sites in the delta class as positive selection sites. These sites were located on the protein surface. Our findings will facilitate the elucidation of the molecular characteristics and evolutionary aspects of insect GST superfamily.

  10. Expression of isopentenyl transferase gene (ipt) in leaf and stem delayed leaf senescence without affecting root growth.

    PubMed

    Ma, Qing-Hu; Liu, Yun-Chao

    2009-11-01

    A cytokinin biosynthetic gene encoding isopentenyl transferase (ipt) was cloned with its native promoter from Agrobacterium tumefaciens and introduced into tobacco plants. Indolebutyric acid was applied in rooting medium and morphologically normal transgenic tobacco plants were regenerated. Genetic analysis of self-fertilized progeny showed that a single copy of intact ipt gene had been integrated, and T(2) progeny had become homozygous for the transgene. Stable inheritance of the intact ipt gene in T(2) progeny was verified by Southern hybridization. Northern blot hybridization revealed that the expression of this ipt gene was confined in leaves and stems but undetectable in roots of the transgenic plants. Endogenous cytokinin levels in the leaves and stems of the transgenic tobaccos were two to threefold higher than that of control, but in roots, both the transgenic and control tobaccos had similar cytokinin levels. The elevated cytokinin levels in the transgenic tobacco leaves resulted in delayed leaf senescence in terms of chlorophyll content without affecting the net photosynthetic rate. The root growth and morphology of the plant were not affected in the transgenic tobacco.

  11. Response of glutathione S-transferase (GST) genes to cadmium exposure in the marine pollution indicator worm, Perinereis nuntia.

    PubMed

    Won, Eun-Ji; Kim, Ryeo-Ok; Rhee, Jae-Sung; Park, Gyung Soo; Lee, Jehee; Shin, Kyung-Hoon; Lee, Young-Mi; Lee, Jae-Seong

    2011-08-01

    Glutathione S-transferase (GST) is a phase II enzyme that functions as a detoxicant by catalyzing the conjugation of reduced glutathione with a variety of xenobiotics via cysteine thiol. Molecular genetic approaches using gene biomarkers show substantial relevance as sensitive biomarkers for the indication of pollution levels. In order to use GSTs as molecular biomarkers for marine pollution monitoring, we cloned and sequenced the full-length cDNA of seven GST genes from the marine polychaete Perinereis nuntia. The deduced amino acid sequence of Pn-GSTs showed a high similarity to those of other species that clustered into the same clades in a phylogenetic analysis. In addition, to evaluate Pn-GSTs as useful biomarkers on effects after cadmium (Cd) exposure, we exposed sublethal concentrations of Cd (5, 50, and 500 μg/L) to P. nuntia, and they showed relatively different but significantly increases, depending on exposure time and Cd concentrations. Particularly, Pn-GST-omega and Pn-GST-sigma genes were highly sensitive with a clear dose-dependent manner on mRNA expression. The total GST activities also have significantly increased levels at higher concentrations of Cd exposure. These results indicate that Pn-GSTs play important roles in Cd-induced oxidative stress in terms of the physiological changes relating to metabolism and cell protection, and those genes would have great potential as molecular biomarkers to monitor marine environmental health.

  12. Molecular Cloning, Characterization and Positively Selected Sites of the Glutathione S-Transferase Family from Locusta migratoria

    PubMed Central

    Zhang, Min; Qin, Guohua; Li, Daqi; Zhu, Kun Yan; Ma, Enbo; Zhang, Jianzhen

    2014-01-01

    Glutathione S-transferases (GSTs) are multifunctional enzymes that are involved in the metabolism of endogenous and exogenous compounds and are related to insecticide resistance. The purpose of this study was to provide new information on the molecular characteristics and the positive selection of locust GSTs. Based on the transcriptome database, we sequenced 28 cytosolic GSTs and 4 microsomal GSTs from the migratory locust (Locusta migratoria). We assigned the 28 cytosolic GSTs into 6 classes—sigma, epsilon, delta, theta, omega and zeta, and the 4 microsomal GSTs into 2 subclasses—insect and MGST3. The tissue- and stage-expression patterns of the GSTs differed at the mRNA level. Further, the substrate specificities and kinetic constants of the cytosolic GSTs differed markedly at the protein level. The results of likelihood ratio tests provided strong evidence for positive selection in the delta class. The result of Bayes Empirical Bayes analysis identified 4 amino acid sites in the delta class as positive selection sites. These sites were located on the protein surface. Our findings will facilitate the elucidation of the molecular characteristics and evolutionary aspects of insect GST superfamily. PMID:25486043

  13. Salinity effects on activity and expression of glutathione S-transferases in white sturgeon and Chinook salmon.

    PubMed

    Donham, Rachel T; Morin, Dexter; Tjeerdema, Ronald S

    2006-02-01

    This study evaluated the activity and expression of the glutathione S-transferase (GST) detoxification isoenzymes in juvenile white sturgeon (Acipenser transmontanus) and Chinook salmon (Oncorhynchus tshawytscha) during acclimation from freshwater (2 per thousand) to estuarine (15 per thousand) salinity conditions. In white sturgeon, GST activity toward 1-chloro-2,4-dinitrobenzene (CDNB) increased significantly (P = 0.005; n = 5) with elevated salinity, but not for the Chinook salmon (P = 0.174; n = 10). GST activity of both sturgeon and salmon toward ethacrynic acid (ETHA) did not significantly change with elevated salinity (P = 0.516 with n = 3, and P = 0.125 with n = 3, respectively). Expression of the GST classes, and hepatic glutathione (GSH) concentration, as determined by HPLC, also did not significantly change with increased salinity. In conclusion, overall GST activity in white sturgeon, but not Chinook salmon, is stimulated by elevated water salinity, thus electrophilic chemicals such as pesticides may be more effectively detoxified by sturgeon as they undergo seaward migration.

  14. Characterization and functional analysis of a recombinant tau class glutathione transferase GmGSTU2-2 from Glycine max.

    PubMed

    Skopelitou, Katholiki; Muleta, Abdi W; Papageorgiou, Anastassios C; Chronopoulou, Evangelia G; Pavli, Ourania; Flemetakis, Emmanouil; Skaracis, Georgios N; Labrou, Nikolaos E

    2017-01-01

    The plant tau class glutathione transferases (GSTs) perform diverse catalytic as well as non-catalytic roles in detoxification of xenobiotics, prevention of oxidative damage and endogenous metabolism. In the present work, the tau class isoenzyme GSTU2-2 from Glycine max (GmGSTU2-2) was characterized. Gene expression analysis of GmGSTU2 suggested a highly specific and selective induction pattern to osmotic stresses, indicating that gene expression is controlled by a specific mechanism. Purified, recombinant GmGSTU2-2 was shown to exhibit wide-range specificity towards xenobiotic compounds and ligand-binding properties, suggesting that the isoenzyme could provide catalytic flexibility in numerous metabolic conditions. Homology modeling and phylogenetic analysis suggested that the catalytic and ligand binding sites of GmGSTU2-2 are well conserved compared to other tau class GSTs. Structural analysis identified key amino acid residues in the hydrophobic binding site and provided insights into the substrate specificity of this enzyme. The results established that GmGSTU2-2 participates in a broad network of catalytic and regulatory functions involved in the plant stress response.

  15. Cloning, characterization and expression of two glutathione S-transferase cDNAs in the spruce budworm, Choristoneura fumiferana.

    PubMed

    Huang, Yufen; Krell, Peter J; Ladd, Tim; Feng, Qili; Zheng, Sichun

    2009-01-01

    Two Choristoneura fumiferana glutathione S-transferase cDNAs (CfGSTs4 and CfGSTd5) were cloned from a cDNA library constructed using mRNA from the midgut cell line, CF-203. These cDNAs encoded two structurally different proteins with a predicted molecular mass of 23 and 24 kDa, respectively. Amino acid sequence analysis indicates that CfGSTs4 and CfGSTd5 contained Sigma and Delta GST domain, respectively. CfGSTs4 cDNA was expressed as a recombinant protein with the same molecular mass as predicted. Semi-quantitative reverse-transcription PCR analyses indicated that both of these genes were expressed in the epidermis, fat body, and midgut of the 6th instar larvae, as well as CF-203 cells. CfGSTs4 was highly and almost constantly expressed in all tissues during the 6th instar stage. There were higher levels of CfGSTs4 protein in the midgut and fat body than in the epidermis. CfGSTd5 was expressed in the fat body when the insects underwent pupal molting and was constantly expressed in the epidermis and midgut during 6th instar development. CfGSTs4 expression was not affected by ecdysone agonist tebufenozide (RH5992), whereas CfGSTd5 expression was slightly suppressed by the compound.

  16. Cloning and characterization of two glutathione S-transferase cDNAs in the spruce budworm, Choristoneura fumiferana.

    PubMed

    Zheng, Sichun; Deng, Huimin; Ladd, Tim; Tomkins, Bill L; Krell, Peter J; Feng, Qili

    2007-11-01

    Two Choristoneura fumiferana glutathione S-transferase cDNAs were cloned from a cDNA library constructed using mRNA from the midgut cell line, CF-203. These cDNAs (CfGST2, CfGST3) encoded two structurally different proteins with a predicted molecular mass of 21 and 24 kDa, respectively, which was confirmed through protein expression in a bacterial system. Quantitative reverse-transcription PCR analyses revealed that the transcripts of these two genes were present in the epidermis, fat body, and midgut of the 6th instar larvae. CfGST2 was expressed in the fat body when the insects were close to pupal molting, while it was constantly expressed in the other two tissues during the 6th instar stage. CfGST3 gene was expressed highly and constantly in all of the tissues throughout the 6th instar stage. Immunohistochemistry analysis demonstrated that CfGST2 and CfGST3 proteins were present mainly in the fat body and epidermis and no protein was detected in the midgut. CfGST2 and CfGST3 were different from CfGST reported before (Feng et al., 1999: Insect Biochem Mol Biol 29:779-793) in amino acid sequence, expression pattern, and responsiveness to tebufenozide.

  17. Nuclear glutathione S-transferase pi prevents apoptosis by reducing the oxidative stress-induced formation of exocyclic DNA products.

    PubMed

    Kamada, Kensaku; Goto, Shinji; Okunaga, Tomohiro; Ihara, Yoshito; Tsuji, Kentaro; Kawai, Yoshichika; Uchida, Koji; Osawa, Toshihiko; Matsuo, Takayuki; Nagata, Izumi; Kondo, Takahito

    2004-12-01

    We previously found that nuclear glutathione S-transferase pi (GSTpi) accumulates in cancer cells resistant to anticancer drugs, suggesting that it has a role in the acquisition of resistance to anticancer drugs. In the present study, the effect of oxidative stress on the nuclear translocation of GSTpi and its role in the protection of DNA from damage were investigated. In human colonic cancer HCT8 cells, the hydrogen peroxide (H(2)O(2))-induced increase in nuclear condensation, the population of sub-G(1) peak, and the number of TUNEL-positive cells were observed in cells pretreated with edible mushroom lectin, an inhibitor of the nuclear transport of GSTpi. The DNA damage and the formation of lipid peroxide were dependent on the dose of H(2)O(2) and the incubation time. Immunological analysis showed that H(2)O(2) induced the nuclear accumulation of GSTpi but not of glutathione peroxidase. Formation of the 7-(2-oxo-hepyl)-substituted 1,N(2)-etheno-2'-deoxyguanosine adduct by the reaction of 13-hydroperoxyoctadecadienoic acid (13-HPODE) with 2'-deoxyguanosine was inhibited by GSTpi in the presence of glutathione. The conjugation product of 4-oxo-2-nonenal, a lipid aldehyde of 13-HPODE, with GSH in the presence of GSTpi, was identified by LS/MS. These results suggested that nuclear GSTpi prevents H(2)O(2)-induced DNA damage by scavenging the formation of lipid-peroxide-modified DNA.

  18. Correlation Between Iron and alpha and pi Glutathione-S-Transferase Levels in Humans

    DTIC Science & Technology

    2012-09-01

    including duodenal crypt cells and macrophages . Several well characterized mutations in this gene have been shown to increase iron levels.16 Of...genotoxic products of lipid peroxication. (1998) Biochem. J. 330:174-179. 4Townsend DM, Tew KD. “The role of glutathione-S-transferase in anti- cancer ...and ferritin.” Semin Hematol. (1998) 35:35-54. 12Iancu TC. “ Ultrastructural aspects of iron storage, transport, and metabolism.” J Neural Transm

  19. Characterization of a glycosyl transferase inactivating macrolides, encoded by gimA from Streptomyces ambofaciens.

    PubMed

    Gourmelen, A; Blondelet-Rouault, M H; Pernodet, J L

    1998-10-01

    In Streptomyces ambofaciens, the producer of the macrolide antibiotic spiramycin, an open reading frame (ORF) was found downstream of srmA, a gene conferring resistance to spiramycin. The deduced product of this ORF had high degrees of similarity to Streptomyces lividans glycosyl transferase, which inactivates macrolides, and this ORF was called gimA. The cloned gimA gene was expressed in a susceptible host mutant of S. lividans devoid of any background macrolide-inactivating glycosyl transferase activity. In the presence of UDP-glucose, cell extracts from this strain could inactivate various macrolides by glycosylation. Spiramycin was not inactivated but forocidin, a spiramycin precursor, was modified. In vivo studies showed that gimA could confer low levels of resistance to some macrolides. The spectrum of this resistance differs from the one conferred by a rRNA monomethylase, such as SrmA. In S. ambofaciens, gimA was inactivated by gene replacement, without any deleterious effect on the survival of the strain, even under spiramycin-producing conditions. But the overexpression of gimA led to a marked decrease in spiramycin production. Studies with extracts from wild-type and gimA-null mutant strains revealed the existence of another macrolide-inactivating glycosyl transferase activity with a different substrate specificity. This activity might compensate for the effect of gimA inactivation.

  20. Characterization of a Glycosyl Transferase Inactivating Macrolides, Encoded by gimA from Streptomyces ambofaciens

    PubMed Central

    Gourmelen, Anne; Blondelet-Rouault, Marie-Hélène; Pernodet, Jean-Luc

    1998-01-01

    In Streptomyces ambofaciens, the producer of the macrolide antibiotic spiramycin, an open reading frame (ORF) was found downstream of srmA, a gene conferring resistance to spiramycin. The deduced product of this ORF had high degrees of similarity to Streptomyces lividans glycosyl transferase, which inactivates macrolides, and this ORF was called gimA. The cloned gimA gene was expressed in a susceptible host mutant of S. lividans devoid of any background macrolide-inactivating glycosyl transferase activity. In the presence of UDP-glucose, cell extracts from this strain could inactivate various macrolides by glycosylation. Spiramycin was not inactivated but forocidin, a spiramycin precursor, was modified. In vivo studies showed that gimA could confer low levels of resistance to some macrolides. The spectrum of this resistance differs from the one conferred by a rRNA monomethylase, such as SrmA. In S. ambofaciens, gimA was inactivated by gene replacement, without any deleterious effect on the survival of the strain, even under spiramycin-producing conditions. But the overexpression of gimA led to a marked decrease in spiramycin production. Studies with extracts from wild-type and gimA-null mutant strains revealed the existence of another macrolide-inactivating glycosyl transferase activity with a different substrate specificity. This activity might compensate for the effect of gimA inactivation. PMID:9756764

  1. Influence of glutathione-S-transferase (GST) inhibition on lung epithelial cell injury: role of oxidative stress and metabolism.

    PubMed

    Fletcher, Marianne E; Boshier, Piers R; Wakabayashi, Kenji; Keun, Hector C; Smolenski, Ryszard T; Kirkham, Paul A; Adcock, Ian M; Barton, Paul J; Takata, Masao; Marczin, Nandor

    2015-06-15

    Oxidant-mediated tissue injury is key to the pathogenesis of acute lung injury. Glutathione-S-transferases (GSTs) are important detoxifying enzymes that catalyze the conjugation of glutathione with toxic oxidant compounds and are associated with acute and chronic inflammatory lung diseases. We hypothesized that attenuation of cellular GST enzymes would augment intracellular oxidative and metabolic stress and induce lung cell injury. Treatment of murine lung epithelial cells with GST inhibitors, ethacrynic acid (EA), and caffeic acid compromised lung epithelial cell viability in a concentration-dependent manner. These inhibitors also potentiated cell injury induced by hydrogen peroxide (H2O2), tert-butyl-hydroperoxide, and hypoxia and reoxygenation (HR). SiRNA-mediated attenuation of GST-π but not GST-μ expression reduced cell viability and significantly enhanced stress (H2O2/HR)-induced injury. GST inhibitors also induced intracellular oxidative stress (measured by dihydrorhodamine 123 and dichlorofluorescein fluorescence), caused alterations in overall intracellular redox status (as evidenced by NAD(+)/NADH ratios), and increased protein carbonyl formation. Furthermore, the antioxidant N-acetylcysteine completely prevented EA-induced oxidative stress and cytotoxicity. Whereas EA had no effect on mitochondrial energetics, it significantly altered cellular metabolic profile. To explore the physiological impact of these cellular events, we used an ex vivo mouse-isolated perfused lung model. Supplementation of perfusate with EA markedly affected lung mechanics and significantly increased lung permeability. The results of our combined genetic, pharmacological, and metabolic studies on multiple platforms suggest the importance of GST enzymes, specifically GST-π, in the cellular and whole lung response to acute oxidative and metabolic stress. These may have important clinical implications.

  2. Nuclear translocation of glutathione S-transferase {pi} is mediated by a non-classical localization signal

    SciTech Connect

    Kawakatsu, Miho; Goto, Shinji; Yoshida, Takako; Urata, Yoshishige; Li, Tao-Sheng

    2011-08-12

    Highlights: {yields} Nuclear translocation of GST{pi} is abrogated by the deletion of the last 16 amino acid residues in the carboxy-terminal region, indicating that residues 195-208 of GST{pi} are required for nuclear translocation. {yields} The lack of a contiguous stretch of positively charged amino acid residues within the carboxy-terminal region of GST{pi}, suggests that the nuclear translocation of GST{pi} is mediated by a non-classical nuclear localization signal. {yields} An in vitro transport assay shows that the nuclear translocation of GST{pi} is dependent on cytosolic factors and ATP. -- Abstract: Glutathione S-transferase {pi} (GST{pi}), a member of the GST family of multifunctional enzymes, is highly expressed in human placenta and involved in the protection of cellular components against electrophilic compounds or oxidative stress. We have recently found that GST{pi} is expressed in the cytoplasm, mitochondria, and nucleus in some cancer cells, and that the nuclear expression of GST{pi} appears to correlate with resistance to anti-cancer drugs. Although the mitochondrial targeting signal of GST{pi} was previously identified in the amino-terminal region, the mechanism of nuclear translocation remains completely unknown. In this study, we find that the region of GST{pi}195-208 is critical for nuclear translocation, which is mediated by a novel and non-classical nuclear localization signal. In addition, using an in vitro transport assay, we demonstrate that the nuclear translocation of GST{pi} depends on the cytosolic extract and ATP. Although further experiments are needed to understand in depth the precise mechanism of nuclear translocation of GST{pi}, our results may help to establish more efficient anti-cancer therapy, especially with respect to resistance to anti-cancer drugs.

  3. Cork Taint of Wines: Role of the Filamentous Fungi Isolated from Cork in the Formation of 2,4,6-Trichloroanisole by O Methylation of 2,4,6-Trichlorophenol

    PubMed Central

    Álvarez-Rodríguez, María Luisa; López-Ocaña, Laura; López-Coronado, José Miguel; Rodríguez, Enrique; Martínez, María Jesús; Larriba, Germán; Coque, Juan-José R.

    2002-01-01

    Cork taint is a musty or moldy off-odor in wine mainly caused by 2,4,6-trichloroanisole (2,4,6-TCA). We examined the role of 14 fungal strains isolated from cork samples in the production of 2,4,6-TCA by O methylation of 2,4,6-trichlorophenol (2,4,6-TCP). The fungal strains isolated belong to the genera Penicillium (four isolates); Trichoderma (two isolates); and Acremonium, Chrysonilia, Cladosporium, Fusarium, Mortierella, Mucor, Paecilomyces, and Verticillium (one isolate each). Eleven of these strains could produce 2,4,6-TCA when they were grown directly on cork in the presence of 2,4,6-TCP. The highest levels of bioconversion were carried out by the Trichoderma and Fusarium strains. One strain of Trichoderma longibrachiatum could also efficiently produce 2,4,6-TCA in liquid medium. However, no detectable levels of 2,4,6-TCA production by this strain could be detected on cork when putative precursors other than 2,4,6-TCP, including several anisoles, dichlorophenols, trichlorophenols, or other highly chlorinated compounds, were tested. Time course expression studies with liquid cultures showed that the formation of 2,4,6-TCA was not affected by a high concentration of glucose (2% or 111 mM) or by ammonium salts at concentrations up to 60 mM. In T. longibrachiatum the O methylation of 2,4,6-TCP was catalyzed by a mycelium-associated S-adenosyl-l-methionine (SAM)-dependent methyltransferase that was strongly induced by 2,4,6-TCP. The reaction was inhibited by S-adenosyl-l-homocysteine, an inhibitor of SAM-dependent methylation, suggesting that SAM is the natural methyl donor. These findings increase our understanding of the mechanism underlying the origin of 2,4,6-TCA on cork, which is poorly understood despite its great economic importance for the wine industry, and they could also help us improve our knowledge about the biodegradation and detoxification processes associated with chlorinated phenols. PMID:12450804

  4. [Transferase activity of horse blood serum cholinesterase at hydrolysis of 1-methyl-8-acetoxychinolium iodide in the presence of aliphatic alcohols].

    PubMed

    Basova, N E; Kormilitsyn, B N; Perchenok, A Yu; Rozengart, E V; Saakov, V S; Suvorov, A A

    2014-01-01

    To check whether the horse blood serum butyrylcholinesterase expresses transferase activity at the complex ester hydrolysis in the presense of several low-molecular aliphatic alcohols, a study was performed with aid of the chromogenic substrate 1-methyl-8-acetoxychinolium whose phenolic hydrolysis product absorbs intensively at 445 nm, whereas the initial ester in this specter area practically does not absorb. This allowed measuring simultaneously the products of accumulation of both products of enzymatic hydrolysis: of acetic acid by the potentiometric, while of phenol--by the photometric method. Rates of formation of both products of enzymatic hydrolysis are practically equal in experiments with all studied alcohols. This indicates that horse blood serum butyrylcholinesterase under these experimental conditions does not catalize transfer of acetyl residue to the studied aliphatic alcohols, i. e. does not have transefase activity.

  5. Arylamine N-acetyl Transferase (NAT) in the blue secretion of Telescopium telescopium: xenobiotic metabolizing enzyme as a biomarker for detection of environmental pollution.

    PubMed

    Gorain, Bapi; Chakraborty, Sumon; Pal, Murari Mohan; Sarkar, Ratul; Samanta, Samir Kumar; Karmakar, Sanmoy; Sen, Tuhinadri

    2014-01-01

    Telescopium telescopium, a marine mollusc collected from Sundarban mangrove, belongs to the largest mollusca phylum in the world and exudes a blue secretion when stimulated mechanically. The blue secretion was found to metabolize (preferentially) para-amino benzoic acid, a substrate for N-acetyl transferase (NAT), thereby indicating acetyl transferase like activity of the secretion. Attempts were also made to characterise bioactive fraction of the blue secretion and to further use this as a biomarker for monitoring of marine pollution. NAT like enzyme from marine mollusc is a potential candidate for detoxification of different harmful chemicals. A partially purified extract of blue secretion was obtained by fractional precipitation with (NH4)2SO4. From different fractions obtained by precipitation, the 0-30% fraction (30S) displayed NAT like activity (using para amino benzoic acid as a substrate with para nitrophenyl phosphate or acetyl coenzyme A as acetyl group donors). Maximum NAT like enzyme activity was attained at 25°C and at a pH of 6. The enzyme activity was found to be inhibited by 5 mM phenyl methyl sulfonyl fluoride. The divalent metal ions reduced NAT like activity of 30S. Moreover, Cu(2+) and Zn(2+) (at concentration of 1 mM) completely inhibited NAT activity. The thermal stability and bench-top stability studies were performed and it was found that the enzyme was stable at room temperature for more than 24 hours. Results from the present study further indicate that heavy metal content in blue secretion gradually decreased from pre-monsoon to post-monsoon season, which also corresponded to the change in NAT like activity. Therefore, this article stresses the importance of biomarker research for monitoring pollution.

  6. PARTICIPATION OF Y89 AND Y97 IN THE CONJUGATING ACTIVITY OF Drosophila melanogaster GLUTATHIONE S-TRANSFERASE D3 (DmGSTD3).

    PubMed

    Vignesvaran, Kithalakshmi; Alias, Zazali

    2016-07-01

    Drosophila melanogaster glutathione S-transferase D3 (DmGSTD3) has a shorter amino acid sequence as compared to other GSTs known in the fruit flies. This is due to the 15 amino acid N-terminal truncation in which normally active amino acid residue is located. The work has made use of homology modeling to visualize the arrangement of amino acid side chains in the glutathione (GSH) substrate cavity. The identified amino acids were then replaced with amino acids without functional groups in the side chains and the mutants were analyzed kinetically. Homology modeling revealed that the side chains of Y89 and Y97 were shown facing toward the substrate cavity proposing their possible role in catalyzing the conjugation. Y97A and Y89A GSH gave large changes in Km (twofold increase), Vmax (fivefold reduction), and Kcat /Km values for GSH suggesting their significant role in the conjugation reaction. The replacement at either positions has not affected the affinity of the enzyme toward 1-chloro-2,4-dinitrobenzene as no significant change in values of Kmax was observed. The replacement, however, had significantly reduced the catalytic efficiency of both mutants with (Kcat /Km )(GSH) and (Kcat /Km )(CDNB) of eight- and twofold reduction. The recombinant DmGSTD3 has shown no activity toward 1,2-dichloro-4-nitrobenzene, 2,4-hexadienal, 2,4-heptadienal, p-nitrobenzyl chloride, ethacrynic acid, and sulfobromophthalein. Therefore, it was evident that DmGSTD3 has made use of distal amino acids Y97 and Y89 for GSH conjugation.

  7. Involvement of carnitine acyltransferases in peroxisomal fatty acid metabolism by the yeast Pichia guilliermondii.

    PubMed Central

    Pagot, Y; Belin, J M

    1996-01-01

    This article provides information about peroxisomal fatty acid metabolism in the yeast Pichia guilliermondii. The existence of inducible mitochondrial carnitine palmitoyltransferase and peroxisomal carnitine octanoyl-transferase activities was demonstrated after culture of this yeast in a medium containing methyl oleate. The subcellular sites and induction patterns were studied. The inhibition of carnitine octanoyl- and palmitoyl-transferases by chlorpromazine to a large extent prevented the otherwise observed metabolism-dependent inactivation of thiolase by 2-bromofatty acids in vivo. We concluded that the metabolism of long- and medium-chain fatty acids in the peroxisome of this yeast involved carnitine intermediates. PMID:8837442

  8. Co-variation of glutathione transferase expression and cytostatic drug resistance in HeLa cells: establishment of class Mu glutathione transferase M3-3 as the dominating isoenzyme.

    PubMed Central

    Hao, X Y; Widersten, M; Ridderström, M; Hellman, U; Mannervik, B

    1994-01-01

    Qualitative and quantitative analyses of glutathione, glutathione transferases (GSTs) and other glutathione-linked enzymes in HeLa cells have been made in order to study their significance in cellular resistance to electrophilic cytotoxic agents. The cytosolic concentrations of three GSTs, GST M1-1 (53 +/- 9 ng/mg of cytosolic protein), GST P1-1 (11 +/- 3 ng/mg) and GST A1-1 (1.1 +/- 0.4 ng/mg) were quantified by isoenzyme-specific enzyme-linked immunoassays. Electrophoretic analysis and immunoblotting demonstrated another component, GST M3-3, which was identified by amino acid sequence analysis. GST M3-3 was quantified (1550 +/- 250 ng/mg) by slot-blot immunoanalysis and was the most abundant GST in HeLa cells. An additional cytosolic 13 kDa protein with high affinity for immobilized glutathione or S-hexyglutathione was found to be identical with a macrophage migration-inhibitory factor, previously identified as a lymphokine. Cells grown in roller bottles (HR) rather than in ordinary culture flasks contain a significantly lower concentration of all the GSTs and were found to be more sensitive to the cytostatic agents doxorubicin (2.3-fold), cisplatin (1.7-fold) and melphalan (1.4-fold). The cytosolic concentrations of glutathione reductase and glyoxalase I were also lower in HR cells, whereas the total glutathione concentration was unchanged and the glutathione peroxidase activity was increased. The results indicate that GSTs contribute to the cellular resistance phenotype. Images Figure 1 Figure 2 Figure 4 PMID:8280111

  9. MIF protein are theta-class glutathione S-transferase homologs.

    PubMed Central

    Blocki, F. A.; Ellis, L. B.; Wackett, L. P.

    1993-01-01

    MIF proteins are mammalian polypeptides of approximately 13,000 molecular weight. This class includes human macrophage migration inhibitory factor (MIF), a rat liver protein that has glutathione S-transferase (GST) activity (TRANSMIF), and the mouse delayed early response gene 6 (DER6) protein. MIF proteins were previously linked to GSTs by demonstrating transferase activity and observing N-terminal sequence homology with a mu-class GST (Blocki, F.A., Schlievert, P.M., & Wackett, L.P., 1992, Nature 360, 269-270). In this study, MIF proteins are shown to be structurally related to the theta class of GSTs. This is established in three ways. First, unique primary sequence patterns are developed for each of the GST gene classes. The patterns identify the three MIF proteins as theta-like transferase homologs. Second, pattern analysis indicates that GST members of the theta class contain a serine residue in place of the N-terminal tyrosine that is implicated in glutathione deprotonation and activation in GSTs of known structure (Liu, S., et al., 1992, J. Biol. Chem. 267, 4296-4299). The MIF proteins contain a threonine at this position. Third, polyclonal antibodies raised against recombinant human MIF cross-react on Western blots with rat theta GST but not with alpha and mu GSTs. That MIF proteins have glutathione-binding ability may provide a common structural key toward understanding the varied functions of this widely distributed emerging gene family. Because theta is thought to be the most ancient evolutionary GST class, MIF proteins may have diverged early in evolution but retained a glutathione-binding domain. PMID:8298459

  10. Glutathione Transferase from Trichoderma virens Enhances Cadmium Tolerance without Enhancing Its Accumulation in Transgenic Nicotiana tabacum

    PubMed Central

    Dixit, Prachy; Mukherjee, Prasun K.; Ramachandran, V.; Eapen, Susan

    2011-01-01

    Background Cadmium (Cd) is a major heavy metal pollutant which is highly toxic to plants and animals. Vast agricultural areas worldwide are contaminated with Cd. Plants take up Cd and through the food chain it reaches humans and causes toxicity. It is ideal to develop plants tolerant to Cd, without enhanced accumulation in the edible parts for human consumption. Glutathione transferases (GST) are a family of multifunctional enzymes known to have important roles in combating oxidative stresses induced by various heavy metals including Cd. Some GSTs are also known to function as glutathione peroxidases. Overexpression/heterologous expression of GSTs is expected to result in plants tolerant to heavy metals such as Cd. Results Here, we report cloning of a glutathione transferase gene from Trichoderma virens, a biocontrol fungus and introducing it into Nicotiana tabacum plants by Agrobacterium-mediated gene transfer. Transgenic nature of the plants was confirmed by Southern blot hybridization and expression by reverse transcription PCR. Transgene (TvGST) showed single gene Mendelian inheritance. When transgenic plants expressing TvGST gene were exposed to different concentrations of Cd, they were found to be more tolerant compared to wild type plants, with transgenic plants showing lower levels of lipid peroxidation. Levels of different antioxidant enzymes such as glutathione transferase, superoxide dismutase, ascorbate peroxidase, guiacol peroxidase and catalase showed enhanced levels in transgenic plants expressing TvGST compared to control plants, when exposed to Cd. Cadmium accumulation in the plant biomass in transgenic plants were similar or lower than wild-type plants. Conclusion The results of the present study suggest that transgenic tobacco plants expressing a Trichoderma virens GST are more tolerant to Cd, without enhancing its accumulation in the plant biomass. It should be possible to extend the present results to crop plants for developing Cd tolerance and

  11. Glutathione-Binding Site of a Bombyx mori Theta-Class Glutathione Transferase

    PubMed Central

    Hossain, M. D. Tofazzal; Yamada, Naotaka; Yamamoto, Kohji

    2014-01-01

    The glutathione transferase (GST) superfamily plays key roles in the detoxification of various xenobiotics. Here, we report the isolation and characterization of a silkworm protein belonging to a previously reported theta-class GST family. The enzyme (bmGSTT) catalyzes the reaction of glutathione with 1-chloro-2,4-dinitrobenzene, 1,2-epoxy-3-(4-nitrophenoxy)-propane, and 4-nitrophenethyl bromide. Mutagenesis of highly conserved residues in the catalytic site revealed that Glu66 and Ser67 are important for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTT and into the metabolism of exogenous chemical agents. PMID:24848539

  12. Glutathion S-transferase activity and DDT-susceptibility of Malaysian mosquitos.

    PubMed

    Lee, H L; Chong, W L

    1995-03-01

    Comparative DDT-susceptibility status and glutathion s-transferase (GST) activity of Malaysian Anopheles maculatus, Culex quinquefasciatus and Aedes aegypti was investigated to ascertain the role of this enzyme in DDT resistance. The standardised WHO dose-mortality bioassay tests were used to determine DDT susceptibility in these mosquitos, whilst GST microassay (Brogdon and Barber, 1990) was conducted to measure the activity of this enzyme in mosquito homogenate. It appeared that DDT susceptibility status of Malaysian mosquitos was not correlated with GST activity.

  13. Fucosylation of xyloglucan: localization of the transferase in dictyosomes of pea stem cells. [Pisum sativum

    SciTech Connect

    Camirand, A.; Brummell, D.; MacLachlan, G.

    1987-07-01

    Microsomal membranes from elongating regions of etiolated Pisum sativum stems were separated by rate-zonal centrifugation on Renografin gradients. The transfer of labeled fucose and xylose from GDP-(/sup 14/C) fucose and UDP-(/sup 14/C)xylose to xyloglucan occurred mainly in dictyosome-enriched fractions. No transferase activity was detected in secretory vesicle fractions. Pulse-chase experiments using pea stem slices incubated with (/sup 3/H)fucose suggest that xyloglucan chains are fucosylated and their structure completed within the dictyosomes, before being transported to the cell wall by secretory vesicles.

  14. Genetic Variations in Human Glutathione Transferase Enzymes: Significance for Pharmacology and Toxicology

    PubMed Central

    Josephy, P. David

    2010-01-01

    Glutathione transferase enzymes (GSTs) catalyze reactions in which electrophiles are conjugated to the tripeptide thiol glutathione. While many GST-catalyzed transformations result in the detoxication of xenobiotics, a few substrates, such as dihaloalkanes, undergo bioactivation to reactive intermediates. Many molecular epidemiological studies have tested associations between polymorphisms (especially, deletions) of human GST genes and disease susceptibility or response to therapy. This review presents a discussion of the biochemistry of GSTs, the sources—both genetic and environmental—of interindividual variation in GST activities, and their implications for pharmaco- and toxicogenetics; particular attention is paid to the Theta class GSTs. PMID:20981235

  15. The Phosphopantetheinyl Transferases: Catalysis of a Posttranslational Modification Crucial for Life

    PubMed Central

    Beld, Joris; Sonnenschein, Eva C.; Vickery, Christopher R.; Noel, Joseph P.; Burkart, Michael D.

    2014-01-01

    Although holo-acyl carrier protein synthase, AcpS, a phosphopantetheinyl transferase (PPTase), was characterized in the 1960s, it was not until the publication of the landmark paper by Lambalot et al. in 1996 that PPTases garnered wide-spread attention being classified as a distinct enzyme superfamily. In the past two decades an increasing number of papers has been published on PPTases ranging from identification, characterization, structure determination, mutagenesis, inhibition, and engineering in synthetic biology. In this review, we comprehensively discuss all current knowledge on this class of enzymes that post-translationally install a 4′-phosphopantetheine arm on various carrier proteins. PMID:24292120

  16. Glucosylceramide transferase activity is critical for encystation and viable cyst production by an intestinal protozoan, Giardia lamblia.

    PubMed

    Mendez, Tavis L; De Chatterjee, Atasi; Duarte, Trevor T; Gazos-Lopes, Felipe; Robles-Martinez, Leobarda; Roy, Debarshi; Sun, Jianjun; Maldonado, Rosa A; Roychowdhury, Sukla; Almeida, Igor C; Das, Siddhartha

    2013-06-07

    The production of viable cysts by Giardia is essential for its survival in the environment and for spreading the infection via contaminated food and water. The hallmark of cyst production (also known as encystation) is the biogenesis of encystation-specific vesicles (ESVs) that transport cyst wall proteins to the plasma membrane of the trophozoite before laying down the protective cyst wall. However, the molecules that regulate ESV biogenesis and maintain cyst viability have never before been identified. Here, we report that giardial glucosylceramide transferase-1 (gGlcT1), an enzyme of sphingolipid biosynthesis, plays a key role in ESV biogenesis and maintaining cyst viability. We find that overexpression of this enzyme induced the formation of aggregated/enlarged ESVs and generated clustered cysts with reduced viability. The silencing of gGlcT1 synthesis by antisense morpholino oligonucleotide abolished ESV production and generated mostly nonviable cysts. Interestingly, when gGlcT1-overexpressed Giardia was transfected with anti-gGlcT1 morpholino, the enzyme activity, vesicle biogenesis, and cyst viability returned to normal, suggesting that the regulated expression of gGlcT1 is important for encystation and viable cyst production. Furthermore, the overexpression of gGlcT1 increased the influx of membrane lipids and fatty acids without altering the fluidity of plasma membranes, indicating that the expression of gGlcT1 activity is linked to lipid internalization and maintaining the overall lipid balance in this parasite. Taken together, our results suggest that gGlcT1 is a key player of ESV biogenesis and cyst viability and therefore could be targeted for developing new anti-giardial therapies.

  17. A novel biomarker for marine environmental pollution of pi-class glutathione S-transferase from Mytilus coruscus.

    PubMed

    Liu, Huihui; He, Jianyu; Zhao, Rongtao; Chi, Changfeng; Bao, Yongbo

    2015-08-01

    Glutathione S-transferases (GSTs) are the superfamily of phase II detoxification enzymes that play crucial roles in innate immunity. In this study, a pi-class GST homolog was identified from Mytilus coruscus (named as McGST1, KC525103). The full-length cDNA sequence of McGST1 was 621bp with a 5' untranslated region (UTR) of 70bp and a 3'-UTR of 201bp. The deduced amino acid sequence was 206 residues in length with theoretical pI/MW of 5.60/23.72kDa, containing the conserved G-site and diversiform H-site. BLASTn analysis and phylogenetic relationship strongly suggested that this cDNA sequence was a member of pi class GST family. The prediction of secondary structure displayed a preserved N-terminal and a C-terminal comprised with α-helixes. Quantitative real time RT-PCR showed that constitutive expression of McGST1 was occurred, with increasing order in mantle, muscle, gill, hemocyte, gonad and hepatopancreas. The stimulation of bacterial infection, heavy metals and 180CST could up-regulate McGST1 mRNA expression in hepatopancreas with time-dependent manners. The maximum expression appeared at 6h after pathogenic bacteria injected, with 10-fold in Vibrio alginolyticus and 16-fold in Vibrio harveyi higher than that of the control. The highest point of McGST1 mRNA appeared at different time for exposure to copper (10-fold at day 15), cadmium (9-fold at day10) and 180 CST (10-fold at day 15). These results suggested that McGST1 played a significant role in antioxidation and might potentially be used as indicators and biomarkers for detection of marine environmental pollution.

  18. Dual localization of glutathione S-transferase in the cytosol and mitochondria: implications in oxidative stress, toxicity and disease.

    PubMed

    Raza, Haider

    2011-11-01

    Glutathione (GSH) conjugating enzymes, glutathione S-transferases (GSTs), are present in different subcellular compartments including cytosol, mitochondria, endoplasmic reticulum, nucleus and plasma membrane. The regulation and function of GSTs have implications in cell growth, oxidative stress as well as disease progression and prevention. Of the several mitochondria localized forms, GSTK (GST kappa) is mitochondria-specific since it contains N-terminal canonical and cleavable mitochondria targeting signals. Other forms like GST alpha, mu and pi purified from mitochondria are similar to the cytosolic molecular forms or 'echoproteins'. Altered GST expression has been implicated in hepatic, cardiac and neurological diseases. Mitochondria-specific GSTK has also been implicated in obesity, diabetes and related metabolic disorders. Studies have shown that silencing the GSTA4 (GST alpha) gene resulted in mitochondrial dysfunction, as was also seen in GSTA4 null mice, which could contribute to insulin resistance in type 2 diabetes. This review highlights the significance of the mitochondrial GST pool, particularly the mechanism and significance of dual targeting of GSTA4-4 under in vitro and in vivo conditions. GSTA4-4 is targeted in the mitochondria by activation of the internal cryptic signal present at the C-terminus of the protein by protein-kinase-dependent phosphorylation and cytosolic heat shock protein (Hsp70) chaperone. Mitochondrial GST pi, on the other hand, has been shown to have two uncleaved cryptic signals rich in positively charged amino acids at the N-terminal region. Both physiological and pathophysiological implications of GST translocation to mitochondria are discussed in the review.

  19. A sigma-class glutathione S-transferase from Solen grandis that responded to microorganism glycan and organic contaminants.

    PubMed

    Yang, Jialong; Wei, Xiumei; Xu, Jie; Yang, Dinglong; Liu, Xiangquan; Yang, Jianmin; Fang, Jinghui; Hu, Xiaoke

    2012-06-01

    Glutathione S-transferases (GSTs) are a superfamily of antioxidant enzymes, which play crucial roles in detoxification and protection of tissues from oxidative damage caused by reactive oxygen species (ROS). In this study, a sigma-class GST was identified from razor clam Solen grandis (designated as SgGST-S1), and its expression patterns, both in tissues and toward microorganism glycan as well as organic contaminants stimulation, were then characterized. The full-length cDNA of SgGST-S1 was of 1291 bp, containing a 5' untranslated region (UTR) of 27 bp, and a 3' UTR of 619 bp with a poly (A) tail. The open reading frame (ORF) was of 645 bp, encoding a polypeptide of 214 amino acids with the predicted molecular weight of 24.8 kDa, which shared 47% identity with GST from Ruditapes philippinarum. The analysis of conserved domain and phylogenetic relationship strongly suggested that SgGST-S1 was a member of sigma-class GST. The mRNA of SgGST-S1 was constitutively expressed in all tested tissues of healthy razor clam, including mantle, gill, gonad, hemocytes, muscle, and hepatopancreas, and it was highly expressed in hepatopancreas. The mRNA expression of SgGST-S1 in hemocytes was significantly up-regulated (P < 0.01) after razor clam was stimulated by peptidoglycan (PGN) or β-1, 3-glucan, but not LPS. In addition, the SgGST-S1 transcript level was also significantly (P < 0.01) induced by exposure of benzo[a]pyrene (B[a]P) or Polybrominated Diphenyl Ethers (PBDE). All the results indicated that SgGST-S1 might serve as an antioxidant enzyme involving in the detoxification cause by both microorganism glycan and organic contaminants.

  20. Effects of high-intensity intermittent training on carnitine palmitoyl transferase activity in the gastrocnemius muscle of rats

    PubMed Central

    Carnevali, L.C.; Eder, R.; Lira, F.S.; Lima, W.P.; Gonçalves, D.C.; Zanchi, N.E.; Nicastro, H.; Lavoie, J.M.; Seelaender, M.C.L.

    2012-01-01

    We examined the capacity of high-intensity intermittent training (HI-IT) to facilitate the delivery of lipids to enzymes responsible for oxidation, a task performed by the carnitine palmitoyl transferase (CPT) system in the rat gastrocnemius muscle. Male adult Wistar rats (160-250 g) were randomly distributed into 3 groups: sedentary (Sed, N = 5), HI-IT (N = 10), and moderate-intensity continuous training (MI-CT, N = 10). The trained groups were exercised for 8 weeks with a 10% (HI-IT) and a 5% (MI-CT) overload. The HI-IT group presented 11.8% decreased weight gain compared to the Sed group. The maximal activities of CPT-I, CPT-II, and citrate synthase were all increased in the HI-IT group compared to the Sed group (P < 0.01), as also was gene expression, measured by RT-PCR, of fatty acid binding protein (FABP; P < 0.01) and lipoprotein lipase (LPL; P < 0.05). Lactate dehydrogenase also presented a higher maximal activity (nmol·min−1·mg protein−1) in HI-IT (around 83%). We suggest that 8 weeks of HI-IT enhance mitochondrial lipid transport capacity thus facilitating the oxidation process in the gastrocnemius muscle. This adaptation may also be associated with the decrease in weight gain observed in the animals and was concomitant to a higher gene expression of both FABP and LPL in HI-IT, suggesting that intermittent exercise is a “time-efficient” strategy inducing metabolic adaptation. PMID:22735180

  1. Purification and biochemical characterization of glutathione S-transferases from four field populations of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae).

    PubMed

    Hu, Fei; Dou, Wei; Wang, Jing-Jing; Jia, Fu-Xian; Wang, Jin-Jun

    2011-12-01

    Glutathione S-transferases (GSTs) are a group of detoxification enzymes that catalyze the nucleophilic addition of glutathione to a wide variety of endogenous and xenobiotic compounds. In this study, GSTs were purified from four field populations of Bactrocera dorsalis with different insecticide susceptibilities by glutathione-agarose affinity chromatography. The populations were collected from Dongguan (DG) and Guangzhou (GZ) of the Guangdong Province, Haikou of the Hainan province (HN), and Kunming of the Yunnan province (YN), China. Differences in GST characteristics among the four populations were studied using purified enzyme samples through comparative SDS-PAGE, kinetic, and inhibition experiments. The specific activities of the purified enzymes were similar, but the purification yield of the GZ population (31.54%) was the lowest. SDS-PAGE analysis showed only one band at approximately 23 kDa for these four populations. Kinetic analyses showed that the affinities of the purified GSTs from the GZ and YN populations for 1-chloro-2.4-dinitrobenzene (CDNB) were much higher than those of GSTs from the other two populations, whereas the HN population had the highest catalytic capability in terms of V(max) value. The optimum temperature for CDNB conjugation was 37 °C and the optimum pH was 7.5 in all four populations. Inhibition kinetics showed that ethacrynic acid, diethyl maleate, tetraethylthiuram disulfide, curcumin, bromosulfalein, and β-cypermethrin had excellent inhibitory effects on GSTs in the four populations of B. dorsalis, but the low inhibitory effects of malathion and avermectin did not differ between populations. These results suggest that GSTs may have a role in detoxification of β-cypermethrin in B. dorsalis.

  2. Novel function of glutathione transferase in rat liver mitochondrial membrane: Role for cytochrome c release from mitochondria

    SciTech Connect

    Lee, Kang Kwang; Shimoji, Manami; Hossain, Quazi Sohel; Sunakawa, Hajime; Aniya, Yoko

    2008-10-01

    Microsomal glutathione transferase (MGST1) is activated by oxidative stress. Although MGST1 is found in mitochondrial membranes (mtMGST1), there is no information about the oxidative activation of mtMGST1. In the present study, we aimed to determine whether mtMGST1 also undergoes activation and about its function. When rats were treated with galactosamine/lipopolysaccharide (GalN/LPS), mtMGST1 activity was significantly increased, and the increased activity was reduced by the disulfide reducing agent dithiothreitol. In mitochondria from GalN/LPS-treated rats, disulfide-linked mtMGST1 dimer and mixed protein glutathione disulfides (glutathionylation) were detected. In addition, cytochrome c release from mitochondria isolated from GalN/LPS-treated rats was observed, and the release was inhibited by anti-MGST1 antibodies. Incubation of mitochondria from control rats with diamide and diamide plus GSH in vitro resulted in dimer- and mixed disulfide bond-mediated activation of mtMGST1, respectively. The activation of mtMGST1 by diamide plus GSH caused cytochrome c release from the mitochondria, and the release was prevented by treatment with anti-MGST1 antibodies. In addition, diamide plus GSH treatment caused mitochondrial swelling accompanied by cytochrome c release, which was inhibited by cyclosporin A (CsA) and bongkrekic acid (BKA), inhibitors of the mitochondrial permeability transition (MPT) pore. Furthermore, mtMGST1 activity was also inhibited by CsA and BKA. These results indicate that mtMGST1 is activated through mixed disulfide bond formation that contributes to cytochrome c release from mitochondria through the MPT pore.

  3. Phosphopantetheinyl Transferase CfwA/NpgA Is Required for Aspergillus nidulans Secondary Metabolism and Asexual Development▿ †

    PubMed Central

    Márquez-Fernández, Olivia; Trigos, Ángel; Ramos-Balderas, Jose Luis; Viniegra-González, Gustavo; Deising, Holger B.; Aguirre, Jesús

    2007-01-01

    Polyketide synthases (PKSs) and/or nonribosomal peptide synthetases (NRPSs) are central components of secondary metabolism in bacteria, plants, and fungi. In filamentous fungi, diverse PKSs and NRPSs participate in the biosynthesis of secondary metabolites such as pigments, antibiotics, siderophores, and mycotoxins. However, many secondary metabolites as well as the enzymes involved in their production are yet to be discovered. Both PKSs and NRPSs require activation by enzyme members of the 4′-phosphopantetheinyl transferase (PPTase) family. Here, we report the isolation and characterization of Aspergillus nidulans strains carrying conditional (cfwA2) and null (ΔcfwA) mutant alleles of the cfwA gene, encoding an essential PPTase. We identify the polyketides shamixanthone, emericellin, and dehydroaustinol as well as the sterols ergosterol, peroxiergosterol, and cerevisterol in extracts from A. nidulans large-scale cultures. The PPTase CfwA/NpgA was required for the production of these polyketide compounds but dispensable for ergosterol and cerevisterol and for fatty acid biosynthesis. The asexual sporulation defects of cfwA, ΔfluG, and ΔtmpA mutants were not rescued by the cfwA-dependent compounds identified here. However, a cfwA2 mutation enhanced the sporulation defects of both ΔtmpA and ΔfluG single mutants, suggesting that unidentified CfwA-dependent PKSs and/or NRPSs are involved in the production of hitherto-unknown compounds required for sporulation. Our results expand the number of known and predicted secondary metabolites requiring CfwA/NpgA for their biosynthesis and, together with the phylogenetic analysis of fungal PPTases, suggest that a single PPTase is responsible for the activation of all PKSs and NRPSs in A. nidulans. PMID:17277172

  4. Reversal of hypermethylation and reactivation of glutathione S-transferase pi 1 gene by curcumin in breast cancer cell line.

    PubMed

    Kumar, Umesh; Sharma, Ujjawal; Rathi, Garima

    2017-02-01

    One of the mechanisms for epigenetic silencing of tumor suppressor genes is hypermethylation of cytosine residue at CpG islands at their promoter region that contributes to malignant progression of tumor. Therefore, activation of tumor suppressor genes that have been silenced by promoter methylation is considered to be very attractive molecular target for cancer therapy. Epigenetic silencing of glutathione S-transferase pi 1, a tumor suppressor gene, is involved in various types of cancers including breast cancer. Epigenetic silencing of tumor suppressor genes can be reversed by several molecules including natural compounds such as polyphenols that can act as a hypomethylating agent. Curcumin has been found to specifically target various tumor suppressor genes and alter their expression. To check the effect of curcumin on the methylation pattern of glutathione S-transferase pi 1 gene in MCF-7 breast cancer cell line in dose-dependent manner. To check the reversal of methylation pattern of hypermethylated glutathione S-transferase pi 1, MCF-7 breast cancer cell line was treated with different concentrations of curcumin for different time periods. DNA and proteins of treated and untreated cell lines were isolated, and methylation status of the promoter region of glutathione S-transferase pi 1 was analyzed using methylation-specific polymerase chain reaction assay, and expression of this gene was analyzed by immunoblotting using specific antibodies against glutathione S-transferase pi 1. A very low and a nontoxic concentration (10 µM) of curcumin treatment was able to reverse the hypermethylation and led to reactivation of glutathione S-transferase pi 1 protein expression in MCF-7 cells after 72 h of treatment, although the IC50 value of curcumin was found to be at 20 µM. However, curcumin less than 3 µM of curcumin could not alter the promoter methylation pattern of glutathione S-transferase pi 1. Treatment of breast cancer MCF-7 cells with curcumin causes

  5. A Novel Approach to Decrease Sialic Acid Expression in Cells by a C-3-modified N-Acetylmannosamine*

    PubMed Central

    Wratil, Paul R.; Rigol, Stephan; Solecka, Barbara; Kohla, Guido; Kannicht, Christoph; Reutter, Werner; Giannis, Athanassios; Nguyen, Long D.

    2014-01-01

    Due to its position at the outermost of glycans, sialic acid is involved in a myriad of physiological and pathophysiological cell functions such as host-pathogen interactions, immune regulation, and tumor evasion. Inhibitors of cell surface sialylation could be a useful tool in cancer, immune, antibiotic, or antiviral therapy. In this work, four different C-3 modified N-acetylmannosamine analogs were tested as potential inhibitors of cell surface sialylation. Peracetylated 2-acetylamino-2-deoxy-3-O-methyl-d-mannose decreases cell surface sialylation in Jurkat cells in a dose-dependent manner up to 80%, quantified by flow cytometry and enzyme-linked lectin assays. High-performance liquid chromatography experiments revealed that not only the concentration of membrane bound but also of cytosolic sialic acid is reduced in treated cells. We have strong evidence that the observed reduction of sialic acid expression in cells is caused by the inhibition of the bifunctional enzyme UDP-GlcNAc-2-epimerase/ManNAc kinase. 2-Acetylamino-2-deoxy-3-O-methyl-d-mannose inhibits the human ManNAc kinase domain of the UDP-GlcNAc-2-epimerase/ManNAc kinase. Binding kinetics of the inhibitor and human N-acetylmannosamine kinase were evaluated using surface plasmon resonance. Specificity studies with human N-acetylglucosamine kinase and hexokinase IV indicated a high specificity of 2-acetylamino-2-deoxy-3-O-methyl-d-mannose for MNK. This substance represents a novel class of inhibitors of sialic acid expression in cells, targeting the key enzyme of sialic acid de novo biosynthesis. PMID:25278018

  6. Crystal structures identify an atypical two-metal-ion mechanism for uridyltransfer in GlmU: its significance to sugar nucleotidyl transferases.

    PubMed

    Jagtap, Pravin Kumar Ankush; Verma, Sunil Kumar; Vithani, Neha; Bais, Vaibhav Singh; Prakash, Balaji

    2013-05-27

    N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU), exclusive to prokaryotes, is a bifunctional enzyme that synthesizes UDP-GlcNAc-an important component of the cell wall of many microorganisms. Uridyltransfer, one of the reactions it catalyzes, involves binding GlcNAc-1-P, UTP and Mg(2+) ions; however, whether one or two ions catalyze this reaction remains ambiguous. Here, we resolve this using biochemical and crystallographic studies on GlmU from Mycobacterium tuberculosis (GlmU(Mtb)) and identify a two-metal-ion mechanism (mechanism-B). In contrast to well-established two-metal mechanism (mechanism-A) for enzymes acting on nucleic acids, mechanism-B is distinct in the way the two Mg(2+) ions (Mg(2+)A and Mg(2+)B) are positioned and stabilized. Further, attempts to delineate the roles of the metal ions in substrate stabilization, nucleophile activation and transition-state stabilization are presented. Interestingly, a detailed analysis of the available structures of sugar nucleotidyl transferases (SNTs) suggests that they too would utilize mechanism-B rather than mechanism-A. Based on this, SNTs could be classified into Group-I, which employs the two-metal mechanism-B as in GlmU, and Group-II that employs a variant one-metal mechanism-B, wherein the role of Mg(2+)A is substituted by a conserved lysine. Strikingly, eukaryotic SNTs appear confined to Group-II. Recognizing these differences may be important in the design of selective inhibitors against microbial nucleotidyl transferases.

  7. Structure of Human O-GlcNAc Transferase and its Complex with a Peptide Substrate

    SciTech Connect

    M Lazarus; Y Nam; J Jiang; P Sliz; S Walker

    2011-12-31

    The essential mammalian enzyme O-linked {beta}-N-acetylglucosamine transferase (O-GlcNAc transferase, here OGT) couples metabolic status to the regulation of a wide variety of cellular signalling pathways by acting as a nutrient sensor. OGT catalyses the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine (UDP-GlcNAc) to serines and threonines of cytoplasmic, nuclear and mitochondrial proteins, including numerous transcription factors, tumour suppressors, kinases, phosphatases and histone-modifying proteins. Aberrant glycosylation by OGT has been linked to insulin resistance, diabetic complications, cancer and neurodegenerative diseases including Alzheimer's. Despite the importance of OGT, the details of how it recognizes and glycosylates its protein substrates are largely unknown. We report here two crystal structures of human OGT, as a binary complex with UDP (2.8 {angstrom} resolution) and as a ternary complex with UDP and a peptide substrate (1.95 {angstrom}). The structures provide clues to the enzyme mechanism, show how OGT recognizes target peptide sequences, and reveal the fold of the unique domain between the two halves of the catalytic region. This information will accelerate the rational design of biological experiments to investigate OGT's functions; it will also help the design of inhibitors for use as cellular probes and help to assess its potential as a therapeutic target.

  8. Glutathione S-transferase alpha 1 risk polymorphism and increased bilateral thalamus mean diffusivity in schizophrenia.

    PubMed

    Spalletta, Gianfranco; Piras, Fabrizio; Gravina, Paolo; Bello, Mario Lo; Bernardini, Sergio; Caltagirone, Carlo

    2012-01-01

    Oxidative damage in brain cells is one of the factors hypothesized to be involved in the pathogenesis of schizophrenia. Glutathione S-transferase (GST) A1*B polymorphism, a genotype associated with a higher risk of oxidative damage, is associated with increased frequency of schizophrenia diagnosis. Thus, here we studied Glutathione S-transferase (GST) A1 polymorphism and diffusion tensor imaging-mean diffusivity (MD) data on deep grey matter brain structures in 56 patients with Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revised (DSM-IV-TR) schizophrenia. Clinical diagnosis and psychopathological symptom severity were assessed by using the Structured Clinical Interview for DSM-IV-TR (SCID-P) and the Scales for Assessment of Positive and Negative Symptoms (SAPS and SANS). Results confirmed that patients with schizophrenia who were carriers of the GSTA1 *B risk allele had an increased MD in bilateral thalami and increased severity of auditory and global hallucinations in comparison with non-B carriers. Thus, oxidative stress associated factors may be implicated in specific mechanisms of schizophrenia such as altered microstructure of the thalami and specific psychopathological features of auditory hallucinations.

  9. Glucose-induced expression of MIP-1 genes requires O-GlcNAc transferase in monocytes

    SciTech Connect

    Chikanishi, Toshihiro; Fujiki, Ryoji; Hashiba, Waka; Sekine, Hiroki; Yokoyama, Atsushi; Kato, Shigeaki

    2010-04-16

    O-glycosylation has emerged as an important modification of nuclear proteins, and it appears to be involved in gene regulation. Recently, we have shown that one of the histone methyl transferases (MLL5) is activated through O-glycosylation by O-GlcNAc transferase (OGT). Addition of this monosaccharide is essential for forming a functional complex. However, in spite of the abundance of OGT in the nucleus, the impact of nuclear O-glycosylation by OGT remains largely unclear. To address this issue, the present study was undertaken to test the impact of nuclear O-glycosylation in a monocytic cell line, THP-1. Using a cytokine array, MIP-1{alpha} and -1{beta} genes were found to be regulated by nuclear O-glycosylation. Biochemical purification of the OGT interactants from THP-1 revealed that OGT is an associating partner for distinct co-regulatory complexes. OGT recruitment and protein O-glycosylation were observed at the MIP-1{alpha} gene promoter; however, the known OGT partner (HCF-1) was absent when the MIP-1{alpha} gene promoter was not activated. From these findings, we suggest that OGT could be a co-regulatory subunit shared by functionally distinct complexes supporting epigenetic regulation.

  10. Riboswitch control of induction of aminoglycoside resistance acetyl and adenyl-transferases.

    PubMed

    He, Weizhi; Zhang, Xuhui; Zhang, Jun; Jia, Xu; Zhang, Jing; Sun, Wenxia; Jiang, Hengyi; Chen, Dongrong; Murchie, Alastair I H

    2013-08-01

    The acquisition of antibiotic resistance by human pathogens poses a significant threat to public health. The mechanisms that control the proliferation and expression of antibiotic resistance genes are not yet completely understood. The aminoglycosides are a historically important class of antibiotics that were introduced in the 1940s. Aminoglycoside resistance is conferred most commonly through enzymatic modification of the drug or enzymatic modification of the target rRNA through methylation or through the overexpression of efflux pumps. In our recent paper, we reported that expression of the aminoglycoside resistance genes encoding the aminoglycoside acetyl transferase (AAC) and aminoglycoside adenyl transferase (AAD) enzymes was controlled by an aminoglycoside-sensing riboswitch RNA. This riboswitch is embedded in the leader RNA of the aac/aad genes and is associated with the integron cassette system. The leader RNA can sense and bind specific aminoglycosides such that the binding causes a structural transition in the leader RNA, which leads to the induction of aminoglycoside antibiotic resistance. Specific aminoglycosides induce reporter gene expression mediated by the leader RNA. Aminoglycoside RNA binding was measured directly and, aminoglycoside-induced changes in RNA structure monitored by chemical probing. UV cross-linking and mutational analysis identified potential aminoglycoside binding sites on the RNA.

  11. Characterization of glutathione S-transferase from dwarf pine needles (Pinus mugo Turra).

    PubMed

    Schröder, P; Rennenberg, H

    1992-09-01

    Glutathione S-transferase activity conjugating xenobiotics with glutathione (GSH) was found in extracts from needles of dwarf pine (Pinus mugo Turra). In vivo incubation of needle segments with the herbicide fluorodifen at 25 degrees C resulted in conversion of the xenobiotic to water-soluble products at initial rates of 0.7 nmol h(-1) g(fw) (-1). At 15 degrees C, the initial rate of product formation was decreased to 0.1 nmol h(-1) g(fw) (-1). In vitro conjugation studies with chloro-2,4-dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzene (DCNB) as model substrates gave apparent K(m) values of 0.5 mM GSH and 1.14 mM CDNB in the GSH/CDNB system and 0.3 mM GSH and 0.44 mM DCNB in the GSH/DCNB system. The pH optimum was between 7.7 and 7.9 for both the GSH/CDNB and the GSH/DCNB systems. The temperature optimum for these model substrates was between 30 and 35 degrees C, and only minute amounts of enzyme activity were detected at 15 degrees C. The activation energy in the temperature range of 15 to 30 degrees C was 46 kJ mol(-1). Dwarf pine glutathione S-transferase exhibited an approximate molecular weight of 52 kD.

  12. Nicotinamide Mononucleotide Adenylyl Transferase 2: A Promising Diagnostic and Therapeutic Target for Colorectal Cancer

    PubMed Central

    Cui, Chunhui; Qi, Jia; Deng, Quanwen; Chen, Rihong; Zhai, Duanyang; Yu, Jinlong

    2016-01-01

    Colorectal cancer (CRC) is one of the most common cancers all over the world. It is essential to search for more effective diagnostic and therapeutic methods for CRC. Abnormal nicotinamide adenine dinucleotide (NAD) metabolism has been considered as a characteristic of cancer cells. In this study, nicotinamide mononucleotide adenylyl transferases (NMNATs) as well as p53-mediated cancer signaling pathways were investigated in patients with colorectal cancer. The CRC tissues and adjacent normal tissues were obtained from 95 untreated colorectal cancer patients and were stained for expression of nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) and p53. The survival rate was analyzed by the Kaplan-Meier method and the log-rank test. The multivariate Cox proportional hazard regression analysis was conducted as well. Our data demonstrated that expression of NMNAT2 and p53 was significantly higher in CRC tissues, while NMNAT2 expression is in correlation with the invasive depth of tumors and TNM stage. Significant positive correlation was found between the expression of NMNAT2 and the expression of p53. However, NMNAT2 expression was not a statistically significant prognostic factor for overall survival. In conclusion, our results indicated that NMNAT2 might participate in tumorigenesis of CRC in a p53-dependent manner and NMNAT2 expression might be a potential therapeutic target for CRC. PMID:27218101

  13. Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea

    PubMed Central

    Vijayakumar, Harshavardhanan; Thamilarasan, Senthil Kumar; Shanmugam, Ashokraj; Natarajan, Sathishkumar; Jung, Hee-Jeong; Park, Jong-In; Kim, HyeRan; Chung, Mi-Young; Nou, Ill-Sup

    2016-01-01

    Plants, as sessile organisms, can suffer serious growth and developmental consequences under cold stress conditions. Glutathione transferases (GSTs, EC 2.5.1.18) are ubiquitous and multifunctional conjugating proteins, which play a major role in stress responses by preventing oxidative damage by reactive oxygen species (ROS). Currently, understanding of their function(s) during different biochemical and signaling pathways under cold stress condition remain unclear. In this study, using combined computational strategy, we identified 65 Brassica oleracea glutathione transferases (BoGST) and characterized them based on evolutionary analysis into 11 classes. Inter-species and intra-species duplication was evident between BoGSTs and Arabidopsis GSTs. Based on localization analyses, we propose possible pathways in which GST genes are involved during cold stress. Further, expression analysis of the predicted putative functions for GST genes were investigated in two cold contrasting genotypes (cold tolerance and susceptible) under cold condition, most of these genes were highly expressed at 6 h and 1 h in the cold tolerant (CT) and cold susceptible (CS) lines, respectively. Overall, BoGSTU19, BoGSTU24, BoGSTF10 are candidate genes highly expressed in B. oleracea. Further investigation of GST superfamily in B. oleracea will aid in understanding complex mechanism underlying cold tolerance in plants. PMID:27472324

  14. A strategy to discover inhibitors of Bacillus subtilis surfactin-type phosphopantetheinyl transferase.

    PubMed

    Yasgar, Adam; Foley, Timothy L; Jadhav, Ajit; Inglese, James; Burkart, Michael D; Simeonov, Anton

    2010-02-01

    Surfactin-type phosphopantetheinyl transferases (Sfp-PPTases) are responsible for modifying type I polyketide and non-ribosomal peptide synthases of prokaryotes and have been implicated in the activation of a variety of pathogen-associated virulence factors. As such, inhibitors of this enzyme class represent enticing leads for antibiotic development and can serve as tools in studies of bacterial metabolism. Currently, no small molecule inhibitors of Sfp-PPTase are known, highlighting the need for efficient methods for PPTase inhibitor identification and development. Herein, we present the design and implementation of a robust and miniaturized high-throughput kinetic assay for inhibitors of Sfp-PPTase using the substrate combination of rhodamine-labeled coenzyme A and Black Hole Quencher-2 labeled consensus acceptor peptide YbbR. Upon PPTase-catalyzed transfer of the rhodamine-labeled phosphopantetheinyl arm onto the acceptor peptide, the fluorescent donor and quencher are covalently joined and the fluorescence signal is reduced. This assay was miniaturized to a low 4 microL volume in 1536-well format and was used to screen the library of pharmacologically active compounds (LOPAC(1280)). Top inhibitors identified by the screen were further characterized in secondary assays, including protein phosphopantetheinylation detected by gel electrophoresis. The present assay enables the screening of large compound libraries against Sfp-PPTase in a robust and automated fashion and is applicable to designing assays for related transferase enzymes.

  15. Crystal Structure of Escherichia coli originated MCR-1, a phosphoethanolamine transferase for Colistin Resistance

    PubMed Central

    Hu, Menglong; Guo, Jiubiao; Cheng, Qipeng; Yang, Zhiqiang; Chan, Edward Wai Chi; Chen, Sheng; Hao, Quan

    2016-01-01

    MCR-1 is a phosphoethanolamine (pEtN) transferase that modifies the pEtN moiety of lipid A, conferring resistance to colistin, which is an antibiotic belonging to the class of polypeptide antibiotics known as polymyxins and is the last-line antibiotic used to treat multidrug resistant bacterial infections. Here we determined the crystal structure of the catalytic domain of MCR-1 (MCR-1-ED), which is originated in Escherichia coli (E. coli). MCR-1-ED was found to comprise several classical β-α-β-α motifs that constitute a “sandwich” conformation. Two interlaced molecules with different phosphorylation status of the residue T285 could give rise to two functional statuses of MCR-1 depending on the physiological conditions. MCR-1, like other known pEtN transferases, possesses an enzymatic site equipped with zinc binding residues. Interestingly, two zinc ions were found to mediate intermolecular interactions between MCR-1-ED molecules in one asymmetric unit and hence concatenation of MCR-1, allowing the protein to be oligomer. Findings of this work shall provide important insight into development of effective and clinically useful inhibitors of MCR-1 or structurally similar enzymes. PMID:27958270

  16. Copper-Induced Inactivation of Camel Liver Glutathione S-Transferase.

    PubMed

    Ahmed, Anwar; Malik, Ajamaluddin; Jagirdar, Haseeb; Rabbani, Nayyar; Khan, Mohd Shahnawaz; Al-Senaidy, Abdulrahman M; Ismael, Mohamed A

    2016-01-01

    Glutathione S-transferases (GSTs) are multifunctional enzymes and play an important role in detoxification of xenobiotics and protection against oxidative stress. Camel liver glutathione transferase (cGST) was recently isolated and characterized in our lab. In this study, we have evaluated the effect of monovalent, divalent, and trivalent cations on its activity and stability. Cu(++) was found to be the potent inhibitor of GST activity which loses complete activity at 0.5-mM concentration. Other metal ions did not inhibit GST even at higher concentration of 2 mM. GST incubated with Cu(++) (0.1 mM) resulted decrease in free sulfhydryl groups by 55%, whereas other metal ions did not show any effect on free thiol content. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed formation of GST aggregates instantly in the presence of Cu(++), which further increased in molecular size with increase in time of incubation. DTT treatment resulted in de-aggregation of GST oligomers to its monomeric form. However, the GST activity was not recovered completely after de-aggregation. Cu(++) was found to inhibit GST activity by accelerating the inter- and intra-disulfide bond formation. Far-UV circular dichroism (CD) results showed that Cu(++)-catalyzed air oxidation of sulfhydryl groups leads to minor conformational changes in the GST.

  17. Characterisation of the Candida albicans Phosphopantetheinyl Transferase Ppt2 as a Potential Antifungal Drug Target

    PubMed Central

    Dobb, Katharine S.; Kaye, Sarah J.; Beckmann, Nicola; Thain, John L.; Stateva, Lubomira; Birch, Mike; Oliver, Jason D.

    2015-01-01

    Antifungal drugs acting via new mechanisms of action are urgently needed to combat the increasing numbers of severe fungal infections caused by pathogens such as Candida albicans. The phosphopantetheinyl transferase of Aspergillus fumigatus, encoded by the essential gene pptB, has previously been identified as a potential antifungal target. This study investigated the function of its orthologue in C. albicans, PPT2/C1_09480W by placing one allele under the control of the regulatable MET3 promoter, and deleting the remaining allele. The phenotypes of this conditional null mutant showed that, as in A. fumigatus, the gene PPT2 is essential for growth in C. albicans, thus fulfilling one aspect of an efficient antifungal target. The catalytic activity of Ppt2 as a phosphopantetheinyl transferase and the acyl carrier protein Acp1 as a substrate were demonstrated in a fluorescence transfer assay, using recombinant Ppt2 and Acp1 produced and purified from E.coli. A fluorescence polarisation assay amenable to high-throughput screening was also developed. Therefore we have identified Ppt2 as a broad-spectrum novel antifungal target and developed tools to identify inhibitors as potentially new antifungal compounds. PMID:26606674

  18. Miners compensated for pneumoconiosis and glutathione s-transferases M1 and T1 genotypes.

    PubMed

    Zimmermann, Anna; Ebbinghaus, Rainer; Prager, Hans-Martin; Blaszkewicz, Meinolf; Hengstler, Jan G; Golka, Klaus

    2012-01-01

    Chronic inhalation of quartz-containing dust produces reversible inflammatory changes in lungs resulting in irreversible fibrotic changes termed pneumoconiosis. Due to the inflammatory process in the lungs, highly reactive substances are released that may be detoxified by glutathione S-transferases. Therefore, 90 hard coal miners with pneumoconiosis as a recognized occupational disease (in Germany: Berufskrankheit BK 4101) were genotyped for glutathione S-transferases M1 (GSTM1) and T1 (GSTT1) according to standard methods. Furthermore, occupational exposure and smoking habits were assessed by questionnaire. Changes in a chest x-ray were classified according to ILO classification 2000. Of the investigated hard coal miners 43% were GSTM1 negative whereas 57% were GSTM1 positive. The arithmetic mean of the age at time of investigation was 74.2 yr (range: 42-87 yr). Seventy-four percent of the hard coal miners reported being ever smokers, while 26% denied smoking. All hard coal miners provided pneumoconiosis-related changes in the chest x-ray. The observed frequency of GSTM1 negative hard coal miners was not different from frequencies reported for general Caucasian populations and in agreement with findings reported for Chinese coal miners. In contrast, in a former study, 16 of 19 German hard coal miners (84%) with urinary bladder cancer displayed a GSTM1 negative genotype. The outcome of this study provides evidence that severely occupationally exposed Caucasian hard coal miners do not present an elevated level of GSTM1 negative individuals.

  19. Functional Diversification of Fungal Glutathione Transferases from the Ure2p Class

    PubMed Central

    Thuillier, Anne; Ngadin, Andrew A.; Thion, Cécile; Billard, Patrick; Jacquot, Jean-Pierre; Gelhaye, Eric; Morel, Mélanie

    2011-01-01

    The glutathione-S-transferase (GST) proteins represent an extended family involved in detoxification processes. They are divided into various classes with high diversity in various organisms. The Ure2p class is especially expanded in saprophytic fungi compared to other fungi. This class is subdivided into two subclasses named Ure2pA and Ure2pB, which have rapidly diversified among fungal phyla. We have focused our analysis on Basidiomycetes and used Phanerochaete chrysosporium as a model to correlate the sequence diversity with the functional diversity of these glutathione transferases. The results show that among the nine isoforms found in P. chrysosporium, two belonging to Ure2pA subclass are exclusively expressed at the transcriptional level in presence of polycyclic aromatic compounds. Moreover, we have highlighted differential catalytic activities and substrate specificities between Ure2pA and Ure2pB isoforms. This diversity of sequence and function suggests that fungal Ure2p sequences have evolved rapidly in response to environmental constraints. PMID:22164343

  20. Structure of a lipid A phosphoethanolamine transferase suggests how conformational changes govern substrate binding.

    PubMed

    Anandan, Anandhi; Evans, Genevieve L; Condic-Jurkic, Karmen; O'Mara, Megan L; John, Constance M; Phillips, Nancy J; Jarvis, Gary A; Wills, Siobhan S; Stubbs, Keith A; Moraes, Isabel; Kahler, Charlene M; Vrielink, Alice

    2017-02-28

    Multidrug-resistant (MDR) gram-negative bacteria have increased the prevalence of fatal sepsis in modern times. Colistin is a cationic antimicrobial peptide (CAMP) antibiotic that permeabilizes the bacterial outer membrane (OM) and has been used to treat these infections. The OM outer leaflet is comprised of endotoxin containing lipid A, which can be modified to increase resistance to CAMPs and prevent clearance by the innate immune response. One type of lipid A modification involves the addition of phosphoethanolamine to the 1 and 4' headgroup positions by phosphoethanolamine transferases. Previous structural work on a truncated form of this enzyme suggested that the full-length protein was required for correct lipid substrate binding and catalysis. We now report the crystal structure of a full-length lipid A phosphoethanolamine transferase from Neisseria meningitidis, determined to 2.75-Å resolution. The structure reveals a previously uncharacterized helical membrane domain and a periplasmic facing soluble domain. The domains are linked by a helix that runs along the membrane surface interacting with the phospholipid head groups. Two helices located in a periplasmic loop between two transmembrane helices contain conserved charged residues and are implicated in substrate binding. Intrinsic fluorescence, limited proteolysis, and molecular dynamics studies suggest the protein may sample different conformational states to enable the binding of two very different- sized lipid substrates. These results provide insights into the mechanism of endotoxin modification and will aid a structure-guided rational drug design approach to treating multidrug-resistant bacterial infections.

  1. Null genotypes of glutathione S-transferase μ1 and glutathione S-transferase θ1 are associated with osteosarcoma risk: A meta-analysis

    PubMed Central

    HAN, JICHENG; DENG, WEI; WANG, LAIYING; QI, WANLI

    2015-01-01

    Glutathione S-transferase (GST) genetic polymorphisms has been reported to be associated with osteosarcoma; however, the results of previous studies are conflicting. Thus, in the present study, a meta-analysis was conducted to investigate the effects of GSTM1 and GSTT1 polymorphisms on osteosarcoma risk. A literature search was performed in the PubMed, Cochrane Library and China National Knowledge Infrastructure databases to identify case-control studies published prior to March 2014. Data were extracted and pooled odds ratios (OR) with 95% confidence intervals (CI) were calculated. In addition, Begg’s test was used to measure publication bias. Sensitivity analysis were performed to ensure the accuracy of the results. The meta-analysis results demonstrated no significant association between the null genotype of GSTM1 and osteosarcoma risk (OR=0.83; 95% CI, 0.37–1.85). By contrast, the results revealed a significant association for the comparison of null vs. non-null genotypes of GSTT1 (OR=1.54; 95% CI, 1.09–2.19). In conclusion, the GSTT1 null genotype may be associated with an increased risk of developing osteosarcoma. Further studies with larger sample sizes and well-designed methodologies are required to verify these conclusions. PMID:25789067

  2. Pattern of γ-glutamyl transferase activity in cow milk throughout lactation and relationships with metabolic conditions and milk composition.

    PubMed

    Calamari, L; Gobbi, L; Russo, F; Cappelli, F Piccioli

    2015-08-01

    The main objective of this experiment was to study the γ-glutamyl transferase (GGT) activity in milk during lactation and its relationship with metabolic status of dairy cows, milk yield, milk composition, and cheesemaking properties. The study was performed in a tied stall barn and involved 20 lactations from 12 healthy multiparous Italian Friesian dairy cows. During lactation starting at d 10, milk samples were collected weekly and analyzed for composition, somatic cells count, titratable acidity, and milk coagulation properties. The GGT activity was measured in defatted samples. Blood samples were collected weekly to assess biochemical indicators related to energy, protein, and mineral metabolism, markers of inflammation and some enzyme activities. The lactations of each cow were retrospectively categorized into 2 groups according to their milk GGT activity value through lactation. A median value of GGT activity in the milk of all lactations was calculated (3,045 U/L), and 10 lactations with lower GGT activity were classified as low while 10 lactations with greater GGT activity were classified as high. The average value of milk GGT activity during lactation was 3,863 and 3,024 U/L for high and low, respectively. The GGT activity decreased in early lactation and reached minimum values in the second month (3,289 and 2,355 U/L for high and low, respectively). Thereafter GGT activity increased progressively, reaching values in late lactation of 4,511 and 3,540 U/L in high and low, respectively. On average, milk yield was 40.81 and 42.76 kg/d in high and low, respectively, and a negative partial correlation with milk GGT activity was observed. A greater milk protein concentration was observed in high (3.39%) compared with low (3.18%), and a positive partial correlation with milk GGT activity was observed. Greater titratable acidity in high than that in low (3.75 vs. 3.45 degrees Soxhlet-Henkel/50 mL, respectively) was also observed. Plasma glucose was greater in

  3. Transcriptional and functional analysis of oxalyl-coenzyme A (CoA) decarboxylase and formyl-CoA transferase genes from Lactobacillus acidophilus.

    PubMed

    Azcarate-Peril, M Andrea; Bruno-Bárcena, Jose M; Hassan, Hosni M; Klaenhammer, Todd R

    2006-03-01

    Oxalic acid is found in dietary sources (such as coffee, tea, and chocolate) or is produced by the intestinal microflora from metabolic precursors, like ascorbic acid. In the human intestine, oxalate may combine with calcium, sodium, magnesium, or potassium to form less soluble salts, which can cause pathological disorders such as hyperoxaluria, urolithiasis, and renal failure in humans. In this study, an operon containing genes homologous to a formyl coenzyme A transferase gene (frc) and an oxalyl coenzyme A decarboxylase gene (oxc) was identified in the genome of the probiotic bacterium Lactobacillus acidophilus. Physiological analysis of a mutant harboring a deleted version of the frc gene confirmed that frc expression specifically improves survival in the presence of oxalic acid at pH 3.5 compared with the survival of the wild-type strain. Moreover, the frc mutant was unable to degrade oxalate. These genes, which have not previously been described in lactobacilli, appear to be responsible for oxalate degradation in this organism. Transcriptional analysis using cDNA microarrays and reverse transcription-quantitative PCR revealed that mildly acidic conditions were a prerequisite for frc and oxc transcription. As a consequence, oxalate-dependent induction of these genes occurred only in cells first adapted to subinhibitory concentrations of oxalate and then exposed to pH 5.5. Where genome information was available, other lactic acid bacteria were screened for frc and oxc genes. With the exception of Lactobacillus gasseri and Bifidobacterium lactis, none of the other strains harbored genes for oxalate utilization.

  4. Alternariol 9-O-methyl ether.

    PubMed

    Dasari, Sreekanth; Bhadbhade, Mohan; Neilan, Brett A

    2012-05-01

    The title compound (AME; systematic name: 3,7-dihy-droxy-9-meth-oxy-1-methyl-6H-benzo[c]chromen-6-one), C(15)H(12)O(5), was isolated from an endophytic fungi Alternaria sp., from Catharanthus roseus (common name: Madagascar periwinkle). There is an intramolecular O-H⋯O hydrogen bond in the essentially planar mol-ecule (r.m.s. deviation 0.02 Å). In the crystal, the molecule forms an O-H⋯O hydrogen bond with its centrosymmetric counterpart with four bridging inter-actions (two O-H⋯O and two C-H⋯O). The almost planar sheets of the dimeric units thus formed are stacked along b axis via C-H⋯π and π-π contacts [with C⋯C short contacts between aromatic moieties of 3.324 (3), 3.296 (3) and 3.374 (3) Å].

  5. Heterologous expression and characterization of a sigma glutathione S-transferase involved in carbaryl detoxification from oriental migratory locust, Locusta migratoria manilensis (Meyen).

    PubMed

    Qin, Guohua; Jia, Miao; Liu, Ting; Zhang, Xueyao; Guo, Yaping; Zhu, Kun Yan; Ma, Enbo; Zhang, Jianzhen

    2012-02-01

    Glutathione S-transferases (GSTs) play a major role in detoxification of xenobiotics and resistance to insecticides in insects. In the present study, a sigma-class GST gene (LmGSTs3) was identified from the locust, Locusta migratoria manilensis. Its full-length cDNA sequence is 828 bp containing an open reading frame (ORF) of 612 bp that encodes 204 amino acid residues. The predicted protein molecular mass and pI are 23.4 kDa and 7.62, respectively. Recombinant LmGSTs3 was heterologously expressed in Escherichia coli as a soluble fusion protein. Its optimal activity was observed at pH 8.0. Incubation for 30 min at temperatures below 40 °C scarcely affected activity. The LmGSTs3 at pH values between 4.0 and 11.0 retained more than 80% of its original activity. Ethacrynic acid and cibacron blue were very effective inhibitors of LmGSTs3 with I50-values 1.7 and 3.7 μM, respectively. In response to heavy metal (CuSO4, CdCl2) exposure there was a concentration-dependent and time-dependent decrease in activity. The nymph mortalities after carbaryl treatment increased 38.7% after LmGSTs3 were silenced. These results suggest that LmGSTs3 may be involved in carbaryl detoxification in L. migratoria manilensis.

  6. Unacylated ghrelin promotes adipogenesis in rodent bone marrow via ghrelin O-acyl transferase and GHS-R1a activity: evidence for target cell-induced acylation

    PubMed Central

    Hopkins, Anna L.; Nelson, Timothy A. S.; Guschina, Irina A.; Parsons, Lydia C.; Lewis, Charlotte L.; Brown, Richard C.; Christian, Helen C.; Davies, Jeffrey S.; Wells, Timothy

    2017-01-01

    Despite being unable to activate the cognate ghrelin receptor (GHS-R), unacylated ghrelin (UAG) possesses a unique activity spectrum that includes promoting bone marrow adipogenesis. Since a receptor mediating this action has not been identified, we re-appraised the potential interaction of UAG with GHS-R in the regulation of bone marrow adiposity. Surprisingly, the adipogenic effects of intra-bone marrow (ibm)-infused acylated ghrelin (AG) and UAG were abolished in male GHS-R-null mice. Gas chromatography showed that isolated tibial marrow adipocytes contain the medium-chain fatty acids utilised in the acylation of UAG, including octanoic acid. Additionally, immunohistochemistry and immunogold electron microscopy revealed that tibial marrow adipocytes show prominent expression of the UAG-activating enzyme ghrelin O-acyl transferase (GOAT), which is located in the membranes of lipid trafficking vesicles and in the plasma membrane. Finally, the adipogenic effect of ibm-infused UAG was completely abolished in GOAT-KO mice. Thus, the adipogenic action of exogenous UAG in tibial marrow is dependent upon acylation by GOAT and activation of GHS-R. This suggests that UAG is subject to target cell-mediated activation – a novel mechanism for manipulating hormone activity. PMID:28361877

  7. Crystal structure of the essential Mycobacterium tuberculosis phosphopantetheinyl transferase PptT, solved as a fusion protein with maltose binding protein.

    PubMed

    Jung, James; Bashiri, Ghader; Johnston, Jodie M; Brown, Alistair S; Ackerley, David F; Baker, Edward N

    2014-12-01

    Phosphopantetheinyl transferases (PPTases) are key enzymes in the assembly-line production of complex molecules such as fatty acids, polyketides and polypeptides, where they activate acyl or peptidyl carrier proteins, transferring a 4'-phosphopantetheinyl moiety from coenzyme A (CoA) to a reactive serine residue on the carrier protein. The human pathogen Mycobacterium tuberculosis encodes two PPTases, both essential and therefore attractive drug targets. We report the structure of the type-II PPTase PptT, obtained from crystals of a fusion protein with maltose binding protein. The structure, at 1.75Å resolution (R=0.156, Rfree=0.191), reveals an α/β fold broadly similar to other type-II PPTases, but with differences in peripheral structural elements. A bound CoA is clearly defined with its pantetheinyl arm tucked into a hydrophobic pocket. Interactions involving the CoA diphosphate, bound Mg(2+) and three active site acidic side chains suggest a plausible pathway for proton transfer during catalysis.

  8. Cloning and Characterisation of (R)-3-hydroxyacyl-acyl Carrier Protein-coenzyme A Transferase Gene (phaG) from Pseudomonas sp. USM 4-55.

    PubMed

    Arsad, Hasni; Sudesh, Kumar; Nazalan, Najimudin; Muhammad, Tengku Sifzizul Tengku; Wahab, Habibah; Razip Samian, Mohd

    2009-12-01

    The (R)-3-hydroxyacyl-ACP-CoA transferase catalyses the conversion of (R)-3-hydroxyacyl-ACP to (R)-3-hydroxyacyl-CoA derivatives, which serves as the ultimate precursor for polyhydroxyalkanoate (PHA) polymerisation from unrelated substrates in pseudomonads. PhaG was found to be responsible for channelling precursors for polyhydroxyalkanoate (PHA) synthase from a de novo fatty acid biosynthesis pathway when cultured on carbohydrates, such as glucose or gluconate. The phaG gene was cloned from Pseudomonas sp. USM 4-55 using a homologous probe. The gene was located in a 3660 bp Sal I fragment (GenBank accession number EU305558). The open reading frame (ORF) was 885 bp long and encoded a 295 amino acid protein. The predicted molecular weight was 33251 Da, and it showed a 62% identity to the PhaG of Pseudomonas aeruginosa. The function of the cloned phaG of Pseudomonas sp. USM 4-55 was confirmed by complementation studies. Plasmid pBCS39, which harboured the 3660 bp Sal I fragment, was found to complement the PhaG-mutant heterologous host cell, Pseudomonas putida PhaGN-21. P. putida PhaGN-21, which harboured pBCS39, accumulated PHA that accounted for up to 18% of its cellular dry weight (CDW). P. putida PhaGN-21, which harboured the vector alone (PBBR1MCS-2), accumulated only 0.6% CDW of PHA.

  9. A mu-class glutathione S-transferase from the marine shrimp Litopenaeus vannamei: molecular cloning and active-site structural modeling.

    PubMed

    Contreras-Vergara, Carmen A; Harris-Valle, Citlalli; Sotelo-Mundo, Rogerio R; Yepiz-Plascencia, Gloria

    2004-01-01

    A cDNA clone coding for a mu-class glutathione S-transferase (GST) was isolated from a hepatopancreas cDNA library from the shrimp Litopenaeus vannamei. The deduced amino acid sequence (215 amino acids) has >50% identity to rodents and other mammals mu-class GSTs. Using RT-PCR, the shrimp GST transcript was detected in hepatopancreas, hemocytes, gills, and muscle, but not in pleopods. The shrimp GST sequence was computer modeled and found to fit the classical two-domain GST structure. Domain I, containing the glutathione (GSH) binding site, is more conserved compared to the flexible C-terminal domain II. Residue Q208 appears to be a key to substrate specificity by comparison with mammalian GST mutants. This position is commonly occupied by serine or threonine in mammalian mu-class GSTs, and shrimp Q208 may affect the affinity to substrates like aminochrome or 1,3-dimethyl-2-cyano-1-nitrosoguanidine. This is the first report of molecular cloning and structural modeling of a crustacean GST and provides new insights into the nature of the detoxification response on marine invertebrates.

  10. The molecular basis of host adaptation in cactophilic Drosophila: molecular evolution of a glutathione S-transferase gene (GstD1) in Drosophila mojavensis.

    PubMed

    Matzkin, Luciano M

    2008-02-01

    Drosophila mojavensis is a cactophilic fly endemic to the northwestern deserts of North America. This species includes four genetically isolated cactus host races each individually specializing on the necrotic tissues of a different cactus species. The necrosis of each cactus species provides the resident D. mojavensis populations with a distinct chemical environment. A previous investigation of the role of transcriptional variation in the adaptation of D. mojavensis to its hosts produced a set of candidate loci that are differentially expressed in response to host shifts, and among them was glutathione S-transferase D1 (GstD1). In both D. melanogaster and Anopheles gambiae, GstD1 has been implicated in the resistance of these species to the insecticide dichloro-diphenyl-trichloroethane (DDT). The pattern of sequence variation of the GstD1 locus from all four D. mojavensis populations, D. arizonae (sister species), and D. navojoa (outgroup) has been examined. The data suggest that in two populations of D. mojavensis GstD1 has gone through a period of adaptive amino acid evolution. Further analyses indicate that of the seven amino acid fixations that occurred in the D. mojavensis lineage, two of them occur in the active site pocket, potentially having a significant effect on substrate specificity and in the adaptation to alternative cactus hosts.

  11. The Molecular Basis of Host Adaptation in Cactophilic Drosophila: Molecular Evolution of a Glutathione S-Transferase Gene (GstD1) in Drosophila mojavensis

    PubMed Central

    Matzkin, Luciano M.

    2008-01-01

    Drosophila mojavensis is a cactophilic fly endemic to the northwestern deserts of North America. This species includes four genetically isolated cactus host races each individually specializing on the necrotic tissues of a different cactus species. The necrosis of each cactus species provides the resident D. mojavensis populations with a distinct chemical environment. A previous investigation of the role of transcriptional variation in the adaptation of D. mojavensis to its hosts produced a set of candidate loci that are differentially expressed in response to host shifts, and among them was glutathione S-transferase D1 (GstD1). In both D. melanogaster and Anopheles gambiae, GstD1 has been implicated in the resistance of these species to the insecticide dichloro-diphenyl-trichloroethane (DDT). The pattern of sequence variation of the GstD1 locus from all four D. mojavensis populations, D. arizonae (sister species), and D. navojoa (outgroup) has been examined. The data suggest that in two populations of D. mojavensis GstD1 has gone through a period of adaptive amino acid evolution. Further analyses indicate that of the seven amino acid fixations that occurred in the D. mojavensis lineage, two of them occur in the active site pocket, potentially having a significant effect on substrate specificity and in the adaptation to alternative cactus hosts. PMID:18245335

  12. Structural basis for the interaction of antibiotics with peptidyl transferase center in eubacteria

    SciTech Connect

    Schlunzen, Frank; Zarivach, Raz; Harms, Jörg; Bashan, Anat; Tocilj, Ante; Albrecht, Renate; Yonath, Ada; Franceschi, Francois

    2009-10-07

    Ribosomes, the site of protein synthesis, are a major target for natural and synthetic antibiotics. Detailed knowledge of antibiotic binding sites is central to understanding the mechanisms of drug action. Conversely, drugs are excellent tools for studying the ribosome function. To elucidate the structural basis of ribosome-antibiotic interactions, we determined the high-resolution X-ray structures of the 50S ribosomal subunit of the eubacterium Deinococcus radiodurans, complexed with the clinically relevant antibiotics chloramphenicol, clindamycin and the three macrolides erythromycin, clarithromycin and roxithromycin. We found that antibiotic binding sites are composed exclusively of segments of 23S ribosomal RNA at the peptidyl transferase cavity and do not involve any interaction of the drugs with ribosomal proteins. Here we report the details of antibiotic interactions with the components of their binding sites. Our results also show the importance of putative Mg{sup +2} ions for the binding of some drugs. This structural analysis should facilitate rational drug design.

  13. O-GlcNAc transferase invokes nucleotide sugar pyrophosphate participation in catalysis.

    PubMed

    Schimpl, Marianne; Zheng, Xiaowei; Borodkin, Vladimir S; Blair, David E; Ferenbach, Andrew T; Schüttelkopf, Alexander W; Navratilova, Iva; Aristotelous, Tonia; Albarbarawi, Osama; Robinson, David A; Macnaughtan, Megan A; van Aalten, Daan M F

    2012-12-01

    Protein O-GlcNAcylation is an essential post-translational modification on hundreds of intracellular proteins in metazoa, catalyzed by O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) using unknown mechanisms of transfer and substrate recognition. Through crystallographic snapshots and mechanism-inspired chemical probes, we define how human OGT recognizes the sugar donor and acceptor peptide and uses a new catalytic mechanism of glycosyl transfer, involving the sugar donor α-phosphate as the catalytic base as well as an essential lysine. This mechanism seems to be a unique evolutionary solution to the spatial constraints imposed by a bulky protein acceptor substrate and explains the unexpected specificity of a recently reported metabolic OGT inhibitor.

  14. Glutathione-S-transferase-pi (GST-pi) expression in renal cell carcinoma

    PubMed Central

    Horti, Maria; Kandilaris, Kosmas; Skolarikos, Andreas; Trakas, Nikolaos; Kastriotis, Ioannis; Deliveliotis, Charalambos

    2015-01-01

    Multidrug resistance correlates with unfavourable treatment outcomes in numerous cancers including renal cell carcinoma. The expression and clinical relevance of Glutathione-S-transferase-pi (GST-pi), a multidrug resistance factor, in kidney tumors remain controversial. We analyzed the expression of GST-pi in 60 formalin-fixed, paraffin-embedded renal cell carcinoma samples by immunohistochemistry and compared them with matched normal regions of the kidney. A significantly higher expression of GST-pi was observed in 87% of clear cell carcinoma and 50% of papillary subtypes. GST-pi expression did not correlate with tumor grade or patient survival. GST-pi is unlikely to be a prognostic factor for renal cell carcinoma. However, further studies with large number of samples are warranted to establish the role of GST-pi, if any, in intrinsic or acquired resistance of renal cell carcinoma to conventional treatments.

  15. Glutathione S-transferase mediates an ageing response to mitochondrial dysfunction

    PubMed Central

    Dancy, Beverley M.; Brockway, Nicole; Ramadasan-Nair, Renjini; Yang, Yoing; Sedensky, Margaret M.; Morgan, Philip G.

    2016-01-01

    To understand primary mitochondrial disease, we utilized a complex I-deficient Caenorhabditis elegans mutant, gas-1. These animals strongly upregulate the expression of gst-14 (encoding a glutathione S-transferase). Knockdown of gst-14 dramatically extends the lifespan of gas-1 and increases hydroxynonenal (HNE) modified mitochondrial proteins without improving complex I function. We observed no change in reactive oxygen species levels as measured by Mitosox staining, consistent with a potential role of GST-14 in HNE clearance. The upregulation of gst-14 in gas-1 animals is specific to the pharynx. These data suggest that an HNE-mediated response in the pharynx could be beneficial for lifespan extension in the context of complex I dysfunction in C. elegans. Thus, whereas HNE is typically considered damaging, our work is consistent with recent reports of its role in signaling, and that in this case, the signal is pro-longevity in a model of mitochondrial dysfunction. PMID:26704446

  16. Crystallization and preliminary X-ray analysis of glutathione transferases from cyanobacteria

    SciTech Connect

    Feil, Susanne C.; Tang, Julian; Hansen, Guido; Gorman, Michael A.; Wiktelius, Eric; Stenberg, Gun; Parker, Michael W.

    2009-05-08

    Glutathione S-transferases (GSTs) are a group of multifunctional enzymes that are found in animals, plants and microorganisms. Their primary function is to remove toxins derived from exogenous sources or the products of metabolism from the cell. Mammalian GSTs have been extensively studied, in contrast to bacterial GSTs which have received relatively scant attention. A new class of GSTs called Chi has recently been identified in cyanobacteria. Chi GSTs exhibit a high glutathionylation activity towards isothiocyanates, compounds that are normally found in plants. Here, the crystallization of two GSTs are presented: TeGST produced by Thermosynechococcus elongates BP-1 and SeGST from Synechococcus elongates PCC 6301. Both enzymes formed crystals that diffracted to high resolution and appeared to be suitable for further X-ray diffraction studies. The structures of these GSTs may shed further light on the evolution of GST catalytic activity and in particular why these enzymes possess catalytic activity towards plant antimicrobial compounds.

  17. Glutathione transferases are structural and functional outliers in the thioredoxin fold.

    PubMed

    Atkinson, Holly J; Babbitt, Patricia C

    2009-11-24

    Glutathione transferases (GSTs) are ubiquitous scavengers of toxic compounds that fall, structurally and functionally, within the thioredoxin fold suprafamily. The fundamental catalytic capability of GSTs is catalysis of the nucleophilic addition or substitution of glutathione at electrophilic centers in a wide range of small electrophilic compounds. While specific GSTs have been studied in detail, little else is known about the structural and functional relationships between different groupings of GSTs. Through a global analysis of sequence and structural similarity, it was determined that variation in the binding of glutathione between the two major subgroups of cytosolic (soluble) GSTs results in a different mode of glutathione activation. Additionally, the convergent features of glutathione binding between cytosolic GSTs and mitochondrial GST kappa are described. The identification of these structural and functional themes helps to illuminate some of the fundamental contributions of the thioredoxin fold to catalysis in the GSTs and clarify how the thioredoxin fold can be modified to enable new functions.

  18. Molybdenum and tungsten oxygen transferases--and functional diversity within a common active site motif.

    PubMed

    Pushie, M Jake; Cotelesage, Julien J; George, Graham N

    2014-01-01

    Molybdenum and tungsten are the only second and third-row transition elements with a known function in living organisms. The molybdenum and tungsten enzymes show common structural features, with the metal being bound by a pyranopterin-dithiolene cofactor called molybdopterin. They catalyze a variety of oxygen transferase reactions coupled with two-electron redox chemistry in which the metal cycles between the +6 and +4 oxidation states usually with water, either product or substrate, providing the oxygen. The functional roles filled by the molybdenum and tungsten enzymes are diverse; for example, they play essential roles in microbial respiration, in the uptake of nitrogen in green plants, and in human health. Together, the enzymes form a superfamily which is among the most prevalent known, being found in all kingdoms of life. This review discusses what is known of the active site structures and the mechanisms, together with some recent insights into the evolution of these important enzyme systems.

  19. Rab geranylgeranyl transferase β subunit is essential for male fertility and tip growth in Arabidopsis.

    PubMed

    Gutkowska, Malgorzata; Wnuk, Marta; Nowakowska, Julita; Lichocka, Malgorzata; Stronkowski, Michal M; Swiezewska, Ewa

    2015-01-01

    Rab proteins, key players in vesicular transport in all eukaryotic cells, are post-translationally modified by lipid moieties. Two geranylgeranyl groups are attached to the Rab protein by the heterodimeric enzyme Rab geranylgeranyl transferase (RGT) αβ. Partial impairment in this enzyme activity in Arabidopsis, by disruption of the AtRGTB1 gene, is known to influence plant stature and disturb gravitropic and light responses. Here it is shown that mutations in each of the RGTB genes cause a tip growth defect, visible as root hair and pollen tube deformations. Moreover, FM 1-43 styryl dye endocytosis and recycling are affected in the mutant root hairs. Finally, it is demonstrated that the double mutant, with both AtRGTB genes disrupted, is non-viable due to absolute male sterility. Doubly mutated pollen is shrunken, has an abnormal exine structure, and shows strong disorganization of internal membranes, particularly of the endoplasmic reticulum system.

  20. Irreversible Inhibition of Glutathione S-Transferase by Phenethyl Isothiocyanate (PEITC), a Dietary Cancer Chemopreventive Phytochemical

    PubMed Central

    Kumari, Vandana; Dyba, Marzena A.; Holland, Ryan J.; Liang, Yu-He; Singh, Shivendra V.

    2016-01-01

    Dietary isothiocyanates abundant as glucosinolate precursors in many edible cruciferous vegetables are effective for prevention of cancer in chemically-induced and transgenic rodent models. Some of these agents, including phenethyl isothiocyanate (PEITC), have already advanced to clinical investigations. The primary route of isothiocyanate metabolism is its conjugation with glutathione (GSH), a reaction catalyzed by glutathione S-transferase (GST). The pi class GST of subunit type 1 (hGSTP1) is much more effective than the alpha class GST of subunit type 1 (hGSTA1) in catalyzing the conjugation. Here, we report the crystal structures of hGSTP1 and hGSTA1 each in complex with the GSH adduct of PEITC. We find that PEITC also covalently modifies the cysteine side chains of GST, which irreversibly inhibits enzymatic activity. PMID:27684484

  1. Phi Class of Glutathione S-transferase Gene Superfamily Widely Exists in Nonplant Taxonomic Groups

    PubMed Central

    Munyampundu, Jean-Pierre; Xu, You-Ping; Cai, Xin-Zhong

    2016-01-01

    Glutathione S-transferases (GSTs) constitute a superfamily of enzymes involved in detoxification of noxious compounds and protection against oxidative damage. GST class Phi (GSTF), one of the important classes of plant GSTs, has long been considered as plant specific but was recently found in basidiomycete fungi. However, the range of nonplant taxonomic groups containing GSTFs remains unknown. In this study, the distribution and phylogenetic relationships of nonplant GSTFs were investigated. We identified GSTFs in ascomycete fungi, myxobacteria, and protists Naegleria gruberi and Aureococcus anophagefferens. GSTF occurrence in these bacteria and protists correlated with their genome sizes and habitats. While this link was missing across ascomycetes, the distribution and abundance of GSTFs among ascomycete genomes could be associated with their lifestyles to some extent. Sequence comparison, gene structure, and phylogenetic analyses indicated divergence among nonplant GSTFs, suggesting polyphyletic origins during evolution. Furthermore, in silico prediction of functional partners suggested functional diversification among nonplant GSTFs. PMID:26884677

  2. Structural studies of a baboon (Papio sp.) plasma protein inhibitor of cholesteryl ester transferase.

    PubMed

    Buchko, G W; Rozek, A; Kanda, P; Kennedy, M A; Cushley, R J

    2000-08-01

    A 38-residue protein associated with cholesteryl ester transfer inhibition has been identified in baboons (Papio sp.). The cholesteryl ester transfer inhibitor protein (CETIP) corresponds to the N-terminus of baboon apoC-I. Relative to CETIP, baboon apoC-I is a weak inhibitor of baboon cholesteryl ester transferase (CET). To study the structural features responsible for CET inhibition, CETIP was synthesized by solid-phase methods. Using sodium dodecyl sulfate (SDS) to model the lipoprotein environment, the solution structure of CETIP was probed by optical and 1H NMR spectroscopy. Circular dichroism data show that the protein lacks a well-defined structure in water but, upon the addition of SDS, becomes helical (56%). A small blue shift of 8 nm was observed in the intrinsic tryptophan fluorescence of CETIP in the presence of saturating amounts of SDS, suggesting that tryptophan-23 is not buried deeply in the lipid environment. The helical nature of CETIP in the presence of SDS was confirmed by upfield 1Halpha secondary shifts and an average solution structure determined by distance geometry/simulated annealing calculations using 476 NOE-based distance restraints. The backbone (N-Calpha-C=O) root-mean-square deviation of an ensemble of 17 out of 25 calculated structures superimposed on the average structure was 1.06+0.30 A using residues V4-P35 and 0.51+/-0.17 A using residues A7-S32. Although the side-chain orientations fit the basic description of a class A amphipathic helix, both intramolecular salt bridge formation and "snorkeling" of basic side chains toward the polar face play minor, if any, roles in stabilizing the lipid-bound amphipathic structure. Conformational features of the calculated structures for CETIP are discussed relative to models of CETIP inhibition of cholesteryl ester transferase.

  3. Mitochondrial carnitine palmitoyl transferase-II inactivity aggravates lipid accumulation in rat hepatocarcinogenesis

    PubMed Central

    Gu, Juan-Juan; Yao, Min; Yang, Jie; Cai, Yin; Zheng, Wen-Jie; Wang, Li; Yao, Deng-Bing; Yao, Deng-Fu

    2017-01-01

    AIM To investigate the dynamic alteration of mitochondrial carnitine palmitoyl transferase II (CPT-II) expression during malignant transformation of rat hepatocytes. METHODS Sprague-Dawley male rats were fed with normal, high fat (HF), and HF containing 2-fluorenylacetamide (2-FAA) diet, respectively. According to the Hematoxylin and Eosin staining of livers, rats were divided into control, fatty liver, degeneration, precancerous, and cancerous groups. Liver lipids were dyed with Oil Red O, CPT-II alterations were analyzed by immunohistochemistry, and compared with CPT-II specific concentration (μg/mg protein). Levels of total cholesterol (Tch), triglyceride (TG), and amino-transferases [alanine aminotransferase (ALT), aspartate aminotransferase (AST)] were determined by the routine methods. RESULTS After intake of HF and/or HF+2-FAA diets, the rat livers showed mass lipid accumulation. The lipid level in the control group was significantly lower than that in other groups. The changes of serum TG and Tch levels were abnormally increasing, 2-3 times more than those in the controls (P < 0.05). During the rat liver morphological changes from normal to cancer development process with hepatocyte injury, serum AST and ALT levels were significantly higher (4-8 times, P < 0.05) than those in the control group. The specific concentration of CPT-II in liver tissues progressively decreased during hepatocyte malignant transformation, with the lowest CPT-II levels in the cancer group than in any of the other groups (P < 0.05). CONCLUSION Low CPT-II expression might lead to abnormal hepatic lipid accumulation, which should promote the malignant transformation of hepatocytes. PMID:28127199

  4. A Glutathione Transferase from Agrobacterium tumefaciens Reveals a Novel Class of Bacterial GST Superfamily

    PubMed Central

    Skopelitou, Katholiki; Dhavala, Prathusha; Papageorgiou, Anastassios C.; Labrou, Nikolaos E.

    2012-01-01

    In the present work, we report a novel class of glutathione transferases (GSTs) originated from the pathogenic soil bacterium Agrobacterium tumefaciens C58, with structural and catalytic properties not observed previously in prokaryotic and eukaryotic GST isoenzymes. A GST-like sequence from A. tumefaciens C58 (Atu3701) with low similarity to other characterized GST family of enzymes was identified. Phylogenetic analysis showed that it belongs to a distinct GST class not previously described and restricted only in soil bacteria, called the Eta class (H). This enzyme (designated as AtuGSTH1-1) was cloned and expressed in E. coli and its structural and catalytic properties were investigated. Functional analysis showed that AtuGSTH1-1 exhibits significant transferase activity against the common substrates aryl halides, as well as very high peroxidase activity towards organic hydroperoxides. The crystal structure of AtuGSTH1-1 was determined at 1.4 Å resolution in complex with S-(p-nitrobenzyl)-glutathione (Nb-GSH). Although AtuGSTH1-1 adopts the canonical GST fold, sequence and structural characteristics distinct from previously characterized GSTs were identified. The absence of the classic catalytic essential residues (Tyr, Ser, Cys) distinguishes AtuGSTH1-1 from all other cytosolic GSTs of known structure and function. Site-directed mutagenesis showed that instead of the classic catalytic residues, an Arg residue (Arg34), an electron-sharing network, and a bridge of a network of water molecules may form the basis of the catalytic mechanism. Comparative sequence analysis, structural information, and site-directed mutagenesis in combination with kinetic analysis showed that Phe22, Ser25, and Arg187 are additional important residues for the enzyme's catalytic efficiency and specificity. PMID:22496785

  5. The Drosophila protein palmitoylome: Characterizing palmitoyl-thioesterases and DHHC palmitoyl-transferases

    PubMed Central

    Bannan, Barbra A.; Van Etten, Jamie; Kohler, John A.; Tsoi, Yui; Hansen, Nicole M.; Sigmon, Stacey; Fowler, Elizabeth; Buff, Haley; Williams, Tiffany S.; Ault, Jeffrey G.; Glaser, Robert L.; Korey, Christopher A.

    2010-01-01

    Palmitoylation is the post-translational addition of a palmitate moiety to a cysteine residue through a covalent thioester bond. The addition and removal of this modification is controlled by both palmitoyl acyl-transferases and thioesterases. Using bioinformatic analysis, we identified 22 DHHC family palmitoyl acyl-transferase homologs in the Drosophila genome. We used in situ hybridization, RT-PCR, and published FlyAtlas microarray data to characterize the expression patterns of all 22 fly homologs. Our results indicate that all are expressed genes, but several, including CG1407, CG4676, CG5620, CG6017/dHIP14, CG6618, CG6627, and CG17257 appear to be enriched in neural tissues suggesting that they are important for neural function. Furthermore, we have found that several may be expressed in a sex-specific manner with adult male-specific expression of CG4483 and CG17195. Using tagged versions of the DHHC genes, we demonstrate that fly DHHC proteins are primarily located in either the Golgi Apparatus or Endoplasmic Reticulum in S2 cells, except for CG1407, which was found on the plasma membrane. We also characterized the subcellular localization and expression of the three known thioesterases: Palmitoyl-protein Thioesterase 1 (Ppt1), Palmitoyl-protein Thioesterase 2 (Ppt2), and Acyl-protein Thioesterase 1 (APT1). Our results indicate that Ppt1 and Ppt2 are the major lysosomal thioesterases while APT1 is the likely cytoplasmic thioesterase. Finally, in vivo rescue experiments show that Ppt2 expression cannot rescue the neural inclusion phenotypes associated with loss of Ppt1, further supporting distinct functions and substrates for these two thioesterases. These results will serve as the basis for a more complete understanding of the protein palmitoylome's normal cellular functions in the fly and will lead to further insights into the molecular etiology of diseases associated with the mis-regulation of palmitoylation. PMID:18719403

  6. COMPARATIVE EXPRESSION OF TWO ALPHA CLASS GLUTATHIONE S-TRANSFERASES IN HUMAN ADULT AND PRENATAL LIVER TISSUES. (R827441)

    EPA Science Inventory

    Abstract

    The ability of the fetus to detoxify transplacental drugs and chemicals can be a critical determinant of teratogenesis and developmental toxicity. Developmentally regulated expression of alpha class glutathione S-transferases (GSTs) is of particular int...

  7. Function and phylogeny of bacterial butyryl-CoA:acetate transferases and their diversity in the proximal colon of swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studying the host-associated butyrate-producing bacterial community is important because butyrate is essential for colonic homeostasis and gut health. Previous research has identified the butyryl-coA:acetate transferase (2.3.8.3) as a the main gene for butyrate production in intestinal ecosystems; h...

  8. BIOTRANSFORMATION AND GENOTOXICITY OF THE DRINKING WATER DISINFECTION BYPRODUCT BROMODICHLOROMETHANE: DNA BINDING MEDIATED BY GLUTATHIONE TRANSFERASE THETA 1-1

    EPA Science Inventory

    The drinking water disinfection byproduct bromodichloromethane (CHBrCl2) was
    previously shown to be mutagenic in Salmonella typhimurium that overexpress rat glutathione
    transferase theta 1-1 (GSTT1-1). Several experimental approaches were undertaken in this study
    to inve...

  9. Synthesis and evaluation of a novel series of farnesyl protein transferase inhibitors as non-peptidic CAAX tetrapeptide analogues.

    PubMed

    Perez, Michel; Maraval, Catherine; Dumond, Stephan; Lamothe, Marie; Schambel, Philippe; Etiévant, Chantal; Hill, Bridget

    2003-04-17

    A novel series of compounds, derived from 4-amino-phenyl piperazine, has been designed to selectively inhibit farnesyl protein transferase (FPTase) as CAAX tetrapeptide analogues. Certain of these compounds were shown to possess low nanomolar inhibitory activity both against the isolated enzyme and in cultured cells.

  10. Dimethyl adenosine transferase (KsgA) deficiency in Salmonella Enteritidis confers susceptibility to high osmolarity and virulence attenuation in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : Dimethyladenosine transferase (KsgA) performs diverse roles in bacteria including ribosomal maturation, DNA mismatch repair, and synthesis of KsgA is responsive to antibiotics and cold temperature. We previously showed that ksgA mutation in Salmonella Enteritidis results in impaired invasiveness i...

  11. The glutathione-S-transferase Mu 1 null genotype modulates ozone-induced airway inflammation in humans*

    EPA Science Inventory

    Background: The Glutathione-S-Transferase Mu 1 null genotype has been reported to be a risk factor for acute respiratory disease associated with increases in ambient air ozone. Ozone is known to cause an immediate decrease in lung function and increased airway inflammation. Howev...

  12. Molecular mimicry between cockroach and helminth glutathione S-transferases promotes cross-reactivity and cross-sensitization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The extensive similarities between helminth proteins and allergens are thought to contribute to helminth-driven allergic sensitization. We investigated the molecular and structural similarities between Bla g 5, a major glutathione-S transferase (GST) allergen of cockroaches, and the GST of Wucherer...

  13. The Level of Circulating Octanoate Does Not Predict Ghrelin O-Acyl Transferase (GOAT)-Mediated Acylation of Ghrelin During Fasting

    PubMed Central

    Nikolayev, Alexander; Liu, Jianhua; Pezzoli, Suzan S.; Farhy, Leon S.; Patrie, James; Gaylinn, Bruce D.; Heiman, Mark; Thorner, Michael O.

    2015-01-01

    Background: Acyl-ghrelin is a 28-amino acid peptide released from the stomach. Ghrelin O-acyl transferase (GOAT) attaches an 8-carbon medium-chain fatty acid (MCFA) (octanoate) to serine 3 of ghrelin. This acylation is necessary for the activity of ghrelin. Animal data suggest that MCFAs provide substrate for GOAT and an increase in nutritional octanoate increases acyl-ghrelin. Objectives: To address the question of the source of substrate for acylation, we studied whether the decline in ghrelin acylation during fasting is associated with a decline in circulating MCFAs. Methods: Eight healthy young men (aged 18–28 years, body mass index range, 20.6–26.2 kg/m2) had blood drawn every 10 minutes for acyl- and desacyl-ghrelin and every hour for free fatty acids (FFAs) during the last 24 hours of a 61.5-hour fast and during a fed day. FFAs were measured by a highly sensitive liquid chromatography-mass spectroscopy method. Acyl- and desacyl-ghrelin were measured in an in-house assay; the results were published previously. Ghrelin acylation was assessed by the ratio of acyl-ghrelin to total ghrelin. Results: With the exception of MCFAs C8 and C10, all other FFAs, the MCFAs (C6 and C12), and the long-chain fatty acids (C14–C18) significantly increased with fasting (P < .05). There was no significant association between the fold change in ghrelin acylation and circulating FFAs. Conclusions: These results suggest that changes in circulating MCFAs are not linked to the decline in ghrelin acylation during fasting and support the hypothesis that acylation of ghrelin depends at least partially on the availability of gastroluminal MCFAs or the regulation of GOAT activity. PMID:25337923

  14. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin.

    PubMed

    Poulsen, S M; Kofoed, C; Vester, B

    2000-12-01

    Many antibiotics, including the macrolides, inhibit protein synthesis by binding to ribosomes. Only some of the macrolides affect the peptidyl transferase reaction. The 16-member ring macrolide antibiotics carbomycin, spiramycin, and tylosin inhibit peptidyl transferase. All these have a disaccharide at position 5 in the lactone ring with a mycarose moiety. We have investigated the functional role of this mycarose moiety. The 14-member ring macrolide erythromycin and the 16-member ring macrolides desmycosin and chalcomycin do not inhibit the peptidyl transferase reaction. These drugs have a monosaccharide at position 5 in the lactone ring. The presence of mycarose was correlated with inhibition of peptidyl transferase, footprints on 23 S rRNA and whether the macrolide can compete with binding of hygromycin A to the ribosome. The binding sites of the macrolides to Escherichia coli ribosomes were investigated by chemical probing of domains II and V of 23 S rRNA. The common binding site is around position A2058, while effects on U2506 depend on the presence of the mycarose sugar. Also, protection at position A752 indicates that a mycinose moiety at position 14 in 16-member ring macrolides interact with hairpin 35 in domain II. Competitive footprinting of ribosomal binding of hygromycin A and macrolides showed that tylosin and spiramycin reduce the hygromycin A protections of nucleotides in 23 S rRNA and that carbomycin abolishes its binding. In contrast, the macrolides that do not inhibit the peptidyl transferase reaction bind to the ribosomes concurrently with hygromycin A. Data are presented to argue that a disaccharide at position 5 in the lactone ring of macrolides is essential for inhibition of peptide bond formation and that the mycarose moiety is placed near the conserved U2506 in the central loop region of domain V 23 S rRNA.

  15. The Sfp-Type 4′-Phosphopantetheinyl Transferase Ppt1 of Fusarium fujikuroi Controls Development, Secondary Metabolism and Pathogenicity

    PubMed Central

    Wiemann, Philipp; Albermann, Sabine; Niehaus, Eva-Maria; Studt, Lena; von Bargen, Katharina W.; Brock, Nelson L.; Humpf, Hans-Ulrich; Dickschat, Jeroen S.; Tudzynski, Bettina

    2012-01-01

    The heterothallic ascomycete Fusarium fujikuroi is a notorious rice pathogen causing super-elongation of plants due to the production of terpene-derived gibberellic acids (GAs) that function as natural plant hormones. Additionally, F. fujikuroi is able to produce a variety of polyketide- and non-ribosomal peptide-derived metabolites such as bikaverins, fusarubins and fusarins as well as metabolites from yet unidentified biosynthetic pathways, e.g. moniliformin. The key enzymes needed for their production belong to the family of polyketide synthases (PKSs) and non-ribosomal peptide synthases (NRPSs) that are generally known to be post-translationally modified by a Sfp-type 4′phosphopantetheinyl transferase (PPTase). In this study we provide evidence that the F. fujikuroi Sfp-type PPTase FfPpt1 is essentially involved in lysine biosynthesis and production of bikaverins, fusarubins and fusarins, but not moniliformin as shown by analytical methods. Concomitantly, targeted Ffppt1 deletion mutants reveal an enhancement of terpene-derived metabolites like GAs and volatile substances such as α-acorenol. Pathogenicity assays on rice roots using fluorescent labeled wild-type and Ffppt1 mutant strains indicate that lysine biosynthesis and iron acquisition but not PKS and NRPS metabolism is essential for establishment of primary infections of F. fujikuroi. Additionally, FfPpt1 is involved in conidiation and sexual mating recognition possibly by activating PKS- and/or NRPS-derived metabolites that could act as diffusible signals. Furthermore, the effect on iron acquisition of Ffppt1 mutants led us to identify a previously uncharacterized putative third reductive iron uptake system (FfFtr3/FfFet3) that is closely related to the FtrA/FetC system of A. fumigatus. Functional characterization provides evidence that both proteins are involved in iron acquisition and are liable to transcriptional repression of the homolog of the Aspergillus GATA-type transcription factor SreA under

  16. Decreased glutathione S-transferase expression and activity and altered sex steroids in Lake Apopka brown bullheads (Ameriurus nebulosus)

    USGS Publications Warehouse

    Gallagher, E.P.; Gross, T.S.; Sheehy, K.M.

    2001-01-01

    A number of freshwater lakes and reclaimed agricultural sites in Central Florida have been the receiving waters for agrochemical and municipal runoff. One of these sites, Lake Apopka, is also a eutrophic system that has been the focus of several case studies reporting altered reproductive activity linked to bioaccumulation of persistent organochlorine chemicals in aquatic species. The present study was initiated to determine if brown bullheads (Ameriurus nebulosus) from the north marsh of Lake Apopka (Lake Apopka Marsh) exhibit an altered capacity to detoxify environmental chemicals through hepatic glutathione S-transferase (GST)-mediated conjugation as compared with bullheads from a nearby reference site (Lake Woodruff). We also compared plasma sex hormone concentrations (testosterone, 17-?? estradiol, and 11 keto-testosterone) in bullheads from the two sites. Female bullheads from Lake Apopka had 40% lower initial rate GST conjugative activity toward 1-chloro-2,4-dinitrobenzene (CDNB), 50% lower activity towards p-nitrobutyl chloride (NBC), 33% lower activity toward ethacrynic acid (ECA), and 43% lower activity toward ??5-androstene-3,17-dione (??5-ADI), as compared with female bullheads from Lake Woodruff. Enzyme kinetic analyses demonstrated that female bullheads from Lake Apopka had lower GST-catalyzed CDNB clearance than did female Lake Woodruff bullheads. Western blotting studies of bullhead liver cytosolic proteins demonstrated that the reduced GST catalytic activities in female Lake Apopka bullheads were accompanied by lower expression of hepatic GST protein. No site differences were observed with respect to GST activities or GST protein expression in male bullheads. Female Lake Apopka bullheads also had elevated concentrations of plasma androgens (testosterone and 11-ketotestosterone) as compared with females from Lake Woodruff. In contrast, male Lake Apopka bullheads had elevated levels of plasma estrogen but similar levels of androgens as compared with

  17. Amino acid sequence around the active-site serine residue in the acyltransferase domain of goat mammary fatty acid synthetase.

    PubMed Central

    Mikkelsen, J; Højrup, P; Rasmussen, M M; Roepstorff, P; Knudsen, J

    1985-01-01

    Goat mammary fatty acid synthetase was labelled in the acyltransferase domain by formation of O-ester intermediates by incubation with [1-14C]acetyl-CoA and [2-14C]malonyl-CoA. Tryptic-digest and CNBr-cleavage peptides were isolated and purified by high-performance reverse-phase and ion-exchange liquid chromatography. The sequences of the malonyl- and acetyl-labelled peptides were shown to be identical. The results confirm the hypothesis that both acetyl and malonyl groups are transferred to the mammalian fatty acid synthetase complex by the same transferase. The sequence is compared with those of other fatty acid synthetase transferases. PMID:3922356

  18. Modelling and bioinformatics studies of the human Kappa-class glutathione transferase predict a novel third glutathione transferase family with similarity to prokaryotic 2-hydroxychromene-2-carboxylate isomerases.

    PubMed Central

    Robinson, Anna; Huttley, Gavin A; Booth, Hilary S; Board, Philip G

    2004-01-01

    The Kappa class of GSTs (glutathione transferases) comprises soluble enzymes originally isolated from the mitochondrial matrix of rats. We have characterized a Kappa class cDNA from human breast. The cDNA is derived from a single gene comprising eight exons and seven introns located on chromosome 7q34-35. Recombinant hGSTK1-1 was expressed in Escherichia coli as a homodimer (subunit molecular mass approximately 25.5 kDa). Significant glutathione-conjugating activity was found only with the model substrate CDNB (1-chloro-2,4-ditnitrobenzene). Hyperbolic kinetics were obtained for GSH (parameters: K(m)app, 3.3+/-0.95 mM; V(max)app, 21.4+/-1.8 micromol/min per mg of enzyme), while sigmoidal kinetics were obtained for CDNB (parameters: S0.5app, 1.5+/-1.0 mM; V(max)app, 40.3+/-0.3 micromol/min per mg of enzyme; Hill coefficient, 1.3), reflecting low affinities for both substrates. Sequence analyses, homology modelling and secondary structure predictions show that hGSTK1 has (a) most similarity to bacterial HCCA (2-hydroxychromene-2-carboxylate) isomerases and (b) a predicted C-terminal domain structure that is almost identical to that of bacterial disulphide-bond-forming DsbA oxidoreductase (root mean square deviation 0.5-0.6 A). The structures of hGSTK1 and HCCA isomerase are predicted to possess a thioredoxin fold with a polyhelical domain (alpha(x)) embedded between the beta-strands (betaalphabetaalpha(x)betabetaalpha, where the underlined elements represent the N and C motifs of the thioredoxin fold), as occurs in the bacterial disulphide-bond-forming oxidoreductases. This is in contrast with the cytosolic GSTs, where the helical domain occurs exclusively at the C-terminus (betaalphabetaalphabetabetaalphaalpha(x)). Although hGSTK1-1 catalyses some typical GST reactions, we propose that it is structurally distinct from other classes of cytosolic GSTs. The present study suggests that the Kappa class may have arisen in prokaryotes well before the divergence of the

  19. Activation and inhibition of rubber transferases by metal cofactors and pyrophosphate substrates.

    PubMed

    Scott, Deborah J; da Costa, Bernardo M T; Espy, Stephanie C; Keasling, Jay D; Cornish, Katrina

    2003-09-01

    Metal cofactors are necessary for the activity of alkylation by prenyl transfer in enzyme-catalyzed reactions. Rubber transferase (RuT, a cis-prenyl transferase) associated with purified rubber particles from Hevea brasiliensis, Parthenium argentatum and Ficus elastica can use magnesium and manganese interchangably to achieve maximum velocity. We define the concentration of activator required for maximum velocity as [A](max). The [A](max)(Mg2+) in F. elastica (100 mM) is 10 times the [A](max)(Mg2+) for either H. brasiliensis (10 mM) or P. argentatum (8 mM). The [A](max)(Mn2+) in F. elastica (11 mM), H. brasiliensis (3.8 mM) and P. argentatum (6.8 mM) and the [A](max)(Mg2+) in H. brasiliensis (10 mM) and P. argentatum (8 mM) are similar. The differences in [A](max)(Mg2+) correlate with the actual endogenous Mg(2+) concentrations in the latex of living plants. Extremely low Mn(2+) levels in vivo indicate that Mg(2+) is the RuT cofactor in living H. brasiliensis and F. elastica trees. Kinetic analyses demonstrate that FPP-Mg(2+) and FPP-Mn(2+) are active substrates for rubber molecule initiation, although free FPP and metal cations, Mg(2+) and Mn(2+), can interact independently at the active site with the following relative dissociation constants K(d)(FPP)

  20. Structural snapshots along the reaction pathway of Yersinia pestis RipA, a putative butyryl-CoA transferase

    SciTech Connect

    Torres, Rodrigo; Lan, Benson; Latif, Yama; Chim, Nicholas; Goulding, Celia W.

    2014-04-01

    The crystal structures of Y. pestis RipA mutants were determined to provide insights into the CoA transferase reaction pathway. Yersinia pestis, the causative agent of bubonic plague, is able to survive in both extracellular and intracellular environments within the human host, although its intracellular survival within macrophages is poorly understood. A novel Y. pestis three-gene rip (required for intracellular proliferation) operon, and in particular ripA, has been shown to be essential for survival and replication in interferon γ-induced macrophages. RipA was previously characterized as a putative butyryl-CoA transferase proposed to yield butyrate, a known anti-inflammatory shown to lower macrophage-produced NO levels. RipA belongs to the family I CoA transferases, which share structural homology, a conserved catalytic glutamate which forms a covalent CoA-thioester intermediate and a flexible loop adjacent to the active site known as the G(V/I)G loop. Here, functional and structural analyses of several RipA mutants are presented in an effort to dissect the CoA transferase mechanism of RipA. In particular, E61V, M31G and F60M RipA mutants show increased butyryl-CoA transferase activities when compared with wild-type RipA. Furthermore, the X-ray crystal structures of E61V, M31G and F60M RipA mutants, when compared with the wild-type RipA structure, reveal important conformational changes orchestrated by a conserved acyl-group binding-pocket phenylalanine, Phe85, and the G(V/I)G loop. Binary structures of M31G RipA and F60M RipA with two distinct CoA substrate conformations are also presented. Taken together, these data provide CoA transferase reaction snapshots of an open apo RipA, a closed glutamyl-anhydride intermediate and an open CoA-thioester intermediate. Furthermore, biochemical analyses support essential roles for both the catalytic glutamate and the flexible G(V/I)G loop along the reaction pathway, although further research is required to fully

  1. Over-expression of a rice tau class glutathione s-transferase gene improves tolerance to salinity and oxidative stresses in Arabidopsis.

    PubMed

    Sharma, Raghvendra; Sahoo, Annapurna; Devendran, Ragunathan; Jain, Mukesh

    2014-01-01

    Glutathione S-transferases (GSTs) are multifunctional proteins encoded by large gene family in plants, which play important role in cellular detoxification of several endobiotic and xenobiotic compounds. Previously, we suggested the diverse roles of rice GST gene family members in plant development and various stress responses based on their differential expression. In this study, we report the functional characterization of a rice tau class GST gene, OsGSTU4. OsGSTU4 fusion protein was found to be localized in nucleus and cytoplasm. The over-expression of OsGSTU4 in E. coli resulted in better growth and higher GST activity under various stress conditions. Further, we raised over-expression transgenic Arabidopsis plants to reveal its in planta function. These transgenic lines showed reduced sensitivity towards plant hormones, auxin and abscisic acid. Various analyses revealed improved tolerance in transgenic Arabidopsis plants towards salinity and oxidative stresses, which may be attributed to the lower accumulation of reactive oxygen species and enhanced GST activity. In addition, microarray analysis revealed up-regulation of several genes involved in stress responses and cellular detoxification processes in the transgenic plants as compared to wild-type. These results suggest that OsGSTU4 can be used as a good candidate for the generation of stress-tolerant crop plants.

  2. Glyceryl trinitrate metabolism in the quail embryo by the glutathione S-transferases leads to a perturbation in redox status and embryotoxicity.

    PubMed

    Bardai, Ghalib K; Hales, Barbara F; Sunahara, Geoffrey I

    2013-07-01

    Exposure of stage 9 quail (Coturnix coturnix japonica) embryos to glyceryl trinitrate (GTN) induces malformations that were associated in previous studies with an increase in protein nitration. Increased nitration suggests metabolism of GTN by the embryo. The goals of this study were to characterize the enzymes and co-factors required for GTN metabolism by quail embryos, and to determine the effects of in ovo treatment with N-acetyl cysteine (NAC), a precursor of glutathione (GSH), on GTN embryotoxicity. GTN treatment of quail embryos resulted in an increase in nitrite, a decrease in total GSH, and an increase in the ratio of NADP(+)/NADPH, indicating that redox balance may be compromised in exposed embryos. Glutathione S-transferases (GSTs; EC 2.5.1.18) purified from the whole embryo (K(m) 0.84 mM; V(max) 36 μM/min) and the embryonic eye (K(m) 0.20 mM; V(max) 30 μM/min) had GTN-metabolizing activity (1436 and 34 nmol/min/mg, respectively); the addition of ethacrynic acid, an inhibitor of GST activity, decreased GTN metabolism. Peptide sequencing of the GST isozymes indicated that alpha- or mu-type GSTs in the embryo and embryonic eye had GTN metabolizing activity. NAC co-treatment partially protected against the effects of GTN exposure. Thus, GTN denitration by quail embryo GSTs may represent a key initial step in the developmental toxicity of GTN.

  3. Over-Expression of a Rice Tau Class Glutathione S-Transferase Gene Improves Tolerance to Salinity and Oxidative Stresses in Arabidopsis

    PubMed Central

    Sharma, Raghvendra; Sahoo, Annapurna; Devendran, Ragunathan; Jain, Mukesh

    2014-01-01

    Glutathione S-transferases (GSTs) are multifunctional proteins encoded by large gene family in plants, which play important role in cellular detoxification of several endobiotic and xenobiotic compounds. Previously, we suggested the diverse roles of rice GST gene family members in plant development and various stress responses based on their differential expression. In this study, we report the functional characterization of a rice tau class GST gene, OsGSTU4. OsGSTU4 fusion protein was found to be localized in nucleus and cytoplasm. The over-expression of OsGSTU4 in E. coli resulted in better growth and higher GST activity under various stress conditions. Further, we raised over-expression transgenic Arabidopsis plants to reveal its in planta function. These transgenic lines showed reduced sensitivity towards plant hormones, auxin and abscisic acid. Various analyses revealed improved tolerance in transgenic Arabidopsis plants towards salinity and oxidative stresses, which may be attributed to the lower accumulation of reactive oxygen species and enhanced GST activity. In addition, microarray analysis revealed up-regulation of several genes involved in stress responses and cellular detoxification processes in the transgenic plants as compared to wild-type. These results suggest that OsGSTU4 can be used as a good candidate for the generation of stress-tolerant crop plants. PMID:24663444

  4. Cloning, developmental, and tissue-specific expression of sucrose:sucrose 1-fructosyl transferase from Taraxacum officinale. Fructan localization in roots.

    PubMed

    Van den Ende, W; Michiels, A; Van Wonterghem, D; Vergauwen, R; Van Laere, A

    2000-05-01

    Sucrose:sucrose 1-fructosyl transferase (1-SST) is the key enzyme initiating fructan synthesis in Asteraceae. Using reverse transcriptase-PCR, we isolated the cDNA for 1-SST from Taraxacum officinale. The cDNA-derived amino acid sequence showed very high homology to other Asteracean 1-SSTs (Cichorium intybus 86%, Cynara scolymus 82%, Helianthus tuberosus 80%), but homology to 1-SST from Allium cepa (46%) and Aspergillus foetidus (18%) was much lower. Fructan concentrations, 1-SST activities, 1-SST protein, and mRNA concentrations were compared in different organs during vegetative and generative development of T. officinale plants. Expression of 1-SST was abundant in young roots but very low in leaves. 1-SST was also expressed at the flowering stages in roots, stalks, and receptacles. A good correlation was found between northern and western blots showing transcriptional regulation of 1-SST. At the pre-flowering stage, 1-SST mRNA concentrations and 1-SST activities were higher in the root phloem than in the xylem, resulting in the higher fructan concentrations in the phloem. Fructan localization studies indicated that fructan is preferentially stored in phloem parenchyma cells in the vicinity of the secondary sieve tube elements. However, inulin-like crystals occasionally appeared in xylem vessels.

  5. Cloning, Developmental, and Tissue-Specific Expression of Sucrose:Sucrose 1-Fructosyl Transferase from Taraxacum officinale. Fructan Localization in Roots1

    PubMed Central

    Van den Ende, Wim; Michiels, An; Van Wonterghem, Dominik; Vergauwen, Rudy; Van Laere, André

    2000-01-01

    Sucrose:sucrose 1-fructosyl transferase (1-SST) is the key enzyme initiating fructan synthesis in Asteraceae. Using reverse transcriptase-PCR, we isolated the cDNA for 1-SST from Taraxacum officinale. The cDNA-derived amino acid sequence showed very high homology to other Asteracean 1-SSTs (Cichorium intybus 86%, Cynara scolymus 82%, Helianthus tuberosus 80%), but homology to 1-SST from Allium cepa (46%) and Aspergillus foetidus (18%) was much lower. Fructan concentrations, 1-SST activities, 1-SST protein, and mRNA concentrations were compared in different organs during vegetative and generative development of T. officinale plants. Expression of 1-SST was abundant in young roots but very low in leaves. 1-SST was also expressed at the flowering stages in roots, stalks, and receptacles. A good correlation was found between northern and western blots showing transcriptional regulation of 1-SST. At the pre-flowering stage, 1-SST mRNA concentrations and 1-SST activities were higher in the root phloem than in the xylem, resulting in the higher fructan concentrations in the phloem. Fructan localization studies indicated that fructan is preferentially stored in phloem parenchyma cells in the vicinity of the secondary sieve tube elements. However, inulin-like crystals occasionally appeared in xylem vessels. PMID:10806226

  6. The identification and oxidative stress response of a zeta class glutathione S-transferase (GSTZ1) gene from Apis cerana cerana.

    PubMed

    Yan, Huiru; Meng, Fei; Jia, Haihong; Guo, Xingqi; Xu, Baohua

    2012-06-01

    Glutathione-S-transferases (GSTs) play an important role in protecting organisms against the toxicity of reactive oxygen species (ROS). However, no information is available for GSTs in the Chinese honey bee (Apis cerana cerana). In this study, we isolated and characterized a zeta class GST gene (AccGSTZ1) from the Chinese honey bee. This gene is present in a single copy and harbors five exons. The deduced amino acid sequence of AccGSTZ1 shared high sequence identity with homologous proteins and contained the highly conserved features of this gene family. The temporal and spatial expression profiles of AccGSTZ1 showed that AccGSTZ1 was highly expressed in fourth instar larvae during development, and the mRNA level of AccGSTZ1 was higher in the epidermis than that in other tissues. The expression pattern under oxidative stress revealed that AccGSTZ1 transcription was significantly upregulated by external factors, such as temperature challenges and H(2)O(2) treatment. The characterization of the purified protein revealed that AccGSTZ1 had low glutathione-conjugating activity, but the recombinant AccGSTZ1 protein displayed high antioxidant activity under oxidative stress. These data suggest that AccGSTZ1 is an oxidative stress-inducible antioxidant enzyme that plays an important role in the protection against oxidative stress and may be of critical importance for the survival of the honey bees.

  7. A Chinese cabbage (Brassica campetris subsp. Chinensis) τ-type glutathione-S-transferase stimulates Arabidopsis development and primes against abiotic and biotic stress.

    PubMed

    Kao, Chih-Wei; Bakshi, Madhunita; Sherameti, Irena; Dong, Sheqin; Reichelt, Michael; Oelmüller, Ralf; Yeh, Kai-Wun

    2016-12-01

    The beneficial root-colonizing fungus Piriformospora indica stimulates root development of Chinese cabbage (Brassica campestris subsp. Chinensis) and this is accompanied by the up-regulation of a τ-class glutathione (GSH)-S-transferase gene (BcGSTU) (Lee et al. 2011) in the roots. BcGSTU expression is further promoted by osmotic (salt and PEG) and heat stress. Ectopic expression of BcGSTU in Arabidopsis under the control of the 35S promoter results in the promotion of root and shoot growth as well as better performance of the plants under abiotic (150 mM NaCl, PEG, 42 °C) and biotic (Alternaria brassicae infection) stresses. Higher levels of glutathione, auxin and stress-related (salicylic and jasmonic acid) phytohormones as well as changes in the gene expression profile result in better performance of the BcGSTU expressors upon exposure to stress. Simultaneously the plants are primed against upcoming stresses. We propose that BcGSTU is a target of P. indica in Chinese cabbage roots because the enzyme participates in balancing growth and stress responses, depending on the equilibrium of the symbiotic interaction. A comparable function of BcGST in transgenic Arabidopsis makes the enzyme a valuable tool for agricultural applications.

  8. The characterization of cytosolic glutathione transferase from four species of sea turtles: loggerhead (Caretta caretta), green (Chelonia mydas), olive ridley (Lepidochelys olivacea), and hawksbill (Eretmochelys imbricata).

    PubMed

    Richardson, Kristine L; Gold-Bouchot, Gerardo; Schlenk, Daniel

    2009-08-01

    Glutathione s-transferases (GST) play a critical role in the detoxification of exogenous and endogenous electrophiles, as well as the products of oxidative stress. As compared to mammals, GST activity has not been extensively characterized in reptiles. Throughout the globe, most sea turtle populations face the risk of extinction. Of the natural and anthropogenic threats to sea turtles, the effects of environmental chemicals and related biochemical mechanisms, such as GST catalyzed detoxification, are probably the least understood. In the present study, GST activity was characterized in four species of sea turtles with varied life histories and feeding strategies: loggerhead (Caretta caretta), green (Chelonia mydas), olive ridley (Lepidochelys olivacea), and hawksbill (Eretmochelys imbricata). Although similar GST kinetics was observed between species, rates of catalytic activities using class-specific substrates show inter- and intra-species variation. GST from the spongivorous hawksbill sea turtle shows 3-4.5 fold higher activity with the substrate 4-nitrobenzylchloride than the other 3 species. GST from the herbivorous green sea turtle shows 3 fold higher activity with the substrate ethacrynic acid than the carnivorous olive ridley sea turtle. The results of this study may provide insight into differences in biotransformation potential in the four species of sea turtles and the possible health impacts of contaminant biotransformation by sea turtles.

  9. Synthesis and regulation of chlorogenic acid in potato: Rerouting phenylpropanoid flux in HQT silenced lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorogenic acid (CGA) is the major phenolic sink in potato tubers and can constitute over 90% of total phenylpropanoids. The regulation of CGA biosynthesis in potato and the role of the CGA biosynthetic gene hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase (HQT) was characterized. A sucros...

  10. Downregulation of Caffeic Acid 3-O-Methyltransferase and Caffeoyl CoA 3-O-Methyltransferase in Transgenic Alfalfa

    PubMed Central

    Guo, Dianjing; Chen, Fang; Inoue, Kentaro; Blount, Jack W.; Dixon, Richard A.

    2001-01-01

    Transgenic alfalfa plants were generated harboring caffeic acid 3-O-methyltransferase (COMT) and caffeoyl CoA 3-O-methyltransferase (CCOMT) cDNA sequences under control of the bean phenylalanine ammonia-lyase PAL2 promoter. Strong downregulation of COMT resulted in decreased lignin content, a reduction in total guaiacyl (G) lignin units, a near total loss of syringyl (S) units in monomeric and dimeric lignin degradation products, and appearance of low levels of 5-hydroxy guaiacyl units and a novel dimer. No soluble monolignol precursors accumulated. In contrast, strong downregulation of CCOMT led to reduced lignin levels, a reduction in G units without reduction in S units, and increases in β-5 linked dimers of G units. Accumulation of soluble caffeic acid β-d-glucoside occurred only in CCOMT downregulated plants. The results suggest that CCOMT does not significantly contribute to the 3-O-methylation step in S lignin biosynthesis in alfalfa and that there is redundancy with respect to the 3-O-methylation reaction of G lignin biosynthesis. COMT is unlikely to catalyze the in vivo methylation of caffeic acid during lignin biosynthesis. PMID:11158530

  11. Enzymatic Synthesis of Nucleic Acids with Defined Regioisomeric 2'-5' Linkages.

    PubMed

    Cozens, Christopher; Mutschler, Hannes; Nelson, Geoffrey M; Houlihan, Gillian; Taylor, Alexander I; Holliger, Philipp

    2015-12-14

    Information-bearing nucleic acids display universal 3'-5' linkages, but regioisomeric 2'-5' linkages occur sporadically in non-enzymatic RNA synthesis and may have aided prebiotic RNA replication. Herein we report on the enzymatic synthesis of both DNA and RNA with site-specific 2'-5' linkages by an engineered polymerase using 3'-deoxy- or 3'-O-methyl-NTPs as substrates. We also report the reverse transcription of the resulting modified nucleic acids back to 3'-5' linked DNA with good fidelity. This enables a fast and simple method for "structural mutagenesis" by the position-selective incorporation of 2'-5' linkages, whereby nucleic acid structure and function may be probed through local distortion by regioisomeric linkages while maintaining the wild-type base sequence as we demonstrate for the 10-23 RNA endonuclease DNAzyme.

  12. A Modular Synthetic Approach to Isosteric Sulfonic Acid Analogues of the Anticoagulant Pentasaccharide Idraparinux.

    PubMed

    Mező, Erika; Eszenyi, Dániel; Varga, Eszter; Herczeg, Mihály; Borbás, Anikó

    2016-11-11

    Heparin-based anticoagulants are drugs of choice in the therapy and prophylaxis of thromboembolic diseases. Idraparinux is a synthetic anticoagulant pentasaccharide based on the heparin antithrombin-binding domain. In the frame of our ongoing research aimed at the synthesis of sulfonic acid-containing heparinoid anticoagulants, we elaborated a modular pathway to obtain a series of idraparinux-analogue pentasaccharides bearing one or two primary sulfonic acid moieties. Five protected pentasaccharides with different C-sulfonation patterns were prepared by two subsequent glycosylation reactions, respectively, using two monosaccharide and four disaccharide building blocks. Transformation of the protected derivatives into the fully O-sulfated, O-methylated sulfonic acid end-products was also studied.

  13. Urinary π-glutathione S-transferase Predicts Advanced Acute Kidney Injury Following Cardiovascular Surgery.

    PubMed

    Shu, Kai-Hsiang; Wang, Chih-Hsien; Wu, Che-Hsiung; Huang, Tao-Min; Wu, Pei-Chen; Lai, Chien-Heng; Tseng, Li-Jung; Tsai, Pi-Ru; Connolly, Rory; Wu, Vin-Cent

    2016-08-16

    Urinary biomarkers augment the diagnosis of acute kidney injury (AKI), with AKI after cardiovascular surgeries being a prototype of prognosis scenario. Glutathione S-transferases (GST) were evaluated as biomarkers of AKI. Urine samples were collected in 141 cardiovascular surgical patients and analyzed for urinary alpha-(α-) and pi-(π-) GSTs. The outcomes of advanced AKI (KDIGO stage 2, 3) and all-cause in-patient mortality, as composite outcome, were recorded. Areas under the receiver operator characteristic (ROC) curves and multivariate generalized additive model (GAM) were applied to predict outcomes. Thirty-eight (26.9%) patients had AKI, while 12 (8.5%) were with advanced AKI. Urinary π-GST differentiated patients with/without advanced AKI or composite outcome after surgery (p < 0.05 by generalized estimating equation). Urinary π-GST predicted advanced AKI at 3 hrs post-surgery (p = 0.033) and composite outcome (p = 0.009), while the corresponding ROC curve had AUC of 0.784 and 0.783. Using GAM, the cutoff value of 14.7 μg/L for π-GST showed the best performance to predict composite outcome. The addition of π-GST to the SOFA score improved risk stratification (total net reclassification index = 0.47). Thus, urinary π-GST levels predict advanced AKI or hospital mortality after cardiovascular surgery and improve in SOFA outcome assessment specific to AKI.

  14. Staphylococcus aureus Formyl-Methionyl Transferase Mutants Demonstrate Reduced Virulence Factor Production and Pathogenicity

    PubMed Central

    Lewandowski, Thomas; Huang, Jianzhong; Fan, Frank; Rogers, Shannon; Gentry, Daniel; Holland, Reannon; DeMarsh, Peter; Zalacain, Magdalena

    2013-01-01

    Inhibitors of peptide deformylase (PDF) represent a new class of antibacterial agents with a novel mechanism of action. Mutations that inactivate formyl methionyl transferase (FMT), the enzyme that formylates initiator methionyl-tRNA, lead to an alternative initiation of protein synthesis that does not require deformylation and are the predominant cause of resistance to PDF inhibitors in Staphylococcus aureus. Here, we report that loss-of-function mutations in FMT impart pleiotropic effects that include a reduced growth rate, a nonhemolytic phenotype, and a drastic reduction in production of multiple extracellular proteins, including key virulence factors, such as α-hemolysin and Panton-Valentine leukocidin (PVL), that have been associated with S. aureus pathogenicity. Consequently, S. aureus FMT mutants are greatly attenuated in neutropenic and nonneutropenic murine pyelonephritis infection models and show very high survival rates compared with wild-type S. aureus. These newly discovered effects on extracellular virulence factor production demonstrate that FMT-null mutants have a more severe fitness cost than previously anticipated, leading to a substantial loss of pathogenicity and a restricted ability to produce an invasive infection. PMID:23571548

  15. Functional analysis of N-linking oligosaccharyl transferase enzymes encoded by deep-sea vent proteobacteria

    PubMed Central

    Mills, Dominic C.; Jervis, Adrian J.; Abouelhadid, Sherif; Yates, Laura E.; Cuccui, Jon; Linton, Dennis; Wren, Brendan W.

    2016-01-01

    Bacterial N-linking oligosaccharyl transferases (OTase enzymes) transfer lipid-linked glycans to selected proteins in the periplasm and were first described in the intestinal pathogen Campylobacter jejuni, a member of the ε-proteobacteria-subdivision of bacteria. More recently, orthologues from other ε-proteobacterial Campylobacter and Helicobacter species and a δ-proteobacterium, Desulfovibrio desulfuricans, have been described, suggesting that these two subdivisions of bacteria may be a source of further N-linked protein glycosylation systems. Whole-genome sequencing of both ε- and δ-proteobacteria from deep-sea vent habitats, a rich source of species from these subdivisions, revealed putative ORFs encoding OTase enzymes and associated adjacent glycosyltransferases similar to the C. jejuni N-linked glycosylation locus. We expressed putative OTase ORFs from the deep-sea vent species Nitratiruptor tergarcus, Sulfurovum lithotrophicum and Deferribacter desulfuricans in Escherichia coli and showed they were able to functionally complement the C. jejuni OTase, CjPglB . The enzymes were shown to possess relaxed glycan specificity, transferring diverse glycan structures and demonstrated different glycosylation sequon specificities. Additionally a permissive D. desulfuricans acceptor protein was identified, and we provide evidence that the N-linked glycan synthesised by N. tergarcus and S. lithotrophicum contains an acetylated sugar at the reducing end. This work demonstrates that deep-sea vent bacteria encode functional N-glycosylation machineries and are a potential source of biotechnologically important OTase enzymes. PMID:26610891

  16. Comparison of glycation of glutathione S-transferase by methylglyoxal, glucose or fructose.

    PubMed

    Boušová, Iva; Průchová, Zuzana; Trnková, Lucie; Dršata, Jaroslav

    2011-11-01

    Glycation is a process closely related to the aging and pathogenesis of diabetic complications. In this process, reactive α-dicarbonyl compounds (e.g., methylglyoxal) cause protein modification accompanied with potential loss of their biological activity and persistence of damaged molecules in tissues. We suppose that glutathione S-transferases (GSTs), a group of cytosolic biotransformation enzymes, may be modified by glycation in vivo, which would provide a rationale of its use as a model protein for studying glycation reactions. Glycation of GST by methylglyoxal, fructose, and glucose in vitro was studied. The course of protein glycation was evaluated using the following criteria: enzyme activity, formation of advanced glycation end-products using fluorescence and western blotting, amine content, protein conformation, cross linking and aggregation, and changes in molecular charge of GST. The ongoing glycation by methylglyoxal 2 mM resulted in pronounced decrease in the GST activity. It also led to the loss of 14 primary amino groups, which was accompanied by changes in protein mobility during native polyacrylamide gel electrophoresis. Formation of cross links with molecular weight of 75 kDa was observed. Obtained results can contribute to understanding of changes, which proceed in metabolism of xenobiotics during diabetes mellitus and ageing.

  17. Glutathione S-transferases as a cefpiramide binding protein in rat liver.

    PubMed

    Guji, A; Nishiya, H; Aoki, M; Ohyatsu, I; Yamaguchi, M; Tokumura, Y; Sugiyama, H; Miyashita, T; Ono, Y; Kunii, O

    1995-03-01

    To clarify the intrahepatical transport mechanism of cefpiramide, we investigated effects of various agents mainly excreted into the bile by several different mechanisms on the biliary excretion of cefpiramide in rats. Sulfobromophthalein, indocyanine green, bilirubin and probenecid, known to be bound to glutathione S-transferases (GST) (EC 2.5.1.18) in liver cytosol, reduced the biliary excretion of cefpiramide, while neither secretory IgA, which is transported via vesicles in the liver, nor colchicine, which inhibits movements of vesicles, had any effect on the excretion of cefpiramide. Propranolol and metoprolol, metabolized by mixed function oxidases, had no effect on the biliary excretion of cefpiramide. In the chromatography of liver cytosol, the amount of sulfobromophthalein or benzylpenicillin bound to the GST fraction decreased in the presence of cefpiramide or probenecid. The study showed that cefpiramide was transported in the liver without relation to mixed function oxidases or vesichle-mediated transporting system, but in relation to GST which binds cefpiramide, sulfobromophthalein, benzylpenicillin and probenecid, indicating an important role of GST in the cefpiramide excretion into the bile.

  18. Relationship between oxidative stress, glutathione S-transferase polymorphisms and hydroxyurea treatment in sickle cell anemia.

    PubMed

    Silva, Danilo Grünig Humberto; Belini Junior, Edis; Torres, Lidiane de Souza; Ricci Júnior, Octávio; Lobo, Clarisse de Castro; Bonini-Domingos, Claudia Regina; de Almeida, Eduardo Alves

    2011-06-15

    This study evaluated the oxidative stress and antioxidant capacity markers in sickle cell anemia (SCA) patients with and without treatment with hydroxyurea. We assessed GSTT1, GSTM1 and GSTP1 polymorphisms in patients and a control group. The study groups were composed of 48 subjects without hemoglobinopathies and 28 SCA patients, 13 treated with HU [SCA (+HU)], and 15 SCA patients not treated with HU [SCA (-HU)]. We observed a significant difference for GSTP1 polymorphisms in SCA patients with the V/V genotype that showed higher glutathione (GSH) and Trolox equivalent antioxidant capacity (TEAC) (p=0.0445 and p=0.0360), respectively, compared with the I/I genotype. HU use was associated with a 35.2% decrease in the lipid peroxidation levels of the SCA (+HU) group (p<0.0001). Moreover, the SCA (+HU) group showed higher TEAC as compared to the control group (p=0.002). We did not find any significant difference in glutathione-S-transferase (GST) activity between the groups (p=0.76), but the catalase (CAT) activity was about 17% and 30% decreased in the SCA (+HU) and SCA (-HU) groups, respectively (p<0.00001). Whereas the plasma GSH levels were ~2 times higher in the SCA patients than the control group (p=0.0005). HU use has contributed to higher CAT activity and TEAC, and lower lipid peroxidation in patients under treatment. These findings may explain the influence of HU in ameliorating oxidative stress on SCA subjects.

  19. Septins guide microtubule protrusions induced by actin-depolymerizing toxins like Clostridium difficile transferase (CDT)

    PubMed Central

    Nölke, Thilo; Schwan, Carsten; Lehmann, Friederike; Østevold, Kristine; Pertz, Olivier; Aktories, Klaus

    2016-01-01

    Hypervirulent Clostridium difficile strains, which are associated with increased morbidity and mortality, produce the actin-ADP ribosylating toxin Clostridium difficile transferase (CDT). CDT depolymerizes actin, causes formation of microtubule-based protrusions, and increases pathogen adherence. Here, we show that septins (SEPT) are essential for CDT-induced protrusion formation. SEPT2, -6, -7, and -9 accumulate at predetermined protrusion sites and form collar-like structures at the base of protrusions. The septin inhibitor forchlorfenuron or knockdown of septins inhibits protrusion formation. At protrusion sites, septins colocalize with the GTPase Cdc42 (cell division control protein 42) and its effector Borg (binder of Rho GTPases), which act as up-stream regulators of septin polymerization. Precipitation and surface plasmon resonance studies revealed high-affinity binding of septins to the microtubule plus-end tracking protein EB1, thereby guiding incoming microtubules. The data suggest that CDT usurps conserved regulatory principles involved in microtubule–membrane interaction, depending on septins, Cdc42, Borgs, and restructuring of the actin cytoskeleton. PMID:27339141

  20. Contribution of glutathione S-transferase gene polymorphisms to development of skin cancer

    PubMed Central

    Lei, Zeyuan; Liu, Ting; Li, Xiang; Xu, Xiaoxia; Fan, Dongli

    2015-01-01

    Background: Glutathione S-transferase (GST) family genes are of vital importance in maintaining cellular defence systems, protecting cells against the toxic effects of reactive oxygen produced during the synthesis of melanin, and detoxifying environmental mutagens and chemical or synthetic drugs. As no previous meta-analyses have examined the association of polymorphisms at GSTT1, GSTP1 Ile105Val with skin cancer risk and independently published studies have produced inconsistent conclusions, we were promoted to estimate the associations in the largest study to date. Methods: Computer-assisted searches were carried out to systematically identify the studies of GST polymorphisms and skin cancer. The eligibility of studies was evaluated following the requirements of inclusion criteria. Risk of skin cancers (OR and 95% CI) was assessed with the fixed or random effects meta-analysis. Major findings: The fixed effects meta-analysis of 15 studies suggested no overall association between GSTT1 null and skin cancer. Nor was there a significant association in any subgroup. However, in the stratified analysis by histologic type for GSTP1 Ile105Val, we found 1.56 times higher risk of malignant melanoma (MM) among people with the 105-Val/Val genotype (Val/Val vs. Ile/Ile: OR = 1.56, 95% CI = 1.05-2.32, pheterogeneity = 0.584). Conclusions: These statistical data demonstrate that Ile105Val polymorphism of the GSTP1 gene may have genetic contribution to the development of skin cancer, MM in particular. PMID:25785008

  1. [A prevalent genetic variety of UDP-glycuronosyl transferase predicts high risk of irinotecan toxicity].

    PubMed

    Valsecchi, Matias; Garberi, Juan; Ferrandini, Silvia; Berenguer, Roxana; Trini, Ernesto; Politi, Pedro

    2007-01-01

    The advances in genetics and molecular biology have raised new areas in medicine, such as pharmacogenomics, which tries to predict drug responses and toxicities based on the individual genetic variability, describing the so called: pharmacogenomic syndromes. Oncology would find this development extremely useful because of the severe toxicity of chemotherapy. There are a lot of genetic loci under investigation for their potential in predicting drug toxicity, but only three of them have showed clinical usefulness up to now. In particular, quantification of the number of thymine-adenine (TA) dinucleotics in the promoter region of the UDP-glucuronosyl-transferase 1A1 enzime (TA indel) proved to be capable of predicting severe neutropenia in patients exposed to intermediate or high doses of irinotecan. Herein we report a case of a patient with small cell lung cancer who suffered severe hematological and gastrointestinal toxicity after being treated with relatively low doses (65 mg/m(2)) of irinotecan and whose leucocyte DNA analysis showed the presence of seven TA repetitions in both alleles. This case is an example of the clinical applicability and the utility of the test as a toxicity predictor. We also discuss the clinical decisions that may be taken with these patients.

  2. Role of glutathione S-transferases in the spinocerebellar ataxia type 2 clinical phenotype.

    PubMed

    Almaguer-Gotay, D; Almaguer-Mederos, L E; Aguilera-Rodríguez, R; Estupiñán-Rodríguez, A; González-Zaldivar, Y; Cuello-Almarales, D; Laffita-Mesa, J M; Vázquez-Mojena, Y

    2014-06-15

    Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative and incurable hereditary disorder caused by a CAG repeat expansion mutation on ATXN2 gene. The identification of reliable biochemical markers of disease severity is of paramount significance for the development and assessment of clinical trials. In order to evaluate the potential use of glutathione-S-transferase (GST) activity as a biomarker for SCA2, a case-control study in 38 affected, presymptomatic individuals or healthy controls was conducted. An enlarged sample of 121 affected individuals was set to assess the impact of GST activity on SCA2 clinical expression. There was a significant increase in GST activity in affected individuals relative to controls, although sensibility and specificity were not high. GST activity was not significantly influenced by sex, age, disease duration or CAG repeat size and did not significantly influence disease severity markers. These findings show a disruption of in vivo GST activity in SCA2, suggesting a role for oxidative stress in the neurodegenerative process.

  3. Characterization and evolutionary implications of the triad Asp-Xxx-Glu in group II phosphopantetheinyl transferases.

    PubMed

    Wang, Yue-Yue; Li, Yu-Dong; Liu, Jian-Bo; Ran, Xin-Xin; Guo, Yuan-Yang; Ren, Ni-Ni; Chen, Xin; Jiang, Hui; Li, Yong-Quan

    2014-01-01

    Phosphopantetheinyl transferases (PPTases), which play an essential role in both primary and secondary metabolism, are magnesium binding enzymes. In this study, we characterized the magnesium binding residues of all known group II PPTases by biochemical and evolutionary analysis. Our results suggested that group II PPTases could be classified into two subgroups, two-magnesium-binding-residue-PPTases containing the triad Asp-Xxx-Glu and three-magnesium-binding-residue-PPTases containing the triad Asp-Glu-Glu. Mutations of two three-magnesium-binding-residue-PPTases and one two-magnesium-binding-residue-PPTase indicate that the first and the third residues in the triads are essential to activities; the second residues in the triads are non-essential. Although variations of the second residues in the triad Asp-Xxx-Glu exist throughout the whole phylogenetic tree, the second residues are conserved in animals, plants, algae, and most prokaryotes, respectively. Evolutionary analysis suggests that: the animal group II PPTases may originate from one common ancestor; the plant two-magnesium-binding-residue-PPTases may originate from one common ancestor; the plant three-magnesium-binding-residue-PPTases may derive from horizontal gene transfer from prokaryotes.

  4. Insights into ligand binding to a glutathione S-transferase from mango: Structure, thermodynamics and kinetics.

    PubMed

    Valenzuela-Chavira, Ignacio; Contreras-Vergara, Carmen A; Arvizu-Flores, Aldo A; Serrano-Posada, Hugo; Lopez-Zavala, Alonso A; García-Orozco, Karina D; Hernandez-Paredes, Javier; Rudiño-Piñera, Enrique; Stojanoff, Vivian; Sotelo-Mundo, Rogerio R; Islas-Osuna, Maria A

    2017-04-01

    We studied a mango glutathione S-transferase (GST) (Mangifera indica) bound to glutathione (GSH) and S-hexyl glutathione (GSX). This GST Tau class (MiGSTU) had a molecular mass of 25.5 kDa. MiGSTU Michaelis-Menten kinetic constants were determined for their substrates obtaining a Km, Vmax and kcat for CDNB of 0.792 mM, 80.58 mM min(-1) and 68.49 s(-1) respectively and 0.693 mM, 105.32 mM min(-1) and 89.57 s(-1), for reduced GSH respectively. MiGSTU had a micromolar affinity towards GSH (5.2 μM) or GSX (7.8 μM). The crystal structure of the MiGSTU in apo or bound to GSH or GSX generated a model that explains the thermodynamic signatures of binding and showed the importance of enthalpic-entropic compensation in ligand binding to Tau-class GST enzymes.

  5. Overexpression of orotate phosphoribosyl transferase in hormone-refractory prostate cancer.

    PubMed

    Tanaka, Tomoaki; Kawashima, Hidenori; Matsumura, Kentaro; Yamashita-Hosono, Tomoko; Yoshimura, Rikio; Kuratsukuri, Katsuyuki; Harimoto, Koji; Nakatani, Tatsuya

    2009-01-01

    Orotate phosphoribosyl transferase (OPRT) is the initial enzyme of 5-fluorouracil (5-FU) activation, in which 5-FU is converted to 5-fluorouridinemonophosphate. Dihydropyrimidine dehydrogenase (DPD) is a degrading enzyme that catabolizes 5-FU. In this study, we investigated the expression of these enzymes in normal prostate gland (NP), hormone-sensitive prostate cancer (HSPC) and hormone-refractory prostate cancer (HRPC). Forty-two prostatic tissue specimens were obtained from patients who had undergone prostate needle biopsies without any treatments or with PSA failure after initial androgen deprivation. The tissue samples derived from formalin-fixed, paraffin-embedded sections were made by laser-captured microdissection and from those RNA was extracted. The levels of OPRT and DPD mRNA expression were examined by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). The level of OPRT mRNA expression in the HSPC or the HRPC specimens was significantly higher than that in the NP specimens. Immunohistochemical staining for OPRT revealed strong expression of OPRT in prostate cancer cells. There was a significant correlation between OPRT mRNA expression levels and the tumor pathological grade. Furthermore, the OPRT/DPD expression ratio, a powerful predictive factor to evaluate 5-FU sensitivity, in the HRPC group was significantly higher than that in the low grade HSPC group. Thus, 5-FU may be an effective option for some HRPC patients.

  6. Transcriptomic Responses of Phanerochaete chrysosporium to Oak Acetonic Extracts: Focus on a New Glutathione Transferase

    PubMed Central

    Thuillier, Anne; Chibani, Kamel; Belli, Gemma; Herrero, Enrique; Dumarçay, Stéphane; Gérardin, Philippe; Kohler, Annegret; Deroy, Aurélie; Dhalleine, Tiphaine; Bchini, Raphael; Jacquot, Jean-Pierre; Gelhaye, Eric

    2014-01-01

    The first steps of wood degradation by fungi lead to the release of toxic compounds known as extractives. To better understand how lignolytic fungi cope with the toxicity of these molecules, a transcriptomic analysis of Phanerochaete chrysosporium genes was performed in the presence of oak acetonic extracts. It reveals that in complement to the extracellular machinery of degradation, intracellular antioxidant and detoxification systems contribute to the lignolytic capabilities of fungi, presumably by preventing cellular damages and maintaining fungal health. Focusing on these systems, a glutathione transferase (P. chrysosporium GTT2.1 [PcGTT2.1]) has been selected for functional characterization. This enzyme, not characterized so far in basidiomycetes, has been classified first as a GTT2 compared to the Saccharomyces cerevisiae isoform. However, a deeper analysis shows that the GTT2.1 isoform has evolved functionally to reduce lipid peroxidation by recognizing high-molecular-weight peroxides as substrates. Moreover, the GTT2.1 gene has been lost in some non-wood-decay fungi. This example suggests that the intracellular detoxification system evolved concomitantly with the extracellular ligninolytic machinery in relation to the capacity of fungi to degrade wood. PMID:25107961

  7. The role of human glutathione transferases and epoxide hydrolases in the metabolism of xenobiotics.

    PubMed Central

    Seidegård, J; Ekström, G

    1997-01-01

    Human glutathione transferases (GSTs) are a multigene family of enzymes that are involved in the metabolism of a wide range of electrophilic compounds of both exogenous and endogenous origin. GSTs are generally recognized as detoxifying enzymes by catalyzing the conjugation of these compounds with glutathione, but they may also be involved in activation of some carcinogens. The memmalian GSTs can be differentiated into four classes of cytosolic enzymes and two membrane bound enzymes. Human epoxide hydrolases (EHs) catalyze the addition of water to epoxides to form the corresponding dihydrodiol. The enzymatic hydration is essentially irreversible and produces mainly metabolites of lower reactivity that can be conjugated and excreted. The reaction of EHs is therefore generally regarded as detoxifying. The mammalian EHs can be distinguished by their physical and enzymatic properties. Microsomal EH (mEH) exhibits a broad substrate specificity, while the soluble EH (sEH) is an enzyme with a "complementary" substrate specificity to mEH. Cholesterol EH and leukotriene A4 hydrolase are two EHs with very limited substrate specificity. The activities of either GSTs or EHs expressed in vivo exhibit a relatively large interindividual variation, which might be explained by induction, inhibition, or genetic factors. These variations in levels or activities of individual isoenzymes are of importance with respect to an individual's susceptibility to genotoxic effects. This article gives a general overview of GSTs and EHs, discussing the modulation of activities, determination of these enzymes ex vivo, and the polymorphic expression of some isoenzymes. PMID:9255563

  8. Role of Carnitine Acetyl Transferase in Regulation of Nitric Oxide Signaling in Pulmonary Arterial Endothelial Cells

    PubMed Central

    Sharma, Shruti; Sun, Xutong; Agarwal, Saurabh; Rafikov, Ruslan; Dasarathy, Sridevi; Kumar, Sanjiv; Black, Stephen M.

    2013-01-01

    Congenital heart defects with increased pulmonary blood flow (PBF) result in pulmonary endothelial dysfunction that is dependent, at least in part, on decreases in nitric oxide (NO) signaling. Utilizing a lamb model with left-to-right shunting of blood and increased PBF that mimics the human disease, we have recently shown that a disruption in carnitine homeostasis, due to a decreased carnitine acetyl transferase (CrAT) activity, correlates with decreased bioavailable NO. Thus, we undertook this study to test the hypothesis that the CrAT enzyme plays a major role in regulating NO signaling through its effect on mitochondrial function. We utilized the siRNA gene knockdown approach to mimic the effect of decreased CrAT activity in pulmonary arterial endothelial cells (PAEC). Our data indicate that silencing the CrAT gene disrupted cellular carnitine homeostasis, reduced the expression of mitochondrial superoxide dismutase-and resulted in an increase in oxidative stress within the mitochondrion. CrAT gene silencing also disrupted mitochondrial bioenergetics resulting in reduced ATP generation and decreased NO signaling secondary to a reduction in eNOS/Hsp90 interactions. Thus, this study links the disruption of carnitine homeostasis to the loss of NO signaling observed in children with CHD. Preserving carnitine homeostasis may have important clinical implications that warrant further investigation. PMID:23344032

  9. The Glutathione System of Aspergillus nidulans Involves a Fungus-specific Glutathione S-Transferase*S⃞

    PubMed Central

    Sato, Ikuo; Shimizu, Motoyuki; Hoshino, Takayuki; Takaya, Naoki

    2009-01-01

    The tripeptide glutathione is involved in cellular defense mechanisms for xenobiotics and reactive oxygen species. This study investigated glutathione-dependent mechanisms in the model organism Aspergillus nidulans. A recombinant dimeric protein of A. nidulans glutathione reductase (GR) contained FAD and reduced oxidized glutathione (GSSG) using NADPH as an electron donor. A deletion strain of the GR gene (glrA) accumulated less intracellular reduced glutathione (GSH), indicating that the fungal GR contributes to GSSG reduction in vivo. Growth of the deletion strain of glrA was temperature-sensitive, and this phenotype was suppressed by adding GSH to the medium. The strain subsequently accumulated more intracellular superoxide, and cell-free respiration activity was partly defective. Growth of the strain decreased in the presence of oxidants, which induced glrA expression 1.5-6-fold. These results indicated that the fungal glutathione system functions as an antioxidant mechanism in A. nidulans. Our findings further revealed an initial proteomic differential display on GR-depleted and wild type strains. Up-regulation of thioredoxin reductase, peroxiredoxins, catalases, and cytochrome c peroxidase in the glrA-deletion strain revealed interplay between the glutathione system and both the thioredoxin system and hydrogen peroxide defense mechanisms. We also identified a hypothetical, up-regulated protein in the GR-depleted strains as glutathione S-transferase, which is unique among Ascomycetes fungi. PMID:19171936

  10. The protein acyl transferase ZDHHC21 modulates α1 adrenergic receptor function and regulates hemodynamics

    PubMed Central

    Marin, Ethan P.; Jozsef, Levente; Di Lorenzo, Annarita; Held, Kara F.; Luciano, Amelia K.; Melendez, Jonathan; Milstone, Leonard M.; Velazquez, Heino; Sessa, William C.

    2016-01-01

    Objective Palmitoylation, the reversible addition of the lipid palmitate to a cysteine, can alter protein localization, stability, and function. The ZDHHC family of protein acyl transferases catalyzes palmitoylation of numerous proteins. The role of ZDHHC enzymes in intact tissue and in vivo is largely unknown. Herein, we characterize vascular functions in a mouse that expresses a nonfunctional ZDHHC21 (“F233Δ”). Approach and Results Physiological studies of isolated aortae and mesenteric arteries from F233Δ mice revealed an unexpected defect in responsiveness to phenylephrine, an α1 adrenergic receptor agonist. In vivo, F233Δ mice displayed a blunted response to infusion of phenylephrine and were found to have elevated catecholamine levels and elevated vascular α1 adrenergic receptor gene expression. Telemetry studies showed that the F233Δ mice were tachycardic and hypotensive at baseline, consistent with diminished vascular tone. In biochemical studies, ZDHHC21 was shown to palmitoylate the α1D adrenoceptor, and to interact with it in a molecular complex, thus suggesting a possible molecular mechanism by which the receptor can be regulated by ZDHHC21. Conclusions Together the data support a model in which ZDHHC21 F233Δ diminishes the function of vascular α1 adrenergic receptors, leading to reduced vascular tone which manifests in vivo as hypotension and tachycardia. This is to our knowledge the first demonstration of a ZDHHC isoform affecting vascular function in vivo and identifies a novel molecular mode of regulation of vascular tone and blood pressure. PMID:26715683

  11. Evaluation of glutathione S-transferase activity in human buccal epithelial dysplasias and squamous cell carcinomas.

    PubMed

    Chen, Y K; Lin, L M

    1997-06-01

    Glutathione S-transferase (GST) activity and amount of GST alpha, mu and pi isoforms were measured in 40 patients with histopathologically confirmed oral epithelial dysplasia (OED) and squamous cell carcinoma of buccal mucosa. The results were compared with those of normal mucosa in an equal number of age- and sex-matched healthy controls. Mean total GST activities were significantly elevated from normal buccal mucosa for mild OED, moderate OED, severe OED and squamous cell carcinoma. GST activity of value approximating 100 nmol/min/mg distinguished between normal and dysplasia, and of value about 400 nmol/min/mg delineated between dysplasia and squamous cell carcinoma were observed. GST pi was the predominant class in both the diseased and normal buccal mucosa examined. This class pi GST was present at an intracellular concentration, which was significantly higher in diseased buccal mucosa than in normal buccal mucosa. These results indicated that pi class GST was the major form of this enzyme in the cytosolic fraction of oral mucosa. The severity of OED related to squamous cell carcinoma development seemed to increase concomitantly with an increase in the level of this enzyme. Further studies will validate the role of GST pi estimation in predicting the potential malignancy of OED.

  12. Mechanistic evaluation and transcriptional signature of a glutathione S-transferase omega 1 inhibitor

    PubMed Central

    Ramkumar, Kavya; Samanta, Soma; Kyani, Anahita; Yang, Suhui; Tamura, Shuzo; Ziemke, Elizabeth; Stuckey, Jeanne A.; Li, Si; Chinnaswamy, Krishnapriya; Otake, Hiroyuki; Debnath, Bikash; Yarovenko, Vladimir; Sebolt-Leopold, Judith S.; Ljungman, Mats; Neamati, Nouri

    2016-01-01

    Glutathione S-transferase omega 1 (GSTO1) is an atypical GST isoform that is overexpressed in several cancers and has been implicated in drug resistance. Currently, no small-molecule drug targeting GSTO1 is under clinical development. Here we show that silencing of GSTO1 with siRNA significantly impairs cancer cell viability, validating GSTO1 as a potential new target in oncology. We report on the development and characterization of a series of chloroacetamide-containing potent GSTO1 inhibitors. Co-crystal structures of GSTO1 with our inhibitors demonstrate covalent binding to the active site cysteine. These potent GSTO1 inhibitors suppress cancer cell growth, enhance the cytotoxic effects of cisplatin and inhibit tumour growth in colon cancer models as single agent. Bru-seq-based transcription profiling unravelled novel roles for GSTO1 in cholesterol metabolism, oxidative and endoplasmic stress responses, cytoskeleton and cell migration. Our findings demonstrate the therapeutic utility of GSTO1 inhibitors as anticancer agents and identify the novel cellular pathways under GSTO1 regulation in colorectal cancer. PMID:27703239

  13. Functional analysis of N-linking oligosaccharyl transferase enzymes encoded by deep-sea vent proteobacteria.

    PubMed

    Mills, Dominic C; Jervis, Adrian J; Abouelhadid, Sherif; Yates, Laura E; Cuccui, Jon; Linton, Dennis; Wren, Brendan W

    2016-04-01

    Bacterial N-linking oligosaccharyl transferases (OTase enzymes) transfer lipid-linked glycans to selected proteins in the periplasm and were first described in the intestinal pathogen Campylobacter jejuni, a member of the ε-proteobacteria-subdivision of bacteria. More recently, orthologues from other ε-proteobacterial Campylobacter and Helicobacter species and a δ-proteobacterium, Desulfovibrio desulfuricans, have been described, suggesting that these two subdivisions of bacteria may be a source of further N-linked protein glycosylation systems. Whole-genome sequencing of both ε- and δ-proteobacteria from deep-sea vent habitats, a rich source of species from these subdivisions, revealed putative ORFs encoding OTase enzymes and associated adjacent glycosyltransferases similar to the C. jejuni N-linked glycosylation locus. We expressed putative OTase ORFs from the deep-sea vent species Nitratiruptor tergarcus, Sulfurovum lithotrophicum and Deferribacter desulfuricans in Escherichia coli and showed that they were able to functionally complement the C. jejuni OTase, CjPglB. The enzymes were shown to possess relaxed glycan specificity, transferring diverse glycan structures and demonstrated different glycosylation sequon specificities. Additionally, a permissive D. desulfuricans acceptor protein was identified, and we provide evidence that the N-linked glycan synthesized by N. tergarcus and S. lithotrophicum contains an acetylated sugar at the reducing end. This work demonstrates that deep-sea vent bacteria encode functional N-glycosylation machineries and are a potential source of biotechnologically important OTase enzymes.

  14. Computational evidence for the detoxifying mechanism of epsilon class glutathione transferase toward the insecticide DDT.

    PubMed

    Li, Yanwei; Shi, Xiangli; Zhang, Qingzhu; Hu, Jingtian; Chen, Jianmin; Wang, Wenxing

    2014-05-06

    A combined quantum mechanics/molecular mechanics (QM/MM) computation of the detoxifying mechanism of an epsilon class glutathione transferases (GSTs) toward organochlorine insecticide DDT, 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane, has been carried out. The exponential average barrier of the proton transfer mechanism is 15.2 kcal/mol, which is 27.6 kcal/mol lower than that of the GS-DDT conjugant mechanism. It suggests that the detoxifying reaction proceeds via a proton transfer mechanism where GSH acts as a cofactor rather than a conjugate. The study reveals that the protein environment has a strong effect on the reaction barrier. The experimentally proposed residues Arg112, Glu116 and Phe120 were found to have a strong influence on the detoxifying reaction. The influence of residues Pro13, Cys15, His53, Ile55, Glu67, Ser68, Phe115, and Leu119 was detected as well. It is worth noticing that Ile55 facilitates the detoxifying reaction most. On the basis of the structure of DDT, structure 2, (BrC6H4)2CHCCl3, is the best candidate among all the tested structures in resisting the detoxification of enzyme agGSTe2.

  15. Recognition and Detoxification of the Insecticide DDT by Drosophila melanogaster Glutathione S-Transferase D1

    SciTech Connect

    Low, Wai Yee; Feil, Susanne C.; Ng, Hooi Ling; Gorman, Michael A.; Morton, Craig J.; Pyke, James; McConville, Malcolm J.; Bieri, Michael; Mok, Yee-Foong; Robin, Charles; Gooley, Paul R.; Parker, Michael W.; Batterham, Philip

    2010-06-14

    GSTD1 is one of several insect glutathione S-transferases capable of metabolizing the insecticide DDT. Here we use crystallography and NMR to elucidate the binding of DDT and glutathione to GSTD1. The crystal structure of Drosophila melanogaster GSTD1 has been determined to 1.1 {angstrom} resolution, which reveals that the enzyme adopts the canonical GST fold but with a partially occluded active site caused by the packing of a C-terminal helix against one wall of the binding site for substrates. This helix would need to unwind or be displaced to enable catalysis. When the C-terminal helix is removed from the model of the crystal structure, DDT can be computationally docked into the active site in an orientation favoring catalysis. Two-dimensional {sup 1}H,{sup 15}N heteronuclear single-quantum coherence NMR experiments of GSTD1 indicate that conformational changes occur upon glutathione and DDT binding and the residues that broaden upon DDT binding support the predicted binding site. We also show that the ancestral GSTD1 is likely to have possessed DDT dehydrochlorinase activity because both GSTD1 from D. melanogaster and its sibling species, Drosophila simulans, have this activity.

  16. Dual functionality of O-GlcNAc transferase is required for Drosophila development.

    PubMed

    Mariappa, Daniel; Zheng, Xiaowei; Schimpl, Marianne; Raimi, Olawale; Ferenbach, Andrew T; Müller, H-Arno J; van Aalten, Daan M F

    2015-12-01

    Post-translational modification of intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc) catalysed by O-GlcNAc transferase (OGT) has been linked to regulation of diverse cellular functions. OGT possesses a C-terminal glycosyltransferase catalytic domain and N-terminal tetratricopeptide repeats that are implicated in protein-protein interactions. Drosophila OGT (DmOGT) is encoded by super sex combs (sxc), mutants of which are pupal lethal. However, it is not clear if this phenotype is caused by reduction of O-GlcNAcylation. Here we use a genetic approach to demonstrate that post-pupal Drosophila development can proceed with negligible OGT catalysis, while early embryonic development is OGT activity-dependent. Structural and enzymatic comparison between human OGT (hOGT) and DmOGT informed the rational design of DmOGT point mutants with a range of reduced catalytic activities. Strikingly, a severely hypomorphic OGT mutant complements sxc pupal lethality. However, the hypomorphic OGT mutant-rescued progeny do not produce F2 adults, because a set of Hox genes is de-repressed in F2 embryos, resulting in homeotic phenotypes. Thus, OGT catalytic activity is required up to late pupal stages, while further development proceeds with severely reduced OGT activity.

  17. Organometallic ruthenium anticancer complexes inhibit human glutathione-S-transferase π.

    PubMed

    Lin, Yu; Huang, Yongdong; Zheng, Wei; Wang, Fuyi; Habtemariam, Abraha; Luo, Qun; Li, Xianchan; Wu, Kui; Sadler, Peter J; Xiong, Shaoxiang

    2013-11-01

    The organometallic ruthenium(II) anticancer complexes [(η(6)-arene)Ru(en)Cl](+) (arene = p-cymene (1), biphenyl (2) or 9,10-dihydrophenanthrene (3); en = ethylenediamine), exhibit in vitro and in vivo anticancer activities. In the present work, we show that they inhibit human glutathione-S-transferase π (GSTπ) with IC50 values of 59.4 ± 1.3, 63.2 ± 0.4 and 37.2 ± 1.1 μM, respectively. Mass spectrometry revealed that complex 1 binds to the S-donors of Cys15, Cys48 within the G-site and Cys102 at the interface of the GSTπ dimer, while complex 2 binds to Cys48 and Met92 at the dimer interface and complex 3 to Cys15, Cys48 and Met92. Moreover, the binding of complex 1 to Cys15 and Cys102, complex 2 to Cys48 and complex 3 to Cys15 induces the irreversible oxidation of the coordinated thiolates to sulfenates. Molecular modeling studies indicate that the coordination of the {(arene)Ru(en)}(2+) fragment to Cys48 blocks the hydrophilic G-site sterically, perhaps preventing substrate from proper positioning and accounting for the reduction in enzymatic activity of ruthenated GSTπ. The binding of the ruthenium arene complexes to Cys102 or Met92 disrupts the dimer interface which is an essential structural feature for the proper functioning of GSTπ, perhaps also contributing to the inhibition of GSTπ.

  18. Association between herbivore stress and glutathione S-transferase expression in Pinus brutia Ten.

    PubMed

    Semiz, A; Çelik-Turgut, G; Semiz, G; Özgün, Ö; Şen, A

    2016-03-31

    Plants have developed mechanisms to defend themselves against many factors including biotic stress such as herbivores and pathogens. Glutathione S-transferase (GST) is a glutathione-dependent detoxifying enzyme and plays critical roles in stress tolerance and detoxification metabolism in plants. Pinus brutia Ten. is a prominent native forest tree species in Turkey, due to both its economic and ecological assets. One of the problems faced by P. brutia afforestation sites is the attacks by pine processionary moth (Thaumetopoea wilkinsoni Tams.). In this study, we investigated the changes in activity and mRNA expression of GST in pine samples taken from both resistant and susceptible clones against T. wilkinsoni over a nine month period in a clonal seed orchard. It was found that the average cytosolic GST activities of trees in March and July were significantly higher than the values obtained in November. November was considered to be the control since trees were not under stress yet. In addition, RT-PCR results clearly showed that levels of GST transcripts in March and July samples were significantly higher as compared to the level seen in November. These findings strongly suggest that GST activity from P. brutia would be a valuable marker for exposure to herbivory stress.

  19. Differential induction of glutathione transferases and glucosyltransferases in wheat, maize and Arabidopsis thaliana by herbicide safeners.

    PubMed

    Edwards, Robert; Del Buono, Daniele; Fordham, Michael; Skipsey, Mark; Brazier, Melissa; Dixon, David P; Cummings, Ian

    2005-01-01

    By learning lessons from weed science we have adopted three approaches to make plants more effective in phytoremediation: (1) The application of functional genomics to identify key components involved in the detoxification of, or tolerance to, xenobiotics for use in subsequent genetic engineering/breeding programmes. (2) The rational metabolic engineering of plants through the use of forced evolution of protective enzymes, or alternatively transgenesis of detoxification pathways. (3) The use of chemical treatments which protect plants from herbicide injury. In this paper we examine the regulation of the xenome by herbicide safeners, which are chemicals widely used in crop protection due to their ability to enhance herbicide selectivity in cereals. We demonstrate that these chemicals act to enhance two major groups of phase 2 detoxification enzymes, notably the glutathione transferases and glucosyltransferases, in both cereals and the model plant Arabidopsis thaliana, with the safeners acting in a chemical- and species-specific manner. Our results demonstrate that by choosing the right combination of safener and plant it should be possible to enhance the tolerance of diverse plants to a wide range of xenobiotics including pollutants.

  20. Assembly of Multi-tRNA Synthetase Complex via Heterotetrameric Glutathione Transferase-homology Domains*

    PubMed Central

    Cho, Ha Yeon; Maeng, Seo Jin; Cho, Hyo Je; Choi, Yoon Seo; Chung, Jeong Min; Lee, Sangmin; Kim, Hoi Kyoung; Kim, Jong Hyun; Eom, Chi-Yong; Kim, Yeon-Gil; Guo, Min; Jung, Hyun Suk; Kang, Beom Sik; Kim, Sunghoon

    2015-01-01

    Many multicomponent protein complexes mediating diverse cellular processes are assembled through scaffolds with specialized protein interaction modules. The multi-tRNA synthetase complex (MSC), consisting of nine different aminoacyl-tRNA synthetases and three non-enzymatic factors (AIMP1–3), serves as a hub for many signaling pathways in addition to its role in protein synthesis. However, the assembly process and structural arrangement of the MSC components are not well understood. Here we show the heterotetrameric complex structure of the glutathione transferase (GST) domains shared among the four MSC components, methionyl-tRNA synthetase (MRS), glutaminyl-prolyl-tRNA synthetase (EPRS), AIMP2 and AIMP3. The MRS-AIMP3 and EPRS-AIMP2 using interface 1 are bridged via interface 2 of AIMP3 and EPRS to generate a unique linear complex of MRS-AIMP3:EPRS-AIMP2 at the molar ratio of (1:1):(1:1). Interestingly, the affinity at interface 2 of AIMP3:EPRS can be varied depending on the occupancy of interface 1, suggesting the dynamic nature of the linear GST tetramer. The four components are optimally arranged for maximal accommodation of additional domains and proteins. These characteristics suggest the GST tetramer as a unique and dynamic structural platform from which the MSC components are assembled. Considering prevalence of the GST-like domains, this tetramer can also provide a tool for the communication of the MSC with other GST-containing cellular factors. PMID:26472928

  1. Expression profiling of selected glutathione transferase genes in Zea mays (L.) seedlings infested with cereal aphids.

    PubMed

    Sytykiewicz, Hubert; Chrzanowski, Grzegorz; Czerniewicz, Paweł; Sprawka, Iwona; Łukasik, Iwona; Goławska, Sylwia; Sempruch, Cezary

    2014-01-01

    The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2•-) in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi) in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23) or 24 hpi (gst1, gst18 and gst24) compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2•- was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2•- generation in comparison with the Tasty Sweet genotype.

  2. Prolactin confers resistance against cisplatin in breast cancer cells by activating glutathione-S-transferase.

    PubMed

    LaPensee, Elizabeth W; Schwemberger, Sandy J; LaPensee, Christopher R; Bahassi, El Mustapha; Afton, Scott E; Ben-Jonathan, Nira

    2009-08-01

    Resistance to chemotherapy is a major obstacle for successful treatment of breast cancer patients. Given that prolactin (PRL) acts as an anti-apoptotic/survival factor in the breast, we postulated that it antagonizes cytotoxicity by chemotherapeutic drugs. Treatment of breast cancer cells with PRL caused variable resistance to taxol, vinblastine, doxorubicin and cisplatin. PRL prevented cisplatin-induced G(2)/M cell cycle arrest and apoptosis. In the presence of PRL, significantly less cisplatin was bound to DNA, as determined by mass spectroscopy, and little DNA damage was seen by gamma-H2AX staining. PRL dramatically increased the activity of glutathione-S-transferase (GST), which sequesters cisplatin in the cytoplasm; this increase was abrogated by Jak and mitogen-activated protein kinase inhibitors. PRL upregulated the expression of the GSTmu, but not the pi, isozyme. A GST inhibitor abrogated antagonism of cisplatin cytotoxicity by PRL. In conclusion, PRL confers resistance against cisplatin by activating a detoxification enzyme, thereby reducing drug entry into the nucleus. These data provide a rational explanation for the ineffectiveness of cisplatin in breast cancer, which is characterized by high expression of both PRL and its receptor. Suppression of PRL production or blockade of its actions should benefit patients undergoing chemotherapy by allowing for lower drug doses and expanded drug options.

  3. Novel derivatives of aclacinomycin A block cancer cell migration through inhibition of farnesyl transferase.

    PubMed

    Magi, Shigeyuki; Shitara, Tetsuo; Takemoto, Yasushi; Sawada, Masato; Kitagawa, Mitsuhiro; Tashiro, Etsu; Takahashi, Yoshikazu; Imoto, Masaya

    2013-03-01

    In the course of screening for an inhibitor of farnesyl transferase (FTase), we identified two compounds, N-benzyl-aclacinomycin A (ACM) and N-allyl-ACM, which are new derivatives of ACM. N-benzyl-ACM and N-allyl-ACM inhibited FTase activity with IC50 values of 0.86 and 2.93 μM, respectively. Not only ACM but also C-10 epimers of each ACM derivative failed to inhibit FTase. The inhibition of FTase by N-benzyl-ACM and N-allyl-ACM seems to be specific, because these two compounds did not inhibit geranylgeranyltransferase or geranylgeranyl pyrophosphate (GGPP) synthase up to 100 μM. In cultured A431 cells, N-benzyl-ACM and N-allyl-ACM also blocked both the membrane localization of H-Ras and activation of the H-Ras-dependent PI3K/Akt pathway. In addition, they inhibited epidermal growth factor (EGF)-induced migration of A431 cells. Thus, N-benzyl-ACM and N-allyl-ACM inhibited EGF-induced migration of A431 cells by inhibiting the farnesylation of H-Ras and subsequent H-Ras-dependent activation of the PI3K/Akt pathway.

  4. Ablation of Arg-tRNA-protein transferases results in defective neural tube development.

    PubMed

    Kim, Eunkyoung; Kim, Seonmu; Lee, Jung Hoon; Kwon, Yong Tae; Lee, Min Jae

    2016-08-01

    The arginylation branch of the N-end rule pathway is a ubiquitin-mediated proteolytic system in which post-translational conjugation of Arg by ATE1-encoded Arg-tRNA-protein transferase to N-terminal Asp, Glu, or oxidized Cys residues generates essential degradation signals. Here, we characterized the ATE1-/- mice and identified the essential role of N-terminal arginylation in neural tube development. ATE1-null mice showed severe intracerebral hemorrhages and cystic space near the neural tubes. Expression of ATE1 was prominent in the developing brain and spinal cord, and this pattern overlapped with the migration path of neural stem cells. The ATE1-/- brain showed defective G-protein signaling. Finally, we observed reduced mitosis in ATE1-/- neuroepithelium and a significantly higher nitric oxide concentration in the ATE1-/- brain. Our results strongly suggest that the crucial role of ATE1 in neural tube development is directly related to proper turn-over of the RGS4 protein, which participate in the oxygen-sensing mechanism in the cells. [BMB Reports 2016; 49(8): 443-448].

  5. Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications.

    PubMed

    Nianiou-Obeidat, Irini; Madesis, Panagiotis; Kissoudis, Christos; Voulgari, Georgia; Chronopoulou, Evangelia; Tsaftaris, Athanasios; Labrou, Nikolaos E

    2017-04-08

    Plant glutathione transferases (EC 2.5.1.18, GSTs) are an ancient, multimember and diverse enzyme class. Plant GSTs have diverse roles in plant development, endogenous metabolism, stress tolerance, and xenobiotic detoxification. Their study embodies both fundamental aspects and agricultural interest, because of their ability to confer tolerance against biotic and abiotic stresses and to detoxify herbicides. Here we review the biotechnological applications of GSTs towards developing plants that are resistant to biotic and abiotic stresses. We integrate recent discoveries, highlight, and critically discuss the underlying biochemical and molecular pathways involved. We elaborate that the functions of GSTs in abiotic and biotic stress adaptation are potentially a result of both catalytic and non-catalytic functions. These include conjugation of reactive electrophile species with glutathione and the modulation of cellular redox status, biosynthesis, binding, and transport of secondary metabolites and hormones. Their major universal functions under stress underline the potential in developing climate-resilient cultivars through a combination of molecular and conventional breeding programs. We propose that future GST engineering efforts through rational and combinatorial approaches, would lead to the design of improved isoenzymes with purpose-designed catalytic activities and novel functional properties. Concurrent GST-GSH metabolic engineering can incrementally increase the effectiveness of GST biotechnological deployment.

  6. Developmental expression and stress induction of glutathione S-transferase in the spruce budworm, Choristoneura fumiferana.

    PubMed

    Feng; Davey; S D Pang A; Ladd; Retnakaran; Tomkins; Zheng; Palli

    2001-01-01

    Developmental and stress-induced expression of Choristoneura fumiferana glutathione S-transferase (CfGST) mRNA and protein were examined using Northern blots and Western blots. High levels of CfGST mRNA and protein were detected in 1st instar larvae and diapausing 2nd instar larvae. Expression of CfGST gradually decreased during larval development from 3rd to 5th instar, after which the expression increased once again, reaching peak levels in 6th instar larvae. CfGST mRNA and protein were undetectable in the pupal stage. Exposure to low temperature did not induce an increase in CfGST expression. Feeding on balsam fir foliage resulted in an increase in the expression of CfGST as compared to larvae that fed on artificial diet. The bacterial insecticide, Bacillus thuringiensis delta-endotoxin (Bt), the non-steroidal ecdysone analog, tebufenozide, and the synthetic pyrethroid, permethrin, induced the expression of CfGST mRNA in 5th instar larvae, whereas the chitin synthesis inhibitor, diflubenzuron, did not have any such effect. These results suggest that CfGST plays an important role in detoxifying various allelochemicals and insecticides in the spruce budworm. The developmental expression pattern strongly suggests that in addition to detoxification, CfGST might be involved in other functions.

  7. Preliminary studies on the renaturation of denatured catfish (Clarias gariepinus) glutathione transferase.

    PubMed

    Ojopagogo, Yetunde Adedolapo; Adewale, Isaac Olusanjo; Afolayan, Adeyinka

    2013-12-01

    Purified juvenile catfish (Clarias gariepinus) glutathione transferase (cgGST) was denatured in vitro and renatured in the absence and presence of different concentrations of endogenous or xenobiotic model substrates. Protein transitions during unfolding and refolding were monitored by activity measurement as well as changes in protein conformation using UV difference spectra at 230 nm. Gdn-HCl at 0.22 M caused 50 % inactivation of the enzyme and at 1.1 M, the enzyme was completely unfolded. Refolding of cgGST main isozyme was not completely reversible at higher concentrations of Gdn-HCl and is dependent on protein concentration. An enzyme concentration of 30 μg/ml yielded 40 % percentage residual activity in the presence of glutathione (GSH), regardless of the concentration that was present as opposed to 30 % obtained in its absence. The xenobiotic model substrate, lindane, appears to have no effect on the refolding of the enzyme. In summary, our results show that GSH assists in the refolding of cgGST in a concentration-independent manner and may be involved in the same function in vivo whereas the xenobiotic model substrate does not.

  8. Characterization and Prediction of Lysine (K)-Acetyl-Transferase Specific Acetylation Sites*

    PubMed Central

    Li, Tingting; Du, Yipeng; Wang, Likun; Huang, Lei; Li, Wenlin; Lu, Ming; Zhang, Xuegong; Zhu, Wei-Guo

    2012-01-01

    Lysine acetylation is a well-studied post-translational modification on both histone and nonhistone proteins. More than 2000 acetylated proteins and 4000 lysine acetylation sites have been identified by large scale mass spectrometry or traditional experimental methods. Although over 20 lysine (K)-acetyl-transferases (KATs) have been characterized, which KAT is responsible for a given protein or lysine site acetylation is mostly unknown. In this work, we collected KAT-specific acetylation sites manually and analyzed sequence features surrounding the acetylated lysine of substrates from three main KAT families (CBP/p300, GCN5/PCAF, and the MYST family). We found that each of the three KAT families acetylates lysines with different sequence features. Based on these differences, we developed a computer program, Acetylation Set Enrichment Based method to predict which KAT-families are responsible for acetylation of a given protein or lysine site. Finally, we evaluated the efficiency of our method, and experimentally detected four proteins that were predicted to be acetylated by two KAT families when one representative member of the KAT family is over expressed. We conclude that our approach, combined with more traditional experimental methods, may be useful for identifying KAT families responsible for acetylated substrates proteome-wide. PMID:21964354

  9. Glutathione-S-transferase activity of Fucus spp. as a biomarker of environmental contamination.

    PubMed

    Cairrão, E; Couderchet, M; Soares, A M V M; Guilhermino, L

    2004-12-20

    Coastal zones are important areas from both ecological and economical points of view. However, in the last decades, in several regions of the globe, they have been increasingly impacted by complex discharges of contaminants and by marine traffic accidents. The Portuguese Atlantic coast is particularly exposed to these contaminants due to the proximity of important navigation routes. Several rocky shore organisms have been tested and used as bioindicators of environmental contamination. However, to the best of our knowledge Fucus spp., which are key species in rocky shore communities, have not been used as bioindicators in monitoring studies based on biomarkers. The objective of this study was to investigate the potential of glutathione-S-transferase (GST) activity of several Fucus species (Fucus ceranoides, Fucus spiralis var. platycarpus, Fucus spiralis var. spiralis and Fucus vesiculosus var. vesiculosus) to discriminate sites with different contamination levels along the Portuguese Northwestern coast, between the Minho river estuary and the Aveiro's Lagoon, as an environmental biomarker. With the exception of F. spiralis var. spiralis, for which a confusing pattern of activity was found requiring further analysis, all the other species and varieties showed higher GST levels in more contaminated sites than in less contaminated ones, indicating that Fucus spp. are suitable for use as bioindicators and their GSTs as biomarkers of environmental contamination in coastal zones and estuaries.

  10. Solution Structure of Alg13: The Sugar Donor Subunit of a Yeast N-Acetylglucosamine Transferase

    PubMed Central

    Wang, Xu; Weldeghorghis, Thomas; Zhang, Guofeng; Imperiali, Barbara; Prestegard, James H.

    2008-01-01

    Summary The solution structure of Alg13, the glycosyl-donor binding domain of an important bipartite glycosyltransferase in the yeast S. cerevisiae, is presented. This glycosyl transferase is unusual in that it is only active in the presence of a binding partner, Alg14. Alg13 is found to adopt a unique topology amongst glycosyltransferases. Rather than the conventional Rossmann fold found in all GT-B type enzymes, the N-terminal half of the protein is a Rossmann-like fold with a mixed parallel and anti-parallel β sheet. The Rossmann fold of the C-terminal half of Alg13 is conserved. However, while conventional GT-B type enzymes usually possess three helices at the C-terminus, only two helices are present in Alg13. Titration of Alg13 with both UDP-GlcNAc, the native glycosyl donor, and a paramagnetic mimic, UDP-TEMPO, shows that the interaction of Alg13 with the sugar donor is primarily through the residues in the C-terminal half of the protein. PMID:18547528

  11. Allyl isothiocyanate depletes glutathione and upregulates expression of glutathione S-transferases in Arabidopsis thaliana

    PubMed Central

    Øverby, Anders; Stokland, Ragni A.; Åsberg, Signe E.; Sporsheim, Bjørnar; Bones, Atle M.

    2015-01-01

    Allyl isothiocyanate (AITC) is a phytochemical associated with plant defense in plants from the Brassicaceae family. AITC has long been recognized as a countermeasure against external threats, but recent reports suggest that AITC is also involved in the onset of defense-related mechanisms such as the regulation of stomatal aperture. However, the underlying cellular modes of action in plants remain scarcely investigated. Here we report evidence of an AITC-induced depletion of glutathione (GSH) and the effect on gene expression of the detoxification enzyme family glutathione S-transferases (GSTs) in Arabidopsis thaliana. Treatment of A. thaliana wild-type with AITC resulted in a time- and dose-dependent depletion of cellular GSH. AITC-exposure of mutant lines vtc1 and pad2-1 with elevated and reduced GSH-levels, displayed enhanced and decreased AITC-tolerance, respectively. AITC-exposure also led to increased ROS-levels in the roots and loss of chlorophyll which are symptoms of oxidative stress. Following exposure to AITC, we found that GSH rapidly recovered to the same level as in the control plant, suggesting an effective route for replenishment of GSH or a rapid detoxification of AITC. Transcriptional analysis of genes encoding GSTs showed an upregulation in response to AITC. These findings demonstrate cellular effects by AITC involving a reversible depletion of the GSH-pool, induced oxidative stress, and elevated expression of GST-encoding genes. PMID:25954298

  12. Association study of Glutathione S-Transferase polymorphisms and risk of endometriosis in an Iranian population

    PubMed Central

    Hassani, Mina; Saliminejad, Kioomars; Heidarizadeh, Masood; Kamali, Koorosh; Memariani, Toktam; Khorram Khorshid, Hamid Reza

    2016-01-01

    Background: Endometriosis influenced by both genetic and environmental factors. Associations of glutathione S-transferases (GSTs) genes polymorphisms in endometriosis have been investigated by various researchers; however, the results are not consistent. Objective: We examined the associations of GSTM1 and GSTT1 null genotypes and GSTP1 313 A/G polymorphisms with endometriosis in an Iranian population. Materials and Methods: In this case-control study, 151 women with diagnosis of endometriosis and 156 normal healthy women as control group were included. The genotyping was determined using multiplex PCR and PCR- RFLP methods. Results: The GSTM1 null genotype was significantly higher (p=0.027) in the cases (7.3%) than the control group (1.3%). There was no significant difference between the frequency of GSTT1 genotypes between the cases and controls. The GSTP1 313 AG genotype was significantly lower (p=0.048) in the case (33.1%) than the control group (44.4%). Conclusion: Our results showed that GSTM1 and GSTP1 polymorphisms may be associated with susceptibility of endometriosis in Iranian women. PMID:27351025

  13. A test for adequate wastewater treatment based on glutathione S transferase isoenzyme profile.

    PubMed

    Grammou, A; Samaras, P; Papadimitriou, C; Papadopoulos, A I

    2013-04-01

    Discharge to the environment of treated or non-treated municipal wastewater imposes several threats to coastal and estuarine ecosystems which are difficult to assess. In our study we evaluate the use of the isoenzyme profile of glutathione S transferase (GST) in combination with the kinetic characteristics of the whole enzyme and of heme peroxidase, as a test of adequate treatment of municipal wastewater. For this reason, Artemia nauplii were incubated in artificial seawater prepared by wastewater samples, such as secondary municipal effluents produced by a conventional activated sludge unit and advanced treated effluents produced by the employment of coagulation, activated carbon adsorption and chlorination as single processes or as combined ones. Characteristic changes of the isoenzyme pattern and the enzymes' kinetic properties were caused by chlorinated secondary municipal effluent or by secondary non-chlorinated effluent. Advanced treatment by combination of coagulation and/or carbon adsorption resulted to less prominent changes, suggesting more adequate treatment. Our results suggest that GST isoenzyme profile in combination with the kinetic properties of the total enzyme family is a sensitive test for the evaluation of the adequateness of the treatment of reclaimed wastewater and the reduction of potentially harmful compounds. Potentially, it may offer a 'fingerprint' characteristic of a particular effluent and probably of the treatment level it has been subjected.

  14. Optical biosensor consisting of glutathione-S-transferase for detection of captan.

    PubMed

    Choi, Jeong-Woo; Kim, Young-Kee; Song, Sun-Young; Lee, In-ho; Lee, Won-Hong

    2003-10-15

    The optical biosensor consisting of a glutathione-S-transferase (GST)-immobilized gel film was developed to detect captan in contaminated water. The sensing scheme was based on the decrease of yellow product, s-(2,4-dinitrobenzene) glutathione, produced from substrates, 1-chloro-2,4-dinitrobenzene (CDNB) and glutathione (GSH), due to the inhibition of GST reaction by captan. Absorbance of the product as the output of enzyme reaction was detected and the light was guided through the optical fibers. The enzyme reactor of the sensor system was fabricated by the gel entrapment technique for the immobilized GST film. The immobilized GST had the maximum activity at pH 6.5. The optimal concentrations of substrates were determined with 1 mM for both of CDNB and GSH. The optimum concentration of enzyme was also determined with 100 microg/ml. The activity of immobilized enzyme was fairly sustained during 30 days. The proposed biosensor could successfully detect the captan up to 2 ppm and the response time to steady signal was about 15 min.

  15. Enzyme immobilization in porous silicon: quantitative analysis of the kinetic parameters for glutathione-S-transferases.

    PubMed

    Delouise, Lisa A; Miller, Benjamin L

    2005-04-01

    Porous silicon matrixes are attractive materials for the construction of biosensors and may also have utility for the production of immobilized enzyme bioreactors. In an effort to gain a quantitative understanding of the effects of immobilization on enzyme activity, we compared the activity of glutathione-S-transferase immobilized in electrochemically etched porous silicon films (approximately 6.5 microm thick) with the enzyme in solution. Kinetic measurements were made by varying the glutathione concentration while maintaining a fixed saturating concentration of 1-chloro-2,4-dinitrobenzene. The reaction kinetics follow steady-state equilibrium behavior. The specific activity of the free enzyme in solution is approximately 4x higher than the immobilized enzyme, for which we measured an apparent K'(m)(GSH) value of 1.0 +/- 0.3. The maximum velocity, V'(max), is linearly proportional to immobilized enzyme concentration, but the magnitude is approximately 20 times lower than that in solution. Results suggest approximately 25% of the enzyme is bound with the catalytic site in an inactive conformation or in a hindered orientation. Finally, the effects of hydration and exposure to denaturants on the immobilized enzyme activity are presented.

  16. Dual functionality of O-GlcNAc transferase is required for Drosophila development

    PubMed Central

    Mariappa, Daniel; Zheng, Xiaowei; Schimpl, Marianne; Raimi, Olawale; Ferenbach, Andrew T.; Müller, H.-Arno J.; van Aalten, Daan M. F.

    2015-01-01

    Post-translational modification of intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc) catalysed by O-GlcNAc transferase (OGT) has been linked to regulation of diverse cellular functions. OGT possesses a C-terminal glycosyltransferase catalytic domain and N-terminal tetratricopeptide repeats that are implicated in protein–protein interactions. Drosophila OGT (DmOGT) is encoded by super sex combs (sxc), mutants of which are pupal lethal. However, it is not clear if this phenotype is caused by reduction of O-GlcNAcylation. Here we use a genetic approach to demonstrate that post-pupal Drosophila development can proceed with negligible OGT catalysis, while early embryonic development is OGT activity-dependent. Structural and enzymatic comparison between human OGT (hOGT) and DmOGT informed the rational design of DmOGT point mutants with a range of reduced catalytic activities. Strikingly, a severely hypomorphic OGT mutant complements sxc pupal lethality. However, the hypomorphic OGT mutant-rescued progeny do not produce F2 adults, because a set of Hox genes is de-repressed in F2 embryos, resulting in homeotic phenotypes. Thus, OGT catalytic activity is required up to late pupal stages, while further development proceeds with severely reduced OGT activity. PMID:26674417

  17. Polydiglycosylphosphate Transferase PdtA (SCO2578) of Streptomyces coelicolor A3(2) Is Crucial for Proper Sporulation and Apical Tip Extension under Stress Conditions

    PubMed Central

    Sigle, Steffen; Steblau, Nadja; Wohlleben, Wolfgang

    2016-01-01

    ABSTRACT Although anionic glycopolymers are crucial components of the Gram-positive cell envelope, the relevance of anionic glycopolymers for vegetative growth and morphological differentiation of Streptomyces coelicolor A3(2) is unknown. Here, we show that the LytR-CpsA-Psr (LCP) protein PdtA (SCO2578), a TagV-like glycopolymer transferase, has a dual function in the S. coelicolor A3(2) life cycle. Despite the presence of 10 additional LCP homologs, PdtA is crucial for proper sporulation. The integrity of the spore envelope was severely affected in a pdtA deletion mutant, resulting in 34% nonviable spores. pdtA deletion caused a significant reduction in the polydiglycosylphosphate content of the spore envelope. Beyond that, apical tip extension and normal branching of vegetative mycelium were severely impaired on high-salt medium. This growth defect coincided with the mislocalization of peptidoglycan synthesis. Thus, PdtA itself or the polydiglycosylphosphate attached to the peptidoglycan by the glycopolymer transferase PdtA also has a crucial function in apical tip extension of vegetative hyphae under stress conditions. IMPORTANCE Anionic glycopolymers are underappreciated components of the Gram-positive cell envelope. They provide rigidity to the cell wall and position extracellular enzymes involved in peptidoglycan remodeling. Although Streptomyces coelicolor A3(2), the model organism for bacterial antibiotic production, is known to produce two distinct cell wall-linked glycopolymers, teichulosonic acid and polydiglycosylphosphate, the role of these glycopolymers in the S. coelicolor A3(2) life cycle has not been addressed so far. This study reveals a crucial function of the anionic glycopolymer polydiglycosylphosphate for the growth and morphological differentiation of S. coelicolor A3(2). Polydiglycosylphosphate is attached to the spore wall by the LytR-CpsA-Psr protein PdtA (SCO2578), a component of the Streptomyces spore wall-synthesizing complex (SSSC), to

  18. Tyrosine 8 contributes to catalysis but is not required for activity of rat liver glutathione S-transferase, 1-1.

    PubMed Central

    Wang, J.; Barycki, J. J.; Colman, R. F.

    1996-01-01

    Reaction of rat liver glutathione S-transferase, isozyme 1-1, with 4-(fluorosulfonyl)benzoic acid (4-FSB), a xenobiotic substrate analogue, results in a time-dependent inactivation of the enzyme to a final value of 35% of its original activity when assayed at pH 6.5 with 1-chloro-2,4-dinitrobenzene (CDNB) as substrate. The rate of inactivation exhibits a nonlinear dependence on the concentration of 4-FSB from 0.25 mM to 9 mM, characterized by a KI of 0.78 mM and kmax of 0.011 min-1. S-Hexylglutathione or the xenobiotic substrate analogue, 2,4-dinitrophenol, protects against inactivation of the enzyme by 4-FSB, whereas S-methylglutathione has little effect on the reaction. These experiments indicate that reaction occurs within the active site of the enzyme, probably in the binding site of the xenobiotic substrate, close to the glutathione binding site. Incorporation of [3,5-3H]-4-FSB into the enzyme in the absence and presence of S-hexylglutathione suggests that modification of one residue is responsible for the partial loss of enzyme activity. Tyr 8 and Cys 17 are shown to be the reaction targets of 4-FSB, but only Tyr 8 is protected against 4-FSB by S-hexylglutathione. DTT regenerates cysteine from the reaction product of cysteine and 4-FSB, but does not reactivate the enzyme. These results show that modification of Tyr 8 by 4-FSB causes the partial inactivation of the enzyme. The Michaelis constants for various substrates are not changed by the modification of the enzyme. The pH dependence of the enzyme-catalyzed reaction of glutathione with CDNB for the modified enzyme, as compared with the native enzyme, reveals an increase of about 0.9 in the apparent pKa, which has been interpreted as representing the ionization of enzyme-bound glutathione; however, this pKa of about 7.4 for modified enzyme remains far below the pK of 9.1 for the -SH of free glutathione. Previously, it was considered that Tyr 8 was essential for GST catalysis. In contrast, we conclude that

  19. [Effects of Tagetes erecta extracts on glutathione S-transferase and protease activities and protein content in Tetranychus viennensis].

    PubMed

    Shi, Guang-lu; Wang, You-nian; Wang, Hong-lei; Zhao, Li-lin; Liu, Su-qi; Cao, Hui; Yu, Tong-quan; Lu, Ping

    2007-02-01

    With in vivo and in vitro Tagetes erecta roots under light and dark as test materials, this paper studied the effects of their extracts on the glutathione S-transferase and protease activities and protein content in Tetranychus viennensis. The results showed that the chloroform extract of T. erecta roots had the highest light-activated activity, followed by water extract, and methanol extract. After treated with chloroform extract, the glutathione S-transferase and protease activities in T. viennensis increased markedly, while its protein content decreased obviously. The variation degree of T. viennensis protease activity and protein content was significantly higher when the chloroform extract came from the T. erecta roots under light, suggesting that there existed active matters in the extract, which could promote the activation of protease, and thus, the decomposition of protein in T. viennensis. The bioactivity of T. erecta metabolites was mainly of light-activated one.

  20. Partial purification and characterization of a mannosyl transferase involved in O -linked mannosylation of glycoproteins in Candida albicans.

    PubMed

    Arroyo-Flores, Blanca L; Calvo-Méndez, Carlos; Flores-Carreón, Arturo; López-Romero, Everardo

    2004-04-01

    Incubation of a mixed membrane fraction of C. albicans with the nonionic detergents Nonidet P-40 or Lubrol solubilized a fraction that catalyzed the transfer of mannose either from endogenously generated or exogenously added dolichol-P-[14C]Man onto endogenous protein acceptors. The protein mannosyl transferase solubilized with Nonidet P-40 was partially purified by a single step of preparative nondenaturing electrophoresis and some of its properties were investigated. Although transfer activity occurred in the absence of exogenous mannose acceptors and thus depended on acceptor proteins isolated along with the enzyme, addition of the protein fraction obtained after chemical de-mannosylation of glycoproteins synthesized in vitro stimulated mannoprotein labeling in a concentration-dependent manner. Other de-mannosylated glycoproteins, such as yeast invertase or glycoproteins extracted from C. albicans, failed to increase the amount of labeled mannoproteins. Mannosyl transfer activity was not influenced by common metal ions such as Mg(2+), Mn(2+) and Ca(2+), but it was stimulated up to 3-fold by EDTA. Common phosphoglycerides such as phosphatidylglycerol and, to a lower extent, phosphatidylinositol and phosphatidylcholine enhanced transfer activity. Interestingly, coupled transfer activity between dolichol phosphate mannose synthase, i.e., the enzyme responsible for Dol-P-Man synthesis, and protein mannosyl transferase could be reconstituted in vitro from the partially purified transferases, indicating that this process can occur in the absence of cell membranes.

  1. Neuroantibodies (NAB) in African-American Children: Associations with Gender, Glutathione-S-Transferase (GST)Pi Polymorphisms (SNP) and Heavy Metals

    EPA Science Inventory

    CONTACT (NAME ONLY): Hassan El-Fawal Abstract Details PRESENTATION TYPE: Platform or Poster CURRENT CATEGORY: Neurodegenerative Disease | Biomarkers | Neurotoxicity, Metals KEYWORDS: Autoantibodies, Glutathione-S-Transferase, DATE/TIME LAST MODIFIED: DATE/TIME SUBMITTED: Abs...

  2. Production of hydroxycinnamoyl-shikimates and chlorogenic acid in Escherichia coli: production of hydroxycinnamic acid conjugates

    PubMed Central

    2013-01-01

    Background Hydroxycinnamates (HCs) are mainly produced in plants. Caffeic acid (CA), p-coumaric acid (PA), ferulic acid (FA) and sinapic acid (SA) are members of the HC family. The consumption of HC by human might prevent cardiovascular disease and some types of cancer. The solubility of HCs is increased through thioester conjugation to various compounds such as quinic acid, shikimic acid, malic acid, anthranilic acid, and glycerol. Although hydroxycinnamate conjugates can be obtained from diverse plant sources such as coffee, tomato, potato, apple, and sweet potato, some parts of the world have limited availability to these compounds. Thus, there is growing interest in producing HC conjugates as nutraceutical supplements. Results Hydroxycinnamoyl transferases (HCTs) including hydroxycinnamate-CoA shikimate transferase (HST) and hydroxycinnamate-CoA quinate transferase (HQT) were co-expressed with 4-coumarateCoA:ligase (4CL) in Escherichia coli cultured in media supplemented with HCs. Two hydroxycinnamoyl conjugates, p-coumaroyl shikimates and chlorogenic acid, were thereby synthesized. Total 29.1 mg/L of four different p-coumaroyl shikimates (3-p-coumaroyl shikimate, 4-p-coumaroyl shikimate, 3,4-di-p-coumaroyl shikimate, 3,5-di-p-coumaroyl shikimate, and 4,5-di-p-coumaroyl shikimate) was obtained and 16 mg/L of chlorogenic acid was synthesized in the wild type E. coli strain. To increase the concentration of endogenous acceptor substrates such as shikimate and quinate, the shikimate pathway in E. coli was engineered. A E. coli aroL and aroK gene were mutated and the resulting mutants were used for the production of p-coumaroyl shikimate. An E. coli aroD mutant was used for the production of chlorogenic acid. We also optimized the vector and cell concentration optimization. Conclusions To produce p-coumaroyl-shikimates and chlorogenic acid in E. coli, several E. coli mutants (an aroD mutant for chlorogenic acid production; an aroL, aroK, and aroKL mutant for p

  3. Synthesis of enantiopure trifluoromethyl building blocks via a highly chemo- and diastereoselective nucleophilic trifluoromethylation of tartaric acid-derived diketones.

    PubMed

    Massicot, Fabien; Monnier-Benoit, Nicolas; Deka, Naba; Plantier-Royon, Richard; Portella, Charles

    2007-02-16

    A highly diastereoselective nucleophilic mono(trifluoromethylation) of a tartaric acid-based diketone, using trifluoromethyl(trimethyl)silane, afforded the corresponding gamma-keto trifluoromethylcarbinol. The scope and limitation of this reaction was studied. The acidic removal of the acetonide moiety protecting the two hydroxyl groups of the adducts was unsuccessful. Bis(O-methylation) of the aromatic derivatives under basic conditions, followed by acidic hydrolysis and oxidative cleavage, led to two different enantiopure products: an alpha-aryl-alpha-methoxy-alpha-trifluoromethyl ethanal and an alpha-aryl-alpha-methoxycarboxylic acid. The overall process is eventually an interesting way to convert one natural chiral raw material into two functionalized enantiopure building blocks including a trifluoromethyl one.

  4. Identification and Characterization of a Missense Mutation in the O-GlcNAc Transferase Gene that Segregates with X-Linked Intellectual Disability.

    PubMed

    Vaidyanathan, Krithika; Niranjan, Tejasvi; Selvan, Nithya; Teo, Chin Fen; May, Melanie; Patel, Sneha; Weatherly, Brent; Skinner, Cindy; Opitz, John; Carey, John; Viskochil, David; Gecz, Jozef; Shaw, Marie; Peng, Yunhui; Alexov, Emil; Wang, Tao; Schwartz, Charles; Wells, Lance

    2017-03-16

    O-GlcNAc is a regulatory post-translational modification of nucleocytoplasmic proteins that has been implicated in multiple biological processes including transcription. In humans, single genes encode enzymes for its attachment [O-GlcNAc transferase (OGT)] and removal [O-GlcNAcase (OGA)]. An X-chromosome exome screen identified a missense mutation, that encodes an amino acid in the tetratricopeptide repeat, in OGT (759G>T (p.L254F)) that segregates with X-linked intellectual disability (XLID) in an affected family. A decrease in steady-state OGT protein levels were observed in isolated lymphoblastoid cell lines from affected individuals consistent with molecular modeling experiments. Recombinant expression of L254F-OGT demonstrated that the enzyme is active as both a glycosyltransferase and as a HCF-1 protease. Despite the reduction in OGT levels seen in the L254F-OGT individual