Science.gov

Sample records for acid organic acid

  1. Microorganisms for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  2. Recovery of organic acids

    DOEpatents

    Verser, Dan W.; Eggeman, Timothy J.

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  3. Recovery of organic acids

    DOEpatents

    Verser, Dan W.; Eggeman, Timothy J.

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  4. Analysis of Organic Acids.

    ERIC Educational Resources Information Center

    Griswold, John R.; Rauner, Richard A.

    1990-01-01

    Presented are the procedures and a discussion of the results for an experiment in which students select unknown carboxylic acids, determine their melting points, and investigate their solubility behavior in water and ethanol. A table of selected carboxylic acids is included. (CW)

  5. Organic acids in naturally colored surface waters

    USGS Publications Warehouse

    Lamar, William L.; Goerlitz, D.F.

    1966-01-01

    Most of the organic matter in naturally colored surface waters consists of a mixture of carboxylic acids or salts of these acids. Many of the acids color the water yellow to brown; however, not all of the acids are colored. These acids range from simple to complex, but predominantly they are nonvolatile polymeric carboxylic acids. The organic acids were recovered from the water by two techniques: continuous liquid-liquid extraction with n-butanol and vacuum evaporation at 50?C (centigrade). The isolated acids were studied by techniques of gas, paper, and column chromatography and infrared spectroscopy. About 10 percent of the acids recovered were volatile or could be made volatile for gas chromatographic analysis. Approximately 30 of these carboxylic acids were isolated, and 13 of them were individually identified. The predominant part of the total acids could not be made volatile for gas chromatographic analysis. Infrared examination of many column chromatographic fractions indicated that these nonvolatile substances are primarily polymeric hydroxy carboxylic acids having aromatic and olefinic unsaturation. The evidence suggests that some of these acids result from polymerization in aqueous solution. Elemental analysis of the sodium fusion products disclosed the absence of nitrogen, sulfur, and halogens.

  6. Organic Acid Production by Filamentous Fungi

    SciTech Connect

    Magnuson, Jon K.; Lasure, Linda L.

    2004-05-03

    Many of the commercial production processes for organic acids are excellent examples of fungal biotechnology. However, unlike penicillin, the organic acids have had a less visible impact on human well-being. Indeed, organic acid fermentations are often not even identified as fungal bioprocesses, having been overshadowed by the successful deployment of the β-lactam processes. Yet, in terms of productivity, fungal organic acid processes may be the best examples of all. For example, commercial processes using Aspergillus niger in aerated stirred-tank-reactors can convert glucose to citric acid with greater than 80% efficiency and at final concentrations in hundreds of grams per liter. Surprisingly, this phenomenal productivity has been the object of relatively few research programs. Perhaps a greater understanding of this extraordinary capacity of filamentous fungi to produce organic acids in high concentrations will allow greater exploitation of these organisms via application of new knowledge in this era of genomics-based biotechnology. In this chapter, we will explore the biochemistry and modern genetic aspects of the current and potential commercial processes for making organic acids. The organisms involved, with a few exceptions, are filamentous fungi, and this review is limited to that group. Although yeasts including Saccharomyces cerevisiae, species of Rhodotorula, Pichia, and Hansenula are important organisms in fungal biotechnology, they have not been significant for commercial organic acid production, with one exception. The yeast, Yarrowia lipolytica, and related yeast species, may be in use commercially to produce citric acid (Lopez-Garcia, 2002). Furthermore, in the near future engineered yeasts may provide new commercial processes to make lactic acid (Porro, Bianchi, Ranzi, Frontali, Vai, Winkler, & Alberghina, 2002). This chapter is divided into two parts. The first contains a review of the commercial aspects of current and potential large

  7. Testing of organic acids in engine coolants

    SciTech Connect

    Weir, T.W.

    1999-08-01

    The effectiveness of 30 organic acids as inhibitors in engine coolants is reported. Tests include glassware corrosion of coupled and uncoupled metals. FORD galvanostatic and cyclic polarization electrochemistry for aluminum pitting, and reserve alkalinity (RA) measurements. Details of each test are discussed as well as some general conclusions. For example, benzoic acid inhibits coupled metals well but is ineffective on cast iron when uncoupled. In benzoic acid inhibits coupled metals well but is ineffective on cast iron when uncoupled. In general, the organic acids provide little RA when titrated to a pH of 5.5, titration to a pH of 4.5 can result in precipitation of the acid. Trends with respect to acid chain length are reported also.

  8. Organic acid-tolerant microorganisms and uses thereof for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-05-06

    Organic acid-tolerant microorganisms and methods of using same. The organic acid-tolerant microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid (3HP), acrylic acid, and propionic acid. Further modifications to the microorganisms such as increasing expression of malonyl-CoA reductase and/or acetyl-CoA carboxylase provide or increase the ability of the microorganisms to produce 3HP. Methods of generating an organic acid with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers include replacing acsA or homologs thereof in cells with genes of interest and selecting for the cells comprising the genes of interest with amounts of organic acids effective to inhibit growth of cells harboring acsA or the homologs.

  9. Nanoparticles modified with multiple organic acids

    NASA Technical Reports Server (NTRS)

    Cook, Ronald Lee (Inventor); Luebben, Silvia DeVito (Inventor); Myers, Andrew William (Inventor); Smith, Bryan Matthew (Inventor); Elliott, Brian John (Inventor); Kreutzer, Cory (Inventor); Wilson, Carolina (Inventor); Meiser, Manfred (Inventor)

    2007-01-01

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  10. Nanoparticles modified with multiple organic acids

    DOEpatents

    Cook, Ronald Lee; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew; Elliott, Brian John; Kreutzer, Cory; Wilson, Carolina; Meiser, Manfred

    2007-07-17

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  11. Arterial Blood Carbonic Acid Inversely Determines Lactic and Organic Acids

    PubMed Central

    Aiken, Christopher Geoffrey Alexander

    2013-01-01

    Objective: To establish that arterial blood carbonic acid varies inversely with lactic acid in accordance with bicarbonate exchanging for lactate across cell membranes through the anion exchange mechanism to maintain the Gibbs-Donnan equilibrium. Study Design: Over 5 years, lactate was measured on all blood gases taken from neonatal admissions, as well as organic acid whenever electrolytes were required. Results: Arterial blood gases from 63 infants given high calcium TPN were analyzed. Twenty two needed continuous positive airways pressure (CPAP) only and 31 intermittent positive pressure ventilation (IPPV) and surfactant followed by CPAP to treat respiratory distress syndrome in 51 and meconium aspiration syndrome in 2. All survived and were free of infection. Excluded gases were those with high and falling lactate soon after delivery representing perinatal asphyxia, and those on dexamethasone. Strong inverse relations between carbonic and lactic acids were found at all gestational ages and, independent of glomerular filtration, between carbonic and organic acids. Lactate (mmol/L) = 62.53 X PCO2 -0.96(mmHg) r2 0.315, n 1232, p <0.001. Sixty divided by PCO2 is a convenient measure of physiological lactate at any given PCO2. In the first week, 9.13 ± 2.57% of arterial gases from infants on IPPV had lactates above 120/PCO2, significantly more than 4.74 ± 2.73% on CPAP (p<0.05) and 2.47 ± 2.39% on no support. Conclusion: Changes in arterial blood carbonic acid cause immediate inverse changes in lactic acid, because their anions interchange across cell membranes according to the Gibbs –Donnan equilibrium. Increasing PCO2 from 40 to 120 mmHg decreased lactate from 1.5 mmol/L to 0.5 mmol/L, so that the sum of carbonic and lactic acids increased from 2.72 mmol/L to only 4.17 mmol/L. This helps explain the neuroprotective effect of hypercapnoea and highlights the importance of avoiding any degree of hypocapnoea in infants on IPPV. PMID:24392387

  12. Photoenhanced anaerobic digestion of organic acids

    DOEpatents

    Weaver, Paul F.

    1990-01-01

    A process is described for rapid conversion of organic acids and alcohols anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion or organic acids and alcohols into methane with low levels of light energy input.

  13. Photoenhanced anaerobic digestion of organic acids

    SciTech Connect

    Weaver, P.F.

    1989-08-25

    A process is described for rapid conversion of organic acids and alcohols in anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion of organic acids and alcohols into methane with low levels of light energy input. 8 figs.

  14. Organic acids from biomass by continuous fermentation

    SciTech Connect

    Clausen, E.C.; Gaddy, J.C.

    1984-12-01

    In continuous fermentation, a 90% conversion of glucose and an 86% conversion of xylose were achieved in the continuous stirred tank reactor (CSTR) for a 72 hour retention time and a 30 g/l total sugar concentration. The fermentation in the CSTR was shown to be about four times faster than that in a batch reactor. A 92% conversion of glucose and a 75% conversion of xylose were found at a 28 hour retention time in the immobilized cell reaction (ICR). Also, about 67% of the sugar can be converted into organic acids in this reactor, yielding more than 20 g/L of organic acids in the ICR. The total capital investment expected for a 20 million lb (9 Gg)/yr propionic acid plant is expected to be just over $11 million, including hydrolysis and acid production. Acetic acid is also produced in this plant at a rate of 11.1 million lb (5 Gg)/yr. For this facility, the recovered acids costs is projected to be 16.6 cents/lbm (36.6cents/kg). 11 references.

  15. Quantification of organic acids using voltammetric tongues.

    PubMed

    Escobar, Juan David; Alcaniz, Miguel; Masot, Rafael; Fuentes, Ana; Bataller, Roman; Soto, Juan; Barat, Jose Manuel

    2013-06-01

    Recently, electronic tongues (ET) have appeared as an excellent alternative to traditional techniques for the evaluation of food quality and processes. ET systems are based on arrays of low selectivity sensors that are simultaneously sensitive to several components in a measured sample (cross-sensitivity). The aim of this study was to determine the ability of an ET based on pulse voltammetry to quantify organic acids (ascorbic, citric and malic acids) in simple (SS) and binary solutions (BS) using different electrodes. The most significant electrodes for ascorbic acid prediction were Ni and Ag for SS, and Ag and Ir for BS where positive pulses were more suitable than negative ones. The prediction of citric and malic acids in SS and BS were suitable using Ir, Rh, Pt, Ag and Cu electrodes, using both positive and negative pulses.

  16. Capture and release of acid-gasses with acid-gas binding organic compounds

    DOEpatents

    Heldebrant, David J; Yonker, Clement R; Koech, Phillip K

    2015-03-17

    A system and method for acid-gas capture wherein organic acid-gas capture materials form hetero-atom analogs of alkyl-carbonate when contacted with an acid gas. These organic-acid gas capture materials include combinations of a weak acid and a base, or zwitterionic liquids. This invention allows for reversible acid-gas binding to these organic binding materials thus allowing for the capture and release of one or more acid gases. These acid-gas binding organic compounds can be regenerated to release the captured acid gasses and enable these organic acid-gas binding materials to be reused. This enables transport of the liquid capture compounds and the release of the acid gases from the organic liquid with significant energy savings compared to current aqueous systems.

  17. Treatment of broiler litter with organic acids.

    PubMed

    Ivanov, I E

    2001-04-01

    Experiments for treatment of contaminated broiler litter with citric, tartaric and salicylic acids were performed. At days 2 and 6 after the treatment, pH values (using a pH-meter), the ammonia concentrations (titration with 0.1 N HCl) and the microbial cells counts were determined in both experimental and control specimens of litter. The cost of acidification of litter was also determined. Our studies showed that the treatment of the contaminated litter with 5 per cent citric acid, 4 per cent tartaric acid and 1.5 per cent salicylic acid created an acid medium with pH under 5.0 and thus reduced the microbial counts to 2.2 x 10(3)colony forming units per gram manure litter. The treatment reduced the content of ammonia in the litter and in the air under the hygienic limits, i.e. 25-50 ppm. The cost of acidification of litter with these organic acids amounted to 0.1 $ per bird and 1.5 $ per 15 birds on one square metre in a growth period of 50 days. PMID:11356097

  18. Reactions of tetraphenyltitanium with organic acids

    SciTech Connect

    Razuvaev, G.A.; Vyshinskaya, L.I.; Vasil'eva, G.A.

    1987-12-10

    As a result of the reactions of tetraphenyltitanium with dibasic organic acids high yields were obtained of new thermally stable titanium(III) complexes: phenyltitanium(III)carboxylates. Under the action of proton-active reagents (hydrochloric acid, cyclopentadiene, methanol) the latter break down with the breakage of titanium-phenyl bond. The proposed structure was based on IR- and ESR-spectral data. The dinuclear structure of the complexes was established on the basis of a study of the triplet structure of the ESR spectra, which showed the existence of intermolecular titanium-titanium exchange through methylene groups of the dicarboxylate bridges.

  19. Energy densification of biomass-derived organic acids

    DOEpatents

    Wheeler, M. Clayton; van Walsum, G. Peter; Schwartz, Thomas J.; van Heiningen, Adriaan

    2013-01-29

    A process for upgrading an organic acid includes neutralizing the organic acid to form a salt and thermally decomposing the resulting salt to form an energy densified product. In certain embodiments, the organic acid is levulinic acid. The process may further include upgrading the energy densified product by conversion to alcohol and subsequent dehydration.

  20. Effect of organic acids on shrimp pathogen, Vibrio harveyi.

    PubMed

    Mine, Saori; Boopathy, Raj

    2011-07-01

    Shrimp farming accounts for more than 40% of the world shrimp production. Luminous vibriosis is a shrimp disease that causes major economic losses in the shrimp industry as a result of massive shrimp kills due to infection. Some farms in the South Asia use antibiotics to control Vibrio harveyi, a responsible pathogen for luminous vibriosis. However, the antibiotic-resistant strain was found recently in many shrimp farms, which makes it necessary to develop alternative pathogen control methods. Short-chain fatty acids are metabolic products of organisms, and they have been used as food preservatives for a long time. Organic acids are also commonly added in feeds in animal husbandry, but not in aquaculture. In this study, growth inhibitory effects of short-chain fatty acids, namely formic acid, acetic acid, propionic acid, and butyric acid, on V. harveyi were investigated. Among four acids, formic acid showed the strongest inhibitory effect followed by acetic acid, propionic acid, and butyric acid. The minimum inhibitory concentration (MIC) of 0.035% formic acid suppressed growth of V. harveyi. The major inhibitory mechanism seems to be the pH effect of organic acids. The effective concentration 50 (EC50) values at 96 h inoculation for all organic acids were determined to be 0.023, 0.041, 0.03, and 0.066% for formic, acetic, propionic, and butyric acid, respectively. The laboratory study results are encouraging to formulate shrimp feeds with organic acids to control vibrio infection in shrimp aquaculture farms.

  1. Acidic organic compounds in beverage, food, and feed production.

    PubMed

    Quitmann, Hendrich; Fan, Rong; Czermak, Peter

    2014-01-01

    Organic acids and their derivatives are frequently used in beverage, food, and feed production. Acidic additives may act as buffers to regulate acidity, antioxidants, preservatives, flavor enhancers, and sequestrants. Beneficial effects on animal health and growth performance have been observed when using acidic substances as feed additives. Organic acids could be classified in groups according to their chemical structure. Each group of organic acids has its own specific properties and is used for different applications. Organic acids with low molecular weight (e.g. acetic acid, lactic acid, and citric acid), which are part of the primary metabolism, are often produced by fermentation. Others are produced more economically by chemical synthesis based on petrochemical raw materials on an industrial scale (e.g. formic acid, propionic and benzoic acid). Biotechnology-based production is of interest due to legislation, consumer demand for natural ingredients, and increasing environmental awareness. In the United States, for example, biocatalytically produced esters for food applications can be labeled as "natural," whereas identical conventional acid catalyst-based molecules cannot. Natural esters command a price several times that of non-natural esters. Biotechnological routes need to be optimized regarding raw materials and yield, microorganisms, and recovery methods. New bioprocesses are being developed for organic acids, which are at this time commercially produced by chemical synthesis. Moreover, new organic acids that could be produced with biotechnological methods are under investigation for food applications.

  2. Temporal Variations of Organic Acids in Sumac Fruit

    SciTech Connect

    Robbins, C.; Mulcahy, F.; Somayajula, K.; Edenborn, H.M.

    2006-10-01

    Extracts from staghorn sumac (Rhus typhina) fruits were obtained from fresh fruits obtained from June to October in two successive years. Total acidity, pH, and concentrations of malic and succinic acids determined using liquid chromatography were measured for each extract. Acidity and acid concentrations reached their maxima in late July, and declined slowly thereafter. Malic and succinic acid concentrations in the extracts reached maxima of about 4 and 0.2% (expressed per unit weight of fruit), respectively. Malic and succinic acids were the only organic acids observed in the extracts, and mass balance determinations indicate that these acids are most likely the only ones present in appreciable amounts.

  3. Purification Or Organic Acids Using Anion Exchange Chromatography.

    DOEpatents

    Ponnampalam; Elankovan

    2001-09-04

    Disclosed is a cost-effective method for purifying and acidifying carboxylic acids, including organic acids and amino acids. The method involves removing impurities by allowing the anionic form of the carboxylic acid to bind to an anion exchange column and washing the column. The carboxylic anion is displaced as carboxylic acid by washing the resin with a strong inorganic anion. This method is effective in removing organic carboxylic acids and amino acids from a variety of industrial sources, including fermentation broths, hydrolysates, and waste streams.

  4. D-Amino Acids in Living Higher Organisms

    NASA Astrophysics Data System (ADS)

    Fujii, Noriko

    2002-04-01

    The homochirality of biological amino acids (L-amino acids) and of the RNA/DNA backbone (D-ribose) might have become established before the origin of life. It has been considered that D-amino acids and L-sugars were eliminated on the primitive Earth. Therefore, the presence and function of D-amino acids in living organisms have not been studied except for D-amino acids in the cell walls of microorganisms. However, D-amino acids were recently found in various living higher organisms in the form of free amino acids, peptides, and proteins. Free D-aspartate and D-serine are present and may have important physiological functions in mammals. D-amino acids in peptides are well known as opioid peptides and neuropeptides. In protein, D-aspartate residues increase during aging. This review deals with recent advances in the study of D-amino acids in higher organisms.

  5. Organic acids in continental background aerosols

    NASA Astrophysics Data System (ADS)

    Limbeck, Andreas; Puxbaum, Hans

    With a newly developed method aerosol samples from three distinctly different continental sites were analyzed: an urban site (Vienna), a savanna site in South Africa (Nylsvley Nature Reserve, NNR) and a free tropospheric continental background site (Sonnblick Observatory, SBO). In all samples a range of monocarboxylic acids (MCAs) and dicarboxylic acids (DCAs) has been identified and quantified. The three most abundant MCAs in Vienna were the C18, C16 and C14 acids with concentrations of 66, 45 and 36 ng m -3, respectively. At the mid tropospheric background site (SBO) the three most abundant MCAs were the C18, C16 and C12 acid. For the DCAs at all three sites oxalic, malonic and succinic acid were the dominant compounds. For some individual compounds an information about the sources could be obtained. For example the determined unsaturated MCAs in South Africa appear to result from biogenic sources whereas in Vienna those acids are considered to be derived from combustion processes. Oxalic and glyoxalic acid appear to have a free tropospheric air chemical source. The relative high amounts at SBO in comparison to Vienna can only be explained by secondary formation of oxalic acid in the atmosphere.

  6. Biobased organic acids production by metabolically engineered microorganisms.

    PubMed

    Chen, Yun; Nielsen, Jens

    2016-02-01

    Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed. PMID:26748037

  7. Structure of seven organic salts assembled from 2,6-diaminopyridine with monocarboxylic acids, dicarboxylic acids, and tetracarboxylic acids

    NASA Astrophysics Data System (ADS)

    Gao, Xingjun; Zhang, Huan; Wen, Xianhong; Liu, Bin; Jin, Shouwen; Wang, Daqi

    2015-08-01

    Studies concentrating on non-covalent interactions between the organic base of 2,6-diaminopyridine, and carboxylic acids have led to an increased understanding of the role 2,6-diaminopyridine in binding with carboxylic acid derivatives. Here anhydrous and hydrated multi-component organic acid-base salts of 2,6-diaminopyridine have been prepared with the carboxylic acids as nicotinic acid, o-chlorobenzoic acid, 1,3-benzodioxole-5-carboxylic acid, 3,5-dinitrosalicylic acid, 4-nitro-phthalic acid, 1,4-cyclohexanedicarboxylic acid, and butane-1,2,3,4-tetracarboxylic acid. The seven crystalline compounds were characterized by X-ray diffraction analysis, infrared (IR), melting point (mp), and elemental analysis. All structures adopted the hetero R22(8) supramolecular synthons. The supramolecular architectures bear extensive Nsbnd H⋯N, Osbnd H⋯N, Osbnd H⋯O, Nsbnd H⋯O, and CH⋯O associations as well as other nonbonding contacts as CHsbnd N, CH2sbnd O, π-π, C-π, O-π, Cl-π, Clsbnd O, and Osbnd O interactions. The role of weak and strong hydrogen bonding in the crystal packing is ascertained.

  8. [Effects of low molecular weight organic acids on speciation of exogenous Cu in an acid soil].

    PubMed

    Huang, Guo-Yong; Fu, Qing-Ling; Zhu, Jun; Wan, Tian-Ying; Hu, Hong-Qing

    2014-08-01

    In order to ascertain the effect of LMWOA (citric acid, tartaric acid, oxalic acid) on Cu-contaminated soils and to investigate the change of Cu species, a red soil derived from quartz sandstone deposit was added by Cu (copper) in the form of CuSO4 x 5H2O so as to simulate soil Cu pollution, keeping the additional Cu concentrations were 0, 100, 200, 400 mg x kg(-1) respectively. After 9 months, different LMWOA was also added into the simulated soil, keeping the additional LMWOAs in soil were 0, 5, 10, 20 mmol x kg(-1) respectively. After 2 weeks incubation, the modified sequential extraction method on BCR (European Communities Bureau of Reference) was used to evaluate the effects of these LMWOAs on the changes of copper forms in soil. The result showed that the percentage of weak acid dissolved Cu, the most effective form in the soil increased with three organic acids increase in quantity in the simulated polluted soil. And there was a good activation effect on Cu in the soil when organic acid added. Activation effects on Cu increased with concentration of citric acid increasing, but it showed a rise trend before they are basically remained unchanged in the case of tartaric acid and oxalic acid added in the soil. On the contrary, the state of the reduction of copper which was regarded as a complement for effective state decreased with the increased concentration of organic acid in the soil, especially with citric acid. When 20 mmol x kg(-1) oxalic acid and citric acid were added into the soil, the activation effect was the best; whereas for tartaric, the concentration was 10 mmol x kg(-1). In general, the effect on the changes of Cu forms in the soil is citric acid > tartaric acid > oxalic acid.

  9. Habituation to organic acid anions induces resistance to acid and bile in Listeria monocytogenes.

    PubMed

    Zhang, Yimin; Carpenter, Charles E; Broadbent, Jeff R; Luo, Xin

    2014-03-01

    We evaluated the intrinsic and inducible resistance of four human pathogenic strains of Listeria monocytogenes to acid and bile, factors associated with virulence. Cells were grown in media at pH 7.4, or in media at pH 6.0 containing 0 (HCl control) or 4.75 mM of different organic acids, harvested at stationary or mid log phase, and challenged for 1h in acid or bile. Stationary phase cells were intrinsically more resistant to either challenge than log phase cells, and large differences between strains were evident among the latter. Compared to the HCl control, habituation to log phase with organic acids induced significant (p<0.05) and meaningful (≥1 log) increases in acid resistance of three of four strains tested, and in bile resistance of two strains suggesting that exposure to organic acid anions may enhance virulence in L. monocytogenes.

  10. The biohydrogenation of α-linoleic acid and oleic acid by rumen micro-organisms

    PubMed Central

    Wilde, P. F.; Dawson, R. M. C.

    1966-01-01

    1. α-[U-14C]Linolenic acid was incubated with the rumen contents of sheep and the metabolic products were characterized by thin-layer chromatography, gas–liquid chromatography and absorption spectroscopy in the ultraviolet and infrared. 2. A tentative scheme for the biohydrogenation route to stearic acid is presented. The main pathway is through diconjugated cis–cis–cis-octadecatrienoic acid, non-conjugated trans–cis (cis–trans)-octadecadienoic acid and trans-octadecenoic acid, but other pathways are apparent. 3. Washed rumen micro-organisms possessed only a limited capacity to hydrogenate α-linolenic acid and oleic acid but the rate was greatly stimulated by a factor(s) present in the supernatant rumen liquor. 4. Pure cultures of Clostridium perfringens, Streptococcus faecalis, Escherichia coli and a coliform organism isolated from sheep faeces possessed negligible ability to hydrogenate unsaturated fatty acids compared with a mixed population of rumen micro-organisms. Butyrivibrio fibrisolvens slowly converted linoleic acid into octadecenoic acid. ImagesFig. 1.Fig. 2.Fig. 3. PMID:4287407

  11. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    PubMed

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies.

  12. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  13. Organic geochemistry of amino acids: Precambrian to recent

    SciTech Connect

    Engel, M.H.; Macko, S.A.

    1985-01-01

    Since the discovery of amino acids in fossils (Abelson, 1954), considerable effort has been made to elucidate the origin and distribution of amino acids in geologic materials. Racemization and decomposition reactions of amino acids and peptides derived via the natural hydrolysis of protein constituents of organisms have been extensively studied. While the ubiquity of amino acids presents a challenge for discerning their indigeneity in geologic samples, careful analyses have resulted in successful applications of amino acid racemization and decomposition reactions for investigations of geochronologic, paleoclimatic, stratigraphic, diagenetic and chemotaxonomic problems for Quaternary age samples. An investigation of amino acids in sediments from Baffin Island fjords indicates that their distribution may also provide data with respect to the relative contributions of marine and terrigenous organic matter to recent sediments. While the absence of unstable amino acids and the presence of racemic amino acids in a sample may preclude very recent contamination, the possibility of retardation of amino acid racemization rates subsequent to geopolymer formation must also be considered. Studies of amino acids in Paleozoic, Mesozoic and early Cenozoic age samples are limited. Precambrian samples, however, have received much attention, given the potential (however slight) for isolating compounds representative of the earliest living systems. A future approach for elucidating the origin(s) of amino acids in ancient samples may be analyses of their individual stable isotopic compositions.

  14. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian; Kleff, Susanne; Guettler, Michael V

    2013-04-30

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  15. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian; Kleff, Susanne; Guettler, Michael V.

    2012-02-21

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  16. Modeling the influence of organic acids on soil weathering

    USGS Publications Warehouse

    Lawrence, Corey R.; Harden, Jennifer W.; Maher, Kate

    2014-01-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  17. Modeling the influence of organic acids on soil weathering

    NASA Astrophysics Data System (ADS)

    Lawrence, Corey; Harden, Jennifer; Maher, Kate

    2014-08-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  18. Interaction of Humic Acids with Organic Toxicants

    NASA Astrophysics Data System (ADS)

    Tchaikovskaya, O. N.; Yudina, N. V.; Maltseva, E. V.; Nechaev, L. V.; Svetlichnyi, V. A.

    2016-08-01

    Interaction of humic acids with polyaromatic hydrocarbons (PAH) (naphthalene and anthracene) and triazole series fungicides (cyproconazole (CC) and tebuconazole (TC)) is investigated by the method of fluorescence quenching depending on the concentration of substances in solutions and their structural features. Humic acids were modified by mechanochemical activation in a planetary mill. The complex character of intermolecular interactions between PAH and fungicides with humic acids, including donor-acceptor and hydrophobic binding, is established. Thermodynamically stable conformations of biocide molecules were estimated using ChemOffice CS Chem3D 8.0 by methods of molecular mechanics (MM2) and molecular dynamics. Biocide molecules with pH 7 are in energetically favorable position when the benzene and triazole rings are almost parallel to each other. After acidification of solutions to pH 4.5, the CC molecule retains the geometry for which donor-acceptor interactions are possible: the benzene ring in the molecule represents the electron donor, and triazole is the acceptor. In this case, the electron density in CC is redistributed easier, which is explained by a smaller number of carbon atoms between the triazole and benzene rings, unlike TC. As a result, the TC triazole ring is protonated to a greater degree, acquiring a positive charge, and enters into donoracceptor interactions with humic acid (HA) samples. The above-indicated bond types allow HA to participate actively in sorption processes and to provide their interaction with biocides and PAH and hence, to act as detoxifying agents for recultivation of the polluted environment.

  19. [Use of organic acids in acne and skin discolorations therapy].

    PubMed

    Kapuścińska, Alicja; Nowak, Izabela

    2015-01-01

    Acne is one of the most frequent skin disorders that occurs in puberty, but often adults also have acne. The most important factors responsible for acne are elevated production of sebum by hyperactive sebaceous glands and blockage of the follicle because of hyperkeratosis [14]. The third etiopathogenic factor of acne is excessive microflora reproduction [8]. The most significant bacterium that is responsible for formation of skin lesions is Propionibacterium acnes, a rod-shaped Gram-positive and aerotolerant anaerobic bacterium. It is estimated that P. acnes is responsible for acne in approximately 80% of people aged 11 to 30 [27,40]. Even healed skin lesions can often cause skin discolorations and scar formation [51]. Exfoliating chemical substances that are commonly used in dermatology and cosmetology are organic acids. Exfoliating treatment using organic acids is called "chemical peeling" and consists of controlled application of those substances on the skin [38]. The depth of exfoliation depends on organic acid concentration, type of substance and contact time with the skin [41]. Using exfoliating agents seems to be helpful in excessive keratinization - one of several factors responsible for acne. Moreover, epidermis exfoliation is a popular method of removing skin discoloration [22]. Considering chemical structure, exfoliating substances that are most often used in cosmetology contain alpha-hydroxyacids (glycolic acid, lactic acid, mandelic acid and citric acid), beta-hydroxyacids (salicylic acid) and other organic acids, such as trichloroacetic acid and pyruvic acid [47]. In this article, a literature review of use of organic acids in acne and skin discoloration therapy is presented. PMID:25811473

  20. [Use of organic acids in acne and skin discolorations therapy].

    PubMed

    Kapuścińska, Alicja; Nowak, Izabela

    2015-03-22

    Acne is one of the most frequent skin disorders that occurs in puberty, but often adults also have acne. The most important factors responsible for acne are elevated production of sebum by hyperactive sebaceous glands and blockage of the follicle because of hyperkeratosis [14]. The third etiopathogenic factor of acne is excessive microflora reproduction [8]. The most significant bacterium that is responsible for formation of skin lesions is Propionibacterium acnes, a rod-shaped Gram-positive and aerotolerant anaerobic bacterium. It is estimated that P. acnes is responsible for acne in approximately 80% of people aged 11 to 30 [27,40]. Even healed skin lesions can often cause skin discolorations and scar formation [51]. Exfoliating chemical substances that are commonly used in dermatology and cosmetology are organic acids. Exfoliating treatment using organic acids is called "chemical peeling" and consists of controlled application of those substances on the skin [38]. The depth of exfoliation depends on organic acid concentration, type of substance and contact time with the skin [41]. Using exfoliating agents seems to be helpful in excessive keratinization - one of several factors responsible for acne. Moreover, epidermis exfoliation is a popular method of removing skin discoloration [22]. Considering chemical structure, exfoliating substances that are most often used in cosmetology contain alpha-hydroxyacids (glycolic acid, lactic acid, mandelic acid and citric acid), beta-hydroxyacids (salicylic acid) and other organic acids, such as trichloroacetic acid and pyruvic acid [47]. In this article, a literature review of use of organic acids in acne and skin discoloration therapy is presented.

  1. On the source of organic acid aerosol layers above clouds.

    PubMed

    Sorooshian, Armin; Lu, Miao-Ling; Brechtel, Fred J; Jonsson, Haflidi; Feingold, Graham; Flagan, Richard C; Seinfeld, John H

    2007-07-01

    During the July 2005 Marine Stratus/Stratocumulus Experiment (MASE) and the August-September 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter probed aerosols and cumulus clouds in the eastern Pacific Ocean off the coast of northern California and in southeastern Texas, respectively. An on-board particle-into-liquid sampler (PILS) quantified inorganic and organic acid species with < or = 5-min time resolution. Ubiquitous organic aerosol layers above cloud with enhanced organic acid levels were observed in both locations. The data suggest that aqueous-phase reactions to produce organic acids, mainly oxalic acid, followed by droplet evaporation is a source of elevated organic acid aerosol levels above cloud. Oxalic acid is observed to be produced more efficiently relative to sulfate as the cloud liquid water content increases, corresponding to larger and less acidic droplets. As derived from large eddy simulations of stratocumulus underthe conditions of MASE, both Lagrangian trajectory analysis and diurnal cloudtop evolution provide evidence that a significant fraction of the aerosol mass concentration above cloud can be accounted for by evaporated droplet residual particles. Methanesulfonate data suggest that entrainment of free tropospheric aerosol can also be a source of organic acids above boundary layer clouds.

  2. Organic acids for performance enhancement in pig diets.

    PubMed

    Partanen, K H; Mroz, Z

    1999-06-01

    Organic acids and their salts appear to be potential alternatives to prophylactic in-feed antibiotics and growth promoters in order to improve the performance of weaned piglets, fattening pigs and reproductive sows, although their growth-promoting effects are generally less than that of antibiotics. Based on an analysis of published data, the growth-promoting effect of formates, fumarates and citrates did not differ in weaned piglets. In fattening pigs, formates were the most effective followed by fumarates, whereas propionates did not improve growth performance. These acids improved the feedgain ratio of both weaned piglets and fattening pigs. In weaned piglets, the growth-promoting effects of dietary organic acids appear to depend greatly on their influence on feed intake. In sows, organic acids may have anti-agalactia properties. Successful application of organic acids in the diets for pigs requires an understanding of their modes of action. It is generally considered that dietary organic acids or their salts lower gastric pH, resulting in increased activity of proteolytic enzymes and gastric retention time, and thus improved protein digestion. Reduced gastric pH and increased retention time have been difficult to demonstrate, whereas improved apparent ileal digestibilities of protein and amino acids have been observed with growing pigs, but not in weaned piglets. Organic acids may influence mucosal morphology, as well as stimulate pancreatic secretions, and they also serve as substrates in intermediary metabolism. These may further contribute to improved digestion, absorption and retention of many dietary nutrients. Organic acid supplementation reduces dietary buffering capacity, which is expected to slow down the proliferation and|or colonization of undesirable microbes, e.g. Escherichia coli, in the gastro-ileal region. However, reduced scouring has been observed in only a few studies. As performance responses to dietary organic acids in pigs often varies

  3. Acoustic properties of organic acid mixtures in water

    NASA Technical Reports Server (NTRS)

    Macavei, I.; Petrisor, V.; Auslaender, D.

    1974-01-01

    The variation of the rate of propagation of ultrasounds in organic acid mixtures in water points to structural changes caused by interactions that take place under conditions of thermal agitation, at different acid concentrations. At the same time, a difference is found in the changes in velocity as a function of the length of the carbon chain of the acids in the mixture as a result of their effect on the groups of water molecules associated by hydrogen bonds.

  4. Organic acids and bases: Review of toxicological studies

    SciTech Connect

    Leung, H.W.; Paustenbach, D.J. )

    1990-01-01

    Organic acids and bases are among the most frequently used chemicals in the manufacturing industries. However, the toxicology of only a number of them has been fully characterized, and for fewer still have occupational exposure limits been established. This paper reviews the acute and chronic toxicity data of the organic acids and bases, and considers the mechanism by which these chemicals produce their effects. A methodology for establishing preliminary occupational exposure limits based on the physicochemical properties of these chemicals is presented. Workplace exposure limits for 20 organic acids and bases which currently have no exposure guidelines are suggested. Advice regarding appropriate medical treatment of exposure to these materials is discussed. 98 references.

  5. EFFECT OF ACIDITY ON SECONDARY ORGANIC AEROSOL FORMATION FROM ISOPRENE

    EPA Science Inventory

    The effect of particle-phase acidity on secondary organic aerosol (SOA) formation from isoprene is investigated in a laboratory chamber study, in which the acidity of the inorganic seed aerosol was controlled systematically. The observed enhancement in SOA mass concentration is c...

  6. Perfluorinated resinsulfonic acid--a catalyst for certain organic reactions

    SciTech Connect

    Etlis, V.S.; Beshenova, E.P.; Semenova, E.A.; Shomina, F.N.; Dreiman, N.A.; Balaev, G.A.

    1986-09-10

    The purpose of this work was to examine the possibility of using, as a catalyst in certain organic reactions, the perfluorinated resinsulfonic acid F-4SK in the H form, which is an analog of the perfluorinated resinsulfonic acid Nafion-H.

  7. Transformation of organic and inorganic compounds in trifluoroacetic acid

    NASA Astrophysics Data System (ADS)

    Vishnetskaya, M. V.; Mel'nikov, M. Ya.

    2016-09-01

    It is established that the effectiveness of fluorine-containing acids in the transformation of organic and inorganic substrates is due to the ability of the acid to perform several functions: to accumulate relatively high concentrations of molecular oxygen, to activate it, and to serve as a hydrogen-containing medium.

  8. Association Mapping of Main Tomato Fruit Sugars and Organic Acids

    PubMed Central

    Zhao, Jiantao; Xu, Yao; Ding, Qin; Huang, Xinli; Zhang, Yating; Zou, Zhirong; Li, Mingjun; Cui, Lu; Zhang, Jing

    2016-01-01

    Association mapping has been widely used to map the significant associated loci responsible for natural variation in complex traits and are valuable for crop improvement. Sugars and organic acids are the most important metabolites in tomato fruits. We used a collection of 174 tomato accessions composed of Solanum lycopersicum (123 accessions) and S. lycopersicum var cerasiforme (51 accessions) to detect significantly associated loci controlling the variation of main sugars and organic acids. The accessions were genotyped with 182 SSRs spreading over the tomato genome. Association mapping was conducted on the main sugars and organic acids detected by gas chromatography-mass spectrometer (GC-MS) over 2 years using the mixed linear model (MLM). We detected a total of 58 significantly associated loci (P < 0.001) for the 17 sugars and organic acids, including fructose, glucose, sucrose, citric acid, malic acid. These results not only co-localized with several reported QTLs, including fru9.1/PV, suc9.1/PV, ca2.1/HS, ca3.1/PV, ca4.1/PV, and ca8.1/PV, but also provided a list of candidate significantly associated loci to be functionally validated. These significantly associated loci could be used for deciphering the genetic architecture of tomato fruit sugars and organic acids and for tomato quality breeding. PMID:27617019

  9. Association Mapping of Main Tomato Fruit Sugars and Organic Acids.

    PubMed

    Zhao, Jiantao; Xu, Yao; Ding, Qin; Huang, Xinli; Zhang, Yating; Zou, Zhirong; Li, Mingjun; Cui, Lu; Zhang, Jing

    2016-01-01

    Association mapping has been widely used to map the significant associated loci responsible for natural variation in complex traits and are valuable for crop improvement. Sugars and organic acids are the most important metabolites in tomato fruits. We used a collection of 174 tomato accessions composed of Solanum lycopersicum (123 accessions) and S. lycopersicum var cerasiforme (51 accessions) to detect significantly associated loci controlling the variation of main sugars and organic acids. The accessions were genotyped with 182 SSRs spreading over the tomato genome. Association mapping was conducted on the main sugars and organic acids detected by gas chromatography-mass spectrometer (GC-MS) over 2 years using the mixed linear model (MLM). We detected a total of 58 significantly associated loci (P < 0.001) for the 17 sugars and organic acids, including fructose, glucose, sucrose, citric acid, malic acid. These results not only co-localized with several reported QTLs, including fru9.1/PV, suc9.1/PV, ca2.1/HS, ca3.1/PV, ca4.1/PV, and ca8.1/PV, but also provided a list of candidate significantly associated loci to be functionally validated. These significantly associated loci could be used for deciphering the genetic architecture of tomato fruit sugars and organic acids and for tomato quality breeding.

  10. Association Mapping of Main Tomato Fruit Sugars and Organic Acids.

    PubMed

    Zhao, Jiantao; Xu, Yao; Ding, Qin; Huang, Xinli; Zhang, Yating; Zou, Zhirong; Li, Mingjun; Cui, Lu; Zhang, Jing

    2016-01-01

    Association mapping has been widely used to map the significant associated loci responsible for natural variation in complex traits and are valuable for crop improvement. Sugars and organic acids are the most important metabolites in tomato fruits. We used a collection of 174 tomato accessions composed of Solanum lycopersicum (123 accessions) and S. lycopersicum var cerasiforme (51 accessions) to detect significantly associated loci controlling the variation of main sugars and organic acids. The accessions were genotyped with 182 SSRs spreading over the tomato genome. Association mapping was conducted on the main sugars and organic acids detected by gas chromatography-mass spectrometer (GC-MS) over 2 years using the mixed linear model (MLM). We detected a total of 58 significantly associated loci (P < 0.001) for the 17 sugars and organic acids, including fructose, glucose, sucrose, citric acid, malic acid. These results not only co-localized with several reported QTLs, including fru9.1/PV, suc9.1/PV, ca2.1/HS, ca3.1/PV, ca4.1/PV, and ca8.1/PV, but also provided a list of candidate significantly associated loci to be functionally validated. These significantly associated loci could be used for deciphering the genetic architecture of tomato fruit sugars and organic acids and for tomato quality breeding. PMID:27617019

  11. Association Mapping of Main Tomato Fruit Sugars and Organic Acids

    PubMed Central

    Zhao, Jiantao; Xu, Yao; Ding, Qin; Huang, Xinli; Zhang, Yating; Zou, Zhirong; Li, Mingjun; Cui, Lu; Zhang, Jing

    2016-01-01

    Association mapping has been widely used to map the significant associated loci responsible for natural variation in complex traits and are valuable for crop improvement. Sugars and organic acids are the most important metabolites in tomato fruits. We used a collection of 174 tomato accessions composed of Solanum lycopersicum (123 accessions) and S. lycopersicum var cerasiforme (51 accessions) to detect significantly associated loci controlling the variation of main sugars and organic acids. The accessions were genotyped with 182 SSRs spreading over the tomato genome. Association mapping was conducted on the main sugars and organic acids detected by gas chromatography-mass spectrometer (GC-MS) over 2 years using the mixed linear model (MLM). We detected a total of 58 significantly associated loci (P < 0.001) for the 17 sugars and organic acids, including fructose, glucose, sucrose, citric acid, malic acid. These results not only co-localized with several reported QTLs, including fru9.1/PV, suc9.1/PV, ca2.1/HS, ca3.1/PV, ca4.1/PV, and ca8.1/PV, but also provided a list of candidate significantly associated loci to be functionally validated. These significantly associated loci could be used for deciphering the genetic architecture of tomato fruit sugars and organic acids and for tomato quality breeding.

  12. Acid rain effects on aluminum mobilization clarified by inclusion of strong organic acids.

    PubMed

    Lawrence, G B; Sutherland, J W; Boylen, C W; Nierzwicki-Bauer, S W; Momen, B; Baldigo, B P; Simonin, H A

    2007-01-01

    Assessments of acidic deposition effects on aquatic ecosystems have often been hindered by complications from naturally occurring organic acidity. Measurements of pH and ANCG, the most commonly used indicators of chemical effects, can be substantially influenced by the presence of organic acids. Relationships between pH and inorganic Al, which is toxic to many forms of aquatic biota, are also altered by organic acids. However, when inorganic Al concentrations are plotted against ANC (the sum of Ca2+, Mg2+, Na+, and K+, minus S042-, N03-, and Cl-), a distinct threshold for Al mobilization becomes apparent. If the concentration of strong organic anions is included as a negative component of ANC, the threshold occurs at an ANC value of approximately zero, the value expected from theoretical charge balance constraints. This adjusted ANC is termed the base-cation surplus. The threshold relationship between the base-cation surplus and Al was shown with data from approximately 200 streams in the Adirondack region of New York, during periods with low and high dissolved organic carbon concentrations, and for an additional stream from the Catskill region of New York. These results indicate that (1) strong organic anions can contribute to the mobilization of inorganic Al in combination with SO42- and N03-, and (2) the presence of inorganic Al in surface waters is an unambiguous indication of acidic deposition effects.

  13. Acid rain effects on aluminum mobilization clarified by inclusion of strong organic acids

    USGS Publications Warehouse

    Lawrence, G.B.; Sutherland, J.W.; Boylen, C.W.; Nierzwicki-Bauer, S. W.; Momen, B.; Baldigo, Barry P.; Simonin, H.A.

    2007-01-01

    Assessments of acidic deposition effects on aquatic ecosystems have often been hindered by complications from naturally occurring organic acidity. Measurements of pH and ANCG, the most commonly used indicators of chemical effects, can be substantially influenced by the presence of organic acids. Relationships between pH and inorganic Al, which is toxic to many forms of aquatic biota, are also altered by organic acids. However, when inorganic Al concentrations are plotted against ANC (the sum of Ca2+, Mg 2+, Na+, and K+, minus SO42-, NO3-, and Cl-), a distinct threshold for Al mobilization becomes apparent. If the concentration of strong organic anions is included as a negative component of ANC, the threshold occurs at an ANC value of approximately zero, the value expected from theoretical charge balance constraints. This adjusted ANC is termed the base-cation surplus. The threshold relationship between the base-cation surplus and Al was shown with data from approximately 200 streams in the Adirondack region of New York, during periods with low and high dissolved organic carbon concentrations, and for an additional stream from the Catskill region of New York. These results indicate that (1) strong organic anions can contribute to the mobilization of inorganic Al in combination with SO42- and NO 3-, and (2) the presence of inorganic Al in surface waters is an unambiguous indication of acidic deposition effects. ?? 2007 American Chemical Society.

  14. Acid rain effects on aluminum mobilization clarified by inclusion of strong organic acids.

    PubMed

    Lawrence, G B; Sutherland, J W; Boylen, C W; Nierzwicki-Bauer, S W; Momen, B; Baldigo, B P; Simonin, H A

    2007-01-01

    Assessments of acidic deposition effects on aquatic ecosystems have often been hindered by complications from naturally occurring organic acidity. Measurements of pH and ANCG, the most commonly used indicators of chemical effects, can be substantially influenced by the presence of organic acids. Relationships between pH and inorganic Al, which is toxic to many forms of aquatic biota, are also altered by organic acids. However, when inorganic Al concentrations are plotted against ANC (the sum of Ca2+, Mg2+, Na+, and K+, minus S042-, N03-, and Cl-), a distinct threshold for Al mobilization becomes apparent. If the concentration of strong organic anions is included as a negative component of ANC, the threshold occurs at an ANC value of approximately zero, the value expected from theoretical charge balance constraints. This adjusted ANC is termed the base-cation surplus. The threshold relationship between the base-cation surplus and Al was shown with data from approximately 200 streams in the Adirondack region of New York, during periods with low and high dissolved organic carbon concentrations, and for an additional stream from the Catskill region of New York. These results indicate that (1) strong organic anions can contribute to the mobilization of inorganic Al in combination with SO42- and N03-, and (2) the presence of inorganic Al in surface waters is an unambiguous indication of acidic deposition effects. PMID:17265932

  15. Amino acids, fatty acids and sterols profile of some marine organisms from Portuguese waters.

    PubMed

    Pereira, David M; Valentão, Patrícia; Teixeira, Natércia; Andrade, Paula B

    2013-12-01

    Marine organisms have been increasingly regarded as good sources of new drugs for human therapeutics and also as nutrients for human diet. The amino acids, fatty acids and sterols profiles of the widely consumed echinoderms Paracentrotus lividus Lamarck (sea urchin), Holothuria forskali Chiaje (sea cucumber), the gastropod molluscs Aplysia fasciata Poiret and Aplysia punctata Cuvier (sea hares), from Portuguese waters, were established by GC-MS analysis. Overall, 10 amino acids, 14 fatty acids and 4 sterols were determined. In general, all species presented the 10 amino acids identified, with the exceptions of H. forskali, in which no glycine, proline, trans-4-hydroxy-proline or phenylalanine were found, and of A. fasciata which did not contain proline. Unsaturated fatty acids were predominant compounds, with those from the ω-6 series, being in higher amounts than their ω-3 homologues, and cholesterol being the main sterol. The amino acids, fatty acids and sterols qualitative and quantitative composition of A. fasciata, A. punctata and H. forskali is reported here for the first time.

  16. Microbial production of organic acids: expanding the markets.

    PubMed

    Sauer, Michael; Porro, Danilo; Mattanovich, Diethard; Branduardi, Paola

    2008-02-01

    Microbial production of organic acids is a promising approach for obtaining building-block chemicals from renewable carbon sources. Although some acids have been produced for some time and in-depth knowledge of these microbial production processes has been gained, further microbial production processes seem to be feasible, but large-scale production has not yet been possible. Citric, lactic and succinic acid production exemplify three processes in different stages of industrial development. Although the questions being addressed by current research on these processes are diverging, a comparison is helpful for understanding microbial organic acid production in general. In this article, through analysis of the current advances in production of these acids, we present guidelines for future developments in this fast-moving field. PMID:18191255

  17. Organic Acids Over Equatorial Africa: Results from DECAFE 88

    NASA Astrophysics Data System (ADS)

    Helas, Günter; Bingemer, Heinz; Andreae, Meinrat O.

    1992-04-01

    Gaseous short chain organic acids were measured during the dry season (February) in and above the rain forest of the northern Congo. Samples were taken at ground level and during several flights up to 4 km altitude. The organic acids were concentrated from the atmosphere by using "mist scrubbers," which expose a mist of deionized water to the air to be probed. The organic acids absorbed in the water were subsequently analyzed by ion chromatography. Formic, acetic, and pyruvic acids were identified in the samples. At ground level, average mixing ratios of gaseous formic and acetic acid of 0.5±0.6 and 0.6±0.7 parts per billion by volume (ppbv) (1 s), respectively, were found. Boundary layer mixing ratios, however, were significantly higher (3.7±1.0 and 2.7±0.9 ppbv). This indicates a downward net flux of these atmospheric trace components from the boundary layer to the surface. Free tropospheric samples taken above the cloud convection layer show lower mixing ratios again (0.9±0.3 and 0.7±0.1 ppbv). On the basis of this vertical distribution, direct emission by vegetation is not considered to be the dominant source. Biomass burning and photochemical oxidation of biogenic precursors are the major processes contributing to the enhancement of organic acids observed in the boundary layer. The organic acids parallel the profiles of ozone and CO, which suggests that their generation processes are closely related. Pyruvic acid is not correlated with formic acid, indicating that the oxidation of isoprene is not of major importance. In emissions from biomass fires, CO correlates well with formic and acetic acid, and thus some of the enhancement of organic acids in the boundary layer can be explained due to burning. However, an additional gas phase source for organic acids must exist to explain the observed ratio of formic to acetic acid. This is most likely the ozonolysis of olefins which were released as pyrolysis products from biomass burning.

  18. Amino Acid, Organic Acid, and Sugar Profiles of 3 Dry Bean (Phaseolus vulgaris L.) Varieties.

    PubMed

    John, K M Maria; Luthria, Devanand

    2015-12-01

    In this study, we compared the amino acid, organic acid and sugar profiles of 3 different varieties of dry beans (black bean [BB], dark red bean [DRB], and cranberry bean [CB]). The efficiency of the 2 commonly used extraction solvents (water and methanol:chloroform:water [2.5:1:1, v/v/v/]) for cultivar differentiation based on their metabolic profile was also investigated. The results showed that the BB contained the highest concentration of amino acids followed by DRB and CB samples. Phenylalanine, a precursor for the biosynthesis of phenolic secondary metabolites was detected at low concentration in CB samples and correlated with the reduced anthocyanins content in CB extract as documented in the published literature. Comparing the extractability of 2 extraction solvents, methanol:chloroform:water (2.5:1:1, v/v/v/) showed higher recoveries of amino acids from 3 beans, whereas, sugars were extracted in higher concentration with water. Analytically, gas chromatography detected sugars (9), amino acids (11), and organic acids (3) in a single run after derivatization of the extracts. In comparison, ion chromatography detected only sugars in a single run without any derivatization step with the tested procedure. Bean samples are better differentiated by the sugar content extracted with water as compared to the aqueous organic solvent extracts using partial least-square discriminant analysis.

  19. Crystal and molecular structure of eight organic acid-base adducts from 2-methylquinoline and different acids

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Jin, Shouwen; Tao, Lin; Liu, Bin; Wang, Daqi

    2014-08-01

    Eight supramolecular complexes with 2-methylquinoline and acidic components as 4-aminobenzoic acid, 2-aminobenzoic acid, salicylic acid, 5-chlorosalicylic acid, 3,5-dinitrosalicylic acid, malic acid, sebacic acid, and 1,5-naphthalenedisulfonic acid were synthesized and characterized by X-ray crystallography, IR, mp, and elemental analysis. All of the complexes are organic salts except compound 2. All supramolecular architectures of 1-8 involve extensive classical hydrogen bonds as well as other noncovalent interactions. The results presented herein indicate that the strength and directionality of the classical hydrogen bonds (ionic or neutral) between acidic components and 2-methylquinoline are sufficient to bring about the formation of binary organic acid-base adducts. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, the complexes 1-8 displayed 2D-3D framework structure.

  20. Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter

    NASA Astrophysics Data System (ADS)

    Ritchie, Jason D.; Perdue, E. Michael

    2003-01-01

    The acid-base properties of 14 standard and reference materials from the International Humic Substances Society (IHSS) were investigated by potentiometric titration. Titrations were conducted in 0.1 M NaCl under a nitrogen atmosphere, averaging 30 min from start to finish. Concentrations of carboxyl groups and phenolic groups were estimated directly from titration curves. Titration data were also fit to a modified Henderson-Hasselbalch model for two classes of proton-binding sites to obtain "best fit" parameters that describe proton-binding curves for the samples. The model was chosen for its simplicity, its ease of implementation in computer spreadsheets, and its excellent ability to describe the shapes of the titration curves. The carboxyl contents of the IHSS samples are in the general order: terrestrial fulvic acids > aquatic fulvic acids > Suwannee River natural organic matter (NOM) > aquatic humic acids > terrestrial humic acids. Overall, fulvic acids and humic acids have similar phenolic contents; however, all of the aquatically derived samples have higher phenolic contents than the terrestrially derived samples. The acid-base properties of reference Suwannee River NOM are surprisingly similar to those of standard Suwannee River humic acid. Results from titrations in this study were compared with other published results from both direct and indirect titrations. Typically, carboxyl contents for the IHSS samples were in agreement with the results from both methods of titration. Phenolic contents for the IHSS samples were comparable to those determined by direct titrations, but were significantly less than estimates of phenolic content that were based on indirect titrations with Ba(OH) 2 and Ca(OAc) 2. The average phenolic-to-carboxylic ratio of the IHSS samples is approximately 1:4. Models that assume a 1:2 ratio of phenolic-to-carboxylic groups may overestimate the relative contribution of phenolic groups to the acid-base chemistry of humic substances.

  1. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage.

    PubMed

    Bai, Cheng; Reilly, Charles C; Wood, Bruce W

    2006-02-01

    The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan. PMID:16415214

  2. Reactions Between Water Soluble Organic Acids and Nitrates in Atmospheric Aerosols: Recycling of Nitric Acid and Formation of Organic Salts

    SciTech Connect

    Wang, Bingbing; Laskin, Alexander

    2014-03-25

    Atmospheric particles often include a complex mixture of nitrate and secondary organic materials accumulated within the same individual particles. Nitrate as an important inorganic component can be chemically formed in the atmosphere. For instance, formation of sodium nitrate (NaNO3) and calcium nitrate Ca(NO3)2 when nitrogen oxide and nitric acid (HNO3) species react with sea salt and calcite, respectively. Organic acids contribute a significant fraction of photochemically formed secondary organics that can condense on the preexisting nitrate-containing particles. Here, we present a systematic microanalysis study on chemical composition of laboratory generated particles composed of water soluble organic acids and nitrates (i.e. NaNO3 and Ca(NO3)2) investigated using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and Fourier transform infrared micro-spectroscopy (micro-FTIR). The results show that water-soluble organic acids can react with nitrates releasing gaseous HNO3 during dehydration process. These reactions are attributed to acid displacement of nitrate with weak organic acids driven by the evaporation of HNO3 into gas phase due to its relatively high volatility. The reactions result in significant nitrate depletion and formation of organic salts in mixed organic acids/nitrate particles that in turn may affect their physical and chemical properties relevant to atmospheric environment and climate. Airborne nitrate concentrations are estimated by thermodynamic calculations corresponding to various nitrate depletions in selected organic acids of atmospheric relevance. The results indicate a potential mechanism of HNO3 recycling, which may further affect concentrations of gas- and aerosol-phase species in the atmosphere and the heterogeneous reaction chemistry between them.

  3. Organic acid contents in onion cultivars (Allium cepa L.).

    PubMed

    Rodríguez Galdón, Beatriz; Tascón Rodríguez, Catalina; Rodríguez Rodríguez, Elena; Díaz Romero, Carlos

    2008-08-13

    The following organic acids (glutamic, oxalic, pyruvic, malic, tartaric, citric, and fumaric), pungency, Brix degree, acidity, and pH were determined in onion cultivars (Texas, Guayonje, San Juan de la Rambla, Carrizal Alto, Carrizal Bajo, and Masca) harvested in the same agroclimatic conditions. Glutamic acid was the most abundant organic acid (325 +/- 133 mg/100 g) followed by citric acid (48.5 +/- 24.1 mg/100 g) and malic acid (43.6 +/- 10.4 mg/100 g). There were significant differences between the onion cultivars in the mean concentrations of all of the analyzed parameters. The San Juan de la Rambla and Masca cultivars presented, in general, higher concentrations of the organic acids than the other cultivars. Significant differences in most of the analyzed parameters were observed between the two seed origins for the Masca and San Juan de la Rambla cultivars. The onion samples tended to be classified according to the cultivar and, in the case of San Juan de la Rambla cultivar, according to the precedence of the seeds after applying discriminant analysis. PMID:18616262

  4. Metabolic evolution of Escherichia coli strains that produce organic acids

    SciTech Connect

    Grabar, Tammy; Gong, Wei; Yocum, R Rogers

    2014-10-28

    This invention relates to the metabolic evolution of a microbial organism previously optimized for producing an organic acid in commercially significant quantities under fermentative conditions using a hexose sugar as sole source of carbon in a minimal mineral medium. As a result of this metabolic evolution, the microbial organism acquires the ability to use pentose sugars derived from cellulosic materials for its growth while retaining the original growth kinetics, the rate of organic acid production and the ability to use hexose sugars as a source of carbon. This invention also discloses the genetic change in the microorganism that confers the ability to use both the hexose and pentose sugars simultaneously in the production of commercially significant quantities of organic acids.

  5. The Roles of Organic Acids in C4 Photosynthesis

    PubMed Central

    Ludwig, Martha

    2016-01-01

    Organic acids are involved in numerous metabolic pathways in all plants. The finding that some plants, known as C4 plants, have four-carbon dicarboxylic acids as the first product of carbon fixation showed these organic acids play essential roles as photosynthetic intermediates. Oxaloacetate (OAA), malate, and aspartate (Asp) are substrates for the C4 acid cycle that underpins the CO2 concentrating mechanism of C4 photosynthesis. In this cycle, OAA is the immediate, short-lived, product of the initial CO2 fixation step in C4 leaf mesophyll cells. The malate and Asp, resulting from the rapid conversion of OAA, are the organic acids delivered to the sites of carbon reduction in the bundle-sheath cells of the leaf, where they are decarboxylated, with the released CO2 used to make carbohydrates. The three-carbon organic acids resulting from the decarboxylation reactions are returned to the mesophyll cells where they are used to regenerate the CO2 acceptor pool. NADP-malic enzyme-type, NAD-malic enzyme-type, and phosphoenolpyruvate carboxykinase-type C4 plants were identified, based on the most abundant decarboxylating enzyme in the leaf tissue. The genes encoding these C4 pathway-associated decarboxylases were co-opted from ancestral C3 plant genes during the evolution of C4 photosynthesis. Malate was recognized as the major organic acid transferred in NADP-malic enzyme-type C4 species, while Asp fills this role in NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type plants. However, accumulating evidence indicates that many C4 plants use a combination of organic acids and decarboxylases during CO2 fixation, and the C4-type categories are not rigid. The ability to transfer multiple organic acid species and utilize different decarboxylases has been suggested to give C4 plants advantages in changing and stressful environments, as well as during development, by facilitating the balance of energy between the two cell types involved in the C4 pathway of CO2

  6. The Roles of Organic Acids in C4 Photosynthesis.

    PubMed

    Ludwig, Martha

    2016-01-01

    Organic acids are involved in numerous metabolic pathways in all plants. The finding that some plants, known as C4 plants, have four-carbon dicarboxylic acids as the first product of carbon fixation showed these organic acids play essential roles as photosynthetic intermediates. Oxaloacetate (OAA), malate, and aspartate (Asp) are substrates for the C4 acid cycle that underpins the CO2 concentrating mechanism of C4 photosynthesis. In this cycle, OAA is the immediate, short-lived, product of the initial CO2 fixation step in C4 leaf mesophyll cells. The malate and Asp, resulting from the rapid conversion of OAA, are the organic acids delivered to the sites of carbon reduction in the bundle-sheath cells of the leaf, where they are decarboxylated, with the released CO2 used to make carbohydrates. The three-carbon organic acids resulting from the decarboxylation reactions are returned to the mesophyll cells where they are used to regenerate the CO2 acceptor pool. NADP-malic enzyme-type, NAD-malic enzyme-type, and phosphoenolpyruvate carboxykinase-type C4 plants were identified, based on the most abundant decarboxylating enzyme in the leaf tissue. The genes encoding these C4 pathway-associated decarboxylases were co-opted from ancestral C3 plant genes during the evolution of C4 photosynthesis. Malate was recognized as the major organic acid transferred in NADP-malic enzyme-type C4 species, while Asp fills this role in NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type plants. However, accumulating evidence indicates that many C4 plants use a combination of organic acids and decarboxylases during CO2 fixation, and the C4-type categories are not rigid. The ability to transfer multiple organic acid species and utilize different decarboxylases has been suggested to give C4 plants advantages in changing and stressful environments, as well as during development, by facilitating the balance of energy between the two cell types involved in the C4 pathway of CO2

  7. Using organic acids to diagnose and manage recalcitrant patients.

    PubMed

    Rogers, Sherry A

    2006-01-01

    "Organic acids" refers to a broad class of compounds used in fundamental metabolic processes of the body. They provide valuable clues about functional nutrient deficiencies, mitochondrial energy production, intestinal dysbiosis, free radical overload, and more, including where to start when diagnosing a patient with complicated symptoms. Organic acids present a whole new exciting world of therapeutic options. They are one of the tools that enable us to identify and correct the underlying causes of disease, and not merely temporarily suppress symptoms with pharmaceuticals. The sicker the patient, the more they need this intervention: half the patients in intensive care units were found to be nutrient-deficient in studies that look at only 1 or a few of the many nutrients. Studies show that a patient's outcome is more dismal and his chances of dying are greater as undiagnosed nutrient deficiencies mount. Furthermore, studies confirm that giving pennies' worth of antioxidants to patients in intensive care can cut the death rate in half. What drug can accomplish this, much less for pennies a day? Doesn't it make more sense to individually determine the patients' deficiencies and correct them? Combined with companion tests of intracellular minerals, toxic elements (heavy metals), fatty acids, vitamins, and amino acids, organic acids testing can clearly indicate health challenges the patient will face in the future. In many cases, they are correctable and curable. This article explored only 5 categories of organic acids out of more than 9 and 29 organic acids out of more than 47. For physicians who want more information, there are several resources available. This knowledge, along with biochemical knowledge and patient experience, can further empower physicians to help truly heal their patients.

  8. Selective cellular acidification and toxicity of weak organic acids in an acidic microenvironment.

    PubMed

    Karuri, A R; Dobrowsky, E; Tannock, I F

    1993-12-01

    The mean extracellular pH (pHe) within solid tumours has been found to be lower than in normal tissues. Agents which cause intracellular acidification at low pHe might have selective toxicity towards cells in tumours. Weak acids (or their anions) with pKa values in the range of 4-6 have a higher proportion of molecules in the uncharged form at low pHe and can diffuse more rapidly into cells. The effects of organic acids including succinate, monomethyl succinate and malonate to acidify cells have been evaluated under conditions of different pHe in the acidic range. These weak acids caused intracellular acidification of murine EMT-6 and human MGH-U1 cells in a concentration and pHe dependent fashion. At concentrations of 10 mM and above, these acids also caused in vitro cytotoxicity to these cells at low pHe (< 6.5). The rate and extent of cellular acidification caused by these weak acids, and their cytotoxicity at low pHe, were enhanced by exposure to amiloride and 5-(N-ethyl-N-isopropyl)amiloride (EIPA), agents which inhibit Na+/H+ exchange, and hence the regulation of intracellular pH. Acid dependent cytotoxicity was also investigated in a murine solid tumour using the endpoints of growth delay and colony formation in vitro following treatment in vivo. Agents were tested alone or with 15 Gy X-rays to select a population of hypoxic (and presumably acidic) cells. Achievable serum concentrations of succinate were about 1 mM and no antitumour activity of succinate was detected when used in this way. It is concluded that weak acids are selectively taken up into cells, and can cause selective cellular acidification and toxicity, at low pHe in culture. Weak acids that are normal cellular metabolites are not toxic in vivo, but weak acids carrying cytotoxic groups offer the potential for selective uptake and toxicity under the conditions of low pHe that exist in many solid tumours.

  9. Selective cellular acidification and toxicity of weak organic acids in an acidic microenvironment.

    PubMed Central

    Karuri, A. R.; Dobrowsky, E.; Tannock, I. F.

    1993-01-01

    The mean extracellular pH (pHe) within solid tumours has been found to be lower than in normal tissues. Agents which cause intracellular acidification at low pHe might have selective toxicity towards cells in tumours. Weak acids (or their anions) with pKa values in the range of 4-6 have a higher proportion of molecules in the uncharged form at low pHe and can diffuse more rapidly into cells. The effects of organic acids including succinate, monomethyl succinate and malonate to acidify cells have been evaluated under conditions of different pHe in the acidic range. These weak acids caused intracellular acidification of murine EMT-6 and human MGH-U1 cells in a concentration and pHe dependent fashion. At concentrations of 10 mM and above, these acids also caused in vitro cytotoxicity to these cells at low pHe (< 6.5). The rate and extent of cellular acidification caused by these weak acids, and their cytotoxicity at low pHe, were enhanced by exposure to amiloride and 5-(N-ethyl-N-isopropyl)amiloride (EIPA), agents which inhibit Na+/H+ exchange, and hence the regulation of intracellular pH. Acid dependent cytotoxicity was also investigated in a murine solid tumour using the endpoints of growth delay and colony formation in vitro following treatment in vivo. Agents were tested alone or with 15 Gy X-rays to select a population of hypoxic (and presumably acidic) cells. Achievable serum concentrations of succinate were about 1 mM and no antitumour activity of succinate was detected when used in this way. It is concluded that weak acids are selectively taken up into cells, and can cause selective cellular acidification and toxicity, at low pHe in culture. Weak acids that are normal cellular metabolites are not toxic in vivo, but weak acids carrying cytotoxic groups offer the potential for selective uptake and toxicity under the conditions of low pHe that exist in many solid tumours. PMID:8260358

  10. Starch Modification by Organic Acids and Their Derivatives: A Review.

    PubMed

    Ačkar, Đurđica; Babić, Jurislav; Jozinović, Antun; Miličević, Borislav; Jokić, Stela; Miličević, Radoslav; Rajič, Marija; Šubarić, Drago

    2015-10-27

    Starch has been an inexhaustible subject of research for many decades. It is an inexpensive, readily-available material with extensive application in the food and processing industry. Researchers are continually trying to improve its properties by different modification procedures and expand its application. What is mostly applied in this view are their chemical modifications, among which organic acids have recently drawn the greatest attention, particularly with respect to the application of starch in the food industry. Namely, organic acids naturally occur in many edible plants and many of them are generally recognized as safe (GRAS), which make them ideal modification agents for starch intended for the food industry. The aim of this review is to give a short literature overview of the progress made in the research of starch esterification, etherification, cross-linking, and dual modification with organic acids and their derivatives.

  11. Indoor air chemistry: Formation of organic acids and aldehydes

    SciTech Connect

    Zhang, J.; Lioy, P.J. ||; Wilson, W.E.

    1994-12-31

    Laying emphasis on the formation of aldehydes and organic acids, the study has examined the gas-phase reactions of ozone with unsaturated VOCs. The formation of formaldehyde and formic acid was observed for all the three selected unsaturated VOCs: styrene, limonene, and 4-vinylcyclohexene. In addition, benzaldehyde was detected in the styrene-ozone-air reaction system, and acetic acid was also found in limonene-ozone-air system. The study has also examined the gas-phase reactions among formaldehyde, ozone, and nitrogen dioxide and found the formation of formic acid. The nitrate radical was suggested to play an important role in converting formaldehyde into formic acid. Experiments for all the reactions were conducted by using a 4.3 m{sup 3} Teflon chamber. Since the conditions for the reactions were similar to those for indoor environments, the results from the study can be implicated to real indoor situations and can be employed to support the findings and suggestions from the previous studies: certain aldehydes and organic acids could be generated by indoor chemistry.

  12. The abiotic degradation of soil organic matter to oxalic acid

    NASA Astrophysics Data System (ADS)

    Studenroth, Sabine; Huber, Stefan; Schöler, H. F.

    2010-05-01

    The abiotic degradation of soil organic matter to volatile organic compounds was studied intensely over the last years (Keppler et al., 2000; Huber et al., 2009). It was shown that soil organic matter is oxidised due to the presence of iron (III), hydrogen peroxide and chloride and thereby produces diverse alkyl halides, which are emitted into the atmosphere. The formation of polar halogenated compounds like chlorinated acetic acids which are relevant toxic environmental substances was also found in soils and sediments (Kilian et al., 2002). The investigation of the formation of other polar halogenated and non-halogenated compounds like diverse mono- and dicarboxylic acids is going to attain more and more importance. Due to its high acidity oxalic acid might have impacts on the environment e.g., nutrient leaching, plant diseases and negative influence on microbial growth. In this study, the abiotic formation of oxalic acid in soil is examined. For a better understanding of natural degradation processes mechanistic studies were conducted using the model compound catechol as representative for structural elements of the humic substances and its reaction with iron (III) and hydrogen peroxide. Iron is one of the most abundant elements on earth and hydrogen peroxide is produced by bacteria or through incomplete reduction of oxygen. To find suitable parameters for an optimal reaction and a qualitative and quantitative analysis method the following reaction parameters are varied: concentration of iron (III) and hydrogen peroxide, time dependence, pH-value and influence of chloride. Analysis of oxalic acid was performed employing an ion chromatograph equipped with a conductivity detector. The time dependent reaction shows a relatively fast formation of oxalic acid, the optimum yield is achieved after 60 minutes. Compared to the concentration of catechol an excess of hydrogen peroxide as well as a low concentration of iron (III) are required. In absence of chloride the

  13. Removal of lead by apatite and its stability in the presence of organic acids.

    PubMed

    Katoh, Masahiko; Makimura, Akihiko; Sato, Takeshi

    2016-12-01

    In this study, lead sorption and desorption tests were conducted with apatite and organic acids (i.e. citric, malic, and formic acids) to understand lead removal by apatite in the presence of an organic acid and lead dissolution from the lead- and organic-acid-sorbed apatite by such organic acid exposure. The lead sorption test showed that the amount of lead removed by apatite in the presence of organic acid varied depending on the type of acid used. The molar amounts of calcium dissolved from apatite in the presence and absence of organic acid were exactly the same as those of lead removed even under different pH conditions as well as different organic acid concentrations, indicating that the varying amount of lead removal in the presence of different organic acids resulted from the magnitude of the dissolution of apatite and the precipitation of lead phosphate minerals. The percentages of lead dissolved from the organic-acid-sorbed and non-organic-acid-sorbed apatite by all the organic acid extractions were equal and higher than those by water extraction. In particular, the highest extractions were observed in the non-organic-acid-sorbed apatite by citric and malic acids. These results suggest that to immobilize lead by the use of apatite in the presence of organic acids, much more apatite must be added than in the absence of organic acid, and that measures must be taken to ensure that the immobilized lead is not dissolved.

  14. Bio-based production of organic acids with Corynebacterium glutamicum.

    PubMed

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-03-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, L- and D-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. PMID:23199277

  15. Bio-based production of organic acids with Corynebacterium glutamicum.

    PubMed

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-03-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, L- and D-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers.

  16. Metabolism of Sugars and Organic Acids in Immature Grape Berries

    PubMed Central

    Hardy, P. J.

    1968-01-01

    Individual intact excised immature Sultana berries were supplied through the cut pedicel with 14C-sugars and organic acids. When 14C-hexoses were supplied malic and tartaric acids accounted for 25% and 10% of the total activity extracted after 24 hours, and sucrose was synthesized. It is proposed that the changes in the levels of organic acids during ripening are related to changes in the ability of the berry to synthesize them. Although administration of uniformly labeled sucrose resulted in the unequal labeling of glucose and fructose, the results indicate breakdown of sucrose by invertase. It is suggested that the route of entry of the pedicel-fed sugars into the berry may be different from the route taken by sugar translocated from the leaf. PMID:16656755

  17. Organic acids in cloud water and rainwater at a mountain site in acid rain areas of South China.

    PubMed

    Sun, Xiao; Wang, Yan; Li, Haiyan; Yang, Xueqiao; Sun, Lei; Wang, Xinfeng; Wang, Tao; Wang, Wenxing

    2016-05-01

    To investigate the chemical characteristics of organic acids and to identify their source, cloud water and rainwater samples were collected at Mount Lu, a mountain site located in the acid rain-affected area of south China, from August to September of 2011 and March to May of 2012. The volume-weighted mean (VWM) concentration of organic acids in cloud water was 38.42 μeq/L, ranging from 7.45 to 111.46 μeq/L, contributing to 2.50 % of acidity. In rainwater samples, organic acid concentrations varied from 12.39 to 68.97 μeq/L (VWM of 33.39 μeq/L). Organic acids contributed significant acidity to rainwater, with a value of 17.66 %. Formic acid, acetic acid, and oxalic acid were the most common organic acids in both cloud water and rainwater. Organic acids had an obviously higher concentration in summer than in spring in cloud water, whereas there was much less discrimination in rainwater between the two seasons. The contribution of organic acids to acidity was lower during summer than during spring in both cloud water (2.20 % in summer vs 2.83 % in spring) and rainwater (12.24 % in summer vs 19.89 % in spring). The formic-to-acetic acid ratio (F/A) showed that organic acids were dominated by primary emissions in 71.31 % of the cloud water samples and whole rainwater samples. Positive matrix factorization (PMF) analysis determined four factors as the sources of organic acids in cloud water, including biogenic emissions (61.8 %), anthropogenic emissions (15.28 %), marine emissions (15.07 %) and soil emissions (7.85 %). The findings from this study imply an indispensable role of organic acids in wet deposition, but organic acids may have a limited capacity to increase ecological risks in local environments. PMID:26841776

  18. Organic acids in cloud water and rainwater at a mountain site in acid rain areas of South China.

    PubMed

    Sun, Xiao; Wang, Yan; Li, Haiyan; Yang, Xueqiao; Sun, Lei; Wang, Xinfeng; Wang, Tao; Wang, Wenxing

    2016-05-01

    To investigate the chemical characteristics of organic acids and to identify their source, cloud water and rainwater samples were collected at Mount Lu, a mountain site located in the acid rain-affected area of south China, from August to September of 2011 and March to May of 2012. The volume-weighted mean (VWM) concentration of organic acids in cloud water was 38.42 μeq/L, ranging from 7.45 to 111.46 μeq/L, contributing to 2.50 % of acidity. In rainwater samples, organic acid concentrations varied from 12.39 to 68.97 μeq/L (VWM of 33.39 μeq/L). Organic acids contributed significant acidity to rainwater, with a value of 17.66 %. Formic acid, acetic acid, and oxalic acid were the most common organic acids in both cloud water and rainwater. Organic acids had an obviously higher concentration in summer than in spring in cloud water, whereas there was much less discrimination in rainwater between the two seasons. The contribution of organic acids to acidity was lower during summer than during spring in both cloud water (2.20 % in summer vs 2.83 % in spring) and rainwater (12.24 % in summer vs 19.89 % in spring). The formic-to-acetic acid ratio (F/A) showed that organic acids were dominated by primary emissions in 71.31 % of the cloud water samples and whole rainwater samples. Positive matrix factorization (PMF) analysis determined four factors as the sources of organic acids in cloud water, including biogenic emissions (61.8 %), anthropogenic emissions (15.28 %), marine emissions (15.07 %) and soil emissions (7.85 %). The findings from this study imply an indispensable role of organic acids in wet deposition, but organic acids may have a limited capacity to increase ecological risks in local environments.

  19. Corrosion of dental amalgams in solutions of organic acids.

    PubMed

    Palaghias, G

    1986-06-01

    A conventional and two high copper amalgams were tested in 0.5% aqueous solutions of acetic, formic, lactic and succinic acid. The corrosion behavior of the amalgams in the different solutions was evaluated by analyzing the soluble corrosion products using an atomic absorption spectrophotometer every month during a 6-month experimental period. The high copper amalgams showed a high dissolution rate in formic and lactic acid solutions from the initial stages of immersion when compared to the conventional. Later a marked decrease of the dissolution rate could be observed but it still remained at high levels. In acetic acid the amounts of elements dissolved from high copper amalgams were much less. Conventional amalgam released much smaller amounts of elements in almost all solutions tested except in the case of silver in lactic acid. Finally, in succinic acid solution, the amounts of elements dissolved were unexpectedly small considering the low pH of the solution and the dissolution rates of the amalgams in the other organic acid solutions. PMID:3461548

  20. Formation of Organic Tracers for Isoprene SOA under Acidic Conditions

    EPA Science Inventory

    The chemical compositions of a series of secondary organic aerosol (SOA) samples, formed by irradiating mixtures of isoprene and NO in a smog chamber in the absence or presence of acidic aerosols, were analyzed using derivatization-based GC-MS methods. In addition to the known is...

  1. The influence of organic acids in relation to acid deposition in controlling the acidity of soil and stream waters on a seasonal basis.

    PubMed

    Chapman, Pippa J; Clark, Joanna M; Reynolds, Brian; Adamson, John K

    2008-01-01

    Much uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH. These patterns, plus the strong relationships between ANC, Cl and DOC, suggest that cation exchange and seasonal changes in the production of DOC and seasalt deposition are driving a shift in the proportion of acidity attributable to strong acid anions, from atmospheric deposition, during winter to predominantly organic acids in summer.

  2. The influence of organic acids in relation to acid deposition in controlling the acidity of soil and stream waters on a seasonal basis.

    PubMed

    Chapman, Pippa J; Clark, Joanna M; Reynolds, Brian; Adamson, John K

    2008-01-01

    Much uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH. These patterns, plus the strong relationships between ANC, Cl and DOC, suggest that cation exchange and seasonal changes in the production of DOC and seasalt deposition are driving a shift in the proportion of acidity attributable to strong acid anions, from atmospheric deposition, during winter to predominantly organic acids in summer. PMID:17478019

  3. Gamma Peptide Nucleic Acids: As Orthogonal Nucleic Acid Recognition Codes for Organizing Molecular Self-Assembly.

    PubMed

    Sacui, Iulia; Hsieh, Wei-Che; Manna, Arunava; Sahu, Bichismita; Ly, Danith H

    2015-07-01

    Nucleic acids are an attractive platform for organizing molecular self-assembly because of their specific nucleobase interactions and defined length scale. Routinely employed in the organization and assembly of materials in vitro, however, they have rarely been exploited in vivo, due to the concerns for enzymatic degradation and cross-hybridization with the host's genetic materials. Herein we report the development of a tight-binding, orthogonal, synthetically versatile, and informationally interfaced nucleic acid platform for programming molecular interactions, with implications for in vivo molecular assembly and computing. The system consists of three molecular entities: the right-handed and left-handed conformers and a nonhelical domain. The first two are orthogonal to each other in recognition, while the third is capable of binding to both, providing a means for interfacing the two conformers as well as the natural nucleic acid biopolymers (i.e., DNA and RNA). The three molecular entities are prepared from the same monomeric chemical scaffold, with the exception of the stereochemistry or lack thereof at the γ-backbone that determines if the corresponding oligo adopts a right-handed or left-handed helix, or a nonhelical motif. These conformers hybridize to each other with exquisite affinity, sequence selectivity, and level of orthogonality. Recognition modules as short as five nucleotides in length are capable of organizing molecular assembly.

  4. Various instrumental approaches for determination of organic acids in wines.

    PubMed

    Zeravik, Jiri; Fohlerova, Zdenka; Milovanovic, Miodrag; Kubesa, Ondrej; Zeisbergerova, Marta; Lacina, Karel; Petrovic, Aleksandar; Glatz, Zdenek; Skladal, Petr

    2016-03-01

    Biosensors based on lactate oxidase, sarcosine oxidase and mixture of fumarase and sarcosine oxidase were used for monitoring of organic acids in wine samples. Additionally, tartaric acid was determined by modified colorimetric method based on formation of the vanadate-tartrate complex. The above mentioned methods were used for the analysis of 31 wine samples and obtained data were compared with the results from capillary electrophoresis as a basic standard method. This comparison showed a certain degree of correlation between biosensors and capillary electrophoresis. The provided information pointed to the potential uses of biosensors in the field of winemaking.

  5. Low-Vacuum Deposition of Glutamic Acid and Pyroglutamic Acid: A Facile Methodology for Depositing Organic Materials beyond Amino Acids

    PubMed Central

    Sugimoto, Iwao; Maeda, Shunsaku; Suda, Yoriko; Makihara, Kenji; Takahashi, Kazuhiko

    2014-01-01

    Thin layers of pyroglutamic acid (Pygl) have been deposited by thermal evaporation of the molten L-glutamic acid (L-Glu) through intramolecular lactamization. This deposition was carried out with the versatile handmade low-vacuum coater, which was simply composed of a soldering iron placed in a vacuum degassing resin chamber evacuated by an oil-free diaphragm pump. Molecular structural analyses have revealed that thin solid film evaporated from the molten L-Glu is mainly composed of L-Pygl due to intramolecular lactamization. The major component of the L-Pygl was in β-phase and the minor component was in γ-phase, which would have been generated from partial racemization to DL-Pygl. Electron microscopy revealed that the L-Glu-evaporated film generally consisted of the 20 nm particulates of Pygl, which contained a periodic pattern spacing of 0.2 nm intervals indicating the formation of the single-molecular interval of the crystallized molecular networks. The DL-Pygl-evaporated film was composed of the original DL-Pygl preserving its crystal structures. This methodology is promising for depositing a wide range of the evaporable organic materials beyond amino acids. The quartz crystal resonator coated with the L-Glu-evaporated film exhibited the pressure-sensing capability based on the adsorption-desorption of the surrounding gas at the film surface. PMID:25254114

  6. Low-Vacuum Deposition of Glutamic Acid and Pyroglutamic Acid: A Facile Methodology for Depositing Organic Materials beyond Amino Acids.

    PubMed

    Sugimoto, Iwao; Maeda, Shunsaku; Suda, Yoriko; Makihara, Kenji; Takahashi, Kazuhiko

    2014-01-01

    Thin layers of pyroglutamic acid (Pygl) have been deposited by thermal evaporation of the molten L-glutamic acid (L-Glu) through intramolecular lactamization. This deposition was carried out with the versatile handmade low-vacuum coater, which was simply composed of a soldering iron placed in a vacuum degassing resin chamber evacuated by an oil-free diaphragm pump. Molecular structural analyses have revealed that thin solid film evaporated from the molten L-Glu is mainly composed of L-Pygl due to intramolecular lactamization. The major component of the L-Pygl was in β-phase and the minor component was in γ-phase, which would have been generated from partial racemization to DL-Pygl. Electron microscopy revealed that the L-Glu-evaporated film generally consisted of the 20 nm particulates of Pygl, which contained a periodic pattern spacing of 0.2 nm intervals indicating the formation of the single-molecular interval of the crystallized molecular networks. The DL-Pygl-evaporated film was composed of the original DL-Pygl preserving its crystal structures. This methodology is promising for depositing a wide range of the evaporable organic materials beyond amino acids. The quartz crystal resonator coated with the L-Glu-evaporated film exhibited the pressure-sensing capability based on the adsorption-desorption of the surrounding gas at the film surface.

  7. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and fatty acids: Implications for atmospheric processing of organic aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Lin; Kawamura, Kimitaka; Cao, Fang; Lee, Meehye

    2016-04-01

    Stable carbon isotopic compositions (δ13C) were measured for 23 individual organic species including 9 dicarboxylic acids, 7 oxocarboxylic acids, 1 tricarboxylic acid, 2 α-dicarbonyls, and 4 fatty acids in the aerosols from Gosan background site in East Asia. δ13C values of particle phase glyoxal and methylglyoxal are significantly larger than those previously reported for isoprene and other precursors. The values are consistently less negative in oxalic acid (C2, average -14.1‰), glyoxylic acid (-13.8‰), pyruvic acid (-19.4‰), glyoxal (-13.5‰), and methylglyoxal (-18.6‰) compared to other organic species (e.g., palmitic acid, -26.3‰), which can be explained by the kinetic isotope effects during atmospheric oxidation of pre-aged precursors (e.g., isoprene) and the subsequent gas-particle partitioning after the evaporation of clouds or wet aerosols. The δ13C values of C2 is positively correlated with C2 to organic carbon ratio, indicating that photochemical production of C2 is more pronounced than its degradation during long-range atmospheric transport. The isotopic results also suggest that aqueous phase oxidation of glyoxal and methylglyoxal is a major formation process of oxalic acid via the intermediates such as glyoxylic acid and pyruvic acid. This study provides evidence that organic aerosols are intensively photochemically aged in the western North Pacific rim.

  8. Organic acid modeling and model validation: Workshop summary

    SciTech Connect

    Sullivan, T.J.; Eilers, J.M.

    1992-08-14

    A workshop was held in Corvallis, Oregon on April 9--10, 1992 at the offices of E S Environmental Chemistry, Inc. The purpose of this workshop was to initiate research efforts on the entitled Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and testing of the revised model using Independent data sources.'' The workshop was attended by a team of internationally-recognized experts in the fields of surface water acid-bass chemistry, organic acids, and watershed modeling. The rationale for the proposed research is based on the recent comparison between MAGIC model hindcasts and paleolimnological inferences of historical acidification for a set of 33 statistically-selected Adirondack lakes. Agreement between diatom-inferred and MAGIC-hindcast lakewater chemistry in the earlier research had been less than satisfactory. Based on preliminary analyses, it was concluded that incorporation of a reasonable organic acid representation into the version of MAGIC used for hindcasting was the logical next step toward improving model agreement.

  9. Organic acid modeling and model validation: Workshop summary. Final report

    SciTech Connect

    Sullivan, T.J.; Eilers, J.M.

    1992-08-14

    A workshop was held in Corvallis, Oregon on April 9--10, 1992 at the offices of E&S Environmental Chemistry, Inc. The purpose of this workshop was to initiate research efforts on the entitled ``Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and testing of the revised model using Independent data sources.`` The workshop was attended by a team of internationally-recognized experts in the fields of surface water acid-bass chemistry, organic acids, and watershed modeling. The rationale for the proposed research is based on the recent comparison between MAGIC model hindcasts and paleolimnological inferences of historical acidification for a set of 33 statistically-selected Adirondack lakes. Agreement between diatom-inferred and MAGIC-hindcast lakewater chemistry in the earlier research had been less than satisfactory. Based on preliminary analyses, it was concluded that incorporation of a reasonable organic acid representation into the version of MAGIC used for hindcasting was the logical next step toward improving model agreement.

  10. Rapid simultaneous determination of organic acids, free amino acids, and lactose in cheese by capillary electrophoresis.

    PubMed

    Izco, J M; Tormo, M; Jiménez-Flores, R

    2002-09-01

    A capillary electrophoresis (CE) method for the simultaneous separation of 11 metabolically important organic acids (oxalic, formic, citric, succinic, orotic, uric, acetic, pyruvic, propionic, lactic, and butyric), 10 amino acids (Asp, Glu, Tyr, Gly, Ala, Ser, Leu, Phe, Lys, and Trp), and lactose has been optimized, validated, and tested in dairy products. Repeatability and linearity were calculated for each compound, with detection limit values as low as 0.2 x 10(-2) mM for citric acid and Gly. The method was applied to analyze yogurt and different varieties of commercial cheeses. This method yielded specific CE patterns for different varieties of cheese. Also, it has been shown to be sensitive enough to measure small changes in composition of some of those compounds in fresh cheese stored under accelerated ripening conditions for 2 d at 32 degrees C (e.g., from 1728.3 +/- 45.0 to 1166.7 +/- 4.5 mg/100 g of DM in the case of lactose, or from 23.5 +/- 0.6 to 76.8 +/- 16.7 mg/100 g of DM in the case of acetic acid).

  11. Influence of pasture-based feeding systems on fatty acids, organic acids and volatile organic flavour compounds in yoghurt.

    PubMed

    Akbaridoust, Ghazal; Plozza, Tim; Trenerry, V Craige; Wales, William J; Auldist, Martin J; Ajlouni, Said

    2015-08-01

    The influence of different pasture-based feeding systems on fatty acids, organic acids and volatile organic flavour compounds in yoghurt was studied. Pasture is the main source of nutrients for dairy cows in many parts of the world, including southeast Australia. Milk and milk products produced in these systems are known to contain a number of compounds with positive effects on human health. In the current study, 260 cows were fed supplementary grain and forage according to one of 3 different systems; Control (a traditional pasture based diet offered to the cows during milking and in paddock), PMR1 (a partial mixed ration which contained the same supplement as Control but was offered to the cows as a partial mixed ration on a feedpad), PMR 2 (a differently formulated partial mixed ration compared to Control and PMR1 which was offered to the cows on a feedpad). Most of the yoghurt fatty acids were influenced by feeding systems; however, those effects were minor on organic acids. The differences in feeding systems did not lead to the formation of different volatile organic flavour compounds in yoghurt. Yet, it did influence the relative abundance of these components. PMID:26143651

  12. Influence of pasture-based feeding systems on fatty acids, organic acids and volatile organic flavour compounds in yoghurt.

    PubMed

    Akbaridoust, Ghazal; Plozza, Tim; Trenerry, V Craige; Wales, William J; Auldist, Martin J; Ajlouni, Said

    2015-08-01

    The influence of different pasture-based feeding systems on fatty acids, organic acids and volatile organic flavour compounds in yoghurt was studied. Pasture is the main source of nutrients for dairy cows in many parts of the world, including southeast Australia. Milk and milk products produced in these systems are known to contain a number of compounds with positive effects on human health. In the current study, 260 cows were fed supplementary grain and forage according to one of 3 different systems; Control (a traditional pasture based diet offered to the cows during milking and in paddock), PMR1 (a partial mixed ration which contained the same supplement as Control but was offered to the cows as a partial mixed ration on a feedpad), PMR 2 (a differently formulated partial mixed ration compared to Control and PMR1 which was offered to the cows on a feedpad). Most of the yoghurt fatty acids were influenced by feeding systems; however, those effects were minor on organic acids. The differences in feeding systems did not lead to the formation of different volatile organic flavour compounds in yoghurt. Yet, it did influence the relative abundance of these components.

  13. Carbohydrate, Organic Acid, and Amino Acid Composition of Bacteroids and Cytosol from Soybean Nodules 1

    PubMed Central

    Streeter, John G.

    1987-01-01

    Metabolites in Bradyrhizobium japonicum bacteroids and in Glycine max (L.) Merr. cytosol from root nodules were analyzed using an isolation technique which makes it possible to estimate and correct for changes in concentration which may occur during bacteroid isolation. Bacteroid and cytosol extracts were fractionated on ion-exchange columns and were analyzed for carbohydrate composition using gas-liquid chromatography and for organic acid and amino acid composition using high performance liquid chromatography. Analysis of organic acids in plant tissues as the phenacyl derivatives is reported for the first time and this approach revealed the presence of several unknown organic acids in nodules. The time required for separation of bacteroids and cytosol was varied, and significant change in concentration of individual compounds during the separation of the two fractions was estimated by calculating the regression of concentration on time. When a statistically significant slope was found, the true concentration was estimated by extrapolating the regression line to time zero. Of 78 concentration estimates made, there was a statistically significant (5% level) change in concentration during sample preparation for only five metabolites: glucose, sucrose, and succinate in the cytosol and d-pinitol and serine in bacteroids. On a mass basis, the major compounds in bacteroids were (descending order of concentration): myo-inositol, d-chiro-inositol, α,α-trehalose, sucrose, aspartate, glutamate, d-pinitol, arginine, malonate, and glucose. On a proportional basis (concentration in bacteroid as percent of concentration in bacteroid + cytosol fractions), the major compounds were: α-aminoadipate (94), trehalose (66), lysine (58), and arginine (46). The results indicate that metabolite concentrations in bacteroids can be reliably determined. PMID:16665774

  14. Organic acid mediated repression of sugar utilization in rhizobia.

    PubMed

    Iyer, Bhagya; Rajput, Mahendrapal Singh; Jog, Rahul; Joshi, Ekta; Bharwad, Krishna; Rajkumar, Shalini

    2016-11-01

    Rhizobia are a class of symbiotic diazotrophic bacteria which utilize C4 acids in preference to sugars and the sugar utilization is repressed as long as C4 acids are present. This can be manifested as a diauxie when rhizobia are grown in the presence of a sugar and a C4 acid together. Succinate, a C4 acid is known to repress utilization of sugars, sugar alcohols, hydrocarbons, etc by a mechanism termed as Succinate Mediated Catabolite Repression (SMCR). Mechanism of catabolite repression determines the hierarchy of carbon source utilization in bacteria. Though the mechanism of catabolite repression has been well studied in model organisms like E. coli, B. subtilis and Pseudomonas sp., mechanism of SMCR in rhizobia has not been well elucidated. C4 acid uptake is important for effective symbioses while mutation in the sugar transport and utilization genes does not affect symbioses. Deletion of hpr and sma0113 resulted in the partial relief of SMCR of utilization of galactosides like lactose, raffinose and maltose in the presence of succinate. However, no such regulators governing SMCR of glucoside utilization have been identified till date. Though rhizobia can utilize multitude of sugars, high affinity transporters for many sugars are yet to be identified. Identifying high affinity sugar transporters and studying the mechanism of catabolite repression in rhizobia is important to understand the level of regulation of SMCR and the key regulators involved in SMCR. PMID:27664739

  15. Inhibition of succinic acid production in metabolically engineered Escherichia coli by neutralizing agent, organic acids, and osmolarity.

    PubMed

    Andersson, Christian; Helmerius, Jonas; Hodge, David; Berglund, Kris A; Rova, Ulrika

    2009-01-01

    The economical viability of biochemical succinic acid production is a result of many processing parameters including final succinic acid concentration, recovery of succinate, and the volumetric productivity. Maintaining volumetric productivities >2.5 g L(-1) h(-1) is important if production of succinic acid from renewable resources should be competitive. In this work, the effects of organic acids, osmolarity, and neutralizing agent (NH4OH, KOH, NaOH, K2CO3, and Na2CO3), and Na2CO3) on the fermentative succinic acid production by Escherichia coli AFP184 were investigated. The highest concentration of succinic acid, 77 g L(-1), was obtained with Na2CO3. In general, irrespective of the base used, succinic acid productivity per viable cell was significantly reduced as the concentration of the produced acid increased. Increased osmolarity resulting from base addition during succinate production only marginally affected the productivity per viable cell. Addition of the osmoprotectant glycine betaine to cultures resulted in an increased aerobic growth rate and anaerobic glucose consumption rate, but decreased succinic acid yield. When using NH4OH productivity completely ceased at a succinic acid concentration of approximately 40 g L(-1). Volumetric productivities remained at 2.5 g L(-1) h(-1) for up to 10 h longer when K- or Na-bases where used instead of NH4OH. The decrease in cellular succinic acid productivity observed during the anaerobic phase was found to be due to increased organic acid concentrations rather than medium osmolarity.

  16. Effects of organic acids, amino acids and ethanol on the radio-degradation of patulin in an aqueous model system

    NASA Astrophysics Data System (ADS)

    Yun, Hyejeong; Lim, Sangyong; Jo, Cheorun; Chung, Jinwoo; Kim, Soohyun; Kwon, Joong-Ho; Kim, Dongho

    2008-06-01

    The effects of organic acids, amino acids, and ethanol on the radio-degradation of patulin by gamma irradiation in an aqueous model system were investigated. The patulin, dissolved in distilled water at a concentration of 50 ppm, was practically degraded by the gamma irradiation at the dose of 1.0 kGy, while 33% of the patulin remained in apple juice. In the aqueous model system, the radio-degradation of patulin was partially inhibited by the addition of organic acids, amino acids, and ethanol. The proportions of remaining patulin after irradiation with the dose of 1.0 kGy in the 1% solution of malic acid, citric acid, lactic acid, acetic acid, ascorbic acid, and ethanol were 31.4%, 2.3%, 31.2%, 6.1%, 50.8%, and 12.5%, respectively. During 30 days of storage, the remaining patulin was reduced gradually in the solution of ascorbic acid and malic acid compared to being stable in other samples. The amino acids, serine, threonine, and histidine, inhibited the radio-degradation of patulin. In conclusion, it was suggested that 1 kGy of gamma irradiation (recommended radiation doses for radicidation and/or quarantine in fruits) is effective for the reduction of patulin, but the nutritional elements should be considered because the radio-degradation effects are environment dependent.

  17. Remarkable Impact of Acidic Ginsenosides and Organic Acids on Ginsenoside Transformation from Fresh Ginseng to Red Ginseng.

    PubMed

    Liu, Zhi; Xia, Juan; Wang, Chong-Zhi; Zhang, Jin-Qiu; Ruan, Chang-Chun; Sun, Guang-Zhi; Yuan, Chun-Su

    2016-07-01

    Panax ginseng contains many chemical components, including acidic ginsenosides and organic acids. However, whether these acidic substances play a role in ginsenoside transformation during steaming treatment has not yet been explored. In this paper, the content of neutral ginsenosides, acidic ginsenosides, and their degradation products in unsteamed and steamed P. ginseng were simultaneously quantified by high-performance liquid chromatography. We observed that neutral ginsenosides were converted to rare ginsenosides during the root steaming but not during the individual ginsenoside steaming. In contrast, acidic malonyl ginsenosides released malonic acid and acetic acid through demalonylation, decarboxylation, deacetylation reactions during the steaming at 120 °C. These malonyl ginsenosides not only were converted to rare ginsenosides but also promoted the degradation of neutral ginsenosides. Further studies indicated that a low concentration of organic acid was the determining factor for the ginsenoside conversion. The related mechanisms were deduced to be mainly acidic hydrolysis and dehydration. In summary, acidic ginsenosides and organic acids remarkably affected ginsenoside transformation during the steaming process. Our results provide useful information for precisely understanding the ginsenoside conversion pathways and mechanisms underlying the steaming process.

  18. Calculating the acidity constants of homologues and isomers of organic acids by means of recurrence relations

    NASA Astrophysics Data System (ADS)

    Zenkevich, I. G.

    2013-06-01

    It is noted that the p K a values of organic acids can be calculated using the unique recurrence relation p K a( n + 1) = ap K a( n) + b from the p K a values of other (usually the simplest and, consequently, better characterized) homologues of the same series. It is shown that this relation is valid within two taxonomic groups: insertion homologues of the ω-substituted acids X(CH2) n CO2H ( n ≥ 1) and isomers that differ in the position of substituents X in their alkyl fragments, k-X(C n H2 n )CO2H ( n ≥ 1, 1 ≤ k ≤ n + 1). It is concluded that this algorithm is a consequence of the unique mathematical properties of recurrence relations.

  19. Growth inhibition of Cronobacter spp. strains in reconstituted powdered infant formula acidified with organic acids supported by natural stomach acidity.

    PubMed

    Zhu, S; Schnell, S; Fischer, M

    2013-09-01

    Cronobacter is associated with outbreaks of rare, but life-threatening cases of meningitis, necrotizing enterocolitis, and sepsis in newborns. This study was conducted to determine the effect of organic acids on growth of Cronobacter in laboratory medium and reconstituted powdered infant formula (PIF) as well as the bacteriostatic effect of slightly acidified infant formula when combined with neonatal gastric acidity. Inhibitory effect of seven organic acids on four acid sensitive Cronobacter strains was determined in laboratory medium with broth dilution method at pH 5.0, 5.5 and 6.0. Acetic, butyric and propionic acids were most inhibitive against Cronobacter in the laboratory medium. The killing effect of these three acids was partially buffered in reconstituted PIF. Under neonatal gastric acid condition of pH 5.0, the slightly acidified formula which did not exert inhibition effect solely reduced significantly the Cronobacter populations. A synergistic effect of formula moderately acidified with organic acid combined with the physiological infant gastric acid was visible in preventing the rapid growth of Cronobacter in neonatal stomach. The study contributed to a better understanding of the inhibitory effect of organic acids on Cronobacter growth in different matrixes and provided new ideas in terms of controlling bacteria colonization and translocation by acidified formula.

  20. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and fatty acids: implications for atmospheric processing of organic aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Kawamura, K.; Cao, F.; Lee, M.

    2015-12-01

    Stable carbon isotopic compositions (δ13C) were measured for 23 individual organic species including 9 dicarboxylic acids, 7 oxocarboxylic acids, 1 tricarboxylic acid, 2 α-dicarbonyls and 4 fatty acids in the aerosols from Gosan background site in East Asia. δ13C of particle-phase glyoxal and methylglyoxal are significantly higher than those previously reported for isoprene and other precursors, associated with isotope fractionation during atmospheric oxidation. 13C is consistently more enriched for oxalic acid (C2), glyoxylic acid, pyruvic acid, glyoxal and methylglyoxal compared to other organic compounds identified, which can be explained by the kinetic isotope effects during aqueous-phase processing and the subsequent gas-particle partitioning after clouds or wet aerosols evaporation δ13C of C2 is positively correlated with C2 and organic carbon ratio, indicating that a photochemical production of C2 is more pronounced than its degradation process during long-range transport. The 13C results also suggest that aqueous-phase oxidation of glyoxal and methylglyoxal is major formation process of oxalic acid production via the major intermediates glyoxylic acid and pyruvic acid. This study provides evidence that organic aerosols are intensively photo-chemically aged in this region.

  1. Bio-based production of organic acids with Corynebacterium glutamicum

    PubMed Central

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-01-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, l-and d-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. Funding Information Work in the laboratories of the authors was supported by the Fachagentur Nachwachsende Rohstoffe (FNR) of the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV; FNR Grants 220-095-08A and 220-095-08D; Bio-ProChemBB project, ERA-IB programme), by the Deutsche Bundesstiftung Umwelt (DBU Grant AZ13040/05) and the Evonik Degussa AG. PMID

  2. Organic corrosion inhibitors for aluminum in perchloric acid

    SciTech Connect

    Metikos-Hukovic, M.; Stupnisek-Lisac, E. . Dept. of Electrochemistry); Grubac, Z. . Dept. of Inorganic Chemistry)

    1994-02-01

    Substituted N-arylpyrroles containing carbaldehyde groups on a pyrrole ring and their inhibitive effects on the corrosion of aluminum (Al) in perchloric acid (HCIO[sub 4]) were investigated. Electrochemical measurements showed the organic compounds examined had good inhibiting properties at 40 C. The high inhibition effect of the N-aryl-2,5-dimethylpyrroles containing carbaldehyde groups on a pyrrole ring on corrosion of Al in acid media was explained on the basis of the electronic structure of the molecule and by the condensation characteristic of the carbaldehydes. Investigation of the influence of substitution type ([minus]F,[minus]Cl,[minus]NH[sub 2]) on the inhibiting characteristics of examined organic compounds showed the best inhibiting effect was from substituted N-arylpyrrole with fluorine in the ortho position of the phenyl ring.

  3. Dynamics of three organic acids (malic, acetic and succinic acid) in sunflower exposed to cadmium and lead.

    PubMed

    Niu, Zhixin; Li, Xiaodong; Sun, Lina; Sun, Tieheng

    2013-01-01

    Sunflower (Helianthus annuus L.) has been considered as a good candidate for bioaccumulation of heavy metals. In the present study, sunflower was used to enrich the cadmium and lead in sand culture during 90 days. Biomass, Cd and Pb uptake, three organic acids and pH in cultures were investigated. Results showed that the existence of Cd and Pb showed different interactions on the organic acids exudation. In single Cd treatments, malic and acetic acids in Cd10 showed an incremental tendency with time. In the mixed treatments of Cd and Pb, malic acids increased when 10 and 40 mg x L(-1) Cd were added into Pb50, but acetic acids in Pb50 were inhibited by Cd addition. The Cd10 supplied in Pb10 stimulated the secretion of malic and succinic acids. Moreover, the Cd or Pb uptake in sunflower showed various correlations with pH and some organic acids, which might be due to the fact that the Cd and Pb interfere with the organic acids secretion in rhizosphere of sunflower, and the changes of organic acids altered the form and bioavailability of Cd and Pb in cultures conversely.

  4. Aquatic organisms in acidic environments: a literature review

    SciTech Connect

    Eilers, J.M.; Lien, G.J.; Berg, R.G.

    1985-10-01

    Acid deposition has aroused concern about aquatic organisms in soft water lakes and streams, as the loss of indigenous species is commonly observed when pH decreases. This literature review was initiated to intensively examine the distribution of invertebrates with respect to pH, in order to define the tolerance limits of various species in acidified waters and predict how acidification would alter distributions.

  5. HPLC method for the simultaneous quantification of the major organic acids in Angeleno plum fruit

    NASA Astrophysics Data System (ADS)

    Wang, Yanwei; Wang, Jing; Cheng, Wei; Zhao, Zhilei; Cao, Jiankang

    2014-08-01

    A method was developed to profile major organic acids in Angeleno fruit by high performance liquid chromatography. Organic acids in plum were extracted by water with ultra- sonication at 50°C for 30 min. The extracts were chromatographed on Waters Atlantis T3 C18 column (4.6 mm×250 mm, 5 μm) with 0.01mol/L sulfuric acid and water as mobile phase, and flow rate was 0.5 ml/min. The column temperature was 40C, and chromatography was monitored by a diode array detector at 210 nm. The result showed that malic acid, citric acid, tartaric acid, oxalic acid, pyruvic acid, acetic acid, succinic acid in Angeleno plum, and the malic acid was the major organic acids. The coefficient of determination of the standard calibration curve is R2 > 0.999. The organic acids recovery ranged from 99.11% for Malic acid to 106.70% for Oxalic acid, and CV (n=6) ranged from 0.95% for Malic acid to 6.23% for Oxalic acid, respectively. The method was accurate, sensitive and feasible in analyzing the organic acids in Angeleno plum.

  6. Biochar: a green sorbent to sequester acidic organic contaminants

    NASA Astrophysics Data System (ADS)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2015-04-01

    Biochar is a carbon rich product of biomass pyrolysis that exhibits a high sorption potential towards a wide variety of inorganic and organic contaminants. Because it is a valuable soil additive and a potential carbon sink that can be produced from renewable resources, biochar has gained growing attention for the development of more sustainable remediation strategies. A lot of research efforts have been dedicated to the sorption of hydrophobic contaminants and metals to biochar. Conversely, the understanding of the sorption of acidic organic contaminants remains limited, and questions remain on the influence of biochar characteristics (e.g. ash content) on the sorption behaviour of acidic organic contaminants. To address this knowledge gap, sorption batch experiments were conducted with a series of structurally similar acidic organic contaminants covering a range of dissociation constant (2,4-D, MCPA, 2,4-DB and triclosan). The sorbents selected for experimentation included a series of 10 biochars covering a range of characteristics, multiwalled carbon nanotubes as model for pure carbonaceous phases, and an activated carbon as benchmark. Overall, sorption coefficient [L/kg] covered six orders of magnitude and generally followed the order 2,4-D < MCPA < 2,4-DB < triclosan. Combining comprehensive characterization of the sorbents with the sorption dataset allowed the discussion of sorption mechanisms and driving factors of sorption. Statistical analysis suggests that (i) partitioning was the main driver for sorption to sorbents with small specific surface area (< 25 m²/g), whereas (ii) specific mechanisms dominated sorption to sorbents with larger specific surface area. Results showed that factors usually not considered for the sorption of neutral contaminants play an important role for the sorption of organic acids. The pH dependent lipophilicity ratio (i.e. D instead of Kow), ash content and ionic strength are key factors influencing the sorption of acidic organic

  7. Influence of dissolved organic carbon content on modelling natural organic matter acid-base properties.

    PubMed

    Garnier, Cédric; Mounier, Stéphane; Benaïm, Jean Yves

    2004-10-01

    Natural organic matter (NOM) behaviour towards proton is an important parameter to understand NOM fate in the environment. Moreover, it is necessary to determine NOM acid-base properties before investigating trace metals complexation by natural organic matter. This work focuses on the possibility to determine these acid-base properties by accurate and simple titrations, even at low organic matter concentrations. So, the experiments were conducted on concentrated and diluted solutions of extracted humic and fulvic acid from Laurentian River, on concentrated and diluted model solutions of well-known simple molecules (acetic and phenolic acids), and on natural samples from the Seine river (France) which are not pre-concentrated. Titration experiments were modelled by a 6 acidic-sites discrete model, except for the model solutions. The modelling software used, called PROSECE (Programme d'Optimisation et de SpEciation Chimique dans l'Environnement), has been developed in our laboratory, is based on the mass balance equilibrium resolution. The results obtained on extracted organic matter and model solutions point out a threshold value for a confident determination of the studied organic matter acid-base properties. They also show an aberrant decreasing carboxylic/phenolic ratio with increasing sample dilution. This shift is neither due to any conformational effect, since it is also observed on model solutions, nor to ionic strength variations which is controlled during all experiments. On the other hand, it could be the result of an electrode troubleshooting occurring at basic pH values, which effect is amplified at low total concentration of acidic sites. So, in our conditions, the limit for a correct modelling of NOM acid-base properties is defined as 0.04 meq of total analysed acidic sites concentration. As for the analysed natural samples, due to their high acidic sites content, it is possible to model their behaviour despite the low organic carbon concentration.

  8. Predictions of diagenetic reactions in the presence of organic acids

    NASA Astrophysics Data System (ADS)

    Harrison, Wendy J.; Thyne, Geoffrey D.

    1992-02-01

    Stability constants have been estimated for cation complexes with anions of monofunctional and difunctional acids (combinations of Ca, Mg, Fe, Al, Sr, Mn, U, Th, Pb, Cu, Zn with formate, acetate, propionate, oxalate, malonate, succinate, and salicylate) between 0 and 200°C. Difunctional acid anions form much more stable complexes than monofunctional acid anions with aluminum; the importance of the aluminum-acetate complex is relatively minor in comparison to aluminum oxalate and malonate complexes. Divalent metal cations such as Mg, Ca, and Fe form more stable complexes with acetate than with difunctional acid anions. Aluminum-oxalate can dominate the species distribution of aluminum under acidic pH conditions, whereas the divalent cation-acetate and oxalate complexes rarely account for more than 60% of the total dissolved cation, and then only in more alkaline waters. Mineral thermodynamic affinities were calculated using the reaction path model EQ3/6 for waters having variable organic acid anion (OAA) contents under conditions representative of those found during normal burial diagenesis. The following scenarios are possible: 1) K-feldspar and albite are stable, anorthite dissolves 2) All feldpars are stable 3) Carbonates can be very unstable to slightly unstable, but never increase in stability. Organic acid anions are ineffective at neutral to alkaline pH in modifying stabilities of aluminosilicate minerals whereas the anions are variably effective under a wide range of pH in modifying carbonate mineral stabilities. Reaction path calculations demonstrate that the sequence of mineral reactions occurring in an arkosic sandstone-fluid system is only slightly modified by the presence of OAA. A spectrum of possible sandstone alteration mineralogies can be obtained depending on the selected boundary conditions: EQ3/6 predictions include quartz overgrowth, calcite replacement of plagioclase, albitization of plagioclase, and the formation of porosity-occluding calcite

  9. Synthesis and characterization of ultraviolet light-emitting organic acids.

    PubMed

    An, Chun-Ai; Guo, Yanchao; Si, Zhenjun; Duan, Qian

    2014-05-01

    Three ultraviolet light-emitting organic acids of 3,3'-(4-phenyl-4H-1,2,4-triazole-3,5-diyl)dibenzoic acid (Tz-1), 4,4',4″-(4H-1,2,4-triazole-3,4,5-triyl)tribenzoic acid (Tz-2), and 4,4'-(4-(4'-carboxy-[1,1'-biphenyl]-4-yl)-4H-1,2,4-triazole-3,5-diyl)dibenzoic acid (Tz-3) were successfully synthesized and fully characterized by the (1)H NMR, the IR absorption spectra, and the X-ray single crystal diffraction. It was found that Tz-1, Tz-2, and Tz-3 could give out the ultraviolet photoluminescent spectra centered at 369 nm, 365 nm and 350 nm, respectively. The luminescence quantum yields of Tz-1 and Tz-2 were measured to be 0.20 and 0.14, respectively. Additionally, the density functional theory (DFT) and the time-dependent DFT calculations were also carried out for Tz-1, Tz-2, and Tz-3.

  10. Reversible Acid Gas Capture Using CO2-Binding Organic Liquids

    SciTech Connect

    Heldebrant, David J.; Koech, Phillip K.; Yonker, Clement R.; Rainbolt, James E.; Zheng, Feng

    2010-08-31

    Acid gas scrubbing technology is predominantly aqueous alkanolamine based. Of the acid gases, CO2, H2S and SO2 have been shown to be reversible, however there are serious disadvantages with corrosion and high regeneration costs. The primary scrubbing system composed of monoethanolamine is limited to 30% by weight because of the highly corrosive solution. This gravimetric limitation limits the CO2 volumetric (≤108 g/L) and gravimetric capacity (≤7 wt%) of the system. Furthermore the scrubbing system has a large energy penalty from pumping and heating the excess water required to dissolve the MEA bicarbonate salt. Considering the high specific heat of water (4 j/g-1K-1), low capacities and the high corrosion we set out to design a fully organic solvent that can chemically bind all acid gases i.e. CO2 as reversible alkylcarbonate ionic liquids or analogues thereof. Having a liquid acid gas carrier improves process economics because there is no need for excess solvent to pump and to heat. We have demonstrated illustrated in Figure 1, that CO2-binding organic liquids (CO2BOLs) have a high CO2 solubility paired with a much lower specific heat (<1.5 J/g-1K-1) than aqueous systems. CO2BOLs are a subsection of a larger class of materials known as Binding Organic Liquids (BOLs). Our BOLs have been shown to reversibly bind and release COS, CS2, and SO2, which we denote COSBOLS, CS2BOLs and SO2BOLs. Our BOLs are highly tunable and can be designed for post or pre-combustion gas capture. The design and testing of the next generation zwitterionic CO2BOLs and SO2BOLs are presented.

  11. Determination of organic acid impurities in lactic acid obtained by fermentation of sugarcane juice.

    PubMed

    Qureshi, Mohd Shadbar; Bhongale, Sunil S; Thorave, Archana K

    2011-10-01

    Lactic acid produced by fermentation process mostly contains a number of aliphatic carboxylic acids as impurities. In this work, carboxylic acid impurities in lactic acid samples from a number of sources were determined at ppm levels. A simple HPLC method was developed that utilized a new generation polar embedded reverse phase, 20mM phosphate buffer at pH 2.20 (±0.05) and UV detection at 210 nm. The method enabled quantitative analysis of the above acids in lactic acid matrix. The experimental conditions for column temperature, mobile phase pH and flow rate were optimized. A detailed validation of the method was performed for linearity, precision, accuracy, selectivity, limit of detection (LOD), limit of quantitation (LOQ), ruggedness and repeatability and reproducibility (R&R).

  12. Air-nitric acid destructive oxidation of organic wastes

    SciTech Connect

    Smith, J.R.

    1993-09-01

    Many organic materials have been completely oxidized to CO{sub 2}, CO, and inorganic acids in a 0.1M HNO{sub 3}/14.8M H{sub 3}PO{sub 4} solution with air sparging. Addition of 0.001M Pd{sub +2} reduces the CO to near 1% of the released carbon gases. To accomplish complete oxidation the solution temperature must be maintained above 130--150{degrees}C. Organic materials quantitatively destroyed include neoprene, cellulose, EDTA, TBP, tartaric acid, and nitromethane. The oxidation is usually complete in a few hours for soluble organic materials. The oxidation rate for non-aliphatic organic solids is moderately fast and surface area dependent. The rate for aliphatic organic compounds (polyethylene, PVC, and n-dodecane) is relatively very slow. This is due to the large energy required to abstract a hydrogen atom from these compounds, 99 kcal/mole. The combination of NO{sub 2}{center_dot} and H{center_dot} to produce HNO{sub 2} releases only 88 kcal/mole. Under conditions of high NO{sub 2}{center_dot} concentration it should be possible to oxidize these aliphatic compounds.

  13. DC diaphragm discharge in water solutions of selected organic acids

    NASA Astrophysics Data System (ADS)

    Vyhnankova, Edita J.; Hammer, Malte U.; Reuter, Stephan; Krcma, Frantisek

    2015-07-01

    Effect of four simple organic acids water solution on a DC diaphragm discharge was studied. Efficiency of the discharge was quantified by the hydrogen peroxide production determined by UV-VIS spectrometry of a H2O2 complex formed with specific titanium reagent. Automatic titration was used to study the pH behaviour after the plasma treatment. Optical emission spectroscopy overview spectra were recorded and detailed spectra of OH band and Hβ line were used to calculate the rotational temperature and comparison of the line profile (reflecting electron concentration) in the acid solutions. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  14. Engineering Porous Organic Cage Crystals with Increased Acid Gas Resistance.

    PubMed

    Zhu, Guanghui; Hoffman, Christopher D; Liu, Yang; Bhattacharyya, Souryadeep; Tumuluri, Uma; Jue, Melinda L; Wu, Zili; Sholl, David S; Nair, Sankar; Jones, Christopher W; Lively, Ryan P

    2016-07-25

    Both known and new CC3-based porous organic cages are prepared and exposed to acidic SO2 in vapor and liquid conditions. Distinct differences in the stability of the CC3 cages exist depending on the chirality of the diamine linkers used. The acid catalyzed CC3 degradation mechanism is probed via in situ IR and a degradation pathway is proposed and supported with computational results. CC3 crystals synthesized with racemic mixtures of diaminocyclohexane exhibited enhanced stability compared to CC3-R and CC3-S. Confocal fluorescent microscope images reveal that the stability difference in CC3 species originates from an abundance of mesoporous grain boundaries in CC3-R and CC3-S, allowing facile access of aqueous SO2 throughout the crystal, promoting decomposition. These grain boundaries are absent from CC3 crystals made with racemic linkers. PMID:27253350

  15. Separators and organics for lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Böhnstedt, Werner

    This review discusses various interactions between organic compounds, brought into the lead-acid battery via the separator, and their subsequent effect on battery performance. Historically, the interrelationship started with certain 'expander' actions on the lead morphology due to lignins, which leached out of the wooden separators of that time. Synthetic separator materials did not show this effect, but gained acceptance as they were far more stable in the hostile battery environment. The partially hydrophobic character of synthetic separators has been overcome by organic surfactants. Other organic compounds have been found to improve further the stability of separators against oxidation. Special organic molecules, namely aldehydes and ketones, have been identified to retard, or even suppress, the adverse effects of metals such as antimony, and thus prolong the cycle-life of traction batteries in heavy-duty applications or reduce water loss from automotive batteries. Knowledge about these interactions has opened ways to improve separators.

  16. Control of Meloidogyne incognita Using Mixtures of Organic Acids.

    PubMed

    Seo, Yunhee; Kim, Young Ho

    2014-12-01

    This study sought to control the root-knot nematode (RKN) Meloidogyne incognita using benign organo-chemicals. Second-stage juveniles (J2) of RKN were exposed to dilutions (1.0%, 0.5%, 0.2%, and 0.1%) of acetic acid (AA), lactic acid (LA), and their mixtures (MX). The nematode bodies were disrupted severely and moderately by vacuolations in 0.5% of MX and single organic acids, respectively, suggesting toxicity of MX may be higher than AA and LA. The mortality of J2 was 100% at all concentrations of AA and MX and only at 1.0% and 0.5% of LA, which lowered slightly at 0.2% and greatly at 0.1% of LA. This suggests the nematicidal activity of MX may be mostly derived from AA together with supplementary LA toxicity. MX was applied to chili pepper plants inoculated with about 1,000 J2, for which root-knot gall formations and plant growths were examined 4 weeks after inoculation. The root gall formation was completely inhibited by 0.5% MX and standard and double concentrations of fosthiazate; and inhibited 92.9% and 57.1% by 0.2% and 0.1% MX, respectively. Shoot height, shoot weight, and root weight were not significantly (P ≤ 0.05) different among all treatments and the untreated and non-inoculated controls. All of these results suggest that the mixture of the organic acids may have a potential to be developed as an eco-friendly nematode control agent that needs to be supported by the more nematode control experiments in fields. PMID:25506312

  17. Control of Meloidogyne incognita Using Mixtures of Organic Acids

    PubMed Central

    Seo, Yunhee; Kim, Young Ho

    2014-01-01

    This study sought to control the root-knot nematode (RKN) Meloidogyne incognita using benign organo-chemicals. Second-stage juveniles (J2) of RKN were exposed to dilutions (1.0%, 0.5%, 0.2%, and 0.1%) of acetic acid (AA), lactic acid (LA), and their mixtures (MX). The nematode bodies were disrupted severely and moderately by vacuolations in 0.5% of MX and single organic acids, respectively, suggesting toxicity of MX may be higher than AA and LA. The mortality of J2 was 100% at all concentrations of AA and MX and only at 1.0% and 0.5% of LA, which lowered slightly at 0.2% and greatly at 0.1% of LA. This suggests the nematicidal activity of MX may be mostly derived from AA together with supplementary LA toxicity. MX was applied to chili pepper plants inoculated with about 1,000 J2, for which root-knot gall formations and plant growths were examined 4 weeks after inoculation. The root gall formation was completely inhibited by 0.5% MX and standard and double concentrations of fosthiazate; and inhibited 92.9% and 57.1% by 0.2% and 0.1% MX, respectively. Shoot height, shoot weight, and root weight were not significantly (P ≤ 0.05) different among all treatments and the untreated and non-inoculated controls. All of these results suggest that the mixture of the organic acids may have a potential to be developed as an eco-friendly nematode control agent that needs to be supported by the more nematode control experiments in fields. PMID:25506312

  18. [Effects of organic acids on the toxicity of cadmium during ryegrass growth].

    PubMed

    Liao, Min; Huang, Changyong

    2002-01-01

    Effects of low molecular weight organic acids(oxalic acid, citric acid, and acetic acid) and higher molecular weight organic acid(humic acid) on the toxicity of Cd during ryegrass growth were studied. The results showed that Cd toxicity enhanced gradually with increasing the concentration of low molecular weight organic acids, and led to the decreasing of chlorophyll concentration in ryegrass plant and the biomass of ryegrass. The sequence of this influence was: oxalic acid < acetic acid < citric acid. On the contrary, Cd toxicity was reduced as a result of addition of humic acid, and the concentration of chlorophyll in ryegrass shoots and the biomass of ryegrass increased consequently. The concentration of Cd in roots and shoots of the ryegrass increased with increasing the concentration of low molecular weight organic acids, and the sequence of this influence was: citric acid > acetic acid > oxalic acids. The concentration of Cd decreased gradually as a result of increasing the concentration of humic acid, which means humic acid could reduce the toxicity of Cd on ryegrass. Furthermore, the concentration of Cd was higher in roots than in shoots, which indicated that the roots of ryegrass could prevent transport of Cd from roots to shoots and reduce Cd accumulation in the shoots.

  19. [Simultaneous separation of organic acid and organic salts by electrostatic ion chromatography].

    PubMed

    Shen, G J; Yang, R F; Yu, A M

    2001-09-01

    The electrostatic ion chromatographic column was prepared by coating conjugated acid salt micelles on the surface of octadecyl silica stationary phase. Pure water was used as mobile phase, and the conductance detector was connected on-line to electrostatic ion chromatograph. The conditions under which organic acid and organic salts were detected were studied. The mechanism for the above separation is discussed. Sodium benzoate and citric acid in Lichee drink were separated and determined. This method is rapid, simple with little interference and good reproducibility without any pollution since the mobile phase is water. This is an environmental friendly analytical method. PMID:12545440

  20. Simple method of isolating humic acids from organic soils

    NASA Astrophysics Data System (ADS)

    Ahmed, O.

    2009-04-01

    Humic substances particularly humic acids (HA) play a major role in soil conditioning e.g. erosion control, soil cation exchange capacity, complexation of heavy metal ions and pesticides, carbon and nitrogen cycles, plant growth and reduction of ammonia volatilization from urea. Humified substances such as coal, composts, and peat soils have substantial amounts of HA but the isolation of these acids is expensive, laborious, and time consuming. Factors that affect the quality and yield of HA isolated from these materials include extraction, fractionation, and purification periods. This work developed a simple, rapid, and cost effective method of isolating HA from peat soils. There was a quadratic relationship between extraction period and HA yield. Optimum extraction period was estimated at 4 h instead of the usual range of 12 to 48 h. There was no relationship between fractionation period and HA yield. As such 2 h instead of the usual range of 12 to 24 h fractionation period could be considered optimum. Low ash content (5%), remarkable reduction in K, coupled with the fact that organic C, E4/E6, carboxylic COOH, phenolic OH, and total acidity values of the HA were consistent with those reported by other authors suggest that the HA dealt with were free from mineral matter. This was possible because the distilled water used to purify the HA served as Bronsted-Lowry acid during the purification process of the HA. Optimum purification period using distilled waster was 1 h instead of the usual range of 1 and 7 days (uses HF and HCl and dialysis). Humic acids could be isolated from tropical peat soils within 7 h (i.e. 4 h extraction, 2 h fractionation, and 1 h purification) instead of the existing period of 2 and 7 days. This could facilitate the idea of producing organic fertilizers such as ammonium-humate and potassium-humate from humified substances since techniques devised in this study did not alter the true nature of the HA. Besides, the technique is rapid, simple

  1. 40 CFR 721.5465 - Amine salt of organic acid (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amine salt of organic acid (generic... Substances § 721.5465 Amine salt of organic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as amine salt of organic acid...

  2. 40 CFR 721.5465 - Amine salt of organic acid (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Amine salt of organic acid (generic... Substances § 721.5465 Amine salt of organic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as amine salt of organic acid...

  3. 40 CFR 721.5465 - Amine salt of organic acid (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amine salt of organic acid (generic... Substances § 721.5465 Amine salt of organic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as amine salt of organic acid...

  4. 40 CFR 721.5465 - Amine salt of organic acid (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amine salt of organic acid (generic... Substances § 721.5465 Amine salt of organic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as amine salt of organic acid...

  5. 40 CFR 721.5465 - Amine salt of organic acid (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amine salt of organic acid (generic... Substances § 721.5465 Amine salt of organic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as amine salt of organic acid...

  6. Methylmalonic acid blood test

    MedlinePlus

    ... acid is a substance produced when proteins, called amino acids, in the body break down. The health care ... Cederbaum S, Berry GT. Inborn errors of carbohydrate, ammonia, amino acid, and organic acid metabolism. In: Gleason CA, Devaskar ...

  7. Deletion of glucose oxidase changes the pattern of organic acid production in Aspergillus carbonarius.

    PubMed

    Yang, Lei; Lübeck, Mette; Lübeck, Peter S

    2014-01-01

    Aspergillus carbonarius has potential as a cell factory for the production of different organic acids. At pH 5.5, A.carbonarius accumulates high amounts of gluconic acid when it grows on glucose based medium whereas at low pH, it produces citric acid. The conversion of glucose to gluconic acid is carried out by secretion of the enzyme, glucose oxidase. In this work, the gene encoding glucose oxidase was identified and deleted from A. carbonarius with the aim of changing the carbon flux towards other organic acids. The effect of genetic engineering was examined by testing glucose oxidase deficient (Δgox) mutants for the production of different organic acids in a defined production medium. The results obtained showed that the gluconic acid accumulation was completely inhibited and increased amounts of citric acid, oxalic acid and malic acid were observed in the Δgox mutants.

  8. Structure of six organic acid-base adducts from 6-bromobenzo[d]thiazol-2-amine and acidic compounds

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Zhang, Jing; Wang, Daqi; Tao, Lin; Zhou, Mengjian; Shen, Yinyan; Chen, Quan; Lin, Zhanghui; Gao, Xingjun

    2014-05-01

    Six anhydrous organic acid-base adducts of 6-bromobenzo[d]thiazol-2-amine were prepared with organic acids as 2,4,6-trinitrophenol, salicylic acid, 3,5-dinitrobenzoic acid, 3,5-dinitrosalicylic acid, malonic acid and sebacic acid. The compounds 1-6 were characterized by X-ray diffraction analysis, IR, and elemental analysis. The melting points of all the adducts were given. Of the six adducts, 1, 3, 4, and 5 are organic salts, while 2, and 6 are cocrystals. The supramolecular arrangement in the crystals 2-6 is based on the R22(8) synthon. Analysis of the crystal packing of 1-6 suggests that there are strong NH⋯O, OH⋯N, and OH⋯O hydrogen bonds (charge assisted or neutral) between acid and base components in the supramolecular assemblies. When the hydroxyl group is present in the ortho position of the carboxy, the intramolecular S6 synthon is present, as expected. Besides the classical hydrogen bonding interactions, other noncovalent interactions also play important roles in structure extension. Due to the synergetic effect of these weak interactions, compounds 1-6 display 1D-3D framework structure.

  9. Water-enhanced solubility of carboxylic acids in organic solvents and its applications to extraction processes

    SciTech Connect

    Starr, J.N.; King, C.J.

    1991-11-01

    The solubilities of carboxylic acids in certain organic solvents increase remarkably with an increasing amount of water in the organic phase. This phenomenon leads to a novel extract regeneration process in which the co-extracted water is selectively removed from an extract, and the carboxylic acid precipitates. This approach is potentially advantageous compared to other regeneration processes because it removes a minor component of the extract in order to achieve a large recovery of acid from the extract. Carboxylic acids of interest include adipic acid, fumaric acid, and succinic acid because of their low to moderate solubilities in organic solvents. Solvents were screened for an increase in acid solubility with increased water concentration in the organic phase. Most Lewis-base solvents were found to exhibit this increased solubility phenomena. Solvents that have a carbonyl functional group showed a very large increase in acid solubility. 71 refs., 52 figs., 38 tabs.

  10. Influence of organic acids on rheological and bread-making characteristics of fortified wheat flour.

    PubMed

    Gupta, Sheetal; Shimray, Crassina A; Venkateswara Rao, G

    2012-06-01

    Flour was fortified with premix containing ferrous fumarate and folic acid. Organic acids such as citric acid, malic acid and tartaric acid, which are promoters of iron bioavailability, were added at three levels and their influence on rheological and bread-making characteristics was studied. Farinograph water absorption increased with fortificants, but with addition of organic acids there was a decrease. Maximum pressure was 77 mm in control, which increased to 78-88 mm with the addition of different acids to the fortified flour. Addition of organic acids to fortified flour brought about a decrease in peak viscosity, hot paste viscosity, cold paste viscosity and setback values. The L, a and b values of fortified breads were similar to that of control. Sensory analysis revealed marginal differences in the overall quality of breads prepared with fortified flour with the addition of organic acids.

  11. Use of Cavity Ring Down Spectroscopy to Characterize Organic Acids and Aerosols Emitted in Biomass Burning

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon; Fiddler, Marc; Singh, Sujeeta

    2012-02-01

    One poorly understood, but significant class of volatile organic compounds (VOC) present in biomass burning is gas-phase organic acids and inorganic acids. These acids are extremely difficult to measure because of their adsorptive nature. Particulates and aerosols are also produced during biomass burning and impact the radiation budget of the Earth and, hence, impact global climate. Use cavity ring down spectroscopy (CRD) to measure absorption cross sections for OH overtone induced photochemistry in some organic acids (acetic acid and peracetic acid) will be presented and planed measurements of optical properties of aerosols composed of mixtures of different absorbing and non-absorbing species using CRD will be discussed.

  12. Formic and Acetic Acid Observations over Colorado by Chemical Ionization Mass Spectrometry and Organic Acids' Role in Air Quality

    NASA Astrophysics Data System (ADS)

    Treadaway, V.; O'Sullivan, D. W.; Heikes, B.; Silwal, I.; McNeill, A.

    2015-12-01

    Formic acid (HFo) and acetic acid (HAc) have both natural and anthropogenic sources and a role in the atmospheric processing of carbon. These organic acids also have an increasing importance in setting the acidity of rain and snow as precipitation nitrate and sulfate concentrations have decreased. Primary emissions for both organic acids include biomass burning, agriculture, and motor vehicle emissions. Secondary production is also a substantial source for both acids especially from biogenic precursors, secondary organic aerosols (SOAs), and photochemical production from volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs). Chemical transport models underestimate organic acid concentrations and recent research has sought to develop additional production mechanisms. Here we report HFo and HAc measurements during two campaigns over Colorado using the peroxide chemical ionization mass spectrometer (PCIMS). Iodide clusters of both HFo and HAc were recorded at mass-to-charge ratios of 173 and 187, respectively. The PCIMS was flown aboard the NCAR Gulfstream-V platform during the Deep Convective Clouds and Chemistry Experiment (DC3) and aboard the NCAR C-130 during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE). The DC3 observations were made in May and June 2012 extending from the surface to 13 km over the central and eastern United States. FRAPPE observations were made in July and August 2014 from the surface to 7 km over Colorado. DC3 measurements reported here are focused over the Colorado Front Range and complement the FRAPPE observations. DC3 HFo altitude profiles are characterized by a decrease up to 6 km followed by an increase either back to boundary layer mixing ratio values or higher (a "C" shape). Organic acid measurements from both campaigns are interpreted with an emphasis on emission sources (both natural and anthropogenic) over Colorado and in situ photochemical production especially ozone precursors.

  13. Structural organization of fatty acid desaturase loci in linseed lines with contrasting linolenic acid contents.

    PubMed

    Thambugala, Dinushika; Ragupathy, Raja; Cloutier, Sylvie

    2016-07-01

    Flax (Linum usitatissimum L.), the richest crop source of omega-3 fatty acids (FAs), is a diploid plant with an estimated genome size of ~370 Mb and is well suited for studying genomic organization of agronomically important traits. In this study, 12 bacterial artificial chromosome clones harbouring the six FA desaturase loci sad1, sad2, fad2a, fad2b, fad3a and fad3b from the conventional variety CDC Bethune and the high linolenic acid line M5791 were sequenced, analysed and compared to determine the structural organization of these loci and to gain insights into the genetic mechanisms underlying FA composition in flax. With one gene every 3.2-4.6 kb, the desaturase loci have a higher gene density than the genome's average of one gene per 7.8-8.2 kb. The gene order and orientation across the two genotypes were generally conserved with the exception of the sad1 locus that was predicted to have additional genes in CDC Bethune. High sequence conservation in both genic and intergenic regions of the sad and fad2b loci contrasted with the significant level of variation of the fad2a and fad3 loci, with SNPs being the most frequently observed mutation type. The fad2a locus had 297 SNPs and 36 indels over ~95 kb contrasting with the fad2b locus that had a mere seven SNPs and four indels in ~110 kb. Annotation of the gene-rich loci revealed other genes of known role in lipid or carbohydrate metabolic/catabolic pathways. The organization of the fad2b locus was particularly complex with seven copies of the fad2b gene in both genotypes. The presence of Gypsy, Copia, MITE, Mutator, hAT and other novel repeat elements at the desaturase loci was similar to that of the whole genome. This structural genomic analysis provided some insights into the genomic organization and composition of the main desaturase loci of linseed and of their complex evolution through both tandem and whole genome duplications. PMID:27142663

  14. Effects of pH adjustment and sodium ions on sour taste intensity of organic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protonated organic acid species have been shown to be the primary stimuli responsible for sour taste of organic acids. However, we have observed that sour taste may be modulated when the pH of acid solutions is raised using sodium hydroxide. Objectives were to evaluate the effect of pH adjustment on...

  15. [Determination of organic acids in rice wine by ion-exclusion chromatography].

    PubMed

    Lin, Xiaojie; Wei, Wei; He, Zhigang; Lin, Xiaozi

    2014-03-01

    An ion-exclusion chromatographic method for the simultaneous determination of organic acids in rice wine was developed. An IC-Pak Ion Exclusion column (300 mm x 7.8 mm, 7 microm) was used at 50 degrees C. The mobile phases were H2SO4 (phase A) and acetonitrile (phase B) (98:2, v/v) at a flow rate of 0.5 mL/min. The gradient elution program was as follows: 0-40 min, 0.01 mol/L H2SO4 to 0.02 mol/L H2SO4; 40-50 min, 0.01 mol/L H2SO4. The injection volume was 10 microL. The detection wavelength was set at 210 nm. The results showed that oxalic acid, maleic acid, citric acid, tartaric acid, malic acid, ascorbic acid, succinic acid, lactic, fumaric acid, acetic acid, propionic acid, isobutyric acid and butyric acid were completely separated and determined in 30 min. The linear correlation coefficients were above 0.999 7 in the range of 0.001- 1.000 g/L. Under the optimized conditions, the recoveries of organic acids in rice wine were in the range of 93.4% - 103.8% with the relative standard deviations (RSDs, n = 5) of 0.1% - 1.5%. This method is feasible, convenient, fast, accurate and applicable for the quantitative analysis of the organic acids in rice wine.

  16. [Determination of organic acids in rice wine by ion-exclusion chromatography].

    PubMed

    Lin, Xiaojie; Wei, Wei; He, Zhigang; Lin, Xiaozi

    2014-03-01

    An ion-exclusion chromatographic method for the simultaneous determination of organic acids in rice wine was developed. An IC-Pak Ion Exclusion column (300 mm x 7.8 mm, 7 microm) was used at 50 degrees C. The mobile phases were H2SO4 (phase A) and acetonitrile (phase B) (98:2, v/v) at a flow rate of 0.5 mL/min. The gradient elution program was as follows: 0-40 min, 0.01 mol/L H2SO4 to 0.02 mol/L H2SO4; 40-50 min, 0.01 mol/L H2SO4. The injection volume was 10 microL. The detection wavelength was set at 210 nm. The results showed that oxalic acid, maleic acid, citric acid, tartaric acid, malic acid, ascorbic acid, succinic acid, lactic, fumaric acid, acetic acid, propionic acid, isobutyric acid and butyric acid were completely separated and determined in 30 min. The linear correlation coefficients were above 0.999 7 in the range of 0.001- 1.000 g/L. Under the optimized conditions, the recoveries of organic acids in rice wine were in the range of 93.4% - 103.8% with the relative standard deviations (RSDs, n = 5) of 0.1% - 1.5%. This method is feasible, convenient, fast, accurate and applicable for the quantitative analysis of the organic acids in rice wine. PMID:24984473

  17. Organic Acid Metabolism by Isolated Rhizobium japonicum Bacteroids

    PubMed Central

    Stovall, Iris; Cole, Michael

    1978-01-01

    Rhizobium japonicum bacteroids isolated from soybean (Glycine max L.) nodules oxidized 14C-labeled succinate, pyruvate, and acetate in a manner consistent with operation of the tricarboxylic acid cycle and a partial glyoxylate cycle. Substrate carbon was incorporated into all major cellular components (cell wall + membrane, nucleic acids, and protein). PMID:16660386

  18. Ion-exclusion chromatography determination of organic acid in uridine 5'-monophosphate fermentation broth.

    PubMed

    Niu, Huanqing; Chen, Yong; Xie, Jingjing; Chen, Xiaochun; Bai, Jianxin; Wu, Jinglan; Liu, Dong; Ying, Hanjie

    2012-09-01

    Simultaneous determination of organic acids using ion-exclusion liquid chromatography and ultraviolet detection is described. The chromatographic conditions are optimized when an Aminex HPX-87H column (300 × 7.8 mm) is employed, with a solution of 3 mmol/L sulfuric acid as eluent, a flow rate of 0.4 mL/min and a column temperature of 60°C. Eight organic acids (including orotic acid, α-ketoglutaric acid, citric acid, pyruvic acid, malic acid, succinic acid, lactic acid and acetic acid) and one nucleotide are successfully quantified. The calibration curves for these analytes are linear, with correlation coefficients exceeding 0.999. The average recovery of organic acids is in the range of 97.6% ∼ 103.1%, and the relative standard deviation is in the range of 0.037% ∼ 0.38%. The method is subsequently applied to obtain organic acid profiles of uridine 5'-monophosphate culture broth fermented from orotic acid by Saccharomyces cerevisiae. These data demonstrate the quantitative accuracy for nucleotide fermentation mixtures, and suggest that the method may also be applicable to other biological samples. PMID:22634191

  19. Optical properties in the UV and visible spectral region of organic acids relevant to tropospheric aerosols

    NASA Astrophysics Data System (ADS)

    Lund Myhre, C. E.; Nielsen, C. J.

    2004-09-01

    Refractive and absorption indices in the UV and visible region of selected aqueous organic acids relevant to tropospheric aerosols are reported. The acids investigated are the aliphatic dicarboxylic acids oxalic, malonic, tartronic, succinic and glutaric acid. In addition we report data for pyruvic, pinonic, benzoic and phthalic acid. To cover a wide range of conditions we have investigated the aqueous organic acids at different concentrations spanning from highly diluted samples to concentrations close to saturation. The density of the investigated samples is reported and a parameterisation of the absorption and refractive index that allows the calculation of the optical constants of mixed aqueous organic acids at different concentrations is presented. The single scattering albedo is calculated for two size distributions using measured and a synthetic set of optical constants. The results show that tropospheric aerosols consisting of only these organic acids and water have a pure scattering effect.

  20. Optical properties in the UV and visible spectral region of organic acids relevant to tropospheric aerosols

    NASA Astrophysics Data System (ADS)

    Lund Myhre, C. E.; Nielsen, C. J.

    2004-06-01

    Refractive and absorption indices in the UV and visible region of selected aqueous organic acids relevant to tropospheric aerosols are reported. The acids investigated are the aliphatic dicarboxylic acids oxalic, malonic, tartronic, succinic and glutaric acid. In addition we report data for pyruvic, pinonic, benzoic and phthalic acid. To cover a wide range of conditions we have investigated the aqueous organic acids at different concentrations spanning from highly diluted samples to concentrations close to saturation. The density of the investigated samples is reported and a parameterisation of the absorption and refractive index that allows the calculation of the optical constants of mixed aqueous organic acids at different concentrations is presented. The single scattering albedo is calculated for two size distributions using measured and a synthetic set of optical constants. The results show that tropospheric aerosols consisting of only these organic acids and water have a pure scattering effect.

  1. [Simultaneous determination of organic acids and saccharides in lactic acid fermentation broth from biomass using high performance liquid chromatography].

    PubMed

    Ma, Rui; Ouyang, Jia; Li, Xin; Lian, Zhina; Cai, Cong

    2012-01-01

    Abstract: A high performance liquid chromatographic method for the simultaneous determination of organic acids and saccharides in lactic acid fermentation broth from biomass was developed. A Bio-Rad Aminex HPX-87H column was used at 55 degrees C. The mobile phase was 5 mmol/L sulfuric acid solution at a flow rate of 0.6 mL/min. The samples were detected by a refractive index detector (RID). The results showed that six organic acids and three saccharides in fermentation broth were completely separated and determined in 17 min. The linear correlation coefficients were above 0.999 8 in the range of 0.15-5.19 g/L. Under the optimized conditions, the recoveries of the organic acids and saccharides in Rhizopus oryzae fermentation broth at two spiked levels were in the range of 96.91%-103.11% with the relative standard deviations (RSDs, n = 6) of 0.81%-4.61%. This method is fast and accurate for the quantitative analysis of the organic acids and saccharides in microbial fermentation broths.

  2. Effects of organic acids on thermal inactivation of acid and cold stressed Enterococcus faecium.

    PubMed

    Fernández, Ana; Alvarez-Ordóñez, Avelino; López, Mercedes; Bernardo, Ana

    2009-08-01

    In this study the adaptative response to heat (70 degrees C) of Enterococcus faecium using fresh and refrigerated (at 4 degrees C for up to 1 month) stationary phase cells grown in Brain Heart Infusion (BHI) buffered at pH 7.4 (non-acid-adapted cells) and acidified BHI at pH values of 6.4 and 5.4 with acetic, ascorbic, citric, lactic, malic and hydrochloric acids (acid-adapted cells) was evaluated. In all cases, the survival curves obtained were concave upward. A mathematical model based on the Weibull distribution accurately described the inactivation kinetic. The results indicate that previous adaptation to a low pH increased the bacterial heat resistance, whereas the subsequent cold storage of cells reduced E. faecium thermal tolerance. Fresh acid-adapted cells showed t(2.5)-values (time needed to obtain an inactivation level of 2.5 log10 cycles) ranging from 2.57 to 9.51 min, while non-acid-adapted cells showed t(2.5)-values of 1.92 min. The extent of increased heat tolerance varied with the acid examined, resulting in the following order: citric > or = acetic > malic > or = lactic > hydrochloric > or = ascorbic. In contrast, cold storage progressively decreased E. faecium thermal resistance. The t(2.5) values found at the end of the period studied were about 2-3-fold lower than those corresponding to non-refrigerated cells, although this decrease was more marked (about 5-fold) when cells were grown in buffered BHI and BHI acidified at pH 5.4 with hydrochloric acid. These findings highlight the need for a better understanding of microbial response to various preservation stresses in order to increase the efficiency of thermal processes and to indicate the convenience of counterbalancing the benefits of the hurdle concept.

  3. DEOXYRIBONUCLEIC ACID BASE COMPOSITION OF PROTEUS AND PROVIDENCE ORGANISMS

    PubMed Central

    Falkow, Stanley; Ryman, I. R.; Washington, O.

    1962-01-01

    Falkow, Stanley (Walter Reed Army Institute of Research, Washington D.C.), I. R. Ryman, and O. Washington. Deoxyribonucleic acid base composition of Proteus and Providence organisms. J. Bacteriol. 83:1318–1321. 1962.—Deoxyribonucleic acids (DNA) from various species of Proteus and of Providence bacteria have been examined for their guanine + cytosine (GC) content. P. vulgaris, P. mirabilis, and P. rettgeri possess essentially identical mean GC contents of 39%, and Providence DNA has a GC content of 41.5%. In marked contrast, P. morganii DNA was found to contain 50% GC. The base composition of P. morganii is only slightly lower than those observed for representatives of the Escherichia, Shigella, and Salmonella groups. Aerobacter and Serratia differ significantly from the other members of the family by their relatively high GC content. Since a minimal requirement for genetic compatibility among different species appears to be similarity of their DNA base composition, it is suggested that P. morganii is distinct genetically from the other species of Proteus as well as Providence strains. The determination of the DNA base composition of microorganisms is important for its predictive information. This information should prove of considerable value in investigating genetic and taxonomic relationships among bacteria. PMID:13891463

  4. trans fatty acids. 5. Fatty acid composition of lipids of the brain and other organs in suckling piglets.

    PubMed

    Pettersen, J; Opstvedt, J

    1992-10-01

    The effects of dietary trans fatty acids on the fatty acid composition of the brain in comparison with other organs were studied in 3-wk-old suckling piglets. In Experiment (Expt.) 1 the piglets were delivered from sows fed partially hydrogenated fish oil (PHFO) (28% trans), partially hydrogenated soybean oil (PHSBO) (36% trans) or lard (0% trans). In Expt. 2 the piglets were delivered from sows fed PHFO, hydrogenated fish oil (HFO) (19% trans) or coconut fat (CF) (0% trans) with two levels of dietary linoleic acid (1 and 2.7%) according to factorial design. In both experiments the mother's milk was the piglets' only food. The level of incorporation of trans fatty acids in the organs was dependent on the levels in the diets and independent of fat source (i.e., PHSBO, PHFO or HFO). Incorporation of trans fatty acids into brain PE (phosphatidylethanolamine) was non-detectable in Expt. 1. In Expt. 2, small amounts (less than 0.5%) of 18:1 trans isomers were found in the brain, the level being slightly more on the lower level of dietary linoleic acid compared to the higher. In the other organs the percentage of 18:1 trans increased in the following order: heart PE, liver mitochondria PE, plasma lipids and subcutaneous adipose tissue. Small amounts of 20:1 trans were found in adipose tissue and plasma lipids. Other very long-chain fatty acids from PHFO or HFO (i.e., 20:1 cis and 22:1 cis + trans) were found in all organ lipids except for brain PE. Dietary trans fatty acids increased the percentage of 22:5n-6 in brain PE.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1435095

  5. Phase equilibria and distribution constants of metal ions in diantipyryl alkane-organic acid-hydrochloric acid-water systems

    NASA Astrophysics Data System (ADS)

    Degtev, M. I.; Popova, O. N.; Yuminova, A. A.

    2014-08-01

    The ability of antipyrine and its derivatives (diantipyryl alkanes) to form separating systems in the presence of salicylic (sulfosalicylic) acid and hydrochloric acid and water is studied. The optimum volume of the organic phase, the composition of complexes, and the mechanism for the distribution of metal ions are determined, depending on the concentrations of the main components and the salting-out agent. The complex distribution and extraction constants are calculated.

  6. [Compositions of organic acids in PM10 emission sources in Xiamen urban atmosphere].

    PubMed

    Yang, Bing-Yu; Huang, Xing-Xing; Zheng, An; Liu, Bi-Lian; Wu, Shui-Ping

    2013-01-01

    The possible organic acid emission sources in PM10 in Xiamen urban atmosphere such as cooking, biomass burning, vehicle exhaust and soil/dust were obtained using a re-suspension test chamber. A total of 15 organic acids including dicarboxylic acids, fatty acids and aromatic acids were determined using GC/MS after derivatization with BF3/n-butanol. The results showed that the highest total concentration of 15 organic acids (53%) was found in cooking emission and the average concentration of the sum of linoleic acid and oleic acid was 24% +/- 14%. However, oxalic acid was the most abundant species followed by phthalic acid in gasoline vehicle exhaust. The ratios of adipic to azelaic acid in gasoline combustion emissions were significantly higher than those in other emission sources, which can be used to qualitatively differentiate anthropogenic and biological source of dicarboxylic acids in atmospheric samples. The ratios of malonic to succinic acid in source emissions (except gasoline generator emissions) were lower (0.07-0.44) than ambient PM10 samples (0.61-3.93), which can be used to qualitatively differentiate the primary source and the secondary source of dicarboxylic acids in urban PM10.

  7. Qualitative urinary organic acid analysis: 10 years of quality assurance.

    PubMed

    Peters, Verena; Bonham, James R; Hoffmann, Georg F; Scott, Camilla; Langhans, Claus-Dieter

    2016-09-01

    Over the last 10 years, a total of 90 urine samples from patients with metabolic disorders and controls were circulated to different laboratories in Europe and overseas, starting with 67 laboratories in 2005 and reaching 101 in 2014. The participants were asked to analyse the samples in their usual way and to prepare a report as if to a non-specialist pediatrician. The performance for the detection of fumarase deficiency, glutaric aciduria type I, isovaleric aciduria, methylmalonic aciduria, mevalonic aciduria, phenylketonuria and propionic aciduria was excellent (98-100 %). Over the last few years, detection has clearly improved for tyrosinaemia type I (39 % in 2008 to over 80 % in 2011/2014), maple syrup urine disease (85 % in 2005 to 98 % in 2012), hawkinsinuria (62 % in 2010 to 88 % in 2014), aminoacylase I deficiency (43 % in 2009 to 73 % in 2012) and 3-methylcrotonyl-CoA carboxylase deficiency (60 % in 2005 to 93 % by 2011). Normal urines were mostly considered as normal (83-100 %), but laboratories often made additional diagnostic suggestions. When the findings were unambiguous, the reports were mostly clear. However, when they were less obvious, the content and quality of reports varied greatly. Repetition of organic acid measurements on a fresh sample was rarely suggested, while more complex or invasive diagnostic strategies, including further metabolic screening or biopsy were recommended. Surprisingly very few participants suggested referral from the general paediatrician to a specialist metabolic centre to confirm a diagnosis and, if applicable, to initiate treatment despite evidence suggesting that this improves the outcome for patients with inherited metabolic disorders. The reliability of qualitative organic acid analysis has improved over the last few years. However, several aspects of reporting to non-specialists may need discussion and clinicians need to be aware of the uncertainty inherent in all forms of laboratory diagnostic

  8. Qualitative urinary organic acid analysis: 10 years of quality assurance.

    PubMed

    Peters, Verena; Bonham, James R; Hoffmann, Georg F; Scott, Camilla; Langhans, Claus-Dieter

    2016-09-01

    Over the last 10 years, a total of 90 urine samples from patients with metabolic disorders and controls were circulated to different laboratories in Europe and overseas, starting with 67 laboratories in 2005 and reaching 101 in 2014. The participants were asked to analyse the samples in their usual way and to prepare a report as if to a non-specialist pediatrician. The performance for the detection of fumarase deficiency, glutaric aciduria type I, isovaleric aciduria, methylmalonic aciduria, mevalonic aciduria, phenylketonuria and propionic aciduria was excellent (98-100 %). Over the last few years, detection has clearly improved for tyrosinaemia type I (39 % in 2008 to over 80 % in 2011/2014), maple syrup urine disease (85 % in 2005 to 98 % in 2012), hawkinsinuria (62 % in 2010 to 88 % in 2014), aminoacylase I deficiency (43 % in 2009 to 73 % in 2012) and 3-methylcrotonyl-CoA carboxylase deficiency (60 % in 2005 to 93 % by 2011). Normal urines were mostly considered as normal (83-100 %), but laboratories often made additional diagnostic suggestions. When the findings were unambiguous, the reports were mostly clear. However, when they were less obvious, the content and quality of reports varied greatly. Repetition of organic acid measurements on a fresh sample was rarely suggested, while more complex or invasive diagnostic strategies, including further metabolic screening or biopsy were recommended. Surprisingly very few participants suggested referral from the general paediatrician to a specialist metabolic centre to confirm a diagnosis and, if applicable, to initiate treatment despite evidence suggesting that this improves the outcome for patients with inherited metabolic disorders. The reliability of qualitative organic acid analysis has improved over the last few years. However, several aspects of reporting to non-specialists may need discussion and clinicians need to be aware of the uncertainty inherent in all forms of laboratory diagnostic

  9. Low-molecular-weight carboxylic acids produced from hydrothermal treatment of organic wastes.

    PubMed

    Quitain, Armando T; Faisal, Muhammad; Kang, Kilyoon; Daimon, Hiroyuki; Fujie, Koichi

    2002-07-22

    This article reports production of low-molecular-weight carboxylic acids from the hydrothermal treatment of representative organic wastes and compounds (i.e. domestic sludge, proteinaceous, cellulosic and plastic wastes) with or without oxidant (H(2)O(2)). Organic acids such as acetic, formic, propionic, succinic and lactic acids were obtained in significant amounts. At 623 K (16.5 MPa), acetic acid of about 26 mg/g dry waste fish entrails was obtained. This increased to 42 mg/g dry waste fish entrails in the presence of H(2)O(2). Experiments on glucose to represent cellulosic wastes were also carried out, getting acetic acid of about 29 mg/g glucose. The study was extended to terephthalic acid and glyceraldehyde, reaction intermediates of hydrothermal treatment of polyethylene terephthalate (PET) plastic wastes and glucose, respectively. In addition, production of lactic acid, one of the interesting low-molecular-weight carboxylic acids, was discussed on the viewpoint of resources recovery. Studies on temperature dependence of formation of organic acids showed thermal stability of acetic acid, whereas, formic acid decomposed readily under hydrothermal conditions. In general, results demonstrated that the presence of oxidants favored formation of organic acids with acetic acid being the major product.

  10. Characteristics of organic acids in the fruit of different pumpkin species.

    PubMed

    Nawirska-Olszańska, Agnieszka; Biesiada, Anita; Sokół-Łętowska, Anna; Kucharska, Alicja Z

    2014-04-01

    The aim of the research was to determine the composition of organic acids in fruit of different cultivars of three pumpkin species. The amount of acids immediately after fruit harvest and after 3 months of storage was compared. The content of organic acids in the examined pumpkin cultivars was assayed using the method of high performance liquid chromatography (HPLC). Three organic acids (citric acid, malic acid, and fumaric acid) were identified in the cultivars, whose content considerably varied depending on a cultivar. Three-month storage resulted in decreased content of the acids in the case of cultivars belonging to Cucurbita maxima and Cucurbita pepo species, while a slight increase was recorded for Cucurbita moschata species.

  11. Isolation of organic acids from large volumes of water by adsorption chromatography

    USGS Publications Warehouse

    Aiken, George R.

    1984-01-01

    The concentrations of dissolved organic carbon from most natural waters ranges from 1 to 20 milligrams carbon per liter, of which approximately 75 percent are organic acids. These acids can be chromatographically fractionated into hydrophobic organic acids, such as humic substances, and hydrophilic organic acids. To effectively study any of these organic acids, they must be isolated from other organic and inorganic species, and concentrated. Usually, large volumes of water must be processed to obtain sufficient quantities of material, and adsorption chromatography on synthetic, macroporous resins has proven to be a particularly effective method for this purpose. The use of the nonionic Amberlite XAD-8 and Amberlite XAD-4 resins and the anion exchange resin Duolite A-7 for isolating and concentrating organic acids from water is presented.

  12. Recoded organisms engineered to depend on synthetic amino acids.

    PubMed

    Rovner, Alexis J; Haimovich, Adrian D; Katz, Spencer R; Li, Zhe; Grome, Michael W; Gassaway, Brandon M; Amiram, Miriam; Patel, Jaymin R; Gallagher, Ryan R; Rinehart, Jesse; Isaacs, Farren J

    2015-02-01

    Genetically modified organisms (GMOs) are increasingly used in research and industrial systems to produce high-value pharmaceuticals, fuels and chemicals. Genetic isolation and intrinsic biocontainment would provide essential biosafety measures to secure these closed systems and enable safe applications of GMOs in open systems, which include bioremediation and probiotics. Although safeguards have been designed to control cell growth by essential gene regulation, inducible toxin switches and engineered auxotrophies, these approaches are compromised by cross-feeding of essential metabolites, leaked expression of essential genes, or genetic mutations. Here we describe the construction of a series of genomically recoded organisms (GROs) whose growth is restricted by the expression of multiple essential genes that depend on exogenously supplied synthetic amino acids (sAAs). We introduced a Methanocaldococcus jannaschii tRNA:aminoacyl-tRNA synthetase pair into the chromosome of a GRO derived from Escherichia coli that lacks all TAG codons and release factor 1, endowing this organism with the orthogonal translational components to convert TAG into a dedicated sense codon for sAAs. Using multiplex automated genome engineering, we introduced in-frame TAG codons into 22 essential genes, linking their expression to the incorporation of synthetic phenylalanine-derived amino acids. Of the 60 sAA-dependent variants isolated, a notable strain harbouring three TAG codons in conserved functional residues of MurG, DnaA and SerS and containing targeted tRNA deletions maintained robust growth and exhibited undetectable escape frequencies upon culturing ∼10(11) cells on solid media for 7 days or in liquid media for 20 days. This is a significant improvement over existing biocontainment approaches. We constructed synthetic auxotrophs dependent on sAAs that were not rescued by cross-feeding in environmental growth assays. These auxotrophic GROs possess alternative genetic codes that

  13. Recoded organisms engineered to depend on synthetic amino acids.

    PubMed

    Rovner, Alexis J; Haimovich, Adrian D; Katz, Spencer R; Li, Zhe; Grome, Michael W; Gassaway, Brandon M; Amiram, Miriam; Patel, Jaymin R; Gallagher, Ryan R; Rinehart, Jesse; Isaacs, Farren J

    2015-02-01

    Genetically modified organisms (GMOs) are increasingly used in research and industrial systems to produce high-value pharmaceuticals, fuels and chemicals. Genetic isolation and intrinsic biocontainment would provide essential biosafety measures to secure these closed systems and enable safe applications of GMOs in open systems, which include bioremediation and probiotics. Although safeguards have been designed to control cell growth by essential gene regulation, inducible toxin switches and engineered auxotrophies, these approaches are compromised by cross-feeding of essential metabolites, leaked expression of essential genes, or genetic mutations. Here we describe the construction of a series of genomically recoded organisms (GROs) whose growth is restricted by the expression of multiple essential genes that depend on exogenously supplied synthetic amino acids (sAAs). We introduced a Methanocaldococcus jannaschii tRNA:aminoacyl-tRNA synthetase pair into the chromosome of a GRO derived from Escherichia coli that lacks all TAG codons and release factor 1, endowing this organism with the orthogonal translational components to convert TAG into a dedicated sense codon for sAAs. Using multiplex automated genome engineering, we introduced in-frame TAG codons into 22 essential genes, linking their expression to the incorporation of synthetic phenylalanine-derived amino acids. Of the 60 sAA-dependent variants isolated, a notable strain harbouring three TAG codons in conserved functional residues of MurG, DnaA and SerS and containing targeted tRNA deletions maintained robust growth and exhibited undetectable escape frequencies upon culturing ∼10(11) cells on solid media for 7 days or in liquid media for 20 days. This is a significant improvement over existing biocontainment approaches. We constructed synthetic auxotrophs dependent on sAAs that were not rescued by cross-feeding in environmental growth assays. These auxotrophic GROs possess alternative genetic codes that

  14. Genetic organization of Acetobacter for acetic acid fermentation.

    PubMed

    Beppu, T

    Plasmid vectors for the acetic acid-producing strains of Acetobacter and Gluconobacter were constructed from their cryptic plasmids and the efficient transformation conditions were established. The systems allowed to reveal the genetic background of the strains used in the acetic acid fermentation. Genes encoding indispensable components in the acetic acid fermentation, such as alcohol dehydrogenase, aldehyde dehydrogenase and terminal oxidase, were cloned and characterized. Spontaneous mutations at high frequencies in the acetic acid bacteria to cause the deficiency in ethanol oxidation were analyzed. A new insertion sequence element, IS1380, was identified as a major factor of the genetic instability, which causes insertional inactivation of the gene encoding cytochrome c, an essential component of the functional alcohol dehydrogenase complex. Several genes including the citrate synthase gene of A. aceti were identified to confer acetic acid resistance, and the histidinolphosphate aminotransferase gene was cloned as a multicopy suppressor of an ethanol sensitive mutant. Improvement of the acetic acid productivity of an A. aceti strain was achieved through amplification of the aldehyde dehydrogenase gene with a multicopy vector. In addition, spheroplast fusion of the Acetobacter strains was developed and applied to improve their properties.

  15. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, A.J.; Dodge, C.; Chendrayan, K.; Quinby, H.L.

    1987-04-16

    The present invention related to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rat of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 ..mu..moles of lead as lead oxide was 0.042 ..mu..moles m1/sup /-/1/ hr/sup /-/1/. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of the strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids. 4 figs., 3 tabs.

  16. Toxicity of select organic acids to the slightly thermophilic acidophile Acidithiobacillus caldus.

    PubMed

    Aston, John E; Apel, William A; Lee, Brady D; Peyton, Brent M

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 microM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 microM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids.

  17. Toxicity of Select Organic Acids to the Slightly Thermophilic Acidophile Acidithiobaccillus Caldus

    SciTech Connect

    John E Aston; William A Apel; Brady D Lee; Brent M Peyton

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 µM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 µM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids.

  18. Dissolution behavior of Caldag lateritic nickel ore subjected to a sequential organic acid leaching method

    NASA Astrophysics Data System (ADS)

    Kursunoglu, Sait; Kaya, Muammer

    2015-11-01

    The dissolution behavior of Caldag lateritic nickel ore subjected to a sequential organic acid leaching method was investigated. The effects of the type of organic acid, acid concentration, leaching time, and leaching temperature on the lateritic nickel ore were examined. Organic acids were used individually prior to sequential leaching. Citric acid was more effective than the other two acids for the selective leaching of nickel and cobalt. An increase in the citric acid concentration negligibly affected the dissolution of the metals, whereas temperature exhibited a strong beneficial effect. Oxalic acid was determined to be the most appropriate organic acid for the second leaching step. After 8 h (4 h + 4 h) of leaching with organic acids (0.5 M citric + 0.5 M oxalic) in sequence at 90°C, 89.63% Ni, 82.89% Co, and 69.63% Fe were leached from the lateritic nickel ore. A sequential citric + oxalic acid leaching method could represent a viable alternative for the dissolution of metals from lateritic nickel ore.

  19. The Photochemical Isomerization of Maleic to Fumaric Acid: An Undergraduate Organic Chemistry Experiment.

    ERIC Educational Resources Information Center

    Castro, Albert J.; And Others

    1983-01-01

    Describes an undergraduate organic chemistry experiment on the photochemical isomerization of maleic to fumaric acid. Background information, chemical reactions involved, and experimental procedures are included. (JN)

  20. Field and Laboratory Studies of Reactions between Atmospheric Water Soluble Organic Acids and Inorganic Particles

    SciTech Connect

    Wang, Bingbing; Kelly, Stephen T.; Sellon, Rachel E.; Shilling, John E.; Tivanski, Alexei V.; Moffet, Ryan C.; Gilles, Mary K.; Laskin, Alexander

    2013-06-25

    Atmospheric inorganic particles undergo complex heterogeneous reactions that change their physicochemical properties. Depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of chlorides with inorganic acids, such as nitric and sulfuric acids [1-2]. Recently, we showed that NaCl can react with water soluble organic acids (WSOA) and release gaseous hydrochloric acid (HCl) resulting in formation of organic salts [3]. A similar mechanism is also applicable to mixed WSOA/nitrate particles where multi-phase reactions are driven by the volatility of nitric acid. Furthermore, secondary organic material, which is a complex mixture of carboxylic acids, exhibits the same reactivity towards chlorides and nitrates. Here, we present a systematic study of reactions between atmospheric relevant WSOA, SOM, and inorganic salts including NaCl, NaNO3, and Ca(NO3)2 using complementary micro-spectroscopy analysis.

  1. Uptake of Ambient Organic Gases to Acidic Sulfate Aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.

    2009-05-01

    The formation of secondary organic aerosols (SOA) in the atmosphere has been an area of significant interest due to its climatic relevance, its effects on air quality and human health. Due largely to the underestimation of SOA by regional and global models, there has been an increasing number of studies focusing on alternate pathways leading to SOA. In this regard, recent work has shown that heterogeneous and liquid phase reactions, often leading to oligomeric material, may be a route to SOA via products of biogenic and anthropogenic origin. Although oligomer formation in chamber studies has been frequently observed, the applicability of these experiments to ambient conditions, and thus the overall importance of oligomerization reactions remain unclear. In the present study, ambient air is drawn into a Teflon smog chamber and exposed to acidic sulfate aerosols which have been formed in situ via the reaction of SO3 with water vapor. The aerosol composition is measured with a High Resolution Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS), and particle size distributions are monitored with a scanning mobility particle sizer (SMPS). The use of ambient air and relatively low inorganic particle loading potentially provides clearer insight into the importance of heterogeneous reactions. Results of experiments, with a range of sulfate loadings show that there are several competing processes occurring on different timescales. A significant uptake of ambient organic gases to the particles is observed immediately followed by a slow shift towards higher m/z over a period of several hours indicating that higher molecular weight products (possibly oligomers) are being formed through a reactive process. The results suggest that heterogeneous reactions can occur with ambient organic gases, even in the presence of ammonia, which may have significant implications to the ambient atmosphere where particles may be neutralized after their formation.

  2. Resistance of yeasts to weak organic acid food preservatives.

    PubMed

    Piper, Peter W

    2011-01-01

    Carboxylate weak acids are invaluable for large-scale food and beverage preservation. However, in response to safety concerns, there is now desire to reduce the use of these additives. The resistance to these compounds displayed by spoilage yeasts and fungi is a major reason why these preservatives often have to be used in millimolar levels. This chapter summarizes the mechanisms whereby yeasts are rendered resistant to acetate, propionate, sorbate, and benzoate. In baker's yeast (Saccharomyces cerevisiae), resistance to high acetic acid is acquired partly by loss of the plasma membrane aquaglyceroporin that facilitates the passive diffusional entry of undissociated acid into cells (Fps1), and partly through a transcriptional response mediated by the transcription factor Haa1. Other carboxylate preservatives are too large to enter cells through the Fps1 channel but instead penetrate at appreciable rates by passive diffusion across the plasma membrane. In Saccharomyces and Candida albicans though not, it seems, in the Zygosaccharomyces, resistance to the latter acids involves activation of the War1 transcription factor, which in turn generates strong induction of a specific plasma membrane ATP-binding cassette transporter (Pdr12). The latter actively pumps the preservative anion from the cell. Other contributors to weak acid resistance include enzymes that allow preservative degradation, members of the Tpo family of major facilitator superfamily transporters, and changes to the cell envelope that minimize the diffusional entry of the preservative into the cell. PMID:22050823

  3. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland; Chendrayan, Krishnachetty; Quinby, Helen L.

    1988-01-01

    The present invention relates to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rate of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 .mu.moles of lead as lead oxide was 0.042 .mu.moles ml.sup.-1 hr.sup.-1. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids.

  4. Resistance of yeasts to weak organic acid food preservatives.

    PubMed

    Piper, Peter W

    2011-01-01

    Carboxylate weak acids are invaluable for large-scale food and beverage preservation. However, in response to safety concerns, there is now desire to reduce the use of these additives. The resistance to these compounds displayed by spoilage yeasts and fungi is a major reason why these preservatives often have to be used in millimolar levels. This chapter summarizes the mechanisms whereby yeasts are rendered resistant to acetate, propionate, sorbate, and benzoate. In baker's yeast (Saccharomyces cerevisiae), resistance to high acetic acid is acquired partly by loss of the plasma membrane aquaglyceroporin that facilitates the passive diffusional entry of undissociated acid into cells (Fps1), and partly through a transcriptional response mediated by the transcription factor Haa1. Other carboxylate preservatives are too large to enter cells through the Fps1 channel but instead penetrate at appreciable rates by passive diffusion across the plasma membrane. In Saccharomyces and Candida albicans though not, it seems, in the Zygosaccharomyces, resistance to the latter acids involves activation of the War1 transcription factor, which in turn generates strong induction of a specific plasma membrane ATP-binding cassette transporter (Pdr12). The latter actively pumps the preservative anion from the cell. Other contributors to weak acid resistance include enzymes that allow preservative degradation, members of the Tpo family of major facilitator superfamily transporters, and changes to the cell envelope that minimize the diffusional entry of the preservative into the cell.

  5. Reduction of Cr (VI) by organic acids in the presence of Al (III).

    PubMed

    Chen, Na; Lan, Yeqing; Wang, Bo; Mao, Jingdong

    2013-09-15

    The effects of Al (III) on the reduction of Cr (VI) by three α-hydroxy acids, tartaric, malic and citric acids, were investigated through batch experiments at pH from 2.5 to 4.0 and temperatures from 25 °C to 35 °C. These reactions could be described as pseudo-zero-order with respect to Cr (VI) when the concentrations of α-hydroxy acids were greatly in excess. The transformation rates of Cr (VI) to Cr (III) in the presence of Al (III) without light were in the decreasing order of tartaric acid>malic acid>citric acid. This order suggested that the two α-hydroxyl groups in tartaric acid could play an important role in the reduction of Cr (VI) by organic acids. The possible mechanism was that the formed complex between organic acids and Al (III) significantly enhanced the reductivity of α-hydroxy acids and further led to the more complicated Cr (VI)-tartaric acid-Al (III) cyclic ester which greatly accelerated the reduction rate. The Cr (VI) reduction reaction rate increased with the decrease of pH but with the increase of Al (III) concentration, tartaric acid concentration, and temperature. As the pH decreased, the increase of [H(+)] led to an increase in {Al(III)H₂Tar₂}(+), the most active species, and thus the enhanced reduction rate.

  6. Folic Acid

    MedlinePlus

    Folic acid is a B vitamin. It helps the body make healthy new cells. Everyone needs folic acid. For women who may get pregnant, it is really important. Getting enough folic acid before and during pregnancy can prevent major birth ...

  7. Folic Acid

    MedlinePlus

    Folic acid is used to treat or prevent folic acid deficiency. It is a B-complex vitamin needed by ... Folic acid comes in tablets. It usually is taken once a day. Follow the directions on your prescription label ...

  8. In vitro ruminal fermentation of organic acids common in forage.

    PubMed Central

    Russell, J B; Van Soest, P J

    1984-01-01

    Mixed rumen bacteria from cows fed either timothy hay or a 60% concentrate were incubated with 7.5 mM citrate, trans-aconitate, malate, malonate, quinate, and shikimate. Citrate, trans-aconitate, and malate were fermented at faster rates than malonate, quinate, and shikimate. Acetate was the primary fermentation product for all six acids. Quinate and shikimate fermentations gave rist to butyrate, whereas malate and malonate produced significant amounts of propionic acid. High-pressure liquid chromatography of fermentation products from trans-aconitate incubations revealed a compound that was subsequently identified as tricarballylate. As much as 40% of the trans-aconitate acid was converted to tricarballylate, and tricarballylate was fermented slowly. The slow rate of tricarballylate metabolism by mixed rumen bacteria and its potential as a magnesium chelator suggest that tricarballylate formation could be an important factor in the hypomagnesemia that leads to grass tetany. PMID:6696413

  9. Desorption of copper and cadmium from soils enhanced by organic acids.

    PubMed

    Yuan, Songhu; Xi, Zhimin; Jiang, Yi; Wan, Jinzhong; Wu, Chan; Zheng, Zhonghua; Lu, Xiaohua

    2007-07-01

    The adsorption/desorption behavior of copper and cadmium on soils was investigated in this study. The adsorption isotherm of copper and cadmium conformed to Langmuir equation better than Freundlich equation. The effect of ionic strength, pH, and organic acid, including ethylenediamine tetraacetic disodium acid salt (EDTA), citric acid, oxalic acid and tartaric acid, on the desorption of copper and cadmium was studied. The desorption of copper and cadmium increased with the increase of ionic strength, while the desorption decreased with the rise of pH. The desorption of copper and cadmium enhanced by organic acids was influenced by pH. EDTA showed excellent enhancement on the desorption of both copper and cadmium; citric acid demonstrated great enhancement on the desorption of copper but negligible enhancement on the desorption of cadmium; oxalic acid enhanced the desorption of copper only at pH around 6.4 and enhanced the desorption of cadmium in the pH range from 6.4 to 10.7; tartaric acid slightly enhanced the desorption of copper but negligibly enhanced the desorption of cadmium. The desorption mechanism in the presence of organic acids were explained as the competition of complexation, adsorption and precipitation. The net effect determined the desorption efficiency. This study provided guidance for the selection of organic acids to enhance the electrokinetic (EK) remediation of copper and cadmium from contaminated soils. PMID:17349675

  10. Comparison of capillary pressure relationships of organic liquid water systems containing an organic acid or base

    NASA Astrophysics Data System (ADS)

    Lord, D. L.; Demond, A. H.; Hayes, K. F.

    2005-04-01

    The presence of surface-active solutes such as organic acids and bases may have a profound influence on the transport of organic liquid contaminants through their impact on the constitutive relationship of capillary pressure vs. saturation. This relationship is a function of the interfacial tension and wettability of the system, which, in turn, depend on the pH and the concentration of organic acids and bases that are present. This study examines the impact of pH and the concentration on the interfacial tension, contact angle, and capillary pressure of systems consisting of tetrachloroethylene, water, and quartz containing either octanoic acid or dodecylamine. In general, the ionic form of the solute tended to remain in the aqueous phase and reduced the capillary pressure through its impact on the interfacial tension and contact angle; on the other hand, the neutral form of the solute partitioned into the organic liquid phase and had a lesser impact on the capillary pressure for the same total mass of solute. A comparison of these data with data generated in previous research in similar systems where o-xylene was the organic liquid showed that the trends are analogous. Thus, the behavior of these two solvent systems seems to be driven primarily by the aqueous phase speciation of the solute, and the differences between the capillary pressure relationships for the two systems could be attributed to the pure system interfacial tension.

  11. An enhanced procedure for measuring organic acids and methyl esters in PM2.5

    NASA Astrophysics Data System (ADS)

    Liu, F.; Duan, F. K.; He, K. B.; Ma, Y. L.; Rahn, K. A.; Zhang, Q.

    2015-11-01

    A solid-phase extraction (SPE) pretreatment procedure allowing organic acids to be separated from methyl esters in fine aerosol has been developed. The procedure first separates the organic acids from fatty acid methyl esters (FAMEs) and other nonacid organic compounds by aminopropyl-based SPE cartridge and then quantifies them by gas chromatography/mass spectrometry. The procedure prevents the fatty acids and dimethyl phthalate from being overestimated, and so allows us to accurately quantify the C4-C11 dicarboxylic acids (DCAs) and the C8-C30 monocarboxylic acids (MCAs). Results for the extraction of DCAs, MCAs, and AMAs in eluate and FAMEs in effluate by SAX and NH2 SPE cartridges exhibited that the NH2 SPE cartridge gave higher extraction efficiency than the SAX cartridge. The recoveries of analytes ranged from 67.5 to 111.3 %, and the RSD ranged from 0.7 to 10.9 %. The resulting correlations between the aliphatic acids and FAMEs suggest that the FAMEs had sources similar to those of the carboxylic acids, or were formed by esterifying carboxylic acids, or that aliphatic acids were formed by hydrolyzing FAMEs. Through extraction and cleanup using this procedure, 17 aromatic acids in eluate were identified and quantified by gas chromatography/tandem mass spectrometry, including five polycyclic aromatic hydrocarbon (PAH): acids 2-naphthoic, biphenyl-4-carboxylic, 9-oxo-9H-fluorene-1-carboxylic, biphenyl-4,4´-dicarboxylic, and phenanthrene-1-carboxylic acid, plus 1,8-naphthalic anhydride. Correlations between the PAH acids and the dicarboxylic and aromatic acids suggested that the first three acids and 1,8-naphthalic anhydride were secondary atmospheric photochemistry products and the last two mainly primary.

  12. An enhanced procedure for measuring organic acids and methyl esters in PM2.5

    NASA Astrophysics Data System (ADS)

    Liu, F.; Duan, F.; He, K.; Ma, Y.; Rahn, K. A.; Zhang, Q.

    2015-03-01

    We have developed an enhanced analytical procedure to measure organic acids and methyl esters in fine aerosol with much greater specificity and sensitivity than previously available. This capability is important because of these species and their low concentrations, even in highly polluted atmospheres like Beijing, China. The procedure first separates the acids and esters from the other organic compounds with anion-exchange solid- phase extraction (SPE), then, quantifies them by gas chromatography coupled with mass spectrometry. This allows us to accurately quantify the C4-C11 dicarboxylic and the C8-C30 monocarboxylic acids. Then the acids are separated from the esters on an aminopropyl SPE cartridge, whose weak retention isolates and enriches the acids from esters prevents the fatty acids and dimethyl phthalate from being overestimated. The resulting correlations between the aliphatic acids and fatty acid methyl esters (FAMEs) suggest that FAMEs had sources similar to those of the carboxylic acids, or were formed by esterifying carboxylic acids, or that aliphatic acids were formed by hydrolyzing FAMEs. In all, 17 aromatic acids were identified and quantified using this procedure coupled with gas chromatography-tandem mass spectrometry, including the five polycyclic aromatic hydrocarbon (PAH) acids 2-naphthoic, biphenyl-4-carboxylic, 9-oxo-9H-fluorene-1-carboxylic, biphenyl-4,4´-dicarboxylic, and phenanthrene-1-carboxylic acid, plus 1,8-naphthalic anhydride. Correlations between the PAH-acids and the dicarboxylic and aromatic acids indicated that the first three acids and 1,8-naphthalic anhydride were mainly secondary, the last two mainly primary.

  13. Qualitative urinary organic acid analysis: methodological approaches and performance.

    PubMed

    Peters, V; Garbade, S F; Langhans, C D; Hoffmann, G F; Pollitt, R J; Downing, M; Bonham, J R

    2008-12-01

    A programme for proficiency testing of biochemical genetics laboratories undertaking urinary qualitative organic acid analysis and its results for 50 samples examined for factors contributing to poor performance are described. Urine samples from patients in whom inherited metabolic disorders have been confirmed as well as control urines were circulated to participants and the results from 94 laboratories were evaluated. Laboratories showed variability both in terms of their individual performance and on a disease-specific basis. In general, conditions including methylmalonic aciduria, propionic aciduria, isovaleric aciduria, mevalonic aciduria, Canavan disease and 3-methylcrotonyl-CoA carboxylase were readily identified. Detection was poorer for other diseases such as glutaric aciduria type II, glyceric aciduria and, in one sample, 3-methylcrotonyl-CoA carboxylase deficiency. To identify the factors that allow some laboratories to perform well on a consistent basis while others perform badly, we devised a questionnaire and compared the responses with the results for performance in the scheme. A trend towards better performance could be demonstrated for those laboratories that regularly use internal quality control (QC) samples in their sample preparation (p = 0.079) and those that participate in further external quality assurance (EQA) schemes (p = 0,040). Clinicians who depend upon these diagnostic services to identify patients with these defects and the laboratories that provide them should be aware of the potential for missed diagnoses and the factors that may lead to improved performance.

  14. Collection and analysis of organic acids in exhaust gas. Comparison of different methods

    NASA Astrophysics Data System (ADS)

    Zervas, E.; Montagne, X.; Lahaye, J.

    This paper reports the development of a specific method to identify organic acids in exhaust gases. The organic acids are collected in two impingers containing liquids (pure water or Na 2CO 3 1% aqueous solution) and four cartridges containing solids (silica, fluorisil, alumina B and alumina N). Once collected, the acids are eluted of the solids by a hot water stream. These traps performances, in terms of organic acids collection and elution efficiency, are evaluated and compared. Two sources are used to produce the gas flow containing organic acids: one generates a flow whose concentration is known and stable, the other produces organic acids among other combustion products. For eluted solutions analysis, two methods are used: isocratic ionic chromatography/conductivity detection and GC/FID. Their efficiency in separating 10 aliphatic acids are compared. Their characteristics such as detection limits, detection linearity, repeatability and possible interferences with other components found in exhaust gases are determined. The stability of the organic acids solutions is also studied. Lastly, the use of these methods is illustrated by the analysis of the gas-phase organic acids exhausted by a spark ignition and by a diesel engine.

  15. Amino acids

    MedlinePlus

    ... amino acids are: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan , and valine. Nonessential amino acids "Nonessential" means that our bodies produce an amino ...

  16. Concentration and fractionation of hydrophobic organic acid constituents from natural waters by liquid chromatography

    USGS Publications Warehouse

    Thurman, E.M.; Malcolm, R.L.

    1979-01-01

    A scheme is presented which used adsorption chromatography with pH gradient elution and size-exclusion chromatography to concentrate and separate hydrophobic organic acids from water. A review of chromatographic processes involved in the flow scheme is also presented. Organic analytes which appear in each aqueous fraction are quantified by dissolved organic carbon analysis. Hydrophobic organic acids in a water sample are concentrated on a porous acrylic resin. These acids usually constitute approximately 30-50 percent of the dissolved organic carbon in an unpolluted water sample and are eluted with an aqueous eluent (dilute base). The concentrate is then passed through a column of polyacryloylmorpholine gel, which separates the acids into high- and low-molecular-weight fractions. The high- and low-molecular-weight eluates are reconcentrated by adsorption chromatography, then are eluted with a pH gradient into strong acids (predominately carboxylic acids) and weak acids (predominately phenolic compounds). For standard compounds and samples of unpolluted waters, the scheme fractionates humic substances into strong and weak acid fractions that are separated from the low molecular weight acids. A new method utilizing conductivity is also presented to estimate the acidic components in the methanol fraction.

  17. Phenolic and short-chained aliphatic organic acid constituents of wild oat (Avena fatua L.) seeds.

    PubMed

    Gallagher, R S; Ananth, R; Granger, K; Bradley, B; Anderson, J V; Fuerst, E P

    2010-01-13

    The objective of this research was to identify and quantify the phenolic and short-chained aliphatic organic acids present in the seeds of three wild-type populations of wild oat and compare these results to the chemical composition of seeds from two commonly utilized wild oat isolines (M73 and SH430). Phenolic acids have been shown to serve as germination inhibitors, as well as protection for seeds from biotic and abiotic stress factors in other species, whereas aliphatic organic acids have been linked to germination traits and protection against pathogens. Wild oat populations were grown under a "common garden" environment to remove maternal variation, and the resulting seeds were extracted to remove the readily soluble and chemically bound phenolic and aliphatic organic acid components. Compounds were identified and quantified using gas chromatography-mass spectrometry. Ferulic and p-coumaric acid comprised 99% of the total phenolic acids present in the seeds, of which 91% were contained in the hulls and 98% were in the chemically bound forms. Smaller quantities of OH benzoic and vanillic acid were also detected. Soluble organic acids concentrations were higher in the M73 isoline compared to SH430, suggesting that these chemical constituents could be related to seed dormancy. Malic, succinic, fumaric and azelaic acid were the dominant aliphatic organic acids detected in all seed and chemical fractions.

  18. Production of organic acid esters from biomass - novel processes and concepts

    SciTech Connect

    Datta, R.

    1981-01-01

    After low cost, low energy pretreatment, lignocellulose can be converted directly to volatile (C/sub 2/-C/sub 6/) organic acids by mixed-culture acidogenic fermentation. The principal components of lignocellulose (pectins, hemicellulose, cellulose, and lignin) are all converted to organic acids in high yields. Esterification from dilute aqueous solutions using novel techniques based on adsorption, solvent extraction, or biochemical conversion could be an important method for recovering these acids and simultaneously producing liquid fuels or chemical feedstocks. Uses of organic acid esters and conceptual biomass conversion processes are outlined. The significance of these processes for substantially increasing liquid fuel productivity from biomass feedstocks are discussed.

  19. [Rapid determination of eight organic acids in plant tissue by sequential extraction and high performance liquid chromatography].

    PubMed

    Huang, Tianzhi; Wang, Shijie; Liu Xiuming; Liu, Hong; Wu, Yanyou; Luo Xuqiang

    2014-12-01

    A sequential extraction method was developed to determine different forms of oxalate and seven oxalate-metabolism-related organic acids (glyoxylic acid, tartaric acid, glycolic acid, malic acid, acetic acid, citric acid, succinic acid) in plant tissue. The ultra-pure water was used as the extraction medium to obtain water-soluble oxalic acid and the other seven water-soluble organic acids. After the extraction of the water-soluble organic acids, the residues were extracted by dilute hydrochloric acid successively to get the acid-soluble oxalate which entered the liquid phase. A Hypersil ODS column was used with 5 mmol/L potassium dihydrogen phosphate buffer solution (pH 2. 8) as the mobile phase. The diode array detector was set at 210 nm and the column temperature at 30 °C with the injection volume of 5 µL. The flow rate was controlled at different times which allowed a good and rapid separation of the organic acids and hydrochloric acid. Under these conditions, the linear ranges of the method were 1-2000 mg/L for oxalic acid, 25-2,000 mg/L for acetic acid, and 10-2,000 mg/L for glyoxylic acid, tartaric acid, glycolic acid, malic acid, citric acid and succinic acid, with the correlation coefficients of the eight organic acids ≥ 0. 9996. The average recoveries of the eight organic acids in leaves and roots were 93. 5%-104. 4% and 85. 3%-105. 4% with RSDs of 0. 15% -2.43% and 0. 31%-2. 9% (n=7), respectively. The limits of detection ranged from 1 to 10 ng (S/N=3). The results indicated that the method is accurate, rapid and reproducible for the determination of organic acids in plant samples.

  20. Ice nucleation in sulfuric acid/organic aerosols: implications for cirrus cloud formation

    NASA Astrophysics Data System (ADS)

    Beaver, M. R.; Elrod, M. J.; Garland, R. M.; Tolbert, M. A.

    2006-03-01

    Using an aerosol flow tube apparatus, we have studied the effects of aliphatic aldehydes (C3 to C10) and ketones (C3 and C9) on ice nucleation in sulfuric acid aerosols. Mixed aerosols were prepared by combining an organic vapor flow with a flow of sulfuric acid aerosols over a small mixing time (~60 s) at room temperature. No acid-catalyzed reactions were observed under these conditions, and physical uptake was responsible for the organic content of the sulfuric acid aerosols. In these experiments, aerosol organic content, determined by a Mie scattering analysis, was found to vary with the partial pressure of organic, the flow tube temperature, and the identity of the organic compound. The physical properties of the organic compounds (primarily the solubility and melting point) were found to play a dominant role in determining the mode of nucleation (homogenous or heterogeneous) and the specific freezing temperatures observed. Overall, very soluble, low-melting organics, such as acetone and propanal, caused a decrease in aerosol ice nucleation temperatures when compared with aqueous sulfuric acid aerosol. In contrast, sulfuric acid particles exposed to organic compounds of eight carbons and greater, of much lower solubility and higher melting temperatures, nucleate ice at temperatures above aqueous sulfuric acid aerosols. Organic compounds of intermediate carbon chain length, C4-C7, (of intermediate solubility and melting temperatures) nucleated ice at the same temperature as aqueous sulfuric acid aerosols. Interpretations and implications of these results for cirrus cloud formation are discussed.

  1. Ice nucleation in sulfuric acid/organic aerosols: implications for cirrus cloud formation

    NASA Astrophysics Data System (ADS)

    Beaver, M. R.; Elrod, M. J.; Garland, R. M.; Tolbert, M. A.

    2006-08-01

    Using an aerosol flow tube apparatus, we have studied the effects of aliphatic aldehydes (C3 to C10) and ketones (C3 and C9) on ice nucleation in sulfuric acid aerosols. Mixed aerosols were prepared by combining an organic vapor flow with a flow of sulfuric acid aerosols over a small mixing time (~60 s) at room temperature. No acid-catalyzed reactions were observed under these conditions, and physical uptake was responsible for the organic content of the sulfuric acid aerosols. In these experiments, aerosol organic content, determined by a Mie scattering analysis, was found to vary with the partial pressure of organic, the flow tube temperature, and the identity of the organic compound. The physical properties of the organic compounds (primarily the solubility and melting point) were found to play a dominant role in determining the inferred mode of nucleation (homogenous or heterogeneous) and the specific freezing temperatures observed. Overall, very soluble, low-melting organics, such as acetone and propanal, caused a decrease in aerosol ice nucleation temperatures when compared with aqueous sulfuric acid aerosol. In contrast, sulfuric acid particles exposed to organic compounds of eight carbons and greater, of much lower solubility and higher melting temperatures, nucleate ice at temperatures above aqueous sulfuric acid aerosols. Organic compounds of intermediate carbon chain length, C4-C7, (of intermediate solubility and melting temperatures) nucleated ice at the same temperature as aqueous sulfuric acid aerosols. Interpretations and implications of these results for cirrus cloud formation are discussed.

  2. [Formation of organic acids by fungi isolated from the surface of stone monuments].

    PubMed

    Sazanova, K V; Shchiparev, S M; Vlasov, D Iu

    2014-01-01

    Capacity of the fungi isolated from the surface of stone monuments for acid formation was studied in cultures under various carbon sources and cultivation conditions. The composition of organic nutrients was adjusted according to the results of investigation of the surface layers from the monuments in urban environment. The primary soil formed at the surface of the stone monuments under urban conditions was shown to contain a variety of carbon and nitrogen sources and is a rich substrate for fungal growth. Oxalic acid was produced by fungi grown on media with various concentrations of sugars, sugar alcohols, and organic acids. Malic, citric, fumaric, and succinic acids were identified only at elevated carbohydrate concentrations, mostly in liquid cultures. Oxalic acid was the dominant among the acids produced by Aspergillus niger at all experimental setups. Unlike A. niger, the relative content of oxalic acid produced by Penicillium citrinum decreased at high carbohydrate concentrations. PMID:25844464

  3. [Formation of organic acids by fungi isolated from the surface of stone monuments].

    PubMed

    Sazanova, K V; Shchiparev, S M; Vlasov, D Iu

    2014-01-01

    Capacity of the fungi isolated from the surface of stone monuments for acid formation was studied in cultures under various carbon sources and cultivation conditions. The composition of organic nutrients was adjusted according to the results of investigation of the surface layers from the monuments in urban environment. The primary soil formed at the surface of the stone monuments under urban conditions was shown to contain a variety of carbon and nitrogen sources and is a rich substrate for fungal growth. Oxalic acid was produced by fungi grown on media with various concentrations of sugars, sugar alcohols, and organic acids. Malic, citric, fumaric, and succinic acids were identified only at elevated carbohydrate concentrations, mostly in liquid cultures. Oxalic acid was the dominant among the acids produced by Aspergillus niger at all experimental setups. Unlike A. niger, the relative content of oxalic acid produced by Penicillium citrinum decreased at high carbohydrate concentrations.

  4. Students' Understanding of Acids/Bases in Organic Chemistry Contexts

    ERIC Educational Resources Information Center

    Cartrette, David P.; Mayo, Provi M.

    2011-01-01

    Understanding key foundational principles is vital to learning chemistry across different contexts. One such foundational principle is the acid/base behavior of molecules. In the general chemistry sequence, the Bronsted-Lowry theory is stressed, because it lends itself well to studying equilibrium and kinetics. However, the Lewis theory of…

  5. [Effects of low molecular weight organic acids on redox reactions of mercury].

    PubMed

    Zhao, Shi-Bo; Sun, Rong-Guo; Wang, Ding-Yong; Wang, Xiao-Wen; Zhang, Cheng

    2014-06-01

    To study the effects of the main component of vegetation root exudates-low molecular weight organic acids on the redox reactions of mercury, laboratory experiments were conducted to investigate the roles of tartaric, citric, and succinic acid in the redox reactions of mercury, and to analyze their interaction mechanism. The results indicated that tartaric acid significantly stimulated the mercury reduction reaction, while citric acid had inhibitory effect. Succinic acid improved the reduction rate at low concentration, and inhibited the reaction at high concentration. The mercury reduction rate by tartaric acid treatment was second-order with respect to Hg2+ concentration, ranging from 0.0014 L x (ng x min)(-1) to 0.005 6 L x (ng x min)(-1). All three organic acids showed a capacity for oxidating Hg(0) in the early stage, but the oxidized Hg(0) was subsequently reduced. The oxidation capacity of the three organic acids was in the order of citric acid > tartaric acid > succinic acid.

  6. Relative efficacy of organic acids and antibiotics as growth promoters in broiler chicken

    PubMed Central

    Bagal, Vikrant Laxman; Khatta, Vinod Kumar; Tewatia, Bachu Singh; Sangwan, Sandeep Kumar; Raut, Subhash Shamrao

    2016-01-01

    Aim: The objective of this study was to evaluate the effect of organic acids as replacer to antibiotics in their various combinations on feed consumption, body weight gain, and feed conversion ratio (FCR) in broiler chicks during different phases of growth. Materials and Methods: Antibiotics and organic acids were incorporated into boiler feed in different combinations to form 10 maize based test diets (T1 to T10). Each test diet was offered to four replicates of 10 birds each constituting a total of 400 birds kept for 45 days. Results: Significantly better effect in terms of body weight gain from supplementation of 1% citric acid and 1% citric acid along with antibiotic was observed throughout the entire study, whereas the effect of tartaric acid supplementation was similar to control group. Citric acid (1%) along with antibiotic supplementation showed highest feed intake during the experimental period. Significantly better FCR was observed in groups supplemented with 1% citric acid and 1% citric acid along with antibiotic followed by antibiotic along with organic acids supplemented group. Conclusion: Growth performance of birds in terms of body weight, body weight gain, and FCR improved significantly in 1% citric acid which was significantly higher than antibiotic supplemented group. 1% citric acid can effectively replace antibiotic growth promoter (chlortetracycline) without affecting growth performance of birds. PMID:27182133

  7. Identification and characterization of component organic and glycosidic acids of crude resin glycoside fraction from Calystegia soldanella.

    PubMed

    Takigawa, Ayako; Setoguchi, Hiroaki; Okawa, Masafumi; Kinjo, Junei; Miyashita, Hiroyuki; Yokomizo, Kazumi; Yoshimitsu, Hitoshi; Nohara, Toshihiro; Ono, Masateru

    2011-01-01

    Alkaline hydrolysis of the crude resin glycoside fraction of the leaves, stems, and roots of Calystegia soldanella ROEM. et SCHULT. (Convolvulaceae) gave four new glycosidic acids, named calysolic acids A, B, C, and D, along with one known glycosidic acid, soldanellic acid B, and three organic acids, 2S-methylbutyric, tiglic, and 2S,3S-nilic acids. The structures of the new glycosidic acids were characterized on the basis of spectroscopic data and chemical evidence.

  8. Structural and functional organization of the animal fatty acid synthase.

    PubMed

    Smith, Stuart; Witkowski, Andrzej; Joshi, Anil K

    2003-07-01

    The entire pathway of palmitate synthesis from malonyl-CoA in mammals is catalyzed by a single, homodimeric, multifunctional protein, the fatty acid synthase. Each subunit contains three N-terminal domains, the beta-ketoacyl synthase, malonyl/acetyl transferase and dehydrase separated by a structural core from four C-terminal domains, the enoyl reductase, beta-ketoacyl reductase, acyl carrier protein and thiosterase. The kinetics and specificities of the substrate loading reaction catalyzed by the malonyl/acetyl transferase, the condensation reaction catalyzed by beta-ketoacyl synthase and chain-terminating reaction catalyzed by the thioesterase ensure that intermediates do not leak off the enzyme, saturated chains exclusively are elongated and palmitate is released as the major product. Only in the fatty acid synthase dimer do the subunits adopt conformations that facilitate productive coupling of the individual reactions for fatty acid synthesis at the two acyl carrier protein centers. Introduction of a double tagging and dual affinity chromatographic procedure has permitted the engineering and isolation of heterodimeric fatty acid synthases carrying different mutations on each subunit. Characterization of these heterodimers, by activity assays and chemical cross-linking, has been exploited to map the functional topology of the protein. The results reveal that the two acyl carrier protein domains engage in substrate loading and condensation reactions catalyzed by the malonyl/acetyl transferase and beta-ketoacyl synthase domains of either subunit. In contrast, the reactions involved in processing of the beta-carbon atom, following each chain elongation step, together with the release of palmitate, are catalyzed by the cooperation of the acyl carrier protein with catalytic domains of the same subunit. These findings suggest a revised model for the fatty acid synthase in which the two polypeptides are oriented such that head-to-tail contacts are formed both between

  9. 40 CFR 747.195 - Triethanolamine salt of a substituted organic acid.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Agency, at 40 CFR 747.195, as published in the Federal Register of June 14, 1984. A copy of the... organic acid. 747.195 Section 747.195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Substances § 747.195 Triethanolamine salt of a substituted organic acid. This section identifies...

  10. 40 CFR 747.195 - Triethanolamine salt of a substituted organic acid.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Agency, at 40 CFR 747.195, as published in the Federal Register of June 14, 1984. A copy of the... organic acid. 747.195 Section 747.195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Substances § 747.195 Triethanolamine salt of a substituted organic acid. This section identifies...

  11. 40 CFR 747.195 - Triethanolamine salt of a substituted organic acid.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Agency, at 40 CFR 747.195, as published in the Federal Register of June 14, 1984. A copy of the... organic acid. 747.195 Section 747.195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Substances § 747.195 Triethanolamine salt of a substituted organic acid. This section identifies...

  12. 40 CFR 747.195 - Triethanolamine salt of a substituted organic acid.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Agency, at 40 CFR 747.195, as published in the Federal Register of June 14, 1984. A copy of the... organic acid. 747.195 Section 747.195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Substances § 747.195 Triethanolamine salt of a substituted organic acid. This section identifies...

  13. 40 CFR 747.195 - Triethanolamine salt of a substituted organic acid.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Agency, at 40 CFR 747.195, as published in the Federal Register of June 14, 1984. A copy of the... organic acid. 747.195 Section 747.195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Substances § 747.195 Triethanolamine salt of a substituted organic acid. This section identifies...

  14. Effects of pH adjustment and sodium ions on sour taste intensity of organic acids.

    PubMed

    Neta, E R D; Johanningsmeier, S D; Drake, M A; McFeeters, R F

    2009-01-01

    Protonated organic acid species have been shown to be the primary stimuli responsible for sour taste of organic acids. However, we have observed that sour taste may be modulated when the pH of acid solutions is raised using sodium hydroxide. Objectives were to evaluate the effect of pH adjustment on sour taste of equimolar protonated organic acid solutions and to investigate the potential roles of organic anions and sodium ions on sour taste perception. Despite equal concentrations of protonated acid species, sour taste intensity decreased significantly with increased pH for acetic, lactic, malic, and citric acids (P < 0.05). Total organic anion concentration did not explain the suppression of sour taste in solutions containing a blend of 3 organic acids with constant concentration of protonated organic acid species and hydrogen ions and variable organic anion concentrations (R(2)= 0.480, P = 0.12). Sour taste suppression in these solutions seemed to be more closely related to sodium ions added in the form of NaOH (R(2)= 0.861, P = 0.007). Addition of 20 mM NaCl to acid solutions resulted in significant suppression of sour taste (P = 0.016). However, sour taste did not decrease with further addition of NaCl up to 80 mM. Presence of sodium ions was clearly shown to decrease sour taste of organic acid solutions. Nonetheless, suppression of sour taste in pH adjusted single acid solutions was greater than what would be expected based on the sodium ion concentration alone, indicating an additional suppression mechanism may be involved.

  15. Sensitive Amino Acid Composition and Chirality Analysis with the Mars Organic Analyzer (MOA)

    NASA Technical Reports Server (NTRS)

    Skelley, Alison M.; Scherer, James R.; Aubrey, Andrew D.; Grover, William H.; Ivester, Robin H. C.; Ehrenfreund, Pascale; Grunthaner, Frank J.; Bada, Jeffrey L.; Mathies, Richard A.

    2005-01-01

    Detection of life on Mars requires definition of a suitable biomarker and development of sensitive yet compact instrumentation capable of performing in situ analyses. Our studies are focused on amino acid analysis because amino acids are more resistant to decomposition than other biomolecules, and because amino acid chirality is a well-defined biomarker. Amino acid composition and chirality analysis has been previously demonstrated in the lab using microfabricated capillary electrophoresis (CE) chips. To analyze amino acids in the field, we have developed the Mars Organic Analyzer (MOA), a portable analysis system that consists of a compact instrument and a novel multi-layer CE microchip.

  16. [Organic acids of various kinds of vegetables. IV. Changes in the acids and sugar in tomatoes, sweet peppers and cucumbers during development and ripening].

    PubMed

    Tarrach, F; Herrmann, K

    1986-12-01

    Concentrations of organic acids and sugars in tomatoes and sweet peppers change notably during ripening. The concentration of malic acid decreases while that of citric acid increases considerably and in redripe fruits clearly exceeds the content of malic acid. Several maxima and minima in acid concentrations occur during development. Both species show constant proportions of citric and isocitric acid (200:1 and 30:1 respectively). In sweet pepper, quinic and ascorbic acid can be found in noticeably higher amounts than in tomatoes. Additionally, succinic acid was detected in tomatoes and fumaric and shikimic acid in sweet pepper. Glucose and fructose, in approximately equal amounts, are the main sugar components; their concentrations are increased during ripening, especially in sweet peppers. The leaves of tomatoes and sweet pepper contain more malic acid and less citric acid than redripe fruits, though here as well citric acid predominates. There is considerably less glucose and fructose present in the leaves of sweet pepper than in the fruits while sucrose is increased. Sucrose is the main sugar component in the leaves. Compared to tomatoes and sweet peppers, egg-plants contain more amounts. - Potatoes contain citric, malic, quinic, succinic, fumaric, and soluble oxalic acid (in order of decreasing amounts). - In cucumbers malic acid notably exceeds citric acid. Both acids hardly change in concentration during ripening. Sugar content decreases during ripening. PMID:3811599

  17. [Organic acids of various kinds of vegetables. IV. Changes in the acids and sugar in tomatoes, sweet peppers and cucumbers during development and ripening].

    PubMed

    Tarrach, F; Herrmann, K

    1986-12-01

    Concentrations of organic acids and sugars in tomatoes and sweet peppers change notably during ripening. The concentration of malic acid decreases while that of citric acid increases considerably and in redripe fruits clearly exceeds the content of malic acid. Several maxima and minima in acid concentrations occur during development. Both species show constant proportions of citric and isocitric acid (200:1 and 30:1 respectively). In sweet pepper, quinic and ascorbic acid can be found in noticeably higher amounts than in tomatoes. Additionally, succinic acid was detected in tomatoes and fumaric and shikimic acid in sweet pepper. Glucose and fructose, in approximately equal amounts, are the main sugar components; their concentrations are increased during ripening, especially in sweet peppers. The leaves of tomatoes and sweet pepper contain more malic acid and less citric acid than redripe fruits, though here as well citric acid predominates. There is considerably less glucose and fructose present in the leaves of sweet pepper than in the fruits while sucrose is increased. Sucrose is the main sugar component in the leaves. Compared to tomatoes and sweet peppers, egg-plants contain more amounts. - Potatoes contain citric, malic, quinic, succinic, fumaric, and soluble oxalic acid (in order of decreasing amounts). - In cucumbers malic acid notably exceeds citric acid. Both acids hardly change in concentration during ripening. Sugar content decreases during ripening.

  18. In vitro antilisterial effects of citrus oil fractions in combination with organic acids.

    PubMed

    Friedly, E C; Crandall, P G; Ricke, S C; Roman, M; O'Bryan, C; Chalova, V I

    2009-03-01

    The objectives of this study were to screen activity of citrus essential oil fractions (EOs) alone and in combination with organic acids against 2 species of Listeria. Five citrus EOs were initially screened by disc diffusion assay for antibacterial activity. Cold pressed terpeneless Valencia orange oil (CP terpeneless oil) had the strongest bacteriostatic (MIC) and bactericidal (MBC) properties at 0.55% and 1.67%, respectively. Four organic acids were tested for effectiveness against Listeria. Citric and malic acids proved to be the most effective with MBC of 1.1% alone. Assays were conducted to determine synergistic effects of EOs and citric or malic acids. There was a significant decrease in MIC and MBC to 0.04% EO plus 0.12% malic or citric acid. EOs from citrus paired with organic acids offer the potential as an all-natural antimicrobial for improving the safety of all-natural foods. PMID:19323760

  19. Dietary omega-3 fatty acids modulate large-scale systems organization in the rhesus macaque brain.

    PubMed

    Grayson, David S; Kroenke, Christopher D; Neuringer, Martha; Fair, Damien A

    2014-02-01

    Omega-3 fatty acids are essential for healthy brain and retinal development and have been implicated in a variety of neurodevelopmental disorders. This study used resting-state functional connectivity MRI to define the large-scale organization of the rhesus macaque brain and changes associated with differences in lifetime ω-3 fatty acid intake. Monkeys fed docosahexaenoic acid, the long-chain ω-3 fatty acid abundant in neural membranes, had cortical modular organization resembling the healthy human brain. In contrast, those with low levels of dietary ω-3 fatty acids had decreased functional connectivity within the early visual pathway and throughout higher-order associational cortex and showed impairment of distributed cortical networks. Our findings illustrate the similarity in modular cortical organization between the healthy human and macaque brain and support the notion that ω-3 fatty acids play a crucial role in developing and/or maintaining distributed, large-scale brain systems, including those essential for normal cognitive function.

  20. Acid Rain.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1987-01-01

    Provides some background information on acid deposition. Includes a historical perspective, describes some effects of acid precipitation, and discusses acid rain in the United Kingdom. Contains several experiments that deal with the effects of acid rain on water quality and soil. (TW)

  1. [Cd uptake in rice cultivars and Cd fractions in soil treated with organic acids and EDTA].

    PubMed

    Zhang, Hai-Bo; Li, Yang-Rui; Xu, Wei-Hong; Chen, Gui-Qing; Wang, Hui-Xian; Han, Gui-Qi; Zhang, Xiao-Jing; Xiong, Zhi-Ting; Zhang, Jin-Zhong; Xie, De-Ti

    2011-09-01

    A pot experiment was conducted to examine the yield, quality and cadmium (Cd) uptake in different rice cultivars, and Cd speciation in soil after exposing to Cd (0, 1 and 5 mg x kg(-1)) in the presence of organic acids and ethylenediamine tetraacetic acid (EDTA). The results showed that general increase in the yield for cultivars Xiushui63 and II you527 was observed. Yield of two rice cultivars were in order of organic acids treatment or organic acids + 1/2EDTA treatment > EDTA treatment. The exchangeable, carbonate related and ferric-manganese oxidation related Cd increased; while organic complexation Cd and residules decreased in the presence of organic acids and EDTA. Cadmium concentrations in grain, straw and roots of both cultivars markedly reduced in the presence of organic acids and EDTA. Grain Cd concentration was the lowest for plants treated with EDTA, followed by organic acids + 1/2EDTA, and the highest Cd concentration in grain was found in the treatment with organic acids. Grain Cd concentration decreased by 9.0% to 49.3% and 16.5% to 30.6% at 1 mg x kg(-1) Cd in the presence of organic acids and EDTA, and by 12.7% to 28.5% and 4.3% to 19.1% at 5 mg x kg(-1) Cd. Cadmium concentration and accumulation in plants and total Cd content in soil were higher in Xiushui63 than in that in II you527. Grain Cd concentration decreased, and yield and quality of two rice cultivars increased at the same time in the presence of organic acids + 1/2EDTA.

  2. Acid rain

    SciTech Connect

    Not Available

    1985-01-01

    This report has four parts: they discuss acid rain in relation to acid soils, agriculture, forests, and aquatic ecosystems. Among findings: modern sources of acid deposition from the atmosphere for all the acid soils in the world, nor even chiefly responsible for those of northern U.S. Agriculture has its problems, but acid precipitation is probably not one of them. More research is needed to determine to what extent acid precipitation is responsible for forest declines and for smaller detrimental effects on forest growth where no damage to the foliage is evident. Many lakes and streams are extremely sensitive to added acids.

  3. Effects of simulated acid precipitation on decomposition and leaching of organic carbon in forest soils

    SciTech Connect

    Chang, F.H.; Alexander, M.

    1984-09-01

    Soil samples from three watersheds of New York State were treated with simulated rain at pH 3.5, 4.1, and 5.6 daily for 14 d, at 12 3-d intervals in three separate tests, or at 22 7-d intervals. Except for one system of treating the three forest soils, simulated acid rain reduced the amount of organic matter leached from samples of soil from which more than 0.05% of the organic carbon was leached during the exposure period. In the soil samples representing the exceptions, acid rain enhanced the leaching of organic matter. Samples from the organic layer of the treated samples of acid soil were taken at two equal depths, and the rates of organic matter decomposition in the two layers were studied. As compared with simulated rain at pH 5.6, simulated acid rain reduced the decomposition of organic matter in the three soils at both depths in three of the five tests and at both depths of two of the soils in the fourth test. In some instances, organic matter decomposition was enhanced by the simulated acid rain. Except for the sample of soil at the highest initial pH, carbon mineralization was inhibited in soils and treatments in which simulated acid rain reduced the amount of organic carbon leached, and it was stimulated in soils and treatments in which the quantity of organic carbon leached was increased by the simulated acid rain. 12 references, 3 figures, 8 tables.

  4. Yearly trend of dicarboxylic acids in organic aerosols from south of Sweden and source attribution

    NASA Astrophysics Data System (ADS)

    Hyder, Murtaza; Genberg, Johan; Sandahl, Margareta; Swietlicki, Erik; Jönsson, Jan Åke

    2012-09-01

    Seven aliphatic dicarboxylic acids (C3-C9) along with phthalic acid, pinic acid and pinonic acid were determined in 35 aerosol (PM10) samples collected over the year at Vavihill sampling station in south of Sweden. Mixture of dichloromethane and methanol (ratio 1:3) was preferred over water for extraction of samples and extraction was assisted by ultrasonic agitation. Analytes were derivatized using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) containing 1% trimethylsilyl chloride and analyzed using gas chromatography/mass spectrometry. Among studied analytes, azelaic acid was found maximum with an average concentration of 6.0 ± 3.6 ng m-3 and minimum concentration was found for pimelic acid (1.06 ± 0.63 ng m-3). A correlation coefficients analysis was used for defining the possible sources of analytes. Higher dicarboxylic acids (C7-C9) showed a strong correlation with each other (correlation coefficients (r) range, 0.96-0.97). Pinic and pinonic acids showed an increase in concentration during summer. Lower carbon number dicarboxylic acids (C3-C6) and phthalic acid were found strongly correlated, but showed a poor correlation with higher carbon number dicarboxylic acids (C7-C9), suggesting a different source for them. Biomass burning, vehicle exhaust, photo-oxidation of volatile organic compounds (natural and anthropogenic emissions) were possible sources for dicarboxylic acids.

  5. Structural organization of the multifunctional animal fatty-acid synthase.

    PubMed

    Witkowski, A; Rangan, V S; Randhawa, Z I; Amy, C M; Smith, S

    1991-06-15

    The amino acid sequence of the multifunctional fatty-acid synthase has been examined to investigate the exact location of the seven functional domains. Good agreement in predicting the location of interdomain boundaries was obtained using three independent methods. First, the sites of limited proteolytic attack that give rise to relatively stable, large polypeptide fragments were identified; cryptic sites for protease attack at the subunit interface were unmasked by first dissociating the dimer into its component subunits. Second, polypeptide regions exhibiting higher-than-average rates of non-conservative mutation were identified. Third, the sizes of putative functional domains were compared with those of related monofunctional proteins that exhibit similar primary or secondary structure. Residues 1-406 were assigned to the oxoacyl synthase, residues 430-802 to the malonyl/acetyl transferase, residues 1630-1850 to the enoyl reductase, residues 1870-2100 to the oxyreductase, residues 2114-2190 to the acyl-carrier protein and residues 2200-2505 to the thioesterase. The 47-kDa transferase and 8-kDa acyl-carrier-protein domains, which are situated at opposite ends of the multifunctional subunit, were nevertheless isolated from tryptic digests as a non-covalently associated complex. Furthermore, a centrally located domain encompassing residues 1160-1545 was isolated as a nicked dimer. These findings, indicating that interactions between the head-to-tail juxtaposed subunits occur in both the polar and equatorial regions, are consistent with previously derived electron-micrograph images that show subunit contacts in these areas. The data permit refinement of the model for the fatty-acid synthase dimer and suggest that the malonyl/acetyl transferase and oxoacyl synthase of one subunit cooperate with the reductases, acyl carrier protein and thioesterase of the companion subunit in the formation of a center for fatty-acid synthesis.

  6. Organic acids and selected nitrogen species for ABLE-3

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.

    1991-01-01

    The NASA Global Tropospheric Experiment (GTE) executed airborne science missions aboard the NASA Wallops Electra (NA429) in the North American high latitude (greater than 45 deg North) atmosphere during Jul. to Aug. 1988 and Jul. to Aug. 1990. These missions were part of GTE's Atmospheric Boundary Layer Experiment (ABLE). The 1988 mission , ABLE-3A, examined the ecosystems of Alaska as a source and/or sink for important tropospheric gases and particles, and gained new information on the chemical composition of the Arctic atmosphere during the summertime. During 1990 the second high latitude mission, ABLE-3B, focused on the Hudson Bay Lowland and Labrador regions of Canada. Both of these missions provided benchmark data sets on atmosphere biosphere exchange and atmospheric chemistry over largely uninhabited regions of North America. In support of the GTE/ABLE-3A and -3B field missions, the University of New Hampshire flew instrumentation aboard the Wallops Electra research aircraft to provide measurements of the trace gases nitric (HNO3), formic (HCOOH), and acetic (CH3COOH) acid. In addition, measurements were conducted to determine the major water soluble ionic composition of the atmospheric aerosol. For ABLE-3B, groundbased measurements of the acidic trace gases were also performed from the NASA micrometerological tower situated at Schefferville, Laborador. These measurements were aimed at assessing dry deposition of acidic gases to the taiga ecosystem in the Laborador region of Canada.

  7. Mobilization of soil-borne arsenic by three common organic acids: Dosage and time effects.

    PubMed

    Onireti, Olaronke O; Lin, Chuxia

    2016-03-01

    A batch experiment was conducted to investigate the mobilization of soil-borne arsenic by three common low-molecular-weight organic acids with a focus on dosage and time effects. The results show that oxalic acid behaved differently from citric acid and malic acid in terms of mobilizing As that was bound to iron compounds. At an equivalent molar concentration, reactions between oxalic acid and soil-borne Fe were kinetically more favourable, as compared to those between either citric acid or malic acid and the soil-borne Fe. It was found that reductive dissolution of soil-borne Fe played a more important role in liberating As, as compared to non-reductive reactions. Prior to the 7th day of the experiment, As mobility increased with increasing dose of oxalic acid while there was no significant difference (P > 0.05) in mobilized As among the treatments with different doses of citric acid or malic acid. The dosage effect on soil-borne As mobilization in the citric acid and malic acid treatments became clear only after the 7th day of the experiment. Soluble Ca present in the soils could cause re-immobilization of As by competing with solution-borne Fe for available organic ligands to form practically insoluble organic compounds of calcium (i.e. calcium oxalate). This resulted in transformation of highly soluble organic complexes of iron (i.e. iron oxalate complexes) into slightly soluble organic compounds of iron (i.e. iron oxalate) or free ferric ion, which then reacted with the solution-borne arsenate ions to form practically insoluble iron arsenates in the latter part of the experiment.

  8. Mobilization of soil-borne arsenic by three common organic acids: Dosage and time effects.

    PubMed

    Onireti, Olaronke O; Lin, Chuxia

    2016-03-01

    A batch experiment was conducted to investigate the mobilization of soil-borne arsenic by three common low-molecular-weight organic acids with a focus on dosage and time effects. The results show that oxalic acid behaved differently from citric acid and malic acid in terms of mobilizing As that was bound to iron compounds. At an equivalent molar concentration, reactions between oxalic acid and soil-borne Fe were kinetically more favourable, as compared to those between either citric acid or malic acid and the soil-borne Fe. It was found that reductive dissolution of soil-borne Fe played a more important role in liberating As, as compared to non-reductive reactions. Prior to the 7th day of the experiment, As mobility increased with increasing dose of oxalic acid while there was no significant difference (P > 0.05) in mobilized As among the treatments with different doses of citric acid or malic acid. The dosage effect on soil-borne As mobilization in the citric acid and malic acid treatments became clear only after the 7th day of the experiment. Soluble Ca present in the soils could cause re-immobilization of As by competing with solution-borne Fe for available organic ligands to form practically insoluble organic compounds of calcium (i.e. calcium oxalate). This resulted in transformation of highly soluble organic complexes of iron (i.e. iron oxalate complexes) into slightly soluble organic compounds of iron (i.e. iron oxalate) or free ferric ion, which then reacted with the solution-borne arsenate ions to form practically insoluble iron arsenates in the latter part of the experiment. PMID:26774299

  9. Capture and release of mixed acid gasses with binding organic liquids

    SciTech Connect

    Heldebrant, David J.; Yonker, Clement R.

    2010-09-21

    Reversible acid-gas binding organic liquid systems that permit separation and capture of one or more of several acid gases from a mixed gas stream, transport of the liquid, release of the acid gases from the ionic liquid and reuse of the liquid to bind more acid gas with significant energy savings compared to current aqueous systems. These systems utilize acid gas capture compounds made up of strong bases and weak acids that form salts when reacted with a selected acid gas, and which release these gases when a preselected triggering event occurs. The various new materials that make up this system can also be included in various other applications such as chemical sensors, chemical reactants, scrubbers, and separators that allow for the specific and separate removal of desired materials from a gas stream such as flue gas.

  10. Determination of electroactive organic acids by anion-exchange chromatography using a copper modified electrode.

    PubMed

    Casella, I G; Gatta, M

    2001-04-01

    An ion-chromatographic method combined with electrochemical detection at a copper-based chemically modified glassy carbon electrode (Cu-GC) has been shown to provide a simple analytical approach for the determination of some common organic acids in alkaline medium. Under the optimized isocratic chromatographic conditions (i.e. 0.1 M NaOH plus 80 mM CH3COONa), organic acids such as gallic, ascorbic, gluconic, lactobionic, galacturonic and glucuronic acid could be separated in less than 20 min. Under constant potential amperometric detection (i.e. 0.55 V vs. Ag-AgCl) the Cu-GC modified electrode allowed detection limits between 2 and 5 pmol for all investigated organic acids while the linear dynamic range spanned generally over three orders of magnitude. Examples of applications included the separation and quantitation of some common organic acids in vinegar, honey and tea samples, are given.

  11. Analysis of Organic Acids, Deacetyl Asperulosidic Acid and Polyphenolic Compounds as a Potential Tool for Characterization of Noni (Morinda citrifolia) Products.

    PubMed

    Bittová, Miroslava; Hladůkova, Dita; Roblová, Vendula; Krácmar, Stanislav; Kubán, Petr; Kubán, Vlastimil

    2015-11-01

    Organic acids, deacetyl asperulosidic acid (DAA) and polyphenolic compounds in various noni (Morinda citrifolia L.) products (4 juices, 4 dry fruit powders and 2 capsules with dry fruit powder) were analyzed. Reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a variable wavelength detector (VWD) and electrospray ionization time-of-flight mass spectrometer (ESI-TOF MS) was applied for simultaneous analysis of organic acids (malic, lactic, citric and succinic acid) and DAA. An RP-HPLC method with diode-array detector (DAD) was developed for the analysis of polyphenolic compound content (rutin, catechin, quercitrin, kaempferol, gallic acid, caffeic acid and p-coumaric acid). The developed methods can contribute to better characterization of available noni products that is required from the consumers. In our study, we discovered significant dissimilarities in the content of DAA, citric acid and several phenolic compounds in some samples.

  12. Analysis of Organic Acids, Deacetyl Asperulosidic Acid and Polyphenolic Compounds as a Potential Tool for Characterization of Noni (Morinda citrifolia) Products.

    PubMed

    Bittová, Miroslava; Hladůkova, Dita; Roblová, Vendula; Krácmar, Stanislav; Kubán, Petr; Kubán, Vlastimil

    2015-11-01

    Organic acids, deacetyl asperulosidic acid (DAA) and polyphenolic compounds in various noni (Morinda citrifolia L.) products (4 juices, 4 dry fruit powders and 2 capsules with dry fruit powder) were analyzed. Reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a variable wavelength detector (VWD) and electrospray ionization time-of-flight mass spectrometer (ESI-TOF MS) was applied for simultaneous analysis of organic acids (malic, lactic, citric and succinic acid) and DAA. An RP-HPLC method with diode-array detector (DAD) was developed for the analysis of polyphenolic compound content (rutin, catechin, quercitrin, kaempferol, gallic acid, caffeic acid and p-coumaric acid). The developed methods can contribute to better characterization of available noni products that is required from the consumers. In our study, we discovered significant dissimilarities in the content of DAA, citric acid and several phenolic compounds in some samples. PMID:26749805

  13. Determination of organic acids during the fermentation and cold storage of yogurt.

    PubMed

    Fernandez-Garcia, E; McGregor, J U

    1994-10-01

    The objective of the present study was the separation and quantification of orotic, citric, pyruvic, lactic, uric, formic, acetic, propionic, butyric, and hippuric acids in a single isocratic analysis by HPLC. Two methods of extraction were compared: 1) acetonitrile and water and 2) .01N H2SO4. Recoveries of orotic, lactic, acetic, and propionic acids were 90% for both methods. Recoveries of citric, pyruvic, uric, butyric, and hippuric acids were not satisfactory with the acetonitrile method, but were acceptable using the H2SO4 extraction procedure. Yogurts were manufactured under laboratory-scale conditions, and samples were analyzed during fermentation and after storage at 4 degrees C. Samples were analyzed for pH and organic acids. All of the organic acids exhibited varying degrees of increases and decreases during fermentation and storage. Formic and butyric acids were not detected under the conditions of this study.

  14. Production of starch with antioxidative activity by baking starch with organic acids.

    PubMed

    Miwa, Shoji; Nakamura, Megumi; Okuno, Michiko; Miyazaki, Hisako; Watanabe, Jun; Ishikawa-Takano, Yuko; Miura, Makoto; Takase, Nao; Hayakawa, Sachio; Kobayashi, Shoichi

    2011-01-01

    A starch ingredient with antioxidative activity, as measured by the DPPH method, was produced by baking corn starch with an organic acid; it has been named ANOX sugar (antioxidative sugar). The baking temperature and time were fixed at 170 °C and 60 min, and the organic acid used was selected from preliminary trials of various kinds of acid. The phytic acid ANOX sugar preparation showed the highest antioxidative activity, but the color of the preparation was almost black; we therefore selected L-tartaric acid which had the second highest antioxidative activity. The antioxidative activity of the L-tartaric acid ANOX sugar preparation was stable against temperature, light, and enzyme treatments (α-amylase and glucoamylase). However, the activity was not stable against variations in water content and pH value. The antioxidative activity of ANOX sugar was stabilized by treating with boiled water or nitrogen gas, or by pH adjustment.

  15. Forest floor leaching: contributions from mineral, organic, and carbonic acids in new hampshire subalpine forests.

    PubMed

    Cronan, C S; Reiners, W A; Reynolds, R C; Lang, G E

    1978-04-21

    Analyses of soil water and groundwater samples from a high-elevation coniferous ecosystem in New England indicate that sulfate anions supply 76 percent of the electrical charge balance in the leaching solution. This result implies that atmospheric inputs of sulfuric acid provide the dominant source of both H(+) for cation replacement and mobile anions for cation transport in subalpine soils of the northeastern region affected by acid precipitation. In soils of relatively unpolluted regions, carbonic and organic acids dominate the leaching processes.

  16. Oxidative degradation of organic acids conjugated with sulfite oxidation in flue gas desulfurization

    SciTech Connect

    Lee, Y.I.

    1986-01-01

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (EGD) conditions. The oxidative degradation constant, k/sub 12/, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate after being normalized by the concentrations of organic acid and dissolved S(IV). K/sub 12/, not significantly affected by pH or dissolved oxygen, is around 10/sup -3/ in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Co, Ni, and Fe and is decreased by Mn and halides. Lower dissolved S(IV) magnified these effects. No k/sub 12/ greater than 4 x 10/sup -3/ or smaller than 0.1 x 10/sup -3/ has been observed. A free radical mechanism was proposed to describe the kinetics: (1) sulfate free radical is the major radical responsible to the degradation of organic acid; (2) ferrous generates sulfate radical by reacting with monoxypersulfate to enhance k/sub 12/; (3) manganous consumes sulfate radical to decrease k/sub 12/; (4) dissolved S(IV) competes with ferrous for monoxypersulfate and with manganous for sulfate radical to demonstrate the effects of dissolved S(IV) on k/sub 12/. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product, glutaric semialdehyde - the major retained product with low manganese, glutaric acid and valeric acids - the major retained product with high manganese, lower molecular weight mono- and dicarboxylic acids, other carbonyl compounds, and hydrocarbons.

  17. Halogenated methanesulfonic acids: A new class of organic micropollutants in the water cycle.

    PubMed

    Zahn, Daniel; Frömel, Tobias; Knepper, Thomas P

    2016-09-15

    Mobile and persistent organic micropollutants may impact raw and drinking waters and are thus of concern for human health. To identify such possible substances of concern nineteen water samples from five European countries (France, Switzerland, The Netherlands, Spain and Germany) and different compartments of the water cycle (urban effluent, surface water, ground water and drinking water) were enriched with mixed-mode solid phase extraction. Hydrophilic interaction liquid chromatography - high resolution mass spectrometry non-target screening of these samples led to the detection and structural elucidation of seven novel organic micropollutants. One structure could already be confirmed by a reference standard (trifluoromethanesulfonic acid) and six were tentatively identified based on experimental evidence (chloromethanesulfonic acid, dichloromethanesulfonic acid, trichloromethanesulfonic acid, bromomethanesulfonic acid, dibromomethanesulfonic acid and bromochloromethanesulfonic acid). Approximated concentrations for these substances show that trifluoromethanesulfonic acid, a chemical registered under the European Union regulation REACH with a production volume of more than 100 t/a, is able to spread along the water cycle and may be present in concentrations up to the μg/L range. Chlorinated and brominated methanesulfonic acids were predominantly detected together which indicates a common source and first experimental evidence points towards water disinfection as a potential origin. Halogenated methanesulfonic acids were detected in drinking waters and thus may be new substances of concern. PMID:27267477

  18. Halogenated methanesulfonic acids: A new class of organic micropollutants in the water cycle.

    PubMed

    Zahn, Daniel; Frömel, Tobias; Knepper, Thomas P

    2016-09-15

    Mobile and persistent organic micropollutants may impact raw and drinking waters and are thus of concern for human health. To identify such possible substances of concern nineteen water samples from five European countries (France, Switzerland, The Netherlands, Spain and Germany) and different compartments of the water cycle (urban effluent, surface water, ground water and drinking water) were enriched with mixed-mode solid phase extraction. Hydrophilic interaction liquid chromatography - high resolution mass spectrometry non-target screening of these samples led to the detection and structural elucidation of seven novel organic micropollutants. One structure could already be confirmed by a reference standard (trifluoromethanesulfonic acid) and six were tentatively identified based on experimental evidence (chloromethanesulfonic acid, dichloromethanesulfonic acid, trichloromethanesulfonic acid, bromomethanesulfonic acid, dibromomethanesulfonic acid and bromochloromethanesulfonic acid). Approximated concentrations for these substances show that trifluoromethanesulfonic acid, a chemical registered under the European Union regulation REACH with a production volume of more than 100 t/a, is able to spread along the water cycle and may be present in concentrations up to the μg/L range. Chlorinated and brominated methanesulfonic acids were predominantly detected together which indicates a common source and first experimental evidence points towards water disinfection as a potential origin. Halogenated methanesulfonic acids were detected in drinking waters and thus may be new substances of concern.

  19. Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01

    SciTech Connect

    Zaldivar, J.; Ingram, L.O.

    1999-07-01

    Hemicellulose residues can be hydrolyzed into a sugar syrup using dilute mineral acids. Although this syrup represents a potential feedstock for biofuel production, toxic compounds generated during hydrolysis limit microbial metabolism. Escherichia coli LY01, an ethanologenic biocatalyst engineered to ferment the mixed sugars in hemicellulose syrups, has been tested for resistance to selected organic acids that re present in hemicellulose hydrolysates. Compounds tested include aromatic acids derived from lignin (ferulic, gallic, 4-hydroxybenzoic, syringic, and vanillic acids), acetic acid from the hydrolysis of acetylxylan, and others derived from sugar destruction (furoic, formic, levulinic, and caproic acids). Toxicity was related to hydrophobicity. Combinations of acids were roughly additive as inhibitors of cell growth. When tested at concentrations that inhibited growth by 80%, none appeared to strongly inhibit glycolysis and energy generation, or to disrupt membrane integrity. Toxicity was not markedly affected by inoculum size or incubation temperature. The toxicity of all acids except gallic acid was reduced by an increase in initial pH (from pH 6.0 to pH 7.0 to pH 8.0). Together, these results are consistent with the hypothesis that both aliphatic and mononuclear organic acids inhibit growth and ethanol production in LY01 by collapsing ion gradients and increasing internal anion concentrations.

  20. Evaluation of different approaches to quantify strong organic acidity and acid-base buffering of organic-rich surface waters in Sweden.

    PubMed

    Köhler, Stephan; Hruska, Jakub; Jönsson, Jörgen; Lövgren, Lars; Lofts, Stephen

    2002-11-01

    The role of organic acids in buffering pH in surface waters has been studied using a small brownwater stream (26mg L(-1) TOC) draining a forested catchment in Northern Sweden. Under the conditions of elevated pressure of CO2 stream field pH was changed between 3.5 and 6.1 during the acidification and alkalinization experiment. Acid-base characteristics of the natural organic matter were also determined using a high precision potentiometric method for a concentrated sample from the same stream. We compared the predictions from the Windermere Humic Aqueous Model (WHAM Model V), a model derived from the potentiometric titration (diprotic/monoprotic acid model) and a previously derived triprotic acid model which only uses alkalinity and TOC as input variables. The predicted buffering characteristics of all three models are very similar in the pH range 4.5-7 which suggests that during routine analysis alkalinity and TOC are sufficient to give a good estimate of organic acid anion charge contribution in a large range of surface waters. A slightly adjusted version of WHAM V successfully describes the organic charge contribution in a large number of sampled surface water lakes, which were previously used to calibrate the triprotic model.

  1. Organic compounds in lunar samples: pyrolysis products, hydrocarbons, amino acids.

    PubMed

    Nagy, B; Drew, D M; Hamilton, P B; Modzeleski, V E; Murphy, M E; Scott, W M; Urey, H C; Young, M

    1970-01-30

    Lunar fines and a chip from inside a rock pyrolyzed in helium at 700 degrees C gave methane, other gases, and aromatic hydrocarbons. Benzene/methanol extracts of fines yielded traces of high molecular weight alkanes and sulfur. Traces of glycine, alanine, ethanolamine, and urea were found in aqueous extracts. Biological controls and a terrestrial rock, dunite, subjected to exhaust from the lunar module descent engine showed a different amino acid distribution. Interpretation of the origin of the carbon compounds requires extreme care, because of possible contamination acquired during initial sample processing.

  2. Organic compounds in lunar samples: pyrolysis products, hydrocarbons, amino acids.

    PubMed

    Nagy, B; Drew, D M; Hamilton, P B; Modzeleski, V E; Murphy, M E; Scott, W M; Urey, H C; Young, M

    1970-01-30

    Lunar fines and a chip from inside a rock pyrolyzed in helium at 700 degrees C gave methane, other gases, and aromatic hydrocarbons. Benzene/methanol extracts of fines yielded traces of high molecular weight alkanes and sulfur. Traces of glycine, alanine, ethanolamine, and urea were found in aqueous extracts. Biological controls and a terrestrial rock, dunite, subjected to exhaust from the lunar module descent engine showed a different amino acid distribution. Interpretation of the origin of the carbon compounds requires extreme care, because of possible contamination acquired during initial sample processing. PMID:5410553

  3. Hydrogen bonded supramolecular structures of eight organic salts based on 2,6-diaminopyridine, and organic acids

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Zhao, Ying; Liu, Bin; Jin, Xiunan; Zhang, Huan; Wen, Xianhong; Liu, Hui; Jin, Li; Wang, Daqi

    2015-11-01

    Here anhydrous and hydrated multi-component organic acid-base salts of 2,6-diaminopyridine have been prepared with the organic acids as trichloroacetic acid, 3,5-dinitrobenzoic acid, 5-nitrosalicylic acid, 3,5-dihydroxybenzoic acid, 5-sulfosalicylic acid, m-phthalic acid, naphthalene-1,5-disulfonic acid, and glutaric acid. The eight crystalline compounds were characterized by X-ray diffraction analysis, infrared (IR), melting point (mp), and elemental analysis. Except salt 4, all structures adopted the hetero R22(8) supramolecular synthon. There were extensive N-H···O/O-H···O/N-H···N/N-H···S hydrogen bonds as well as CH···O, CH-N, CH-π, NH-π, π-π, C-π, Cl-O, and O-O interactions in the supramolecular architectures. The combination of these weak and strong hydrogen bonding associations in the crystal packing led to the formation of the 2D/3D structures.

  4. Leaching of organic acids from macromolecular organic matter by non-supercritical CO2

    NASA Astrophysics Data System (ADS)

    Sauer, P.; Glombitza, C.; Kallmeyer, J.

    2012-04-01

    The storage of CO2 in underground reservoirs is discussed controversly in the scientific literature. The worldwide search for suitable storage formations also considers coal-bearing strata. CO2 is already injected into seams for enhanced recovery of coal bed methane. However, the effects of increased CO2 concentration, especially on organic matter rich formations, are rarely investigated. The injected CO2 will dissolve in the pore water, causing a decrease in pH and resulting in acidic formation waters. Huge amounts of low molecular weight organic acids (LMWOAs) are chemically bound to the macromolecular matrix of sedimentary organic matter and may be liberated by hydrolysis, which is enhanced by the acidic porewater. Recent investigations outlined the importance of LMWOAs as a feedstock for microbial life in the subsurface [1]. Therefore, injection of CO2 into coal formations may result in enhanced nutrient supply for subsurface microbes. To investigate the effect of high concentrations of dissolved CO2 on the release of LMWOAs from coal we developed an inexpensive high-pressure high temperature system that allows manipulating the partial pressure of dissolved gases at pressures and temperatures up to 60 MPa and 120° C, respectively. In a reservoir vessel, gases are added to saturate the extraction medium to the desired level. Inside the extraction vessel hangs a flexible and inert PVDF sleeve (polyvinylidene fluoride, almost impermeable for gases), holding the sample and separating it from the pressure fluid. The flexibility of the sleeve allows for subsampling without loss of pressure. Coal samples from the DEBITS-1 well, Waikato Basin, NZ (R0 = 0.29, TOC = 30%). were extracted at 90° C and 5 MPa, either with pure or CO2-saturated water. Subsamples were taken at different time points during the extraction. The extracted LMWOAs such as formate, acetate and oxalate were analysed by ion chromatography. Yields of LMWOAs were higher with pure water than with CO2

  5. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis.

    PubMed

    Gonçalves-de-Albuquerque, Cassiano Felippe; Medeiros-de-Moraes, Isabel Matos; Oliveira, Flora Magno de Jesus; Burth, Patrícia; Bozza, Patrícia Torres; Castro Faria, Mauro Velho; Silva, Adriana Ribeiro; Castro-Faria-Neto, Hugo Caire de

    2016-01-01

    Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA) are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA), a monounsaturated fatty acid (MUFA). We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP). OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS) production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A) mRNA levels were increased, while uncoupling protein 2 (UCP2) liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK) expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA). PMID:27078880

  6. Determination of organic acids in biological fluids by ion chromatography: plasma lactate and pyruvate and urinary vanillylmandelic acid.

    PubMed

    Rich, W; Johnson, E; Lois, L; Kabra, P; Stafford, B; Marton, L

    1980-09-01

    We describe the general aspects of ion chromatography and how on-line counted ion-exchange techniques can be utilized to determine pyruvic and lactic acids in plasma and vanillymandelic acid in urine. Pyruvate and lactate are extracted from deproteinized plasma by use of an ion-exclusion resin. After elution from the resin, the plasma extract is chromatographed on an anion-exchange column, with 0.66 mmol/L sodium bicarbonate as the mobile phase. The effluent is detected with an electrical conductivity cell. Vanillylmandelic acid is extracted from diluted urine by use of an anion-exchange resin. After elution from resin, the urine extract is chromatographed on an ion-exclusion column, followed by electrochemical detection. We evaluated the procedures for precision, linearity, analytical recovery, intefering substances, and correlation with an established procedure. the combination of a preliminary resin extraction, an ion chromatographic separation, and a conductivity or electrochemical detector results in rapid, specific methods that can be adapted for use in the clinical laboratory. Preliminary data for other organic acids are presented.

  7. Monitoring of the fermentation media of citric acid by the trimethylsilyl derivatives of the organic acids formed.

    PubMed

    Ghassempour, Alireza; Nojavan, Saeed; Talebpour, Zahra; Amiri, Ali Asghar; Najafi, Nahid Mashkouri

    2004-10-20

    In this approach, a derivatization method is described for monitoring of organic acids in fermentation media without any separation step. The aqueous phase of fermentation media was evaporated and heated in a silylation reagent to form trimethylsilyl (TMS) derivatives. The silylated compounds are analyzed by 29Si nuclear magnetic resonance (29Si NMR) and gas chromatography-mass spectrometry (GC-MS). 29Si NMR can qualitatively monitor the components produced in the Krebs cycle. Quantification of these compounds is investigated by using selected ion monitoring mode of mass spectrometry. In this mode, mass to charge (m/z) values of their [M - 15]+ ions, which are 465, 275, 247, 221, 335, 251, and 313 of TMS derivatives of citric, alpha-ketoglutaric, succinic, fumaric, l-malic, oxaloacetic, and palmitic (as an internal standard), acids, respectively, are used. The limit of detection and the linear working range for derivatized citric acid were found to be 0.1 mg L(-1) and 10-3 x 10(4) mg L(-1). The relative standard deviation of the method for five replicates was 2.1%. The average recovery efficiency for citric acid added to culture media was approximately 97.2%. Quantitative results of GC-MS are compared with those obtained by an ultraviolet-visible method.

  8. 1-Acetylpyrene-salicylic acid: photoresponsive fluorescent organic nanoparticles for the regulated release of a natural antimicrobial compound, salicylic acid.

    PubMed

    Barman, Shrabani; Mukhopadhyay, Sourav K; Behara, Krishna Kalyani; Dey, Satyahari; Singh, N D Pradeep

    2014-05-28

    Photoresponsive 1-acetylpyrene-salicylic acid (AcPy-SA) nanoparticles (NPs) were developed for the regulated release of a natural antimicrobial compound, salicylic acid. The strong fluorescent properties of AcPy-SA NPs have been extensively used for potential in vitro cell imaging. The phototrigger capability of our newly prepared AcPy-SA NPs was utilized for the efficient release of an antimicrobial compound, salicylic acid. The photoregulated drug release of AcPy-SA NPs has been shown by the subsequent switching off and on of a visible-light source. In vitro biological studies reveal that AcPy-SA NPs of ∼68 nm size deliver the antimicrobial drug salicylic acid into the bacteria cells (Pseudomonas aeruginosa) and efficiently kill the cells upon exposure to visible light (≥410 nm). Such photoresponsive fluorescent organic NPs will be highly beneficial for targeted and regulated antimicrobial drug release because of their biocompatible nature, efficient cellular uptake, and light-induced drug release ability.

  9. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis

    PubMed Central

    Oliveira, Flora Magno de Jesus; Burth, Patrícia; Bozza, Patrícia Torres; Castro Faria, Mauro Velho; Silva, Adriana Ribeiro; de Castro-Faria-Neto, Hugo Caire

    2016-01-01

    Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA) are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA), a monounsaturated fatty acid (MUFA). We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP). OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS) production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A) mRNA levels were increased, while uncoupling protein 2 (UCP2) liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK) expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA). PMID:27078880

  10. Top value platform chemicals: bio-based production of organic acids.

    PubMed

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation. PMID:26360870

  11. Top value platform chemicals: bio-based production of organic acids.

    PubMed

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation.

  12. Modulation of sialic acid levels among some organs during insulin resistance or hyperglycemic states.

    PubMed

    Ibrahim, Mohammed Auwal; Abdulkadir, Aisha; Onojah, Alice; Sani, Lawal; Adamu, Auwal; Abdullahi, Hadiza

    2016-01-01

    Previous studies have suggested a possible connection between insulin resistance and chronic hyperglycemia with membrane sialic acid content. In this study, the effects of high (20% ad libitum) fructose and glucose feeding on the sialic acid levels of some organs were investigated in rats. The blood glucose levels of the high fructose- and glucose-fed rats were consistently and significantly (P < 0.05) higher than the normal control throughout the experiment. Free serum sialic acid and total hepatic sialic acid levels were elevated in the high fructose- and glucose-fed rats compared to normal control, but only the data for the high glucose-fed group were significantly (P < 0.05) different from the normal control. Conversely, a significant (P < 0.05) decrease in the pancreatic sialic acid level was observed in high glucose-fed group compared to normal control. Also, the high fructose-fed rats had lower, but insignificant (P > 0.05), pancreatic sialic acid level than the normal control. On the other hand, high fructose and glucose feeding did not significantly (P > 0.05) affect the sialic acid levels of the skeletal muscle and heart, though a tendency to increase the sialic acid level was evident in the heart. In the kidney, the sialic acid level was significantly (P < 0.05) increased in both high fructose- and glucose-fed groups. It was concluded that the liver and kidney tend to stimulate sialic acid synthesis, while the pancreas downregulate sialic acids synthesis and/or promote sialic acid release from glycoconjugates. Also, these organs may contribute to high-serum sialic acid level observed during diabetes. PMID:26468092

  13. Six hydrogen-bonded supramolecular frameworks assembled from organic acids and p-dimethylaminobenzaldehyde

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Wang, Lanqing; Lou, Yulei; Liu, Li; Li, Bin; Li, Linyu; Feng, Chao; Liu, Hui; Wang, Daqi

    2016-03-01

    Cocrystallization of the commonly available organic compound, p-dimethylaminobenzaldehyde, with a series of organic acids gave a total of six molecular adducts with the compositions: p-dimethylaminobenzaldehyde : (3,5-dinitrosalicylic acid) [(L) · (Hdsa), Hdsa = 3,5-dinitrosalicylic acid] (1), p-dimethylaminobenzaldehyde : (3-nitrophthalic acid) [(L) · (3-H2npa), 3-H2npa = 3-nitrophthalic acid] (2), p-dimethylaminobenzaldehyde : (4-nitrophthalic acid) [(L) · (4-H2npa), 4-H2npa = 4-nitrophthalic acid] (3), p-dimethylaminobenzaldehyde : (1,5-naphthalenedisulfonic acid) : (NH3)2 [NH4 · (HL) · (nds2-) · NH3, nds- = 1,5-naphthalenedisulfonate] (4), p-dimethylaminobenzaldehyde : (oxalic acid)0.5 [(L) · (H2oa)0.5, H2oa = oxalic acid] (5), and p-dimethylaminobenzaldehyde : (fumaric acid)0.5 [(L) · (H2fum)0.5, H2fum = fumaric acid] (6). The six molecular adducts have been characterized by X-ray diffraction technique, IR, and elemental analysis, and the melting points of all adducts were also reported. And their structural and supramolecular aspects are fully analyzed. Of the six adducts, only 4 is an organic salt and the other five are cocrystals. The crystal packing is interpreted in terms of the strong classical hydrogen bonds as well as other weak non-classical hydrogen bonds. The different families of non-covalent bonds contribute to the stabilization and expansion of the total high-dimensional (2D-3D) frameworks.

  14. Role of organic acids in promoting colloidal transport of mercury from mine tailings

    USGS Publications Warehouse

    Slowey, A.J.; Johnson, S.B.; Rytuba, J.J.; Brown, Gordon E.

    2005-01-01

    A number of factors affect the transport of dissolved and paniculate mercury (Hg) from inoperative Hg mines, including the presence of organic acids in the rooting zone of vegetated mine waste. We examined the role of the two most common organic acids in soils (oxalic and citric acid) on Hg transport from such waste by pumping a mixed organic acid solution (pH 5.7) at 1 mL/min through Hg mine tailings columns. For the two total organic acid concentrations investigated (20 ??M and 1 mM), particle-associated Hg was mobilized, with the onset of paniculate Hg transport occurring later for the lower organic acid concentration. Chemical analyses of column effluent indicate that 98 wt % of Hg mobilized from the column was paniculate. Hg speciation was determined using extended X-ray absorption fine structure spectroscopy and transmission electron microscopy, showing that HgS minerals are dominant in the mobilized particles. Hg adsorbed to colloids is another likely mode of transport due to the abundance of Fe-(oxyhydr)oxides, Fe-sulfides, alunite, and jarosite in the tailings to which Hg(II) adsorbs. Organic acids produced by plants are likely to enhance the transport of colloid-associated Hg from vegetated Hg mine tailings by dissolving cements to enable colloid release. ?? 2005 American Chemical Society.

  15. Microgravity Compatible Reagentless Instrumentation for Detection of Dissolved Organic Acids and Alcohols in Potable Water

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Jan, Darrell L. (Technical Monitor)

    2002-01-01

    The Organic Acid and Alcohol Monitor (OAAM) program has resulted in the successful development of a computer controlled prototype analyzer capable of accurately determining aqueous organic acids and primary alcohol concentrations over a large dynamic range with high sensitivity. Formic, acetic, and propionic acid were accurately determined at concentrations as low as 5 to 10 micrograms/L in under 20 minutes, or as high as 10 to 20 mg/L in under 30 minutes. Methanol, ethanol, and propanol were determined at concentrations as low as 20 to 100 micrograms/L, or as high as 10 mg/L in under 30 minutes. Importantly for space based application, the OAAM requires no reagents or hazardous chemicals to perform these analyses needing only power, water, and CO2 free purge gas. The OAAM utilized two membrane processes to segregate organic acids from interfering ions. The organic acid concentration was then determined based upon the conductiometric signal. Separation of individual organic acids was accomplished using a chromatographic column. Alcohols are determined in a similar manner after conversion to organic acids by sequential biocatalytic and catalytic oxidation steps. The OAAM was designed to allow the early diagnosis of under performing or failing sub-systems within the Water Recovery System (WRS) baselined for the International Space Station (ISS). To achieve this goal, several new technologies were developed over the course of the OAAM program.

  16. Role of organic acids in promoting colloidal transport of mercury from mine tailings.

    PubMed

    Slowey, Aaron J; Johnson, Stephen B; Rytuba, James J; Brown, Gordon E

    2005-10-15

    A number of factors affect the transport of dissolved and particulate mercury (Hg) from inoperative Hg mines, including the presence of organic acids in the rooting zone of vegetated mine waste. We examined the role of the two most common organic acids in soils (oxalic and citric acid) on Hg transport from such waste by pumping a mixed organic acid solution (pH 5.7) at 1 mL/min through Hg mine tailings columns. For the two total organic acid concentrations investigated (20 microM and 1 mM), particle-associated Hg was mobilized, with the onset of particulate Hg transport occurring later for the lower organic acid concentration. Chemical analyses of column effluent indicate that 98 wt % of Hg mobilized from the column was particulate. Hg speciation was determined using extended X-ray absorption fine structure spectroscopy and transmission electron microscopy, showing that HgS minerals are dominant in the mobilized particles. Hg adsorbed to colloids is another likely mode of transport due to the abundance of Fe-(oxyhydr)oxides, Fe-sulfides, alunite, and jarosite in the tailings to which Hg(II) adsorbs. Organic acids produced by plants are likely to enhance the transport of colloid-associated Hg from vegetated Hg mine tailings by dissolving cements to enable colloid release.

  17. Pattern of aluminum-induced secretion of organic acids differs between rye and wheat.

    PubMed

    Li, X F; Ma, J F; Matsumoto, H

    2000-08-01

    Al-Induced secretion of organic acids from the roots has been considered as a mechanism of Al tolerance, but the processes leading to the secretion of organic acids are still unknown. In this study, the secretion pattern and alteration in the metabolism of organic acids under Al stress were examined in rye (Secale cereale L. cv King) and wheat (Triticum aestivum L. cv Atlas 66). Al induced rapid secretion of malate in the wheat, but a lag (6 and 10 h for malic and citric acids, respectively) between the exposure to Al and the secretion of organic acids was observed in the rye. The activities of isocitrate dehydrogenase, phosphoenolpyruvate carboxylase, and malate dehydrogenase were not affected by Al in either plant. The activity of citrate synthase was increased by the exposure to Al in the rye, but not in the wheat. The secretion of malate was not suppressed at low temperature in the wheat, but that of citrate was stopped in the rye. The Al-induced secretion of citrate from roots of the rye was inhibited by the inhibitors of a citrate carrier, which transports citrate from the mitochondria to the cytoplasm. All of these results suggest that alteration in the metabolism of organic acids is involved in the Al-induced secretion of organic acids in rye, but only activation of an anion channel seems to be responsible for the rapid secretion of malate in the wheat.

  18. Isolation of hydrophilic organic acids from water using nonionic macroporous resins

    USGS Publications Warehouse

    Aiken, G.R.; McKnight, Diane M.; Thorn, K.A.; Thurman, E.M.

    1992-01-01

    A method has been developed for the isolation of hydrophilic organic acids from aquatic environments using Amberlite* * Use of trade names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. XAD-4 resin. The method uses a two column array of XAD-8 and XAD-4 resins in series. The hydrophobic organic acids, composed primarily of aquatic fulvic acid, are removed from the sample on XAD-8, followed by the isolation of the more hydrophilic organic acids on XAD-4. For samples from a number of diverse environments, more of the dissolved organic carbon was isolated on the XAD-8 resin (23-58%) than on the XAD-4 resin (7-25%). For these samples, the hydrophilic acids have lower carbon and hydrogen contents, higher oxygen and nitrogen contents, and are lower in molecular weight than the corresponding fulvic acids. 13C NMR analyses indicate that the hydrophilic acids have a lower concentration of aromatic carbon and greater heteroaliphatic, ketone and carboxyl content than the fulvic acid. ?? 1992.

  19. Usnic Acid and the Intramolecular Hydrogen Bond: A Computational Experiment for the Organic Laboratory

    ERIC Educational Resources Information Center

    Green, Thomas K.; Lane, Charles A.

    2006-01-01

    A computational experiment is described for the organic chemistry laboratory that allows students to estimate the relative strengths of the intramolecular hydrogen bonds of usnic and isousnic acids, two related lichen secondary metabolites. Students first extract and purify usnic acid from common lichens and obtain [superscript 1]H NMR and IR…

  20. Phenolic compounds and fatty acid composition of organic and conventional grown pecan kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, differences in contents of phenolic compounds and fatty acids in pecan kernels of organically versus conventionally grown pecan cultivars (‘Desirable’, ‘Cheyenne’, and ‘Wichita’) were evaluated. Although we were able to identify nine phenolic compounds (gallic acid, catechol, catechin...

  1. The effect of low solubility organic acids on the hygroscopicity of sodium halide aerosols

    NASA Astrophysics Data System (ADS)

    Miñambres, L.; Méndez, E.; Sánchez, M. N.; Castaño, F.; Basterretxea, F. J.

    2014-10-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be investigated in this study. The hygroscopic properties of sodium halide sub-micrometre particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, scanning electron microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion, whereas the organic surfactant has little effect in NaBr particles, NaCl and NaI covered particles experience appreciable shifts in their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.

  2. Effects of organic acids on cadmium and copper sorption and desorption by two calcareous soils.

    PubMed

    Najafi, Sarvenaz; Jalali, Mohsen

    2015-09-01

    Low molecular weight organic acids (LMWOAs) present in soil alter equilibrium pH of soil, and consequently, affect heavy metal sorption and desorption on soil constitutes. This study was conducted to investigate the effects of different concentrations (0.1, 1, 2.5, 5, 10, 30, 40, 50, 70, and 100 mM) of citric, malic, and oxalic acids on sorption and desorption of cadmium (Cd) and copper (Cu) in two calcareous soils. Increasing the concentrations of three LMWOAs decreased the equilibrium pH of soil solutions. The results indicated that increase in organic acids concentrations generally reduced Cd and Cu sorption in soils. Increase concentrations of LMWOAs generally promoted Cd and Cu desorption from soils. A valley-like curve was observed for desorption of Cu after the citric acid concentration increment in soil 2. Increasing the concentrations of three LMWOAs caused a marked decrease in Kd(sorp) values of Cd and Cu in soils. In general, citric acid was the most effective organic acid in reducing sorption and increasing desorption of both metals, and oxalic acid had the minimal impact. The results indicated that LMWOAs had a greater impact on Cu sorption and desorption than Cd, which can be attributed to higher stability constants of organic acids complexes with Cu compared to Cd. It can be concluded that by selecting suitable type and concentration of LMWOAs, mobility, and hence, bioavailability of heavy metals can be changed. So, environmental implications concerning heavy metals mobility might be derived from these findings.

  3. The effect of low solublility organic acids on the hygroscopicity of sodium halide aerosols

    NASA Astrophysics Data System (ADS)

    Miñambres, L.; Méndez, E.; Sánchez, M. N.; Castaño, F.; Basterretxea, F. J.

    2014-02-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be performed in this study. The hygroscopic properties of sodium halide submicrometer particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, Scanning Electron Microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion: whereas the organic covering has little effect in NaBr particles, NaCl and NaI covered particles change their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.

  4. Separation of membranes from acid-solubilized fish muscle proteins with the aid of calcium ions and organic acids.

    PubMed

    Liang, Yong; Hultin, Herbert O

    2005-04-20

    Calcium chloride, and to a lesser extent MgCl2, aided in the separation of membranes by centrifugation from cod (Gadus morhua) muscle homogenates solubilized at pH 3 in the presence of citric acid or malic acid but not lactic acid. Adding citric acid and Ca2+ before solubilizing the cod muscle homogenates was needed for the effect. At 1 mM citric acid, 70-80% of the phospholipid and 25-30% of the protein were removed at 10 mM Ca2+. At 8 mM Ca2+, citric acid showed an optimal effect on phospholipid removal at 5 mM with 90% of the phospholipid and 35% of the protein removed. The treatment with citric acid and Ca2+ was also effective in separating the membrane from solubilized herring (Clupea harengus) muscle homogenate. Ca2+ and citric acid might exert their influence by disconnecting linkages between membranes and cytoskeletal proteins.

  5. A note on the prebiotic synthesis of organic acids in carbonaceous meteorites

    NASA Technical Reports Server (NTRS)

    Kerridge, John F.

    1991-01-01

    Strong similarities between monocarboxylic and hydrocarboxylic acids in the Murchison meteorite suggest corresponding similarities in their origins. However, various lines of evidence apparently implicate quite different precursor compounds in the synthesis of the different acids. These seeming inconsistencies can be resolved by postulating that the apparent precursors also share a related origin. Pervasive D enrichment indicates that this origin was in a presolar molecular cloud. The organic acids themselves were probably synthesized in an aqueous environment on an asteroidal parent body, the hydroxy (and amino) acids by means of the Strecker cyanohydrin reaction.

  6. Aminocaproic Acid

    MedlinePlus

    Aminocaproic acid is used to control bleeding that occurs when blood clots are broken down too quickly. This type ... the baby is ready to be born). Aminocaproic acid is also used to control bleeding in the ...

  7. Ethacrynic Acid

    MedlinePlus

    Ethacrynic acid, a 'water pill,' is used to treat swelling and fluid retention caused by various medical problems. It ... Ethacrynic acid comes as a tablet to take by mouth. It is usually taken once or twice a day ...

  8. Aristolochic Acids

    MedlinePlus

    ... Sciences NIH-HHS www.niehs.nih.gov Aristolochic Acids Key Points Report on Carcinogens Status Known to be human carcinogens Aristolochia Clematitis Aristolochic Acids n Known human carcinogens n Found in certain ...

  9. Obeticholic Acid

    MedlinePlus

    Obeticholic acid is used alone or in combination with ursodiol (Actigall, Urso) to treat primary biliary cholangitis (PBC; a ... were not treated successfully with ursodiol alone. Obeticholic acid is in a class of medications called farnesoid ...

  10. Acid mucopolysaccharides

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003368.htm Acid mucopolysaccharides To use the sharing features on this page, please enable JavaScript. Acid mucopolysaccharides is a test that measures the amount ...

  11. Correlation of observed and model vibrational frequencies for aqueous organic acids: UV resonance Raman spectra and molecular orbital calculations of benzoic, salicylic, and phthalic acids.

    PubMed

    Trout, Chad C; Tambach, T J; Kubicki, James D

    2005-09-01

    The aromatic carboxylic acids benzoic, salicylic and phthalic acid were used to study the interaction of soluble organics compounds with metal cations. To accomplish this, we have developed methods for studying the carboxylic acids using UV resonance Raman (UVRR) combined with molecular orbital density functional theory calculations. The pH values of the acid solutions were based on the pK(a)'s for the different acids to examine the neutral and charged species. Deprotonation of the organic acids was detectable down to 10(-4)M using UVRR (two orders of magnitude lower than previous vibrational spectroscopy studies). Limitations to decreasing the concentration lower using the current UVRR facilities are discussed. Two methods were used to calculate the optimized geometry and frequencies of the acids: explicit and continuum solvation. The frequencies from the experimental spectra were then compared to the theoretical results obtained from the two methods.

  12. Correlation of observed and model vibrational frequencies for aqueous organic acids: UV resonance Raman spectra and molecular orbital calculations of benzoic, salicylic, and phthalic acids

    NASA Astrophysics Data System (ADS)

    Trout, Chad C.; Tambach, T. J.; Kubicki, James D.

    2005-09-01

    The aromatic carboxylic acids benzoic, salicylic and phthalic acid were used to study the interaction of soluble organics compounds with metal cations. To accomplish this, we have developed methods for studying the carboxylic acids using UV resonance Raman (UVRR) combined with molecular orbital density functional theory calculations. The pH values of the acid solutions were based on the p Ka's for the different acids to examine the neutral and charged species. Deprotonation of the organic acids was detectable down to 10 -4 M using UVRR (two orders of magnitude lower than previous vibrational spectroscopy studies). Limitations to decreasing the concentration lower using the current UVRR facilities are discussed. Two methods were used to calculate the optimized geometry and frequencies of the acids: explicit and continuum solvation. The frequencies from the experimental spectra were then compared to the theoretical results obtained from the two methods.

  13. Direct activation of GABAA receptors by substances in the organic acid fraction of Japanese sake.

    PubMed

    Izu, Hanae; Shigemori, Kensuke; Eguchi, Masaya; Kawane, Shuhei; Fujii, Shouko; Kitamura, Yuji; Aoshima, Hitoshi; Yamada, Yasue

    2017-01-01

    We investigated the effect of substances present in Japanese sake on the response of ionotropic γ-aminobutyric acid (GABA)A receptors expressed in Xenopus oocytes. Sake was fractionated by ion-exchange chromatography. The fraction containing organic acids (OA fraction) showed agonist activities on the GABAA receptor. OA fractions from sake were analyzed by capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Of the 64 compounds identified, 13 compounds showed GABAA receptor agonist activities. Especially, l-lactic acid showed high agonist activity and its EC50 value was 37μM. Intraperitoneal injections of l-lactic acid, gluconic acid, and pyruvic acid (10, 10, and 5mg/kg BW, respectively), which showed agonistic activity on the GABAA receptor, led to significant anxiolytic effects during an elevated plus-maze test in mice. PMID:27507485

  14. Benzyl- and 2- and 4-nitrobenzylcyclopropanes and their reaction with organic acids

    SciTech Connect

    Fedotov, A.N.; Trofimova, E.V.; Mochalov, S.S.; Shabarov, Yu.S.

    1988-12-10

    The nitration of benzylcyclopropane and its transformations in organic acids were studied. Under the conditions of electrophilic nitration the small ring is preserved while the ratio of the o- and p-nitrophenyl derivatives amount to 1.1:1. The reaction of benzylcyclopropane with formic and acetic acids takes place with the addition of the fragments of the acid at the 1,2-bond of the three-carbon ring; o- and p-nitrobenzylcyclopropanes do not react with formic and acetic acids, with trifluoroacetic acid they form trifluoroacetates, and in the case of the ortho-substituted isomer nucleophilic assistance from the nitro group is observed. Significant differences in the behavior of phenylcyclopropane and benzylcyclopropane due to the destruction of the conjugation between the fragments in the molecule are observed in the acid-catalyzed reactions.

  15. Hydroxydicarboxylic acids: markers for secondary organic aerosol from the photooxidation of alpha-pinene.

    PubMed

    Claeys, Magda; Szmigielski, Rafal; Kourtchev, Ivan; van der Veken, Pieter; Vermeylen, Reinhilde; Maenhaut, Willy; Jaoui, Mohammed; Kleindienst, Tadeusz E; Lewandowski, Michael; Offenberg, John H; Edney, Edward O

    2007-03-01

    Detailed organic analysis of fine (PM2.5) rural aerosol collected during summer at K-puszta, Hungary from a mixed deciduous/coniferous forest site shows the presence of polar oxygenated compounds that are also formed in laboratory irradiated alpha-pinene/NOx/air mixtures. In the present work, two major photooxidation products of alpha-pinene were characterized as the hydroxydicarboxylic acids, 3-hydroxyglutaric acid, and 2-hydroxy-4-isopropyladipic acid, based on chemical, chromatographic, and mass spectral data. Different types of volatile derivatives, including trimethylsilyl ester/ether, methyl ester trimethylsilyl ether, and ethyl ester trimethylsilyl ether derivatives were measured by gas chromatography/mass spectrometry (GC/MS), and their electron ionization (El) spectra were interpreted in detail. The proposed structures of the hydroxydicarboxylic acids were confirmed or supported with reference compounds. 2-Hydroxy-4-isopropyladipic acid formally corresponds to a further reaction product of pinic acid involving addition of a molecule of water and opening of the dimethylcyclobutane ring; this proposal is supported by a laboratory irradiation experiment with alpha-pinene/NOJ0 air. In addition, we report the presence of a structurally related minor alpha-pinene photooxidation product, which was tentatively identified as the C7 homolog of 3-hydroxyglutaric acid, 3-hydroxy-4,4-dimethylglutaric acid. The detection of 2-hydroxy-4-isopropyladipic acid in ambient aerosol provides an explanation for the relatively low atmospheric concentrations of pinic acid found during daytime in forest environments.

  16. [Relationships between cadmium accumulation and organic acids in leaves of Solanum nigrum L. as a cadmium-hyperaccumulator].

    PubMed

    Sun, Rui-lian; Zhou, Qi-xing; Wang, Xin

    2006-04-01

    The influence of different cadmium concentrations on the organic acid level in leaves of the Cd hyperaccumulator, Solanum nigrum L., in particular, the relationship of organic acids with Cd accumulation in S. nigrum was investigated based on the pot-culture experiment. The results showed that the Cd concentration in S. nigrum leaves exceeded 100 microg x g(-1), the threshold value used to define Cd-hyperaccumulators, and the bioaccumulation coefficient of cadmium in shoots of S. nigrum was higher than 1 when Cd concentration in soil was 25 microg x g(-1). The level of organic acids in leaves of S. nigrum had significant differences between the seedling stage and the mature stage. At the seedling stage, the sequence of organic acids in leaves of S. nigrum was acetic acid> tartaric acid> malic acid> citric acid. On the contrary, the accumulation of organic acids in S. nigrum at the mature stage was approximately in the following sequence malic acid> tartaric acid, acetic acid> citric acid. The significant positive correlation between Cd accumulation in leaves of S. nigrum and the concentration of tartaric acid in leaves of S. nigrum was observed at the seedling stage, whereas there was a significant positive correlation between Cd accumulation in leaves of S. nigrum and both acetic and citric acid concentrations at the mature stage. These results indicated that tartaric, acetic and citric acids in leaves of S. nigrum might act as the indication of Cd hyperaccumulation. PMID:16768003

  17. Protected Organic Acid Blends as an Alternative to Antibiotics in Finishing Pigs

    PubMed Central

    Upadhaya, S. D.; Lee, K. Y.; Kim, I. H.

    2014-01-01

    A total of 120 finishing pigs ([Yorkshire×Landrace]×Duroc) with an average body weight (BW) of 49.72 ±1.72 kg were used in 12-wk trial to evaluate the effects of protected organic acids on growth performance, nutrient digestibility, fecal micro flora, meat quality and fecal gas emission. Pigs were randomly allotted to one of three dietary treatments (10 replication pens with 4 pigs per pen) in a randomly complete block design based on their initial BW. Each dietary treatment consisted of: Control (CON/basal diet), OA1 (basal diet+0.1% organic acids) and OA2 (basal diet+0.2% organic acids). Dietary treatment with protected organic acid blends linearly improved (p<0.001) average daily gain during 0 to 6 week, 6 to 12 week as well as overall with the increase in their inclusion level in the diet. The dry matter, N, and energy digestibility was higher (linear effect, p<0.001) with the increase in the dose of protected organic acid blends during 12 week. During week 6, a decrease (linear effect, p = 0.01) in fecal ammonia contents was observed with the increase in the level of protected organic acid blends on d 3 and d 5 of fermentation. Moreover, acetic acid emission decreased linearly (p = 0.02) on d7 of fermentation with the increase in the level of protected organic acid blends. During 12 weeks, linear decrease (p<0.001) in fecal ammonia on d 3 and d 5 and acetic acid content on d 5 of fermentation was observed with the increase in the level of protected organic acid blends. Supplementation of protected organic acid blends linearly increased the longissimus muscle area with the increasing concentration of organic acids. Moreover, color of meat increased (linear effect, quadratic effect, p<0.001, p<0.002 respectively) and firmness of meat showed quadratic effect (p = 0.003) with the inclusion of increasing level of protected organic acid in the diet. During the 6 week, increment in the level of protected organic acid blends decreased (linear effect, p = 0

  18. Joint effect of organic acids and inorganic salts on cloud droplet activation

    NASA Astrophysics Data System (ADS)

    Frosch, M.; Prisle, N. L.; Bilde, M.; Varga, Z.; Kiss, G.

    2011-04-01

    We have investigated CCN properties of internally mixed particles composed of one organic acid (oxalic acid dihydrate, succinic acid, adipic acid, citric acid, cis-pinonic acid, or Nordic reference fulvic acid) and one inorganic salt (sodium chloride or ammonium sulphate). Surface tension and water activity of aqueous model solutions with concentrations relevant for CCN activation were measured using a tensiometer and osmometry, respectively. The measurements were used to calculate Köhler curves and critical supersaturations, which were compared to measured critical supersaturations of particles with the same chemical compositions, determined with a cloud condensation nucleus counter. Surfactant surface partitioning was not accounted for. For the aqueous solutions containing cis-pinonic acid and fulvic acid, a depression of surface tension was observed, but for the remaining solutions the effect on surface tension was negligible at concentrations relevant for cloud droplet activation. The surface tension depression of aqueous solutions containing both organic acid and inorganic salt was approximately the same as or smaller than that of aqueous solutions containing the same mass of the corresponding pure organic acids. Water activity was found to be highly dependent on the type and amount of inorganic salt. Sodium chloride was able to decrease water activity more than ammonium sulphate and both inorganic salts are predicted to have a smaller Raoult term than the studied organic acids. Increasing the mass ratio of the inorganic salt led to a decrease in water activity. Water activity measurements were compared to results from the E-AIM model and values estimated from both constant and variable van't Hoff factors. The correspondence between measurements and estimates was overall good, except for highly concentrated solutions. Critical supersaturations calculated with Köhler theory based on measured water activity and surface tension, but not accounting for surface

  19. [Autopsy case of aspirin intoxication: distribution of salicylic acid and salicyluric acid in body fluid and organs].

    PubMed

    Ihama, Yoko; Ageda, Saori; Fuke, Chiaki; Miyazaki, Tetsuji

    2007-10-01

    A 52 year-old woman ingested approximately 300 tablets (325 mg) of aspirin in a suicide attempt. We analyzed the concentrations of salicylic acid (SA) and salicyluric acid (SUA) in body fluids and organs using a modified previous high-performance liquid chromatographic method. The concentrations of SA in heart and femoral blood were 1.1 mg/mL and 1.3 mg/mL, respectively; the results were far higher than the lethal level. The concentration of SA was 0.3-0.4 mg/g in brain, 0.9-1.4 mg/g in lung, 0.6-0.8 mg/g in liver and 0.9 mg/mL in kidney.

  20. Amphiphilic calixresorcinarene associates as effective solubilizing agents for hydrophobic organic acids: construction of nano-aggregates.

    PubMed

    Morozova, Ju E; Syakaev, V V; Kazakova, E Kh; Shalaeva, Ya V; Nizameev, I R; Kadirov, M K; Voloshina, A D; Zobov, V V; Konovalov, A I

    2016-07-01

    Here we represent the first example of the formation of mixed nanoscale associates, constructed from amphiphilic calixresorcinarenes and hydrophobic carboxylic acids including drugs. The amidoamino-calixresorcinarene self-associates effectively solubilize hydrophobic carboxylic acids - drugs such as naproxen, ibuprofen, ursodeoxycholic acid and aliphatic dodecanoic acid - with the formation of the mixed aggregates with the macrocycle/substrate stoichiometry from 1/1 to 1/7. The ionization of organic acids and the peripheral nitrogen atoms of the macrocycles with the subsequent inclusion of hydrophobic acids into the macrocycle self-associates is the driving force of solubilization. In some cases, this leads to the co-assembly of the macrocycle polydisperse associates into supramolecular monodisperse nanoparticles with the diameter of about 100 nm. The efficiency of drug loading into the nanoparticles is up to 45% and depends on the structure of organic acid. The dissociation of the mixed aggregates and release of organic acid are attained by decreasing pH. PMID:27252123

  1. Adsorption of Small Weak Organic Acids on Goethite: Modeling of Mechanisms

    PubMed

    Filius; Hiemstra; Van Riemsdijk WH

    1997-11-15

    The adsorption of lactate, oxalate, malonate, phthalate, and citrate has been determined experimentally as a function of concentration, pH, and ionic strength. The data have been described with the CD-MUSIC model of Hiemstra and Van Riemsdijk [J. Colloid Interface Sci. 179, 488-508 (1996)] which allows a distribution of charge of the organic molecule over the surface and the Stern layer. Simultaneously, the concentration, pH, and salt dependency as well as the basic charging behavior of goethite could be described well. On the basis of model calculations, a distinction is made between inner and outer sphere complexation of weak organic acids by goethite. The results indicate that the affinity of the organic acids is dominated by the electrostatic attraction. The intrinsic affinity constants for the exchange reaction of surface water groups and organic acids, expressed per bond, increases with increasing number of reactive groups on the organic molecule. Ion pair formation between noncoordinated carboxylic groups of adsorbed organic acids and cations of the background electrolyte proved to be important for the salt dependency. The knowledge obtained may contribute to the interpretation of the binding of larger organic acids like fulvic and humic acids. Copyright 1997 Academic Press. Copyright 1997Academic Press PMID:9441638

  2. Adsorption of small weak organic acids on goethite: Modeling of mechanisms

    SciTech Connect

    Filius, J.D.; Hiemstra, T.; Riemsdijk, W.H. Van

    1997-11-15

    The adsorption of lactate, oxalate, malonate, phthalate, and citrate has been determined experimentally as a function of concentration, pH, and ionic strength. The data have been described with the CD-MUSIC model of Hiemstra and Van Riemsdijk which allows a distribution of charge of the organic molecule over the surface and the Stern layer. Simultaneously, the concentration, pH, and salt dependency as well as the basic charging behavior of goethite could be described well. On the basis of model calculations, a distinction is made between inner and outer sphere complexation of weak organic acids by goethite. The results indicate that the affinity of the organic acids is dominated by the electrostatic attraction. The intrinsic affinity constants for the exchange reaction of surface water groups and organic acids, expressed per bond, increases with increasing number of reactive groups on the organic molecule. Ion pair formation between noncoordinated carboxylic groups of adsorbed organic acids and cations of the background electrolyte proved to be important for the salt dependency. The knowledge obtained may contribute to the interpretation of the binding of larger organic acids like fulvic and humic acids.

  3. Stable carbon isotopic compositions of organic acids in total suspended particles and dusts from Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Ma, Shexia; Peng, Ping'an; Song, Jianzhong; Zhao, Jinping; He, Lulu; Sheng, Guoying; Fu, Jiamo

    2010-10-01

    Stable carbon isotopic compositions of individual organic acids were determined in total suspended particles and dusts from Guangzhou. The δ 13C values of high molecular weight n-alkanoic acids (C 20-C 28) varied from -34.1‰ to -32.4‰ and tended to be heavier in summer and lighter in winter. These δ 13C values indicate that high molecular weight n-alkanoic acids were derived mainly from emission by C 3 plants. Reduced biological synthesis of high molecular weight n-alkanoic acids in winter may be the reason for the light carbon isotopic composition. The δ 13C values of low molecular weight n-alkanoic acids (C 10-C 18) changed from -31.7‰ to -30.3‰ and exhibited a reverse seasonal trend, i.e., heavier in winter and lighter in summer. Slightly heavier δ 13C values of low molecular weight n-alkanoic acids than those of high molecular weight n-alkanoic acids suggested that they may be emitted from blended sources, e.g., anthropogenic sources and vegetation waxes. Lighter δ 13C values in summer may be attributed to relatively low anthropogenic sources and high botanic sources in summer. Dicarboxylic acids and aromatic acids have been proposed as secondary products from photochemical degradation. The average δ 13C values of dicarboxylic acids and aromatic acids were heavier, and ranged from -25.2‰ to -22.9‰ and from -30.0‰ to -27.6‰, respectively. Both dicarboxylic acids and aromatic acids displayed the same temporal variations in the δ 13C values, i.e., negative δ 13C in the summer samples and positive in the winter samples, which may be controlled by photochemical reactions; they are generally severe in winter in Guangzhou under the monsoon weather system. The heaviest δ 13C values were observed in dicarboxylic acids, indicating that dicarboxylic acids were formed by fast and more complete oxidation reactions. These results indicate that the stable carbon isotopic composition of organic acids may provide important information about sources and

  4. Growth and characterization of organic ferroelectric croconic acid thin films

    NASA Astrophysics Data System (ADS)

    Jiang, Xuanyuan; Lu, Haidong; Yin, Yuewei; Enders, Axel; Gruverman, Alexei; Xu, Xiaoshan

    Using vapor phase evaporation, we have studied the growth of the croconic acid (CCA) thin films, at various conditions such as temperature, thickness, growth speed, and substrates. The morphology of thin film was measured by atomic force microscopy (AFM); the ferroelectric property was confirmed by piezoresponse force microscopy (PFM). A critical thickness of 40 nm and optimal temperature of -30 celsius were found for continuous films, while the substrate and growth speed are found to play a minimal role. According to the reflection high energy electron diffraction (RHEED), the CCA films are polycrystalline. For a 40 nm continuous film, the roughness is about 3 nm, while the coercive voltage for the ferroelectric domain switching is approximately 7V. This is the first molecule ferroelectric thin film. The successful growth of continuous CCA films enhances the applications potential of CCA, which is a molecular crystal of ferroelectricity. Supported by NSF through UNL MRSEC (DMR-1420645).

  5. Isolation and characterization of hyaluronic acid from marine organisms.

    PubMed

    Giji, Sadhasivam; Arumugam, Muthuvel

    2014-01-01

    Hyaluronic acid (HA) being a viscous slippery substance is a multifunctional glue with immense therapeutic applications such as ophthalmic surgery, orthopedic surgery and rheumatology, drug delivery systems, pulmonary pathology, joint pathologies, and tissue engineering. Although HA has been isolated from terrestrial origin (human umbilical cord, rooster comb, bacterial sources, etc.) so far, the increasing interest on this polysaccharide significantly aroused the alternative search from marine sources since it is at the preliminary level. Enthrallingly, marine environments are considered more biologically diverse than terrestrial environments. Although numerous methods have been described for the extraction and purification of HA, the hitch on the isolation methods which greatly influences the yield as well as the molecular weight of the polymer still exists. Adaptation of suitable method is essential in this venture. Stimulated by the developed technology, to sketch the steps involved in isolation and analytical techniques for characterization of this polymer, a brief report on the concerned approach has been reviewed.

  6. Microbial production of specialty organic acids from renewable and waste materials.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2015-01-01

    Microbial production of organic acids has become a fast-moving field due to the increasing role of these compounds as platform chemicals. In recent years, the portfolio of specialty fermentation-derived carboxylic acids has increased considerably, including the production of glyceric, glucaric, succinic, butyric, xylonic, fumaric, malic, itaconic, lactobionic, propionic and adipic acid through innovative fermentation strategies. This review summarizes recent trends in the use of novel microbial platforms as well as renewable and waste materials for efficient and cost-effective bio-based production of emerging high-value organic acids. Advances in the development of robust and efficient microbial bioprocesses for producing carboxylic acids from low-cost feedstocks are also discussed. The industrial market scenario is also reviewed, including the latest information on the stage of development for producing these emerging bio-products via large-scale fermentation.

  7. Effectiveness of hand sanitizers with and without organic acids for removal of rhinovirus from hands.

    PubMed

    Turner, Ronald B; Fuls, Janice L; Rodgers, Nancy D

    2010-03-01

    These studies evaluated the effectiveness of ethanol hand sanitizers with or without organic acids to remove detectable rhinovirus from the hands and prevent experimental rhinovirus infection. Ethanol hand sanitizers were significantly more effective than hand washing with soap and water. The addition of organic acids to the ethanol provided residual virucidal activity that persisted for at least 4 h. Whether these treatments will reduce rhinovirus infection in the natural setting remains to be determined.

  8. Interactions of low molecular weight aromatic acids and amino acids with goethite, kaolinite and bentonite with or without organic matter coating

    NASA Astrophysics Data System (ADS)

    Gao, Jiajia; Jansen, Boris; Cerli, Chiara; Kalbitz, Karsten

    2015-04-01

    Interaction of organic matter molecules with the soil's solid phase is a key factor influencing the stabilization of carbon in soils and thus forms a crucial aspect of the global carbon cycle. While subject of much research attention so far, we still have much to learn about such interactions at the molecular level; in particular in the light of competition between different classes of organic molecules and in the presence of previously adsorbed soil organic matter. We studied the interaction of a group of low molecular weight (LMW) aromatic acids (salicylic, syringic, vanillic and ferulic acid) and amino acids (lysine, glutamic, leucine and phenylalanine) on goethite, kaolinite and bentonite with and without previously adsorbed dissolved organic matter (DOM). For this we used batch experiments at pH = 6.0 where some of the organic compounds were positively charged (i.e. lysine) or negatively charged (i.e. glutamic and salicylic acid) while the minerals also displayed positively (i.e. goethite) or negatively charged surfaces (i.e. bentonite). We found much higher sorption of salicylic acid and lysine than other compounds. On the bare minerals we found a great variety of sorption strength, with salicylic acid strongly adsorbed, while syringic, vanillic and ferulic acid showed little or no adsorption. For the amino acids, protonated lysine showed a stronger affinity to negatively charged kaolinite and bentonite than other amino acids. While deprotonated glutamic acid showed the strongest adsorption on goethite. Leucine and phenylalanine showed hardly any adsorption on any of the minerals. When present concurrently, amino acids decreased the sorption of salicylic acid on the three types of mineral, while the presence of LMW aromatic acids increased the sorption of lysine on kaolinite and bentonite and the sorption of glutamic acid on goethite. The presence of previously adsorbed DOM reduced the sorption of salicylic acid and lysine. The results confirm that

  9. Seasonal and spatial changes of free and bound organic acids in total suspended particles in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Ma, Shexia; Peng, Ping'an; Song, Jianzhong; Bi, Xinhui; Zhao, Jinping; He, Lulu; Sheng, Guoying; Fu, Jiamo

    2010-12-01

    The concentrations and compositions of free and bound organic acids in total suspended particles from typical urban, suburban and forest park sites of Guangzhou were determined in this study. The free form of organic acids (solvent extractable) in aerosols in Guangzhou varied with site and season. The suburban samples contained the highest contents of alkanoic, alkenoic and dicarboxylic acids. These findings were consistent with a higher supply of hydrocarbons and NOx in the suburban area. However, concentrations of aromatic acids were similar in the urban, suburban and forest park sites. Generally, winter season samples of the acids from anthropogenic sources contained more organic acids than summer season samples due to stronger removal by wet deposition in the summer. For the acids from botanic sources, the summer season samples were higher. In addition to the free acids, bound acids (solvent non-extractable) mainly formed by esterification of free acids were also found in the samples. In general, bound acids were higher than free acids. Esterification is mainly controlled by the pKa of organic acids and the atmospheric pH value. This explains why aromatic and dicarboxylic acids occur mainly as bound forms and why the samples from urban sites contained high levels of bound acids as the pH of rain water can reach 4.53. Concentrations of alkanoic and alkenoic acids in the aerosols of Guangzhou were much higher than those in the other areas studied.

  10. A review of the effects of dietary organic acids fed to swine.

    PubMed

    Suiryanrayna, Mocherla V A N; Ramana, J V

    2015-01-01

    Animal production depends on nutrient utilization and if done there is an accelerated momentum towards growth with a low cost to feed ratio Public concern over the consumption of pork with antibiotic residues of the animals fed with antibiotic growth promoters (AGP) has paved the way to use other additives like herbs and their products, probiotics, prebiotics etc. Numerous feed additives are in vogue for achieving this target and one such classical example is the usage of organic acids and their salts. Usage of organic acids was in progress for over four decades. Early weaned piglets are (3-4 weeks age) exposed to stress with a reduced feed intake, little or no weight gain. This post weaning lag period is due to a limited digestive and absorptive capacity due to insufficient production of hydrochloric acid, pancreatic enzymes and sudden changes in feed consistency and intake. Lowering dietary pH by weak organic acids was found to overcome these problems. The main activity of organic acids is associated with a reduction in gastric pH converting the inactive pepsinogen to active pepsin for effective protein hydrolysis. Organic acids are both bacteriostatic and bactericidal. Lactic acid has been reported to reduce gastric pH and delay the multiplication of an enterotoxigenic E. coli. These acids are the intermediary products in Kreb's cycle and thus act as an energy source preventing the tissue breakdown resulting from gluconeogenesis and lipolysis. Excretion of supplemental minerals and nitrogen are minimized with organic acids as these form complexes with minerals and aids for their bio-availability. Short chain fatty cids like acetic, propionic and n-butyric acid produced by microbial fermentation of dietary fibre in the large intestines may increase the proliferation of epithelial cells and have stimulatory effects on both endocrine and exocrine pancreatic secretions in pigs. Organic acids also enhances apparent total tract digestibility and improves growth

  11. Aliphatic, Cyclic, and Aromatic Organic Acids, Vitamins, and Carbohydrates in Soil: A Review

    PubMed Central

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-01-01

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research. PMID:24319374

  12. Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review.

    PubMed

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-11-10

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research.

  13. Role of Organic Acids in Bioformation of Kaolinite: Results of Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Bontognali, T. R. R.; Vasconcelos, C.; McKenzie, J. A.

    2012-04-01

    Clay minerals and other solid silica phases have a broad distribution in the geological record and greatly affect fundamental physicochemical properties of sedimentary rocks, including porosity. An increasing number of studies suggests that microbial activity and microbially produced organic acids might play an important role in authigenic clay mineral formation, at low temperatures and under neutral pH conditions. In particular, early laboratory experiments (Linares and Huertas, 1971) reported the precipitation of kaolinite in solutions of SiO2 and Al2O3 with different molar ratios SiO2/Al2O3, together with fulvic acid (a non-characterized mixture of many different acids containing carboxyl and phenolate groups) that was extracted from peat soil. Despite many attempts, these experiments could not be reproduced until recently. Fiore et al. (2011) hypothesized that the non-sterile fulvic acid might have contained microbes that participated in the formation of kaolinite. Using solutions saturated with Si and Al and containing oxalate and/or mixed microbial culture extracted from peat-moss soil, they performed incubation experiments, which produced kaolinite exclusively in solutions containing oxalate and microbes. We proposed to test the role of specific organic acids for kaolinite formation, conducting laboratory experiments at 25˚C, with solutions of sodium silicate, aluminum chloride and various organic compounds (i.e. EDTA, citric acid, succinic acid and oxalic acid). Specific organic acids may stabilize aluminum in octahedral coordination positions, which is crucial for the initial nucleation step. In our experiments, a poorly crystalline mineral that is possibly a kaolinite precursor formed exclusively in the presence of succinic acid. In experiments with other organic compounds, no incorporation of Al was observed, and amorphous silica was the only precipitated phase. In natural environments, succinic acid is produced by a large variety of microbes as an

  14. Effect of different postharvest temperatures on the accumulation of sugars, organic acids, and amino acids in the juice sacs of Satsuma mandarin (Citrus unshiu Marc.) fruit.

    PubMed

    Matsumoto, Hikaru; Ikoma, Yoshinori

    2012-10-01

    To elucidate the effect of different postharvest temperatures on the accumulation of sugars, organic acids, and amino acids and to determine the best temperature to minimize their postharvest change, their content after harvest was investigated at 5, 10, 20, and 30 °C for 14 days in the juice sacs of Satsuma mandarin (Citrus unshiu Marc. cv. Aoshima-unshiu) fruit. In all sugars, the changes were negligible at all temperatures. Organic acids decreased slightly at all temperatures, with the exception of malic acid at 30 °C, which increased slightly. Two amino acids, ornithine and glutamine, increased at 5 °C, but they did not increase at other temperatures. In 11 amino acids (phenylalanine, tryptophan, tyrosine, isoleucine, leucine, valine, threonine, lysine, methionine, histidine, and γ-amino butyric acid), the content was higher at 20 and 30 °C than at other temperatures. Thus, the content of amino acids was more variable than that of sugars and organic acids in response to temperatures. Moreover, amino acids responded to temperature differently: two amino acids were cold responsive, and 11 were heat-responsive. The best temperature to minimize the postharvest changes in amino acid profiles in the juice sacs of Aoshima-unshiu was 10 °C. The responsiveness to temperatures in two cold-responsive (ornithine and glutamine) and five heat-responsive (phenylalanine, tryptophan, valine, lysine, and histidine) amino acids was conserved among three different Satsuma mandarin cultivars, Aoshima-unshiu (late-maturing cultivar), Silverhill (midmaturing cultivar), and Miyagawa-wase (early-maturing cultivar). The metabolic responsiveness to temperature stress was discussed on the basis of the changes in the amino acid profile.

  15. Fatty acids - trans fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  16. Role of Organic Solutes in the Chemistry Of Acid-Impacted Bog Waters of the Western Czech Republic

    NASA Astrophysics Data System (ADS)

    HrušKa, Jakub; Johnson, Chris E.; KráM, Pavel

    1996-04-01

    In many regions, naturally occurring organic acid anions can effectively buffer mineral acid inputs from atmospheric deposition, moderating their effect on surface water pH. We studied the effect of chronically high inputs of acid rain on the chemistry of three brown-water streams in the western Czech Republic. The dissolved organic acids in the streams were similar in character to those of other systems in Europe and North America. The site densities (the carboxyl group content per mass of C) were similar to values reported from Fenno-Scandia, and the relationship between the apparent pKa and pH conformed to those from two North American studies. Sulfate and organic acid anions (OA-) were the dominant anions in all three streams, yet despite high dissolved organic carbon and total organic acid concentrations, OA - comprised only 21-32% of total anion charge. This pattern was due to very high sulfate concentrations and, in two of the streams, a low degree of dissociation of the organic acids, probably the results of high long-term inputs of strong acids. Stream water pH was highly correlated to sulfate concentration, but uncorrelated with OA-, suggesting that free acidity is controlled by strong mineral acids rather than organic acids. Thus future reductions in strong acid inputs should result in increased pH and a return to organic control over acid-base chemistry.

  17. Biotechnological production of caffeic acid derivatives from cell and organ cultures of Echinacea species.

    PubMed

    Murthy, Hosakatte Niranjana; Kim, Yun-Soo; Park, So-Young; Paek, Kee-Yoeup

    2014-09-01

    Caffeic acid derivatives (CADs) are a group of bioactive compounds which are produced in Echinacea species especially Echinacea purpurea, Echinacea angustifolia, and Echinacea pallida. Echinacea is a popular herbal medicine used in the treatment of common cold and it is also a prominent dietary supplement used throughout the world. Caffeic acid, chlorogenic acid (5-O-caffeoylquinic acid), caftaric acid (2-O-caffeoyltartaric acid), cichoric acid (2, 3-O-dicaffeoyltartaric acid), cynarin, and echinacoside are some of the important CADs which have varied pharmacological activities. The concentrations of these bioactive compounds are species specific and also they vary considerably with the cultivated Echinacea species due to geographical location, stage of development, time of harvest, and growth conditions. Due to these reasons, plant cell and organ cultures have become attractive alternative for the production of biomass and caffeic acid derivatives. Adventitious and hairy roots have been induced in E. pupurea and E. angustifolia, and suspension cultures have been established from flask to bioreactor scale for the production of biomass and CADs. Tremendous progress has been made in this area; various bioprocess methods and strategies have been developed for constant high-quality productivity of biomass and secondary products. This review is aimed to discuss biotechnological methods and approaches employed for the sustainable production of CADs.

  18. [Progress in engineering Escherichia coli for production of high-value added organic acids and alcohols].

    PubMed

    Wang, Jiming; Liu, Wei; Xu, Xin; Zhang, Haibo; Xian, Mo

    2013-10-01

    Confronted with the gradual exhaustion of the earth's fossil energy resources and the grimmer environmental deterioration, the bio-based process to produce high-value added platform chemicals from renewable biomass is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to various advantages, such as clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. This review focuses on recent progresses in metabolic engineering of E. coli that lead to efficient recombinant biocatalysts for production of high-value organic acids such as succinic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like glycerol and xylitol. Besides, this review also discusses several other platform chemicals, including 2,5-furan dicarboxylic acid, aspartic acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxy-gamma-butyrolactone and sorbitol, which have not been produced by E. coli until now. PMID:24432652

  19. Antimony leaching release from brake pads: Effect of pH, temperature and organic acids.

    PubMed

    Hu, Xingyun; He, Mengchang; Li, Sisi

    2015-03-01

    Metals from automotive brake pads pollute water, soils and the ambient air. The environmental effect on water of antimony (Sb) contained in brake pads has been largely untested. The content of Sb in one abandoned brake pad reached up to 1.62×10(4) mg/kg. Effects of initial pH, temperature and four organic acids (acetic acid, oxalic acid, citric acid and humic acid) on Sb release from brake pads were studied using batch reactors. Approximately 30% (97 mg/L) of the total Sb contained in the brake pads was released in alkaline aqueous solution and at higher temperature after 30 days of leaching. The organic acids tested restrained Sb release, especially acetic acid and oxalic acid. The pH-dependent concentration change of Sb in aqueous solution was best fitted by a logarithmic function. In addition, Sb contained in topsoil from land where brake pads were discarded (average 9×10(3) mg/kg) was 3000 times that in uncontaminated soils (2.7±1 mg/kg) in the same areas. Because potentially high amounts of Sb may be released from brake pads, it is important that producers and environmental authorities take precautions.

  20. In vitro susceptibility of Brachyspira hyodysenteriae to organic acids and essential oil components.

    PubMed

    Vande Maele, Lien; Heyndrickx, Marc; Maes, Dominiek; De Pauw, Nele; Mahu, Maxime; Verlinden, Marc; Haesebrouck, Freddy; Martel, An; Pasmans, Frank; Boyen, Filip

    2016-02-01

    The antibacterial potential of organic acids and essential oil components against Brachyspira hyodysenteriae, the causative pathogen of swine dysentery, was evaluated. Minimum inhibitory concentrations (MIC) of 15 compounds were determined at pH 7.2 and pH 6.0, using a broth microdilution assay. In addition, possible synergism was determined. MIC values for the three tested strains were similar. For organic acids, MIC values at pH 6.0 were lower than at pH 7.2. B. hyodysenteriae was most sensitive to cinnamaldehyde and lauric acid, with MIC values <1.5 mM. Most antibacterial effects of binary combinations were additive, however, for thymol and carvacrol, synergism could be observed. In vitro results demonstrate the antibacterial action of certain essential oil components and organic acids against B. hyodysenteriae. PMID:26369432

  1. In vitro susceptibility of Brachyspira hyodysenteriae to organic acids and essential oil components

    PubMed Central

    VANDE MAELE, Lien; HEYNDRICKX, Marc; MAES, Dominiek; DE PAUW, Nele; MAHU, Maxime; VERLINDEN, Marc; HAESEBROUCK, Freddy; MARTEL, An; PASMANS, Frank; BOYEN, Filip

    2015-01-01

    The antibacterial potential of organic acids and essential oil components against Brachyspira hyodysenteriae, the causative pathogen of swine dysentery, was evaluated. Minimum inhibitory concentrations (MIC) of 15 compounds were determined at pH 7.2 and pH 6.0, using a broth microdilution assay. In addition, possible synergism was determined. MIC values for the three tested strains were similar. For organic acids, MIC values at pH 6.0 were lower than at pH 7.2. B. hyodysenteriae was most sensitive to cinnamaldehyde and lauric acid, with MIC values <1.5 mM. Most antibacterial effects of binary combinations were additive, however, for thymol and carvacrol, synergism could be observed. In vitro results demonstrate the antibacterial action of certain essential oil components and organic acids against B. hyodysenteriae. PMID:26369432

  2. Water-enhanced solubility of carboxylic acids in organic solvents and its application to extraction processes

    SciTech Connect

    Starr, J.N. ); King, C.J. )

    1992-11-01

    This paper reports on solubilities of carboxylic acids in certain organic solvents which increase sharply as the concentration of water in the solvent increases. This phenomenon leads to a method of regeneration for solvent-extraction processes whereby coextracted water is selectively removed from the extract, such as by stripping, thereby precipitating the acid. The removal of a minor constituent to cause precipitation reduces energy consumption, in contrast with bulk removal of solvent. Solubilities of fumaric acid were measured in a number of organic solvents, with varying amounts of water in the organic phase. Cyclohexanone and methylcyclohexanone were chosen as solvents for which detailed solid-liquid and liquid-liquid equilibria were measured for adipic, fumaric, and succinic acids in the presence of varying concentrations of water, at both 25 and 45[degrees]C. Batch precipitation experiments were performed to demonstrate the processing concept and determine the relative volatility of water to solvent in the presence of carbon.

  3. Five organic salts assembled from carboxylic acids and bis-imidazole derivatives through collective noncovalent interactions

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Guo, Jianzhong; Liu, Li; Wang, Daqi

    2011-10-01

    Five multicomponent crystals of bis(imidazole) derivatives have been prepared with 5-nitrosalicylic acid, 5-sulfosalicylic acid, and phthalic acid. The five crystalline forms reported are organic salts of which the crystal structures have all been determined by X-ray diffraction. The results presented herein indicate that the strength and directionality of the N sbnd H⋯O, O sbnd H⋯O, and N sbnd H⋯N hydrogen bonds (ionic or neutral) between carboxylic acids and ditopic imidazoles are sufficient to bring about the formation of binary organic salts. All supramolecular architectures of the organic salts 1- 5 involve extensive O sbnd H⋯O, and N sbnd H⋯O hydrogen bonds as well as other noncovalent interactions. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These noncovalent interactions combined, all the complexes displayed 3D framework structure.

  4. Effect of organic acids found in cottonseed hull hydrolysate on the xylitol fermentation by Candida tropicalis.

    PubMed

    Wang, Le; Wu, Dapeng; Tang, Pingwah; Yuan, Qipeng

    2013-08-01

    Five organic acids (acetic, ferulic, 4-hydroxybenzoic, formic and levulinic acids) typically associated in the hemicellulose hydrolysate were selected to study their effects on the xylitol fermentation. The effects of individual and combined additions were independently evaluated on the following parameters: inhibitory concentration; initial cell concentration; pH value; and membrane integrity. The results showed that the toxicities of organic acids were related to their hydrophobility and significantly affected by the fermentative pH value. In addition, it was revealed that the paired combinations of organic acids did not impose synergetic inhibition. Moreover, it was found that the fermentation inhibition could be alleviated with the simple manipulations by increasing the initial cell concentration, raising the initial pH value and minimizing furfural levels by evaporation during the concentration of hydrolysates. The proposed strategies for minimizing the negative effects could be adopted to improve the xylitol fermentation in the industrial applications.

  5. Biomass and organic acids in sandstone of a weathering building: Production by bacterial and fungal isolates.

    PubMed

    Palmer, R J; Siebert, J; Hirsch, P

    1991-12-01

    Ten fungal and nine bacterial strains were isolated from a weathering sandstone building. Their growth, organic acid production, and acidification capacity were assessed in culture under nutritional conditions similar to those in situ. Biomass (10-50 nmol phospholipid-PO4g(-1)) within the rock was small compared to soils. The isolated organisms were able to produce high amounts of those acids found in the sandstone, but acid production did not cause a drastic reduction in culture pH. It is suggested that the importance of acidification in microbial degradation of sandstone has been overestimated and that, under in situ pH and nutritional conditions, cation chelation by microbially produced organic acid anions may be more relevant to the weathering process.

  6. Analysis of carbonaceous biomarkers with the Mars Organic Analyzer microchip capillary electrophoresis system: carboxylic acids.

    PubMed

    Stockton, Amanda M; Tjin, Caroline Chandra; Chiesl, Thomas N; Mathies, Richard A

    2011-01-01

    The oxidizing surface chemistry on Mars argues that any comprehensive search for organic compounds indicative of life requires methods to analyze higher oxidation states of carbon with very low limits of detection. To address this goal, microchip capillary electrophoresis (μCE) methods were developed for analysis of carboxylic acids with the Mars Organic Analyzer (MOA). Fluorescent derivatization was achieved by activation with the water soluble 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) followed by reaction with Cascade Blue hydrazide in 30 mM borate, pH 3. A standard containing 12 carboxylic acids found in terrestrial life was successfully labeled and separated in 30 mM borate at pH 9.5, 20 °C by using the MOA CE system. Limits of detection were 5-10 nM for aliphatic monoacids, 20 nM for malic acid (diacid), and 230 nM for citric acid (triacid). Polyacid benzene derivatives containing 2, 3, 4, and 6 carboxyl groups were also analyzed. In particular, mellitic acid was successfully labeled and analyzed with a limit of detection of 300 nM (5 ppb). Analyses of carboxylic acids sampled from a lava tube cave and a hydrothermal area demonstrated the versatility and robustness of our method. This work establishes that the MOA can be used for sensitive analyses of a wide range of carboxylic acids in the search for extraterrestrial organic molecules.

  7. Uric Acid Spherulites in the Reflector Layer of Firefly Light Organ

    PubMed Central

    Goh, King-Siang; Sheu, Hwo-Shuenn; Hua, Tzu-En; Kang, Mei-Hua; Li, Chia-Wei

    2013-01-01

    Background In firefly light organs, reflector layer is a specialized tissue which is believed to play a key role for increasing the bioluminescence intensity through reflection. However, the nature of this unique tissue remains elusive. In this report, we investigated the role, fine structure and nature of the reflector layer in the light organ of adult Luciola cerata. Principal Findings Our results indicated that the reflector layer is capable of reflecting bioluminescence, and contains abundant uric acid. Electron microscopy (EM) demonstrated that the cytosol of the reflector layer's cells is filled with densely packed spherical granules, which should be the uric acid granules. These granules are highly regular in size (∼700 nm in diameter), and exhibit a radial internal structure. X-ray diffraction (XRD) analyses revealed that an intense single peak pattern with a d-spacing value of 0.320 nm is specifically detected in the light organ, and is highly similar to the diffraction peak pattern and d-spacing value of needle-formed crystals of monosodium urate monohydrate. However, the molar ratio evaluation of uric acid to various cations (K+, Na+, Ca2+ and Mg2+) in the light organ deduced that only a few uric acid molecules were in the form of urate salts. Thus, non-salt uric acid should be the source of the diffraction signal detected in the light organ. Conclusions In the light organ, the intense single peak diffraction signal might come from a unique needle-like uric acid form, which is different from other known structures of non-salt uric acid form. The finding of a radial structure in the granules of reflector layer implies that the spherical uric acid granules might be formed by the radial arrangement of needle-formed packing matter. PMID:23441187

  8. Joint effect of organic acids and inorganic salts on cloud droplet activation

    NASA Astrophysics Data System (ADS)

    Frosch, M.; Prisle, N. L.; Bilde, M.; Varga, Z.; Kiss, G.

    2010-07-01

    We have investigated CCN properties of internally mixed particles composed of one organic acid (oxalic acid, succinic acid, adipic acid, citric acid, cis-pinonic acid, or nordic reference fulvic acid) and one inorganic salt (sodium chloride or ammonium sulphate). Surface tension and water activity of aqueous model solutions with concentrations relevant for CCN activation were measured using a tensiometer and osmometry, respectively. The measurements were used to calculate Köhler curves, which were compared to measured critical supersaturations of particles with the same chemical compositions, determined with a cloud condensation nucleus counter. Surfactant surface partitioning was not accounted for. For the mixtures containing cis-pinonic acid or fulvic acid, a depression of surface tension was observed, but for the remaining mixtures the effect on surface tension was negligle at concentrations relevant for cloud droplet activation, and water activity was the more significant term in the Köhler equation. The surface tension depression of aqueous solutions containing both organic acid and inorganic salt was approximately the same as or smaller than that of aqueous solutions containing the same mass of the corresponding pure organic acids. Water activity was found to be highly dependent on the type and amount of inorganic salt. Sodium chloride was able to decrease water activity more than ammonium sulphate and both inorganic compounds had a higher effect on water activity than the studied organic acids, and increasing the mass ratio of the inorganic compound led to a decrease in water activity. Water activity measurements were compared to results from the E-AIM model and values estimated from both constant and variable van't Hoff factors to evaluate the performance of these approaches. The correspondence between measuments and estimates was overall good, except for highly concentrated solutions. Critical supersaturations calculated with Köhler theory based on

  9. Metabolic engineering of carbon and redox flow in the production of small organic acids.

    PubMed

    Thakker, Chandresh; Martínez, Irene; Li, Wei; San, Ka-Yiu; Bennett, George N

    2015-03-01

    The review describes efforts toward metabolic engineering of production of organic acids. One aspect of the strategy involves the generation of an appropriate amount and type of reduced cofactor needed for the designed pathway. The ability to capture reducing power in the proper form, NADH or NADPH for the biosynthetic reactions leading to the organic acid, requires specific attention in designing the host and also depends on the feedstock used and cell energetic requirements for efficient metabolism during production. Recent work on the formation and commercial uses of a number of small mono- and diacids is discussed with redox differences, major biosynthetic precursors and engineering strategies outlined. Specific attention is given to those acids that are used in balancing cell redox or providing reduction equivalents for the cell, such as formate, which can be used in conjunction with metabolic engineering of other products to improve yields. Since a number of widely studied acids derived from oxaloacetate as an important precursor, several of these acids are covered with the general strategies and particular components summarized, including succinate, fumarate and malate. Since malate and fumarate are less reduced than succinate, the availability of reduction equivalents and level of aerobiosis are important parameters in optimizing production of these compounds in various hosts. Several other more oxidized acids are also discussed as in some cases, they may be desired products or their formation is minimized to afford higher yields of more reduced products. The placement and connections among acids in the typical central metabolic network are presented along with the use of a number of specific non-native enzymes to enhance routes to high production, where available alternative pathways and strategies are discussed. While many organic acids are derived from a few precursors within central metabolism, each organic acid has its own special requirements for high

  10. Isotherm-Based Thermodynamic Models for Solute Activities of Organic Acids with Consideration of Partial Dissociation.

    PubMed

    Nandy, Lucy; Ohm, Peter B; Dutcher, Cari S

    2016-06-23

    Organic acids make up a significant fraction of the organic mass in atmospheric aerosol particles. The calculation of gas-liquid-solid equilibrium partitioning of the organic acid is therefore critical for accurate determination of atmospheric aerosol physicochemical properties and processes such as new particle formation and activation to cloud condensation nuclei. Previously, an adsorption isotherm-based statistical thermodynamic model was developed for capturing solute concentration-activity relationships for multicomponent aqueous solutions over the entire concentration range (Dutcher et al. J. Phys. Chem. C/A 2011, 2012, 2013), with model parameters for energies of adsorption successfully related to dipole-dipole electrostatic forces in solute-solvent and solvent-solvent interactions for both electrolytes and organics (Ohm et al. J. Phys. Chem. A 2015). However, careful attention is needed for weakly dissociating semivolatile organic acids. Dicarboxylic acids, such as malonic acid and glutaric acid are treated here as a mixture of nondissociated organic solute (HA) and dissociated solute (H(+) + A(-)). It was found that the apparent dissociation was greater than that predicted by known dissociation constants alone, emphasizing the effect of dissociation on osmotic and activity coefficient predictions. To avoid additional parametrization from the mixture approach, an expression was used to relate the Debye-Hückel hard-core collision diameter to the adjustable solute-solvent intermolecular distance. An improved reference state treatment for electrolyte-organic aqueous mixtures, such as that observed here with partial dissociation, has also been proposed. This work results in predictive correlations for estimation of organic acid and water activities for which there is little or no activity data.

  11. Isotherm-Based Thermodynamic Models for Solute Activities of Organic Acids with Consideration of Partial Dissociation.

    PubMed

    Nandy, Lucy; Ohm, Peter B; Dutcher, Cari S

    2016-06-23

    Organic acids make up a significant fraction of the organic mass in atmospheric aerosol particles. The calculation of gas-liquid-solid equilibrium partitioning of the organic acid is therefore critical for accurate determination of atmospheric aerosol physicochemical properties and processes such as new particle formation and activation to cloud condensation nuclei. Previously, an adsorption isotherm-based statistical thermodynamic model was developed for capturing solute concentration-activity relationships for multicomponent aqueous solutions over the entire concentration range (Dutcher et al. J. Phys. Chem. C/A 2011, 2012, 2013), with model parameters for energies of adsorption successfully related to dipole-dipole electrostatic forces in solute-solvent and solvent-solvent interactions for both electrolytes and organics (Ohm et al. J. Phys. Chem. A 2015). However, careful attention is needed for weakly dissociating semivolatile organic acids. Dicarboxylic acids, such as malonic acid and glutaric acid are treated here as a mixture of nondissociated organic solute (HA) and dissociated solute (H(+) + A(-)). It was found that the apparent dissociation was greater than that predicted by known dissociation constants alone, emphasizing the effect of dissociation on osmotic and activity coefficient predictions. To avoid additional parametrization from the mixture approach, an expression was used to relate the Debye-Hückel hard-core collision diameter to the adjustable solute-solvent intermolecular distance. An improved reference state treatment for electrolyte-organic aqueous mixtures, such as that observed here with partial dissociation, has also been proposed. This work results in predictive correlations for estimation of organic acid and water activities for which there is little or no activity data. PMID:27222917

  12. Interaction between common organic acids and trace nucleation species in the Earth's atmosphere.

    PubMed

    Xu, Yisheng; Nadykto, Alexey B; Yu, Fangqun; Herb, J; Wang, Wei

    2010-01-14

    Atmospheric aerosols formed via nucleation in the Earth's atmosphere play an important role in the aerosol radiative forcing associated directly with global climate changes and public health. Although it is well-known that atmospheric aerosol particles contain organic species, the chemical nature of and physicochemical processes behind atmospheric nucleation involving organic species remain unclear. In the present work, the interaction of common organic acids with molecular weights of 122, 116, 134, 88, 136, and 150 (benzoic, maleic, malic, pyruvic, phenylacetic, and tartaric acids) with nucleation precursors and charged trace species has been investigated. We found a moderate strong effect of the organic species on the stability of neutral and charged ionic species. In most cases, the free energies of the mixed H(2)SO(4)-organic acid dimer formation are within 1-1.5 kcal mol(-1) of the (H(2)SO(4))(NH(3)) formation energy. The interaction of the organic acids with trace ionic species is quite strong, and the corresponding free energies far exceed those of the (H(3)O(+))(H(2)SO(4)) and (H(3)O(+))(H(2)SO(4))(2) formation. These considerations lead us to conclude that the aforementioned organic acids may possess a substantial capability of stabilizing both neutral and positively charged prenucleation clusters, and thus, they should be studied further with regard to their involvement in the gas-to-particle conversion in the Earth's atmosphere.

  13. Crystallization and immersion freezing ability of oxalic and succinic acid in multicomponent aqueous organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Wagner, Robert; Höhler, Kristina; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin

    2015-04-01

    This study reports on heterogeneous ice nucleation efficiency of immersed oxalic and succinic acid crystals in the temperature range from 245 to 215 K, as investigated with expansion cooling experiments using suspended particles. In contrast to previous laboratory work with emulsified solution droplets where the precipitation of solid inclusions required a preceding freezing/evaporation cycle, we show that immersed solids readily form by homogeneous crystallization within aqueous solution droplets of multicomponent organic mixtures, which have noneutonic compositions with an excess of oxalic or succinic acid. Whereas succinic acid crystals did not act as heterogeneous ice nuclei, immersion freezing by oxalic acid dihydrate crystals led to a reduction of the ice saturation ratio at freezing onset by 0.066-0.072 compared to homogeneous freezing, which is by a factor of 2 higher than previously reported laboratory data. These observations emphasize the importance of oxalic acid in heterogeneous ice nucleation.

  14. Regeneration of carboxylic acid-laden basic sorbents by leaching with a volatile base in an organic solvent

    DOEpatents

    King, C. Judson; Husson, Scott M.

    1999-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with an organic solution of alkylamine thus forming an alkylamine/carboxylic acid complex which is decomposed with improved efficiency to the desired carboxylic acid and the alkylamine. Carbon dioxide addition can be used to improve the adsorption or the carboxylic acids by the solid phase sorbent.

  15. Effect of permeation enhancers and organic acids on the skin permeation of indapamide.

    PubMed

    Ren, Changshun; Fang, Liang; Li, Ting; Wang, Manli; Zhao, Ligang; He, Zhonggui

    2008-02-28

    The aim of present study was to investigate the transdermal properties of indapamide and to explore the efficacy of various permeation enhancers and organic acids with regard to the percutaneous absorption of indapamide. Permeation experiments were performed in vitro, using rat abdominal skin as a barrier. In the permeation studies, 2-chamber diffusion cells were used. The results obtained indicate that N-dodecylazepan-2-one, N-methyl-2-pyrrolidone, menthol and oleic acid had a strong enhancing effect on the permeation of indapamide and N-dodecylazepan-2-one exhibited the most potent enhancing effect. All eight of the organic acids chosen had a potent enhancing effect on the permeation of indapamide across rat abdominal skin. Among the organic acids examined, lactic acid had the greatest enhancing effect. The formation of an ion-pair between indapamide and organic acids may be responsible for the enhanced skin permeation of indapamide. Although the exact reason remains unknown, it is worth carrying out further investigations.

  16. Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids

    USGS Publications Warehouse

    Scott, D.T.; Runkel, R.L.; McKnight, Diane M.; Voelker, B.M.; Kimball, B.A.; Carraway, E.R.

    2003-01-01

    An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.

  17. Organic matter in sediments of an acidic mining lake as assessed by lipid analysis. Part I: fatty acids.

    PubMed

    Poerschmann, Juergen; Koschorreck, Matthias; Górecki, Tadeusz

    2012-01-01

    Fatty acid (FA) patterns of sediments collected from the bottom of an acidic mine pit lake (AML) at different depths (surface sediment: 0 to 1cm; deep sediment: 4 to 5 cm) were studied to characterize microbial communities and the sources of sedimentary organic matter (SOM). Studies were performed on the molecular level utilizing source-specific, diagnostic FA biomarkers. The biomarker-based approach has been used widely in marine sediment studies, but has not been applied for sediments from AMLs so far. Combined FA concentrations in the surface sediment were higher compared to those in the deep sediment (497 vs. 127 μg g(-1)d.w., respectively). This was related to deposition of autochthonous biomass and higher terrestrial plants onto the surface sediment, as well as--to lesser extent--with higher bacterial activity on the sediment-water interface. The FA distribution in both sediments was characterized by a strong even-over-odd preference and was bimodal in nature: there was a cluster at nC(14)-nC(18) characteristic of chiefly autochthonous (algal and bacterial) SOM production, and another cluster at nC(22-28) related to input from higher plants. The FA distribution in the surface sediment pointed to higher terrestrial input compared to autochthonous contribution to SOM (67%:33%) as an estimate. Fingerprinting of viable bacteria was accomplished through signature FA markers including branched C(15) and C(17) surrogates, cyclopropanoic acids, 3-hydroxy (OH) acids and monounsaturated surrogates with unusual double bond localization. The abundance of Gram-negative bacteria was higher in the surface sediment as evidenced by total diagnostic 3-OH-fatty acids (37 μg g(-1) versus 25 μg g(-1)). Potential source taxa in both sediment layers included acidophilic iron- and sulfur-oxidizing bacteria including Acidithiobacillus ferrooxidans. High abundances of terminally branched C(15) and C(17) surrogates in both sediments pointed to sulfate- and iron-reducing bacteria

  18. Aspartic acid

    MedlinePlus

    ... Hormone production and release Normal nervous system function Plant sources of aspartic acid include: Legumes such as soybeans, garbanzo beans, and lentils Peanuts, almonds, walnuts, and flaxseeds Animal ...

  19. [Effects of simulated acid rain on decomposition of soil organic carbon and crop straw].

    PubMed

    Zhu, Xue-Zhu; Huang, Yao; Yang, Xin-Zhong

    2009-02-01

    To evaluate the effects of acid rain on the organic carbon decomposition in different acidity soils, a 40-day incubation test was conducted with the paddy soils of pH 5.48, 6.70 and 8.18. The soils were amended with 0 and 15 g x kg(-1) of rice straw, adjusted to the moisture content of 400 g x kg(-1) air-dried soil by using simulated rain of pH 6.0, 4.5, and 3.0, and incubated at 20 degrees C. The results showed that straw, acid rain, and soil co-affected the CO2 emission from soil system. The amendment of straw increased the soil CO2 emission rate significantly. Acid rain had no significant effects on soil organic carbon decomposition, but significantly affected the straw decomposition in soil. When treated with pH 3.0 acid rain, the amount of decomposed straw over 40-day incubation in acid (pH 5.48) and alkaline (pH 8.18) soils was 8% higher, while that in neutral soil (pH 6.70) was 15% lower, compared to the treatment of pH 6.0 rain. In the treatment of pH 3.0 acid rain, the decomposition rate of soil organic C in acid (pH 5.48) soil was 43% and 50% (P < 0.05) higher than that in neutral (pH 6.70) and alkaline (pH 8.18) soils, while the decomposition rate of straw in neutral soil was 17% and 16% (P < 0.05) lower than that in acid and alkaline soils, respectively.

  20. [Effects of simulated acid rain on decomposition of soil organic carbon and crop straw].

    PubMed

    Zhu, Xue-Zhu; Huang, Yao; Yang, Xin-Zhong

    2009-02-01

    To evaluate the effects of acid rain on the organic carbon decomposition in different acidity soils, a 40-day incubation test was conducted with the paddy soils of pH 5.48, 6.70 and 8.18. The soils were amended with 0 and 15 g x kg(-1) of rice straw, adjusted to the moisture content of 400 g x kg(-1) air-dried soil by using simulated rain of pH 6.0, 4.5, and 3.0, and incubated at 20 degrees C. The results showed that straw, acid rain, and soil co-affected the CO2 emission from soil system. The amendment of straw increased the soil CO2 emission rate significantly. Acid rain had no significant effects on soil organic carbon decomposition, but significantly affected the straw decomposition in soil. When treated with pH 3.0 acid rain, the amount of decomposed straw over 40-day incubation in acid (pH 5.48) and alkaline (pH 8.18) soils was 8% higher, while that in neutral soil (pH 6.70) was 15% lower, compared to the treatment of pH 6.0 rain. In the treatment of pH 3.0 acid rain, the decomposition rate of soil organic C in acid (pH 5.48) soil was 43% and 50% (P < 0.05) higher than that in neutral (pH 6.70) and alkaline (pH 8.18) soils, while the decomposition rate of straw in neutral soil was 17% and 16% (P < 0.05) lower than that in acid and alkaline soils, respectively. PMID:19459394

  1. Organic acids induce tolerance to zinc- and copper-exposed fungi under various growth conditions.

    PubMed

    Sazanova, Katerina; Osmolovskaya, Natalia; Schiparev, Sergey; Yakkonen, Kirill; Kuchaeva, Ludmila; Vlasov, Dmitry

    2015-04-01

    Heavy metals, Zn and Cu, in high concentration (2 mM for Zn and 0.5 mM for Cu) have some inhibiting effect on the growth of Aspergillus niger and Penicillium citrinum. Toxic effects of these metals considerably depend on cultivation conditions including nitrogen sources, pH of nutrient media, and its consistency (presence or absence of agar). In general, nitrate media provides less inhibiting effect on fungal growth under heavy metal exposure than ammonium-containing media. Adding of Zn in nitrate media induces oxalic acid production by fungi. Importance of oxalic acid production in detoxification of heavy metals is confirmed by the formation of Zn-containing crystals in fungal cultures. Cu bringing to the cultural media had no stimulating effect on oxalic acid production as well as no copper-containing crystals were observed. But proceeding from essential increase in oxalic acid production during a long-term fungi adaptation to Cu, it may be proposed that oxalic acid plays some functional role in Cu tolerance of fungi as well. It may be concluded that the role of organic acids and oxalate, in particular, in fungi tolerance and adaptation to heavy metals can be determined by the nature of the metal and its ability to form stable complexes with an acid anion. Stimulating effect of metals on acid production is not universal for all species of fungi and largely depends on metal concentration, nitrogen form in a medium, and other cultivation conditions.

  2. Sulfation of metal-organic framework: Opportunities for acid catalysis and proton conductivity

    SciTech Connect

    Goesten, M.G.; Stavitski, E.; Juan-Alcaniz, J.; Ramos-Fernandez, E.V.; Sai Sankar Gupta, K.B.; van Bekkum, H.; Gascon, J. and Kapteijn, F.

    2011-05-24

    A new post-functionalization method for metal-organic frameworks (MOFs) has been developed to introduce acidity for catalysis. Upon treatment with a mixture of triflic anhydride and sulfuric acid, chemically stable MOF structures MIL-101(Cr) and MIL-53(Al) can be sulfated, resulting in a Broensted sulfoxy acid group attached to up to 50% of the aromatic terephthalate linkers of the structure. The sulfated samples have been extensively characterized by solid-state NMR, XANES, and FTIR spectroscopy. The functionalized acidic frameworks show catalytic activity similar to that of acidic polymers like Nafion{reg_sign} display in the esterification of n-butanol with acetic acid (TOF {approx} 1 min{sup -1} {at} 343 K). Water adsorbs strongly up to 4 molecules per sulfoxy acid group, and an additional 2 molecules are taken up at lower temperatures in the 1-D pore channels of S-MIL-53(Al). The high water content and Broensted acidity provide the structure S-MIL-53(Al) a high proton conductivity up to moderate temperatures.

  3. Microbial production of organic acids in aquitard sediments and its role in aquifer geochemistry

    USGS Publications Warehouse

    McMahon, P.B.; Chapelle, F.H.

    1991-01-01

    MICROBIAL activity in aquifers plays an important part in the chemical evolution of ground water1-5. The most important terminal electron-accepting microbial processes in deeply buried anaerobic aquifers are iron reduction, sulphate reduction and methanogenesis5-8, each of which requires simple organic compounds or hydrogen (H2) as electron donors. Until now, the source of these compounds was unknown because the concentrations of dissolved organic carbon and sedimentary organic carbon in aquifers are extremely low9-11. Here we show that rates of microbial fermentation exceed rates of respiration in organic-rich aquitards (low-permeability sediments stratigraphically adjacent to higher-permeability aquifer sediments), resulting in a net accumulation of simple organic acids in pore waters. In aquifers, however, respiration outpaces fermentation, resulting in a net consumption of organic acids. The concentration gradient that develops in response to these two processes drives a net diffusive flux of organic acids from aquitards to aquifers. Diffusion calculations demonstrate that rates of organic acid transport are sufficient to account for observed rates of microbial respiration in aquifers. This overall process effectively links the large pool of sedimentary organic carbon in aquitards to microbial respiration in aquifers, and is a principal mechanism driving groundwater chemistry changes in aquifers.

  4. The Production of Amino Acids in Interstellar Ices: Implications for Meteoritic Organics

    NASA Technical Reports Server (NTRS)

    Sandford, A.; Bernstein, M. P.; Dworkin, J. P.; Cooper, G. W.; Allamandola, L. J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Indigenous amino acids have been detected in a number of meteorites, over 70 in the Murchison meteorite alone. It has been generally accepted that the amino acids in meteorites formed in liquid water on an asteroid or comet parent-body. However, the water in the Murchison meteorite, for example, was depleted of deuterium, making the distribution of deuterium in organic acids in Murchison difficult to explain. Similarly, occasional but consistent meteoritic biases for non-terrestrial L amino acids cannot be reasonably rationalized by liquid water parent-body reactions. We will present the results of a laboratory demonstration showing that the amino acids glycine, alanine, and serine should result from the UV (ultraviolet) photolysis of interstellar ice grains. This suggests that some meteoritic amino acids may be the result of interstellar ice photochemistry, rather than having formed by reactions in liquid water. We will describe some of the potential implications of these findings for the organic materials found in primitive meteorites, in particular how interstellar ice synthesis might more easily accommodate the presence and distribution of deuterium, and the meteoritic bias for L amino acids.

  5. Adsorption behavior of antimony(III) oxyanions on magnetite surface in aqueous organic acid environment

    NASA Astrophysics Data System (ADS)

    Mittal, Vinit K.; Bera, Santanu; Narasimhan, S. V.; Velmurugan, S.

    2013-02-01

    Antimony(III) adsorption is observed on magnetite (Fe3O4) surface under acidic and reducing condition through surface hydroxyl (SOH) groups bonding on Fe3O4 surface. Desorption of adsorbed Sb(III) is observed from Fe3O4 surface along with iron release in organic acid at 85 °C after 5 h of experiment. Tartaric acid (TA) shows minimum Sb(III) adsorption on Fe3O4 among the organic acid studied. The reason is TA having two sets of adjacent functional groups viz. Odbnd Csbnd OH and Csbnd OH which are responsible for the formation of five-membered bidendate chelate with Sb(III). Other oxyanions, cations or complexing agents along with TA influences the Sb(III) adsorption on Fe3O4. The surface of magnetite is modified by the addition of fatty acids viz. Lauric acid, benzoic acid to bind the Ssbnd OH groups present on the surface. This results in delaying the process of adsorption without changing the quantity of saturation adsorption of Sb(III) on Fe3O4 surface.

  6. Comparative Inter-Species Pharmacokinetics of Phenoxyacetic Acid Herbicides and Related Organic Acids. Evidence that the Dog is Not a Relevant Species for Evaluation of Human Health Risk.

    SciTech Connect

    Timchalk, Chuck

    2004-07-15

    Phenoxyacetic acids including 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA) are widely utilized organic acid herbicides that have undergone extensive toxicity and pharmacokinetic analyses. The dog is particularly susceptible to the toxicity of phenoxyacetic acids and related organic acids relative to other species. Active renal clearance mechanisms for organic acids are ubiquitous in mammalian species, and thus a likely mechanism responsible for the increased sensitivity of the dog to these agents is linked to a lower capacity to secrete organic acids from the kidney. Using published data describing the pharmacokinetics of phenoxyacetic and structurally related organic acids in a variety of species including humans, inter-species comparative pharmacokinetics were evaluated using allometic parameter scaling. For both 2,4-D and MCPA the dog plasma half-life (t1/2) and renal clearance (Clr; ml hr-1) rates did not scale as a function of body weight across species; whereas for all other species evaluated, including humans, these pharmacokinetic parameters reasonably scaled. This exceptional response in the dog is clearly illustrated by comparing the plasma t1/2 at comparable doses of 2,4-D and MCPA, across several species. At a dosage of 5 mg/kg, in dogs the plasma t1/2 for 2,4-D and MCPA were {approx}92 - 106 hr and 63 hr, respectively, which is substantially longer than in the rat ({approx}1 and 6 hr, respectively) or in humans (12 and 11 hr, respectively). This longer t1/2, and slower elimination in the dog, results in substantially higher body burdens of these organic acids, at comparable doses, relative to other species. Although these results indicate the important role of renal transport clearance mechanisms as determinants of the clearance and potential toxicity outcomes of phenoxyacetic acid herbicides across several species, other contributing mechanisms such as reabsorption from the renal tubules is highly likely. These

  7. Screening of organic halogens and identification of chlorinated benzoic acids in carbonaceous meteorites.

    PubMed

    Schöler, Heinz F; Nkusi, Gerard; Niedan, Volker W; Müller, German; Spitthoff, Bianca

    2005-09-01

    The occurrence of halogenated organic compounds measured as a sum parameter and the evidence of chlorinated benzoic acids in four carbonaceous meteorites (Cold Bokkeveld, Murray, Murchison and Orgueil) from four independent fall events is reported. After AOX (Adsorbable organic halogen) and EOX (Extractable organic halogen) screening to quantify organically bound halogens, chlorinated organic compounds were analyzed by gas chromatography. AOX concentrations varying from 124 to 209 microg Cl/g d.w. were observed in carbonaceous meteorites. Ion chromatographic analysis of the distribution of organically bound halogens performed on the Cold Bokkeveld meteorite revealed that chlorinated and brominated organic compounds were extractable, up to 70%, whereas only trace amounts of organofluorines could be extracted. Chlorinated benzoic acids have been identified in carbonaceous meteorite extracts. Their presence and concentrations raise the question concerning the origin of halogenated, especially chlorinated, organic compounds in primitive planetary matter.

  8. AB115. Plasma amino acid and urine organic acid profiles of Filipino patients with maple syrup urine disease (MSUD) and correlation with their neurologic features

    PubMed Central

    Chiong, Mary Anne D.; Cordero, Cynthia P.; Fodra, Esphie Grace D; Manliguis, Judy S.; Lopez, Cristine P.; Dalmacio, Leslie Michelle M.

    2015-01-01

    Background and objective Maple syrup urine disease (MSUD) is the most common inborn error of metabolism in the country. The main cause of the neuropathology is still not well established although the accumulation of branched chain amino acids (BCAA) and alteration in large neutral amino acids (LNAA) as well as energy deprivation have been suggested. It is the aim of the study to determine the plasma amino acid and urine organic acid profiles of Filipino patients with MSUD and correlate the findings with their neurologic features. Methods Twenty six Filipino patients confirmed to have MSUD were studied in terms of their plasma amino acid and urine organic acid profiles. Their results were compared with 26 age and sex matched controls. Their neurologic features were reviewed and correlated with the results of their plasma amino acid and urine organic acid profiles. Results Majority of the patients with MSUD had developmental delay/intellectual disability (88%), speech delay (69%) and seizures (65%). The amino acid profile of MSUD patients revealed low glutamine and alanine with high levels of leucine, isoleucine, phenylalanine, threonine and alloisoleucine compared to controls (P<0.05). The urine organic acids showed significantly elevated excretion of the branched chain ketoacids and succinate (P<0.05), however other Krebs cycle metabolites that would indicate possible energy perturbation were not found in significant amounts. There were also no metabolite markers in the plasma amino acids or urine organic acids that correlated significantly with the neurologic features. The most remarkable finding in this study was the discriminant analysis done on 7 clinically and statistically significant important amino acids in the plasma wherein elevations in leucine, isoleucine, alloisoleucine, phenylalanine and threonine, and decreased levels of glutamine and alanine clearly defined the boundary between an MSUD case and control. Conclusions The findings suggest that there

  9. Effect of 1-naphthaleneacetic acid on organic acid exudation by the roots of white lupin plants grown under phosphorus-deficient conditions.

    PubMed

    Gómez, Diego A; Carpena, Ramón O

    2014-09-15

    The effect of NAA (1-naphthaleneacetic acid) on organic acid exudation in white lupin plants grown under phosphorus deficiency was investigated. Plants were sampled periodically for collecting of organic acids (citrate, malate, succinate), and also were used to study the effect on proton extrusion and release of Na(+), K(+), Ca(2+) and Mg(2+). The tissues were later processed to quantify the organic acids in tissues, the phosphorus content and the effects on plant biomass. The exogenous addition of NAA led to an increase in organic acid exudation, but this response was not proportional to the concentration of the dose applied, noticing the largest increments with NAA 10(-8)M. In contrast the increase in root weight was proportional to the dose applied, which shows that with higher doses the roots produced are not of proteoid type. Proton extrusion and the release of cations were related to the NAA dose, the first was proportional to the dose applied and the second inversely proportional. Regarding the analysis of tissues, the results of citrate and phosphorus content in shoots show that the overall status of these parts are the main responsible of the organic acids exuded. NAA served as an enhancer of the organic acid exudation that occurs under phosphorus deficient conditions, with a response that depends on the dose applied, not only in its magnitude, but also in the mechanism of action of the plant hormone. PMID:25046756

  10. Effect of 1-naphthaleneacetic acid on organic acid exudation by the roots of white lupin plants grown under phosphorus-deficient conditions.

    PubMed

    Gómez, Diego A; Carpena, Ramón O

    2014-09-15

    The effect of NAA (1-naphthaleneacetic acid) on organic acid exudation in white lupin plants grown under phosphorus deficiency was investigated. Plants were sampled periodically for collecting of organic acids (citrate, malate, succinate), and also were used to study the effect on proton extrusion and release of Na(+), K(+), Ca(2+) and Mg(2+). The tissues were later processed to quantify the organic acids in tissues, the phosphorus content and the effects on plant biomass. The exogenous addition of NAA led to an increase in organic acid exudation, but this response was not proportional to the concentration of the dose applied, noticing the largest increments with NAA 10(-8)M. In contrast the increase in root weight was proportional to the dose applied, which shows that with higher doses the roots produced are not of proteoid type. Proton extrusion and the release of cations were related to the NAA dose, the first was proportional to the dose applied and the second inversely proportional. Regarding the analysis of tissues, the results of citrate and phosphorus content in shoots show that the overall status of these parts are the main responsible of the organic acids exuded. NAA served as an enhancer of the organic acid exudation that occurs under phosphorus deficient conditions, with a response that depends on the dose applied, not only in its magnitude, but also in the mechanism of action of the plant hormone.

  11. The Synthesis and Isolation of N-Tert-Butyl-2-Phenylsuccinamic Acid and N-Tert-Butyl-3-Phenylsuccinamic Acid: An Undergraduate Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Cesare, Victor; Sadarangani, Ishwar; Rollins, Janet; Costello, Dennis

    2004-01-01

    The facile, high yielding synthesis of phenylsuccinamic acids is described and one of these syntheses, the reaction of phenylsuccinic anhydride with tert-butylamine, is successfully modified and adapted for use in the second-semester organic chemistry laboratory at St. John's University. Succinamic acids are compounds that contain both the amide…

  12. [Determination of organic acids in cane vinasse by micellar electrokinetic capillary chromatography with indirect ultraviolet detection].

    PubMed

    Xu, Yuanjin; Xu, Guiping; Wei, Yuanan

    2006-01-01

    Micellar electrokinetic capillary chromatography (MECC) with indirect ultraviolet (UV) detection method for the separation and determination of several organic acids in cane vinasse, including malonic, formic, tartaric, malic, succinic, glutaric, acetic, lactic and glutamic acids, were developed. Electrophoretic conditions were as follows: uncoated fused silica capillary (56 cm/ 64 cm (effective/total length), 50 microm i. d. ), 7.5 mmol/L potassium acid phthalate-1. 5 mmol/L cetyltrimethyl-ammonium bromide (CTAB) at pH = 6.50 as buffer solution, applied voltage -25 kV, temperature 25 degrees C, detection wavelength 300 nm, reference wavelength 210 nm. Good linearities were obtained for nine organic acids, and the detection limits were 0.5 mg/L, 0.3 mg/L, 1.5 mg/L, 1.5 mg/L, 0.3 mg/L, 0.3 mg/L, 0.4 mg/L, 0.4 mg/L, 0.4 mg/L for malonic, formic, tartaric, malic, succinic, glutaric, acetic, lactic and glutamic acid, respectively. The relative standard deviations (RSDs) for migration times and peak areas of nine organic acids within a day were 0.4% - 0.6% and 2.3% - 4.8%, respectively. The corresponding data for five days were 0.5% -0.7% and 3.3% - 5.2%. The recoveries of acid standards were above 93%. The method can be applied to determine the organic acids in cane vinasse with satisfactory results. PMID:16827307

  13. Chromatographic profile of high boiling point organic acids in human urine.

    PubMed

    Brown, G K; Stokke, O; Jellum, E

    1978-03-01

    The profile of high boiling point organic acids in urine samples from both normal subjects and patients suspected of having some form of metabolic disorder has been determined by combined gas chromatography-mass spectrometry. Fifteen different compounds eluting after hippuric acid have been identified, including two, cinnamoylglycine and acetyltributylcitrate, which have not been recognised previously. Relative retention times and abbreviated mass spectra of the identified compounds are presented.

  14. Effects of organic acids on cadmium and copper sorption and desorption by two calcareous soils.

    PubMed

    Najafi, Sarvenaz; Jalali, Mohsen

    2015-09-01

    Low molecular weight organic acids (LMWOAs) present in soil alter equilibrium pH of soil, and consequently, affect heavy metal sorption and desorption on soil constitutes. This study was conducted to investigate the effects of different concentrations (0.1, 1, 2.5, 5, 10, 30, 40, 50, 70, and 100 mM) of citric, malic, and oxalic acids on sorption and desorption of cadmium (Cd) and copper (Cu) in two calcareous soils. Increasing the concentrations of three LMWOAs decreased the equilibrium pH of soil solutions. The results indicated that increase in organic acids concentrations generally reduced Cd and Cu sorption in soils. Increase concentrations of LMWOAs generally promoted Cd and Cu desorption from soils. A valley-like curve was observed for desorption of Cu after the citric acid concentration increment in soil 2. Increasing the concentrations of three LMWOAs caused a marked decrease in Kd(sorp) values of Cd and Cu in soils. In general, citric acid was the most effective organic acid in reducing sorption and increasing desorption of both metals, and oxalic acid had the minimal impact. The results indicated that LMWOAs had a greater impact on Cu sorption and desorption than Cd, which can be attributed to higher stability constants of organic acids complexes with Cu compared to Cd. It can be concluded that by selecting suitable type and concentration of LMWOAs, mobility, and hence, bioavailability of heavy metals can be changed. So, environmental implications concerning heavy metals mobility might be derived from these findings. PMID:26298186

  15. The secretion of organic acids is also regulated by factors other than aluminum.

    PubMed

    Ding, Haiyan; Wen, Danni; Fu, Zhengwei; Qian, Haifeng

    2014-02-01

    As a result of natural processes and human activities, aluminum (Al) toxicity is recognized as a major limiting factor for plant productivity, and the secretion of organic acids facilitated by channel proteins is one of the most important Al resistance mechanisms in plants. The objective of this study was to evaluate the effects of several types of stress, including herbicide (imazethapyr (IM) and diclofop-methyl (DM)), heavy metal (Al and Cu), salt stress (NaCl), and proton stress (HCl), on the release of organic acids in rice. The results showed that 0.05 mg/L IM, 0.1 mg/L DM, 4680 mg/L NaCl, 0.5 mg/L CuSO4, and 18 mg/L AlCl3 significantly inhibited rice root elongation and the root fresh weight. In contrast, no significant inhibitory effects on rice growth were found with HCl (pH = 4.5). Similar to the effect of AlCl3 on organic acid induction, treatment with IM, DM, NaCl, and CuSO4 also induced the synthesis of endogenous citric acid and oxalic acid but decreased endogenous malic acid synthesis in the seedlings, though only citric acid was released into the environment after these treatments. We also analyzed the transcripts of three citrate channel proteins and found they were up-regulated by NaCl, CuSO4, and AlCl3 but not by IM or DM. This study clarified that organic acid secretion in plants might be a common phenomenon when plants are exposed to environmental stress other than Al toxicity.

  16. Effects of acid-washing filter treatment on quantification of aerosol organic compounds

    NASA Astrophysics Data System (ADS)

    Yang, Liming; Lim, Jaehyun; Yu, Liya E.

    The tests of standard mixtures and four sets of atmospheric particulate samples showed that an acid-wash (AW) pretreatment of fluorocarbon-coated glass fiber filters prior to aerosol sampling enhanced the quantifiable organic compounds for more than 29% (or 66 ng m -3); in particular, 47-273 ng m -3 (21-366%) more water-soluble organic compounds (WSOCs) were measured. When the acid-pretreated filters were employed, up to nine more organic species were measured in the individual daily samples. Because the acid pretreatment reduced the metal contaminants in the glass fiber filters, using the AW filters for aerosol sampling allows higher extraction recoveries of organic compounds. Since the fingerprinting compounds were more accurately determined when the aerosol samples were collected on the AW filters, better assessment of emission sources and toxicity of air pollutants can be obtained.

  17. [Low-molecular-weight organic acids in precipitation in Zunyi City, Guizhou province].

    PubMed

    Jiang, Wei; Lee, Xin-qing; Zeng, Yong; Huang, Rong-sheng; Tan, Ling; Xu, Gang; Wang, Bing

    2008-09-01

    Formic (HCOOH) and acetic (CH3COOH) acids are ubiquitous in troposphere. Studies on the low-molecular carboxylic acids help shed light on the biogeochemical cycles of carbon, hydrogen and oxygen, as well as on the formation of acid precipitation. As a city with severe acid precipitation, the city Zunyi in north Guizhou province, provide a typical background for gaining insight into the organic geochemistry in the heavily polluted atmospheric environment. We collected the precipitation in the downtown city for a whole year on the event basis, and measured inorganic and organic anions with ion chromatograph and cations with atomic absorption spectroscopy. The data demonstrate an annual average pH of 4.11, a clear indication of the acid atmosphere. The volume-weighted mean concentrations of [HCOO-]T and [CH3COO-]T were 9.29 micromol x L(-1) (ranged from 0.15 micromol x L(-1) to 46.14 micromol x L(-1)) and 6.47 micromol x L(-1) (ranged from 0.02 micromol x L(-1) to 19.11 micromol x L(-1)) respectively, accounting for 4.10% of the total anions. With a coefficient of 0.86, formic is significantly correlated with acetic acid, suggesting that both acids share common sources. The acids often decrease with time in a precipitation event, with occasional increases in the middle and last stages, indicating that the organic acids are primarily scavenged from blow cloud, with limited amount from the long distance transportation. The close range provenance of organic acids is facilitated by the local environmental condition, which is characterized by the mountain-enclosed valley with high humidity, low wind speed, and high atmospheric dust content. Based on the Henry's Law, we proposed the ratio of formic and acetic acids in the precipitation (F/A)aq as the indicator of the sources, and thus found that the anthropogenic sources are responsible for the organic compounds in the Spring and Winter, while vegetation emissions claim the sources in the Summer and Autumn.

  18. Microbiologically produced carboxylic acids used as building blocks in organic synthesis.

    PubMed

    Aurich, Andreas; Specht, Robert; Müller, Roland A; Stottmeister, Ulrich; Yovkova, Venelina; Otto, Christina; Holz, Martina; Barth, Gerold; Heretsch, Philipp; Thomas, Franziska A; Sicker, Dieter; Giannis, Athanassios

    2012-01-01

    Oxo- and hydroxy-carboxylic acids are of special interest in organic synthesis. However, their introduction by chemical reactions tends to be troublesome especially with regard to stereoselectivity. We describe herein the biotechnological preparation of selected oxo- and hydroxycarboxylic acids under "green" conditions and their use as promising new building blocks. Thereby, our biotechnological goal was the development of process fundamentals regarding the variable use of renewable raw materials, the development of a multi purpose bioreactor and application of a pilot plant with standard equipment for organic acid production to minimize the technological effort. Furthermore the development of new product isolation procedures, with the aim of direct product recovery, capture of products or single step operation, was necessary. The application of robust and approved microorganisms, also genetically modified, capable of using a wide range of substrates as well as producing a large spectrum of products, was of special importance. Microbiologically produced acids, like 2-oxo-glutaric acid and 2-oxo-D-gluconic acid, are useful educts for the chemical synthesis of hydrophilic triazines, spiro-connected heterocycles, benzotriazines, and pyranoic amino acids. The chiral intermediate of the tricarboxylic acid cycle, (2R,3S)-isocitric acid, is another promising compound. For the first time our process provides large quantities of enantiopure trimethyl (2R,3S)-isocitrate which was used in subsequent chemical transformations to provide new chiral entities for further usage in total synthesis and pharmaceutical research.Oxo- and hydroxy-carboxylic acids are of special interest in organic synthesis. However, their introduction by chemical reactions tends to be troublesome especially with regard to stereoselectivity. We describe herein the biotechnological preparation of selected oxo- and hydroxycarboxylic acids under "green" conditions and their use as promising new building

  19. High concentrations of furan fatty acids in organic butter samples from the German market.

    PubMed

    Wendlinger, Christine; Vetter, Walter

    2014-08-27

    Furan fatty acids (F-acids) are valuable antioxidants containing a furan moiety in the central part of the molecule. They occur in the lipids of different foodstuffs and plants, with grass being the main source for their presence in milk fat and butter. Because cows from organic farming receive higher portions of grass-based feed, it was tested whether organic butter samples (n = 26) contain more F-acids than conventional ones (n = 25) in Germany. For this purpose, samples were melted, and the lipid phase was separated and transesterified into methyl esters, which were enriched using silver ion chromatography and analyzed by GC-EI/MS in the selected ion monitoring (SIM) mode. Levels of F-acids in butter were higher in summer than in winter, and in both seasons, organic samples contained significantly higher levels of F-acids than conventional ones (one-way ANOVA: p < 0.001). Furthermore, the daily intake of F-acids via milk fat and other foodstuffs was calculated.

  20. Dissolved organic carbon for upland acidic and acid sensitive catchments in mid-Wales

    NASA Astrophysics Data System (ADS)

    Neal, Colin; Robson, Alice J.; Neal, Margaret; Reynolds, Brian

    2005-03-01

    The distribution of dissolved organic carbon (DOC) in rainfall, cloud water, spruce throughfall and stemflow, stream runoff and groundwater is described for the Plynlimon catchments in mid-Wales for up to 20 years of record. Rainfall concentrations average at 0.69 mg-C l -1 while equivalent values in cloud water are over three times higher. Spruce throughfall and stemflow averages are over an order of magnitude higher than rainfall. DOC averages are around 1.5 mg-C l -1 for most streams draining moorland and forested areas but much higher values occur for streams draining from organic-rich gley soils in the forest. Groundwater concentrations typically average about 0.5 mg-C l -1. For forested sites where felling has taken place, this has typically resulted in little change for either the streams or the groundwater, but larger changes can occur for a small stream drainage area with gley soils. For rainfall, DOC concentrations increased from 1983 to 1993 and then declined thereafter to 2003. For the streams draining forest there has been a fairly uniform rise in DOC concentrations over time throughout the period of typically about 0.055 mg-C l -1 year -1. However, when the influence of season, air temperature and flow was filtered out of the 'raw' time series, there appeared a residual trend for 1983-1993 and a moderate levelling off from 1983 onwards the streams draining forest. One moorland stream showed a lower gradient barely significant from zero, but this may be partially because data was only available from 1990. The variation in gradient across the sites for the full monitoring period of each of the streams was 0.019-0.146 mg-C l -1 year -1 for the raw and 0-0.113 mg-C l -1 year -1 for the residual time series.

  1. Acid-Base Learning Outcomes for Students in an Introductory Organic Chemistry Course

    ERIC Educational Resources Information Center

    Stoyanovich, Carlee; Gandhi, Aneri; Flynn, Alison B.

    2015-01-01

    An outcome-based approach to teaching and learning focuses on what the student demonstrably knows and can do after instruction, rather than on what the instructor teaches. This outcome-focused approach can then guide the alignment of teaching strategies, learning activities, and assessment. In organic chemistry, mastery of organic acid-base…

  2. 40 CFR 747.115 - Mixed mono and diamides of an organic acid.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for product containing P-84-529) has been regulated by the Environmental Protection Agency, at 40 CFR... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed mono and diamides of an organic... Substances § 747.115 Mixed mono and diamides of an organic acid. This section identifies activities...

  3. 40 CFR 747.115 - Mixed mono and diamides of an organic acid.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for product containing P-84-529) has been regulated by the Environmental Protection Agency, at 40 CFR... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed mono and diamides of an organic... Substances § 747.115 Mixed mono and diamides of an organic acid. This section identifies activities...

  4. 40 CFR 747.115 - Mixed mono and diamides of an organic acid.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for product containing P-84-529) has been regulated by the Environmental Protection Agency, at 40 CFR... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed mono and diamides of an organic... Substances § 747.115 Mixed mono and diamides of an organic acid. This section identifies activities...

  5. Statistical Thermodynamic Model for Surface Tension of Aqueous Organic Acids with Consideration of Partial Dissociation.

    PubMed

    Boyer, Hallie C; Dutcher, Cari S

    2016-06-30

    With statistical mechanics, an isotherm-based surface tension model for single solute aqueous solutions was derived previously (Wexler et al. J. Phys. Chem. Lett. 2013) for the entire concentration range, from infinite dilution to pure liquid solute, as a function of solute activity. In recent work (Boyer et al. J. Phys. Chem. Lett. 2015), empirical model parameters were reduced through physicochemical interpretations of both electrolyte and organic solutes, enabling surface tension predictions for systems where there is little or no data. The prior binary model is extended in the current work for the first time to treat multicomponent systems to predict surface tensions of partially dissociating organic acids (acetic, butyric, citric, formic, glutaric, maleic, malic, malonic, oxalic, propionic, and succinic acids). These organic acids are especially applicable to the study of atmospheric aqueous aerosols, due to their abundance in the atmosphere. In the model developed here, surface tension depends explicitly on activities of both the neutral organic and deprotonated components of the acid. The relative concentrations of the nondissociated and dissociated mole fractions are found using known dissociation constants. Model parameters strongly depend on molecular size, number of functional groups, O:C ratio, and number of carbons. For all organic acids in this study, fully predictive modeling of surface tensions is demonstrated.

  6. The dissolution of quartz in dilute aqueous solutions of organic acids at 25 degree C

    SciTech Connect

    Bennett, P.C.; Melcer, M.E.; Siegel, D.I.; Hassett, J.P. )

    1988-06-01

    The dissolution of quartz in dilute aqueous solutions of organic acids at 25{degree}C and standard pressure was investigated by the batch dissolution method. The bulk dissolution rate of quartz in 20 mmole/Kg citrate solutions at pH 7 was 8 to 10 times faster than that in pure water. After 1750 hours the concentration of dissolved silica in the citrate solution was 167 {mu}mole/Kg compared to 50 {mu}mole/Kg in water and a 20 mmole/Kg solution of acetate at pH 7. Solutions of salicylic, oxalic, and humic acids also accelerated the dissolution of quartz in aqueous solution at pH 7. The rate of dissolution in organic acids decreased sharply with decreasing pH. The possibility of a silica-organic acid complex was investigated using UV-difference spectroscopy. Results suggest that dissolved silica is complexed by citrate, oxalate and pyruvate at pH 7 by an electron-donor acceptor complex, whereas no complexation occurs between silica and acetate, lactate, malonate, or succinate. Three models are proposed for the solution and surface complexation of silica by organic acid which result in the accelerated dissolution and increased solubility of quartz in organic rich water.

  7. The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C

    NASA Astrophysics Data System (ADS)

    Bennett, P. C.; Melcer, M. E.; Siegel, D. I.; Hassett, J. P.

    1988-06-01

    The dissolution of quartz in dilute aqueous solutions of organic acids at 25° and standard pressure was investigated by the batch dissolution method. The bulk dissolution rate of quartz in 20 mmole/Kg citrate solutions at pH 7 was 8 to 10 times faster than that in pure water. After 1750 hours the concentration of dissolved silica in the citrate solution was 167 μmole/Kg compared to 50 μmole/Kg in water and a 20 mmole/Kg solution of acetate at pH 7. Solutions of salicylic, oxalic, and humic acids also accelerated the dissolution of quartz in aqueous solution at pH 7. The rate of dissolution in organic acids decreased sharply with decreasing pH. The possibility of a silica-organic acid complex was investigated using UV-difference spectroscopy. Results suggest that dissolved silica is complexed by citrate, oxalate and pyruvate at pH 7 by an electron-donor acceptor complex, whereas no complexation occurs between silica and acetate, lactate, malonate, or succinate. Three models are proposed for the solution and surface complexation of silica by organic acid anions which result in the accelerated dissolution and increased solubility of quartz in organic rich water.

  8. Statistical Thermodynamic Model for Surface Tension of Aqueous Organic Acids with Consideration of Partial Dissociation.

    PubMed

    Boyer, Hallie C; Dutcher, Cari S

    2016-06-30

    With statistical mechanics, an isotherm-based surface tension model for single solute aqueous solutions was derived previously (Wexler et al. J. Phys. Chem. Lett. 2013) for the entire concentration range, from infinite dilution to pure liquid solute, as a function of solute activity. In recent work (Boyer et al. J. Phys. Chem. Lett. 2015), empirical model parameters were reduced through physicochemical interpretations of both electrolyte and organic solutes, enabling surface tension predictions for systems where there is little or no data. The prior binary model is extended in the current work for the first time to treat multicomponent systems to predict surface tensions of partially dissociating organic acids (acetic, butyric, citric, formic, glutaric, maleic, malic, malonic, oxalic, propionic, and succinic acids). These organic acids are especially applicable to the study of atmospheric aqueous aerosols, due to their abundance in the atmosphere. In the model developed here, surface tension depends explicitly on activities of both the neutral organic and deprotonated components of the acid. The relative concentrations of the nondissociated and dissociated mole fractions are found using known dissociation constants. Model parameters strongly depend on molecular size, number of functional groups, O:C ratio, and number of carbons. For all organic acids in this study, fully predictive modeling of surface tensions is demonstrated. PMID:27219322

  9. Relationship between cadmium, zinc, Cd-peptide, and organic acid in tobacco suspension cells

    SciTech Connect

    Krotz, R.M.; Evangelou, B.P.; Wagner, G.J. )

    1989-10-01

    Responses of tobacco (Nicotiana tabacum) suspension cells to Cd and Zn were studied in the presence and absence of ligand of Cd-peptide in order to understand the role of this peptide versus other mechanisms in Cd and Zn accumulation and accommodation in plants. With 45 micromolar Cd and 300 micromolar Zn (non-growth-inhibiting levels), metals appeared rapidly within cells, and intracellular Cd and Zn reached medium concentrations after 6 to 10 hours. Cd-peptide was observed in response to Cd after 2 hours, but this form only accounted for {approximately}30% of soluble Cd after 24 hours. Peptide was not observed in cells exposed to 300 micromolar Zn for up to 7 days. Organic acid-to-metal stoichiometry indicated that endogenous organic acid content of cells was more than sufficient to complex absorbed metals and no evidence was found for stimulation of organic acid biosynthesis by Cd or Zn. Metal-complexing potential of organic acids for Cd and Zn versus endogenous cations is discussed as is vacuolar-extravacuolar distribution of metals. The absence of Cd-peptide does not limit Cd-accumulation in the system studied. Results suggest that tobacco suspension cells accommodte the presence of non-growth-inhibiting and growth-inhibiting levels of Cd and Zn by sequestration in the vacuole as complexes with endogenous organic acids and that this may be a principal means for accommodation of Cd as well as Zn in the presence and absence of Cd-peptide.

  10. Usnic acid.

    PubMed

    Ingólfsdóttir, K

    2002-12-01

    Since its first isolation in 1844, usnic acid [2,6-diacetyl-7,9-dihydroxy-8,9b-dimethyl-1,3(2H,9bH)-dibenzo-furandione] has become the most extensively studied lichen metabolite and one of the few that is commercially available. Usnic acid is uniquely found in lichens, and is especially abundant in genera such as Alectoria, Cladonia, Usnea, Lecanora, Ramalina and Evernia. Many lichens and extracts containing usnic acid have been utilized for medicinal, perfumery, cosmetic as well as ecological applications. Usnic acid as a pure substance has been formulated in creams, toothpaste, mouthwash, deodorants and sunscreen products, in some cases as an active principle, in others as a preservative. In addition to antimicrobial activity against human and plant pathogens, usnic acid has been shown to exhibit antiviral, antiprotozoal, antiproliferative, anti-inflammatory and analgesic activity. Ecological effects, such as antigrowth, antiherbivore and anti-insect properties, have also been demonstrated. A difference in biological activity has in some cases been observed between the two enantiomeric forms of usnic acid. Recently health food supplements containing usnic acid have been promoted for use in weight reduction, with little scientific support. The emphasis of the current review is on the chemistry and biological activity of usnic acid and its derivatives in addition to rational and ecologically acceptable methods for provision of this natural compound on a large scale.

  11. Acid rain

    SciTech Connect

    Elsworth, S.

    1985-01-01

    This book was written in a concise and readable style for the lay public. It's purpose was to make the public aware of the damage caused by acid rain and to mobilize public opinion to favor the elimination of the causes of acid rain.

  12. Acid rain

    SciTech Connect

    White, J.C. )

    1988-01-01

    This book presents the proceedings of the third annual conference sponsored by the Acid Rain Information Clearinghouse (ARIC). Topics covered include: Legal aspects of the source-receptor relationship: an energy perspective; Scientific uncertainty, agency inaction, and the courts; and Acid rain: the emerging legal framework.

  13. [Dynamic change of four triterpenic acids contents in different organs of loquat (Eriobotrya japonica) and phenology].

    PubMed

    Li, Ji-yang; Xie, Xiao-mei; Li, Qian-wen; Zhang, Qi; Chen, Sheng-lin; Wang, He-qun; Yu, Wen-xia; Yang, Mo

    2015-03-01

    The loquat is widely cultivated in China, its succulent fruits, leaves and flower are used as a traditional medicine for the treatment of many diseases. The study is aimed to analyse the content of the four triterpene compounds ( ursolic acid, corosolic acid, maslinic acid, oleanolic acid) in different organs, and investigate the dynamic changes in different phenological period. The triterpenic acids content in the samples was measured by HPLC based on the plant phenological observations. The results showed that order of four triterpenic acids content in different organs from high to low was defoliation (23.2 mg x g(-1)) > mature leaves (21.7 mg x g(-1)) > young leaves (17.5 mg x g(-1)) > fruits (7.36 mg x g(-1)) > flowers (6.40 mg x g(-1)). The triterpenic acids were not detected in the seeds. The total amount of the four triterpenic acids in the loquat leaves collected in the different phenological stages of sprout, flower bud, blossom and fruit varied between 17.8 and 26.2 mg x g(-1) (defoliation), 16.5 and 23.5 mg x g(-1) (mature leaves), 14.7 and 21.5 mg x g(-1) (young leaves), respectively. The content increased progressively with the leaf development, maturation and aging. There was a higher level of the dry material and triterpenic acids accumulation in the mature leaves during fruit enlargement. This paper attempts to present the case for medicinal plants of a broad geographical distribution to study on the secondary metabolites and harvesting time.

  14. How Acidic Is Carbonic Acid?

    PubMed

    Pines, Dina; Ditkovich, Julia; Mukra, Tzach; Miller, Yifat; Kiefer, Philip M; Daschakraborty, Snehasis; Hynes, James T; Pines, Ehud

    2016-03-10

    Carbonic, lactic, and pyruvic acids have been generated in aqueous solution by the transient protonation of their corresponding conjugate bases by a tailor-made photoacid, the 6-hydroxy-1-sulfonate pyrene sodium salt molecule. A particular goal is to establish the pK(a) of carbonic acid H2CO3. The on-contact proton transfer (PT) reaction rate from the optically excited photoacid to the carboxylic bases was derived, with unprecedented precision, from time-correlated single-photon-counting measurements of the fluorescence lifetime of the photoacid in the presence of the proton acceptors. The time-dependent diffusion-assisted PT rate was analyzed using the Szabo-Collins-Kimball equation with a radiation boundary condition. The on-contact PT rates were found to follow the acidity order of the carboxylic acids: the stronger was the acid, the slower was the PT reaction to its conjugate base. The pK(a) of carbonic acid was found to be 3.49 ± 0.05 using both the Marcus and Kiefer-Hynes free energy correlations. This establishes H2CO3 as being 0.37 pK(a) units stronger and about 1 pK(a) unit weaker, respectively, than the physiologically important lactic and pyruvic acids. The considerable acid strength of intact carbonic acid indicates that it is an important protonation agent under physiological conditions. PMID:26862781

  15. Rapid simultaneous determination of amines and organic acids in citrus using high-performance liquid chromatography.

    PubMed

    Uckoo, Ram M; Jayaprakasha, Guddadarangavvanahally K; Nelson, Shad D; Patil, Bhimanagouda S

    2011-01-15

    Rapid analytical method for the simultaneous separation and determination of amines and organic acids is a vital interest for quality control of citrus and their products. In the present study, a simultaneous high performance liquid chromatography (HPLC) method for the rapid separation of three amines and two organic acids was developed. Chromatographic separation of compounds was achieved using Xbridge C(18) column at ambient temperature, with an isocratic mobile phase of 3mM phosphoric acid at a flow rate of 1.0 mL min(-1). A photodiode array (PDA) detector was used to monitor the eluent at 223 nm and 254 nm with a total analysis time of 10 min. Extraction of amines and organic acids from citrus juice was optimized. The method was validated by tests of linearity, recovery, precision and ruggedness. The limit of detection (LOD) and limit of quantification (LOQ) for amines and ascorbic acid were determined to be 5 ng and 9.8 ng, respectively. All calibration curves showed good linearity (R(2) ≥ 0.9999) within the test ranges. The recoveries of the amines and organic acids ranged between 84% and 117%. The identity of each peak was confirmed by mass spectral (MS) analysis. The developed method was successfully applied to analyze the content of amines and organic acids in six different species and two varieties of citrus. Results indicate that mandarin and Marrs sweet orange contain high level of amines, while pummelo and Rio Red grapefruit had high content of ascorbic acid (137-251 μg mL(-1)) and citric acid (5-22 mg mL(-1)). Synephrine was the major amine present in Clementine (114 μg mL(-1)) and Marrs sweet orange (85 μg mL(-1)). To the best of our knowledge, this is the first report on simultaneous separation and quantification of amines and organic acids in Marrs sweet orange, Meyer lemon, Nova tangerine, Clementine, Ugli tangelo and Wekiwa tangelo.

  16. Acid rain

    SciTech Connect

    Sweet, W.

    1980-06-20

    Acid precipitation includes not only rain but also acidified snow, hail and frost, as well as sulfur and nitrogen dust. The principal source of acid precipitation is pollution emitted by power plants and smelters. Sulfur and nitrogen compounds contained in the emissions combine with moisture to form droplets with a high acid content - sometimes as acidic as vinegar. When sufficiently concentrated, these acids can kill fish and damage material structures. Under certain circumstances they may reduce crop and forest yields and cause or aggravate respiratory diseases in humans. During the summer, especially, pollutants tend to collect over the Great Lakes in high pressure systems. Since winds typically are westerly and rotate clockwise around high pressure systems, the pollutants gradually are dispersed throughout the eastern part of the continent.

  17. Asparagusic acid.

    PubMed

    Mitchell, Stephen C; Waring, Rosemary H

    2014-01-01

    Asparagusic acid (1,2-dithiolane-4-carboxylic acid) is a simple sulphur-containing 5-membered heterocyclic compound that appears unique to asparagus, though other dithiolane derivatives have been identified in non-food species. This molecule, apparently innocuous toxicologically to man, is the most probable culprit responsible for the curious excretion of odorous urine following asparagus ingestion. The presence of the two adjacent sulphur atoms leads to an enhanced chemical reactivity, endowing it with biological properties including the ability to substitute potentially for α-lipoic acid in α-keto-acid oxidation systems. This brief review collects the scattered data available in the literature concerning asparagusic acid and highlights its properties, intermediary metabolism and exploratory applications.

  18. Acid rain

    SciTech Connect

    Bess, F.D.

    1980-01-01

    The acid rain problem in the northeastern U.S. has been growing in severity and geographical areas affected. Acid rain has damaged, or will result in damage to visibility, physical structures and materials, aquatic life, timber, crops, and soils. The principal causes of acid rain in the northeastern U.S. are sulfur oxide and nitrogen oxide emissions from large power plants and smelters in the Ohio River Valley. Immediate corrective action and appropriate research are needed to reduce acid precipitation. Short-term programs that will define the rate of environmental deterioration, remaining environmental capacity to resist sudden deterioration, mechanisms of acid rain formation, and costs of various control options must be developed. (3 maps, 13 references, 1 table)

  19. Asparagusic acid.

    PubMed

    Mitchell, Stephen C; Waring, Rosemary H

    2014-01-01

    Asparagusic acid (1,2-dithiolane-4-carboxylic acid) is a simple sulphur-containing 5-membered heterocyclic compound that appears unique to asparagus, though other dithiolane derivatives have been identified in non-food species. This molecule, apparently innocuous toxicologically to man, is the most probable culprit responsible for the curious excretion of odorous urine following asparagus ingestion. The presence of the two adjacent sulphur atoms leads to an enhanced chemical reactivity, endowing it with biological properties including the ability to substitute potentially for α-lipoic acid in α-keto-acid oxidation systems. This brief review collects the scattered data available in the literature concerning asparagusic acid and highlights its properties, intermediary metabolism and exploratory applications. PMID:24099657

  20. Nitric-phosphoric acid oxidation of solid and liquid organic materials

    SciTech Connect

    Pierce, R.A.; Smith, J.R.; Poprik, D.C.

    1995-02-01

    Nitric-phosphoric acid oxidation has been developed specifically to address issues that face the Savannah River Site, other defense-related facilities, private industry, and small-volume generators such as university and medical laboratories. Initially tested to destroy and decontaminate SRS solid, Pu-contaminated job-control waste, the technology has also exhibited potential for remediating hazardous and mixed-hazardous waste forms. The process is unique to Savannah River and offers a valuable alternative to other oxidation processes that require extreme temperatures and/or elevated pressures. To address the broad categories of waste, many different organic compounds which represent a cross-section of the waste that must be treated have been successfully oxidized. Materials that have been quantitatively oxidized at atmospheric pressure below 180{degrees}C include neoprene, cellulose, EDTA, tributylphosphate, and nitromethane. More stable compounds such as benzoic acid, polyethylene, oils, and resins have been completely decomposed below 200{degrees}C and 10 psig. The process uses dilute nitric acid in a concentrated phosphoric acid media as the main oxidant for the organic compounds. Phosphoric acid allow nitric acid to be retained in solution well above its normal boiling point. The reaction forms NOx vapors which can be reoxidized and recycled using air and water. The addition of 0.001M Pd(II) reduces CO generation to near 1% of the released carbon gases. The advantages of this process are that it is straightforward, uses relatively inexpensive reagents, operates at relatively low temperature and pressure, and produces final solutions which are compatible with stainless steel equipment. For organic wastes, all carbon, hydrogen, and nitrogen are converted to gaseous products. If interfaced with an acid recovery system which converts NOx back to nitric acid, the net oxidizer would be oxygen from air.

  1. Characterization of an organic acid analog model in Adirondack, New York, surface waters

    NASA Astrophysics Data System (ADS)

    Fakhraei, H.; Driscoll, C. T.

    2013-12-01

    Natural waters include a variety of organic matter that differs in composition and functional groups. Dissolved organic matter is important but difficult to characterize acidic and metal binding (e.g., Al) functional groups in chemical equilibrium models. In this study data from Adirondack Lake Survey were used to calibrate an organic acid analog model in order to quantify the influence of organic acids on surface water chemistry. The study sites in the Adirondack region of New York have diverse levels of dissolved organic carbon (DOC), used as a surrogate for organic acids. DOC in 55 Adirondack surface waters varies from 180 μmol C/l (in Little Echo Pond) to 1263 μmol C/l (in Sunday Pond). To reduce the variability inherited in the large raw data set, suite of mean observations was constructed by grouping and averaging measured data into pH intervals of 0.05 pH units from pH 4.15 to 7.3. A chemical equilibrium model, which includes major solutes in natural waters, was linked to an optimization algorithm (genetic algorithm) to calibrate a triprotic organic analog model which includes proton and aluminum binding by adjusting the dissociation constants and site density of DOC. The object of fitting procedure was to simultaneously minimize the discrepancy between observed and simulated pH, acid neutralizing capacity (ANC), organic monomeric aluminum and inorganic monomeric aluminum. A sensitivity analysis on calibrated values indicate that the speciation of the modeled solutes are most responsive to the dissociation constant of AlOrg= Al3+ + Org3- reaction (Org3- represents organic anion), the site density of DOC and the second H+ dissociation constant of the triprotic organic analog (i.e. H2Org- = 2H+ + Org3- reaction).

  2. Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter of 2007 to 2008: Dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Jung, Jinsang; Tsatsral, Batmunkh; Kim, Young J.; Kawamura, Kimitaka

    2010-11-01

    To investigate the distributions and sources of water-soluble organic acids in the Mongolian atmosphere, aerosol samples (PM2.5, n = 34) were collected at an urban site (47.92°N, 106.90°E, ˜1300 m above sea level) in Ulaanbaatar, the capital of Mongolia, during the cold winter. The samples were analyzed for water-soluble dicarboxylic acids (C2-C12) and related compounds (ketocarboxylic acids and α-dicarbonyls), as well as organic carbon (OC), elemental carbon, water-soluble OC, and inorganic ions. Distributions of dicarboxylic acids and related compounds were characterized by a predominance of terephthalic acid (tPh; 130 ± 51 ng m-3, 19% of total detected organic acids) followed by oxalic (107 ± 28 ng m-3, 15%), succinic (63 ± 20 ng m-3, 9%), glyoxylic (55 ± 18 ng m-3, 8%), and phthalic (54 ± 27 ng m-3, 8%) acids. Predominance of terephthalic acid, which has not been reported previously in atmospheric aerosols, was mainly due to uncontrolled burning of plastic bottles and bags in home stoves for heating and waste incineration during the cold winter. This study demonstrated that most of the air pollutants were directly emitted from local sources such as heat and power plants, home stoves, and automobiles. Development of an inversion layer (<700 m above ground level) over the basin of Ulaanbaatar accelerated the accumulation of pollutants, causing severe haze episodes during the winter season.

  3. Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter.

    PubMed

    Gao, Yaohuan; Deshusses, Marc A

    2011-12-01

    The adsorption of two acidic pharmaceutically active compounds (PhACs), clofibric acid and ketoprofen, onto powdered activated carbon (PAC) was investigated with a particular focus on the influence of natural organic matter (NOM) on the adsorption of the PhACs. Suwannee River humic acids (SRHAs) were used as a substitute for NOM. Batch adsorption experiments were conducted to obtain adsorption kinetics and adsorption isotherms with and without SRHAs in the system. The adsorption isotherms and adsorption kinetics showed that the adsorption ofclofibric acid was not significantly affected by the presence of SRHAs at a concentration of 5 mg (as carbon) L(-1). An adsorption capacity of 70 to 140 mg g(-1) was observed and equilibrium was reached within 48 h. In contrast, the adsorption of ketoprofen was markedly decreased (from about 120 mg g(-1) to 70-100 mg g(-1)) in the presence of SRHAs. Higher initial concentrations of clofibric acid than ketoprofen during testing may explain the different behaviours that were observed. Also, the more hydrophobic ketoprofen molecules may have less affinity for PAC when humic acids (which are hydrophilic) are present. The possible intermolecular forces that could account for the different behaviour of clofibric acid and ketoprofen adsorption onto PAC are discussed. In particular, the relevance of electrostatic forces, electron donor-acceptor interaction, hydrogen bonding and London dispersion forces are discussed PMID:22439557

  4. Particulate organic acids in the atmosphere of Italian cities: Are they environmentally relevant?

    NASA Astrophysics Data System (ADS)

    Balducci, Catia; Cecinato, Angelo

    2010-02-01

    Mono- and dicarboxylic n-alkyl acids were extensively investigated in downtown Rome, Italy, and in Montelibretti, ˜30 km NE of the city, during 2005-2007. Congeners ranging from lauric to mellisic, and from succinic to α,ω-docosanedioic acids were evaluated as well as phthalic, palmitoleic and oleic acids, by solvent extraction of airborne particulates followed by derivatization with propanol in the presence of boron trifluoride, and gas chromatographic-mass spectrometric analysis. Shorter measurements were made in Milan, in Taranto, at suburban and rural sites of Italy, and in the polar regions, from 1996 to 2005. The predominance of palmitic and stearic acids observed elsewhere was confirmed, and the behaviour of azelaic and phthalic acids resulted strongly dependent upon the year season. In the urban sites, among the long-chain compounds, the lignoceric acid was usually the most abundant, while the cerotic, montanic and mellisic homologues cumulatively never exceeded 8% of the total. Unlike other contaminants, the concentrations of organic acids remained fairly invariant over the last decade, suggesting that more attention must be paid to them in the future.

  5. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids

    USGS Publications Warehouse

    Chiou, C.T.; Malcolm, R.L.; Brinton, T.I.; Kile, D.E.

    1986-01-01

    Water solubility enhancements by dissolved humic and fulvic acids from soil and aquatic origins and by synthetic organic polymers have been determined for selected organic pollutants and pesticides (p,p???-DDT, 2,4,5,2???,5???-PCB, 2,4,4???-PCB, 1,2,3-trichlorobenzene, and lindane). Significant solubility enhancements of relatively water-insoluble solutes by dissolved organic matter (DOM) of soil and aquatic origins may be described in terms of a partition-like interaction of the the solutes with the microscopic organic environment of the high-molecular-weight DOM species; the apparent solute solubilities increase linearly with DOM concentration and show no competitive effect between solutes. With a given DOM sample, the solute partition coefficient (Kdom) increases with a decrease of solute solubility (Sw) or with an increase of the solute's octanol-water partition coefficient (Kow). The Kdom values of solutes with soil-derived humic acid are approximately 4 times greater than with soil fulvic acid and 5-7 times greater than with aquatic humic and fulvic acids. The effectiveness of DOM in enhancing solute solubility appears to be largely controlled by the DOM molecular size and polarity. The relative inability of high-molecular-weight poly(acrylic acids) to enhance solute solubility is attributed to their high polarities and extended chain structures that do not permit the formation of a sizable intramolecular nonpolar environment.

  6. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China.

    PubMed

    Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2016-02-15

    With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China. PMID:26657252

  7. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China.

    PubMed

    Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2016-02-15

    With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China.

  8. Selective removal of phosphate for analysis of organic acids in complex samples.

    PubMed

    Deshmukh, Sandeep; Frolov, Andrej; Marcillo, Andrea; Birkemeyer, Claudia

    2015-04-01

    Accurate quantitation of compounds in samples of biological origin is often hampered by matrix interferences one of which occurs in GC-MS analysis from the presence of highly abundant phosphate. Consequently, high concentrations of phosphate need to be removed before sample analysis. Within this context, we screened 17 anion exchange solid-phase extraction (SPE) materials for selective phosphate removal using different protocols to meet the challenge of simultaneous recovery of six common organic acids in aqueous samples prior to derivatization for GC-MS analysis. Up to 75% recovery was achieved for the most organic acids, only the low pKa tartaric and citric acids were badly recovered. Compared to the traditional approach of phosphate removal by precipitation, SPE had a broader compatibility with common detection methods and performed more selectively among the organic acids under investigation. Based on the results of this study, it is recommended that phosphate removal strategies during the analysis of biologically relevant small molecular weight organic acids consider the respective pKa of the anticipated analytes and the detection method of choice.

  9. Uptake of Small Organic Compounds by Sulfuric Acid Aerosols: Dissolution and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Michelsen, R. R.; Ashbourn, S. F. M.; Staton, S. J. R.

    2003-01-01

    To assess the role of oxygenated volatile organic compounds in the upper troposphere and lower stratosphere, the interactions of a series of small organic compounds with low-temperature aqueous sulfuric acid will be evaluated. The total amount of organic material which may be taken up from the gas phase by dissolution, surface layer formation, and reaction during the particle lifetime will be quantified. Our current results for acetaldehyde uptake on 40 - 80 wt% sulfuric acid solutions will be compared to those of methanol, formaldehyde, and acetone to investigate the relationships between chemical functionality and heterogeneous activity. Where possible, equilibrium uptake will be ascribed to component pathways (hydration, protonation, etc.) to facilitate evaluation of other species not yet studied in low temperature aqueous sulfuric acid.

  10. Gas chromatographic organic acid profiling analysis of brandies and whiskeys for pattern recognition analysis.

    PubMed

    Park, Y J; Kim, K R; Kim, J H

    1999-06-01

    An efficient gas chromatographic profiling and pattern recognition method is described for brandy and whiskey samples according to their organic acid contents. It involves solid-phase extraction of organic acids using Chromosorb P with subsequent conversion to stable tert-butyldimethylsilyl derivatives for the direct analysis by capillary column gas chromatography and gas chromatography-mass spectrometry. A total of 12 organic acids were reproducibly identified in liquor samples (1 mL). When the GC profiles were simplified to their retention index spectra, characteristic patterns were obtained for each liquor sample as well as for each group average. Stepwise discriminant analysis provided star symbols characteristic for each liquor sample and group average. As expected, canonical discriminant analysis correctly classified 23 liquor samples studied into two groups of either brandy or whiskey.

  11. Potential for in situ chemical oxidation of acid extractable organics in oil sands process affected groundwater.

    PubMed

    Sohrabi, V; Ross, M S; Martin, J W; Barker, J F

    2013-11-01

    The process of bitumen extraction from oil sands in Alberta, Canada leads to an accumulation of toxic acid-extractable organics (AEOs) in oil sands process water (OSPW). Infiltration of OSPW from tailings ponds and from their retaining sand dykes and subsequent transport towards surface water has occurred. Given the apparent lack of significant natural attenuation of AEOs in groundwater, remediation may be required. This laboratory study evaluates the potential use of unactivated persulfate and permanganate as in situ oxidation agents for remediation of AEOs in groundwater. Naphthenic acids (NAs; CnH2n+zO2), which are a component of the acutely toxic AEOs, were degraded by both oxidants in OSPW samples. Permanganate oxidation yielded some residual dissolved organic carbon (DOC) whereas persulfate mineralized the AEO compounds with less residual DOC. Acid-extractable organics from oxidized OSPW had essentially no Microtox toxicity.

  12. Gas chromatographic organic acid profiling analysis of brandies and whiskeys for pattern recognition analysis.

    PubMed

    Park, Y J; Kim, K R; Kim, J H

    1999-06-01

    An efficient gas chromatographic profiling and pattern recognition method is described for brandy and whiskey samples according to their organic acid contents. It involves solid-phase extraction of organic acids using Chromosorb P with subsequent conversion to stable tert-butyldimethylsilyl derivatives for the direct analysis by capillary column gas chromatography and gas chromatography-mass spectrometry. A total of 12 organic acids were reproducibly identified in liquor samples (1 mL). When the GC profiles were simplified to their retention index spectra, characteristic patterns were obtained for each liquor sample as well as for each group average. Stepwise discriminant analysis provided star symbols characteristic for each liquor sample and group average. As expected, canonical discriminant analysis correctly classified 23 liquor samples studied into two groups of either brandy or whiskey. PMID:10794629

  13. A reexamination of amino acids in lunar soils: implications for the survival of exogenous organic material during impact delivery.

    PubMed

    Brinton, K L; Bada, J L

    1996-01-01

    Using a sensitive high performance liquid chromatography technique, we have analyzed both the hot water extract and the acid hydrolyzed hot water extract of lunar soil collected during the Apollo 17 mission. Both free amino acids and those derived from acid labile precursors are present at a level of roughly 15 ppb. Based on the D/L amino acid ratios, the free alanine and aspartic acid observed in the hot water extract can be entirely attributed to terrestrial biogenic contamination. However, in the acid labile fraction, precursors which yield amino acids are apparently present in the lunar soil. The amino acid distribution suggests that the precursor is probably solar wind implanted HCN. We have evaluated our results with regard to the meteoritic input of intact organic compounds to the moon based on an upper limit of < or = 0.3 ppb for alpha-aminoisobutyric acid, a non-protein amino acid which does not generally occur in terrestrial organisms and which is not a major amino acid produced from HCN, but which is a predominant amino acid in many carbonaceous chondrites. We find that the survival of exogenous organic compounds during lunar impact is < or = 0.8%. This result represents an example of minimum organic impact survivability. This is an important first step toward a better understanding of similar processes on Earth and on Mars, and their possible contribution to the budget of prebiotic organic compounds on the primitive Earth.

  14. A Reexamination of Amino Acids in Lunar Soils: Implications for the Survival of Exogenous Organic Material During Impact Delivery

    NASA Technical Reports Server (NTRS)

    Brinton, Karen L. F.; Bada, Jeffrey L.

    1996-01-01

    Using a sensitive high performance liquid chromatography technique, we have analyzed both the hot water extract and the acid hydrolyzed hot water extract of lunar soil collected during the Apollo 17 mission. Both free amino acids and those derived from acid labile precursors are present at a level of roughly 15 ppb. Based on the D/L amino acid ratios, the free alanine and aspartic acid observed in the hot water extract can be entirely attributed to terrestrial biogenic contamination. However, in the acid labile fraction, precursors which yield amino acids are apparently present in the lunar soil. The amino acid distribution suggests that the precursor is probably solar wind implanted HCN. We have evaluated our results with regard to the meteoritic input of intact organic compounds to the moon based on an upper limit of less than or equal to 0.3 ppb for alpha-aminoisobutyric acid, a non-protein amino acid which does not generally occur in terrestrial organisms and which is not a major amino acid produced from HCN, but which is a predominant amino acid in many carbonaceous chondrites. We find that the survival of exogenous organic compounds during lunar impact is less than or equal to 0.8%. This result represents an example of minimum organic impact survivability. This is an important first step toward a better understanding of similar processes on Earth and on Mars, and their possible contribution to the budget of prebiotic organic compounds on the primitive Earth.

  15. A reexamination of amino acids in lunar soils: implications for the survival of exogenous organic material during impact delivery.

    PubMed

    Brinton, K L; Bada, J L

    1996-01-01

    Using a sensitive high performance liquid chromatography technique, we have analyzed both the hot water extract and the acid hydrolyzed hot water extract of lunar soil collected during the Apollo 17 mission. Both free amino acids and those derived from acid labile precursors are present at a level of roughly 15 ppb. Based on the D/L amino acid ratios, the free alanine and aspartic acid observed in the hot water extract can be entirely attributed to terrestrial biogenic contamination. However, in the acid labile fraction, precursors which yield amino acids are apparently present in the lunar soil. The amino acid distribution suggests that the precursor is probably solar wind implanted HCN. We have evaluated our results with regard to the meteoritic input of intact organic compounds to the moon based on an upper limit of < or = 0.3 ppb for alpha-aminoisobutyric acid, a non-protein amino acid which does not generally occur in terrestrial organisms and which is not a major amino acid produced from HCN, but which is a predominant amino acid in many carbonaceous chondrites. We find that the survival of exogenous organic compounds during lunar impact is < or = 0.8%. This result represents an example of minimum organic impact survivability. This is an important first step toward a better understanding of similar processes on Earth and on Mars, and their possible contribution to the budget of prebiotic organic compounds on the primitive Earth. PMID:11541128

  16. Hydrothermal preparation of LiFePO 4 nanocrystals mediated by organic acid

    NASA Astrophysics Data System (ADS)

    Ni, Jiangfeng; Morishita, Masanori; Kawabe, Yoshiteru; Watada, Masaharu; Takeichi, Nobuhiko; Sakai, Tetsuo

    Well-crystallized LiFePO 4 nanoparticles have been directly synthesized in a short time via hydrothermal process in the presence of organic acid, e.g. citric acid or ascorbic acid. These acid-mediated LiFePO 4 products exhibit a phase-pure and nanocrystal nature with size about 50-100 nm. Two critical roles that the organic acid mediator plays in hydrothermal process are recognized and a rational mechanism is explored. After a post carbon-coating treatment at 600 °C for 1 h, these mediated LiFePO 4 materials show a high electrochemical activity in terms of reversible capacity, cycling stability and rate capability. Particularly, LiFePO 4 mediated by ascorbic acid can deliver a capacity of 162 mAh g -1 at 0.1 C, 154 mAh g -1 at 1 C, and 122 mAh g -1 at 5 C. The crystalline structure, particle morphology, and surface microstructure were characterized by high-energy synchrotron X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and Raman spectroscopy, respectively. And the electrochemical properties were thoroughly investigated by galvanostatic test and electrochemical impedance spectroscopy (EIS).

  17. Glyoxylate cycle and metabolism of organic acids in the scutellum of barley seeds during germination.

    PubMed

    Ma, Zhenguo; Marsolais, Frédéric; Bernards, Mark A; Sumarah, Mark W; Bykova, Natalia V; Igamberdiev, Abir U

    2016-07-01

    During the developmental processes from dry seeds to seedling establishment, the glyoxylate cycle becomes active in the mobilization of stored oils in the scutellum of barley (Hordeum vulgare L.) seeds, as indicated by the activities of isocitrate lyase and malate synthase. The succinate produced is converted to carbohydrates via phosphoenolpyruvate carboxykinase and to amino acids via aminotransferases, while free organic acids may participate in acidifying the endosperm tissue, releasing stored starch into metabolism. The abundant organic acid in the scutellum was citrate, while malate concentration declined during the first three days of germination, and succinate concentration was low both in scutellum and endosperm. Malate was more abundant in endosperm tissue during the first three days of germination; before citrate became predominant, indicating that malate may be the main acid acidifying the endosperm. The operation of the glyoxylate cycle coincided with an increase in the ATP/ADP ratio, a buildup of H2O2 and changes in the redox state of ascorbate and glutathione. It is concluded that operation of the glyoxylate cycle in the scutellum of cereals may be important not only for conversion of fatty acids to carbohydrates, but also for the acidification of endosperm and amino acid synthesis. PMID:27181945

  18. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules.

    PubMed

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P; Rondo, Linda; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M; Worsnop, Douglas R

    2013-10-22

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions.

  19. Photochemical alkylation of inorganic selenium in the presence of low molecular weight organic acids.

    PubMed

    Guo, Xuming; Sturgeon, Ralph E; Mester, Zoltán; Gardner, Graeme J

    2003-12-15

    Using a flow-through photochemical reactor and a low pressure mercury lamp as a UV source, alkyl selenium species are formed from inorganic selenium(IV) in the presence of low molecular weight organic acids (LMW acids). The volatile alkyl Se species were cryogenically trapped and identified by GC-MS and GC-ICP-MS. In the presence of formic, acetic, propionic and malonic acids, inorganic selenium(IV) is converted by UV irradiation to volatile selenium hydride and carbonyl, dimethylselenide and diethylselenide, respectively. Se(IV) was successfully removed from contaminated agricultural drainage waters (California, U.S.A.) using a batch photoreactor system Se. Photochemical alkylation may thus offer a promising means of converting toxic selenium salts, present in contaminated water, to less toxic dimethylselenide. The LMW acids and photochemical alkylation process may also be key to understanding the source of atmospheric selenium and are likely involved in its mobility in the natural anaerobic environment.

  20. Modulation by Amino Acids: Toward Superior Control in the Synthesis of Zirconium Metal-Organic Frameworks.

    PubMed

    Gutov, Oleksii V; Molina, Sonia; Escudero-Adán, Eduardo C; Shafir, Alexandr

    2016-09-12

    The synthesis of zirconium metal-organic frameworks (Zr MOFs) modulated by various amino acids, including l-proline, glycine, and l-phenylalanine, is shown to be a straightforward approach toward functional-group incorporation and particle-size control. High yields in Zr-MOF synthesis are achieved by employing 5 equivalents of the modulator at 120 °C. At lower temperatures, the method provides a series of Zr MOFs with increased particle size, including many suitable for single-crystal X-ray diffraction studies. Furthermore, amino acid modulators can be incorporated at defect sites in Zr MOFs with an amino acid/ligand ratio of up to 1:1, depending on the ligand structure and reaction conditions. The MOFs obtained through amino acid modulation exhibit an improved CO2 -capture capacity relative to nonfunctionalized materials. PMID:27482849

  1. Effect of metal ions on decomposition of chlorinated organic substances by ozonation in acetic acid.

    PubMed

    Okawa, Kiyokazu; Tsai, Tsung-Yueh; Nakano, Yoichi; Nishijima, Wataru; Okada, Mitsumasa

    2005-01-01

    The objective of this study is to find metal ions that enhance the ozone decomposition of chlorinated organic substances in acetic acid. Although the pseudo-first order degradation rate constant for 2,4-DCP by ozone in acetic acid in addition of Ca2+, Mg2+, Al3+ and Fe2+ were almost the same as that with no metal ion, the degradation rate in addition of Mn2+ and Fe3+ were 2.4 and 4.5 times as high as that with no metal ion, respectively. The presence of Fe3+ enhanced the degradation of 2,4-DCP by ozone in acetic acid because Fe3+-phenolate complex which have high reactivity with ozone was produced by the reaction between 2,4-DCP and Fe3+ in acetic acid. PMID:15620744

  2. Cellular fatty acid and soluble protein composition of Actinobacillus actinomycetemcomitans and related organisms.

    PubMed Central

    Calhoon, D A; Mayberry, W R; Slots, J

    1981-01-01

    The cellular fatty acid and protein content of twenty-five representative strains of Actinobacillus actinomycetecomitans isolated from juvenile and adult periodontitis patients was compared to that of 15 reference strains of oral and nonoral Actinobacillus species and Haemophilus aphrophilus. Trimethylsilyl derivatives of the fatty acid methyl esters were analyzed by gas-liquid chromatography. The predominant fatty acids of all 40 strains examined were 14:0, 3-OH 14:0, 16 delta, and 16:0. Actinobacillus seminis (ATCC 15768) was unlike the other strains examined because of a greater amount of 14:0 detected. The soluble protein analysis using polyacrylamide gel electrophoresis revealed that A. actinomycetemcomitans, H. aphrophilus, and nonoral Actinobacillus species possessed distinct protein profiles attesting to the validity of separating these organisms into different species. Established biotypes of A. actinomycetemcomitans could not be differentiated on the basis of fatty acid or protein profiles. PMID:7287893

  3. Modulation by Amino Acids: Toward Superior Control in the Synthesis of Zirconium Metal-Organic Frameworks.

    PubMed

    Gutov, Oleksii V; Molina, Sonia; Escudero-Adán, Eduardo C; Shafir, Alexandr

    2016-09-12

    The synthesis of zirconium metal-organic frameworks (Zr MOFs) modulated by various amino acids, including l-proline, glycine, and l-phenylalanine, is shown to be a straightforward approach toward functional-group incorporation and particle-size control. High yields in Zr-MOF synthesis are achieved by employing 5 equivalents of the modulator at 120 °C. At lower temperatures, the method provides a series of Zr MOFs with increased particle size, including many suitable for single-crystal X-ray diffraction studies. Furthermore, amino acid modulators can be incorporated at defect sites in Zr MOFs with an amino acid/ligand ratio of up to 1:1, depending on the ligand structure and reaction conditions. The MOFs obtained through amino acid modulation exhibit an improved CO2 -capture capacity relative to nonfunctionalized materials.

  4. Kinetics of Acid-Catalyzed Dehydration of Cyclic Hemiacetals in Organic Aerosol Particles in Equilibrium with Nitric Acid Vapor.

    PubMed

    Ranney, April P; Ziemann, Paul J

    2016-04-28

    Previous studies have shown that 1,4-hydroxycarbonyls, which are often major products of the atmospheric oxidation of hydrocarbons, can undergo acid-catalyzed cyclization and dehydration in aerosol particles to form highly reactive unsaturated dihydrofurans. In this study the kinetics of dehydration of cyclic hemiacetals, the rate-limiting step in this process, was investigated in a series of environmental chamber experiments in which secondary organic aerosol (SOA) containing cyclic hemiacetals was formed from the reaction of n-pentadecane with OH radicals in dry air in the presence of HNO3. A particle beam mass spectrometer was used to monitor the formation and dehydration of cyclic hemiacetals in real time, and SOA and HNO3 were quantified in filter samples by gravimetric analysis and ion chromatography. Measured dehydration rate constants increased linearly with increasing concentration of HNO3 in the gas phase and in SOA, corresponding to catalytic rate constants of 0.27 h(-1) ppmv(-1) and 7.0 h(-1) M(-1), respectively. The measured Henry's law constant for partitioning of HNO3 into SOA was 3.7 × 10(4) M atm(-1), ∼25% of the value for dissolution into water, and the acid dissociation constant was estimated to be <8 × 10(-4), at least a factor of 10(4) less than that for HNO3 in water. The results indicate that HNO3 was only weakly dissociated in the SOA and that dehydration of cyclic hemiacetals was catalyzed by molecular HNO3 rather than by H(+). The Henry's law constant and kinetics relationships measured here can be used to improve mechanisms and models of SOA formation from the oxidation of hydrocarbons in dry air in the presence of NOx, which are conditions commonly used in laboratory studies. The fate of cyclic hemiacetals in the atmosphere, where the effects of higher relative humidity, organic/aqueous phase separation, and acid catalysis by molecular H2SO4 and/or H(+) are likely to be important, is discussed. PMID:27043733

  5. Kinetics of Acid-Catalyzed Dehydration of Cyclic Hemiacetals in Organic Aerosol Particles in Equilibrium with Nitric Acid Vapor.

    PubMed

    Ranney, April P; Ziemann, Paul J

    2016-04-28

    Previous studies have shown that 1,4-hydroxycarbonyls, which are often major products of the atmospheric oxidation of hydrocarbons, can undergo acid-catalyzed cyclization and dehydration in aerosol particles to form highly reactive unsaturated dihydrofurans. In this study the kinetics of dehydration of cyclic hemiacetals, the rate-limiting step in this process, was investigated in a series of environmental chamber experiments in which secondary organic aerosol (SOA) containing cyclic hemiacetals was formed from the reaction of n-pentadecane with OH radicals in dry air in the presence of HNO3. A particle beam mass spectrometer was used to monitor the formation and dehydration of cyclic hemiacetals in real time, and SOA and HNO3 were quantified in filter samples by gravimetric analysis and ion chromatography. Measured dehydration rate constants increased linearly with increasing concentration of HNO3 in the gas phase and in SOA, corresponding to catalytic rate constants of 0.27 h(-1) ppmv(-1) and 7.0 h(-1) M(-1), respectively. The measured Henry's law constant for partitioning of HNO3 into SOA was 3.7 × 10(4) M atm(-1), ∼25% of the value for dissolution into water, and the acid dissociation constant was estimated to be <8 × 10(-4), at least a factor of 10(4) less than that for HNO3 in water. The results indicate that HNO3 was only weakly dissociated in the SOA and that dehydration of cyclic hemiacetals was catalyzed by molecular HNO3 rather than by H(+). The Henry's law constant and kinetics relationships measured here can be used to improve mechanisms and models of SOA formation from the oxidation of hydrocarbons in dry air in the presence of NOx, which are conditions commonly used in laboratory studies. The fate of cyclic hemiacetals in the atmosphere, where the effects of higher relative humidity, organic/aqueous phase separation, and acid catalysis by molecular H2SO4 and/or H(+) are likely to be important, is discussed.

  6. Integrated process of distillation with side reactors for synthesis of organic acid esters

    SciTech Connect

    Panchal, Chandrakant B; Prindle, John C; Kolah, Aspri; Miller, Dennis J; Lira, Carl T

    2015-11-04

    An integrated process and system for synthesis of organic-acid esters is provided. The method of synthesizing combines reaction and distillation where an organic acid and alcohol composition are passed through a distillation chamber having a plurality of zones. Side reactors are used for drawing off portions of the composition and then recycling them to the distillation column for further purification. Water is removed from a pre-reactor prior to insertion into the distillation column. An integrated heat integration system is contained within the distillation column for further purification and optimizing efficiency in the obtaining of the final product.

  7. Highly efficient inverted organic solar cells using amino acid modified indium tin oxide as cathode

    SciTech Connect

    Li, Aiyuan; Nie, Riming; Deng, Xianyu; Wei, Huaixin; Li, Yanqing; Tang, Jianxin; Zheng, Shizhao; Wong, King-Young

    2014-03-24

    In this paper, we report that highly efficient inverted organic solar cells were achieved by modifying the surface of indium tin oxide (ITO) using an amino acid, Serine (Ser). With the modification of the ITO surface, device efficiency was significantly enhanced from 0.63% to 4.17%, accompanied with an open circuit voltage (Voc) that was enhanced from 0.30 V to 0.55 V. Ultraviolet and X-ray photoelectron spectroscopy studies indicate that the work function reduction induced by the amino acid modification resulting in the decreased barrier height at the ITO/organic interface played a crucial role in the enhanced performances.

  8. Recovery Processes of Organic Acids from Fermentation Broths in the Biomass-Based Industry.

    PubMed

    Li, Qian-Zhu; Jiang, Xing-Lin; Feng, Xin-Jun; Wang, Ji-Ming; Sun, Chao; Zhang, Hai-Bo; Xian, Mo; Liu, Hui-Zhou

    2016-01-01

    The new movement towards green chemistry and renewable feedstocks makes microbial production of chemicals more competitive. Among the numerous chemicals, organic acids are more attractive targets for process development efforts in the renewable-based biorefinery industry. However, most of the production costs in microbial processes are higher than that in chemical processes, among which over 60% are generated by separation processes. Therefore, the research of separation and purification processes is important for a promising biorefinery industry. This review highlights the progress of recovery processes in the separation and purification of organic acids, including their advantages and disadvantages, current situation, and future prospects in terms of recovery yields and industrial application. PMID:26403818

  9. Poly(isophthalic acid)(ethylene oxide) as a Macromolecular Modulator for Metal-Organic Polyhedra.

    PubMed

    Chen, Teng-Hao; Wang, Le; Trueblood, Jonathan V; Grassian, Vicki H; Cohen, Seth M

    2016-08-01

    A new strategy was developed by using a polymer ligand, poly(isophthalic acid)(ethylene oxide), to modulate the growth of metal-organic polyhedra (MOP) crystals. This macromolecular modulator can effectively control the crystal habit of several different Cu24L24 (L = isophthalic acid derivatives) MOPs. The polymer also directed the formation of MOP structures under reaction conditions that only produce metal-organic frameworks in the absence of modulator. Moreover, the polymer also enabled the deposition of MOP crystals on glass surfaces. This macromolecular modulator strategy provides an innovative approach to control the morphology and assembly of MOP particles. PMID:27400759

  10. Recovery Processes of Organic Acids from Fermentation Broths in the Biomass-Based Industry.

    PubMed

    Li, Qian-Zhu; Jiang, Xing-Lin; Feng, Xin-Jun; Wang, Ji-Ming; Sun, Chao; Zhang, Hai-Bo; Xian, Mo; Liu, Hui-Zhou

    2016-01-01

    The new movement towards green chemistry and renewable feedstocks makes microbial production of chemicals more competitive. Among the numerous chemicals, organic acids are more attractive targets for process development efforts in the renewable-based biorefinery industry. However, most of the production costs in microbial processes are higher than that in chemical processes, among which over 60% are generated by separation processes. Therefore, the research of separation and purification processes is important for a promising biorefinery industry. This review highlights the progress of recovery processes in the separation and purification of organic acids, including their advantages and disadvantages, current situation, and future prospects in terms of recovery yields and industrial application.

  11. Comparing organic acids and salt derivatives as antimicrobials against selected poultry-borne Listeria monocytogenes strains in vitro.

    PubMed

    Lues, Jan Frederick Rykers; Theron, Maria Magdalena

    2012-12-01

    This article reports on the antilisterial properties of selected organic acids and salt derivatives in order to suggest possible alternatives in food preservation and pathogen control in the poultry meat processing industry. The susceptibility of two Listeria monocytogenes isolates was assessed against five organic acids (lactic, acetic, malic, citric, and propionic) and two acid-salt derivatives (sorbic acid [potassium salt] and benzoic acid [sodium salt]) across a series of pH environments. Minimum inhibitory concentrations (MICs) of the acids were tested against the two strains by means of an agar-dilution method. In general, strain CC60 was found to be more resistant than strain CC77 to both organic acids and salts. At pH values of 7 and above, high MIC levels (low susceptibility) were noted for potassium sorbate, sodium benzoate, and lactic acids, whereas susceptibility at lower pH increased reaching pH5 where the isolates were susceptible to all the organic acids tested. A small increase in pH notably reduced antimicrobial activity against the organisms. At pH 7, the isolates just about lost susceptibility to benzoic, lactic, malic, and sorbic acids. Although the activity of the majority of acids was linked to pH, some acids were not as closely related (e.g., potassium sorbate, sodium benzoate, and citric acid), and this suggests that the type of organic acids plays a role in inhibition. The relatively high MICs reported for compounds that are conventionally used as preservatives against Listeria spp. raise concern. The results furthermore suggest that the type of organic acid used to set pH, and not only pH alone, plays a role in determining inhibition. It was confirmed that a "one size fits all" approach to preservation is not always effective. Furthermore, the need for microbiological data to the subspecies level to inform the selection of preservatives was highlighted. PMID:23190165

  12. Acid fog

    SciTech Connect

    Hileman, B.

    1983-03-01

    Fog in areas of southern California previously thought to be pollution-free has been shown to have a pH as low as 1.69. It has been found to be most acidic after smoggy days, suggesting that it forms on the aerosol associated with the previously exiting smog. Studies on Whiteface Mountain in the Adirondacks show that fog water is often 10 times as acidic as rainwater. As a result of their studies, California plans to spend $4 million on acid deposition research in the coming year. (JMT)

  13. [Effect of wheat and faba bean intercropping on root exudation of low molecular weight organic acids].

    PubMed

    Xiao, Jing-Xiu; Zheng, Yi; Tang, Li

    2014-06-01

    Pot experiment of wheat and faba bean intercropping was conducted and exudates from wheat and faba bean roots were collected at different growth stages. Low molecular weight organic acids (OA) in root exudates were examined by HPLC. The results showed that wheat and faba bean intercropping significantly increased the total amounts of OA exuded by roots. At tillering (57 d), booting (120 d) and filling stages (142 d), intercropping increased the total amounts of OA in wheat root exudates by 155%, 35.6% and 92.6% respectively, in comparison with that of monoculture wheat (MW). At branching (57 d) and filling stages (142 d), intercropping increased the total amounts of OA in faba bean root exudates by 87.4% and 38.7%, respectively, in comparison with that of monoculture faba bean (MF). Wheat and faba bean intercropping changed the types of OA exuded by roots. At tillering stage, lactic acid was identified in root exudates of intercropping wheat (IW), but not in that of MW. At jointing stage (98 d), citric acid was identified in root exudates of IW, but not in that of MW, and acetic acid was vice versa. At branching stage, acetic acid was identified in root exudates of intercropping faba bean (IF), but not in that of MF, and lactic acid was vice versa. At filling stage, lactic acid was identified in root exudates of IF, but not in that of MF. Wheat and faba bean intercropping increased the OA exudation rate of wheat. At booting stage, the exudation rates of citric and fumaric acid from IW were 179 and 184-times as that of from MW, respectively. At filling stage, the exudation rate of lactic acid from IW was 2.53-times as that from MW. In conclusion, wheat and faba bean intercropping increased the rate and total amount, and changed the types of OA exuded by roots.

  14. Cirrus cloud mimic surfaces in the laboratory: organic acids, bases and NOx heterogeneous reactions

    NASA Astrophysics Data System (ADS)

    Sodeau, J.; Oriordan, B.

    2003-04-01

    CIRRUS CLOUD MIMIC SURFACES IN THE LABORATORY:ORGANIC ACIDS, BASES AND NOX HETEROGENEOUS REACTIONS. B. ORiordan, J. Sodeau Department of Chemistry and Environment Research Institute, University College Cork, Ireland j.sodeau@ucc.ie /Fax: +353-21-4902680 There are a variety of biogenic and anthropogenic sources for the simple carboxylic acids to be found in the troposphere giving rise to levels as high as 45 ppb in certain urban areas. In this regard it is of note that ants of genus Formica produce some 10Tg of formic acid each year; some ten times that produced by industry. The expected sinks are those generally associated with tropospheric chemistry: the major routes studied, to date, being wet and dry deposition. No studies have been carried out hitherto on the role of water-ice surfaces in the atmospheric chemistry of carboxylic acids and the purpose of this paper is to indicate their potential function in the heterogeneous release of atmospheric species such as HONO. The deposition of formic acid on a water-ice surface was studied using FT-RAIR spectroscopy over a range of temperatures between 100 and 165K. In all cases ionization to the formate (and oxonium) ions was observed. The results were confirmed by TPD (Temperature Programmed Desorption) measurements, which indicated that two distinct surface species adsorb to the ice. Potential reactions between the formic acid/formate ion surface and nitrogen dioxide were subsequently investigated by FT-RAIRS. Co-deposition experiments showed that N2O3 and the NO+ ion (associated with water) were formed as products. A mechanism is proposed to explain these results, which involves direct reaction between the organic acid and nitrogen dioxide. Similar experiments involving acetic acid also indicate ionization on a water-ice surface. The results are put into the context of atmospheric chemistry potentially occuring on cirrus cloud surfaces.

  15. Forward osmosis filtration for removal of organic foulants: Effects of combined tannic and alginic acids.

    PubMed

    Wang, Lin; Zhang, Wanzhu; Chu, Huaqiang; Dong, Bingzhi

    2016-03-15

    The filtration performance of combined organic foulants by forward osmosis (FO) in active-layer-facing-the-draw-solution (AL-facing-DS) orientation was investigated systematically. Tannic acid and alginate were used as model organic foulants for polysaccharides and humic dissolved organic matters, respectively. The FO could reject combined and single tannic acid and alginate foulants effectively. The more severe fouling flux decline, accompanied with lower combined foulants' retention, was observed with increasing proportions of tannic acid in the combined foulants-containing feed, which was ascribed mainly to the more severe fouling resulting from tannic acid adsorption within the porous support layer of the FO membrane compared to minor alginate deposition on the membrane surface. It was found that the higher the initial flux level and cross flow velocity, the faster the flux decline with lower mixed foulants retention. It was also revealed that the calcium ions in a basic solution enhanced the combined fouling flux reduction and combined foulants retention. As the major constituent of the combined fouling layer, the adsorption of tannic acid might play a more significant role in the mixed fouling of the FO membrane, which was probably influenced by permeation drag caused by water flux and chemical interactions induced by feed solution pH and calcium ion concentration.

  16. Understanding the effect low molecular weight organic acids on the desorption and availability of soil phosphorus

    NASA Astrophysics Data System (ADS)

    Blackburn, Daniel; Zhang, Hao; Stutter, Marc; Giles, Courtney; George, Timothy; Shand, Charles; Lumsdon, David; Cooper, Pat; Wendler, Renate; Brown, Lawrie; Blackwell, Martin; Darch, Tegan; Wearing, Catherine; Haygarth, Philip

    2016-04-01

    The mobility and resupply of inorganic phosphorus (P) from the soil solid phase after equilibration with increasing doses of citric acid (CA) and oxalic acid (OA) were studied in 2 soils with contrasting P status. The combined methods of diffusive gradients in thin films (DGT), diffusive equilibration in thin films (DET) and the DGT-induced fluxes in sediments model (DIFS) were used as tools to evaluate the changes in solid-to-solution interchange kinetics. A significant effect of CA and OA in soil solution P was observed only for doses over 1 mMol kg-1. Curiously, low organic acid doses (0.5-1 mMol kg-1) were associated with a steep increase in microbial biomass P, which was not seen for doses over 2 mMol kg-1. The trivalent CA was able to promote a higher increase in soil solution P than the bivalent OA for both soils. Organic phosphorus was only significantly mobilized by organic acids in the low P soil, possibly because in the high P soil these P forms were less labile than inorganic P. Both CA and OA promoted a decrease in the adsorbed-to-solution distribution coefficient, desorption rate constants and an increase in the response time of solution P equilibration. The extent of this effect was shown to be both soil specific and organic acid specific. Since both organic acids negatively affected the kinetics of P interchange between the soil matrix and the soil solution, their net effect on P bioavailability is expected to be much lower than the observed increase in solution concentration.

  17. The effect of cocoa fermentation and weak organic acids on growth and ochratoxin A production by Aspergillus species.

    PubMed

    Copetti, Marina V; Iamanaka, Beatriz T; Mororó, Raimundo C; Pereira, José L; Frisvad, Jens C; Taniwaki, Marta H

    2012-04-16

    The acidic characteristics of cocoa beans have influence on flavor development in chocolate. Cocoa cotyledons are not naturally acidic, the acidity comes from organic acids produced by the fermentative microorganisms which grow during the processing of cocoa. Different concentrations of these metabolites can be produced according to the fermentation practices adopted in the farms, which could affect the growth and ochratoxin A production by fungi. This work presents two independent experiments carried out to investigate the effect of some fermentation practices on ochratoxin A production by Aspergillus carbonarius in cocoa, and the effect of weak organic acids such as acetic, lactic and citric at different pH values on growth and ochratoxin A production by A. carbonarius and Aspergillus niger in culture media. A statistical difference (ρ<0.05) in the ochratoxin A level in the cured cocoa beans was observed in some fermentation practices adopted. The laboratorial studies demonstrate the influence of organic acids on fungal growth and ochratoxin A production, with differences according to the media pH and the organic acid present. Acetic acid was the most inhibitory acid against A. carbonarius and A. niger. From the point of view of food safety, considering the amount of ochratoxin A produced, fermentation practices should be conducted towards the enhancement of acetic acid, although lactic and citric acids also have an important role in lowering the pH to improve the toxicity of acetic acid.

  18. Some Organic Acids Acting as Stimulants of Recruitment and Feeding for the Formosan Subterranean Termite (Isoptera: Rhinotermitidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The feeding stimulating properties of 3 organic acids (salicylic, oxalic, and glucuronic acids) and 2 nitrogen containing compounds (uric acid, and glucosamine) for the Formosan subterranean termite were tested. A two choice test between cellulosic matrices with the compounds and blanks showed that...

  19. Adsorption of aromatic organic acids onto high area activated carbon cloth in relation to wastewater purification.

    PubMed

    Ayranci, Erol; Duman, Osman

    2006-08-25

    Adsorption of aromatic organic acids: benzoic acid (BA), salicylic acid (SA), p-aminobenzoic acid (pABA) and nicotinic acid (NA), onto high area activated carbon cloth from solutions in 0.4 M H(2)SO(4), in water at natural pH, in 0.1 M NaOH and also from solutions having pH 7.0 were studied by in situ UV-spectroscopic technique. The first-order rate law was found to be applicable for the kinetic data of adsorption. The rates and extents of adsorption of the organic acids were the highest from water or 0.4 M H(2)SO(4) solutions and the lowest from 0.1 M NaOH solution. The order of rates and extents of adsorption of the four organic acids in each of the four solutions (0.4 M H(2)SO(4), water, solution of pH 7.0 and 0.1 M NaOH) was determined as SA>BA>NA approximately pABA. These observed orders were explained in terms of electrostatic, dispersion and hydrogen bonding interactions between the surface and the adsorbate species, taking the charge of the carbon surface and the adsorbate in each solution into account. Adsorption of BA in molecular form or in benzoate form was analyzed by treating the solution as a mixture of two components and applying Lambert-Beer law to two-component system. The adsorption isotherm data of the systems studied were derived at 30 degrees C and fitted to Langmuir and Freundlich equations. PMID:16442224

  20. Metabolism of organic acids, nitrogen and amino acids in chlorotic leaves of 'Honeycrisp' apple (Malus domestica Borkh) with excessive accumulation of carbohydrates.

    PubMed

    Wang, Huicong; Ma, Fangfang; Cheng, Lailiang

    2010-07-01

    Metabolite profiles and activities of key enzymes in the metabolism of organic acids, nitrogen and amino acids were compared between chlorotic leaves and normal leaves of 'Honeycrisp' apple to understand how accumulation of non-structural carbohydrates affects the metabolism of organic acids, nitrogen and amino acids. Excessive accumulation of non-structural carbohydrates and much lower CO(2) assimilation were found in chlorotic leaves than in normal leaves, confirming feedback inhibition of photosynthesis in chlorotic leaves. Dark respiration and activities of several key enzymes in glycolysis and tricarboxylic acid (TCA) cycle, ATP-phosphofructokinase, pyruvate kinase, citrate synthase, aconitase and isocitrate dehydrogenase were significantly higher in chlorotic leaves than in normal leaves. However, concentrations of most organic acids including phosphoenolpyruvate (PEP), pyruvate, oxaloacetate, 2-oxoglutarate, malate and fumarate, and activities of key enzymes involved in the anapleurotic pathway including PEP carboxylase, NAD-malate dehydrogenase and NAD-malic enzyme were significantly lower in chlorotic leaves than in normal leaves. Concentrations of soluble proteins and most free amino acids were significantly lower in chlorotic leaves than in normal leaves. Activities of key enzymes in nitrogen assimilation and amino acid synthesis, including nitrate reductase, glutamine synthetase, ferredoxin and NADH-dependent glutamate synthase, and glutamate pyruvate transaminase were significantly lower in chlorotic leaves than in normal leaves. It was concluded that, in response to excessive accumulation of non-structural carbohydrates, glycolysis and TCA cycle were up-regulated to "consume" the excess carbon available, whereas the anapleurotic pathway, nitrogen assimilation and amino acid synthesis were down-regulated to reduce the overall rate of amino acid and protein synthesis.

  1. A case study of urban particle acidity and its influence on secondary organic aerosol.

    PubMed

    Zhang, Qi; Jimenez, Jose L; Worsnop, Douglas R; Canagaratna, Manjula

    2007-05-01

    Size-resolved indicators of aerosol acidity, including H+ ion concentrations (H+Aer) and the ratio of stoichiometric neutralization are evaluated in submicrometer aerosols using highly time-resolved aerosol mass spectrometer (AMS) data from Pittsburgh. The pH and ionic strength within the aqueous particle phase are also estimated using the Aerosol Inorganics Model (AIM). Different mechanisms that contribute to the presence of acidic particles in Pittsburgh are discussed. The largest H+Aer loadings and lowest levels of stoichiometric neutralization were detected when PM1 loadings were high and dominated by SO4(2-). The average size distribution of H+Aer loading shows an accumulation mode at Dva approximately 600 nm and an enhanced smaller mode that centers at Dva approximately 200 nm and tails into smaller sizes. The acidity in the accumulation mode particles suggests that there is generally not enough gas-phase NH3 available on a regional scale to completely neutralize sulfate in Pittsburgh. The lack of stoichiometric neutralization in the 200 nm mode particles is likely caused by the relatively slow mixing of gas-phase NH3 into SO2-rich plumes containing younger particles. We examined the influence of particle acidity on secondary organic aerosol (SOA) formation by comparing the mass concentrations and size distributions of oxygenated organic aerosol (00A--surrogate for SOA in Pittsburgh) during periods when particles are, on average, acidic to those when particles are bulk neutralized. The average mass concentration of ODA during the acidic periods (3.1 +/- 1.7 microg m(-3)) is higher than that during the neutralized periods (2.5 +/- 1.3 microg m(-3)). Possible reasons for this enhancement include increased condensation of SOA species, acid-catalyzed SOA formation, and/or differences in air mass transport and history. However, even if the entire enhancement (approximately 0.6 microg m(-3)) can be attributed to acid catalysis, the upperbound increase of SOA mass

  2. Amino Acids as a Source of Organic Nitrogen in Antarctic Endolithic Microbial Communities

    NASA Astrophysics Data System (ADS)

    McDonald, G. D.; Sun, H. J.

    2002-12-01

    In the Antarctic Dry Valleys, cryptoendolithic microbial communities occur within porous sandstone rocks. Current understanding of the mechanisms of physiological adaptation of these communities to the harsh Antarctic environment is limited, because traditional methods of studying microbial physiology are very difficult to apply to organisms with extremely low levels of metabolic activity. In order to fully understand carbon and nitrogen cycling and nutrient uptake in cryptoendolithic communities, and the metabolic costs that the organisms incur in order to survive, it is necessary to employ molecular geochemical techniques such as amino acid analysis in addition to physiological methods. Low-molecular-weight biomolecules such as amino acids can be used as tracers of carbon and nitrogen uptake and loss by microbial communities living in solid-state matrices such as rock or sediment. We have measured the concentrations and D/L ratios for several amino acids as a function of depth in a large sandstone boulder. Concentrations of both free and bound amino acids decrease by more than two orders of magnitude from the surface to the visible base of the community (approximately 1.2 cm depth), while the D/L ratios of the amino acids increase from near zero to 0.2 or greater over the same depth interval. We interpret these data as an indication that one or more community members are selectively scavenging L-amino acids as the amino acids are transported through the rock by intermittently percolating meltwater. This is consistent with the known preference of lichens for amino acids as nitrogen sources rather than inorganic nitrogen under conditions of nutrient limitation. It is not yet clear whether there is also a contribution to amino acid uptake from heterotropic bacteria associated with the cryptoendolithic community. The increase in D/L ratios with depth observed in the rock is too great to be attributable solely to the natural occurrence of D-amino acids in bacteria

  3. Tranexamic Acid

    MedlinePlus

    ... is used to treat heavy bleeding during the menstrual cycle (monthly periods) in women. Tranexamic acid is in ... tablets for more than 5 days in a menstrual cycle or take more than 6 tablets in a ...

  4. Mefenamic Acid

    MedlinePlus

    ... as mefenamic acid may cause ulcers, bleeding, or holes in the stomach or intestine. These problems may ... like coffee grounds, blood in the stool, or black and tarry stools.Keep all appointments with your ...

  5. Acid Precipitation

    ERIC Educational Resources Information Center

    Likens, Gene E.

    1976-01-01

    Discusses the fact that the acidity of rain and snow falling on parts of the U.S. and Europe has been rising. The reasons are still not entirely clear and the consequences have yet to be well evaluated. (MLH)

  6. Organic acids and aldehydes in throughfall and dew in a Japanese pine forest.

    PubMed

    Chiwa, Masaaki; Miyake, Takayuki; Kimura, Nobuhito; Sakugawa, Hiroshi

    2008-01-01

    We analyzed low molecular weight organic acids and aldehydes in throughfall under pine forest, and organic acids in dew on chemically inert surfaces and pine needle surfaces at urban- and mountain-facing sites of pine forest in western Japan. Low molecular weight organic acids and aldehydes accounted for less than 5% of the dissolved organic carbon in throughfall at both sites. Formaldehyde at both sites and formate at the mountain-facing site were found at significantly lower concentrations in throughfall than in rainfall, which may be explained by the degradation and/or retention of these components by the pine canopy as the incident precipitation passed through it. The oxalate concentration in throughfall was significantly higher than those in rainfall at both sites, suggesting that oxalate was derived from leaching from the pine foliage. At both sites, organic acid concentrations were higher in dew on the pine needles than in throughfall or dew on chemically inert surfaces. This could be due to the long contact time of dew on pine needles, during which leached substances from pine needles and dry deposits accumulated on their surfaces can dissolve into the small volume of dew. The role of enhanced concentrations of oxalate in an aqueous phase on the plant surfaces (e.g., dew) is discussed in relation to hydroxyl radical formation via the photo-Fenton reaction.

  7. Sorption of vapors of some organic liquids on soil humic acid and its relation to partitioning of organic compounds in soil organic matter

    USGS Publications Warehouse

    Chlou, G.T.; Kile, D.E.; Malcolm, R.L.

    1988-01-01

    Vapor sorption of water, ethanol, benzene, hexane, carbon tetrachloride, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, and 1,2-dibromoethane on (Sanhedron) soil humic acid has been determined at room temperature. Isotherms for all organic liquids are highly linear over a wide range of relative pressure (P/P??), characteristic of the partitioning (dissolution) of the organic compounds in soil humic acid. Polar liquids exhibit markedly greater sorption capacities on soil humic acid than relatively nonpolar liquids, in keeping with the polar nature of the soil humic acid as a partition medium. The limiting sorption (partition) capacities of relatively non-polar liquids are remarkably similar when expressed in terms of volumes per unit weight of soil humic acid. The soil humic acid is found to be about half as effective as soil organic matter in sorption of relatively nonpolar organic compounds. The nearly constant limiting sorption capacity for nonpolar organic liquids with soil humic acid on a volume-to-weight basis and its efficiency in sorption relative to soil organic matter provide a basis for predicting the approximate sorption (partition) coefficients of similar compounds in uptake by soil in aqueous systems.

  8. Acidic precipitation

    SciTech Connect

    Martin, H.C.

    1987-01-01

    At the International Symposium on Acidic Precipitation, over 400 papers were presented, and nearly 200 of them are included here. They provide an overview of the present state of the art of acid rain research. The Conference focused on atmospheric science (monitoring, source-receptor relationships), aquatic effects (marine eutrophication, lake acidification, impacts on plant and fish populations), and terrestrial effects (forest decline, soil acidification, etc.).

  9. Spatially-Interactive Biomolecular Networks Organized by Nucleic Acid Nanostructures

    PubMed Central

    Fu, Jinglin; Liu, Minghui; Liu, Yan; Yan, Hao

    2013-01-01

    Conspectus Living systems have evolved a variety of nanostructures to control the molecular interactions that mediate many functions including the recognition of targets by receptors, the binding of enzymes to substrates, and the regulation of enzymatic activity. Mimicking these structures outside of the cell requires methods that offer nanoscale control over the organization of individual network components. Advances in DNA nanotechnology have enabled the design and fabrication of sophisticated one-, two- and three-dimensional (1D, 2D and 3D) nanostructures that utilize spontaneous and sequence specific DNA hybridization. Compared to other self-assembling biopolymers, DNA nanostructures offer predictable and programmable interactions, and surface features to which other nanoparticles and bio-molecules can be precisely positioned. The ability to control the spatial arrangement of the components while constructing highly-organized networks will lead to various applications of these systems. For example, DNA nanoarrays with surface displays of molecular probes can sense noncovalent hybridization interactions with DNA, RNA, and proteins and covalent chemical reactions. DNA nanostructures can also align external molecules into well-defined arrays, which may improve the resolution of many structural determination methods, such as X-ray diffraction, cryo-EM, NMR, and super-resolution fluorescence. Moreover, by constraining target entities to specific conformations, self-assembled DNA nanostructures can serve as molecular rulers to evaluate conformation-dependent activities. This Account describes the most recent advances in the DNA nanostructure directed assembly of biomolecular networks and explores the possibility of applying this technology to other fields of study. Recently, several reports have demonstrated the DNA nanostructure directed assembly of spatially-interactive biomolecular networks. For example, researchers have constructed synthetic multi-enzyme cascades

  10. Mixed Acid Oxidation

    SciTech Connect

    Pierce, R.A.

    1999-10-26

    Several non-thermal processes have been developed to destroy organic waste compounds using chemicals with high oxidation potentials. These efforts have focused on developing technologies that work at low temperatures, relative to incineration, to overcome many of the regulatory issues associated with obtaining permits for waste incinerators. One such technique with great flexibility is mixed acid oxidation. Mixed acid oxidation, developed at the Savannah River Site, uses a mixture of an oxidant (nitric acid) and a carrier acid (phosphoric acid). The carrier acid acts as a non-volatile holding medium for the somewhat volatile oxidant. The combination of acids allows appreciable amounts of the concentrated oxidant to remain in the carrier acid well above the oxidant''s normal boiling point.

  11. Changes in sugars and organic acids in wolfberry (Lycium barbarum L.) fruit during development and maturation.

    PubMed

    Zhao, Jianhua; Li, Haoxia; Xi, Wanpeng; An, Wei; Niu, Linlin; Cao, Youlong; Wang, Huafang; Wang, Yajun; Yin, Yue

    2015-04-15

    Wolfberry (Lycium barbarum L.) fruits of three cultivars ('Damaye', 'Baihua' and 'Ningqi No.1') were harvested at five different ripening stages and evaluated for sugars and organic acids. Fructose, glucose and total sugar contents increased continually through development and reached their maxima at 34 days after full bloom (DAF). Fructose and glucose were the predominant sugars at maturity, while sucrose content had reduced by maturity. L.barbarum polysaccharides (LBP) content was in the range of 13.03-76.86 mg g(-1)FW during ripening, with a maximum at 20DAF. Citric, tartaric and quinic acids were the main organic acid components during development, and their levels followed similar trends: the highest contents were at 30, 14 and 20DAF, respectively. The significant correlations of fructose and total sugar contents with LBP content during fruit development indicated that they played a key role in LBP accumulation.

  12. HPLC-Profiles of Tocopherols, Sugars, and Organic Acids in Three Medicinal Plants Consumed as Infusions.

    PubMed

    Roriz, Custódio Lobo; Barros, Lillian; Carvalho, Ana Maria; Ferreira, Isabel C F R

    2014-01-01

    Pterospartum tridentatum (L.) Willk, Gomphrena globosa L., and Cymbopogon citratus (DC.) Stapf are medicinal plants that require a more detailed chemical characterization, given the importance of their consumption as infusions. Therefore, the individual profiles in tocopherols, free sugars, and organic acids were obtained by high performance liquid chromatography (HPLC) coupled to different detectors (fluorescence, refraction index, and photodiode array, resp.). C. citratus revealed the highest content of α-, and total tocopherols, glucose, sucrose, succinic, and ascorbic acids. P. tridentatum presented the highest fructose and total sugars content. Otherwise, G. globosa showed the highest organic acids concentration. As far as we know, this is the first study reporting the mentioned chemical compounds in G. globosa and C. citratus.

  13. HPLC-Profiles of Tocopherols, Sugars, and Organic Acids in Three Medicinal Plants Consumed as Infusions

    PubMed Central

    Roriz, Custódio Lobo; Barros, Lillian; Carvalho, Ana Maria; Ferreira, Isabel C. F. R.

    2014-01-01

    Pterospartum tridentatum (L.) Willk, Gomphrena globosa L., and Cymbopogon citratus (DC.) Stapf are medicinal plants that require a more detailed chemical characterization, given the importance of their consumption as infusions. Therefore, the individual profiles in tocopherols, free sugars, and organic acids were obtained by high performance liquid chromatography (HPLC) coupled to different detectors (fluorescence, refraction index, and photodiode array, resp.). C. citratus revealed the highest content of α-, and total tocopherols, glucose, sucrose, succinic, and ascorbic acids. P. tridentatum presented the highest fructose and total sugars content. Otherwise, G. globosa showed the highest organic acids concentration. As far as we know, this is the first study reporting the mentioned chemical compounds in G. globosa and C. citratus. PMID:26904623

  14. Acid Gas Capture Using CO2-Binding Organic Liquids

    SciTech Connect

    Heldebrant, David J.; Koech, Phillip K.; Rainbolt, James E.; Zheng, Feng

    2010-11-10

    Current chemical CO2 scrubbing technology is primarily aqueous alkanolamine based. These systems rapidly bind CO2 (forming water-soluble carbamate and bicarbonate salts) however, the process has serious disadvantages. The concentration of monoethanolamine rarely exceeds 30 wt % due to the corrosive nature of the solution, and this reduces the maximum CO2 volumetric (≤108 g/L) and gravimetric capacity (≤7 wt%) of the CO2 scrubber. The ≤30 wt % loading of ethanolamine also means that a large excess of water must be pumped and heated during CO2 capture and release, and this greatly increases the energy requirements especially considering the high specific heat of water (4 j/g-1K-1). Our approach is to switch to organic systems that chemically bind CO2 as liquid alkylcarbonate salts. Our CO2-binding organic liquids have higher CO2 solubility, lower specific heats, potential for less corrosion and lower binding energies for CO2 than aqueous systems. CO2BOLs also reversibly bind and release mixed sulfur oxides. Furthermore the CO2BOL system can be direct solvent replacements for any solvent based CO2 capture systems because they are commercially available reagents and because they are fluids they would not require extensive process re-engineering.

  15. Aquatic photolysis: photolytic redox reactions between goethite and adsorbed organic acids in aqueous solutions

    USGS Publications Warehouse

    Goldberg, M.C.; Cunningham, K.M.; Weiner, Eugene R.

    1993-01-01

    Photolysis of mono and di-carboxylic acids that are adsorbed onto the surface of the iron oxyhydroxide (goethite) results in an oxidation of the organic material and a reduction from Fe(III) to Fe(II) in the iron complex. There is a subsequent release of Fe2+ ions into solution. At constant light flux and constant solution light absorption, the factors responsible for the degree of photolytic reaction include: the number of lattice sites that are bonded by the organic acid; the rate of acid readsorption to the surface during photolysis; the conformation and structure of the organic acid; the degree of oxidation of the organic acid; the presence or absence of an ??-hydroxy group on the acid, the number of carbons in the di-acid chain and the conformation of the di-acid. The ability to liberate Fe(III) at pH 6.5 from the geothite lattice is described by the lyotropic series: tartrate>citrate> oxalate > glycolate > maleate > succinate > formate > fumarate > malonate > glutarate > benzoate = butanoate = control. Although a larger amount of iron is liberated, the series is almost the same at pH 5.5 except that oxalate > citrate and succinate > maleate. A set of rate equations are given that describe the release of iron from the goethite lattice. It was observed that the pH of the solution increases during photolysis if the solutions are not buffered. There is evidence to suggest the primary mechanism for all these reactions is an electron transfer from the organic ligand to the Fe(III) in the complex. Of all the iron-oxyhydroxide materials, crystalline goethite is the least soluble in water; yet, this study indicates that in an aqueous suspension, iron can be liberated from the goethite lattice. Further, it has been shown that photolysis can occur in a multiphase system at the sediment- water interface which results in an oxidation of the organic species and release of Fe2+ to solution where it becomes available for further reaction. ?? 1993.

  16. On-line electrodialytic matrix isolation for chromatographic determination of organic acids in wine.

    PubMed

    Ohira, Shin-Ichi; Kuhara, Kenta; Shigetomi, Aki; Yamasaki, Takayuki; Kodama, Yuko; Dasgupta, Purnendu K; Toda, Kei

    2014-10-31

    Chromatographic determination of organic acids is widely performed, but the matrix often calls for lengthy and elaborate sample preparation prior to actual analysis. Matrix components, e.g., proteins, non-ionics, lipids etc. are typically removed by a combination of centrifugation/filtration and solid phase extraction (SPE) that may include the use of ion-exchange media. Here we report the quantitative electrodialytic transfer of organic acids from complex samples to ultrapure water in seconds using cellulose membranes modified with N,N-dimethylaminoethyl methacrylate, which essentially eliminates the negative ζ-potential of a regenerated cellulose membrane surface. The transfer characteristics of the ion transfer device (ITD) were evaluated with linear carboxylic acids. While the ion transfer efficiencies may be affected by the acid dissociation constants, in most cases it is possible to achieve quantitative transfer under optimized device residence time (solution flow rate) and the applied voltage. In addition, the transfer efficiency was unaffected by the wide natural variation of pH represented in real samples. The approach was applied to organic acids in various samples, including red wine, considered to represent an especially difficult matrix. While quantitative transfer of the organic acids (as judged by agreement with standard pretreatment procedures involving SPE) was achieved, transfer of other matrix components was <5%. The processed samples could then be chromatographically analyzed in a straightforward manner. We used ion exclusion chromatography with direct UV detection; in treated samples; there was a dramatic reduction of the large early peaks observed compared to only 0.45μm membrane filtered samples.

  17. Effect of pH and organic acids on nitrogen transformations and metal dissolution in soils

    SciTech Connect

    Fu, Minhong.

    1989-01-01

    The effect of pH (4, 6, and 8) on nitrogen mineralization was evaluated in three Iowa surface soils treated with crop residues (corn (Zea mays L.), soybean (Glycine max (L.) Merr.), and sorghum (Sorghum vulgare Pers.), or alfalfa (Medicago sativa L.)) and incubated in leaching columns under aerobic conditions at 30C for 20 weeks. In general, N mineralization was significantly depressed at soil pH 4, compared with pH 6 or 8. The types of crop residues added influenced the pattern and amount of N mineralization. A study on the effect of 19 trace elements on the nitrate red activity of four Iowa surface soils showed that most trace elements inhibited this enzyme in acid and neutral soils. The trace elements Ag(I), Cd(II), Se(IV), As(V), and W(VI) were the most effective inhibitors, with >75% inhibition. Mn(II) was the least effective inhibitor, with <10% inhibition. Other trace elements included Cu(I), Co(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), Al(III), As(III), Cr(III), Fe(III), V(IV), Mo(VI), and Se(VI). The application of high-performance liquid chromatography (HPLC) showed that, when coupled to a refractive index detector, it is a rapid, sensitive, and accurate method for determining organic acids in soils. Three organic acids, acetic (2-20 mM), propionic (0-3 mM), and n-butyric (0-1.4 mM), were identified with HPLC and confirmed by gas chromatography in crop-residue-treated soils incubated under waterlogged conditions at 25C for 72 h. No organic acids were detected under aerobic conditions. Four mineral acids and 29 organic acids were studied for their effect on N mineralization and metal dissolution in soils incubated under waterlogged conditions at 30C for 10 days.

  18. On-line electrodialytic matrix isolation for chromatographic determination of organic acids in wine.

    PubMed

    Ohira, Shin-Ichi; Kuhara, Kenta; Shigetomi, Aki; Yamasaki, Takayuki; Kodama, Yuko; Dasgupta, Purnendu K; Toda, Kei

    2014-10-31

    Chromatographic determination of organic acids is widely performed, but the matrix often calls for lengthy and elaborate sample preparation prior to actual analysis. Matrix components, e.g., proteins, non-ionics, lipids etc. are typically removed by a combination of centrifugation/filtration and solid phase extraction (SPE) that may include the use of ion-exchange media. Here we report the quantitative electrodialytic transfer of organic acids from complex samples to ultrapure water in seconds using cellulose membranes modified with N,N-dimethylaminoethyl methacrylate, which essentially eliminates the negative ζ-potential of a regenerated cellulose membrane surface. The transfer characteristics of the ion transfer device (ITD) were evaluated with linear carboxylic acids. While the ion transfer efficiencies may be affected by the acid dissociation constants, in most cases it is possible to achieve quantitative transfer under optimized device residence time (solution flow rate) and the applied voltage. In addition, the transfer efficiency was unaffected by the wide natural variation of pH represented in real samples. The approach was applied to organic acids in various samples, including red wine, considered to represent an especially difficult matrix. While quantitative transfer of the organic acids (as judged by agreement with standard pretreatment procedures involving SPE) was achieved, transfer of other matrix components was <5%. The processed samples could then be chromatographically analyzed in a straightforward manner. We used ion exclusion chromatography with direct UV detection; in treated samples; there was a dramatic reduction of the large early peaks observed compared to only 0.45μm membrane filtered samples. PMID:25465003

  19. Roles of Organic Acid Anion Secretion in Aluminium Tolerance of Higher Plants

    PubMed Central

    Yang, Lin-Tong; Qi, Yi-Ping; Jiang, Huan-Xin; Chen, Li-Song

    2013-01-01

    Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium(Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H+-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed. PMID:23509687

  20. Effective Removal of Tetracycline from Aqueous Solution by Organic Acid-Coated Magnetic Nanoparticles.

    PubMed

    Guo, Liang; Liang, Yuyan; Chen, Xuelan; Xu, Wei; Wu, Kesheng; Wei, Hua; Xiong, Yonghua

    2016-03-01

    Self-assembled iron oxide nanocomposites are good magnetic nano-adsorbents that can be prepared using simple methods. Four types of organic acid-functionalised (oleic acid, undecenoic acid, caprylic acid or hexanoic acid) magnetic nanoparticles (MNPs) were synthesised through a one-pot chemisorption method for the removal of tetracycline (TC) from aqueous solution. The undecenoic acid-coated MNPs (UA-MNPs) exhibited the highest adsorption efficiency and can be easily retrieved with a low-gradient magnetic separator (0.4 Tesla) at pH 5.0 aqueous solution. The TC adsorption process on the UA-MNPs followed the Langmuir isotherm and the maximum adsorption capacities increased from 86.96 mg g(-1) to 222.2 mg g(-1) with the increase in temperature from 288 K to 318 K. The kinetics of adsorption fits pseudo-second-order model perfectly with a rate constant, 5.946 g mg(-1) min(-1) at 298 K. The positive values of the enthalpy (AH) and the negative value of the free energy (AG) indicated an endothermic and spontaneous adsorption process of TC on the UA-MNPs. Moreover, the UA-MNPs possessed excellent ability to adsorb the other three major types of TC antibiotics, including chlortetracycline, oxytetracycline and doxycycline. PMID:27455621

  1. Roles of organic acid anion secretion in aluminium tolerance of higher plants.

    PubMed

    Yang, Lin-Tong; Qi, Yi-Ping; Jiang, Huan-Xin; Chen, Li-Song

    2013-01-01

    Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium (Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H(+)-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed.

  2. Characterizing Corrosion Effects of Weak Organic Acids Using a Modified Bono Test

    NASA Astrophysics Data System (ADS)

    Zhou, Yuqin; Turbini, Laura J.; Ramjattan, Deepchand; Christian, Bev; Pritzker, Mark

    2013-12-01

    To meet environmental requirements and achieve benefits of cost-effective manufacturing, no-clean fluxes (NCFs) or low-solids fluxes have become popular in present electronic manufacturing processes. Weak organic acids (WOAs) as the activation ingredients in NCFs play an important role, especially in the current lead-free and halogen-free soldering technology era. However, no standard or uniform method exists to characterize the corrosion effects of WOAs on actual metallic circuits of printed wiring boards (PWBs). Hence, the development of an effective quantitative test method for evaluating the corrosion effects of WOAs on the PWB's metallic circuits is imperative. In this paper, the modified Bono test, which was developed to quantitatively examine the corrosion properties of flux residues, is used to characterize the corrosion effects of five WOAs (i.e., abietic acid, succinic acid, glutaric acid, adipic acid, and malic acid) on PWB metallic circuits. Experiments were performed under three temperature/humidity conditions (85°C/85% RH, 60°C/93% RH, and 40°C/93% RH) using two WOA solution concentrations. The different corrosion effects among the various WOAs were best reflected in the testing results at 40°C and 60°C. Optical microscopy was used to observe the morphology of the corroded copper tracks, and scanning electron microscopy (SEM) energy-dispersive x-ray (EDX) characterization was performed to determine the dendrite composition.

  3. Roles of organic acid anion secretion in aluminium tolerance of higher plants.

    PubMed

    Yang, Lin-Tong; Qi, Yi-Ping; Jiang, Huan-Xin; Chen, Li-Song

    2013-01-01

    Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium (Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H(+)-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed. PMID:23509687

  4. Interactions between hydrated cement paste and organic acids: Thermodynamic data and speciation modeling

    SciTech Connect

    De Windt, Laurent; Bertron, Alexandra; Larreur-Cayol, Steeves; Escadeillas, Gilles

    2015-03-15

    Interactions of short-chain organic acids with hydrated cement phases affect structure durability in the agro-food and nuclear waste industries but can also be used to modify cement properties. Most previous studies have been experimental, performed at fixed concentrations and pH, without quantitatively discriminating among polyacidity effects, or complexation and salt precipitation processes. This paper addresses such issues by thermodynamic equilibrium calculations for acetic, citric, oxalic, succinic acids and a simplified hydrated CEM-I. The thermodynamic constants collected from the literature allow the speciation to be modeled over a wide range of pH and concentrations. Citric and oxalic had a stronger chelating effect than acetic acid, while succinic acid was intermediate. Similarly, Ca-citrate and Ca-oxalate salts were more insoluble than Ca-acetate and Ca-succinate salts. Regarding aluminium complexation, hydroxyls, sulfates, and acid competition was highlighted. The exploration of acid mixtures showed the preponderant effect of oxalate and citrate over acetate and succinate.

  5. Usefulness of organic acid produced by Exiguobacterium sp. 12/1 on neutralization of alkaline wastewater.

    PubMed

    Kulshreshtha, Niha Mohan; Kumar, Anil; Bisht, Gopal; Pasha, Santosh; Kumar, Rita

    2012-01-01

    The aim of this study was to investigate the role of organic acids produced by Exiguobacterium sp. strain 12/1 (DSM 21148) in neutralization of alkaline wastewater emanated from beverage industry. This bacterium is known to be able to grow in medium of pH as high as pH 12.0 and to neutralize alkaline industrial wastewater from pH 12.0 to pH 7.5. The initial investigation on the type of functional groups present in medium, carried out using FT-IR spectroscopy, revealed the presence of peaks corresponding to carbonyl group and hydroxyl group, suggesting the release of carboxylic acid or related metabolic product(s). The identification of specific carboxylic group, carried out using RP-HPLC, revealed the presence of a single peak in the culture supernatant with retention time most similar to formic acid. The concentration of acid produced on different carbon sources was studied as a function of time. Although acid was present in same final concentration, the rate of acid production was highest in case of medium supplemented with sucrose followed by fructose and glucose. The knowledge of metabolic products of the bacterium can be considered as a first step towards realization of its potential for large-scale bioremediation of alkaline wastewater from beverage industry.

  6. Plums (Prunus domestica L.) are a good source of yeasts producing organic acids of industrial interest from glycerol.

    PubMed

    García-Fraile, Paula; Silva, Luís R; Sánchez-Márquez, Salud; Velázquez, Encarna; Rivas, Raúl

    2013-08-15

    The production of organic acids from several yeasts isolated from mature plums on media containing glycerol as carbon source was analysed by HPLC-UV. The yeasts isolated were identified by sequencing the 5.8S internal transcribed spacer as Pichia fermentans, Wickerhamomyces anomalus and Candida oleophila. The organic acid profiles of these strains comprise acetic, citric, succinic and malic acids that qualitatively and quantitatively vary between different species as well as among strains from the same species. The production from glycerol of succinic, acetic, citric, malic and oxalic acids from C. oleophila and W. anomalus, and that of succinic, oxalic and acetic acids by P. fermentans is reported for the first time in this work, as is the production of oxalic acid from glycerol in yeasts. Our results also showed that mature fruits can be a good source of new yeasts able to metabolise glycerol, producing different organic acids with industrial and biotechnological interest.

  7. Changes on organic acid secretion and accumulation in Plantago almogravensis Franco and Plantago algarbiensis Samp. under aluminum stress.

    PubMed

    Martins, Neusa; Gonçalves, Sandra; Andrade, Paula B; Valentão, Patrícia; Romano, Anabela

    2013-01-01

    We investigated the effect of Al (400μM) on organic acids secretion, accumulation and metabolism in Plantago almogravensis Franco and Plantago algarbiensis Samp. Al induced a significant reduction on root elongation only in P. algarbiensis. Both species accumulated considerable amounts of Al (>120μgg(-1)) in their tissues, roots exhibiting the highest contents (>900μgg(-1)). Al stimulated malonic acid secretion in P. algarbiensis, while citric, succinic and malic acids were secreted by P. almogravensis. Moreover, Al uptake was accompanied by substantial increases of citric, oxalic, malonic and fumaric acids contents in the plantlets of either species. Overall, the acid metabolizing enzymes were not directly involved in the Al induced organic acid secretion and accumulation. Our data suggest that Al detoxification in P. almogravensis implies both secretion of organic acids from roots and tolerance to high Al tissue concentrations, while in P. algarbiensis only the tolerance mechanism seems to be involved. PMID:23199681

  8. Changes on organic acid secretion and accumulation in Plantago almogravensis Franco and Plantago algarbiensis Samp. under aluminum stress.

    PubMed

    Martins, Neusa; Gonçalves, Sandra; Andrade, Paula B; Valentão, Patrícia; Romano, Anabela

    2013-01-01

    We investigated the effect of Al (400μM) on organic acids secretion, accumulation and metabolism in Plantago almogravensis Franco and Plantago algarbiensis Samp. Al induced a significant reduction on root elongation only in P. algarbiensis. Both species accumulated considerable amounts of Al (>120μgg(-1)) in their tissues, roots exhibiting the highest contents (>900μgg(-1)). Al stimulated malonic acid secretion in P. algarbiensis, while citric, succinic and malic acids were secreted by P. almogravensis. Moreover, Al uptake was accompanied by substantial increases of citric, oxalic, malonic and fumaric acids contents in the plantlets of either species. Overall, the acid metabolizing enzymes were not directly involved in the Al induced organic acid secretion and accumulation. Our data suggest that Al detoxification in P. almogravensis implies both secretion of organic acids from roots and tolerance to high Al tissue concentrations, while in P. algarbiensis only the tolerance mechanism seems to be involved.

  9. Acidity and origin of dissolved organic carbon in different vegetation zones

    NASA Astrophysics Data System (ADS)

    Hruška, Jakub; Oulehle, Filip; Myška, Oldřích; Chuman, Tomáš

    2016-04-01

    The acid/base character of aquatic dissolved organic carbon (DOC) has been studied intensively during recent decades with regard to the role of DOC in stream water acidity and the balance between natural acidity and anthropogenic acidification. Recently, DOC has been shown to play an important role in preindustrial surface waters. Studies focused on the acid/base properties of DOC have been carried out in mainly in Europe and North America and paint a conflicting picture. Some studies reported large differences in acid base properties, sometimes between quite similar and nearby localities, or between seasons at the same site. Other studies, however, found similar acid/base properties in waters from a variety of sites, sometimes far from each other as well as stable acid/base properties at the same site through different seasons or runoff events. Site density of DOC (amount of carboxylic groups per milligram of DOC) and SUVA was measured for streams (or small tundra ponds respectively) from the tundra in northern Alaska, boreal zone of Sweden, western Czech Republic (temperate region), and tropical Congo rain forest in central Africa. At least 10 samples from each region were taken from surface waters during the growing season. Titration of carboxylic groups after proton saturation on cation-exchange resin was used for site density determination. Despite very different climatic and vegetation properties and internal variation within a region, there was no statistically significant difference among regions for site density (it varied between 10.2-10.5 ueq/mg DOC) as well as for SUVA (tested by ANOVA). Results suggest that different vegetation and climate produced generally the same DOC in respect of acid/base character and SUVA. It also suggests that use of the one analytical technique was more important than differences between climatic zones itself.

  10. Fractionation of Fe isotopes by soil microbes and organic acids

    USGS Publications Warehouse

    Brantley, Susan L.; Liermann, Laura; Bullen, Thomas D.

    2001-01-01

    Small natural variations in Fe isotopes have been attributed to biological cycling. However, without understanding the mechanism of fractionation, it is impossible to interpret such variations. Here we show that the δ56Fe of Fe dissolved from a silicate soil mineral by siderophore-producing bacteria is as much as 0.8% lighter than bulk Fe in the mineral. A smaller isotopic shift is observed for Fe released abiotically by two chelates, and the magnitude of the shift increases with affinity of the ligand for Fe, consistent with a kinetic isotope effect during hydrolysis of Fe at the mineral surface. Fe dissolved abiotically without chelates shows no isotopic shift. The δ56Fe of the exchange fraction on soil grains is also lighter by ~0.6%-1% than Fe from both hornblende and iron oxyhydroxides. The kinetic isotope effect is therefore preserved in open systems such as soils. when recorded in the rock record, Fe isotopic fractionation could document Fe transport by organic molecules or by microbes where such entities were present in the geologic past.

  11. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger.

    PubMed

    Li, Zhen; Bai, Tongshuo; Dai, Letian; Wang, Fuwei; Tao, Jinjin; Meng, Shiting; Hu, Yunxiao; Wang, Shimei; Hu, Shuijin

    2016-01-01

    Phosphate solubilizing fungi (PSF) have huge potentials in enhancing release of phosphorus from fertilizer. Two PSF (NJDL-03 and NJDL-12) were isolated and identified as Penicillium oxalicum and Aspergillus niger respectively in this study. The quantification and identification of organic acids were performed by HPLC. Total concentrations of organic acids secreted by NJDL-03 and NJDL-12 are ~4000 and ~10,000 mg/L with pH values of 3.6 and 2.4 respectively after five-days culture. Oxalic acid dominates acidity in the medium due to its high concentration and high acidity constant. The two fungi were also cultured for five days with the initial pH values of the medium varied from 6.5 to 1.5. The biomass reached the maximum when the initial pH values are 4.5 for NJDL-03 and 2.5 for NJDL-12. The organic acids for NJDL-12 reach the maximum at the initial pH = 5.5. However, the acids by NJDL-03 continue to decrease and proliferation of the fungus terminates at pH = 2.5. The citric acid production increases significantly for NJDL-12 at acidic environment, whereas formic and oxalic acids decrease sharply for both two fungi. This study shows that NJDL-12 has higher ability in acid production and has stronger adaptability to acidic environment than NJDL-03. PMID:27126606

  12. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger

    PubMed Central

    Li, Zhen; Bai, Tongshuo; Dai, Letian; Wang, Fuwei; Tao, Jinjin; Meng, Shiting; Hu, Yunxiao; Wang, Shimei; Hu, Shuijin

    2016-01-01

    Phosphate solubilizing fungi (PSF) have huge potentials in enhancing release of phosphorus from fertilizer. Two PSF (NJDL-03 and NJDL-12) were isolated and identified as Penicillium oxalicum and Aspergillus niger respectively in this study. The quantification and identification of organic acids were performed by HPLC. Total concentrations of organic acids secreted by NJDL-03 and NJDL-12 are ~4000 and ~10,000 mg/L with pH values of 3.6 and 2.4 respectively after five-days culture. Oxalic acid dominates acidity in the medium due to its high concentration and high acidity constant. The two fungi were also cultured for five days with the initial pH values of the medium varied from 6.5 to 1.5. The biomass reached the maximum when the initial pH values are 4.5 for NJDL-03 and 2.5 for NJDL-12. The organic acids for NJDL-12 reach the maximum at the initial pH = 5.5. However, the acids by NJDL-03 continue to decrease and proliferation of the fungus terminates at pH = 2.5. The citric acid production increases significantly for NJDL-12 at acidic environment, whereas formic and oxalic acids decrease sharply for both two fungi. This study shows that NJDL-12 has higher ability in acid production and has stronger adaptability to acidic environment than NJDL-03. PMID:27126606

  13. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    SciTech Connect

    White, T. L.; Wiedenman, B. J.; Lambert, D. P.; Crump, S. L.; Fondeur, F. F.; Papathanassiu, A. E.; Kot, W. K.; Pegg, I. L.

    2013-10-01

    The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tank farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts

  14. Phytoremediation of uranium-contaminated soils: Role of organic acids in triggering uranium hyperaccumulation in plants

    SciTech Connect

    Huang, J.W.; Blaylock, M.J.; Kapulnik, Y.; Ensley, B.D.

    1998-07-01

    Uranium phytoextraction, the use of plants to extract U from contaminated soils, is an emerging technology. The authors report on the development of this technology for the cleanup of U-contaminated soils. In this research, they investigated the effects of various soil amendments on U desorption from soil to soil solution, studied the physiological characteristics of U uptake and accumulation in plants, and developed techniques to trigger U hyperaccumulation in plants. A key to the success of U phytoextraction is to increase soil U availability to plants. The authors have found that some organic acids can be added to soils to increase U desorption from soil to soil solution and to trigger a rapid U accumulation in plants. Of the organic acids (acetic acid, citric acid, and malic acid) tested, citric acid was the most effective in enhancing U accumulation in plants. Shoot U concentrations of Brassica juncea and Brassica chinensis grown in a U-contaminated soil increased from less than 5 mg kg{sup {minus}1} to more than 5,000 mg kg{sup {minus}1} in citric acid-treated soils. To their knowledge, this is the highest shoot U concentration reported for plants grown on U-contaminated soils. Using this U hyperaccumulation technique, they are now able to increase U accumulation in shoots of selected plant species grown in two U-contaminated soils by more than 1,000-fold within a few days. The results suggest that U phytoextraction may provide an environmentally friendly alternative for the cleanup of U-contaminated soils.

  15. Adsorption of short-chain organic acids onto nearshore marine sediments

    SciTech Connect

    Sansone, F.J.; Andrews, C.C.; Okamoto, M.

    1987-07-01

    The adsorption of acetate, butyrate, lactate, and stearate was measured using a clastic mud from Cape Lookout Bight, N.C. (CLB), a lateritic muddy sand from Kahana Stream, Oahu, Hawaii (KS), and a fine carbonate sand from Waimanalo Beach, Oahu, (WB). Partition coefficients (K/sub d/, moles adsorbed per g of solid phasemoles dissolved per ml of pore water) ranged from 10/sup 2.3/ to less than or equal to 10/sup -3.0/, and displayed the following trends: CLB > KS > WB, and stearate >> acetate similarly ordered butyrate > lactate. The percent adsorption of the sediment organic acid pools showed similar trends: stearate, 99%; acetate, 9-23%; butyrate, 5-23%; lactate, less than or equal to 0.2-7%. These results reflected the relatively nonpolar nature of the sand surfaces in WB and KS sediments, and the polarities of the organic acids. K/sub d/ was approximately constant for each organic acid-sediment combination over a dissolved organic acid concentration range of 10/sup 7/, using concentrations between 1M and 10/sup -14/ M. This constancy over a wide pore water concentration range suggested that adsorption was not limited by the availability of surface adsorption sites.

  16. Nitric acid-organic mixtures surveyed for use in separation by anion exchange methods

    NASA Technical Reports Server (NTRS)

    Bloomquist, C. A. A.; Faris, J. P.; Stewart, D. C.

    1968-01-01

    Column elution-spectrographic analysis technique compares certain solvents directly to the methanol system, using inert rare earths instead of actinides. Distribution ratios for americium between 90 percent solvent, 10 percent 5 M nitric acid and Dowex 1 nitrate form resin for a large group of organics miscible in water was determined.

  17. Effects of organic acid-surfactant mixtures on levels of bacteria and beef quality traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Organic acid efficacy as an antimicrobial treatment of beef carcass surfaces may be increased through the addition of surfactants. However, the effects of antimicrobial-surfactant mixtures on beef quality traits such as flavor and color stability may make their use unacceptable. Purp...

  18. Influence of aluminum on growth, mineral nutrition and organic acid exudation of rambutan (Nephelium lappaceum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A randomized complete block design experiment with six aluminum (Al) concentrations was carried out to evaluate the effect of aluminum on nutrient content, plant growth, dry matter production and Al-induced organic acid exudation in rambutan (Nephelium lappaceum). One rambutan cultivar was grown in...

  19. Chirality organization of aniline oligomers through hydrogen bonds of amino acid moieties.

    PubMed

    Ohmura, Satoshi D; Moriuchi, Toshiyuki; Hirao, Toshikazu

    2010-11-19

    Aniline oligomers bearing amino acid moieties were designed by the introduction of L/D-Ala-OMe into aniline oligomers to induce chirality organization of the π-conjugated aniline oligomer moieties, wherein the formation of intramolecular hydrogen bonds was demonstrated to play an important role to regulate the aniline oligomer moieties conformationally.

  20. SEMIVOLATILE ORGANIC ACIDS AND LEVOGLUCOSAN IN NEW YORK CITY AIR FOLLOWING 9/11/2001

    EPA Science Inventory

    Organic acid compounds and levoglucosan, an important molecular marker of burning cellulose, are detected in New York City air collected between 9/26/01 and 10/24/01 500 m from Ground Zero. Sampling of Ground Zero emissions at our site is commensurate with a southwesterly wind f...

  1. Organic acids and thymol: unsuitable alternative control of Aethina tumida Murray (Coleoptera: Nitidulidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To explore alternative small hive beetle control strategies, established Varroa destructor and Galleria mellonella treatments with organic acids (formic, lactic, oxalic and acetic) and thymol were investigated in the laboratory against eggs, larvae and adult small hive beetle (SHB). As formic and ox...

  2. Control of Listeria monocytogenes in Ham Deli Loaves using Organic Acids as Formulation Ingredients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic acids are popular preservatives and are utilized in the industry to inhibit the growth of Listeria monocytogenes (LM) in ready-to-eat (RTE) products. In this study, sodium lactate (SL), potassium lactate (PL) and sodium diacetate (SD) were utilized alone or in combination in the raw product...

  3. Surfactant enhanced disinfection of the human norovirus surrogate, tulane virus with organic acids and surfactant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human infection with foodborne viruses can occur following consumption of contaminated food, person-to-person body contact, or release of aerosols. Combinatorial treatments of surfactants and organic acids may have synergistic or additive mechanisms to inactivate foodborne viruses and prevent outbr...

  4. A Green Polymerization of Aspartic Acid for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Bennett, George D.

    2005-01-01

    The green polymerization of aspartic acid carried out during an organic-inorganic synthesis laboratory course for undergraduate students is described. The procedure is based on work by Donlar Corporation, a Peru, Illinois-based company that won a Green Chemistry Challenge Award in 1996 in the Small Business category for preparing thermal…

  5. Adsorption of short-chain organic acids onto nearshore marine sediments

    NASA Astrophysics Data System (ADS)

    Sansone, Francis J.; Andrews, Christine C.; Okamoto, Mauri Y.

    1987-07-01

    The adsorption of acetate, butyrate, lactate, and stearate was measured using a clastic mud from Cape Lookout Bight N.C. (CLB), a lateritic muddy sand from Kahana Stream, Oahu, Hawaii (KS), and a fine carbonate sand from Waimanalo Beach, Oahu, (WB). Partition coefficients ( Kd, moles adsorbed per g of solid phase/moles dissolved per ml of porewater) ranged from 10 2.3 to ≤10 -3.0, and displayed the following trends: CLB > KS > WB, and stearate > acetate ˜- butyrate > lactate. The percent adsorption of the sediment organic acid pools showed similar trends: stearate, 99%; acetate, 9-23%; butyrate, 5-23%; lactate, ≤0.2-7%. These results reflected the relatively nonpolar nature of the sand surfaces in WB and KS sediments, and the polarities of the organic acids. Kd was approximately constant for each organic acid-sediment combination over a dissolved organic acid concentration range of 10 7, using concentrations between 1M and 10 -14 M. This constancy over a wide porewater concentration range suggested that adsorption was not limited by the availability of surface adsorption sites.

  6. Direct Capture of Organic Acids From Fermentation Media Using Ionic Liquids

    SciTech Connect

    Klasson, K.T.

    2004-11-03

    Several ionic liquids have been investigated for the extraction of organic acids from fermentation broth. Partitioning of representative organic acids (lactic, acetic, and succinic) between aqueous solution and nine hydrophobic ionic liquids was measured. The extraction efficiencies were strongly dependent on pH of the aqueous phase. Distribution coefficient was very good (approximately 60) at low succinic acid concentrations for one of the ionic liquids (trihexyltetradecylphosphonium methanesulfonate) at neutral pH. However, this ionic liquid had to be diluted with nonanol due to its high viscosity in order to be useful. A diluent (trioctylamine) was also added to this mixture. The results suggest that an extraction system based on ionic liquids may be feasible for succinic acid recovery from fermentation broth and that two ideal extraction stages are needed to reduce the concentration from 33 g/L to 1 g/L of succinic acid. Further studies are needed to evaluate other issues related to practical applications, including ionic liquid loss in the process, toxicity effects of ionic liquids during simultaneous fermentation and extractions.

  7. Chirality of meteoritic free and IOM-derived monocarboxylic acids and implications for prebiotic organic synthesis

    NASA Astrophysics Data System (ADS)

    Aponte, José C.; Tarozo, Rafael; Alexandre, Marcelo R.; Alexander, Conel M. O.'D.; Charnley, Steven B.; Hallmann, Christian; Summons, Roger E.; Huang, Yongsong

    2014-04-01

    The origin of homochirality and its role in the development of life on Earth are among the most intriguing questions in science. It has been suggested that carbonaceous chondrites seeded primitive Earth with the initial organic compounds necessary for the origin of life. One of the strongest pieces of evidence supporting this theory is that certain amino acids in carbonaceous chondrites display a significant L-enantiomeric excess (ee), similar to those use by terrestrial life. Analyses of ee in meteoritic molecules other than amino acids would shed more light on the origins of homochirality. In this study we investigated the stereochemistry of two groups of compounds: (1) free monocarboxylic acids (MCAs) from CM2 meteorites LON 94101 and Murchison; and (2) the aliphatic side chains present in the insoluble organic matter (IOM) and extracted in the form of monocarboxylic acids (MCAs) from EET 87770 (CR2) and Orgueil (CI1). Contrary to the well-known ee observed for amino acids in meteorites, we found that meteoritic branched free and IOM-derived MCAs with 5-8 carbon atoms are essentially racemic. The racemic nature of these compounds is used to discuss the possible influence of ultraviolet circularly polarized light (UVCPL) and aqueous alterations on the parent body on chirality observed in in carbonaceous chondrites.

  8. Amino acid analysis

    NASA Technical Reports Server (NTRS)

    Winitz, M.; Graff, J. (Inventor)

    1974-01-01

    The process and apparatus for qualitative and quantitative analysis of the amino acid content of a biological sample are presented. The sample is deposited on a cation exchange resin and then is washed with suitable solvents. The amino acids and various cations and organic material with a basic function remain on the resin. The resin is eluted with an acid eluant, and the eluate containing the amino acids is transferred to a reaction vessel where the eluant is removed. Final analysis of the purified acylated amino acid esters is accomplished by gas-liquid chromatographic techniques.

  9. Particle growth by acid-catalyzed heterogeneous reactions of organic carbonyls on preexisting aerosols.

    PubMed

    Jang, Myoseon; Carroll, Brian; Chandramouli, Bharadwaj; Kamens, Richard M

    2003-09-01

    Aerosol growth by the heterogeneous reactions of different aliphatic and alpha,beta-unsaturated carbonyls in the presence/absence of acidified seed aerosols was studied in a 2 m long flow reactor (2.5 cm i.d.) and a 0.5-m3 Teflon film bag under darkness. For the flow reactor experiments, 2,4-hexadienal, 5-methyl-3-hexen-2-one, 2-cyclohexenone, 3-methyl-2-cyclopentenone, 3-methyl-2-cyclohexenone, and octanal were studied. The carbonyls were selected based on their reactivity for acid-catalyzed reactions, their proton affinity, and their similarity to the ring-opening products from the atmospheric oxidation of aromatics. To facilitate acid-catalyzed heterogeneous hemiacetal/acetal formation, glycerol was injected along with inorganic seed aerosols into the flow reactor system. Carbonyl heterogeneous reactions were accelerated in the presence of acid catalysts (H2SO4), leading to higher aerosol yields than in their absence. Aldehydes were more reactive than ketones for acid-catalyzed reactions. The conjugated functionality also resulted in higher organic aerosol yieldsthan saturated aliphatic carbonyls because conjugation with the olefinic bond increases the basicity of the carbonyl leading to increased stability of the protonated carbonyl. Aerosol population was measured from a series of sampling ports along the length of the flow reactor using a scanning mobility particle sizer. Fourier transform infrared spectrometry of either an impacted liquid aerosol layer or direct reaction of carbonyls as a thin liquid layer on a zinc selenide FTIR disk was employed to demonstrate the direct transformation of chemical functional groups via the acid-catalyzed reactions. These results strongly indicate that atmospheric multifunctional organic carbonyls, which are created by atmospheric photooxidation reactions, can contribute significantly to secondary organic aerosol formation through acid-catalyzed heterogeneous reactions. Exploratory studies in 25- and 190-m3 outdoor chambers

  10. Predicting sorption of organic acids to a wide range of carbonized sorbents

    NASA Astrophysics Data System (ADS)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2016-04-01

    Many contaminants and infochemicals are organic acids that undergo dissociation under environmental conditions. The sorption of dissociated anions to biochar and other carbonized sorbents is typically lower than that of neutral species. It is driven by complex processes that are not yet fully understood. It is known that predictive approaches developed for neutral compounds are unlikely to be suitable for organic acids, due to the effects of dissociation on sorption. Previous studies on the sorption of organic acids to soils have demonstrated that log Dow, which describes the decrease in hydrophobicity of acids upon dissociation, is a useful alternative to log Kow. The aim of the present study was to adapt a log Dow based approach to describe the sorption of organic acids to carbonized sorbents. Batch experiments were performed with a series of 9 sorbents (i.e., carbonized wood shavings, pig manure, and sewage sludge, carbon nanotubes and activated carbon), and four acids commonly used for pesticidal and biocidal purposes (i.e., 2,4-D, MCPA, 2,4-DB, and triclosan). Sorbents were comprehensively characterized, including by N2 and CO2 physisorption, Fourier transform infrared spectroscopy, and elemental analysis. The wide range of sorbents considered allows (i) discussing the mechanisms driving the sorption of neutral and anionic species to biochar, and (ii) their dependency on sorbate and sorbent properties. Results showed that the sorption of the four acids was influenced by factors that are usually not considered for neutral compounds (i.e., pH, ionic strength). Dissociation affected the sorption of the four compounds, and sorption of the anions ranged over five orders of magnitude, thus substantially contributing to sorption in some cases. For prediction purposes, most of the variation in sorption to carbonized sorbents (89%) could be well described with a two-parameter regression equation including log Dow and sorbent specific surface area. The proposed model

  11. Alteration of organic matter during infaunal polychaete gut passage and links to sediment organic geochemistry. Part I: Amino acids

    NASA Astrophysics Data System (ADS)

    Woulds, Clare; Middelburg, Jack J.; Cowie, Greg L.

    2012-01-01

    Of the factors which control the quantity and composition of organic matter (OM) buried in marine sediments, the links between infaunal ingestion and gut passage and sediment geochemistry have received relatively little attention. This study aimed to use feeding experiments and novel isotope tracing techniques to quantify amino acid net accumulation and loss during polychaete gut passage, and to link this to patterns of selective preservation and decay in sediments. Microcosms containing either Arenicolamarina or Hediste (formerly Nereis) diversicolor were constructed from defaunated sediment and filtered estuarine water, and maintained under natural temperature and light conditions. They were fed with 13C-labelled diatoms daily for 8 days, and animals were transferred into fresh, un-labelled sediment after ∼20 days. Samples of fauna, microcosm sediment and faecal matter were collected after 8, ∼20 and ∼40 days, and analysed for their bulk isotopic signatures and 13C-labelled amino acid compositions. Bulk isotopic data showed that, consistent with their feeding modes, Hediste assimilated added 13C more quickly, and attained a higher labelling level than Arenicola. Both species retained the added 13C in their biomass even after removal from the food. A principal component analysis of 13C-labelled amino acid mole percentages showed clear differences in composition between the algae, faunal tissues, and sediment plus faecal matter. Further, the two species of polychaete showed different compositions in their tissues. The amino acids phenylalanine, valine, leucine, iso-leucine, threonine and proline showed net accumulation in polychaete tissues. Serine, methionine, lysine, aspartic and glutamic acids and tyrosine were rapidly lost through metabolism, consistent with their presence in easily digestible cell components (as opposed to cell walls which offer physical protection). All sample types (polychaete tissues, sediments and faecal matter) were enriched in

  12. Permeability of acetic acid through organic films at the air-aqueous interface.

    PubMed

    Gilman, Jessica B; Vaida, Veronica

    2006-06-22

    Recent field studies of collected aerosol particles, both marine and continental, show that the outermost layers contain long-chain (C >or= 18) organics. The presence of these long-chain organics could impede the transport of gases and other volatile species across the interface. This could effect the particle's composition, lifetime, and heterogeneous chemistry. In this study, the uptake rate of acetic acid vapor across a clean interface and through films of long-chain organics into an aqueous subphase solution containing an acid-base indicator (bromocresol green) was measured under ambient conditions using visible absorption spectroscopy. Acetic acid is a volatile organic compound (VOC) and is an atmospherically relevant organic acid. The uptake of acetic acid through single-component organic films of 1-octadecanol (C(18)H(38)O), 1-triacontanol (C(30)H(62)O), cis-9-octadecen-1-ol (C(18)H(36)O), and nonacosane (C(29)H(60)) in addition to two mixed films containing equimolar 1-triacontanol/nonacosane and equimolar 1-triacontanol/cis-9-octadecen-1-ol was determined. These species represent long-chain organic compounds that reside at the air-aqueous interface of atmospheric aerosols. The cis-9-octadecen-1-ol film had little effect on the net uptake rate of acetic acid vapor into solution; however, the uptake rate was reduced by almost one-half by an interfacial film of 1-triacontanol. The measured uptake rates were used to calculate the permeability of acetic acid through the various films which ranged from 1.5 x 10(-3) cm s(-1) for 1-triacontanol, the least permeable film, to 2.5 x 10(-2) cm s(-1) for cis-9-octadecen-1-ol, the most permeable film. Both mixed films had permeabilities that were between that of the single-component films comprising the mixture. This shows that the permeability of a mixed film may not be solely determined by the most permeable species in the mixture. The permeabilities of all the films studied here are discussed in relation to their

  13. An organic solvent-tolerant phenolic acid decarboxylase from Bacillus licheniformis for the efficient bioconversion of hydroxycinnamic acids to vinyl phenol derivatives.

    PubMed

    Hu, Hongfei; Li, Lulu; Ding, Shaojun

    2015-06-01

    A new phenolic acid decarboxylase gene (blpad) from Bacillus licheniformis was cloned and overexpressed in Escherichia coli. The full-length blpad encodes a 166-amino acid polypeptide with a predicted molecular mass and pI of 19,521 Da and 5.02, respectively. The recombinant BLPAD displayed maximum activity at 37 °C and pH 6.0. This enzyme possesses a broad substrate specificity and is able to decarboxylate p-coumaric, ferulic, caffeic, and sinapic acids at the relative ratios of specific activities 100:74.59:34.41:0.29. Kinetic constant K m values toward p-coumaric, ferulic, caffeic, and sinapic acids were 1.64, 1.55, 1.93, and 2.45 mM, and V max values were 268.43, 216.80, 119.07, and 0.78 U mg(-1), respectively. In comparison with other phenolic acid decarboxylases, BLPAD exhibited remarkable organic solvent tolerance and good thermal stability. BLPAD showed excellent catalytic performance in biphasic organic/aqueous systems and efficiently converted p-coumaric and ferulic acids into 4-vinylphenol and 4-vinylguaiacol. At 500 mM of p-coumaric and ferulic acids, the recombinant BLPAD produced a total 60.63 g l(-1) 4-vinylphenol and 58.30 g l(-1) 4-vinylguaiacol with the conversion yields 97.02 and 70.96 %, respectively. The low yield and product concentration are the crucial drawbacks to the practical bioproduction of vinyl phenol derivatives using phenolic acid decarboxylases. These unusual properties make BLPAD a desirable biocatalyst for commercial use in the bioconversion of hydroxycinnamic acids to vinyl phenol derivatives via enzymatic decarboxylation in a biphasic organic/aqueous reaction system. PMID:25547838

  14. Salicylic Acid-Based Organic Dyes Acting as the Photosensitizer for Solar Cells.

    PubMed

    Hong, Sungjun; Park, Jae-Hyeong; Han, Ah-Reum; Ko, Kwan-Woo; Eom, Jin Hee; Namgoong, Sung Keon; Lo, Alvie S V; Gordon, Keith C; Yoon, Sungho; Han, Chi-Hwan

    2016-05-01

    A D-π-A metal-free organic dye, featuring salicylic acid as a novel acceptor/anchoring unit, has been designed, synthesized and applied to dye-sensitized solar cell. The detailed photophysical, electrochemical, photovoltaic and sensitizing properties of the organic dye were investigated, in addition to the computational studies of the dye and dye-(TiO2)6 system. A solar cell device using this new organic dye as a sensitizer produced a solar to electric power conversion efficiency (PCE) of 3.49% (J(sc) = 6.69 mAcm-2, V(oc) = 0.74 V and ff = 0.70) under 100 mWcm(-2) simulated AM 1.5 G solar irradiation, demonstrating that the salicylic acid-based organic dye is a suitable alternative to currently used organometallic dyes.

  15. Salicylic Acid-Based Organic Dyes Acting as the Photosensitizer for Solar Cells.

    PubMed

    Hong, Sungjun; Park, Jae-Hyeong; Han, Ah-Reum; Ko, Kwan-Woo; Eom, Jin Hee; Namgoong, Sung Keon; Lo, Alvie S V; Gordon, Keith C; Yoon, Sungho; Han, Chi-Hwan

    2016-05-01

    A D-π-A metal-free organic dye, featuring salicylic acid as a novel acceptor/anchoring unit, has been designed, synthesized and applied to dye-sensitized solar cell. The detailed photophysical, electrochemical, photovoltaic and sensitizing properties of the organic dye were investigated, in addition to the computational studies of the dye and dye-(TiO2)6 system. A solar cell device using this new organic dye as a sensitizer produced a solar to electric power conversion efficiency (PCE) of 3.49% (J(sc) = 6.69 mAcm-2, V(oc) = 0.74 V and ff = 0.70) under 100 mWcm(-2) simulated AM 1.5 G solar irradiation, demonstrating that the salicylic acid-based organic dye is a suitable alternative to currently used organometallic dyes. PMID:27483839

  16. Effects of Salt Stress on Amino Acid, Organic Acid, and Carbohydrate Composition of Roots, Bacteroids, and Cytosol of Alfalfa (Medicago sativa L.) 1

    PubMed Central

    Fougère, Francoise; Le Rudulier, Daniel; Streeter, John G.

    1991-01-01

    Ethanol-soluble organic acid, carbohydrate, and amino acid constituents of alfalfa (Medicago sativa) roots and nodules (cytosol and bacteroids) have been identified by gas-liquid chromatography and high performance liquid chromatography. Among organic acids, citrate was the predominant compound in roots and cytosol, with malonate present in the highest concentration in bacteroids. These two organic acids together with malate and succinate accounted for more than 85% of the organic acid pool in nodules and for 97% in roots. The major carbohydrates in roots, nodule cytosol, and bacteroids were (descending order of concentration): sucrose, pinitol, glucose, and ononitol. Maltose and trehalose appeared to be present in very low concentrations. Asparagine, glutamate, alanine, γ-aminobutyrate, and proline were the major amino acids in cytosol and bacteroids. In addition to these solutes, serine and glutamine were well represented in roots. When alfalfa plants were subjected to 0.15 m sodium chloride stress for 2 weeks, total organic acid concentration in nodules and roots were depressed by more than 40%, whereas lactate concentration increased by 11, 27, and 94% in cytosol, roots, and bacteroids, respectively. In bacteroids, lactate became the most abundant organic acid and might contribute partly to the osmotic adjustment. On the other hand, salt stress induced a large increase in the amino acid and carbohydrate pools. Within the amino acids, proline showed the largest increase, 11.3-, 12.8-, and 8.0-fold in roots, cytosol, and bacteroids, respectively. Its accumulation reflected an osmoregulatory mechanism not only in roots but also in nodule tissue. In parallel, asparagine concentration was greatly enhanced; this amide remained the major nitrogen solute and, in bacteroids, played a significant role in osmoregulation. On the contrary, the salt treatment had a very limited effect on the concentration of other amino acids. Among carbohydrates, pinitol concentration was

  17. Identification of Organic Sulfate Esters in d-Limonene Ozonolysis SOA Under Acidic Condition

    NASA Astrophysics Data System (ADS)

    Iinuma, Y.; Mueller, C.; Boege, O.; Herrmann, H.

    2006-12-01

    Secondary organic aerosol (SOA) components from gas phase ozonolysis of d-limonene were investigated in a series of indoor chamber experiments. The compounds smaller than 300 Da were quantified using capillary electrophoresis coupled to electrospray ionisation ion trap mass spectrometry (CE/ESI-ITMS). HPLC coupled to an ESI-TOFMS and an ESI-ITMS was used for structural study of dimmers and oligomers. Only 10% of the produced SOA could be attributed to low molecular weight carboxylic acids (Mw<300). The oxidation products which have molecular weights over 300 were detected regardless of the seed particle acidity but the concentrations of these compounds were much higher for acidic seed particle experiments. Strong signals of the compounds with mass to charge ratios (m/z) 281, 465 and 481 were detected when sulphuric acid was used in the seed particles. These compounds showed a strong fragment of m/z 97 in MS2 or MS3 spectra indicating the presence of sulfate in the structures. HPLC/ESI-TOFMS analysis suggests the elemental compositions of C10H17O7S-, C20H33O10S- and C20H33O11S- for m/z 281, 465 and 481, respectively. Based on MS^{n} and TOFMS results, they are most likely organic sulfate esters, possibly formed by a heterogeneous acid catalyzed reaction of a limonene oxidation product and sulfuric acid in the particle phase. The concentrations of the organic sulfate ester were as high as 3.7 μgm-3 for m/z 281.

  18. Molecular analysis of microbial community structure in the chicken ileum following organic acid supplementation.

    PubMed

    Nava, Gerardo M; Attene-Ramos, Matias S; Gaskins, H Rex; Richards, James D

    2009-06-12

    To compensate for possible decreases in animal production due to restrictions on the use of antibiotics as growth promoters, several non-antibiotic alternatives have been investigated. Organic acid supplementation (OAS) of feed or water has shown some promising results for affecting intestinal microbiota and reducing pathogenic bacteria in the gastrointestinal (GI) tract. However, few studies have explored the effects of OAS on microbial communities using objective molecular-based techniques. The aim of the present study was to characterize via 16S rRNA gene-based approaches responses of the intestinal microbiota after OAS in chicks. Newborn chicks were randomly divided in four treatments: (a) control (no antibiotic, no OAS); (b) antibiotic administration (bacitracin MD); (c) organic acid blend dl-2-hydroxy-4(methylthio) butanoic acid [HMTBA]; lactic, and phosphoric acid (HLP); and (d) organic acid blend HMTBA, formic, and propionic acid (HFP). Ileal contents and mucosal scrapings from 7 chicks/treatment/day were taken at 15, 22, and 29 days of age, and genomic DNA was isolated for the molecular analysis of the intestinal microbiota. The data demonstrate that HFP blend treatment for 29 consecutive days affected ileal microbial populations as indicated by community fingerprinting analysis (16S rRNA PCR-DGGE). In parallel, total bacterial and lactobacilli populations were increased by the HFP blend treatment as demonstrated by targeted qPCR analysis of 16S rRNA. In summary, the present data demonstrate that OAS, HFP blend treatment in particular, shifts intestinal microbiota, generates more homogenous and distinct populations, and increases Lactobacillus spp. colonization of the chick ileum. PMID:19269115

  19. Aquatic photodegradation of sunscreen agent p-aminobenzoic acid in the presence of dissolved organic matter.

    PubMed

    Zhou, Lei; Ji, Yuefei; Zeng, Chao; Zhang, Ya; Wang, Zunyao; Yang, Xi

    2013-01-01

    Dissolved organic matter (DOM) is an important photosensitizer for the phototransformation of organic contaminants in sunlit natural waters. This article focuses on the photolysis kinetics and mechanism of sunscreen agent p-aminobenzoic acid (PABA) in the presence of four kinds of DOM; Suwannee River fulvic acid (SRFA), Suwannee River humic acid (SRHA), Nordic Lake fulvic acid (NOFA) and Nordic Lake humic acid (NOHA). It is evident that direct photolysis of PABA is highly pH-dependent because different species of PABA have different electrical densities on the ring system. The presence of four kinds of DOM inhibits the photolysis of PABA primarily due to their light screening effect. Meanwhile, a complex interaction involving energy transfer, triplet carbonyl group induced electron transfer, and amino acid induced proton abstraction between PABA and DOM is verified by competition kinetics experiments and density functional theory (DFT) computation. In addition, DOM-induced singlet oxygen ((1)O(2)) and hydroxyl radical (OH) are determined to play an insignificant role in PABA photolysis by competition dynamics method. Photoproducts identification using solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC-MS) techniques reveals that the distribution of the photoproducts could not be affected by the addition of DOM. Two photodegradation pathways of PABA are temporarily proposed, in which the di(tri)-polymerization of intermediates are the dominant pathway whereas the oxidation of amino group to nitryl followed by hydroxylation is a minor process. Our findings reveal that direct photolysis is the dominant transformation pathway of PABA in natural sunlit waters, while the presence of DOM could evidently influence such process by light screening effect, energy transfer, electron transfer and proton abstraction mechanism. The findings in this study provide useful information for understanding of interaction between DOM and organic contaminants. PMID

  20. Chemically Activated Formation of Organic Acids in Reactions of the Criegee Intermediate with Aldehydes and Ketones

    SciTech Connect

    Jalan, Amrit; Allen, Joshua W.; Green, William H.

    2013-08-08

    Reactions of the Criegee intermediate (CI, .CH2OO.) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between .CH2OO. and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48–51 kcal mol-1 lower in energy, formed via 1,3- cycloaddition of .CH2OO. across the CQO bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O–O bond to form hydroxyalkyl esters. These hydroxyalkyl esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO o CH3CHO o CH3COCH3 (the highest yield being 10-4 times lower than the initial .CH2OO. concentration). At low pressures, chemically activated formation of organic acids (formic acid in the case of HCHO and CH3COCH3, formic and acetic acid in the case of CH3CHO) was found to be the major product channel in agreement with recent direct measurements. Collisional energy transfer parameters and the barrier heights for SOZ reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.

  1. Recovery of nickel and cobalt from organic acid complexes: adsorption mechanisms of metal-organic complexes onto aminophosphonate chelating resin.

    PubMed

    Deepatana, A; Valix, M

    2006-09-21

    This study examined the recovery of nickel and cobalt from organic acid complexes using a chelating aminophosphonate Purolite S950 resin. These metal complexes are generated by bioleaching nickel laterite ores, a commercial nickel and cobalt mineral oxide, with heterotrophic organism and their metabolites or organic acid products. Equilibrium adsorption tests were conducted as a function of Ni and Co concentrations (15-2000 mg/L), solution pH (0.01 and 0.1 M acids) and three metabolic complexing agents (citrate, malate and lactate). It was shown that the adsorption of the various Ni- and Co-complexes on Purolite were quite low, 16-18 and 5.4-9 mg/g of resin, respectively, in comparison to the smaller nickel ions and nickel sulfate. This was attributed to the bulky organic ligands which promoted crowding effect or steric hindrance. The adsorption of these complexes was further hampered by the strong affinity of the resin to H+ ions under acidic conditions. Mechanisms of adsorption, as inferred from the fitted empirical Langmuir and Freundlich models, were correlated to the proposed steric hindrance and competitive adsorption effects. Nickel and cobalt elution from the resin were found be effective and were independent of the type of metal complexes and metal concentrations. This study demonstrated the relative challenges involved in recovering nickel and cobalt from bioleaching solutions. PMID:16698178

  2. Recovery of nickel and cobalt from organic acid complexes: adsorption mechanisms of metal-organic complexes onto aminophosphonate chelating resin.

    PubMed

    Deepatana, A; Valix, M

    2006-09-21

    This study examined the recovery of nickel and cobalt from organic acid complexes using a chelating aminophosphonate Purolite S950 resin. These metal complexes are generated by bioleaching nickel laterite ores, a commercial nickel and cobalt mineral oxide, with heterotrophic organism and their metabolites or organic acid products. Equilibrium adsorption tests were conducted as a function of Ni and Co concentrations (15-2000 mg/L), solution pH (0.01 and 0.1 M acids) and three metabolic complexing agents (citrate, malate and lactate). It was shown that the adsorption of the various Ni- and Co-complexes on Purolite were quite low, 16-18 and 5.4-9 mg/g of resin, respectively, in comparison to the smaller nickel ions and nickel sulfate. This was attributed to the bulky organic ligands which promoted crowding effect or steric hindrance. The adsorption of these complexes was further hampered by the strong affinity of the resin to H+ ions under acidic conditions. Mechanisms of adsorption, as inferred from the fitted empirical Langmuir and Freundlich models, were correlated to the proposed steric hindrance and competitive adsorption effects. Nickel and cobalt elution from the resin were found be effective and were independent of the type of metal complexes and metal concentrations. This study demonstrated the relative challenges involved in recovering nickel and cobalt from bioleaching solutions.

  3. Amino acid diagenesis, organic carbon and nitrogen mineralization in surface sediments from the inner Oslofjord, Norway

    SciTech Connect

    Haugen, J.E. ); Lichtentaler, R. )

    1991-06-01

    Total hydrolyzed amino acids (THAA), total organic carbon (TOC), and total nitrogen (TN) have been measured in an oxic and anoxic surface sediment from the inner Oslofjord. Downcore variations of these parameters are ascribed to both diagenesis and changes in organic matter supply, the latter being most important. These changes are most prominent in the anoxic sediment, which reflects the eutrophication history of the innermost part of the fjord. Downcore, THAA content decreased from 3.8 to 2.0 mg/g (salt-free dry weight) in the oxic sediment and from 22.3 to 3.8 mg/g in the anoxic sediment. Total amino acid nitrogen varied between 17 and 34% of total nitrogen in the oxic, and 25 and 54% in the anoxic, sediment. Organic carbon and organic nitrogen accumulation rates and depth integrated mineralization rates are about three times higher in the anoxic sediment than in the oxic sediment. Recycling of amino acids accounted for 4 to 12% of the total organic carbon and 13 to 40% of the total organic nitrogen regenerated in these sediments.

  4. Improved liquid chromatographic method for determination of organic acids in leaves, pulp, fruits, and rinds of Garcinia.

    PubMed

    Jayaprakasha, Guddadarangavvanahally K; Jena, Bhabani S; Sakariah, Kunnumpurath K

    2003-01-01

    An improved liquid chromatographic (LC) method was developed for determination of organic acids in leaves, pulp, fruits, and rinds of Garcinia. At present, the commonly used LC method for analysis of organic acids in Garcinia extracts uses direct application of the extracts on the column. This practice gradually reduces efficiency of the column and shortens its life. In the improved method, the interfering substances such as pigments and xanthones were effectively removed by passing the aqueous extract through an ODS cartridge. With subsequent injection on a C18 reversed-phase column, using 6.0 mM phosphoric acid as the mobile phase with a flow rate of 1.0 mL/min and UV detection at 210 nm, the organic acids were determined in the extracts. The major organic acid was (-)-hydroxycitric acid at the level of 2.5, 0.8, 3.0, and 20.1% in leaf, pulp, fresh fruit, and dried rinds, respectively. Minor quantities of hydroxycitric acid lactone, oxalic acid, and citric acid were also identified. Limits of detection and recoveries were 0.9-1.5 microg and 93.9-99.8%, respectively. This is the first report on the composition of organic acids from Garcinia pedunculata.

  5. Determination of metabolic organic acids in cerebrospinal fluid by microchip electrophoresis.

    PubMed

    Danč, Ladislav; Bodor, Róbert; Troška, Peter; Horčičiak, Michal; Masár, Marián

    2014-08-01

    A new MCE method for the determination of oxalic, citric, glycolic, lactic, and 2- and 3-hydroxybutyric acids, indicators of some metabolic and neurological diseases, in cerebrospinal fluid (CSF) was developed. MCE separations were performed on a PMMA microchip with coupled channels at lower pH (5.5) to prevent proteins interference. A double charged counter-ion, BIS-TRIS propane, was very effective in resolving the studied organic acids. The limits of detection (S/N = 3) ranging from 0.1 to 1.6 μM were obtained with the aid of contact conductivity detector implemented directly on the microchip. RSDs for migration time and peak area of organic acids in artificial and CSF samples were <0.8 and <9.7%, respectively. Recoveries of organic acids in untreated CSF samples on the microchip varied from 91 to 104%. Elimination of chloride interference, a major anionic constituent of CSF, has been reached by two approaches: (i) the use of coupled channels microchip in a column switching mode when approximately 97-99% of chloride was removed electrophoretically in the first separation channel and (ii) the implementation of micro-SPE with silver-form resin prior to the MCE analysis, which selectively removed chloride from undeproteinized CSF samples.

  6. Isotopic composition of Murchison organic compounds: Intramolecular carbon isotope fractionation of acetic acid. Simulation studies of cosmochemical organic syntheses

    NASA Technical Reports Server (NTRS)

    Yuen, G. U.; Cronin, J. R.; Blair, N. E.; Desmarais, D. J.; Chang, S.

    1991-01-01

    Recently, in our laboratories, samples of Murchison acetic acid were decarboxylated successfully and the carbon isotopic composition was measured for the methane released by this procedure. These analyses showed significant differences in C-13/C-12 ratios for the methyl and carboxyl carbons of the acetic acid molecule, strongly suggesting that more than one carbon source may be involved in the synthesis of the Murchison organic compounds. On the basis of this finding, laboratory model systems simulating cosmochemical synthesis are being studied, especially those processes capable of involving two or more starting carbon sources.

  7. Downstream extraction process development for recovery of organic acids from a fermentation broth.

    PubMed

    Bekatorou, Argyro; Dima, Agapi; Tsafrakidou, Panagiotia; Boura, Konstantina; Lappa, Katerina; Kandylis, Panagiotis; Pissaridi, Katerina; Kanellaki, Maria; Koutinas, Athanasios A

    2016-11-01

    The present study focused on organic acids (OAs) recovery from an acidogenic fermentation broth, which is the main problem regarding the use of OAs for production of ester-based new generation biofuels or other applications. Specifically, 10 solvents were evaluated for OAs recovery from aqueous media and fermentation broths. The effects of pH, solvent/OAs solution ratios and application of successive extractions were studied. The 1:1 solvent/OAs ratio showed the best recovery rates in most cases. Butyric and isobutyric acids showed the highest recovery rates (80-90%), while lactic, succinic, and acetic acids were poorly recovered (up to 45%). The OAs recovery was significantly improved by successive 10-min extractions. Alcohols presented the best extraction performance. The process using repeated extractions with 3-methyl-1-butanol led to the highest OAs recovery. However, 1-butanol can be considered as the most cost-effective option taking into account its price and availability. PMID:27560489

  8. Recent advances in alcohol and organic acid fractionation of lignocellulosic biomass.

    PubMed

    Li, Ming-Fei; Yang, Sheng; Sun, Run-Cang

    2016-01-01

    Organosolv fractionation is a promising process to separate lignocellulosic biomass for the preparation of multiply products including biofuels, chemicals, and materials. This review presents the state of art of different processes applying alcohols and organic acids to treat lignocellulosic biomass for the production of ethanol, lignin, xylose, etc. The major organosolv technologies using ethanol, formic acid, and acetic acid, are intensively introduced and discussed in depth. In addition, the structural modifications of the major components of lignocelluloses, the technical processes, and the applications of the products were also summarized. The object of the review is to provide recent information in the field of organosolv process for the integrated biorefinery. The perspectives of the challenge and opportunity related to this topic are also presented. PMID:26476870

  9. Downstream extraction process development for recovery of organic acids from a fermentation broth.

    PubMed

    Bekatorou, Argyro; Dima, Agapi; Tsafrakidou, Panagiotia; Boura, Konstantina; Lappa, Katerina; Kandylis, Panagiotis; Pissaridi, Katerina; Kanellaki, Maria; Koutinas, Athanasios A

    2016-11-01

    The present study focused on organic acids (OAs) recovery from an acidogenic fermentation broth, which is the main problem regarding the use of OAs for production of ester-based new generation biofuels or other applications. Specifically, 10 solvents were evaluated for OAs recovery from aqueous media and fermentation broths. The effects of pH, solvent/OAs solution ratios and application of successive extractions were studied. The 1:1 solvent/OAs ratio showed the best recovery rates in most cases. Butyric and isobutyric acids showed the highest recovery rates (80-90%), while lactic, succinic, and acetic acids were poorly recovered (up to 45%). The OAs recovery was significantly improved by successive 10-min extractions. Alcohols presented the best extraction performance. The process using repeated extractions with 3-methyl-1-butanol led to the highest OAs recovery. However, 1-butanol can be considered as the most cost-effective option taking into account its price and availability.

  10. Matrix-assisted pulsed laser deposition of croconic acid, a diprotic organic ferroelectric

    NASA Astrophysics Data System (ADS)

    O'Malley, S. M.; Yi, Sun Yong; Jimenez, Richard; Corgan, Jeffrey; Borchert, James; Kuchmek, John; Papantonakis, M. R.; McGill, R. A.; Bubb, D. M.

    2011-11-01

    MAPLE has long been demonstrated as a successful tool for the deposition of relatively large polymerics and biomaterials. Less work has been done with small-mass organic compounds. In this work, MAPLE has been demonstrated as a viable materials processing technique for 4,5-dihydroxycyclopentenetrione, a diprotic hydroxylic acid, more commonly known as croconic acid ((C=O)3(COH)2). Croconic acid readily dissociates in solution, and, as prepared in the solvent matrices used in this study, was deposited in large part as the solvated croconate conjugate base. Various substrates were utilized and the deposited films were characterized by infrared spectroscopy, atomic and piezo-force microscopy, scanning electron microscopy, and second harmonic generation measurements. This material has potential application in nonlinear optics and green computing as memory elements.

  11. Mechanistic study of secondary organic aerosol components formed from nucleophilic addition reactions of methacrylic acid epoxide

    NASA Astrophysics Data System (ADS)

    Birdsall, A. W.; Miner, C. R.; Mael, L. E.; Elrod, M. J.

    2014-08-01

    Recently, methacrylic acid epoxide (MAE) has been proposed as a precursor to an important class of isoprene-derived compounds found in secondary organic aerosol (SOA): 2-methylglyceric acid (2-MG) and a set of oligomers, nitric acid esters and sulfuric acid esters related to 2-MG. However, the specific chemical mechanisms by which MAE could form these compounds have not been previously studied. In order to determine the relevance of these processes to atmospheric aerosol, MAE and 2-MG have been synthesized and a series of bulk solution-phase experiments aimed at studying the reactivity of MAE using nuclear magnetic resonance (NMR) spectroscopy have been performed. The present results indicate that the acid-catalyzed MAE reaction is more than 600 times slower than a similar reaction of an important isoprene-derived epoxide, but is still expected to be kinetically feasible in the atmosphere on more acidic SOA. The specific mechanism by which MAE leads to oligomers was identified, and the reactions of MAE with a number of atmospherically relevant nucleophiles were also investigated. Because the nucleophilic strengths of water, sulfate, alcohols (including 2-MG), and acids (including MAE and 2-MG) in their reactions with MAE were found to be of a similar magnitude, it is expected that a diverse variety of MAE + nucleophile product species may be formed on ambient SOA. Thus, the results indicate that epoxide chain reaction oligomerization will be limited by the presence of high concentrations of non-epoxide nucleophiles (such as water); this finding is consistent with previous environmental chamber investigations of the relative humidity-dependence of 2-MG-derived oligomerization processes and suggests that extensive oligomerization may not be likely on ambient SOA because of other competitive MAE reaction mechanisms.

  12. Mechanistic study of secondary organic aerosol components formed from nucleophilic addition reactions of methacrylic acid epoxide

    NASA Astrophysics Data System (ADS)

    Birdsall, A. W.; Miner, C. R.; Mael, L. E.; Elrod, M. J.

    2014-12-01

    Recently, methacrylic acid epoxide (MAE) has been proposed as a precursor to an important class of isoprene-derived compounds found in secondary organic aerosol (SOA): 2-methylglyceric acid (2-MG) and a set of oligomers, nitric acid esters, and sulfuric acid esters related to 2-MG. However, the specific chemical mechanisms by which MAE could form these compounds have not been previously studied with experimental methods. In order to determine the relevance of these processes to atmospheric aerosol, MAE and 2-MG have been synthesized and a series of bulk solution-phase experiments aimed at studying the reactivity of MAE using nuclear magnetic resonance (NMR) spectroscopy have been performed. The present results indicate that the acid-catalyzed MAE reaction is more than 600 times slower than a similar reaction of an important isoprene-derived epoxide, but is still expected to be kinetically feasible in the atmosphere on more acidic SOA. The specific mechanism by which MAE leads to oligomers was identified, and the reactions of MAE with a number of atmospherically relevant nucleophiles were also investigated. Because the nucleophilic strengths of water, sulfate, alcohols (including 2-MG), and acids (including MAE and 2-MG) in their reactions with MAE were found to be of similar magnitudes, it is expected that a diverse variety of MAE + nucleophile product species may be formed on ambient SOA. Thus, the results indicate that epoxide chain reaction oligomerization will be limited by the presence of high concentrations of non-epoxide nucleophiles (such as water); this finding is consistent with previous environmental chamber investigations of the relative humidity dependence of 2-MG-derived oligomerization processes and suggests that extensive oligomerization may not be likely on ambient SOA because of other competitive MAE reaction mechanisms.

  13. Codon and Amino Acid Usage Are Shaped by Selection Across Divergent Model Organisms of the Pancrustacea.

    PubMed

    Whittle, Carrie A; Extavour, Cassandra G

    2015-11-01

    In protein-coding genes, synonymous codon usage and amino acid composition correlate to expression in some eukaryotes, and may result from translational selection. Here, we studied large-scale RNA-seq data from three divergent arthropod models, including cricket (Gryllus bimaculatus), milkweed bug (Oncopeltus fasciatus), and the amphipod crustacean Parhyale hawaiensis, and tested for optimization of codon and amino acid usage relative to expression level. We report strong signals of AT3 optimal codons (those favored in highly expressed genes) in G. bimaculatus and O. fasciatus, whereas weaker signs of GC3 optimal codons were found in P. hawaiensis, suggesting selection on codon usage in all three organisms. Further, in G. bimaculatus and O. fasciatus, high expression was associated with lowered frequency of amino acids with large size/complexity (S/C) scores in favor of those with intermediate S/C values; thus, selection may favor smaller amino acids while retaining those of moderate size for protein stability or conformation. In P. hawaiensis, highly transcribed genes had elevated frequency of amino acids with large and small S/C scores, suggesting a complex dynamic in this crustacean. In all species, the highly transcribed genes appeared to favor short proteins, high optimal codon usage, specific amino acids, and were preferentially involved in cell-cycling and protein synthesis. Together, based on examination of 1,680,067, 1,667,783, and 1,326,896 codon sites in G. bimaculatus, O. fasciatus, and P. hawaiensis, respectively, we conclude that translational selection shapes codon and amino acid usage in these three Pancrustacean arthropods. PMID:26384771

  14. Initial pH of medium affects organic acids production but do not affect phosphate solubilization.

    PubMed

    Marra, Leandro M; de Oliveira-Longatti, Silvia M; Soares, Cláudio R F S; de Lima, José M; Olivares, Fabio L; Moreira, Fatima M S

    2015-06-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization.

  15. Initial pH of medium affects organic acids production but do not affect phosphate solubilization

    PubMed Central

    Marra, Leandro M.; de Oliveira-Longatti, Silvia M.; Soares, Cláudio R.F.S.; de Lima, José M.; Olivares, Fabio L.; Moreira, Fatima M.S.

    2015-01-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization. PMID:26273251

  16. Parallel transport of an organic acid by solid-phase and macropore diffusion in a weakly basic ion exchanger

    SciTech Connect

    Yoshida, Hiroyuki; Takatsuji; Wataru

    2000-04-01

    The parallel transport of an organic acid by solid-phase and macropore diffusion within a porous ion exchanger was studied by measuring equilibrium isotherms and uptake curves for adsorption of acetic acid and lactic acid on a weakly basic ion exchanger, DIAION WA30. Experimental adsorption isotherms were correlated by the Langmuir equation. The Langmuir equilibrium constant of acetic acid was close to that of lactic acid, and the saturation capacity of acetic acid was about 84% that of lactic acid. Intraparticle effective diffusivity D{sub eff} was determined using the homogeneous Fickian diffusion model. The value of D{sub eff} for acetic acid was about 1.5 times lactic acid. Because D{sub eff} increased with linearly increasing bulk phase concentration C{sub 0}, D{sub eff} was separated to the solid-phase diffusivity D{sub s} and the macropore diffusivity D{sub P} by applying the parallel diffusion model. The model agreed well with the experimental curves. The values of D{sub S} and D{sub P} for acetic acid were about 2 and 1.5 times those of lactic acid, respectively. The acetic acid and the lactic acid may be separated by the difference of the diffusion rates.

  17. Salicylic acids

    PubMed Central

    Hayat, Shamsul; Irfan, Mohd; Wani, Arif; Nasser, Alyemeni; Ahmad, Aqil

    2012-01-01

    Salicylic acid is well known phytohormone, emerging recently as a new paradigm of an array of manifestations of growth regulators. The area unleashed yet encompassed the applied agriculture sector to find the roles to strengthen the crops against plethora of abiotic and biotic stresses. The skipped part of integrated picture, however, was the evolutionary insight of salicylic acid to either allow or discard the microbial invasion depending upon various internal factors of two interactants under the prevailing external conditions. The metabolic status that allows the host invasion either as pathogenesis or symbiosis with possible intermediary stages in close systems has been tried to underpin here. PMID:22301975

  18. Transformation of Monoaromatic hydrocarbons to organic acids in anoxic groundwater environment

    USGS Publications Warehouse

    Cozzarelli, I.M.; Eganhouse, R.P.; Baedecker, M.J.

    1990-01-01

    The transformation of benzene and a series of alkylbenzenes was studied in anoxic groundwater of a shallow glacial-outwash aquifer near Bemidji, Minnesota, U.S.A. Monoaromatic hydrocarbons, the most water-soluble components of crude oil, were transported downgradient of an oil spill, forming a plume of contaminated groundwater. Organic acids that were not original components of the oil were identified in the anoxic groundwater. The highest concentrations of these oxidized organic compounds were found in the anoxic plume where a decrease in concentrations of structurally related alkylbenzenes was observed. These results suggest that biological transformation of benzene and alkylbenzenes to organic acid intermediates may be an important attenuation process in anoxic environments. The transformation of a complex mixture of hydrocarbons to a series of corresponding oxidation products in an anoxic subsurface environment provides new insight into in situ anaerobic degradation processes. ?? 1990 Springer-Verlag New York Inc.

  19. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    PubMed

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  20. [Surface organic modification of acid vermiculite and its adsorption of hydrophobic micro pollutants in aqueous solutions].

    PubMed

    Jiang, Zheng-Ming; Yu, Xu-Biao; Hu, Yun; Ren, Yuan; Li, Xue-Hui; Wei, Chao-Hai

    2013-07-01

    To solve the problems of intercalated organoclay such as low surface area and inhomogeneous organic loading, natural vermiculite was activated by acid leaching and then modified by trimethylchlorosilane (CTMS) and triethylchlorosilane (CTES). The modified materials were characterized by FTIR, BET, SEM and TG. Experimental results indicated that the surface area of the modified acid vermiculite (361.0 m2 x g(-1)) was much larger than that of the intercalated organovermiculite (6.0 m2 x g(-1)), moreover, the organic groups were grafted onto the surface covalently. Diethyl phthalate (DEP), a typical hydrophobic micro-organic pollutant, was used to test the adsorption capacity of different adsorbents. The adsorption amounts of DEP were 63.7, 51.2 and 15.7 mg x g(-1) for CTES, CTMS and intercalated organovermiculite in this study, respectively. The high organic affinity of modified acid vermiculite was due to both the bigger surface area and the homogeneous organic loading. The adsorption kinetics was found to follow the pseudosecond-order model. The isotherms exhibited linear characteristics and could be described by Henry and Freundlich equations, indicating that the partition process is the main control mechanism of the removal of DEP.

  1. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    PubMed

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  2. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    PubMed Central

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab.

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  3. Sequential photochemical and microbial degradation of organic molecules bound to humic acid

    SciTech Connect

    Amador, J.A.; Zika, R.G. ); Alexander, M. )

    1989-11-01

    We studied the effects of photochemical processes on the mineralization by soil microorganisms of (2-{sup 14}C)glycine bound to soil humic acid. Microbial mineralization of these complexes in the dark increased inversely with the molecular weight of the complex molecules. Sunlight irradiation of glycine-humic acid complexes resulted in loss of absorbance in the UV range and an increase in the amount of {sup 14}C-labeled low-molecular-weight photoproducts and the rate and extent of mineralization. More than half of the radioactivity in the low-molecular-weight photoproducts appears to be associated with carboxylic acids. Microbial mineralization of the organic carbon increased with solar flux and was proportional to the loss of A{sub 330}. Mineralization was proportional to the percentage of the original complex that was converted to low-molecular-weight photoproducts. Only light at wavelengths below 380 nm had an effect on the molecular weight distribution of the products formed from the glycine-humic acid complexes and on the subsequent microbial mineralization. Our results indicate that photochemical processes generate low-molecular-weight, readily biodegradable molecules from high-molecular-weight complexes of glycine with humic acid.

  4. Effect of acid deposition on quantity and quality of dissolved organic matter in soil-water.

    PubMed

    Ekström, Sara M; Kritzberg, Emma S; Kleja, Dan B; Larsson, Niklas; Nilsson, P Anders; Graneli, Wilhelm; Bergkvist, Bo

    2011-06-01

    The aim of this study was to explore how acid deposition may affect the concentration and quality of dissolved organic matter (DOM) in soil-water. This was done by a small-scale acidification experiment during two years where 0.5 × 0.5 m(2) plots were artificially irrigated with water with different sulfuric acid content, and soil-water was sampled using zero-tension lysimeters under the O-horizon. The DOM was characterized using absorbance, fluorescence, and size exclusion chromatography analyses. Our results showed lower mobility of DOM in the high acid treatment. At the same time, there was a significant change in the DOM quality. Soil-water in the high acid treatment exhibited DOM that was less colored, less hydrophobic, less aromatic, and of lower molecular weight, compared to the low acid treatment. This supports the hypothesis that reduction in sulfur deposition is an important driver behind the ongoing brownification of surface waters in many regions.

  5. Sequential photochemical and microbial degradation of organic molecules bound to humic Acid.

    PubMed

    Amador, J A; Alexander, M; Zika, R G

    1989-11-01

    We studied the effects of photochemical processes on the mineralization by soil microorganisms of [2-C]glycine bound to soil humic acid. Microbial mineralization of these complexes in the dark increased inversely with the molecular weight of the complex molecules. Sunlight irradiation of glycine-humic acid complexes resulted in loss of absorbance in the UV range and an increase in the amount of C-labeled low-molecular-weight photoproducts and the rate and extent of mineralization. More than half of the radioactivity in the low-molecular-weight photoproducts appears to be associated with carboxylic acids. Microbial mineralization of the organic carbon increased with solar flux and was proportional to the loss of A(330). Mineralization was proportional to the percentage of the original complex that was converted to low-molecular-weight photoproducts. Only light at wavelengths below 380 nm had an effect on the molecular weight distribution of the products formed from the glycine-humic acid complexes and on the subsequent microbial mineralization. Our results indicate that photochemical processes generate low-molecular-weight, readily biodegradable molecules from high-molecular-weight complexes of glycine with humic acid.

  6. Influence of sodium nitrilotriacetate (NTA) and citric acid on phenolic and organic acids in Brassica juncea grown in excess of cadmium.

    PubMed

    Irtelli, Barbara; Navari-Izzo, Flavia

    2006-11-01

    Brassica juncea cv. 426308 was grown in soils containing 150 mg Cd(2+)kg(-1) soil. After 38 days, the soil was amended with two rates of citric acid or NTA (10 and 20 mmol kg(-1) soil). Control soil was not amended with chelates. Plants were harvested during growth, immediately before and seven days after chelate addition. Shoot composition of organic and phenolic acids and shoot Cd(2+) concentration were determined. Cadmium concentration remained constant during the growth and increased following NTA and citric acid amendments depending on chelate type and concentration. The highest increments in Cd(2+) were measured after the addition of NTA. Compared to the control, 10 and 20 NTA-treated plants showed two- and three-fold increases, respectively. At 150 mg Cd(2+)kg(-1) soil the amount of organic and phenolic acids in the leaves of B. juncea was always higher than that detected in the control. A direct correlation between organic acid concentration and cadmium content was detected both during growth and after chelate addition. On the contrary, the amount of phenols seemed to be correlated with the metal content only in non-amended and NTA-treated plants. The 10 and 20 citric acid additions caused 45% and 90% increases in shoot phenolic acids although cadmium content rose to a smaller extent. The inhibition of citrate synthase and the entrance of phosphoenolpyruvate in shikimate pathway leading to the formation of aromatic compounds might come into play. The increase in phenylalanine ammonialyase activity following citric acid amendments suggested this metabolic response.

  7. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  8. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  9. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  10. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  11. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  12. Chemical characteristics and sources of organic acids in precipitation at a semi-urban site in Southwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Lee, X. Q.; Cao, F.

    2011-01-01

    In order to investigate the chemical characteristics and sources of organic acids in precipitation in Southwest China, 105 rainwater samples were collected at a semi-urban site in Anshun from June 2007 to June 2008. Organic acids and major anions were analyzed along with pH and electrical conductivity. The pH values varied from 3.57 to 7.09 for all the rainfall events sampled, with an average of 4.67 which was typical acidic value. Formic, acetic and oxalic acids were found to be the predominant carboxylic acids and their volume weighted average (VWA) concentrations were 8.77, 6.93 and 2.84 μmol l -1, respectively. These organic acids were estimated to account for 8.1% to the total free acidity (TFA) in precipitation. The concentrations of the majority organic acids at studied site had a clear seasonal pattern, reaching higher levels during the non-growing season than those in growing season, which was attributed to dilution effect of heavy rainfall during the growing season. The seasonal variation of wet deposition flux of these organic acids confirmed higher source strength of biogenic emissions from vegetation during the growing season. Formic-to-acetic acids ratio (F/A), an indicator of primary versus secondary sources of these organic acids, suggested that primary sources from vehicular emission, biomass burning, soil and vegetation emissions were dominant sources. In addition, the lowest concentrations of organic acids were found under type S, when air masses originated from the marine (South China Sea) during Southern Asian Monsoon period. And the highest concentrations were observed in precipitation events from Northeast China (type NE), prevailing mostly during winter with the lowest rainfall.

  13. Identification of Scirpus triqueter root exudates and the effects of organic acids on desorption and bioavailability of pyrene and lead in co-contaminated wetland soils.

    PubMed

    Hou, Yunyun; Liu, Xiaoyan; Zhang, Xinying; Chen, Xiao; Tao, Kaiyun; Chen, Xueping; Liang, Xia; He, Chiquan

    2015-11-01

    Root exudates (REs) of Scirpus triqueter were extracted from the rhizosphere soil in this study. The components in the REs were identified by GC-MS. Many organic acids, such as hexadecanoic acid, pentadecanoic acid, vanillic acid, octadecanoic acid, citric acid, succinic acid, glutaric acid, and so on, were found. Batch simulated experiments were conducted to evaluate the impacts of different organic acids, such as citric acid, artificial root exudates (ARE), succinic acid, and glutaric acid in REs of S. triqueter on desorption of pyrene (PYR) and lead (Pb) in co-contaminated wetland soils. The desorption amount of PYR and Pb increased with the rise in concentrations of organic acids in the range of 0-50 g·L(-1), within shaking time of 2-24 h. The desorption effects of PYR and Pb in soils with various organic acids treatments decreased in the following order: citric acid > ARE > succinic acid > glutaric acid. The desorption rate of PYR and Pb was higher in co-contaminated soil than in single pollution soil. The impacts of organic acids in REs of S. triqueter on bioavailability of PYR and Pb suggested that organic acids enhanced the bioavailability of PYR and Pb in wetland soil, and the bioavailability effects of organic acids generally followed the same order as that of desorption effects.

  14. Identification of Scirpus triqueter root exudates and the effects of organic acids on desorption and bioavailability of pyrene and lead in co-contaminated wetland soils.

    PubMed

    Hou, Yunyun; Liu, Xiaoyan; Zhang, Xinying; Chen, Xiao; Tao, Kaiyun; Chen, Xueping; Liang, Xia; He, Chiquan

    2015-11-01

    Root exudates (REs) of Scirpus triqueter were extracted from the rhizosphere soil in this study. The components in the REs were identified by GC-MS. Many organic acids, such as hexadecanoic acid, pentadecanoic acid, vanillic acid, octadecanoic acid, citric acid, succinic acid, glutaric acid, and so on, were found. Batch simulated experiments were conducted to evaluate the impacts of different organic acids, such as citric acid, artificial root exudates (ARE), succinic acid, and glutaric acid in REs of S. triqueter on desorption of pyrene (PYR) and lead (Pb) in co-contaminated wetland soils. The desorption amount of PYR and Pb increased with the rise in concentrations of organic acids in the range of 0-50 g·L(-1), within shaking time of 2-24 h. The desorption effects of PYR and Pb in soils with various organic acids treatments decreased in the following order: citric acid > ARE > succinic acid > glutaric acid. The desorption rate of PYR and Pb was higher in co-contaminated soil than in single pollution soil. The impacts of organic acids in REs of S. triqueter on bioavailability of PYR and Pb suggested that organic acids enhanced the bioavailability of PYR and Pb in wetland soil, and the bioavailability effects of organic acids generally followed the same order as that of desorption effects. PMID:26154043

  15. Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system

    DOEpatents

    Balazs, G.B.; Chiba, Z.; Lewis, P.R.; Nelson, N.; Steward, G.A.

    1999-06-15

    An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO[sub 2]. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement. 2 figs.

  16. Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system

    DOEpatents

    Balazs, G. Bryan; Chiba, Zoher; Lewis, Patricia R.; Nelson, Norvell; Steward, G. Anthony

    1999-01-01

    An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO.sub.2. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement.

  17. Effect of organic acids on calcium phosphate nucleation and osteogenic differentiation of human mesenchymal stem cells on peptide functionalized nanofibers.

    PubMed

    Barati, Danial; Walters, Joshua D; Shariati, Seyed Ramin Pajoum; Moeinzadeh, Seyedsina; Jabbari, Esmaiel

    2015-05-12

    Carboxylate-rich organic acids play an important role in controlling the growth of apatite crystals and the extent of mineralization in the natural bone. The objective of this work was to investigate the effect of organic acids on calcium phosphate (CaP) nucleation on nanofiber microsheets functionalized with a glutamic acid peptide and osteogenic differentiation of human mesenchymal stem cells (hMSCs) seeded on the CaP-nucleated microsheets. High molecular weight poly(dl-lactide) (DL-PLA) was mixed with low molecular weight L-PLA conjugated with Glu-Glu-Gly-Gly-Cys peptide, and the mixture was electrospun to generate aligned nanofiber microsheets. The nanofiber microsheets were incubated in a modified simulated body fluid (mSBF) supplemented with different organic acids for nucleation and growth of CaP crystals on the nanofibers. Organic acids included citric acid (CA), hydroxycitric acid (HCA), tartaric acid (TART), malic acid (MA), ascorbic acid (AsA), and salicylic acid (SalA). HCA microsheets had the highest CaP content at 240 ± 10% followed by TART and CA with 225 ± 8% and 225 ± 10%, respectively. The Ca/P ratio and percent crystallinity of the nucleated CaP in TART microsheets was closest to that of stoichiometric hydroxyapatite. The extent of CaP nucleation and growth on the nanofiber microsheets depended on the acidic strength and number of hydrogen-bonding hydroxyl groups of the organic acids. Compressive modulus and degradation of the CaP nucleated microsheets were related to percent crystallinity and CaP content. Osteogenic differentiation of hMSCs seeded on the microsheets and cultured in osteogenic medium increased only for those microsheets nucleated with CaP by incubation in CA or AsA-supplemented mSBF. Further, only CA microsheets stimulated bone nodule formation by the seeded hMSCs. PMID:25879768

  18. Modulation of organic acids and sugar content in tomato fruits by an abscisic acid-regulated transcription factor.

    PubMed

    Bastías, Adriana; López-Climent, María; Valcárcel, Mercedes; Rosello, Salvador; Gómez-Cadenas, Aurelio; Casaretto, José A

    2011-03-01

    Growing evidence suggests that the phytohormone abscisic acid (ABA) plays a role in fruit development. ABA signaling components of developmental programs and responses to stress conditions include the group of basic leucine zipper transcriptional activators known as ABA-response element binding factors (AREBs/ABFs). AREB transcription factors mediate ABA-regulated gene expression involved in desiccation tolerance and are expressed mainly in seeds and in vegetative tissues under stress; however, they are also expressed in some fruits such as tomato. In order to get an insight into the role of ABA signaling in fruit development, the expression of two AREB-like factors were investigated during different developmental stages. In addition, tomato transgenic lines that overexpress and downregulate one AREB-like transcription factor, SlAREB1, were used to determine its effect on the levels of some metabolites determining fruit quality. Higher levels of citric acid, malic acid, glutamic acid, glucose and fructose were observed in SlAREB1-overexpressing lines compared with those in antisense suppression lines in red mature fruit pericarp. The higher hexose concentration correlated with increased expression of genes encoding a vacuolar invertase (EC 3.2.1.26) and a sucrose synthase (EC 2.4.1.13). No significant changes were found in ethylene content which agrees with the normal ripening phenotype observed in transgenic fruits. These results suggest that an AREB-mediated ABA signal affects the metabolism of these compounds during the fruit developmental program.

  19. Enzymatic gallic acid esterification.

    PubMed

    Weetal, H H

    1985-02-01

    Gallic acid esters of n-propyl and amyl alcohols have been produced by enzymatic synthesis in organic solvents using immobilized tannase. Studies indicate that maximum esterification of gallic acid occurs with amyl alcohol. The enzyme shows broad alcohol specificity. However, the enzyme exhibits absolute specificity for the acid portion of the ester. Studies were carried out on K(m), V(max), pH, and temperature optima.

  20. Stearic Acid

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) is presented for the chemical, stearic acid. The profile lists the chemical's physical and harmful characteristics, exposure limits, and symptoms of major exposure, for the benefit of teachers and students, who use the chemical in the laboratory.

  1. Trichloroacetic acid

    Integrated Risk Information System (IRIS)

    Trichloroacetic acid ( TCA ) ; CASRN 76 - 03 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonca

  2. Acrylic acid

    Integrated Risk Information System (IRIS)

    Acrylic acid ( CASRN 79 - 10 - 7 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  3. Selenious acid

    Integrated Risk Information System (IRIS)

    Selenious acid ; CASRN 7783 - 00 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  4. Dichloroacetic acid

    Integrated Risk Information System (IRIS)

    Dichloroacetic acid ; CASRN 79 - 43 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  5. Cacodylic acid

    Integrated Risk Information System (IRIS)

    Cacodylic acid ; CASRN 75 - 60 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  6. Phosphoric acid

    Integrated Risk Information System (IRIS)

    Phosphoric acid ; CASRN 7664 - 38 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  7. Benzoic acid

    Integrated Risk Information System (IRIS)

    Benzoic acid ; CASRN 65 - 85 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  8. Formic acid

    Integrated Risk Information System (IRIS)

    Formic acid ; CASRN 64 - 18 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  9. [Hyaluronic acid].

    PubMed

    Pomarede, N

    2008-01-01

    Hyaluronic Acid (HA) is now a leader product in esthetic procedures for the treatment of wrinkles and volumes. The structure of HA, its metabolism, its physiological function are foremost breaking down then its use in aesthetic dermatology: steps of injection, possible side effects, benefits and downsides of the use of HA in aesthetic dermatology.

  10. Exudation of organic acids by Lupinus albus and Lupinus angustifolius as affected by phosphorus supply

    NASA Astrophysics Data System (ADS)

    Hentschel, Werner; Wiche, Oliver

    2016-04-01

    In phytomining and phytoremediation research mixed cultures of bioenergy crops with legumes hold promise to enhance availability of trace metals and metalloids in the soil plant system. This is due to the ability of certain legumes to mobilize trace elements during acquisition of nutrients making these elements available for co-cultured species. The legumes achieve this element mobilization by exudating carboxylates and enzymes as well as by lowering the pH value in the rhizosphere. The aim of our research was to determine characteristics and differences in the exudation of Lupinus albus and Lupinus angustifolius regarding to quantitative as to qualitative aspects. Especially the affection by phosphorus (P) supply was a point of interest. Thus we conducted laboratory batch experiments, wherein the plants were grown over four weeks under controlled light, moisture and nutritional conditions on sand as substrate. Half of the plants were supplied with 12 mg P per kg substrate, the other half were cultivated under a total lack of P. After cultivation the plants were transferred from the cultivation substrate into a 0,05 mmolṡL‑1 CaCl2 solution. After two hours the plants were removed, moist and dry mass off shoots and roots were measured together with the root length (Tennants' method). Concentrations of exudated carboxylates in the CaCl2 solution were determined via IC (column: Metrosept OrganicAcids, eluent 0.5 molṡL‑1 H2SO4 + 15% acetone, pH=3; 0.5 mLṡmin‑1). As a result four different organic acids were identified (citric acid, fumaric acid, tartaric acid, malic acid) in concentration ranges of 0.15 mgṡL‑1 (fumaric acid) to 9.21 mgṡL‑1 (citric acid). Lupinus angustifolius showed a higher exudation rate (in nmol per cm root length per hour) than Lupinus albus in the presence of phosphorus (e.g. regarding citric acid: 1.99 vs 0.64 nmolṡ(gṡh)‑1). However, as the root complexity and length of L. albus were far higher than of L. angustifolius

  11. Exudation of organic acids by Lupinus albus and Lupinus angustifolius as affected by phosphorus supply

    NASA Astrophysics Data System (ADS)

    Hentschel, Werner; Wiche, Oliver

    2016-04-01

    In phytomining and phytoremediation research mixed cultures of bioenergy crops with legumes hold promise to enhance availability of trace metals and metalloids in the soil plant system. This is due to the ability of certain legumes to mobilize trace elements during acquisition of nutrients making these elements available for co-cultured species. The legumes achieve this element mobilization by exudating carboxylates and enzymes as well as by lowering the pH value in the rhizosphere. The aim of our research was to determine characteristics and differences in the exudation of Lupinus albus and Lupinus angustifolius regarding to quantitative as to qualitative aspects. Especially the affection by phosphorus (P) supply was a point of interest. Thus we conducted laboratory batch experiments, wherein the plants were grown over four weeks under controlled light, moisture and nutritional conditions on sand as substrate. Half of the plants were supplied with 12 mg P per kg substrate, the other half were cultivated under a total lack of P. After cultivation the plants were transferred from the cultivation substrate into a 0,05 mmolṡL-1 CaCl2 solution. After two hours the plants were removed, moist and dry mass off shoots and roots were measured together with the root length (Tennants' method). Concentrations of exudated carboxylates in the CaCl2 solution were determined via IC (column: Metrosept OrganicAcids, eluent 0.5 molṡL-1 H2SO4 + 15% acetone, pH=3; 0.5 mLṡmin-1). As a result four different organic acids were identified (citric acid, fumaric acid, tartaric acid, malic acid) in concentration ranges of 0.15 mgṡL-1 (fumaric acid) to 9.21 mgṡL-1 (citric acid). Lupinus angustifolius showed a higher exudation rate (in nmol per cm root length per hour) than Lupinus albus in the presence of phosphorus (e.g. regarding citric acid: 1.99 vs 0.64 nmolṡ(gṡh)-1). However, as the root complexity and length of L. albus were far higher than of L. angustifolius, the total

  12. Wet Chemical Oxidation of Organic Waste Using Nitric-Phosphoric Acid Technology

    SciTech Connect

    Pierce, R.A.

    1998-10-06

    Experimental progress has been made in a wide range of areas which support the continued development of the nitric-phosphoric acid oxidation process for combustible, solid organic wastes. An improved understanding of the overall process operation has been obtained, acid recovery and recycle systems have been studied, safety issues have been addressed, two potential final waste forms have been tested, preliminary mass flow diagrams have been prepared, and process flowsheets have been developed. The flowsheet developed is essentially a closed-loop system which addresses all of the internally generated waste streams. The combined activities aim to provide the basis for building and testing a 250-400 liter pilot-scale unit. Variations of the process now must be evaluated in order to address the needs of the primary customer, SRS Solid Waste Management. The customer is interested in treating job control waste contaminated with Pu-238 for shipment to WIPP. As a result, variations for feed preparation, acid recycle, and final form manufacturing must be considered to provide for simpler processing to accommodate operations in high radiation and contamination environments. The purpose of this program is to demonstrate a nitric-phosphoric acid destruction technology which can treat a heterogeneous waste by oxidizing the solid and liquid organic compounds while decontaminating noncombustible items.

  13. Impact of several water-miscible organic solvents on sorption of benzoic acid by soil

    SciTech Connect

    Lee, L.S.; Rao, P.S.C.

    1996-05-01

    Sorption of benzoic acid by a surface soil was measured from several binary mixtures of water and various organic cosolvents spanning a wide range in solvent properties. For all solvents investigated, the addition to an aqueous solution resulted in an increase in solubility and an alkaline shift in the conditional ionization constant (pK{sub a}{sup c}) of benzoic acid. Sorption data were assessed using a cosolvency model that incorporated speciation of the organic acid as determined by the pK{sub a}{sup c} and soil-solution pH. The model provided reasonable predictions of the sorption trends observed from acetone/water, acetonitrile/ water, and 1,4-dioxane/water solutions. However, enhanced sorption observed from DMSO/water solutions was not well described by the cosolvency model similar to what was previously observed for the sorption of carboxylic acids from methanol/water solutions. The relative importance of cosolvent properties and various solvent-specific mechanisms is discussed. Hydrogen bonding along with preferential solvation are hypothesized as the primary mechanisms responsible for the observed deviations from the model. 36 refs., 5 figs., 1 tab.

  14. Artificially MoO3 graded ITO anodes for acidic buffer layer free organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Lee, Hye-Min; Kim, Seok-Soon; Kim, Han-Ki

    2016-02-01

    We report characteristics of MoO3 graded ITO anodes prepared by a RF/DC graded sputtering for acidic poly(3,4-ethylene dioxylene thiophene):poly(styrene sulfonic acid) (PEDOT:PSS)-free organic solar cells (OSCs). Graded sputtering of the MoO3 buffer layer on top of the ITO layer produced MoO3 graded ITO anodes with a sheet resistance of 12.67 Ω/square, a resistivity of 2.54 × 10-4 Ω cm, and an optical transmittance of 86.78%, all of which were comparable to a conventional ITO anode. In addition, the MoO3 graded ITO electrode showed a greater work function of 4.92 eV than that (4.6 eV) of an ITO anode, which is beneficial for hole extraction from an organic active layer. Due to the high work function of MoO3 graded ITO electrodes, the acidic PEDOT:PSS-free OSCs fabricated on the MoO3 graded ITO electrode exhibited a power conversion efficiency 3.60% greater than that of a PEDOT:PSS-free OSC on the conventional ITO anode. The successful operation of PEDOT:PSS-free OSCs indicates simpler fabrication steps for cost-effective OSCs and elimination of interfacial reactions caused by the acidic PEDOT:PSS layer for reliable OSCs.

  15. Inhibitory effects of chitosan coating combined with organic acids on Listeria monocytogenes in refrigerated ready-to-eat shrimps.

    PubMed

    Li, Min; Wang, Wen; Fang, Weihuan; Li, Yanbin

    2013-08-01

    Chitosan and organic acids are natural preservatives with proven antimicrobial efficacies. This study investigated the effects of chitosan coating combined with organic acids on inhibiting Listeria monocytogenes in ready-to-eat (RTE) shrimps during storage at 4°C. Cooked shrimps inoculated with L. monocytogenes were coated with 0.5 and 1 % chitosan solutions in combination with 2 % organic acids (acetic, citric, lactic, and malic acids) for 5 min and then stored at 4°C for 16 days. Bacterial counts, pH, and sensory properties were analyzed every 4 days. The results indicated that the antimicrobial effects of chitosan were significantly enhanced (P < 0.05) when it was combined with 2 % acetic, citric, lactic, or malic acid. Chitosan at 1 % combined with 2 % acetic acid was the most effective treatment, which caused a 5.38-log CFU/g bacterial reduction after 16 days in comparison with the controls. Transmission electron microscopy further confirmed the enhanced antimicrobial effects of the combination of chitosan and organic acids. Such combined treatments also maintained the sensory properties of RTE shrimps. The use of chitosan coating combined with organic acids significantly lowered (P < 0.05) the pH values of RTE shrimps compared with the use of chitosan alone. Therefore, we conclude that chitosan coating combined with acetic acid could be a promising antimicrobial method to prevent the proliferation of L. monocytogenes in RTE shrimps with extended shelf life.

  16. The geochemical evolution of low-molecular-weight organic acids derived from the degradation of petroleum contaminants in groundwater

    USGS Publications Warehouse

    Cozzarelli, I.M.; Baedecker, M.J.; Eganhouse, R.P.; Goerlitz, D.F.

    1994-01-01

    The geochemical evolution of low-molecular-weight organic acids in groundwater downgradient from a crude-oil spill near Bemidji, Minnesota, was studied over a five year period (1986-1990). The organic acids are metabolic intermediates of the degradation of components of the crude oil and are structurally related to hydrocarbon precursors. The concentrations of organic acids, particularly aliphatic acids, increase as the microbial alteration of hydrocarbons progresses. The organic-acid pool changes in composition and concentration over time and in space as the degradation processes shift from Fe(III) reduction to methanogenesis. Over time, the aquifer system evolves into one in which the groundwater contains more oxidized products of hydrocarbon degradation and the reduced forms of iron, manganese, and nitrogen. Laboratory microcosm experiments with aquifer material support the hypothesis that organic acids observed in the groundwater originate from the microbial degradation of aromatic hydrocarbons under anoxic conditions. The geochemistry of two other shallow aquifers in coastal plain sediments, one contaminated with creosote waste and the other with gasoline, were compared to the Bemidji site. The geochemical evolution of the low-molecular-weight organic acid pool in these systems is controlled, in part, by the presence of electron acceptors available for microbially mediated electron-transfer reactions. The depletion of electron acceptors in aquifers leads to the accumulation of aliphatic organic acids in anoxic groundwater. ?? 1994.