Sample records for acid oleanolic acid

  1. Antibacterial and antiparasitic activity of oleanolic acid and its glycosides isolated from marigold (Calendula officinalis).

    PubMed

    Szakiel, Anna; Ruszkowski, Dariusz; Grudniak, Anna; Kurek, Anna; Wolska, Krystyna I; Doligalska, Maria; Janiszowska, Wirginia

    2008-11-01

    The antibacterial and antiparasitic activities of free oleanolic acid and its glucosides and glucuronides isolated from marigold (Calendula officinalis) were investigated. The MIC of oleanolic acid and the effect on bacterial growth were estimated by A600 measurements. Oleanolic acid's influence on bacterial survival and the ability to induce autolysis were measured by counting the number of cfu. Cell morphology and the presence of endospores were observed under electron and light microscopy, respectively. Oleanolic acid inhibited bacterial growth and survival, influenced cell morphology and enhanced the autolysis of Gram-positive bacteria suggesting that bacterial envelopes are the target of its activity. On the other hand, glycosides of oleanolic acid inhibited the development of L3 Heligmosomoides polygyrus larvae, the infective stage of this intestinal parasitic nematode. In addition, both oleanolic acid and its glycosides reduced the rate of L3 survival during prolonged storage, but only oleanolic acid glucuronides affected nematode infectivity. The presented results suggest that oleanolic acid and its glycosides can be considered as potential therapeutic agents.

  2. [Study on solid dispersion of precipitated calcium carbonate-based oleanolic acid].

    PubMed

    Yan, Hong-mei; Zhang, Zhen-hai; Jia, Xiao-bin; Jiang, Yan-rong; Sun, E

    2015-05-01

    Oleanolic acid-precipitated calcium carbonate solid dispersion was prepared by using solvent evaporation method. The microscopic structure and physicochemical properties of solid dispersion were analyzed using differential scanning calorimetry and scanning electron microscopy (SEM). And its in vitro release also was investigated. The properties of the precipitated calcium carbonate was studied which was as a carrier of oleanolic acid solid dispersion. Differential scanning calorimetry analysis suggested that oleanolic acid may be present in solid dispersion as amorphous substance. The in vitro release determination results of oleanolic acid-precipitated calcium carbonate (1: 5) solid dispersion showed accumulated dissolution rate of.oleanolic acid was up to 90% at 45 min. Accelerating experiment showed that content and in vitro dissolution of oleanolic acid solid dispersion did not change after storing over 6 months. The results indicated that in vitro dissolution of oleanolic acid was improved greatly by the solid dispersion with precipitated calcium carbonate as a carrier. The solid dispersion is a stabilizing system which has actual applied value.

  3. [Studies on chemical constituents from rhizome of Anemone flaccida].

    PubMed

    Zhang, Lan-tian; Takaishi, Yoshihisa; Zhang, Yan-wen; Duan, Hong-quan

    2008-07-01

    To study the chemical constituents from Anemone flaccida. Chemical constituents were isolated by repeated column chromatography (silica gel, Toyopearl HW-40C and preparative HPLC). The structures were elucidated on the basis of spectral data analysis. Twelve triterpenes were isolated and their structures were identified as follow: oleanolic acid (1), oleanolic acid 3-O-beta-D-glccopyranosyl-(1-->2)-beta-D-xylopyranoside (2), eleutheroside K (3), oleanolic acid 3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-xylopyranoside (4), oleanolic acid 3-O-beta-D-glccopyranosyl-(1-->2)-alpha-L-arabinofurnoside (5), oleanolic acid 3-O-beta-D-glccuronopyranose (6), oleanolic acid 3-O-beta-D-glccuronopyranose methyl ester (7), oleanolic acid 28-O-alpha-L-rhamnopyranosyl(1-->4)-beta-D-glccopyranosyl (1-->6)-beta-D-glccopyranosyl (8), oleanolic acid 3-O-beta-D-glccuronopyranose 28-O-alpha-L-rhamnopyranosyl (1-->4)-beta-D-glccopyranosyl (1-->6)-beta-D-glccopyranoside (9), oleanolic acid 3-O-beta-D-glccopyranosyl methyl ester 28-O-alpha-L-rhamnopyranosyl (1-->4)-beta-D-glccopyranosyl (1-->6)-beta-D-glccopyranoside (10), oleanolic acid 3-O-beta-D-glccopyranosyl-(1-->2)-beta-D-xylopyranosyl-28-O-alpha-L-rhamnopyranosyl (1-->4)-beta-D-glccopyranosyl (1-->6)-beta-D-glccopyranoside (11), oleanolic acid 3-O-alpha-L-rh-amnopyranosyl-(1-->2)-alpha-L-arabinopyrnosyl-28-O-alpha-L-rhamnopyranosyl (1-->4)-beta-D-glccopyranosyl (1-->6)-beta-D-glccopyranoside (12). compounds 5-8, 10, 12 were isolated from this plant for the first time. Compounds 2, 5 and 11 showed positive anti-tumor activities.

  4. Microwave-Assisted Extraction of Oleanolic Acid and Ursolic Acid from Ligustrum lucidum Ait

    PubMed Central

    Xia, En-Qin; Wang, Bo-Wei; Xu, Xiang-Rong; Zhu, Li; Song, Yang; Li, Hua-Bin

    2011-01-01

    Oleanolic acid and ursolic acid are the main active components in fruit of Ligustrum lucidum Ait, and possess anticancer, antimutagenic, anti-inflammatory, antioxidative and antiprotozoal activities. In this study, microwave-assisted extraction of oleanolic acid and ursolic acid from Ligustrum lucidum was investigated with HPLC-photodiode array detection. Effects of several experimental parameters, such as type and concentration of extraction solvent, ratio of liquid to material, microwave power, extraction temperature and microwave time, on the extraction efficiencies of oleanolic acid and ursolic acid from Ligustrum lucidum were evaluated. The influence of experimental parameters on the extraction efficiency of ursolic acid was more significant than that of oleanolic acid (p < 0.05). The optimal extraction conditions were 80% ethanol aqueous solution, the ratio of material to liquid was 1:15, and extraction for 30 min at 70 °C under microwave irradiation of 500 W. Under optimal conditions, the yields of oleanolic acid and ursolic acid were 4.4 ± 0.20 mg/g and 5.8 ± 0.15 mg/g, respectively. The results obtained are helpful for the full utilization of Ligustrum lucidum, which also indicated that microwave-assisted extraction is a very useful method for extraction of oleanolic acid and ursolic acid from plant materials. PMID:21954361

  5. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ying; Wang, Jianwei, E-mail: wangjianwei1968@gmail.com; Gu, Tieguang

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) indexmore » in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in fructose-fed rats. • OA attenuated fructose-induced increase in Adipo-IR index and NEFA concentrations. • OA modulated adipose IRS-1/phosphatidylinositol 3-kinase/Akt signaling. • OA ameliorates Adipo-IR via the IRS-1/PI3K/Akt signaling pathway in rats.« less

  6. α-Glucosidase enzyme inhibitory effects and ursolic and oleanolic acid contents of fourteen Anatolian Salvia species.

    PubMed

    Kalaycıoğlu, Zeynep; Uzaşçı, Sesil; Dirmenci, Tuncay; Erim, F Bedia

    2018-06-05

    During the last decade, ursolic and oleanolic acids have been of considerable interest because of their α-glucosidase inhibitory activities and potential effects for treatment of type 2 diabetes. A simple and sensitive reversed-phase HPLC method was developed for the simultaneous determination of ursolic acid and oleanolic acid. The optimal mobile phase was selected as 85% acetonitrile solution. The limit of detection of the method for ursolic acid and oleanolic acid were 14 ng mL -1 and 13 ng mL -1 , respectively. The method showed good precision and accuracy with intra-day and inter-day variations of 0.54% and 7.33% for ursolic acid, intra-day and inter-day variations of 0.51% and 5.26% for oleanolic acid, and overall recoveries of 97.8% and 98.5% for ursolic acid and oleanolic acid, respectively. Application of the method to determine the ursolic acid and oleanolic acid contents in the Salvia species revealed both compounds, with varying amounts between 0.21-9.76 mg g -1 ursolic acid and 0.20-12.7 mg g -1 oleanolic acid, respectively, among 14 Salvia species analyzed. Additionally, the plant extracts were analyzed for their inhibitory activities on α-glucosidase. According to the results of this assay, the extracts showed considerable activity on α-glucosidase with IC 50 values from 17.6 to 173 μg mL -1 . A strong negative correlation was detected between the amounts of both acids and IC 50 values of extracts. Anatolian Salvia species have great potential as functional plants in the management of diabetes. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Simultaneous Determination of Oleanolic Acid and Ursolic Acid by in Vivo Microdialysis via UHPLC-MS/MS Using Magnetic Dispersive Solid Phase Extraction Coupling with Microwave-Assisted Derivatization and Its Application to a Pharmacokinetic Study of Arctiumlappa L. Root Extract in Rats.

    PubMed

    Zheng, Zhenjia; Zhao, Xian-En; Zhu, Shuyun; Dang, Jun; Qiao, Xuguang; Qiu, Zhichang; Tao, Yanduo

    2018-04-18

    Simultaneous detection of oleanolic acid and ursolic acid in rat blood by in vivo microdialysis can provide important pharmacokinetics information. Microwave-assisted derivatization coupled with magnetic dispersive solid phase extraction was established for the determination of oleanolic acid and ursolic acid by liquid chromatography tandem mass spectrometry. 2'-Carbonyl-piperazine rhodamine B was first designed and synthesized as the derivatization reagent, which was easily adsorbed onto the surface of Fe 3 O 4 /graphene oxide. Simultaneous derivatization and extraction of oleanolic acid and ursolic acid were performed on Fe 3 O 4 /graphene oxide. The permanent positive charge of the derivatization reagent significantly improved the ionization efficiencies. The limits of detection were 0.025 and 0.020 ng/mL for oleanolic acid and ursolic acid, respectively. The validated method was shown to be promising for sensitive, accurate, and simultaneous determination of oleanolic acid and ursolic acid. It was used for their pharmacokinetics study in rat blood after oral administration of Arctiumlappa L. root extract.

  8. New Approaches to Chemoprevention of Breast Cancer.

    DTIC Science & Technology

    1997-09-01

    chemotherapy of breast cancer. Although the naturally occurring triterpenoids, ursolic acid (UA) and oleanolic acid (OA), have been shown to have some...formed in nature by the cyclization of squalene, with the retention of all 30 carbon atoms in molecules such as oleanolic acid (OA) and ursolic acid ...and ursolic acids is described in detail in the attached manuscript, "New Enone Derivatives of Oleanolic Acid and Ursolic Acid as Inhibitors of Nitric

  9. New Approaches to Chemoprevention of Breast Cancer.

    DTIC Science & Technology

    1998-09-01

    breast cancer. Although the naturally occurring triterpenoids, ursolic acid (UA) and oleanolic acid (OA), have been shown to have some anti-carcinogenic...nature by the cyclization of squalene, with the retention of all 30 carbon atoms in molecules such as oleanolic acid (OA) and ursolic acid (UA). Although...manuscript. b) Results and Discussion 1. Synthesis of New Triterpenoids The synthesis of new triterpenoid derivatives of oleanolic and ursolic acids is

  10. Pentacyclic triterpenes as α-glucosidase and α-amylase inhibitors: Structure-activity relationships and the synergism with acarbose.

    PubMed

    Zhang, Bo-Wei; Xing, Yan; Wen, Chen; Yu, Xiao-Xia; Sun, Wen-Long; Xiu, Zhi-Long; Dong, Yue-Sheng

    2017-11-15

    In this paper, the inhibition of α-amylase and α-glucosidase by nine pentacyclic triterpenes was determined. For α-amylase inhibitory activity, the IC 50 values of ursolic acid, corosolic acid, and oleanolic acid were 22.6±2.4μM, 31.2±3.4μM, and 94.1±6.7μM, respectively. For α-glucosidase inhibition, the IC 50 values of ursolic acid, corosolic acid, betulinic acid, and oleanolic acid were 12.1±1.0μM, 17.2±0.9μM, 14.9±1.9μM, and 35.6±2.6μM, respectively. The combination of corosolic acid and oleanolic acid with acarbose showed synergistic inhibition against α-amylase. The combination of the tested triterpenes with acarbose mainly exhibited additive inhibition against α-glucosidase. Kinetic studies revealed that corosolic acid and oleanolic acid showed non-competitive inhibition and acarbose showed mixed-type inhibition against α-amylase. The results provide valuable implications for the triterpenes (ursolic acid, corosolic acid, and oleanolic acid) alone or in combination with acarbose as a therapeutic agent for the treatment of diabetes mellitus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Oral administration of oleanolic acid, isolated from Swertia mussotii Franch, attenuates liver injury, inflammation, and cholestasis in bile duct-ligated rats

    PubMed Central

    Chai, Jin; Du, Xiaohuang; Chen, Sheng; Feng, XinChan; Cheng, Ying; Zhang, Liangjun; Gao, Yu; Li, Shaoxue; He, Xiaochong; Wang, Rongquan; Zhou, Xiangdong; Yang, Yong; Luo, Weizao; Chen, Wensheng

    2015-01-01

    Background & aims: Oleanolic acid is abundantly distributed in Swertia mussotii Franch, a Chinese traditional herb for the treatment of jaundice. However, the hepatoprotective role of oleanolic acid in obstructive cholestasis and its underlying molecular mechanism are unclear. Methods: Normal rats and bile duct-ligated (BDL) rats were given oleanolic acid and serum biochemistry, bile salts, and pro-inflammatory factors were measured, as well as the expression levels of liver bile acid synthesis and detoxification enzymes, membrane transporters, nuclear receptors, and transcriptional factors. Results: Oral administration of oleanolic acid at 100 mg/kg did not cause rat liver injury. However, it significantly reduced the serum levels of alanine aminotransferase (ALT) on days 7 and 14, aspartate aminotransferase (AST) and TNF-α on day 14, and alkaline phosphatase (ALP) and IL-1β on days 3, 7, and 14 in the BDL rats. Furthermore, the serum levels of total bile acid (TBA) and bile acids, including CDCA, CA, DCA, and Tα/βMCA were significantly reduced by oleanolic acid on day 3 in the BDL rats. In addition, the expression levels of detoxification enzymes Cyp3a, Ugt2b, Sult2a1, Gsta1-2, and Gstm1-3, membrane transporters Mrp3, Mrp4, Ostβ, Mdr1, Mdr2, and Bsep, nuclear receptors Pxr, Vdr, Hnf4α, Rxrα, Rarα, Lxr, and Lrh-1, and transcriptional factors Nrf2, Hnf3β, and Ahr were significantly increased in oleanolic acid-treated rats. Conclusion: We demonstrated that the oral administration of oleanolic acid attenuates liver injury, inflammation, and cholestasis in BDL rats. The anti-cholestatic effect may be associated with the induction of hepatic detoxification enzymes and efflux transporters mediated by nuclear receptors and transcriptional factors. PMID:25932098

  12. [Study on triterpenoid saponins in the rhizome of Anemone hofengensis].

    PubMed

    Han, Lin-Tao; Li, Ming-Ming; Huang, Fang; Hou, An-Wei

    2013-10-01

    To study the triterpenoid saponins in the rhizome of Anemone hofengensis. The constituents were separated with various chromatographic techniques and their structures were elucidated by physicochemical properties and spectral data. Five compounds were isolated and identified as 3-O-alpha-L-rhamnopyranosyl-(1 --> 2)-alpha-L-arabino-pyranosyl-oleanolic acid (1), 3-O-alpha-L-rhamnopyranosyl-(1 --> 2)-beta-D-glucopyranosyl-(1 --> 2)-alpha-L-rhamnopyranosyl-oleanolic acid 28-O-alpha-L-rhamnopyranosyl-(1 --> 4) -beta-D-glucopyranosyl-(1 --> 6)-beta-D-glucopyranoside (2), 3-O-alpha-L-rhamnopyranosyl-(1 --> 2) [beta-D-glucopyranosyl-(1 --> 4)]-alpha-L-rhamnopyranosyl-oleanolic acid-28-O-beta-D-glucopyranosyl-(1 --> 6)-beta-D-gluco-pyranoside (3), 3-O-beta-D-glucopyranosyl-(1 --> 2)-beta-D-xylopyranosyl-oleanolic acid 28-O-beta-D-glucopyranosyl-(1 --> 6)-beta-D-glucopyranoside (4), oleanolic acid-28-O-alpha-L-rhamnopyra-nosyl-(1 --> 4)-beta-D-glucopyranosyl-(1 --> 6)-beta-D-glucopyranoside (5). Compound 1 - 5 are isolated from this plant for the first time.

  13. Oleanolic acid liposomes with polyethylene glycol modification: promising antitumor drug delivery

    PubMed Central

    Gao, Dawei; Tang, Shengnan; Tong, Qi

    2012-01-01

    Background Oleanolic acid is a pentacyclic triterpene present in many fruits and vegetables, and has received much attention on account of its biological properties. However, its poor solubility and low bioavailability limit its use. The objective of this study was to encapsulate oleanolic acid into nanoliposomes using the modified ethanol injection method. Methods The liposomes contain a hydrophobic oleanolic acid core, an amphiphilic soybean lecithin monolayer, and a protective hydrophilic polyethylene glycol (PEG) coating. During the preparation process, the formulations described were investigated by designing 34 orthogonal experiments as well as considering the effects of different physical characteristics. The four factors were the ratios of drug to soybean phosphatidylcholine (w/w), cholesterol (w/w), PEG-2000 (w/w), and temperature of phosphate-buffered saline at three different levels. We identified the optimized formulation which showed the most satisfactory lipid stability and particle formation. The morphology of the liposomes obtained was determined by transmission electron microscopy and atomic force microscopy. The existence of PEG in the liposome component was validated by Fourier transform infrared spectrum analysis. Results The PEGylated liposomes dispersed individually and had diameters of around 110–200 nm. Encapsulation efficiency was more than 85%, as calculated by high-performance liquid chromatography and Sephadex® gel filtration. Furthermore, when compared with native oleanolic acid, the liposomal formulations showed better stability in vitro. Finally, the cytotoxicity of the oleanolic acid liposomes was evaluated using a microtiter tetrazolium assay. Conclusion These results suggest that PEGylated liposomes would serve as a potent delivery vehicle for oleanolic acid in future cancer therapy. PMID:22848175

  14. BDNF–ERK–CREB signalling mediates the role of miR-132 in the regulation of the effects of oleanolic acid in male mice

    PubMed Central

    Yi, Li-Tao; Li, Jing; Liu, Bin-Bin; Luo, Liu; Liu, Qing; Geng, Di

    2014-01-01

    Background Although previous study has demonstrated that brain-derived neurotrophic factor (BDNF) is involved in the antidepressant-like effect of oleanolic acid, there is little information regarding the details of the molecular mechanism involved in this effect. Methods We used a chronic unpredictable mild stress (CUMS) model to test the antidepressant-like effect of oleanolic acid on depressant-like behaviour, miR-132 expression and synaptic protein expression in the male mouse hippocampus. Furthermore, we explored the possible signalling pathways associated with miR-132 expression that mediate the effect of oleanolic acid on neuronal proliferation. Results The results demonstrated that a 3-week treatment with oleanolic acid ameliorated CUMS-induced anhedonic and anxiogenic behaviours. Furthermore, we found that oleanolic acid led to the BDNF-related phosphorylation and activation of extracellular signal-regulated kinases (ERK) and cyclic adenosine monophosphate response element binding protein (CREB), which was associated with the upregulation of miR-132 and hippocampal neuronal proliferation. Moreover, experiments with an miR-132 antagomir revealed that targeting miR-132 led to inhibition of neuronal proliferation and the postsynaptic density protein 95, but did not affect presynaptic protein synapsin I. Limitations Several other stimuli can also induce CREB phosphorylation in the hippocampus. Thus, regulation of miR-132 may not be restricted to neurotrophic signalling. Conclusion Our results show that oleanolic acid induces the upregulation of miR-132, which serves as an important regulator of neurotrophic actions, mainly through the activation of the hippocampal BDNF–ERK–CREB signalling pathways. PMID:25079084

  15. Distribution and expression characteristics of triterpenoids and OSC genes in white birch (Betula platyphylla suk.).

    PubMed

    Yin, Jing; Ren, Chun-Lin; Zhan, Ya-Guang; Li, Chun-Xiao; Xiao, Jia-Lei; Qiu, Wei; Li, Xin-Yu; Peng, Hong-Mei

    2012-03-01

    Betulin and oleanolic acids (pentacyclic triterpenoid secondary metabolites) have broad pharmacological activities and can be potentially used for the development of anti-cancer and anti-AIDS drugs. In this study, we detected the accumulation and the distribution characteristics of betulin and oleanolic acid in various organs of white birch at different ages. We also determined the expression of 4 OSC genes (LUS, β-AS, CAS1 and CAS2) involved in the triterpenoid synthesis pathways by real time RT-PCR. The result showed that the 1-year old birch can synthesize betulin and oleanolic acid. In addition, betulin and oleanolic acids were mainly distributed in the bark, while the content in the root skin and leaf was very low. The content of betulin and oleanolic acid in birch varied in different seasons. The content of betulin and oleanolic acid and their corresponding LUS and β-AS gene expression were very low in 1-year old birch. With increasing age of birch, betulin content was increased, while oleanolic acid was decreased. Similar changes were also observed for their corresponding synthesis genes LUS and β-AS. In the leaf of 1-year old plant, the highest expression of CAS1 and CAS2 occurred at end of September, while expression of LUS and the β-AS was low from June to October. In the stem skin,high expression of β-AS and the LUS genes occurred from the end of July to September. In the root, high expression of the β-AS gene was observed at the end of October. These results indicated that triterpenoid gene expression was similar to the triterpene accumulation. Expression of LUS gene and β-AS gene in birch with different ages were corresponding to the betulinic and oleanolic acid accumulation. Expression of CAS1 and CAS2 genes were elevated with increasing age of birch. This study provides molecular mechanisms of triterpenes synthesis in birch plants.

  16. Syntheses and mucosal adjuvant activity of simplified oleanolic acid saponins possessing cinnamoyl ester.

    PubMed

    Shirahata, Tatsuya; Nagai, Takayuki; Hirata, Nozomu; Yokoyama, Masaki; Katsumi, Tatsuya; Konishi, Naruki; Nishino, Takashi; Makino, Kazuishi; Yamada, Haruki; Kaji, Eisuke; Kiyohara, Hiroaki; Kobayashi, Yoshinori

    2017-03-15

    A series of new simplified oleanolic acid saponins with a glycosyl ester moiety at C28, were efficiently prepared. Furthermore, the effect of nasal administration of the synthetic oleanolic acid saponins on the nasal anti-influenza virus antibody titer against secondary nasal inoculation of the influenza split vaccine was examined. The result revealed cinnamoyl saponin as a suitable candidate vaccine adjuvant. Copyright © 2016. Published by Elsevier Ltd.

  17. Antibacterial activity of triterpene acids and semi-synthetic derivatives against oral pathogens

    PubMed

    Scalon Cunha, Luis C; Andrade e Silva, Márcio L; Cardoso Furtado, Niege A J; Vinhólis, Adriana H C; Martins, Carlos H; da Silva Filho, Ademar A; Cunha, Wilson R

    2007-01-01

    Triterpene acids (ursolic, oleanoic, gypsogenic, and sumaresinolic acids) isolated from Miconia species, along with a mixture of ursolic and oleanolic acids and a mixture of maslinic and 2-a-hydroxyursolic acids, as well as ursolic acid derivatives were evaluated against the following microorganisms: Streptococcus mutans, Streptococcus mitis, Streptococcus sanguinis, Streptococcus salivarius, Streptococcus sobrinus, and Enterococcus faecalis, which are potentially responsible for the formation of dental caries in humans. The microdilution method was used for the determination of the minimum inhibitory concentration (MIC) during the evaluation of the antibacterial activity. All the isolated compounds, mixtures, and semi-synthetic derivatives displayed activity against all the tested bacteria, showing that they are promising antiplaque and anticaries agents. Ursolic and oleanolic acids displayed the most intense antibacterial effect, with MIC values ranging from 30 microg/mL to 80 microg/mL. The MIC values of ursolic acid derivatives, as well as those obtained for the mixture of ursolic and oleanolic acids showed that these compounds do not have higher antibacterial activity when compared with the activity observed with either ursolic acid or oleanolic acid alone. With regard to the structure-activity relationship of triterpene acids and derivatives, it is suggested that both hydroxy and carboxy groups present in the triterpenes are important for their antibacterial activity against oral pathogens.

  18. Ameliorative effects of oleanolic acid on fluoride induced metabolic and oxidative dysfunctions in rat brain: Experimental and biochemical studies.

    PubMed

    Sarkar, Chaitali; Pal, Sudipta; Das, Niranjan; Dinda, Biswanath

    2014-04-01

    Beneficial effects of oleanolic acid on fluoride-induced oxidative stress and certain metabolic dysfunctions were studied in four regions of rat brain. Male Wistar rats were treated with sodium fluoride at a dose of 20 mg/kg b.w./day (orally) for 30 days. Results indicate marked reduction in acidic, basic and neutral protein contents due to fluoride toxicity in cerebrum, cerebellum, pons and medulla. DNA, RNA contents significantly decreased in those regions after fluoride exposure. Activities of proteolytic enzymes (such as cathepsin, trypsin and pronase) were inhibited by fluoride, whereas transaminase enzyme (GOT and GPT) activities increased significantly in brain tissue. Fluoride appreciably elevated brain malondialdehyde level, free amino acid nitrogen, NO content and free OH radical generation. Additionally, fluoride perturbed GSH content and markedly reduced SOD, GPx, GR and CAT activities in brain tissues. Oral supplementation of oleanolic acid (a plant triterpenoid), at a dose of 5mg/kgb.w./day for last 14 days of fluoride treatment appreciably ameliorated fluoride-induced alteration of brain metabolic functions. Appreciable counteractive effects of oleanolic acid against fluoride-induced changes in protein and nucleic acid contents, proteolytic enzyme activities and other oxidative stress parameters indicate that oleanolic acid has potential antioxidative effects against fluoride-induced oxidative brain damage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Application of positive mode atmospheric chemical ionisation to distinguish epimeric oleanolic and ursolic acids.

    PubMed

    Townley, Chloe; Brettell, Rhea C; Bowen, Richard D; Gallagher, Richard T; Martin, William H C

    2015-01-01

    A new and more reliable method is reported for distinguishing the equatorial and axial epimers of oleanolic and ursolic acids and related triterpenoids based primarily on the relative abundance of the [M+H](+) and [M+-H(2)O](+) signals in their positive mode atmospheric pressure chemical ionisation mass spectra. The rate of elimination of water, which is the principal primary fragmentation of protonated oleanolic and ursolic acids, depends systematically on the stereochemistry of the hydroxyl group in the 3 position. For the b-epimer, in which the 3-hydroxyl substituent is in an equatorial position,[M+-H(2)O](+) is the base peak. In contrast, for the α-epimer, where the 3-hydroxyl group is axial, [M + H](+) is the base peak. This trend, which is general for a range of derivatives of oleanolic and ursolic acids, including the corresponding methyl esters, allows epimeric triterpenoids in these series to be securely differentiated. Confirmatory information is available from the collision-induced dissociation of the [M+-H(2)O](+) primary fragment ions, which follow different pathways for the species derived from axial and equatorial epimers of oleanolic and ursolic acids. These two pieces of independent spectral information permit the stereochemistry of epimeric oleanolic and ursolic acids (and selected derivatives) to be assigned with confidence without relying either on chromatographic retention times or referring to the spectra or other properties of authentic samples of these triterpenoids.

  20. [Studies on triterpenoid saponins in the rhizome of Anemone flaccida].

    PubMed

    Han, Lin-Tao; Huang, Fang

    2009-07-01

    To study the triterpenoid saponins in the rhizome of Anemone flaccida. The constituents were separated with various chromatographic techniques and their structures were elucidated by means of physicochemical properties and the analysis of their spectral datas. Five compounds were isolated and identified as 3-O-beta-D-glucuronypyranosyl-oleanolic acid-28-O-alpha-L-rhamnopyranosyl (1 --> 4)-beta-D-glucopyranosyl(1 --> 6)-beta-D-glucopyra noside (1), 3-O-beta-D-glucuronypyranosyl-oleanolic acid-28-O-beta-D-glucopyranosyl (1 --> 6)-beta-D-glucopyranoside (2), 3-O-alpha-L-rhamnopyranosy (1 --> 2)-beta-D-glucopyranosyl-oleanolic acid-28-O-alpha-L-rhamnopyranosyl (1 --> 4)-beta-D-glucopyranosyl (1 --> 6)-beta-D-glucopyranoside (3), 3-O-alpha-L-rhamnopyranosyl (1 --> 2)-alpha-L-arabinopyrano-syl-oleanolic acid-28-O-alpha-L-rhamnopyranosyl (1 -->4)-beta-D-glucopyranosyl (1 --> 6)-beta-D-glucopyranoside (4), 3-O-alpha-L-rhamnopyranosyl (1 --> 2)-beta-D-xylopyranosyl-oleanolic acid-28-O-alpha-L-rhamnopyranosyl (1 --> 4)-beta-D-glucopyranosyl (1 --> 6)-beta-D-glucopyranoside (5). Compound 1 - 4 are isolated from this plant for the first time. Compound 1,2 are isolated from this genus for the first time.

  1. Cytochrome P450 CYP716A254 catalyzes the formation of oleanolic acid from β-amyrin during oleanane-type triterpenoid saponins biosynthesis in Anemone flaccida.

    PubMed

    Zhan, Chuansong; Ahmed, Shakeel; Hu, Sheng; Dong, Shuang; Cai, Qian; Yang, Tewu; Wang, Xuekui; Li, Xiaohua; Hu, Xuebo

    2018-01-01

    Anemone flaccida Fr. Shmidt (Ranunculaceae), known as 'Di Wu' in China, is a perennial herb which has long been used to treat arthritis. The rhizome of A. flaccida contains pharmacologically active components i.e. oleanane-type triterpenoid saponins. Oleanolic acid is natural triterpenoid in plants with diverse biological activities. The biosynthesis of oleanolic acid involves cyclization of 2,3-oxidosqualene to the oleanane-type triterpenoid skeleton, followed by a series of oxidation reactions catalyzed by cytochrome P450 monooxygenase (CYP450). Previously, we identified four possible cytochrome P450 genes belonging to CYP716A subfamily from the transcriptome of A. flaccida. In this study, we identified one of those genes "CYP716A254" encoding a cytochrome P450 monooxygenase from A. flaccida that catalyzes the conversion of the β-amyrin into oleanolic acid. The heterologous expression of CYP716A254 in yeast resulted in oxidation of β-amyrin at the C-18 position to oleanolic acid production. These results provide an important basis for further studies of oleanane-type triterpenoid saponins synthesis in A. flaccida. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Triterpenoids and Prevention of Prostate Cancer

    DTIC Science & Technology

    2001-10-01

    synthesized various oleanolic and oleanane and ursane triterpenoids. 4 We have therefore ursolic acid derivatives and tested them as inhibitors considered that...1) of novel olean-12-ene triterpenoids with a 1-en-3-one and ursolic acid (2), which are commercially available, functionality having carboxyl...enone derivatives of oleanolic acid and ursolic acid as inhibitors of nitric 28-oic acid (3) had the highest activity (IC5o = 0.07 pM) oxide production

  3. Evaluation of the antibacterial activity of the methylene chloride extract of Miconia ligustroides, isolated triterpene acids, and ursolic acid derivatives.

    PubMed

    Cunha, Wilson R; de Matos, Geilton X; Souza, Maria Goreti M; Tozatti, Marcos G; Andrade e Silva, Márcio L; Martins, Carlos H G; da Silva, Rosangela; Da Silva Filho, Ademar A

    2010-02-01

    The methylene chloride extract of Miconia ligustroides (DC.) Naudin (Melastomataceae), the isolated compounds ursolic and oleanolic acids and a mixture of these acids, and ursolic acid derivatives were evaluated against the following microorganisms: Bacillus cereus (ATCC 14579), Vibrio cholerae (ATCC 9458), Salmonella choleraesuis (ATCC 10708), Klebsiella pneumoniae (ATCC 10031), and Streptococcus pneumoniae (ATCC 6305). The microdilution method was used for determination of the minimum inhibitory concentration (MIC) during evaluation of the antibacterial activity. The methylene chloride extract showed no activity against the selected microorganisms. Ursolic acid was active against B. cereus, showing a MIC value of 20 microg/mL. Oleanolic acid was effective against B. cereus and S. pneumoniae with a MIC of 80 microg/mL in both cases. The mixture of triterpenes, ursolic and oleanolic acids, did not enhance the antimicrobial activity. However, the acetyl and methyl ester derivatives, prepared from ursolic acid, increased the inhibitory activity for S. pneumoniae.

  4. Constituents of the root of Anemone tomentosa.

    PubMed

    Hu, Hao-Bin; Zheng, Xu-Dong; Jian, Yu-Feng; Liu, Jian-Xin; Zhu, Ji-Hua

    2011-07-01

    A new diterpene glycoside, tomentoside I (1), along with eleven known compounds, including the four coumarins, 4,5-dimethoxyl-7-methylcoumarin (2), 4,7-dimethoxyl-5-methylcoumarin (3), isofraxidin (4) and fraxidin (5) as well as the seven triterpenoids, oleanolic acid (6), oleanolic acid 3-O-α-L-arabinopyranoside (7), oleanolic acid 3-O-β-D-galactopyranosyl-(1→3)-β-D-glucopyranoside (8), hederagenin 3-O-α-L-arabinopyranoside (9), betulinic acid (10), 18-hydroxyursolic acid (11) and 2α,3β,23-trihydroxyurs-12-en-28-oic acid (12) were isolated from the ethanolic extract of the root of Anemone tomentosa and their chemical structures were elucidated by spectroscopic methods. The antimicrobial activities of compounds 1-12 were measured using the agar disc-diffusion method. Also, their antioxidant activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH) were evaluated.

  5. GABA-A Receptor Modulation and Anticonvulsant, Anxiolytic, and Antidepressant Activities of Constituents from Artemisia indica Linn

    PubMed Central

    Khan, Imran; Karim, Nasiara; Ahmad, Waqar; Abdelhalim, Abeer; Chebib, Mary

    2016-01-01

    Artemisia indica, also known as “Mugwort,” has been widely used in traditional medicines. However, few studies have investigated the effects of nonvolatile components of Artemisia indica on central nervous system's function. Fractionation of Artemisia indica led to the isolation of carnosol, ursolic acid, and oleanolic acid which were evaluated for their effects on GABA-A receptors in electrophysiological studies in Xenopus oocytes and were subsequently investigated in mouse models of acute toxicity, convulsions (pentylenetetrazole induced seizures), depression (tail suspension and forced swim tests), and anxiety (elevated plus maze and light/dark box paradigms). Carnosol, ursolic acid, and oleanolic acid were found to be positive modulators of α1β2γ2L GABA-A receptors and the modulation was antagonized by flumazenil. Carnosol, ursolic acid, and oleanolic acid were found to be devoid of any signs of acute toxicity (50–200 mg/kg) but elicited anticonvulsant, antidepressant, and anxiolytic activities. Thus carnosol, ursolic acid, and oleanolic acid demonstrated CNS activity in mouse models of anticonvulsant, antidepressant, and anxiolysis. The anxiolytic activity of all three compounds was ameliorated by flumazenil suggesting a mode of action via the benzodiazepine binding site of GABA-A receptors. PMID:27143980

  6. Antidepressant-like effect of oleanolic acid in mice exposed to the repeated forced swimming test.

    PubMed

    Yi, Li-Tao; Li, Jing; Liu, Qing; Geng, Di; Zhou, Ya-Fei; Ke, Xiao-Qing; Chen, Huan; Weng, Lian-Jin

    2013-05-01

    The study aimed to explore the antidepressant-like effect of oleanolic acid and its possible mechanism related to the monoaminergic system and neurotrophin in mice exposed to the repeated forced swimming test (FST). Both the duration and the latency of immobility affected by oleanolic acid (10, 20 and 40 mg/kg) were evaluated in the FST repeated at intervals on days 1, 7 and 14, followed by neurochemical and brain-derived neurotrophic factor (BDNF) analyses in the mouse brain regions of frontal cortex and whole hippocampus. A repeated analysis of variance (ANOVA) indicated that over retesting the immobility time increased, whereas latency to immobility tended to decrease. Minute-by-minute analysis showed that immobility time also increased during the 4-min course of the test. In addition, post-hoc Dunnett's test demonstrated that sub-chronic and chronic, but not acute, oleanolic acid treatment reduced the immobility time (sub-chronic: 20 mg/kg, 43.5%; chronic: 10 mg/kg, 19.3%; 20 mg/kg, 31.8%) and increased the latency to immobility (sub-chronic: 10 mg/kg, 60.6%; 20 mg/kg, 80.1%; chronic: 10 mg/kg, 121.8%; 20 mg/kg, 140.8%; 40 mg/kg, 80.0%). Furthermore, chronic administration of oleanolic acid significantly increased serotonin (5-HT) levels (frontal cortex: 44.5%, 41.9%, 27.5% for 10, 20, 40 mg/kg; hippocampus: 57.2%, 80.9% for 10, 20 mg/kg), decreased 5-hydroxyindoleacetic acid (5-HIAA)/5-HT ratio (frontal cortex: 31.6%, 30.1%, 23.5%; hippocampus: 40.6%, 47.7%, 29.2% for 10, 20, 40 mg/kg) and elevated norepinephrine (NE) levels (hippocampus: 20 mg/kg, 45.4%) but did not alter dopamine (DA) levels. Moreover, BDNF levels in the two brain regions were also elevated by chronic oleanolic acid treatment (frontal cortex: 20 mg/kg, 67.2%; hippocampus: 10 mg/kg, 36.4%; 20 mg/kg, 55.1%). Taken together, these findings imply that functions of 5-HT, NE and BDNF may be involved in the antidepressant-like effect of oleanolic acid.

  7. Structure elucidation of two triterpenoid saponins from rhizome of Anemone raddeana Regel.

    PubMed

    Lu, Jincai; Xu, Beibei; Gao, Song; Fan, Li; Zhang, Hongfen; Liu, Runxiang; Kodama, Hiroyuki

    2009-09-01

    Two new 27-hydroxy-oleanolic acid type triterpenoid saponins, raddeanoside 20 (1) and raddeanoside 21(2) were isolated from the rhizome of Anemone raddeana Regel. The structures of the two compounds were elucidated as 27-hydroxy-oleanolic acid 3-O-alpha-L-rhamnopyranosyl(1-->2) [beta-D-glucopyranosyl (1-->4)]-alpha-L-arabinopyranoside (1) and 3-O-alpha-L-rhamnopyranosyl (1-->2)-alpha-L-arabinopyranosyl-27-hydroxy-oleanolic acid 28-O-alpha-L-rhamnopyranosyl(1-->4)-beta-D-glucopyranosyl (1-->6)-beta-D-glucopyranoside (2) on the basis of chemical and spectral evidence.

  8. Production of oleanolic acid glycosides by hairy root established cultures of Calendula officinalis L.

    PubMed

    Długosz, Marek; Wiktorowska, Ewa; Wiśniewska, Anita; Pączkowski, Cezary

    2013-01-01

    In order to initiate hairy root culture initiation cotyledons and hypocotyls of Calendula officinalis L. were infected with Agrobacterium rhizogenes strain ATCC 15834 or the same strain containing pCAMBIA 1381Z vector with β-glucuronidase reporter gene under control of promoter of NIK (Nematode Induced Kinase) gene. The efficiency of induction of hairy roots reached 33.8% for cotyledons and 66.6% for hypocotyls together for both transformation experiments. Finally, eight control and nine modified lines were established as a long-term culture. The hairy root cultures showed the ability to synthesize oleanolic acid mainly (97%) as glycosides; control lines contained it at the average 8.42 mg · g(-1) dry weight in tissue and 0.23 mg · dm(-3) in medium; modified lines: 4.59 mg · g(-1) for the tissue, and 0.48 mg · dm(-3) for the medium. Additionally lines showed high positive correlation between dry/fresh weight and oleanolic acid concentration in tissue. Using the Killiani mixture in acidic hydrolysis of oleanolic acid glycosides released free aglycones that were partially acetylated in such conditions.

  9. Role of modifier in microwave assisted extraction of oleanolic acid from Gymnema sylvestre: application of green extraction technology for botanicals.

    PubMed

    Mandal, Vivekananda; Dewanjee, Saikat; Mandal, Subhash C

    2009-08-01

    This work highlights the development of a green extraction technology for botanicals with the use of microwave energy. Taking into consideration the extensive time involved in conventional extraction methods, coupled with usage of large volumes of organic solvent and energy resources, an ecofriendly green method that can overcome the above problems has been developed. The work compares the effect of sample pretreatment with untreated sample for improved yield of oleanolic acid from Gymnema sylvestre leaves. The pretreated sample with water produced 0.71% w/w oleanolic acid in one extraction cycle with 500 W microwave power, 25 mL methanol and only an 8 min extraction time. On the other hand, a conventional heat reflux extraction for 6 hours could produce only 0.62% w/w oleanolic acid. The detailed mechanism of extraction has been studied through scanning electron micrographs. The environmental impact of the proposed green method has also been evaluated.

  10. Microbial hydroxylation and glycosidation of oleanolic acid by Circinella muscae and their anti-inflammatory activities.

    PubMed

    Yan, Sensen; Lin, Haijun; Huang, Huilian; Yang, Min; Xu, Bohui; Chen, Guangtong

    2018-05-29

    Biotransformation of oleanolic acid (OA) by Circinella muscae AS 3.2695 was investigated. Nine hydroxylated and glycosylated metabolites (1-9) were obtained. Their structures were elucidated as 3β,7β-dihydroxyolean-12-en-28-oic acid (1), 3β,7β,21β-trihydroxyolean-12-en-28-oic acid (2), 3β,7α,21β-trihydroxyolean-12-en- 28-oic acid (3), 3β,7β,15α-trihydroxyolean-12-en-28-oic acid (4), 7β,15α-dihydroxy- 3-oxo-olean-12-en-28-oic acid (5), 7β-hydroxy-3-oxo-olean-12-en-28-oic acid (6), oleanolic acid-28-O-β-D-glucopyranosyl ester (7), 3β,21β-dihydroxyolean-12-en-28- oic acid-28-O-β-D-glucopyranosyl ester (8), and 3β,7β,15α-trihydroxyolean-12-en- 28-oic acid-28-O-β-D-glucopyranosyl ester (9) by spectroscopic analysis. Among them, compounds 4 and 9 were new compounds. In addition, anti-inflammatory activities were assayed and evaluated for the isolated metabolites. Most of the metabolites exhibited significant inhibitory activities on lipopolysaccharides-induced NO production in RAW 264.7 cells.

  11. Selective activity of Oleanolic and Maslinic Acids on the Amastigote form of Leishmania Spp

    PubMed Central

    Sifaoui, Ines; López-Arencibia, Atteneri; Martín-Navarro, Carmen M; Reyes-Batlle, María; Mejri, Mondher; Valladares, Basilio; Lorenzo-Morales, Jacob; Abderabba, Manef; Piñero, José Enrique

    2017-01-01

    Leishmaniasis represents a serious threat to the health as one of the most important neglected tropical diseases as designated by the World Health Organization. The disease is endemic in 82 countries, among them Tunisia is an indigenous area for cutaneous Leishmaniasis. In a previous work, two tritepenic acids namely oleanolic and maslinic acids have been isolated from olive leaf extract. In the present paper, the in vitro activity against amastigotes stage of Leishmania (L.) infantum and Leishmania (L.) amazonensis was investigated. Maslinic acid showed the highest activity, against L. amazonensis, with an IC50 of 1.417 ± 0.401 µg/mL and a selectivity index of 9.405. Although, the oleanolic acid exhibit a better activity against L. infantum with an IC50 of 0.999 ± 0.089 µg/mL and selectivity index of 8.111. PMID:29201107

  12. Constituents of antibacterial extract of Caesalpinia paraguariensis Burk.

    PubMed

    Woldemichael, Girma M; Singh, Maya P; Maiese, William M; Timmermann, Barbara N

    2003-01-01

    The Argentinean legume Caesalpinia paraguariensis Burk. (Fabaceae) was selected for further fractionation work based on the strong antimicrobial activity of its CH2Cl2-MeOH (1:1 v/v) extract against a host of clinically significant microorganisms, including antibiotic resistant strains. 1D and 2D NMR enabled the identification of the novel benzoxecin derivative caesalpinol along with the known compounds bilobetin, stigma-5-en-3-O-beta-6'-stearoylglucopyranoside, stigma-5-en-3-beta-6'-palmitoylglucopyranoside, stigma-5-en-3-beta-glucopyranoside, oleanolic acid, 3-O-(E)-hydroxycinnamoyl oleanolic acid, betulinic acid, 3-O-(E)-hydroxycinnamoyl betulinic acid, and lupeol from the active fractions. Oleanolic acid was found active against Bacillus subtilis and both methicillin-sensitive and -resistant Staphylococcus aureus with MICs of 8 (17.5 microM), 8 and 64 (140 microM) microg/ml, respectively. The rest of the compounds, however, did not show activity.

  13. Effects of hydroxy pentacyclic triterpene acids from Forsythia viridissima on asthmatic responses to ovalbumin challenge in conscious guinea pigs.

    PubMed

    Lee, Ji Yun; Moon, Hee; Kim, Chang Jong

    2010-01-01

    For the identification of anti-inflammatory ingredients from Forsythiae fructus (FF), we isolated three hydroxyl pentacyclic triterpene acids (HTAs), namely, oleanolic acid, ursolic acid, and betulinic acid, from an ethylacetate fraction of FF, and evaluated the effect of these triterpene acids on asthmatic guinea pigs by measuring specific airway resistance (sRaw) during both immediate-phase response (IAR) and late-phase response (LAR) following ovalbumin challenge using a double-chambered plethysmograph. Evaluation of leukocytes and chemical mediators in bronchoalveolar lavage fluid (BALF), in addition to a histopathological survey, was also performed. Ursolic, oleanolic and betulinic acids dosed at 12.5 mg/kg significantly (p<0.05) decreased sRaw by 46.80%, 46.54% and 44.27% during in IAR, respectively. And ursolic acid (25 mg/kg), and oleanolic and betulinic acids (50 mg/kg) significantly (p<0.05) decreased sRaw by 38.19%, 38.15% and 35.55% in LAR, respectively. Histamine and phospholipase A(2) activity in BALF were significantly decreased by HTAs at 12.5 mg/kg, whereas eosinophil peroxide (EPO) activity in BALF and recruitment of eosinophils were significantly decreased by HTAs at 25 mg/kg, as well as improvement of pathological changes. However, betulinic acid at 12.5 mg/kg, and ursolic and oleanolic acids at 25 mg/kg significantly inhibited leukocytes in BALF, especially eosinophils and neutrophils. Three HTAs were found to have dose-dependent anti-asthmatic effects and ursolic acid is the most active, but their activities were less than those of sodium cromoglycate, salbutamol, and dexamethasone. These results indicate HTAs had anti-asthmatic activity by decreasing of sRaw, and eosinophil recruitment and release of inflammatory mediators into the lungs.

  14. Isolation of immunomodulatory triterpene acids from a standardized rose hip powder (Rosa canina L.).

    PubMed

    Saaby, Lasse; Jäger, Anna Katharina; Moesby, Lise; Hansen, Erik Wind; Christensen, Søren Brøgger

    2011-02-01

    A previously published systematic review and a metaanalysis have concluded that the consumption of standardized rose hip powder (Rosa canina L.) can reduce pain in osteoarthritis patients. Synovial inflammation has been suggested to play an important role in the pathogenesis of osteoarthritis and mainly to involve infiltration of the synovial membrane by macrophages. Therefore, the immunomodulatory effect of standardized rose hip powder of Rosa canina L. was investigated and active principles isolated using the Mono Mac 6 cell line as a model for human macrophages. Treatment of Mono Mac 6 cells with the residue of a crude dichloromethane extract of rose hip powder significantly and concentration dependently inhibited the lipopolysaccharide induced interleukin-6 release. Through bioassay-guided fractionation the immunomodulatory effect of the dichloromethane extract was correlated to a mixture of three triterpene acids; oleanolic acid, betulinic acid and ursolic acid (IC(50) 21 ± 6 µm). Further studies revealed that only oleanolic acid and ursolic acid, but not betulinic acid, could inhibit the lipopolysaccharide induced interleukin-6 release from Mono Mac 6 cells when tested separately. Combination of either oleanolic acid or ursolic acid with betulinic acid enhanced the immunomodulatory effect of the two triterpene acids. Copyright © 2010 John Wiley & Sons, Ltd.

  15. Simple amides of oleanolic acid as effective penetration enhancers.

    PubMed

    Bednarczyk-Cwynar, Barbara; Partyka, Danuta; Zaprutko, Lucjusz

    2015-01-01

    Transdermal transport is now becoming one of the most convenient and safe pathways for drug delivery. In some cases it is necessary to use skin penetration enhancers in order to allow for the transdermal transport of drugs that are otherwise insufficiently skin-permeable. A series of oleanolic acid amides as potential transdermal penetration enhancers was formed by multistep synthesis and the synthesis of all newly prepared compounds is presented. The synthetized amides of oleanolic acid were tested for their in vitro penetration promoter activity. The above activity was evaluated by means of using the Fürst method. The relationships between the chemical structure of the studied compounds and penetration activity are presented.

  16. Simple Amides of Oleanolic Acid as Effective Penetration Enhancers

    PubMed Central

    Bednarczyk-Cwynar, Barbara; Partyka, Danuta; Zaprutko, Lucjusz

    2015-01-01

    Transdermal transport is now becoming one of the most convenient and safe pathways for drug delivery. In some cases it is necessary to use skin penetration enhancers in order to allow for the transdermal transport of drugs that are otherwise insufficiently skin-permeable. A series of oleanolic acid amides as potential transdermal penetration enhancers was formed by multistep synthesis and the synthesis of all newly prepared compounds is presented. The synthetized amides of oleanolic acid were tested for their in vitro penetration promoter activity. The above activity was evaluated by means of using the Fürst method. The relationships between the chemical structure of the studied compounds and penetration activity are presented. PMID:26010090

  17. Chemical constituents of radix Ranunculus ternati.

    PubMed

    Zhao, Yun; Ruan, Jin-Lan; Wang, Jin-Hui; Cong, Yue; Song, Shuang; Cai, Ya-Ling; Fang, Wei; Zhou, Dao-Nian

    2008-02-15

    3 Beta-acetoxy-(20S, 22E)-dammaran-22-en-25-ol, a new triterpene, was isolated along with five known triterpenes (ursolic acid, oleanolic acid, betulinic acid, 3-epiocotillol acetate, and dimmarenediol II acetate), and alpha-D-glc and sucrose from Radix Ranunculus ternati All of them, except oleanolic acid and alpha-D-glc, were isolated from the family of Ranunculaceae for the very first time, and the NMR data of sucrose was first described. In addition, the absolute configurations of alpha-D-glc and the glucose component of sucrose were determined.

  18. Increased synthesis of a new oleanane-type saponin in hairy roots of marigold (Calendula officinalis) after treatment with jasmonic acid.

    PubMed

    Markowski, Michał; Długosz, Marek; Szakiel, Anna; Durli, Mathieu; Poinsignon, Sophie; Bouguet-Bonnet, Sabine; Vernex-Loset, Lionel; Krier, Gabriel; Henry, Max

    2018-04-18

    Native plant of marigold (Calendula officinalis L.) synthesizes oleanolic acid saponins classified as glucosides or glucuronides according to the first residue in sugar chain bound to C-3 hydroxyl group. Hairy root culture, obtained by transformation with Agrobacterium rhizogenes strain 15834, exhibit a potent ability of synthesis of oleanolic acid glycosides. The HPLC profile of saponin fraction obtained from C. officinalis hairy roots treated with plant stress hormone, jasmonic acid, showed the 10-times increase of the content of one particular compound, determined by NMR and MALDI TOF as a new bisdesmoside saponin, 3-O-β-d-glucuronopyranosyl-28-O-β-d-galactopyranosyl-oleanolic acid. Such a diglycoside does not occur in native C. officinalis plant. It is a glucuronide, whereas in the native plant glucuronides are mainly accumulated in flowers, while glucosides are the most abundant saponins in roots. Thus, our results revealed that the pathways of saponin biosynthesis, particularly reactions of glycosylation, are altered in C. officinalis hairy root culture.

  19. Fruit quality and olive leaf and stone addition affect Picual virgin olive oil triterpenic content.

    PubMed

    Allouche, Yosra; Uceda, Marino; Jiménez, Antonio; Aguilera, M Paz; Gaforio, José Juan; Beltrán, Gabriel

    2009-10-14

    The present research aimed to evaluate whether Picual virgin olive oil triterpenic compounds are affected by the addition of variable quantities of stones and leaves before processing or by fruit resting on the ground during 3 months. Results showed that stone addition did not influence triterpenic dialcohol content (uvaol and erythrodiol), whereas triterpenic acids (oleanolic and maslinic) increased significantly when 20 and 30% stones were added. Leaves added at 2% increased significantly oleanolic acid, maslinic acid, and erythrodiol content by 83, 41, and 36%, respectively. During fruit resting on the ground, olive oils showed no differences in uvaol content, a slight increase in erythrodiol, and a gradual increase in both oleanolic and maslinic acids, obtaining at the end of the experiment contents nearly 10- and 3-fold higher than control oils. These results confirm that olive oil triterpenic composition is modified by the factors analyzed.

  20. Oleanane triterpenoids in the prevention and therapy of breast cancer: current evidence and future perspectives

    PubMed Central

    Parikh, Nisha R.; Mandal, Animesh; Bhatia, Deepak; Siveen, Kodappully Sivaraman; Sethi, Gautam

    2014-01-01

    Breast cancer is one of the most frequently diagnosed cancers and major cause of death in women in the world. Emerging evidence underscores the value of dietary and non-dietary phytochemicals, including triterpenoids, in the prevention and treatment of breast cancer. Oleanolic acid, an oleanane-type pentacyclic triterpenoid, is present in a large number of dietary and medicinal plants. Oleanolic acid and its derivatives exhibit several promising pharmacological activities, including antioxidant, anti-inflammatory, hepatoprotective, cardioprotective, antipruritic, spasmolytic, antiallergic, antimicrobial and antiviral effects. Numerous studies indicate that oleanolic acid and other oleanane triterpenoids modulate multiple intracellular signaling pathways and exert chemopreventive and antitumor activities in various in vitro and in vivo model systems. A series of novel synthetic oleanane triterpenoids have been prepared by chemical modifications of oleanolic acid and some of these compounds are considered to be the most potent anti-inflammatory and anticarcinogenic triterpenoids. Accumulating studies provide extensive evidence that synthetic oleanane derivatives inhibit proliferation and induce apoptosis of various cancer cells in vitro and demonstrate cancer preventive or antitumor efficacy in animal models of blood, breast, colon, connective tissue, liver, lung, pancreas, prostate and skin cancer. This review critically examines the potential role of oleanolic acid, oleanane triterpenoids and related synthetic compounds in the chemoprevention and treatment of mammary neoplasia. Both in vitro and in vivo studies on these agents and related molecular mechanisms are presented. Several challenges and future directions of research to translate already available impressive preclinical knowledge to clinical practice of breast cancer prevention and therapy are also presented. PMID:25395898

  1. Biological Activities of Oleanolic Acid Derivatives from Calendula officinalis Seeds.

    PubMed

    Zaki, Ahmed; Ashour, Ahmed; Mira, Amira; Kishikawa, Asuka; Nakagawa, Toshinori; Zhu, Qinchang; Shimizu, Kuniyoshi

    2016-05-01

    Phytochemical examination of butanol fraction of Calendula officinalis seeds led to the isolation of two compounds identified as 28-O-β-D-glucopyranosyl-oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS1) and oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS2). Biological evaluation was carried out for these two compounds such as melanin biosynthesis inhibitory, hyaluronic acid production activities, anti obesity using lipase inhibition and adipocyte differentiation as well as evaluation of the protective effect against hydrogen peroxide induced neurotoxicity in neuro-2A cells. The results showed that, compound CS2 has a melanin biosynthesis stimulatory activity; however, compound CS1 has a potent stimulatory effect for the production of hyaluronic acid on normal human dermal fibroblast from adult (NHDF-Ad). Both compounds did not show any inhibitory effect on both lipase and adipocyte differentiation. Compound CS2 could protect neuro-2A cells and increased cell viability against H2 O2 . These activities (melanin biosynthesis stimulatory and protective effect against H2 O2 of CS2 and hyaluronic acid productive activities of these triterpene derivatives) have been reported for the first time. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Antihistaminic and antieicosanoid effects of oleanolic and ursolic acid fraction from Helichrysum picardii.

    PubMed

    Santos Rosa, C; García Gimenez, M D; Saenz Rodriguez, M T; De la Puerta Vazquez, R

    2007-06-01

    Helichrysum picardii Boiss. & Reuter is a Mediterranean vegetal species from the Asteraceae family. From the methanolic extract of the aerial flowering parts of this plant, a fraction of two pentacyclic triterpenes has been isolated. Gas chromatography revealed that the triterpene isomers ursolic and oleanolic acids comprised 69% and 29% respectively of the composition of this fraction. The triterpene isomeric fraction was tested in two phagocyte cell systems. It inhibited compound 48/80-induced histamine release from rat peritoneal mast cells in an approximately percentage of 45% at 100 microM and myeloperoxidase secretion from A23187-ionophore-stimulated rat peritoneal leukocytes in a significant manner at doses of 50 and 100 miroM. Furthermore, the triterpene isomers very significantly and dose-dependently inhibited generation of the cyclo-oxygenase metabolite prostaglandin E2 (41% inhibition at 50 miroM) and the 5-lipoxygenase metabolite leukotriene B4 (79% inhibition at 50 microM) from activated rat leukocytes. This anti-eicosanoid activity of the triterpene fraction was more potent than that produced by the pure triterpene oleanolic acid used for comparision, indicating a stronger action of the ursolic acid, the major compound of the isolated triterpene fraction. From these data, it can be suggested that the triterpene isomers oleanolic and ursolic acids present in the medicinal plant Helichrysum picardii contribute to the anti-inflammatory profile of this vegetal species.

  3. Methyl Jasmonate and Salicylic Acid Enhanced the Production of Ursolic and Oleanolic Acid in Callus Cultures of Lepechinia Caulescens

    PubMed Central

    Vergara Martínez, Víctor M.; Estrada-Soto, Samuel E.; Arellano-García, José de Jesús; Rivera-Leyva, Julio C.; Castillo-España, Patricia; Flores, Angélica Flores; Cardoso-Taketa, Alexandre T.; Perea-Arango, Irene

    2017-01-01

    Background: The production of triterpenes from plants for pharmacological purposes varies in concentration, due to genetic and environmental factors. In vitro culture enables the control and increase of these bioactive molecules. Objective: To evaluate the effect of plant growth regulators and elicitors in the induction of calli and the production of ursolic acid (UA) and oleanolic acid (OA) in Lepechinia caulescens. Materials and Methods: Leaf explants were exposed for the induction of calli at different concentrations and combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP). Methyl jasmonate (MJ) and salicylic acid were used as elicitors. High-performance liquid chromatography method was used to quantify UA and OA content in each treatment. Results: Treatment with 3.0 mg/L of 2,4-D and 0.1 mg/L of BAP produced the best results for calli induction and production of UA (1.57 mg/g dry weight [DW]) and OA (1.13 mg/g DW). Both elicitors facilitated the accumulation of triterpenes. Conclusion: The combination of auxins and cytokinins showed favorable results for the induction of calli. Variation concerning the accumulation of UA and OA was observed between treatments. MJ increased the production of triterpenes five times after 8 h of exposure, compared to control treatment. There is a greater accumulation of UA (16.58 mg/g DW) and OA (1.94 mg/g DW) in leaves of wild plants. SUMMARY Callus cultures of Lepechinia caulescens were obtained from leaf explants treated with 2,4-dichlorophenoxyacetic acid and 6-bencylaminopurineResulting cultures were elicited with methyl jasmonate (MJ) and salicylic acid to increase the production of the triterpenes, ursolic acid (UA), and oleanolic acid (OA)The cultures elicited with MJ increased the production of UA and OA five times, as compared to the control. Abbreviations used: 2,4-D: 2,4-dichlorophenoxyacetic acid, BAP: 6-benzylaminopurine, DW: Dry weight, MJ: Methyl jasmonate, OA: Oleanolic acid, PGRs: Plant growth regulators, UA: Ursolic acid, SA: Salicylic acid. PMID:29491649

  4. Inhibition of key enzymes linked to type 2 diabetes by compounds isolated from Aframomum melegueta fruit.

    PubMed

    Mohammed, Aminu; Gbonjubola, Victoria Awolola; Koorbanally, Neil Anthony; Islam, Md Shahidul

    2017-12-01

    The use of Aframomum melegueta K. Schum. (Zingiberaceae) fruit for treatment of diabetes has recently been established in Nigeria. However, compounds responsible for the antidiabetic action have not been identified. The present study carried out the bioassay-guided isolation of possible bioactive compounds responsible for the antidiabetic action of A. melegueta fruit. The A. melegueta fruit was sequentially extracted using ethyl acetate (EtOAc), ethanol and water, and the most active extract (EtOAc) was subjected to column chromatography on a silica gel column using solvent gradient systems of hexane (HEX):EtOAc and EtOAc:MeOH and the isolation of compounds was guided by α-glycosidase and α-amylase inhibitory activities at various concentrations (30-240 μg/mL). According to the results, 3 arylalkanes, 6-paradol (1), 6-shogaol (2) and 6-gingerol (3) and a pentacyclic triterpene, oleanolic acid (4) were isolated from A. melegueta fruit. All the compounds exhibited inhibitory effects against α-amylase and α-glucosidase. 6-Gingerol (3) and oleanolic acid (4) showed higher inhibitory activity against α-amylase (IC 50 : 6-gingerol: 81.78 ± 7.79 μM; oleanolic acid: 91.72 ± 1.63 μM) and α-glucosidase (IC 50 : 6-gingerol: 21.55 ± 0.45 μM; oleanolic acid: 17.35 ± 0.88 μM) compared to the standard drug, acarbose and other isolated compounds. The kinetics of the enzyme action of the compounds showed a noncompetitive mode of inhibition. The data of this study suggest that the 6-gingerol (3) and oleanolic acid (4) showed higher α-amylase and α-glucosidase inhibitory action and therefore could be responsible for the antidiabetic activity of A. melegueta fruit.

  5. Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jie, E-mail: JLiu@kumc.edu; Zunyi Medical College, Zunyi 563003; Lu, Yuan-Fu

    2013-11-01

    Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by livermore » histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential. - Highlights: • Oleanolic acid at higher doses and long-term use may produce liver injury. • Oleanolic acid increased serum ALT, ALP, bilirubin and bile acid concentrations. • OA produced feathery degeneration, inflammation and cell death in the liver. • OA altered bile acid homeostasis, affecting bile acid synthesis and transport.« less

  6. Cytotoxic agents for KB and SiHa cells from n-hexane fraction of Cissampelos pareira and its chemical composition.

    PubMed

    Bala, Manju; Pratap, Kunal; Verma, Praveen Kumar; Padwad, Yogendra; Singh, Bikram

    2015-01-01

    Eleven constituents were characterised by gas chromatography-mass spectrometry analysis, and five molecules were isolated using column chromatography. The in vitro study of the extract and isolated molecules against KB and SiHa cell lines revealed oleanolic acid (1) and oleic acid (2) as potent cytotoxic molecules with potential anticancer activity. The IC50 values of n-hexane extract (CPHF), oleanolic acid (1) and oleic acid (2) were >300, 56.08 and 70.7 μg/mL (μM), respectively, against KB cell lines and >300, 47.24 and 80.2 μg/mL (μM), respectively, against SiHa cell lines.

  7. Producing aglycons of ginsenosides in bakers' yeast

    PubMed Central

    Dai, Zhubo; Wang, Beibei; Liu, Yi; Shi, Mingyu; Wang, Dong; Zhang, Xianan; Liu, Tao; Huang, Luqi; Zhang, Xueli

    2014-01-01

    Ginsenosides are the primary bioactive components of ginseng, which is a popular medicinal plant that exhibits diverse pharmacological activities. Protopanaxadiol, protopanaxatriol and oleanolic acid are three basic aglycons of ginsenosides. Producing aglycons of ginsenosides in Saccharomyces cerevisiae was realized in this work and provides an alternative route compared to traditional extraction methods. Synthetic pathways of these three aglycons were constructed in S. cerevisiae by introducing β-amyrin synthase, oleanolic acid synthase, dammarenediol-II synthase, protopanaxadiol synthase, protopanaxatriol synthase and NADPH-cytochrome P450 reductase from different plants. In addition, a truncated 3-hydroxy-3-methylglutaryl-CoA reductase, squalene synthase and 2,3-oxidosqualene synthase genes were overexpressed to increase the precursor supply for improving aglycon production. Strain GY-1 was obtained, which produced 17.2 mg/L protopanaxadiol, 15.9 mg/L protopanaxatriol and 21.4 mg/L oleanolic acid. The yeast strains engineered in this work can serve as the basis for creating an alternative way for producing ginsenosides in place of extractions from plant sources. PMID:24424342

  8. Effects of five oleanolic acid triterpenoid saponins from the rhizome of Anemone raddeana on stimulus-induced superoxide generation, phosphorylation of proteins and translocation of cytosolic compounds to cell membrane in human neutrophils.

    PubMed

    Wei, Shihu; He, Wenfei; Lu, Jincai; Wang, Zhonghuan; Yamashita, Koichi; Yokoyama, Masanori; Kodama, Hiroyuki

    2012-03-01

    Five oleanolic acid triterpenoid saponins (OTS-1, 2, 3, 4 and 5) were isolated from the rhizome of Anemone raddeana. The effect of these triterpenoid saponins on stimulus-induced superoxide generation in human neutrophils was assayed by measuring the reduction of ferricytochrome c using a dual-beam spectrophotometer. The phosphorylation of neutrophil proteins, and translocation of p67(phox), p47(phox) and Rac to plasma membrane were investigated using specific monoclonal antibodies. The five oleanolic acid triterpenoid saponins used in this experiment suppressed N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced superoxide generation in a concentration-dependent manner. OTS-1, 2 and 4 suppressed phorbol 12-myristate 13-acetate (PMA)- and arachidonic acid (AA)-induced superoxide generation in a concentration-dependent manner, but OTS-3 and 5 showed no effect. fMLP- and PMA-induced tyrosyl or serine/threonine phosphorylation, and fMLP-, PMA- and AA-induced translocation of p67(phox), p47(phox) and Rac to plasma membrane were in parallel with the suppression of the stimulus-induced superoxide generation. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Oleanolic Acid Alters Multiple Cell Signaling Pathways: Implication in Cancer Prevention and Therapy.

    PubMed

    Žiberna, Lovro; Šamec, Dunja; Mocan, Andrei; Nabavi, Seyed Fazel; Bishayee, Anupam; Farooqi, Ammad Ahmad; Sureda, Antoni; Nabavi, Seyed Mohammad

    2017-03-16

    Nowadays, much attention has been paid to diet and dietary supplements as a cost-effective therapeutic strategy for prevention and treatment of a myriad of chronic and degenerative diseases. Rapidly accumulating scientific evidence achieved through high-throughput technologies has greatly expanded the understanding about the multifaceted nature of cancer. Increasingly, it is being realized that deregulation of spatio-temporally controlled intracellular signaling cascades plays a contributory role in the onset and progression of cancer. Therefore, targeting regulators of oncogenic signaling cascades is essential to prevent and treat cancer. A plethora of preclinical and epidemiological evidences showed promising role of phytochemicals against several types of cancer. Oleanolic acid, a common pentacyclic triterpenoid, is mainly found in olive oil, as well as several plant species. It is a potent inhibitor of cellular inflammatory process and a well-known inducer of phase 2 xenobiotic biotransformation enzymes. Main molecular mechanisms underlying anticancer effects of oleanolic acid are mediated by caspases, 5' adenosine monophosphate-activated protein kinase, extracellular signal-regulated kinase 1/2, matrix metalloproteinases, pro-apoptotic Bax and bid, phosphatidylinositide 3-kinase/Akt1/mechanistic target of rapamycin, reactive oxygen species/apoptosis signal-regulating kinase 1/p38 mitogen-activated protein kinase, nuclear factor-κB, cluster of differentiation 1, CKD4, s6k, signal transducer and activator of transcription 3, as well as aforementioned signaling pathways . In this work, we critically review the scientific literature on the molecular targets of oleanolic acid implicated in the prevention and treatment of several types of cancer. We also discuss chemical aspects, natural sources, bioavailability, and safety of this bioactive phytochemical.

  10. Triterpene saponin hemi-biosynthesis of a leaf beetle's (Platyphora kollari) defensive secretion

    NASA Astrophysics Data System (ADS)

    Ghostin, Jean; Habib-Jiwan, Jean-Louis; Rozenberg, Raoul; Daloze, Désiré; Pasteels, Jacques M.; Braekman, Jean-Claude

    2007-07-01

    The adults of the leaf beetle Platyphora kollari (Chrysomelidae) are able to metabolise the oleanane triterpene β-amyrin (1) into the glycoside 3-O-β-d-glucopyranosyl-(1→4)-β-d-glucuronopyranosyl-hederagenin (2) that is stored in their defensive glands. The aim of this study was to test the hypothesis that oleanolic acid (3) is an intermediate in the conversion of 1 into 2 and to check whether the sequestration of pentacyclic triterpenes is selective in favour of β-amyrin (1). To this end, adults of P. kollari were fed with Ipomoea batatas leaf disks painted with a solution of [2,2,3-2H3]oleanolic acid or [2,2,3-2H3]α-amyrin and the secretion of their defensive glands analysed by HPLC ESIMS. The data presented in this work indicated that the first step of the transformation of β-amyrin (1) into the sequestered glycoside 2 is its oxidation into oleanolic acid (3) and that this conversion is selective but not specific in favour of β-amyrin (1).

  11. Bioassay-guided supercritical fluid extraction of cyclooxygenase-2 inhibiting substances in Plantago major L.

    PubMed

    Stenholm, A; Göransson, U; Bohlin, L

    2013-02-01

    Selective extraction of plant materials is advantageous for obtaining extracts enriched with desired constituents, thereby reducing the need for subsequent chromatography purification. Such compounds include three cyclooxygenase-2 (COX-2) inhibitory substances in Plantago major L. targeted in this investigation: α-linolenic acid (α-LNA) (18:3 ω-3) and the triterpenic acids ursolic acid and oleanolic acid. To investigate the scope for tuning the selectivity of supercritical fluid extraction (SFE) using bioassay guidance, and Soxhlet extraction with dichloromethane as solvent as a reference technique, to optimise yields of these substances. Extraction parameters were varied to optimise extracts' COX-2/COX-1 inhibitory effect ratios. The crude extracts were purified initially using a solid phase extraction (SPE) clean-up procedure and the target compounds were identified with GC-MS, LC-ESI-MS and LC-ESI-MS² using GC-FID for quantification. α-LNA was preferentially extracted in dynamic mode using unmodified carbon dioxide at 40°C and 172 bar, at a 0.04% (w/w) yield with a COX-2/COX-1 inhibitory effect ratio of 1.5. Ursolic and oleanolic acids were dynamically extracted at 0.25% and 0.06% yields, respectively, with no traces of (α-LNA) and a COX-2/COX-1-inhibitory effect ratio of 1.1 using 10% (v/v) ethanol as polar modifier at 75°C and 483 bar. The Soxhlet extracts had ursolic acid, oleanolic acid and αLNA yields up to 1.36%, 0.34% and 0.15%, respectively, with a COX-2/COX-1 inhibitory effect ratio of 1.2. The target substances can be extracted selectively by bioassay guided optimisation of SFE conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Unusual immuno-modulatory triterpene-caffeates in the skins of russeted varieties of apples and pears.

    PubMed

    Andre, Christelle M; Larsen, Lesley; Burgess, Elaine J; Jensen, Dwayne J; Cooney, Janine M; Evers, Danièle; Zhang, Jingli; Perry, Nigel B; Laing, William A

    2013-03-20

    Three triterpene-caffeates have been isolated from skins of a russeted apple cultivar "Merton Russet" and identified by LC-MS and NMR as betulinic acid-3-cis-caffeate, betulinic acid-3-trans-caffeate, and oleanolic acid-3-trans-caffeate. Betulinic acid-3-trans-caffeate and oleanolic acid-3-trans-caffeate were also found in russeted pear skins. These compounds have not been previously reported in apples or pears, or in any other foods. Their presence was related to suberized tissue as they were only found in russet portions of the partially russeted apple cultivar "Cox's Orange Pippin" and were not detected in the waxy apple cultivar "Royal Gala". High concentrations of betulinic acid-3-trans-caffeate were found in the bark of both "Merton Russet" and "Royal Gala" trees. The three triterpene-caffeates showed anti-inflammatory activity in vitro, inhibiting NF-κB activation with IC50's of 6-9 μM. Betulinic acid-3-trans-caffeate, the predominant compound in the apples, was immuno-modulatory at around 10 μM in the in vitro and ex vivo bioassays, boosting production of the pro-inflammatory cytokine TNFα in cells stimulated with bacterial lipopolysaccharides.

  13. In vitro effectiveness of triterpenoids and their synergistic effect with antibiotics against Staphylococcus aureus strains.

    PubMed

    Hamza, Muhammad; Nadir, Maha; Mehmood, Nadir; Farooq, Adeel

    2016-01-01

    The aim of this study is to evaluate the effect of four triterpenoids such as oleanolic acid, ursolic acid, cycloastragenol, and beta-boswellic acid alone and in combination with antibiotics against Staphylococcus aureus strains. Sixteen clinical strains of S. aureus from infected wounds were isolated. Eight were methicillin-sensitive S. aureus (MSSA), and the other eight were methicillin-resistant S. aureus (MRSA). The activity was also seen in reference S. aureus American Type Culture Collection ™ strains. The activity of all the triterpenoids and antibiotics against S. aureus was evaluated by broth microdilution method. The effectiveness was judged by comparing the minimum inhibitory concentrations (MICs) of the compounds with antibiotics. The combination of antibiotics with compounds was evaluated by their fractional inhibitory concentrations (FIC). Against both clinical and reference MSSA strains, none of the compounds exhibited comparable activity to antibiotics vancomycin or cefradine except for ursolic acid (MIC 7.8 μg/ml). Against MRSA, all compounds (MIC 16-128 μg/ml) showed lesser activity than vancomycin (MIC 5.8 μg/ml). Among triterpenoid-antibiotic combinations, the most effective were ursolic acid and vancomycin against clinical strain MSSA (FIC S 0.17). However, overall, different combinations between triterpenoids and antibiotics showed 95%-46% ( P < 0.05) reduction in MICs of antibiotics compared to when antibiotics were used alone. Cefradine, a drug not suitable for treating MRSA (MIC = 45 μg/ml), showed a remarkable decrease in its MIC (87% P< 0.01) when it was used in combination with oleanolic acid or ursolic acid in both clinical and reference strains. The tested triterpenoids are relatively weaker than antibiotics. However, when used in combination with antibiotics, they showed remarkable synergistic effect and thus can help in prolonging the viability of these antibiotics against S. aureus infections. Furthermore, reduction in MIC of cefradine with oleanolic acid indicates their potential use against MRSA.

  14. In vitro trypanocidal activity of triterpenes from miconia species.

    PubMed

    Cunha, Wilson Roberto; Martins, Camila; da Silva Ferreira, Daniele; Crotti, Antonio Eduardo Miller; Lopes, Norberto Peporine; Albuquerque, Sérgio

    2003-05-01

    The bioassay-guided fractionation of methylene chloride extracts of Miconia fallax DC. and Miconia stenostachya DC. led to the isolation of five triterpene acids. The triterpenes ursolic acid, oleanolic acid and gypsogenic acid were active against blood trypomastigote forms of Trypanosoma cruzi. In contrast, the acetyl and methyl ester derivatives were not found to potentiate the trypanocidal activity. These results suggest the importance of the polar groups for activity.

  15. Bioassay-guided fractionation and identification of α-amylase inhibitors from Syzygium cumini leaves.

    PubMed

    Poongunran, Jeyakumaran; Perera, Handunge Kumudu Irani; Jayasinghe, Lalith; Fernando, Irushika Thushari; Sivakanesan, Ramaiah; Araya, Hiroshi; Fujimoto, Yoshinori

    2017-12-01

    Pancreatic α-amylase and α-glucosidase inhibitors serve as important strategies in the management of blood glucose. Even though Syzygium cumini (L.) Skeels (Myrtaceae) (SC) is used extensively to treat diabetes; scientific evidence on antidiabetic effects of SC leaves is scarce. SC leaf extract was investigated for α-amylase inhibitory effect and continued with isolation and identification of α-amylase inhibitors. Bioassay-guided fractionation was conducted using in vitro α-amylase inhibitory assay (with 20-1000 μg/mL test material) to isolate the inhibitory compounds from ethyl acetate extract of SC leaves. Structures of the isolated inhibitory compounds were elucidated using 1 H NMR and 13 C NMR spectroscopic analysis and direct TLC and HPLC comparison with authentic samples. Study period was from October 2013 to October 2015. An active fraction obtained with chromatographic separation of the extract inhibited porcine pancreatic α-amylase with an IC 50 of 39.9 μg/mL. Furthermore, it showed a strong inhibition on α-glucosidase with an IC 50 of 28.2 μg/mL. The active fraction was determined to be a 3:1 mixture of ursolic acid and oleanolic acid. Pure ursolic acid and oleanolic acid showed IC 50 values of 6.7 and 57.4 μg/mL, respectively, against α-amylase and 3.1 and 44.1 μg/mL respectively, against α-glucosidase. The present study revealed strong α-amylase and α-glucosidase inhibitory effects of ursolic acid and oleanolic acid isolated from SC leaves for the first time validating the use of SC leaves in antidiabetic therapy.

  16. Steroid-like compounds in Chinese medicines promote blood circulation via inhibition of Na+/K+-ATPase

    PubMed Central

    Chen, Ronald JY; Chung, Tse-yu; Li, Feng-yin; Yang, Wei-hung; Jinn, Tzyy-rong; Tzen, Jason TC

    2010-01-01

    Aim: To examine if steroid-like compounds found in many Chinese medicinal products conventionally used for the promotion of blood circulation may act as active components via the same molecular mechanism triggered by cardiac glycosides, such as ouabain. Methods: The inhibitory potency of ouabain and the identified steroid-like compounds on Na+/K+-ATPase activity was examined and compared. Molecular modeling was exhibited for the docking of these compounds to Na+/K+-ATPase. Results: All the examined steroid-like compounds displayed more or less inhibition on Na+/K+-ATPase, with bufalin (structurally almost equivalent to ouabain) exhibiting significantly higher inhibitory potency than the others. In the pentacyclic triterpenoids examined, ursolic acid and oleanolic acid were moderate inhibitors of Na+/K+-ATPase, and their inhibitory potency was comparable to that of ginsenoside Rh2. The relatively high inhibitory potency of ursolic acid or oleanolic acid was due to the formation of a hydrogen bond between its carboxyl group and the Ile322 residue in the deep cavity close to two K+ binding sites of Na+/K+-ATPase. Moreover, the drastic difference observed in the inhibitory potency of ouabain, bufalin, ginsenoside Rh2, and pentacyclic triterpenoids is ascribed mainly to the number of hydrogen bonds and partially to the strength of hydrophobic interaction between the compounds and residues around the deep cavity of Na+/K+-ATPase. Conclusion: Steroid-like compounds seem to contribute to therapeutic effects of many cardioactive Chinese medicinal products. Chinese herbs, such as Prunella vulgaris L, rich in ursolic acid, oleanolic acid and their glycoside derivatives may be adequate sources for cardiac therapy via effective inhibition on Na+/K+-ATPase. PMID:20523340

  17. Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: Preclinical and clinical evidence

    PubMed Central

    Shanmugam, Muthu K.; Dai, Xiaoyun; Kumar, Alan Prem; Tan, Benny KH; Sethi, Gautam; Bishayee, Anupam

    2014-01-01

    Oleanolic acid (OA, 3β-hydroxyolean-12-en-28-oic acid) is a ubiquitous pentacyclic multifunctional triterpenoid, widely found in several dietary and medicinal plants. Natural and synthetic OA derivatives can modulate multiple signaling pathways including nuclear factor-κB, AKT, signal transducer and activator of transcription 3, mammalian target of rapamycin, caspases, intercellular adhesion molecule 1, vascular endothelial growth factor, and poly (ADP-ribose) polymerase in a variety of tumor cells. Importantly, synthetic derivative of OA, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO), and its C-28 methyl ester (CDDO-Me) and C28 imidazole (CDDO-Im) have demonstrated potent antiangiogenic and antitumor activities in rodent cancer models. These agents are presently under evaluation in phase I studies in cancer patients. This review summarizes the diverse molecular targets of OA and its derivatives and also provides clear evidence on their promising potential in preclinical and clinical situations. PMID:24486850

  18. Hawthorn ethanolic extracts with triterpenoids and flavonoids exert hepatoprotective effects and suppress the hypercholesterolemia-induced oxidative stress in rats.

    PubMed

    Rezaei-Golmisheh, Ali; Malekinejad, Hassan; Asri-Rezaei, Siamak; Farshid, Amir Abbas; Akbari, Peyman

    2015-07-01

    The current study was aimed to determine the bioactive constituents and biological effects of the Crataegus monogyna ethanolic extracts from bark, leaves and berries on hypercholesterolemia. Oleanolic acid, ursolic acid, quercetin and lupeol concentrations were quantified by HPLC. Total phenol content and radical scavenging activity of extracts were also measured. The hypocholesterolemic, antioxidant, and hepatoprotective effects of the extracts were examined in hypercholesterolemic rats and compared with orlistat. The highest phenol content, oleanolic acid, quercetin and lupeol levels and free radical scavenging potency were found in the bark extract, and the highest ursolic acid level was found in the berries extract. Orlistat and extracts significantly (P<0.05) lowered the hypercholesterolemia-increased serum level of hepatic enzymes and lipid peroxidation level. Hawthorn's extracts protected from hepatic thiol depletion and improved the lipid profile and hepatic damages. Data suggested that hawthorn's extracts are able to protect from hypercholesterolemia-induced oxidative stress and hepatic injuries. Moreover, the hypocholesterolemic effect of extracts was found comparable to orlistat.

  19. A 70% Ethanol Extract of Mistletoe Rich in Betulin, Betulinic Acid, and Oleanolic Acid Potentiated β-Cell Function and Mass and Enhanced Hepatic Insulin Sensitivity

    PubMed Central

    Ko, Byoung-Seob; Kang, Suna; Moon, Bo Reum; Ryuk, Jin Ah; Park, Sunmin

    2016-01-01

    We investigated that the long-term consumption of the water (KME-W) and 70% ethanol (KME-E) mistletoe extracts had antidiabetic activities in partial pancreatectomized (Px) rats. Px rats were provided with a high-fat diet containing 0.6% KME-E, 0.6% KME-W, and 0.6% dextrin (control) for 8 weeks. As normal-control, Sham-operated rats were provided with 0.6% dextrin. In cell-based studies, the effects of its main terpenoids (betulin, betulinic acid, and oleanolic acid) on glucose metabolism were measured. Both KME-W and KME-E decreased epididymal fat mass by increasing fat oxidation in diabetic rats. KME-E but not KME-W exhibited greater potentiation of first-phase insulin secretion than the Px-control in a hyperglycemic clamp. KME-E also made β-cell mass greater than the control by increasing β-cell proliferation and decreasing its apoptosis. In a euglycemic-hyperinsulinemic clamp, whole-body glucose infusion rate and hepatic glucose output increased with potentiating hepatic insulin signaling in the following order: Px-control, KME-W, KME-E, and normal-control. Betulin potentiated insulin-stimulated glucose uptake via increased PPAR-γ activity and insulin signaling in 3T3-L1 adipocytes, whereas oleanolic acid enhanced glucose-stimulated insulin secretion and cell proliferation in insulinoma cells. In conclusion, KME-E prevented the deterioration of glucose metabolism in diabetic rats more effectively than KME-W and KME-E can be a better therapeutic agent for type 2 diabetes than KME-W. PMID:26884795

  20. [Studies on the triterpenoids of Cyclocarya paliurus (Batal.) Iljinsk].

    PubMed

    Shu, Rengeng; Liu, Yufeng; Chen, Jie; Shu, Jicheng

    2005-07-01

    Three triterpenes (I-II) were obtained from the leaves of Cyclocarya paliurus (Batal.) Iljinsk. By means of physicochemical and spectral methods, the structures of the three triterpenes were identified as oleanolic acid (I), ursolic acid (II) and epikatonic acid (III) respectively. All of the three triterpenes were isolated for the first time from the plant of Cyclocarya paliurus (Batal.) Iljinsk.

  1. A new ethylene glycol triterpenoid from the leaves of Psidium guajava.

    PubMed

    Begum, Sabira; Ali, Syed Nawazish; Hassan, Syed Imran; Siddiqui, Bina S

    2007-07-10

    One new pentacyclic triterpenoid psidiumoic acid (5) along with four known compounds beta-sitosterol (1), obtusol (2), oleanolic acid (3), and ursolic acid (4) have been isolated from the leaves of Psidium guajava. The new constituent 5 has been characterized as 2 alpha-glycolyl-3beta-hydroxyolean-12-en-28-oic acid through 2D NMR techniques. This is the first report of isolation of compound 2 from the genus Psidium.

  2. Regulation of microRNA using promising dietary phytochemicals: Possible preventive and treatment option of malignant mesothelioma.

    PubMed

    Sayeed, Md Abu; Bracci, Massimo; Lucarini, Guendalina; Lazzarini, Raffaella; Di Primio, Roberto; Santarelli, Lory

    2017-10-01

    Malignant mesothelioma (MM) is a very aggressive, lethal cancer, and its incidence is increasing worldwide. Development of multi-drug resistance, therapy related side-effects, and disease recurrence after therapy are the major problems for the successful treatment of MM. Emerging evidence indicates that dietary phytochemicals can exert anti-cancer activities by regulating microRNA expression. Until now, only one dietary phytochemical (ursolic acid) has been reported to have MM microRNA regulatory ability. A large number of dietary phytochemicals still remain to be tested. In this paper, we have introduced some dietary phytochemicals (curcumin, epigallocatechin gallate, quercetin, genistein, pterostilbene, resveratrol, capsaicin, ellagic acid, benzyl isothiocyanate, phenethyl isothiocyanate, sulforaphane, indole-3-carbinol, 3,3'-diindolylmethane, diallyl disulphide, betulinic acid, and oleanolic acid) which have shown microRNA regulatory activities in various cancers and could regulate MM microRNAs. In addition to microRNA regulatory activities, curcumin, epigallocatechin gallate, quercetin, genistein, resveratrol, phenethyl isothiocyanate, and sulforaphane have anti-mesothelioma potentials, and pterostilbene, capsaicin, ellagic acid, benzyl isothiocyanate, indole-3-carbinol, 3,3'-diindolylmethane, diallyl disulphide, betulinic acid, and oleanolic acid have potentials to inhibit cancer by regulating the expression of various genes which are also known to be aberrant in MM. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Comparative pharmacokinetics of swertiamarin in rats after oral administration of swertiamarin alone, Qing Ye Dan tablets and co-administration of swertiamarin and oleanolic acid.

    PubMed

    Xu, Gui-li; Li, Hong-liang; He, Jian-chang; Feng, En-fu; Shi, Pan-pan; Liu, Yue-qiong; Liu, Chang-xiao

    2013-08-26

    Qing Ye Dan is a well-known herbal drug that is widely used to treat viral hepatitis in the Yi and Hani minority regions in the Yunnan province of China. An LC-MS/MS method was developed to determine the levels of swertiamarin in rat plasma. Swertiamarin and naringin (internal standard, IS) were extracted from rat plasma using solid-phase extraction (SPE) to purify the samples. The pharmacokinetics of the following different administration methods of swertiamarin in rats were studied: oral administration of swertiamarin alone, a Qing Ye Dan tablet (QYDT) and co-administration of swertiamarin and oleanolic acid, with each method delivering approximately 20mg/kg of swertiamarin. Non-compartmental pharmacokinetic profiles were constructed by using the software DAS (version 2.1.1), and the pharmacokinetic parameters were compared using an unpaired Student's t-test. The results showed that the pharmacokinetic parameters Cmax, AUC0-∞, Vz/F and CLz/F were significantly different (P<0.05) among the three types of swertiamarin administration. The data indicate that oleanolic acid and the other ingredients present in QYDT could affect the pharmacokinetic behaviour of swertiamarin in rats. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. UDP-Glycosyltransferases from the UGT73C Subfamily in Barbarea vulgaris Catalyze Sapogenin 3-O-Glucosylation in Saponin-Mediated Insect Resistance1[W][OA

    PubMed Central

    Augustin, Jörg M.; Drok, Sylvia; Shinoda, Tetsuro; Sanmiya, Kazutsuka; Nielsen, Jens Kvist; Khakimov, Bekzod; Olsen, Carl Erik; Hansen, Esben Halkjær; Kuzina, Vera; Ekstrøm, Claus Thorn; Hauser, Thure; Bak, Søren

    2012-01-01

    Triterpenoid saponins are bioactive metabolites that have evolved recurrently in plants, presumably for defense. Their biosynthesis is poorly understood, as is the relationship between bioactivity and structure. Barbarea vulgaris is the only crucifer known to produce saponins. Hederagenin and oleanolic acid cellobioside make some B. vulgaris plants resistant to important insect pests, while other, susceptible plants produce different saponins. Resistance could be caused by glucosylation of the sapogenins. We identified four family 1 glycosyltransferases (UGTs) that catalyze 3-O-glucosylation of the sapogenins oleanolic acid and hederagenin. Among these, UGT73C10 and UGT73C11 show highest activity, substrate specificity and regiospecificity, and are under positive selection, while UGT73C12 and UGT73C13 show lower substrate specificity and regiospecificity and are under purifying selection. The expression of UGT73C10 and UGT73C11 in different B. vulgaris organs correlates with saponin abundance. Monoglucosylated hederagenin and oleanolic acid were produced in vitro and tested for effects on P. nemorum. 3-O-β-d-Glc hederagenin strongly deterred feeding, while 3-O-β-d-Glc oleanolic acid only had a minor effect, showing that hydroxylation of C23 is important for resistance to this herbivore. The closest homolog in Arabidopsis thaliana, UGT73C5, only showed weak activity toward sapogenins. This indicates that UGT73C10 and UGT73C11 have neofunctionalized to specifically glucosylate sapogenins at the C3 position and demonstrates that C3 monoglucosylation activates resistance. As the UGTs from both the resistant and susceptible types of B. vulgaris glucosylate sapogenins and are not located in the known quantitative trait loci for resistance, the difference between the susceptible and resistant plant types is determined at an earlier stage in saponin biosynthesis. PMID:23027665

  5. Chemical Composition and Bioactivities of Two Common Chaenomeles Fruits in China: Chaenomeles speciosa and Chaenomeles sinensis.

    PubMed

    Miao, Jing; Zhao, Chengcheng; Li, Xia; Chen, Xuetao; Mao, Xinhui; Huang, Hanhan; Wang, Tingting; Gao, Wenyuan

    2016-08-01

    Contents of total flavonoids, total phenolics, total triterpenes, total condensed tannin and total saponins in peels, flesh and endocarps of Chaenomeles speciosa (CSP) and Chaenomeles sinensis (CSS) were determined by colorimetric method, while 5 phenolics (vanillic, gallic, chlorogenic, ferulic and p-coumaric acids), 2 triterpenes (oleanolic and ursolic acids), and 3 flavonoids (rutin, catechin and epicatechin) were identified and quantified by high-performance liquid chromatography-mass spectrometry (HPLC-MS) and HPLC, and antioxidant and α-glucosidase inhibitory activities of them also were evaluated as well as their digestive characteristics. In the correlation analysis, total phenolics, vanillic acid, catechin, ursolic acid and oleanolic acid all contribute to DPPH(·) scavenge capacity, gallic acid contributes to total ferric reducing antioxidant power, while total triterpenes, total saponins, chlorogenic acid and ferullic acid contribute to α-glucosidase inhibitory activity. In the principal component analysis, endocarps of CSP and CSS both show better quality than their peels and flesh, respectively. In vitro digestion can increase contents of total flavonoids, total condensed tannin and total saponins, while contents of total phenolics and total triterpenes decreased greatly. Our study would contribute to the full use of discarded parts of the 2 Chaenomeles and be helpful to establish a good foundation for further research of CSP and CSS. © 2016 Institute of Food Technologists®

  6. Towards an efficient protocol for the determination of triterpenic acids in olive fruit: a comparative study of drying and extraction methods.

    PubMed

    Goulas, Vlasios; Manganaris, George A

    2012-01-01

    Triterpenic acids, such as maslinic acid and oleanolic acid, are commonly found in olive fruits and have been associated with many health benefits. The drying and extraction methods, as well as the solvents used, are critical factors in the determination of their concentration in plant tissues. Thus, there is an emerging need for standardisation of an efficient extraction protocol that determines triterpenic acid content in olive fruits. To evaluate common extraction methods of triterpenic acids from olive fruits and to determine the effect of the drying method on their content in order to propose an optimum protocol for their quantification. The efficacy of different drying and extraction methods was evaluated through the quantification of maslinic acid and oleanolic acid contents using the reversed-phase HPLC technique. Data showed that ultrasonic assisted extraction with ethanol or a mixture of ethanol:methanol (1:1, v/v) resulted in the recovery of significantly higher amounts of triterpenic acids than other methods used. The drying method also affected the estimated triterpenic acid content; frozen or lyophilised olive fruit material gave higher yields of triterpenic acids compared with air-dried material at both 35°C and 105°C. This study provides a rapid and low-cost extraction method, i.e. ultrasonic assisted extraction with an eco-friendly solvent such as ethanol, from frozen or lyophilised olive fruit for the accurate determination of the triterpenic acid content in olive fruit. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Synthesis and biological evaluation of Raddeanin A, a triterpene saponin isolated from Anemone raddeana.

    PubMed

    Qian, Shan; Chen, Quan Long; Guan, Jin Long; Wu, Yong; Wang, Zhou Yu

    2014-01-01

    First, Raddeanin A, a cytotoxic oleanane-type triterpenoid saponin isolated from Anemone raddeana REGEL, was synthesized. Stepwise glycosylation was adopted in the synthesis from oleanolic acid, employing arabinosyl, glucosyl and rhamnosyl trichloroacetimidate as donors. The chemical structure of Raddeanin A was confirmed by means of (1)H-NMR, (13)C-NMR, IR, MS and elemental analysis, which elucidated the structure to be 3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranosyl-(1→2)-α-L-arabinopyranoside oleanolic acid. Biological activity tests showed that in the range of low concentrations, Raddeanin A displayed moderate inhibitory activity against histone deacetylases (HDACs), indicating that the HDACs' inhibitory activity of Raddeanin A may contribute to its cytotoxicity.

  8. [Studies on chemical constitutents in roots of Jasminum sambac].

    PubMed

    Zhang, Zheng-fu; Bian, Bao-lin; Yang, Jian; Tian, Xiu-feng

    2004-03-01

    To isolate and identify the chemical constitutents in roots of Jasminum sambac. The compounds were isolated by means of chromatography and the structures were identified on the basis of physical and spectral data. Dotriacontanoic acid, dotriacontanol, oleanolic acid, daucosterol and hesperidin were elucidated. All compounds were found in this plant for the first time.

  9. Hawthorn ethanolic extracts with triterpenoids and flavonoids exert hepatoprotective effects and suppress the hypercholesterolemia-induced oxidative stress in rats

    PubMed Central

    Rezaei-Golmisheh, Ali; Malekinejad, Hassan; Asri-Rezaei, Siamak; Farshid, Amir Abbas; Akbari, Peyman

    2015-01-01

    Objective(s): The current study was aimed to determine the bioactive constituents and biological effects of the Crataegus monogyna ethanolic extracts from bark, leaves and berries on hypercholesterolemia. Materials and Methods: Oleanolic acid, ursolic acid, quercetin and lupeol concentrations were quantified by HPLC. Total phenol content and radical scavenging activity of extracts were also measured. The hypocholesterolemic, antioxidant, and hepatoprotective effects of the extracts were examined in hypercholesterolemic rats and compared with orlistat. Results: The highest phenol content, oleanolic acid, quercetin and lupeol levels and free radical scavenging potency were found in the bark extract, and the highest ursolic acid level was found in the berries extract. Orlistat and extracts significantly (P<0.05) lowered the hypercholesterolemia-increased serum level of hepatic enzymes and lipid peroxidation level. Hawthorn’s extracts protected from hepatic thiol depletion and improved the lipid profile and hepatic damages. Conclusion: Data suggested that hawthorn’s extracts are able to protect from hypercholesterolemia-induced oxidative stress and hepatic injuries. Moreover, the hypocholesterolemic effect of extracts was found comparable to orlistat. PMID:26361538

  10. Effects of Different Extraction Methods on the Extraction Rates of Five Chemical Ingredients of Swertia mussotii Franch by UPLC-ESI-MS/MS

    NASA Astrophysics Data System (ADS)

    Xiong, Yaokun; Zhou, Lifen; Zhao, Yonghong; Liu, Yun; Liu, Xia; Zhu, Genhua; Yan, Zhihong; Liu, Zhiyong

    2018-01-01

    Objective: To compare the effects of three extraction methods (ultrasound, reflux and percolation) on the contents of gentiopicroside, mangiferin, swertiamain, sweroside and oleanolic acid in Swertia mussotii Franch. Method: The contents of five components were determined by UPLC-ESI/MS. In the solvent system, eluent A was 0.05% (v: v) formic acid with 1mM/L ammonium acetate aqueous solution and eluent B was acetonitrile. Chromatographic separations were achieved using an Agilent EC-C18 column (4.6×100 mm, 2.7 um) at 30 °C. The flow rate was set at 0.8mL/min. The compound ionization was adopted at negative ionization mode by electro spray ionization (ESI). The quantification was performed in multiple reaction monitoring (MRM). Results: The linear ranges of swertiamarin, gentiopicroside, mangiferin, sweroside and oleanolic acid are 80∼7450 ng/mL, 103∼6600 ng/mL, 100∼8000 ng/mL, 130∼8450 ng/mL, 100∼7000 ng/mL, respectively. As a result, the content of oleanolic acid was the highest extracted by ultrasonic extraction and the content of mangiferin was the highest extracted by reflux extraction. For percolation extraction, the contents of five components were between ultrasound and reflux extraction. Conclusion: For five components, there are significant differences between the three different extraction methods. The results could provide a reference for the quality control of Swertia mussotii Franch and the research and development of new drugs.

  11. Oleanolic-bioenhancer coloaded chitosan modified nanocarriers attenuate breast cancer cells by multimode mechanism and preserve female fertility.

    PubMed

    Sharma, Monika; Sharma, Shweta; Sharma, Vikas; Sharma, Komal; Yadav, Santosh Kumar; Dwivedi, Pankaj; Agrawal, Satish; Paliwal, Sarvesh Kumar; Dwivedi, Anil Kumar; Maikhuri, Jagdamba Prasad; Gupta, Gopal; Mishra, Prabhat Ranjan; Rawat, Ajay Kumar Singh

    2017-11-01

    Addressing multidrug resistant stage of breast cancer is an impediment for chemotherapy. Moreover, breast cancer chemotherapy has potential enduring confrontations i.e. related toxicity including effect on fertility of young female patients. The co-delivery of polyphenolic bio-enhancers with oleanolic acid in chitosan coated PLGA nanoparticles was designed for oral delivery with enhanced antitumor effect consecutively preserving the female fertility. The optimized oleanolic- bio-enhancer nano formulation CH-OA-B-PLGA with particle size was 342.2±3.7nm and zeta potential of 34.2±3.1mV was capable of lowering viability in MDAMB 231 cell line 16 times than OA. Further, mechanistic studies in MDAMB-231 cells revealed that CH-OA-PLGA induces apoptosis by mitochondrial membrane disruption; follows ROS mediated and caspase dependent apoptosis. The antitumor effect studied in 4-T1 induced Balb/c mice mammary tumor model displayed augmented antitumor potency by CH-OA-B-PLGA in comparison to OA. In the in vivo toxicity on Sprague-Dawley rat model, CH-OA-B-PLGA significantly displayed the safe profile and also preserves fertility in female rats. The experiment result suggests co-delivery of oleanolic acid with bio-enhancers as a breakthrough for developing safe chemotherapy for hormone independent breast cancer therapy countering the toxicity issues. Copyright © 2017. Published by Elsevier B.V.

  12. Antiproliferative terpenoids from almond hulls (Prunus dulcis): identification and structure-activity relationships.

    PubMed

    Amico, Vincenzo; Barresi, Vincenza; Condorelli, Daniele; Spatafora, Carmela; Tringali, Corrado

    2006-02-08

    Bioassay-guided fractionation of the EtOAc crude extract from Sicilian almond hulls, a waste material from Prunus dulcis crop, allowed identification of 10 constituents, isolated as pure compounds (1-5, 7, and 10) or unseparable mixtures (5 + 6 and 8 + 9). All compounds were subjected to spectroscopic analysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide bioassay on MCF-7 human breast cancer cells. In addition to the main components oleanolic (1), ursolic (2), and betulinic (3) acids, the 2-hydroxy analogues alphitolic (4), corosolic (5), and maslinic (6) acids, as well as the related aldehydes, namely, betulinic (7), oleanolic (8), and ursolic (9), were identified. From a more polar fraction, the beta-sitosterol 3-O-glucoside (10) was also identified. A sample of commercially available betulin (11) was also included in bioassays as further support to a structure-activity relationship study. Betulinic acid showed antiproliferative activity toward MCF-7 cells (GI50 = 0.27 microM), higher than the anticancer drug 5-fluorouracil.

  13. Phytochemical investigations and antioxidant potential of roots of Leea macrophylla (Roxb.).

    PubMed

    Mahmud, Zobaer Al; Bachar, Sitesh C; Hasan, Choudhury Mahmood; Emran, Talha Bin; Qais, Nazmul; Uddin, Mir Muhammad Nasir

    2017-07-06

    Oleanolic acid (NZ-15), 7 α, 28-olean diol (NZ-38) and Stigmasterol (NZ-14) were isolated from the ethanolic extracts of the roots of Leea macrophylla (Family: Leeaceae) by using chromatographic analysis. This is the first report of isolation of these compounds from this plant. Their structures were constructed by spectroscopic analysis and by comparing the data with the published one. Subsequently the ethanolic extract was fractionated with two organic solvents and all the fractions were studied to evaluate their in vitro antioxidant property. The ethanolic extract was fractionated with two organic solvents and all the fractions were studied to evaluate their in vitro antioxidant property by DPPH free radical scavenging assay, superoxide anion radical scavenging assay, nitric oxide radical scavenging assay, and reducing power assay. In the DPPH free radical scavenging assay and superoxide radical scavenging assay, the ethyl acetate soluble fraction of ethanolic extract revealed the highest free radical scavenging activity with IC 50 value of 2.65 and 155.62 μg/ml, respectively as compared to standard ascorbic acid (IC 50 value of 5.8 and 99.66 μg/ml). Ethyl acetate fraction also possessed highest reducing power activity with an EC50 value of 15.27 μg/ml compared to ascorbic acid (EC 50 0.91 μg/ml). On the other hand, the carbon tetrachloride fraction exhibited most significant NO scavenging activity with IC 50 value of 277.8 μg/ml that was even higher than that of standard ascorbic acid (IC 50 value 356.04 μg/ml). In addition, the total phenolic contents of these extract and fractions were evaluated using Folin-Ciocalteu reagent and varied from 7.93 to 50.21 mg/g dry weight expressed as gallic acid equivalents (GAE). This study showed that different extracts of roots of L. macrophylla possess potential DPPH, superoxide, and NO free radical scavenging activities. The antioxidant activities of the plant extracts might be due to the presence of oleanolic acid, oleanolic acid derivative 7 α, 28-olean diol and stigmasterol.

  14. A Novel Ellagic Acid Derivative from Desbordesia glaucescens.

    PubMed

    DongmoMafodong, Faustine L; Tsopmo, Apollinaire; Awouafack, Maurice D; Roland, Tchuenguem T; Dzoyem, Jean P; Tane, Pierre

    2015-10-01

    One novel ellagic acid derivative, desglauside (1), was isolated from the leaves of Desbordesia glaucescens together with three known compounds [3',4'-di-O-methylellagic acid (2), oleanolic acid (3) and β-sitosterol-3-O-β-D-glucopyranoside (4)]. Their structures were elucidated on the basis of NMR spectroscopic and MS analysis, and by comparison with related published data. The crude extract, fractions and isolated compounds showed no activity against four yeast strains [Candida albicans (ATCC 9002), C. parapsilopsis (ATCC22019), C. tropicalis (ATCC750), Cryptococcus neoformans (IP95026) and one isolate of Candida guilliermondii].

  15. Ursolic acid and oleanolic acid suppress preneoplastic lesions induced by 1,2-dimethylhydrazine in rat colon.

    PubMed

    Furtado, Ricardo A; Rodrigues, Erlon P; Araújo, Felipe R R; Oliveira, Wendel L; Furtado, Michelle A; Castro, Márcio B; Cunha, Wilson R; Tavares, Denise C

    2008-06-01

    Ursolic acid (UA) and oleanolic acid (OA) are pentacyclic triterpenoid compounds found in plants used in the human diet and in medicinal herbs, in the form of aglycones or as the free acid. These compounds are known for their hepatoprotective, anti-inflammatory, antimicrobial, hypoglycemic, antimutagenic, antioxidant, and antifertility activities. In the present study, we evaluated the effects of UA and OA on the formation of 1,2-dimethyl-hydrazine (DMH)-induced aberrant crypt foci (ACF) in the colon of the male Wistar rat. The animals received subcutaneous (sc) injections of DMH (40 mg/kg body weight) twice a week for two weeks to induce ACF. UA, OA and a mixture of UA and OA were administered to the rats five times a week for four weeks by gavage at doses of 25 mg/kg body weight/day each, during and after DMH treatment. All animals were sacrificed in week 5 for the evaluation of ACF. The results showed a significant reduction in the frequency of ACF in the group treated with the triterpenoid compounds plus DMH when compared to those treated with DMH alone, suggesting that UA and OA suppress the formation of ACF and have a protective effect against colon carcinogenesis.

  16. Flavonoids and terpenoids from Luma gayana (Barn.) Burret.

    PubMed

    Wächter, G A; Wangmaneerat, A; Caple, K M; Montenegro, G; Timmermann, B N

    1999-12-01

    The flavonoids 5-hydroxy-7-methoxyflavanone, 6,8-dimethyl-5,7-dihydroxyflavanone and 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone, a mixture of alkyl esters of p-coumaric acid, the triterpenoids oleanolic acid and maslinic acid, the monoterpenoid 1 alpha,2 beta,4 beta-trihydroxy-p-menthane, the sesquiterpenoid clovandiol and beta-sitosterol were isolated from the aerial parts of Luma gayana (Barn.) Burret. This is the first report on the chemistry of this species.

  17. Dereplication of pentacyclic triterpenoids in plants by GC-EI/MS.

    PubMed

    Gu, Jian-Qiao; Wang, Yuehong; Franzblau, Scott G; Montenegro, Gloria; Timmermann, Barbara N

    2006-01-01

    Three common plant-derived pentacyclic triterpenoids, oleanolic acid (1), betulinic acid (2) and ursolic acid (3), have been found to exhibit moderate anti-tubercular activity in a microplate alamar blue assay. In order to facilitate the discovery of novel anti-tubercular leads with diverse chemical structures, a new and rapid GC-EI/MS method was developed simultaneously and unambiguously to dereplicate 1-3 as their methyl esters with limits of detection of 25.6, 26.9 and 26.8 ng, respectively.

  18. Two new triterpenoid saponins from rhizome of Anemone amurensis.

    PubMed

    Lv, Chong-Ning; Fan, Li; Wang, Jing; Qin, Ru-Lan; Xu, Tan-Ye; Lei, Tian-Li; Lu, Jin-Cai

    2015-01-01

    Two new triterpenoid saponins were isolated from the 70% ethanol extract of the rhizome of Anemone amurensis, they are oleanolic acid 28-O-β-d-glucopyranosyl-(1 → 3)-α-l-rhamnopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosyl ester (1) and 23,27-dihydroxy oleanolic acid 3-O-α-l-arabinopyranoside (2). The structures of 1 and 2 were elucidated on the basis of chemical and spectral analysis, including 1D and 2D NMR data and HR-ESI-MS. Compounds 1 and 2 were tested for cytotoxicities against three human cancer cell lines (A549, Hep-G2, and MCF-7). Compound 1 showed potent cytotoxicity with IC50 values of 34.76, 41.17, and 28.92 μM, respectively, while compound 2 with IC50>100 μM.

  19. Isoprene derivatives from the leaves and callus cultures of Vaccinium corymbosum var. bluecrop.

    PubMed

    Migas, Piotr; Cisowski, Wojciech; Dembińska-Migas, Wanda

    2005-01-01

    The phytochemical analysis of Vaccinium corymbosum var bluecrop leaves and callus biomass revealed ursolic acid, oleanolic acid, alpha-amyrin and beta-amyrin in both plant materials. Beta-sitosterol was determined only in callus biomass. The structure of isolated compounds was elucidated by TLC co-chromatography with standards and with spectroscopic methods (1H NMR, 13C NMR, EI-MS).

  20. [Chemical Constituents from Melissa officinalis Leaves].

    PubMed

    Ji, Zi-yang; Yang, Yan-xia; Zhuang, Fang-fang; Yan, Fu-lin; Wang, Chang-hong

    2015-03-01

    To investigate the chemical constituents of Melissa officinalis leaves. The chemical constituents were separated by silica gel column chromatography and their structures were determined by spectroscopic experiments. 13 compounds were isolated and identified as protocatechuyl aldehyde(1), serratagenic acid(2), vanillin(3), 2α,3β-dihydroxy-urs-12-en-28-oic acid(4), ursolic acid(5), oleanolic acid(6), daucosterol(7),2α,3β,23,29-tetrahydroxyolean-12-en-28-oic acid-29-O-β-D-gluco- pyranoside(8), luteolin(9) rosmarinic acid(10), luteolin-7-O-β-D-glucoside (11), β-stitosterol(12) and palmitic acid(13). Compounds 1 ~ 8 are separated from this plant for the first time and compounds 1-4 and 8 are isolated from this genus for the first time.

  1. [Determination of triterpenoic acids in fruits of Ziziphus jujuba using HPLC-MS with polymeric ODS column].

    PubMed

    Zhang, Yong; Zhou, An; Xie, Xiao-Mei

    2013-03-01

    A simple and sensitive method has been developed to simultaneously determine betunilic acid, oleanolic acid and ursolic acid in the fruits of Ziziphus jujuba from different regions by HPLC-MS. This HPLC assay was performed on PAH polymeric C18 bonded stationary phase column with mobile phase contained acetonitrile-water (90: 10) and with negative ESI detection mode. The developed approach was characterized by short time consumption for chromatographic separation, high sensitivity and good reliability so as to meet the requirements for rapid analysis of large-batch fruits of Z. jujuba from different habitats.

  2. [Chemical constituents of the roots of Vaccinium bracteatum].

    PubMed

    Lv, Xiao-Lan; Mai, Xi; Guo, Hui; Lai, Xiao-Ping

    2012-06-01

    To study the chemical constituents of the roots of Vaccinium bracteatum. The constituents were separated and purified with chromatographic methods (including silica gel, Sephadex LH-20 and RP-18 column chromatography), and their structures were determined by spectroscopic methods (including MS, 1H-NMR and 13C-NMR). 10 compounds were isolated from the roots of Vaccinium bracteatu and were elucidated as chlorogenic acid (1), pinoresinol (2), ferulic acid (3), kaempferol (4), trans-caffeic acid (5), beta-sitosterol (6), quercetin (7), oleanolic acid (8), apigenin (9) and luteolin (10). Compounds 1 -3 are obtained from this plant for the first time.

  3. Quantification of bioactive compounds in Picual and Arbequina olive leaves and fruit.

    PubMed

    Romero, Concepción; Medina, Eduardo; Mateo, Mª Antonia; Brenes, Manuel

    2017-04-01

    Olive leaves and fruit possess bioactive substances such as phenolic compounds and triterpenic acids that can be obtained from olive by-products generated during olive oil extraction. The aim of the present study was the characterization and quantification of these compounds in Picual and Arbequina cultivars from different locations and throughout two seasons in both olive leaves and fruit. The major phenolic compound identified in the leaves was oleuropein, and the total content of phenolic compounds in this material reached 70 g kg -1 fresh weight. The leaves were also rich in triterpenic acids (20 g kg -1 fresh weight), with oleanolic acid being the most concentrated among them. With regard to olives, oleuropein and demethyloleuropein were the main phenolic compounds in the pulp of Picual and Arbequina cultivars, and the total concentration of these phenolic compounds reached 3.5% fresh weight. Olives can also be an important source of triterpenic acids, although this is mainly the skin part, where the maslinic and oleanolic acids are concentrated. Olive leaves can contain up to 70 g kg -1 phenolic compounds and 20 g kg -1 triterpenic acids, and olive fruit can contain up to 35 g kg -1 of the former and 3 g kg -1 of the latter. It must also be noted that this level was constant both between seasons and orchard locations. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Determination of betulinic acid, oleanolic acid and ursolic acid from Achyranthes aspera L. using RP-UFLC-DAD analysis and evaluation of various parameters for their optimum yield.

    PubMed

    Pai, Sandeep R; Upadhya, Vinayak; Hegde, Harsha V; Joshi, Rajesh K; Kholkute, Sanjiva D

    2016-03-01

    Achyranthes aspera L. is a well known herb commonly used in traditional system of Indian medicine to treat various disorders, such as cough, dysentery, gonorrhea, piles, kidney stone, pneumonia, renal dropsy, skin eruptions, snake bite, etc. Here, we used RP-UFLC-DAD method for determining triterpenoids betulinic acid (BA), oleanolic acid (OA) and ursolic acid (UA) from A. aspera. Optimum yield of these compounds were studied and evaluated using parameters viz., method of extraction, time of extraction, age of plant and plant parts (leaves, stem and roots). Linear relationships in RP-UFLC-DAD analysis were obtained in the range 0.05-100 µg/mL with 0.035, 0.042 and 0.033 µg/mL LOD for BA, OA and UA, respectively. Of the variables tested, extraction method and parts used significantly affected content yield. Continuous shaking extraction (CSE) at ambient temperature gave better extraction efficiency than exposure to ultra sonic extraction (USE) or microwave assisted extraction (MAE) methods. The highest content of BA, OA and UA were determined individually in leaf, stem and root extracts with CSE. Collective yield of these triterpenoids were higher in leaf part exposed to 15 min USE method. To best of our knowledge, the study newly reports UA from A. aspera and the same was confirmed using ATR-FT-IR studies. This study explains the distribution pattern of these major triterpenoids and optimum extraction parameters in detail.

  5. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids.

    PubMed

    Andre, Christelle M; Legay, Sylvain; Deleruelle, Amélie; Nieuwenhuizen, Niels; Punter, Matthew; Brendolise, Cyril; Cooney, Janine M; Lateur, Marc; Hausman, Jean-François; Larondelle, Yvan; Laing, William A

    2016-09-01

    Apple (Malus × domestica) accumulates bioactive ursane-, oleanane-, and lupane-type triterpenes in its fruit cuticle, but their biosynthetic pathway is still poorly understood. We used a homology-based approach to identify and functionally characterize two new oxidosqualene cyclases (MdOSC4 and MdOSC5) and one cytochrome P450 (CYP716A175). The gene expression patterns of these enzymes and of previously described oxidosqualene cyclases were further studied in 20 apple cultivars with contrasting triterpene profiles. MdOSC4 encodes a multifunctional oxidosqualene cyclase producing an oleanane-type triterpene, putatively identified as germanicol, as well as β-amyrin and lupeol, in the proportion 82 : 14 : 4. MdOSC5 cyclizes 2,3-oxidosqualene into lupeol and β-amyrin at a ratio of 95 : 5. CYP716A175 catalyses the C-28 oxidation of α-amyrin, β-amyrin, lupeol and germanicol, producing ursolic acid, oleanolic acid, betulinic acid, and putatively morolic acid. The gene expression of MdOSC1 was linked to the concentrations of ursolic and oleanolic acid, whereas the expression of MdOSC5 was correlated with the concentrations of betulinic acid and its caffeate derivatives. Two new multifuntional triterpene synthases as well as a multifunctional triterpene C-28 oxidase were identified in Malus × domestica. This study also suggests that MdOSC1 and MdOSC5 are key genes in apple fruit triterpene biosynthesis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. In vitro propagation and analysis of secondary metabolites in Glossogyne tenuifolia (Hsiang-Ju) - a medicinal plant native to Taiwan.

    PubMed

    Chen, Chia-Chen; Chang, Hung-Chi; Kuo, Chao-Lin; Agrawal, Dinesh Chandra; Wu, Chi-Rei; Tsay, Hsin-Sheng

    2014-12-01

    Glossogyne tenuifolia Cassini (Hsiang-Ju in Chinese) is a perennial herb native to Penghu Islands, Taiwan. The herb is a traditional anti-pyretic and hepatoprotective used in Chinese medicine. Several studies on G. tenuifolia have demonstrated its pharmacological values of antioxidation, anti-inflammation, immunomodulation, and cytotoxicity on several human cancer cell lines. Active compounds, oleanolic acid and luteolin in G. tenuifolia are affected by several factors, including climatic change, pathogens and agricultural practices. Plant population of G. tenuifolia has been severely affected and reduced considerably in natural habitat due to the use of herbicides by farmers. Also, collection of plant material from the natural habitat is restricted to a few months in a year. Therefore, the objective of the present study was to develop an efficient micropropagation protocol for G. tenuifolia. The study also aimed to investigate the influence of in vitro growth environment on the active compounds in in vitro shoots, tissue culture raised greenhouse plants; compare the values with wild plants and commercially available crude drug. Half-strength MS (Murashige and Skoog) basal medium supplemented with 0.1 mg/L 6-benzyladenine (BA) and 0.1 mg/L α-naphthaleneacetic acid (NAA) induced the maximum average number of shoots (7.3) per shoot tip explant excised from in vitro grown seedlings. Induction of rooting in cent percent in vitro shoots with an average number of 6.6 roots/shoot was achieved on ½ strength MS medium supplemented with 3.0 mg/L indole-3-acetic acid (IAA). The rooted plantlets acclimatized successfully in the greenhouse with a 100% survival rate. HPLC analysis revealed that the quantity of oleanolic acid and luteolin in in vitro shoots, tissue culture plants in the greenhouse, wild type plants and commercial crude drug varied depending upon the source. The oleanolic acid and luteolin contents were found to be significantly higher (16.89 mg/g and 0.84 mg/g, respectively) in 3-month old tissue culture raised plants in greenhouse compared to commercially available crude drug (6.51 mg/g, 0.13 mg/g, respectively). We have successfully developed an in vitro propagation protocol for G. tenuifolia which can expedite its plant production throughout the year. The contents of oleanolic acid and luteolin in the tissue culture raised plants in the greenhouse were significantly higher than the marketed crude drug demonstrating the practical application of the tissue culture technology. These findings may be very useful in micropropagation, germplasm conservation and commercial cultivation of G. tenuifolia. So far, there is no published report on tissue culture propagation of this important medicinal plant species.

  7. In vitro anti-breast cancer activity of ethanolic extract of Wrightia tomentosa: role of pro-apoptotic effects of oleanolic acid and urosolic acid.

    PubMed

    Chakravarti, Bandana; Maurya, Ranjani; Siddiqui, Jawed Akhtar; Bid, Hemant Kumar; Rajendran, S M; Yadav, Prem P; Konwar, Rituraj

    2012-06-26

    Wrightia tomentosa Roem. & Schult. (Apocynaceae) is known in the traditional medicine for anti-cancer activity along with other broad indications like snake and scorpion bites, renal complications, menstrual disorders etc. However, the anti-cancer activity of this plant or its constituents has never been studied systematically in any cancer types so far. To evaluate the anti-cancer activities of the ethanolic extract of W. tomentosa and identified constituent active molecule(s) against breast cancer. Powdered leaves of W. tomentosa were extracted with ethanol. The ethanolic extract, subsequent hexane fractions and fraction F-4 of W. tomentosa were tested for its anti-proliferative and pro-apoptotic effects in breast cancer cells MCF-7 and MDA-MB-231. The ethanolic extract, subsequent hexane fractions and fraction F-4 of W. tomentosa inhibited the proliferation of human breast cancer cell lines, MCF-7 and MDA-MB-231. The fraction F-4 obtained from hexane fraction inhibited proliferation of MCF-7 and MDA-MB-231 cells in concentration and time dependent manner with IC₅₀ of 50 μg/ml and 30 μg/ml for 24 h, 28 μg/ml and 22 μg/ml for 48 h and 25 μg/ml and 20 μg/ml for 72 h respectively. The fraction F-4 induced G1 cell cycle arrest, reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential and subsequent apoptosis. Apoptosis is indicated in terms of increased Bax/Bcl-2 ratio, enhanced Annexin-V positivity, caspase 8 activation and DNA fragmentation. The active molecule isolated from fraction F-4, oleanolic acid and urosolic acid inhibited cell proliferation of MCF-7 and MDA-MB-231 cells at IC₅₀ value of 7.5 μM and 7.0 μM respectively, whereas there is devoid of significant cell inhibiting activity in non-cancer originated cells, HEK-293. In both MCF-7 and MDA-MB-231, oleanolic acid and urosolic acid induced cell cycle arrest and apoptosis as indicated by significant increase in Annexin-V positive apoptotic cell counts. Our results suggest that W. tomentosa extracts has significant anti-cancer activity against breast cancer cells due to induction of apoptosis pathway. Olenolic and urosolic acid are important constituent molecules in the extract responsible for anti-cancer activity of W. tomentosa.

  8. Simultaneous Analysis of Ursolic Acid and Oleanolic Acid in Guava Leaves Using QuEChERS-Based Extraction Followed by High-Performance Liquid Chromatography

    PubMed Central

    Xu, Chang; Liao, Yiyi; Fang, Chunyan; Zhang, Yingxia

    2017-01-01

    In this paper, a novel method of QuEChERS-based extraction coupled with high-performance liquid chromatography has been developed for the simultaneous determination of ursolic acid (UA) and oleanolic acid (OA) in guava leaves. The QuEChERS-based extraction parameters, including the amount of added salt, vortex-assisted extraction time, and absorbent amount, and the chromatographic conditions were investigated for the analysis of UA and OA in guava leaves. Under the optimized conditions, the method showed good linearity over a range of 1–320 μg mL−1, with correlation coefficients above 0.999. The limits of detection of UA and OA were 0.18 and 0.36 μg mL−1, respectively. The intraday and interday precision were below 1.95 and 2.55%, respectively. The accuracies of the UA and OA determinations ranged from 97.4 to 111.4%. The contents of UA and OA in the guava leaf samples were 2.50 and 0.73 mg g−1, respectively. These results demonstrate that the developed method is applicable to the simultaneous determination of UA and OA in guava leaves. PMID:28781908

  9. Antileishmanial activity of the hydroalcoholic extract of Miconia langsdorffii, isolated compounds, and semi-synthetic derivatives.

    PubMed

    Peixoto, Juliana A; Andrade E Silva, Márcio Luis; Crotti, Antônio E M; Cassio Sola Veneziani, Rodrigo; Gimenez, Valéria M M; Januário, Ana H; Groppo, Milton; Magalhães, Lizandra G; Dos Santos, Fransérgio F; Albuquerque, Sérgio; da Silva Filho, Ademar A; Cunha, Wilson R

    2011-02-22

    The in vitro activity of the crude hydroalcoholic extract of the aerial parts of Miconia langsdorffii Cogn. was evaluated against the promastigote forms of L. amazonensis, the causative agent of cutaneous leishmaniasis in humans. The bioassay-guided fractionation of this extract led to identification of the triterpenes ursolic acid and oleanolic acid as the major compounds in the fraction that displayed the highest activity. Several ursolic acid semi-synthetic derivatives were prepared, to find out whether more active compounds could be obtained. Among these ursolic acid-derived substances, the C-28 methyl ester derivative exhibited the best antileishmanial activity.

  10. Pharmacokinetic study of calenduloside E and its active metabolite oleanolic acid in beagle dog using liquid chromatography-tandem mass spectrometry.

    PubMed

    Shi, Meiyun; Yang, Yan; Sun, Yantong; Cheng, Longmei; Zhao, Sen; Xu, Huibo; Fawcett, J Paul; Sun, Xiaobo; Gu, Jingkai

    2014-03-01

    Aralia mandshrica is a well-known traditional Chinese medicine from Northeast China commonly used to treat digestive, circulatory and immune system disorders. Calenduloside E is one of its bioactive components currently under evaluation as a pure drug. In this study, a highly sensitive and rapid method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the simultaneous quantitation of calenduloside E and its active metabolite oleanolic acid in beagle dog plasma has been developed and validated. Samples containing the ammonium salt of simvastatin acid as internal standard (IS) were purified by solid phase extraction and separated on a SUPELCO Ascentis-C18 column (50mm×4.6mm i.d., 5μm) using gradient elution with 0.35% formic acid and acetonitrile. Analytes and IS were detected in a cycle time of 5min after ionization in the negative ion mode by multiple reaction monitoring of the precursor-to-product ion transitions at m/z 631.4→455.4 and m/z 435.4→319.0 for calenduloside E and IS respectively and by single ion monitoring of the ion at m/z 455.4 for oleanolic acid. The method was linear over the concentration range 0.4-100ng/mL for both analytes using 0.5mL plasma. Inter- and intra-day precisions were both <6.96% with accuracies <6.40%. In the pharmacokinetic (PK) study, beagle dogs were given oral doses of calenduloside E (1.05, 2.10 and 4.20mg/kg) and an intravenous injection of 2.10mg/kg. The absolute bioavailability of calenduloside E was only 0.58%. Area under the plasma concentration time curve (AUC(0-t)) for the oral doses of calenduloside E was approximately dose proportional while other PK parameters (t1/2, Tmax and MRT) showed no significant differences among the three doses (P>0.05). The PK data provide a useful platform on which to base future clinical studies of calenduloside E. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Biological activity of some naturally occurring resins, gums and pigments against in vitro LDL oxidation.

    PubMed

    Andrikopoulos, Nikolaos K; Kaliora, Andriana C; Assimopoulou, Andreana N; Papapeorgiou, Vassilios P

    2003-05-01

    Naturally occurring gums and resins with beneficial pharmaceutical and nutraceutical properties were tested for their possible protective effect against copper-induced LDL oxidation in vitro. Chiosmastic gum (CMG) (Pistacia lentiscus var. Chia resin) was the most effective in protecting human LDL from oxidation. The minimum and maximum doses for the saturation phenomena of inhibition of LDL oxidation were 2.5 mg and 50 mg CMG (75.3% and 99.9%, respectively). The methanol/water extract of CMG was the most effective compared with other solvent combinations. CMG when fractionated in order to determine a structure-activity relationship showed that the total mastic essential oil, collofonium-like residue and acidic fractions of CMG exhibited a high protective activity ranging from 65.0% to 77.8%. The other natural gums and resins (CMG resin 'liquid collection', P. terebinthus var. Chia resin, dammar resin, acacia gum, tragacanth gum, storax gum) also tested as above, showed 27.0%-78.8% of the maximum LDL protection. The other naturally occurring substances, i.e. triterpenes (amyrin, oleanolic acid, ursolic acid, lupeol, 18-a-glycyrrhetinic acid) and hydroxynaphthoquinones (naphthazarin, shikonin and alkannin) showed 53.5%-78.8% and 27.0%-64.1% LDL protective activity, respectively. The combination effects (68.7%-76.2% LDL protection) of ursolic-, oleanolic- and ursodeoxycholic- acids were almost equal to the effect (75.3%) of the CMG extract in comparable doses. Copyright 2003 John Wiley & Sons, Ltd.

  12. Determination of Oleanolic and Ursolic Acids in Hedyotis diffusa Using Hyphenated Ultrasound-Assisted Supercritical Carbon Dioxide Extraction and Chromatography

    PubMed Central

    Hong, Show-Jen

    2015-01-01

    Oleanolic acid (OA) and ursolic acid (UA) were extracted from Hedyotis diffusa using a hyphenated procedure of ultrasound-assisted and supercritical carbon dioxide (HSC–CO2) extraction at different temperatures, pressures, cosolvent percentages, and SC–CO2 flow rates. The results indicated that these parameters significantly affected the extraction yield. The maximal yields of OA (0.917 mg/g of dry plant) and UA (3.540 mg/g of dry plant) were obtained at a dynamic extraction time of 110 min, a static extraction time of 15 min, 28.2 MPa, and 56°C with a 12.5% (v/v) cosolvent (ethanol/water = 82/18, v/v) and SC–CO2 flowing at 2.3 mL/min (STP). The extracted yields were then analyzed by high performance liquid chromatography (HPLC) to quantify the OA and UA. The present findings revealed that H. diffusa is a potential source of OA and UA. In addition, using the hyphenated procedure for extraction is a promising and alternative process for recovering OA and UA from H. diffusa at high concentrations. PMID:26089939

  13. Structure-activity relationships of 3-O-β-chacotriosyl oleanane-type triterpenoids as potential H5N1 entry inhibitors.

    PubMed

    Song, Gaopeng; Shen, Xintian; Li, Sumei; Li, Yibin; Si, Hongzong; Fan, Jihong; Li, Junhua; Gao, Erqiang; Liu, Shuwen

    2016-08-25

    A series of 3-O-β-chacotriosyl oleanolic acid analogs have been designed, synthesized and evaluated as H5N1 entry inhibitors based on a small molecule inhibitor saponin 1 previously discovered by us. Detailed structure-activity relationships (SARs) studies on the aglycone of compound 1 indicated that the subtle modification of oleanolic acid as an aglycon has key influences on the antiviral activity. These results suggested that either the introduction of a disubstituted amide structure at the 17-COOH of OA or alteration of the C-3 configuration of OA from 3β-to 3α-forms can significantly improve the selective index while maintaining their antiviral activities in vitro. Compound 8 was selected for further mechanistic study because of its distinguished inhibition activity and good selective index. Molecular simulation study and surface plasmon resonance analysis confirmed that compound 8 stabilized HA2 subunit of hemagglutinin (HA) by binding with amino acid residues LYS-26, ASN-53, ASN-27 and ASN-50, therefore may prevent HA from conformational rearranging, which is a critical step for viral entry. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. A New Alkenylmethylresorcinol from the Fruits of Ardisia kivuensis.

    PubMed

    Nguekeu, Yves M M; Ndontsa, Blanche L; Mbouangouere, Roukayatou; Awouafack, Maurice D; Ito, Takuya; Tane, Pierre; Morita, Hiroyuki

    2016-05-01

    The phytochemical study of the MeOH extract from the fruits of Ardisia kivuensis was carried out using repeated silica gel column chromatography followed by Sephadex LH-20 to afford a new alkenylmethylresorcinol, ardisinol III (1) along with three known compounds, oleanolic acid, β-sitosterol and pentacosanoic acid. The structure of 1 was elucidated using spectroscopic analysis (NMR and MS), and comparison with published data. Compound 1 had weak antioxidant activity (IC50 109.8 μg/mL) while other compounds were not active as compared to L-ascorbic acid (IC50 3.9 μg/mL).

  15. Rapid and Sensitive Quantification of Ursolic Acid and Oleanolic Acid in Human Plasma Using Ultra-performance Liquid Chromatography-Mass Spectrometry.

    PubMed

    Stebounova, Larissa; Ebert, Scott M; Murry, Logan T; Adams, Christopher M; Murry, Daryl J

    2018-04-26

    Ultra-performance liquid chromatography (UPLC) interfaced with atmospheric pressure chemical ionization mass-spectrometry was used to separate and quantify ursolic acid (UA) and oleanolic acid (OA) in human plasma. UA and OA were extracted from 0.5 mL human plasma using supported liquid extraction and separated utilizing an Acquity UPLC HSS column. The method has been validated for both UA and OA quantitation with a limit of detection of 0.5 ng/mL. The UPLC separations are carried out with isocratic elution with methanol and 5 mM ammonium acetate in water (85:15) as a mobile phase at a flow rate of 0.4 mL/min. The assay was linear from 1 ng/mL to 100 ng/mL for both analytes. The total analysis time was 7 min with the retention times of 3.25 (internal standard), 3.65 (UA) and 3.85 min (OA). Recovery of drug from plasma ranged from 70% to 115%. Analysis of quality control samples at 3, 30 and 80 ng/mL (n = 14) had an intra-day coefficient of variation of 9.9%, 4.3% and 5.5%, respectively. A proof-of-concept study in human patients who consumed apple peels indicates that this analytical method could be applied to clinical studies of UA and/or OA in human subjects.

  16. Clinical safety and efficacy of NG440: a novel combination of rho iso-alpha acids from hops, rosemary, and oleanolic acid for inflammatory conditions.

    PubMed

    Minich, Deanna M; Bland, Jeffrey S; Katke, Jeffrey; Darland, Gary; Hall, Amy; Lerman, Robert H; Lamb, Joseph; Carroll, Brian; Tripp, Matthew

    2007-09-01

    In this report, we examine the clinical safety and efficacy of NG440, a phytochemical-based antiinflammatory formula consisting of a combination of rho iso-alpha acids from hops, rosemary, and oleanolic acid. In a previous study, we demonstrated that NG440 significantly decreased pain by 50% in patients with osteoarthritis. Consistent with these data, results from a multicentre trial indicate that NG440 reduced pain scores in patients with joint discomfort, as measured by VAS (visual analog scale) methodology. As demonstrated in an ex vivo clinical study, these effects on pain relief may be due to reduced inflammatory cytokine production including lower prostaglandin E2 formation. Finally, strong data exist to suggest that NG440 is a safe formula for human consumption. Animal toxicity data revealed no adverse effects of NG440 at dosages < or =250 mg.kg-1.day-1 for 21 days. Furthermore, human trial data suggest that NG440 does not negatively impact cardiovascular and gastrointestinal markers normally affected by selective COX-2 enzyme inhibitors, including platelet function, blood pressure, blood cell count, or fecal calprotectin, a measure of gastrointestinal injury. In conclusion, NG440 may serve as a safe and efficacious alternative in some areas where specific COX-2 inhibitors have been traditionally used.

  17. Ursolic Acid and Oleanolic Acid: Pentacyclic Terpenoids with Promising Anti-Inflammatory Activities.

    PubMed

    Kashyap, Dharambir; Sharma, Ajay; Tuli, Hardeep S; Punia, Sandeep; Sharma, Anil K

    2016-01-01

    Plant derived products are not only served as dietary components but also used to treat and prevent the inflammatory associated diseases like cancer. Among the natural products pentacyclic terpenoids including ursolic acid and oleanolic acid are considered as the promising anti-inflammatory therapeutic agents. The current review extensively discusses the anti-inflammatory therapeutic potential of these pentacyclic moieties along with their proposed mechanisms of action. Furthermore, the relevant patents have also been listed to present the health benefits of these promising therapeutic agents to pin down the inflammatory diseases. Expert opinion: Pentacyclic terpenoids are known to negatively down-regulate a variety of extracellular and intracellular molecular targets associated with disease progression. The major anti-inflammatory effects of these molecules have been found to be mediated via inactivation of NFkB, STAT3/6, Akt/mTOR pathways. A number of patents on UA & OA based moieties have been reported between 2010 and 2016. Still there have been only a few compounds which meet the need of sufficient hydro solubility and bioavailability along with higher anti-inflammatory activities. Thus, it is essential to develop novel derivatives of terpenpoids which may not only overcome the solubility issues but also may improve their therapeutic effects. In addition, scientific community may utilize nanotechnology based drug delivery systems so as to increase the bio-availability, selectivity and dosages related problems.

  18. Oleanolic acid activates daf-16 to increase lifespan in Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiaolong; Lu, Lulu; Zhou, Lijun, E-mail: lijunzhou@tju.edu.cn

    Oleanolic acid (OA) is an active ingredient in natural plants. It has been reported to possess a variety of pharmacological activities, but very little is known about its effects of anti-aging. We investigate here whether OA has an impact on longevity in vivo, and more specifically, we have examined effects of OA on the lifespan and stress tolerance in Caenorhabditis elegans (C. elegans). Our results showed that OA could extend the lifespan, increase its stress resistance and reduce the intracellular reactive oxygen species (ROS) in wild-type worms. Moreover, we have found that OA-induced longevity may not be associated with the calorie restrictionmore » (CR) mechanism. Our mechanistic studies using daf-16 loss-of-function mutant strains (GR1307) indicated that the extension of lifespan by OA requires daf-16. In addition, OA treatment could also modulate the nuclear localization, and the quantitative real-time PCR results revealed that up-regulation of daf-16 target genes such as sod-3, hsp-16.2 and ctl-1 could prolong lifespan and increase stress response in C. elegans. This study overall uncovers the longevity effect of OA and its underpinning mechanisms. - Graphical abstract: Oleanolic acid modulates the activity of DAF-16 to promote longevity and increase stress resistance in Caenorhabditis elegans. - Highlights: • OA extends the lifespan of wild-type Caenorhabditis elegans. • OA improves the stress resistance and reduces the intracellular ROS level in C. elegans. • OA induces lifespan extension may not proceed through the CR mechanism. • OA extends the lifespan in C. elegans is modulated by daf-16.« less

  19. [Accumulation dynamic of triterpenoid saponins in Akebia trifoliata stem].

    PubMed

    Zhang, Zheng; Feng, Hang; Wang, Zhe-Zhi

    2014-07-01

    In order to understand the accumulation dynamic of triterpenoid saponins in Akebia trifoliata stem to determine the suitable harvesting time and the growth age of stem. The contents of effective components, oleanolic acid and hederagenin in Akebia trifoliata stems, collected at the same growth condition of different growth ages and different harvesting time, were compared by high performance liquid chromatography (HPLC). The accumulation period of oleanolic acid was from the first year to the sixth year, the content rose quickly in the seventh year, and reached the greatest at the ninth year, then declined quickly, the contents in stem of more than 10 years had no significant difference compared with that of 1 - 6 years. The content of herderagenin had no great change by the age of stem. Comprehensive consideration,the triterpenoid saponins contents of the eight to nine years old Akebia trifoliata stems were higher. The most appropriate harvesting time for Akebia trifoliata was from later August to later September in the eighth years.

  20. Antimicrobial Activity of Oleanolic and Ursolic Acids: An Update

    PubMed Central

    Jesus, Jéssica A.; Lago, João Henrique G.; Laurenti, Márcia D.; Yamamoto, Eduardo S.; Passero, Luiz Felipe D.

    2015-01-01

    Triterpenoids are the most representative group of phytochemicals, as they comprise more than 20,000 recognized molecules. These compounds are biosynthesized in plants via squalene cyclization, a C30 hydrocarbon that is considered to be the precursor of all steroids. Due to their low hydrophilicity, triterpenes were considered to be inactive for a long period of time; however, evidence regarding their wide range of pharmacological activities is emerging, and elegant studies have highlighted these activities. Several triterpenic skeletons have been described, including some that have presented with pentacyclic features, such as oleanolic and ursolic acids. These compounds have displayed incontestable biological activity, such as antibacterial, antiviral, and antiprotozoal effects, which were not included in a single review until now. Thus, the present review investigates the potential use of these triterpenes against human pathogens, including their mechanisms of action, via in vivo studies, and the future perspectives about the use of compounds for human or even animal health are also discussed. PMID:25793002

  1. Changes in the triterpenoid content of cuticular waxes during fruit ripening of eight grape (Vitis vinifera) cultivars grown in the Upper Rhine Valley.

    PubMed

    Pensec, Flora; Pączkowski, Cezary; Grabarczyk, Marta; Woźniak, Agnieszka; Bénard-Gellon, Mélanie; Bertsch, Christophe; Chong, Julie; Szakiel, Anna

    2014-08-13

    Triterpenoids present in grape cuticular waxes are of interest due to their potential role in protection against biotic stresses, their impact on the mechanical toughness of the fruit surface, and the potential industrial application of these biologically active compounds from grape pomace. The determination of the triterpenoid profile of cuticular waxes reported here supplements existing knowledge of the chemical diversity of grape, with some compounds reported in this species for the first time. Common compounds identified in eight examined cultivars grown in the Upper Rhine Valley include oleanolic acid, oleanolic and ursolic acid methyl esters, oleanolic aldehyde, α-amyrin, α-amyrenone, β-amyrin, cycloartanol, 24-methylenecycloartanol, erythrodiol, germanicol, lupeol accompanied by lupeol acetate, campesterol, cholesterol, sitosterol, stigmasterol, and stigmasta-3,5-dien-7-one, whereas 3,12-oleandione was specific for the Muscat d'Alsace cultivar. Changes in the triterpenoid content of cuticular waxes were determined at three different phenological stages: young grapes, grapes at véraison (the onset of ripening), and mature grapes. The results reveal a characteristic evolution of triterpenoid content during fruit development, with a high level of total triterpenoids in young grapes that gradually decreases with a slight increase in the level of neutral triterpenoids. This phenomenon may partially explain changes in the mechanical properties of the cuticle and possible modulations in the susceptibility to pathogens of mature grapes.

  2. Analgesic and Anti-Inflammatory Activities of Rosa taiwanensis Nakai in Mice

    PubMed Central

    Tsai, Der-Shiang; Huang, Mei-Hsuen; Tsai, Jen-Chieh; Chang, Yuan-Shuang; Chiu, Yung-Jia; Lin, Yen-Chang

    2015-01-01

    Abstract In this study, we evaluated the analgesic and anti-inflammatory activities of a 70% ethanol extract from Rosa taiwanensis Nakai (RTEtOH). The analgesic effect was determined using acetic acid-induced writhing response and formalin test. The anti-inflammatory activity was evaluated by λ-carrageenan-induced paw edema in mice. The anti-inflammatory mechanism of RTEtOH was examined by measuring the levels of cyclooxygenase-2 (COX-2), nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and malondialdehyde (MDA) in the paw edema tissue and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GRd) in the liver tissue. The betulinic acid and oleanolic acid contents of RTEtOH were assayed by HPLC. The results showed that RTEtOH decreased the acetic acid-induced writhing responses (1.0 g/kg) and the late phase of the formalin-induced licking time (0.5 and 1.0 g/kg). In the anti-inflammatory models, RTEtOH (0.5 and 1.0 g/kg) reduced the paw edema at 3, 4, and 5 h after λ-carrageenan administration. Moreover, the anti-inflammatory mechanisms might be due to the decreased levels of COX-2, TNF-α, IL-1β, and IL-6, as well as the inhibition of NO and MDA levels through increasing the activities of SOD, GPx, and GRd. The contents of two active compounds, betulinic acid and oleanolic acid, were quantitatively determined. This study demonstrated the analgesic and anti-inflammatory activities of RTEtOH and provided evidence to support its therapeutic use in inflammatory diseases. PMID:25494361

  3. [Study on the chemical constituents in roots of Gentiana dahurica].

    PubMed

    Chen, Qian-Liang; Shi, Zhang-Yan; Zhang, Ya-Hui; Zheng, Jiang-Bin

    2011-08-01

    To systematically study the chemical constituents in the roots of Gentiana dahurica. Various column chromatographic techniques were used for isolation and purification. The structures were elucidated on the basis of spectral data (UV, IR, MS, NMR) and identified by comparing with the authentic substance. Seven compounds were isolated and identified as: roburic acid (1), oleanolic acid (2), beta-sitosterol (3), daucosterol (4), gentiopicroside(5), swertiamarine (6), sweroside (7). Compounds 1, 2 and 4 are isolated from this plant for the first time.

  4. [Study on the chemical constituent from the dichloromethane extract. of the pine needles of Cedrus deodara].

    PubMed

    Shi, Xiao-Feng; Bai, Zhao-Hui; Liu, Dong-Yan; Li, Shuang

    2012-03-01

    To study the chemical constituents of the dichloromethane extracted from pine needles of Cedrus deodara. Compounds were isolated and purified from the dichloromethane extract of pine needles by chromatography on silica gel and Sephadex LH-20. Their structures were identified on the basis of spectroscopic analysis and physicochemical property. Nine compounds were isolated and purified. Their structures were identified as stigmasterol (1), oleanolic acid (2), parahydroxybenzaldehyde (3), beta-sitosterol (4), syringaresinol (5), daucosterol (6), p-hydroxybenzoic acid (7), gallicin (8) and gallic acid (9). Compounds 1-3, 5 -9 are isolated from pine needles of this genus for the first time.

  5. Fingerprint of Hedyotis diffusa Willd. by HPLC-MS.

    PubMed

    Yang, Ting; Yang, Yi-Hua; Yang, Ju-Yun; Chen, Ben-Mei; Duan, Ju-Ping; Yu, Shu-Yi; Ouyang, Hong-Tao; Cheng, Jun-Ping; Chen, Yu-Xiang

    2008-01-01

    A HPLC-MS fingerprint method has been developed based on the consistent chromatographic features of the major chemical constituents among 10 batches of Hedyotis diffusa Willd. Chromatographic separation was conducted on a Hypersil-Keystone Hypurity C(18) column using methanol:water:acetic acid as the mobile phase. Major compounds, including oleanolic acid, ursolic acid and ferulic acid, were analysed by HPLC-MS. Their analysis was ascertained by comparison with data derived from the standard compounds. The HPLC-MS fingerprint was successfully applied to analyse and differentiate samples from different geographical origins, or processing methods. H. diffusa was well distinguished from Hedyotis chrysotricha by HPLC-MS. Therefore the establishment of fingerprint of H. diffusa is critical in assessing and controlling its overall quality.

  6. Podophyllotoxin and other aryltetralin lignans from Eriope latifolia and Eriope blanchetii.

    PubMed

    Santos, Edlene O; Lima, Luciano S; David, Jorge M; Martins, Lidiane C; Guedes, Maria Lenise S; David, Juceni P

    2011-09-01

    Phytochemical investigation of the aerial parts of Eriope blanchetii and E. latifolia (Lamiaceae) yielded podophyllotoxin, as well as the aryltetralin lignans α- and β-peltatin and yatein. Oleanolic, ursolic and epikatonic acids were also isolated. This is the first occurrence of podophyllotoxin in the family.

  7. An unusual plant triterpene synthase with predominant α-amyrin-producing activity identified by characterizing oxidosqualene cyclases from Malus × domestica.

    PubMed

    Brendolise, Cyril; Yauk, Yar-Khing; Eberhard, Ellen D; Wang, Mindy; Chagne, David; Andre, Christelle; Greenwood, David R; Beuning, Lesley L

    2011-07-01

    The pentacyclic triterpenes, in particular ursolic acid and oleanolic acid and their derivatives, exist abundantly in the plant kingdom, where they are well known for their anti-inflammatory, antitumour and antimicrobial properties. α-Amyrin and β-amyrin are the precursors of ursolic and oleanolic acids, respectively, formed by concerted cyclization of squalene epoxide by a complex synthase reaction. We identified three full-length expressed sequence tag sequences in cDNA libraries constructed from apple (Malus × domestica 'Royal Gala') that were likely to encode triterpene synthases. Two of these expressed sequence tag sequences were essentially identical (> 99% amino acid similarity; MdOSC1 and MdOSC3). MdOSC1 and MdOSC2 were expressed by transient expression in Nicotiana benthamiana leaves and by expression in the yeast Pichia methanolica. The resulting products were analysed by GC and GC-MS. MdOSC1 was shown to be a mixed amyrin synthase (a 5 : 1 ratio of α-amyrin to β-amyrin). MdOSC1 is the only triterpene synthase so far identified in which the level of α-amyrin produced is > 80% of the total product and is, therefore, primarily an α-amyrin synthase. No product was evident for MdOSC2 when expressed either transiently or in yeast, suggesting that this putative triterpene synthase is either encoded by a pseudogene or does not express well in these systems. Transcript expression analysis in Royal Gala indicated that the genes are mostly expressed in apple peel, and that the MdOSC2 expression level was much lower than that of MdOSC1 and MdOSC3 in all the tissues tested. Amyrin content analysis was undertaken by LC-MS, and demonstrated that levels and ratios differ between tissues, but that the true consequence of synthase activity is reflected in the ursolic/oleanolic acid content and in further triterpenoids derived from them. Phylogenetic analysis placed the three triterpene synthase sequences with other triterpene synthases that encoded either α-amyrin and/or β-amyrin synthase. MdOSC1 and MdOSC3 clustered with the multifunctional triterpene synthases, whereas MdOSC2 was most similar to the β-amyrin synthases. © 2011 The New Zealand Institute for Plant and Food Research Limited. Journal compilation © 2011 FEBS.

  8. The Bile Acid Receptor TGR5 Does Not Interact with β-Arrestins or Traffic to Endosomes but Transmits Sustained Signals from Plasma Membrane Rafts*

    PubMed Central

    Jensen, Dane D.; Godfrey, Cody B.; Niklas, Christian; Canals, Meritxell; Kocan, Martina; Poole, Daniel P.; Murphy, Jane E.; Alemi, Farzad; Cottrell, Graeme S.; Korbmacher, Christoph; Lambert, Nevin A.; Bunnett, Nigel W.; Corvera, Carlos U.

    2013-01-01

    TGR5 is a G protein-coupled receptor that mediates bile acid (BA) effects on energy balance, inflammation, digestion, and sensation. The mechanisms and spatiotemporal control of TGR5 signaling are poorly understood. We investigated TGR5 signaling and trafficking in transfected HEK293 cells and colonocytes (NCM460) that endogenously express TGR5. BAs (deoxycholic acid (DCA), taurolithocholic acid) and the selective agonists oleanolic acid and 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated cAMP formation but did not induce TGR5 endocytosis or recruitment of β-arrestins, as assessed by confocal microscopy. DCA, taurolithocholic acid, and oleanolic acid did not stimulate TGR5 association with β-arrestin 1/2 or G protein-coupled receptor kinase (GRK) 2/5/6, as determined by bioluminescence resonance energy transfer. 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated a low level of TGR5 interaction with β-arrestin 2 and GRK2. DCA induced cAMP formation at the plasma membrane and cytosol, as determined using exchange factor directly regulated by cAMP (Epac2)-based reporters, but cAMP signals did not desensitize. AG1478, an inhibitor of epidermal growth factor receptor tyrosine kinase, the metalloprotease inhibitor batimastat, and methyl-β-cyclodextrin and filipin, which block lipid raft formation, prevented DCA stimulation of ERK1/2. Bioluminescence resonance energy transfer analysis revealed TGR5 and EGFR interactions that were blocked by disruption of lipid rafts. DCA stimulated TGR5 redistribution to plasma membrane microdomains, as localized by immunogold electron microscopy. Thus, TGR5 does not interact with β-arrestins, desensitize, or traffic to endosomes. TGR5 signals from plasma membrane rafts that facilitate EGFR interaction and transactivation. An understanding of the spatiotemporal control of TGR5 signaling provides insights into the actions of BAs and therapeutic TGR5 agonists/antagonists. PMID:23818521

  9. A tandem array of UDP-glycosyltransferases from the UGT73C subfamily glycosylate sapogenins, forming a spectrum of mono- and bisdesmosidic saponins.

    PubMed

    Erthmann, Pernille Østerbye; Agerbirk, Niels; Bak, Søren

    2018-05-01

    This study identifies six UGT73Cs all able to glucosylate sapogenins at positions 3 and/or 28 which demonstrates that B. vulgaris has a much richer arsenal of UGTs involved in saponin biosynthesis than initially anticipated. The wild cruciferous plant Barbarea vulgaris is resistant to some insects due to accumulation of two monodesmosidic triterpenoid saponins, oleanolic acid 3-O-β-cellobioside and hederagenin 3-O-β-cellobioside. Insect resistance depends on the structure of the sapogenin aglycone and the glycosylation pattern. The B. vulgaris saponin profile is complex with at least 49 saponin-like metabolites, derived from eight sapogenins and including up to five monosaccharide units. Two B. vulgaris UDP-glycosyltransferases, UGT73C11 and UGT73C13, O-glucosylate sapogenins at positions 3 and 28, forming mainly 3-O-β-D-glucosides. The aim of this study was to identify UGTs responsible for the diverse saponin oligoglycoside moieties observed in B. vulgaris. Twenty UGT genes from the insect resistant genotype were selected and heterologously expressed in Nicotiana benthamiana and/or Escherichia coli. The extracts were screened for their ability to glycosylate sapogenins (oleanolic acid, hederagenin), the hormone 24-epibrassinolide and sapogenin monoglucosides (hederagenin and oleanolic acid 3-O-β-D-glucosides). Six UGTs from the UGT73C subfamily were able to glucosylate both sapogenins and both monoglucosides at positions 3 and/or 28. Some UGTs formed bisdesmosidic saponins efficiently. At least four UGT73C genes were localized in a tandem array with UGT73C11 and possibly UGT73C13. This organization most likely reflects duplication events followed by sub- and neofunctionalization. Indeed, signs of positive selection on several amino acid sites were identified and modelled to be localized on the UGT protein surface. This tandem array is proposed to initiate higher order bisdesmosidic glycosylation of B. vulgaris saponins, leading to the recently discovered saponin structural diversity, however, not directly to known cellobiosidic saponins.

  10. Antitrypanosomal compounds from the essential oil and extracts of Keetia leucantha leaves with inhibitor activity on Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Bero, J; Beaufay, C; Hannaert, V; Hérent, M-F; Michels, P A; Quetin-Leclercq, J

    2013-02-15

    Keetia leucantha is a West African tree used in traditional medicine to treat several diseases among which parasitic infections. The dichloromethane extract of leaves was previously shown to possess growth-inhibitory activities on Plasmodium falciparum, Trypanosoma brucei brucei and Leishmania mexicana mexicana with low or no cytotoxicity (>100 μg/ml on human normal fibroblasts) (Bero et al. 2009, 2011). In continuation of our investigations on the antitrypanosomal compounds from this dichloromethane extract, we analyzed by GC-FID and GC-MS the essential oil of its leaves obtained by hydrodistillation and the major triterpenic acids in this extract by LC-MS. Twenty-seven compounds were identified in the oil whose percentages were calculated using the normalization method. The essential oil, seven of its constituents and the three triterpenic acids were evaluated for their antitrypanosomal activity on Trypanosoma brucei brucei bloodstream forms (Tbb BSF) and procyclic forms (Tbb PF) to identify an activity on the glycolytic process of trypanosomes. The oil showed an IC(50) of 20.9 μg/ml on Tbb BSF and no activity was observed on Tbb PF. The best antitrypanosomal activity was observed for ursolic acid with IC(50) of 2.5 and 6.5 μg/ml respectively on Tbb BSF and Tbb PF. The inhibitory activity on a glycolytic enzyme of T. brucei, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), was also evaluated for betulinic acid, olenaolic acid, ursolic acid, phytol, α-ionone and β-ionone. The three triterpenic acids and β-ionone showed inhibitory activities on GAPDH with oleanolic acid being the most active with an inhibition of 72.63% at 20 μg/ml. This paper reports for the first time the composition and antitrypanosomal activity of the essential oil of Keetia leucantha. Several of its constituents and three triterpenic acids present in the dichloromethane leaves extract showed a higher antitrypanosomal activity on bloodstream forms of Tbb as compared to procyclic forms, namely geranyl acetone, phytol, α-ionone, β-ionone, ursolic acid, oleanolic acid and betulinic acid. The four last compounds were proven to be inhibitors of trypanosomal GAPDH, which may in part explain these antitrypanosomal activities. Copyright © 2012 Elsevier GmbH. All rights reserved.

  11. 1H and 13C NMR spectral data of new saponins from Cordia piauhiensis.

    PubMed

    Santos, Renata P; Silveira, Edilberto R; Uchôa, Daniel Esdras de A; Pessoa, Otília Deusdênia L; Viana, Francisco Arnaldo; Braz-Filho, Raimundo

    2007-08-01

    Two new bidesmoside triterpenoid saponins were isolated from stems of Cordia piauhiensis. Their structures, characterized as 3-O-alpha-L-rhamnopyranosyl-(1 --> 2)-beta-D-glucopyranosyl pomolic acid 28-O-beta-D-glucopyranosyl ester (1) and 3-O-alpha-L-rhamnopyranosyl-(1 --> 2)-beta-D-glucopyranosyl oleanolic acid 28-O-beta-D-glucopyranosyl-(1 --> 6)-beta-D-glucopyranosyl ester (2), were unequivocally established after extensive NMR (1H, 13C, DEPT 135 degrees, COSY, HSQC, HMBC, TOCSY, and NOESY) studies. Copyright 2007 John Wiley & Sons, Ltd.

  12. Hybrid molecule from O2-(2,4-dinitrophenyl)diazeniumdiolate and oleanolic acid: a glutathione S-transferase π-activated nitric oxide prodrug with selective anti-human hepatocellular carcinoma activity and improved stability.

    PubMed

    Fu, Junjie; Liu, Ling; Huang, Zhangjian; Lai, Yisheng; Ji, Hui; Peng, Sixun; Tian, Jide; Zhang, Yihua

    2013-06-13

    A series of hybrids from O(2)-(2,4-dinitrophenyl)diazeniumdiolate and oleanolic acid (OA) were designed, synthesized, and biologically evaluated as novel nitric oxide (NO)-releasing prodrugs that could be activated by glutathione S-transferase π (GSTπ) overexpressed in a number of cancer cells. It was discovered that the most active compound, 21, released high levels of NO selectively in HCC cells but not in the normal cells and exhibited potent antiproliferative activity in vitro as well as remarkable tumor-retarding effects in vivo. Compared with the reported GSTπ-activated prodrugs JS-K and PABA/NO, 21 exhibited remarkably improved stability in the absence of GSTπ. Importantly, the decomposition of 21 occurred in the presence of GSTπ and was much more effective than in glutathione S-transferase α. Additionally, 21 induced apoptosis in HepG2 cells by arresting the cell cycle at the G2/M phase, activating both the mitochondrion-mediated pathway and the MAPK pathway and enhancing the intracellular production of ROS.

  13. Oleanolic acid acetate attenuates polyhexamethylene guanidine phosphate-induced pulmonary inflammation and fibrosis in mice.

    PubMed

    Kim, Min-Seok; Han, Jin-Young; Kim, Sung-Hwan; Jeon, Doin; Kim, Hyeon-Young; Lee, Seung Woong; Rho, Mun-Chual; Lee, Kyuhong

    2018-06-01

    Oleanolic acid acetate (OAA), triterpenoid compound isolated from Vigna angularis (azuki bean), has been revealed anti-inflammatory in several studies. We investigated the effects of OAA against polyhexamethylene guanidine phosphate (PHMG-P)-induced pulmonary inflammation and fibrosis in mice. OAA treatment effectively alleviated PHMG-P-induced lung injury, including the number of total and differential cell in BAL fluid, histopathological lesions and hydroxyproline content in a dose dependent manner. Moreover, OAA treatment significantly decreased the elevations of IL-1β, IL-6, TNF-α, TGF-β1, and fibronectin, and the activation of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in the lungs of PHMG-P-treated mice. Cytokines are known to be key modulators in the inflammatory responses that drive progression of fibrosis in injured tissues. The activation of NLRP3 inflammasome has been reported to be involved in induction of inflammatory cytokines. These results indicate that OAA may mitigate the inflammatory response and development of pulmonary fibrosis in the lungs of mice treated with PHMG-P. Copyright © 2018. Published by Elsevier B.V.

  14. In vivo activity of ursolic and oleanolic acids during the acute phase of Trypanosoma cruzi infection.

    PubMed

    da Silva Ferreira, Daniele; Esperandim, Viviane Rodrigues; Toldo, Miriam Paula Alonso; Kuehn, Christian Collins; do Prado Júnior, José Clóvis; Cunha, Wilson Roberto; e Silva, Márcio Luís Andrade; de Albuquerque, Sérgio

    2013-08-01

    Reduction in the parasitemic levels of the Y strain of Trypanosoma cruzi in mice treated with oral or intraperitoneal ursolic (UA) and oleanolic (OA) acids was evaluated during the acute phase of Chagas' disease. Oral administration of UA and OA (50mg/kg/day) provided the most significant reduction in the parasitemic peak, while intraperitoneal administration of UA and OA did not significantly affect the biological activity of the Y strain of T. cruzi. Interleukin levels in mice treated by the intraperitoneal route were compared to untreated chagasic mice. Reduced γ-IFN levels and enhanced IL-10 concentrations potentially explain the exacerbated parasitemia. Our data suggests an immunosuppressive effect for UA and OA, which could interfere with host control of parasitemia. Optimal results were achieved with oral administration. This observation may be explained by the low intestinal absorption of UA and OA, could cause a reduced immune response and promote parasite control. Taken together, these data demonstrate that triterpenes could be interesting compounds to develop therapeutically for the treatment of Chagas' disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Effects of oleanolic acid on pulmonary morphofunctional and biochemical variables in experimental acute lung injury.

    PubMed

    Santos, Raquel S; Silva, Pedro L; Oliveira, Gisele P; Cruz, Fernanda F; Ornellas, Débora S; Morales, Marcelo M; Fernandes, Janaina; Lanzetti, Manuella; Valença, Samuel S; Pelosi, Paolo; Gattass, Cerli R; Rocco, Patricia R M

    2011-12-15

    We analysed the effects of oleanolic acid (OA) on lung mechanics and histology and its possible mechanisms of action in experimental acute lung injury (ALI). BALB/c mice were randomly divided into Control (saline, ip) and ALI (paraquat, 25 mg/kg, ip) groups. At 1 h, both groups were treated with saline (SAL, 50 μl ip), OA (10 mg/kg ip), or dexamethasone (DEXA, 1 mg/kg ip). At 24 h, lung static elastance, viscoelastic pressure, and alveolar collapse reduced more after OA compared to DEXA administration. Tumour necrosis factor-α, macrophage migration inhibitory factor, interleukin-6, interferon-γ, and transforming growth factor-β mRNA expressions in lung tissue diminished similarly after OA or DEXA. Conversely, only OA avoided reactive oxygen species generation and yielded a significant decrease in nitrite concentration. OA and DEXA restored the reduced glutathione/oxidized glutathione ratio and catalase activity while increasing glutathione peroxidase induced by paraquat. In conclusion, OA improved lung morphofunction by modulating the release of inflammatory mediators and oxidative stress. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Oleanolic acid improves pulmonary morphofunctional parameters in experimental sepsis by modulating oxidative and apoptotic processes.

    PubMed

    Santos, Raquel Souza; Silva, Pedro Leme; de Oliveira, Gisele Pena; Santos, Cintia Lourenço; Cruz, Fernanda Ferreira; de Assis, Edson Fernandes; de Castro-Faria-Neto, Hugo Caire; Capelozzi, Vera Luiza; Morales, Marcelo Marcos; Pelosi, Paolo; Gattass, Cerli Rocha; Rocco, Patricia Rieken Macedo

    2013-12-01

    We compared the effects of oleanolic acid (OA) vs. dexamethasone on lung mechanics and histology, inflammation, and apoptosis in lung and distal organs in experimental sepsis. Seventy-eight BALB/c mice were randomly divided into two groups. Sepsis was induced by cecal ligation and puncture, while the control group underwent sham surgery. 1h after surgery, all animals were further randomized to receive saline (SAL), OA and dexamethasone (DEXA) intraperitoneally. Both OA and DEXA improved lung mechanics and histology, which were associated with fewer lung neutrophils and less cell apoptosis in lung, liver, and kidney than SAL. However, only animals in the DEXA group had lower levels of interleukin (IL)-6 and KC (murine analog of IL-8) in bronchoalveolar lavage fluid than SAL animals. Conversely, OA was associated with lower inducible nitric oxide synthase expression and higher superoxide dismutase than DEXA. In the experimental sepsis model employed herein, OA and DEXA reduced lung damage and distal organ apoptosis through distinct anti-inflammatory mechanisms. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Species classification and bioactive ingredients accumulation of BaiJiangCao based on characteristic inorganic elements analysis by inductively coupled plasma-mass spectrometry and multivariate analysis

    PubMed Central

    Wen-Lan, Li; Xue, Zhang; Xin-Xin, Yang; Shuai, Wang; Lin, Zhao; Huan-Jun, Zhao; Yong-Rui, Bao; Chen-Feng, Ji; Ning, Chen; Zheng, Xiang

    2015-01-01

    Background: Patrinia scabiosaefolia Fisch and Patrinia villosa (Thunb.) Juss., two species herbs with the same Chinese name “BaiJiangCao”, are important ancient herbal medicines widely used for more than 2000 years. The clinical application of two species herb is confused due to the difficult identification. Objective: The objective was to authenticate the species of BaiJiangCao and analyze the accumulation of bioactive ingredients based on characteristic inorganic elements analysis. Materials and Methods: Content of 32 inorganic elements in BaiJiangCao from different habitats were determined by inductively coupled plasma-mass spectrometry (ICP-MS), and the characteristic inorganic elements were picked to distinguish the species of the herb by principal component analysis and cluster analysis. Contents of two bioactive ingredients, luteoloside, and oleanolic acid, in the samples, were also analyzed by high-performance liquid chromatography method. Relationship between accumulation of bioactive ingredients and content of macroelements in BaiJiangCao was established by statistics. Results: A 4 macroelements (Na, Mg, K, Fe) in 32 determined inorganic elements were picked for characteristic inorganic elements. Content of Na, Mg, K and Fe showed positive correlations with that of luteoloside, content of Na, Mg showed positive correlations with that of oleanolic acid, but content of K and Fe showed negative correlations with that of oleanolic acid. Conclusion: It is for the first time to utilize the characteristic inorganic elements as an index to classify the herb species by the method of ICP-MS and multivariate analysis. And it is also the first report to investigate the influence of inorganic elements in herb on the accumulation of bioactive components which could affect the pharmacological efficacy of the herb medicine. And this method could also be utilized in research of corresponding aspects. PMID:26600721

  18. Evaluation of antimicrobial activity of extracts of Tibouchina candolleana (melastomataceae), isolated compounds and semi-synthetic derivatives against endodontic bacteria.

    PubMed

    Dos Santos, Fernanda M; de Souza, Maria Gorete; Crotti, Antônio E Miller; Martins, Carlos H G; Ambrósio, Sérgio R; Veneziani, Rodrigo C S; E Silva, Márcio L Andrade; Cunha, Wilson R

    2012-04-01

    This work describes the phytochemical study of the extracts from aerial parts of Tibouchina candolleana as well as the evaluation of the antimicrobial activity of extracts, isolated compounds, and semi-synthetic derivatives of ursolic acid against endodontic bacteria. HRGC analysis of the n-hexane extract of T. candolleana allowed identification of β-amyrin, α-amyrin, and β-sitosterol as major constituents. The triterpenes ursolic acid and oleanolic acid were isolated from the methylene chloride extract and identified. In addition, the flavonoids luteolin and genistein were isolated from the ethanol extract and identified. The antimicrobial activity was investigated via determination of the minimum inhibitory concentration (MIC) using the broth microdilution method. Amongst the isolated compounds, ursolic acid was the most effective against the selected endodontic bacteria. As for the semi-synthetic ursolic acid derivatives, only the methyl ester derivative potentiated the activity against Bacteroides fragilis.

  19. Evaluation of antimicrobial activity of extracts of Tibouchina candolleana (melastomataceae), isolated compounds and semi-synthetic derivatives against endodontic bacteria

    PubMed Central

    dos Santos, Fernanda M.; de Souza, Maria Gorete; Crotti, Antônio E. Miller; Martins, Carlos H. G.; Ambrósio, Sérgio R.; Veneziani, Rodrigo C. S.; e Silva, Márcio L. Andrade; Cunha, Wilson R.

    2012-01-01

    This work describes the phytochemical study of the extracts from aerial parts of Tibouchina candolleana as well as the evaluation of the antimicrobial activity of extracts, isolated compounds, and semi-synthetic derivatives of ursolic acid against endodontic bacteria. HRGC analysis of the n-hexane extract of T. candolleana allowed identification of β-amyrin, α-amyrin, and β-sitosterol as major constituents. The triterpenes ursolic acid and oleanolic acid were isolated from the methylene chloride extract and identified. In addition, the flavonoids luteolin and genistein were isolated from the ethanol extract and identified. The antimicrobial activity was investigated via determination of the minimum inhibitory concentration (MIC) using the broth microdilution method. Amongst the isolated compounds, ursolic acid was the most effective against the selected endodontic bacteria. As for the semi-synthetic ursolic acid derivatives, only the methyl ester derivative potentiated the activity against Bacteroides fragilis. PMID:24031892

  20. Synergy between Ursolic and Oleanolic Acids from Vitellaria paradoxa Leaf Extract and β-Lactams against Methicillin-Resistant Staphylococcus aureus: In Vitro and In Vivo Activity and Underlying Mechanisms.

    PubMed

    Catteau, Lucy; Reichmann, Nathalie T; Olson, Joshua; Pinho, Mariana G; Nizet, Victor; Van Bambeke, Françoise; Quetin-Leclercq, Joëlle

    2017-12-16

    Combining antibiotics with resistance reversing agents is a key strategy to overcome bacterial resistance. Upon screening antimicrobial activities of plants used in traditional medicine, we found that a leaf dichloromethane extract from the shea butter tree ( Vitellaria paradoxa ) had antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) with further evidence of synergy when combined with β-lactams. Using HPLC-MS, we identified ursolic (UA) and oleanolic acids (OA) in leaves and twigs of this species, and quantified them by HPLC-UV as the major constituents in leaf extracts (21% and 6% respectively). Both pure triterpenic acids showed antimicrobial activity against reference and clinical strains of MRSA, with MICs ranging from 8-16 mg/L for UA to 32-128 mg/L for OA. They were highly synergistic with β-lactams (ampicillin and oxacillin) at subMIC concentrations. Reversion of MRSA phenotype was attributed to their capacity to delocalize PBP2 from the septal division site, as observed by fluorescence microscopy, and to disturb thereby peptidoglycan synthesis. Moreover, both compounds also inhibited β-lactamases activity of living bacteria (as assessed by inhibition of nitrocefin hydrolysis), but not in bacterial lysates, suggesting an indirect mechanism for this inhibition. In a murine model of subcutaneous MRSA infection, local administration of UA was synergistic with nafcillin to reduce lesion size and inflammatory cytokine (IL-1β) production. Thus, these data highlight the potential interest of triterpenic acids as resistance reversing agents in combination with β-lactams against MRSA.

  1. Hypolipidemic and hypoglycemic activities of a oleanolic acid derivative from Malva parviflora on streptozotocin-induced diabetic mice.

    PubMed

    Gutiérrez, Rosa Martha Pérez

    2017-05-01

    One new oleanolic acid derivative, 2α,3β,23α,29α tetrahydroxyolean-12(13)-en-28-oic acid (1) was isolated from the aerial parts of Malva parviflora. Their structure was characterized by spectroscopic methods. The hypolipidemic and hypoglycemic activities of 1 was analyzed in in streptozotocin (STZ)-nicotinamide-induced type 2 diabetes in mice (MD) and type 1 diabetes in streptozotocin-induced diabetic mice (SD). Triterpene was administered orally at doses of 20 mg/kg for 4 weeks. Organ weight, body weight, glucose, fasting insulin, cholesterol-related lipid profile parameters, glutamate oxaloacetate transaminase (SGOT), glutamate pyruvate transaminase (SGPT), serum alkaline phosphatase (SALP), glucokinase, hexokinase, glucose-6-phosphatase activities and glycogen in liver were measured after 4 weeks of treatment. The results indicated that 1 regulate glucose metabolism, lipid profile, lipid peroxidation, increased body weight, glucokinase and hexokinase activities inhibited triglycerides, total cholesterol, low density lipoproteins level, SGOT, SGPT, SALP, glycogen in liver and glucose-6-phosphatase. In addition, improvement of insulin resistance and protective effect for pancreatic β-cells, also 1 may changes the expression of pro-inflammatory cytokine (IL-6 and TNF-α levels) and enzymes (PAL2, COX-2, and LOX). The results suggest that 1 has hypolipidemic and hypoglycemic, anti-inflammatory, activities, improve insulin resistance and hepatic enzymes in streptozotocin-induced diabetic mice.

  2. A Novel Multifunctional C-23 Oxidase, CYP714E19, is Involved in Asiaticoside Biosynthesis.

    PubMed

    Kim, Ok Tae; Um, Yurry; Jin, Mei Lan; Kim, Jang Uk; Hegebarth, Daniela; Busta, Lucas; Racovita, Radu C; Jetter, Reinhard

    2018-06-01

    Centella asiatica is widely used as a medicinal plant due to accumulation of the ursane-type triterpene saponins asiaticoside and madecassoside. The molecular structure of both compounds suggests that they are biosynthesized from α-amyrin via three hydroxylations, and the respective Cyt P450-dependent monooxygenases (P450 enzymes) oxidizing the C-28 and C-2α positions have been reported. However, a third enzyme hydroxylating C-23 remained elusive. We previously identified 40,064 unique sequences in the transcriptome of C. asiatica elicited by methyl jasmonate, and among them we have now found 149 unigenes encoding putative P450 enzymes. In this set, 23 full-length cDNAs were recognized, 13 of which belonged to P450 subfamilies previously implicated in secondary metabolism. Four of these genes were highly expressed in response to jasmonate treatment, especially in leaves, in accordance with the accumulation patterns of asiaticoside. The functions of these candidate genes were tested using heterologous expression in yeast cells. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that yeast expressing only the oxidosqualene synthase CaDDS produced the asiaticoside precursor α-amyrin (along with its isomer β-amyrin), while yeast co-expressing CaDDS and CYP716A83 also contained ursolic acid along with oleanolic acid. This P450 enzyme thus acts as a multifunctional triterpenoid C-28 oxidase converting amyrins into corresponding triterpenoid acids. Finally, yeast strains co-expressing CaDDS, CYP716A83 and CYP714E19 produced hederagenin and 23-hydroxyursolic acid, showing that CYP714E19 is a multifunctional triterpenoid oxidase catalyzing the C-23 hydroxylation of oleanolic acid and ursolic acid. Overall, our results demonstrate that CaDDS, CYP716A83 and CYP714E19 are C. asiatica enzymes catalyzing consecutive steps in asiaticoside biosynthesis.

  3. Chemical constituents of gold-red apple and their α-glucosidase inhibitory activities.

    PubMed

    He, Qian-Qian; Yang, Liu; Zhang, Jia-Yu; Ma, Jian-Nan; Ma, Chao-Mei

    2014-10-01

    Ten compounds were isolated and purified from the peels of gold-red apple (Malus domestica) for the 1st time. The identified compounds are 3β, 20β-dihydroxyursan-28-oic acid (1), 2α-hydroxyoleanolic acid (2), euscaphic acid (3), 3-O-p-coumaroyl tormentic acid (4), ursolic acid (5), 2α-hydroxyursolic acid (6), oleanolic acid (7), betulinic acid (8), linolic acid (9), and α-linolenic acid (10). Their structures were determined by interpreting their nuclear magnetic resonance and mass spectrometry (MS) spectra, and by comparison with literature data. Compound 1 is new, and compound 2 is herein reported for the 1st time for the genus Malus. α-Glucosidase inhibition assay revealed 6 of the triterpenoid isolates as remarkable α-glucosidase inhibitors, with betulinic acid showing the strongest inhibition (IC50 = 15.19 μM). Ultra-performance liquid chromatography-electrospray ionization MS analysis of the fruit peels, pomace, flesh, and juice revealed that the peels and pomace contained high levels of triterpenes, suggesting that wastes from the fruit juice industry could serve as rich sources of bioactive triterpenes. © 2014 Institute of Food Technologists®

  4. A "natural" approach: synthesis and cytoxicity of monodesmosidic glycyrrhetinic acid glycosides.

    PubMed

    Schwarz, Stefan; Siewert, Bianka; Xavier, Nuno M; Jesus, Ana R; Rauter, Amélia P; Csuk, René

    2014-01-24

    Several pentacyclic triterpenoic acids have shown noteworthy antitumor activity, among them betulinic acid as well as oleanolic acid and derivatives thereof. Glycyrrhetinic acid (GA) exhibits some cytotoxic activity albeit this compound is not as active as betulinic acid, but GA came in the focus of scientific interest since it triggers apoptosis in tumor cells. In addition, it can be extracted from the roots of liquorice in high yields. Previous studies revealed that the introduction of an extra hydrophilic moiety increases the cytotoxicity of these compounds. Thus, a series of GA glycosides was prepared utilizing hexoses as well as pentoses (in D- and L-configuration) by using glycosyl trichloroacetimidates and TMSOTf as catalyst. The compounds were screened for cytotoxic activity against seven human cancer cell lines and the not malignant murine cell line NIH 3T3using a photometric SRB assay. The compounds trigger apoptosis as shown from extra trypan blue and acridine orange/ethidium bromide staining. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Active compounds, antioxidant activity and α-glucosidase inhibitory activity of different varieties of Chaenomeles fruits.

    PubMed

    Miao, Jing; Li, Xia; Zhao, Chengcheng; Gao, Xiaoxiao; Wang, Ying; Gao, Wenyuan

    2018-05-15

    Chaenomeles is an important source for food industry in China, and its planting area is expanding year by year. This study was conducted to evaluate different varieties of Chaenomeles by comparing the chemical compositions, antioxidant activity and α-glucosidase inhibitory activity of peels and fleshes from twelve varieties of Chaenomeles. In the results, peels of Chaenomeles contain more phenolics, flavonoids and triterpenes, and show better antioxidant activity and α-glucosidase inhibitory activity than their fleshes. All varieties of Chaenomeles perform different depend on cultivar and climatic conditions. Oleanolic acid, ursolic acid, protocatechuic acid, rutin, catechin, caffeic acid, syringic acid, epicatechin, hyperin, quercetin, kaempferol and chlorogenic acid are main active compounds in Chaenomeles. Zheng'an, Liufu, Zimugua1, Qijiang and Changjun get Top five scores. This is the first study on the peels and fleshes of twelve varieties of Chaenomeles, and it gives insights into variety selection in the planting and production of Chaenomeles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Synthesis and Pro-Apoptotic Activity of Novel Glycyrrhetinic Acid Derivatives

    PubMed Central

    Logashenko, Evgeniya B; Salomatina, Oksana V; Markov, A V; Korchagina, Dina V; Salakhutdinov, Nariman F; Tolstikov, Genrikh A; Vlassov, Valentin V; Zenkova, Marina A

    2011-01-01

    Triterpenoids are used for medicinal purposes in many countries. Some, such as oleanolic and glycyrrhetinic acids, are known to be anti-inflammatory and anticarcinogenic. However, the biological activities of these naturally occurring molecules against their particular targets are weak, so the synthesis of new synthetic analogues with enhanced potency is needed. By combining modifications to both the A and C rings of 18βH-glycyrrhetinic acid, the novel synthetic derivative methyl 2-cyano-3,12-dioxo-18βH-olean-9(11),1(2)-dien-30-oate was obtained. This derivative displays high antiproliferative activity in cancer cells, including a cell line with a multidrug-resistance phenotype. It causes cell death by inducing the intrinsic caspase-dependent apoptotic pathway. PMID:21328513

  7. [Study on Chemical Constituents from Roots of Lonicera macranthoides].

    PubMed

    Liu, Wen-juan; Chen, Yu; Ma, Xin; Zhao, You-yi; Feng, Xu

    2014-12-01

    To study chemical constituents of the roots of Lonicera macranthoides. The chemical constituents were isolated and purified by means of several chromatographic techniques and their structures were elucidated by spectroscopic methods. Seven compounds were isolated and identified as ribenol (1), excoecarin C (2), 18-hydroxy-13-epi-manoyloxide (3), asiatic acid (4), oleanolic acid (5), β-sitosterol (6) and β-daucosterol (7). Compounds 1-4 are obtained from this genus for the first time. Compound 5 is obtained from this plant for the first time. All the compounds are found from the roots of Lonicera mac- ranthoides for the first time.

  8. Efficient and scalable synthesis of bardoxolone methyl (cddo-methyl ester).

    PubMed

    Fu, Liangfeng; Gribble, Gordon W

    2013-04-05

    Bardoxolone methyl (2-cyano-3,12-dioxooleane-1,9(11)-dien-28-oic acid methyl ester; CDDO-Me) (1), a synthetic oleanane triterpenoid with highly potent anti-inflammatory activity (levels below 1 nM), has completed a successful phase I clinical trial for the treatment of cancer and a successful phase II trial for the treatment of chronic kidney disease in type 2 diabetes patients. Our synthesis of bardoxolone methyl (1) proceeds in ∼50% overall yield in five steps from oleanolic acid (2), requires only one to two chromatographic purifications, and can provide gram quantities of 1.

  9. Two new triterpenoid saponins from the leaves of Bupleurum lancifolium (Apiaceae).

    PubMed

    Achouri, Amel; Derbré, Séverine; Medjroubi, Kamel; Laouer, Hocine; Séraphin, Denis; Akkal, Salah

    2017-10-01

    Chemical investigation of the leaves of Bupleurum lancifolium led to the isolation and identification of two triterpenoid saponins previously undescribed named 3-O-[α-L-rhamnopyranosyl (1 → 4)-β-D-glucopyranosyl] echinocystic acid 28-O-β-D-glucopyranosyl ester (1) and 3-O-[α-L-rhamnopyranosyl (1 → 4)-β-D-glucopyranosyl] oleanolic acid 28-O-β-D-glucopyranosyl ester (2) along with the two known compounds isorhamnetin 3-rutinoside (3) and rutin (4). Their structures were elucidated by different spectroscopic methods, including HRESIMS analysis as well as 1D and 2D NMR experiments.

  10. An evaluation of the anti-tumor efficacy of oleanolic acid-loaded PEGylated liposomes

    NASA Astrophysics Data System (ADS)

    Tang, Shengnan; Gao, Dawei; Zhao, Tingting; Zhou, Jing; Zhao, Xiaoning

    2013-06-01

    The effective delivery of oleanolic acid (OA) to the target site has several benefits in therapy for different pathologies. However, the delivery of OA is challenging due to its poor aqueous solubility. The study aims to evaluate the tumor inhibition effect of the PEGylated OA nanoliposome on the U14 cervical carcinoma cell line. In our previous study, OA was successfully encapsulated into PEGylated liposome with the modified ethanol injection method. Oral administration of PEGylated OA liposome was demonstrated to be more efficient in inhibiting xenograft tumors. The results of organ index indicated that PEG liposome exhibited higher anti-tumor activity and lower cytotoxicity. It was also found that OA and OA liposomes induced tumor cell apoptosis detected by flow cytometry. Furthermore, effects of OA on the morphology of tumor and other tissues were observed by hematoxylin and eosin staining. The histopathology sections did not show pathological changes in kidney or liver in tested mice. In contrast, there was a significant difference in tumor tissues between treatment groups and the negative control group. These observations imply that PEGylated liposomes seem to have advantages for cancer therapy in terms of effective delivery of OA.

  11. Oleanolic acid suppresses aerobic glycolysis in cancer cells by switching pyruvate kinase type M isoforms.

    PubMed

    Liu, Jia; Wu, Ning; Ma, Leina; Liu, Ming; Liu, Ge; Zhang, Yuyan; Lin, Xiukun

    2014-01-01

    Warburg effect, one of the hallmarks for cancer cells, is characterized by metabolic switch from mitochondrial oxidative phosphorylation to aerobic glycolysis. In recent years, increased expression level of pyruvate kinase M2 (PKM2) has been found to be the culprit of enhanced aerobic glycolysis in cancer cells. However, there is no agent inhibiting aerobic glycolysis by targeting PKM2. In this study, we found that Oleanolic acid (OA) induced a switch from PKM2 to PKM1, and consistently, abrogated Warburg effect in cancer cells. Suppression of aerobic glycolysis by OA is mediated by PKM2/PKM1 switch. Furthermore, mTOR signaling was found to be inactivated in OA-treated cancer cells, and mTOR inhibition is required for the effect of OA on PKM2/PKM1 switch. Decreased expression of c-Myc-dependent hnRNPA1 and hnRNPA1 was responsible for OA-induced switch between PKM isoforms. Collectively, we identified that OA is an antitumor compound that suppresses aerobic glycolysis in cancer cells and there is potential that PKM2 may be developed as an important target in aerobic glycolysis pathway for developing novel anticancer agents.

  12. Ursolic acid enhances pentobarbital-induced sleeping behaviors via GABAergic neurotransmission in mice.

    PubMed

    Jeon, Se Jin; Park, Ho Jae; Gao, Qingtao; Pena, Irene Joy Dela; Park, Se Jin; Lee, Hyung Eun; Woo, Hyun; Kim, Hee Jin; Cheong, Jae Hoon; Hong, Eunyoung; Ryu, Jong Hoon

    2015-09-05

    Prunella vulgaris is widely used as a herbal medicine for cancers, inflammatory diseases, and other infections. Although it has long been used, few studies have examined its effects on central nervous system function. Here, we first observed that ethanolic extracts of P. vulgaris (EEPV) prolonged pentobarbital-induced sleep duration in mice. It is known that EEPV consists of many active components including triterpenoid (ursolic acid and oleanolic acid), which have many biological activities. Therefore, we evaluated which EEPV components induced sleep extension in pentobarbital-mediated sleeping model in mice. Surprisingly, despite their structural similarity and other common functions such as anti-inflammation, anti-cancer, and tissue protection, only ursolic acid enhanced sleep duration in pentobarbital-treated mice. These results were attenuated by bicuculline treatment, which is a GABAA receptor antagonist. The present results suggest that ursolic acid from P. vulgaris enhances sleep duration through GABAA receptor activation and could be a therapeutic candidate for insomnia treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. [Study on the chemical constituents in Pouzolzia zeylanica].

    PubMed

    Fu, Ming; Niu, You-Ya; Yu, Juan; Kong, Qing-Tong

    2012-11-01

    To study the chemical constituents of Pouzolzia zeylanica. Many chromatography means were used in separation and purification, and the structures of all compounds were identified by the means of spectroscopic analysis and physicochemical properties. 14 compounds were elucidated as: beta-sitosterol (1), daucosterol (2), oleanolic acid (3), epicatechin (4), alpha-amyrin (5), eugenyl-beta-rutinoside (6), 2alpha, 3alpha, 19alpha-trihydroxyurs-12-en-28-oic (7), scopolin (8), scutellarein-7-O-alpha-L-rhamnoside (9), scopoletin (10), quercetin (11), quercetin-3-O-beta-D-glucoside (12), apigenin (13), 2alpha-hydroxyursolic acid (14). All compounds are obtained from this plant for the first time.

  14. Targeting mitochondria: Esters of rhodamine B with triterpenoids are mitocanic triggers of apoptosis.

    PubMed

    Wolfram, Ratna Kancana; Heller, Lucie; Csuk, René

    2018-05-25

    Triterpenoic acids, ursolic acid (1), oleanolic acid (2), glycyrrhetinic acid (3) and betulinic acid (4) were converted into their corresponding methyl 5-8 and benzyl esters 9-12 or benzyl amides 21-24. These derivatives served as starting materials for the synthesis of pink colored rhodamine B derivatives 25-36 which were screened for cytotoxicity in colorimetric SRB assays. All of the compounds were cytotoxic for a variety of human tumor cell lines. The activity of the benzyl ester derivatives 29-32 was lower than the cytotoxicity of the methyl esters 25-28. The benzyl amides 33-36 were the most cytotoxic compounds of this series. The most potential compound was a glycyrrhetinic acid rhodamine B benzyl amide 35. This compound showed activity against the different cancer cell lines in a two-digit to low three-digit nano-molar range. Staining experiments combined with fluorescence microscopy showed that this compound triggered apoptosis in A2780 ovarian carcinoma cells and acted as a mitocan. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Synthesis, Antiviral and Cytotoxic Activity of Novel Terpenyl Hybrid Molecules Prepared by Click Chemistry.

    PubMed

    Pertino, Mariano Walter; Petrera, Erina; Alché, Laura Edith; Schmeda-Hirschmann, Guillermo

    2018-06-03

    Naturally occurring terpenes were combined by click reactions to generate sixteen hybrid molecules. The diterpene imbricatolic acid (IA) containing an azide group was used as starting compound for the synthesis of all the derivatives. The alkyne group in the terpenes cyperenoic acid, dehydroabietinol, carnosic acid γ-lactone, ferruginol, oleanolic acid and aleuritolic acid was obtained by esterification using appropriate alcohols or acids. The hybrid compounds were prepared by combining the IA azide function with the different terpene-alkynes under click chemistry conditions. The cytotoxic activity of the terpene hybrids 1 ⁻ 16 was assessed against Vero cells and tumour cell lines (HEP-2, C6 and Raw 264.7). Compounds 1 , 2 , 3 and 7 showed cytotoxic activity against the tested cell lines. The antiviral activity of the compounds was evaluated against HSV-1 KOS, Field and B2006 strain. For the pairs of hybrid compounds formed between IA-diterpene (compounds 3 ⁻ 8 , except for compound 7 ), a moderate activity was observed against the three HSV-1 strains with an interesting selectivity index (SI ≥10, SI = CC 50 /CE 50 ) for some compounds.

  16. In vivo analgesic and anti-inflammatory activities of ursolic acid and oleanoic acid from Miconia albicans (Melastomataceae).

    PubMed

    Vasconcelos, Maria Anita L; Royo, Vanessa A; Ferreira, Daniele S; Crotti, Antonio E Miller; Andrade e Silva, Márcio L; Carvalho, José Carlos T; Bastos, Jairo Kenupp; Cunha, Wilson R

    2006-01-01

    The aim of this work was to use in vivo models to evaluate the analgesic and anti-inflammatory activities of ursolic acid (UA) and oleanoic acid (OA), the major compounds isolated as an isomeric mixture from the crude methylene chloride extract of Miconia albicans aerial parts in an attempt to clarify if these compounds are responsible for the analgesic properties displayed by this plant. Ursolic acid inhibited abdominal constriction in a dose-dependent manner, and the result obtained at a content of 40 mg kg(-1) was similar to that produced by administration of acetylsalicylic acid at a content of 100 mg kg(-1). Both acids reduced the number of paw licks in the second phase of the formalin test, and both of them displayed a significant anti-inflammatory effect at a content of 40 mg kg(-1). It is noteworthy that the administration of the isolated mixture, containing 65% ursolic acid/35% oleanolic acid, did not display significant analgesic and anti-inflammatory activities. On the basis of the obtained results, considering that the mixture of UA and OA was poorly active, it is suggested that other compounds, rather than UA and OA, should be responsible for the evaluated activities in the crude extract, since the crude extract samples displayed good activities.

  17. Anti-Helicobacter pylori activity of anacardic acids from Amphipterygium adstringens.

    PubMed

    Castillo-Juárez, Israel; Rivero-Cruz, Fausto; Celis, Heliodoro; Romero, Irma

    2007-10-08

    Amphipterygium adstringens (Schltdl.) Standl. (Anacardiaceae) is widely used in traditional Mexican medicine for the treatment of gastritis and ulcers. In this work, we studied the anti-Helicobacter pylori activity of its bark, this Gram-negative bacterium is considered the major etiological agent of chronic active gastritis and peptic ulcer disease, and it is linked to gastric carcinoma. From a bio-guided assay of the fractions obtained form a continuous Soxhlet extraction of the bark, we identified that petroleum ether fraction had significant antimicrobial activity against Helicobacter pylori. From this fraction, we isolated an anacardic acids mixture and three known triterpenes: masticadienonic acid; 3alpha-hydroxymasticadienonic acid; 3-epi-oleanolic; as well as the sterol beta-sitosterol. Only the anacardic acids mixture exhibits a potent dose-dependent antibacterial activity (MIC=10 microg/ml in broth cultures). It is enriched in saturated alkyl phenolic acids (C15:0, C16:0, C17:0 C19:0) which represents a novel source of these compounds with potent anti-Helicobacter pylori activity. The promising use of anacardic acids and Amphipterygium adstringens bark in the development of an integral treatment of Helicobacter pylori diseases is discussed.

  18. Conformation of flexibly linked triterpene dimers by using RDC-enhanced NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Lakshmi, Jerripothula K.; Pattnaik, Banita; Kavitha, Rachineni; Mallavadhani, Uppuluri V.; Jagadeesh, Bharatam

    2018-06-01

    Dimers of flexibly linked pentacyclic triterpene ursolic acid (UA) and its related frameworks such as asiatic acid (AA) and oleanolic acid (OA) have recently attracted significant attention due to their enhanced anti-cancer and anti-HCV activity compared to their respective monomers. Determination of conformation/inter-monomer orientation of these molecules is very important to understand their structure-activity relationship and to develop new scaffolds, which, however, is difficult through conventional NOE based solution-state NMR spectroscopy, due to lack of long-range NOEs. In the present work, we report a precise determination of conformation of two 1,2,3-triazole-linked triterpene dimer molecules, UA-AA and UA-OA, by employing one-bond Csbnd H residual dipolar couplings (RDCs) as additional long-range orientational restraints, measured in anisotropic PDMS/CDCl3 solvent medium.

  19. Control of water-borne parasitic diseases with natural products: the potential of Dialium guineense as a molluscicide.

    PubMed

    Houghton, P J; Odukoya, O A; Adelusi, A; Omogbai, E K; Sanderson, L; Whitfield, P J

    1997-01-01

    The molluscicidal activity of the fruit and leaves of Dialium guineense was found to be due to glycosides of the triterpenoid oleanolic acid. Three glycosides were isolated from the fruit and a fourth from the leaves and are known compounds. The amount of total saponins present in D. guineense makes it a good candidate for a readily available molluscicide in Nigerian villages.

  20. [Studies on preparative technology and quantitative determination for extracts of total saponin in roof of Panax japonicus].

    PubMed

    He, Yu-min; Lu, Ke-ming; Yuan, Ding; Zhang, Chang-cheng

    2008-11-01

    To explore the optimum extraction and purification condition of the total saponins in the root of Panax japonicus (RPJ), and establish its quality control methods. Designed L16 (4(5)) orthogonal test with the extraction rate of total saponins as index, to determine the rational extraction process, and the techniques of water-saturated n-butanol extraction and acetone precipitation were applied to purify the alcohol extract of RPJ. Total saponins were detected by spectrophotometry and its triterpenoidal sapogenin oleanolic acid detected by HPLC. The optimum conditions of total saponins from RPJ was as follows: the material was pulverized, dipped in 60% ethanol aqueous solution as extract solvent at 10 times of volume, and refluxed 3 times for 3 h each time. Extractant of water-saturated n-butanol with extraction times of 3 and precipitant of acetone with precipitation amount of 4-5 times were included in the purification process, which would obtain the quality products. The content of total saponins could reach to 83.48%, and oleanolic acid to 38.30%. The optimized preparative technology is stable, convenient and practical. The extract rate of RPJ was high and steady with this technology, which provided new evidence for industrializing production of the plant and developing new drug.

  1. Identification of a novel oxidative stress induced cell death by Sorafenib and oleanolic acid in human hepatocellular carcinoma cells.

    PubMed

    Lange, Matthias; Abhari, Behnaz Ahangarian; Hinrichs, Tobias M; Fulda, Simone; Liese, Juliane

    2016-10-15

    The lack of effective chemotherapies in hepatocellular carcinoma (HCC) is still an unsolved problem and underlines the need for new strategies in liver cancer treatment. In this study, we present a novel approach to improve the efficacy of Sorafenib, today's only routinely used chemotherapeutic drug for HCC, in combination with triterpenoid oleanolic acid (OA). Our data show that cotreatment with subtoxic concentrations of Sorafenib and OA leads to highly synergistic induction of cell death. Importantly, Sorafenib/OA cotreatment triggers cell damage in a sustained manner and suppresses long-term clonogenic survival. Sorafenib/OA cotreatment induces DNA fragmentation and caspase-3/7 cleavage and the addition of the pan-caspase inhibitor zVAD.fmk shows the requirement of caspase activation for Sorafenib/OA-triggered cell death. Furthermore, Sorafenib/OA co-treatment stimulates a significant increase in reactive oxygen species (ROS) levels. Most importantly, the accumulation of intracellular ROS is required for cell death induction, since the addition of ROS scavengers (i.e. α-tocopherol, MnTBAP) that prevent the increase of intracellular ROS levels completely rescues cells from Sorafenib/OA-triggered cell death. In conclusion, OA represents a novel approach to increase the sensitivity of HCC cells to Sorafenib via oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Antimicrobial steroidal saponin and oleanane-type triterpenoid saponins from Paullinia pinnata.

    PubMed

    Lunga, Paul K; Qin, Xu-Jie; Yang, Xing W; Kuiate, Jules-Roger; Du, Zhi Z; Gatsing, Donatien

    2014-10-02

    Paullinia pinnata L. (Sapindaceae) is an African woody vine, which is widely used in traditional medicine for the treatment of human malaria, erectile dysfunction and bacterial infections. A phytochemical investigation of its methanol leaf and stem extracts led to the isolation of seven compounds which were evaluated for their antimicrobial properties. The extracts were fractionated and compounds were isolated by chromatographic methods. Their structures were elucidated from their spectroscopic data in conjunction with those reported in literature. The antimicrobial activities of the crude extracts, fractions and compounds were evaluated against bacteria, yeasts and dermatophytes using the broth micro-dilution technique. Seven compounds: 2-O-methyl-L-chiro-inositol (1), β-sitosterol (2), friedelin (3), 3β-(β-D-Glucopyranosyloxy) stigmast-5-ene (4), (3β)-3-O-(2'-Acetamido-2'-deoxy-β-D-glucopyranosyl) oleanolic acid (5), (3β,16α-hydroxy)-3-O-(2'-Acetamido-2'-deoxy-β-D-glucopyranosyl) echinocystic acid (6) and (3β)-3-O-[β-D-glucopyranosyl-(1″-3')-2'-acetamido-2'-deoxy-β-D-galactopyranosyl]oleanolic acid (7) were isolated. Compounds 5 and 7 showed the best antibacterial and anti-yeast activities respectively (MIC value range of 0.78-6.25 and 1.56-6.25 μg/ml), while 6 exhibited the best anti-dermatophytic activity (MIC value range of 6.25-25 μg/ml). The results of the present findings could be considered interesting, taking into account the global disease burden of these susceptible microorganisms, in conjunction with the search for alternative and complementary medicines.

  3. [Study on chemical constituents from rhizome of Rabdosia flavida].

    PubMed

    Zhao, Ming-Zao; Li, Jin-Qiang; Zhang, Yu; Zhang, Xue-Jiao; Jiang, Bei

    2014-07-01

    To study the chemical constituents from the rhizome of Rabdosia flavida. The compounds were isolated and purified by various chromatographic methods, and their structures were elucidated on the basis of spectral data and physicochemical properties. Ten compounds were obtained from ethyl acetate fraction of the 70% acetone extract of Rabdosia flavida rhizome and identified as ferruginol (1), dehydrocostuslactone (2), taraxasterol (3), oleic acid (4), ursolic cid (5), coniferyl aldehyde (6), oleanolic acid (7), 6,12, 15-trihydroxy-5, 8,11, 13-abietetra-7-one (8), 5α, 8α-epidioxyergosta-6,22-dien-3β-ol (9), and daucosterol (10). All the compounds are isolated from Rabdosia flavida for the first time.

  4. Rauvolfianine, a new antimycobacterial glyceroglycolipid and other constituents from Rauvolfia caffra. Sond (Apocynaceae).

    PubMed

    Ebeh Messanga, Robert; Dominique Serge, Ngono Bikobo; Abouem A Zintchem, Auguste; Norbert, Mbabi Nyemeck Ii; Esther Del Florence, Moni Ndedi; Patrick Hervé, Betote Diboué; Maximilienne Ascension, Nyegue; Alex De Théodore, Atchadé; Dieudonné Emmanuel, Pegnyemb; Christian G, Bochet; Koert, Ulrich

    2017-08-16

    The chemical investigation of the extract of the dried leaves of Rauvolfia caffra (Sond) (synonym Rauvolfia macrophylla) (Apocynaceae) led to isolation of a new glycoside derivative, rauvolfianine (1) as well as six known compounds: oleanolic acid (2), sitosterol-3-O-β-D-glucopyranoside (3), betulinic acid (4), vellosimine (5), sarpagine (6) and D-fructofuranosyl-β-(2→1)-α-D-glucopyranoside (7). Compounds 1, 2, 3, 4 and 7 were evaluated for antitubercular activity. Compounds 1 and 2 were the most active (MIC = 7.8125 and 31.25 μg/mL) towards the Isoniazid resistant strain of Mycobacterium tuberculosis AC45. Their structures and relative stereochemistry were elucidated by spectroscopic methods.

  5. A bis-bithiophene from Tridax procumbens L. (Asteraceae).

    PubMed

    Ali, Muhammad Shaiq; Jahangir, Muhammad

    2002-08-01

    The ethyl acetate soluble part of hexane extract of Tridax procumbens yielded a new bis-bithiophene named tridbisbithiophene along with four known terpenoids: taraxasteryl acetate, beta-amyrenone, lupeol and oleanolic acid, which have never been reported so far from Tridax procumbens. The structures of all the isolated constituents were elucidated with the aid of 1D-NMR spectroscopy whereas, the structure of new constituent tridbisbithiophene was confirmed via COSY and HMBC interactions.

  6. Ursolic and oleanolic acids as antimicrobial and immunomodulatory compounds for tuberculosis treatment.

    PubMed

    Jiménez-Arellanes, Adelina; Luna-Herrera, Julieta; Cornejo-Garrido, Jorge; López-García, Sonia; Castro-Mussot, María Eugenia; Meckes-Fischer, Mariana; Mata-Espinosa, Dulce; Marquina, Brenda; Torres, Javier; Hernández-Pando, Rogelio

    2013-10-07

    New alternatives for the treatment of Tuberculosis (TB) are urgently needed and medicinal plants represent a potential option. Chamaedora tepejilote and Lantana hispida are medicinal plants from Mexico and their hexanic extracts have shown antimycobacterial activity. Bioguided investigation of these extracts showed that the active compounds were ursolic acid (UA) and oleanolic acid (OA). The activity of UA and OA against Mycobacterium tuberculosis H37Rv, four monoresistant strains, and two drug-resistant clinical isolates were determined by MABA test. The intracellular activity of UA and OA against M. tuberculosis H37Rv and a MDR clinical isolate were evaluated in a macrophage cell line. Finally, the antitubercular activity of UA and OA was tested in BALB/c mice infected with M. tuberculosis H37Rv or a MDR strain, by determining pulmonary bacilli loads, tissue damage by automated histomorphometry, and expression of IFN-γ, TNF-α, and iNOS by quantitative RT-PCR. The in vitro assay showed that the UA/OA mixture has synergistic activity. The intracellular activity of these compounds against M. tuberculosis H37Rv and a MDR clinical isolate in a macrophage cell line showed that both compounds, alone and in combination, were active against intracellular mycobacteria even at low doses. Moreover, when both compounds were used to treat BALB/c mice with TB induced by H37Rv or MDR bacilli, a significant reduction of bacterial loads and pneumonia were observed compared to the control. Interestingly, animals treated with UA and OA showed a higher expression of IFN-γ and TNF-α in their lungs, than control animals. UA and OA showed antimicrobial activity plus an immune-stimulatory effect that permitted the control of experimental pulmonary TB.

  7. Liquid chromatography tandem mass spectrometric determination of triterpenes in human fluids: Evaluation of markers of dietary intake of olive oil and metabolic disposition of oleanolic acid and maslinic acid in humans.

    PubMed

    Pozo, Oscar J; Pujadas, Mitona; Gleeson, Sarah Biel; Mesa-García, Maria Dolores; Pastor, Antoni; Kotronoulas, Aristotelis; Fitó, Montserrat; Covas, Maria-Isabel; Navarro, José Ramón Fernández; Espejo, Juan Antonio; Sanchez-Rodriguez, Estefania; Marchal, Rosa; Calleja, Miguel Angel; de la Torre, Rafael

    2017-10-16

    Olive oil is rich in several minor components like maslinic (MA) and oleanolic (OA) acids which have cardioprotective, antitumor, and anti-inflammatory properties. In order to assess the health benefits in humans provided by the olive oil triterpenes (MA and OA), suitable analytical methods able to quantify the low concentrations expected in human fluids are required. In this study, the LC-MS/MS quantification of both OA and MA in plasma and urine has been evaluated. The plasmatic method is based on the direct determination of the analytes. The urinary detection requires more sensitivity which was reached by derivatization with 2-picolylamine. Additionally, the urinary species present after MA and OA ingestion were evaluated by the direct detection of several phase II metabolites previously synthesized. Our results showed that OA is metabolized as both sulfate and glucuronide conjugates whereas MA is mainly excreted as glucuronide. Based on this information, the method for the urinary detection of MA and OA involved an enzymatic hydrolysis. Both plasmatic and urinary methods were validated with suitable precision and accuracy at all tested levels. Required sensitivity was achieved in both matrices. Up to our knowledge, this is the first method able to quantify the low concentration levels of triterpenes present in urine. Samples from two healthy volunteers who received virgin olive oils with different triterpenes content were analyzed. Some preliminary clues on the metabolic disposition of OA and MA after olive oil intake are provided. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Oleanolic and maslinic acid sensitize soft tissue sarcoma cells to doxorubicin by inhibiting the multidrug resistance protein MRP-1, but not P-glycoprotein.

    PubMed

    Villar, Victor Hugo; Vögler, Oliver; Barceló, Francisca; Gómez-Florit, Manuel; Martínez-Serra, Jordi; Obrador-Hevia, Antònia; Martín-Broto, Javier; Ruiz-Gutiérrez, Valentina; Alemany, Regina

    2014-04-01

    The pentacyclic triterpenes oleanolic acid (OLA) and maslinic acid (MLA) are natural compounds present in many plants and dietary products consumed in the Mediterranean diet (e.g., pomace and virgin olive oils). Several nutraceutical activities have been attributed to OLA and MLA, whose antitumoral effects have been extensively evaluated in human adenocarcinomas, but little is known regarding their effectiveness in soft tissue sarcomas (STS). We assessed efficacy and molecular mechanisms involved in the antiproliferative effects of OLA and MLA as single agents or in combination with doxorubicin (DXR) in human synovial sarcoma SW982 and leiomyosarcoma SK-UT-1 cells. As single compound, MLA (10-100 μM) was more potent than OLA, inhibiting the growth of SW982 and SK-UT-1 cells by 70.3 ± 1.11% and 68.8 ± 1.52% at 80 μM, respectively. Importantly, OLA (80 μM) or MLA (30 μM) enhanced the antitumoral effect of DXR (0.5-10 μM) by up to 2.3-fold. On the molecular level, efflux activity of the multidrug resistance protein MRP-1, but not of the P-glycoprotein, was inhibited. Most probably as a consequence, DXR accumulated in these cells. Kinetic studies showed that OLA behaved as a competitive inhibitor of substrate-mediated MRP-1 transport, whereas MLA acted as a non-competitive one. Moreover, none of both triterpenes induced a compensatory increase in MRP-1 expression. In summary, OLA or MLA sensitized cellular models of STS to DXR and selectively inhibited MRP-1 activity, but not its expression, leading to a higher antitumoral effect possibly relevant for clinical treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Ursolic and oleanolic acids as antimicrobial and immunomodulatory compounds for tuberculosis treatment

    PubMed Central

    2013-01-01

    Background New alternatives for the treatment of Tuberculosis (TB) are urgently needed and medicinal plants represent a potential option. Chamaedora tepejilote and Lantana hispida are medicinal plants from Mexico and their hexanic extracts have shown antimycobacterial activity. Bioguided investigation of these extracts showed that the active compounds were ursolic acid (UA) and oleanolic acid (OA). Methods The activity of UA and OA against Mycobacterium tuberculosis H37Rv, four monoresistant strains, and two drug-resistant clinical isolates were determined by MABA test. The intracellular activity of UA and OA against M. tuberculosis H37Rv and a MDR clinical isolate were evaluated in a macrophage cell line. Finally, the antitubercular activity of UA and OA was tested in BALB/c mice infected with M. tuberculosis H37Rv or a MDR strain, by determining pulmonary bacilli loads, tissue damage by automated histomorphometry, and expression of IFN-γ, TNF-α, and iNOS by quantitative RT-PCR. Results The in vitro assay showed that the UA/OA mixture has synergistic activity. The intracellular activity of these compounds against M. tuberculosis H37Rv and a MDR clinical isolate in a macrophage cell line showed that both compounds, alone and in combination, were active against intracellular mycobacteria even at low doses. Moreover, when both compounds were used to treat BALB/c mice with TB induced by H37Rv or MDR bacilli, a significant reduction of bacterial loads and pneumonia were observed compared to the control. Interestingly, animals treated with UA and OA showed a higher expression of IFN-γ and TNF-α in their lungs, than control animals. Conclusion UA and OA showed antimicrobial activity plus an immune-stimulatory effect that permitted the control of experimental pulmonary TB. PMID:24098949

  10. Ethnomedicinal, phytochemical and pharmacological profile of a mangrove plant Ceriops Decandra GriffDin Hou.

    PubMed

    Mahmud, Imran; Shahria, Naznin; Yeasmin, Sabina; Iqbal, Asif; Mukul, Emdadul Hasan; Gain, Sudipta; Shilpi, Jamil Ahmad; Islam, Md Khirul

    2018-06-22

    Ceriops decandra is a mangrove tree species, reputed for its folkloric uses in the treatment of gastrointestinal disorders, infection, snakebites, inflammation, and cancer. Different parts of the plant are rich with various phytoconstituents which include diterpenoids (ceriopsin A-G), triterpenoids (lupeol, α-amyrin, oleanolic acid, ursolic acid), and phenolics (catechin, procyanidins).These phytoconstituents and their derivatives could form a new basis for developing new drugs against various diseases. The objective of the present study is to compile the phytochemical, ethnobotanical, biological, and pharmacological significance of the plant to provide directions for future research to find out therapeutically active lead compounds for developing new drugs against diseases of current interest including diabetes, inflammation, and cancer.

  11. Cycloartane glycosides from leaves of Oxyanthus pallidus.

    PubMed

    Tigoufack, Ignas Bertrand Nzedong; Ngnokam, David; Tapondjou, Leon Azefack; Harakat, Dominique; Voutquenne, Laurence

    2010-12-01

    From the MeOH extract of leaves of Oxyanthus pallidus, three cycloartane glycosides, named pallidiosides A-C, were isolated together with two known compounds, oleanolic acid and 3-O-β-D-glucopyranosyl-β-sitosterol. The structures of pallidiosides A-C were assigned on the basis of spectral studies and comparison with published literature data. The known compounds were identified by means of Co TLC and confirmed by their physical constants. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Determination of oleanolic acid in human plasma and its association with olive oil intake in healthy Spanish adults within the EPIC Spain cohort study.

    PubMed

    Buckland, Genevieve; Pastor, Antoni; Lujan-Barroso, Leila; Gonzalez, Carlos Alberto; Travier, Noemie; Amiano, Pilar; Huerta, José María; Agudo, Antonio; Navarro, Carmen; Chirlaque, María Dolores; Sánchez, Maria-José; Rodríguez-Barranco, Miguel; Barricarte, Aurelio; Ardanaz, Eva; Dorronsoro, Miren; Molinuevo, Amaia; Quirós, José Ramón; de la Torre, Rafael

    2017-08-01

    Oleanolic acid (OA) is an important triterpenic compound found in olive oil, however little is known about its concentrations in human plasma. We aimed to determine plasma OA levels in a healthy Spanish population and compare them with estimates of dietary olive oil intake. The final study sample included 141 individuals randomly selected from the European Prospective Investigation into Cancer and Nutrition Spanish cohort. Dietary olive oil intake was estimated using validated dietary history questionnaires. OA concentrations were determined in plasma (from the participants' stored blood samples) using a HPLC-MS method. Correlation coefficients between OA and olive oil intake were calculated, adjusting for center; sex; age; consumption of olives, apples, grapes, and red wine; and fasting state. The mean OA concentration in olive oil nonconsumers was 0.72 ng/mL (SD 0.82), while in the high olive oil intake group it was 1.32 ng/mL (SD 1.14). The fully adjusted partial Spearman correlations coefficients reached 0.36 (p-value < 0.001) overall, varying minimally by sex and fasting state. This is the first study providing steady-state concentrations of triterpenes in humans. The results show that there was low-to-moderate correlation between OA concentrations and olive oil intake in this population. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. [Effect of soil phenolic acids on soil microbe of coal-mining depressed land after afforestation restoration by different tree species].

    PubMed

    Ji, Li; Yang, Li Xue

    2017-12-01

    Phenolic acids are one of the most important factors that influence microbial community structure. Investigating the dynamic changes of phenolic acids and their relationship with the microbial community structure in plantation soils with different tree species could contribute to better understanding and revealing the mechanisms of microbial community changes under afforestation restoration in coal-mining subsidence areas. In this study, plantations of three conifer and one deciduous species (Pinus koraiensis, Larix gmelinii, Pinus sylvestris var. mongolica, and Populus ussuriensis) were established on abandoned coal-mining subsidence areas in Baoshan District, Shuangyashan City. The contents of soil phenols, 11 types of phenolic acids, and microbial communities in all plots were determined. The results showed that the contents of soil complex phenol in plantations were significantly higher than that of abandoned land overall. Specifically, soils in larch and poplar plantations had higher contents of complex phenol, while soils in larch and Korean pine plantations had greater contents of total phenol. Moreover, soil in the P. koraiensis plantation had a higher content of water-soluble phenol compared with abandoned lands. The determination of 11 phenolic acids indicated that the contents of ferulic acid, abietic acid, β-sitosterol, oleanolic acid, shikimic acid, linoleic acid, and stearic acid were higher in plantation soils. Although soil phenol contents were not related with soil microbial biomass, the individual phenolic acids showed a significant relationship with soil microbes. Ferulic acid, abietic acid, and β-sitosterol showed significant promoting effects on soil microbial biomass, and they showed positive correlations with fungi and fungi/bacteria ratio. These three phenolic acids had higher contents in the poplar plantation, suggesting that poplar affo-restation had a beneficial effect on soil quality in coal-mining subsidence areas.

  14. Bioactive oleanane-type saponins from the rhizomes of Anemone taipaiensis.

    PubMed

    Wang, Xiao-Yang; Gao, Hui; Zhang, Wei; Li, Yuan; Cheng, Guang; Sun, Xiao-Li; Tang, Hai-Feng

    2013-10-15

    Investigation of the n-BuOH extract of the rhizomes of Anemone taipaiensis led to the isolation of five new oleanane-type triterpenoid saponins (1-5), together with seven known saponins (6-12). Their structures were determined by the extensive use of (1)D and (2)D NMR experiments along with ESIMS analyses and acid hydrolysis. The aglycone of 1, 2 and 4 was determined as siaresinolic acid, which was reported in this genus for the first time. The cytotoxicities of the saponins 1-12, prosapogenins 4a, 5a, 10a-12a and sapogenins siaresinolic acid (SA), oleanolic acid (OA), hederagenin (HE) were evaluated against five human cancer cell lines, including HepG2, HL-60, A549, HeLa and U87MG. The monodesmosidic saponins 6-8, 5a, 10a-12a and sapogenins SA, OA, HE exhibited cytotoxic activity toward all cancer cell lines, with IC50 values ranging from 2.25 to 57.28 μM. Remarkably, the bisdesmosidic saponins 1-4 and 9 showed selective cytotoxicity against the U87MG cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. [Chemical constituents from herbs of Swertia delavayi].

    PubMed

    Xia, Cong-long; Liu, Guang-ming; Zhang, Hao

    2008-08-01

    To isolate and identify the chemical constituents of 95% alcohol extract from Swertia delavayi. The compounds were isolated and purified by column chromatogrphy and their structures were identified by the physicochemical properties and spectral analyses. Seven compounds were isolated and identified as oleanolic acid (1), gentiopcroside (2), swertiamarin (3), daucosterol (4), swertiadecoraxanthone-II (5), isovitexin (6), isoorientin (7). Compounds 2-7 were isolated from S. delavayi for the first time. While the compound 6 was firstly reported from the genus Swertia.

  16. Bioactive saponins from the fruits of Aesculus pavia L.

    PubMed

    Sun, Zhen-Liang; Zhang, Ming; Wu, Ying; Wan, Ai-Hong; Zhang, Rong

    2011-10-01

    Continued chemical investigation on the fruits of Aesculus pavia L. resulted in theisolation and identification of two new oleanolic acid saponins, namely vaccaroside A (1) andvaccaroside B (2). The isolated furostanol saponins were evaluated for cytotoxic activity againsthuman normal amniotic and human lung carcinoma cell lines using neutral red and MTT assays.In vitro experiments showed significant cytotoxicity in a dose dependent manner with IC₅₀ valuesin the range of 27.80-79.02 μM. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. An updated review on the parasitic herb of Cuscuta reflexa Roxb.

    PubMed

    Patel, Satish; Sharma, Vikas; Chauhan, Nagendra S; Dixit, Vinod K

    2012-03-01

    Cuscuta reflexa Roxb. is a golden yellow, leafless, perennial, parasitic herb of the family Convolvulaceae. C. reflexa has been investigated for antispasmodic, hemodynamic, anticonvulsant, anti steroidogenic, antihypertensive, muscle relaxant, cardiotonic, antiviral, antibacterial, antioxidant, cholinergic, diuretic and hair growth activities. Many chemical constituents have been isolated from C. reflexa such as cuscutin, amarbelin, β-sitosterol, stigmasterol, kaempferol, dulcitol, myricetin, quercetin, coumarin and oleanolic acid. This review presents a detailed survey of the literature on pharmacognosy, phytochemistry and traditional and biological medicinal uses of C. reflexa.

  18. Two new flavones from Tridax procumbens Linn.

    PubMed

    Xu, Runsheng; Zhang, Jing; Yuan, Ke

    2010-09-09

    Two new flavones, 8,3'-dihydroxy-3,7,4'-trimethoxy-6-O-β-D-glucopyranosyl flavone (1) and 6,8,3'-trihydroxy-3,7,4'-trimethoxyflavone (2) were isolated from Tridax procumbens Linn., together with the four known compounds puerarin (3), esculetin (4), oleanolic acid (5) and betulinic acid (6). The structures of the two new flavones were elucidated based on chemical analysis and spectral methods (IR, 1D and 2D NMR, ESI-MS, HR-ESI-MS). The antioxidant activity of the two new flavones were evaluated by two methods, the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and ferric reducing antioxidant power (FRAP) assays, and the data showed that compounds 1 and 2 have certain antioxidant activity, with the antioxidant activity of compound 2 being stronger than that of compound 1.

  19. [Studies on the chemical constituents of the stems of Piper betle].

    PubMed

    Yin, Yan; Huang, Xiang-Zhong; Wang, Jiong; Dai, Jian-Hui; Liang, Hui; Dai, Yun

    2009-06-01

    To study the chemical constituents from the stems of Piper betle. Various chromatographic techniques were used to isolate and purify the constituents. The structures of these compounds were elucidated on the basis of spectral analysis. Nine compounds were isolated from the petroleum ester and ethyl acetate soluble fractions of the 70% acetone extract and their structures were identified as 6beta-hydroxystigmast-4-en-3-one (1), beta-sitosterol (2), stigmasterol (3), oleanolic acid (4), 23-hydroxyursan-12-en-28-oic acid (5), beta-sitosterol-3-O-beta-D-glucoside-6'-O-palmitate (6), beta-daucosterol (7), (2S) -4'-hydroxy- 2,3-dihydroflavonone-7-O-beta-D-glucoside (8) and alpha-ethyl glucoside (9). Among these compounds, 1, 3 -9 are isolated from this plant for the first time.

  20. A new anthraquinone and eight constituents from Hedyotis caudatifolia Merr. et Metcalf: isolation, purification and structural identification.

    PubMed

    Luo, Peng; Su, Jiale; Zhu, Yilin; Wei, Jianhua; Wei, Wanxing; Pan, Weigao

    2016-10-01

    Hedyotis caudatifolia Merr. et Metcalf. (HC), a folk medicine in Yao nationalities areas in China, was used to investigate the chemical constituents. Through silica gel and Sephadex LH-20 column chromatography, nine compounds were isolated and purified. By physical and chemical properties, IR, MS (EI-MS, high resolution EI-MS), 1D NMR ((1)H NMR, (13)C NMR) and 2D NMR (HSQC, (1)H-(1)H COSY, HMBC), their structures were identified as β-sitosterol (1), stigmasterol (2), scopolin (3), 2-hydroxy-1,7,8-trimethoxyanthracene-9,10-dione (4), oleanolic acid (5), ursolic acid (6), methyl barbinervate (7), β-daucosterol (8) and p-Hydroxybenzoic acid (9). These compounds were isolated from HC for the first time, and 4 a new anthraquinone whose biological activities are worth to be investigated in future. These compounds may contribute to the HC's pharmacological effects on treating diseases, and may be used as candidates for control index in establishing the quality control standard of HC.

  1. Chemical composition and antioxidant and anti-inflammatory potential of peels and flesh from 10 different pear varieties (Pyrus spp.).

    PubMed

    Li, Xia; Wang, Tingting; Zhou, Bin; Gao, Wenyuan; Cao, Jingguo; Huang, Luqi

    2014-01-01

    This study was performed to compare the contents of total phenolics, total flavonoids, and total triterpenes between peel and flesh of ten different pear cultivars. The monomeric compounds were analyzed by HPLC, their antioxidant and anti-inflammatory activities were also measured. Peel and flesh from Yaguang, Hongpi, Qingpi and Guifei varieties contained relatively more total phenolic, total flavonoids and total triterpene, and showed stronger antioxidant and anti-inflammatory activities, while Lvbaoshi and Youran appeared to be weakest among them. All the chemical components found in the pear peel were approximately 6-20 times higher than those in the flesh of pear. For the monomeric compounds, arbutin, oleanolic acid, ursolic acid, chlorogenic acid, epicatechin, and rutin were the dominant components contained in the ten pear cultivars both in peel and in flesh. All of the analyses suggested that the peel of pear might be an excellent polyphenol and triterpenes source. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. In vivo effects of diabetes, insulin and oleanolic acid on enzymes of glycogen metabolism in the skin of streptozotocin-induced diabetic male Sprague-Dawley rats.

    PubMed

    Mukundwa, Andrew; Langa, Silvana O; Mukaratirwa, Samson; Masola, Bubuya

    2016-03-04

    The skin is the largest organ in the body and diabetes induces pathologic changes on the skin that affect glucose homeostasis. Changes in skin glycogen and glucose levels can mirror serum glucose levels and thus the skin might contribute to whole body glucose metabolism. This study investigated the in vivo effects of diabetes, insulin and oleanolic acid (OA) on enzymes of glycogen metabolism in skin of type 1 diabetic rats. Diabetic and non-diabetic adult male Sprague-Dawley rats were treated with a single daily dose of insulin (4 IU/kg body weight), OA (80 mg/kg body weight) and a combination of OA + insulin for 14 days. Glycogen phosphorylase (GP) expression; and GP, glycogen synthase (GS) and hexokinase activities as well glycogen levels were evaluated. The results suggest that diabetes lowers hexokinase activity, GP activity and GP expression with no change in GS activity whilst the treatments increased GP expression and the activities of hexokinase, GP and GS except for the GS activity in OA treated rats. Glycogen levels were increased slightly by diabetes as well as OA treatment. In conclusion diabetes, OA and insulin can lead to changes in GS and GP activities in skin without significantly altering the glycogen content. We suggest that the skin may contribute to whole body glucose homeostasis particularly in disease states. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. An Overview of Structurally Modified Glycyrrhetinic Acid Derivatives as Antitumor Agents.

    PubMed

    Xu, Bing; Wu, Gao-Rong; Zhang, Xin-Yu; Yan, Meng-Meng; Zhao, Rui; Xue, Nan-Nan; Fang, Kang; Wang, Hui; Chen, Meng; Guo, Wen-Bo; Wang, Peng-Long; Lei, Hai-Min

    2017-06-02

    Glycyrrhetinic Acid ( GA ), a triterpenoid aglycone component of the natural product glycyrrhizinic acid, was found to possess remarkable anti-proliferative and apoptosis-inducing activity in various cancer cell lines. Though GA was not as active as other triterpenes, such as betulinic acid and oleanolic acid, it could trigger apoptosis in tumor cells and it can be obtained easily and cheaply, which has stimulated scientific interest in using GA as a scaffold to synthesize new antitumor agents. The structural modifications of GA reported in recent decades can be divided into four groups, which include structural modifications on ring-A, ring-C, ring-E and multiple ring modifications. The lack of a comprehensive and recent review on this topic prompted us to gather more new information. This overview is dedicated to summarizing and updating the structural modification of GA to improve its antitumor activity published between 2005 and 2016. We reviewed a total of 210 GA derivatives that we encountered and compiled the most active GA derivatives along with their activity profile in different series. Furthermore, the structure activity relationships of these derivatives are briefly discussed. The included information is expected to be of benefit to further studies of structural modifications of GA to enhance its antitumor activity.

  4. Constituents of the Vietnamese medicinal plant Orthosiphon stamineus.

    PubMed

    Tezuka, Y; Stampoulis, P; Banskota, A H; Awale, S; Tran, K Q; Saiki, I; Kadota, S

    2000-11-01

    From the MeOH extract of the aerial part of Vietnamese Orthosiphon stamineus, five new isopimarane-type diterpenes [orthosiphols F-J (1-5)] and two new diterpenes [staminols A (6) and B (7)] with a novel carbon-framework, to which we proposed the name "staminane", and three new highly-oxygenated staminane-type diterpenes [staminolactones A (8) and B (9) and norstaminol A (10)1 were isolated. Moreover, staminolactone A (8) is 8,14-secostaminane-type and staminolactone B (9) is 13,14-secostaminane-type, while norstaminol A (10) is 14-norstaminen-type. Together with these new diterpenes, sixteen known compounds were also isolated and identified to be: 7,3',4'-tri-O-methylluteolin (11), eupatorin (12), sinensetin (13), 5-hydroxy-6,7,3',4'-tetramethoxyflavone (14), salvigenin (15), ladanein (16), tetramethylscutellarein (17), 6-hydroxy-5,7,4'-trimethoxyflavone (18), vomifoliol (19), aurantiamide acetate (20), rosmarinic acid (21), caffeic acid (22), oleanolic acid (23), ursolic acid (24), betulinic acid (25), and beta-sitosterol (26). All the isolated compounds were tested for their cytotoxicity towards highly liver metastatic murine colon 26-L5 carcinoma cells, and the new diterpenes, except for 4, and flavonoids (11, 12, 16, 18) showed cytotoxicity with an ED50 value between 10 and 90 microg/ml.

  5. Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance.

    PubMed

    Weckesser, S; Engel, K; Simon-Haarhaus, B; Wittmer, A; Pelz, K; Schempp, C M

    2007-08-01

    There is cumulative resistance against antibiotics of many bacteria. Therefore, the development of new antiseptics and antimicrobial agents for the treatment of skin infections is of increasing interest. We have screened six plant extracts and isolated compounds for antimicrobial effects on bacteria and yeasts with dermatological relevance. The following plant extracts have been tested: Gentiana lutea, Harpagophytum procumbens, Boswellia serrata (dry extracts), Usnea barbata, Rosmarinus officinalis and Salvia officinalis (supercritical carbon dioxide [CO2] extracts). Additionally, the following characteristic plant substances were tested: usnic acid, carnosol, carnosic acid, ursolic acid, oleanolic acid, harpagoside, boswellic acid and gentiopicroside. The extracts and compounds were tested against 29 aerobic and anaerobic bacteria and yeasts in the agar dilution test. U. barbata-extract and usnic acid were the most active compounds, especially in anaerobic bacteria. Usnea CO2-extract effectively inhibited the growth of several Gram-positive bacteria like Staphylococcus aureus (including methicillin-resistant strains - MRSA), Propionibacterium acnes and Corynebacterium species. Growth of the dimorphic yeast Malassezia furfur was also inhibited by Usnea-extract. Besides the Usnea-extract, Rosmarinus-, Salvia-, Boswellia- and Harpagophytum-extracts proved to be effective against a panel of bacteria. It is concluded that due to their antimicrobial effects some of the plant extracts may be used for the topical treatment of skin disorders like acne vulgaris and seborrhoic eczema.

  6. The role of pentacyclic triterpenoids in the allelopathic effects of Alstonia scholaris.

    PubMed

    Wang, Chao-Min; Chen, Hsiao-Ting; Li, Tsai-Chi; Weng, Jen-Hsien; Jhan, Yun-Lian; Lin, Shi-Xun; Chou, Chang-Hung

    2014-01-01

    Alstonia scholaris is a tropical evergreen tree native to South and Southeast Asia. Alstonia forests frequently lack understory species. However, potential mechanisms-particularly the allelochemicals involved-remain unclear. In the present study, we identified allelochemicals of A. scholaris, and clarified the role of allelopathic substances from A. scholaris in interactions with neighboring plants. We showed that the leaves, litter, and soil from A. scholaris inhibited growth of Bidens pilosa-a weed found growing abundantly near A. scholaris forests. The allelochemicals were identified as pentacyclic triterpenoids, including betulinic acid, oleanolic acid, and ursolic acid by using (1)H and (13)C-NMR spectroscopy. The half-maximal inhibitory concentration (IC50) for radicle growth of B. pilosa and Lactuca sativa ranged from 78.8 μM to 735.2 μM, and ursolic acid inhibited seed germination of B. pilosa. The triterpenoid concentrations in the leaves, litter, and soil were quantified with liquid chromatography-electrospray ionization/tandem mass spectrometry. Ursolic acid was present in forest soil at a concentration of 3,095 μg/g, i.e., exceeding the IC50. In the field, ursolic acid accumulated abundantly in the soil in A. scholaris forests, and suppressed weed growth during summer and winter. Our results indicate that A. scholaris pentacyclic triterpenoids influence the growth of neighboring weeds by inhibiting seed germination, radicle growth, and functioning of photosystem II.

  7. Bioactive properties of the main triterpenes found in olives, virgin olive oil, and leaves of Olea europaea.

    PubMed

    Sánchez-Quesada, Cristina; López-Biedma, Alicia; Warleta, Fernando; Campos, María; Beltrán, Gabriel; Gaforio, José J

    2013-12-18

    Oleanolic acid, maslinic acid, uvaol, and erythrodiol are the main triterpenes present in olives, olive tree leaves, and virgin olive oil. Their concentration in virgin olive oil depends on the quality of the olive oil and the variety of the olive tree. These triterpenes are described to present different properties, such as antitumoral activity, cardioprotective activity, anti-inflammatory activity, and antioxidant protection. Olive oil triterpenes are a natural source of antioxidants that could be useful compounds for the prevention of multiple diseases related to cell oxidative damage. However, special attention has to be paid to the concentrations used, because higher concentration may lead to cytotoxic or biphasic effects. This work explores all of the bioactive properties so far described for the main triterpenes present in virgin olive oil.

  8. Beckmann rearrangement within the ring C of oleanolic acid lactone: Synthesis, structural study and reaction mechanism analysis

    NASA Astrophysics Data System (ADS)

    Froelich, Anna; Bednarczyk-Cwynar, Barbara; Zaprutko, Lucjusz; Gzella, Andrzej

    2017-05-01

    Synthesis, spectral and X-ray analysis of three compounds, i.e. 3β-acetoxy-12-hydroxyimino-18β-oleanan-28,13β-olide (substrate) and 3β-acetoxy-12-nitrile-12,13-seco-15(14 → 13)-abeoolean-14(27)-en-28,13β-olide and 3β-acetoxy-12-oxo-12a-aza-C-homoolean-13(18)-en-28-oic acid (Beckmann rearrangement reaction products) are described. Structural analysis revealed that the oxime group in the ring C in substrate molecule had an E-configuration. The nitrile product with retained lactone group was a result of major transformations within rings C and D of oleanane skeleton. In lactam product free carboxyl group and a double bond in ring D instead of lactone system were formed in Beckmann rearrangement reaction.

  9. Pentacyclic triterpene in Olea europaea L: A simultaneous determination by high-performance liquid chromatography coupled to mass spectrometry.

    PubMed

    Giménez, Estela; Juan, M Emília; Calvo-Melià, Sara; Barbosa, José; Sanz-Nebot, Victoria; Planas, Joana M

    2015-09-04

    Pentacyclic triterpenes are gaining interest due to their beneficial health effects, as anti-inflammatory, anti-diabetic and anti-tumoral, among others. In this study, an analytical LC-MS method was developed for the simultaneous determination of maslinic, oleanolic and ursolic acids along with erythrodiol and uvaol, which are the main triterpenic compounds present in the fruits and leaves of Olea europaea L. A Zorbax Eclipse PAH column at 30°C with mobile phase of water (17%) and methanol (83%) at 0.8mL/min conformed the optimal chromatographic conditions that allowed the separation of the compounds of interest, two pairs of which are isomers differing only in the position of one methyl group (oleanolic-ursolic and erythrodiol-uvaol). The ionization was performed in an APCI source at 450°C programmed in negative mode for the triterpenic acids, and in positive for the alcohols. An ion trap (LC-IT-MS) and a triple quadrupole (LC-QqQ-MS) were assessed for maximal sensitivity that was achieved with LC-QqQ-MS. The LODs of triterpenic acids were lower than 1nM, whereas for erythrodiol and uvaol were 4.5 and 7.5nM, respectively. The method was linear for the five analytes in the range of concentrations from 0.005 to 15μM with correlation coefficients exceeding 0.99. The precision and accuracy were ≤9.90% and ≤9.57%, respectively. The applicability of the validated method was assessed in the analysis of the pentacyclic triterpenes in Marfil table olives, after the optimization of the extraction procedure. The developed method constitutes the first step for future studies of triterpenic compounds present in foods that would allow establishing their effects on human health. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Simultaneous determination of six bioactive saponins from Rhizoma Panacis Japonici in rat plasma by UHPLC-MS/MS: Application to a pharmacokinetic study.

    PubMed

    Zheng, Hong; Qiu, Feng; Zhao, Hui; Chen, Jie; Wang, Lei; Zou, Haiyan

    2018-06-07

    A specific, sensitive and rapid ultra high performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) method was developed and validated for simultaneous determination of six major bioactive constituents in Rhizoma Panacis Japonici (RPJ), including oleanolic acid-type chikusetsusaponin V, IV, hemsgiganoside B, damarane-type ginsenoside Rb1, Rg1 and Re in rat plasma, using estazolam as the internal standard (IS). Plasma samples were pretreated with methanol/acetonitrile (1:1, V/V) for protein precipitation. Chromatographic separation was performed on an Agilent Eclipse Plus C 18 column, using a gradient mobile phase consisting of methanol and 0.1% formic acid aqueous solution. A tandem mass spectrometric detection with an electrospray ionization (ESI) interface was conducted via multiple reaction monitoring (MRM) under positive ionization mode. For all the six analytes of interest, the calibration curves were linear in the concentration range of 2.00-500 ng/mL with r ≥ 0.9956. The intra- and inter-day precisions (in terms of relative standard deviation, RSD) were all below 10.2% and the accuracies (in terms of relative error, RE) were within -5.0% to 6.3% for all six analytes. Extraction recovery, matrix effect and stability data all met the acceptance criteria of FDA guideline for bioanalytical method validation. The developed method was applied to the pharmacokinetic study in rat. After oral administration of the total saponins from RPJ, six analytes were quickly absorbed into the blood and presented the phenomenon of double peaks. Among the six analytes, ginsenoside Rb1 showed slowest elimination from plasma with a t 1/2z of 16.00 h, while that of the others were between 1.72 and 5.62 h. In conclusion, the developed method was successfully used to simultaneously analyze major oleanolic acid-type and damarane-type saponins of RPJ in rat plasma after oral administration. Copyright © 2018. Published by Elsevier B.V.

  11. Ethylene glycol-linked amino acid diester prodrugs of oleanolic acid for PepT1-mediated transport: synthesis, intestinal permeability and pharmacokinetics.

    PubMed

    Cao, Feng; Jia, Jinghao; Yin, Zhi; Gao, Yahan; Sha, Lei; Lai, Yisheng; Ping, Qineng; Zhang, Yihua

    2012-08-06

    The purposes of this study were to expand the structure of parent drugs selected for peptide transporter 1 (PepT1)-targeted ester prodrug design and to improve oral bioavailability of oleanolic acid (OA), a Biopharmaceutics Classification System (BCS) class IV drug. Through an ethoxy linker the carboxylic acid group of OA was conjugated with the carboxylic acid group of different amino acid promoieties to form six diester prodrugs. The effective permeability (P(eff)) of prodrugs was screened by in situ rat single-pass intestinal perfusion (SPIP) model in two buffers with different pH (6.0 and 7.4) as PepT1 employs a proton-gradient as the driving force. Compared to OA, 2.5-fold, 2.3-fold, 2.2-fold, 2.1-fold, and 1.9-fold enhancement of P(eff) in buffer with pH 6.0 was observed for L-Phe ester (5c), L-Val ester (5a), L-Lys ester (5e), D-Phe ester (5d), and D-Val ester (5b), respectively. Furthermore, P(eff) of 5a, 5c, 5d and 5e in pH 6.0 was significantly higher than that in pH 7.4 (p < 0.01), respectively. These results showed that the H(+) concentration of perfusion solution had great effect on the transport of the prodrugs across intestinal membrane. For the further evaluation of affinity to PepT1, inhibition studies were performed by coperfusing 0.1 mM prodrug with 50 mM glycyl-sarcosine (Gly-Sar, a typical substrate of PepT1). It turned out that the P(eff) of 5a, 5b, 5c and L-Tyr ester (6f) significantly reduced in the presence of Gly-Sar (1.7-fold, 2.2-fold, 1.9-fold, and 1.4-fold, respectively). We supposed that it may be attributed to PepT1 mediated transport of these prodrugs. 5a and 6f were selected as the optimal target prodrugs for oral absorption in vivo. Following intragastric administration of 300 mg/kg (calculated as OA) 5a, 6f and OA in three groups of rats, compared with group OA, Cmax for the group of 5a and 6f was enhanced by 1.56-fold and 1.54-fold, respectively. Fapp of group 5a and 6f was 2.21- and 2.04-fold increased, respectively, indicating that 5a and 6f had better oral absorption than OA. The combined results also suggest that diester prodrugs which conjugated two carboxylic acid groups of proper amino acid promoieties and parent drug through a linker can be used for PepT1-targeted prodrug design. With this strategy, oral bioavailability of OA in rats could be improved significantly.

  12. Phytochemical composition and in vitro pharmacological activity of two rose hip (Rosa canina L.) preparations.

    PubMed

    Wenzig, E M; Widowitz, U; Kunert, O; Chrubasik, S; Bucar, F; Knauder, E; Bauer, R

    2008-10-01

    The aim of the present study was to compare powdered rose hip with and without fruits (Rosae pseudofructus cum/sine fructibus, Rosa canina L., Rosaceae) with regard to their phytochemical profile and their in vitro anti-inflammatory and radical-scavenging properties. The two powders were subsequently extracted with solvents of increasing polarity and tested for inhibition of cyclooxygenase (COX-1, COX-2) and of 5-LOX-mediated leukotriene B(4) (LTB(4)) formation as well as for DPPH-radical-scavenging capacity. While the water and methanol extracts were inactive in the COX-1, COX-2 and LTB(4) inhibition assays, the n-hexane and the dichloromethane extracts inhibited all three enzymes. In the active extracts, the triterpenoic acids ursolic acid, oleanolic acid and betulinic acid were identified, although only in minute amounts. Furthermore, oleic, linoleic and alpha-linolenic acid were identified apart from several saturated fatty acids. Even though unsaturated fatty acids are known to be good inhibitors of COX-1, COX-2 and LT formation, no clear correlation between their concentration in the extracts and their activity was found. We suggest that other, yet unidentified, lipophilic constituents might play a more important role for the observed in vitro inhibitory activity on arachidonic acid metabolism. Some of the extracts also showed considerable DPPH radical scavenging activity, the methanolic extracts being most potent. The radical scavenging activity of the extracts correlated very well with their total phenolic content, while ascorbic acid contributes only little to the radical-scavenging activity due to its low concentration present in the extracts. In summary, extracts derived from powdered rose hip without fruits were more effective in all assays carried out compared with extracts derived from powdered rose hip with fruits.

  13. Protective effects of pretreatment with oleanolic acid in rats in the acute phase of hepatic ischemia-reperfusion injury: role of the PI3K/Akt pathway.

    PubMed

    Gui, Bo; Hua, Fuzhou; Chen, Jie; Xu, Zeping; Sun, Hongbin; Qian, Yanning

    2014-01-01

    Oleanolic acid (OA) has been used to treat liver disorders, but whether it can attenuate hepatic ischemia-reperfusion- (IR-) associated liver dysfunction remains unexplored. In the present study, 160 male Sprague-Dawley rats were equally divided into five groups: group SH received neither hepatic IR nor drugs; group IR received hepatic IR without drugs; group CM and group OA received 0.5% sodium carboxymethylcellulose and 100 mg/kg OA, intragastrically, once a day for seven days before the hepatic IR, respectively; on the basis of treatment in group OA, group OA+wortmannin further received 15 μg/kg of PI3K inhibitor wortmannin, intraperitoneally, 30 min before the hepatic IR. Then each group was equally divided into four subgroups according to four time points (preoperation, 0 h, 3 h, and 6 h after reperfusion). Serum ALT activity, IL-1β concentration, and hepatic phosphorylation of PI3K, Akt, and GSK-3β protein expression were serially studied. We found that OA pretreatment improved histological status and decreased serum ALT and IL-1β levels. It also increased p-PI3K, p-Akt, and p-GSK-3β protein expression at all the four time points. Prophylactic wortmannin partially reversed OA's protective effects. The data indicate that OA pretreatment protects liver from IR injury during the acute phase partially through PI3K/Akt-mediated inactivation of GSK-3β.

  14. Chemical constituents from Hericium erinaceus and their ability to stimulate NGF-mediated neurite outgrowth on PC12 cells.

    PubMed

    Zhang, Cheng-Chen; Yin, Xia; Cao, Chen-Yu; Wei, Jing; Zhang, Qiang; Gao, Jin-Ming

    2015-11-15

    One new meroterpenoid, named hericenone K (11), along with 10 known compounds (1-10), ergosterol peroxide (1), cerevisterol (2), 3β,5α,9α-trihydroxy-ergosta-7,22-dien-6-one (3), inoterpene A (4), astradoric acid C (5), betulin (6), oleanolic acid (7), ursolic acid (8), hemisceramide (9), and 3,4-dihydro-5-methoxy-2-methyl-2-(4'-methyl-2'-oxo-3'-pentenyl)-9(7H)-oxo-2H-furo[3,4-h]benzopyran (10), was isolated from the fruiting bodies of the mushroom Hericium erinaceus. Their structures were characterized on the basis of spectroscopic methods, as well as through comparison with previously reported data. Compounds 3-6, 8, and 9 were isolated from Hericium species for the first time. Compounds 10 and 11 was suggested to be racemic by the CD spectrum data and specific rotations, which ware resolved by chiral HPLC into respective enantiomers. Compounds 1-3, (±)-10, (-)-10 and (+)-10 in the presence of NGF (20 ng/mL) exerted a significant increase in neurite-bearing cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Oleanane-type triterpene saponins from Calendula stellata.

    PubMed

    Lehbili, Meryem; Alabdul Magid, Abdulmagid; Kabouche, Ahmed; Voutquenne-Nazabadioko, Laurence; Abedini, Amin; Morjani, Hamid; Sarazin, Thomas; Gangloff, Sophie C; Kabouche, Zahia

    2017-12-01

    Five previously undescribed bisdesmosidic triterpenoid saponins named calendustellatosides A-E, along with fifteen known compounds were isolated from the 70% ethanol whole plant extract of Calendula stellata Cav. (Asteraceae). Their structures were determined by 1D- and 2D-NMR spectroscopy as well as high resolution mass spectrometry and acid hydrolysis. The saponins comprised oleanolic acid, echinocystic acid, morolic acid or mesembryanthemoidigenic acid as the aglycones and saccharide moieties at C-3 and C-28. Like most Calendula saponins, the sugar moiety linked at C-3 was either β-d-glucose or β-d-glucuronic acid which could be substituted at C-3 by a β-d-galactose and/or C-2 by a supplementary β-d-galactose or a β-d-glucose. The sugar moiety linked to C-28 was determined as β-d-glucose. The antibacterial evaluation of compounds 1-20 by bioautography on Staphylococcus aureus followed by the determination of MIC values of active compounds by serial dilution technique against 5 bacteria revealed that; calendustellatoside D was the most active against Enterococcus faecalis with an antibacterial effect comparable to antibiotics. The cytotoxic activities of isolated compounds were evaluated against fibrosarcoma cell line (HT1080) and human lung cancer cell line (A549). Calendustellatosides B and D exhibited a low cytotoxic activity against HT1080 cell line with IC 50 values of 47 ± 0.6 and 39 ± 0.5 μM, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Isolation, characterization, and in rats plasma pharmacokinetic study of a new triterpenoid saponin from Dianthus superbus.

    PubMed

    Ren, Yina; Xu, Xiaobao; Zhang, Qianlan; Lu, Yongzhuang; Li, Ximin; Zhang, Lin; Tian, Jingkui

    2017-02-01

    One new oleanolic acid triterpenoid saponin, 3-O-β-D-glucopyranosyl olean-11, 13(18)-diene-23,28-dioic acid, (hereafter referred to as DS-1) was isolated from the traditional Chinese medicinal plant Dianthus superbus (D. superbus). DS-1 plays an important role in the bioactivity of D. superbus. Thus, a sensitive, reliable and accurate reversed-phased liquid chromatography with tandem mass spectrometry (LC-MS/MS) in negative ion mode was developed and validated for the quantification and pharmacokinetic study of DS-1 in rats plasma. The pharmacokinetic profile showed that DS-1 was rapidly absorbed and eliminated in plasma, indicating that significant accumulation of the compound in biological specimen is unlikely. In addition, poor absorption into systemic circulation was observed after oral administration of DS-1, resulting in low absolute bioavailability (0.92 %).

  17. An access to a library of novel triterpene derivatives with a promising pharmacological potential by Ugi and Passerini multicomponent reactions.

    PubMed

    Wiemann, Jana; Heller, Lucie; Csuk, René

    2018-04-25

    The promising combination of natural product leads and their derivatization by isocyanide-based multicomponent reactions (IMCRs) has gained interest in accessing diversity-oriented libraries with auspicious pharmacological potential. Therefore, a set of 34 Ugi and 3 Passerini products was successfully synthesized starting from naturally occurring triterpenoids, i.e. oleanolic acid (OA) and maslinic acid (MA), followed by a biological evaluation of the novel α-acylamino carboxamides and the α-acyloxy carboxamides in colorimetric SRB assays to determine their cytotoxic potential. Especially, the MA-Ugi products 6a, 6b and 7b showed a remarkable cytotoxicity for A2780 ovarian carcinoma cells in a low μM range. Compounds 6a and 7b induced programmed cell death in part through the apoptosis pathway. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Characterization of two minor saponins from Cordia piauhiensis by 1H and 13C NMR spectroscopy.

    PubMed

    Santos, Renata P; Silveira, Edilberto R; Lemos, Telma Leda G; Viana, Francisco Arnaldo; Braz-Filho, Raimundo; Pessoa, Otília Deusdênia L

    2005-06-01

    A careful NMR analysis with full assignment of the 1H and 13C spectral data for two minor saponins isolated from stems of Cordia piauhiensis is reported. These saponins were isolated by high-performance liquid chromatography and characterized as 3beta-O-[alpha-L-rhamnopyranosyl-(1 --> 2)-beta-D-glucopyranosyl]pomolic acid 28-O-[beta-D-glucopyranosyl-(1 --> 6)-beta-D-glucopyranosyl] ester (1) and 3beta-O-[alpha-L-rhamnopyranosyl-(1 --> 2)-beta-D-glucopyranosyl]oleanolic acid 28-O-[beta-D-xylopyranosyl-(1 --> 2)-beta-D-glucopyranosyl-(1 --> 6)-beta-D-glucopyranosyl] ester (2). Their structures were established using a combination of 1D and 2D (1H, 1H-COSY, TOCSY, NOESY, gs-HMQC and gs-HMBC) NMR techniques, electrospray ionization mass spectrometry and chemical evidence. Copyright 2005 John Wiley & Sons, Ltd.

  19. Glycosides from Bougainvillea glabra.

    PubMed

    Simon, András; Tóth, Gábor; Duddeck, Helmut; Soliman, Hesham S M; Mahmoud, Ibrahim I; Samir, Hanan

    2006-01-01

    Three glycosides were isolated from Bougainvillea glabra and their structures were determined by extensive use of 1D and 2D NMR spectroscopy ((1)H and (13)C). First compound was identical to momordin IIc (quinoside D) [beta-D-glucopyranosyl 3-O-[beta-D-xylopyranosyl-(1 --> 3)-O-(beta-D-glucopyranosyluronic acid)] oleanolate], second compound was quercetin 3-O-alpha-L-(rhamnopyranosyl)(1 --> 6)-[alpha-L-rhamnopy-ranosyl(1 --> 2)]-beta-D-galactopyranoside and third compound was its derivative quercetin 3-O-alpha-L-(4-caffeoylrhamnopyranosyl)(1 --> 6)-[alpha-L-rhamnopyranosyl (1 --> 2)]-beta-D-galactopyranoside, a new natural product.

  20. Secoiridoids from Gentiana siphonantha.

    PubMed

    Tan, R X; Kong, L D

    1997-11-01

    Repeated fractionations of the methanol extract of the subterranean parts (rhizomes and roots) of Gentiana siphonantha afforded two new and five known secoiridoids, in addition to the widespread plant constituents beta-sitiosterol, daucosterol and oleanolic acid. The structures of the new acyl secoiridoid glycosides were elucidated as 6'-gentisoyl 8-epikingiside and 2'-gentisoyl gelidoside mainly by a combination of high field NMR techniques. The known secoiridoids were identified as gentiolactone, gentiopicroside, sweroside, gelidoside and trifloroside. None of these constituents was active against human pathogenic fungi (Candida albican, Aspergillus flavus and Trichoderma viride). The chemotaxonomic significance of the isolates is discussed briefly.

  1. Pharmacokinetics in Vitro and in Vivo of Two Novel Prodrugs of Oleanolic Acid in Rats and Its Hepatoprotective Effects against Liver Injury Induced by CCl4.

    PubMed

    Yu, Zongjiang; Sun, Weizhi; Peng, Weibing; Yu, Rilei; Li, Guoqiang; Jiang, Tao

    2016-05-02

    Oleanolic acid (OA) is a well-known pentacyclic triterpenoid compound, which has been used as a dietary supplement and is supplied as an over-the-counter drug for the treatment of human liver diseases. These are reasons for the low bioavailability of OA which have restricted its wider application. In this study, two OA prodrugs (1,3-cyclic propanyl phosphate esters of OA) were designed and synthesized. The hepatoprotective effects of these prodrugs were evaluated against carbon tetrachloride (CCl4) induced liver injury in mice; the levels of alanine aminotransferase (ALT), lactic dehydrogenase (LDH), and aspartate aminotransferase (AST) were significantly increased, and the level of the hepatic malondialdehyde (MDA) was increased. The metabolism, in vitro, of the prodrugs was studied by incubation in rat liver microsome; the plasma pharmacokinetics and the biodistribution in vivo after intravenous (iv) injection to six rats were investigated, respectively. The prodrugs diminished gradually with time; most of the parent drugs were released within 30 min in vitro, and the presumed mechanism of the in vitro metabolism was confirmed. The plasma-concentration data in vivo was analyzed by a compartmental method: both the prodrugs and the corresponding released parent drugs existed at up to 48 h in rats. The t1/2 improved after intravenous administration in rats compared with direct injection of the parent drugs. All analyte concentrations were highest in the liver, and most of the prodrugs were excreted in feces (>47.11%). Therefore, 1,3-cyclic propanyl phosphate esters of OA can serve as a promising lead candidate for drugs.

  2. Effect of a controlled-release drug delivery system made of oleanolic acid formulated into multivesicular liposomes on hepatocellular carcinoma in vitro and in vivo

    PubMed Central

    Luo, Yuling; Liu, Zhongbing; Zhang, Xiaoqin; Huang, Juan; Yu, Xin; Li, Jinwei; Xiong, Dan; Sun, Xiaoduan; Zhong, Zhirong

    2016-01-01

    The aim of the present study was to develop a novel dosage form of multivesicular liposomes for oleanolic acid (OA) to overcome its poor solubility, prolong therapeutic drug levels in the blood, and enhance the antitumor effect on hepatocellular carcinoma. OA-encapsulated multivesicular liposomes (OA-MVLs) were prepared by a double-emulsion method, and the formulation was optimized by the central composite design. The morphology, particle size, and drug-loading efficiency of OA-MVLs were investigated. Furthermore, OA-MVLs were also characterized both in vitro and in vivo. The results showed that OA-MVLs were spherical particles with an average particle size of 11.57 μm and an encapsulation efficiency of 82.3%±0.61%. OA-MVLs exhibited a sustained-release pattern in vitro, which was fitted to Ritger–Peppas equation. OA-MVLs inhibited the growth of human HepG2 cells which was confirmed by the MTT assay and fluorescence microscopy detection. The in vivo release of OA from OA-MVLs exhibited a sustained manner, indicating a longer circulation time compared to OA solution. The in vivo toxicity study indicated that medium-dose OA-MVLs exerted no toxic effect on the hosts. Importantly, OA-MVLs suppressed the growth of murine H22 hepatoma and prolonged the survival of tumor-bearing mice. In conclusion, the poorly soluble OA could be encapsulated into MVLs to form a novel controlled-release drug delivery system. The present study may hold promise for OA-MVLs as a new dosage form for sustained-release drug delivery in cancer therapy. PMID:27471381

  3. Oleanolic Acid Ameliorates Aβ25-35 Injection-induced Spatial Learning and Memory Deficit in Alzheimer's Disease Model Rats.

    PubMed

    Wang, Kai; Sun, Weiming; Zhang, Linlin; Guo, Wei; Xu, Jiachun; Liu, Shuang; Zhou, Zhen; Zhang, Yulian

    2018-05-24

    Abnormal amyloid β (Aβ) accumulation and deposition in hippocampus is an essential process in Alzheimer's disease (AD). To investigate whether Oleanolic acid (OA) could improve learning and memory deficit and its possible mechanism. Forty-five SD rats were randomly divided into sham operation group, model group, and OA group. AD models by injection of Aβ25-35 were built. Morris water maze (MWM) was applied to investigate learning and memory, transmission electron microscope (TEM) to observe the ultrastructure of synapse, western blot to the key targets of synapse, electrophysiology for long-term potentiation (LTP), and Ca2+ concentration in synapse was also measured. The latency time in model group was significantly longer than that in sham operation group (P=0.0001<0.05); while it was significantly shorter in the OA group than that in model group (P=0.0001<0.05); compared with model group, the times of cross-platform in OA group significantly increased (P = 0.0001 <0.05). TEM results showed OA couldalleviate neuron damage and synapses changes induced by Aβ25-35. The expression of CaMKII, PKC, NMDAR2B, BDNF, TrkB, and CREB protein were significantly improved by OA; the concentration of Ca2+ were significantly lower and the slope and amplitude of f-EPSP increased in OA group. OA could ameliorate Aβ-induced spatial learning and memory loss of AD rats, and the mechanism might be involved with maintaining synaptic integrity to restore synaptic plasticity and increasing the NMDAR2B protein, CaMKII and PKC protein in postsynaptic density (PSD), reducing synaptic Ca2+ concentration, enhancing LTP by up-regulating BDNF, TrkB, CREB proteins. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Oleanolic acid acetate inhibits rheumatoid arthritis by modulating T cell immune responses and matrix-degrading enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jin Kyeong; Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892; Kim, Sung-Wan

    ABSTRACT: Rheumatoid arthritis (RA) is a chronic autoimmune disease associated with a combination of synovium joint inflammation, synovium hyperplasia, and destruction of cartilage and bone. Oleanolic acid acetate (OAA), a compound isolated from Vigna angularis, has been known to possess pharmacological activities, including anti-inflammation and anti-bone destruction. In this study, we investigated the effects of OAA on RA and the underlying mechanisms of action by using a type-II collagen-induced arthritis (CIA) mouse model and tumor necrosis factor (TNF)-α-stimulated RA synovial fibroblasts. Oral administration of OAA decreased the clinical arthritis symptoms, paw thickness, histologic and radiologic changes, and serum total andmore » anti-type II collagen IgG, IgG1, and IgG2a levels. OAA administration reduced Th1/Th17 phenotype CD4{sup +} T lymphocyte expansions and inflammatory cytokine productions in T cell activated draining lymph nodes and spleen. OAA reduced the expression and production of inflammatory mediators, such as cytokines and matrix metalloproteinase (MMP)-1/3, in the ankle joint tissue and RA synovial fibroblasts by down-regulating Akt, mitogen-activated protein kinases, and nuclear factor-κB. Our results clearly support that OAA plays a therapeutic role in RA pathogenesis by modulating helper T cell immune responses and matrix-degrading enzymes. The immunosuppressive effects of OAA were comparable to dexamethasone and ketoprofen. We provide evidences that OAA could be a potential therapeutic candidate for RA. - Highlights: • OAA attenuated chronic CIA symptoms. • OAA had a regulating effect on the T helper cell immune reaction for CIA. • The effect of OAA on the RA was comparable to the dexamethasone or ketoprofen. • OAA might be a candidate for the treatment of arthritic diseases.« less

  5. Selective and cost-effective protocol to separate bioactive triterpene acids from plant matrices using alkalinized ethanol: Application to leaves of Myrtaceae species

    PubMed Central

    Lima, Adélia M. Belem; Siani, Antonio Carlos; Nakamura, Marcos Jun; D’Avila, Luiz Antonio

    2015-01-01

    Background: Triterpenes as betulinic (BA), oleanolic (OA) and ursolic acids (UA) have increasingly gained therapeutic relevance due to their wide scope of pharmacological activities. To fit large-scale demands, exploitable sources of these compounds have to be found and simple, cost-effective methods to extract them developed. Leaf material represents the best plant sustainable raw material. To obtain triterpene acid-rich extracts from leaves of Eugenia, Psidium and Syzygium species (Myrtaceae) by directly treating the dry plant material with alkalinized hydrated ethanol. This procedure was adapted from earlier methods to effect depolymerization of the leaf cutin. Materials and Methods: Extracts were prepared by shaking the milled dry leaves in freshly prepared 2% NaOH in 95% EtOH solution (1:4 w/v) at room temperature for 6 h. Working up the product in acidic aqueous medium led to clear precipitates in which BA, OA and UA were quantified by gas chromatography. Results: Pigment-free and low-polyphenol content extracts (1.2–2.8%) containing 6–50% of total triterpene acids were obtained for the six species assayed. UA (7–20%) predominated in most extracts, but BA preponderated in Eugenia florida (39%). Carried out in parallel, n-hexane defatted leaves led to up to 9% enhancement of total acids in the extracts. The hydroalcoholate treatment of Myrtaceae species dry leaves proved to be a cost-effective and environmentally friendly method to obtain triterpene acids, providing them be resistant to alkaline medium. These combined techniques might be applicable to other plant species and tissues. PMID:26246721

  6. Anti-inflammatory activity of standardized dichloromethane extract of Salvia connivens on macrophages stimulated by LPS.

    PubMed

    González-Chávez, Marco Martín; Ramos-Velázquez, Cinthia Saraí; Serrano-Vega, Roberto; Pérez-González, Cuauhtemoc; Sánchez-Mendoza, Ernesto; Pérez-Gutiérrez, Salud

    2017-12-01

    A previous study demonstrated that the chloroform extract of Salvia connivens Epling (Lamiaceae) has anti-inflammatory activity. Identification of the active components in the dicholorometane extract (DESC), and, standardization of the extract based in ursolic acid. DESC was prepared by percolation with dichlromethane and after washed with hot hexane, its composition was determined by CG-MS and NMR, and standardized by HPLC. The anti-inflammatory activity was tested on acute TPA-induced mouse ear oedema at doses of 2.0 mg/ear. The cell viability of macrophages was evaluated by MTT method, and pro- and anti-inflammatory interleukin levels were measured using an ELISA kit. Ursolic acid, oleanolic acid, dihydroursolic acid and eupatorin were identified in DESC, which was standardized based on the ursolic acid concentration (126 mg/g). The anti-inflammatory activities of DESC, the acid mixture, and eupatorin (2 mg/ear) were 60.55, 57.20 and 56.40% inhibition, respectively, on TPA-induced ear oedema. The IC 50 of DESC on macrophages was 149.4 μg/mL. DESC (25 μg/mL) significantly reduced TNF-α (2.0-fold), IL-1β (2.2-fold) and IL-6 (2.0-fold) in macrophages stimulated with LPS and increased the production of IL-10 (1.9-fold). Inflammation is a basic response to injuries, and macrophages are involved in triggering inflammation. Macrophage cells exhibit a response to LPS, inducing inflammatory mediators, and DESC inhibits the biosynthesis of the pro-inflammatory and promote anti-inflammatory cytokines. DESC has an anti-inflammatory effect; reduced the levels of IL-1β, Il-6 and TNF-α; and increases IL-10 in macrophages stimulated with LPS. Ursolic acid is a good phytochemical marker.

  7. Chemical and biological study of Manilkara zapota (L.) Van Royen leaves (Sapotaceae) cultivated in Egypt

    PubMed Central

    Fayek, Nesrin M.; Monem, Azza R. Abdel; Mossa, Mohamed Y.; Meselhy, Meselhy R.; Shazly, Amani H.

    2012-01-01

    Background: Manilkara zapota (L.) Van Royen is an evergreen tree, native to the tropical Americas and introduced to Egypt as a fruiting tree in 2002. No previous study was reported on the plant cultivated in Egypt. Materials and Methods: In this study, the leaves of the plant cultivated in Egypt were subjected to phytochemical and biological investigations. The lipoidal matter was analyzed by GLC. Five compounds were isolated from the petroleum ether and ethyl acetate fractions of the alcoholic extract of the leaves by chromatographic fractionation on silica gel and sephadex, the structures of these compounds were identified using IR, UV, MS, 1H-NMR and 13C-NMR. The LD50 of the alcoholic and aqueous extracts of the leaves was determined and their antihyperglycemic, hypocholesterolemic and antioxidant activities were tested by enzymatic colorimetric methods using specific kits. Results: Unsaturated fatty acids represent 32.32 % of the total fatty acids, oleic acid (13.95%), linoleidic acid (10.18 %) and linoleic acid (5.96 %) were the major ones. The isolated compounds were identified as lupeol acetate, oleanolic acid, apigenin-7-O-α-L-rhamnoside, myricetin-3-O-α-L-rhamnoside and caffeic acid. This is the first report about isolation of these compounds from Manilkara zapota except myricetin-3-O-α-L-rhamnoside, which was previously isolated from the plant growing abroad. The LD50 recorded 80 g/Kg b. wt. for both the tested extracts, so they could be considered to be safe. They exhibited antihyperglycemic, hypocholesterolemic and antioxidant activities. Conclusion: The observed biological activities were attributed to the different chemical constituents present in the plant mainly its phenolic constituents. PMID:22518080

  8. Study of isomeric pentacyclic triterpene acids in traditional Chinese medicine of Forsythiae Fructus and their binding constants with β-cyclodextrin by capillary electrophoresis.

    PubMed

    Ren, Tingjun; Xu, Zhongqi

    2018-04-01

    In this study, a capillary zone electrophoresis (CZE) method was first developed to identify three microconstituents of isomeric pentacyclic triterpene acids (PTAs including oleanolic acid (OA), ursolic acid (UA) and betulinic acid (BA)) in Forsythiae Fructus (FF). The baseline separation of PTAs by CZE were eventually achieved in a background electrolyte (BGE) containing 50.0 mmol/L borax and 0.5 mmol/L β-cyclodextrin (β-CD) at pH 9.5 within 13.0 min. Herein, it was not only the compositions of BGE were detail investigated for rapid and good separation, but also the binding ratio and the equilibrium constants (K) for OA, UA and BA with β-CD was estimated by double reciprocal equation to well understand the separation mechanism. The proposed method allowed the LODs of PTAs were averaged at 1.50 μg/mL with UV detection (at 200 nm). The interday RSD of migration time and peak area were around 2.0 and 4.7% (n = 5), respectively. Thus, the content of PTAs in 19 FF real samples distinguished from maturation stages and geographical areas in China was quantified with the proposed method. Depending on the amount of each PTA in FF, it was demonstrated these microconstituents might benefit to identify their harvested time even qualities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. GC-MS Profiling of Triterpenoid Saponins from 28 Quinoa Varieties (Chenopodium quinoa Willd.) Grown in Washington State.

    PubMed

    Medina-Meza, Ilce G; Aluwi, Nicole A; Saunders, Steven R; Ganjyal, Girish M

    2016-11-16

    Quinoa (Chenopodium quinoa Willd) contains 2 to 5% saponins in the form of oleanane-type triterpenoid glycosides or sapogenins found in the external layers of the seeds. These saponins confer an undesirable bitter flavor. This study maps the content and profile of glycoside-free sapogenins from 22 quinoa varieties and 6 original breeding lines grown in North America under similar agronomical conditions. Saponins were recovered using a novel extraction protocol and quantified by GC-MS. Oleanolic acid (OA), hederagenin (HD), serjanic acid (SA), and phytolaccagenic acid (PA) were identified by their mass spectra. Total saponin content ranged from 3.81 to 27.1 mg/g among the varieties studied. The most predominant sapogenin was phytolaccagenic acid with 16.72 mg/g followed by hederagenin at 4.22 mg/g representing the ∼70% and 30% of the total sapogenin content. Phytolaccagenic acid and the total sapogenin content had a positive correlation of r 2 = 0.88 (p < 0.05). Results showed that none of the varieties we studied can be classified as "sweet". Nine varieties were classified as "low-sapogenin". We recommend six of the varieties be subjected to saponin removal process before consumption. A multivariate analysis was conducted to evaluate and cluster the different genotypes according their sapogenin profile as a way of predicting the possible utility of separate quinoa in food products. The multivariate analysis showed no correlations between origin of seeds and saponin profile and/or content.

  10. Structural basis for 18-β-glycyrrhetinic acid as a novel non-GSH analog glyoxalase I inhibitor.

    PubMed

    Zhang, Hong; Huang, Qiang; Zhai, Jing; Zhao, Yi-ning; Zhang, Li-ping; Chen, Yun-yun; Zhang, Ren-wei; Li, Qing; Hu, Xiao-peng

    2015-09-01

    Glyoxalase I (GLOI), a glutathione (GSH)-dependent enzyme, is overexpressed in tumor cells and related to multi-drug resistance in chemotherapy, making GLOI inhibitors as potential anti-tumor agents. But the most studied GSH analogs exhibit poor pharmacokinetic properties. The aim of this study was to discover novel non-GSH analog GLOI inhibitors and analyze their binding mechanisms. Mouse GLOI (mGLOI) was expressed in BL21 (DE3) pLysS after induction with isopropyl-β-D-1-thiogalactopyranoside and purified using AKTA FPLC system. An in vitro mGLOI enzyme assay was used to screen a small pool of compounds containing carboxyl groups. Crystal structure of the mGLOI-inhibitor complex was determined at 2.3 Å resolution. Molecular docking study was performed using Discovery Studio 2.5 software package. A natural compound 18-β-glycyrrhetinic acid (GA) and its derivative carbenoxolone were identified as potent competitive non-GSH analog mGLOI inhibitors with Ki values of 0.29 μmol/L and 0.93 μmol/L, respectively. Four pentacyclic triterpenes (ursolic acid, oleanolic acid, betulic acid and tripterine) showed weak activities (mGLOI inhibition ratio <25% at 10 μmol/L) and other three (maslinic acid, corosolic acid and madecassic acid) were inactive. The crystal structure of the mGLOI-GA complex showed that the carboxyl group of GA mimicked the γ-glutamyl residue of GSH by hydrogen bonding to the glutamyl sites (residues Arg38B, Asn104B and Arg123A) in the GSH binding site of mGLOI. The extensive van der Waals interactions between GA and the surrounding residues also contributed greatly to the binding of GA and mGLOI. This work demonstrates a carboxyl group to be an important functional feature of non-GSH analog GLOI inhibitors.

  11. Propylene glycol-linked amino acid/dipeptide diester prodrugs of oleanolic acid for PepT1-mediated transport: synthesis, intestinal permeability, and pharmacokinetics.

    PubMed

    Cao, Feng; Gao, Yahan; Wang, Meng; Fang, Lei; Ping, Qineng

    2013-04-01

    In our previous studies, ethylene glycol-linked amino acid diester prodrugs of oleanolic acid (OA), a Biopharmaceutics Classification System (BCS) class IV drug, designed to target peptide transporter 1 (PepT1) have been synthesized and evaluated. Unlike ethylene glycol, propylene glycol is of very low toxicity in vivo. In this study, propylene glycol was used as a linker to further compare the effect of the type of linker on the stability, permeability, affinity, and bioavailability of the prodrugs of OA. Seven diester prodrugs with amino acid/dipeptide promoieties containing L-Val ester (7a), L-Phe ester (7b), L-Ile ester (7c), D-Val-L-Val ester (9a), L-Val-L-Val ester (9b), L-Ala-L-Val ester (9c), and L-Ala-L-Ile ester (9d) were designed and successfully synthesized. In situ rat single-pass intestinal perfusion (SPIP) model was performed to screen the effective permeability (P(eff)) of the prodrugs. P(eff) of 7a, 7b, 7c, 9a, 9b, 9c, and 9d (6.7-fold, 2.4-fold, 1.24-fold, 1.22-fold, 4.15-fold, 2.2-fold, and 1.4-fold, respectively) in 2-(N-morpholino)ethanesulfonic acid buffer (MES) with pH 6.0 showed significant increase compared to that of OA (p < 0.01). In hydroxyethyl piperazine ethanesulfonic acid buffer (HEPES) of pH 7.4, except for 7c, 9a, and 9d, P(eff) of the other prodrugs containing 7a (5.2-fold), 7b (2.0-fold), 9b (3.1-fold), and 9c (1.7-fold) exhibited significantly higher values than that of OA (p < 0.01). In inhibition studies with glycyl-sarcosine (Gly-Sar, a typical substrate of PepT1), P(eff) of 7a (5.2-fold), 7b (2.0-fold), 9b (3.1-fold), and 9c (2.3-fold) had significantly reduced values (p < 0.01). Compared to the apparent permeability coefficient (P(app)) of OA with Caco-2 cell monolayer, significant enhancement of the P(app) of 7a (5.27-fold), 9b (3.31-fold), 9a (2.26-fold), 7b (2.10-fold), 7c (2.03-fold), 9c (1.87-fold), and 9d (1.39-fold) was also observed (p < 0.01). Inhibition studies with Gly-Sar (1 mM) showed that P(app) of 7a, 9b, and 9c significantly reduced by 1.3-fold, 1.6-fold, and 1.4-fold (p < 0.01), respectively. These results may be attributed to PepT1-mediated transport and their differential affinity toward PepT1. According to the permeability and affinity, 7a and 9b were selected in the pharmacokinetic studies in rats. Compared with group OA, C(max) for group 7a and 9b was enhanced to 3.04-fold (p < 0.01) and 2.62-fold (p < 0.01), respectively. AUC(0→24) was improved to 3.55-fold (p < 0.01) and 3.39-fold (p < 0.01), respectively. Compared to the ethylene glycol-linked amino acid diester prodrugs of OA in our previous work, results from this study revealed that part of the propylene glycol-linked amino acid/dipeptide diester prodrugs showed better stability, permeability, affinity, and bioavailability. In conclusion, propylene glycol-linked amino acid/dipeptide diester prodrugs of OA may be suitable for PepT1-targeted prodrugs of OA to improve the oral bioavailability of OA.

  12. Comparative protective effect of hawthorn berry hydroalcoholic extract, atorvastatin, and mesalamine on experimentally induced colitis in rats.

    PubMed

    Malekinejad, Hassan; Shafie-Irannejad, Vahid; Hobbenaghi, Rahim; Tabatabaie, Seyed Hamed; Moshtaghion, Seyed-Mehdi

    2013-07-01

    The protective effect of hydroalcoholic extract of hawthorn berries (HBE) on acetic acid (AA)-induced colitis in rats was investigated. Forty-two Wistar rats were divided into seven groups, including control and test groups (n=6). The control animals received saline, and the test animals were treated with saline (sham group), mesalamine (50 mg/kg; M group), atorvastatin (20 mg/kg; A group), HBE (100 mg/kg; H group), mesalamine and HBE (HM group), or atorvastatin plus HBE (HA group), 3 days before and a week after colitis induction. Colitis was induced by administration of 1 mL AA (4%) via a polyethylene catheter intrarectally. High-performance liquid chromatography analyses showed that HBE contained 0.13% and 0.5% oleanolic acid and ursolic acid, respectively. Elevated myeloperoxidase activity and lipid peroxidation were attenuated in the HA group. The H and HM groups showed marked reductions in colitis-induced decreases in total thiol molecules and body weight. The histopathological studies revealed that HBE decreased colitis-induced edema and infiltration of neutrophils. Our data suggest the anti-inflammatory and antioxidant effects of HBE and atorvastatin protect against AA-induced colitis. The anti-inflammatory effect of HBE may be attributable to its ability to decrease myeloperoxidase activity as a biomarker of neutrophil infiltration.

  13. Triterpenoid Acids as Important Antiproliferative Constituents of European Elderberry Fruits.

    PubMed

    Gleńsk, Michał; Czapińska, Elżbieta; Woźniak, Marta; Ceremuga, Ireneusz; Włodarczyk, Maciej; Terlecki, Grzegorz; Ziółkowski, Piotr; Seweryn, Ewa

    2017-01-01

    In Europe, both the fruits and flowers of Sambucus nigra L. have been used against cold, as well as laxative, diaphoretic, and diuretic remedies. There are also a number of commercially available food products that contain elderberry juice, puréed or dried elderberries. Recent comprehensive literature data on pharmacology and chemistry of Sambuci fructus have encouraged us to screen extracts with different polarities from this plant material against cancer cell lines. The cytotoxic activity of the ethyl acetate and aqueous acetone extracts from elderberries as well as detected triterpenoids on human colon adenocarcinoma cell line (LoVo) and human breast cancer cell line (MCF-7) was investigated by sulforhodamine B assay. Moreover, cell migration assay was conducted for triterpenoid fraction and pure compounds. Aqueous acetone extract possessed much lower IC 50 value in cancer cell lines compared to ethyl acetate extract. The latter manifested high cytotoxicity against studied cell lines, suggesting that nonpolar compounds are responsible for the cytotoxic activity. Indeed, the phytochemical analysis revealed that ursolic and oleanolic acids are the main triterpenoids in the mentioned extract of which ursolic acid showed the highest activity with IC 50 values of 10.7 µg/mL on MCF-7 and 7.7 µg/mL on LoVo cells.

  14. Phytochemical Analysis and Antimicrobial, Antinociceptive, and Anti-Inflammatory Activities of Two Chemotypes of Pimenta pseudocaryophyllus (Myrtaceae)

    PubMed Central

    de Paula, Joelma Abadia Marciano; Silva, Maria do Rosário Rodrigues; Costa, Maysa P.; Diniz, Danielle Guimarães Almeida; Sá, Fabyola A. S.; Alves, Suzana Ferreira; Costa, Élson Alves; Lino, Roberta Campos; de Paula, José Realino

    2012-01-01

    Preparations from Pimenta pseudocaryophyllus (Gomes) L.R. Landrum (Myrtaceae) have been widely used in Brazilian folk medicine. This study aims to evaluate the antimicrobial activity of the crude ethanol extracts, fractions, semipurified substances, and essential oils obtained from leaves of two chemotypes of P. pseudocaryophyllus and to perform the antinociceptive and anti-inflammatory screening. The ethanol extracts were purified by column chromatography and main compounds were spectrally characterised (1D and 2D 1H and 13C NMR). The essential oils constituents were identified by GC/MS. The broth microdilution method was used for testing the antimicrobial activity. The abdominal contortions induced by acetic acid and the ear oedema induced by croton oil were used for screening of antinociceptive and anti-inflammatory activities, respectively. The phytochemical analysis resulted in the isolation of pentacyclic triterpenes, flavonoids, and phenol acids. The oleanolic acid showed the best profile of antibacterial activity for Gram-positive bacteria (31.2–125 μg mL−1), followed by the essential oil of the citral chemotype (62.5–250 μg mL−1). Among the semipurified substances, Ppm5, which contained gallic acid, was the most active for Candida spp. (31.2 μg mL−1) and Cryptococcus spp. (3.9–15.6 μg mL−1). The crude ethanol extract and fractions from citral chemotype showed antinociceptive and anti-inflammatory effects. PMID:23082081

  15. Triterpenic Acids Present in Hawthorn Lower Plasma Cholesterol by Inhibiting Intestinal ACAT Activity in Hamsters

    PubMed Central

    Lin, Yuguang; Vermeer, Mario A.; Trautwein, Elke A.

    2011-01-01

    Hawthorn (Crataegus pinnatifida) is an edible fruit used in traditional Chinese medicine to lower plasma lipids. This study explored lipid-lowering compounds and underlying mechanisms of action of hawthorn. Hawthorn powder extracts inhibited acylCoA:cholesterol acyltransferase (ACAT) activity in Caco-2 cells. The inhibitory activity was positively associated with triterpenic acid (i.e., oleanolic acid (OA) and ursolic acid (UA)) contents in the extracts. Cholesterol lowering effects of hawthorn and its potential additive effect in combination with plant sterol esters (PSE) were further studied in hamsters. Animals were fed a semi-synthetic diet containing 0.08% (w/w) cholesterol (control) or the same diet supplemented with (i) 0.37% hawthorn dichloromethane extract, (ii) 0.24% PSE, (iii) hawthorn dichloromethane extract (0.37%) plus PSE (0.24%) or (iv) OA/UA mixture (0.01%) for 4 weeks. Compared to the control diet, hawthorn, PSE, hawthorn plus PSE and OA/UA significantly lowered plasma non-HDL (VLDL + LDL) cholesterol concentrations by 8%, 9%, 21% and 6% and decreased hepatic cholesterol ester content by 9%, 23%, 46% and 22%, respectively. The cholesterol lowering effects of these ingredients were conversely associated with their capacities in increasing fecal neutral sterol excretion. In conclusion, OA and UA are responsible for the cholesterol lowering effect of hawthorn by inhibiting intestinal ACAT activity. In addition, hawthorn and particularly its bioactive compounds (OA and UA) enhanced the cholesterol lowering effect of plant sterols. PMID:19228775

  16. Triterpenic Acids Present in Hawthorn Lower Plasma Cholesterol by Inhibiting Intestinal ACAT Activity in Hamsters.

    PubMed

    Lin, Yuguang; Vermeer, Mario A; Trautwein, Elke A

    2011-01-01

    Hawthorn (Crataegus pinnatifida) is an edible fruit used in traditional Chinese medicine to lower plasma lipids. This study explored lipid-lowering compounds and underlying mechanisms of action of hawthorn. Hawthorn powder extracts inhibited acylCoA:cholesterol acyltransferase (ACAT) activity in Caco-2 cells. The inhibitory activity was positively associated with triterpenic acid (i.e., oleanolic acid (OA) and ursolic acid (UA)) contents in the extracts. Cholesterol lowering effects of hawthorn and its potential additive effect in combination with plant sterol esters (PSE) were further studied in hamsters. Animals were fed a semi-synthetic diet containing 0.08% (w/w) cholesterol (control) or the same diet supplemented with (i) 0.37% hawthorn dichloromethane extract, (ii) 0.24% PSE, (iii) hawthorn dichloromethane extract (0.37%) plus PSE (0.24%) or (iv) OA/UA mixture (0.01%) for 4 weeks. Compared to the control diet, hawthorn, PSE, hawthorn plus PSE and OA/UA significantly lowered plasma non-HDL (VLDL + LDL) cholesterol concentrations by 8%, 9%, 21% and 6% and decreased hepatic cholesterol ester content by 9%, 23%, 46% and 22%, respectively. The cholesterol lowering effects of these ingredients were conversely associated with their capacities in increasing fecal neutral sterol excretion. In conclusion, OA and UA are responsible for the cholesterol lowering effect of hawthorn by inhibiting intestinal ACAT activity. In addition, hawthorn and particularly its bioactive compounds (OA and UA) enhanced the cholesterol lowering effect of plant sterols.

  17. A rapid LC/MS/MS method for the analysis of nonvolatile antiinflammatory agents from Mentha spp.

    PubMed

    Shen, Diandian; Pan, Min-Hsiung; Wu, Qing-Li; Park, Chung-Heon; Juliani, H Rodolfo; Ho, Chi-Tang; Simon, James E

    2011-08-01

    Mints (Mentha spp.), aromatic crops grown largely for their essential oils, also are rich sources of nonvolatile antiinflammatory agents. Identification and quantitation of the constituents responsible for their antiinflammatory activity is challenging owing to the lack of suitable chromatographic methodology. In the present research, the simultaneous quantitation of antiinflammatory constituents rosmarinic acid, oleanolic acid, and ursolic acid in mints was attained by using a unique tandem HPLC column system coupled with an electrospray ionization mass detection (MRM mode). The ion mode optimization for rosmarinic acid under negative and triterpenoid acids under positive was achieved by setting 2 time segments in a single run where the polarity mode was switched from negative (0 to 10 min) to positive (10 to 40 min). For the investigated concentration ranges of antiinflammatory agents in mints, good linearities (r² ≥ 0.998) were obtained for each calibration curve. Validation of precision and accuracy for this method showed that intra- and inter-day repeatabilities for all analytes were less than 5.51%, and the recoveries varied from 97.8% to 99.3%. The developed LC/MS/MS assay provides a suitable quality control method for the determination of antiinflammatory constituents in Mentha spp. There is a wide range of diversity in the natural product composition for these acids across the Mentha germplasm collection evaluated. The presence of these antiinflammatory acids in post-distilled mints shows that value-added nutraceutical enriched products can be developed with proper processing and recovery systems in addition to the distillation and capture of the valuable volatile essential oils. Results from this research would benefit both commercial farmers growing mint for essential oil and those in the food industry where value-added phytopharmaceutical enriched products can be developed with proper processing, quality control, and recovery systems during mint essential oil distillation. © 2011 Institute of Food Technologists®

  18. Identification and genome organization of saponin pathway genes from a wild crucifer, and their use for transient production of saponins in Nicotiana benthamiana.

    PubMed

    Khakimov, Bekzod; Kuzina, Vera; Erthmann, Pernille Ø; Fukushima, Ery Odette; Augustin, Jörg M; Olsen, Carl Erik; Scholtalbers, Jelle; Volpin, Hanne; Andersen, Sven Bode; Hauser, Thure P; Muranaka, Toshiya; Bak, Søren

    2015-11-01

    The ability to evolve novel metabolites has been instrumental for the defence of plants against antagonists. A few species in the Barbarea genus are the only crucifers known to produce saponins, some of which make plants resistant to specialist herbivores, like Plutella xylostella, the diamondback moth. Genetic mapping in Barbarea vulgaris revealed that genes for saponin biosynthesis are not clustered but are located in different linkage groups. Using co-location with quantitative trait loci (QTLs) for resistance, transcriptome and genome sequences, we identified two 2,3-oxidosqualene cyclases that form the major triterpenoid backbones. LUP2 mainly produces lupeol, and is preferentially expressed in insect-susceptible B. vulgaris plants, whereas LUP5 produces β-amyrin and α-amyrin, and is preferentially expressed in resistant plants; β-amyrin is the backbone for the resistance-conferring saponins in Barbarea. Two loci for cytochromes P450, predicted to add functional groups to the saponin backbone, were identified: CYP72As co-localized with insect resistance, whereas CYP716As did not. When B. vulgaris sapogenin biosynthesis genes were transiently expressed by CPMV-HT technology in Nicotiana benthamiana, high levels of hydroxylated and carboxylated triterpenoid structures accumulated, including oleanolic acid, which is a precursor of the major resistance-conferring saponins. When the B. vulgaris gene for sapogenin 3-O-glucosylation was co-expressed, the insect deterrent 3-O-oleanolic acid monoglucoside accumulated, as well as triterpene structures with up to six hexoses, demonstrating that N. benthamiana further decorates the monoglucosides. We argue that saponin biosynthesis in the Barbarea genus evolved by a neofunctionalized glucosyl transferase, whereas the difference between resistant and susceptible B. vulgaris chemotypes evolved by different expression of oxidosqualene cyclases (OSCs). © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  19. Protective effects of oleanolic acid on oxidative stress and the expression of cytokines and collagen by the AKT/NF‑κB pathway in silicotic rats.

    PubMed

    Peng, Hai-Bing; Wang, Rui-Xun; Deng, Hai-Jing; Wang, Yong-Heng; Tang, Jun-Dong; Cao, Fu-Yuan; Wang, Jian-Hui

    2017-05-01

    Oleanolic acid (OA), a natural pentacyclic triterpenoid, has been reported to have several benefits and medicinal properties. However, its protective effects against silica‑induced lung injury and fibrosis remain to be elucidated. The aim of the present study was to investigate the effects of OA on oxidative stress, and the expression of cytokines and collagen in silicotic rats. Male rats were induced by intratracheal instillation of silicosis (250 mg/kg), with the exception of the control group (NS). The rats in the OA group were intragastrically administered with OA (60 mg/kg/d). The rats in the solvent control group were gavaged daily with 0.6% sodium carboxymethyl cellulose (10 ml/kg) solution for 56 consecutive days. The data showed that OA significantly attenuated the extent of silicosis fibrosis by histopathologic analysis of the lung tissues. In addition, oxidative stress activated by silica exposure, as evidenced by increasing of malondialdehyde content, and activities of superoxide dismutase and glutathione peroxidase in the lung, was regulated by treatment with OA. Furthermore, enzyme‑linked immunosorbent assay analysis showed that OA significantly decreased the levels of tumor necrosis factor‑α and transforming growth factor‑β1. Immunohistochemistry analysis showed that OA significantly decreased collagen types I and III. In investigating the mechanisms underlying the action of OA, it was found that OA decreased the level of phosphorylated AKT1, which in turn inactivated the transcriptional of nuclear factor (NF)‑κB in the development and progress of silicosis. In conclusion, these results suggested that the protective effects of OA were due, at least in part, to its anti‑oxidant activity and its ability to decrease the expression of cytokines and collagen by modulating the AKT/NF‑κB pathway.

  20. Oleanolic acid induces p53-dependent apoptosis via the ERK/JNK/AKT pathway in cancer cell lines in prostatic cancer xenografts in mice.

    PubMed

    Kim, Gyeong-Ji; Jo, Hyeon-Ju; Lee, Kwon-Jai; Choi, Jeong Woo; An, Jeung Hee

    2018-05-29

    We evaluated oleanolic acid (OA)-induced anti-cancer activity, apoptotic mechanism, cell cycle status, and MAPK kinase signaling in DU145 (prostate cancer), MCF-7 (breast cancer), U87 (human glioblastoma), normal murine liver cell (BNL CL.2) and human foreskin fibroblast cell lines (Hs 68). The IC50 values for OA-induced cytotoxicity were 112.57 in DU145, 132.29 in MCF-7, and 163.60 in U87 cells, respectively. OA did not exhibit toxicity in BNL CL. 2 and Hs 68 cell lines in our experiments. OA, at 100 µg/mL, increased the number of apoptotic cells to 27.0% in DU145, 27.0% in MCF-7, and 15.7% in U87, when compared to control cells. This enhanced apoptosis was due to increases in p53, cytochrome c, Bax, PARP-1 and caspase-3 expression in DU145, MCF-7 and U87 cell lines. OA-treated DU145 cells were arrested in G2 because of the activation of p-AKT, p-JNK, p21 and p27, and the decrease in p-ERK, cyclin B1 and CDK2 expression; OA-treated MCF-7 cells were arrested in G1 owing to the activation of p-JNK, p-ERK, p21, and p27, and the decrease in p-AKT, cyclin D1, CDK4, cyclin E, and CDK2; and OA-treated U87 cells also exhibited G1 phase arrest caused by the increase in p-ERK, p-JNK, p-AKT, p21, and p27, and the decrease in cyclin D1, CDK4, cyclin E and CDK2. Thus, OA arrested the cell cycle at different phases and induced apoptosis in cancer cells. These results suggested that OA possibly altered the expression of the cell cycle regulatory proteins differently in varying types of cancer.

  1. Apoptosis caused by triterpenes and phytosterols and antioxidant activity of an enriched flavonoid extract and from Passiflora mucronata.

    PubMed

    da Silva, Isabel Cristina Vieira; Kaluderovic, Goran; de Oliveira, Pollyana Felix; Guimaraes, Denise Oliveira; Quaresma, Carla Holandino; Porzel, Andrea; Muzitano, Michelle Frazao; Wessjohann, Ludger A; Leal, Ivana Correa Ramos

    2018-03-14

    The genus Passiflora is knew for food consumption mainly and it extracts present a variety of methabolites, including flavones, alkaloids and triterpenes usually correlated with their antioxidant and antitumoral activities. P. mucronata (Pm) is from Brazil South America and is characterized as "Maracujá de Restinga", being used in the folk medicine for treating insomnia and soothing. The present study evaluated in the first time, the antioxidant and cytotoxicity of the hydroalcoholic leaves extract and fractions from Pm. Their cytotoxic effects were against human prostate cancer (PC3) and mouse malignant melanoma (B16F10) cell lines, by the MTT and CV assays. β-Amyrin, oleanolic acid, β-sitosterol and stigmasterol were isolated as the main components of the most active hexane fraction. These substances were tested individually against the tumor cell lines, whereby β-sitosterol and stigmasterol showed the most relevant activity to PC3 in CV assay and, oleanolic acid to B16F10 by the MTT assay. In addition, these compounds were analysed to cell cycle arrest, and stigmasterol decreased the number of cells in B16F10 line in the G1/G0 phase and subsequently, increased the cell number in sub-G1 phase, presumably indicating apoptosis as possible mode of cell death.The antioxidant activity by the DPPH method showed that the hydroalcoholic extract from the leaves presented higher antioxidant activity (EC50= 133.3 µg/mL) compared to the flowers (EC50= 152.3 µg/mL) and fruits (EC50=207.9 µg/mL) extracts. By the HPLC-MS it was possible to identify the main flavones present in the leaf extract (isoschaftoside, schaftoside, isovitexin, vitexin, isoorientin, orientin). Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Fragment-based discovery of novel pentacyclic triterpenoid derivatives as cholesteryl ester transfer protein inhibitors.

    PubMed

    Chang, Yongzhi; Zhou, Shuxi; Li, Enqin; Zhao, Wenfeng; Ji, Yanpeng; Wen, Xiaoan; Sun, Hongbin; Yuan, Haoliang

    2017-01-27

    Cholesteryl Ester Transfer Protein (CETP) is an important therapeutic target for the treatment of atherosclerotic cardiovascular disease. Our molecular modeling study revealed that pentacyclic triterpenoid compounds could mimic the protein-ligand interactions of the endogenous ligand cholesteryl ester (CE) by occupying its binding site. Alignment of the docking conformations of oleanolic acid (OA), ursolic acid (UA) and the crystal conformations of known CETP inhibitor Torcetrapib in the active site proposed the applicability of fragment-based drug design (FBDD) approaches in this study. Accordingly, a series of pentacyclic triterpenoid derivatives have been designed and synthesized as novel CETP inhibitors. The most potent compound 12e (IC 50 :0.28 μM) validated our strategy for molecular design. Molecular dynamics simulations illustrated that the more stable hydrogen bond interaction of the UA derivative 12e with Ser191 and stronger hydrophobic interactions with Val198, Phe463 than those of OA derivative 12b mainly led to their significantly different CETP inhibitory activity. These novel potent CETP inhibitors based on ursane-type scaffold should deserve further investigation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Characterization and Quantitation of Triterpenoid Saponins in Raw and Sprouted Chenopodium berlandieri spp. (Huauzontle) Grains Subjected to Germination with or without Selenium Stress Conditions.

    PubMed

    Lazo-Vélez, Marco A; Guajardo-Flores, Daniel; Mata-Ramírez, Daniel; Gutiérrez-Uribe, Janet A; Serna-Saldivar, Sergio O

    2016-01-01

    Pseudocereal Chenopodium berlandieri spp. (huauzontle) was evaluated to determine saponin composition. Saponins were evaluated in raw and germinated grains subjected to chemical stress induced by sodium selenite. Analysis by liquid chromatography coupled with ELSD detector revealed the presence of 12 saponins, identified according to compounds previously assayed in Chenopodium quinoa. Saponins found at the highest concentrations in raw grains were derived from oleanolic and phytolaccagenic acids. Total saponin concentration significantly decreased in germinated compared to raw grains due to the significant loss of 90.1% and 95.7% of the phytolaccagenic acid without and with chemical selenium stress, respectively. The most abundant saponin in germinated sprouts decreased during normal germination. Interestingly, the concentration of this particular saponin significantly increased during the Se-induced stress germination. Chemical stress with selenium salts proved to change the saponin composition in geminated Chenopodium berlandieri spp. grains, therefore affecting their potential use as ingredient in the food industry. © 2015 Institute of Food Technologists®

  4. Time course of pentacyclic triterpenoids from fruits and leaves of olive tree (Olea europaea L.) cv. Picual and cv. Cornezuelo during ripening.

    PubMed

    Peragón, Juan

    2013-07-10

    Pentacyclic triterpenoids are plant secondary metabolites of great interest for health and disease prevention. HPLC-UV/vis was used to determine the concentration of the pentacyclic triterpenoids present in fruits and leaves of Picual and Cornezuelo olive tree cultivars. Maslinic acid (MA) and oleanolic acid (OA) are the only two compounds present in fruits, MA being the more abundant. In leaves, in addition to MA and OA, uvaol (UO), and erythrodiol (EO) are found, with OA being the most abundant. In this work, the changes in the concentrations of these compounds during ripening as well as the effect of Jaén-style table-olive processing are reported. The amount of MA and OA found in Picual and Cornezuelo olives after processing was 1.26 ± 0.06, 1.30 ± 0.06, 0.31 ± 0.02, and 0.23 ± 0.01 mg per fruit, respectively. These results enable us to calculate the average intake of pentacyclic triterpenoids and reinforce the importance of table olives as a source of healthy compounds.

  5. Synthesis, Formulation, and Adjuvanticity of Monodesmosidic Saponins with Olenanolic Acid, Hederagenin and Gypsogenin Aglycones, and some C‐28 Ester Derivatives†

    PubMed Central

    Greatrex, Ben W.; Daines, Alison M.; Hook, Sarah; Lenz, Dirk H.; McBurney, Warren; Rades, Thomas

    2015-01-01

    Abstract In an attempt to discover a new synthetic vaccine adjuvant, the glycosylation of hederagenin, gypsogenin, and oleanolic acid acceptors with di‐ and trisaccharide donors to generate a range of mimics of natural product QS‐21 was carried out. The saponins were formulated with phosphatidylcholine and cholesterol, and the structures analyzed by transmission electron microscopy. 3‐O‐(Manp(1→3)Glcp)hederagenin was found to produce numerous ring‐like micelles when formulated, while C‐28 choline ester derivatives preferred self‐assembly and did not interact with the liposomes. When alone and in the presence of cholesterol and phospholipid, the choline ester derivatives produced nanocrystalline rods or helical micelles. The effects of modifying sugar stereochemistry and the aglycone on the immunostimulatory effects of the saponins was then evaluated using the activation markers MHC class II and CD86 in murine bone marrow dendritic cells. The most active saponin, 3‐O‐(Manp(1→3)Glcp)hederagenin, was stimulatory at high concentrations in cell culture, but this did not translate to strong responses in vivo. PMID:27308200

  6. Supercritical Fluid Extraction of Eucalyptus globulus Bark—A Promising Approach for Triterpenoid Production

    PubMed Central

    Domingues, Rui M. A.; Oliveira, Eduardo L. G.; Freire, Carmen S. R.; Couto, Ricardo M.; Simões, Pedro C.; Neto, Carlos P.; Silvestre, Armando J. D.; Silva, Carlos M.

    2012-01-01

    Eucalyptus bark contains significant amounts of triterpenoids with demonstrated bioactivity, namely triterpenic acids and their acetyl derivatives (ursolic, betulinic, oleanolic, betulonic, 3-acetylursolic, and 3-acetyloleanolic acids). In this work, the supercritical fluid extraction (SFE) of Eucalyptus globulus deciduous bark was carried out with pure and modified carbon dioxide to recover this fraction, and the results were compared with those obtained by Soxhlet extraction with dichloromethane. The effects of pressure (100–200 bar), co-solvent (ethanol) content (0, 5 and 8% wt), and multistep operation were studied in order to evaluate the applicability of SFE for their selective and efficient production. The individual extraction curves of the main families of compounds were measured, and the extracts analyzed by GC-MS. Results pointed out the influence of pressure and the important role played by the co-solvent. Ethanol can be used with advantage, since its effect is more important than increasing pressure by several tens of bar. At 160 bar and 40 °C, the introduction of 8% (wt) of ethanol greatly improves the yield of triterpenoids more than threefold. PMID:22837719

  7. [Chemical constituents of Halenia elliptica].

    PubMed

    Wang, Hongling; Chen, Hao; Geng, Chang'an; Zhang, Xuemei; Ma, Yunbao; Jiang, Zhiyong; Chen, Jijun

    2011-06-01

    To study the chemical constituents of Halenia elliptica. The air-dried whole plants of Halenia elliptica were extracted with 90% EtOH. The EtOH extract was condensed to a small amount of volume and extracted with petroleum ether, EtOAc and n-BuOH, successively. The compounds were isolated and purified by column chromatography from the EtOAc fraction, and identified based on spectral analyses (MS, 1H-NMR, 13C-NMR). 12 compounds were isolated from H. elliptica, and characterized as 8-hydroxy-2-methylchromone (1), 5-methoxy-2-methylchromone (2), 7-epi-vogeloside (3), coniferl aldehyde (4), sinapaldehyde (5), norbellidifolin (6), 1-hydroxyl-2,3,4,6-tetramethoxyxanthone (7), 1-hydroxyl-2,3,4,7-tetramethoxyxanthone (8), 1-hydroxyl-2,3,5-trimethoxyxanthone (9), together with azelaic acid, beta-sitosterol, and oleanolic acid. Compounds 1, 2 were new natural compounds and compounds 3-6, 10 were obtained from H. elliptica for the first time and compound 6 showed inhibitory activities against HBsAg and HBeAg secretion with IC50 value of 0.77 and < 0.62 mmol x L(-1), respectively.

  8. Synthesis and proapoptotic activity of oleanolic acid derived amides.

    PubMed

    Heller, Lucie; Knorrscheidt, Anja; Flemming, Franziska; Wiemann, Jana; Sommerwerk, Sven; Pavel, Ioana Z; Al-Harrasi, Ahmed; Csuk, René

    2016-10-01

    Thirty-one different 3-O-acetyl-OA derived amides have been prepared and screened for their cytotoxic activity. In the SRB assays nearly all the carboxamides displayed good cytotoxicity in the low μM range for several human tumor cell lines. Low EC50 values were obtained especially for the picolinylamides 14-16, for a N-[2-(dimethylamino)-ethyl] derivative 27 and a N-[2-(pyrrolinyl)-ethyl] carboxamide 28. These compounds were submitted to an extensive biological testing and proved compound 15 to act mainly by an arrest of the tumor cells in the S phase of the cell cycle. Cell death occurred by autophagy while compounds 27 and 28 triggered apoptosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives.

    PubMed

    Xiao, Sulong; Tian, Zhenyu; Wang, Yufei; Si, Longlong; Zhang, Lihe; Zhou, Demin

    2018-05-01

    Viral infections cause many serious human diseases with high mortality rates. New drug-resistant strains are continually emerging due to the high viral mutation rate, which makes it necessary to develop new antiviral agents. Compounds of plant origin are particularly interesting. The pentacyclic triterpenoids (PTs) are a diverse class of natural products from plants composed of three terpene units. They exhibit antitumor, anti-inflammatory, and antiviral activities. Oleanolic, betulinic, and ursolic acids are representative PTs widely present in nature with a broad antiviral spectrum. This review focuses on the recent literatures in the antiviral efficacy of this class of phytochemicals and their derivatives. In addition, their modes of action are also summarized. © 2018 Wiley Periodicals, Inc.

  10. Interactions of antiparasitic sterols with sterol 14α-demethylase (CYP51) of human pathogens.

    PubMed

    Warfield, Jasmine; Setzer, William N; Ogungbe, Ifedayo Victor

    2014-01-01

    Sterol 14α-demethylase is a validated and an attractive drug target in human protozoan parasites. Pharmacological inactivation of this important enzyme has proven very effective against fungal infections, and it is a target that is being exploited for new antitrypanosomal and antileishmanial chemotherapy. We have used in silico calculations to identify previously reported antiparasitic sterol-like compounds and their structural congeners that have preferential and high docking affinity for CYP51. The sterol 14α-demethylase from Trypanosoma cruzi and Leishmania infantum, in particular, preferentially dock to taraxerol, epi-oleanolic acid, and α/β-amyrim structural scaffolds. These structural information and predicted interactions can be exploited for fragment/structure-based antiprotozoal drug design.

  11. High Triterpenic Acids Production in Callus Cultures from Fruit Pulp of Two Apple Varieties.

    PubMed

    Verardo, Giancarlo; Gorassini, Andrea; Ricci, Donata; Fraternale, Daniele

    2017-01-01

    Very rarely fruit pulp has been used in in vitro culture to produce secondary metabolites useful in promoting health. The aims of this work were the study of the best conditions to obtain the callus cultures from the pulp of two varieties of apples, Golden Delicious (GD) and "Mela Rosa Marchigiana" (MRM), and the quali-quantitative analysis of secondary metabolites produced by the two in vitro callus cultures. Callus was induced on both Murashige and Skoog and Gamborg B5 media containing various combinations of supplements. To achieve the maximum recovery of secondary metabolites produced, preliminary extraction tests were carried out on GD apple culture using two different organic solvents (MeOH and EtOAc). The quali-quantitative analysis of the methanolic extract of both cultures was carried out by ESI-MS n and GC-MS techniques. The GC-MS analysis revealed the presence of triterpenic acids, in particular, oleanolic, ursolic, maslinic, pomolic, tormentic, corosolic and annurcoic acid along with a phytosterol, β-sitosterol. In addition, GD callus culture produced phloridzin, absent in the MRM culture. In this last culture, however, the total amount of secondary metabolites was markedly higher. The in vivo production of these bioactive compounds were also quantified in the GD and MRM apple pulps. Apple pulps produced higher amounts of triterpenic acids in vitro than in vivo. The present work can be considered a method to amplify the production of important secondary metabolites which exert beneficial effects on human health. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Differential Lipid Composition and Gene Expression in the Semi-Russeted “Cox Orange Pippin” Apple Variety

    PubMed Central

    Legay, Sylvain; Cocco, Emmanuelle; André, Christelle M.; Guignard, Cédric; Hausman, Jean-Francois; Guerriero, Gea

    2017-01-01

    Russeting is characterized by a particular rough and brown phenotype, which is mainly due to the accumulation of suberin in the inner part of the epidermal cell walls. In our previous bulk transcriptomic analysis, comparing fully russeted, and waxy apple varieties, showed, in apple fruit skin, a massive decreased expression of cutin, wax and some pentacyclic triterpene biosynthesis genes in the russeted varieties, with an expected concomitant enhanced expression of the suberin biosynthetic genes. In the present work, we performed a deep investigation of the aliphatic composition of the cutin, suberin, waxes, and triterpenes in the waxy and russeted patches of the semi-russeted apple variety “Cox Orange Pippin.” A targeted gene expression profiling was performed to validate candidate genes which were identified in our previous work and might be involved in the respective metabolic pathways. Our results showed that a decrease of cuticular waxes, ursolic acid and oleanolic acid, accompanied by an accumulation of alkyl-hydroxycinamates and betulinic acid, occurs in the russeted patches. The suberin monomer composition is characterized by specific occurrence of 20, 22, and 24 carbon aliphatic chains, whereas cutin is mainly represented by common C16 and C18 aliphatic chains. This work depicts, for the first time in apple, the complex composition of suberin, cutin, waxes and triterpenes, and confirms the strong interplay between these epidermal polymers in apple fruit skin. PMID:29018466

  13. Differential Lipid Composition and Gene Expression in the Semi-Russeted "Cox Orange Pippin" Apple Variety.

    PubMed

    Legay, Sylvain; Cocco, Emmanuelle; André, Christelle M; Guignard, Cédric; Hausman, Jean-Francois; Guerriero, Gea

    2017-01-01

    Russeting is characterized by a particular rough and brown phenotype, which is mainly due to the accumulation of suberin in the inner part of the epidermal cell walls. In our previous bulk transcriptomic analysis, comparing fully russeted, and waxy apple varieties, showed, in apple fruit skin, a massive decreased expression of cutin, wax and some pentacyclic triterpene biosynthesis genes in the russeted varieties, with an expected concomitant enhanced expression of the suberin biosynthetic genes. In the present work, we performed a deep investigation of the aliphatic composition of the cutin, suberin, waxes, and triterpenes in the waxy and russeted patches of the semi-russeted apple variety "Cox Orange Pippin." A targeted gene expression profiling was performed to validate candidate genes which were identified in our previous work and might be involved in the respective metabolic pathways. Our results showed that a decrease of cuticular waxes, ursolic acid and oleanolic acid, accompanied by an accumulation of alkyl-hydroxycinamates and betulinic acid, occurs in the russeted patches. The suberin monomer composition is characterized by specific occurrence of 20, 22, and 24 carbon aliphatic chains, whereas cutin is mainly represented by common C16 and C18 aliphatic chains. This work depicts, for the first time in apple, the complex composition of suberin, cutin, waxes and triterpenes, and confirms the strong interplay between these epidermal polymers in apple fruit skin.

  14. Comparative Protective Effect of Hawthorn Berry Hydroalcoholic Extract, Atorvastatin, and Mesalamine on Experimentally Induced Colitis in Rats

    PubMed Central

    Shafie-Irannejad, Vahid; Hobbenaghi, Rahim; Tabatabaie, Seyed Hamed; Moshtaghion, Seyed-Mehdi

    2013-01-01

    Abstract The protective effect of hydroalcoholic extract of hawthorn berries (HBE) on acetic acid (AA)–induced colitis in rats was investigated. Forty-two Wistar rats were divided into seven groups, including control and test groups (n=6). The control animals received saline, and the test animals were treated with saline (sham group), mesalamine (50 mg/kg; M group), atorvastatin (20 mg/kg; A group), HBE (100 mg/kg; H group), mesalamine and HBE (HM group), or atorvastatin plus HBE (HA group), 3 days before and a week after colitis induction. Colitis was induced by administration of 1 mL AA (4%) via a polyethylene catheter intrarectally. High-performance liquid chromatography analyses showed that HBE contained 0.13% and 0.5% oleanolic acid and ursolic acid, respectively. Elevated myeloperoxidase activity and lipid peroxidation were attenuated in the HA group. The H and HM groups showed marked reductions in colitis-induced decreases in total thiol molecules and body weight. The histopathological studies revealed that HBE decreased colitis-induced edema and infiltration of neutrophils. Our data suggest the anti-inflammatory and antioxidant effects of HBE and atorvastatin protect against AA-induced colitis. The anti-inflammatory effect of HBE may be attributable to its ability to decrease myeloperoxidase activity as a biomarker of neutrophil infiltration. PMID:23875899

  15. [Chemical constituents of Swertia macrosperma].

    PubMed

    Wang, Hongling; Geng, Changan; Zhang, Xuemei; Ma, Yunbao; Jiang, Zhiyong; Chen, Jijun

    2010-12-01

    To study the chemical constituents of Swertia macrosperma. The air-dried whole plants of Swertia macrosperma were extracted with boiling water. The extract was concentrated to a small amount of volume and extracted with petroleum ether, EtOAc and n-BuOH, successively. The compounds were isolated and purified by column chromatography from the EtOAc fraction, and identified based on spectral analyses (MS, 1H-NMR, 13C-NMR). Thirteen compounds were isolated from S. macrosperma, and were characterized as norbellidifolin (1), 1-hydroxy-3,7, 8-trimethoxy-xanthone (2), norswertianolin (3), swertianolin (4), 1,3,7,8-tetrahydroxyxanthone-8-O-beta-D-glucopyranoside (5), swertiamatin (6), decentapicrin (7), coniferl aldehyde (8), sinapaldehyde (9), balanophonin (10), together with beta-sitosterol, daucosterol, and oleanolic acid . Compounds 2, 4-10 were obtained from Swertia macrosperma for the first time.

  16. Transcriptomics and the Mediterranean Diet: A Systematic Review

    PubMed Central

    Herrera-Marcos, Luis V.; Lou-Bonafonte, José M.; Arnal, Carmen; Navarro, María A.; Osada, Jesús

    2017-01-01

    The Mediterranean diet has been proven to be highly effective in the prevention of cardiovascular diseases and cancer and in decreasing overall mortality. Nowadays, transcriptomics is gaining particular relevance due to the existence of non-coding RNAs capable of regulating many biological processes. The present work describes a systematic review of current evidence supporting the influence of the Mediterranean diet on transcriptomes of different tissues in various experimental models. While information on regulatory RNA is very limited, they seem to contribute to the effect. Special attention has been given to the oily matrix of virgin olive oil. In this regard, monounsaturated fatty acid-rich diets prevented the expression of inflammatory genes in different tissues, an action also observed after the administration of olive oil phenolic compounds. Among these, tyrosol, hydroxytyrosol, and secoiridoids have been found to be particularly effective in cell cycle expression. Less explored terpenes, such as oleanolic acid, are important modulators of circadian clock genes. The wide range of studied tissues and organisms indicate that response to these compounds is universal and poses an important level of complexity considering the different genes expressed in each tissue and the number of different tissues in an organism. PMID:28486416

  17. Quantitative analysis of anti-inflammatory and radical scavenging triterpenoid esters in evening primrose seeds.

    PubMed

    Zaugg, Janine; Potterat, Olivier; Plescher, Andreas; Honermeier, Bernd; Hamburger, Matthias

    2006-09-06

    Lipophilic triterpenoidal esters with radical scavenging and cyclooxygenase inhibitory properties were recently found in cold-pressed, nonraffinated evening primrose oil (EPO). A quantitative assay for the analysis of 3-O-trans-caffeoyl derivatives of betulinic, morolic, and oleanolic acid in evening primrose seeds was developed and validated. Extraction efficiency >99% was achieved by means of pressurized liquid extraction with two extraction cycles and 80% (v/v) ethanol at 120 degrees C. Analysis of esters was by normal-phase high-performance liquid chromatography on a Diol column and hexane/ethyl acetate (containing 0.1% formic acid) (65:35) as the eluent. The analytes were determined without further prepurification. Seeds from defined cultures of Oenothera biennis, Oenothera lamarckiana, and Oenothera ammophila, grown under identical conditions, were analyzed. The cultures originated from seeds from eight collections in the wild and from selections from five cultivars. The content of total triterpenoidal esters in seeds varied between 1.34 and 2.78 mg/g. Three types of qualitative patterns were observed for the triterpenoidal esters. The influence of different harvest times and plant treatments was studied with the cultivar Anothera. Variations between 1.5 and 2.3 mg/g were found.

  18. Inhibition of amyloid β aggregation and protective effect on SH-SY5Y cells by triterpenoid saponins from the cactus Polaskia chichipe.

    PubMed

    Fujihara, Koji; Koike, Shin; Ogasawara, Yuki; Takahashi, Kunio; Koyama, Kiyotaka; Kinoshita, Kaoru

    2017-07-01

    Alzheimer's disease (AD) destroys brain function, especially in the hippocampus, and is a social problem worldwide. A major pathogenesis of AD is related to the accumulation of amyloid beta (Aβ) peptides, resulting in neuronal cell death in the brain. Here, we isolated four saponins (1-4) and elucidated their structures from 1D and 2D NMR and HRFABMS spectral data. The structures of 1 and 2 were determined as new saponins which have cochalic acid as the aglycon, and 3 was determined as a new saponin with oleanolic acid as the aglycon. Compound 4 was confirmed as the known saponin chikusetsusaponin V (=ginsenoside R 0 ). Isolated saponins (1-4) and six previously reported saponins (5-10) were tested for their inhibitory effects of Aβ aggregation and their protective effects on SH-SY5Y cells against Aβ-associated toxicity. As the results, compounds 3 and 4 showed inhibitory effect of Aβ aggregation and compounds 5-8 exerted the protective effects on SH-SY5Y cells against Aβ-associated toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Transcriptomics and the Mediterranean Diet: A Systematic Review.

    PubMed

    Herrera-Marcos, Luis V; Lou-Bonafonte, José M; Arnal, Carmen; Navarro, María A; Osada, Jesús

    2017-05-09

    The Mediterranean diet has been proven to be highly effective in the prevention of cardiovascular diseases and cancer and in decreasing overall mortality. Nowadays, transcriptomics is gaining particular relevance due to the existence of non-coding RNAs capable of regulating many biological processes. The present work describes a systematic review of current evidence supporting the influence of the Mediterranean diet on transcriptomes of different tissues in various experimental models. While information on regulatory RNA is very limited, they seem to contribute to the effect. Special attention has been given to the oily matrix of virgin olive oil. In this regard, monounsaturated fatty acid-rich diets prevented the expression of inflammatory genes in different tissues, an action also observed after the administration of olive oil phenolic compounds. Among these, tyrosol, hydroxytyrosol, and secoiridoids have been found to be particularly effective in cell cycle expression. Less explored terpenes, such as oleanolic acid, are important modulators of circadian clock genes. The wide range of studied tissues and organisms indicate that response to these compounds is universal and poses an important level of complexity considering the different genes expressed in each tissue and the number of different tissues in an organism.

  20. Evaluation of the Cytotoxicity of Satureja spicigera and Its Main Compounds

    PubMed Central

    Gohari, Ahmad Reza; Ostad, Seyed Nasser; Moradi-Afrapoli, Fahimeh; Malmir, Maryam; Tavajohi, Shohreh; Akbari, Hassan; Saeidnia, Soodabeh

    2012-01-01

    Satureja spicigera (Lamiaceae) grows wildly in Northwest of Iran. In this study, bioassay-guided isolation and identification of the main compounds has been reported using various chromatographic methods and comparison of their spectral data with those reported in the literature. Brine shrimp lethality and four cancerous cell lines HT29/219, Caco2, NIH-3T3, and T47D were used for cytotoxicity evaluations. From the aerial parts of S. spicigera, nine known compounds including two flavanones, 5,7,3′,5′-tetrahydroxy flavanone (8) and 5,4′-dihydroxy-3′-methoxyflavanone-7-(6′′-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (9), one dihydrochalcone, nubigenol (7), together with thymoquinone (1), thymol (2), carvacrol (3), β-sitosterol (4), ursolic acid (5) and oleanolic acid (6) were identified. Among the isolated chalcone and flavanones, compound 8 was effective against Artemia salina larva (LC50= 2 μg/mL) and only the compound 9 demonstrated IC50 value of 98.7 μg/mL on the T47D (human, breast, ductal carcinoma). Other compounds did not show significant inhibition of the cell growth. PMID:22623883

  1. Nonsterol Triterpenoids as Major Constituents of Olea europaea

    PubMed Central

    Stiti, Naïm; Hartmann, Marie-Andrée

    2012-01-01

    Plant triterpenoids represent a large and structurally diverse class of natural products. A growing interest has been focused on triterpenoids over the past decade due to their beneficial effects on human health. We show here that these bioactive compounds are major constituents of several aerial parts (floral bud, leaf bud, stem, and leaf) of olive tree, a crop exploited so far almost exclusively for its fruit and oil. O. europaea callus cultures were analyzed as well. Twenty sterols and twenty-nine nonsteroidal tetra- and pentacyclic triterpenoids belonging to seven types of carbon skeletons (oleanane, ursane, lupane, taraxerane, taraxastane, euphane, and lanostane) were identified and quantified by GC and GC-MS as free and esterified compounds. The oleanane-type compounds, oleanolic acid and maslinic acid, were largely predominant in all the organs tested, whereas they are practically absent in olive oil. In floral buds, they represented as much as 2.7% of dry matter. In callus cultures, lanostane-type compounds were the most abundant triterpenoids. In all the tissues analyzed, free and esterified triterpene alcohols exhibited different distribution patterns of their carbon skeletons. Taken together, these data provide new insights into largely unknown triterpene secondary metabolism of Olea europaea. PMID:22523691

  2. The bile acid receptor GPBAR1 (TGR5) is expressed in human gastric cancers and promotes epithelial-mesenchymal transition in gastric cancer cell lines

    PubMed Central

    Cipriani, Sabrina; Marchianò, Silvia; Marino, Elisabetta; Zampella, Angela; Rende, Mario; Mosci, Paolo; Distrutti, Eleonora; Donini, Annibale; Fiorucci, Stefano

    2016-01-01

    GPBAR1 (also known as TGR5) is a bile acid activated receptor expressed in several adenocarcinomas and its activation by secondary bile acids increases intestinal cell proliferation. Here, we have examined the expression of GPBAR1 in human gastric adenocarcinomas and investigated whether its activation promotes the acquisition of a pro-metastatic phenotype. By immunohistochemistry and RT-PCR analysis we found that expression of GPBAR1 associates with advanced gastric cancers (Stage III-IV). GPBAR1 expression in tumors correlates with the expression of N-cadherin, a markers of epithelial-mesenchymal transition (EMT) (r=0.52; P<0.01). Expression of GPBAR1, mRNA and protein, was detected in cancer cell lines, with MKN 45 having the higher expression. Exposure of MKN45 cells to GPBAR1 ligands, TLCA, oleanolic acid or 6-ECDCA (a dual FXR and GPBAR1 ligand) increased the expression of genes associated with EMT including KDKN2A, HRAS, IGB3, MMP10 and MMP13 and downregulated the expression of CD44 and FAT1 (P<0.01 versus control cells). GPBAR1 activation in MKN45 cells associated with EGF-R and ERK1 phosphorylation. These effects were inhibited by DFN406, a GPBAR1 antagonist, and cetuximab. GPBAR1 ligands increase MKN45 migration, adhesion to peritoneum and wound healing. Pretreating MKN45 cells with TLCA increased propensity toward peritoneal dissemination in vivo. These effects were abrogated by cetuximab. In summary, we report that GPBAR1 is expressed in advanced gastric cancers and its expression correlates with markers of EMT. GPBAR1 activation in MKN45 cells promotes EMT. These data suggest that GPBAR1 antagonist might have utility in the treatment of gastric cancers. PMID:27409173

  3. Investigation of cytochrome P450 inhibitory properties of maslinic acid, a bioactive compound from Olea europaea L., and its structure-activity relationship.

    PubMed

    Sun, Min; Tang, Yu; Ding, Tonggui; Liu, Mingyao; Wang, Xin

    2015-01-15

    Maslinic acid (MA), the main pentacyclic triterpene of Olea europaea L. fruit, possesses a variety of pharmacological actions, including hypoglycemic, antioxidant, cardioprotective and antitumoral activities. Despite its importance, little is known about its effects on the cytochrome P450 (CYP) activity in both humans and animals. Therefore, the aim of this study was to investigate the effects of MA on the CYP 1A2, 2C9/11, 2D1/6, 2E1 and 3A2/4 activities by human and rat liver microsomes and specific CYP isoforms. In humans, MA only weakly inhibited CYP3A4 activity in human liver microsomes and specific CYP3A4 isoform with IC50 value at 46.1 and 62.3µM, respectively. In rats, MA also exhibited weak inhibition on CYP2C11, CYP2E1 and CYP3A2 activities with IC50 values more than 100µM. Enzyme kinetic studies showed that the MA was not only a competitive inhibitor of CYP3A4 in humans, but also a competitive inhibitor of CYP2C11 and 3A2 in rats, with Ki of 18.4, 98.7 and 66.3µM, respectively. Moreover, the presence of hydroxyl group at C-2 position of triterpenic acid in MA compared with oleanolic acid could magnify its competitive inhibition on human CYP3A4 activity. The relatively high Ki values of MA would have a low potential to cause the possible toxicity and drug interactions involving CYP enzymes, thus suggesting a sufficient safety for its putative use as a nutraceutical taken together with drugs. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Allspice and Clove As Source of Triterpene Acids Activating the G Protein-Coupled Bile Acid Receptor TGR5

    PubMed Central

    Ladurner, Angela; Zehl, Martin; Grienke, Ulrike; Hofstadler, Christoph; Faur, Nadina; Pereira, Fátima C.; Berry, David; Dirsch, Verena M.; Rollinger, Judith M.

    2017-01-01

    Worldwide, metabolic diseases such as obesity and type 2 diabetes have reached epidemic proportions. A major regulator of metabolic processes that gained interest in recent years is the bile acid receptor TGR5 (Takeda G protein-coupled receptor 5). This G protein-coupled membrane receptor can be found predominantly in the intestine, where it is mainly responsible for the secretion of the incretins glucagon-like peptide 1 (GLP-1) and peptide YY (PYY). The aim of this study was (i) to identify plant extracts with TGR5-activating potential, (ii) to narrow down their activity to the responsible constituents, and (iii) to assess whether the intestinal microbiota produces transformed metabolites with a different activity profile. Chenodeoxycholic acid (CDCA) served as positive control for both, the applied cell-based luciferase reporter gene assay for TGR5 activity and the biotransformation assay using mouse fecal slurry. The suitability of the workflow was demonstrated by the biotransformation of CDCA to lithocholic acid resulting in a distinct increase in TGR5 activity. Based on a traditional Tibetan formula, 19 plant extracts were selected and investigated for TGR5 activation. Extracts from the commonly used spices Syzygium aromaticum (SaroE, clove), Pimenta dioica (PdioE, allspice), and Kaempferia galanga (KgalE, aromatic ginger) significantly increased TGR5 activity. After biotransformation, only KgalE showed significant differences in its metabolite profile, which, however, did not alter its TGR5 activity compared to non-transformed KgalE. UHPLC-HRMS (high-resolution mass spectrometry) analysis revealed triterpene acids (TTAs) as the main constituents of the extracts SaroE and PdioE. Identification and quantification of TTAs in these two extracts as well as comparison of their TGR5 activity with reconstituted TTA mixtures allowed the attribution of the TGR5 activity to TTAs. EC50s were determined for the main TTAs, i.e., oleanolic acid (2.2 ± 1.6 μM), ursolic acid (1.1 ± 0.2 μM), as well as for the hitherto unknown TGR5 activators corosolic acid (0.5 ± 1.0 μM) and maslinic acid (3.7 ± 0.7 μM). In conclusion, extracts of clove, allspice, and aromatic ginger activate TGR5, which might play a pivotal role in their therapeutic use for the treatment of metabolic diseases. Moreover, the TGR5 activation of SaroE and PdioE could be pinpointed solely to TTAs. PMID:28769799

  5. Impact of Mistletoe Triterpene Acids on the Uptake of Mistletoe Lectin by Cultured Tumor Cells

    PubMed Central

    Mulsow, Katharina; Enzlein, Thomas; Delebinski, Catharina; Jaeger, Sebastian; Seifert, Georg; Melzig, Matthias F.

    2016-01-01

    Complementary treatment possibilities for the therapy of cancer are increasing in demand due to the severe side effects of the standard cytostatics used in the first-line therapy. A common approach as a complementary treatment is the use of aqueous extracts of Viscum album L. (Santalaceace). The therapeutic activity of these extracts is attributed to Mistletoe lectins which are Ribosome-inactivating proteins type II. Besides these main constituents the extract of Viscum album L. comprises also a mixture of lipophilic ingredients like triterpene acids of the oleanane, lupane and ursane type. However, these constituents are not contained in commercially available aqueous extracts due to their high lipophilicity and insolubility in aqueous extraction media. To understand the impact of the extract ingredients in cancer therapy, the intracellular uptake of the mistletoe lectin I (ML) by cultured tumor cells was investigated in relation to the mistletoe triterpene acids, mainly oleanolic acid. Firstly, these hydrophobic triterpene acids were solubilized using cyclodextrins (“TT” extract). Afterwards, the uptake of either single compounds (isolated ML and the aqueous “viscum” extract) or in combination with the TT extract (ML+TT, viscumTT), was analyzed. The uptake of ML was studied inTHP-1-, HL-60-, 143B- and Ewing TC-71-cells and determined after 30, 60 and 120 minutes by an enzyme linked immunosorbent assay which quantifies the A-chain of the hololectin. It could be shown that the intracellular uptake after 120 minutes amounted to 20% in all cell lines after incubation with viscumTT. The studies further revealed that the uptake in THP-1-, HL-60- and Ewing TC-71-cells was independent of the addition of TT extract. Interestingly, the uptake of ML by 143B-cells could only be measured after addition of triterpenes pointing to resistance to mistletoe lectin. PMID:27088729

  6. A two-step ultra-high-performance liquid chromatography-quadrupole/time of flight mass spectrometry with mass defect filtering method for rapid identification of analogues from known components of different chemical structure types in Fructus Gardeniae-Fructus Forsythiae herb pair extract and in rat's blood.

    PubMed

    Zhou, Wei; Shan, Jinjun; Meng, Minxin

    2018-08-17

    Fructus Gardeniae-Fructus Forsythiae herb pair is an herbal formula used extensively to treat inflammation and fever, but few systematic identification studies of the bioactive components have been reported. Herein, the unknown analogues in the first-step screening were rapidly identified from representative compounds in different structure types (geniposide as iridoid type, crocetin as crocetin type, jasminoside B as monocyclic monoterpene type, oleanolic acid as saponin type, 3-caffeoylquinic acid as organic acid type, forsythoside A as phenylethanoid type, phillyrin as lignan type and quercetin 3-rutinoside as flavonoid type) by UPLC-Q-Tof/MS combined with mass defect filtering (MDF), and further confirmed with reference standards and published literatures. Similarly, in the second step, other unknown components were rapidly discovered from the compounds identified in the first step by MDF. Using the two-step screening method, a total of 58 components were characterized in Fructus Gardeniae-Fructus Forsythiae (FG-FF) decoction. In rat's blood, 36 compounds in extract and 16 metabolites were unambiguously or tentatively identified. Besides, we found the principal metabolites were glucuronide conjugates, with the glucuronide conjugates of caffeic acid, quercetin and kaempferol confirmed as caffeic acid 3-glucuronide, quercetin 3-glucuronide and kaempferol 3-glucuronide by reference standards, respectively. Additionally, most of them bound more strongly to human serum albumin than their respective prototypes, predicted by Molecular Docking and Simulation, indicating that they had lower blood clearance in vivo and possibly more contribution to pharmacological effects. This study developed a novel two-step screening method in addressing how to comprehensively screen components in herbal medicine by UPLC-Q-Tof/MS with MDF. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Bardoxolone methyl prevents high-fat diet-induced alterations in prefrontal cortex signalling molecules involved in recognition memory.

    PubMed

    Camer, Danielle; Yu, Yinghua; Szabo, Alexander; Fernandez, Francesca; Dinh, Chi H L; Huang, Xu-Feng

    2015-06-03

    High fat (HF) diets are known to induce changes in synaptic plasticity in the forebrain leading to learning and memory impairments. Previous studies of oleanolic acid derivatives have found that these compounds can cross the blood-brain barrier to prevent neuronal cell death. We examined the hypothesis that the oleanolic acid derivative, bardoxolone methyl (BM) would prevent diet-induced cognitive deficits in mice fed a HF diet. C57BL/6J male mice were fed a lab chow (LC) (5% of energy as fat), a HF (40% of energy as fat), or a HF diet supplemented with 10mg/kg/day BM orally for 21weeks. Recognition memory was assessed by performing a novel object recognition test on the treated mice. Downstream brain-derived neurotrophic factor (BDNF) signalling molecules were examined in the prefrontal cortex (PFC) and hippocampus of mice via Western blotting and N-methyl-d-aspartate (NMDA) receptor binding. BM treatment prevented HF diet-induced impairment in recognition memory (p<0.001). In HF diet fed mice, BM administration attenuated alterations in the NMDA receptor binding density in the PFC (p<0.05), however, no changes were seen in the hippocampus (p>0.05). In the PFC and hippocampus of the HF diet fed mice, BM administration improved downstream BDNF signalling as indicated by increased protein levels of BDNF, phosphorylated tropomyosin related kinase B (pTrkB) and phosphorylated protein kinase B (pAkt), and increased phosphorylated AMP-activated protein kinase (pAMPK) (p<0.05). BM administration also prevented the HF diet-induced increase in the protein levels of inflammatory molecules, phosphorylated c-Jun N-terminal kinase (pJNK) in the PFC, and protein tyrosine phosphatase 1B (PTP1B) in both the PFC and hippocampus. In summary, these findings suggest that BM prevents HF diet-induced impairments in recognition memory by improving downstream BDNF signal transduction, increasing pAMPK, and reducing inflammation in the PFC and hippocampus. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Study of oleanolic acid on the estrodiol production and the fat production of mouse preadipocyte 3T3-L1 in vitro.

    PubMed

    Wan, Qian; Lu, Hua; Liu, Xia; Yie, Shangmian; Xiang, Junbei; Yao, Zouying

    2015-01-01

    The women during the menopause period have an increased tendency for the obesity, which represents the more fat production than during the premenopausal period. Although this is not beneficial overall, it could provide a compensatory source for the estrogen production for the menopausal women. So it would be meaningful to find an agent that could inhibit the fat production while does not disturb the total estrogen production by fat tissues. In the present study, the effect of oleanolic acid (OA) on the fat production and the total estrogen production of the differentiating mouse preadipocyte 3T3-L1 as well as the mechanisms behind those effects were preliminarily investigated. The cell line 3T3-L1 was chosen as the model cell because it is usually used for the research about the obesity. During the induced differentiation of 3T3-L1 cells, cells were intervened continuously with OA. The fat production was determined with the oil red staining assay and the total estrogen production was measured with the ELISA assay. Finally, the expression patterns for important genes of the fat production and the estrogen production were studied, respectively with the real-time fluorescence quantitative PCR (qPCR). The results showed that for the differentiating 3T3-L1 cells, OA could significantly inhibit the fat production and did not disturb the total estrogen production significantly. In the mechanism studies, OA was found to significantly down-regulate ACC, the key gene for fat synthesis, which could explain the inhibitory effect of OA on the fat production; OA was also found to significantly up-regulate CYP11A1, CYP17, CYP19, the key genes for the estrogen synthesis and significantly down-regulate CYP1A1, the key gene for the estrogen decomposition, which preliminarily explained the lack of the effect of OA on the total estrogen production. In conclusion, OA was found able to inhibit the fat production while maintaining the total estrogen level and the mechanisms for the above findings were preliminarily clarified, which suggests that OA may be useful to treat the menopausal obesity.

  9. Oleanolic acid acetate inhibits atopic dermatitis and allergic contact dermatitis in a murine model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jin Kyeong; Oh, Hyun-Mee; Lee, Soyoung

    2013-05-15

    Atopic dermatitis (AD) and allergic contact dermatitis (ACD) are common allergic and inflammatory skin diseases caused by a combination of eczema, scratching, pruritus, and cutaneous sensitization with allergens. This paper examines whether oleanolic acid acetate (OAA) modulates AD and ACD symptoms by using an existing AD model based on the repeated local exposure of mite extract (Dermatophagoides farinae extract, DFE) and 2,4-dinitrochlorobenzene to the ears of BALB/c mice. In addition, the paper uses a 2,4-dinitrofluorobenzene-sensitized local lymph node assay (LLNA) for the ACD model. The oral administration of OAA over a four-week period attenuated AD symptoms in terms of decreasedmore » skin lesions, epidermal thickness, the infiltration of immune cells (CD4{sup +} cells, eosinophils, and mast cells), and serum IgE, IgG2a, and histamine levels. The gene expression of Th1, Th2, Th17, and Th22 cytokines was reduced by OAA in the lymph node and ear tissue, and the LLNA verified that OAA suppressed ACD. The oral administration of OAA over a three-day period attenuated ACD symptoms in terms of ear thickness, lymphocyte proliferation, and serum IgG2a levels. The gene expression of Th1, Th2, and Th17 cytokines was reduced by OAA in the thymus and ear tissue. Finally, to define the underlying mechanism, this paper uses a TNF-α/IFN-γ-activated human keratinocyte (HaCaT) model. OAA inhibited the expression of cytokines and chemokines through the downregulation of NF-κB and MAPKs in HaCaT cells. Taken together, the results indicate that OAA inhibited AD and ACD symptoms, suggesting that OAA may be effective in treating allergic skin disorders. - Highlights: • OAA reduced both acute and chronic AD symptoms. • OAA had a controlling effect on the immune reaction for ACD. • The effect of OAA on allergic skin disorders was comparable to the cyclosporine A. • OAA might be a candidate for the treatment of allergic skin disorders.« less

  10. Ultrasound-assisted Extraction of Ursolic Acid from the Flowers of Ixora coccinia Linn (Rubiaceae) and Antiproliferative Activity of Ursolic Acid and Synthesized Derivatives

    PubMed Central

    Alves Monteath, Silvana Amadeu Ferreira; Maciel, Maria Aparecida M.; Vega, Raquel Garcia; de Mello, Heloisa; de Araújo Martins, Carollina; Esteves-Souza, Andressa; Gattass, Cerli Rocha; Echevarria, Aurea

    2017-01-01

    Background: Ixora coccinea Linn (Rubiaceae) is an evergreen shrub with bright scarlet colored flowers found in several tropical and subtropical countries. It is used as an ornamental and medicinal plant. Phytochemical studies revealed that its major special metabolites are triterpene acids, such as ursolic and oleanolic acid. Objective: To evaluate the isolation of ursolic acid (UA) (1) from methanol extracts of I. coccinea flowers through two methodologies, to prepare four derivatives, and to evaluate the cytotoxic effect against six cancer cell lines. Materials and Methods: The UA was isolated from vegetal material by percolation at room temperature and by ultrasound-assisted extraction. The preparation of derivatives was performed according to literature methods, and the cytotoxic effects were evaluated using the MTT (3,4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide) assay. Results: The most efficient extraction was achieved through ultrasound irradiation with a yield of 35% after KOH-impregnated silica in chromatography column. Furthermore, four derivatives (3, 5, 6, 7) of UA were prepared and evaluated, including 1, against two lung cancer (A549 and H460) and four leukemia (K562, Lucena, HL60, and Jurkat) cell lines. Generally, results showed that 1 and 7 were the most active compounds against the assayed cell lines. Also, the cytotoxic effects observed on terpenes 1 and 7 were higher when compared with cisplatin, used as positive control, with the exception of Jurkat cell line. Conclusion: The efficiency of such an alternative extraction method led to the principal and abundant active component, 1, of I. coccinea, thus representing a considerable contribution for promising triterpenoid in cancer chemotherapy. SUMMARY The ultrasound-assisted extraction of Ixora coccinea flowers improved of the ursolic acid isolationMethanolic extract from flowers of I. coccinea provided, by ultrasound irradiation, after KOH-impregnated silica in chromatography column, the ursolic acid in 35% yieldThe ursolic acid and four derivatives were prepared and assayed against two lung cancer and four leukaemia cell linesThe ursolic acid and their 3-oxo-derivative, in general, were more cytotoxic when compared to cisplatin, used as positive control Abbreviations used: MTT: 3,4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, RP: reverse phase, TLC: thin layer chromatography, KOH: potassium hydroxide, IR: infrared, DMF: dimethylformamide, DMSO: dimethyl sulfoxide, TEA: triethylamine, RT: room temperature, EtOAc: ethyl acetate, MeOH: methanol, i-PrOH: iso-propanol, NMR: nuclear magnetic resonance, MDR: multiple drug resistance, RPMI: Roswell Park Memorial Institute PMID:28539719

  11. CDDO and Its Role in Chronic Diseases.

    PubMed

    Mathis, Bryan J; Cui, Taixing

    2016-01-01

    There has been a continued interest in translational research focused on both natural products and manipulation of functional groups on these compounds to create novel derivatives with higher desired activities. Oleanolic acid, a component of traditional Chinese medicine used in hepatitis therapy, was modified by chemical processes to form 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO). This modification increased anti-inflammatory activity significantly and additional functional groups on the CDDO backbone have shown promise in treating conditions ranging from kidney disease to obesity to diabetes. CDDO's therapeutic effect is due to its upregulation of the master antioxidant transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) through conformational change of Nrf2-repressing, Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1) and multiple animal and human studies have verified subsequent activation of Nrf2-controlled antioxidant genes via upstream Antioxidant Response Element (ARE) regions. At the present time, positive results have been obtained in the laboratory and clinical trials with CDDO derivatives treating conditions such as lung injury, inflammation and chronic kidney disease. However, clinical trials for cancer and cardiovascular disease have not shown equally positive results and further exploration of CDDO and its derivatives is needed to put these shortcomings into context for the purpose of future therapeutic modalities.

  12. Comparison of the interaction between lactoferrin and isomeric drugs

    NASA Astrophysics Data System (ADS)

    Guo, Ming; Lu, Xiaowang; Wang, Yan; Brodelius, Peter E.

    2017-02-01

    The binding properties of pentacyclic triterpenoid isomeric drugs, i.e. ursolic acid (UA) and oleanolic acid (OA), to bovine lactoferrin (BLF) have been studied by molecule modeling, fluorescence spectroscopy, UV-visible absorbance spectroscopy and infrared spectroscopy (IR). Molecular docking, performed to reveal the possible binding mode or mechanism, suggested that hydrophobic interaction and hydrogen bonding play important roles to stabilize the complex. The results of spectroscopic measurements showed that the two isomeric drugs both strongly quenched the intrinsic fluorescence of BLF through a static quenching procedure although some differences between UA and OA binding strength and non-radiation energy transfer occurred within the molecules. The number of binding sites was 3.44 and 3.10 for UA and OA, respectively, and the efficiency of Förster energy transfer provided a distance of 0.77 and 1.21 nm for UA and OA, respectively. The conformation transformation of BLF affected by the drugs conformed to the ;all-or-none; pattern. In addition, the changes of the ratios of α-helices, β-sheets and β-turns of BLF during the process of the interaction were obtained. The results of the experiments in combination with the calculations showed that there are two modes of pentacyclic triterpenoid binding to BLF instead of one binding mode only governed by the principle of the lowest bonding energy.

  13. Phytochemical Study of the Ecuadorian Species Lepechinia mutica (Benth.) Epling and High Antifungal Activity of Carnosol against Pyricularia oryzae.

    PubMed

    Ramírez, Jorge; Gilardoni, Gianluca; Ramón, Erika; Tosi, Solveig; Picco, Anna Maria; Bicchi, Carlo; Vidari, Giovanni

    2018-04-19

    The plant Lepechinia mutica (Benth.) Epling (family Lamiaceae) is endemic to Ecuador. In the present study, we report some major non-volatile secondary metabolites from the leaves and the chemistry of the essential oil distilled from the flowers. The main identified compounds were carnosol, viridiflorol, ursolic acid, oleanolic acid, chrysothol, and 5-hydroxy-4′,7-dimethoxy flavone. Their structures were determined by X-ray diffraction and NMR and MS techniques. The essential oil showed a chemical composition similar to that distilled from the leaves, but with some qualitative and quantitative differences regarding several minor compounds. The main constituents (>4%) were: δ-3-carene (24.23%), eudesm-7(11)-en-4-ol (13.02%), thujopsan-2-α-ol (11.90%), β-pinene (7.96%), valerianol (5.19%), and co-eluting limonene and β-phellandrene (4.47%). The volatile fraction was also submitted to enantioselective analysis on a β-cyclodextrin column, obtaining the separation and identification of the enantiomers for α-thujene, β-pinene, sabinene, α-phellandrene, limonene and β-phellandrene. Furthermore, the anti-fungal activity of non-volatile secondary metabolites was tested in vitro, with carnosol resulting in being very active against the “blast disease” caused by the fungus Pyricularia oryzae .

  14. Viscum articulatum Burm. f.: a review on its phytochemistry, pharmacology and traditional uses.

    PubMed

    Patel, Bhishma P; Singh, Pawan K

    2018-02-01

    The aim of this study was to review and highlight traditional and ethnobotanical uses, phytochemical constituents, IP status, biological activity and pharmacological activity of Viscum articulatum. Thorough literature searches were performed on Viscum articulatum, and data were analysed for reported traditional uses, pharmacological activity, phytochemicals present and patents filed. Scientific and patent databases such as PubMed, Science Direct, Google Scholar, Google patents, USPTO and Espacenet were searched using different keywords. Viscum articulatum has been traditionally used in different parts of the world for treatment of various ailments. Almost all the parts such as leaves, root, stem and bark are having medicinal values and are reported for their uses in Ayurvedic and Chinese system of medicine for the management of various diseases. Modern scientific studies demonstrate efficacy of this plant against hypertension, ulcer, epilepsy, inflammation, wound, nephrotoxicity, HIV, cancer, etc. Major bioactive phytochemicals include oleanolic acid, betulinic acid, eriodictyol, naringenin, β-amyrin acetate, visartisides, etc. Side effects of allopathic medicines have created a global opportunity, acceptance and demand for phytomedicines. Viscum articulatum could be an excellent source of effective and safe phytomedicine for various ailments if focused translational efforts are undertaken by integrating the existing outcomes of researches. © 2017 Royal Pharmaceutical Society.

  15. Suppression of AMF/PGI-mediated tumorigenic activities by ursolic acid in cultured hepatoma cells and in a mouse model.

    PubMed

    Shih, Wen-Ling; Yu, Feng-Ling; Chang, Ching-Dong; Liao, Ming-Huei; Wu, Hung-Yi; Lin, Ping-Yuan

    2013-10-01

    Our previous studies demonstrated that autocrine motility factor/phosphoglucose isomerase (AMF/PGI) possesses tumorigenic activities through the modulation of intracellular signaling. We then investigated the effects of ursolic acid (UA), oleanolic acid (OA), tangeretin, and nobiletin against AMF/PGI-mediated oncogenesis in cultured stable Huh7 and Hep3B cells expressing wild-type or mutated AMF/PGI and in a mouse model in this study. The working concentrations of the tested compounds were lower than their IC10 , which was determined by Brdu incorporation and colony formation assay. Only UA efficiently suppressed the AMF/PGI-induced Huh7 cell migration and MMP-3 secretion. Additionally, UA inhibited the AMF/PGI-mediated protection against TGF-β-induced apoptosis in Hep3B cells, whereas OA, tangeretin, and nobiletin had no effect. In Huh7 cells and tumor tissues, UA disrupted the Src/RhoA/PI 3-kinase signaling and complex formation induced by AMF/PGI. In the Hep3B system, UA dramatically suppressed AMF/PGI-induced anti-apoptotic signaling transmission, including Akt, p85, Bad, and Stat3 phosphorylation. AMF/PGI enhances tumor growth, angiogenesis, and pulmonary metastasis in mice, which is correlated with its enzymatic activity, and critically, UA intraperitoneal injection reduces the tumorigenesis in vivo, enhances apoptosis in tumor tissues and also prolongs mouse survival. Combination of sub-optimal dose of UA and cisplatin, a synergistic tumor cell-killing effects was found. Thus, UA modulates intracellular signaling and might serve as a functional natural compound for preventing or alleviating hepatocellular carcinoma. © 2012 Wiley Periodicals, Inc.

  16. Psychotria viridis: Chemical constituents from leaves and biological properties.

    PubMed

    Soares, Débora B S; Duarte, Lucienir P; Cavalcanti, André D; Silva, Fernando C; Braga, Ariadne D; Lopes, Miriam T P; Takahashi, Jacqueline A; Vieira-Filho, Sidney A

    2017-01-01

    The phytochemical study of hexane, chloroform and methanol extracts from leaves of Psychotria viridis resulted in the identification of: the pentacyclic triterpenes, ursolic and oleanolic acid; the steroids, 24-methylene-cycloartanol, stigmasterol and β-sitosterol; the glycosylated steroids 3-O-β-D-glucosyl-β-sitosterol and 3-O-β-D-glucosyl-stigmasterol; a polyunsaturated triterpene, squalene; the esters of glycerol, 1-palmitoylglycerol and triacylglycerol; a mixture of long chain hydrocarbons; the aldehyde nonacosanal; the long chain fat acids hentriacontanoic, hexadecanoic and heptadenoic acid; the ester methyl heptadecanoate; the 4-methyl-epi-quinate and two indole alkaloids, N,N-dimethyltryptamine (DMT) and N-methyltryptamine. The chemical structures were determined by means of spectroscopic (IR, 1H and 13C NMR, HSQC, HMBC and NOESY) and spectrometric (CG-MS and LCMS-ESI-ITTOF) methods. The study of biologic properties of P. viridis consisted in the evaluation of the acetylcholinesterase inhibition and cytotoxic activities. The hexane, chloroform, ethyl acetate and methanol extracts, the substances 24-methylene-cycloartanol, DMT and a mixture of 3-O-β-D-glucosyl-β-sitosterol and 3-O-β-D-glucosyl-stigmasterol showed cholinesterase inhibiting activity. This activity induced by chloroform and ethyl acetate extracts was higher than 90%. The methanol and ethyl acetate extracts inhibit the growth and/or induce the death of the tumor cells strains B16F10 and 4T1, without damaging the integrity of the normal cells BHK and CHO. DMT also demonstrated a marked activity against tumor cell strains B16F10 and 4T1.

  17. Variation of active constituents of an important Tibet folk medicine Swertia mussotii Franch. (Gentianaceae) between artificially cultivated and naturally distributed.

    PubMed

    Yang, Huiling; Ding, Chenxu; Duan, Yuanwen; Liu, Jianquan

    2005-04-08

    Concentrations of seven phytochemical constituents (swertiamarin, mangiferin, swertisin, oleanolic acid, 1,5,8-trihydroxy-3-methoxyxanthone, 1,8-dihydroxy-3,7-dimethoxyxanthone and 1,8-dihydroxy-3,5-dimethoxyxanthone) of "ZangYinChen" (Swertia mussotii, a herb used in Tibetan folk medicine) were determined and compared in plants collected from naturally distributed high-altitude populations and counterparts that had been artificially cultivated at low altitudes. Levels of mangiferin, the most abundant active compound in this herb, were significantly lower in cultivated samples and showed a negative correlation with altitude. The other constituents were neither positively nor negatively correlated with cultivation at low altitude. Concentrations of all of the constituents varied substantially with growth stage and were highest at the bud stage in the cultivars, but there were no distinct differences between flowering and fruiting stages in this respect.

  18. Composition and morphology of cuticular wax in blueberry (Vaccinium spp.) fruits.

    PubMed

    Chu, Wenjing; Gao, Haiyan; Cao, Shifeng; Fang, Xiangjun; Chen, Hangjun; Xiao, Shangyue

    2017-03-15

    The chemical composition and morphology of cuticular wax in mature fruit of nine blueberry cultivars were investigated using gas chromatography-mass spectrometry (GC-MS) and scanning electron microscope (SEM). Triterpenoids and β-diketones were the most prominent compounds, accounting for on average 64.2% and 16.4% of the total wax, respectively. Ursolic or oleanolic acid was identified as the most abundant triterpenoids differing in cultivars. Two β-diketones, hentriacontan-10,12-dione and tritriacontan-12,14-dione, were detected in cuticular wax of blueberry fruits for the first time. Notably, hentriacontan-10,12-dione and tritriacontan-12,14-dione were only detected in highbush (V. corymbosum) and rabbiteye (V. ashei) blueberries, respectively. The results of SEM showed that a large amount of tubular wax deposited on the surface of blueberry fruits. There was no apparent difference in wax morphology among the nine cultivars. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Phytochemical investigations and antiproliferative secondary metabolites from Thymus alternans growing in Slovakia.

    PubMed

    Dall'Acqua, Stefano; Peron, Gregorio; Ferrari, Sara; Gandin, Valentina; Bramucci, Massimo; Quassinti, Luana; Mártonfi, Pavol; Maggi, Filippo

    2017-12-01

    Thymus alternans Klokov (Lamiaceae) is a neglected species of the genus Thymus (Sect. Serpyllum) endemic to Carpathian area, where it is used as a flavouring agent and for medicinal purposes. The aim of the work was to identify antiproliferative constituents from the flowering aerial parts of this plant. Thymus alternans extracts were analyzed by HPLC-MS n and subjected to extensive chromatographic separations. The isolated compounds (phenolics and triterpenes) were structurally elucidated by MS and 1D and 2D NMR experiments. Essential oil (EO) composition was determined by GC-FID and GC-MS. Six purified triterpenes and EO were assayed for in vitro antiproliferative activity against a panel of human cancer cells, namely, breast (MDA-MB 231), colon (HCT-15 and HCT116), lung (U1810), pancreatic (BxPC3), melanoma (A375) and cervical carcinoma (A431) cells. The structures of the isolated compounds were achieved on the basis of H-NMR and MS experiments. Luteolin-4'-O-β-d-glucopyranoside (P1), chrysoeriol-7-O-β-d-glucopyranoside (P2), chrysoeriol-5-O-β-d-glucopyranoside (P3), apigenin-7-O-β-d-glucopyranoside (P4), rosmarinic acid (P5), rosmarinic acid-3'-O-β-d-glucopyranoside (P6), caffeic acid-3-O-β-d-glucopyranoside (P7), 3α-hydroxy-urs-12,15-diene (T1), α-amyrin (T2), β-amyrin (T3), isoursenol (T4), epitaraxerol (T5), and oleanolic acid (T6). GC-MS analysis revealed that the EO of T. alternans was devoid of phenols and belonged to the nerolidol-chemotype, that is typical of the Sect. Serpyllum. The six purified triterpenes (T1-T6) were active with IC 50 ranging from 0.5 to 5 μM being comparable or better than those of reference compounds betulinic acid and cisplatin. The EO exhibited significant effects on A375, MDA-MB 231 and HCT116 cell lines with IC 50 in the range of 5-8 μg/mL. The reported results suggest that T. alternans can be considered as a good source of phytoconstituents with possible importance in the pharmaceutical field.

  20. The Bile Acid Receptor GPBAR-1 (TGR5) Modulates Integrity of Intestinal Barrier and Immune Response to Experimental Colitis

    PubMed Central

    Cipriani, Sabrina; Mencarelli, Andrea; Chini, Maria Giovanna; Distrutti, Eleonora; Renga, Barbara; Bifulco, Giuseppe; Baldelli, Franco; Donini, Annibale; Fiorucci, Stefano

    2011-01-01

    Background GP-BAR1, a member G protein coupled receptor superfamily, is a cell surface bile acid-activated receptor highly expressed in the ileum and colon. In monocytes, ligation of GP-BAR1 by secondary bile acids results in a cAMP-dependent attenuation of cytokine generation. Aims To investigate the role GP-BAR1 in regulating intestinal homeostasis and inflammation-driven immune dysfunction in rodent models of colitis. Methods Colitis was induced in wild type and GP-BAR1−/− mice by DSS and TNBS administration. Potential GP-BAR1 agonists were identified by in silico screening and computational docking studies. Results GP-BAR1−/− mice develop an abnormal morphology of colonic mucous cells and an altered molecular architecture of epithelial tight junctions with increased expression and abnormal subcellular distribution of zonulin 1 resulting in increased intestinal permeability and susceptibility to develop severe colitis in response to DSS at early stage of life. By in silico screening and docking studies we identified ciprofloxacin as a GP-BAR1 ligand. In monocytes, ciprofloxacin increases cAMP concentrations and attenuates TNFα release induced by TLR4 ligation in a GP-BAR1 dependent manner. Treating mice rendered colitic by TNBS with ciprofloxacin and oleanolic acid, a well characterized GP-BAR1 ligand, abrogates signs and symptoms of colitis. Colonic expression of GP-BAR1 mRNA increases in rodent models of colitis and tissues from Crohn's disease patients. Flow cytometry analysis demonstrates that ≈90% of CD14+ cells isolated from the lamina propria of TNBS-treated mice stained positively for GP-BAR1. Conclusions GP-BAR1 regulates intestinal barrier structure. Its expression increases in rodent models of colitis and Crohn's disease. Ciprofloxacin is a GP-BAR1 ligand. PMID:22046243

  1. An integrated global chemomics and system biology approach to analyze the mechanisms of the traditional Chinese medicinal preparation Eriobotrya japonica - Fritillaria usuriensis dropping pills for pulmonary diseases.

    PubMed

    Tao, Jin; Hou, Yuanyuan; Ma, Xiaoyao; Liu, Dan; Tong, Yongling; Zhou, Hong; Gao, Jie; Bai, Gang

    2016-01-08

    Traditional Chinese medicine (TCM) herbal formulae provide valuable therapeutic strategies. However, the active ingredients and mechanisms of action remain unclear for most of these formulae. Therefore, the identification of complex mechanisms is a major challenge in TCM research. This study used a network pharmacology approach to clarify the anti-inflammatory and cough suppressing mechanisms of the Chinese medicinal preparation Eriobotrya japonica - Fritillaria usuriensis dropping pills (ChuanbeiPipa dropping pills, CBPP). The chemical constituents of CBPP were identified by high-quality ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS), and anti-inflammatory ingredients were selected and analyzed using the PharmMapper and Kyoto Encyclopedia of Genes and Genomes (KEGG) bioinformatics websites to predict the target proteins and related pathways, respectively. Then, an RNA-sequencing (RNA-Seq) analysis was carried out to investigate the different expression of genes in the lung tissue of rats with chronic bronchitis. Six main constituents affected 19 predicted pathways, including ursolic acid and oleanolic acid from Eriobotrya japonica (Thunb.) Lindl. (Eri), peiminine from Fritillaria usuriensis Maxim. (Fri), platycodigenin and polygalacic acid from Platycodon grandiflorum (Jacq.) A. DC. (Pla) and guanosine from Pinellia ternata (Thunb.) Makino. (Pin). Expression of 34 genes was significantly decreased after CBPP treatment, affecting four therapeutic functions: immunoregulation, anti-inflammation, collagen formation and muscle contraction. The active components acted on the mitogen activated protein kinase (MAPK) pathway, transforming growth factor (TGF)-beta pathway, focal adhesion, tight junctions and the action cytoskeleton to exert anti-inflammatory effects, resolve phlegm, and relieve cough. This novel approach of global chemomics-integrated systems biology represents an effective and accurate strategy for the study of TCM with multiple components and multiple target mechanisms.

  2. Effect of Sunlight Radiation on the Growth and Chemical Constituents of Salvia plebeia R.Br.

    PubMed

    Jang, Hyun-Jae; Lee, Seung-Jae; Kim, Cha Young; Hwang, Joo Tae; Choi, Jung Ho; Park, Jee Hun; Lee, Seung Woong; Rho, Mun-Chual

    2017-08-01

    This study investigated the chemical composition changes of Salvia plebeia R.Br. cultivated under different light sources, including florescent light and sunlight. The plants were exposed to fluorescent light for four months and sunlight and then examined for the next 5-7 months. Plants were harvested monthly during the seven months, and we examined whether the difference in light source affected the phenolic and flavonoid contents and antioxidant activity. A simple and reliable HPLC method using a PAH C 18 column was applied for the quantitative analysis of two triterpenoids from the S. plebeia groups. Oleanolic acid (OA) and ursolic acid (UA) showed good linearity ( R ² > 0.9999) within the test ranges (0.005-0.05 mg/mL), and the average percentage recoveries of the OA and UA were 95.1-104.8% and 97.2-107.1%, respectively. The intra- and inter-day relative standard deviations (RSDs) were less than 2.0%. After exposure to sunlight, the phenolic contents, including rosmarinic acid, showed a reduced tendency, whereas the flavonoid contents, including homoplantaginin and luteolin 7-glucoside, were increased. The content of the triterpenoids also showed an increased tendency under sunlight irradiation, but the variance was not larger than those of the phenolic and flavonoid contents. Among experimental groups, the group harvested at six months, having been exposed to sunlight for two months, showed the most potent antioxidant activity. Therefore, these results showed that the chemical composition and antioxidant activities of S. plebeia R.Br. was affected from environmental culture conditions, such as light source. Our studies will be useful for the development of functional materials using S. plebeia R.Br.

  3. Matrix metalloproteinase, hyaluronidase and elastase inhibitory potential of standardized extract of Centella asiatica.

    PubMed

    Nema, Neelesh Kumar; Maity, Niladri; Sarkar, Birendra Kumar; Mukherjee, Pulok Kumar

    2013-09-01

    Centella asiatica (L.) Urban (Apiaceae), a valuable herb described in Ayurveda, is used in the indigenous system of medicine as a tonic to treat skin diseases. Centella asiatica methanol extract and its ethyl acetate, n-butanol and aqueous fraction, were subjected for the evaluation of skin care potential through the in vitro hyaluronidase, elastase and matrix metalloproteinase-1 (MMP-1) inhibitory assay. The C. asiatica plant was extracted with methanol and fractionated with ethyl acetate, n-butanol and water. The enzymatic activities were evaluated using ursolic acid and oleanolic acid as standards. Isolate molecule asiaticoside was quantified in the crude extract and fractions through high-performance liquid chromatography (HPLC) and structural was characterized by liquid chromatography-mass spectroscopy (LC-MS) and ¹H nuclear magnetic resonance (NMR). Isolated compound was also evaluated for in vitro enzyme assays. Extract exhibited anti-hyaluronidase and anti-elastase activity with IC₅₀ of 19.27 ± 0.37 and 14.54 ± 0.39 µg/mL, respectively, as compared to ursolic acid. Centella asiatica n-butanol fraction (CAnB) and isolated compound showed significant hyaluronidase (IC₅₀ = 27.00 ± 0.43 and 18.63 ± 0.33 µg/mL) and elastase (IC₅₀ = 29.15 ± 0.31 and 19.45 ± 0.25 µg/mL) inhibitory activities, respectively, and also showed significant MMP-1 inhibition (p < 0.05 and p < 0.01). n-Butanol fraction was found to be most effective among the all fractions from which asiaticoside was isolated and further quantified by HPLC. This work concludes that the asiaticoside from C. asiatica may be a prospective agent for skin care.

  4. Comparison of cardioprotective effects of labeled and unlabeled oleanoic acids with new BOPIM dye on primary neonatal rat cardiomyocytes following hypoxia/reoxygenation injury.

    PubMed

    Wang, Sa; He, Hai-bo; Xiao, Shu-zhang; Wang, Jun-zhi; Bai, Cai-hong; Wei, Na; Zou, Kun

    2014-08-01

    It is well known that fluorescent labeling has recently become a major research tool in molecular and cellular biology for demonstrating therapeutic mechanisms and metabolic pathways. However, few studies have reported the use of fluorescent labeling of natural products. We recently explored the boron 2-(2'-pyridyl) imidazole (BOPIM) derivative analogs, which are highly fluorescent, non-aggregated, and nontoxic. In the present study, the natural product oleanolic acid (OA) was functionalized and labeled with BOPIM, thus yielding a highly fluorescent probe, the comparison of cardioprotective effects of labeled and unlabeled OAs with BOPIM on primary neonatal rat cardiomyocytes with hypoxia/reoxygenation (H/R) injury were investigated. Pretreatment with OA and BOPIM-OA significantly prevented the H/R induced cell death in primary neonatal rat cardiomyocytes. However, BOPIM exhibited no improvements on the H/R injury cardiomyocytes, and which were similar to those of the H/R group. The results of comparison of cardioprotective effects between labeled and unlabeled OAs with BOPIM showed that introducing the BOPIM chromophore did not make a difference with H/R injury cardiomyocytes. BOPIM chromophore is a suitable probe for investigating the pharmacological mechanisms of natural products. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  5. Antifungal and antibacterial activity and chemical composition of polar and non-polar extracts of Athrixia phylicoides determined using bioautography and HPLC

    PubMed Central

    2013-01-01

    Background Athrixia phylicoides DC. (Asteraceae) is used medicinally in South Africa to treat a plethora of ailments, including heart problems, diabetes, diarrhoea, sores and infected wounds. It is also prepared in the form of a tea (hot decoction) taken as a refreshing, pleasant-tasting beverage with commercialization potential. Methods Extracts of the dried ground aerial parts were prepared using organic solvents (diethyl ether, dichloromethane/methanol, ethyl acetate and ethanol) and water. These extracts were subjected to HPLC, TLC and bioautography analysis with the aim of linking a range of peaks visualized in HPLC chromatography profiles to antibacterial and antifungal activity of the same extracts. Results HPLC revealed a group of compounds extracted by more than one solvent. Compounds identified include inositol, caffeic acid, quercetin, kaempferol, apigenin, hymenoxin and oleanolic acid. The organic extracts displayed similar TLC profiles, and bioautography indicated approximately five antibacterial compounds, but only two antifungal compounds in these extracts. Bioautography indicated that cold water extracted the least antimicrobial compounds. Conclusions Several previously unknown compounds were identified in Athrixia phylicoides extracts, and bioautography indicated a number of antibacterial and antifungal compounds. There were notable differences in chemical composition and bioactivity between the organic and aqueous extracts. Further research is necessary to fully characterize the active components of the extracts. PMID:24330447

  6. Identification of a Multicomponent Traditional Herbal Medicine by HPLC-MS and Electron and Light Microscopy.

    PubMed

    Liu, Ju-Han; Cheng, Yung-Yi; Hsieh, Chen-Hsi; Tsai, Tung-Hu

    2017-12-15

    Commercial pharmaceutical herbal products have enabled people to take traditional Chinese medicine (TCM) in a convenient and accessible form. However, the quantity and quality should be additionally inspected. To address the issue, a combination of chemical and physical inspection methods were developed to evaluate the amount of an herbal formula, Xiang-Sha-Liu-Jun-Zi-Tang (XSLJZT), in clinical TCM practice. A high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS) method with electrospray ionization was developed to measure the herbal biomarkers of guanosine, atractylenolide III, glycyrrhizic acid, dehydrocostus lactone, hesperidin, and oleanolic acid from XSLJZT. Scanning electron microscopy (SEM) photographs and light microscopy photographs with Congo red and iodine-KI staining were used to identify the cellulose fibers and starch content. Furthermore, solubility analysis, swelling power test, and crude fiber analysis were contributed to measure the starch additive in pharmaceutical products. The results demonstrated large variations in the chemical components of different pharmaceutical brands. The SEM photographs revealed that the starch was oval, smooth, and granular, and that the raw herbal powder appears stripy, stretched, and filiform. The stained light microscopy photographs of all of the pharmaceutical products showed added starch and raw herbal powder as extenders. The developed chemical and physical methods provide a standard operating procedure for the quantity control of the herbal pharmaceutical products of XSLJZT.

  7. Neurologically Potent Molecules from Crataegus oxyacantha; Isolation, Anticholinesterase Inhibition, and Molecular Docking

    PubMed Central

    Ali, Mumtaz; Muhammad, Sultan; Shah, Muhammad R.; Khan, Ajmal; Rashid, Umer; Farooq, Umar; Ullah, Farhat; Sadiq, Abdul; Ayaz, Muhammad; Ali, Majid; Ahmad, Manzoor; Latif, Abdul

    2017-01-01

    Crataegus oxyacantha is an important herbal supplement and famous for its antioxidant potential. The antioxidant in combination with anticholinesterase activity can be considered as an important target in the management of Alzheimer’s disease. The compounds isolated from C. oxyacantha were evaluated for cholinesterases inhibitory activity using Ellman’s assay with Galantamine as standard drug. Total of nine (1–9) compounds were isolated. Compounds 1 and 2 were isolated for the first time from natural source. Important natural products like β-Sitosterol-3-O-β-D-Glucopyranoside (3), lupeol (4), β-sitosterol (5), betulin (6), betulinic acid (7), oleanolic acid (8), and chrysin (9) have also been isolated from C. oxyacantha. Overall, all the compounds exhibited an overwhelming acetylcholinesterase (AChE) inhibition potential in the range 5.22–44.47 μM. The compound 3 was prominent AChE inhibitor with IC50 value of 5.22 μM. Likewise, all the compounds were also potent in butyrylcholinesterase (BChE) inhibitions with IC50s of up to 0.55–15.36 μM. All the compounds, except 3, were selective toward BChE. Mechanism of the inhibition of both the enzymes were further studied by docking procedures using Genetic Optimization for Ligand Docking suit v5.4.1. Furthermore, computational blood brain barrier prediction of the isolated compounds suggest that these are BBB+. PMID:28638340

  8. Inflammation and Immune Regulation as Potential Drug Targets in Antidepressant Treatment

    PubMed Central

    Schmidt, Frank M.; Kirkby, Kenneth C.; Lichtblau, Nicole

    2016-01-01

    Growing evidence supports a mutual relationship between inflammation and major depression. A variety of mechanisms are outlined, indicating how inflammation may be involved in the pathogenesis, course and treatment of major depression. In particular, this review addresses 1) inflammatory cytokines as markers of depression and potential predictors of treatment response, 2) findings that cytokines interact with antidepressants and non-pharmacological antidepressive therapies, such as electroconvulsive therapy, deep brain stimulation and physical activity, 3) the influence of cytokines on the cytochrome (CYP) p450-system and drug efflux transporters, and 4) how cascades of inflammation might serve as antidepressant drug targets. A number of clinical trials have focused on agents with immunmodulatory properties in the treatment of depression, of which this review covers nonsteroidal anti-inflammatory drugs (NSAIDs), cytokine inhibitors, ketamine, polyunsaturated fatty acids, statins and curcumin. A perspective is also provided on possible future immune targets for antidepressant therapy, such as toll-like receptor-inhibitors, glycogen synthase kinase-3 inhibitors, oleanolic acid analogs and minocycline. Concluding from the available data, markers of inflammation may become relevant factors for more personalised planning and prediction of response of antidepressant treatment strategies. Agents with anti-inflammatory properties have the potential to serve as clinically relevant antidepressants. Further studies are required to better define and identify subgroups of patients responsive to inflammatory agents as well as to define optimal time points for treatment onset and duration. PMID:26769225

  9. Structure-activity relationships of 3-O-β-chacotriosyl oleanic acid derivatives as entry inhibitors for highly pathogenic H5N1 influenza virus.

    PubMed

    Li, Sumei; Jia, Xiuhua; Shen, Xintian; Wei, Zhuwen; Jiang, Zhiyan; Liao, Yixian; Guo, Yiming; Zheng, Xiaojun; Zhong, Guohua; Song, Gaopeng

    2017-08-15

    Highly pathogenic H5N1 virus (H5N1) entry is a key target for the development of novel anti-influenza agents with new mechanisms of action. In our continuing efforts to identify novel potential anti-H5N1 entry inhibitors, a series of 3-O-β-chacotriosyl oleanolic acid analogs have been designed, synthesized and evaluated as H5N1 entry inhibitors based on two small molecule inhibitors 1 and 2 previously discovered by us. The anti-H5N1 entry activities were determined based on HA/HIV and VSVG/HIV entry assays. Compound 15 displayed the most promising anti-H5N1 entry activities with average IC 50 values of 4.05μM and good selective index (22.9). Detailed structure-activity relationships (SARs) studies suggested that either the introduction of an additional oxo group to position 11 at OA or alteration of the C-3 configuration of OA from 3β- to 3α-forms can significantly enhance the selective index while maintaining their antiviral activities in vitro. Molecular simulation analysis confirmed that the compounds exert their inhibitory activity through binding tightly to hemagglutinin (HA2) protein near the fusion peptide and prevent virus entry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Synergistic antinociceptive interaction of Syzygium aromaticum or Rosmarinus officinalis coadministered with ketorolac in rats.

    PubMed

    Beltrán-Villalobos, Karla Lyzet; Déciga-Campos, Myrna; Aguilar-Mariscal, Hidemi; González-Trujano, María Eva; Martínez-Salazar, María Fernanda; Ramírez-Cisneros, María de Los Ángeles; Rios, María Yolanda; López-Muñoz, Francisco Javier

    2017-10-01

    Syzygium aromaticum (L.) Merr. & L.M. Perry (Mirtaceae) and Rosmarinus officinalis L. (Lamiaceae) are both medicinal plants used for centuries to alleviate pain. The aim of the study was to demonstrate the therapeutic potential utility of herb-drug association of S. aromaticum essential oil or R. officinalis ethanolic extract coadministered with ketorolac. Antinociceptive pharmacological interaction was investigated by an isbolographic study using the formalin test in rats. Both alone and in combination with ketorolac; S. aromaticum and R. officinalis produced a dose-dependent antinociceptive response. To plot the isobologram, we used the effective dose 50 of each one component in a fixed 1:1 ratio. The isobolographic analysis showed that, in both combinations, ketorolac plus essential oil S. aromaticum and ketorolac plus ethanolic extract R. officinalis, the experimental value (Z exp ) was lower than the theoretical value (Z add ). In addition, this study shows that eugenol, a metabolite present in S. aromaticum, and ursolic acid, a metabolite present in R. officinalis, also synergized the antinociceptive effect of ketorolac. While, the oleanolic acid present in both medicinal species did not show a synergistic antinociceptive effect in combination with ketorolac. No adverse effects were observed with these herb-drug interactions. These findings suggest that essential oil S. aromaticum and ethanolic extract R. officinalis could be useful in combination with ketorolac for the treatment of inflammatory pain. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Isolation and identification of antibacterial compound from the leaves of Cassia auriculata.

    PubMed

    Senthilkumar, P K; Reetha, D

    2011-09-01

    Antimicrobial properties of medicinal plants and plant parts such as flowers, roots, fruits, seeds and oils are being used to cure some chronic and acute diseases throughout the world. In the present study, an attempt has been made to isolate and identify the antibacterial compound present in the leaves of the Cassia auriculata. A preliminary screening of antibacterial activity was carried out with fine different plant extracts viz., Aegle marmelos, Chloris Virgata, Clausena anisata, Feronia limonia and Cassia auriculata against different human pathogenic bacteriae such as Escherichia coil, Salmonella typhi, Proteus mirabilis and Klebsiella pneumoniae at different concentrations. Based on the results, the plant Cassia auriculata was selected as the efficient plant, which shows antibacterial activity against the tested organisms. Further compound responsible for its antibacterial activity was isolated and identified by IR spectrum, 1HNMR, 13CNMR and Mass spectrum studies, as oleanolic acid, which has the molecular formula of C30H48O3.

  12. The NUTRAOLEOUM Study, a randomized controlled trial, for achieving nutritional added value for olive oils.

    PubMed

    Biel, Sara; Mesa, Maria-Dolores; de la Torre, Rafael; Espejo, Juan-Antonio; Fernández-Navarro, Jose-Ramón; Fitó, Montserrat; Sánchez-Rodriguez, Estefanía; Rosa, Carmen; Marchal, Rosa; Alche, Juan de Dios; Expósito, Manuela; Brenes, Manuel; Gandul, Beatriz; Calleja, Miguel Angel; Covas, María-Isabel

    2016-10-22

    Virgin olive oil, a recognized healthy food, cannot be consumed in great quantities. We aim to assess in humans whether an optimized virgin olive oil with high phenolic content (OVOO, 429 mg/Kg) and a functional one (FOO), both rich in phenolic compounds (429 mg/Kg) and triterpenic acids (389 mg/kg), could provide health benefits additional to those supplied a by a standard virgin olive oil (VOO). A randomized, double-blind, crossover, controlled study will be conducted. Healthy volunteers (aged 20 to 50) will be randomized into one of three groups of daily raw olive oil consumption: VOO, OVOO, and FOO (30 mL/d). Olive oils will be administered over 3-week periods preceded by 2-week washout ones. The main outcomes will be markers of lipid and DNA oxidation, inflammation, and vascular damage. A bioavailability and dose-response study will be nested within this sustained- consumption one. It will be made up of 18 volunteers and be performed at two stages after a single dose of each olive oil. Endothelial function and nitric oxide will be assessed at baseline and at 4 h and 6 h after olive oil single dose ingestion. For the first time the NUTRAOLEUM Study will provide first level evidence on the health benefits in vivo in humans of olive oil triterpenes (oleanolic and maslinic acid) in addition to their bioavailability and disposition. The Trial has been registered in ClinicalTrials.gov ID: NCT02520739 .

  13. Lithium adduct as precursor ion for sensitive and rapid quantification of 20 (S)-protopanaxadiol in rat plasma by liquid chromatography/quadrupole linear ion trap mass spectrometry and application to rat pharmacokinetic study.

    PubMed

    Bao, Yuanwu; Wang, Quanying; Tang, Pingming

    2013-03-01

    A novel, rapid and sensitive liquid chromatography/quadrupole linear ion trap mass spectrometry [LC-ESI-(QqLIT)MS/MS] method was developed and validated for the quantification of protopanaxadiol (PPD) in rat plasma. Oleanolic acid (OA) was used as internal standard (IS). A simple protein precipitation based on acetonitrile (ACN) was employed. Chromatographic separation was performed on a Sepax GP-C18 column (50 × 2.1 mm, 5 μM) with a mobile phase consisting of ACN-water and 1.5 μM formic acid and 25 mM lithium acetate (90 : 10, v/v) at a flow rate of 0.4 ml/min for 3.0 min. Multiple-reaction-monitoring mode was performed using lithium adduct ion as precursor ion of m/z 467.5/449.4 and 455.6/407.4 for the drug and IS, respectively. Calibration curve was recovered over a concentration range of 0.5-100 ng/ml with a correlation coefficient >0.99. The limit of detection was 0.2 ng/ml in rat plasma for PPD. The results of the intraday and interday precision and accuracy studies were well within the acceptable limits. The validated method was successfully applied to investigate the pharmacokinetic study of PPD after intravenous and gavage administration to rat. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Anti-inflammatory, antioxidant and anti-acetylcholinesterase activities of Bouvardia ternifolia: potential implications in Alzheimer's disease.

    PubMed

    García-Morales, Giovanni; Huerta-Reyes, Maira; González-Cortazar, Manasés; Zamilpa, Alejandro; Jiménez-Ferrer, Enrique; Silva-García, Raúl; Román-Ramos, Rubén; Aguilar-Rojas, Arturo

    2015-07-01

    Bouvardia ternifolia has been used medicinally to treat inflammation. In the present study, we investigate the anti-Alzheimer's potential effect of the hydroalcoholic extract of B. ternifolia through evaluation of anti-inflammatory and antioxidant activities, quantification of the percentage inhibition of acetylcholinesterase activity, protection effect against β-amyloid fibrillar-induce neurotoxicity, and the identification of the main constituents. Our results show that B. ternifolia extract and ethyl acetate fraction induced anti-inflammatory effects by reducing inflammation by >70 %, while antioxidant test revealed significant IC50 values for flavonoid content fraction (30.67 ± 2.09 μg/ml) and ethyl acetate fraction (42.66 ± 0.93 μg/ml). The maximum inhibition of acetylcholinesterase was exhibited by scopoletin content fraction (38.43 ± 3.94 %), while ethyl acetate fraction exerted neuroprotective effect against β-amyloid peptide (83.97 ± 5.03 %). Phytochemical analysis, showed the presence of 3-O-quercetin glucopyranoside (415 mg/g), rutin (229.9 mg/g), ursolic and oleanolic acid (54 and 20.8 mg/g respectively), 3-O-quercetin rhamnopyranoside (12.8 mg/g), chlorogenic acid (9.5 mg/g), and scopoletin (1.38 mg/g). Our findings support the use of B. ternifolia since the extract induced significant neuroprotection against β-amyloid peptide, anti-inflammatory, antioxidant and anti-acetylcholinesterase effects that could be attributed to its contents of polyphenols, coumarins, and triterpenes, and encourage further studies for development of this extract as therapeutic agent in treatment of Alzheimer's disease.

  15. In Vitro Schistosomicidal Activity of Some Brazilian Cerrado Species and Their Isolated Compounds

    PubMed Central

    Cunha, Nayanne Larissa; Uchôa, Camila Jacintho de Mendonça; Cintra, Lucas Silva; de Souza, Herbert Cristian; Peixoto, Juliana Andrade; Silva, Claudia Peres; Magalhães, Lizandra Guidi; Gimenez, Valéria Maria Meleiro; Groppo, Milton; Rodrigues, Vanderlei; da Silva Filho, Ademar Alves; Andrade e Silva, Márcio Luís; Cunha, Wilson Roberto; Pauletti, Patrícia Mendonça; Januário, Ana Helena

    2012-01-01

    Miconia langsdorffii Cogn. (Melastomataceae), Roupala montana Aubl. (Proteaceae), Struthanthus syringifolius (Mart.) (Loranthaceae), and Schefflera vinosa (Cham. & Schltdl.) Frodin (Araliaceae) are plant species from the Brazilian Cerrado whose schistosomicidal potential has not yet been described. The crude extracts, fractions, the triterpenes betulin, oleanolic acid, ursolic acid and the flavonoids quercetin 3-O-β-D-rhamnoside, quercetin 3-O-β-D-glucoside, quercetin 3-O-β-D-glucopyranosyl-(1-2)-α-L-rhamnopyranoside and isorhamnetin 3-O-β-D-glucopyranosyl-(1-2)-α-L-rhamnopyranoside were evaluated in vitro against Schistosoma mansoni adult worms and the bioactive n-hexane fractions of the mentioned species were also analyzed by GC-MS. Betulin was able to cause worm death percentage values of 25% after 120 h (at 100 μM), and 25% and 50% after 24 and 120 h (at 200 μM), respectively; besides the flavonoid quercetin 3-O-β-D-rhamnoside promoted 25% of death of the parasites at 100 μM. Farther the flavonoids quercetin 3-O-β-D-glucoside and quercetin 3-O-β-D-rhamnoside at 100 μM exhibited significantly reduction in motor activity, 75% and 87.5%, respectively. Biological results indicated that crude extracts of R. montana, S. vinosa, and M. langsdorffii and some n-hexane and EtOAc fractions of this species were able to induce worm death to some extent. The results suggest that lupane-type triterpenes and flavonoid monoglycosides should be considered for further antiparasites studies. PMID:22924053

  16. Search for constituents with neurotrophic factor-potentiating activity from the medicinal plants of paraguay and Thailand.

    PubMed

    Li, Yushan; Ohizumi, Yasushi

    2004-07-01

    20 medicinal plants of Paraguay and 3 medicinal plants of Thailand were examined on nerve growth factor (NGF)-potentiating activities in PC12D cells. The trail results demonstrated that the methanol extracts of four plants, Verbena littoralis, Scoparia dulcis, Artemisia absinthium and Garcinia xanthochymus, markedly enhanced the neurite outgrowth induced by NGF from PC12D cells. Furthermore, utilizing the bioactivity-guided separation we successfully isolated 32, 4 and 5 constituents from V. littoralis, S. dulcis and G. xanthochymus, respectively, including nine iridoid and iridoid glucosides (1-9), two dihydrochalcone dimers (10 and 11), two flavonoids and three flavonoid glycosides (12-16), two sterols (17 and 18), ten triterpenoids (19-28), five xanthones (29-33), one naphthoquinone (34), one benzenepropanamide (35), four phenylethanoid glycosides (36-39) and two other compounds (40 and 41). Among which, 15 compounds (1-4, 10-11, 14-18, 29-31 and 34) were new natural products. The results of pharmacological trails verified that littoralisone (1), gelsemiol (5), 7a-hydroxysemperoside aglucone (6), verbenachalcone (10), littorachalcone (11), stigmast-5-ene 3beta,7alpha,22alpha-triol (18), ursolic acid (19), 3beta-hydroxyurs-11-en-28,13beta-olide (24), oleanolic acid (25), 2alpha,3beta-dihydroxyolean-12-en-28-oic acid (26), 1,4,5,6-tetrahydroxy-7,8-di(3-methylbut-2-enyl)xanthone (29), 1,2,6-trihydroxy-5-methoxy-7-(3-methylbut-2-enyl)xanthone (30), 1,3,5,6-tetrahydroxy-4,7,8-tri(3-methyl-2-butenyl)xanthone (31), 12b-hydroxy-des-D-garcigerrin A (32), garciniaxanthone E (33) and (4R)-4,9-dihydroxy-8-methoxy-alpha-lapachone (34) elicited marked enhancement of NGF-mediated neurite outgrowth in PC12D cells. These substances may contribute to the basic study and the medicinal development for the neurodegenerative disorder.

  17. Activation of G protein-coupled bile acid receptor, TGR5, induces smooth muscle relaxation via both Epac- and PKA-mediated inhibition of RhoA/Rho kinase pathway.

    PubMed

    Rajagopal, Senthilkumar; Kumar, Divya P; Mahavadi, Sunila; Bhattacharya, Sayak; Zhou, Ruizhe; Corvera, Carlos U; Bunnett, Nigel W; Grider, John R; Murthy, Karnam S

    2013-03-01

    The present study characterized the TGR5 expression and the signaling pathways coupled to this receptor that mediates the relaxation of gastric smooth muscle. TGR5 was detected in gastric muscle cells by RT-PCR and Western blotting. Treatment of cells with the TGR5-selective ligand oleanolic acid (OA) activated Gαs, but not Gαq, Gαi1, Gαi2, or Gαi3, and increased cAMP levels. OA did not elicit contraction, but caused relaxation of carbachol-induced contraction of gastric muscle cells from wild-type mice, but not tgr5(-/-) mice. OA, but not a selective exchange protein activated by cAMP (Epac) ligand (8-pCPT-2'-O-Me-cAMP), caused phosphorylation of RhoA and the phosphorylation was blocked by the PKA inhibitor, myristoylated PKI, and by the expression of phosphorylation-deficient mutant RhoA (S188A). Both OA and Epac ligand stimulated Ras-related protein 1 (Rap1) and inhibited carbachol (CCh)-induced Rho kinase activity. Expression of RhoA (S188A) or PKI partly reversed the inhibition of Rho kinase activity by OA but had no effect on inhibition by Epac ligand. However, suppression of Rap1 with siRNA blocked the inhibition of Rho kinase by Epac ligand, and partly reversed the inhibition by OA; the residual inhibition was blocked by PKI. Muscle relaxation in response to OA, but not Epac ligand, was partly reversed by PKI. We conclude that activation of TGR5 causes relaxation of gastric smooth muscle and the relaxation is mediated through inhibition of RhoA/Rho kinase pathway via both cAMP/Epac-dependent stimulation of Rap1 and cAMP/PKA-dependent phosphorylation of RhoA at Ser(188). TGR5 receptor activation on smooth muscle reveals a novel mechanism for the regulation of gut motility by bile acids.

  18. The Effect of Ursolic Acid on Leishmania (Leishmania) amazonensis Is Related to Programed Cell Death and Presents Therapeutic Potential in Experimental Cutaneous Leishmaniasis

    PubMed Central

    Yamamoto, Eduardo S.; Campos, Bruno L. S.; Jesus, Jéssica A.; Laurenti, Márcia D.; Ribeiro, Susan P.; Kallás, Esper G.; Rafael-Fernandes, Mariana; Santos-Gomes, Gabriela; Silva, Marcelo S.; Sessa, Deborah P.; Lago, João H. G.; Levy, Débora; Passero, Luiz F. D.

    2015-01-01

    Among neglected tropical diseases, leishmaniasis is one of the most important ones, affecting more than 12 million people worldwide. The available treatments are not well tolerated, and present diverse side effects, justifying the search for new therapeutic compounds. In the present study, the activity of ursolic acid (UA) and oleanolic acid (OA) were assayed in experimental cutaneous leishmaniasis (in vitro and in vivo). Promastigote forms of L. amazonensis were incubated with OA and UA for 24h, and effective concentration 50% (EC50) was estimated. Ultraestructural alterations in Leishmania amazonensis promastigotes after UA treatment were evaluated by transmission electron microscopy, and the possible mode of action was assayed through Annexin V and propidium iodide staining, caspase 3/7 activity, DNA fragmentation and transmembrane mitochondrial potential. The UA potential was evaluated in intracellular amastigotes, and its therapeutic potential was evaluated in L. amazonensis infected BALB/c mice. UA eliminated L. amazonensis promastigotes with an EC50 of 6.4 μg/mL, comparable with miltefosine, while OA presented only a marginal effect on promastigote forms at 100 μg/mL. The possible mechanism by which promastigotes were eliminated by UA was programmed cell death, independent of caspase 3/7, but it was highly dependent on mitochondria activity. UA was not toxic for peritoneal macrophages from BALB/c mice, and it was able to eliminate intracellular amastigotes, associated with nitric oxide (NO) production. OA did not eliminate amastigotes nor trigger NO. L. amazonensis infected BALB/c mice submitted to UA treatment presented lesser lesion size and parasitism compared to control. This study showed, for the first time, that UA eliminate promastigote forms through a mechanism associated with programed cell death, and importantly, was effective in vivo. Therefore, UA can be considered an interesting candidate for future tests as a prototype drug for the treatment of cutaneous leishmaniasis. PMID:26674781

  19. A comprehensive analysis on Symplocos racemosa Roxb.: Traditional uses, botany, phytochemistry and pharmacological activities.

    PubMed

    Acharya, Niyati; Acharya, Sanjeev; Shah, Unnati; Shah, Ripal; Hingorani, Lal

    2016-04-02

    Symplocos racemosa Roxb. belongs to a unigeneric family Symplocaceae, known as lodhra in Sanskrit; is a small evergreen tree, found throughout the tropical and sub-tropical countries. Ethnobotanical literature indicates use of S. racemosa in treatment of eye disease, skin diseases, ear diseases, liver and bowel complaints, tumors, uterine disorders, spongy and bleeding gums, asthma, fever, snake-bite, gonorrhea and arthritis. The main aim of this review is to provide detailed phytopharmacological profile on S. racemosa in support with the traditional practices and ethnomedicinal uses. All relevant worldwide accepted databases have been searched for the name "S. racemosa" along with other literature from Indian Classical texts and Pharmacopoeias. The accessible literatures available on S. racemosa, were collected through electronic search on Pub med, Scopus, Science direct and traditional reports. S. racemosa is important Indian traditional drug used in many Ayurvedic and herbal formulations for treatment of liver as well as uterine disorders and leucorrhea. Majority of phytopharmacological reports are on stem bark of the plant which include anti-cancer, hepatoprotective, anti-oxidant, anti-androgenic effect, anti-inflammatory, wound healing activity and anti-diabetic effects. Phytochemical studies indicated presence of many phenolic glycosides like symplocoside, triterpenoids like betulinic acid, acetyloleanolic acid and oleanolic acid and flavonoids like quercetin which might have contributed to the observed protective effects. Many ethnobotanical claims have been confirmed through systematic in-vitro and in-vivo pharmacological studies on different extracts of stem bark and isolated constituents. However, systematic studies on the bio-markers are desirable to establish mode of action and to validate the traditional claim in clinical practice after proper safety assessment. The conservation data of genus Symplocos showed risk of extinction due to restricted distribution in the wild hence systematic techniques should be developed for the maintenance of this plant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Activation of G protein-coupled bile acid receptor, TGR5, induces smooth muscle relaxation via both Epac- and PKA-mediated inhibition of RhoA/Rho kinase pathway

    PubMed Central

    Rajagopal, Senthilkumar; Kumar, Divya P.; Mahavadi, Sunila; Bhattacharya, Sayak; Zhou, Ruizhe; Corvera, Carlos U.; Bunnett, Nigel W.; Grider, John R.

    2013-01-01

    The present study characterized the TGR5 expression and the signaling pathways coupled to this receptor that mediates the relaxation of gastric smooth muscle. TGR5 was detected in gastric muscle cells by RT-PCR and Western blotting. Treatment of cells with the TGR5-selective ligand oleanolic acid (OA) activated Gαs, but not Gαq, Gαi1, Gαi2, or Gαi3, and increased cAMP levels. OA did not elicit contraction, but caused relaxation of carbachol-induced contraction of gastric muscle cells from wild-type mice, but not tgr5−/− mice. OA, but not a selective exchange protein activated by cAMP (Epac) ligand (8-pCPT-2′-O-Me-cAMP), caused phosphorylation of RhoA and the phosphorylation was blocked by the PKA inhibitor, myristoylated PKI, and by the expression of phosphorylation-deficient mutant RhoA (S188A). Both OA and Epac ligand stimulated Ras-related protein 1 (Rap1) and inhibited carbachol (CCh)-induced Rho kinase activity. Expression of RhoA (S188A) or PKI partly reversed the inhibition of Rho kinase activity by OA but had no effect on inhibition by Epac ligand. However, suppression of Rap1 with siRNA blocked the inhibition of Rho kinase by Epac ligand, and partly reversed the inhibition by OA; the residual inhibition was blocked by PKI. Muscle relaxation in response to OA, but not Epac ligand, was partly reversed by PKI. We conclude that activation of TGR5 causes relaxation of gastric smooth muscle and the relaxation is mediated through inhibition of RhoA/Rho kinase pathway via both cAMP/Epac-dependent stimulation of Rap1 and cAMP/PKA-dependent phosphorylation of RhoA at Ser188. TGR5 receptor activation on smooth muscle reveals a novel mechanism for the regulation of gut motility by bile acids. PMID:23275618

  1. Electrophilic Triterpenoid Enones: A Comparative Thiol-Trapping and Bioactivity Study.

    PubMed

    Del Prete, Danilo; Taglialatela-Scafati, Orazio; Minassi, Alberto; Sirignano, Carmina; Cruz, Cristina; Bellido, Maria L; Muñoz, Eduardo; Appendino, Giovanni

    2017-08-25

    Bardoxolone methyl (1) is the quintessential member of triterpenoid cyanoacrylates, an emerging class of bioactive compounds capable of transient covalent binding to thiols. The mechanistic basis for this unusual "pulsed reactivity" profile and the mode of its biological translation are unknown. To provide clues on these issues, a series of Δ 1 -dehydrooleanolates bearing an electron-withdrawing group at C-2 (7a-m) were prepared from oleanolic acid (3a) and comparatively investigated in terms of reactivity with thiols and bioactivity against a series of electrophile-sensitive transcription factors (Nrf2, NF-κB, STAT3). The emerging picture suggests that the triterpenoid scaffold sharply decreases the reactivity of the enone system by steric encumbrance and that only strongly electrophilic and sterically undemanding substituents such as a cyanide or a carboxylate group can re-establish Michael reactivity, albeit in a transient way for the cyanide group. In general, a substantial dissection between the thiol-trapping ability and the modulation of biological end-points sensitive to thiol alkylation was observed, highlighting the role of shape complementarity for the activity of triterpenoid thia-Michael acceptors.

  2. Synthesis and biological evaluation of novel thiadiazole amides as potent Cdc25B and PTP1B inhibitors.

    PubMed

    Li, Yingjun; Yu, Yang; Jin, Kun; Gao, Lixin; Luo, Tongchuan; Sheng, Li; Shao, Xin; Li, Jia

    2014-09-01

    A series of novel thiadiazole amide derivatives have been synthesized and evaluated for inhibitory activities against Cdc25B and PTP1B. Most of them showed inhibitory activities against Cdc25B (IC50=1.18-8.01 μg/mL) and PTP1B (IC50=0.85-8.75 μg/mL), respectively. Moreover, compounds 5b and 4l were most potent with IC50 values of 1.18 and 0.85 μg/mL for Cdc25B and PTP1B, respectively, compared with reference drugs Na3VO4 (IC50=0.93 μg/mL) and oleanolic acid (IC50=0.85 μg/mL). The results of selectivity experiments showed that the target compounds were selective inhibitors against PTP1B and Cdc25B. Enzyme kinetic experiments demonstrated that compound 5k was a specific inhibitor with the typical characteristics of a mixed inhibitor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Bioactivities and chemical constituents of a Vietnamese medicinal plant Che Vang, Jasminum subtriplinerve Blume (Oleaceae).

    PubMed

    Ngan, Dai Hue; Hoai, Ho Thi Cam; Huong, Le Mai; Hansen, Poul Erik; Vang, Ole

    2008-01-01

    Five crude extracts were made from leaves and stems of Jasminum subtriplinerve Blume (Oleaceae) and investigated for antimicrobial, antioxidant and cytotoxic activities. The extractions were done with petroleum ether, ethyl acetate, ethanol, methanol or water. All extracts exhibited anti-bacterial activity except the water fraction. On the other hand, all extracts exhibit antioxidant activity except the petroleum ether fraction using the DPPH radical scavenging assay. Only the petroleum ether fraction showed a cytotoxicity activity against tested cell-lines, Hep-G2 and RD with IC(50) values of 19.2 and 20 microg mL(-1), respectively. From the petroleum ether and ethyl acetate extracts, two triterpenes namely 3beta-acetyl-oleanolic acid and lup-20-en-3beta-ol and a sterol, stigmast-5-en-3beta-ol were isolated. The structure of those compounds were elucidated by spectrometric methods IR, MS, 1D-NMR, 2D-NMR and simulated ACD/NMR spectra. The data presented here indicate that J. subtriplinerve do contain compounds with interesting biological activity.

  4. Triterpenoid saponins from the root of Anemone tomentosa.

    PubMed

    Wang, Yi; Kang, Wei; Hong, Liang-jian; Hai, Wen-li; Wang, Xiao-yang; Tang, Hai-feng; Tian, Xiang-rong

    2013-01-01

    Three new triterpenoid saponins, tomentoside A (1), B (2) and C (3), along with four known saponins (4-7) were isolated from the root of Anemone tomentosa. The structures of the new compounds were elucidated as 3-O-β-D-ribopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-α-L-arabinopyranosyl hederagenin 28-O-α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside (1), 3-O-β-D-ribopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-β-D-xylopyranosyl hederagenin 28-O-α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside (2) and 3-O-β-D-galactopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranosyl oleanolic acid 28-O-α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside (3) on the basis of chemical and spectral evidence. In the oligosaccharide chains of compound 3, the characteristic D-galactose residue is a rare structural feature and secondly encountered among triterpenoid saponins from Anemone.

  5. Evaluation and prevention of the negative matrix effect of terpenoids on pesticides in apples quantification by gas chromatography-tandem mass spectrometry.

    PubMed

    Giacinti, Géraldine; Raynaud, Christine; Capblancq, Sophie; Simon, Valérie

    2016-12-21

    The sample matrix can enhance the gas chromatography signal of pesticide residues relative to that obtained with the same concentration of pesticide in solvent. This paper is related to negative matrix effects observed in coupled gas chromatography-mass spectrometry ion trap (GC/MS 2 ) quantification of pesticides in concentrated extracts of apple peel prepared by the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) method. It is focused on the pesticides most frequently used on the apple varieties studied, throughout the crop cycle, right up to harvest, to combat pests and diseases and to improve fruit storage properties. Extracts from the fleshy receptacle (flesh), the epiderm (peel) and fruit of three apple varieties were studied by high-performance thin-layer chromatography hyphenated with UV-vis light detection (HPTLC/UV visible). The peel extracts had high concentrations of triterpenic acids (oleanolic and ursolic acids), reaching 25mgkg -1 , whereas these compounds were not detected in the flesh extracts (<0.05mgkg -1 ). A significant relationship has been found between the levels of these molecules and negative matrix effects in GC/MS 2 . The differences in the behavior of pesticides with respect to matrix effects can be accounted for by the physicochemical characteristics of the molecules (lone pairs, labile hydrogen, conjugation). The HPTLC/UV visible method developed here for the characterization of QuEChERS extracts acts as a complementary clean-up method, aimed to decrease the negative matrix effects of such extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Molecular recognition of emerald ash borer infestation using leaf spray mass spectrometry.

    PubMed

    Falcone, Caitlin E; Cooks, R Graham

    2016-06-15

    The introduction of the emerald ash borer (Agrilus planipennis) (EAB) from Asia to Michigan, USA, in the 1990s caused the widespread death of ash trees in two Canadian provinces and 24 US states. The three current methods for the detection of emerald ash borer infestation, visual surveys, tree girdling and artificial traps, can be unreliable, and there is clearly a need for a rapid, dependable technique for the detection of emerald ash borer infestation. Leaf spray, an ambient ionization method for mass spectrometry (MS), gives direct chemical information on a leaf sample by applying a high voltage to a naturally or artificially sharply pointed leaf piece causing ions to be generated directly from the leaf tip for MS analysis. Leaflets from 23 healthy and EAB-infested ash trees were analyzed by leaf spray mass spectrometry in an attempt to distinguish healthy and EAB-infested ash trees. In negative ion mode, healthy ash trees showed an increased abundance of ions m/z 455.5, 471.5 and 487.5, and ash trees infested with the EAB displayed an increased abundance of ions m/z 181 and 217. The identities of the chemical discriminators ursolic acid and oleanolic acid in healthy ash trees, and six-carbon sugar alcohols in infested ash trees, were determined by tandem mass spectrometry and confirmed with standards. This preliminary study suggests that leaf spray mass spectrometry of ash tree leaflets provides a potential tool for the early detection of ash tree infestation by the emerald ash borer. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Evaluation and prevention of the negative matrix effect of terpenoids on pesticides in apples quantification by gas chromatography-tandem mass spectrometry.

    PubMed

    Giacinti, Géraldine; Raynaud, Christine; Capblancq, Sophie; Simon, Valérie

    2017-02-03

    The sample matrix can enhance the gas chromatography signal of pesticide residues relative to that obtained with the same concentration of pesticide in solvent. This paper is related to negative matrix effects observed in coupled gas chromatography-mass spectrometry ion trap (GC/MS 2 ) quantification of pesticides in concentrated extracts of apple peel prepared by the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) method. It is focused on the pesticides most frequently used on the apple varieties studied, throughout the crop cycle, right up to harvest, to combat pests and diseases and to improve fruit storage properties. Extracts from the fleshy receptacle (flesh), the epiderm (peel) and fruit of three apple varieties were studied by high-performance thin-layer chromatography hyphenated with UV-vis light detection (HPTLC/UV visible). The peel extracts had high concentrations of triterpenic acids (oleanolic and ursolic acids), reaching 25mgkg -1 , whereas these compounds were not detected in the flesh extracts (<0.05mgkg -1 ). A significant relationship has been found between the levels of these molecules and negative matrix effects in GC/MS 2 . The differences in the behavior of pesticides with respect to matrix effects can be accounted for by the physicochemical characteristics of the molecules (lone pairs, labile hydrogen, conjugation). The HPTLC/UV visible method developed here for the characterization of QuEChERS extracts acts as a complementary clean-up method, aimed to decrease the negative matrix effects of such extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Mice Behavioral Phenotype Changes after Administration of Anani (Symphonia globulifera, Clusiaceae), an Alternative Latin American and African Medicine.

    PubMed

    Suffredini, Ivana Barbosa; Paciencia, Mateus Luís Barradas; Díaz, Ingrit E C; Frana, Sergio Alexandre; Bernardi, Maria Martha

    2017-01-01

    Anani , ( Symphonia globulifera , Clusiaceae), known as chewstick, is a traditional plant occurring in Africa and in Central and South Americas that is used against parasites and microorganisms. Although its use is popular in some of these countries, there is a lack of information related to its influence over behavioral phenotype (BP). The objective of this study is to evaluate the influence of the administration of the extract obtained from the aerial organs of Anani (EB1257) to male Balb-c mice over BP. Open cage observation, open field, and elevated-plus maze apparatuses were used. Evaluations were done 15, 30, 60, 120, and 180 min after intraperitoneal administration of Anani extract. Impairment of general behavior activity, response to touch, tail squeeze, defecation, locomotion and rearing frequency were observed although no signs of hemorrhage or macroscopical alterations of internal organs. Anani is harmful, but not toxic if used in the appropriate doses, yet to be determined to male mice. Impairment of locomotion and defecation was observed, indicating some degree of influence over locomotion, but no alterations in anxiety levels were assessed. Three compounds were previously found in the plant-lupeol (1), β-amyrin (2) and 3-β-hydroxyglutin-5-ene (3), and one is being described for the first time to occur in the species: oleanolic acid (4). The present work contributes in the support of the rational use of Anani , an important Latin American and African alternative medicine, presenting findings that are being reported for the first time. Symphonia globulifera impairs locomotion and defecatin in behavior analysesNo alterations in anxiety was observedOleanolic acid occurs in the species. Abbreviations used: BP: Behavioral phenotype; OF: Open field, EPM: Elevated-plus maze, MMA/ICMBio/SISBIO: Ministério do Meio Ambiente/Instituto Chico Mendes de Conservação da Biodiversidade/Sistema de Autorização e Informação em Biodiversidade, IBAMA/MMA/CGen: Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis/Ministério do Meio Ambiente/Conselho de Gestão do Patrimônio Genético, AM: Amazonas State, UNIP: Universidade Paulista, mg: milligram, kg: kilogram, I.P: Intraperitoneal, CEUA/ICS/UNIP: Comissão de Ética no Uso de Animais/Instituto de Ciências da Saúde/Universidade Paulista, LD: Lethal dose, NLD: Nonlethal dose, GBA: General behavior activity, FCHCL 3 : Fraction chloroform, FBuOH: Fraction buthanol, FH 2 O: Fraction water, FrHEX: Fraction hexane, FrDCM: Fraction dichloromethane, FrMeOH: Fraction methanol, 13 C NMR: Carbon nuclear magnetic resonance, EPA: United States Environmental Protection Agency.

  9. Effect-directed analysis of fresh and dried elderberry (Sambucus nigra L.) via hyphenated planar chromatography.

    PubMed

    Krüger, S; Mirgos, M; Morlock, G E

    2015-12-24

    A healthy diet is an important factor in a healthy lifestyle that is becoming increasingly important in today's society. The fruits of European elder (Sambucus nigra L.) are a rich source of bioactive compounds like anthocyanins. In this study, dried and fresh fruits of four cultivated and six wild growing plants were investigated for their anthocyanin pattern and content as well as their bioactive compounds. After separation on HPTLC plates silica gel 60 F254 with a mixture of ethyl acetate, 2-butanone, formic acid and water, the plates were quantitatively evaluated by densitometry and also subjected to various (bio)assays to investigate the samples for compounds acting as radical-scavengers, antimicrobials, estrogens, and acetylcholinesterase or tyrosinase inhibitors. The mean contents for the two most abundant anthocyanins in European elderberries, confirmed by HPTLC-ESI-MS, ranged from 159 to 647mg/100g in fresh and from 166 to 2764mg/100g in dried fruits for cyanidin-3-sambubioside, and from 112 to 521mg/100g in fresh and 95 to 226mg/100g in dried fruits for cyanidin-3-glucoside. Additionally, the anthocyanin content was higher in berries of cultivars than of wild growing plants. The anthocyanins' radical scavenging activity and antimicrobial effect against Aliivibrio fischeri were confirmed. Further, a radical scavenging compound affecting A. fischeri and acting as acetylcholinesterase inhibitor was tentatively assigned by its protonated molecule at m/z 456 as either ursolic or oleanolic acid by HPTLC-ESI-MS. HPTLC hyphenated with bioassays and mass spectrometry was selected as method of choice for fingerprinting, pattern recognition, and bioprofiling of elderberry samples as well as quantitation and confirmation of bioactive compounds therein. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. The Nutrient and Metabolite Profile of 3 Complementary Legume Foods with Potential to Improve Gut Health in Rural Malawian Children

    PubMed Central

    Zhang, Lei; Maleta, Kenneth M; Manary, Mark J; Ryan, Elizabeth P

    2017-01-01

    Abstract Background: Environmental enteric dysfunction (EED), frequently seen in rural Malawian children, causes chronic inflammation and increases the risk of stunting. Legumes may be beneficial for improving nutrition and reducing the risk of developing EED in weaning children. Objective: The objectives of this study were to determine the nutritional value, verify the food safety, and identify metabolite profiles of 3 legume-based complementary foods: common bean (CB), cowpea (CP), and traditional corn-soy blend (CSB). Methods: Foods were prepared by using local ingredients and analyzed for nutrient composition with the use of Association of Official Analytical Chemists (AOAC) standards (950.46, 991.43, 992.15, 996.06, and 991.36) for macro- and micronutrient proximate analysis. Food safety analysis was conducted in accordance with the Environmental Protection Agency (7471B) and AOAC (2008.02) standards. The metabolite composition of foods was determined with nontargeted ultra-performance LC–tandem mass spectrometry metabolomics. Results: All foods provided similar energy; CB and CP foods contained higher protein and dietary fiber contents than did the CSB food. Iron and zinc were highest in the CSB and CP foods, whereas CB and CP foods contained higher amounts of magnesium, phosphorus, and potassium. A total of 652 distinct metabolites were identified across the 3 foods, and 23, 14, and 36 metabolites were specific to the CSB, CB, and CP foods, respectively. Among the potential dietary biomarkers of intake to distinguish legume foods were pipecolic acid and oleanolic acid for CB; arabinose and serotonin for CSB; and quercetin and α- and γ-tocopherol acid for CP. No heavy metals were detected, and aflatoxin was measured only in the CSB (5.2 parts per billion). Conclusions: Legumes in the diet provide a rich source of protein, dietary fiber, essential micronutrients, and phytochemicals that may reduce EED. These food metabolite analyses identified potential dietary biomarkers of legume intake for stool, urine, and blood detection that can be used in future studies to assess the relation between the distinct legumes consumed and health outcomes. This trial was registered at clinicaltrials.gov as NCT02472262 and NCT02472301.

  11. Nutritional evaluation and health promoting activities of nuts and seeds cultivated in Greece.

    PubMed

    Kalogeropoulos, Nick; Chiou, Antonia; Ioannou, Maria S; Karathanos, Vaios T

    2013-09-01

    Available data suggest that genetic as well as environmental factors may influence nuts and seeds nutrients content. In this context nuts and seeds cultivated in Greece were studied. Macronutrients content was in agreement with that from other areas. Total phenolics content was in the range of 43.0 ± 2.1-1512.7 ± 60.7 mg GAE/100 g for chestnut and walnut, respectively. Thirteen to 22 individual phenolics were identified in the studied species. Oleanolic acid was in the range of 0.10-9.03 mg/100 g. Pumpkin seeds contained the higher squalene content (71.6 mg/100 g). β-Sitosterol predominated in all samples except pumpkin seeds. Tocopherols ranged from 8.9 mg/100 g (chestnut) to 29.3 mg/100 g (almond). Nuts and seeds hydrophilic extracts at quantities corresponding to the estimated daily consumption by the Greeks succeeded in inhibiting LDL oxidation in vitro by increasing lag time 1.1-14.1 times. One serving of nuts or seeds may cover a significant fraction of health promoting microconstituents daily intake.

  12. Preliminary pharmacognostic screening of Achyranthes coynei stem.

    PubMed

    Upadhya, Vinayak; Ankad, Gireesh M; Pai, Sandeep R; Hegde, Shruti V; Hegde, Harsha V

    2015-01-01

    Achyranthes coynei is a rare, endemic perennial shrub reported from Karnataka and Maharashtra states of India. The plant is used to treat various disorders by folk healers and was proven to have antimicrobial and antioxidant properties. The present study was undertaken to evaluate microscopic and macroscopic characters of A. coynei stem, along with its physicochemical parameters. ProgRes(®) CapturePro and Microsoft Excel were used for statistical analysis. Perennial, shrubby nature and woody stem were the distinguishing morphological characters observed. Transverse section (TS) illustrated quadrangular outline of the stem and showed the presence of two types of trichomes on the thick-walled epidermis. TS also showed number of rosette calcium oxalates crystals; prismatic and microsphenoid crystals; conjoint, collateral open secondary vascular bundles; and two amphixylic medullary bundles in the pith. Ash and extractive values, micro and macro elements and nutritive factors were estimated in the present study. The presence of alkaloids, saponins and triterpenoids were observed in preliminary phytochemical screening. High-performance thin layer chromatographic analysis yielded different bands and also indicated the presence of oleanolic acid. The studied parameters for A. coynei stem will be useful for identification and authentication of the plant material.

  13. [Chemical constituents from petroleum ether fraction of Swertia chirayita and their activities in vitro].

    PubMed

    You, Rong-Rong; Chen, Xue-Qing; He, Dan-Dan; Huang, Chang-Gao; Jin, Yang; Qian, Shi-Hui; Ju, Jian-Ming; Fan, Jun-Ting

    2017-10-01

    The present work is to study the chemical constituents from petroleum ether fraction of Tibetan medicine Swertia chirayita by column chromatography and recrystallization. The structures were identified by physical and chemical properties and spectral data as swerchirin (1), decussatin (2), 1,8-dihydroxy-3,5,7-trimethoxyxanthone (3), 1-hydroxy-3,5,7,8-tetramethoxyxanthone (4), bellidifolin (5), 1-hydroxy-3, 7-dimethoxyxanthone (6), methylswertianin (7), 1-hydroxy-3,5-dimethoxyxanthone (8), erythrodiol (9), oleanolic acid (10), gnetiolactone (11), scopoletin (12), sinapaldehyde (13), syringaldehyde (14), and β-sitosterol (15). Compounds 3, 4, 9, 11-14 were isolated from S. chirayita for the first time. Compounds 9 and 12 were firstly isolated from the genus Swertia. The cytotoxic activities of compounds 1, 2, 5, 7 and 8 against human pancreatic cancer cell lines SW1990 and BxPC-3,and the protective effects of these compounds against hydrogen peroxide (H2O2)-induced oxidative stress in human endothelium-derived EA.hy926 were investigated in vitro. The results showed no obvious effect at the high concentration of 50 μmol•L⁻¹. Copyright© by the Chinese Pharmaceutical Association.

  14. Chemical constituents from the stems of Gymnema sylvestre.

    PubMed

    Liu, Yue; Xu, Tun-Hai; Zhang, Man-Qi; Li, Xue; Xu, Ya-Juan; Jiang, Hong-Yu; Liu, Tong-Hua; Xu, Dong-Ming

    2014-04-01

    To study the chemical constituents of stems of Gymnema sylvestre (Retz.) Schult. Chromatographic techniques using silica gel, C18 reversed phase silica gel, and prep-HPLC were used. The structures were elucidated on the basis of MS and spectroscopic analysis (1D and 2D NMR), as well as chemical methods. Seven compounds were isolated and their structures were elucidated as conduritol A (1), stigmasterol (2), lupeol (3), stigmasterol-3-O-β-D-glucoside (4), the sodium salt of 22α-hydroxy-longispinogenin-3-O-β-D-glucopyranosyl-(1→3)-β-D-glu-curono-pyranosyl-28-O-α-L-rhamnopyranoside (5), oleanolic acid-3-O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside (6), and the sodium salt of 22α-hydroxy-longispinogenin 3-O-β-D-glucuronopyranosyl-28-O-α-L-rhamnopyranoside (7). The inhibition activities of compounds 1, 5-7 on non-enzymatic glycation of protein in vitro were evaluated. Compound 7 is a new triterpenoid saponin. It was shown that compounds 1, 5-7 have weak inhibition activities for non-enzymatic glycation of protein in vitro. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  15. [Advance in chemical constituents of genus Clematis].

    PubMed

    Sun, Feng; Yang, Depo

    2009-10-01

    Progresses in the studies on chemical constituents of Clematis L. (belonging to the family Ranunculaceae) were systematiically reviewed in this article. The plants in this genus have a wide spectrum of constituents as follows: triterpenes, flavonoids, lignans, coumarins, alkaloids, volatile oils, steroids, organic acids, macrocyclic compounds and phenols, etc., among which triterpenoid saponins, flavonoids and lignans are the main components. The triterpenoid saponins are mainly oleanolic type and hederagenin type, most of which are bidesmosidic saponins, substituted with oligosaccharide chains at both C-3 and C-28, and some are substituted with acetyl, caffeoyl, isoferuloyl, p-methoxy cinnamyl and 3,4-dimethoxy cinnamyl groups in the oligosaccharide chains. The flavonoids from Clematis species are mainly flavones, flavonols, flavanones, isoflavones, xanthones and their glucosides (sugar moieties are connected to the aglycone through either the oxygen or the carbon atoms), the aglycones of which are mainly apigenin, kaempferol, luteolin and quercetin. The lignans from Clematis are mainly eupomatene lignans, cyclolignans, monoepoxylignans, bisepoxylignans and lignanolides. Clematis spp. are rich in resources, however, studies on their chemical constituents have only been carried out on twenty or so spp. As a result, it is necessary to expand our study on other spp. from this genus for better utilization of medicinal resources.

  16. Cloning and expression of BpMYC4 and BpbHLH9 genes and the role of BpbHLH9 in triterpenoid synthesis in birch.

    PubMed

    Yin, Jing; Li, Xin; Zhan, Yaguang; Li, Ying; Qu, Ziyue; Sun, Lu; Wang, Siyao; Yang, Jie; Xiao, Jialei

    2017-11-21

    Birch (Betula platyphylla Suk.) contains triterpenoids with anti-HIV and anti-tumor pharmacological activities. However, the natural abundance of these triterpenoids is low, and their chemical synthesis is costly. Transcription factors have the ability to regulate the metabolite pathways of triterpenoids via multi-gene control, thereby improving metabolite yield. Thus, transcription factors have the potential to facilitate the production of birch triterpenoids. Plant bHLH (basic helix-loop-helix) transcription factors play important roles in stress response and secondary metabolism. In this study, we cloned two genes, BpMYC4 and BpbHLH9, that encode bHLH transcription factors in Betula platyphylla Suk. The open reading frame (ORF) of BpMYC4 was 1452 bp and encoded 483 amino acids, while the ORF of BpbHLH9 was 1140 bp and encoded 379 amino acids. The proteins of BpMYC4 and BpbHLH9 were localized in the cell membrane and nucleus. The tissue-specific expression patterns revealed that BpMYC4 expression in leaves was similar to that in the stem and higher than in the roots. The expression of BpbHLH9 was higher in the leaves than in the root and stem. The expressions of BpMYC4 and BpbHLH9 increased after treatment with abscisic acid, methyl jasmonate, and gibberellin and decreased after treatment with ethephon. The promoters of BpMYC4 and BpbHLH9 were isolated using a genome walking approach, and 900-bp and 1064-bp promoter sequences were obtained for BpMYC4 and BpbHLH9, respectively. The ORF of BpbHLH9 was ligated into yeast expression plasmid pYES3 and introduced into INVScl and INVScl1-pYES2-SS yeast strains. The squalene and total triterpenoid contents in the different INVScl1 transformants decreased in the following order INVScl1-pYES-SS-bHLH9 > INVScl1-pYES3-bHLH9 > INVScl1-pYES2- BpSS > INVScl-pYES2. In BpbHLH9 transgenic birch, the relative expression of the genes that encodes for enzymes critical for triterpenoid synthesis showed a different level of up-regulation compair with wild birch(control), and the contents of betulinic acid, oleanolic acid and betulin in bHLH9-8 transgenic birch were increased by 11.35%, 88.34% and 23.02% compared to in wild birch, respectively. Our results showed that the modulation of BpbHLH9 by different hormones affected triterpenoid synthesis and triterpenoid contents. This is the first report of the cloning of BpbHLH9, and the findings are important for understanding the regulatory role of BpbHLH9 in the synthesis of birch triterpenoids.

  17. Bardoxolone methyl prevents obesity and hypothalamic dysfunction.

    PubMed

    Camer, Danielle; Yu, Yinghua; Szabo, Alexander; Wang, Hongqin; Dinh, Chi H L; Huang, Xu-Feng

    2016-08-25

    High-fat (HF) diet-induced obesity is associated with hypothalamic leptin resistance and low grade chronic inflammation, which largely impairs the neuroregulation of negative energy balance. Neuroregulation of negative energy balance is largely controlled by the mediobasal and paraventricular nuclei regions of the hypothalamus via leptin signal transduction. Recently, a derivative of oleanolic acid, bardoxolone methyl (BM), has been shown to have anti-inflammatory effects. We tested the hypothesis that BM would prevent HF diet-induced obesity, hypothalamic leptin resistance, and inflammation in mice fed a HF diet. Oral administration of BM via drinking water (10 mg/kg daily) for 21 weeks significantly prevented an increase in body weight, energy intake, hyperleptinemia, and peripheral fat accumulation in mice fed a HF diet. Furthermore, BM treatment prevented HF diet-induced decreases in the anorexigenic effects of peripheral leptin administration. In the mediobasal and paraventricular nuclei regions of the hypothalamus, BM administration prevented HF diet-induced impairments of the downstream protein kinase b (Akt) pathway of hypothalamic leptin signalling. BM treatment also prevented an increase in inflammatory cytokines, tumour necrosis factor alpha (TNFα) and interleukin 6 (IL-6) in these two hypothalamic regions. These results identify a potential novel neuropharmacological application for BM in preventing HF diet-induced obesity, hypothalamic leptin resistance, and inflammation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Physicochemical characterization and an injection formulation study of water insoluble ZCVI₄-2, a novel NO-donor anticancer compound.

    PubMed

    Gao, Yuan; Li, Li; Zhang, Jianjun; Su, Feng; Gong, Zhenhua; Lai, Yisheng; Zhang, Yihua

    2012-07-01

    ZCVI(4)-2 was a novel nitric oxide-releasing glycosyl derivative of oleanolic acid that displayed strong cytotoxicity selectively against human hepatocellular carcinoma in vitro and in vivo. In this study, ZCVI(4)-2 was characterized by FT-IR spectroscopy, differential scanning calorimetry, powder X-ray diffractometry, Raman spectroscopy, hygroscopicity and stability. A high performance liquid chromatography method was also established for the quantitative determination of solubility and additional stability profile of ZCVI(4)-2. ZCVI(4)-2 was found to be an amorphous and stable solid with low solubility of less than 10 μg/mL. Based on the solubilization tests that included methods of cosolvency and micellization, the solution mixture of 5% Solutol HS-15, 5% 1, 2-propylene glycol and 5% anhydrous ethanol was determined to be the system for the preparation of the ZCVI(4)-2 early injection solution. The effect of pH, temperature, light and injectable isotonic glucose or NaCl solution on ZCVI(4)-2 injection was also investigated. Good stability was observed at all testing conditions. Under the conditions studied, the NO-releasing rate and amount of ZCVI(4)-2 from the early injection solution in rat plasma demonstrated a promising therapeutic efficacy while maintaining a good safety profile.

  19. Voulkensin C-E, new 11-oxocassane-type diterpenoids and a steroid glycoside from Caesalpinia volkensii stem bark and their antiplasmodial activities.

    PubMed

    Ochieng, Charles O; Manguro, Lawrence A O; Owuor, Philip O; Akala, Hosea

    2013-05-15

    A bioassay guided isolation of potential antimalarial molecules from the stem bark of Caesalpinia volkensii Harms (Fabaceae) achieved three new 11-oxocassane-type diterpenoids named voulkensin C (1), D (2) and E (3) together with one steroid glycoside named 3-O-[β-glucopyranosyl(1→2)-O-β-xylopyranosyl]-stigmasterol (4) and seven other known compounds including stigmasterol (5), β-sitosterol (6), oleanolic acid (7), 3-β-acetoxyolean-12-en-28-methyl ester (8), voucap-5-ol (9), caesadekarin C (10), deoxycaesaldekarin C (11). The structures of the new compounds were determined on the basis of extensive spectroscopic data (IR, MS, (1)H and (13)C NMR and 2D NMR) analyses. The polar extracts revealed moderate to good antiplasmodial activities against chloquine-sensitive (D6) and -resistant strains (W2) of Plasmodium falciparum. Whereas the pure isolates exhibited limited to moderate antiplasmodial activities with compound 4 showing the highest antiplasmodial activities (IC50 values of 4.44±0.88 and 2.74±1.10μM against D6 and W2 strains, respectively). These results suggest a possible contribution of phytochemicals from C. volkensii stem bark towards inhibition of plasmodial parasites' growth hence potential antimalarial. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Oleanane triterpenes with protein tyrosine phosphatase 1B inhibitory activity from aerial parts of Lantana camara collected in Indonesia and Japan.

    PubMed

    Abdjul, Delfly B; Yamazaki, Hiroyuki; Maarisit, Wilmar; Rotinsulu, Henki; Wewengkang, Defny S; Sumilat, Deiske A; Kapojos, Magie M; Losung, Fitje; Ukai, Kazuyo; Namikoshi, Michio

    2017-12-01

    During the search for new protein tyrosine phosphatase (PTP) 1B inhibitors, EtOH extracts from the aerial parts of Lantana camara L. (lantana) collected at Manado (Indonesia) and two subtropical islands in Japan (Ishigaki and Iriomote Islands, Okinawa) exhibited potent inhibitory activities against PTP1B in an enzyme assay. Four previously undescribed oleanane triterpenes were isolated together with known triterpenes and flavones from the Indonesian lantana. The EtOH extracts of lantana collected in Ishigaki and Iriomote Islands exhibited different phytochemical profiles from each other and the Indonesian lantana. Triterpenes with a 24-OH group were isolated from the Indonesian lantana only. Five known triterpene compounds were detected in the Ishigaki lantana, and two oleanane triterpenes with an ether linkage between 3β and 25 were the main components together with five known triterpenes as minor components in the Iriomote lantana. The structures of previously undescribed compounds were assigned on the basis of their spectroscopic data. Among the compounds obtained in this study, oleanolic acid exhibited the most potent activity against PTP1B, and is used as a positive control in studies on PTP1B. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Efficacy of bioactive compounds from extra virgin olive oil to modulate atherosclerosis development.

    PubMed

    Lou-Bonafonte, José M; Arnal, Carmen; Navarro, María A; Osada, Jesús

    2012-07-01

    As olive oil is the main source of calories in the Mediterranean diet, a great deal of research has been devoted to characterizing its role in atherosclerosis. Virgin olive oil is an oily matrix that contains hydrocarbons, mainly squalene; triterpenes such as uvaol, erythrodiol, oleanolic, and maslinic acid; phytosterols; and a wide range of phenolic compounds comprising simple phenols, flavonoids, secoiridoids, and lignans. In this review, we analyze the studies dealing with atherosclerosis and olive oil in several species. A protective role of virgin olive oil against atherosclerosis has been shown in ApoE-deficient mice and hamsters. In the former animal, sex, dose, and dietary cholesterol are modulators of the outcome. Contradictory findings have been reported for rabbits, a circumstance that could be due to the profusion of experimental designs, differing in terms of doses and animal strains, as well as sources of olive oils. This role has yet to be fully validated in humans. Minor components of olive oil have been shown to be involved in atherosclerosis protection. Nevertheless, evidence of the potential of isolated compounds or the right combination of them to achieve the antiatherosclerotic effect of virgin olive oil is inconclusive and will undoubtedly require further experimental support. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Development of a method to screen and isolate potential xanthine oxidase inhibitors from Panax japlcus var via ultrafiltration liquid chromatography combined with counter-current chromatography.

    PubMed

    Li, Sainan; Tang, Ying; Liu, Chunming; Li, Jing; Guo, Liping; Zhang, Yuchi

    2015-03-01

    Panax japlcus var is a typical Chinese herb with a large number of saponins existing in all parts of it. The common methods of screening and isolating saponins are mostly labor-intensive and time-consuming. In this study, a new assay based on ultrafiltration-liquid chromatography-mass spectrometry (UF-LC-MS) was developed for the rapid screening and identifying of the ligands for xanthine oxidase from the extract of P. japlcus. Six saponins were identified as xanthine oxidase inhibitors from the extract. Subsequently, the specific binding ligands, namely, 24 (R)-majoroside R1, chikusetsusaponin IVa, oleanolic acid-28-O-β-D-glucopyranoside, notoginsenoside Fe, ginsenoside Rb2 and ginsenoside Rd (the purities of them were 95.74%, 96.12%, 93.19%, 94.83%, 95.07% and 94.62%, respectively) were separated by high-speed counter-current chromatography (HSCCC). The component ratio of the solvent system of HSCCC was calculated with the help of a multiexponential function model was optimized. The partition coefficient (K) values of the target compounds and resolutions of peaks were employed as the research indicators, and exponential function and binomial formulas were used to optimize the solvent system and flow rate of the mobile phases in a two-stage separation. An optimized two-phase solvent system composed of ethyl acetate, isopropanol, 0.1% aqueous formic acid (1.9:1.0:1.3, v/v/v, for the first-stage) and that composed of methylene chloride, acetonitrile, isopropanol, 0.1% aqueous formic acid (5.6:1.0:2.4:5.2, v/v/v/v, for the second-stage) were used to isolate the six compounds from P. japlcus. The targeted compounds isolated, collected and purified by HSCCC were analyzed by high performance liquid chromatography (UPLC), and the chemical structures of all the six compounds were identified by UV, MS and NMR. The results demonstrate that UF-LC-MS combined with HSCCC might provide not only a powerful tool for screening and isolating xanthine oxidase inhibitors in complex samples but also a useful platform for discovering bioactive compounds for the prevention and treatment of gout. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Diuretic and natriuretic activity of two mistletoe species in rats

    PubMed Central

    Jadhav, Namita; Patil, C. R.; Chaudhari, K. B.; Wagh, J. P.; Surana, S. J.; Jadhav, R. B.

    2010-01-01

    In different cultural groups, the hemiparasitic plants of the families Loranthaceae and Viscaceae (mistletoes) are frequently used in the treatment of hypertension and/or as diuretic agents. However, it remains unclear as to what commonality makes them diuretic agents or a remedy for hypertension. In this article, the diuretic activity of methanol extracts of Viscum articulatum (VA) Burm. f. and Helicanthus elastica (HE) (Ders.) Dans. in rats is reported. The extracts were administered orally at doses of 100, 200 and 400 mg/kg to rats that had been fasted and deprived of water for 18 hours. Investigations were carried out for diuretic, saluretic and natriuretic effects. The polyphenolic and triterpenoid contents were determined quantitatively using chemical assays and high performance liquid chromatography (HPLC) analysis, respectively. The extracts of VA and HE demonstrated significant and dose-dependent diuretic activity in rats. It was found that while VA mimics the furosemide pattern, HE demonstrated a dose-dependent increase in diuresis, along with an increase in potassium-sparing effects. Phytochemical analysis revealed that polyphenolics and triterpenoids, such as oleanolic acid and lupeol, are the major phytochemicals involved. It was also found that in different combinations, these phytochemicals differed in the way they influenced the electrolyte excretion. A higher content of polyphenolics in association with lower triterpenoid content was found to favor potassium-sparing effects. PMID:21808540

  4. Inhibition of cell proliferation and induction of apoptosis by oleanane triterpenoid (CDDO-Me) in pancreatic cancer cells is associated with the suppression of hTERT gene expression and its telomerase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deeb, Dorrah; Gao, Xiaohua; Liu, Yongbo

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer CDDO-Me inhibits hTERT gene expression. Black-Right-Pointing-Pointer CDDO-Me inhibits hTERT protein expression. Black-Right-Pointing-Pointer CDDO-Me inhibits hTERT telomerase activity. Black-Right-Pointing-Pointer CDDO-Me inhibits hTERT regulatory proteins. -- Abstract: Methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) is a multifunctional oleanane synthetic triterpenoid with potent anti-inflammatory and antitumorigenic properties. The mechanisms of the antisurvival and apoptosis-inducing activities of CDDO-Me and related derivatives of oleanolic acid have been defined; however, to date, no study has been carried out on the effect of CDDOs on human telomerase reverse transcriptase (hTERT) gene or telomerase activity. Here we report for the first time that inhibition of cell proliferation and induction of apoptosismore » by CDDO-Me in pancreatic cancer cell lines is associated with the inhibition of hTERT gene expression, hTERT telomerase activity and a number of proteins that regulate hTERT expression and activity. Furthermore, abrogation or overexpression of hTERT protein altered the susceptibility of tumor cells to CDDO-Me. These findings suggest that telomerase (hTERT) is a relevant target of CDDO-Me in pancreatic cancer cells.« less

  5. Screening for Triterpenoid Saponins in Plants Using Hyphenated Analytical Platforms.

    PubMed

    Khakimov, Bekzod; Tseng, Li Hong; Godejohann, Markus; Bak, Søren; Engelsen, Søren Balling

    2016-11-24

    Recently the number of studies investigating triterpenoid saponins has drastically increased due to their diverse and potentially attractive biological activities. Currently the literature contains chemical structures of few hundreds of triterpenoid saponins of plant and animal origin. Triterpenoid saponins consist of a triterpene aglycone with one or more sugar moieties attached to it. However, due to similar physico-chemical properties, isolation and identification of a large diversity of triterpenoid saponins remain challenging. This study demonstrates a methodology to screen saponins using hyphenated analytical platforms, GC-MS, LC-MS/MS, and LC-SPE-NMR/MS, in the example of two different phenotypes of the model plant Barbarea vulgaris (winter cress), glabrous (G) and pubescent (P) type that are known to differ by their insect resistance. The proposed methodology allows for detailed comparison of saponin profiles from intact plant extracts as well as saponin aglycone profiles from hydrolysed samples. Continuously measured 1D proton NMR data during LC separation along with mass spectrometry data revealed significant differences, including contents of saponins, types of aglycones and numbers of sugar moieties attached to the aglycone. A total of 49 peaks were tentatively identified as saponins from both plants; they are derived from eight types of aglycones and with 2-5 sugar moieties. Identification of two previously known insect-deterrent saponins, hederagenin cellobioside and oleanolic acid cellobioside, demonstrated the applicability of the methodology for relatively rapid screening of bioactive compounds.

  6. Aglaiabbrevins A-D, New Prenylated Bibenzyls from the Leaves of Aglaia abbreviata with Potent PTP1B Inhibitory Activity.

    PubMed

    Sun, Pan; Jiang, Chang-Sheng; Zhang, Yi; Liu, Ai-Hong; Liang, Tong-Jun; Li, Jia; Guo, Yue-Wei; Jiang, Jian-Mei; Mao, Shui-Chun; Wang, Bin

    2017-01-01

    Four new prenylated bibenzyls, named aglaiabbrevins A-D (2, 4-6), were isolated from the leaves of Aglaia abbreviata, along with two known related analogues, 3,5-dihydroxy-2-[3,7-dimethyl-2(E),6-octadienyl]bibenzyl (7) and 3,5-dihydroxy-2-(3-methyl-2-butenyl)bibenzyl (8). The structures of the new compounds were elucidated on the basis of extensive spectroscopic experiments, mainly one and two dimensional (1D- and 2D)-NMR, and the absolute configuration of 5 was determined by the measurement of specific rotation. The isolated compounds were evaluated for their protein tyrosine phosphatase-1B (PTP1B) inhibitory activity. The results showed that compounds 5-7 exhibited more potent PTP1B inhibitory effects with IC 50 values of 2.58±0.52, 2.44±0.35, and 2.23±0.14 µM, respectively, than the positive control oleanolic acid (IC 50 =2.74±0.20 µM). On the basis of the data obtained, these bibenzyls with the longer C-2 prenyl groups may be considered as potential lead compounds for the development of new anti-obesity and anti-diabetic agents. Also, the PTP1B inhibitory effects for prenylated bibenzyls are being reported for the first time.

  7. PTP1B inhibitory and cytotoxic C-24 epimers of Δ28-24-hydroxy stigmastane-type steroids from the brown alga Dictyopteris undulata Holmes.

    PubMed

    Feng, Mei-Tang; Wang, Ting; Liu, Ai-Hong; Li, Jia; Yao, Li-Gong; Wang, Bin; Guo, Yue-Wei; Mao, Shui-Chun

    2018-02-01

    Ten stigmastane-type steroids bearing unusual Δ 28 -24-hydroxy side chains, dictyopterisins A-J, including three pairs of C-24 epimers, dictyopterisins B/C, F/G, and I/J, were isolated from the brown alga Dictyopteris undulata Holmes, together with two previously reported analogues, (24S)- and (24R)-saringosterol. Their structures were elucidated on the basis of extensive spectroscopic analysis, with their absolute configurations at the stereogenic center C-24 of the side chain being assigned by a direct comparison of 1 H NMR data with those of related known compounds. The absolute configurations of the steroidal nuclei of dictyopterisins A, B, and H were determined using the modified Mosher's method. The mixture of dictyopterisins D and E and dictyopterisin I exhibited promising PTP1B inhibitory activities with IC 50 values of 1.88 and 3.47 μM, respectively, comparable to the positive control oleanolic acid (IC 50 , 2.78 μM). In addition, the mixture of dictyopterisins D and E and dictyopterisins F-J displayed significant cytotoxicities against the human cancer cell lines HL-60 (IC 50 from 1.02 to 2.70 μM) and A-549 (IC 50 from 1.35 to 2.85 μM). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Triterpenoids Amplify Anti-Tumoral Effects of Mistletoe Extracts on Murine B16.F10 Melanoma In Vivo

    PubMed Central

    Strüh, Christian M.; Jäger, Sebastian; Kersten, Astrid; Schempp, Christoph M.; Scheffler, Armin; Martin, Stefan F.

    2013-01-01

    Purpose Mistletoe extracts are often used in complementary cancer therapy although the efficacy of that therapy is controversially discussed. Approved mistletoe extracts contain mainly water soluble compounds of the mistletoe plant, i.e. mistletoe lectins. However, mistletoe also contains water-insoluble triterpenoids (mainly oleanolic acid) that have anti-tumorigenic effects. To overcome their loss in watery extracts we have solubilized mistletoe triterpenoids with cyclodextrins, thus making them available for in vivo cancer experiments. Experimental design B16.F10 subcutaneous melanoma bearing C57BL/6 mice were treated with new mistletoe extracts containing both water soluble compounds and solubilized triterpenoids. Tumor growth and survival was monitored. In addition, histological examinations of the tumor material and tumor surrounding tissue were performed. Results Addition of solubilized triterpenoids increased the anti-tumor effects of the mistletoe extracts, resulting in reduced tumor growth and prolonged survival of the mice. Histological examination of the treated tumors showed mainly tumor necrosis and some apoptotic cells with active caspase-3 and TUNEL staining. A significant decrease of CD31-positive tumor blood vessels was observed after treatment with solubilized triterpenoids and different mistletoe extracts. Conclusion We conclude that the addition of solubilized mistletoe triterpenoids to conventional mistletoe extracts improves the efficacy of mistletoe treatment and may represent a novel treatment option for malignant melanoma. PMID:23614029

  9. Saponins in the genus Panax L. (Araliaceae): a systematic review of their chemical diversity.

    PubMed

    Yang, Wen-Zhi; Hu, Ying; Wu, Wan-Ying; Ye, Min; Guo, De-An

    2014-10-01

    The Panax genus is a crucial source of natural medicines that has benefited human health for a long time. Three valuable medicinal herbs, namely Panax ginseng, Panax quinquefolius, and Panax notoginseng, have received considerable interest due to their extensive application in clinical therapy, healthcare products, and as foods and food additives world-wide. Panax species are known to contain abundant levels of saponins, also dubbed ginsenosides, which refer to a series of dammarane or oleanane type triterpenoid glycosides. These saponins exhibit modulatory effects to the central nervous system and beneficial effects to patients suffering from cardiovascular diseases, and also have anti-diabetic and anti-tumor properties. To the end of 2012, at least 289 saponins were reported from eleven different Panax species. This comprehensive review describes the advances in the phytochemistry of the genus Panax for the period 1963-2012, based on the 134 cited references. The reported saponins can be classified into protopanaxadiol, protopanaxatriol, octillol, oleanolic acid, C17 side-chain varied, and miscellaneous subtypes, according to structural differences in sapogenins. The investigational history of Panax is also reviewed, with special attention being paid to the structural features of the six different subtypes, together with their (1)H and (13)C NMR spectroscopic characteristics which are useful for determining their structures and absolute configuration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. A Synthetic-Biology-Inspired Therapeutic Strategy for Targeting and Treating Hepatogenous Diabetes.

    PubMed

    Xue, Shuai; Yin, Jianli; Shao, Jiawei; Yu, Yuanhuan; Yang, Linfeng; Wang, Yidan; Xie, Mingqi; Fussenegger, Martin; Ye, Haifeng

    2017-02-01

    Hepatogenous diabetes is a complex disease that is typified by the simultaneous presence of type 2 diabetes and many forms of liver disease. The chief pathogenic determinant in this pathophysiological network is insulin resistance (IR), an asymptomatic disease state in which impaired insulin signaling in target tissues initiates a variety of organ dysfunctions. However, pharmacotherapies targeting IR remain limited and are generally inapplicable for liver disease patients. Oleanolic acid (OA) is a plant-derived triterpenoid that is frequently used in Chinese medicine as a safe but slow-acting treatment in many liver disorders. Here, we utilized the congruent pharmacological activities of OA and glucagon-like-peptide 1 (GLP-1) in relieving IR and improving liver and pancreas functions and used a synthetic-biology-inspired design principle to engineer a therapeutic gene circuit that enables a concerted action of both drugs. In particular, OA-triggered short human GLP-1 (shGLP-1) expression in hepatogenous diabetic mice rapidly and simultaneously attenuated many disease-specific metabolic failures, whereas OA or shGLP-1 monotherapy failed to achieve corresponding therapeutic effects. Collectively, this work shows that rationally engineered synthetic gene circuits are capable of treating multifactorial diseases in a synergistic manner by multiplexing the targeting efficacies of single therapeutics. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  11. Inhibition of telomerase activity by oleanane triterpenoid CDDO-Me in pancreatic cancer cells is ROS-dependent.

    PubMed

    Deeb, Dorrah; Gao, Xiaohua; Liu, Yongbo; Varma, Nadimpalli R S; Arbab, Ali S; Gautam, Subhash C

    2013-03-13

    Methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) is a synthetic derivative of oleanolic acid, a triterpene, with apoptosis-inducing activity in a wide range of cancer cells. Induction of apoptosis by CDDO-Me is associated with the generation of reactive oxygen species (ROS) and inhibition of telomerase activity. In the present study, we investigated the role of ROS in inhibition of telomerase by CDDO-me. Treatment of MiaPaCa-2 and Panc-1 pancreatic cancer cell lines with CDDO-Me induced the production of hydrogen peroxide and superoxide anions and inhibited the telomerase activity. Pretreatment of cells with N-acetylcycsteine, a general purpose antioxidant or overexpression of glutathione peroxidase (GPx) or superoxide dismutase-1 (SOD-1) blocked the telomerase inhibitory activity of CDDO-Me. Furthermore, blocking ROS generation also prevented the inhibition of hTERT gene expression, hTERT protein production and expression of a number of hTERT-regulatory proteins by CDDO-Me (e.g., c-Myc, Sp1, NF-κB and p-Akt). Data also showed that Akt plays an important role in the activation of telomerase activity. Together, these data suggest that inhibition of telomerase activity by CDDO-Me is mediated through a ROS-dependent mechanism; however, more work is needed to fully understand the role of ROS in down-regulation of hTERT gene and hTERT-regulatory proteins by CDDO-Me.

  12. Medicago truncatula CYP716A12 Is a Multifunctional Oxidase Involved in the Biosynthesis of Hemolytic Saponins[W

    PubMed Central

    Carelli, Maria; Biazzi, Elisa; Panara, Francesco; Tava, Aldo; Scaramelli, Laura; Porceddu, Andrea; Graham, Neil; Odoardi, Miriam; Piano, Efisio; Arcioni, Sergio; May, Sean; Scotti, Carla; Calderini, Ornella

    2011-01-01

    Saponins, a group of glycosidic compounds present in several plant species, have aglycone moieties that are formed using triterpenoid or steroidal skeletons. In spite of their importance as antimicrobial compounds and their possible benefits for human health, knowledge of the genetic control of saponin biosynthesis is still poorly understood. In the Medicago genus, the hemolytic activity of saponins is related to the nature of their aglycone moieties. We have identified a cytochrome P450 gene (CYP716A12) involved in saponin synthesis in Medicago truncatula using a combined genetic and biochemical approach. Genetic loss-of-function analysis and complementation studies showed that CYP716A12 is responsible for an early step in the saponin biosynthetic pathway. Mutants in CYP716A12 were unable to produce hemolytic saponins and only synthetized soyasaponins, and were thus named lacking hemolytic activity (lha). In vitro enzymatic activity assays indicate that CYP716A12 catalyzes the oxidation of β-amyrin and erythrodiol at the C-28 position, yielding oleanolic acid. Transcriptome changes in the lha mutant showed a modulation in the main steps of triterpenic saponin biosynthetic pathway: squalene cyclization, β-amyrin oxidation, and glycosylation. The analysis of CYP716A12 expression in planta is reported together with the sapogenin content in different tissues and stages. This article provides evidence for CYP716A12 being a key gene in hemolytic saponin biosynthesis. PMID:21821776

  13. Inhibition of cell proliferation and induction of apoptosis by CDDO-Me in pancreatic cancer cells is ROS-dependent.

    PubMed

    Deeb, Dorrah; Gao, Xiaohua; Liu, Yong Bo; Gautam, Subhash C

    2012-01-01

    Oleanolic acid-derived synthetic triterpenoids are broad spectrum antiproliferative and antitumorigenic agents. In this study, we investigated the role of reactive oxygen species (ROS) in induction of apoptosis and inhibition of prosurvival Akt, NF-kappaB and mTOR signaling pro-teins by methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) in pancreatic cancer cells. Micromolar concentrations of CDDO-Me inhibited proliferation and induced apoptosis in MiaPaCa-2 and Panc-1 pancreatic cancer cells. Treatment with CDDO-Me caused the generation of hydrogen peroxide and superoxide anion and pretreatment of cells with NADPH oxidase inhibitor diphylene iodonium (DPI) or respiratory chain complex 1 inhibitor rotenone prevented ROS generation. Pretreatment with N-acetylcysteine (NAC) or overexpression of glutathione peroxidase (GPx) or superoxide dismutase-1 (SOD-1) blocked the antiproliferative effects of CDDO-Me. Likewise, NAC prevented the induction of apoptosis (annexin V-FITC binding and cleavage of PARP-1 and procaspases-3,-8 and -9) and reversed the loss of mitochondrial membrane potential and release of cytochrome c from mitochondria by CDDO-Me. CDDO-Me down-regulated p-Akt, p-mTOR and NF-kappaB (p65) but increased the activation of Erk1/2 and NAC blocked the modulation of these cell signaling proteins by CDDO-Me. Thus, the results of this study indicate that the antiproliferative and apoptosis inducing effects of CDDO-Me are mediated through a ROS-dependent mechanism and the role of ROS in modulation of signaling proteins by CDDO-Me warrants further investigation.

  14. Simultaneous Determination of Four Triterpenoid Saponins in Aralia elata Leaves by HPLC-ELSD Combined with Hierarchical Clustering Analysis.

    PubMed

    Sun, Yichun; Li, Baimei; Lin, Xiaoting; Xue, Juan; Wang, Zhibin; Zhang, Hongwei; Jiang, Hai; Wang, Qiuhong; Kuang, Haixue

    2017-05-01

    Aralia elata leaves are known to have several biological activities, including anti-arrythmia, antitumor, anti-inflammatory, anti-fatigue, antimicrobial and antiviral effects. Our previous study found that triterpenoid saponins from the leaves of A. elata had antitumor effects. Quantification of the triterpenoids is important for the quality control of A. elata leaves. To establish high-performance liquid chromatography coupled with evaporative light scattering detection (HPLC-ELSD) for the simultaneous determination of four major triterpenoid saponins, including Aralia-saponin IV, Aralia-saponin VI, 3-O-β-d- glucopyranosyl-(1 → 3)-β-d-glucopyranosyl-(1 → 3)-β-d-glucopyranosyl oleanolic acid 28-O-β-d-glucopyranoside (Aralia-saponin TTP)and Aralia-saponin V. The separation was carried out on a Dikma Diamonsil C 18 column (4.6 mm × 250 mm, 5 μm) efficiently with gradient elution consisting of acetonitrile and water. All calibration curves showed good linear regression (R 2  > 0.9996) within the ranges of tested concentrations. This validated method was applied to determine the contents of the four major triterpenoid saponins in 53 samples from different regions of northeast China. Hierarchical clustering analysis was first used to classify and differentiate Aralia elata leaves. The method developed was successfully applied to analyse four major triterpenoid saponins in Aralia elata leaves which is helpful for quality control of the herb. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Simultaneous quantification of triterpenoid saponins in rat plasma by UHPLC-MS/MS and its application to a pharmacokinetic study after oral total saponin of Aralia elata leaves.

    PubMed

    Sun, Yichun; Xue, Juan; Li, Baimei; Lin, Xiaoting; Wang, Zhibin; Jiang, Hai; Zhang, Hongwei; Wang, Qiuhong; Kuang, Haixue

    2016-11-01

    A rapid, sensitive, and reliable analytical ultra performance liquid chromatography with tandem mass spectrometry method was developed for the simultaneous determination of Aralia-saponin IV, 3-O-β-d-glucopyranosyl-(1→3)-β-d-glucopyranosyl-(1→3)-β-d-glucopyranosyl oleanolic acid 28-O-β-d-glucopyranoside, Aralia-saponin A and Aralia-saponin B after the oral administration of total saponin of Aralia elata leaves in rat plasma. Plasma samples were pretreated by protein precipitation with methanol. The analysis was performed on an ACQUITY UPLC HSS T3 column. The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode using an electrospray ionization source with negative ionization mode. Under the experimental conditions, the calibration curves of four analytes had good linearity values (r > 0.991). The intra- and inter-day precision values of the four analytes were ≤ 11.6%, and the accuracy was between -6.2 and 4.2%.The extraction recoveries of four triterpenoid saponins were in the range of 84.06-91.66% (RSD < 10.5%), and all values of the matrix effect were more than 90.30%. The developed analytical method was successfully applied to pharmacokinetic study on simultaneous determination of the four triterpenoid saponins in rat plasma after oral administration of total saponin of Aralia elata leaves, which helps guiding clinical usage of Aralia elata leaves. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. [Content determination of twelve major components in Tibetan medicine Zuozhu Daxi by UPLC].

    PubMed

    Qu, Yan; Li, Jin-hua; Zhang, Chen; Li, Chun-xue; Dong, Hong-jiao; Wang, Chang-sheng; Zeng, Rui; Chen, Xiao-hu

    2015-05-01

    A quantitative analytical method of ultra-high performance liquid chromatography (UPLC) was developed for simultaneously determining twelve components in Tibetan medicine Zuozhu Daxi. SIMPCA 12.0 software was used a principal component analysis PCA) and partial small squares analysis (PLSD-DA) on the twelve components in 10 batches from four pharmaceutical factories. Acquity UPLC BEH C15 column (2.1 mm x 100 mm, 1.7 µm) was adopted at the column temperature of 35 °C and eluted with acetonitrile (A) -0.05% phosphate acid solution (B) as the mobile phase with a flow rate of 0. 3 mL · min(-1). The injection volume was 1 µL. The detection wavelengths were set at 210 nm for alantolactone, isoalantolactone and oleanolic; 260 nm for trychnine and brucine; 288 nm for protopine; 306 nm for protopine, resveratrol and piperine; 370 nm for quercetin and isorhamnetin. The results showed a good separation among index components, with a good linearity relationship (R2 = 0.999 6) within the selected concentration range. The average sample recovery rates ranged between 99.44%-101.8%, with RSD between 0.37%-1.7%, indicating the method is rapid and accurate with a good repeatability and stability. The PCA and PLSD-DA analysis on the sample determination results revealed a great difference among samples from different pharmaceutical factories. The twelve components included in this study contributed significantly to the quantitative determination of intrinsic quality of Zuozhu Daxi. The UPLC established for to the quantitative determination of the twelve components can provide scientific basis for the comprehensive quality evaluation of Zuozhu Daxi.

  17. LC-UV assay method and UPLC/Q-TOF-MS characterisation of saponins from Ilex paraguariensis A. St. Hil. (mate) unripe fruits.

    PubMed

    Peixoto, Maria Paula Garofo; Kaiser, Samuel; Verza, Simone Gasparin; de Resende, Pedro Ernesto; Treter, Janine; Pavei, Cabral; Borré, Gustavo Luís; Ortega, George González

    2012-01-01

    Ilex paraguariensis A. St. Hil. (mate) is known in several South American countries because of the use of its leaves in stimulant herbal beverages. High saponin contents were reported in mate leaves and unripe fruits that possess a dissimilar composition. Two LC-UV methods previously reported for mate saponins assay focused on mate leaves and the quantification of the less polar saponin fraction in mate fruits. To develop and validate a LC-UV method to assay the total content of saponins in unripe mate fruits and characterise the chemical structure of triterpenic saponins by UPLC/Q-TOF-MS. From unripe fruits of mate a crude ethanolic extract was prepared (EX40) and the mate saponin fraction (MSF) purified by solid phase extraction. The LC-UV method was validated using ilexoside II as external standard. UPLC/Q-TOF-MS was adjusted from the LC-UV method to obtain the fragmentation patterns of the main saponins present in unripe fruits. Both LC-UV and UPLC/Q-TOF-MS methods indicate a wide range of Ilex saponins polarity. The ilexoside II and total saponin content of EX40 were 8.20% (w/w) and 47.60% (w/w), respectively. The total saponin content in unripe fruits was 7.28% (w/w). The saponins present in MSF characterised by UPLC/Q-TOF-MS are derived mainly from ursolic/oleanolic, acetyl ursolic or pomolic acid. The validated LC-UV method was shown to be linear, precise, accurate and to cover several saponins previously isolated from Ilex species and could be applied for the quality control of unripe fruit saponins. Copyright © 2011 John Wiley & Sons, Ltd.

  18. Complexation of phospholipids and cholesterol by triterpenic saponins in bulk and in monolayers.

    PubMed

    Wojciechowski, Kamil; Orczyk, Marta; Gutberlet, Thomas; Geue, Thomas

    2016-02-01

    The interactions between three triterpene saponins: α-hederin, hederacoside C and ammonium glycyrrhizate with model lipids: cholesterol and dipalmitoylphosphatidylcholine (DPPC) are described. The oleanolic acid-type saponins (α-hederin and hederacoside C) were shown to form 1:1 complexes with lipids in bulk, characterized by stability constants in the range (4.0±0.2)·10(3)-(5.0±0.4)·10(4) M(-1). The complexes with cholesterol are generally stronger than those with DPPC. On the contrary, ammonium glycyrrhizate does not form complexes with any of the lipids in solution. The saponin-lipid interactions were also studied in a confined environment of Langmuir monolayers of DPPC and DPPC/cholesterol with the saponins present in the subphase. A combined monolayer relaxation, surface dilational rheology, fluorescence microscopy and neutron reflectivity (NR) study showed that all three saponins are able to penetrate pure DPPC and mixed DPPC/cholesterol monolayers. Overall, the effect of the saponins on the model lipid monolayers does not fully correlate with the lipid-saponin complex formation in the homogeneous solution. The best correlation was found for α-hederin, for which even the preference for cholesterol over DPPC observed in bulk is well reflected in the monolayer studies and the literature data on its membranolytic activity. Similarly, the lack of interaction of ammonium glycyrrhizate with both lipids is evident equally in bulk and monolayer experiments, as well as in its weak membranolytic activity. The combined bulk and monolayer results are discussed in view of the role of confinement in modulating the saponin-lipid interactions and possible mechanism of membranolytic activity of saponins. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Antidiabetic Property of Symplocos cochinchinensis Is Mediated by Inhibition of Alpha Glucosidase and Enhanced Insulin Sensitivity

    PubMed Central

    Antu, Kalathookunnel Antony; Riya, Mariam Philip; Mishra, Arvind; Anilkumar, Karunakaran S.; Chandrakanth, Chandrasekharan K.; Tamrakar, Akhilesh K.; Srivastava, Arvind K.; Raghu, K. Gopalan

    2014-01-01

    The study is designed to find out the biochemical basis of antidiabetic property of Symplocos cochinchinensis (SC), the main ingredient of ‘Nisakathakadi’ an Ayurvedic decoction for diabetes. Since diabetes is a multifactorial disease, ethanolic extract of the bark (SCE) and its fractions (hexane, dichloromethane, ethyl acetate and 90% ethanol) were evaluated by in vitro methods against multiple targets relevant to diabetes such as the alpha glucosidase inhibition, glucose uptake, adipogenic potential, oxidative stress, pancreatic beta cell proliferation, inhibition of protein glycation, protein tyrosine phosphatase-1B (PTP-1B) and dipeptidyl peptidase-IV (DPP-IV). Among the extracts, SCE exhibited comparatively better activity like alpha glucosidase inhibition (IC50 value-82.07±2.10 µg/mL), insulin dependent glucose uptake (3 fold increase) in L6 myotubes, pancreatic beta cell regeneration in RIN-m5F (3.5 fold increase) and reduced triglyceride accumulation (22% decrease) in 3T3L1 cells, protection from hyperglycemia induced generation of reactive oxygen species in HepG2 cells (59.57% decrease) with moderate antiglycation and PTP-1B inhibition. Chemical characterization by HPLC revealed the superiority of SCE over other extracts due to presence and quantity of bioactives (beta-sitosterol, phloretin 2′glucoside, oleanolic acid) in addition to minerals like magnesium, calcium, potassium, sodium, zinc and manganese. So SCE has been subjected to oral sucrose tolerance test to evaluate its antihyperglycemic property in mild diabetic and diabetic animal models. SCE showed significant antihyperglycemic activity in in vivo diabetic models. We conclude that SC mediates the antidiabetic activity mainly via alpha glucosidase inhibition, improved insulin sensitivity, with moderate antiglycation and antioxidant activity. PMID:25184241

  20. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products—A gamma radiolysis study

    NASA Astrophysics Data System (ADS)

    Krimmel, Birgit; Swoboda, Friederike; Solar, Sonja; Reznicek, Gottfried

    2010-12-01

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH 3 by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  1. Simultaneous estimation of phenolic acids in sea buckthorn (Hippophaë rhamnoides) using RP-HPLC with DAD.

    PubMed

    Arimboor, Ranjith; Kumar, K Sarin; Arumughan, C

    2008-05-12

    A RP-HPLC-DAD method was developed and validated for the simultaneous analysis of nine phenolic acids including gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, salicylic acid, p-coumaric acid, cinnamic acid, caffiec acid and ferulic acid in sea buckthorn (SB) (Hippophaë rhamnoides) berries and leaves. The method was validated in terms of linearity, LOD, precision, accuracy and recovery and found to be satisfactory. Phenolic acid derivatives in anatomical parts of SB berries and leaves were separated into free phenolic acids, phenolic acids bound as esters and phenolic acids bound as glycosides and profiled in HPLC. Berry pulp contained a total of 1068 mg/kg phenolic acids, of which 58.8% was derived from phenolic glycosides. Free phenolic acids and phenolic acid esters constituted 20.0% and 21.2%, respectively, of total phenolic acids in SB berry pulp. The total phenolic acid content in seed kernel (5741 mg/kg) was higher than that in berry pulp and seed coat (Table 2). Phenolic acids liberated from soluble esters constituted the major fraction of phenolic acids (57.3% of total phenolic acids) in seed kernel. 8.4% and 34.3% of total phenolic acids in seed kernel were, respectively contributed by free and phenolic acids liberated from glycosidic bonds. The total soluble phenolic acids content in seed coat (448 mg/kg) was lower than that in seed kernel and pulp (Table 2). Proportion of free phenolic acids in total phenolic acids in seed coat was higher than that in seed kernel and pulp. Phenolic acids bound as esters and glycosides, respectively contributed 49.1% and 20.3% of total phenolic acids in seed coat. The major fraction (approximately 70%) of phenolic acids in SB berries was found to be concentrated in the seeds. Gallic acid was the predominant phenolic acid both in free and bound forms in SB berry parts and leaves.

  2. Synthesis of fatty acids from [1-14C]acetylcoenzyme A in subcellular particles of rat epididymal adipose tissue

    PubMed Central

    Kanoh, H.; Lindsay, D. B.

    1972-01-01

    1. Mitochondrial and microsomal fractions of rat epididymal adipose tissue incorporated [1-14C]acetyl-CoA equally well into various fatty acids by a chain-elongation mechanism. C18 and C20 fatty acids were the two major products, and comprised about 80% of the total fatty acids synthesized in both particles. 2. When incubated in air, mitochondria synthesized stearic acid, octadecenoic acid and eicosamonoenoic acid in almost equal amounts (about 20% each), whereas in microsomal fractions, the synthesis of octadecenoic acid was more than fivefold the stearic acid formation. In both fractions, major components of synthesized monoenoic fatty acids were the Δ11:12 isomers. Hexadecenoic acid and octadecenoic acid from whole adipose tissue contained approx. 11 and 14% of the Δ11:12 isomer respectively. 3. When mitochondria or microsomal fractions were incubated in nitrogen, there was increased synthesis of stearic acid and palmitic acid and less of C16 and C18 monoenoic acids; synthesis of C20 acids remained predominantly of the monoenoic acids. Determination of the position of the double bond in the monoenoic acids supported the view that the synthesis of hexadecenoic acid and octadecenoic acid involves a desaturase activity, whereas eicosamonoenoic acid and eicosadienoic acid are formed only by elongation of endogenous fatty acids. 4. Most of the radioactivity was found in free fatty acids (63%) and the phospholipid (26%) fraction. In phospholipids, phosphatidylcholine and phosphatidylethanolamine were the two major components. 5. Most of the fatty acids synthesized, including those not normally found in particle lipids (arachidic acid, eicosamonoenoic acid and eicosadienoic acid) were distributed fairly evenly in the phospholipid and free fatty acid fractions. However, stearic acid was found predominantly in the phospholipid fraction. PMID:4638795

  3. Enantioselective oxidation of racemic lactic acid to D-lactic acid and pyruvic acid by Pseudomonas stutzeri SDM.

    PubMed

    Gao, Chao; Qiu, Jianhua; Li, Jingchen; Ma, Cuiqing; Tang, Hongzhi; Xu, Ping

    2009-03-01

    D-lactic acid and pyruvic acid are two important building block intermediates. Production of D-lactic acid and pyruvic acid from racemic lactic acid by biotransformation is economically interesting. Biocatalyst prepared from 9 g dry cell wt l(-1) of Pseudomonas stutzeri SDM could catalyze 45.00 g l(-1)DL-lactic acid into 25.23 g l(-1)D-lactic acid and 19.70 g l(-1) pyruvic acid in 10h. Using a simple ion exchange process, D-lactic acid and pyruvic acid were effectively separated from the biotransformation system. Co-production of d-lactic acid and pyruvic acid by enantioselective oxidation of racemic lactic acid is technically feasible.

  4. Effect of baseline plasma fatty acids on eicosapentaenoic acid levels in individuals supplemented with alpha-linolenic acid.

    PubMed

    DeFilippis, Andrew P; Harper, Charles R; Cotsonis, George A; Jacobson, Terry A

    2009-01-01

    We previously reported a >50% increase in mean plasma eicosapentaenoic acid levels in a general medicine clinic population after supplementation with alpha-linolenic acid. In the current analysis, we evaluate the variability of changes in eicosapentaenoic acid levels among individuals supplemented with alpha-linolenic acid and evaluated the impact of baseline plasma fatty acids levels on changes in eicosapentaenoic acid levels in these individuals. Changes in eicosapentaenoic acid levels among individuals supplemented with alpha-linolenic acid ranged from a 55% decrease to a 967% increase. Baseline plasma fatty acids had no statistically significant effect on changes in eicosapentaenoic levels acid after alpha-linolenic acid supplementation. Changes in eicosapentaenoic acid levels varied considerably in a general internal medicine clinic population supplemented with alpha-linolenic acid. Factors that may impact changes in plasma eicosapentaenoic acid levels after alpha-linolenic acid supplementation warrant further study.

  5. Bifidobacterium breve with α-linolenic acid and linoleic acid alters fatty acid metabolism in the maternal separation model of irritable bowel syndrome.

    PubMed

    Barrett, Eoin; Fitzgerald, Patrick; Dinan, Timothy G; Cryan, John F; Ross, R Paul; Quigley, Eamonn M; Shanahan, Fergus; Kiely, Barry; Fitzgerald, Gerald F; O'Toole, Paul W; Stanton, Catherine

    2012-01-01

    The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15) were orally gavaged with either B. breve DPC6330 (10(9) microorganisms/day) alone or in combination with 0.5% (w/w) linoleic acid & 0.5% (w/w) α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11) in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05). Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11) in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05), whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05) compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01) and α-linolenic acid in adipose tissue (p<0.001), whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05), and α-linolenic acid in adipose tissue (p<0.001). B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated rats significantly modified the palmitoleic acid, arachidonic acid and docosahexaenoic acid contents in tissues. The effect was not observed in non-separated animals.

  6. Bifidobacterium breve with α-Linolenic Acid and Linoleic Acid Alters Fatty Acid Metabolism in the Maternal Separation Model of Irritable Bowel Syndrome

    PubMed Central

    Barrett, Eoin; Fitzgerald, Patrick; Dinan, Timothy G.; Cryan, John F.; Ross, R. Paul; Quigley, Eamonn M.; Shanahan, Fergus; Kiely, Barry; Fitzgerald, Gerald F.; O'Toole, Paul W.; Stanton, Catherine

    2012-01-01

    The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15) were orally gavaged with either B. breve DPC6330 (109 microorganisms/day) alone or in combination with 0.5% (w/w) linoleic acid & 0.5% (w/w) α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11) in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05). Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11) in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05), whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05) compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01) and α-linolenic acid in adipose tissue (p<0.001), whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05), and α-linolenic acid in adipose tissue (p<0.001). B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated rats significantly modified the palmitoleic acid, arachidonic acid and docosahexaenoic acid contents in tissues. The effect was not observed in non-separated animals. PMID:23185248

  7. Solid-phase extraction of acidic herbicides.

    PubMed

    Wells, M J; Yu, L Z

    2000-07-14

    A discussion of solid-phase extraction method development for acidic herbicides is presented that reviews sample matrix modification, extraction sorbent selection, derivatization procedures for gas chromatographic analysis, and clean-up procedures for high-performance liquid chromatographic analysis. Acidic herbicides are families of compounds that include derivatives of phenol (dinoseb, dinoterb and pentachlorophenol), benzoic acid (acifluorfen, chloramben, dicamba, 3,5-dichlorobenzoic acid and dacthal--a dibenzoic acid derivative), acetic acid [2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)], propanoic acid [dichlorprop, fluazifop, haloxyfop, 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) and silvex], butanoic acid [4-(2,4-dichlorophenoxy)butanoic acid (2,4-DB) and 4-(4-chloro-2-methylphenoxy)butanoic acid (MCPB)], and other miscellaneous acids such as pyridinecarboxylic acid (picloram) and thiadiazine dioxide (bentazon).

  8. Boric acid and boronic acids inhibition of pigeonpea urease.

    PubMed

    Reddy, K Ravi Charan; Kayastha, Arvind M

    2006-08-01

    Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.

  9. 21 CFR 357.210 - Cholecystokinetic active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... a melting point of 41 to 43.5 °C, an iodine value of 65 to 69, and a fatty acid composition as follows: Fatty acid Percent composition Myristic acid 0.1 Palmitic acid 10.0 Palmitoleic acid 0.1 Stearic acid 13.5 Oleic acid 72.0 Linoleic acid 3.8 Linolenic acid 0.1 Arachidic acid 0.5 Behenic acid 0.2 [54...

  10. 21 CFR 357.210 - Cholecystokinetic active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... a melting point of 41 to 43.5 °C, an iodine value of 65 to 69, and a fatty acid composition as follows: Fatty acid Percent composition Myristic acid 0.1 Palmitic acid 10.0 Palmitoleic acid 0.1 Stearic acid 13.5 Oleic acid 72.0 Linoleic acid 3.8 Linolenic acid 0.1 Arachidic acid 0.5 Behenic acid 0.2 [54...

  11. Targeted metabolomics analysis reveals the association between maternal folic acid supplementation and fatty acids and amino acids profiles in rat pups.

    PubMed

    Liu, Zhipeng; Liu, Rui; Chou, Jing; Yu, Jiaying; Liu, Xiaowei; Sun, Changhao; Li, Ying; Liu, Liyan

    2018-07-15

    Maternal diet during pregnancy can influence offspring's health by affecting development and metabolism. This study aimed to analyze the influence of maternal folic acid (FA) supplementation on the metabolism of rat pups using targeted metabolomics. Twenty female rats were randomly assigned to a FA supplementation (FAS group, n = 10) or control group (n = 10), which were fed AIN93G diet with 2 or 10 mg/kg FA, respectively. We then measured amino acids and their derivatives, biogenic amines, and fatty acids in the female rats and their pups by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC/MS-MS) and gas chromatography-mass spectrometry (GC/MS-MS). In maternal rats, the significant changes of three metabolites (proline, γ-aminobutyric acid and esterified octadecatetraenoic acid, P < 0.05) were observed in FAS group. For the rat pups, FAS pups had significantly lower homocysteine and higher FA levels than control pups. The lower levels of amino acids (leucine, isoleucine, serine, proline) were obtained in FAS pups. Furthermore, there were the decreased esterified fatty acids (arachidonic acid, eicosapentaenoic acid, and docosatetraenoic acid) and free fatty acids (oleic acid, linoleic acid, γ-linolenic acid, octadecatetraenoic acid, arachidonic acid, eicosapentaenoic acid and selacholeic acid) in FAS pups. Metabolic changes in the FAS pups were characterized by changes in fatty acids and amino acids. These results suggested that FA supplementation during pregnancy influenced amino acids and fatty acids metabolism in rat pups. This study provides new insights into the regulation of amino acids and fatty acids metabolism during early life. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Profiling and characterization by LC-MSn of the galloylquinic acids of green tea, tara tannin, and tannic acid.

    PubMed

    Clifford, Michael N; Stoupi, Stavroula; Kuhnert, Nikolai

    2007-04-18

    Green tea, tara tannin, and tannic acid have been profiled for their contents of galloylquinic acids using LC-MS8. These procedures have provided evidence for the first observation of (i) 1-galloylquinic acid (11), 1,3,5-trigalloylquinic acid (22), 4-(digalloyl)quinic acid (28), 5-(digalloyl)quinic acid (29), and either 3-galloyl-5-(digalloyl)quinic acid (32) or 3-(digalloyl)-5-galloylquinic acid (33) from any source; (ii) 4-galloyl-5-(digalloyl)quinic acid (34), 5-galloyl-4-(digalloyl)quinic acid (35), 3-(digalloyl)-4,5-digalloylquinic acid (41), 4-(digalloyl)-3,5-digalloylquinic acid (40), 5-(digalloyl)-3,4-digalloylquinic acid (39), and 1,3,4-trigalloylquinic acid (21) from tara tannin; and (iii) 3-galloylquinic acid (12) and 4-galloylquinic acid (14) from green tea. The first mass spectrometric fragmentation data are reported for galloylquinic acids containing between five and eight gallic acid residues. For each of these mass ranges at least two isomers based on the 1,3,4,5-tetragalloylquinic acid core (25) and at least three based on the 3,4,5-trigalloylquinic acid core (24) were observed. Methanolysis of tara tannin yielded methyl gallate, methyl digallate, and methyl trigallate, demonstrating that some of these galloylquinic acids contained at least one side chain of up to four galloyl residues.

  13. Induction of nodD Gene in a Betarhizobium Isolate, Cupriavidus sp. of Mimosa pudica, by Root Nodule Phenolic Acids.

    PubMed

    Mandal, Santi M; Chakraborty, Dipjyoti; Dutta, Suhrid R; Ghosh, Ananta K; Pati, Bikas R; Korpole, Suresh; Paul, Debarati

    2016-06-01

    A range of phenolic acids, viz., p-coumaric acid, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, protocatechuic acid, caffeic acid, ferulic acid, and cinnamic acid have been isolated and identified by LC-MS analysis in the roots and root nodules of Mimosa pudica. The effects of identified phenolic acids on the regulation of nodulation (nod) genes have been evaluated in a betarhizobium isolate of M. pudica root nodule. Protocatechuic acid and p-hydroxybenzoic acid were most effective in inducing nod gene, whereas caffeic acid had no significant effect. Phenylalanine ammonia lyase, peroxidase, and polyphenol oxidase activities were estimated, indicating regulation and metabolism of phenolic acids in root nodules. These results showed that nodD gene expression of betarhizobium is regulated by simple phenolic acids such as protocatechuic acid and p-hydroxybenzoic acid present in host root nodule and sustains nodule organogenesis.

  14. Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 1. Minor structures

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Reddy, M.M.

    1995-01-01

    An investigation of the strong-acid characteristics (pKa 3.0 or less) of fulvic acid from the Suwannee River, Georgia, was conducted. Quantitative determinations were made for amino acid and sulfur-containing acid structures, oxalate half-ester structures, malonic acid structures, keto acid structures, and aromatic carboxyl-group structures. These determinations were made by using a variety of spectrometric (13C-nuclear magnetic resonance, infrared, and ultraviolet spectrometry) and titrimetric characterizations on fulvic acid or fulvic acid samples that were chemically derivatized to indicate certain functional groups. Only keto acid and aromatic carboxyl-group structures contributed significantly to the strong-acid characteristics of the fulvic acid; these structures accounted for 43% of the strong-acid acidity. The remaining 57% of the strong acids are aliphatic carboxyl groups in unusual and/or complex configurations for which limited model compound data are available.

  15. Fatty acids bound to recombinant tear lipocalin and their role in structural stabilization.

    PubMed

    Tsukamoto, Seiichi; Fujiwara, Kazuo; Ikeguchi, Masamichi

    2009-09-01

    A variant of human tear lipocalin was expressed in Escherichia coli, and the bound fatty acids were analysed by gas chromatography, mass spectroscopy and nuclear magnetic resonance spectroscopy. Five major fatty acids were identified as hexadecanoic acid (palmitic acid, PA), cis-9-hexadecenoic acid (palmitoleic acid), 9,10-methylenehexadecanoic acid, cis-11-octadecenoic acid (vaccenic acid) and 11,12-methyleneoctadecanoic acid (lactobacillic acid). The composition of the bound fatty acids was similar to the fatty acid composition of E. coli extract, suggesting that the binding affinities are similar for these fatty acids. The urea-induced and thermal-unfolding transitions of the holoprotein (nondelipidated), apoprotein (delipidated) and PA-bound protein were observed by circular dichroism. Holoproteins and PA-bound proteins showed the same stability against urea and heat, and were more stable than apoprotein. These results show that each bound fatty acid stabilizes recombinant tear lipocalin to a similar extent.

  16. The fatty acid composition of a Vibrio alginolyticus associated with the alga Cladophora coelothrix. Identification of the novel 9-methyl-10-hexadecenoic acid.

    PubMed

    Carballeira, N M; Sostre, A; Stefanov, K; Popov, S; Kujumgiev, A; Dimitrova-Konaklieva, S; Tosteson, C G; Tosteson, T R

    1997-12-01

    The fatty acid composition of a new strain of Vibrio alginolyticus, found in the alga Cladophora coelothrix, was studied. Among 38 different fatty acids, a new fatty acid, 9-methyl-10-hexadecenoic acid and the unusual 11-methyl-12-octadecenoic acid, were identified. Linear alkylbenzene fatty acids, such as 10-phenyldecanoic acid, 12-phenyldodecanoic acid and 14-phenyltetradecanoic acid, were also found in V. alginolyticus. The alga contained 43% saturated fatty acids, and 28% C16-C20 polyunsaturated fatty acids of the n-3 and n-6 families.

  17. Bile acid patterns in commercially available oxgall powders used for the evaluation of the bile tolerance ability of potential probiotics

    PubMed Central

    Hu, Peng-Li; Yuan, Ya-Hong; Yue, Tian-Li

    2018-01-01

    This study aimed to analyze the bile acid patterns in commercially available oxgall powders used for evaluation of the bile tolerance ability of probiotic bacteria. Qxgall powders purchased from Sigma-Aldrich, Oxoid and BD Difco were dissolved in distilled water, and analyzed. Conjugated bile acids were profiled by ion-pair high-performance liquid chromatography (HPLC), free bile acids were detected as their p-bromophenacyl ester derivatives using reversed-phase HPLC after extraction with acetic ether, and total bile acids were analyzed by enzymatic-colorimetric assay. The results showed that 9 individual bile acids (i.e., taurocholic acid, glycocholic acid, taurodeoxycholic acid, glycodeoxycholic acid, taurochenodeoxycholic acid, glycochenodeoxycholic acid, cholic acid, chenodeoxycholic acid, deoxycholic acid) were present in each of the oxgall powders tested. The content of total bile acid among the three oxgall powders was similar; however, the relative contents of the individual bile acids among these oxgall powders were significantly different (P < 0.001). The oxgall powder from Sigma-Aldrich was closer to human bile in the ratios of glycine-conjugated bile acids to taurine-conjugated bile acids, dihydroxy bile acids to trihydroxy bile acids, and free bile acids to conjugated bile acids than the other powders were. It was concluded that the oxgall powder from Sigma-Aldrich should be used instead of those from Oxoid and BD Difco to evaluate the bile tolerance ability of probiotic bacteria as human bile model. PMID:29494656

  18. Effects of dietary conjugated linoleic acid and linoleic:linolenic acid ratio on polyunsaturated fatty acid status in laying hens.

    PubMed

    Du, M; Ahn, D U; Sell, J L

    2000-12-01

    A study was conducted to determine the effects of dietary conjugated linoleic acid (CLA) and the ratio of linoleic:linolenic acid on long-chain polyunsaturated fatty acid status. Thirty-two 31-wk-old White Leghorn hens were randomly assigned to four diets containing 8.2% soy oil, 4.1% soy oil + 2.5% CLA (4.1% CLA source), 4.1% flax oil + 2.5% CLA, or 4.1% soy oil + 4.1% flax oil. Hens were fed the diets for 3 wk before eggs and tissues were collected for the study. Lipids were extracted from egg yolk and tissues, classes of egg yolk lipids were separated, and fatty acid concentrations of total lipids, triglyceride, phosphatidylethanolamine, and phosphatidylcholine were analyzed by gas chromatography. The concentrations of monounsaturated fatty acids and non-CLA polyunsaturated fatty acids were reduced after CLA feeding. The amount of arachidonic acid was decreased after CLA feeding in linoleic acid- and linolenic acid-rich diets, but amounts of eicosapentaenoic acid and docosahexaenoic acid were increased in the linolenic-rich diet, indicating that the synthesis or deposition of long-chain n-3 fatty acids was accelerated after CLA feeding. The increased docosahexaenoic acid and eicosapentaenoic acid contents in lipid may be compensation for the decreased arachidonic acid content. Dietary supplementation of linoleic acid increased n-6 fatty acid levels in lipids, whereas linolenic acid increased n-3 fatty acid levels. Results also suggest that CLA might not be elongated to synthesize long-chain fatty acids in significant amounts. The effect of CLA in reducing the level of n-6 fatty acids and promoting the level of n-3 fatty acids could be related to the biological effects of CLA.

  19. A new low linolenic acid allele of GmFAD3A gene in soybean PE1690

    USDA-ARS?s Scientific Manuscript database

    Relative fatty acid content of soybean oil is about 12 % palmitic acid, 4 % stearic acid, 23 % oleic acid, 54 % linoleic acid, and 8 % linolenic acid. To improve oxidative stability and quality of oil, breeding programs have mainly focused on reducing saturated fatty acids, increasing oleic acid, an...

  20. Amino acid and fatty acid compositions of Rusip from fermented Anchovy fish (Stolephorussp)

    NASA Astrophysics Data System (ADS)

    Koesoemawardani, D.; Hidayati, S.; Subeki

    2018-04-01

    Rusip is a typical food of Bangka Belitung Indonesia made from fermented anchovy. This study aims to determine the properties of chemistry, microbiology, composition of amino acids and fatty acids from fermented fish spontaneously and non spontaneously. Spontaneous rusip treatment is done by anchovy fish (Stolephorussp) after cleaning and added salt 25% (w/w) and palm sugar 10% (w/w). While, non-spontaneous rusip is done by adding a culture mixture of Streptococcus, Leuconostoc, and Lactobacillus bacteria 2% (w/v). The materials are then incubated for 2 weeks. The data obtained were then performed t-test at the level of 5%. Spontaneous and non-spontaneous rusip fermentation process showed significant differences in total acid, reducing sugar, salt content, TVN, total lactic acid bacteria, total mold, and total microbial. The dominant amino acid content of spontaneous and non-spontaneous rusip are glutamic acid and aspartic acid, while the dominant fatty acids in spontaneous and non-spontaneous rusip are docosahexaenoic acid, palmitic acid, oleic acid, arachidonic acid, stearic acid, eicosapentaenoic acid, palmitoleic acid, and myristic acid.

  1. Synthesis of new kojic acid based unnatural α-amino acid derivatives.

    PubMed

    Balakrishna, C; Payili, Nagaraju; Yennam, Satyanarayana; Uma Devi, P; Behera, Manoranjan

    2015-11-01

    An efficient method for the preparation of kojic acid based α-amino acid derivatives by alkylation of glycinate schiff base with bromokojic acids have been described. Using this method, mono as well as di alkylated kojic acid-amino acid conjugates have been prepared. This is the first synthesis of C-linked kojic acid-amino acid conjugate where kojic acid is directly linked to amino acid through a C-C bond. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. HPLC method for the simultaneous quantification of the major organic acids in Angeleno plum fruit

    NASA Astrophysics Data System (ADS)

    Wang, Yanwei; Wang, Jing; Cheng, Wei; Zhao, Zhilei; Cao, Jiankang

    2014-08-01

    A method was developed to profile major organic acids in Angeleno fruit by high performance liquid chromatography. Organic acids in plum were extracted by water with ultra- sonication at 50°C for 30 min. The extracts were chromatographed on Waters Atlantis T3 C18 column (4.6 mm×250 mm, 5 μm) with 0.01mol/L sulfuric acid and water as mobile phase, and flow rate was 0.5 ml/min. The column temperature was 40C, and chromatography was monitored by a diode array detector at 210 nm. The result showed that malic acid, citric acid, tartaric acid, oxalic acid, pyruvic acid, acetic acid, succinic acid in Angeleno plum, and the malic acid was the major organic acids. The coefficient of determination of the standard calibration curve is R2 > 0.999. The organic acids recovery ranged from 99.11% for Malic acid to 106.70% for Oxalic acid, and CV (n=6) ranged from 0.95% for Malic acid to 6.23% for Oxalic acid, respectively. The method was accurate, sensitive and feasible in analyzing the organic acids in Angeleno plum.

  3. Microorganisms for producing organic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  4. Microorganisms for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  5. 27 CFR 24.182 - Use of acid to correct natural deficiencies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... acid, fumaric acid, malic acid, lactic acid or tartaric acid, or a combination of two or more of these... citric acid for other fruit (including berries). (d) Other use of acid. A winemaker desiring to use an... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Use of acid to correct...

  6. 27 CFR 24.182 - Use of acid to correct natural deficiencies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... acid, fumaric acid, malic acid, lactic acid or tartaric acid, or a combination of two or more of these... citric acid for other fruit (including berries). (d) Other use of acid. A winemaker desiring to use an... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Use of acid to correct...

  7. 27 CFR 24.182 - Use of acid to correct natural deficiencies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... acid, fumaric acid, malic acid, lactic acid or tartaric acid, or a combination of two or more of these... citric acid for other fruit (including berries). (d) Other use of acid. A winemaker desiring to use an... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Use of acid to correct...

  8. 27 CFR 24.182 - Use of acid to correct natural deficiencies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... acid, fumaric acid, malic acid, lactic acid or tartaric acid, or a combination of two or more of these... citric acid for other fruit (including berries). (d) Other use of acid. A winemaker desiring to use an... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Use of acid to correct...

  9. Acid Rain: What It Is -- How You Can Help!

    ERIC Educational Resources Information Center

    National Wildlife Federation, Washington, DC.

    This publication discusses the nature and consequences of acid precipitation (commonly called acid rain). Topic areas include: (1) the chemical nature of acid rain; (2) sources of acid rain; (3) geographic areas where acid rain is a problem; (4) effects of acid rain on lakes; (5) effect of acid rain on vegetation; (6) possible effects of acid rain…

  10. Distillation Separation of Hydrofluoric Acid and Nitric Acid from Acid Waste Using the Salt Effect on Vapor-Liquid Equilibrium

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hideki; Sumoge, Iwao

    2011-03-01

    This study presents the distillation separation of hydrofluoric acid with use of the salt effect on the vapor-liquid equilibrium for acid aqueous solutions and acid mixtures. The vapor-liquid equilibrium of hydrofluoric acid + salt systems (fluorite, potassium nitrate, cesium nitrate) was measured using an apparatus made of perfluoro alkylvinylether. Cesium nitrate showed a salting-out effect on the vapor-liquid equilibrium of the hydrofluoric acid-water system. Fluorite and potassium nitrate showed a salting-in effect on the hydrofluoric acid-water system. Separation of hydrofluoric acid from an acid mixture containing nitric acid and hydrofluoric acid was tested by the simple distillation treatment using the salt effect of cesium nitrate (45 mass%). An acid mixture of nitric acid (5.0 mol · dm-3) and hydrofluoric acid (5.0 mol · dm-3) was prepared as a sample solution for distillation tests. The concentration of nitric acid in the first distillate decreased from 5.0 mol · dm-3 to 1.13 mol · dm-3, and the concentration of hydrofluoric acid increased to 5.41 mol · dm-3. This first distillate was further distilled without the addition of salt. The concentrations of hydrofluoric acid and nitric acid in the second distillate were 7.21 mol · dm-3 and 0.46 mol · dm-3, respectively. It was thus found that the salt effect on vapor-liquid equilibrium of acid mixtures was effective for the recycling of acids from acid mixture wastes.

  11. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera).

    PubMed

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2017-01-01

    Abscisic acid (ABA), salicylic acid (SA) and γ-aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5-oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress-defense secondary metabolism by GABA. © 2016 Scandinavian Plant Physiology Society.

  12. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.

    PubMed

    Murakami, Nao; Oba, Mana; Iwamoto, Mariko; Tashiro, Yukihiro; Noguchi, Takuya; Bonkohara, Kaori; Abdel-Rahman, Mohamed Ali; Zendo, Takeshi; Shimoda, Mitsuya; Sakai, Kenji; Sonomoto, Kenji

    2016-01-01

    Glycerol is a by-product in the biodiesel production process and considered as one of the prospective carbon sources for microbial fermentation including lactic acid fermentation, which has received considerable interest due to its potential application. Enterococcus faecalis isolated in our laboratory produced optically pure L-lactic acid from glycerol in the presence of acetic acid. Gas chromatography-mass spectrometry analysis using [1, 2-(13)C2] acetic acid proved that the E. faecalis strain QU 11 was capable of converting acetic acid to ethanol during lactic acid fermentation of glycerol. This indicated that strain QU 11 restored the redox balance by oxidizing excess NADH though acetic acid metabolism, during ethanol production, which resulted in lactic acid production from glycerol. The effects of pH control and substrate concentration on lactic acid fermentation were also investigated. Glycerol and acetic acid concentrations of 30 g/L and 10 g/L, respectively, were expected to be appropriate for lactic acid fermentation of glycerol by strain QU 11 at a pH of 6.5. Furthermore, fed-batch fermentation with 30 g/L glycerol and 10 g/L acetic acid wholly exhibited the best performance including lactic acid production (55.3 g/L), lactic acid yield (0.991 mol-lactic acid/mol-glycerol), total yield [1.08 mol-(lactic acid and ethanol)]/mol-(glycerol and acetic acid)], and total carbon yield [1.06 C-mol-(lactic acid and ethanol)/C-mol-(glycerol and acetic acid)] of lactic acid and ethanol. In summary, the strain QU 11 successfully produced lactic acid from glycerol with acetic acid metabolism, and an efficient fermentation system was established without carbon loss. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted inmore » liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.« less

  14. Stereospecific distribution of plamitic acid in the triacylglycerols of rat adipocytes. Effects of varying the composition of the substrate fatty acid in vitro

    PubMed Central

    Christie, William W.; Hunter, Margaret L.

    1980-01-01

    The effects of inclusion of different fatty acids in the medium on the rate of esterification of palmitic acid and its stereospecific distribution among the three positions of the triacyl-sn-glycerols by preparations of rat adipocytes in vitro have been determined. Myristic acid, stearic acid, oleic acid and linoleic acid were used as diluents and the concentration of the combined unesterified fatty acids in the medium was held constant; only the proportion of palmitic acid was varied. The amount of palmitic acid esterified was always linearly related to its relative concentration in the medium and was not significantly affected by the nature of the diluent fatty acid chosen. Constant relative proportions were recovered in triacylglycerols and in intermediates in each instance. The amount of palmitic acid esterified to each of the positions of the triacyl-sn-glycerols was linearly dependent on the relative proportion in the medium but the nature of the relationship was markedly influenced by which fatty acid was present. When stearic acid was present, simple relationships were found over the whole range tested. When either myristic acid, oleic acid or linoleic acid was present, abrupt changes in the manner of esterification of palmitic acid were observed in position sn-1 when the relative concentrations of palmitic acid and the diluent reached critical values, which differed with each fatty acid. In position sn-2 when oleic acid or linoleic acid was present, a similar change was observed, and in position sn-3 it was obtained with myristic acid as diluent. The results are discussed in terms of changes in the relative affinities of the acyltransferases for palmitic acid. Palmitic acid was esterified into various molecular species in proportions that indicated acylation with non-correlative specificity at higher relative concentrations but not at lower. PMID:7236215

  15. Phenylpropanoid Metabolism in Suspension Cultures of Vanilla planifolia Andr. 1

    PubMed Central

    Funk, Christoph; Brodelius, Peter E.

    1990-01-01

    Feeding of 4-methoxycinnamic acid, 3,4-dimethoxycinnamic acid and 3,4,5-trimethoxycinnamic acid to cell suspension cultures of Vanilla planifolia resulted in the formation of 4-hydroxybenzoic acid, vanillic acid, and syringic acid, respectively. The homologous 4-methoxybenzoic acids were demethylated to the same products. It is concluded that the side chain degrading enzyme system accepts the 4-methoxylated substrates while the demethylation occurs at the benzoic acid level. The demethylating enzyme is specific for the 4-position. Feeding of [O-14C-methyl]-3,4-dimethoxycinnamic acid revealed that the first step in the conversion is the glycosylation of the cinnamic acid to its glucose ester. A partial purification of a UDP-glucose: trans-cinnamic acid glucosyltransferase is reported. 4-Methoxy substituted cinnamic acids are better substrates for this enzyme than 4-hydroxy substituted cinnamic acid. It is suggested that 4-methoxy substituted cinnamic acids are intermediates in the biosynthetic conversion of cinnamic acids to benzoic acids in cells of V. planifolia. PMID:16667674

  16. Uptake mechanism of valproic acid in human placental choriocarcinoma cell line (BeWo).

    PubMed

    Ushigome, F; Takanaga, H; Matsuo, H; Tsukimori, K; Nakano, H; Ohtani, H; Sawada, Y

    2001-04-13

    Valproic acid is an anticonvulsant widely used for the treatment of epilepsy. However, valproic acid is known to show fetal toxicity, including teratogenicity. In the present study, to elucidate the mechanisms of valproic acid transport across the blood-placental barrier, we carried out transcellular transport and uptake experiments with human placental choriocarcinoma epithelial cells (BeWo cells) in culture. The permeability coefficient of [3H]valproic acid in BeWo cells for the apical-to-basolateral flux was greater than that for the opposite flux, suggesting a higher unidirectional transport in the fetal direction. The uptake of [3H]valproic acid from the apical side was temperature-dependent and enhanced under acidic pH. In the presence of 50 microM carbonyl cyanide p-trifluoromethoxylhydrazone, the uptake of [3H]valproic acid was significantly reduced. A metabolic inhibitor, 10 mM sodium azide, also significantly reduced the uptake of [3H]valproic acid. Therefore, valproic acid is actively transported in a pH-dependent manner on the brush-border membrane of BeWo cells. Kinetic analysis of valproic acid uptake revealed the involvement of a non-saturable component and a saturable component. The Michaelis constant for the saturable transport (K(t)) was smaller under acidic pH, suggesting a proton-linked active transport mechanism for valproic acid in BeWo cells. In the inhibitory experiments, some short-chain fatty acids, such as acetic acid, lactic acid, propanoic acid and butyric acid, and medium-chain fatty acids, such as hexanoic acid and octanoic acid, inhibited the uptake of [3H]valproic acid. The uptake of [3H]valproic acid was also significantly decreased in the presence of 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, salicylic acid and furosemide, which are well-known inhibitors of the anion exchange system. Moreover, p-aminohippuric acid significantly reduced the uptake of [3H]valproic acid. These results suggest that an active transport mechanism for valproic acid exists on the brush-border membrane of placental trophoblast cells and operates in a proton-linked manner.

  17. Identification/quantification of free and bound phenolic acids in peel and pulp of apples (Malus domestica) using high resolution mass spectrometry (HRMS).

    PubMed

    Lee, Jihyun; Chan, Bronte Lee Shan; Mitchell, Alyson E

    2017-01-15

    Free and bound phenolic acids were measured in the pulp and peel of four varieties of apples using high resolution mass spectrometry. Twenty-five phenolic acids were identified and included: 8 hydroxybenzoic acids, 11 hydroxycinnamic acids, 5 hydroxyphenylacetic acids, and 1 hydoxyphenylpropanoic acid. Several phenolics are tentatively identified for the first time in apples and include: methyl gallate, ethyl gallate, hydroxy phenyl acetic acid, three phenylacetic acid isomers, 3-(4-hydroxyphenyl)propionic acid, and homoveratric acid. With exception of chlorogenic and caffeic acid, most phenolic acids were quantified for the first time in apples. Significant varietal differences (p<0.05) were observed in both peel and pulp. The levels of total phenolic acids were higher in the pulp as compared to apple peel (dry weight) in all varieties. Coumaroylquinic, protocatechuic, 4-hydroxybenzoic, vanillic and t-ferulic acids were present in free forms. With exception of chlorogenic acid, all other phenolic acids were present only as bound forms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effect of propionic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Bao, Jia-Wei; Su, Xian-Feng; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2016-03-01

    In this study, an integrated citric acid-methane fermentation process was established to solve the problem of wastewater treatment in citric acid production. Citric acid wastewater was treated through anaerobic digestion and then the anaerobic digestion effluent (ADE) was further treated and recycled for the next batch citric acid fermentation. This process could eliminate wastewater discharge and reduce water resource consumption. Propionic acid was found in the ADE and its concentration continually increased in recycling. Effect of propionic acid on citric acid fermentation was investigated, and results indicated that influence of propionic acid on citric acid fermentation was contributed to the undissociated form. Citric acid fermentation was inhibited when the concentration of propionic acid was above 2, 4, and 6 mM in initial pH 4.0, 4.5 and, 5.0, respectively. However, low concentration of propionic acid could promote isomaltase activity which converted more isomaltose to available sugar, thereby increasing citric acid production. High concentration of propionic acid could influence the vitality of cell and prolong the lag phase, causing large amount of glucose still remaining in medium at the end of fermentation and decreasing citric acid production.

  19. Isolation of aquatic yeasts with the ability to neutralize acidic media, from an extremely acidic river near Japan's Kusatsu-Shirane Volcano.

    PubMed

    Mitsuya, Daisuke; Hayashi, Takuya; Wang, Yu; Tanaka, Mami; Okai, Masahiko; Ishida, Masami; Urano, Naoto

    2017-07-01

    The Yukawa River is an extremely acidic river whose waters on the east foot of the Kusatu-Shirane Volcano (in Gunma Prefecture, Japan) contain sulfate ions. Here we isolated many acid-tolerant yeasts from the Yukawa River, and some of them neutralized an acidic R2A medium containing casamino acid. Candida fluviatilis strain CeA16 had the strongest acid tolerance and neutralizing activity against the acidic medium. To clarify these phenomena, we performed neutralization tests with strain CeA16 using casamino acid, a mixture of amino acids, and 17 single amino acid solutions adjusted to pH 3.0, respectively. Strain CeA16 neutralized not only acidic casamino acid and the mixture of amino acids but also some of the acidic single amino acid solutions. Seven amino acids were strongly decomposed by strain CeA16 and simultaneously released ammonium ions. These results suggest strain CeA16 is a potential yeast as a new tool to neutralize acidic environments. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Biofuel and chemical production by recombinant microorganisms via fermentation of proteinaceous biomass

    DOEpatents

    Liao, James C.; Cho, Kwang Myung; Yan, Yajun; Huo, Yixin

    2016-03-15

    Provided herein are metabolically modified microorganisms characterized by having an increased keto-acid flux when compared with the wild-type organism and comprising at least one polynucleotide encoding an enzyme that when expressed results in the production of a greater quantity of a chemical product when compared with the wild-type organism. The recombinant microorganisms are useful for producing a large number of chemical compositions from various nitrogen containing biomass compositions and other carbon sources. More specifically, provided herein are methods of producing alcohols, acetaldehyde, acetate, isobutyraldehyde, isobutyric acid, n-butyraldehyde, n-butyric acid, 2-methyl-1-butyraldehyde, 2-methyl-1-butyric acid, 3-methyl-1-butyraldehyde, 3-methyl-1-butyric acid, ammonia, ammonium, amino acids, 2,3-butanediol, 1,4-butanediol, 2-methyl-1,4-butanediol, 2-methyl-1,4-butanediamine, isobutene, itaconate, acetoin, acetone, isobutene, 1,5-diaminopentane, L-lactic acid, D-lactic acid, shikimic acid, mevalonate, polyhydroxybutyrate (PHB), isoprenoids, fatty acids, homoalanine, 4-aminobutyric acid (GABA), succinic acid, malic acid, citric acid, adipic acid, p-hydroxy-cinnamic acid, tetrahydrofuran, 3-methyl-tetrahydrofuran, gamma-butyrolactone, pyrrolidinone, n-methylpyrrolidone, aspartic acid, lysine, cadeverine, 2-ketoadipic acid, and/or S-adenosyl-methionine (SAM) from a suitable nitrogen rich biomass.

  1. Effect of soil acidity, soil strength and macropores on root growth and morphology of perennial grass species differing in acid-soil resistance.

    PubMed

    Haling, Rebecca E; Simpson, Richard J; Culvenor, Richard A; Lambers, Hans; Richardson, Alan E

    2011-03-01

    It is unclear whether roots of acid-soil resistant plants have significant advantages, compared with acid-soil sensitive genotypes, when growing in high-strength, acid soils or in acid soils where macropores may allow the effects of soil acidity and strength to be avoided. The responses of root growth and morphology to soil acidity, soil strength and macropores by seedlings of five perennial grass genotypes differing in acid-soil resistance were determined, and the interaction of soil acidity and strength for growth and morphology of roots was investigated. Soil acidity and strength altered root length and architecture, root hair development, and deformed the root tip, especially in acid-soil sensitive genotypes. Root length was restricted to some extent by soil acidity in all genotypes, but the adverse impact of soil acidity on root growth by acid-soil resistant genotypes was greater at high levels of soil strength. Roots reacted to soil acidity when growing in macropores, but elongation through high-strength soil was improved. Soil strength can confound the effect of acidity on root growth, with the sensitivity of acid-resistant genotypes being greater in high-strength soils. This highlights the need to select for genotypes that resist both acidity and high soil strength. © 2010 Blackwell Publishing Ltd.

  2. Acid Response of Bifidobacterium longum subsp. longum BBMN68 Is Accompanied by Modification of the Cell Membrane Fatty Acid Composition.

    PubMed

    Liu, Songling; Ren, Fazheng; Jiang, Jingli; Zhao, Liang

    2016-07-28

    The acid response of Bifidobacterium longum subsp. longum BBMN68 has been studied in our previous study. The fab gene, which is supposed to be involved in membrane fatty acid biosynthesis, was demonstrated to be induced in acid response. In order to investigate the relationship between acid response and cell membrane fatty acid composition, the acid adaptation of BBMN68 was assessed and the membrane fatty acid composition at different adaptation conditions was identified. Indeed, the fatty acid composition was influenced by acid adaptation. Our results showed that the effective acid adaptations were accompanied with decrease in the unsaturated to saturated fatty acids ratio (UFA/SFA) and increase in cyclopropane fatty acid (CFA) content, which corresponded to previous studies. Moreover, both effective and non-effective acid adaptation conditions resulted in decrease in the C18:1 cis-9/C18:1 trans-9 ratio, indicating that the C18:1 cis-9/C18:1 trans-9 ratio is associated with acid tolerance response but not with acid adaptation response. Taken together, this study indicated that the UFA/SFA and CFA content of BBMN68 were involved in acid adaptation and the C18:1 cis-9/C18:1 trans-9 ratio was involved in acid tolerance response.

  3. Antioxidant activity of phenolic acids and their metabolites: synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid.

    PubMed

    Piazzon, A; Vrhovsek, U; Masuero, D; Mattivi, F; Mandoj, F; Nardini, M

    2012-12-19

    The main metabolites of caffeic and ferulic acids (ferulic acid-4'-O-sulfate, caffeic acid-4'-O-sulfate, and caffeic acid-3'-O-sulfate), the most representative phenolic acids in fruits and vegetables, and the acyl glucuronide of ferulic acid were synthesized, purified, and tested for their antioxidant activity in comparison with those of their parent compounds and other related phenolics. Both the ferric reducing antioxidant power (FRAP) assay and the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging method were used. Ferulic acid-4'-O-sulfate and ferulic acid-4'-O-glucuronide exhibited very low antioxidant activity, while the monosulfate derivatives of caffeic acid were 4-fold less efficient as the antioxidant than caffeic acid. The acyl glucuronide of ferulic acid showed strong antioxidant action. The antioxidant activity of caffeic acid-3'-O-glucuronide and caffeic acid-4'-O-glucuronide was also studied. Our results demonstrate that some of the products of phenolic acid metabolism still retain strong antioxidant properties. Moreover, we first demonstrate the ex vivo synthesis of the acyl glucuronide of ferulic acid by mouse liver microsomes, in addition to the phenyl glucuronide.

  4. Production and identification of a novel compound, 7,10-dihydroxy-8(E)-hexadecenoic acid from palmitoleic acid by Pseudomonas aeruginosa PR3.

    PubMed

    Bae, Jae-Han; Kim, Deuk-Soo; Suh, Min-Jung; Oh, Sei-Ryang; Lee, In-Jung; Kang, Sun-Chul; Hou, Ching T; Kim, Hak-Ryul

    2007-05-01

    Hydroxy fatty acids are considered as important value-added product for industrial application because of their special properties such as higher viscosity and reactivity. Microbial production of the hydroxy fatty acids from various fatty acid substrates have been actively studied using several microorganisms. The new bacterial isolate Pseudomonas aeruginosa (PR3) had been reported to produce mono-, di-, and tri-hydroxy fatty acids from different unsaturated fatty acids. Of those, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) and 7,10,12-trihydroxy-8(E)-octadecenoic acid (TOD) were produced from oleic acid and ricinoleic acid, respectively. Based on the postulated common metabolic pathway involved in DOD and TOD formation by PR3, it was assumed that palmitoleic acid containing a singular 9-cis double bond, common structural property sharing with oleic acid and ricinoleic acid, could be utilized by PR3 to produce hydroxy fatty acid. In this study, we tried to use palmitoleic acid as substrate for production of hydroxy fatty acid by PR3 and firstly confirmed that PR3 could produce 7,10-dihydroxy-8(E)-hexadecenoic acid (DHD) with 23% yield from palmitoleic acid. DHD production was peaked at 72 h after the substrate was added to the 24-h-culture.

  5. [Studies on interaction of acid-treated nanotube titanic acid and amino acids].

    PubMed

    Zhang, Huqin; Chen, Xuemei; Jin, Zhensheng; Liao, Guangxi; Wu, Xiaoming; Du, Jianqiang; Cao, Xiang

    2010-06-01

    Nanotube titanic acid (NTA) has distinct optical and electrical character, and has photocatalysis character. In accordance with these qualities, NTA was treated with acid so as to enhance its surface activity. Surface structures and surface groups of acid-treated NTA were characterized and analyzed by Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectrometry (FT-IR). The interaction between acid-treated NTA and amino acids was investigated. Analysis results showed that the lengths of acid-treated NTA became obviously shorter. The diameters of nanotube bundles did not change obviously with acid-treating. Meanwhile, the surface of acid-treated NTA was cross-linked with carboxyl or esterfunction. In addition, acid-treated NTA can catch amino acid residues easily, and then form close combination.

  6. AGARD Corrosion Handbook. Volume 1. Aircraft Corrosion: Causes and Case Histories

    DTIC Science & Technology

    1985-07-01

    Anodic coatings can be formed in chromic acid, sulphuric acid, phosphoric acid or oxalic acid solutions. Chromic acid anodizing is widely used with...and consists of a thin non-porous barrier layer next to the metal with a porous outer layer that can be sealed by hydrothermal treatment in steam...anaerobic) or an oxidative (aerobic) mechanism. Various organic acids such as citric acid, oxalic acid, gluconic acid, dodecanoic acid, etc., which may be

  7. Effect of three edible oils on the intestinal absorption of caffeic acid: An in vivo and in vitro study

    PubMed Central

    Prasadani, W. Chaturi; Senanayake, Chaturi M.; Jayathilaka, Nimanthi; Ekanayake, Sagarika

    2017-01-01

    Polyphenolic antioxidants are mainly absorbed through passive paracellular permeation regulated by tight junctions. Some fatty acids are known to modulate tight junctions. Fatty acids resulting from the digestion of edible oils may improve the absorption of polyphenolic antioxidants. Therefore, we explored the effect of three edible oils on the intestinal absorption of caffeic acid. Rats were fed with soybean oil and caffeic acid dissolved in distilled water. Caffeic acid contents in the plasma collected up to 1 hr were quantified. The experiment was repeated with coconut oil and olive oil. Component fatty acids of the oils were individually tested in vitro for their effect on permeability of caffeic acid using Caco-2 cell monolayers. Highest absorption of caffeic acid was observed in animals fed with coconut oil. In vitro transport percentages of caffeic acid in 2.5 mmol/L solutions of fatty acids were 22.01±0.12 (lauric), 15.30 ± 0.25 (myristic acid), 13.59 ± 0.35 (linoleic acid), 3.70 ± 0.09 (oleic acid) and 0.10–2.0 (all other fatty acids). Lauric acid and myristic acid are the two major fatty acids present in coconut oil. Therefore, these fatty acids may contribute to the higher absorption of caffeic acid in the presence of coconut oil. PMID:28617858

  8. Electrophilic properties of common MALDI matrix molecules

    NASA Astrophysics Data System (ADS)

    Lippa, T. P.; Eustis, S. N.; Wang, D.; Bowen, K. H.

    2007-11-01

    The negative ion photoelectron spectra of the following MALDI matrix molecules have been measured: 3-carboxypyridine (nicotinic acid), 2,5-dihydroxybenzoic acid (DHB), 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid), 2,6-dihydroxyacetophenone (DHAP), 3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid (ferulic acid), 3-hydroxy-2-pyridinecarboxylic acid (3HPA), and 2,6-pyridinedicarboxylic acid (dipicolinic acid). Adiabatic electron affinities and vertical detachment energies were extracted from these spectra and reported. In addition, electron affinities were calculated for DHAP, ferulic acid, dipicolinic acid and sinapinic acid. Photoelectron spectra were also measured for the dimer anions of DHB and nicotinic acid and for the fragment anion in which alpha-cyano-cinnamic acid had lost a CO2 unit. Together, these results augment the database of presently available electrophilic data on common matrix molecules along with some of their dimers and fragments.

  9. Highly Selective Deoxydehydration of Tartaric Acid over Supported and Unsupported Rhenium Catalysts with Modified Acidities.

    PubMed

    Li, Xiukai; Zhang, Yugen

    2016-10-06

    The deoxydehydration (DODH) of sugar acids to industrially important carboxylic acids is a very attractive topic. Oxorhenium complexes are the most-often employed DODH catalysts. Because of the acidity of the rhenium catalysts, the DODH products of sugar acids were usually in the form of mixture of free carboxylic acids and esters. Herein, we demonstrate strategies for the selective DODH of sugar acids to free carboxylic acids by tuning the Lewis acidity or the Brønsted acidity of the rhenium-based catalysts. Starting from tartaric acid, up to 97 % yield of free maleic acid was achieved. Based on our strategies, functional polymer immobilized heterogeneous rhenium catalysts were also developed for the selective DODH conversion of sugar acids. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Characterization and chemical composition of fatty acids content of watermelon and muskmelon cultivars in Saudi Arabia using gas chromatography/mass spectroscopy.

    PubMed

    Albishri, Hassan M; Almaghrabi, Omar A; Moussa, Tarek A A

    2013-01-01

    The growth in the production of biodiesel, which is principally fatty acid methyl esters (FAME), has been phenomenal in the last ten years because of the general desire to cut down on the release of greenhouse gases into the atmosphere, and also as a result of the increasing cost of fossil fuels. Establish whether there is any relationship between two different species (watermelon and muskmelon) within the same family (Cucurbitaceae) on fatty acid compositions and enumerate the different fatty acids in the two species. Extraction of fatty acids from the two species and preparation the extract to gas chromatography/mass spectroscopy analysis to determine the fatty acids compositions qualitatively and quantitatively. The analyzed plants (watermelon and muskmelon) contain five saturated fatty acids; tetrdecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid and octadecanoic acid with different concentrations, while muskmelon contains an extra saturated fatty acid named eicosanoic acid. The watermelon plant contains five unsaturated fatty acids while muskmelon contains three only, the two plants share in two unsaturated fatty acids named 9-hexadecenoic acid and 9-octadecenoic acid, the muskmelon plant contains higher amounts of these two acids (2.04% and 10.12%, respectively) over watermelon plant (0.88% and 0.25%, respectively). The chemical analysis of watermelon and muskmelon revealed that they are similar in saturated fatty acids but differ in unsaturated fatty acids which may be a criterion of differentiation between the two plants.

  11. ω-Alkynyl lipid surrogates for polyunsaturated fatty acids: free radical and enzymatic oxidations.

    PubMed

    Beavers, William N; Serwa, Remigiusz; Shimozu, Yuki; Tallman, Keri A; Vaught, Melissa; Dalvie, Esha D; Marnett, Lawrence J; Porter, Ned A

    2014-08-13

    Lipid and lipid metabolite profiling are important parameters in understanding the pathogenesis of many diseases. Alkynylated polyunsaturated fatty acids are potentially useful probes for tracking the fate of fatty acid metabolites. The nonenzymatic and enzymatic oxidations of ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were compared to that of linoleic and arachidonic acid. There was no detectable difference in the primary products of nonenzymatic oxidation, which comprised cis,trans-hydroxy fatty acids. Similar hydroxy fatty acid products were formed when ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were reacted with lipoxygenase enzymes that introduce oxygen at different positions in the carbon chains. The rates of oxidation of ω-alkynylated fatty acids were reduced compared to those of the natural fatty acids. Cyclooxygenase-1 and -2 did not oxidize alkynyl linoleic but efficiently oxidized alkynyl arachidonic acid. The products were identified as alkynyl 11-hydroxy-eicosatetraenoic acid, alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid, and alkynyl prostaglandins. This deviation from the metabolic profile of arachidonic acid may limit the utility of alkynyl arachidonic acid in the tracking of cyclooxygenase-based lipid oxidation. The formation of alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid compared to alkynyl prostaglandins suggests that the ω-alkyne group causes a conformational change in the fatty acid bound to the enzyme, which reduces the efficiency of cyclization of dioxalanyl intermediates to endoperoxide intermediates. Overall, ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid appear to be metabolically competent surrogates for tracking the fate of polyunsaturated fatty acids when looking at models involving autoxidation and oxidation by lipoxygenases.

  12. Cadmium Alters the Concentration of Fatty Acids in THP-1 Macrophages.

    PubMed

    Olszowski, Tomasz; Gutowska, Izabela; Baranowska-Bosiacka, Irena; Łukomska, Agnieszka; Drozd, Arleta; Chlubek, Dariusz

    2018-03-01

    Fatty acid composition of human immune cells influences their function. The aim of this study was to evaluate the effects of known toxicant and immunomodulator, cadmium, at low concentrations on levels of selected fatty acids (FAs) in THP-1 macrophages. The differentiation of THP-1 monocytes into macrophages was achieved by administration of phorbol myristate acetate. Macrophages were incubated with various cadmium chloride (CdCl 2 ) solutions for 48 h at final concentrations of 5 nM, 20 nM, 200 nM, and 2 μM CdCl 2 . Fatty acids were extracted from samples according to the Folch method. The fatty acid levels were determined using gas chromatography. The following fatty acids were analyzed: long-chain saturated fatty acids (SFAs) palmitic acid and stearic acid, very long-chain saturated fatty acid (VLSFA) arachidic acid, monounsaturated fatty acids (MUFAs) palmitoleic acid, oleic acid and vaccenic acid, and n-6 polyunsaturated fatty acids (PUFAs) linoleic acid and arachidonic acid. Treatment of macrophages with very low concentrations of cadmium (5-200 nM) resulted in significant reduction in the levels of arachidic, palmitoleic, oleic, vaccenic, and linoleic acids and significant increase in arachidonic acid levels (following exposure to 5 nM Cd), without significant reduction of palmitic and stearic acid levels. Treatment of macrophages with the highest tested cadmium concentration (2 μM) produced significant reduction in the levels of all examined FAs: SFAs, VLSFA, MUFAs, and PUFAs. In conclusion, cadmium at tested concentrations caused significant alterations in THP-1 macrophage fatty acid levels, disrupting their composition, which might dysregulate fatty acid/lipid metabolism thus affecting macrophage behavior and inflammatory state.

  13. Comparison of clinical characteristics of chronic cough due to non-acid and acid gastroesophageal reflux.

    PubMed

    Xu, Xianghuai; Yang, Zhongmin; Chen, Qiang; Yu, Li; Liang, Siwei; Lü, Hanjing; Qiu, Zhongmin

    2015-04-01

    Little is known about non-acid gastroesophageal reflux-induced chronic cough (GERC). The purpose of the study is to explore the clinical characteristics of non-acid GERC. Clinical symptoms, cough symptom score, capsaicin cough sensitivity, gastroesophageal reflux diagnostic questionnaire (GerdQ) score, findings of multichannel intraluminal impedance-pH monitoring (MII-pH) and response to pharmacological anti-reflux therapy were retrospectively reviewed in 38 patients with non-acid GERC and compared with those of 49 patients with acid GERC. Non-acid GERC had the similar cough character, cough symptom score, and capsaicin cough sensitivity to acid GERC. However, non-acid GERC had less frequent regurgitation (15.8% vs 57.1%, χ(2)  = 13.346, P = 0.000) and heartburn (7.9% vs 32.7%, χ(2)  = 7.686, P  = 0.006), and lower GerdQ score (7.4 ± 1.4 vs 10.6 ± 2.1, t = -6.700, P = 0.003) than acid GERC. Moreover, MII-pH revealed more weakly acidic reflux episodes, gas reflux episodes and a higher symptom association probability (SAP) for non-acid reflux but lower DeMeester score, acidic reflux episodes and SAP for acid reflux in non-acid GERC than in acid GERC. Non-acid GERC usually responded to the standard anti-reflux therapy but with delayed cough resolution or attenuation when compared with acid GERC. Fewer patients with non-acid GERC needed an augmented acid suppressive therapy or treatment with baclofen. There are some differences in the clinical manifestations between non-acid and acid GERC, but MII-pH is essential to diagnose non-acid GERC. © 2014 John Wiley & Sons Ltd.

  14. Acid Rain

    USGS Publications Warehouse

    Bricker, Owen P.; Rice, Karen C.

    1995-01-01

    Although acid rain is fading as a political issue in the United States and funds for research in this area have largely disappeared, the acidity of rain in the Eastern United States has not changed significantly over the last decade, and it continues to be a serious environmental problem. Acid deposition (commonly called acid rain) is a term applied to all forms of atmospheric deposition of acidic substances - rain, snow, fog, acidic dry particulates, aerosols, and acid-forming gases. Water in the atmosphere reacts with certain atmospheric gases to become acidic. For example, water reacts with carbon dioxide in the atmosphere to produce a solution with a pH of about 5.6. Gases that produce acids in the presence of water in the atmosphere include carbon dioxide (which converts to carbonic acid), oxides of sulfur and nitrogen (which convert to sulfuric and nitric acids}, and hydrogen chloride (which converts to hydrochloric acid). These acid-producing gases are released to the atmosphere through natural processes, such as volcanic emissions, lightning, forest fires, and decay of organic matter. Accordingly, precipitation is slightly acidic, with a pH of 5.0 to 5.7 even in undeveloped areas. In industrialized areas, most of the acid-producing gases are released to the atmosphere from burning fossil fuels. Major emitters of acid-producing gases include power plants, industrial operations, and motor vehicles. Acid-producing gases can be transported through the atmosphere for hundreds of miles before being converted to acids and deposited as acid rain. Because acids tend to build up in the atmosphere between storms, the most acidic rain falls at the beginning of a storm, and as the rain continues, the acids "wash out" of the atmosphere.

  15. Chicoric Acid Found in Basil (Ocimum basilicum L.) Leaves

    USDA-ARS?s Scientific Manuscript database

    This is the first report to identify the presence of chicoric acid (cichoric acid; also known as dicaffeoyltartaric acid) in basil leaves. Rosmarinic acid, chicoric acid, and caftaric acid (in the order of most abundant to least; all derivatives of caffeic acid) were identified in fresh basil leaves...

  16. Acute Toxicity of a Number of Chemicals of Interest to the Air Force

    DTIC Science & Technology

    1979-03-01

    Acid Azelaic Acid Dimer Acid N-Benzyl-3, 7-Dioctyl Phenothiazine Phenothiazine Dioctyl Phenothiazine Sebacic Acid ...liquid) 1,4-dihydroxyanthraquinone (solid) Sulfurized 9-octadecenoic acid (liquid) Azelaic acid (solid) Dimer acid (liquid) N-benzyl-3,7-dicotyl...dihydroxyanthra- Rat >5000 5000(0) Below Toxic quinone Sulfurized 9-octa- Rat >5000 5000(0) Below Toxic decenoic acid Azelaic acid Rat >5000

  17. Comparative fatty acid composition of four Sargassum species (Fucales, Phaeophyta)

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-Chun; Lu, Bao-Ren; Tseng, C. K.

    1995-12-01

    Fatty acid composition of four Sargassum species from Qingdao and Shidao, Shandong Province was investigated. 16:0 (palmitic acid) was the major saturated fatty acid. C18 and C20 were the main polyunsaturated fatty acids (PUFAs). Arachidonic acid and eicosapentaenoic acid predominated among polyenoic acids in all the algal species examined, except for Sargassum sp. which had low concentration of eicosapentaenoic acid.

  18. Utilization of acidic α-amino acids as acyl donors: an effective stereo-controllable synthesis of aryl-keto α-amino acids and their derivatives.

    PubMed

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Tachrim, Zetryana Puteri; Hashidoko, Yasuyuki; Hashimoto, Makoto

    2014-05-16

    Aryl-keto-containing α-amino acids are of great importance in organic chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives. In this review, we summarize the preparation of aryl-keto containing α-amino acids by Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or Brönsted acids as catalysts.

  19. Omega-3 fatty acids in baked freshwater fish from south of Brazil.

    PubMed

    Andrade, A D; Visentainer, J V; Matsushita, M; de Souza, N E

    1997-03-01

    Lipid and fatty acid levels in the edible flesh of 17 baked freshwater fish from Brazil's southern region were determined. Analyses of fatty acids methyl esters were performed by gas chromatography. Palmitic acid (C16:0) was the predominant saturated fatty acid, accouting for 50-70% of total saturated acids. Linoleic acid (C18:2 omega 6), linolenic acid (C18:3 omega 3), and docosahexaenoic acid (C22:6 omega 3) were the predominant polyunsatured fatty acids (PUFA). The data revealed that species such as barbado, corvina, pintado, and truta were good sources of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and that most freshwater fish examined were good sources of PUFA-omega 3.

  20. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    PubMed

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Influence of chain length and unsaturation on the effects of fatty acids on phosphoglyceride biosynthesis in isolated rat and pig hepatocytes.

    PubMed

    Akesson, B; Sundler, R; Nilsson, A

    1976-03-16

    Hepatocytes isolated from rat or pig by collagenase perfusion were incubated with [3H]glcyerol and different albumin-bount fatty acids. Among C22 fatty acids docosahexaenoic acid stimulated phosphatidylethanolamine synthesis in rat hepatocytes most effectively. Addition of docosahexaenoic acid plus either palmitic or stearic acid resulted almost in the same stimulation whereas combinations of this acid with lauric or myristic acid had no effect. Lauric acid and myristic acid alone inhibited phosphatidylethanolamine synthesis. The chain length specificity for monoenoic fatty acids was similar, the hexadecenoic and octadecenoic acids (both cis and trans) being most stimulatory. The addition of 0.2 mM ethanolamine markedly stimulated phosphatidylethanolamine synthesis, but most effects of fatty acids were similar in its presence or absence.

  2. Iso-branched 2- and 3-hydroxy fatty acids as characteristic lipid constituents of some gliding bacteria.

    PubMed Central

    Fautz, E; Rosenfelder, G; Grotjahn, L

    1979-01-01

    The fatty acids present in the total hydrolysates of several gliding bacteria (Myxococcus fulvus, Stigmatella aurantiaca, Cytophaga johnsonae, Cytophaga sp. strain samoa and Flexibacter elegans) were analyzed by combined gas-liquid chromatography and mass spectrometry. In addition to 13-methyl-tetradecanoic acid, 15-methyl-hexadecanoic acid, hexadecanoic acid, and hexadecenoic acid, 2- and 3-hydroxy fatty acids comprised up to 50% of the total fatty acids. The majority was odd-numbered and iso-branched. Small amounts of even-numbered and unbranched fatty acids were also present. Whereas 2-hydroxy-15-methyl hexadecanoic acid was characteristic for myxobacteria, 2-hydroxy-13-methyl-tetradecanoic acid, 3-hydroxy-13-methyl-tetradecanoic acid, and 3-hydroxy-15-methyl-hexadecanoic acid were dominant in the Cytophaga-Flexibacter group. PMID:118159

  3. Macrocyclic lactones: A versatile source for omega radiohalogenated fatty acid analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougan, A.H.; Lyster, D.M.; Robertson, K.A.

    For each omega halogenated fatty acid there exists a potential omega hydroxy fatty acid and the corresponding macrocyclic lactone. The authors have utilized such lactones as starting materials for omega /sup 123/I fatty acid analogs intended for myocardial imaging. Macrocyclic musk lactones are industrially available; 120 analogs are described in the literature. The preparation requires saponification, tosylation, and radio-iodide substitution. Iodo-fatty acids are readily separated from tosylate fatty acids on TLC. While providing a secure source of 16-iodo-hexadecanoic acid and 17-iodo-heptadecanoic acid, the scheme allows ready access to a large number of untried fatty acid analogs. Examples presented are 16-iodo-hexadecanoicmore » acid, 16-iodo-7-hexadecanoic acid, 16-iodo-12-oxa-hexadecanoic acid, 15-iodo-pentadecanoic acid, and 15-iodo-12-keto-pentadecanoic acid. Metabolic studies are in progress in mice and dogs to assess the utility of these analogs for myocardial imaging.« less

  4. Crystal growth and physical characterization of picolinic acid cocrystallized with dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Somphon, Weenawan; Haller, Kenneth J.

    2013-01-01

    Pharmaceutical cocrystals are multicomponent materials containing an active pharmaceutical ingredient with another component in well-defined stoichiometry within the same unit cell. Such cocrystals are important in drug design, particularly for improving physicochemical properties such as solubility, bioavailability, or chemical stability. Picolinic acid is an endogenous metabolite of tryptophan and is widely used for neuroprotective, immunological, and anti-proliferative effects within the body. In this paper we present cocrystallization experiments of a series of dicarboxylic acids, oxalic acid, succinic acid, DL-tartaric acid, pimelic acid, and phthalic acid, with picolinic acid. Characterization by FT-IR and Raman spectroscopy, DSC and TG/DTG analysis, and X-ray powder diffraction show that new compounds are formed, including a 1:1 picolinium tartrate monohydrate, a 2:1 monohydrate adduct of picolinic acid and oxalic acid, and a 2:1 picolinic acid-succinic acid monohydrate cocrystal.

  5. Identification of COX inhibitors in the hexane extract of Japanese horse chestnut (Aesculus turbinata) seeds.

    PubMed

    Sato, Itaru; Kofujita, Hisayoshi; Tsuda, Shuji

    2007-07-01

    Japanese horse chestnut (Aesculus turbinata) seed extract inhibits the activity of cyclooxygenase (COX), but its active constituents have not been identified. In the present study, COX inhibitors were isolated from the hexane extract of this seed by means of 4 steps of liquid chromatography and were identified by gas chromatography/mass spectrometry and nuclear magnetic resonance. The COX inhibitors in the extract of Japanese horse chestnut seeds were identified as linoleic acid, linolenic acid, and oleic acid. Their efficacies were in the following order: linolenic acid = linoleic acid > oleic acid. These active constituents are C18 unsaturated fatty acids; stearic acid, a C18 saturated fatty acid, had no activity. Linolenic acid and linoleic acid had high selectivity toward COX-2 (selectivity index = 10), whereas oleic acid had no selectivity. Considering the efficacy and yield of each fatty acid, linoleic acid may be the principal COX inhibitor in this seed.

  6. Glutamic Acid as a Precursor to N-Terminal Pyroglutamic Acid in Mouse Plasmacytoma Protein

    PubMed Central

    Twardzik, Daniel R.; Peterkofsky, Alan

    1972-01-01

    Cell suspensions derived from a mouse plasmacytoma (RPC-20) that secretes an immunoglobulin light chain containing N-terminal pyroglutamic acid can synthesize protein in vitro. Chromatographic examination of an enzymatic digest of protein labeled with glutamic acid shows only labeled glutamic acid and pyroglutamic acid; hydrolysis of protein from cells labeled with glutamine, however, yields substantial amounts of glutamic acid in addition to glutamine and pyroglutamic acid. The absence of glutamine synthetase and presence of glutaminase in plasmacytoma homogenates is consistent with these findings. These data indicate that N-terminal pyroglutamic acid can be derived from glutamic acid without prior conversion of glutamic acid to glutamine. Since free or bound forms of glutamine cyclize nonezymatically to pyroglutamate with ease, while glutamic acid does not, the data suggest that N-terminal pyroglutamic acid formation from glutamic acid is enzymatic rather than spontaneous. Images PMID:4400295

  7. Identification of a novel fatty acid elongase with a wide substrate specificity from arachidonic acid-producing fungus Mortierella alpina 1S-4.

    PubMed

    Sakuradani, Eiji; Nojiri, Masutoshi; Suzuki, Haruna; Shimizu, Sakayu

    2009-09-01

    The isolation and characterization of a gene (MALCE1) that encodes a fatty acid elongase from arachidonic acid-producing fungus Mortierella alpina 1S-4 are described. MALCE1 was confirmed to encode a fatty acid elongase by its expression in yeast Saccharomyces cerevisiae, resulting in the accumulation of 18-, 19-, and 20-carbon monounsaturated fatty acids and eicosanoic acid. Furthermore, the MALCE1 yeast transformant efficiently elongated exogenous 9-hexadecenoic acid, 9,12-octadecadienoic acid, and 9,12,15-octadecatrienoic acid. The MALCE1 gene-silenced strain obtained from M. alpina 1S-4 exhibited a low content of octadecanoic acid and a high content of hexadecanoic acid, compared with those in the wild strain. The enzyme encoded by MALCE1 was demonstrated to be involved in the conversion of hexadecanoic acid to octadecanoic acid, its main role in M. alpina 1S-4.

  8. Fatty Acids of Myxococcus xanthus

    PubMed Central

    Ware, Judith C.; Dworkin, Martin

    1973-01-01

    Fatty acids were extracted from saponified vegetative cells and myxospores of Myxococcus xanthus and examined as the methyl esters by gas-liquid chromatography. The acids consisted mainly of C14 to C17 species. Branched acids predominated, and iso-pentadecanoic acid constituted half or more of the mixture. The other leading component (11–28%) was found to be 11-n-hexadecenoic acid. Among the unsaturated acids were two diunsaturated ones, an n-hexadecadienoic acid and an iso-heptadecadienoic acid. No significant differences between the fatty acid compositions of the vegetative cells and myxospores could be detected. The fatty acid composition of M. xanthus was found to be markedly similar to that of Stigmatella aurantiaca. It is suggested that a fatty acid pattern consisting of a large proportion of iso-branched C15 and C17 acids and a substantial amount of an n-16:1 acid is characteristic of myxobacteria. PMID:4197903

  9. Molecular and isotopic analyses of the hydroxy acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite

    NASA Astrophysics Data System (ADS)

    Cronin, J. R.; Pizzarello, S.; Epstein, S.; Krishnamurthy, R. V.

    1993-10-01

    The hydroxymonocarboxylic acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite were analyzed as their tert-butyldimethylsilyl derivatives using combined gas chromatography-mass spectrometry. The hydroxydicarboxylic acids have not been found previously in meteorites. Each class of compounds is numerous with carbon chains up to C8 or C9 and many, if not all, chain and substitution position isomers represented at each carbon number. The alpha-hydroxycarboxylic acids and alpha-hydroxydicarboxylic acids correspond structurally to many of the known meteoritic alpha-aminocarboxylic acids and alpha-aminodicarboxylic acids, a fact that supports the proposal that a Strecker synthesis was involved in the formation of both classes of compounds. Isotopic analyses show these acids to be D-rich relative to terrestrial organic compounds, as expected; however, the hydroxy acids appear to be isotopically lighter than the amino acids with respect to both carbon and hydrogen.

  10. Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice.

    PubMed

    Pang, Yuehan; Ahmed, Sulaiman; Xu, Yanjie; Beta, Trust; Zhu, Zhiwei; Shao, Yafang; Bao, Jinsong

    2018-02-01

    Total phenolic content (TPC), individual phenolic acid and antioxidant capacity of whole grain and bran fraction 18 rices with different bran color were investigated. The levels of TPC in bound fractions were significantly higher than those in the free fractions either in the whole grains or brans. The main bound phenolic acids in white rice samples were ferulic acid, p-coumaric acid, and isoferulic acid, and in pigmented rice samples were ferulic acid, p-coumaric acid, and vanillic acid. The protocatechuic acid and 2,5-dihydroxybenzoic acid were not detected in white samples. The content of gallic acid, protocatechuic acid, 2,5-dihydroxybenzoic acid, ferulic acid, sinapic acid had significantly positive correlations with TPC and antioxidant capacity. This study found much wider diversity in the phenolics and antioxidant capacity in the whole grain and brans of rice, and will provide new opportunities to further improvement of rice with enhanced levels of the phytochemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Enhanced detection of amino acids in hydrophilic interaction chromatography electrospray tandem mass spectrometry with carboxylic acids as mobile phase additives.

    PubMed

    Yin, Dengyang; Hu, Xunxiu; Liu, Dantong; Du, Wencheng; Wang, Haibo; Guo, Mengzhe; Tang, Daoquan

    2017-06-01

    Liquid chromatography coupled with mass spectrometry technique has been widely used in the analysis of biological targets such as amino acids, peptides, and proteins. In this work, eight common single carboxylic acids or diacids, which contain different pKa have been investigated as the additives to the analysis of amino acids. As the results, carboxylic acid additive can improve the signal intensity of acidity amino acids such as Asp and Glu and the chromatographic separation of basic amino acids such as Arg, His, and Lys. In particular, the diacids have better performance than single acids. The proposed mechanism is that the diacid has hydrogen bond interaction with amino acids to reduce their polarity/amphiprotic characteristics. Besides, oxalic acid has been found having better enhancement than phthalic acid by overall consideration. Therefore, we successfully quantified the 15 amino acids in Sepia bulk pharmaceutical chemical by using oxalic acid as the additive.

  12. Fatty Acid-Based Monomers as Styrene Replacements for Liquid Molding Resins

    DTIC Science & Technology

    2005-05-01

    fatty acid length and unsaturation level on resin and polymer properties. Fig. 2. The addition of fatty acids ( oleic acid ) to glycidyl methacylate to...the synthetic route used to form the methacrylated fatty acids (MFA). The carboxylic acid of fatty acids undergoes a simple addition reaction with... form methacrylated fatty acid monomer

  13. Acetic acid in aged vinegar affects molecular targets for thrombus disease management.

    PubMed

    Jing, Li; Yanyan, Zhang; Junfeng, Fan

    2015-08-01

    To elucidate the mechanism underlying the action of dietary vinegar on antithrombotic activity, acetic acid, the main acidic component of dietary vinegar, was used to determine antiplatelet and fibrinolytic activity. The results revealed that acetic acid significantly inhibits adenosine diphosphate (ADP)-, collagen-, thrombin-, and arachidonic acid (AA)-induced platelet aggregation. Acetic acid (2.00 mM) reduced AA-induced platelet aggregation to approximately 36.82 ± 1.31%, and vinegar (0.12 mL L(-1)) reduced the platelet aggregation induced by AA to 30.25 ± 1.34%. Further studies revealed that acetic acid exerts its effects by inhibiting cyclooxygenase-1 and the formation of thromboxane-A2. Organic acids including acetic acid, formic acid, lactic acid, citric acid, and malic acid also showed fibrinolytic activity; specifically, the fibrinolytic activity of acetic acid amounted to 1.866 IU urokinase per mL. Acetic acid exerted its fibrinolytic activity by activating plasminogen during fibrin crossing, thus leading to crosslinked fibrin degradation by the activated plasmin. These results suggest that organic acids in dietary vinegar play important roles in the prevention and cure of cardiovascular diseases.

  14. Identification of random nucleic acid sequence aberrations using dual capture probes which hybridize to different chromosome regions

    DOEpatents

    Lucas, J.N.; Straume, T.; Bogen, K.T.

    1998-03-24

    A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration. 14 figs.

  15. Identification of random nucleic acid sequence aberrations using dual capture probes which hybridize to different chromosome regions

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    1998-01-01

    A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration.

  16. Bile Acid Metabolism in Liver Pathobiology

    PubMed Central

    Chiang, John Y. L.; Ferrell, Jessica M.

    2018-01-01

    Bile acids facilitate intestinal nutrient absorption and biliary cholesterol secretion to maintain bile acid homeostasis, which is essential for protecting liver and other tissues and cells from cholesterol and bile acid toxicity. Bile acid metabolism is tightly regulated by bile acid synthesis in the liver and bile acid biotransformation in the intestine. Bile acids are endogenous ligands that activate a complex network of nuclear receptor farnesoid X receptor and membrane G protein-coupled bile acid receptor-1 to regulate hepatic lipid and glucose metabolic homeostasis and energy metabolism. The gut-to-liver axis plays a critical role in the regulation of enterohepatic circulation of bile acids, bile acid pool size, and bile acid composition. Bile acids control gut bacteria overgrowth, and gut bacteria metabolize bile acids to regulate host metabolism. Alteration of bile acid metabolism by high-fat diets, sleep disruption, alcohol, and drugs reshapes gut microbiome and causes dysbiosis, obesity, and metabolic disorders. Gender differences in bile acid metabolism, FXR signaling, and gut microbiota have been linked to higher prevalence of fatty liver disease and hepatocellular carcinoma in males. Alteration of bile acid homeostasis contributes to cholestatic liver diseases, inflammatory diseases in the digestive system, obesity, and diabetes. Bile acid-activated receptors are potential therapeutic targets for developing drugs to treat metabolic disorders. PMID:29325602

  17. Parabanic acid is the singlet oxygen specific oxidation product of uric acid.

    PubMed

    Iida, Sayaka; Ohkubo, Yuki; Yamamoto, Yorihiro; Fujisawa, Akio

    2017-11-01

    Uric acid quenches singlet oxygen physically or reacts with it, but the oxidation product has not been previously characterized. The present study determined that the product is parabanic acid, which was confirmed by LC/TOFMS analysis. Parabanic acid was stable at acidic pH (<5.0), but hydrolyzed to oxaluric acid at neutral or alkaline pH. The total yields of parabanic acid and oxaluric acid based on consumed uric acid were ~100% in clean singlet oxygen production systems such as UVA irradiation of Rose Bengal and thermal decomposition of 3-(1,4-dihydro-1,4-epidioxy-4-methyl-1-naphthyl)propionic acid. However, the ratio of the amount of uric acid consumed to the total amount of singlet oxygen generated was less than 1/180, indicating that most of the singlet oxygen was physically quenched. The total yields of parabanic acid and oxaluric acid were high in the uric acid oxidation systems with hydrogen peroxide plus hypochlorite or peroxynitrite. They became less than a few percent in peroxyl radical-, hypochlorite- or peroxynitrite-induced oxidation of uric acid. These results suggest that parabanic acid could be an in vivo probe of singlet oxygen formation because of the wide distribution of uric acid in human tissues and extracellular spaces. In fact, sunlight exposure significantly increased human skin levels of parabanic acid.

  18. Identification of Scirpus triqueter root exudates and the effects of organic acids on desorption and bioavailability of pyrene and lead in co-contaminated wetland soils.

    PubMed

    Hou, Yunyun; Liu, Xiaoyan; Zhang, Xinying; Chen, Xiao; Tao, Kaiyun; Chen, Xueping; Liang, Xia; He, Chiquan

    2015-11-01

    Root exudates (REs) of Scirpus triqueter were extracted from the rhizosphere soil in this study. The components in the REs were identified by GC-MS. Many organic acids, such as hexadecanoic acid, pentadecanoic acid, vanillic acid, octadecanoic acid, citric acid, succinic acid, glutaric acid, and so on, were found. Batch simulated experiments were conducted to evaluate the impacts of different organic acids, such as citric acid, artificial root exudates (ARE), succinic acid, and glutaric acid in REs of S. triqueter on desorption of pyrene (PYR) and lead (Pb) in co-contaminated wetland soils. The desorption amount of PYR and Pb increased with the rise in concentrations of organic acids in the range of 0-50 g·L(-1), within shaking time of 2-24 h. The desorption effects of PYR and Pb in soils with various organic acids treatments decreased in the following order: citric acid > ARE > succinic acid > glutaric acid. The desorption rate of PYR and Pb was higher in co-contaminated soil than in single pollution soil. The impacts of organic acids in REs of S. triqueter on bioavailability of PYR and Pb suggested that organic acids enhanced the bioavailability of PYR and Pb in wetland soil, and the bioavailability effects of organic acids generally followed the same order as that of desorption effects.

  19. Concurrent Lactic and Volatile Fatty Acid Analysis of Microbial Fermentation Samples by Gas Chromatography with Heat Pre-treatment.

    PubMed

    Darwin; WipaCharles; Cord-Ruwisch, Ralf

    2018-01-01

    Organic acid analysis of fermentation samples can be readily achieved by gas chromatography (GC), which detects volatile organic acids. However, lactic acid, a key fermentation acid is non-volatile and can hence not be quantified by regular GC analysis. However the addition of periodic acid to organic acid samples has been shown to enable lactic acid analysis by GC, as periodic acid oxidizes lactic acid to the volatile acetaldehyde. Direct GC injection of lactic acid standards and periodic acid generated inconsistent and irreproducible peaks, possibly due to incomplete lactic acid oxidation to acetaldehyde. The described method is developed to improve lactic acid analysis by GC by using a heat treated derivatization pre-treatment, such that it becomes independent of the retention time and temperature selection of the GC injector. Samples containing lactic acid were amended by periodic acid and heated in a sealed test tube at 100°C for at least 45 min before injecting it to the GC. Reproducible and consistent peaks of acetaldehyde were obtained. Simultaneous determination of lactic acid, acetone, ethanol, butanol, volatile fatty acids could also be accomplished by applying this GC method, enabling precise and convenient organic acid analysis of biological samples such as anaerobic digestion and fermentation processes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Behaviors of D- and L-lactic acids during the brewing process of sake (Japanese rice wine).

    PubMed

    Kodama, Shuji; Yamamoto, Atsushi; Matsunaga, Akinobu; Matsui, Keizou; Nakagomi, Kazuya; Hayakawa, Kazuichi

    2002-02-13

    The amounts of D- and L-lactic acids during the brewing process of sake were determined by capillary electrophoresis using 2-hydroxypropyl-beta-cyclodextrin as a chiral selector. Because L-lactic acid, which prevents the growth of nonuseful microorganisms, is a raw material of sake, the ratio of L-lactic acid to total lactic acid is almost 1.0 at the initial stage of sake brewing. During brewing, the ratio decreased gradually and finally reached 0.39. Yeast (Saccharomyces cerevisiae) for sake brewing produced D-lactic acid, but not L-lactic acid in a culture medium. These results suggest that the decrease in the ratio of L-lactic acid to total lactic acid during sake brewing resulted in D-lactic acid production by yeast. The ratios in 18 brands of sake obtained commercially ranged from 0.23 to 0.78. The levels of D-lactic acid in sake (140-274 mg/L) were in a narrower range than those of L-lactic acid (61-461 mg/L). Although the D-lactic acid level in sake did not correspond to total lactic acid level, the L-lactic acid level correlated well with total lactic acid level (R(2) = 0.867). These results suggest that the ratio of L-lactic acid to total lactic acid in sake reflected the amount of L-lactic acid added at the initial stage of sake brewing.

  1. Fatty Acid Composition and Volatile Constituents of Protaetia brevitarsis Larvae.

    PubMed

    Yeo, Hyelim; Youn, Kumju; Kim, Minji; Yun, Eun-Young; Hwang, Jae-Sam; Jeong, Woo-Sik; Jun, Mira

    2013-06-01

    A total of 48 different volatile oils were identified form P. brevitarsis larvae by gas chromatography/mass spectrometry (GC/MS). Acids (48.67%) were detected as the major group in P. brevitarsis larvae comprising the largest proportion of the volatile compounds, followed by esters (19.84%), hydrocarbons (18.90%), alcohols (8.37%), miscellaneous (1.71%), aldehydes (1.35%) and terpenes (1.16%). The major volatile constituents were 9-hexadecenoic acid (16.75%), 6-octadecenoic acid (14.88%) and n-hexadecanoic acid (11.06%). The composition of fatty acid was also determined by GC analysis and 16 fatty acids were identified. The predominant fatty acids were oleic acid (C18:1, 64.24%) followed by palmitic acid (C16:0, 15.89%), palmitoleic acid (C16:1, 10.43%) and linoleic acid (C18:2, 4.69%) constituting more than 95% of total fatty acids. The distinguished characteristic of the fatty acid profile of P. brevitarsis larvae was the high proportion of unsaturated fatty acid (80.54% of total fatty acids) versus saturated fatty acids (19.46% of total fatty acids). Furthermore, small but significant amounts of linoleic, linolenic and γ-linolenic acids bestow P. brevitarsis larvae with considerable nutritional value. The novel findings of the present study provide a scientific basis for the comprehensive utilization of the insect as a nutritionally promising food source and a possibility for more effective utilization.

  2. Fatty Acid Composition and Volatile Constituents of Protaetia brevitarsis Larvae

    PubMed Central

    Yeo, Hyelim; Youn, Kumju; Kim, Minji; Yun, Eun-Young; Hwang, Jae-Sam; Jeong, Woo-Sik; Jun, Mira

    2013-01-01

    A total of 48 different volatile oils were identified form P. brevitarsis larvae by gas chromatography/mass spectrometry (GC/MS). Acids (48.67%) were detected as the major group in P. brevitarsis larvae comprising the largest proportion of the volatile compounds, followed by esters (19.84%), hydrocarbons (18.90%), alcohols (8.37%), miscellaneous (1.71%), aldehydes (1.35%) and terpenes (1.16%). The major volatile constituents were 9-hexadecenoic acid (16.75%), 6-octadecenoic acid (14.88%) and n-hexadecanoic acid (11.06%). The composition of fatty acid was also determined by GC analysis and 16 fatty acids were identified. The predominant fatty acids were oleic acid (C18:1, 64.24%) followed by palmitic acid (C16:0, 15.89%), palmitoleic acid (C16:1, 10.43%) and linoleic acid (C18:2, 4.69%) constituting more than 95% of total fatty acids. The distinguished characteristic of the fatty acid profile of P. brevitarsis larvae was the high proportion of unsaturated fatty acid (80.54% of total fatty acids) versus saturated fatty acids (19.46% of total fatty acids). Furthermore, small but significant amounts of linoleic, linolenic and γ-linolenic acids bestow P. brevitarsis larvae with considerable nutritional value. The novel findings of the present study provide a scientific basis for the comprehensive utilization of the insect as a nutritionally promising food source and a possibility for more effective utilization. PMID:24471125

  3. Identification and characterization of five new classes of chlorogenic acids in burdock (Arctium lappa L.) roots by liquid chromatography/tandem mass spectrometry.

    PubMed

    Jaiswal, Rakesh; Kuhnert, Nikolai

    2011-01-01

    Burdock (Arcticum lappa L.) roots are used in folk medicine and also as a vegetable in Asian countries especially Japan, Korea, and Thailand. We have used LC-MS(n) (n = 2-4) to detect and characterize in burdock roots 15 quantitatively minor fumaric, succinic, and malic acid-containing chlorogenic acids, 11 of them not previously reported in nature. These comprise 3-succinoyl-4,5-dicaffeoyl or 1-succinoyl-3,4-dicaffeoylquinic acid, 1,5-dicaffeoyl-3-succinoylquinic acid, 1,5-dicaffeoyl-4-succinoylquinic acid, and 3,4-dicaffeoyl-5-succinoylquinic acid (M(r) 616); 1,3-dicaffeoyl-5-fumaroylquinic acid and 1,5-dicaffeoyl-4-fumaroylquinic acid (M(r) 614); 1,5-dicaffeoyl-3-maloylquinic acid, 1,4-dicaffeoyl-3-maloylquinic acid, and 1,5-dicaffeoyl-4-maloylquinic acid (M(r) 632); 1,3,5-tricaffeoyl-4-succinoylquinic acid (M(r) 778); 1,5-dicaffeoyl-3,4-disuccinoylquinic acid (M(r) 716); 1,5-dicaffeoyl-3-fumaroyl-4-succinoylquinic acid and 1-fumaroyl-3,5-dicaffeoyl-4-succinoylquinic acid (M(r) 714); dicaffeoyl-dimaloylquinic acid (M(r) 748); and 1,5-dicaffeoyl-3-succinoyl-4-dimaloylquinic acid (M(r) 732). All the structures have been assigned on the basis of LC-MS(n) patterns of fragmentation, relative hydrophobicity, and analogy of fragmentation patterns if compared to caffeoylquinic acids.

  4. Preparation, characterization and pharmacokinetics of enrofloxacin-loaded solid lipid nanoparticles: influences of fatty acids.

    PubMed

    Xie, Shuyu; Zhu, Luyan; Dong, Zhao; Wang, Xiaofang; Wang, Yan; Li, Xihe; Zhou, WenZhong

    2011-04-01

    Enrofloxacin-loaded solid lipid nanoparticles (SLN) were prepared using fatty acids (tetradecanoic acid, palmitic acid, stearic acid) as lipid matrix by hot homogenization and ultrasonication method. The effect of fatty acids on the characteristics and pharmacokinetics of the SLN were investigated. The results showed that the encapsulation efficiency and loading capacity of nanoparticles varied with fatty acids in the order of stearic acid>palmitic acid>tetradecanoic acid. Furthermore, stearic acid-SLN had larger particle size, bigger polydispersity index (PDI) and higher zeta potential compared with the other two fatty acid formulated SLN. The SLN showed sustained releases in vitro and the released enrofloxacin had the same antibacterial activity as that of the native enrofloxacin. Although in vitro release exhibited similar patterns, within 24 h the releasing rates of the three formulations were significantly different (tetradecanoic acid-SLN>palmitic acid-SLN>stearic acid-SLN). Pharmacokinetic study after a single dose of intramuscular administration to mice demonstrated that tetradecanoic acid-SLN, palmitic acid-SLN, and stearic acid-SLN increased the bioavailability by 6.79, 3.56 and 2.39 folds, and extended the mean residence time (MRT) of the drug from 10.60 h to 180.36, 46.26 and 19.09 h, respectively. These results suggest that the enrofloxacin-fatty acid SLN are promising formulations for sustained release while fatty acids had significant influences on the characteristics and performances of the SLN. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Characterization and chemical composition of fatty acids content of watermelon and muskmelon cultivars in Saudi Arabia using gas chromatography/mass spectroscopy

    PubMed Central

    Albishri, Hassan M.; Almaghrabi, Omar A.; Moussa, Tarek A. A.

    2013-01-01

    Background: The growth in the production of biodiesel, which is principally fatty acid methyl esters (FAME), has been phenomenal in the last ten years because of the general desire to cut down on the release of greenhouse gases into the atmosphere, and also as a result of the increasing cost of fossil fuels. Objective: Establish whether there is any relationship between two different species (watermelon and muskmelon) within the same family (Cucurbitaceae) on fatty acid compositions and enumerate the different fatty acids in the two species. Materials and Methods: Extraction of fatty acids from the two species and preparation the extract to gas chromatography/mass spectroscopy analysis to determine the fatty acids compositions qualitatively and quantitatively. Results: The analyzed plants (watermelon and muskmelon) contain five saturated fatty acids; tetrdecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid and octadecanoic acid with different concentrations, while muskmelon contains an extra saturated fatty acid named eicosanoic acid. The watermelon plant contains five unsaturated fatty acids while muskmelon contains three only, the two plants share in two unsaturated fatty acids named 9-hexadecenoic acid and 9-octadecenoic acid, the muskmelon plant contains higher amounts of these two acids (2.04% and 10.12%, respectively) over watermelon plant (0.88% and 0.25%, respectively). Conclusion: The chemical analysis of watermelon and muskmelon revealed that they are similar in saturated fatty acids but differ in unsaturated fatty acids which may be a criterion of differentiation between the two plants. PMID:23661995

  6. Short-Chain Fatty Acids Enhance the Lipid Accumulation of 3T3-L1 Cells by Modulating the Expression of Enzymes of Fatty Acid Metabolism.

    PubMed

    Yu, Haining; Li, Ran; Huang, Haiyong; Yao, Ru; Shen, Shengrong

    2018-01-01

    Short-chain fatty acids (SCFA) such as acetic acid, propionic acid, and butyric acid are produced by fermentation by gut microbiota. In this paper, we investigate the effects of SCFA on 3T3-L1 cells and the underlying molecular mechanisms. The cells were treated with acetic acid, propionic acid, or butyric acid when cells were induced to differentiate into adipocytes. MTT assay was employed to detect the viability of 3T3-L1 cells. Oil Red O staining was used to visualize the lipid content in 3T3-L1 cells. A triglyceride assay kit was used to detect the triacylglycerol content in 3T3-L1 cells. qRT-PCR and Western blot were used to evaluate the expression of metabolic enzymes. MTT results showed that safe concentrations of acetic acid, propionic acid, and butyric acid were less than 6.4, 3.2, and 0.8 mM, respectively. Oil Red O staining and triacylglycerols detection results showed that treatment with acetic acid, propionic acid, and butyric acid accelerated the 3T3-L1 adipocyte differentiation. qRT-PCR and Western blot results showed that the expressions of lipoprotein lipase (LPL), adipocyte fatty acid binding protein 4 (FABP4), fatty acid transporter protein 4 (FATP4), and fatty acid synthase (FAS) were significantly increased by acetic acid, propionic acid, and butyric acid treatment during adipose differentiation (p < 0.05). In conclusion, SCFA promoted lipid accumulation by modulating the expression of enzymes of fatty acid metabolism. © 2018 AOCS.

  7. Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman.

    PubMed

    Al-Farsi, Mohamed; Alasalvar, Cesarettin; Morris, Anne; Baron, Mark; Shahidi, Fereidoon

    2005-09-21

    Fresh and sun-dried dates of three native varieties from Oman, namely, Fard, Khasab, and Khalas, were examined for their antioxidant activity and total contents of anthocyanins, carotenoids, and phenolics, as well as free and bound phenolic acids. All results are expressed as mean value +/- standard deviation (n = 3) on a fresh weight basis. Fresh date varieties were found to be a good source of antioxidants (11687-20604 micromol of Trolox equiv/g), total contents of anthocyanins (0.24-1.52 mg of cyanidin 3-glucoside equiv/100 g), carotenoids (1.31-3.03 mg/100 g), phenolics (134-280 mg of ferulic acid equiv/100 g), free phenolic acids (2.61-12.27 mg/100 g), and bound phenolic acids (6.84-30.25 mg/100 g). A significant (p < 0.05) amount of antioxidants and carotenoids was lost after sun-drying of dates, whereas the total content of phenolics and free and bound phenolic acids increased significantly (p < 0.05). Anthocyanins were detected only in fresh dates. Date varieties had different levels and patterns of phenolic acids. Four free phenolic acids (protocatechuic acid, vanillic acid, syringic acid, and ferulic acid) and nine bound phenolic acids (gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, syringic acid, p-coumaric acid, ferulic acid, and o-coumaric acid) were tentatively identified. Of the date varieties studied, Khalas, which is considered to be premium quality, had higher antioxidant activity, total carotenoids, and bound phenolic acids than other varieties. These results suggest that all date varieties serve as a good source of natural antioxidants and could potentially be considered as a functional food or functional food ingredient, although some of their antioxidant constituents are lost during sun-drying.

  8. Preference of Conjugated Bile Acids over Unconjugated Bile Acids as Substrates for OATP1B1 and OATP1B3

    PubMed Central

    Suga, Takahiro; Sato, Toshihiro; Maekawa, Masamitsu; Goto, Junichi; Mano, Nariyasu

    2017-01-01

    Bile acids, the metabolites of cholesterol, are signaling molecules that play critical role in many physiological functions. They undergo enterohepatic circulation through various transporters expressed in intestine and liver. Human organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3 contribute to hepatic uptake of bile acids such as taurocholic acid. However, the transport properties of individual bile acids are not well understood. Therefore, we selected HEK293 cells overexpressing OATP1B1 and OATP1B3 to evaluate the transport of five major human bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, lithocholic acid) together withtheir glycine and taurine conjugates via OATP1B1 and OATP1B3. The bile acids were quantified by liquid chromatography-tandem mass spectrometry. The present study revealed that cholic acid, chenodeoxyxcholic acid, and deoxycholic acid were transported by OATP1B1 and OATP1B3, while ursodeoxycholic acid and lithocholic acid were not significantly transported by OATPs. However, all the conjugated bile acids were taken up rapidly by OATP1B1 and OATP1B3. Kinetic analyses revealed the involvement of saturable OATP1B1- and OATP1B3-mediated transport of bile acids. The apparent Km values for OATP1B1 and OATP1B3 of the conjugated bile acids were similar (0.74–14.7 μM for OATP1B1 and 0.47–15.3 μM for OATP1B3). They exhibited higher affinity than cholic acid (47.1 μM for OATP1B1 and 42.2 μM for OATP1B3). Our results suggest that conjugated bile acids (glycine and taurine) are preferred to unconjugated bile acids as substrates for OATP1B1 and OATP1B3. PMID:28060902

  9. Essential Fatty Acid Deficiency in 2015: The Impact of Novel Intravenous Lipid Emulsions.

    PubMed

    Gramlich, Leah; Meddings, Liisa; Alberda, Cathy; Wichansawakun, Sanit; Robbins, Sarah; Driscoll, David; Bistrian, Bruce

    2015-09-01

    The fatty acids, linoleic acid (18:2ω-6) and α-linolenic acid (18:3ω-3), are essential to the human diet. When these essential fatty acids are not provided in sufficient quantities, essential fatty acid deficiency (EFAD) develops. This can be suggested clinically by abnormal liver function tests or biochemically by an elevated Mead acid and reduced linoleic acid and arachidonic acid level, which is manifested as an elevated triene/tetraene ratio of Mead acid/arachidonic acid. Clinical features of EFAD may present later. With the introduction of novel intravenous (IV) lipid emulsions in North America, the proportion of fatty acids provided, particularly the essential fatty acids, varies substantially. We describe a case series of 3 complicated obese patients who were administered parenteral nutrition (PN), primarily using ClinOleic 20%, an olive oil-based lipid emulsion with reduced amounts of the essential fatty acids, linoleic and α-linolenic, compared with more conventional soybean oil emulsions throughout their hospital admission. Essential fatty acid profiles were obtained for each of these patients to investigate EFAD as a potential cause of abnormal liver enzymes. Although the profiles revealed reduced linoleic acid and elevated Mead acid levels, this was not indicative of the development of essential fatty acid deficiency, as reflected in the more definitive measure of triene/tetraene ratio. Instead, although the serum fatty acid panel reflected the markedly lower but still adequate dietary linoleic acid content and greatly increased oleic acid content in the parenteral lipid emulsion, the triene/tetraene ratio remained well below the level, indicating EFAD in each of these patients. The availability and use of new IV lipid emulsions in PN should encourage the clinician to review lipid metabolism based on the quantity of fatty acids provided in specific parenteral lipid emulsions and the expected impact of these lipid emulsions (with quite different fatty acid composition) on measured fatty acid profiles. © 2015 American Society for Parenteral and Enteral Nutrition.

  10. Differentiation of various traditional Chinese medicines derived from animal bile and gallstone: simultaneous determination of bile acids by liquid chromatography coupled with triple quadrupole mass spectrometry.

    PubMed

    Qiao, Xue; Ye, Min; Pan, De-lin; Miao, Wen-juan; Xiang, Cheng; Han, Jian; Guo, De-an

    2011-01-07

    Animal biles and gallstones are popularly used in traditional Chinese medicines, and bile acids are their major bioactive constituents. Some of these medicines, like cow-bezoar, are very expensive, and may be adulterated or even replaced by less expensive but similar species. Due to poor ultraviolet absorbance and structural similarity of bile acids, effective technology for species differentiation and quality control of bile-based Chinese medicines is still lacking. In this study, a rapid and reliable method was established for the simultaneous qualitative and quantitative analysis of 18 bile acids, including 6 free steroids (cholic acid, chenodeoxycholic acid, deoxycholic acid, lithocholic acid, hyodeoxycholic acid, and ursodeoxycholic acid) and their corresponding glycine conjugates and taurine conjugates, by using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS). This method was used to analyze six bile-based Chinese medicines: bear bile, cattle bile, pig bile, snake bile, cow-bezoar, and artificial cow-bezoar. Samples were separated on an Atlantis dC₁₈ column and were eluted with methanol-acetonitrile-water containing ammonium acetate. The mass spectrometer was monitored in the negative electrospray ionization mode. Total ion currents of the samples were compared for species differentiation, and the contents of bile acids were determined by monitoring specific ion pairs in a selected reaction monitoring program. All 18 bile acids showed good linearity (r² > 0.993) in a wide dynamic range of up to 2000-fold, using dehydrocholic acid as the internal standard. Different animal biles could be explicitly distinguished by their major characteristic bile acids: tauroursodeoxycholic acid and taurochenodeoxycholic acid for bear bile, glycocholic acid, cholic acid and taurocholic acid for cattle bile, glycohyodeoxycholic acid and glycochenodeoxycholic acid for pig bile, and taurocholic acid for snake bile. Furthermore, cattle bile, cow-bezoar, and artificial cow-bezoar could be differentiated by the existence of hyodeoxycholic acid and the ratio of cholic acid to deoxycholic acid. This study provided bile acid profiles of bile-based Chinese medicines for the first time, which could be used for their quality control. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Metabolism of Oxo-Bile Acids and Characterization of Recombinant 12α-Hydroxysteroid Dehydrogenases from Bile Acid 7α-Dehydroxylating Human Gut Bacteria.

    PubMed

    Doden, Heidi; Sallam, Lina A; Devendran, Saravanan; Ly, Lindsey; Doden, Greta; Daniel, Steven L; Alves, João M P; Ridlon, Jason M

    2018-05-15

    Bile acids are important cholesterol-derived nutrient signaling hormones, synthesized in the liver, that act as detergents to solubilize dietary lipids. Bile acid 7α-dehydroxylating gut bacteria generate the toxic bile acids deoxycholic acid and lithocholic acid from host bile acids. The ability of these bacteria to remove the 7-hydroxyl group is partially dependent on 7α-hydroxysteroid dehydrogenase (HSDH) activity, which reduces 7-oxo-bile acids generated by other gut bacteria. 3α-HSDH has an important enzymatic activity in the bile acid 7α-dehydroxylation pathway. 12α-HSDH activity has been reported for the low-activity bile acid 7α-dehydroxylating bacterium Clostridium leptum ; however, this activity has not been reported for high-activity bile acid 7α-dehydroxylating bacteria, such as Clostridium scindens , Clostridium hylemonae , and Clostridium hiranonis Here, we demonstrate that these strains express bile acid 12α-HSDH. The recombinant enzymes were characterized from each species and shown to preferentially reduce 12-oxolithocholic acid to deoxycholic acid, with low activity against 12-oxochenodeoxycholic acid and reduced activity when bile acids were conjugated to taurine or glycine. Phylogenetic analysis suggests that 12α-HSDH is widespread among Firmicutes , Actinobacteria in the Coriobacteriaceae family, and human gut Archaea IMPORTANCE 12α-HSDH activity has been established in the medically important bile acid 7α-dehydroxylating bacteria C. scindens , C. hiranonis , and C. hylemonae Experiments with recombinant 12α-HSDHs from these strains are consistent with culture-based experiments that show a robust preference for 12-oxolithocholic acid over 12-oxochenodeoxycholic acid. Phylogenetic analysis identified novel members of the gut microbiome encoding 12α-HSDH. Future reengineering of 12α-HSDH enzymes to preferentially oxidize cholic acid may provide a means to industrially produce the therapeutic bile acid ursodeoxycholic acid. In addition, a cholic acid-specific 12α-HSDH expressed in the gut may be useful for the reduction in deoxycholic acid concentration, a bile acid implicated in cancers of the gastrointestinal (GI) tract. Copyright © 2018 American Society for Microbiology.

  12. Pharmacologically relevant receptor binding characteristics and 5alpha-reductase inhibitory activity of free Fatty acids contained in saw palmetto extract.

    PubMed

    Abe, Masayuki; Ito, Yoshihiko; Oyunzul, Luvsandorj; Oki-Fujino, Tomomi; Yamada, Shizuo

    2009-04-01

    Saw palmetto extract (SPE), used widely for the treatment of benign prostatic hyperplasia (BPH) has been shown to bind alpha(1)-adrenergic, muscarinic and 1,4-dihydropyridine (1,4-DHP) calcium channel antagonist receptors. Major constituents of SPE are lauric acid, oleic acid, myristic acid, palmitic acid and linoleic acid. The aim of this study was to investigate binding affinities of these fatty acids for pharmacologically relevant (alpha(1)-adrenergic, muscarinic and 1,4-DHP) receptors. The fatty acids inhibited specific [(3)H]prazosin binding in rat brain in a concentration-dependent manner with IC(50) values of 23.8 to 136 microg/ml, and specific (+)-[(3)H]PN 200-110 binding with IC(50) values of 24.5 to 79.5 microg/ml. Also, lauric acid, oleic acid, myristic acid and linoleic acid inhibited specific [(3)H]N-methylscopolamine ([(3)H]NMS) binding in rat brain with IC(50) values of 56.4 to 169 microg/ml. Palmitic acid had no effect on specific [(3)H]NMS binding. The affinity of oleic acid, myristic acid and linoleic acid for each receptor was greater than the affinity of SPE. Scatchard analysis revealed that oleic acid and lauric acid caused a significant decrease in the maximal number of binding sites (B(max)) for [(3)H]prazosin, [(3)H]NMS and (+)-[(3)H]PN 200-110. The results suggest that lauric acid and oleic acid bind noncompetitively to alpha(1)-adrenergic, muscarinic and 1,4-DHP calcium channel antagonist receptors. We developed a novel and convenient method of determining 5alpha-reductase activity using LC/MS. With this method, SPE was shown to inhibit 5alpha-reductase activity in rat liver with an IC(50) of 101 microg/ml. Similarly, all the fatty acids except palmitic acid inhibited 5alpha-reductase activity, with IC(50) values of 42.1 to 67.6 microg/ml. In conclusion, lauric acid, oleic acid, myristic acid, and linoleic acid, major constituents of SPE, exerted binding activities of alpha(1)-adrenergic, muscarinic and 1,4-DHP receptors and inhibited 5alpha-reductase activity.

  13. A bioactive triterpene from Lantana camara.

    PubMed

    Barre, J T; Bowden, B F; Coll, J C; DeJesus, J; De La Fuente, V E; Janairo, G C; Ragasa, C Y

    1997-05-01

    Lantana camara afforded a novel triterpene 22 beta-acetoxylantic acid and the known triterpenes, lantic acid, 22 beta-dimethylacryloyloxylantonolic acid, a mixture of 22 beta-dimethylacryloyloxy lantanolic acid and 22 beta-angeloyloxylantanolic acid and lantanolic acid. 22 beta-Acetoxylantic acid showed antimicrobial activity against Staphylococcus aureus and Salmonella typhi. This compound and 22 beta-dimethylacryloyloxy lantanolic acid also showed antimutagenic activity.

  14. Hydroxycarboxylic acids and salts

    DOEpatents

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  15. Metabolic engineering of the shikimate pathway

    DOEpatents

    Juminaga, Darmawi; Keasling, Jay D.

    2017-01-10

    The present disclosure relates to engineered microorganisms that produce amino acids and amino acid intermediates. In particular, the disclosure relates to recombinant nucleic acids encoding operons that increase production of aromatic amino acids and the aromatic amino acid intermediate shikimate; microorganisms with increased production of aromatic amino acids and the aromatic amino acid intermediate shikimate; and methods related to the production of aromatic amino acids, the aromatic amino acid intermediate shikimate, and commodity chemicals derived therefrom.

  16. Fatty Acids Present in the Lipopolysaccharide of Rhizobium trifolii

    PubMed Central

    Russa, R.; Lorkiewicz, Z.

    1974-01-01

    Approximately 70% of the fatty acids recovered after acid or alkaline hydrolysis of the lipopolysaccharide of Rhizobium trifolii were hydroxy fatty acids identified as hydroxymyristic and hydroxypalmitic acids. Palmitic acid was the only saturated fatty acid found in the lipopolysaccharide of R. trifolii. Octadecenoic and a small amount of hexadecenoic acids were also identified. The results of BF3 methanolysis and hydroxylaminolysis suggest that hydroxypalmitic acid is N-acyl bound. PMID:4852028

  17. Straight and branched-chain fatty acids in preorbital glands of sika deer, Cervus nippon.

    PubMed

    Wood, William F

    2004-02-01

    Using GC-MS analysis, 11 major volatile compounds were found in the preorbital gland secretion from a female sika deer, Cervus nippon. These compounds are the C14 through C18 straight-chain fatty acids, (ZZ)-9,12-octadecadienoic acid, 12-methyltridecanoic acid, 13-methyltetradecanoic acid, 14-methylpentadecanoic acid, 14-methylhexadecanoic acid, and 15-methylhexadecanoic acid. The five branched-chain acids make up over 29% of the volatiles in the gland. This is the first time branched-chain carboxylic acids have been reported from ungulate preorbital glands.

  18. Oleic acid transfer from microsomes to egg lecithin liposomes: participation of fatty acid binding protein.

    PubMed

    Catalá, A; Avanzati, B

    1983-11-01

    Oleic acid transfer from microsomes or mitochondria to egg lecithin liposomes was stimulated by fatty acid binding protein. By gel filtration, it could be demonstrated that this protein incorporates oleic acid into liposomes. Fatty acid binding protein transfer activity was higher using microsomes rather than mitochondria, which suggests a selective interaction with different kinds of membranes. Transfer of oleic acid by this soluble protein is greater than that of stearic acid. The results indicate that fatty acid binding protein may participate in the intracellular transport of fatty acids.

  19. Thin-layer chromatographic separation of conjugates of ursodeoxycholic acid from those of litho-, chenodeoxy-, deoxy-, and cholic acids.

    PubMed

    Batta, A K; Shefer, S; Salen, G

    1981-05-01

    Separation of the glycine and taurine conjugates of ursodeoxycholic acid from those of lithocholic acid, chenodeoxycholic acid, deoxycholic acid, and cholic acid by thin-layer chromatography is described. Thus, on running a silica gel G plate first in a solvent system of n-butanol-water 20:3 and then in a second solvent system of chloroform-isopropanol-acetic acid-water 30:20:4:1, all the above-mentioned conjugated bile acids are separated from one another. The application of this method to study the change in the biliary bile acid conjugation pattern in ursodeoxycholic acid-fed gallstone patients is described.

  20. Characterization of polar organics in airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Yokouchi, Y.; Ambe, Y.

    The methanol-extractable highly polar organics in atmospheric aerosol were characterized using GC-MS. Dicarboxylic acids having 2-16 carbon numbers were detected with a total concentration of 172 ng m -3. Azelaic acid ( C9) was the most abundant diacid and it possibly originated from the ozonolysis of unsaturated carboxylic acids such as oleic acid and linoleic acid, which mainly originate from terrestrial plants. A compound, which was tentatively identified as tetrahydrofuroic acid, contributed to about 10% of the highly polar organics. Other polyfunctional compounds found in the samples included some ketocarboxylic acids and aromatic acids such as phthalic acids, anisic acid and vanillic acid.

  1. Modulation of ATP-induced inward currents by docosahexaenoic acid and other fatty acids in rat nodose ganglion neurons.

    PubMed

    Eto, Kei; Arimura, Yukiko; Mizuguchi, Hiroko; Nishikawa, Masazumi; Noda, Mami; Ishibashi, Hitoshi

    2006-11-01

    The effects of docosahexaenoic acid (DHA) and other fatty acids on P2X-receptor-mediated inward currents in rat nodose ganglion neurons were studied using the nystatin perforated patch-clamp technique. DHA accelerated the desensitization rate of the ATP-induced current. DHA showed use-dependent inhibition of the peak ATP-induced current. Other polyunsaturated fatty acids, such as arachidonic acid and eicosapentaenoic acid, displayed a similar use-dependent inhibition. The inhibitory effects of saturated fatty acids including palmitic acid and arachidic acid were weaker than those of polyunsaturated fatty acids. The results suggest that fatty acids may modulate the P2X receptor-mediated response when the channel is in the open-state.

  2. Fatty Acid Compositions of Six Wild Edible Mushroom Species

    PubMed Central

    Günç Ergönül, Pelin; Akata, Ilgaz; Kalyoncu, Fatih; Ergönül, Bülent

    2013-01-01

    The fatty acids of six wild edible mushroom species (Boletus reticulatus, Flammulina velutipes var. velutipes, Lactarius salmonicolor, Pleurotus ostreatus, Polyporus squamosus, and Russula anthracina) collected from different regions from Anatolia were determined. The fatty acids were identified and quantified by gas chromatography and studied using fruit bodies. Fatty acid composition varied among species. The dominant fatty acid in fruit bodies of all mushrooms was cis-linoleic acid (18 : 2). Percentage of cis-linoleic acid in species varied from 22.39% to 65.29%. The other major fatty acids were, respectively, cis-oleic, palmitic, and stearic acids. Fatty acids analysis of the mushrooms showed that the unsaturated fatty acids were at higher concentrations than saturated fatty acids. PMID:23844377

  3. Protein and metabolic engineering for the production of organic acids.

    PubMed

    Liu, Jingjing; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng; Chen, Jian

    2017-09-01

    Organic acids are natural metabolites of living organisms. They have been widely applied in the food, pharmaceutical, and bio-based materials industries. In recent years, biotechnological routes to organic acids production from renewable raw materials have been regarded as very promising approaches. In this review, we provide an overview of current developments in the production of organic acids using protein and metabolic engineering strategies. The organic acids include propionic acid, pyruvate, itaconic acid, succinic acid, fumaric acid, malic acid and citric acid. We also expect that rapid developments in the fields of systems biology and synthetic biology will accelerate protein and metabolic engineering for microbial organic acid production in the future. Copyright © 2017. Published by Elsevier Ltd.

  4. Agdc1p – a Gallic Acid Decarboxylase Involved in the Degradation of Tannic Acid in the Yeast Blastobotrys (Arxula) adeninivorans

    PubMed Central

    Meier, Anna K.; Worch, Sebastian; Böer, Erik; Hartmann, Anja; Mascher, Martin; Marzec, Marek; Scholz, Uwe; Riechen, Jan; Baronian, Kim; Schauer, Frieder; Bode, Rüdiger; Kunze, Gotthard

    2017-01-01

    Tannins and hydroxylated aromatic acids, such as gallic acid (3,4,5-trihydroxybenzoic acid), are plant secondary metabolites which protect plants against herbivores and plant-associated microorganisms. Some microbes, such as the yeast Arxula adeninivorans are resistant to these antimicrobial substances and are able to use tannins and gallic acid as carbon sources. In this study, the Arxula gallic acid decarboxylase (Agdc1p) which degrades gallic acid to pyrogallol was characterized and its function in tannin catabolism analyzed. The enzyme has a higher affinity for gallic acid (Km −0.7 ± 0.2 mM, kcat −42.0 ± 8.2 s−1) than to protocatechuic acid (3,4-dihydroxybenzoic acid) (Km −3.2 ± 0.2 mM, kcat −44.0 ± 3.2 s−1). Other hydroxylated aromatic acids, such as 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid are not gallic acid decarboxylase substrates. A. adeninivorans G1212/YRC102-AYNI1-AGDC1, which expresses the AGDC1 gene under the control of the strong nitrate inducible AYNI1 promoter achieved a maximum gallic acid decarboxylase activity of 1064.4 U/l and 97.5 U/g of dry cell weight in yeast grown in minimal medium with nitrate as nitrogen source and glucose as carbon source. In the same medium, gallic acid decarboxylase activity was not detected for the control strain G1212/YRC102 with AGDC1 expression under the control of the endogenous promoter. Gene expression analysis showed that AGDC1 is induced by gallic acid and protocatechuic acid. In contrast to G1212/YRC102-AYNI1-AGDC1 and G1212/YRC102, A. adeninivorans G1234 [Δagdc1] is not able to grow on medium with gallic acid as carbon source but can grow in presence of protocatechuic acid. This confirms that Agdc1p plays an essential role in the tannic acid catabolism and could be useful in the production of catechol and cis,cis-muconic acid. However, the protocatechuic acid catabolism via Agdc1p to catechol seems to be not the only degradation pathway. PMID:28966611

  5. Agdc1p - a Gallic Acid Decarboxylase Involved in the Degradation of Tannic Acid in the Yeast Blastobotrys (Arxula) adeninivorans.

    PubMed

    Meier, Anna K; Worch, Sebastian; Böer, Erik; Hartmann, Anja; Mascher, Martin; Marzec, Marek; Scholz, Uwe; Riechen, Jan; Baronian, Kim; Schauer, Frieder; Bode, Rüdiger; Kunze, Gotthard

    2017-01-01

    Tannins and hydroxylated aromatic acids, such as gallic acid (3,4,5-trihydroxybenzoic acid), are plant secondary metabolites which protect plants against herbivores and plant-associated microorganisms. Some microbes, such as the yeast Arxula adeninivorans are resistant to these antimicrobial substances and are able to use tannins and gallic acid as carbon sources. In this study, the Arxula gallic acid decarboxylase (Agdc1p) which degrades gallic acid to pyrogallol was characterized and its function in tannin catabolism analyzed. The enzyme has a higher affinity for gallic acid (K m -0.7 ± 0.2 mM, k cat -42.0 ± 8.2 s -1 ) than to protocatechuic acid (3,4-dihydroxybenzoic acid) (K m -3.2 ± 0.2 mM, k cat -44.0 ± 3.2 s -1 ). Other hydroxylated aromatic acids, such as 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid are not gallic acid decarboxylase substrates. A. adeninivorans G1212/YRC102-AYNI1-AGDC1, which expresses the AGDC1 gene under the control of the strong nitrate inducible AYNI1 promoter achieved a maximum gallic acid decarboxylase activity of 1064.4 U/l and 97.5 U/g of dry cell weight in yeast grown in minimal medium with nitrate as nitrogen source and glucose as carbon source. In the same medium, gallic acid decarboxylase activity was not detected for the control strain G1212/YRC102 with AGDC1 expression under the control of the endogenous promoter. Gene expression analysis showed that AGDC1 is induced by gallic acid and protocatechuic acid. In contrast to G1212/YRC102-AYNI1-AGDC1 and G1212/YRC102, A. adeninivorans G1234 [Δ agdc1 ] is not able to grow on medium with gallic acid as carbon source but can grow in presence of protocatechuic acid. This confirms that Agdc1p plays an essential role in the tannic acid catabolism and could be useful in the production of catechol and cis,cis -muconic acid. However, the protocatechuic acid catabolism via Agdc1p to catechol seems to be not the only degradation pathway.

  6. Effect of organic acids on biofilm formation and quorum signaling of pathogens from fresh fruits and vegetables.

    PubMed

    Amrutha, Balagopal; Sundar, Kothandapani; Shetty, Prathapkumar Halady

    2017-10-01

    Organic acids are known to be used as food preservatives due to their antimicrobial potential. This study evaluated the ability of three organic acids, namely, acetic acid, citric acid and lactic acid to manage E. coli and Salmonella sp. from fresh fruits and vegetables. Effect of these organic acids on biofilm forming ability and anti-quorum potential was also investigated. The effect of organic acids on inactivation of E. coli and Salmonella sp. on the surface of a selected vegetable (cucumber) was determined. The minimum inhibitory concentration of the organic acids were found to be 1.5, 2 and 0.2% in E. coli while it was observed to be 1, 1.5 and 1% in Salmonella sp. for acetic, citric and lactic acids respectively. Maximum inhibition of biofilm formation was recorded at 39.13% with lactic acid in E. coli and a minimum of 22.53% with citric acid in Salmonella sp. EPS production was affected in E. coli with lactic acid showing reduction by 13.42% while citric acid and acetic acid exhibited only 6.25% and 10.89% respectively. Swimming and swarming patterns in E. coli was notably affected by both acetic and lactic acids. Lactic and acetic acids showed higher anti-quorum sensing (QS) potential when compared to citric acid. 2% lactic acid showed a maximum inhibition of violacein production by 37.7%. Organic acids can therefore be used as potential quorum quenching agents in food industry. 2% lactic acid treatment on cucumber demonstrated that it was effective in inactivating E. coli and Salmonella sp. There was 1 log reduction in microbial count over a period of 6 days after the lactic acid treatment. Thus, organic acids can act as effective potential sanitizers in reducing the microbial load associated with fresh fruits and vegetables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Profile of preoperative fecal organic acids closely predicts the incidence of postoperative infectious complications after major hepatectomy with extrahepatic bile duct resection: Importance of fecal acetic acid plus butyric acid minus lactic acid gap.

    PubMed

    Yokoyama, Yukihiro; Mizuno, Takashi; Sugawara, Gen; Asahara, Takashi; Nomoto, Koji; Igami, Tsuyoshi; Ebata, Tomoki; Nagino, Masato

    2017-10-01

    To investigate the association between preoperative fecal organic acid concentrations and the incidence of postoperative infectious complications in patients undergoing major hepatectomy with extrahepatic bile duct resection for biliary malignancies. The fecal samples of 44 patients were collected before undergoing hepatectomy with bile duct resection for biliary malignancies. The concentrations of fecal organic acids, including acetic acid, butyric acid, and lactic acid, and representative fecal bacteria were measured. The perioperative clinical characteristics and the concentrations of fecal organic acids were compared between patients with and without postoperative infectious complications. Among 44 patients, 13 (30%) developed postoperative infectious complications. Patient age and intraoperative bleeding were significantly greater in patients with postoperative infectious complications compared with those without postoperative infectious complications. The concentrations of fecal acetic acid and butyric acid were significantly less, whereas the concentration of fecal lactic acid tended to be greater in the patients with postoperative infectious complications. The calculated gap between the concentrations of fecal acetic acid plus butyric acid minus lactic acid gap was less in the patients with postoperative infectious complications (median 43.5 vs 76.1 μmol/g of feces, P = .011). Multivariate analysis revealed that an acetic acid plus butyric acid minus lactic acid gap <60 μmol/g was an independent risk factor for postoperative infectious complications with an odds ratio of 15.6; 95% confidence interval 1.8-384.1. The preoperative fecal organic acid profile (especially low acetic acid, low butyric acid, and high lactic acid) had a clinically important impact on the incidence of postoperative infectious complications in patients undergoing major hepatectomy with extrahepatic bile duct resection. Copyright © 2017. Published by Elsevier Inc.

  8. [Percentage of uric acid calculus and its metabolic character in Dongjiang River valley].

    PubMed

    Chong, Hong-Heng; An, Geng

    2009-02-15

    To study the percentage of uric acid calculus in uroliths and its metabolic character in Dongjiang River valley. To analyze the chemical composition of 290 urinary stones by infrared (IR) spectroscopy and study the ratio changes of uric acid calculus. Uric acid calculus patients and healthy people were studied. Personal characteristics, dietary habits were collected. Conditional logistic regression was used for data analysis and studied the dietary risk factors of uric acid calculus. Patients with uric acid calculus, calcium oxalate and those without urinary calculus were undergone metabolic evaluation analysis. The results of uric acid calculus patients compared to another two groups to analysis the relations between the formation of uric acid calculus and metabolism factors. Uric acid calculi were found in 53 cases (18.3%). The multiple logistic regression analysis suggested that low daily water intake, eating more salted and animal food, less vegetable were very closely associated with uric acid calculus. Comparing to calcium oxalate patients, the urine volume, the value of pH, urine calcium, urine oxalic acid were lower, but uric acid was higher than it. The value of pH, urine oxalic acid and citric acid were lower than them, but uric acid and urine calcium were higher than none urinary calculus peoples. Blood potassium and magnesium were lower than them. The percentage of uric acid stones had obvious advanced. Less daily water intake, eating salted food, eating more animal food, less vegetables and daily orange juice intake, eating sea food are the mainly dietary risk factors to the formation of uric acid calculus. Urine volume, the value of pH, citric acid, urine calcium, urine uric acid and the blood natrium, potassium, magnesium, calcium, uric acid have significant influence to the information of uric acid stones.

  9. Historic records of organic compounds from a high Alpine glacier: influences of biomass burning, anthropogenic emissions, and dust transport

    NASA Astrophysics Data System (ADS)

    Müller-Tautges, C.; Eichler, A.; Schwikowski, M.; Pezzatti, G. B.; Conedera, M.; Hoffmann, T.

    2016-01-01

    Historic records of α-dicarbonyls (glyoxal, methylglyoxal), carboxylic acids (C6-C12 dicarboxylic acids, pinic acid, p-hydroxybenzoic acid, phthalic acid, 4-methylphthalic acid), and ions (oxalate, formate, calcium) were determined with annual resolution in an ice core from Grenzgletscher in the southern Swiss Alps, covering the time period from 1942 to 1993. Chemical analysis of the organic compounds was conducted using ultra-high-performance liquid chromatography (UHPLC) coupled to electrospray ionization high-resolution mass spectrometry (ESI-HRMS) for dicarbonyls and long-chain carboxylic acids and ion chromatography for short-chain carboxylates. Long-term records of the carboxylic acids and dicarbonyls, as well as their source apportionment, are reported for western Europe. This is the first study comprising long-term trends of dicarbonyls and long-chain dicarboxylic acids (C6-C12) in Alpine precipitation. Source assignment of the organic species present in the ice core was performed using principal component analysis. Our results suggest biomass burning, anthropogenic emissions, and transport of mineral dust to be the main parameters influencing the concentration of organic compounds. Ice core records of several highly correlated compounds (e.g., p-hydroxybenzoic acid, pinic acid, pimelic, and suberic acids) can be related to the forest fire history in southern Switzerland. P-hydroxybenzoic acid was found to be the best organic fire tracer in the study area, revealing the highest correlation with the burned area from fires. Historical records of methylglyoxal, phthalic acid, and dicarboxylic acids adipic acid, sebacic acid, and dodecanedioic acid are comparable with that of anthropogenic emissions of volatile organic compounds (VOCs). The small organic acids, oxalic acid and formic acid, are both highly correlated with calcium, suggesting their records to be affected by changing mineral dust transport to the drilling site.

  10. Nocturnal weakly acidic reflux promotes aspiration of bile acids in lung transplant recipients.

    PubMed

    Blondeau, Kathleen; Mertens, Veerle; Vanaudenaerde, Bart A; Verleden, Geert M; Van Raemdonck, Dirk E; Sifrim, Daniel; Dupont, Lieven J

    2009-02-01

    Gastroesophageal reflux (GER) and aspiration of bile acids have been implicated as non-alloimmune risk factors for the development of bronchiolitis obliterans syndrome (BOS) after lung transplantation. The aim of our study was to investigate the association between GER and gastric aspiration of bile acids and to establish which reflux characteristics may promote aspiration of bile acids into the lungs and may feature as a potential diagnostic tool in identifying lung transplantation (LTx) patients at risk for aspiration. Twenty-four stable LTx recipients were studied 1 year after transplantation. All patients underwent 24-hour ambulatory impedance-pH recording for the detection of acid (pH <4) and weakly acidic (pH 4 to 7) reflux. On the same day, bronchoalveolar lavage fluid (BALF) was collected and then analyzed for the presence of bile acids (Bioquant enzymatic assay). Increased GER was detected in 13 patients, of whom 9 had increased acid reflux and 4 had exclusively increased weakly acidic reflux. Sixteen patients had detectable bile acids in the BALF (0.6 [0.4 to 1.5] micromol/liter). The 24-hour esophageal volume exposure was significantly increased in patients with bile acids compared to patients without bile acids in the BALF. Acid exposure and the number of reflux events (total, acid and weakly acidic) were unrelated to the presence of bile acids in the BALF. However, both nocturnal volume exposure and the number of nocturnal weakly acidic reflux events were significantly higher in patients with bile acids in the BALF. Weakly acidic reflux events, especially during the night, are associated with the aspiration of bile acids in LTx recipients and may therefore feature as a potential risk factor for the development of BOS.

  11. Bile acids. XLIV, quantitation of bile acids from the bile fistula rat given (4-14C) cholesterol.

    PubMed

    Siegfried, C M; Doisy, E A; Elliott, W H

    1975-01-24

    The bile acids derived from [4-14-C]cholesterol administered intracardially to rats with cannulated bile ducts were identified and quantitated. Over a period of 28 days about 90% of the administered 14-C was found in bile of which 73% was retained in the biliary acid fraction. [7beta-3-H]cholic acid, alpha-muri[3beta-3-H]cholic acid, beta-muri[3beta-3-H]cholic acid and litho[3beta-3-H]cholic acid were prepared with specific activities of about 30 muCi/mg by reduction of appropriate ketonic precursors with NaB3H4 and were added to the biliary acid fraction. After separation and purification of the bile acids, cholic, chenodeoxycholic, alpha- and beta-muricholic acids accounted for 70, 16, 7.5 and 6.1%, respectively, of the 14-C in the biliary acid fraction. The specific activities of these isolated 14-C-labeled acids were almost identical. Lithocholic acid accounted for a maximum of 0.2% and ursodeoxycholic acid and 7-oxolithocholic acid could account for no more than 2% of the biliary 14-C. Gas-liquid chromatography on 3% OV-17 of the trimethylsilyl ether derivatives of the methyl esters of the common bile acids of rat bile results in their complete separation and provides a convenient means of estimating the relative proportions of these acids in rat bile. By this method, the relative amounts of the four major acids, cholic, chenodeoxycholic, alpha- and beta-muricholic acids were 63, 20, 8 and 6%, respectively.

  12. Identification of the anti-oxidant components in a two-step solvent extract of bovine bile lipid: Application of reverse phase HPLC, mass spectrometry and fluorimetric assays.

    PubMed

    Singh, Namrata; Bhattacharyya, Debasish

    2016-04-15

    An ether extract of nine different bacterial metabolites in combination with two solvent extract (ether followed by ethanol) of bile lipids from ox gall bladder is used as an immune stimulator drug. Over the years bile acids are discussed regarding their anti-oxidant and lipid peroxidation properties. Since some of the bile acids are known to be potent antioxidants, presence of similar activity in the solvent extract of ox bile lipid was investigated using TLC and reverse phase HPLC systems. Fractions from HPLC were analyzed with mass spectrometry using electrospray ionization. The presence of twelve different bile acids along with other substances in small proportions including fatty acids, sulfate conjugates and bile pigments were confirmed. The twelve separated peaks had similar retention times as those of tauroursodeoxycholic acid, glycoursodeoxycholic acid, taurocholic acid, glycocholic acid, glycochenodeoxycholic acid, taurochenodeoxycholic acid, taurodeoxycholic acid, cholic acid, ursodeoxycholic acid, chenodeoxycholic acid, deoxycholic acid, and lithocholic acid. Subsequently, all fractions were tested for their anti-oxidative property on HepG2 cells exposed to H2O2 that served as an oxidative injury model. Four fluorescent dyes H2DCF DA, MitoSOX red, Amplex red and DAF-2 DA were used for estimation of reactive radicals in the HepG2 cells. Among the separated bile acids, tauroursodeoxycholic acid, glycoursodeoxycholic acid and ursodeoxycholic acid prevented the HepG2 cells from H2O2-induced oxidative stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat.

    PubMed

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation.

  14. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat

    PubMed Central

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation. PMID:27148345

  15. Amino acid homeostasis and signalling in mammalian cells and organisms

    PubMed Central

    Bröer, Angelika

    2017-01-01

    Cells have a constant turnover of proteins that recycle most amino acids over time. Net loss is mainly due to amino acid oxidation. Homeostasis is achieved through exchange of essential amino acids with non-essential amino acids and the transfer of amino groups from oxidised amino acids to amino acid biosynthesis. This homeostatic condition is maintained through an active mTORC1 complex. Under amino acid depletion, mTORC1 is inactivated. This increases the breakdown of cellular proteins through autophagy and reduces protein biosynthesis. The general control non-derepressable 2/ATF4 pathway may be activated in addition, resulting in transcription of genes involved in amino acid transport and biosynthesis of non-essential amino acids. Metabolism is autoregulated to minimise oxidation of amino acids. Systemic amino acid levels are also tightly regulated. Food intake briefly increases plasma amino acid levels, which stimulates insulin release and mTOR-dependent protein synthesis in muscle. Excess amino acids are oxidised, resulting in increased urea production. Short-term fasting does not result in depletion of plasma amino acids due to reduced protein synthesis and the onset of autophagy. Owing to the fact that half of all amino acids are essential, reduction in protein synthesis and amino acid oxidation are the only two measures to reduce amino acid demand. Long-term malnutrition causes depletion of plasma amino acids. The CNS appears to generate a protein-specific response upon amino acid depletion, resulting in avoidance of an inadequate diet. High protein levels, in contrast, contribute together with other nutrients to a reduction in food intake. PMID:28546457

  16. Differential Effects of Methoxylated p-Coumaric Acids on Melanoma in B16/F10 Cells

    PubMed Central

    Yoon, Hoon Seok; Lee, Nam-Ho; Hyun, Chang-Gu; Shin, Dong-Bum

    2015-01-01

    As an approach to search for chemopreventive agents, we tested p-coumaric acid, 3-methoxy-p-coumaric acid (ferulic acid), and 3,5-dimethoxy-p-coumaric acid (sinapic acid) in B16/F10 melanoma cells. Intracellular melanin contents were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and cytotoxicity of the compounds were examined by lactate dehydrogenase (LDH) release. p-Coumaric acid showed inhibitory effect on melanogenesis, but ferulic acid increased melanin content, and sinapic acid had almost no effect on melanogenesis. Treatment with ferulic acid resulted in a 2 to 3 fold elevation in the production of melanin. Correlatively, cell viability decreased in a dose-dependent manner when treated with ferulic acid. However, ferulic acid did not affect the LDH release from the cells. Treatment with sinapic acid resulted in a 50~60% elevation in the release of LDH when treated with a 200 μg/mL concentration and showed neither cytostasis nor increase of melanin synthesis in a dose-dependent manner. Taken together, p-coumaric acid inhibits melanogenesis, ferulic acid induces melanogenesis, and sinapic acid exerts cytotoxic effects in B16/F10 murine melanoma cells. The results indicate that the addition of methoxy groups to p-coumaric acid shows the melanogenic or cytotoxic effects in melanoma cells compared to the original compound. Therefore, this study suggests the possibility that methoxylated p-coumaric acid, ferulic acid can be used as a chemopreventive agent. PMID:25866753

  17. Trans-Fats Inhibit Autophagy Induced by Saturated Fatty Acids.

    PubMed

    Sauvat, Allan; Chen, Guo; Müller, Kevin; Tong, Mingming; Aprahamian, Fanny; Durand, Sylvère; Cerrato, Giulia; Bezu, Lucillia; Leduc, Marion; Franz, Joakim; Rockenfeller, Patrick; Sadoshima, Junichi; Madeo, Frank; Kepp, Oliver; Kroemer, Guido

    2018-04-01

    Depending on the length of their carbon backbone and their saturation status, natural fatty acids have rather distinct biological effects. Thus, longevity of model organisms is increased by extra supply of the most abundant natural cis-unsaturated fatty acid, oleic acid, but not by that of the most abundant saturated fatty acid, palmitic acid. Here, we systematically compared the capacity of different saturated, cis-unsaturated and alien (industrial or ruminant) trans-unsaturated fatty acids to provoke cellular stress in vitro, on cultured human cells expressing a battery of distinct biosensors that detect signs of autophagy, Golgi stress and the unfolded protein response. In contrast to cis-unsaturated fatty acids, trans-unsaturated fatty acids failed to stimulate signs of autophagy including the formation of GFP-LC3B-positive puncta, production of phosphatidylinositol-3-phosphate, and activation of the transcription factor TFEB. When combined effects were assessed, several trans-unsaturated fatty acids including elaidic acid (the trans-isomer of oleate), linoelaidic acid, trans-vaccenic acid and palmitelaidic acid, were highly efficient in suppressing autophagy and endoplasmic reticulum stress induced by palmitic, but not by oleic acid. Elaidic acid also inhibited autophagy induction by palmitic acid in vivo, in mouse livers and hearts. We conclude that the well-established, though mechanistically enigmatic toxicity of trans-unsaturated fatty acids may reside in their capacity to abolish cytoprotective stress responses induced by saturated fatty acids. Copyright © 2018 German Center for Neurodegenerative Diseases (DZNE). Published by Elsevier B.V. All rights reserved.

  18. Nutritional and technological characteristics of olive (Olea europea L.) fruit and oil: two varieties growing in two different locations of Turkey.

    PubMed

    Aydin, Cevat; Ozcan, Mehmet Musa; Gümüş, Tuncay

    2009-08-01

    Olea europea L. fruits were evaluated for weight, moisture, ash, crude protein, crude oil, energy, crude fibre, roundness, resistance against extra force and product density. The relative density, refractive index, free fatty acids, peroxide value, iodine value and unsaponifiables were determined in the olive oils. The main fatty acids identified by gas chromatography were palmitic acid (16:0), palmitoleic acid (16:1), stearic acid (18:0), oleic acid (18:1) and linoleic acid (18:2). Of the identified fatty acids, lauric acid (12:0), linolenic acid (18:3), arachidic acid (20:0), eicosenoic acid (20:1), behenic acid (22:0) and lignoseric acid (24:0) were found in trace amounts. As expected, the oleic acid content was the major fatty acid of olive oil. Oleic acid was represented in much higher concentrations than the other acids. The product roundness, resistance against extra force, product density and weight of 100 fruit were established as technological characteristics in olive fruit. The damage energy and the unit of volume deformation energy of the Memecik and Tavşanyüreği varieties were 1.36×10(-3) J and 3.59×10(-4) J/mm(3) and 1.89×10(-3) J and 5.10×10(-4) J/mm(3), respectively. The fruits showed a similar composition, and both fruit and oil contained unsaturated fatty acids.

  19. [Ganoderma triterpenoids from aqueous extract of Ganoderma lucidum].

    PubMed

    Che, Xian-Qiang; Li, Shao-Ping; Zhao, Jing

    2017-05-01

    A new triterpenoid and 18 analogues were isolated from the water extract of Ganoderma lucidum by column chromatographic techniques, including silica gel, ODS, Sephadex LH-20, and HPLC. The new compound was elucidated as 2β-acetoxy-3β,25-dihydroxy-7,11,15-trioxo-lanost-8-en-26-oic acid on the basis of analyses of extensive spectroscopic data and its physicochemical properties. Comparison of NMR data with those reported in literature, the known analogues were determined as ganoderic acid H (2), 12β-acetoxy-3β,7β-dihydroxy-11,15,23-trioxo-lanost-8,16-dien-26-oic acid (3), ganoderenic acid D (4),ganoderic acid C1 (5),ganoderic acid G (6),3β,7β-dihydroxy-11,15,23-trioxo-lanost-8,16-dien-26-oic acid (7),ganoderic acid B (8),ganoderic acid C6 (9),3β,15α-dihydroxy-7,11,23-trioxo-lanost-8,16-dien-26-oic acid (10),ganoderic acid A (11),ganolucidic acid A (12),lucidenic acid E2 (13),lucidenic acid N (14),lucidenic acid P (15), lucidenic acid B (16),lucidenic acid A (17),lucidenic acid C (18),and lucidenic acid L (19), respectively. Compound 1 is new compound and compounds 2-19 have been reported from G. lucidum. The present study enriches the knowledge of the chemical constituent of G. lucidum and completes chemical investigation of water decoction that is traditional use of G. lucidum. Copyright© by the Chinese Pharmaceutical Association.

  20. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites

    PubMed Central

    Cooper, George; Reed, Chris; Nguyen, Dang; Carter, Malika; Wang, Yi

    2011-01-01

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact local synthesis, particularly of the more fragile members. To date, compounds such as pyruvic acid, oxaloacetic acid, citric acid, isocitric acid, and α-ketoglutaric acid (all members of the citric acid cycle) have not been identified in extraterrestrial sources or, as a group, as part of a “one pot” suite of compounds synthesized under plausibly prebiotic conditions. We have identified these compounds and others in carbonaceous meteorites and/or as low temperature (laboratory) reaction products of pyruvic acid. In meteorites, we observe many as part of three newly reported classes of compounds: keto acids (pyruvic acid and homologs), hydroxy tricarboxylic acids (citric acid and homologs), and tricarboxylic acids. Laboratory syntheses using 13C-labeled reactants demonstrate that one compound alone, pyruvic acid, can produce several (nonenzymatic) members of the citric acid cycle including oxaloacetic acid. The isotopic composition of some of the meteoritic keto acids points to interstellar or presolar origins, indicating that such compounds might also exist in other planetary systems. PMID:21825143

  1. Detection of naphthenic acids in fish exposed to commercial naphthenic acids and oil sands process-affected water.

    PubMed

    Young, R F; Orr, E A; Goss, G G; Fedorak, P M

    2007-06-01

    Naphthenic acids are a complex mixture of carboxylic acids that occur naturally in petroleum. During the extraction of bitumen from the oil sands in northeastern Alberta, Canada, naphthenic acids are released into the aqueous phase and these acids become the most toxic components in the process-affected water. Although previous studies have exposed fish to naphthenic acids or oil sands process-affected waters, there has been no analytical method to specifically detect naphthenic acids in fish. Here, we describe a qualitative method to specifically detect these acids. In 96-h static renewal tests, rainbow trout (Oncorhynchus mykiss) fingerlings were exposed to three different treatments: (1) fed pellets that contained commercial naphthenic acids (1.5mg g(-1) of food), (2) kept in tap water that contained commercial naphthenic acids (3mg l(-1)) and (3) kept in an oil sands process-affected water that contained 15mg naphthenic acids l(-1). Five-gram samples of fish were homogenized and extracted, then the mixture of free fatty acids and naphthenic acids was isolated from the extract using strong anion exchange chromatography. The mixture was derivatized and analyzed by gas chromatography-mass spectrometry. Reconstructed ion chromatograms (m/z=267) selectively detected naphthenic acids. These acids were present in each fish that was exposed to naphthenic acids, but absent in fish that were not exposed to naphthenic acids. The minimum detectable concentration was about 1microg naphthenic acids g(-1) of fish.

  2. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites.

    PubMed

    Cooper, George; Reed, Chris; Nguyen, Dang; Carter, Malika; Wang, Yi

    2011-08-23

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact local synthesis, particularly of the more fragile members. To date, compounds such as pyruvic acid, oxaloacetic acid, citric acid, isocitric acid, and α-ketoglutaric acid (all members of the citric acid cycle) have not been identified in extraterrestrial sources or, as a group, as part of a "one pot" suite of compounds synthesized under plausibly prebiotic conditions. We have identified these compounds and others in carbonaceous meteorites and/or as low temperature (laboratory) reaction products of pyruvic acid. In meteorites, we observe many as part of three newly reported classes of compounds: keto acids (pyruvic acid and homologs), hydroxy tricarboxylic acids (citric acid and homologs), and tricarboxylic acids. Laboratory syntheses using (13)C-labeled reactants demonstrate that one compound alone, pyruvic acid, can produce several (nonenzymatic) members of the citric acid cycle including oxaloacetic acid. The isotopic composition of some of the meteoritic keto acids points to interstellar or presolar origins, indicating that such compounds might also exist in other planetary systems.

  3. Chemical evolution. XXI - The amino acids released on hydrolysis of HCN oligomers

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Wos, J. D.; Nooner, D. W.; Oro, J.

    1974-01-01

    Major amino acids released by hydrolysis of acidic and basic HCN oligomers are identified by chromatography as Gly, Asp, and diaminosuccinic acid. Smaller amounts of Ala, Ile and alpha-aminoisobutyric acid are also detected. The amino acids released did not change appreciably when the hydrolysis medium was changed from neutral to acidic or basic. The presence of both meso and d, l-diaminosuccinic acids was established by paper chromatography and on an amino acid analyzer.

  4. Manipulating Membrane Fatty Acid Compositions of Whole Plants with Tween-Fatty Acid Esters 1

    PubMed Central

    Terzaghi, William B.

    1989-01-01

    This paper describes a method for manipulating plant membrane fatty acid compositions without altering growth temperature or other conditions. Tween-fatty acid esters carrying specific fatty acids were synthesized and applied to various organs of plants growing axenically in glass jars. Treated plants incorporated large amounts of exogenous fatty acids into all acylated membrane lipids detected. Fatty acids were taken up by both roots and leaves. Fatty acids applied to roots were found in leaves, while fatty acids applied to leaves appeared in both leaves higher on the plant and in roots, indicating translocation (probably in the phloem). Foliar application was most effective; up to 20% of membrane fatty acids of leaves above the treated leaf and up to 40% of root membrane fatty acids were exogenously derived. Plants which took up exogenous fatty acids changed their patterns of fatty acid synthesis such that ratios of saturated to unsaturated fatty acids remained essentially unaltered. Fatty acid uptake was most extensively studied in soybean (Glycine max [L.] Merr.), but was also observed in other species, including maize (Zea mays L.), mung beans (Vigna radiata L.), peas (Pisum sativum L.), petunia (Petunia hybrida L.) and tomato (Lycopersicon esculentum Mill.). Potential applications of this system include studying internal transport of fatty acids, regulation of fatty acid and membrane synthesis, and influences of membrane fatty acid composition on plant physiology. Images Figure 2 PMID:16666997

  5. Cloud condensation nucleus activity of internally mixed ammonium sulfate/organic acid aerosol particles

    NASA Astrophysics Data System (ADS)

    Abbatt, J. P. D.; Broekhuizen, K.; Pradeep Kumar, P.

    The ability of mixed ammonium sulfate/organic acid particles to act as cloud condensation nuclei (CCN) has been studied in the laboratory using a continuous flow, thermal-gradient diffusion chamber operated at supersaturations between 0.3% and 0.6%. The organic acids studied were malonic acid, azelaic acid, hexanoic acid, cis-pinonic acid, oleic acid and stearic acid, and the particles were largely prepared by condensation of the organic vapor onto a dry ammonium sulfate core. For malonic acid and hexanoic acid, the mixed particles activated as predicted by a simple Köhler theory model where both species are assumed to be fully soluble and the droplet has the surface tension of water. Three low-solubility species, cis-pinonic acid, azelaic acid and oleic acid, are well modeled where the acid was assumed to be either partially or fully insoluble. Interestingly, although thin coats of stearic acid behaved in a manner similar to that displayed by oleic and cis-pinonic acid, we observed that thick coats led to a complete deactivation of the ammonium sulfate, presumably because the water vapor could not diffuse through the solid stearic acid. We observed no CCN behavior that could be clearly attributed to a lowering of the surface tension of the growing droplet by the presence of the organic constituents, some of which are highly surface active.

  6. 13-cis retinoic acid and isomerisation in paediatric oncology--is changing shape the key to success?

    PubMed

    Armstrong, Jane L; Redfern, Christopher P F; Veal, Gareth J

    2005-05-01

    Retinoic acid isomers have been used with some success as chemotherapeutic agents, most recently with 13-cis retinoic acid showing impressive clinical efficacy in the paediatric malignancy neuroblastoma. The aim of this commentary is to review the evidence that 13-cis retinoic acid is a pro-drug, and consider the implications of retinoid metabolism and isomerisation for the further development of retinoic acid for cancer therapy. The low binding affinity of 13-cis retinoic acid for retinoic acid receptors, low activity in gene expression assays and the accumulation of the all-trans isomer in cells treated with 13-cis retinoic acid, coupled with the more-favourable pharmacokinetic profile of 13-cis retinoic acid compared to other isomers, suggest that intracellular isomerisation to all-trans retinoic acid is the key process underlying the biological activity of 13-cis retinoic acid. Intracellular metabolism of all-trans retinoic acid by a positive auto-regulatory loop may result in clinical resistance to retinoic acid. Agents that block or reduce the metabolism of all-trans retinoic acid are therefore attractive targets for drug development. Devising strategies to deliver 13-cis retinoic acid to tumour cells and facilitate the intracellular isomerisation of 13-cis retinoic acid, while limiting metabolism of all-trans retinoic acid, may have a major impact on the efficacy of 13-cis retinoic acid in paediatric oncology.

  7. Oxidation of indole-3-acetic acid and oxindole-3-acetic acid to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glucopyranoside in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S.

    1984-01-01

    Radiolabeled oxindole-3-acetic acid was metabolized by roots, shoots, and caryopses of dark grown Zea mays seedlings to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glycopyranoside with the simpler name of 7-hydroxyoxindole-3-acetic acid-glucoside. This compound was also formed from labeled indole-3-acetic acid supplied to intact seedlings and root segments. The glucoside of 7-hydroxyoxindole-3-acetic acid was also isolated as an endogenous compound in the caryopses and shoots of 4-day-old seedlings. It accumulates to a level of 4.8 nanomoles per plant in the kernel, more than 10 times the amount of oxindole-3-acetic acid. In the shoot it is present at levels comparable to that of oxindole-3-acetic acid and indole-3-acetic acid (62 picomoles per shoot). We conclude that 7-hydroxyoxindole-3-acetic acid-glucoside is a natural metabolite of indole-3-acetic acid in Z. mays seedlings. From the data presented in this paper and in previous work, we propose the following route as the principal catabolic pathway for indole-3-acetic acid in Zea seedlings: Indole-3-acetic acid --> Oxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid-glucoside.

  8. Polydopamine-coated magnetic molecularly imprinted polymer for the selective solid-phase extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample.

    PubMed

    Yin, Yuli; Yan, Liang; Zhang, Zhaohui; Wang, Jing; Luo, Ningjing

    2016-04-01

    We describe novel cinnamic acid polydopamine-coated magnetic imprinted polymers for the simultaneous selective extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample. The novel magnetic imprinted polymers were synthesized by surface imprinting polymerization using magnetic multi-walled carbon nanotubes as the support material, cinnamic acid as the template and dopamine as the functional monomer. The magnetic imprinted polymers were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometry. The results revealed that the magnetic imprinted polymers had outstanding magnetic properties, high adsorption capacity, selectivity and fast kinetic binding toward cinnamic acid, ferulic acid and caffeic acid. Coupled with high-performance liquid chromatography, the extraction conditions of the magnetic imprinted polymers as a magnetic solid-phase extraction sorbent were investigated in detail. The proposed imprinted magnetic solid phase extraction procedure has been used for the purification and enrichment of cinnamic acid, ferulic acid and caffeic acid successfully from radix scrophulariae extraction sample with recoveries of 92.4-115.0% for cinnamic acid, 89.4-103.0% for ferulic acid and 86.6-96.0% for caffeic acid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effects of dissolved low molecular weight organic acids on oxidation of ferrous iron by Acidithiobacillus ferrooxidans.

    PubMed

    Ren, Wan-Xia; Li, Pei-Jun; Zheng, Le; Fan, Shu-Xiu; Verhozina, V A

    2009-02-15

    A few researchers have reported on work concerning bioleaching of heavy-metal-contaminated soil using Acidithiobacillus ferrooxidans, since this acidophile is sensitive to dissolved low molecular weight (LMW) organic acids. Iron oxidation by A. ferrooxidans R2 as well as growth on ferrous iron was inhibited by a variety of dissolved LMW organic acids. Growth experiments with ferrous iron as an oxidant showed that the inhibition capability sequence was formic acid>acetic acid>propionic acid>oxalic acid>malic acid>citric acid. The concentrations that R2 might tolerate were formic acid 0.1mmolL(-1) (2mmolkg(-1)soil), acetic and propionic acids 0.4mmolL(-1) (8mmolkg(-1)soil), oxalic acid 2.0mmolL(-1) (40mmolkg(-1)soil), malic acid 20mmolL(-1) (400mmolkg(-1)soil), citric acid 40mmolL(-1) (800mmolkg(-1)soil), respectively. Although R2 was sensitive to organic acids, the concentrations of LMW organic acids in the contaminated soils were rather lower than the tolerable levels. Hence, it is feasible that R2 might be used for bioleaching of soils contaminated with metals or metals coupled with organic compounds because of the higher concentrations of LMW organic acids to which R2 is tolerant.

  10. Process for the preparation of lactic acid and glyceric acid

    DOEpatents

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  11. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as...

  12. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as...

  13. Installation Assessment of Frankford Arsenal.

    DTIC Science & Technology

    1977-10-01

    sulfate , sulfuric acid , ac ’solution 40 Hot water bath 41 Nickel plate Nickel sulfate and chloride sulfuric acid , acid ...solution 42 Chromium Copper plate Copper sulfate and sulfuric acid , acid solution 11-14 TABLE 11-2 (continued) Tank No. Plating Process Use Contents...46 Water rinse Water 47 Water rinse Water 48 Water rinse Water 49 Acid Chromic acid , acetic acid , nickel sulfate and sulfuric

  14. The ability of walnut extract and fatty acids to protect against the deleterious effects of oxidative stress and inflammation in hippocampal cells

    USDA-ARS?s Scientific Manuscript database

    Walnuts contain polyunsaturated fatty acids (PUFAs), specifically the omega-6 fatty acid linoleic acid (LA) as well as the omega-3 fatty acid, alpha-linolenic acid (ALA), which can be metabolized to generate eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Previous research from our lab h...

  15. Transformation of bile acids into iso-bile acids by Clostridium perfringens: possible transport of 3 beta-hydrogen via the coenzyme.

    PubMed

    Batta, A K; Salen, G; Shefer, S

    1985-01-01

    We have examined the mechanism for the bacterial transformation of chenodeoxycholic acid and lithocholic acid into the corresponding 3 beta-hydroxy epimers with the use of 3 alpha- and 3 beta-tritiated bile acids. The 3-oxo bile acids were transformed into the 3 alpha- (85%) and 3 beta- (15%) hydroxy bile acids after 20-hr incubation with Clostridium perfringens. Approximately 75% radioactivity was recovered in the aqueous medium when [3 beta-3H]chenodeoxycholic acid or [3 beta-3H]lithocholic acid was incubated with the bacteria, and approximately 15% of radioactivity in the bile acid fraction was associated with the 3 alpha-position of the iso-bile acids. When [3 beta-3H]chenodeoxycholic acid was incubated with unlabeled 3-oxo-5 beta-cholanoic acid, tritiated litho- and iso-lithocholic acids were recovered. These results can be explained only when a 3-oxo intermediate is postulated, and the 3 beta-hydrogen in the bile acids is transferred by the bacterial coenzyme (NAD+ or NADP+) to the 3 alpha-position in the iso-bile acids during the reduction of the 3-oxo compounds.

  16. Enhanced solubility and antioxidant activity of chlorogenic acid-chitosan conjugates due to the conjugation of chitosan with chlorogenic acid.

    PubMed

    Rui, Liyun; Xie, Minhao; Hu, Bing; Zhou, Li; Saeeduddin, Muhammad; Zeng, Xiaoxiong

    2017-08-15

    Chlorogenic acid-chitosan conjugate was synthesized by introducing of chlorogenic acid onto chitosan with the aid of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and hydroxybenzotriazole. The data of UV-vis, FT-IR and NMR for chlorogenic acid-chitosan conjugates demonstrated the successful conjugation of chlorogenic acid with chitosan. Compared to chitosan, chlorogenic acid-chitosan conjugates exhibited increased solubility in distilled water, 1% acetic acid solution (v/v) or 50% ethanol solution (v/v) containing 0.5% acetic acid. Moreover, chlorogenic acid-chitosan conjugates showed dramatic enhancements in metal ion chelating activity, total antioxidant capacity, scavenging activities on 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) and superoxide radicals, inhibitory effects on lipid peroxidation and β-carotene-linoleic acid bleaching, and protective effect on H 2 O 2 -induced oxidative injury of PC12 cells. Particularly, chlorogenic acid-chitosan conjugate exhibited higher inhibitory effects on lipid peroxidation and β-carotene-linoleic acid bleaching than chlorogenic acid. The results suggested that chlorogenic acid-chitosan conjugates could serve as food supplements to enhance the function of foods in future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.

    PubMed

    Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate

    2002-12-06

    Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.

  18. Pyrite oxidation under simulated acid rain weathering conditions.

    PubMed

    Zheng, Kai; Li, Heping; Wang, Luying; Wen, Xiaoying; Liu, Qingyou

    2017-09-01

    We investigated the electrochemical corrosion behavior of pyrite in simulated acid rain with different acidities and at different temperatures. The cyclic voltammetry, polarization curve, and electrochemical impedance spectroscopy results showed that pyrite has the same electrochemical interaction mechanism under different simulated acid rain conditions, regardless of acidity or environmental temperature. Either stronger acid rain acidity or higher environmental temperature can accelerate pyrite corrosion. Compared with acid rain having a pH of 5.6 at 25 °C, the prompt efficiency of pyrite weathering reached 104.29% as the acid rain pH decreased to 3.6, and it reached 125.31% as environmental temperature increased to 45 °C. Increasing acidity dramatically decreases the charge transfer resistance, and increasing temperature dramatically decreases the passivation film resistance, when other conditions are held constant. Acid rain always causes lower acidity mine drainage, and stronger acidity or high environmental temperatures cause serious acid drainage. The natural parameters of latitude, elevation, and season have considerable influence on pyrite weathering, because temperature is an important influencing factor. These experimental results are of direct significance for the assessment and management of sulfide mineral acid drainage in regions receiving acid rain.

  19. Ion-exclusion chromatography determination of organic acid in uridine 5'-monophosphate fermentation broth.

    PubMed

    Niu, Huanqing; Chen, Yong; Xie, Jingjing; Chen, Xiaochun; Bai, Jianxin; Wu, Jinglan; Liu, Dong; Ying, Hanjie

    2012-09-01

    Simultaneous determination of organic acids using ion-exclusion liquid chromatography and ultraviolet detection is described. The chromatographic conditions are optimized when an Aminex HPX-87H column (300 × 7.8 mm) is employed, with a solution of 3 mmol/L sulfuric acid as eluent, a flow rate of 0.4 mL/min and a column temperature of 60°C. Eight organic acids (including orotic acid, α-ketoglutaric acid, citric acid, pyruvic acid, malic acid, succinic acid, lactic acid and acetic acid) and one nucleotide are successfully quantified. The calibration curves for these analytes are linear, with correlation coefficients exceeding 0.999. The average recovery of organic acids is in the range of 97.6% ∼ 103.1%, and the relative standard deviation is in the range of 0.037% ∼ 0.38%. The method is subsequently applied to obtain organic acid profiles of uridine 5'-monophosphate culture broth fermented from orotic acid by Saccharomyces cerevisiae. These data demonstrate the quantitative accuracy for nucleotide fermentation mixtures, and suggest that the method may also be applicable to other biological samples.

  20. The suppression of the N-nitrosating reaction by chlorogenic acid.

    PubMed Central

    Kono, Y; Shibata, H; Kodama, Y; Sawa, Y

    1995-01-01

    N-Nitrosation of a model aromatic amine (2,3-diamino-naphthalene) by the N-nitrosating agent produced by nitrite in acidic solution was inhibited by a polyphenol, chlorogenic acid, which is an ester of caffeic acid quinic acid. Caffeic acid also inhibited the N-nitrosation, but quinic acid did not. 1,2-Benzenediols and 3,4-dihydroxybenzoic acid had inhibitory activities. Chlorogenic acid, caffeic acid, 1,2-benzenediols and 3,4-dihydroxybenzoic acid were able to scavenge the stable free radical, 1,1-diphenyl-2-picrylhydrazyl. Chlorogenic acid was found to be nitrated by acidic nitrite. The kinetic studies and the nitration observed only by bubbling of nitric oxide plus nitrogen dioxide gases indicated that the nitrating agent was nitrogen sesquioxide. The observations showed that the mechanism by which chlorogenic acid inhibited N-nitrosation of 2,3-diamino-naphthalene is due to its ability to scavenge the nitrosating agent, nitrogen sesquioxide. Chlorogenic acid may be effective not only in protecting against oxidative damage but also in inhibiting potentially mutagenic and carcinogenic reactions in vivo. PMID:8554543

  1. Synthesis of novel lipoamino acid conjugates of sapienic acid and evaluation of their cytotoxicity activities.

    PubMed

    Gopal, Sanganamoni Chinna; Kaki, Shiva Shanker; Rao, Bhamidipati V S K; Poornachandra, Yedla; Kumar, Chityal Ganesh; Narayana Prasad, Rachapudi Badari

    2014-01-01

    Novel lipoamino acids were prepared with the coupling of sapienic acid [(Z)-6-hexadecenoic acid] with α - amino group of amino acids and the resulting N-sapienoyl amino acids were tested for their cytotoxicity activities against four cancer based cell lines. Initially, sapienic acid was synthesized by the Wittig coupling of triphenylphosphonium bromide salt of 6-bromohexanoic acid and decanal with a Z specific reagent. The prepared sapienic acid was subsequently converted to its acid chloride which was further coupled with amino acids by the Schotten-Baumann reaction to form N-sapienoyl amino acid conjugates. Structural characterization of the prepared N-sapienoyl amino acid derivatives was done by spectral data (IR, mass spectra and NMR). These lipoamino acid derivatives were screened for in vitro cytotoxicity evaluation. Cytotoxicity evaluation against four cancer cell lines showed that N-sapienoyl isoleucine was active against three cell lines whereas other derivatives either showed activity against only one or two cell lines with very moderate activity and two derivatives were observed to be inactive against the tested cell lines.

  2. Molecular complexes of alprazolam with carboxylic acids, boric acid, boronic acids, and phenols. Evaluation of supramolecular heterosynthons mediated by a triazole ring.

    PubMed

    Varughese, Sunil; Azim, Yasser; Desiraju, Gautam R

    2010-09-01

    A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O--H...N hydrogen bonds with the triazole ring.

  3. Method of analysis at the U.S. Geological Survey California Water Science Center, Sacramento Laboratory - determination of haloacetic acid formation potential, method validation, and quality-control practices

    USGS Publications Warehouse

    Zazzi, Barbara C.; Crepeau, Kathryn L.; Fram, Miranda S.; Bergamaschi, Brian A.

    2005-01-01

    An analytical method for the determination of haloacetic acid formation potential of water samples has been developed by the U.S. Geological Survey California Water Science Center Sacramento Laboratory. The haloacetic acid formation potential is measured by dosing water samples with chlorine under specified conditions of pH, temperature, incubation time, darkness, and residual-free chlorine. The haloacetic acids formed are bromochloroacetic acid, bromodichloroacetic acid, dibromochloroacetic acid, dibromoacetic acid, dichloroacetic acid, monobromoacetic acid, monochloroacetic acid, tribromoacetic acid, and trichloroacetic acid. They are extracted, methylated, and then analyzed using a gas chromatograph equipped with an electron capture detector. Method validation experiments were performed to determine the method accuracy, precision, and detection limit for each of the compounds. Method detection limits for these nine haloacetic acids ranged from 0.11 to 0.45 microgram per liter. Quality-control practices include the use of blanks, quality-control samples, calibration verification standards, surrogate recovery, internal standard, matrix spikes, and duplicates.

  4. The effect of fish oil supplementation on brain DHA and EPA content and fatty acid profile in mice.

    PubMed

    Valentini, Kelly J; Pickens, C Austin; Wiesinger, Jason A; Fenton, Jenifer I

    2017-12-18

    Supplementation with omega-3 (n-3) fatty acids may improve cognitive performance and protect against cognitive decline. However, changes in brain phospholipid fatty acid composition after supplementation with n-3 fatty acids are poorly described. The purpose of this study was to feed increasing n-3 fatty acids and characterise the changes in brain phospholipid fatty acid composition and correlate the changes with red blood cells (RBCs) and plasma in mice. Increasing dietary docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) did not alter brain DHA. Brain EPA increased and total n-6 polyunsaturated fatty acids decreased across treatment groups, and correlated with fatty acid changes in the RBC (r > 0.7). Brain cis-monounsaturated fatty acids oleic and nervonic acid (p < .01) and saturated fatty acids arachidic, behenic, and lignoceric acid (p < .05) also increased. These brain fatty acid changes upon increasing n-3 intake should be further investigated to determine their effects on cognition and neurodegenerative disease.

  5. The effects of season on fatty acid composition and ω3/ω6 ratios of northern pike ( Esox lucius L., 1758) muscle lipids

    NASA Astrophysics Data System (ADS)

    Mert, Ramazan; Bulut, Sait; Konuk, Muhsin

    2015-01-01

    In the present study, the effects of season on fatty acid composition, total lipids, and ω3/ω6 ratios of northern pike muscle lipids in Kizilirmak River (Kirikkale, Turkey) were investigated. A total of 35 different fatty acids were determined in gas chromatography. Among these, palmitic, oleic, and palmitoleic acids had the highest proportion. The main polyunsaturated fatty acids (PUFAs) were found to be docosahexaenoic acid, eicosapentaenoic acid, and arachidonic acid. There were more PUFAs than monounsaturated fatty acids (MUFA) in all seasons. Similarly, the percentages of ω3 fatty acids were higher than those of total ω6 fatty acids in the fatty acid composition. ω3/ω6 ratios were calculated as 1.53, 1.32, 1.97, and 1.71 in spring, summer, autumn and winter, respectively. Overall, we found that the fatty acid composition and ω3/ω6 fatty acid ratio in the muscle of northern pike were significantly influenced by season.

  6. Mechanism of Specific Inhibition of Phototropism by Phenylacetic Acid in Corn Seedling 1

    PubMed Central

    Vierstra, Richard D.; Poff, Kenneth L.

    1981-01-01

    Using geotropism as a control for phototropism, compounds similar to phenylacetic acid that photoreact with flavins and/or have auxin-like activity were examined for their ability to specifically inhibit phototropism in corn seedlings using geotropism as a control. Results using indole-3-acetic acid, napthalene-1-acetic acid, naphthalene-2-acetic acid, phenylacetic acid, and β-phenylpyruvic acid suggest that such compounds will specifically inhibit phototropism primarily because of their photoreactivity with flavins and not their auxin activity. For example, strong auxins, indole-3-acetic acid and naphthalene-1-acetic acid, affected both tropic responses at all concentrations tested whereas weak auxins, phenylacetic acid and naphthalene-2-acetic acid, exhibited specific inhibition. In addition, the in vivo concentration of phenylacetic acid required to induce specificity was well below that required to stimulate coleoptile growth. Estimates of the percentage of photoreceptor pigment inactivated by phenylacetic acid (>10%) suggest that phenylacetic acid could be used to photoaffinity label the flavoprotein involved in corn seedling phototropism. PMID:16661774

  7. Amino acids in the Yamato carbonaceous chrondrite from Antarctica

    NASA Technical Reports Server (NTRS)

    Shimoyama, A.; Ponnamperuma, C.; Yanai, K.

    1979-01-01

    Evidence for the presence of amino acids of extraterrestrial origin in the Antarctic Yamato carbonaceous chrondrite is presented. Hydrolyzed and nonhydrolyzed water-extracted amino acid samples from exterior, middle and interior portions of the meteorite were analyzed by an amino acid analyzer and by gas chromatography of N-TFA-isopropyl amino acid derivatives. Nine protein and six nonprotein amino acids were detected in the meteorite at abundances between 34 and less than one nmole/g, with equal amounts in interior and exterior portions. Nearly equal abundances of the D and L enantiomers of alanine, aspartic acid and glutamic acid were found, indicating the abiotic, therefore extraterrestrial, origin of the amino acids. The Antarctic environment and the uniformity of protein amino acid abundances are discussed as evidence against the racemization of terrestrially acquired amino acids, and similarities between Yamato amino acid compositions and the amino acid compositions of the Murchison and Murray type II carbonaceous chrondrites are indicated.

  8. Unsaturated fatty acids protect trophoblast cells from saturated fatty acid-induced autophagy defects.

    PubMed

    Hong, Ye-Ji; Ahn, Hyo-Ju; Shin, Jongdae; Lee, Joon H; Kim, Jin-Hoi; Park, Hwan-Woo; Lee, Sung Ki

    2018-02-01

    Dysregulated serum fatty acids are associated with a lipotoxic placental environment, which contributes to increased pregnancy complications via altered trophoblast invasion. However, the role of saturated and unsaturated fatty acids in trophoblastic autophagy has yet to be explored. Here, we demonstrated that prolonged exposure of saturated fatty acids interferes with the invasiveness of human extravillous trophoblasts. Saturated fatty acids (but not unsaturated fatty acids) inhibited the fusion of autophagosomes and lysosomes, resulting in the formation of intracellular protein aggregates. Furthermore, when the trophoblast cells were exposed to saturated fatty acids, unsaturated fatty acids counteracted the effects of saturated fatty acids by increasing degradation of autophagic vacuoles. Saturated fatty acids reduced the levels of the matrix metalloproteinases (MMP)-2 and MMP-9, while unsaturated fatty acids maintained their levels. In conclusion, saturated fatty acids induced decreased trophoblast invasion, of which autophagy dysfunction plays a major role. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effects of the pH and Concentration on the Stability of Standard Solutions of Proteinogenic Amino Acid Mixtures.

    PubMed

    Kato, Megumi; Yamazaki, Taichi; Kato, Hisashi; Yamanaka, Noriko; Takatsu, Akiko; Ihara, Toshihide

    2017-01-01

    To prepare metrologically traceable amino acid mixed standard solutions, it is necessary to determine the stability of each amino acid present in the mixed solutions. In the present study, we prepared amino acid mixed solutions using certified reference standards of 17 proteinogenic amino acids, and examined the stability of each of these amino acids in 0.1 N HCl. We found that the concentration of glutamic acid decreased significantly during storage. LC/MS analysis indicated that the instability of glutamic acid was due to the partial degradation of glutamic acid to pyroglutamic acid in 0.1 N HCl. Using accelerated degradation tests, we investigated several solvent compositions to improve the stability of glutamic acid in amino acid mixed solution, and determined that the change of the pH by diluting the mixed solution improved the stability of glutamic acid.

  10. Removal of acidic or basic α-amino acids in water by poorly water soluble scandium complexes.

    PubMed

    Hayashi, Nobuyuki; Jin, Shigeki; Ujihara, Tomomi

    2012-11-02

    To recognize α-amino acids with highly polar side chains in water, poorly water soluble scandium complexes with both Lewis acidic and basic portions were synthesized as artificial receptors. A suspension of some of these receptor molecules in an α-amino acid solution could remove acidic and basic α-amino acids from the solution. The compound most efficient at preferentially removing basic α-amino acids (arginine, histidine, and lysine) was the receptor with 7,7'-[1,3-phenylenebis(carbonylimino)]bis(2-naphthalenesulfonate) as the ligand. The neutral α-amino acids were barely removed by these receptors. Removal experiments using a mixed amino acid solution generally gave results similar to those obtained using solutions containing a single amino acid. The results demonstrated that the scandium complex receptors were useful for binding acidic and basic α-amino acids.

  11. Crystal and molecular structure of eight organic acid-base adducts from 2-methylquinoline and different acids

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Jin, Shouwen; Tao, Lin; Liu, Bin; Wang, Daqi

    2014-08-01

    Eight supramolecular complexes with 2-methylquinoline and acidic components as 4-aminobenzoic acid, 2-aminobenzoic acid, salicylic acid, 5-chlorosalicylic acid, 3,5-dinitrosalicylic acid, malic acid, sebacic acid, and 1,5-naphthalenedisulfonic acid were synthesized and characterized by X-ray crystallography, IR, mp, and elemental analysis. All of the complexes are organic salts except compound 2. All supramolecular architectures of 1-8 involve extensive classical hydrogen bonds as well as other noncovalent interactions. The results presented herein indicate that the strength and directionality of the classical hydrogen bonds (ionic or neutral) between acidic components and 2-methylquinoline are sufficient to bring about the formation of binary organic acid-base adducts. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, the complexes 1-8 displayed 2D-3D framework structure.

  12. The interaction of albumin and fatty-acid-binding protein with membranes: oleic acid dissociation.

    PubMed

    Catalá, A

    1984-10-01

    Bovine serum albumin or fatty-acid-binding protein rapidly lose oleic acid when incubated in the presence of dimyristoyl lecithin liposomes. The phenomenon is dependent on vesicle concentration and no measurable quantities of protein are found associated with liposomes. Upon gel filtration on Sepharose CL-2B of incubated mixtures of microsomes containing [1-14C] oleic acid and albumin or fatty-acid-binding protein, association of fatty acid with the soluble proteins could be demonstrated. Both albumin and fatty-acid-binding protein stimulated the transfer of oleic acid from rat liver microsomes to egg lecithin liposomes. These results indicate that albumin is more effective in the binding of oleic acid than fatty-acid-binding protein, which allows a selective oleic acid dissociation during its interaction with membranes.

  13. Synthesis, Anti-HCV, Antioxidant and Reduction of Intracellular Reactive Oxygen Species Generation of a Chlorogenic Acid Analogue with an Amide Bond Replacing the Ester Bond.

    PubMed

    Wang, Ling-Na; Wang, Wei; Hattori, Masao; Daneshtalab, Mohsen; Ma, Chao-Mei

    2016-06-08

    Chlorogenic acid is a well known natural product with important bioactivities. It contains an ester bond formed between the COOH of caffeic acid and the 3-OH of quinic acid. We synthesized a chlorogenic acid analogue, 3α-caffeoylquinic acid amide, using caffeic and quinic acids as starting materials. The caffeoylquinc acid amide was found to be much more stable than chlorogenic acid and showed anti-Hepatitis C virus (anti-HCV) activity with a potency similar to chlorogenic acid. The caffeoylquinc acid amide potently protected HepG2 cells against oxidative stress induced by tert-butyl hydroperoxide.

  14. 21 CFR 178.3690 - Pentaerythritol adipate-stearate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... adipic acid and stearic acid and its associated fatty acids (chiefly palmitic), with adipic acid comprising 14 percent and stearic acid and its associated acids (chiefly palmitic) comprising 71 percent of...: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (2) Acid value...

  15. 21 CFR 178.3690 - Pentaerythritol adipate-stearate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... adipic acid and stearic acid and its associated fatty acids (chiefly palmitic), with adipic acid comprising 14 percent and stearic acid and its associated acids (chiefly palmitic) comprising 71 percent of...: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (2) Acid value...

  16. Effect of short-term enteral feeding with eicosapentaenoic and gamma-linolenic acids on alveolar macrophage eicosanoid synthesis and bactericidal function in rats.

    PubMed

    Palombo, J D; DeMichele, S J; Boyce, P J; Lydon, E E; Liu, J W; Huang, Y S; Forse, R A; Mizgerd, J P; Bistrian, B R

    1999-09-01

    Because vasoactive eicosanoids derived from arachidonic acid present in immune cell phospholipids promote lung inflammation in critically ill patients, novel experimental diets containing eicosapentaenoic acid from fish oil and gamma-linolenic acid from borage oil have been designed to limit arachidonic acid metabolism. However, excess dietary eicosapentaenoic acid impairs superoxide formation and bacterial killing by immune cells. The present study determined whether short-term enteral feeding with diets enriched with either eicosapentaenoic acid alone or in combination with gamma-linolenic acid would modulate alveolar macrophage eicosanoid synthesis without compromising bactericidal function. Prospective, randomized, controlled, blinded study. University medical center. Adult male Sprague-Dawley rats. Rats underwent surgical placement of a gastroduodenal feeding catheter and were randomly assigned to receive one of three high-fat (55.2% of total calories), low-carbohydrate diets containing isocaloric amounts of lipids for 4 days. The control diet was enriched with linoleic acid, whereas the two test diets were low in linoleic acid and enriched with either 5 mole % eicosapentaenoic acid alone or in combination with 5 mole % gamma-linolenic acid. Alveolar macrophages were then procured to assess phospholipid fatty acid composition, eicosanoid synthesis after stimulation with endotoxin, superoxide formation and phagocytosis by flow cytometry, and killing of Staphylococcus aureus Alveolar macrophage levels of arachidonic acid were significantly (p < .01) lower and levels of eicosapentaenoic and dihomo-gamma-linolenic acids were higher after feeding the eicosapentaenoic and gamma-linolenic acid diet vs. the linoleic acid diet. Ratios of thromboxane B2,/B3, leukotriene B4/B5, and prostaglandin E2/E1 were reduced in the macrophages from rats given either the eicosapentaenoic acid or eicosapentaenoic acid with gamma-linolenic acid diet compared with ratios from rats given the linoleic acid diet. Macrophages from rats given the eicosapentaenoic with gamma-linolenic acid diet released 35% or 24% more prostaglandin E1 than macrophages from rats given either the linoleic acid or the eicosapentaenoic acid diet, respectively. Macrophage superoxide generation, phagocytosis of opsonized zymosan, and killing of S. aureus were similar irrespective of dietary treatment. Short-term enteral feeding with an eicosapentaenoic acid-enriched or eicosapentaenoic with gamma-linolenic acid-enriched diet rapidly modulated the fatty acid composition of alveolar macrophage phospholipids, promoted a shift toward formation of less inflammatory eicosanoids by stimulated macrophages, but did not impair alveolar macrophage bactericidal function relative to responses observed after feeding a linoleic acid diet.

  17. Microenvironment of Breast Tissue: Lithocholic Acid and Other Intestinal Steroids.

    DTIC Science & Technology

    1997-09-01

    6. chenodeoxycholic acid -7-sulfate 7. ursodeoxycholic acid 8. glycodeoxycholic acid 9. 3ß-hydroxy-5-cholenoic acid sulfate 10. cholicacid 11. 3a... acids 7 Ursodeoxycholic acid 29.1 10 Cholic acid 32.5 11 3ß,7a-Dihydroxy-chol-5-enoicacidJ 33.3 12 7a-Hydroxy-3-oxo-chol-4-enoic acidc 34.1 16...AD GRANT NUMBER DAMD17-94-J-4311 TITLE: Microenvironment of: Breast Tissue: Lithocholic Acid and Other Intestinal Steroids PRINCIPAL

  18. Metabolism of exogenous fatty acids, fatty acid-mediated cholesterol efflux, PKA and PKC pathways in boar sperm acrosome reaction.

    PubMed

    Hossain, Md Sharoare; Afrose, Sadia; Sawada, Tomio; Hamano, Koh-Ichi; Tsujii, Hirotada

    2010-03-01

    For understanding the roles of fatty acids on the induction of acrosome reaction which occurs under association of cholesterol efflux and PKA or PKC pathways in boar spermatozoa, metabolic fate of alone and combined radiolabeled 14 C-oleic acid and 3 H-linoleic acid incorporated in the sperm was compared, and behavior of cholesterol and effects of PKA and PKC inhibitors upon fatty acid-induced acrosome reaction were examined. Semen was collected from a Duroc boar, and the metabolic activities of fatty acids in the spermatozoa were measured using radioactive compounds and thin layer chromatography. Cholesterol efflux was measured with a cholesterol determination assay kit. Participation of fatty acids on the AR through PKA and PKC pathways was evaluated using a specific inhibitor of these enzymes. Incorporation rate of 14 C-oleic acid into the sperm lipids was significantly higher than that of 3 H-linoleic acid ( P < 0.05). The oxidation of 14 C-oleic acid was higher in combined radiolabeling rather than in one. The highest amounts of 3 H-linoleic acid and 14 C-oleic acid were recovered mainly in the triglycerides and phospholipids fraction, and 14 C-oleic acid distribution was higher than the 3 H-linoleic acid in both labeled ( P < 0.05) sperm lipids. In the 3 H-linoleic and 14 C-oleic acid combined radiolabeling, the incorporation rate of the radioactive fatty acids in all the lipid fractions increased 15 times more than the alone radiolabeling. Boar sperm utilize oleic acid to generate energy for hyperactivation ( P < 0.05). Supplementation of arachidonic acid significantly increased ( P < 0.05) cholesterol efflux in sperm. When spermatozoa were incubated with PKA or PKC inhibitors, there was a significant reduction of arachidonic acid-induced acrosome reaction (AR) ( P < 0.05), and inhibition by PKA inhibitor is stronger than that by PKC inhibitor. Incorporation of unsaturated fatty acids, especially oleic acid, into triglycerides and phospholipids provides prerequisite energy for AR. Cholesterol efflux by arachidonic acid triggers AR. Arachidonic acid activated PKA and PKC pathway participate in induction of the AR.

  19. Contribution of acidic components to the total acid number (TAN) of bio-oil

    DOE PAGES

    Park, Lydia K-E.; Liu, Jiaojun; Yiacoumi, Sotira; ...

    2017-03-28

    Bio-oil or pyrolysis oil — a product of thermochemical decomposition of biomass under oxygen-limited conditions — holds great potential to be a substitute for nonrenewable fossil fuels. But, its high acidity, which is primarily due to the degradation of hemicelluloses, limits its applications. For the evaluation of bio-oil production and treatment, it is essential to accurately measure the acidity of bio-oil. The total acid number (TAN), which is defined as the amount of potassium hydroxide needed to titrate one gram of a sample and has been established as an ASTM method to measure the acidity of petroleum products, has beenmore » employed to investigate the acidity of bio-oil. The TAN values of different concentrations of bio-oil components such as standard solutions of acetic acid, propionic acid, vanillic acid, hydroxybenzoic acid, syringic acid, hydroxymethylfurfural, and phenol were analyzed according to the ASTM D664 standard method. Our method showed the same linear relationship between the TAN values and the molar concentrations of acetic, propionic, and hydroxybenzoic acids. A different linear relationship was found for vanillic acid, due to the presence of multiple functional groups that can contribute to the TAN value. Furthermore, the influence of the titration solvent on the TAN values has been determined by comparing the TAN values and titration curves obtained from the standard method with results from the TAN analysis in aqueous environment and with equilibrium modeling results. Aqueous bio-oil samples with a known amount of acetic acid added were also analyzed. The additional acetic acid in bio-oil samples caused a proportional increase in the TAN values. These results of this research indicate that the TAN value of a sample with acids acting as monoprotic acids in the titration solvent can be converted to the molar concentration of total acids. For a sample containing acids that act as diprotic and polyprotic acids, however, its TAN value cannot be simply converted to the molar concentration of total acids because these acids have a stronger contribution to the TAN values than the contribution of monoprotic acids.« less

  20. Contribution of acidic components to the total acid number (TAN) of bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Lydia K-E.; Liu, Jiaojun; Yiacoumi, Sotira

    Bio-oil or pyrolysis oil — a product of thermochemical decomposition of biomass under oxygen-limited conditions — holds great potential to be a substitute for nonrenewable fossil fuels. But, its high acidity, which is primarily due to the degradation of hemicelluloses, limits its applications. For the evaluation of bio-oil production and treatment, it is essential to accurately measure the acidity of bio-oil. The total acid number (TAN), which is defined as the amount of potassium hydroxide needed to titrate one gram of a sample and has been established as an ASTM method to measure the acidity of petroleum products, has beenmore » employed to investigate the acidity of bio-oil. The TAN values of different concentrations of bio-oil components such as standard solutions of acetic acid, propionic acid, vanillic acid, hydroxybenzoic acid, syringic acid, hydroxymethylfurfural, and phenol were analyzed according to the ASTM D664 standard method. Our method showed the same linear relationship between the TAN values and the molar concentrations of acetic, propionic, and hydroxybenzoic acids. A different linear relationship was found for vanillic acid, due to the presence of multiple functional groups that can contribute to the TAN value. Furthermore, the influence of the titration solvent on the TAN values has been determined by comparing the TAN values and titration curves obtained from the standard method with results from the TAN analysis in aqueous environment and with equilibrium modeling results. Aqueous bio-oil samples with a known amount of acetic acid added were also analyzed. The additional acetic acid in bio-oil samples caused a proportional increase in the TAN values. These results of this research indicate that the TAN value of a sample with acids acting as monoprotic acids in the titration solvent can be converted to the molar concentration of total acids. For a sample containing acids that act as diprotic and polyprotic acids, however, its TAN value cannot be simply converted to the molar concentration of total acids because these acids have a stronger contribution to the TAN values than the contribution of monoprotic acids.« less

  1. [Molecular docking of chlorogenic acid, 3,4-di-O-caffeoylquinic acid and 3,5-di-O-caffeoylquinic acid with human serum albumin].

    PubMed

    Zhou, Jing; Ma, Hong-yue; Fan, Xin-sheng; Xiao, Wei; Wang, Tuan-jie

    2012-10-01

    To investigate the mechanism of binding of human serum albumin (HSA) with potential sensitinogen, including chlorogenic acid and two isochlorogenic acids (3,4-di-O-caffeoylquinic acid and 3,5-di-O-caffeoylquinic acid). By using the docking algorithm of computer-aided molecular design and the Molegro Virtual Docker, the crystal structures of HSA with warfarin and diazepam (Protein Data Bank ID: 2BXD and 2BXF) were selected as molecular docking receptors of HSA sites I and II. According to docking scores, key residues and H-bond, the molecular docking mode was selected and confirmed. The molecular docking of chlorogenic acid and two isochlorogenic acids on sites I and II was compared based on the above design. The results from molecular docking indicated that chlorogenic acid, 3,4-di-O-caffeoylquinic acid and 3,5-di-O-caffeoylquinic acid could bind to HSA site I by high affinity scores of -112.3, -155.3 and -153.1, respectively. They could bind to site II on HSA by high affinity scores of -101.7, -138.5 and -133.4, respectively. In site I, two isochlorogenic acids interacted with the key apolar side-chains of Leu238 and Ala291 by higher affinity scores than chlorogenic acid. Furthermore, the H-bonds of isochlorogenic acids with polar residues inside the pocket and at the entrance of the pocket were different from chlorogenic acid. Moreover, the second coffee acyl of isochlorogenic acid occupied the right-hand apolar compartment in the pocket of HSA site I. In site I, the second coffee acyl of isochlorogenic acid formed the H-bonds with polar side-chains, which contributed isochlorogenic acid to binding with site II of HSA. The isochlorogenic acids with two coffee acyls have higher binding abilities with HSA than chlorogenic acid with one coffee acyl, suggesting that isochlorogenic acids binding with HSA may be sensitinogen.

  2. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China.

    PubMed

    Cao, Xiaochuang; Ma, Qingxu; Zhong, Chu; Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan

    2016-01-01

    Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3--N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many amino acids across the elevational gradient suggests that soil amino acids likely originate from a common source or through similar biochemical processes.

  3. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China

    PubMed Central

    Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan

    2016-01-01

    Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3−-N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many amino acids across the elevational gradient suggests that soil amino acids likely originate from a common source or through similar biochemical processes. PMID:27337100

  4. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid amine condensate... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts. (a... a fatty acid amine condensate, polycarboxylic acid salts. (PMN P-92-445) is subject to reporting...

  5. Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids

    USDA-ARS?s Scientific Manuscript database

    Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...

  6. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acid amine condensate... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts. (a... a fatty acid amine condensate, polycarboxylic acid salts. (PMN P-92-445) is subject to reporting...

  7. Efficacy of Lactic Acid, Lactic Acid-Acetic Acid Blends, and Peracetic Acid To Reduce Salmonella on Chicken Parts under Simulated Commercial Processing Conditions.

    PubMed

    Ramirez-Hernandez, Alejandra; Brashears, Mindy M; Sanchez-Plata, Marcos X

    2018-01-01

    The poultry processing industry has been undergoing a series of changes as it modifies processing practices to comply with new performance standards for chicken parts and comminuted poultry products. The regulatory approach encourages the use of intervention strategies to prevent and control foodborne pathogens in poultry products and thus improve food safety and protect human health. The present studies were conducted to evaluate the efficacy of antimicrobial interventions for reducing Salmonella on inoculated chicken parts under simulated commercial processing conditions. Chicken pieces were inoculated by immersion in a five-strain Salmonella cocktail at 6 log CFU/mL and then treated with organic acids and oxidizing agents on a commercial rinsing conveyor belt. The efficacy of spraying with six different treatments (sterile water, lactic acid, acetic acid, buffered lactic acid, acetic acid in combination with lactic acid, and peracetic acid) at two concentrations was evaluated on skin-on and skin-off chicken thighs at three application temperatures. Skinless chicken breasts were used to evaluate the antimicrobial efficacy of lactic acid and peracetic acid. The color stability of treated and untreated chicken parts was assessed after the acid interventions. The lactic acid and buffered lactic acid treatments produced the greatest reductions in Salmonella counts. Significant differences between the control and water treatments were identified for 5.11% lactic acid and 5.85% buffered lactic acid in both skin-on and skin-off chicken thighs. No significant effect of treatment temperature for skin-on chicken thighs was found. Lactic acid and peracetic acid were effective agents for eluting Salmonella cells attached to chicken breasts.

  8. Acid retention with reduced glomerular filtration rate increases urine biomarkers of kidney and bone injury.

    PubMed

    Wesson, Donald E; Pruszynski, Jessica; Cai, Wendy; Simoni, Jan

    2017-04-01

    Diets high in acid of developed societies that do not cause metabolic acidosis in patients with chronic kidney disease nevertheless appear to cause acid retention with associated morbidity, particularly in those with reduced glomerular filtration rate. Here we used a rat 2/3 nephrectomy model of chronic kidney disease to study induction and maintenance of acid retention and its consequences on indicators of kidney and bone injury. Dietary acid was increased in animals eating base-producing soy protein with acid-producing casein and in casein-eating animals with added ammonium chloride. Using microdialysis to measure the kidney cortical acid content, we found that nephrectomized animals had greater acid retention than sham-operated animals when both ate the soy diet. Each increment in dietary acid further increased acid retention more in nephrectomized than in sham rats. Nephrectomized and sham animals achieved similar steady-state daily urine net acid excretion in response to increments in dietary acid but nephrectomized animals took longer to do so, contributing to greater acid retention that was maintained until the increased dietary acid was stopped. Acid retention was associated with increased urine excretion of both N-acetyl-β-D-glucosaminidase and deoxypyridinoline, greater in nephrectomized than control rats, consistent with kidney tubulointerstitial and bone matrix injury, respectively. Greater acid retention in nephrectomized than control animals was induced by a slower increase in urinary net acid excretion rate in response to the increment in dietary acid and also maintained until the dietary acid increment was stopped. Thus, acid retention increased biomarkers of kidney and bone injury in the urine, supporting untoward consequences to these two tissues. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhong; Matus, Myrna H; Velazquez, Hector A

    Gas-phase acidities (GA or ΔG acid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage’s importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBSmore » and B3LYP/aug-cc-pVDZ results are 3–4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH 2 groups and the CO 2 - group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pK a. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.« less

  10. Differential regulation of placental amino acid transport by saturated and unsaturated fatty acids.

    PubMed

    Lager, Susanne; Jansson, Thomas; Powell, Theresa L

    2014-10-15

    Fatty acids are critical for normal fetal development but may also influence placental function. We have previously reported that oleic acid (OA) stimulates amino acid transport in primary human trophoblasts (PHTs). In other tissues, saturated and unsaturated fatty acids have distinct effects on cellular signaling, for instance, palmitic acid (PA) but not OA reduces IκBα expression. We hypothesized that saturated and unsaturated fatty acids differentially affect trophoblast amino acid transport and cellular signaling. To test this hypothesis, PHTs were cultured in docosahexaenoic acid (DHA; 50 μM), OA (100 μM), or PA (100 μM). DHA and OA were also combined to test whether DHA could counteract the OA stimulatory effect on amino acid transport. The effects of fatty acids were compared against a vehicle control. Amino acid transport was measured by isotope-labeled tracers. Activation of inflammatory-related signaling pathways and the mechanistic target of rapamycin (mTOR) pathway were determined by Western blot analysis. Exposure of PHTs to DHA for 24 h reduced amino acid transport and phosphorylation of p38 MAPK, STAT3, mTOR, eukaryotic initiation factor 4E-binding protein 1, and ribosomal protein (rp)S6. In contrast, OA increased amino acid transport and phosphorylation of ERK, mTOR, S6 kinase 1, and rpS6. The combination of DHA with OA increased amino acid transport and rpS6 phosphorylation. PA did not affect amino acid transport but reduced IκBα expression. In conclusion, these fatty acids differentially regulated placental amino acid transport and cellular signaling. Taken together, these findings suggest that dietary fatty acids could alter the intrauterine environment by modifying placental function, thereby having long-lasting effects on the developing fetus. Copyright © 2014 the American Physiological Society.

  11. [Analysis of acid rain characteristics of Lin'an Regional Background Station using long-term observation data].

    PubMed

    Li, Zheng-Quan; Ma, Hao; Mao, Yu-Ding; Feng, Tao

    2014-02-01

    Using long-term observation data of acid rain at Lin'an Regional Background Station (Lin'an RBS), this paper studied the interannual and monthly variations of acid rain, the reasons for the variations, and the relationships between acid rain and meteorological factors. The results showed that interannual variation of acid rain at Lin'an RBS had a general increasing trend in which there were two obvious intensifying processes and two distinct weakening processes, during the period ranging from 1985 to 2012. In last two decades, the monthly variation of acid rain at Lin'an RBS indicated that rain acidity and frequency of severe acid rain were increasing but the frequency of weak acid rain was decreasing when moving towards bilateral side months of July. Acid rain occurrence was affected by rainfall intensity, wind speed and wind direction. High frequency of severe acid rain and low frequency of weak acid rain were on days with drizzle, but high frequency of weak acid rain and low frequency of severe acid rain occurred on rainstorm days. With wind speed upgrading, the frequency of acid rain and the proportion of severe acid rain were declining, the pH value of precipitation was reducing too. Another character is that daily dominant wind direction of weak acid rain majorly converged in S-W section ,however that of severe acid rain was more likely distributed in N-E section. The monthly variation of acid rain at Lin'an RBS was mainly attributed to precipitation variation, the increasing and decreasing of monthly incoming wind from SSE-WSW and NWN-ENE sections of wind direction. The interannual variation of acid rain could be due to the effects of energy consumption raising and significant green policies conducted in Zhejiang, Jiangsu and Shanghai.

  12. Proximate and fatty acid composition of some commercially important fish species from the Sinop region of the Black Sea.

    PubMed

    Kocatepe, Demet; Turan, Hülya

    2012-06-01

    The proximate and fatty acid compositions of the commercially important fish species (Engraulis encrasicolus, Alosa alosa, Belone belone, Scorpaena porcus, Pomatomus saltatrix, Mullus barbatus) from the Sinop region of the Black Sea were examined. The fat contents ranged from 1.26% (for scorpion fish) to 18.12% (for shad). The protein contents were min 14.54% (for red mullet) and maximum 20.26% (for belone). The fatty acid compositions of the fish ranged from 27.83 to 35.91% for saturated fatty acids, 19.50-33.80% for monounsaturated fatty acids and 15.25-40.02% for polyunsaturated fatty acids. Among the saturated fatty acids, palmitic acid (16:0) (17.75-22.20%) was the dominant fatty acid for all the fish species. As a second saturated fatty acid, myristic acid (14:0) was observed in four of the fish species and its content ranged from 4.72 to 7.31%. Whereas, for the other two fish species, the second saturated fatty acid was stearic acid (18:0) ranging between 4.54 and 10.64%. Among the monounsaturated fatty acids, those occurring in the highest proportions were oleic acid (18:1n-9c) (11.67-22.45%) and palmitoleic acid (16:1) (4.50-9.40%). Docosahexaenoic acid (22:6n-3) (5.41-28.52%), eicosapentaenoic acid (20:5n-3) (4.68-11.06) and linoleic acid (18:2n-6) (1.38-3.49%) were dominant polyunsaturated fatty acids, respectively. All the species, in particular the belone, the anchovy and the shad had high levels of the n-3 series.

  13. Alleviation of ascorbic acid-induced gastric high acidity by calcium ascorbate in vitro and in vivo.

    PubMed

    Lee, Joon-Kyung; Jung, Sang-Hyuk; Lee, Sang-Eun; Han, Joo-Hui; Jo, Eunji; Park, Hyun-Soo; Heo, Kyung-Sun; Kim, Deasun; Park, Jeong-Sook; Myung, Chang-Seon

    2018-01-01

    Ascorbic acid is one of the most well-known nutritional supplement and antioxidant found in fruits and vegetables. Calcium ascorbate has been developed to mitigate the gastric irritation caused by the acidity of ascorbic acid. The aim of this study was to compare calcium ascorbate and ascorbic acid, focusing on their antioxidant activity and effects on gastric juice pH, total acid output, and pepsin secretion in an in vivo rat model, as well as pharmacokinetic parameters. Calcium ascorbate and ascorbic acid had similar antioxidant activity. However, the gastric fluid pH was increased by calcium ascorbate, whereas total acid output was increased by ascorbic acid. In the rat pylorus ligation-induced ulcer model, calcium ascorbate increased the gastric fluid pH without changing the total acid output. Administration of calcium ascorbate to rats given a single oral dose of 100 mg/kg as ascorbic acid resulted in higher plasma concentrations than that from ascorbic acid alone. The area under the curve (AUC) values of calcium ascorbate were 1.5-fold higher than those of ascorbic acid, and the C max value of calcium ascorbate (91.0 ng/ml) was higher than that of ascorbic acid (74.8 ng/ml). However, their T max values were similar. Thus, although calcium ascorbate showed equivalent antioxidant activity to ascorbic acid, it could attenuate the gastric high acidity caused by ascorbic acid, making it suitable for consideration of use to improve the side effects of ascorbic acid. Furthermore, calcium ascorbate could be an appropriate antioxidant substrate, with increased oral bioavailability, for patients with gastrointestinal disorders.

  14. Effect of 2 ppm ozone exposure on rat lung lipid fatty acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabinowitz, J.L.; Bassett, D.J.

    Based on in vitro studies, the initial damage to lung cells by ozone exposure is believed to result in part from the breakdown of lipid polyunsaturated fatty acids to aldehydes, ozonides, and peroxides. The present study measured lipid breakdown products in lungs isolated from rats pretreated with (1-/sup 14/C)acetate 12 h before exposure for 4 h to either air or 2 ppm ozone. Lipid fatty acid breakdown was indicated by a 112% increase in thiobarbituric acid-reactive substances on ozone exposure and by changes in chemical and radioactive measurements of mono- and dicarboxylic acids formed by treatment of lipid fractions withmore » hydrogen peroxide. Ozone exposure resulted in a 63% increase in recovery of short-chain fatty acids accounted for by increased recoveries of malonic acid by 37%, hexanoic acid by 47%, nonanoic acid by 118%, and azelaic acid by 107%. Recovery of glutaric acid was enhanced 15-fold by ozone exposure. Although decreases in tissue arachidonic acid could not be detected, oleic acid was significantly decreased by 36%. Recovery of radiolabel as short-chain fatty acids was increased by 65% on ozone exposure and was mainly accounted for by enhanced labeling of nonanoic and glutaric acid fractions. The failure to observe significant increases in /sup 14/C recovery in the other fractions suggested ozone-induced breakdown of unlabeled fatty acids. These results demonstrate the cleavage of unsaturated fatty acid double bonds following in vivo exposure of lungs to ozone. Breakdown of arachidonic and oleic acids was specifically identified by increased recoveries of glutaric and nonanoic acids, respectively.« less

  15. Alleviation of ascorbic acid-induced gastric high acidity by calcium ascorbate in vitro and in vivo

    PubMed Central

    Lee, Joon-Kyung; Jung, Sang-Hyuk; Lee, Sang-Eun; Han, Joo-Hui; Jo, Eunji; Park, Hyun-Soo; Heo, Kyung-Sun; Kim, Deasun

    2018-01-01

    Ascorbic acid is one of the most well-known nutritional supplement and antioxidant found in fruits and vegetables. Calcium ascorbate has been developed to mitigate the gastric irritation caused by the acidity of ascorbic acid. The aim of this study was to compare calcium ascorbate and ascorbic acid, focusing on their antioxidant activity and effects on gastric juice pH, total acid output, and pepsin secretion in an in vivo rat model, as well as pharmacokinetic parameters. Calcium ascorbate and ascorbic acid had similar antioxidant activity. However, the gastric fluid pH was increased by calcium ascorbate, whereas total acid output was increased by ascorbic acid. In the rat pylorus ligation-induced ulcer model, calcium ascorbate increased the gastric fluid pH without changing the total acid output. Administration of calcium ascorbate to rats given a single oral dose of 100 mg/kg as ascorbic acid resulted in higher plasma concentrations than that from ascorbic acid alone. The area under the curve (AUC) values of calcium ascorbate were 1.5-fold higher than those of ascorbic acid, and the Cmax value of calcium ascorbate (91.0 ng/ml) was higher than that of ascorbic acid (74.8 ng/ml). However, their Tmax values were similar. Thus, although calcium ascorbate showed equivalent antioxidant activity to ascorbic acid, it could attenuate the gastric high acidity caused by ascorbic acid, making it suitable for consideration of use to improve the side effects of ascorbic acid. Furthermore, calcium ascorbate could be an appropriate antioxidant substrate, with increased oral bioavailability, for patients with gastrointestinal disorders. PMID:29302210

  16. Omega-3 fatty acids: new insights into the pharmacology and biology of docosahexaenoic acid, docosapentaenoic acid, and eicosapentaenoic acid.

    PubMed

    Davidson, Michael H

    2013-12-01

    Fish oil contains a complex mixture of omega-3 fatty acids, which are predominantly eicosapentaenoic acid (EPA), docosapentaenoic acid, and docosahexaenoic acid (DHA). Each of these omega-3 fatty acids has distinct biological effects that may have variable clinical effects. In addition, plasma levels of omega-3 fatty acids are affected not only by dietary intake, but also by the polymorphisms of coding genes fatty acid desaturase 1-3 for the desaturase enzymes that convert short-chain polyunsaturated fatty acids to long-chain polyunsaturated fatty acids. The clinical significance of this new understanding regarding the complexity of omega-3 fatty acid biology is the purpose of this review. FADS polymorphisms that result in either lower levels of long-chain omega-3 fatty acids or higher levels of long-chain omega-6 polyunsaturated fatty acids, such as arachidonic acid, are associated with dyslipidemia and other cardiovascular risk factors. EPA and DHA have differences in their effects on lipoprotein metabolism, in which EPA, with a more potent peroxisome proliferator-activated receptor-alpha effect, decreases hepatic lipogenesis, whereas DHA not only enhances VLDL lipolysis, resulting in greater conversion to LDL, but also increases HDL cholesterol and larger, more buoyant LDL particles. Overall, these results emphasize that blood concentrations of individual long-chain polyunsaturated fatty acids, which reflect both dietary intake and metabolic influences, may have independent, but also complementary- biological effects and reinforce the need to potentially provide a complex mixture of omega-3 fatty acids to maximize cardiovascular risk reduction.

  17. Topical Acne Treatments and Pregnancy

    MedlinePlus

    ... are benzoyl peroxide, azelaic acid, glycolic acid, and salicylic acid. Prescription acne medications include tretinoin, adapalene, dapsone, and ... ACOG) recommends topical benzoyl peroxide, azelaic acid, topical salicylic acid and glycolic acid for treatment of acne in ...

  18. Application of a Sex Pheromone, Pheromone Analogs, and Verticillium lecanii for Management of Heterodera glycines

    PubMed Central

    Meyer, S. L. F.; Huettel, R. N.

    1996-01-01

    A mutant strain of the fungus Verticillium lecanii and selected bioregulators of Heterodera glycines were evaluated for their potential to reduce population densities of the nematode on soybean under greenhouse conditions. The bioregulators tested were the H. glycines sex pheromone vanillic acid and the pheromone analogs syringic acid, isovanillic acid, ferulic acid, 4-hydroxy-3-methoxybenzonitrile, and methyl vanillate. A V. lecanii-vanillic acid combination and a V. lecanii-syringic acid combination were also applied as treatments. Syringic acid, 4-hydroxy-3-methoxybenzonitrile, V. lecanii, V. lecanii-vanillic acid, and V. lecanii-syringic acid significantly reduced nematode population densities in the greenhouse tests. Results with vanillic acid, isovanillic acid, and ferulic acid treatments were variable. Methyl vanillate did not significantly reduce cyst nematode population densities in the greenhouse tests. PMID:19277343

  19. Removal of lead by apatite and its stability in the presence of organic acids.

    PubMed

    Katoh, Masahiko; Makimura, Akihiko; Sato, Takeshi

    2016-12-01

    In this study, lead sorption and desorption tests were conducted with apatite and organic acids (i.e. citric, malic, and formic acids) to understand lead removal by apatite in the presence of an organic acid and lead dissolution from the lead- and organic-acid-sorbed apatite by such organic acid exposure. The lead sorption test showed that the amount of lead removed by apatite in the presence of organic acid varied depending on the type of acid used. The molar amounts of calcium dissolved from apatite in the presence and absence of organic acid were exactly the same as those of lead removed even under different pH conditions as well as different organic acid concentrations, indicating that the varying amount of lead removal in the presence of different organic acids resulted from the magnitude of the dissolution of apatite and the precipitation of lead phosphate minerals. The percentages of lead dissolved from the organic-acid-sorbed and non-organic-acid-sorbed apatite by all the organic acid extractions were equal and higher than those by water extraction. In particular, the highest extractions were observed in the non-organic-acid-sorbed apatite by citric and malic acids. These results suggest that to immobilize lead by the use of apatite in the presence of organic acids, much more apatite must be added than in the absence of organic acid, and that measures must be taken to ensure that the immobilized lead is not dissolved.

  20. trans-Cinnamic and Chlorogenic Acids Affect the Secondary Metabolic Profiles and Ergosterol Biosynthesis by Fusarium culmorum and F. graminearum Sensu Stricto

    PubMed Central

    Kulik, Tomasz; Stuper-Szablewska, Kinga; Bilska, Katarzyna; Buśko, Maciej; Ostrowska-Kołodziejczak, Anna; Załuski, Dariusz; Perkowski, Juliusz

    2017-01-01

    Plant-derived compounds limiting mycotoxin contamination are currently of major interest in food and feed production. However, their potential application requires an evaluation of their effects on fungal secondary metabolism and membrane effects. In this study, different strains of Fusarium culmorum and F. graminearum sensu stricto were exposed to trans-cinnamic and chlorogenic acids on solid YES media. Fusaria produced phenolic acids, whose accumulation was lowered by exogenous phenolic compounds. In addition, fungi reduced exogenous phenolic acids, leading either to their conversion or degradation. trans-Cinnamic acid was converted to caffeic and ferulic acids, while chlorogenic acid was degraded to caffeic acid. The latter underwent further degradation to protocatechuic acid. Fungal-derived trans-cinnamic acid, as the first intermediate of the shikimate pathway, increased after chlorogenic acid treatment, presumably due to the further inhibition of the conversion of trans-cinnamic acid. Exogenous trans-cinnamic and chlorogenic acid displayed the inhibition of mycotoxin production by Fusaria, which appeared to be largely dependent on the phenolic compound and its concentration and the assayed strain. Exogenous phenolic acids showed different effects on ergosterol biosynthesis by fungi. It was found that the production of this membrane sterol was stimulated by trans-cinnamic acid, while chlorogenic acid negatively impacted ergosterol biosynthesis, suggesting that phenolic acids with stronger antifungal activities may upregulate ergosterol biosynthesis by Fusaria. This paper reports on the production of phenolic acids by Fusaria for the first time. PMID:28640190

  1. trans-Cinnamic and Chlorogenic Acids Affect the Secondary Metabolic Profiles and Ergosterol Biosynthesis by Fusarium culmorum and F. graminearum Sensu Stricto.

    PubMed

    Kulik, Tomasz; Stuper-Szablewska, Kinga; Bilska, Katarzyna; Buśko, Maciej; Ostrowska-Kołodziejczak, Anna; Załuski, Dariusz; Perkowski, Juliusz

    2017-06-22

    Plant-derived compounds limiting mycotoxin contamination are currently of major interest in food and feed production. However, their potential application requires an evaluation of their effects on fungal secondary metabolism and membrane effects. In this study, different strains of Fusarium culmorum and F. graminearum sensu stricto were exposed to trans -cinnamic and chlorogenic acids on solid YES media. Fusaria produced phenolic acids, whose accumulation was lowered by exogenous phenolic compounds. In addition, fungi reduced exogenous phenolic acids, leading either to their conversion or degradation. trans -Cinnamic acid was converted to caffeic and ferulic acids, while chlorogenic acid was degraded to caffeic acid. The latter underwent further degradation to protocatechuic acid. Fungal-derived trans -cinnamic acid, as the first intermediate of the shikimate pathway, increased after chlorogenic acid treatment, presumably due to the further inhibition of the conversion of trans -cinnamic acid. Exogenous trans -cinnamic and chlorogenic acid displayed the inhibition of mycotoxin production by Fusaria, which appeared to be largely dependent on the phenolic compound and its concentration and the assayed strain. Exogenous phenolic acids showed different effects on ergosterol biosynthesis by fungi. It was found that the production of this membrane sterol was stimulated by trans -cinnamic acid, while chlorogenic acid negatively impacted ergosterol biosynthesis, suggesting that phenolic acids with stronger antifungal activities may upregulate ergosterol biosynthesis by Fusaria. This paper reports on the production of phenolic acids by Fusaria for the first time.

  2. Locating the binding sites of folic acid with milk α- and β-caseins.

    PubMed

    Bourassa, P; Tajmir-Riahi, H A

    2012-01-12

    We located the binding sites of folic acid with milk α- and β-caseins at physiological conditions, using constant protein concentration and various folic acid contents. FTIR, UV-visible, and fluorescence spectroscopic methods as well as molecular modeling were used to analyze folic acid binding sites, the binding constant, and the effect of folic acid interaction on the stability and conformation of caseins. Structural analysis showed that folic acid binds caseins via both hydrophilic and hydrophobic contacts with overall binding constants of K(folic acid-α-caseins) = 4.8 (±0.6) × 10(4) M(-1) and K(folic acid-β-caseins) = 7.0 (±0.9) × 10(4) M(-1). The number of bound acid molecules per protein was 1.5 (±0.4) for α-casein and 1.4 (±0.3) for β-casein complexes. Molecular modeling showed different binding sites for folic acid on α- and β-caseins. The participation of several amino acids in folic acid-protein complexes was observed, which was stabilized by hydrogen bonding network and the free binding energy of -7.7 kcal/mol (acid-α-casein) and -8.1 kcal/mol (acid-β-casein). Folic acid complexation altered protein secondary structure by the reduction of α-helix from 35% (free α-casein) to 33% (acid-complex) and 32% (free β-casein) to 26% (acid-complex) indicating a partial protein destabilization. Caseins might act as carriers for transportation of folic acid to target molecules.

  3. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    PubMed

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis.

  4. Fatty acid synthesis in Escherichia coli

    PubMed Central

    Knivett, V. A.; Cullen, Julia

    1967-01-01

    1. Fatty acid formation by cells of a strain of Escherichia coli has been studied in the exponential, post-exponential and stationary phases of growth. 2. During the exponential phase of growth, the metabolic quotient (mμmoles of fatty acid synthesized/mg. dry wt. of cells/hr.) for each fatty acid in the extractable lipid was constant. 3. The newly synthesized fatty acid mixtures produced during this phase contained hexadecanoic acid (41%), hexadecenoic acid (31%), octadecenoic acid (21%) and the C17-cyclopropane acid, methylenehexadecanoic acid (4%). 4. As the proportion of newly synthesized material increased, changes in the fatty acid composition of the cells during this period were towards this constant composition. 5. Abrupt changes in fatty acid synthesis occurred when exponential growth ceased. 6. In media in which glycerol, or SO42− or Mg2+, was growth-limiting there was a small accumulation of C17-cyclopropane acid in cells growing in the post-exponential phase of growth. 7. Where either NH4+ or PO43− was growth-limiting and there were adequate supplies of glycerol, Mg2+ and SO42−, there was a marked accumulation of C17-cyclopropane acid and C19-cyclopropane acid appeared. 8. Under appropriate conditions the metabolic quotient for C17-cyclopropane acid increased up to sevenfold at the end of exponential growth. Simultaneously the metabolic quotients of the other acids fell. 9. A mixture of glycerol, Mg2+ and SO42− stimulated cyclopropane acid formation in resting cells. PMID:5340364

  5. Chlorogenic acid from honeysuckle improves hepatic lipid dysregulation and modulates hepatic fatty acid composition in rats with chronic endotoxin infusion.

    PubMed

    Zhou, Yan; Ruan, Zheng; Wen, Yanmei; Yang, Yuhui; Mi, Shumei; Zhou, Lili; Wu, Xin; Ding, Sheng; Deng, Zeyuan; Wu, Guoyao; Yin, Yulong

    2016-03-01

    Chlorogenic acid as a natural hydroxycinnamic acid has protective effect for liver. Endotoxin induced metabolic disorder, such as lipid dysregulation and hyperlipidemia. In this study, we investigated the effect of chlorogenic acid in rats with chronic endotoxin infusion. The Sprague-Dawley rats with lipid metabolic disorder (LD group) were intraperitoneally injected endotoxin. And the rats of chlorogenic acid-LD group were daily received chlorogenic acid by intragastric administration. In chlorogenic acid-LD group, the area of visceral adipocyte was decreased and liver injury was ameliorated, as compared to LD group. In chlorogenic acid-LD group, serum triglycerides, free fatty acids, hepatic triglycerides and cholesterol were decreased, the proportion of C20:1, C24:1 and C18:3n-6, Δ9-18 and Δ6-desaturase activity index in the liver were decreased, and the proportion of C18:3n-3 acid was increased, compared to the LD group. Moreover, levels of phosphorylated AMP-activated protein kinase, carnitine palmitoyltransferase-I, and fatty acid β-oxidation were increased in chlorogenic acid-LD group compared to LD rats, whereas levels of fatty acid synthase and acetyl-CoA carboxylase were decreased. These findings demonstrate that chlorogenic acid effectively improves hepatic lipid dysregulation in rats by regulating fatty acid metabolism enzymes, stimulating AMP-activated protein kinase activation, and modulating levels of hepatic fatty acids.

  6. Selective activity of several cholic acid derivatives against human immunodeficiency virus replication in vitro.

    PubMed

    Baba, M; Schols, D; Nakashima, H; Pauwels, R; Parmentier, G; Meijer, D K; De Clercq, E

    1989-01-01

    Several cholic acid derivatives such as taurolithocholic acid, lithocholic acid 3-sulfate, taurolithocholic acid 3-sulfate, and glycolithocholic acid 3-sulfate were shown to inhibit selectively the replication of human immunodeficiency virus type 1 (HIV-1) in vitro. These compounds completely protected MT-4 cells against HIV-1-induced cytopathogenicity at a concentration of 100 micrograms/ml, whereas no toxicity for the host cells was observed at 200 micrograms/ml. They also inhibited HIV-1 antigen expression in HIV-1-infected CEM cells. The bile acids (cholic acid, deoxycholic acid, chenodeoxycholic acid, and lithocholic acid) did not show any inhibitory effect on HIV-1 replication at concentrations that were not toxic to the host (MT-4) cells. From a structure-function analysis of a number of cholic acid derivatives, the presence of either a sulfonate (as in the tauro conjugates) or a sulfate group as well as the "litho" configuration appeared to be necessary for the expression of anti-HIV-1 activity. The active cholic acid derivatives did not directly inactivate the virus particles at the concentrations that were not toxic to the host cells. Lithocholic acid 3-sulfate, taurolithocholic acid 3-sulfate, and glycolithocholic acid 3-sulfate, but not taurolithocholic acid, partially inhibited virus adsorption to MT-4 cells. These three compounds were also inhibitory to the reverse transcriptase activity associated with HIV-1.

  7. Identification and Analysis of Novel Amino-Acid Sequence Repeats in Bacillus anthracis str. Ames Proteome Using Computational Tools

    PubMed Central

    Hemalatha, G. R.; Rao, D. Satyanarayana; Guruprasad, L.

    2007-01-01

    We have identified four repeats and ten domains that are novel in proteins encoded by the Bacillus anthracis str. Ames proteome using automated in silico methods. A “repeat” corresponds to a region comprising less than 55-amino-acid residues that occur more than once in the protein sequence and sometimes present in tandem. A “domain” corresponds to a conserved region with greater than 55-amino-acid residues and may be present as single or multiple copies in the protein sequence. These correspond to (1) 57-amino-acid-residue PxV domain, (2) 122-amino-acid-residue FxF domain, (3) 111-amino-acid-residue YEFF domain, (4) 109-amino-acid-residue IMxxH domain, (5) 103-amino-acid-residue VxxT domain, (6) 84-amino-acid-residue ExW domain, (7) 104-amino-acid-residue NTGFIG domain, (8) 36-amino-acid-residue NxGK repeat, (9) 95-amino-acid-residue VYV domain, (10) 75-amino-acid-residue KEWE domain, (11) 59-amino-acid-residue AFL domain, (12) 53-amino-acid-residue RIDVK repeat, (13) (a) 41-amino-acid-residue AGQF repeat and (b) 42-amino-acid-residue GSAL repeat. A repeat or domain type is characterized by specific conserved sequence motifs. We discuss the presence of these repeats and domains in proteins from other genomes and their probable secondary structure. PMID:17538688

  8. Growth and survival kinetics of Yersinia enterocolitica IP 383 0:9 as affected by equimolar concentrations of undissociated short-chain organic acids.

    PubMed

    el-Ziney, M G; De Meyer, H; Debevere, J M

    1997-03-03

    The influence of different organic acids (lactic, acetic, formic and propionic acids) at equimolar concentrations of undissociated acid with pH range of 3.9, 5.8, on the aerobic and anaerobic growth and survival kinetics of the virulent strain of Y. enterocolitica IP 383 0:9, was determined in tryptone soy broth at 4 degrees C. Growth and survival data were analyzed and fitted by a modification of the Whiting and Cygnarowicz-Provost model, using the Minpack software library. Initial generation times, initial specific growth rates, lag time and dead rate were subsequently calculated from the model parameters. The results demonstrate that the inhibitory effects of the acids were divided into two categories dependent upon pH. At high pH (5.8) the order of inhibition was formic acid > acetic acid > propionic acid > lactic acid, whereas at lower pH it became formic acid > lactic acid > acetic acid > propionic acid. The inhibitory effect of lactic acid is enhanced under anaerobic condition. Nevertheless, when the organism was cultured anaerobically, it was shown to be more tolerant to formic and acetic acids. Moreover, these variables (type of organic acid, pH and atmosphere) did not lead to the loss of the virulence plasmid in growing and surviving cells. The mechanism of inhibitory effect for each of the acids are also discussed.

  9. Variability in coconut (Cocos nucifera L.) germplasm and hybrids for fatty acid profile of oil.

    PubMed

    Kumar, S Naresh

    2011-12-28

    Coconut oil, the main product of coconut fruit, is the richest source of glycerol and lauric acid and hence is called lauric oil. This paper reports the fatty acid profile of oil from 60 Talls, 14 Dwarfs, and 34 hybrids. These include collections from 13 countries covering a large coconut-growing area of the world, apart from the indigenous ones. Capillary gas chromatography analysis of oil indicated a wider variation for the fatty acid profile than earlier reported. Apart from this, for the first time other fatty acids such as behenic and lignoceric acids were detected. Oil from cultivars and hybrids of coconut has significantly differed, particularly for commercially important fatty acids such as lauric acid and unsaturated fatty acids. However, coconut oil seems to have a conserved fatty acid profile, mainly because of low unsaturated fatty acids, indicating the possibility of grouping cultivars on the basis of their fatty acid profiles. The cluster analysis based on fatty acid profile indicated grouping together of geographically and typically closely related cultivars. Cultivars with high concentrations of specific fatty acids can be of potential use for industrial exploitation, whereas those with high concentrations of short- and medium-chain fatty acids and unsaturated fatty acids are more suitable for human consumption. Cultivars and hybrids with high and low values for each of the fatty acids are also identified.

  10. Simultaneous analysis of small organic acids and humic acids using high performance size exclusion chromatography.

    PubMed

    Qin, Xiaopeng; Liu, Fei; Wang, Guangcai; Weng, Liping

    2012-12-01

    An accurate and fast method for simultaneous determination of small organic acids and much larger humic acids was developed using high performance size exclusion chromatography. Two small organic acids, i.e. salicylic acid and 2,3-dihydroxybenzoic acid, and one purified humic acid material were used in this study. Under the experimental conditions, the UV peaks of salicylic acid and 2,3-dihydroxybenzoic acid were well separated from the peaks of humic acid in the chromatogram. Concentrations of the two small organic acids could be accurately determined from their peak areas. The concentration of humic acid in the mixture could then be derived from mass balance calculations. The measured results agreed well with the nominal concentrations. The detection limits are 0.05 mg/L and 0.01 mg/L for salicylic acid and 2,3-dihydroxybenzoic acid, respectively. Applicability of the method to natural samples was tested using groundwater, glacier, and river water samples (both original and spiked with salicylic acid and 2,3-dihydroxybenzoic acid) with a total organic carbon concentration ranging from 2.1 to 179.5 mg C/L. The results obtained are promising, especially for groundwater samples and river water samples with a total organic carbon concentration below 9 mg C/L. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Cocrystallization out of the blue: DL-mandelic acid/ethyl-DL-mandelate cocrystal

    NASA Astrophysics Data System (ADS)

    Tumanova, Natalia; Payen, Ricky; Springuel, Géraldine; Norberg, Bernadette; Robeyns, Koen; Le Duff, Cécile; Wouters, Johan; Leyssens, Tom

    2017-01-01

    This work focuses on a peculiar behavior of racemic mandelic acid in ethanol solution. Dissolution of racemic mandelic acid in ethanol followed by evaporation to dryness results in a DL-mandelic acid/ethyl-DL-mandelate cocrystal. This behavior indicates that racemic mandelic acid tends not only to transform into an ester in ethanol, but also to cocrystallize with untransformed acid molecules. Cocrystal formation for mandelic acid in ethanol was found to be reproducible under various conditions. DL-tropic acid and DL-phenyllactic acid that contain similar functional groups and that were tested as well, on the other hand, showed no cocrystal formation: DL-phenyllactic acid partly converted into an ester, whereas DL-tropic acid mostly recrystallized.

  12. [Study on anti-bacterium activity of ginkgolic acids and their momomers].

    PubMed

    Yang, Xiaoming; Zhu, Wei; Chen, Jun; Qian, Zhiyu; Xie, Jimin

    2004-09-01

    Ginkgolic acids and their three monomers were separated from ginkgo sarcotestas. The anti-bacterium activity of ginkgolic acids were tested. The relation between the anti-bacterium activity and side chain of ginkgolic acid were studied. The MIC of ginkgolic acids and their three monomers and salicylic acid were tested. Ginkgolic acid has strong inhibitive effect on G+-bacterium. Salicylic acid has no side chain, so no anti-bacterial activity. When the length of gingkolic acid side chain is C13:0, it has the strongest anti-bacterial activity in three monomers. The side chain of ginkgolic acid is the key functional group that possessed anti-bacterial activity. The length of Ginkgolic acid was the main effective factor of anti-bacterial activity.

  13. In vitro enzymic hydrolysis of chlorogenic acids in coffee.

    PubMed

    da Encarnação, Joana Amarante; Farrell, Tracy L; Ryder, Alexandra; Kraut, Nicolai U; Williamson, Gary

    2015-02-01

    Coffee is rich in quinic acid esters of phenolic acids (chlorogenic acids) but also contains some free phenolic acids. A proportion of phenolic acids appear in the blood rapidly after coffee consumption due to absorption in the small intestine. We investigated in vitro whether this appearance could potentially be derived from free phenolic acids in instant coffee or from hydrolysis of chlorogenic acids by pancreatic or brush border enzymes. We quantified six free phenolic acids in instant coffees using HPLC-DAD-mass spectrometry. The highest was caffeic acid, but all were present at low levels compared to the chlorogenic acids. Roasting and decaffeination significantly reduced free phenolic acid content. We estimated, using pharmacokinetic modelling with previously published data, that the contribution of these compounds to small intestinal absorption is minimal. Hydrolysis of certain chlorogenic acids was observed with human-differentiated Caco-2 cell monolayers and with porcine pancreatin, which showed maximal rates on 3- and 5-O-caffeoylquinic acids, respectively. The amounts of certain free phenolic acids in coffee could only minimally account for small intestinal absorption based on modelling. The hydrolysis of caffeoylquinic, but not feruloylquinic acids, by enterocyte and pancreatic esterases is potentially a contributing mechanism to small intestinal absorption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Identification and characterization of two new derivatives of chlorogenic acids in Arnica (Arnica montana L.) flowers by high-performance liquid chromatography/tandem mass spectrometry.

    PubMed

    Jaiswal, Rakesh; Kuhnert, Nikolai

    2011-04-27

    Arnica montana is a medicinally important plant due to its broad health effects, and it is used in Ayurvedic, Homeopathic, Unani, and folk medicines. We have used LC-MS(n) (n = 2-5) to detect and characterize in Arnica flowers 11 quantitatively minor fumaric and methoxyoxalic acid-containing chlorogenic acids, nine of them not previously reported in nature. These comprise 1,5-dicaffeoyl-3-methoxyoxaloylquinic acid, 1,3-dicaffeoyl-4-methoxyoxaloylquinic acid, 3,5-dicaffeoyl-4-methoxyoxaloylquinic acid, and 1-methoxyoxaloyl-4,5-dicaffeoylquinic acid (M(r) 602); 3-caffeoyl-4-feruloyl-5-methoxyoxaloylquinic acid and 3-feruloyl-4-methoxyoxaloyl-5-caffeoylquinic acid (M(r) 616); 1,5-dicaffeoyl-4-fumaroyl and 1,5-dicaffeoyl-3-fumaroylquinic acid (M(r) 614); 3,5-dicaffeoyl-1,4-dimethoxyoxaloylquinic acid (M(r) 688); and 1-methoxyoxaloyl-3,4,5-tricaffeoylquinic acid and 1,3,4-tricaffeoyl-5-methoxyoxaloylquinic acid (M(r) 764). All of the structures have been assigned on the basis of LC-MS(n) patterns of fragmentation, relative hydrophobicity, and analogy of fragmentation patterns if compared to caffeoylquinic acids. This is the first time when fumaric acid-containing chlorogenic acids are reported in nature.

  15. A Glutamic Acid-Producing Lactic Acid Bacteria Isolated from Malaysian Fermented Foods

    PubMed Central

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B.; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound. PMID:22754309

  16. Codes in the codons: construction of a codon/amino acid periodic table and a study of the nature of specific nucleic acid-protein interactions.

    PubMed

    Benyo, B; Biro, J C; Benyo, Z

    2004-01-01

    The theory of "codon-amino acid coevolution" was first proposed by Woese in 1967. It suggests that there is a stereochemical matching - that is, affinity - between amino acids and certain of the base triplet sequences that code for those amino acids. We have constructed a common periodic table of codons and amino acids, where the nucleic acid table showed perfect axial symmetry for codons and the corresponding amino acid table also displayed periodicity regarding the biochemical properties (charge and hydrophobicity) of the 20 amino acids and the position of the stop signals. The table indicates that the middle (2/sup nd/) amino acid in the codon has a prominent role in determining some of the structural features of the amino acids. The possibility that physical contact between codons and amino acids might exist was tested on restriction enzymes. Many recognition site-like sequences were found in the coding sequences of these enzymes and as many as 73 examples of codon-amino acid co-location were observed in the 7 known 3D structures (December 2003) of endonuclease-nucleic acid complexes. These results indicate that the smallest possible units of specific nucleic acid-protein interaction are indeed the stereochemically compatible codons and amino acids.

  17. [Study on the encapsulation technique of high purity gamma-linolenic acid, part 1--saponification reaction and saponification value].

    PubMed

    Liu, Feng-xia; Xue, Gang; Gao, Qiu-hua; Gao, Wei-xia; Zhang, Li-hua

    2005-03-01

    To measure the saponification value and fatty acid formation of evening primrose oil, to study the effects of pH value on production yield and fatty acid formation during the saponification reaction, and to provide rationales for the selection of raw material, the enhancement of production yield of saponification, and the encapsulation of gamma-linolenic acid with urea. To measure fatty acid's formation with gas chromatographic method and to measure the saponification value. The content of gamma-linolenic acid is 7%-10% in evening primrose oil. The content of gamma-linolenic acid is inversely correlated with that of unsaturated fatty acid. The saponification value, the amount of KOH for saponification of evening primrose oil, and the pH value for subsequent isolations of oils are determined. From the measurement of fatty acids of evening primrose oil in two different cultivation locations, the content of gamma-linolenic acid is determined to be 7%-10%, unsaturated oils account for 90%. The saponification value of evening primrose oil is between 180-200, pH value of isolated oil is 1.5-2.0 after saponification reaction. Fatty acids mainly include palmitic acid, stearic acid, oleic acid, linolic acid and gamma-linolenic acid.

  18. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Tsuyoshi, E-mail: tgoto@kais.kyoto-u.ac.jp; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University; Kim, Young-Il

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increasedmore » adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.« less

  19. Incorporation of Oxygen into Abscisic Acid and Phaseic Acid from Molecular Oxygen 1

    PubMed Central

    Creelman, Robert A.; Zeevaart, Jan A. D.

    1984-01-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumarium. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% 18O2 and 80% N2 indicates that one atom of 18O is incorporated in the 6′-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase. Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing 18O2 indicates that one atom of 18O is present in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-stressed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggests that either (a) the oxygen present in the 1′-, 4′-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1′- and 4′-positions of abscisic acid which is converted to abscisic acid under conditions of water stress. PMID:16663564

  20. Incorporation of oxygen into abscisic Acid and phaseic Acid from molecular oxygen.

    PubMed

    Creelman, R A; Zeevaart, J A

    1984-05-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumarium. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% (18)O(2) and 80% N(2) indicates that one atom of (18)O is incorporated in the 6'-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase.Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing (18)O(2) indicates that one atom of (18)O is present in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-stressed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggests that either (a) the oxygen present in the 1'-, 4'-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1'- and 4'-positions of abscisic acid which is converted to abscisic acid under conditions of water stress.

Top