Science.gov

Sample records for acid organic acids

  1. Microorganisms for producing organic acids

    SciTech Connect

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  2. Recovery of organic acids

    DOEpatents

    Verser, Dan W.; Eggeman, Timothy J.

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  3. Recovery of organic acids

    SciTech Connect

    Verser, Dan W.; Eggeman, Timothy J.

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  4. Analysis of Organic Acids.

    ERIC Educational Resources Information Center

    Griswold, John R.; Rauner, Richard A.

    1990-01-01

    Presented are the procedures and a discussion of the results for an experiment in which students select unknown carboxylic acids, determine their melting points, and investigate their solubility behavior in water and ethanol. A table of selected carboxylic acids is included. (CW)

  5. Organic Acids by Ion Chromatography

    NASA Astrophysics Data System (ADS)

    Rich, William E.; Johnson, Edward; Lois, Louis; Stafford, Brian E.; Kabra, Pokar M.; Marton, Laurence J.

    The presence of increased levels of various organic acids in physiological fluids such as serum, plasma, and urine has been correlated with a variety of diseases (1). Although some are rare, others such as lactic acidosis and hyperoxaluria are more widespread (2, 3). The estimation of organic acids in biological fluids has long been an analytical problem owing to the nature of the samples and the hydrophilic behavior of the various acids.

  6. Organic Acid Production by Filamentous Fungi

    SciTech Connect

    Magnuson, Jon K.; Lasure, Linda L.

    2004-05-03

    Many of the commercial production processes for organic acids are excellent examples of fungal biotechnology. However, unlike penicillin, the organic acids have had a less visible impact on human well-being. Indeed, organic acid fermentations are often not even identified as fungal bioprocesses, having been overshadowed by the successful deployment of the β-lactam processes. Yet, in terms of productivity, fungal organic acid processes may be the best examples of all. For example, commercial processes using Aspergillus niger in aerated stirred-tank-reactors can convert glucose to citric acid with greater than 80% efficiency and at final concentrations in hundreds of grams per liter. Surprisingly, this phenomenal productivity has been the object of relatively few research programs. Perhaps a greater understanding of this extraordinary capacity of filamentous fungi to produce organic acids in high concentrations will allow greater exploitation of these organisms via application of new knowledge in this era of genomics-based biotechnology. In this chapter, we will explore the biochemistry and modern genetic aspects of the current and potential commercial processes for making organic acids. The organisms involved, with a few exceptions, are filamentous fungi, and this review is limited to that group. Although yeasts including Saccharomyces cerevisiae, species of Rhodotorula, Pichia, and Hansenula are important organisms in fungal biotechnology, they have not been significant for commercial organic acid production, with one exception. The yeast, Yarrowia lipolytica, and related yeast species, may be in use commercially to produce citric acid (Lopez-Garcia, 2002). Furthermore, in the near future engineered yeasts may provide new commercial processes to make lactic acid (Porro, Bianchi, Ranzi, Frontali, Vai, Winkler, & Alberghina, 2002). This chapter is divided into two parts. The first contains a review of the commercial aspects of current and potential large

  7. Testing of organic acids in engine coolants

    SciTech Connect

    Weir, T.W.

    1999-08-01

    The effectiveness of 30 organic acids as inhibitors in engine coolants is reported. Tests include glassware corrosion of coupled and uncoupled metals. FORD galvanostatic and cyclic polarization electrochemistry for aluminum pitting, and reserve alkalinity (RA) measurements. Details of each test are discussed as well as some general conclusions. For example, benzoic acid inhibits coupled metals well but is ineffective on cast iron when uncoupled. In benzoic acid inhibits coupled metals well but is ineffective on cast iron when uncoupled. In general, the organic acids provide little RA when titrated to a pH of 5.5, titration to a pH of 4.5 can result in precipitation of the acid. Trends with respect to acid chain length are reported also.

  8. Organic acid-tolerant microorganisms and uses thereof for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-05-06

    Organic acid-tolerant microorganisms and methods of using same. The organic acid-tolerant microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid (3HP), acrylic acid, and propionic acid. Further modifications to the microorganisms such as increasing expression of malonyl-CoA reductase and/or acetyl-CoA carboxylase provide or increase the ability of the microorganisms to produce 3HP. Methods of generating an organic acid with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers include replacing acsA or homologs thereof in cells with genes of interest and selecting for the cells comprising the genes of interest with amounts of organic acids effective to inhibit growth of cells harboring acsA or the homologs.

  9. Nanoparticles modified with multiple organic acids

    NASA Technical Reports Server (NTRS)

    Cook, Ronald Lee (Inventor); Luebben, Silvia DeVito (Inventor); Myers, Andrew William (Inventor); Smith, Bryan Matthew (Inventor); Elliott, Brian John (Inventor); Kreutzer, Cory (Inventor); Wilson, Carolina (Inventor); Meiser, Manfred (Inventor)

    2007-01-01

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  10. Nanoparticles modified with multiple organic acids

    DOEpatents

    Cook, Ronald Lee; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew; Elliott, Brian John; Kreutzer, Cory; Wilson, Carolina; Meiser, Manfred

    2007-07-17

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  11. Arterial Blood Carbonic Acid Inversely Determines Lactic and Organic Acids

    PubMed Central

    Aiken, Christopher Geoffrey Alexander

    2013-01-01

    Objective: To establish that arterial blood carbonic acid varies inversely with lactic acid in accordance with bicarbonate exchanging for lactate across cell membranes through the anion exchange mechanism to maintain the Gibbs-Donnan equilibrium. Study Design: Over 5 years, lactate was measured on all blood gases taken from neonatal admissions, as well as organic acid whenever electrolytes were required. Results: Arterial blood gases from 63 infants given high calcium TPN were analyzed. Twenty two needed continuous positive airways pressure (CPAP) only and 31 intermittent positive pressure ventilation (IPPV) and surfactant followed by CPAP to treat respiratory distress syndrome in 51 and meconium aspiration syndrome in 2. All survived and were free of infection. Excluded gases were those with high and falling lactate soon after delivery representing perinatal asphyxia, and those on dexamethasone. Strong inverse relations between carbonic and lactic acids were found at all gestational ages and, independent of glomerular filtration, between carbonic and organic acids. Lactate (mmol/L) = 62.53 X PCO2 -0.96(mmHg) r2 0.315, n 1232, p <0.001. Sixty divided by PCO2 is a convenient measure of physiological lactate at any given PCO2. In the first week, 9.13 ± 2.57% of arterial gases from infants on IPPV had lactates above 120/PCO2, significantly more than 4.74 ± 2.73% on CPAP (p<0.05) and 2.47 ± 2.39% on no support. Conclusion: Changes in arterial blood carbonic acid cause immediate inverse changes in lactic acid, because their anions interchange across cell membranes according to the Gibbs –Donnan equilibrium. Increasing PCO2 from 40 to 120 mmHg decreased lactate from 1.5 mmol/L to 0.5 mmol/L, so that the sum of carbonic and lactic acids increased from 2.72 mmol/L to only 4.17 mmol/L. This helps explain the neuroprotective effect of hypercapnoea and highlights the importance of avoiding any degree of hypocapnoea in infants on IPPV. PMID:24392387

  12. Experimental study of the hydrothermal reactivity of organic acids and acid anions: II. Acetic acid, acetate, and valeric acid

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.; Seewald, Jeffrey S.

    2003-10-01

    Organic acids and acid anions occur in substantial concentrations in many aqueous geologic fluids and are thought to take part in a variety of geochemical processes ranging from the transport of metals in ore-forming fluids to the formation of natural gas to serving as a metabolic energy source for microbes in subsurface habitats. The widespread occurrence of organic acids and their potential role in diverse geologic processes has led to numerous experimental studies of their thermal stability, yet there remain substantial gaps in our knowledge of the factors that control the rates and reaction pathways for the decomposition of these compounds under geologic conditions. In order to address some of these uncertainties, a series of laboratory experiments were conducted to examine the behavior of organic acids and acid anions under hydrothermal conditions in the presence of minerals. Reported here are results of experiments where aqueous solutions of acetic acid, sodium acetate, or valeric acid ( n-pentanoic acid) were heated at 325°C, 350 bars in the presence of the mineral assemblages hematite + magnetite + pyrite, pyrite + pyrrhotite + magnetite, and hematite + magnetite. The results indicate that aqueous acetic acid and acetate decompose by a combination of two reaction pathways: decarboxylation and oxidation. Both reactions are promoted by minerals, with hematite catalyzing the oxidation reaction while magnetite catalyzes decarboxylation. The oxidation reaction is much faster, so that oxidation dominates the decomposition of acetic acid and acetate when hematite is present. In contrast to previous reports that acetate decomposed more slowly than acetic acid, we found that acetate decomposed at slightly faster rates than the acid in the presence of minerals. Although longer-chain monocarboxylic acids are generally thought to decompose by decarboxylation, valeric acid appeared to decompose primarily by "deformylation" to 1-butene plus formic acid. Subsequent

  13. Photoenhanced anaerobic digestion of organic acids

    DOEpatents

    Weaver, Paul F.

    1990-01-01

    A process is described for rapid conversion of organic acids and alcohols anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion or organic acids and alcohols into methane with low levels of light energy input.

  14. Capture and release of acid-gasses with acid-gas binding organic compounds

    DOEpatents

    Heldebrant, David J; Yonker, Clement R; Koech, Phillip K

    2015-03-17

    A system and method for acid-gas capture wherein organic acid-gas capture materials form hetero-atom analogs of alkyl-carbonate when contacted with an acid gas. These organic-acid gas capture materials include combinations of a weak acid and a base, or zwitterionic liquids. This invention allows for reversible acid-gas binding to these organic binding materials thus allowing for the capture and release of one or more acid gases. These acid-gas binding organic compounds can be regenerated to release the captured acid gasses and enable these organic acid-gas binding materials to be reused. This enables transport of the liquid capture compounds and the release of the acid gases from the organic liquid with significant energy savings compared to current aqueous systems.

  15. FORMATION OF ACIDIC TRACE ORGANIC BY-PRODUCTS FROM THE CHLORINATION OF HUMIC ACIDS

    EPA Science Inventory

    A method for concentrating and analyzing acidic trace organics produced by the chlorination of humic acids at concentrations approximating common drinking water levels is described. Data are compared from several humic acid sources. Specific compound analyses of the extracts were...

  16. Treatment of broiler litter with organic acids.

    PubMed

    Ivanov, I E

    2001-04-01

    Experiments for treatment of contaminated broiler litter with citric, tartaric and salicylic acids were performed. At days 2 and 6 after the treatment, pH values (using a pH-meter), the ammonia concentrations (titration with 0.1 N HCl) and the microbial cells counts were determined in both experimental and control specimens of litter. The cost of acidification of litter was also determined. Our studies showed that the treatment of the contaminated litter with 5 per cent citric acid, 4 per cent tartaric acid and 1.5 per cent salicylic acid created an acid medium with pH under 5.0 and thus reduced the microbial counts to 2.2 x 10(3)colony forming units per gram manure litter. The treatment reduced the content of ammonia in the litter and in the air under the hygienic limits, i.e. 25-50 ppm. The cost of acidification of litter with these organic acids amounted to 0.1 $ per bird and 1.5 $ per 15 birds on one square metre in a growth period of 50 days. PMID:11356097

  17. Energy densification of biomass-derived organic acids

    DOEpatents

    Wheeler, M. Clayton; van Walsum, G. Peter; Schwartz, Thomas J.; van Heiningen, Adriaan

    2013-01-29

    A process for upgrading an organic acid includes neutralizing the organic acid to form a salt and thermally decomposing the resulting salt to form an energy densified product. In certain embodiments, the organic acid is levulinic acid. The process may further include upgrading the energy densified product by conversion to alcohol and subsequent dehydration.

  18. [Comparison of demineralization of different organic acid to enamel].

    PubMed

    Liu, L; Yue, S; Jiang, H; Lu, T

    1998-05-01

    The rates of demineralization of 5 organic acids (mathanoic acid, formic acid, propionic acid, Lactic acid, acetic acid, mixed acid) to the bovine enamel were tested and analysed with the self-made calcium ionselective microelectrodes(Ca(2+)-ISME) basing on a neutral carriers of ETH1001. The results showed; 1. The difference between the rates of demineralization of formic acid and lactic acid, formic acid and propionic acid, formic acid and acetic acid, acetic acid and mixed acid, acetic acid and lactic acid, propionic acid and mixed acid, propionic acid and lactic acid, lactic acid and mixed acid were of great significance (P < 0.01); 2. The rates of demineralization of acetic and mixed acid decreased with time, due to saturation of the solution during demineralization; 3. Ca(2+)-ISME was of the advantages of simplicity, rapidity, sensitivity and accuracy. The results suggest that the cariogenic potential is related to different acid products of different cariogenic bacteria, and the degree of mineral saturation within solution affects the rate of demineralization. PMID:12214404

  19. Reactions of tetraphenyltitanium with organic acids

    SciTech Connect

    Razuvaev, G.A.; Vyshinskaya, L.I.; Vasil'eva, G.A.

    1987-12-10

    As a result of the reactions of tetraphenyltitanium with dibasic organic acids high yields were obtained of new thermally stable titanium(III) complexes: phenyltitanium(III)carboxylates. Under the action of proton-active reagents (hydrochloric acid, cyclopentadiene, methanol) the latter break down with the breakage of titanium-phenyl bond. The proposed structure was based on IR- and ESR-spectral data. The dinuclear structure of the complexes was established on the basis of a study of the triplet structure of the ESR spectra, which showed the existence of intermolecular titanium-titanium exchange through methylene groups of the dicarboxylate bridges.

  20. Composition of quince (Cydonia oblonga Miller) seeds: phenolics, organic acids and free amino acids.

    PubMed

    Silva, Branca M; Andrade, Paula B; Ferreres, Federico; Seabra, Rosa M; Oliveira, M Beatriz P P; Ferreira, Margarida A

    2005-04-01

    Phenolic compounds, organic acids and free amino acids of quince seeds were determined by HPLC/DAD, HPLC/UV and GC/FID, respectively. Quince seeds presented a phenolic profile composed of 3-O-caffeoylquinic, 4-O-caffeoylquinic, 5-O-caffeoylquinic and 3,5-dicaffeoylquinic acids, lucenin-2, vicenin-2, stellarin-2, isoschaftoside, schaftoside, 6-C-pentosyl-8-C-glucosyl chrysoeriol and 6-C-glucosyl-8-C-pentosyl chrysoeriol. Six identified organic acids constituted the organic acid profile of quince seeds: citric, ascorbic, malic, quinic, shikimic and fumaric acids. The free amino acid profile was composed of 21 identified free amino acids and the three most abundant were glutamic and aspartic acids and asparagine. PMID:15702641

  1. Temporal Variations of Organic Acids in Sumac Fruit

    SciTech Connect

    Robbins, C.; Mulcahy, F.; Somayajula, K.; Edenborn, H.M.

    2006-10-01

    Extracts from staghorn sumac (Rhus typhina) fruits were obtained from fresh fruits obtained from June to October in two successive years. Total acidity, pH, and concentrations of malic and succinic acids determined using liquid chromatography were measured for each extract. Acidity and acid concentrations reached their maxima in late July, and declined slowly thereafter. Malic and succinic acid concentrations in the extracts reached maxima of about 4 and 0.2% (expressed per unit weight of fruit), respectively. Malic and succinic acids were the only organic acids observed in the extracts, and mass balance determinations indicate that these acids are most likely the only ones present in appreciable amounts.

  2. Purification Or Organic Acids Using Anion Exchange Chromatography.

    DOEpatents

    Ponnampalam; Elankovan

    2001-09-04

    Disclosed is a cost-effective method for purifying and acidifying carboxylic acids, including organic acids and amino acids. The method involves removing impurities by allowing the anionic form of the carboxylic acid to bind to an anion exchange column and washing the column. The carboxylic anion is displaced as carboxylic acid by washing the resin with a strong inorganic anion. This method is effective in removing organic carboxylic acids and amino acids from a variety of industrial sources, including fermentation broths, hydrolysates, and waste streams.

  3. A new technique to determine organic and inorganic acid contamination.

    PubMed

    Vo, Evanly

    2002-01-01

    A new acid indicator pad was developed for the detection of acid breakthrough of gloves and chemical protective clothing. The pad carries a reagent which responds to acid contaminant by producing a color change. The pad was used to detect both organic and inorganic acids permeating through glove materials using the modified ASTM F-739 and direct permeability testing procedures. Breakthrough times for each type of glove were determined, and found to range from 4 min to > 4 h for propionic acid, from 3 min to > 4 h for acrylic acid, and from 26 min to > 4 h for HCl. A quantification was performed for propionic and acrylic acids following solvent desorption and gas chromatography. Both acids exhibited > 99% adsorption [the acid and its reactivity (the acid reacted with an indicator to contribute the color change)] on the pads at a spiking level of 1.8 microL for each acid. Acid recovery during quantification was calculated for each acid, ranging from 52-72% (RSD < or = 4.0%) for both acids over the spiking range 0.2-1.8 microL. The quantitative mass of the acids on the pads at the time of breakthrough detection ranged from 260-282 and 270-296 microg cm(-2) for propionic acid and acrylic acid, respectively. The new colorimetric indicator pad should be useful in detecting and collecting acid permeation samples through gloves and chemical protective clothing in both laboratory and field studies, for quantitative analysis. PMID:11827389

  4. Amino acids

    MedlinePlus

    Amino acids are organic compounds that combine to form proteins . Amino acids and proteins are the building blocks of life. When proteins are digested or broken down, amino acids are left. The human body uses amino acids ...

  5. D-Amino Acids in Living Higher Organisms

    NASA Astrophysics Data System (ADS)

    Fujii, Noriko

    2002-04-01

    The homochirality of biological amino acids (L-amino acids) and of the RNA/DNA backbone (D-ribose) might have become established before the origin of life. It has been considered that D-amino acids and L-sugars were eliminated on the primitive Earth. Therefore, the presence and function of D-amino acids in living organisms have not been studied except for D-amino acids in the cell walls of microorganisms. However, D-amino acids were recently found in various living higher organisms in the form of free amino acids, peptides, and proteins. Free D-aspartate and D-serine are present and may have important physiological functions in mammals. D-amino acids in peptides are well known as opioid peptides and neuropeptides. In protein, D-aspartate residues increase during aging. This review deals with recent advances in the study of D-amino acids in higher organisms.

  6. Biobased organic acids production by metabolically engineered microorganisms.

    PubMed

    Chen, Yun; Nielsen, Jens

    2016-02-01

    Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed. PMID:26748037

  7. Structure of seven organic salts assembled from 2,6-diaminopyridine with monocarboxylic acids, dicarboxylic acids, and tetracarboxylic acids

    NASA Astrophysics Data System (ADS)

    Gao, Xingjun; Zhang, Huan; Wen, Xianhong; Liu, Bin; Jin, Shouwen; Wang, Daqi

    2015-08-01

    Studies concentrating on non-covalent interactions between the organic base of 2,6-diaminopyridine, and carboxylic acids have led to an increased understanding of the role 2,6-diaminopyridine in binding with carboxylic acid derivatives. Here anhydrous and hydrated multi-component organic acid-base salts of 2,6-diaminopyridine have been prepared with the carboxylic acids as nicotinic acid, o-chlorobenzoic acid, 1,3-benzodioxole-5-carboxylic acid, 3,5-dinitrosalicylic acid, 4-nitro-phthalic acid, 1,4-cyclohexanedicarboxylic acid, and butane-1,2,3,4-tetracarboxylic acid. The seven crystalline compounds were characterized by X-ray diffraction analysis, infrared (IR), melting point (mp), and elemental analysis. All structures adopted the hetero R22(8) supramolecular synthons. The supramolecular architectures bear extensive Nsbnd H⋯N, Osbnd H⋯N, Osbnd H⋯O, Nsbnd H⋯O, and CH⋯O associations as well as other nonbonding contacts as CHsbnd N, CH2sbnd O, π-π, C-π, O-π, Cl-π, Clsbnd O, and Osbnd O interactions. The role of weak and strong hydrogen bonding in the crystal packing is ascertained.

  8. ROLE OF SOIL ORGANIC ACIDS IN MINERAL WEATHERING PROCESSES

    EPA Science Inventory

    The soluble organic acids in soils consist largely of complex mixtures of polymeric compounds referred to collectively as fluvic and humic acids. These compounds are relatively refactory, and are broken down only slowly by bacteria. ow-molecular-mass acids (e.g., acetic, oxalic, ...

  9. [Inhibition of growth of microscopic fungi with organic acids].

    PubMed

    Conková, E; Para, L; Kocisová, A

    1993-01-01

    Fungicidal effects of five selected organic acids (lactic, acetic, formic, oxalic, and propionic) in concentrations 3, 5, 10, 20 and 50 ml/l on nine selected species of moulds were tested. Lactic and oxalic acids did not prove the satisfactory fungicidal activity in any of the chosen concentrations. The antifungal effect of the other three acids, manifested by the growth inhibition of the tested moulds is shown in Tab. I and it can be expressed by sequence: propionic acid, formic acid, and acetic acid. These acids also had effects only in concentrations 20 ml/l and 50 ml/l. Propionic acid in concentration 20 ml/l inhibited the growth of five moulds (Penicillium glabrum, Aspergillus niger, Fusarium moniliforme, Aspergillus fumigatus, Cladosporium sphaerospermum). In testing of concentration 50 ml/l, the lower fungicidal ability was ascertained only in growth suppression of Aspergillus flavus. The fungicidal activity of formic acid was registered in concentration 20 ml/l in two cases and in concentration 50 ml/l in six cases. Acetic acid inhibited the growth in concentration 50 ml/l only in two cases. Tab. II shows the percentual evaluation of propionic acid and formic acid with regard to their inhibition abilities. The fungicidal efficiency of propionic acid resulting from the experiment is 88.9%. PMID:8122343

  10. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    PubMed

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies. PMID:25902192

  11. Survey of organic acid eluents for anion chromatography

    SciTech Connect

    Book, D.E.

    1981-10-01

    Of all the potential eluents surveyed (including aromatic, sulfonic, phosphonic, among other acids), only the carboxylic acids and the nitrophenols are recommended as eluents for anion chromatography. The concentration of the eluent should be in the range 5 x 10/sup -5/ to 1 x 10/sup -3/ M. The eluent should have the same charge as inorganic anions, a higher charge than organic acid samples. Choice of eluents for separation of halides, chloride and sulfate, multivalent inorganic anions, small alkyl acids, and aromatic acids is discussed. (DLC)

  12. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  13. Organic acids composition of Cydonia oblonga Miller leaf.

    PubMed

    Oliveira, Andreia P; Pereira, José A; Andrade, Paula B; Valentão, Patrícia; Seabra, Rosa M; Silva, Branca M

    2008-11-15

    Organic acid profiles of 36 Cydonia oblonga Miller leaf samples, from three different geographical origins of northern (Bragança and Carrazeda de Ansiães) and central Portugal (Covilhã), harvested in three collection months (June, August and October of 2006), were determined by HPLC/UV (214nm). Quince leaves presented a common organic acid profile, composed of six constituents: oxalic, citric, malic, quinic, shikimic and fumaric acids. C. oblonga leaves total organic acid content varied from 1.6 to 25.8g/kg dry matter (mean value of 10.5g/kg dry matter). Quinic acid was the major compound (72.2%), followed by citric acid (13.6%). Significant differences were found in malic and quinic acids relative abundances and total organic acid contents according to collection time, which indicates a possible use of these compounds as maturity markers. Between June and August seems to be the best period to harvest quince leaves for preparation of decoctions or infusions, since organic acids total content is higher in this season. PMID:26047441

  14. Organic geochemistry of amino acids: Precambrian to recent

    SciTech Connect

    Engel, M.H.; Macko, S.A.

    1985-01-01

    Since the discovery of amino acids in fossils (Abelson, 1954), considerable effort has been made to elucidate the origin and distribution of amino acids in geologic materials. Racemization and decomposition reactions of amino acids and peptides derived via the natural hydrolysis of protein constituents of organisms have been extensively studied. While the ubiquity of amino acids presents a challenge for discerning their indigeneity in geologic samples, careful analyses have resulted in successful applications of amino acid racemization and decomposition reactions for investigations of geochronologic, paleoclimatic, stratigraphic, diagenetic and chemotaxonomic problems for Quaternary age samples. An investigation of amino acids in sediments from Baffin Island fjords indicates that their distribution may also provide data with respect to the relative contributions of marine and terrigenous organic matter to recent sediments. While the absence of unstable amino acids and the presence of racemic amino acids in a sample may preclude very recent contamination, the possibility of retardation of amino acid racemization rates subsequent to geopolymer formation must also be considered. Studies of amino acids in Paleozoic, Mesozoic and early Cenozoic age samples are limited. Precambrian samples, however, have received much attention, given the potential (however slight) for isolating compounds representative of the earliest living systems. A future approach for elucidating the origin(s) of amino acids in ancient samples may be analyses of their individual stable isotopic compositions.

  15. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian; Kleff, Susanne; Guettler, Michael V.

    2012-02-21

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  16. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian; Kleff, Susanne; Guettler, Michael V

    2013-04-30

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  17. Modeling the influence of organic acids on soil weathering

    USGS Publications Warehouse

    Lawrence, Corey R.; Harden, Jennifer W.; Maher, Kate

    2014-01-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  18. [Use of organic acids in acne and skin discolorations therapy].

    PubMed

    Kapuścińska, Alicja; Nowak, Izabela

    2015-01-01

    Acne is one of the most frequent skin disorders that occurs in puberty, but often adults also have acne. The most important factors responsible for acne are elevated production of sebum by hyperactive sebaceous glands and blockage of the follicle because of hyperkeratosis [14]. The third etiopathogenic factor of acne is excessive microflora reproduction [8]. The most significant bacterium that is responsible for formation of skin lesions is Propionibacterium acnes, a rod-shaped Gram-positive and aerotolerant anaerobic bacterium. It is estimated that P. acnes is responsible for acne in approximately 80% of people aged 11 to 30 [27,40]. Even healed skin lesions can often cause skin discolorations and scar formation [51]. Exfoliating chemical substances that are commonly used in dermatology and cosmetology are organic acids. Exfoliating treatment using organic acids is called "chemical peeling" and consists of controlled application of those substances on the skin [38]. The depth of exfoliation depends on organic acid concentration, type of substance and contact time with the skin [41]. Using exfoliating agents seems to be helpful in excessive keratinization - one of several factors responsible for acne. Moreover, epidermis exfoliation is a popular method of removing skin discoloration [22]. Considering chemical structure, exfoliating substances that are most often used in cosmetology contain alpha-hydroxyacids (glycolic acid, lactic acid, mandelic acid and citric acid), beta-hydroxyacids (salicylic acid) and other organic acids, such as trichloroacetic acid and pyruvic acid [47]. In this article, a literature review of use of organic acids in acne and skin discoloration therapy is presented. PMID:25811473

  19. On the source of organic acid aerosol layers above clouds.

    PubMed

    Sorooshian, Armin; Lu, Miao-Ling; Brechtel, Fred J; Jonsson, Haflidi; Feingold, Graham; Flagan, Richard C; Seinfeld, John H

    2007-07-01

    During the July 2005 Marine Stratus/Stratocumulus Experiment (MASE) and the August-September 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter probed aerosols and cumulus clouds in the eastern Pacific Ocean off the coast of northern California and in southeastern Texas, respectively. An on-board particle-into-liquid sampler (PILS) quantified inorganic and organic acid species with < or = 5-min time resolution. Ubiquitous organic aerosol layers above cloud with enhanced organic acid levels were observed in both locations. The data suggest that aqueous-phase reactions to produce organic acids, mainly oxalic acid, followed by droplet evaporation is a source of elevated organic acid aerosol levels above cloud. Oxalic acid is observed to be produced more efficiently relative to sulfate as the cloud liquid water content increases, corresponding to larger and less acidic droplets. As derived from large eddy simulations of stratocumulus underthe conditions of MASE, both Lagrangian trajectory analysis and diurnal cloudtop evolution provide evidence that a significant fraction of the aerosol mass concentration above cloud can be accounted for by evaporated droplet residual particles. Methanesulfonate data suggest that entrainment of free tropospheric aerosol can also be a source of organic acids above boundary layer clouds. PMID:17695910

  20. Gastric emptying of organic acids in the dog.

    PubMed

    Blum, A L; Hegglin, J; Krejs, G J; Largiadèr, F; Säuberli, H; Schmid, P

    1976-10-01

    Test meals of 300 ml. of six different organic acids were instilled into the stomach of six healthy mongrel dogs. Citric, acetic, propionic, lactic, tartaric and succinic acid were given in 50, 100, 150, and 200 mN concentrations. 2. During the emptying process, the gastric contents were aspirated and immediately re-instilled at 10 min intervals, and the following parameters were recorded: volume, concentration of the organic anion, pH, hydrogen ion concentration and osmolarity. 3. By multiple stepwise regression analysis, the combination of parameters which most effectively determines gastric emptying rate was found to be: concentration of the organic anion, followed by intragastric volume and number of previous test meals given on the same day. These three parameters appear in the equation for gastric emptying rate in which the individual characteristic of each acid is expressed by a constant. 4. Among the various acids, inhibition of emptying rate increases with rising number of carboxylic groups of the acid and its molecular weight. 5. After proximal gastric vagotomy, emptying rate of organic acids is independent of volume, and emptying approaches an exponential pattern. 6. A model for gastric emptying of organic acids with at least three different receptors is proposed: one for the structure of the organic acid, one for concentration and one for intragastric volume. PMID:10436

  1. Gastric emptying of organic acids in the dog.

    PubMed Central

    Blum, A L; Hegglin, J; Krejs, G J; Largiadèr, F; Säuberli, H; Schmid, P

    1976-01-01

    Test meals of 300 ml. of six different organic acids were instilled into the stomach of six healthy mongrel dogs. Citric, acetic, propionic, lactic, tartaric and succinic acid were given in 50, 100, 150, and 200 mN concentrations. 2. During the emptying process, the gastric contents were aspirated and immediately re-instilled at 10 min intervals, and the following parameters were recorded: volume, concentration of the organic anion, pH, hydrogen ion concentration and osmolarity. 3. By multiple stepwise regression analysis, the combination of parameters which most effectively determines gastric emptying rate was found to be: concentration of the organic anion, followed by intragastric volume and number of previous test meals given on the same day. These three parameters appear in the equation for gastric emptying rate in which the individual characteristic of each acid is expressed by a constant. 4. Among the various acids, inhibition of emptying rate increases with rising number of carboxylic groups of the acid and its molecular weight. 5. After proximal gastric vagotomy, emptying rate of organic acids is independent of volume, and emptying approaches an exponential pattern. 6. A model for gastric emptying of organic acids with at least three different receptors is proposed: one for the structure of the organic acid, one for concentration and one for intragastric volume. PMID:10436

  2. Acoustic properties of organic acid mixtures in water

    NASA Technical Reports Server (NTRS)

    Macavei, I.; Petrisor, V.; Auslaender, D.

    1974-01-01

    The variation of the rate of propagation of ultrasounds in organic acid mixtures in water points to structural changes caused by interactions that take place under conditions of thermal agitation, at different acid concentrations. At the same time, a difference is found in the changes in velocity as a function of the length of the carbon chain of the acids in the mixture as a result of their effect on the groups of water molecules associated by hydrogen bonds.

  3. [Effect of organic composition of humic acids on Enterobacteria multiplication].

    PubMed

    Buzoleva, L S; Sidorenko, M L

    2001-01-01

    Enterobacteria have been found to be capable of active multiplication in humic acids isolated from bentonite clays containing carbohydrates, lipids and proteins. Humic acids fractions have been found to be heterogeneous by their molecular weight and organic composition; consequently, they have been found to produce different influence in the multiplication of bacteria. PMID:11548272

  4. EFFECT OF ACIDITY ON SECONDARY ORGANIC AEROSOL FORMATION FROM ISOPRENE

    EPA Science Inventory

    The effect of particle-phase acidity on secondary organic aerosol (SOA) formation from isoprene is investigated in a laboratory chamber study, in which the acidity of the inorganic seed aerosol was controlled systematically. The observed enhancement in SOA mass concentration is c...

  5. Association Mapping of Main Tomato Fruit Sugars and Organic Acids

    PubMed Central

    Zhao, Jiantao; Xu, Yao; Ding, Qin; Huang, Xinli; Zhang, Yating; Zou, Zhirong; Li, Mingjun; Cui, Lu; Zhang, Jing

    2016-01-01

    Association mapping has been widely used to map the significant associated loci responsible for natural variation in complex traits and are valuable for crop improvement. Sugars and organic acids are the most important metabolites in tomato fruits. We used a collection of 174 tomato accessions composed of Solanum lycopersicum (123 accessions) and S. lycopersicum var cerasiforme (51 accessions) to detect significantly associated loci controlling the variation of main sugars and organic acids. The accessions were genotyped with 182 SSRs spreading over the tomato genome. Association mapping was conducted on the main sugars and organic acids detected by gas chromatography-mass spectrometer (GC-MS) over 2 years using the mixed linear model (MLM). We detected a total of 58 significantly associated loci (P < 0.001) for the 17 sugars and organic acids, including fructose, glucose, sucrose, citric acid, malic acid. These results not only co-localized with several reported QTLs, including fru9.1/PV, suc9.1/PV, ca2.1/HS, ca3.1/PV, ca4.1/PV, and ca8.1/PV, but also provided a list of candidate significantly associated loci to be functionally validated. These significantly associated loci could be used for deciphering the genetic architecture of tomato fruit sugars and organic acids and for tomato quality breeding. PMID:27617019

  6. Association Mapping of Main Tomato Fruit Sugars and Organic Acids.

    PubMed

    Zhao, Jiantao; Xu, Yao; Ding, Qin; Huang, Xinli; Zhang, Yating; Zou, Zhirong; Li, Mingjun; Cui, Lu; Zhang, Jing

    2016-01-01

    Association mapping has been widely used to map the significant associated loci responsible for natural variation in complex traits and are valuable for crop improvement. Sugars and organic acids are the most important metabolites in tomato fruits. We used a collection of 174 tomato accessions composed of Solanum lycopersicum (123 accessions) and S. lycopersicum var cerasiforme (51 accessions) to detect significantly associated loci controlling the variation of main sugars and organic acids. The accessions were genotyped with 182 SSRs spreading over the tomato genome. Association mapping was conducted on the main sugars and organic acids detected by gas chromatography-mass spectrometer (GC-MS) over 2 years using the mixed linear model (MLM). We detected a total of 58 significantly associated loci (P < 0.001) for the 17 sugars and organic acids, including fructose, glucose, sucrose, citric acid, malic acid. These results not only co-localized with several reported QTLs, including fru9.1/PV, suc9.1/PV, ca2.1/HS, ca3.1/PV, ca4.1/PV, and ca8.1/PV, but also provided a list of candidate significantly associated loci to be functionally validated. These significantly associated loci could be used for deciphering the genetic architecture of tomato fruit sugars and organic acids and for tomato quality breeding. PMID:27617019

  7. Acid rain effects on aluminum mobilization clarified by inclusion of strong organic acids

    USGS Publications Warehouse

    Lawrence, G.B.; Sutherland, J.W.; Boylen, C.W.; Nierzwicki-Bauer, S. W.; Momen, B.; Baldigo, Barry P.; Simonin, H.A.

    2007-01-01

    Assessments of acidic deposition effects on aquatic ecosystems have often been hindered by complications from naturally occurring organic acidity. Measurements of pH and ANCG, the most commonly used indicators of chemical effects, can be substantially influenced by the presence of organic acids. Relationships between pH and inorganic Al, which is toxic to many forms of aquatic biota, are also altered by organic acids. However, when inorganic Al concentrations are plotted against ANC (the sum of Ca2+, Mg 2+, Na+, and K+, minus SO42-, NO3-, and Cl-), a distinct threshold for Al mobilization becomes apparent. If the concentration of strong organic anions is included as a negative component of ANC, the threshold occurs at an ANC value of approximately zero, the value expected from theoretical charge balance constraints. This adjusted ANC is termed the base-cation surplus. The threshold relationship between the base-cation surplus and Al was shown with data from approximately 200 streams in the Adirondack region of New York, during periods with low and high dissolved organic carbon concentrations, and for an additional stream from the Catskill region of New York. These results indicate that (1) strong organic anions can contribute to the mobilization of inorganic Al in combination with SO42- and NO 3-, and (2) the presence of inorganic Al in surface waters is an unambiguous indication of acidic deposition effects. ?? 2007 American Chemical Society.

  8. Hydrothermal Mineral-Assisted Organic Transformations of Carboxylic Acids

    NASA Astrophysics Data System (ADS)

    Johnson, K. N.; Gould, I.; Williams, L. B.; Hartnett, H. E.; Shock, E.

    2014-12-01

    The purpose of our research is to probe the varieties of reactions possible in a hydrothermal system in which both organic compounds and minerals interact. We performed experiments at physical conditions representative of deep-sea and subsurface systems (300°C and 1000 bar) and analyzed the effect of the mineral magnetite (Fe3O4) in systems with carboxylic acids, either phenylacetic acid or hydrocinnamic acid (a.k.a., phenylpropanoic acid). Control experiments were also conducted with the same organic compounds in the absence of magnetite. Whereas previous studies of carboxylic acid reactivity with minerals have focused exclusively on simple molecules such as acetic acid and valeric acid (Bell et al. 1994; McCollom et al. 2003), the carboxylic acids used in our study differ from previous experimental compounds by the addition of a phenyl ring, which allows for the investigation of the specific mechanistic pathways of product formation. Decarboxylation (i.e., RCO2H → RH + CO2) is one of the major reaction pathways for carboxylic acids in hydrothermal conditions without minerals. Under our experimental conditions, decarboxylation leads to the ~80% conversion of phenylacetic acid into toluene within ~50 hours and the ~8% conversion of hydrocinnamic acid to ethyl benzene within ~190 hours. We found that magnetite had a different effect on the two organic compounds studied. In experiments with phenylacetic acid, the presence of magnetite did not enhance the rate of toluene production from decarboxylation but did activate additional product pathways that include diphenyl alkanes, alkenes, and ketones, as well as benzoic acid, a carboxylic acid one carbon length shorter than the parent compound. Magnetite had even more noticeable effects on the hydrocinnamic acid system leading to an increase of its consumption at 190 hours from ~9% in magnetite's absence to ~35% in the mineral's presence. Products of the experiments with magnetite included an enhanced rate of

  9. Organic Acids Over Equatorial Africa: Results from DECAFE 88

    NASA Astrophysics Data System (ADS)

    Helas, Günter; Bingemer, Heinz; Andreae, Meinrat O.

    1992-04-01

    Gaseous short chain organic acids were measured during the dry season (February) in and above the rain forest of the northern Congo. Samples were taken at ground level and during several flights up to 4 km altitude. The organic acids were concentrated from the atmosphere by using "mist scrubbers," which expose a mist of deionized water to the air to be probed. The organic acids absorbed in the water were subsequently analyzed by ion chromatography. Formic, acetic, and pyruvic acids were identified in the samples. At ground level, average mixing ratios of gaseous formic and acetic acid of 0.5±0.6 and 0.6±0.7 parts per billion by volume (ppbv) (1 s), respectively, were found. Boundary layer mixing ratios, however, were significantly higher (3.7±1.0 and 2.7±0.9 ppbv). This indicates a downward net flux of these atmospheric trace components from the boundary layer to the surface. Free tropospheric samples taken above the cloud convection layer show lower mixing ratios again (0.9±0.3 and 0.7±0.1 ppbv). On the basis of this vertical distribution, direct emission by vegetation is not considered to be the dominant source. Biomass burning and photochemical oxidation of biogenic precursors are the major processes contributing to the enhancement of organic acids observed in the boundary layer. The organic acids parallel the profiles of ozone and CO, which suggests that their generation processes are closely related. Pyruvic acid is not correlated with formic acid, indicating that the oxidation of isoprene is not of major importance. In emissions from biomass fires, CO correlates well with formic and acetic acid, and thus some of the enhancement of organic acids in the boundary layer can be explained due to burning. However, an additional gas phase source for organic acids must exist to explain the observed ratio of formic to acetic acid. This is most likely the ozonolysis of olefins which were released as pyrolysis products from biomass burning.

  10. Crystal and molecular structure of eight organic acid-base adducts from 2-methylquinoline and different acids

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Jin, Shouwen; Tao, Lin; Liu, Bin; Wang, Daqi

    2014-08-01

    Eight supramolecular complexes with 2-methylquinoline and acidic components as 4-aminobenzoic acid, 2-aminobenzoic acid, salicylic acid, 5-chlorosalicylic acid, 3,5-dinitrosalicylic acid, malic acid, sebacic acid, and 1,5-naphthalenedisulfonic acid were synthesized and characterized by X-ray crystallography, IR, mp, and elemental analysis. All of the complexes are organic salts except compound 2. All supramolecular architectures of 1-8 involve extensive classical hydrogen bonds as well as other noncovalent interactions. The results presented herein indicate that the strength and directionality of the classical hydrogen bonds (ionic or neutral) between acidic components and 2-methylquinoline are sufficient to bring about the formation of binary organic acid-base adducts. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, the complexes 1-8 displayed 2D-3D framework structure.

  11. Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter

    NASA Astrophysics Data System (ADS)

    Ritchie, Jason D.; Perdue, E. Michael

    2003-01-01

    The acid-base properties of 14 standard and reference materials from the International Humic Substances Society (IHSS) were investigated by potentiometric titration. Titrations were conducted in 0.1 M NaCl under a nitrogen atmosphere, averaging 30 min from start to finish. Concentrations of carboxyl groups and phenolic groups were estimated directly from titration curves. Titration data were also fit to a modified Henderson-Hasselbalch model for two classes of proton-binding sites to obtain "best fit" parameters that describe proton-binding curves for the samples. The model was chosen for its simplicity, its ease of implementation in computer spreadsheets, and its excellent ability to describe the shapes of the titration curves. The carboxyl contents of the IHSS samples are in the general order: terrestrial fulvic acids > aquatic fulvic acids > Suwannee River natural organic matter (NOM) > aquatic humic acids > terrestrial humic acids. Overall, fulvic acids and humic acids have similar phenolic contents; however, all of the aquatically derived samples have higher phenolic contents than the terrestrially derived samples. The acid-base properties of reference Suwannee River NOM are surprisingly similar to those of standard Suwannee River humic acid. Results from titrations in this study were compared with other published results from both direct and indirect titrations. Typically, carboxyl contents for the IHSS samples were in agreement with the results from both methods of titration. Phenolic contents for the IHSS samples were comparable to those determined by direct titrations, but were significantly less than estimates of phenolic content that were based on indirect titrations with Ba(OH) 2 and Ca(OAc) 2. The average phenolic-to-carboxylic ratio of the IHSS samples is approximately 1:4. Models that assume a 1:2 ratio of phenolic-to-carboxylic groups may overestimate the relative contribution of phenolic groups to the acid-base chemistry of humic substances.

  12. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage.

    PubMed

    Bai, Cheng; Reilly, Charles C; Wood, Bruce W

    2006-02-01

    The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan. PMID:16415214

  13. Reactions Between Water Soluble Organic Acids and Nitrates in Atmospheric Aerosols: Recycling of Nitric Acid and Formation of Organic Salts

    SciTech Connect

    Wang, Bingbing; Laskin, Alexander

    2014-03-25

    Atmospheric particles often include a complex mixture of nitrate and secondary organic materials accumulated within the same individual particles. Nitrate as an important inorganic component can be chemically formed in the atmosphere. For instance, formation of sodium nitrate (NaNO3) and calcium nitrate Ca(NO3)2 when nitrogen oxide and nitric acid (HNO3) species react with sea salt and calcite, respectively. Organic acids contribute a significant fraction of photochemically formed secondary organics that can condense on the preexisting nitrate-containing particles. Here, we present a systematic microanalysis study on chemical composition of laboratory generated particles composed of water soluble organic acids and nitrates (i.e. NaNO3 and Ca(NO3)2) investigated using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and Fourier transform infrared micro-spectroscopy (micro-FTIR). The results show that water-soluble organic acids can react with nitrates releasing gaseous HNO3 during dehydration process. These reactions are attributed to acid displacement of nitrate with weak organic acids driven by the evaporation of HNO3 into gas phase due to its relatively high volatility. The reactions result in significant nitrate depletion and formation of organic salts in mixed organic acids/nitrate particles that in turn may affect their physical and chemical properties relevant to atmospheric environment and climate. Airborne nitrate concentrations are estimated by thermodynamic calculations corresponding to various nitrate depletions in selected organic acids of atmospheric relevance. The results indicate a potential mechanism of HNO3 recycling, which may further affect concentrations of gas- and aerosol-phase species in the atmosphere and the heterogeneous reaction chemistry between them.

  14. Organic acid contents in onion cultivars (Allium cepa L.).

    PubMed

    Rodríguez Galdón, Beatriz; Tascón Rodríguez, Catalina; Rodríguez Rodríguez, Elena; Díaz Romero, Carlos

    2008-08-13

    The following organic acids (glutamic, oxalic, pyruvic, malic, tartaric, citric, and fumaric), pungency, Brix degree, acidity, and pH were determined in onion cultivars (Texas, Guayonje, San Juan de la Rambla, Carrizal Alto, Carrizal Bajo, and Masca) harvested in the same agroclimatic conditions. Glutamic acid was the most abundant organic acid (325 +/- 133 mg/100 g) followed by citric acid (48.5 +/- 24.1 mg/100 g) and malic acid (43.6 +/- 10.4 mg/100 g). There were significant differences between the onion cultivars in the mean concentrations of all of the analyzed parameters. The San Juan de la Rambla and Masca cultivars presented, in general, higher concentrations of the organic acids than the other cultivars. Significant differences in most of the analyzed parameters were observed between the two seed origins for the Masca and San Juan de la Rambla cultivars. The onion samples tended to be classified according to the cultivar and, in the case of San Juan de la Rambla cultivar, according to the precedence of the seeds after applying discriminant analysis. PMID:18616262

  15. Molecular controls on kaolinite surface charge and organic acid adsorption

    SciTech Connect

    Brady, P.V.; Cygan, R.T.; Nagy, K.L.; Ward, D.B.

    1996-10-01

    pH-dependent multi-site kaolinite surface charge can be explained by proton donor-acceptor reactions occurring simultaneously on Si and Al sites exposed on edge sites. Si site acidity at the kaolinite-solution interface differs minimally from that of pure SiO{sub 2}, whereas Al sites became appreciably more acidic when a part of the kaolinite matrix. Independent evidence from scanning force microscopy points to a higher percentage of edge surface area due to thicker particles and basal surface steps than previously assumed. Molecular modeling of the proton-relaxed kaolinite structure has been used to establish the elevated acidity of edge Al sites, to independently confirm the crystallochemical controls on surface acidity, and to establish likely bonding geometries for adsorbed organic acids, such as oxalate.

  16. Metabolic evolution of Escherichia coli strains that produce organic acids

    DOEpatents

    Grabar, Tammy; Gong, Wei; Yocum, R Rogers

    2014-10-28

    This invention relates to the metabolic evolution of a microbial organism previously optimized for producing an organic acid in commercially significant quantities under fermentative conditions using a hexose sugar as sole source of carbon in a minimal mineral medium. As a result of this metabolic evolution, the microbial organism acquires the ability to use pentose sugars derived from cellulosic materials for its growth while retaining the original growth kinetics, the rate of organic acid production and the ability to use hexose sugars as a source of carbon. This invention also discloses the genetic change in the microorganism that confers the ability to use both the hexose and pentose sugars simultaneously in the production of commercially significant quantities of organic acids.

  17. The Roles of Organic Acids in C4 Photosynthesis

    PubMed Central

    Ludwig, Martha

    2016-01-01

    Organic acids are involved in numerous metabolic pathways in all plants. The finding that some plants, known as C4 plants, have four-carbon dicarboxylic acids as the first product of carbon fixation showed these organic acids play essential roles as photosynthetic intermediates. Oxaloacetate (OAA), malate, and aspartate (Asp) are substrates for the C4 acid cycle that underpins the CO2 concentrating mechanism of C4 photosynthesis. In this cycle, OAA is the immediate, short-lived, product of the initial CO2 fixation step in C4 leaf mesophyll cells. The malate and Asp, resulting from the rapid conversion of OAA, are the organic acids delivered to the sites of carbon reduction in the bundle-sheath cells of the leaf, where they are decarboxylated, with the released CO2 used to make carbohydrates. The three-carbon organic acids resulting from the decarboxylation reactions are returned to the mesophyll cells where they are used to regenerate the CO2 acceptor pool. NADP-malic enzyme-type, NAD-malic enzyme-type, and phosphoenolpyruvate carboxykinase-type C4 plants were identified, based on the most abundant decarboxylating enzyme in the leaf tissue. The genes encoding these C4 pathway-associated decarboxylases were co-opted from ancestral C3 plant genes during the evolution of C4 photosynthesis. Malate was recognized as the major organic acid transferred in NADP-malic enzyme-type C4 species, while Asp fills this role in NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type plants. However, accumulating evidence indicates that many C4 plants use a combination of organic acids and decarboxylases during CO2 fixation, and the C4-type categories are not rigid. The ability to transfer multiple organic acid species and utilize different decarboxylases has been suggested to give C4 plants advantages in changing and stressful environments, as well as during development, by facilitating the balance of energy between the two cell types involved in the C4 pathway of CO2

  18. The Roles of Organic Acids in C4 Photosynthesis.

    PubMed

    Ludwig, Martha

    2016-01-01

    Organic acids are involved in numerous metabolic pathways in all plants. The finding that some plants, known as C4 plants, have four-carbon dicarboxylic acids as the first product of carbon fixation showed these organic acids play essential roles as photosynthetic intermediates. Oxaloacetate (OAA), malate, and aspartate (Asp) are substrates for the C4 acid cycle that underpins the CO2 concentrating mechanism of C4 photosynthesis. In this cycle, OAA is the immediate, short-lived, product of the initial CO2 fixation step in C4 leaf mesophyll cells. The malate and Asp, resulting from the rapid conversion of OAA, are the organic acids delivered to the sites of carbon reduction in the bundle-sheath cells of the leaf, where they are decarboxylated, with the released CO2 used to make carbohydrates. The three-carbon organic acids resulting from the decarboxylation reactions are returned to the mesophyll cells where they are used to regenerate the CO2 acceptor pool. NADP-malic enzyme-type, NAD-malic enzyme-type, and phosphoenolpyruvate carboxykinase-type C4 plants were identified, based on the most abundant decarboxylating enzyme in the leaf tissue. The genes encoding these C4 pathway-associated decarboxylases were co-opted from ancestral C3 plant genes during the evolution of C4 photosynthesis. Malate was recognized as the major organic acid transferred in NADP-malic enzyme-type C4 species, while Asp fills this role in NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type plants. However, accumulating evidence indicates that many C4 plants use a combination of organic acids and decarboxylases during CO2 fixation, and the C4-type categories are not rigid. The ability to transfer multiple organic acid species and utilize different decarboxylases has been suggested to give C4 plants advantages in changing and stressful environments, as well as during development, by facilitating the balance of energy between the two cell types involved in the C4 pathway of CO2

  19. Organic acids emissions from natural-gas-fed engines

    NASA Astrophysics Data System (ADS)

    Zervas, Efthimios; Tazerout, Mohand

    A natural-gas-fed spark-ignition engine, operating under lean conditions, is used for the study of the organic acids exhaust emissions. These pollutants are collected by passing a sample of exhaust gas into deionised water. The final solution is directly analysed by HPLC/UV at 204 nm. Only formic acid is emitted in detectable concentration under the experimental conditions used. Its concentration decreases with the three engine operating parameters studied: spark advance, volumetric efficiency and fuel/air equivalence ratio. Exhaust formic acid concentration is also linked with exhaust oxygen concentration and exhaust temperature. A comparison with other engines (SI engines fed with gasoline and compression ignition engines) from bibliographic data proves that natural-gas-fed engines emit less organic acids than the other two types of engines.

  20. ORGANIC ACIDITY IN MAINE (U.S.A.) LAKES AND IN HUMEX LAKE SKJERVATJERN (NORWAY)

    EPA Science Inventory

    Organic acids, a component of dissolved organic carbon can be a major factor in the acidity of many lakes and streams. n order to evaluate the importance of organic acidity, we fractionated (hydrophobic acids and neutrals, hydrophilic acids, bases, and neutrals) and isolated hydr...

  1. Amino acids

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  2. Using organic acids to diagnose and manage recalcitrant patients.

    PubMed

    Rogers, Sherry A

    2006-01-01

    "Organic acids" refers to a broad class of compounds used in fundamental metabolic processes of the body. They provide valuable clues about functional nutrient deficiencies, mitochondrial energy production, intestinal dysbiosis, free radical overload, and more, including where to start when diagnosing a patient with complicated symptoms. Organic acids present a whole new exciting world of therapeutic options. They are one of the tools that enable us to identify and correct the underlying causes of disease, and not merely temporarily suppress symptoms with pharmaceuticals. The sicker the patient, the more they need this intervention: half the patients in intensive care units were found to be nutrient-deficient in studies that look at only 1 or a few of the many nutrients. Studies show that a patient's outcome is more dismal and his chances of dying are greater as undiagnosed nutrient deficiencies mount. Furthermore, studies confirm that giving pennies' worth of antioxidants to patients in intensive care can cut the death rate in half. What drug can accomplish this, much less for pennies a day? Doesn't it make more sense to individually determine the patients' deficiencies and correct them? Combined with companion tests of intracellular minerals, toxic elements (heavy metals), fatty acids, vitamins, and amino acids, organic acids testing can clearly indicate health challenges the patient will face in the future. In many cases, they are correctable and curable. This article explored only 5 categories of organic acids out of more than 9 and 29 organic acids out of more than 47. For physicians who want more information, there are several resources available. This knowledge, along with biochemical knowledge and patient experience, can further empower physicians to help truly heal their patients. PMID:16862742

  3. Indoor air chemistry: Formation of organic acids and aldehydes

    SciTech Connect

    Zhang, J.; Lioy, P.J. ||; Wilson, W.E.

    1994-12-31

    Laying emphasis on the formation of aldehydes and organic acids, the study has examined the gas-phase reactions of ozone with unsaturated VOCs. The formation of formaldehyde and formic acid was observed for all the three selected unsaturated VOCs: styrene, limonene, and 4-vinylcyclohexene. In addition, benzaldehyde was detected in the styrene-ozone-air reaction system, and acetic acid was also found in limonene-ozone-air system. The study has also examined the gas-phase reactions among formaldehyde, ozone, and nitrogen dioxide and found the formation of formic acid. The nitrate radical was suggested to play an important role in converting formaldehyde into formic acid. Experiments for all the reactions were conducted by using a 4.3 m{sup 3} Teflon chamber. Since the conditions for the reactions were similar to those for indoor environments, the results from the study can be implicated to real indoor situations and can be employed to support the findings and suggestions from the previous studies: certain aldehydes and organic acids could be generated by indoor chemistry.

  4. Role of antioxidant enzymes in bacterial resistance to organic acids.

    PubMed

    Bruno-Bárcena, Jose M; Azcárate-Peril, M Andrea; Hassan, Hosni M

    2010-05-01

    Growth in aerobic environments has been shown to generate reactive oxygen species (ROS) and to cause oxidative stress in most organisms. Antioxidant enzymes (i.e., superoxide dismutases and hydroperoxidases) and DNA repair mechanisms provide protection against ROS. Acid stress has been shown to be associated with the induction of Mn superoxide dismutase (MnSOD) in Lactococcus lactis and Staphylococcus aureus. However, the relationship between acid stress and oxidative stress is not well understood. In the present study, we showed that mutations in the gene coding for MnSOD (sodA) increased the toxicity of lactic acid at pH 3.5 in Streptococcus thermophilus. The inclusion of the iron chelators 2,2'-dipyridyl (DIP), diethienetriamine-pentaacetic acid (DTPA), and O-phenanthroline (O-Phe) provided partial protection against 330 mM lactic acid at pH 3.5. The results suggested that acid stress triggers an iron-mediated oxidative stress that can be ameliorated by MnSOD and iron chelators. These findings were further validated in Escherichia coli strains lacking both MnSOD and iron SOD (FeSOD) but expressing a heterologous MnSOD from S. thermophilus. We also found that, in E. coli, FeSOD did not provide the same protection afforded by MnSOD and that hydroperoxidases are equally important in protecting the cells against acid stress. These findings may explain the ability of some microorganisms to survive better in acidified environments, as in acid foods, during fermentation and accumulation of lactic acid or during passage through the low pH of the stomach. PMID:20305033

  5. The abiotic degradation of soil organic matter to oxalic acid

    NASA Astrophysics Data System (ADS)

    Studenroth, Sabine; Huber, Stefan; Schöler, H. F.

    2010-05-01

    The abiotic degradation of soil organic matter to volatile organic compounds was studied intensely over the last years (Keppler et al., 2000; Huber et al., 2009). It was shown that soil organic matter is oxidised due to the presence of iron (III), hydrogen peroxide and chloride and thereby produces diverse alkyl halides, which are emitted into the atmosphere. The formation of polar halogenated compounds like chlorinated acetic acids which are relevant toxic environmental substances was also found in soils and sediments (Kilian et al., 2002). The investigation of the formation of other polar halogenated and non-halogenated compounds like diverse mono- and dicarboxylic acids is going to attain more and more importance. Due to its high acidity oxalic acid might have impacts on the environment e.g., nutrient leaching, plant diseases and negative influence on microbial growth. In this study, the abiotic formation of oxalic acid in soil is examined. For a better understanding of natural degradation processes mechanistic studies were conducted using the model compound catechol as representative for structural elements of the humic substances and its reaction with iron (III) and hydrogen peroxide. Iron is one of the most abundant elements on earth and hydrogen peroxide is produced by bacteria or through incomplete reduction of oxygen. To find suitable parameters for an optimal reaction and a qualitative and quantitative analysis method the following reaction parameters are varied: concentration of iron (III) and hydrogen peroxide, time dependence, pH-value and influence of chloride. Analysis of oxalic acid was performed employing an ion chromatograph equipped with a conductivity detector. The time dependent reaction shows a relatively fast formation of oxalic acid, the optimum yield is achieved after 60 minutes. Compared to the concentration of catechol an excess of hydrogen peroxide as well as a low concentration of iron (III) are required. In absence of chloride the

  6. Bio-based production of organic acids with Corynebacterium glutamicum.

    PubMed

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-03-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, L- and D-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. PMID:23199277

  7. Organic acids in cloud water and rainwater at a mountain site in acid rain areas of South China.

    PubMed

    Sun, Xiao; Wang, Yan; Li, Haiyan; Yang, Xueqiao; Sun, Lei; Wang, Xinfeng; Wang, Tao; Wang, Wenxing

    2016-05-01

    To investigate the chemical characteristics of organic acids and to identify their source, cloud water and rainwater samples were collected at Mount Lu, a mountain site located in the acid rain-affected area of south China, from August to September of 2011 and March to May of 2012. The volume-weighted mean (VWM) concentration of organic acids in cloud water was 38.42 μeq/L, ranging from 7.45 to 111.46 μeq/L, contributing to 2.50 % of acidity. In rainwater samples, organic acid concentrations varied from 12.39 to 68.97 μeq/L (VWM of 33.39 μeq/L). Organic acids contributed significant acidity to rainwater, with a value of 17.66 %. Formic acid, acetic acid, and oxalic acid were the most common organic acids in both cloud water and rainwater. Organic acids had an obviously higher concentration in summer than in spring in cloud water, whereas there was much less discrimination in rainwater between the two seasons. The contribution of organic acids to acidity was lower during summer than during spring in both cloud water (2.20 % in summer vs 2.83 % in spring) and rainwater (12.24 % in summer vs 19.89 % in spring). The formic-to-acetic acid ratio (F/A) showed that organic acids were dominated by primary emissions in 71.31 % of the cloud water samples and whole rainwater samples. Positive matrix factorization (PMF) analysis determined four factors as the sources of organic acids in cloud water, including biogenic emissions (61.8 %), anthropogenic emissions (15.28 %), marine emissions (15.07 %) and soil emissions (7.85 %). The findings from this study imply an indispensable role of organic acids in wet deposition, but organic acids may have a limited capacity to increase ecological risks in local environments. PMID:26841776

  8. Effects of CO2 enrichment on the metabolism of soluble amino acids and organic acids in barley primary leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Responses of soluble amino acids and organic acids to CO2 enrichment were determined with barley primary leaves (Hordeum vulgare L. cv. Brant) grown in controlled environment chambers. Total soluble amino acids were enhanced 33% by CO2 enrichment when determined 9 days after sowing (DAS). However,...

  9. Evaluation of organic acids as fuel cell electrolytes

    SciTech Connect

    Ahmad, J.; Nguyen, T.H.; Foley, R.T.

    1981-11-01

    The electrochemical behavior of methanesulfonic acid, ethanesulfonic acid, and sulfoacetic acid as fuel cell electrolytes was studied in half-cell at various temperatures. The rate of the electro-oxidation of hydrogen at 115/degree/C was very high in methanesulfonic acid. The rate of the electro-oxidation of propane in all three acids was low even at 135/degree/C. Further, there is evidence for adsorption of these acids on the platinum electrode. It is concluded that anhydrous sulfonic acids are not good electrolytes; water solutions are required. Sulfonic acids containing unprotected carbon-hydrogen bonds are adsorbed on platinum and probably decompose during electrolysis. 9 refs.

  10. Formation of Organic Tracers for Isoprene SOA under Acidic Conditions

    EPA Science Inventory

    The chemical compositions of a series of secondary organic aerosol (SOA) samples, formed by irradiating mixtures of isoprene and NO in a smog chamber in the absence or presence of acidic aerosols, were analyzed using derivatization-based GC-MS methods. In addition to the known is...

  11. Variability for free sugars and organic acids in Capsicum Chinense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit of 216 genotypes of Capsicum chinense Jacq. were analyzed for concentrations of the simple sugars sucrose, glucose, fructose, and the organic acids; citric, malic, succinic, fumaric and ascorbic. Concentrations [mg/100g Fresh Weight (FW) of whole fruit] of sucrose, glucose and fructose in fru...

  12. SOURCES OF ORGANIC ACIDS IN INDOOR AIR: A FIELD STUDY

    EPA Science Inventory

    Simultaneous indoor and outdoor measurements of organic acids were made at six residential houses located in suburban New Jersey area during the summer of 1992. ach house was measured for six days and controlled for ventilation and gas combustion conditions. he study presents the...

  13. Amylase activity of Aspergillus strains--producers of organic acids.

    PubMed

    Tsekova, K; Dentchev, D; Vicheva, A; Dekovska, M

    1993-01-01

    The ability of fungi from genus Aspergillus (producers of organic acids) to synthesize amylase enzymes (alpha-amylase and glucoamylase) was investigated. The productivity of the strains on Czapek-Dox agar and in liquid Czapec-Dox media with 3% soluble starch as a carbon source was established. PMID:8285132

  14. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and fatty acids: Implications for atmospheric processing of organic aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Lin; Kawamura, Kimitaka; Cao, Fang; Lee, Meehye

    2016-04-01

    Stable carbon isotopic compositions (δ13C) were measured for 23 individual organic species including 9 dicarboxylic acids, 7 oxocarboxylic acids, 1 tricarboxylic acid, 2 α-dicarbonyls, and 4 fatty acids in the aerosols from Gosan background site in East Asia. δ13C values of particle phase glyoxal and methylglyoxal are significantly larger than those previously reported for isoprene and other precursors. The values are consistently less negative in oxalic acid (C2, average -14.1‰), glyoxylic acid (-13.8‰), pyruvic acid (-19.4‰), glyoxal (-13.5‰), and methylglyoxal (-18.6‰) compared to other organic species (e.g., palmitic acid, -26.3‰), which can be explained by the kinetic isotope effects during atmospheric oxidation of pre-aged precursors (e.g., isoprene) and the subsequent gas-particle partitioning after the evaporation of clouds or wet aerosols. The δ13C values of C2 is positively correlated with C2 to organic carbon ratio, indicating that photochemical production of C2 is more pronounced than its degradation during long-range atmospheric transport. The isotopic results also suggest that aqueous phase oxidation of glyoxal and methylglyoxal is a major formation process of oxalic acid via the intermediates such as glyoxylic acid and pyruvic acid. This study provides evidence that organic aerosols are intensively photochemically aged in the western North Pacific rim.

  15. Adsorption of chromate/organic-acid mixtures in aquifer materials

    SciTech Connect

    Fish, W.; Palmer, C.D.

    1991-07-15

    The overall objective of this project is to develop a fuller understanding of the interactions of mixtures of anionic co-contaminants with oxide-mineral surfaces. Our specific focus is on the competitive interactions of chromate and oxalic acid on ferric oxyhydroxide and on natural aquifer materials. Chromate and oxalate are of practical interest as widespread contaminants at many DOE facilities. However, these anions also are excellent model adsorbates for elucidating fundamental aspects of ionic adsorption processes, particularly with respect to organic acids.

  16. Various instrumental approaches for determination of organic acids in wines.

    PubMed

    Zeravik, Jiri; Fohlerova, Zdenka; Milovanovic, Miodrag; Kubesa, Ondrej; Zeisbergerova, Marta; Lacina, Karel; Petrovic, Aleksandar; Glatz, Zdenek; Skladal, Petr

    2016-03-01

    Biosensors based on lactate oxidase, sarcosine oxidase and mixture of fumarase and sarcosine oxidase were used for monitoring of organic acids in wine samples. Additionally, tartaric acid was determined by modified colorimetric method based on formation of the vanadate-tartrate complex. The above mentioned methods were used for the analysis of 31 wine samples and obtained data were compared with the results from capillary electrophoresis as a basic standard method. This comparison showed a certain degree of correlation between biosensors and capillary electrophoresis. The provided information pointed to the potential uses of biosensors in the field of winemaking. PMID:26471576

  17. Capillary electrophoresis analysis of organic amines and amino acids in saline and acidic samples using the Mars organic analyzer.

    PubMed

    Stockton, Amanda M; Chiesl, Thomas N; Lowenstein, Tim K; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A

    2009-11-01

    The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pK(a) values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions. PMID:19968460

  18. Organic acid modeling and model validation: Workshop summary. Final report

    SciTech Connect

    Sullivan, T.J.; Eilers, J.M.

    1992-08-14

    A workshop was held in Corvallis, Oregon on April 9--10, 1992 at the offices of E&S Environmental Chemistry, Inc. The purpose of this workshop was to initiate research efforts on the entitled ``Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and testing of the revised model using Independent data sources.`` The workshop was attended by a team of internationally-recognized experts in the fields of surface water acid-bass chemistry, organic acids, and watershed modeling. The rationale for the proposed research is based on the recent comparison between MAGIC model hindcasts and paleolimnological inferences of historical acidification for a set of 33 statistically-selected Adirondack lakes. Agreement between diatom-inferred and MAGIC-hindcast lakewater chemistry in the earlier research had been less than satisfactory. Based on preliminary analyses, it was concluded that incorporation of a reasonable organic acid representation into the version of MAGIC used for hindcasting was the logical next step toward improving model agreement.

  19. Organic acid modeling and model validation: Workshop summary

    SciTech Connect

    Sullivan, T.J.; Eilers, J.M.

    1992-08-14

    A workshop was held in Corvallis, Oregon on April 9--10, 1992 at the offices of E S Environmental Chemistry, Inc. The purpose of this workshop was to initiate research efforts on the entitled Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and testing of the revised model using Independent data sources.'' The workshop was attended by a team of internationally-recognized experts in the fields of surface water acid-bass chemistry, organic acids, and watershed modeling. The rationale for the proposed research is based on the recent comparison between MAGIC model hindcasts and paleolimnological inferences of historical acidification for a set of 33 statistically-selected Adirondack lakes. Agreement between diatom-inferred and MAGIC-hindcast lakewater chemistry in the earlier research had been less than satisfactory. Based on preliminary analyses, it was concluded that incorporation of a reasonable organic acid representation into the version of MAGIC used for hindcasting was the logical next step toward improving model agreement.

  20. Influence of pasture-based feeding systems on fatty acids, organic acids and volatile organic flavour compounds in yoghurt.

    PubMed

    Akbaridoust, Ghazal; Plozza, Tim; Trenerry, V Craige; Wales, William J; Auldist, Martin J; Ajlouni, Said

    2015-08-01

    The influence of different pasture-based feeding systems on fatty acids, organic acids and volatile organic flavour compounds in yoghurt was studied. Pasture is the main source of nutrients for dairy cows in many parts of the world, including southeast Australia. Milk and milk products produced in these systems are known to contain a number of compounds with positive effects on human health. In the current study, 260 cows were fed supplementary grain and forage according to one of 3 different systems; Control (a traditional pasture based diet offered to the cows during milking and in paddock), PMR1 (a partial mixed ration which contained the same supplement as Control but was offered to the cows as a partial mixed ration on a feedpad), PMR 2 (a differently formulated partial mixed ration compared to Control and PMR1 which was offered to the cows on a feedpad). Most of the yoghurt fatty acids were influenced by feeding systems; however, those effects were minor on organic acids. The differences in feeding systems did not lead to the formation of different volatile organic flavour compounds in yoghurt. Yet, it did influence the relative abundance of these components. PMID:26143651

  1. Carbohydrate, Organic Acid, and Amino Acid Composition of Bacteroids and Cytosol from Soybean Nodules 1

    PubMed Central

    Streeter, John G.

    1987-01-01

    Metabolites in Bradyrhizobium japonicum bacteroids and in Glycine max (L.) Merr. cytosol from root nodules were analyzed using an isolation technique which makes it possible to estimate and correct for changes in concentration which may occur during bacteroid isolation. Bacteroid and cytosol extracts were fractionated on ion-exchange columns and were analyzed for carbohydrate composition using gas-liquid chromatography and for organic acid and amino acid composition using high performance liquid chromatography. Analysis of organic acids in plant tissues as the phenacyl derivatives is reported for the first time and this approach revealed the presence of several unknown organic acids in nodules. The time required for separation of bacteroids and cytosol was varied, and significant change in concentration of individual compounds during the separation of the two fractions was estimated by calculating the regression of concentration on time. When a statistically significant slope was found, the true concentration was estimated by extrapolating the regression line to time zero. Of 78 concentration estimates made, there was a statistically significant (5% level) change in concentration during sample preparation for only five metabolites: glucose, sucrose, and succinate in the cytosol and d-pinitol and serine in bacteroids. On a mass basis, the major compounds in bacteroids were (descending order of concentration): myo-inositol, d-chiro-inositol, α,α-trehalose, sucrose, aspartate, glutamate, d-pinitol, arginine, malonate, and glucose. On a proportional basis (concentration in bacteroid as percent of concentration in bacteroid + cytosol fractions), the major compounds were: α-aminoadipate (94), trehalose (66), lysine (58), and arginine (46). The results indicate that metabolite concentrations in bacteroids can be reliably determined. PMID:16665774

  2. Field enhancement sample stacking for analysis of organic acids in traditional Chinese medicine by capillary electrophoresis.

    PubMed

    Zhu, Qianqian; Xu, Xueqin; Huang, Yuanyuan; Xu, Liangjun; Chen, Guonan

    2012-07-13

    A technique known as field enhancement sample stacking (FESS) and capillary electrophoresis (CE) separation has been developed to analyze and detect organic acids in the three traditional Chinese medicines (such as Portulaca oleracea L., Crataegus pinnatifida and Aloe vera L.). In FESS, a reverse electrode polarity-stacking mode (REPSM) was applied as on-line preconcentration strategy. Under the optimized condition, the baseline separation of eight organic acids (linolenic acid, lauric acid, p-coumaric acid, ascorbic acid, benzoic acid, caffeic acid, succinic acid and fumaric acid) could be achieved within 20 min. Validation parameters of this method (such as detection limits, linearity and precision) were also evaluated. The detection limits ranged from 0.4 to 60 ng/mL. The results indicated that the proposed method was effective for the separation of mixtures of organic acids. Satisfactory recoveries were also obtained in the analysis of these organic acids in the above traditional Chinese medicine samples. PMID:22381886

  3. Effects of organic acids, amino acids and ethanol on the radio-degradation of patulin in an aqueous model system

    NASA Astrophysics Data System (ADS)

    Yun, Hyejeong; Lim, Sangyong; Jo, Cheorun; Chung, Jinwoo; Kim, Soohyun; Kwon, Joong-Ho; Kim, Dongho

    2008-06-01

    The effects of organic acids, amino acids, and ethanol on the radio-degradation of patulin by gamma irradiation in an aqueous model system were investigated. The patulin, dissolved in distilled water at a concentration of 50 ppm, was practically degraded by the gamma irradiation at the dose of 1.0 kGy, while 33% of the patulin remained in apple juice. In the aqueous model system, the radio-degradation of patulin was partially inhibited by the addition of organic acids, amino acids, and ethanol. The proportions of remaining patulin after irradiation with the dose of 1.0 kGy in the 1% solution of malic acid, citric acid, lactic acid, acetic acid, ascorbic acid, and ethanol were 31.4%, 2.3%, 31.2%, 6.1%, 50.8%, and 12.5%, respectively. During 30 days of storage, the remaining patulin was reduced gradually in the solution of ascorbic acid and malic acid compared to being stable in other samples. The amino acids, serine, threonine, and histidine, inhibited the radio-degradation of patulin. In conclusion, it was suggested that 1 kGy of gamma irradiation (recommended radiation doses for radicidation and/or quarantine in fruits) is effective for the reduction of patulin, but the nutritional elements should be considered because the radio-degradation effects are environment dependent.

  4. Remarkable Impact of Acidic Ginsenosides and Organic Acids on Ginsenoside Transformation from Fresh Ginseng to Red Ginseng.

    PubMed

    Liu, Zhi; Xia, Juan; Wang, Chong-Zhi; Zhang, Jin-Qiu; Ruan, Chang-Chun; Sun, Guang-Zhi; Yuan, Chun-Su

    2016-07-01

    Panax ginseng contains many chemical components, including acidic ginsenosides and organic acids. However, whether these acidic substances play a role in ginsenoside transformation during steaming treatment has not yet been explored. In this paper, the content of neutral ginsenosides, acidic ginsenosides, and their degradation products in unsteamed and steamed P. ginseng were simultaneously quantified by high-performance liquid chromatography. We observed that neutral ginsenosides were converted to rare ginsenosides during the root steaming but not during the individual ginsenoside steaming. In contrast, acidic malonyl ginsenosides released malonic acid and acetic acid through demalonylation, decarboxylation, deacetylation reactions during the steaming at 120 °C. These malonyl ginsenosides not only were converted to rare ginsenosides but also promoted the degradation of neutral ginsenosides. Further studies indicated that a low concentration of organic acid was the determining factor for the ginsenoside conversion. The related mechanisms were deduced to be mainly acidic hydrolysis and dehydration. In summary, acidic ginsenosides and organic acids remarkably affected ginsenoside transformation during the steaming process. Our results provide useful information for precisely understanding the ginsenoside conversion pathways and mechanisms underlying the steaming process. PMID:27295137

  5. INFLUENCE OF AQUEOUS ALUMINUM AND ORGANIC ACIDS ON MEASUREMENT OF ACID NEUTRALIZING CAPACITY IN SURFACE WATERS

    EPA Science Inventory

    Acid neutralizing capacity (ANC) is used to quantify the acid-base status of surface waters. Acidic waters have bean defined as having ANC values less than zero, and acidification is often quantified by decreases in ANC. Measured and calculated values of ANC generally agree, exce...

  6. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and fatty acids: implications for atmospheric processing of organic aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Kawamura, K.; Cao, F.; Lee, M.

    2015-12-01

    Stable carbon isotopic compositions (δ13C) were measured for 23 individual organic species including 9 dicarboxylic acids, 7 oxocarboxylic acids, 1 tricarboxylic acid, 2 α-dicarbonyls and 4 fatty acids in the aerosols from Gosan background site in East Asia. δ13C of particle-phase glyoxal and methylglyoxal are significantly higher than those previously reported for isoprene and other precursors, associated with isotope fractionation during atmospheric oxidation. 13C is consistently more enriched for oxalic acid (C2), glyoxylic acid, pyruvic acid, glyoxal and methylglyoxal compared to other organic compounds identified, which can be explained by the kinetic isotope effects during aqueous-phase processing and the subsequent gas-particle partitioning after clouds or wet aerosols evaporation δ13C of C2 is positively correlated with C2 and organic carbon ratio, indicating that a photochemical production of C2 is more pronounced than its degradation process during long-range transport. The 13C results also suggest that aqueous-phase oxidation of glyoxal and methylglyoxal is major formation process of oxalic acid production via the major intermediates glyoxylic acid and pyruvic acid. This study provides evidence that organic aerosols are intensively photo-chemically aged in this region.

  7. Bio-based production of organic acids with Corynebacterium glutamicum

    PubMed Central

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-01-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, l-and d-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. Funding Information Work in the laboratories of the authors was supported by the Fachagentur Nachwachsende Rohstoffe (FNR) of the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV; FNR Grants 220-095-08A and 220-095-08D; Bio-ProChemBB project, ERA-IB programme), by the Deutsche Bundesstiftung Umwelt (DBU Grant AZ13040/05) and the Evonik Degussa AG. PMID

  8. Dynamics of three organic acids (malic, acetic and succinic acid) in sunflower exposed to cadmium and lead.

    PubMed

    Niu, Zhixin; Li, Xiaodong; Sun, Lina; Sun, Tieheng

    2013-01-01

    Sunflower (Helianthus annuus L.) has been considered as a good candidate for bioaccumulation of heavy metals. In the present study, sunflower was used to enrich the cadmium and lead in sand culture during 90 days. Biomass, Cd and Pb uptake, three organic acids and pH in cultures were investigated. Results showed that the existence of Cd and Pb showed different interactions on the organic acids exudation. In single Cd treatments, malic and acetic acids in Cd10 showed an incremental tendency with time. In the mixed treatments of Cd and Pb, malic acids increased when 10 and 40 mg x L(-1) Cd were added into Pb50, but acetic acids in Pb50 were inhibited by Cd addition. The Cd10 supplied in Pb10 stimulated the secretion of malic and succinic acids. Moreover, the Cd or Pb uptake in sunflower showed various correlations with pH and some organic acids, which might be due to the fact that the Cd and Pb interfere with the organic acids secretion in rhizosphere of sunflower, and the changes of organic acids altered the form and bioavailability of Cd and Pb in cultures conversely. PMID:23819268

  9. HPLC method for the simultaneous quantification of the major organic acids in Angeleno plum fruit

    NASA Astrophysics Data System (ADS)

    Wang, Yanwei; Wang, Jing; Cheng, Wei; Zhao, Zhilei; Cao, Jiankang

    2014-08-01

    A method was developed to profile major organic acids in Angeleno fruit by high performance liquid chromatography. Organic acids in plum were extracted by water with ultra- sonication at 50°C for 30 min. The extracts were chromatographed on Waters Atlantis T3 C18 column (4.6 mm×250 mm, 5 μm) with 0.01mol/L sulfuric acid and water as mobile phase, and flow rate was 0.5 ml/min. The column temperature was 40C, and chromatography was monitored by a diode array detector at 210 nm. The result showed that malic acid, citric acid, tartaric acid, oxalic acid, pyruvic acid, acetic acid, succinic acid in Angeleno plum, and the malic acid was the major organic acids. The coefficient of determination of the standard calibration curve is R2 > 0.999. The organic acids recovery ranged from 99.11% for Malic acid to 106.70% for Oxalic acid, and CV (n=6) ranged from 0.95% for Malic acid to 6.23% for Oxalic acid, respectively. The method was accurate, sensitive and feasible in analyzing the organic acids in Angeleno plum.

  10. Chromatographic analysis of amino and organic acids in physiological fluids to detect inborn errors of metabolism.

    PubMed

    Woontner, Michael; Goodman, Stephen I

    2006-11-01

    This unit describes methods for the preparation of samples for analysis of physiological amino acids and organic acids. Amino acids are analyzed by ion-exchange chromatography using an automated system. Organic acids are analyzed by gas-chromatography/mass spectrometry (GC-MS). Analysis of amino and organic acids is necessary to detect and monitor the treatment of many inborn errors of metabolism. PMID:18428392

  11. Biochar: a green sorbent to sequester acidic organic contaminants

    NASA Astrophysics Data System (ADS)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2015-04-01

    Biochar is a carbon rich product of biomass pyrolysis that exhibits a high sorption potential towards a wide variety of inorganic and organic contaminants. Because it is a valuable soil additive and a potential carbon sink that can be produced from renewable resources, biochar has gained growing attention for the development of more sustainable remediation strategies. A lot of research efforts have been dedicated to the sorption of hydrophobic contaminants and metals to biochar. Conversely, the understanding of the sorption of acidic organic contaminants remains limited, and questions remain on the influence of biochar characteristics (e.g. ash content) on the sorption behaviour of acidic organic contaminants. To address this knowledge gap, sorption batch experiments were conducted with a series of structurally similar acidic organic contaminants covering a range of dissociation constant (2,4-D, MCPA, 2,4-DB and triclosan). The sorbents selected for experimentation included a series of 10 biochars covering a range of characteristics, multiwalled carbon nanotubes as model for pure carbonaceous phases, and an activated carbon as benchmark. Overall, sorption coefficient [L/kg] covered six orders of magnitude and generally followed the order 2,4-D < MCPA < 2,4-DB < triclosan. Combining comprehensive characterization of the sorbents with the sorption dataset allowed the discussion of sorption mechanisms and driving factors of sorption. Statistical analysis suggests that (i) partitioning was the main driver for sorption to sorbents with small specific surface area (< 25 m²/g), whereas (ii) specific mechanisms dominated sorption to sorbents with larger specific surface area. Results showed that factors usually not considered for the sorption of neutral contaminants play an important role for the sorption of organic acids. The pH dependent lipophilicity ratio (i.e. D instead of Kow), ash content and ionic strength are key factors influencing the sorption of acidic organic

  12. Predictions of diagenetic reactions in the presence of organic acids

    NASA Astrophysics Data System (ADS)

    Harrison, Wendy J.; Thyne, Geoffrey D.

    1992-02-01

    Stability constants have been estimated for cation complexes with anions of monofunctional and difunctional acids (combinations of Ca, Mg, Fe, Al, Sr, Mn, U, Th, Pb, Cu, Zn with formate, acetate, propionate, oxalate, malonate, succinate, and salicylate) between 0 and 200°C. Difunctional acid anions form much more stable complexes than monofunctional acid anions with aluminum; the importance of the aluminum-acetate complex is relatively minor in comparison to aluminum oxalate and malonate complexes. Divalent metal cations such as Mg, Ca, and Fe form more stable complexes with acetate than with difunctional acid anions. Aluminum-oxalate can dominate the species distribution of aluminum under acidic pH conditions, whereas the divalent cation-acetate and oxalate complexes rarely account for more than 60% of the total dissolved cation, and then only in more alkaline waters. Mineral thermodynamic affinities were calculated using the reaction path model EQ3/6 for waters having variable organic acid anion (OAA) contents under conditions representative of those found during normal burial diagenesis. The following scenarios are possible: 1) K-feldspar and albite are stable, anorthite dissolves 2) All feldpars are stable 3) Carbonates can be very unstable to slightly unstable, but never increase in stability. Organic acid anions are ineffective at neutral to alkaline pH in modifying stabilities of aluminosilicate minerals whereas the anions are variably effective under a wide range of pH in modifying carbonate mineral stabilities. Reaction path calculations demonstrate that the sequence of mineral reactions occurring in an arkosic sandstone-fluid system is only slightly modified by the presence of OAA. A spectrum of possible sandstone alteration mineralogies can be obtained depending on the selected boundary conditions: EQ3/6 predictions include quartz overgrowth, calcite replacement of plagioclase, albitization of plagioclase, and the formation of porosity-occluding calcite

  13. Hormonal Regulation of Organic and Phosphoric Acid Release by Barley Aleurone Layers and Scutella.

    PubMed Central

    Drozdowicz, Y. M.; Jones, R. L.

    1995-01-01

    The release of acid from the aleurone layer and scutellum of barley (Hordeum vulgare L. cv Himalaya) was investigated. Aleurone layers isolated from mature barley grains acidify the external medium by releasing organic and phosphoric acids. Gibberellic acid and abscisic acid stimulate acid release 2-fold over control tissue incubated in 10 mM CACl2. Gibberellic acid causes medium acidification by stimulating the release of phosphoric and citric acids, whereas abscisic acid stimulates the release of malic acid. The accumulation of these acids in the incubation medium buffers the medium against changes in pH, particularly between pH 4 and 5. The amounts of amino acids that accumulate in the medium are low (2-12 nmol/layer) compared to other organic and phosphoric acids (100-500 nmol/layer). The scutellum does not play a major role in medium acidification but participates in the uptake of organic acids. The organic acid composition of the starchy endosperm changes after 3 d of imbibition; malic, succinic, and lactic acids decrease, whereas citric and phosphoric acids remain unchanged or increase. These results indicate that during postgerminative growth, the acidity of the starchy endosperm is maintained by acid production by the aleurone layer. PMID:12228509

  14. Engineering Porous Organic Cage Crystals with Increased Acid Gas Resistance.

    PubMed

    Zhu, Guanghui; Hoffman, Christopher D; Liu, Yang; Bhattacharyya, Souryadeep; Tumuluri, Uma; Jue, Melinda L; Wu, Zili; Sholl, David S; Nair, Sankar; Jones, Christopher W; Lively, Ryan P

    2016-07-25

    Both known and new CC3-based porous organic cages are prepared and exposed to acidic SO2 in vapor and liquid conditions. Distinct differences in the stability of the CC3 cages exist depending on the chirality of the diamine linkers used. The acid catalyzed CC3 degradation mechanism is probed via in situ IR and a degradation pathway is proposed and supported with computational results. CC3 crystals synthesized with racemic mixtures of diaminocyclohexane exhibited enhanced stability compared to CC3-R and CC3-S. Confocal fluorescent microscope images reveal that the stability difference in CC3 species originates from an abundance of mesoporous grain boundaries in CC3-R and CC3-S, allowing facile access of aqueous SO2 throughout the crystal, promoting decomposition. These grain boundaries are absent from CC3 crystals made with racemic linkers. PMID:27253350

  15. DC diaphragm discharge in water solutions of selected organic acids

    NASA Astrophysics Data System (ADS)

    Vyhnankova, Edita J.; Hammer, Malte U.; Reuter, Stephan; Krcma, Frantisek

    2015-07-01

    Effect of four simple organic acids water solution on a DC diaphragm discharge was studied. Efficiency of the discharge was quantified by the hydrogen peroxide production determined by UV-VIS spectrometry of a H2O2 complex formed with specific titanium reagent. Automatic titration was used to study the pH behaviour after the plasma treatment. Optical emission spectroscopy overview spectra were recorded and detailed spectra of OH band and Hβ line were used to calculate the rotational temperature and comparison of the line profile (reflecting electron concentration) in the acid solutions. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  16. Influence of organic acids on the pH and acid-neutralizing capacity of Adirondack Lakes

    NASA Astrophysics Data System (ADS)

    Munson, R. K.; Gherini, S. A.

    1993-04-01

    Past approaches for evaluating the effects of organic acids on the acid-base characteristics of surface waters have typically treated them solely as weak acids. Analysis of data collected by the Adirondack Lakes Survey Corporation (ALSC) from 1469 lakes throughout the Adirondack region shows that this approach is not valid. While the data indicate that natural organics contain a continuum of acid functional groups, many of which display weak acid characteristics, a significant fraction of the organic acid is strong (pKa < 3). Dissolved organic carbon (DOC) contributes 4.5-5 μeq/mg DOC of strong acid to solution. The associated anions make a negative contribution to Gran acid-neutralizing capacity (ANC). Because organic anions can produce negative Gran ANC values, the common practice of considering negative values of Gran ANC evidence of acidification solely by mineral acids is not valid. The strength of organic acids also influences the observed deviation between Gran ANC values and ANC values calculated as the difference between base cation and mineral acid anion concentrations (CB - CA). Ninety percent of the deviation is due to the presence of strong organics while the remaining 10% is due to DOC-induced curvature in the F1 Gran function. Organic acids can also strongly influence pH. Their largest effects were found in the 0-50 μeq/L Gran ANC range where they depressed pH by up to 1.5 units. In addition, a method for predicting changes in pH in response to changes in mineral acidity, DOC, or both without having to rely on inferred thermodynamic constants and the uncertainties associated with them has been developed. Using the predictive method, the response of representative lakes from four sensitive lake classes to a 15-μeq/L decrease in mineral acidity ranged from +0.17 to +0.38 pH units. If concurrent increases in DOC are considered, the pH changes would be even smaller.

  17. Separators and organics for lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Böhnstedt, Werner

    This review discusses various interactions between organic compounds, brought into the lead-acid battery via the separator, and their subsequent effect on battery performance. Historically, the interrelationship started with certain 'expander' actions on the lead morphology due to lignins, which leached out of the wooden separators of that time. Synthetic separator materials did not show this effect, but gained acceptance as they were far more stable in the hostile battery environment. The partially hydrophobic character of synthetic separators has been overcome by organic surfactants. Other organic compounds have been found to improve further the stability of separators against oxidation. Special organic molecules, namely aldehydes and ketones, have been identified to retard, or even suppress, the adverse effects of metals such as antimony, and thus prolong the cycle-life of traction batteries in heavy-duty applications or reduce water loss from automotive batteries. Knowledge about these interactions has opened ways to improve separators.

  18. Control of Meloidogyne incognita Using Mixtures of Organic Acids

    PubMed Central

    Seo, Yunhee; Kim, Young Ho

    2014-01-01

    This study sought to control the root-knot nematode (RKN) Meloidogyne incognita using benign organo-chemicals. Second-stage juveniles (J2) of RKN were exposed to dilutions (1.0%, 0.5%, 0.2%, and 0.1%) of acetic acid (AA), lactic acid (LA), and their mixtures (MX). The nematode bodies were disrupted severely and moderately by vacuolations in 0.5% of MX and single organic acids, respectively, suggesting toxicity of MX may be higher than AA and LA. The mortality of J2 was 100% at all concentrations of AA and MX and only at 1.0% and 0.5% of LA, which lowered slightly at 0.2% and greatly at 0.1% of LA. This suggests the nematicidal activity of MX may be mostly derived from AA together with supplementary LA toxicity. MX was applied to chili pepper plants inoculated with about 1,000 J2, for which root-knot gall formations and plant growths were examined 4 weeks after inoculation. The root gall formation was completely inhibited by 0.5% MX and standard and double concentrations of fosthiazate; and inhibited 92.9% and 57.1% by 0.2% and 0.1% MX, respectively. Shoot height, shoot weight, and root weight were not significantly (P ≤ 0.05) different among all treatments and the untreated and non-inoculated controls. All of these results suggest that the mixture of the organic acids may have a potential to be developed as an eco-friendly nematode control agent that needs to be supported by the more nematode control experiments in fields. PMID:25506312

  19. Control of Meloidogyne incognita Using Mixtures of Organic Acids.

    PubMed

    Seo, Yunhee; Kim, Young Ho

    2014-12-01

    This study sought to control the root-knot nematode (RKN) Meloidogyne incognita using benign organo-chemicals. Second-stage juveniles (J2) of RKN were exposed to dilutions (1.0%, 0.5%, 0.2%, and 0.1%) of acetic acid (AA), lactic acid (LA), and their mixtures (MX). The nematode bodies were disrupted severely and moderately by vacuolations in 0.5% of MX and single organic acids, respectively, suggesting toxicity of MX may be higher than AA and LA. The mortality of J2 was 100% at all concentrations of AA and MX and only at 1.0% and 0.5% of LA, which lowered slightly at 0.2% and greatly at 0.1% of LA. This suggests the nematicidal activity of MX may be mostly derived from AA together with supplementary LA toxicity. MX was applied to chili pepper plants inoculated with about 1,000 J2, for which root-knot gall formations and plant growths were examined 4 weeks after inoculation. The root gall formation was completely inhibited by 0.5% MX and standard and double concentrations of fosthiazate; and inhibited 92.9% and 57.1% by 0.2% and 0.1% MX, respectively. Shoot height, shoot weight, and root weight were not significantly (P ≤ 0.05) different among all treatments and the untreated and non-inoculated controls. All of these results suggest that the mixture of the organic acids may have a potential to be developed as an eco-friendly nematode control agent that needs to be supported by the more nematode control experiments in fields. PMID:25506312

  20. Methylmalonic acid blood test

    MedlinePlus

    ... acid is a substance produced when proteins, called amino acids, in the body break down. The health care ... Cederbaum S, Berry GT. Inborn errors of carbohydrate, ammonia, amino acid, and organic acid metabolism. In: Gleason CA, Devaskar ...

  1. CARBON CONTRIBUTION AND CHARACTERISTICS OF HUMIC ACID, FULVIC ACID, PARTICULATE ORGANIC MATTER AND GLOMALIN IN DIVERSE ECOSYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global climate change and soil carbon sequestration issues are entering the forefront of public policy, and emphasis is growing for research on carbon sinks and long-term terrestrial carbon stabilization. Humic acid (HA), fulvic acid (FA), humin and particulate organic matter (POM) have traditionall...

  2. Simple method of isolating humic acids from organic soils

    NASA Astrophysics Data System (ADS)

    Ahmed, O. H.; Susilawati, K.; Nik Muhamad, A. B.; Khanif, M. Y.

    2009-04-01

    Humic substances particularly humic acids (HA) play a major role in soil conditioning e.g. erosion control, soil cation exchange capacity, complexation of heavy metal ions and pesticides, carbon and nitrogen cycles, plant growth and reduction of ammonia volatilization from urea. Humified substances such as coal, composts, and peat soils have substantial amounts of HA but the isolation of these acids is expensive, laborious, and time consuming. Factors that affect the quality and yield of HA isolated from these materials include extraction, fractionation, and purification periods. This work developed a simple, rapid, and cost effective method of isolating HA from peat soils. There was a quadratic relationship between extraction period and HA yield. Optimum extraction period was estimated at 4 h instead of the usual range of 12 to 48 h. There was no relationship between fractionation period and HA yield. As such 2 h instead of the usual range of 12 to 24 h fractionation period could be considered optimum. Low ash content (5%), remarkable reduction in K, coupled with the fact that organic C, E4/E6, carboxylic COOH, phenolic OH, and total acidity values of the HA were consistent with those reported by other authors suggest that the HA dealt with were free from mineral matter. This was possible because the distilled water used to purify the HA served as Bronsted-Lowry acid during the purification process of the HA. Optimum purification period using distilled waster was 1 h instead of the usual range of 1 and 7 days (uses HF and HCl and dialysis). Humic acids could be isolated from tropical peat soils within 7 h (i.e. 4 h extraction, 2 h fractionation, and 1 h purification) instead of the existing period of 2 and 7 days. This could facilitate the idea of producing organic fertilizers such as ammonium-humate and potassium-humate from humified substances since techniques devised in this study did not alter the true nature of the HA. Besides, the technique is rapid, simple

  3. 40 CFR 721.5465 - Amine salt of organic acid (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amine salt of organic acid (generic... Substances § 721.5465 Amine salt of organic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as amine salt of organic acid...

  4. 40 CFR 721.5465 - Amine salt of organic acid (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amine salt of organic acid (generic... Substances § 721.5465 Amine salt of organic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as amine salt of organic acid...

  5. 40 CFR 721.5465 - Amine salt of organic acid (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Amine salt of organic acid (generic... Substances § 721.5465 Amine salt of organic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as amine salt of organic acid...

  6. 40 CFR 721.5465 - Amine salt of organic acid (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amine salt of organic acid (generic... Substances § 721.5465 Amine salt of organic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as amine salt of organic acid...

  7. 40 CFR 721.5465 - Amine salt of organic acid (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amine salt of organic acid (generic... Substances § 721.5465 Amine salt of organic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as amine salt of organic acid...

  8. Structure of six organic acid-base adducts from 6-bromobenzo[d]thiazol-2-amine and acidic compounds

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Zhang, Jing; Wang, Daqi; Tao, Lin; Zhou, Mengjian; Shen, Yinyan; Chen, Quan; Lin, Zhanghui; Gao, Xingjun

    2014-05-01

    Six anhydrous organic acid-base adducts of 6-bromobenzo[d]thiazol-2-amine were prepared with organic acids as 2,4,6-trinitrophenol, salicylic acid, 3,5-dinitrobenzoic acid, 3,5-dinitrosalicylic acid, malonic acid and sebacic acid. The compounds 1-6 were characterized by X-ray diffraction analysis, IR, and elemental analysis. The melting points of all the adducts were given. Of the six adducts, 1, 3, 4, and 5 are organic salts, while 2, and 6 are cocrystals. The supramolecular arrangement in the crystals 2-6 is based on the R22(8) synthon. Analysis of the crystal packing of 1-6 suggests that there are strong NH⋯O, OH⋯N, and OH⋯O hydrogen bonds (charge assisted or neutral) between acid and base components in the supramolecular assemblies. When the hydroxyl group is present in the ortho position of the carboxy, the intramolecular S6 synthon is present, as expected. Besides the classical hydrogen bonding interactions, other noncovalent interactions also play important roles in structure extension. Due to the synergetic effect of these weak interactions, compounds 1-6 display 1D-3D framework structure.

  9. Water-enhanced solubility of carboxylic acids in organic solvents and its applications to extraction processes

    SciTech Connect

    Starr, J.N.; King, C.J.

    1991-11-01

    The solubilities of carboxylic acids in certain organic solvents increase remarkably with an increasing amount of water in the organic phase. This phenomenon leads to a novel extract regeneration process in which the co-extracted water is selectively removed from an extract, and the carboxylic acid precipitates. This approach is potentially advantageous compared to other regeneration processes because it removes a minor component of the extract in order to achieve a large recovery of acid from the extract. Carboxylic acids of interest include adipic acid, fumaric acid, and succinic acid because of their low to moderate solubilities in organic solvents. Solvents were screened for an increase in acid solubility with increased water concentration in the organic phase. Most Lewis-base solvents were found to exhibit this increased solubility phenomena. Solvents that have a carbonyl functional group showed a very large increase in acid solubility. 71 refs., 52 figs., 38 tabs.

  10. Use of Cavity Ring Down Spectroscopy to Characterize Organic Acids and Aerosols Emitted in Biomass Burning

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon; Fiddler, Marc; Singh, Sujeeta

    2012-02-01

    One poorly understood, but significant class of volatile organic compounds (VOC) present in biomass burning is gas-phase organic acids and inorganic acids. These acids are extremely difficult to measure because of their adsorptive nature. Particulates and aerosols are also produced during biomass burning and impact the radiation budget of the Earth and, hence, impact global climate. Use cavity ring down spectroscopy (CRD) to measure absorption cross sections for OH overtone induced photochemistry in some organic acids (acetic acid and peracetic acid) will be presented and planed measurements of optical properties of aerosols composed of mixtures of different absorbing and non-absorbing species using CRD will be discussed.

  11. Organic Acids as Hetrotrophic Energy Sources in Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Windman, T. O.; Zolotova, N.; Shock, E.

    2004-12-01

    Many thermophilic microbes are heterotrophs, but little is known about the organic compounds present in hydrothermal ecosystems. More is known about what these organisms will metabolize in lab experiments than what they do metabolize in nature. In an effort to bridge this gap, we have begun to incorporate organic analyses into ongoing research on Yellowstone hydrothermal ecosystems. After filtering at least a liter of hot spring water to minimize contamination, samples were collected into sixty-milliliter serum vials containing ultra-pure phosphoric acid, sodium hydroxide, or benzalkonium chloride. Approximately 80 sites were sampled spanning temperatures from 60 to 90°C and pH values from 2 to 9. Analytical data for organic acid anions (including formate, acetate, lactate, and succinate) were obtained by ion chromatography. Preliminary results indicate that concentrations of organic acids anions range from 5 to 300 ppb. These results can be used with other field and lab data (sulfate, sulfide, nitrate, ammonia, bicarbonate, pH, hydrogen) in thermodynamic calculations to evaluate the amounts of energy available in heterotrophic reactions. Preliminary results of such calculations show that sulfate reduction to sulfide coupled to succinate oxidation to bicarbonate yields about 6 kcal per mole of electrons transferred. When formate oxidation to bicarbonate or hydrogen oxidation to water is coupled to sulfate reduction there is less energy available by approximately a factor of two. A comparison with nitrate reduction to ammonia involving succinate and/or formate oxidation reveals several similarities. Using formate to reduce nitrate can yield about as much energy as nitrate reduction with hydrogen (typically 12 to 14 kcal per mole of electrons transferred), but using succinate can yield more than twice as much energy. In fact, reduction of nitrate with succinate can provide more energy than any of the inorganic nitrate reduction reactions involving sulfur, iron

  12. Formic and Acetic Acid Observations over Colorado by Chemical Ionization Mass Spectrometry and Organic Acids' Role in Air Quality

    NASA Astrophysics Data System (ADS)

    Treadaway, V.; O'Sullivan, D. W.; Heikes, B.; Silwal, I.; McNeill, A.

    2015-12-01

    Formic acid (HFo) and acetic acid (HAc) have both natural and anthropogenic sources and a role in the atmospheric processing of carbon. These organic acids also have an increasing importance in setting the acidity of rain and snow as precipitation nitrate and sulfate concentrations have decreased. Primary emissions for both organic acids include biomass burning, agriculture, and motor vehicle emissions. Secondary production is also a substantial source for both acids especially from biogenic precursors, secondary organic aerosols (SOAs), and photochemical production from volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs). Chemical transport models underestimate organic acid concentrations and recent research has sought to develop additional production mechanisms. Here we report HFo and HAc measurements during two campaigns over Colorado using the peroxide chemical ionization mass spectrometer (PCIMS). Iodide clusters of both HFo and HAc were recorded at mass-to-charge ratios of 173 and 187, respectively. The PCIMS was flown aboard the NCAR Gulfstream-V platform during the Deep Convective Clouds and Chemistry Experiment (DC3) and aboard the NCAR C-130 during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE). The DC3 observations were made in May and June 2012 extending from the surface to 13 km over the central and eastern United States. FRAPPE observations were made in July and August 2014 from the surface to 7 km over Colorado. DC3 measurements reported here are focused over the Colorado Front Range and complement the FRAPPE observations. DC3 HFo altitude profiles are characterized by a decrease up to 6 km followed by an increase either back to boundary layer mixing ratio values or higher (a "C" shape). Organic acid measurements from both campaigns are interpreted with an emphasis on emission sources (both natural and anthropogenic) over Colorado and in situ photochemical production especially ozone precursors.

  13. Structural organization of fatty acid desaturase loci in linseed lines with contrasting linolenic acid contents.

    PubMed

    Thambugala, Dinushika; Ragupathy, Raja; Cloutier, Sylvie

    2016-07-01

    Flax (Linum usitatissimum L.), the richest crop source of omega-3 fatty acids (FAs), is a diploid plant with an estimated genome size of ~370 Mb and is well suited for studying genomic organization of agronomically important traits. In this study, 12 bacterial artificial chromosome clones harbouring the six FA desaturase loci sad1, sad2, fad2a, fad2b, fad3a and fad3b from the conventional variety CDC Bethune and the high linolenic acid line M5791 were sequenced, analysed and compared to determine the structural organization of these loci and to gain insights into the genetic mechanisms underlying FA composition in flax. With one gene every 3.2-4.6 kb, the desaturase loci have a higher gene density than the genome's average of one gene per 7.8-8.2 kb. The gene order and orientation across the two genotypes were generally conserved with the exception of the sad1 locus that was predicted to have additional genes in CDC Bethune. High sequence conservation in both genic and intergenic regions of the sad and fad2b loci contrasted with the significant level of variation of the fad2a and fad3 loci, with SNPs being the most frequently observed mutation type. The fad2a locus had 297 SNPs and 36 indels over ~95 kb contrasting with the fad2b locus that had a mere seven SNPs and four indels in ~110 kb. Annotation of the gene-rich loci revealed other genes of known role in lipid or carbohydrate metabolic/catabolic pathways. The organization of the fad2b locus was particularly complex with seven copies of the fad2b gene in both genotypes. The presence of Gypsy, Copia, MITE, Mutator, hAT and other novel repeat elements at the desaturase loci was similar to that of the whole genome. This structural genomic analysis provided some insights into the genomic organization and composition of the main desaturase loci of linseed and of their complex evolution through both tandem and whole genome duplications. PMID:27142663

  14. IUPAC-NIST Solubility Data Series. 99. Solubility of Benzoic Acid and Substituted Benzoic Acids in Both Neat Organic Solvents and Organic Solvent Mixtures

    NASA Astrophysics Data System (ADS)

    Acree, William E.

    2013-09-01

    Solubility data are compiled and reviewed for benzoic acid and 63 substituted benzoic acids dissolved in neat organic solvents and well-defined binary and ternary organic solvent mixtures. The compiled solubility data were retrieved from the published chemical and pharmaceutical literature covering the period from 1900 to the beginning of 2013.

  15. Effects of pH adjustment and sodium ions on sour taste intensity of organic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protonated organic acid species have been shown to be the primary stimuli responsible for sour taste of organic acids. However, we have observed that sour taste may be modulated when the pH of acid solutions is raised using sodium hydroxide. Objectives were to evaluate the effect of pH adjustment on...

  16. Estimating the contribution of organic acids to northern hemispheric continental organic aerosol

    NASA Astrophysics Data System (ADS)

    Yatavelli, Reddy L. N.; Mohr, Claudia; Stark, Harald; Day, Douglas A.; Thompson, Samantha L.; Lopez-Hilfiker, Felipe D.; Campuzano-Jost, Pedro; Palm, Brett B.; Vogel, Alexander L.; Hoffmann, Thorsten; Heikkinen, Liine; ńijälä, Mikko; Ng, Nga L.; Kimmel, Joel R.; Canagaratna, Manjula R.; Ehn, Mikael; Junninen, Heikki; Cubison, Michael J.; Petäjä, Tuukka; Kulmala, Markku; Jayne, John T.; Worsnop, Douglas R.; Jimenez, Jose L.

    2015-07-01

    Using chemical ionization mass spectrometry to detect particle-phase acids and aerosol mass spectrometry (AMS) measurements from Colorado, USA, and two studies in Hyytiälä, Finland, we quantify the fraction of organic aerosol (OA) mass that is composed of molecules with acid functional groups (facid). Molecules containing one or more carboxylic acid functionality contributed approximately 29% (45-51%) of the OA mass in Colorado (Finland). Organic acid mass concentration correlates well with AMS m/z 44 (primarily CO2+), a commonly used marker for highly oxidized aerosol. Using the average empirical relationship between AMS m/z 44 and organic acids in these three studies, together with m/z 44 data from 29 continental northern hemispheric (NH) AMS data sets, we estimate that molecules containing carboxylic acid functionality constitute on average 28% (range 10-50%) of NH continental OA mass with typically higher values at rural/remote sites and during summer and lower values at urban sites and during winter.

  17. [Determination of organic acids in rice wine by ion-exclusion chromatography].

    PubMed

    Lin, Xiaojie; Wei, Wei; He, Zhigang; Lin, Xiaozi

    2014-03-01

    An ion-exclusion chromatographic method for the simultaneous determination of organic acids in rice wine was developed. An IC-Pak Ion Exclusion column (300 mm x 7.8 mm, 7 microm) was used at 50 degrees C. The mobile phases were H2SO4 (phase A) and acetonitrile (phase B) (98:2, v/v) at a flow rate of 0.5 mL/min. The gradient elution program was as follows: 0-40 min, 0.01 mol/L H2SO4 to 0.02 mol/L H2SO4; 40-50 min, 0.01 mol/L H2SO4. The injection volume was 10 microL. The detection wavelength was set at 210 nm. The results showed that oxalic acid, maleic acid, citric acid, tartaric acid, malic acid, ascorbic acid, succinic acid, lactic, fumaric acid, acetic acid, propionic acid, isobutyric acid and butyric acid were completely separated and determined in 30 min. The linear correlation coefficients were above 0.999 7 in the range of 0.001- 1.000 g/L. Under the optimized conditions, the recoveries of organic acids in rice wine were in the range of 93.4% - 103.8% with the relative standard deviations (RSDs, n = 5) of 0.1% - 1.5%. This method is feasible, convenient, fast, accurate and applicable for the quantitative analysis of the organic acids in rice wine. PMID:24984473

  18. Hydrogelation and Crystallization of Sodium Deoxycholate Controlled by Organic Acids.

    PubMed

    Li, Guihua; Hu, Yuanyuan; Sui, Jianfei; Song, Aixin; Hao, Jingcheng

    2016-02-16

    The gelation and crystallization behavior of a biological surfactant, sodium deoxycholate (NaDC), mixed with l-taric acid (L-TA) in water is described in detail. With the variation of molar ratio of L-TA to NaDC (r = nL-TA/nNaDC) and total concentration of the mixtures, the transition from sol to gel was observed. SEM images showed that the density of nanofibers gradually increases over the sol-gel transition. The microstructures of the hydrogels are three-dimensional networks of densely packed nanofibers with lengths extending to several micrometers. One week after preparation, regular crystallized nanospheres formed along the length of the nanofibers, and it was typical among the transparent hydrogels induced by organic acids with pKa1 value <3.4. Small-angle X-ray diffraction demonstrated differences in the molecular packing between transparent and turbid gels, indicating a variable hydrogen bond mode between NaDC molecules. PMID:26783993

  19. Phase equilibria and distribution constants of metal ions in diantipyryl alkane-organic acid-hydrochloric acid-water systems

    NASA Astrophysics Data System (ADS)

    Degtev, M. I.; Popova, O. N.; Yuminova, A. A.

    2014-08-01

    The ability of antipyrine and its derivatives (diantipyryl alkanes) to form separating systems in the presence of salicylic (sulfosalicylic) acid and hydrochloric acid and water is studied. The optimum volume of the organic phase, the composition of complexes, and the mechanism for the distribution of metal ions are determined, depending on the concentrations of the main components and the salting-out agent. The complex distribution and extraction constants are calculated.

  20. [Inhibitory effects of organic acids and salts on selected micromycetes].

    PubMed

    Láníková, A; Toulová, M

    1992-12-01

    Inhibitory effects of two fungistatic preparations (A and B) and of propionic acid were tested in a complete feed mixture for broiler chickens (starter mixture). The water content of this mixture was 25.4%, environmental temperature was 24 degrees C and relative air humidity 90%. Propionic acid, which has a high fungistatic effect, served as a standard. The composition of the preparation A was as follows: propionic acid, acetic acid, sorbic acid, citric acid and calcium propionate. The preparation B contained: sorbic acid, citric acid and calcium propionate. Examinations were performed in a naturally contaminated and subsequently sterilized (25 kGy) feed mixture; it was then infected with Aspergillus fumigatus, A. niger, A. parasiticus and Penicillium purpurogenum from the Collection of Animal Pathogenic Microorganisms, Brno. A. flavus, A. fumigatus, A. glaucus, Penicillium sp., Absidia corymbifera, Mucor sp., Rhizomucor pusillus were detected in the naturally contaminated feed mixture. The mycoflora which was found in the native substrate was resistant to both tested fungistatic preparations; and this resulted in mycelium growth from 7th day of incubation. The efficiency of the preparations A,B and of propionic acid in the feed mixture was identical at concentrations of 4 mg/kg, 7 mg/kg and 3 mg/kg, respectively, and their inhibitory effects were lowest at these concentrations (Fig. 2). A high water content in the nutrient substrate resulted in the rapid growth of fungi of the Mucorales species. The relative humidity of the environment (90%) and water content of tested samples affected markedly micromycetes growth in this experiment.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1297244

  1. Qualitative urinary organic acid analysis: 10 years of quality assurance.

    PubMed

    Peters, Verena; Bonham, James R; Hoffmann, Georg F; Scott, Camilla; Langhans, Claus-Dieter

    2016-09-01

    Over the last 10 years, a total of 90 urine samples from patients with metabolic disorders and controls were circulated to different laboratories in Europe and overseas, starting with 67 laboratories in 2005 and reaching 101 in 2014. The participants were asked to analyse the samples in their usual way and to prepare a report as if to a non-specialist pediatrician. The performance for the detection of fumarase deficiency, glutaric aciduria type I, isovaleric aciduria, methylmalonic aciduria, mevalonic aciduria, phenylketonuria and propionic aciduria was excellent (98-100 %). Over the last few years, detection has clearly improved for tyrosinaemia type I (39 % in 2008 to over 80 % in 2011/2014), maple syrup urine disease (85 % in 2005 to 98 % in 2012), hawkinsinuria (62 % in 2010 to 88 % in 2014), aminoacylase I deficiency (43 % in 2009 to 73 % in 2012) and 3-methylcrotonyl-CoA carboxylase deficiency (60 % in 2005 to 93 % by 2011). Normal urines were mostly considered as normal (83-100 %), but laboratories often made additional diagnostic suggestions. When the findings were unambiguous, the reports were mostly clear. However, when they were less obvious, the content and quality of reports varied greatly. Repetition of organic acid measurements on a fresh sample was rarely suggested, while more complex or invasive diagnostic strategies, including further metabolic screening or biopsy were recommended. Surprisingly very few participants suggested referral from the general paediatrician to a specialist metabolic centre to confirm a diagnosis and, if applicable, to initiate treatment despite evidence suggesting that this improves the outcome for patients with inherited metabolic disorders. The reliability of qualitative organic acid analysis has improved over the last few years. However, several aspects of reporting to non-specialists may need discussion and clinicians need to be aware of the uncertainty inherent in all forms of laboratory diagnostic

  2. Isolation of organic acids from large volumes of water by adsorption chromatography

    USGS Publications Warehouse

    Aiken, George R.

    1984-01-01

    The concentrations of dissolved organic carbon from most natural waters ranges from 1 to 20 milligrams carbon per liter, of which approximately 75 percent are organic acids. These acids can be chromatographically fractionated into hydrophobic organic acids, such as humic substances, and hydrophilic organic acids. To effectively study any of these organic acids, they must be isolated from other organic and inorganic species, and concentrated. Usually, large volumes of water must be processed to obtain sufficient quantities of material, and adsorption chromatography on synthetic, macroporous resins has proven to be a particularly effective method for this purpose. The use of the nonionic Amberlite XAD-8 and Amberlite XAD-4 resins and the anion exchange resin Duolite A-7 for isolating and concentrating organic acids from water is presented.

  3. Toxicity of perfluorinated carboxylic acids for aquatic organisms.

    PubMed

    Tichý, Miloň; Valigurová, Radka; Cabala, Radomír; Uzlová, Rut; Rucki, Marián

    2010-06-01

    Toxicity of perfluorinated carboxylic acids with carbon chain C(8) to C(12) were tested with oligochaeta Tubifex tubifex. Toxicity was evaluated as the exposure time ET(50) from onset of damage of the oligochaeta in saturated aqueous solutions. The ET(50) fluctuated between 25 and 257 minutes. No statistically significant difference was found among the C(8), C(9) and C(12) acids (ET(50) between 143 and 257 minutes with large standard deviation). The acids with carbon chain C(10) and C(11) induced the effect significantly quicker (25 to 47 minutes). No acute toxicity measured in the three-minute test was observed in any case. PMID:21217876

  4. Recoded organisms engineered to depend on synthetic amino acids.

    PubMed

    Rovner, Alexis J; Haimovich, Adrian D; Katz, Spencer R; Li, Zhe; Grome, Michael W; Gassaway, Brandon M; Amiram, Miriam; Patel, Jaymin R; Gallagher, Ryan R; Rinehart, Jesse; Isaacs, Farren J

    2015-02-01

    Genetically modified organisms (GMOs) are increasingly used in research and industrial systems to produce high-value pharmaceuticals, fuels and chemicals. Genetic isolation and intrinsic biocontainment would provide essential biosafety measures to secure these closed systems and enable safe applications of GMOs in open systems, which include bioremediation and probiotics. Although safeguards have been designed to control cell growth by essential gene regulation, inducible toxin switches and engineered auxotrophies, these approaches are compromised by cross-feeding of essential metabolites, leaked expression of essential genes, or genetic mutations. Here we describe the construction of a series of genomically recoded organisms (GROs) whose growth is restricted by the expression of multiple essential genes that depend on exogenously supplied synthetic amino acids (sAAs). We introduced a Methanocaldococcus jannaschii tRNA:aminoacyl-tRNA synthetase pair into the chromosome of a GRO derived from Escherichia coli that lacks all TAG codons and release factor 1, endowing this organism with the orthogonal translational components to convert TAG into a dedicated sense codon for sAAs. Using multiplex automated genome engineering, we introduced in-frame TAG codons into 22 essential genes, linking their expression to the incorporation of synthetic phenylalanine-derived amino acids. Of the 60 sAA-dependent variants isolated, a notable strain harbouring three TAG codons in conserved functional residues of MurG, DnaA and SerS and containing targeted tRNA deletions maintained robust growth and exhibited undetectable escape frequencies upon culturing ∼10(11) cells on solid media for 7 days or in liquid media for 20 days. This is a significant improvement over existing biocontainment approaches. We constructed synthetic auxotrophs dependent on sAAs that were not rescued by cross-feeding in environmental growth assays. These auxotrophic GROs possess alternative genetic codes that

  5. The Role of Organic Acids in the Acid-Base Status of Surface Waters at Bickford Watershed, Massachusetts

    NASA Astrophysics Data System (ADS)

    Eshleman, K. N.; Hemond, H. F.

    1985-10-01

    An experimental field study of the alkalinity and major ion budgets of Bickford watershed in central Massachusetts indicates that organic acid production by the ecosystem contributes measurably to surface water acidification. Applying the concepts of alkalinity, electroneutrality of solutions, and mass balance, organic acids were found to comprise 20% of all strong acid sources on one subcatchment annually, a value half as large as the measured bulk mineral acid deposition. Inorganic cation to anion ratios in Provencial Brook varied between 1.0 in winter and 1.6 during summer, suggesting the presence of up to 100 μeq/L of unmeasured charge from organic anions during the growing season. Base titrations and ultraviolet photooxidation experiments confirmed the existence of low pKa (3.5-5.0) acidic functional groups. A positive linear relationship between dissolved organic carbon (DOC) and anion deficit for a group of surface and groundwater samples indicates the DOC contains about 7.5 meq carboxylic groups per gram C. Biological factors related to both upland and wetland carbon metabolism apparently control this natural acidification phenomenon, which has not been documented on other watersheds in the northeastern United States for which annual alkalinity budgets have been determined.

  6. Influence of Organic Acids on Diltiazem HCl Release Kinetics from Hydroxypropyl Methyl Cellulose Matrix Tablets.

    PubMed

    Sateesha, Sb; Rajamma, Aj; Narode, Mk; Vyas, Bd

    2010-07-01

    The matrix tablets of diltiazem hydrochloride were prepared by direct compression using hydroxypropyl methyl cellulose (HPMC) and various amounts (2.5%, 5.0%, 10% and 20%) of citric acid, malic acid and succinic acid. The characterization of physical mixture of drug and organic acids was performed by Infra-red spectroscopy. An organic acid was incorporated to set up a system bringing about gradual release of this drug. The influence of organic acids on the release rate were described by the Peppas equation: M (t) /M(∞) = Kt (n) and Higuchi's equation: Q (t) = K(1)t(1/2). The addition of organic acids and the pH value of medium could notably influence the dissolution behavior and mechanism of drug-release from matrices. Increasing amounts of organic acid produced an increase in drug release rate, which showed a good linear relationship between contents of organic acid and drug accumulate release (%) in phosphate buffer, pH 7.4. The drug release increased significantly (P < 0.05) with use of succinic acid in tablet formulation. Increasing amounts of succinic acid above 10% produced decreasing values of n and increasing values of k, in a linear relationship, which indicated there was a burst release of drug from the matrix. Optimized formulations are found to be stable upon 3-month study. PMID:21042476

  7. Influence of Organic Acids on Diltiazem HCl Release Kinetics from Hydroxypropyl Methyl Cellulose Matrix Tablets

    PubMed Central

    Sateesha, SB; Rajamma, AJ; Narode, MK; Vyas, BD

    2010-01-01

    The matrix tablets of diltiazem hydrochloride were prepared by direct compression using hydroxypropyl methyl cellulose (HPMC) and various amounts (2.5%, 5.0%, 10% and 20%) of citric acid, malic acid and succinic acid. The characterization of physical mixture of drug and organic acids was performed by Infra-red spectroscopy. An organic acid was incorporated to set up a system bringing about gradual release of this drug. The influence of organic acids on the release rate were described by the Peppas equation: M t /M∞ = Kt n and Higuchi’s equation: Q t = K1t1/2. The addition of organic acids and the pH value of medium could notably influence the dissolution behavior and mechanism of drug-release from matrices. Increasing amounts of organic acid produced an increase in drug release rate, which showed a good linear relationship between contents of organic acid and drug accumulate release (%) in phosphate buffer, pH 7.4. The drug release increased significantly (P < 0.05) with use of succinic acid in tablet formulation. Increasing amounts of succinic acid above 10% produced decreasing values of n and increasing values of k, in a linear relationship, which indicated there was a burst release of drug from the matrix. Optimized formulations are found to be stable upon 3-month study. PMID:21042476

  8. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, A.J.; Dodge, C.; Chendrayan, K.; Quinby, H.L.

    1987-04-16

    The present invention related to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rat of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 ..mu..moles of lead as lead oxide was 0.042 ..mu..moles m1/sup /-/1/ hr/sup /-/1/. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of the strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids. 4 figs., 3 tabs.

  9. Organic acids enhanced decoloration of azo dye in gas phase surface discharge plasma system.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-01-25

    A gas phase surface discharge plasma combined with organic acids system was developed to enhance active species mass transfer and dye-containing wastewater treatment efficacy, with Acid Orange II (AO7) as the model pollutant. The effects of discharge voltage and various organic acid additives (acetic acid, lactic acid and nonoic acid) on AO7 decoloration efficiency were evaluated. The experimental results showed that an AO7 decoloration efficiency of approximately 69.0% was obtained within 4 min of discharge plasma treatment without organic acid addition, which was improved to 82.8%, 83.5% and 88.6% within the same treatment time with the addition of acetic acid, lactic acid and nonoic acid, respectively. The enhancement effects on AO7 decoloration efficiency could be attributed to the decrease in aqueous surface tension, improvement in bubble distribution and shape, and increase in ozone equivalent concentration. The AO7 wastewater was biodegradable after discharge plasma treatment with the addition of organic acid. AO7 decomposition intermediates were analyzed by UV-vis spectrometry and GC-MS; 2-naphthol, 1,4-benzoquinone, phthalic anhydride, coumarin, 1,2-naphthoquinone, and 2-formyl-benzoic acid were detected. A possible pathway for AO7 decomposition in this system was proposed. PMID:26444488

  10. Thermophysical properties of starch and whey protein composite prepared in presence of organic acid and esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, we prepared starch and protein composite by reactive mixing in presence of various organic acids and found that use of these acid esters resulted in composites with good mechanical properties. In this study, concentration (% w/w) of acid citrates in the starch-protein composites were var...

  11. DISTRIBUTION OF HYDROPHOBIC IONOGENIC ORGANIC COMPOUNDS BETWEEN OCTANOL AND WATER: ORGANIC ACIDS

    EPA Science Inventory

    The octanol-water distributions of 10 environmentally significant organic acid compounds were determined as a function of aqueous-phase salt concentration (0.05-0.2 M LiCl, NaCl, KCl, CaCl2, or MgCl2) and pH. he compounds were pentachlorophenol 2,3,4,5-tetrachlorophenol, (2,4,5-t...

  12. Toxicity of Select Organic Acids to the Slightly Thermophilic Acidophile Acidithiobaccillus Caldus

    SciTech Connect

    John E Aston; William A Apel; Brady D Lee; Brent M Peyton

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 µM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 µM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids.

  13. Toxicity of select organic acids to the slightly thermophilic acidophile Acidithiobacillus caldus.

    PubMed

    Aston, John E; Apel, William A; Lee, Brady D; Peyton, Brent M

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 microM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 microM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids. PMID:18803441

  14. Dissolution behavior of Caldag lateritic nickel ore subjected to a sequential organic acid leaching method

    NASA Astrophysics Data System (ADS)

    Kursunoglu, Sait; Kaya, Muammer

    2015-11-01

    The dissolution behavior of Caldag lateritic nickel ore subjected to a sequential organic acid leaching method was investigated. The effects of the type of organic acid, acid concentration, leaching time, and leaching temperature on the lateritic nickel ore were examined. Organic acids were used individually prior to sequential leaching. Citric acid was more effective than the other two acids for the selective leaching of nickel and cobalt. An increase in the citric acid concentration negligibly affected the dissolution of the metals, whereas temperature exhibited a strong beneficial effect. Oxalic acid was determined to be the most appropriate organic acid for the second leaching step. After 8 h (4 h + 4 h) of leaching with organic acids (0.5 M citric + 0.5 M oxalic) in sequence at 90°C, 89.63% Ni, 82.89% Co, and 69.63% Fe were leached from the lateritic nickel ore. A sequential citric + oxalic acid leaching method could represent a viable alternative for the dissolution of metals from lateritic nickel ore.

  15. The Photochemical Isomerization of Maleic to Fumaric Acid: An Undergraduate Organic Chemistry Experiment.

    ERIC Educational Resources Information Center

    Castro, Albert J.; And Others

    1983-01-01

    Describes an undergraduate organic chemistry experiment on the photochemical isomerization of maleic to fumaric acid. Background information, chemical reactions involved, and experimental procedures are included. (JN)

  16. Folic Acid

    MedlinePlus

    Folic acid is a B vitamin. It helps the body make healthy new cells. Everyone needs folic acid. For women who may get pregnant, it is really important. Getting enough folic acid before and during pregnancy can prevent major birth ...

  17. Folic Acid

    MedlinePlus

    Folic acid is used to treat or prevent folic acid deficiency. It is a B-complex vitamin needed by ... Folic acid comes in tablets. It usually is taken once a day. Follow the directions on your prescription label ...

  18. Aspartic acid

    MedlinePlus

    ... also called asparaginic acid. Aspartic acid helps every cell in the body work. It plays a role in: Hormone production and release Normal nervous system function Plant sources of aspartic acid include: Legumes such as ...

  19. Evidence of rapid production of organic acids in an urban air mass

    NASA Astrophysics Data System (ADS)

    Veres, Patrick R.; Roberts, James M.; Cochran, Anthony K.; Gilman, Jessica B.; Kuster, William C.; Holloway, John S.; Graus, Martin; Flynn, James; Lefer, Barry; Warneke, Carsten; de Gouw, Joost

    2011-09-01

    Gas-phase acids (nitric, formic, acrylic, methacrylic, propionic, and pyruvic/butryic acid) were measured using negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) in Pasadena, CA as part of the CalNex 2010 (Research at the Nexus of Air Quality and Climate Change) study in May-June 2010. Organic acid concentrations ranged from a few parts per trillion by volume (pptv) to several parts per billion by volume (ppbv), with the largest concentrations observed for formic and propionic acids. Photochemically processed urban emissions transported from Los Angeles were frequently sampled during the day. Analysis of transported emissions demonstrates a strong correlation of organic acid concentrations with both nitric acid and odd oxygen (Ox = O3 + NO2) showing that the organic acids are photochemically and rapidly produced from urban emissions.

  20. Field and Laboratory Studies of Reactions between Atmospheric Water Soluble Organic Acids and Inorganic Particles

    SciTech Connect

    Wang, Bingbing; Kelly, Stephen T.; Sellon, Rachel E.; Shilling, John E.; Tivanski, Alexei V.; Moffet, Ryan C.; Gilles, Mary K.; Laskin, Alexander

    2013-06-25

    Atmospheric inorganic particles undergo complex heterogeneous reactions that change their physicochemical properties. Depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of chlorides with inorganic acids, such as nitric and sulfuric acids [1-2]. Recently, we showed that NaCl can react with water soluble organic acids (WSOA) and release gaseous hydrochloric acid (HCl) resulting in formation of organic salts [3]. A similar mechanism is also applicable to mixed WSOA/nitrate particles where multi-phase reactions are driven by the volatility of nitric acid. Furthermore, secondary organic material, which is a complex mixture of carboxylic acids, exhibits the same reactivity towards chlorides and nitrates. Here, we present a systematic study of reactions between atmospheric relevant WSOA, SOM, and inorganic salts including NaCl, NaNO3, and Ca(NO3)2 using complementary micro-spectroscopy analysis.

  1. Uptake of Ambient Organic Gases to Acidic Sulfate Aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.

    2009-05-01

    The formation of secondary organic aerosols (SOA) in the atmosphere has been an area of significant interest due to its climatic relevance, its effects on air quality and human health. Due largely to the underestimation of SOA by regional and global models, there has been an increasing number of studies focusing on alternate pathways leading to SOA. In this regard, recent work has shown that heterogeneous and liquid phase reactions, often leading to oligomeric material, may be a route to SOA via products of biogenic and anthropogenic origin. Although oligomer formation in chamber studies has been frequently observed, the applicability of these experiments to ambient conditions, and thus the overall importance of oligomerization reactions remain unclear. In the present study, ambient air is drawn into a Teflon smog chamber and exposed to acidic sulfate aerosols which have been formed in situ via the reaction of SO3 with water vapor. The aerosol composition is measured with a High Resolution Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS), and particle size distributions are monitored with a scanning mobility particle sizer (SMPS). The use of ambient air and relatively low inorganic particle loading potentially provides clearer insight into the importance of heterogeneous reactions. Results of experiments, with a range of sulfate loadings show that there are several competing processes occurring on different timescales. A significant uptake of ambient organic gases to the particles is observed immediately followed by a slow shift towards higher m/z over a period of several hours indicating that higher molecular weight products (possibly oligomers) are being formed through a reactive process. The results suggest that heterogeneous reactions can occur with ambient organic gases, even in the presence of ammonia, which may have significant implications to the ambient atmosphere where particles may be neutralized after their formation.

  2. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland; Chendrayan, Krishnachetty; Quinby, Helen L.

    1988-01-01

    The present invention relates to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rate of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 .mu.moles of lead as lead oxide was 0.042 .mu.moles ml.sup.-1 hr.sup.-1. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids.

  3. Desorption of copper and cadmium from soils enhanced by organic acids.

    PubMed

    Yuan, Songhu; Xi, Zhimin; Jiang, Yi; Wan, Jinzhong; Wu, Chan; Zheng, Zhonghua; Lu, Xiaohua

    2007-07-01

    The adsorption/desorption behavior of copper and cadmium on soils was investigated in this study. The adsorption isotherm of copper and cadmium conformed to Langmuir equation better than Freundlich equation. The effect of ionic strength, pH, and organic acid, including ethylenediamine tetraacetic disodium acid salt (EDTA), citric acid, oxalic acid and tartaric acid, on the desorption of copper and cadmium was studied. The desorption of copper and cadmium increased with the increase of ionic strength, while the desorption decreased with the rise of pH. The desorption of copper and cadmium enhanced by organic acids was influenced by pH. EDTA showed excellent enhancement on the desorption of both copper and cadmium; citric acid demonstrated great enhancement on the desorption of copper but negligible enhancement on the desorption of cadmium; oxalic acid enhanced the desorption of copper only at pH around 6.4 and enhanced the desorption of cadmium in the pH range from 6.4 to 10.7; tartaric acid slightly enhanced the desorption of copper but negligibly enhanced the desorption of cadmium. The desorption mechanism in the presence of organic acids were explained as the competition of complexation, adsorption and precipitation. The net effect determined the desorption efficiency. This study provided guidance for the selection of organic acids to enhance the electrokinetic (EK) remediation of copper and cadmium from contaminated soils. PMID:17349675

  4. Inhibitory Effects of Caffeic Acid, a Coffee-Related Organic Acid, on the Propagation of Hepatitis C Virus.

    PubMed

    Tanida, Isei; Shirasago, Yoshitaka; Suzuki, Ryosuke; Abe, Ryo; Wakita, Takaji; Hanada, Kentaro; Fukasawa, Masayoshi

    2015-01-01

    Multipurpose cohort studies have demonstrated that coffee consumption reduces the risk of hepatocellular carcinoma (HCC). Given that one of the main causes of HCC is hepatitis C virus (HCV) infection, we examined the effect of caffeic acid, a major organic acid derived from coffee, on the propagation of HCV using an in vitro naïve HCV particle-infection and production system within human hepatoma-derived Huh-7.5.1-8 cells. When cells were treated with 1% coffee extract or 0.1% caffeic acid for 1-h post HCV infection, the amount of HCV particles released into the medium at 3 and 4 days post-infection considerably decreased. In addition, HCV-infected cells cultured with 0.001% caffeic acid for 4 days, also released less HCV particles into the medium. Caffeic acid treatment inhibited the initial stage of HCV infection (i.e., between virion entry and the translation of the RNA genome) in both HCV genotypes 1b and 2a. These results suggest that the treatment of cells with caffeic acid may inhibit HCV propagation. PMID:25672401

  5. An enhanced procedure for measuring organic acids and methyl esters in PM2.5

    NASA Astrophysics Data System (ADS)

    Liu, F.; Duan, F. K.; He, K. B.; Ma, Y. L.; Rahn, K. A.; Zhang, Q.

    2015-11-01

    A solid-phase extraction (SPE) pretreatment procedure allowing organic acids to be separated from methyl esters in fine aerosol has been developed. The procedure first separates the organic acids from fatty acid methyl esters (FAMEs) and other nonacid organic compounds by aminopropyl-based SPE cartridge and then quantifies them by gas chromatography/mass spectrometry. The procedure prevents the fatty acids and dimethyl phthalate from being overestimated, and so allows us to accurately quantify the C4-C11 dicarboxylic acids (DCAs) and the C8-C30 monocarboxylic acids (MCAs). Results for the extraction of DCAs, MCAs, and AMAs in eluate and FAMEs in effluate by SAX and NH2 SPE cartridges exhibited that the NH2 SPE cartridge gave higher extraction efficiency than the SAX cartridge. The recoveries of analytes ranged from 67.5 to 111.3 %, and the RSD ranged from 0.7 to 10.9 %. The resulting correlations between the aliphatic acids and FAMEs suggest that the FAMEs had sources similar to those of the carboxylic acids, or were formed by esterifying carboxylic acids, or that aliphatic acids were formed by hydrolyzing FAMEs. Through extraction and cleanup using this procedure, 17 aromatic acids in eluate were identified and quantified by gas chromatography/tandem mass spectrometry, including five polycyclic aromatic hydrocarbon (PAH): acids 2-naphthoic, biphenyl-4-carboxylic, 9-oxo-9H-fluorene-1-carboxylic, biphenyl-4,4´-dicarboxylic, and phenanthrene-1-carboxylic acid, plus 1,8-naphthalic anhydride. Correlations between the PAH acids and the dicarboxylic and aromatic acids suggested that the first three acids and 1,8-naphthalic anhydride were secondary atmospheric photochemistry products and the last two mainly primary.

  6. An enhanced procedure for measuring organic acids and methyl esters in PM2.5

    NASA Astrophysics Data System (ADS)

    Liu, F.; Duan, F.; He, K.; Ma, Y.; Rahn, K. A.; Zhang, Q.

    2015-03-01

    We have developed an enhanced analytical procedure to measure organic acids and methyl esters in fine aerosol with much greater specificity and sensitivity than previously available. This capability is important because of these species and their low concentrations, even in highly polluted atmospheres like Beijing, China. The procedure first separates the acids and esters from the other organic compounds with anion-exchange solid- phase extraction (SPE), then, quantifies them by gas chromatography coupled with mass spectrometry. This allows us to accurately quantify the C4-C11 dicarboxylic and the C8-C30 monocarboxylic acids. Then the acids are separated from the esters on an aminopropyl SPE cartridge, whose weak retention isolates and enriches the acids from esters prevents the fatty acids and dimethyl phthalate from being overestimated. The resulting correlations between the aliphatic acids and fatty acid methyl esters (FAMEs) suggest that FAMEs had sources similar to those of the carboxylic acids, or were formed by esterifying carboxylic acids, or that aliphatic acids were formed by hydrolyzing FAMEs. In all, 17 aromatic acids were identified and quantified using this procedure coupled with gas chromatography-tandem mass spectrometry, including the five polycyclic aromatic hydrocarbon (PAH) acids 2-naphthoic, biphenyl-4-carboxylic, 9-oxo-9H-fluorene-1-carboxylic, biphenyl-4,4´-dicarboxylic, and phenanthrene-1-carboxylic acid, plus 1,8-naphthalic anhydride. Correlations between the PAH-acids and the dicarboxylic and aromatic acids indicated that the first three acids and 1,8-naphthalic anhydride were mainly secondary, the last two mainly primary.

  7. Comparison of capillary pressure relationships of organic liquid water systems containing an organic acid or base

    NASA Astrophysics Data System (ADS)

    Lord, D. L.; Demond, A. H.; Hayes, K. F.

    2005-04-01

    The presence of surface-active solutes such as organic acids and bases may have a profound influence on the transport of organic liquid contaminants through their impact on the constitutive relationship of capillary pressure vs. saturation. This relationship is a function of the interfacial tension and wettability of the system, which, in turn, depend on the pH and the concentration of organic acids and bases that are present. This study examines the impact of pH and the concentration on the interfacial tension, contact angle, and capillary pressure of systems consisting of tetrachloroethylene, water, and quartz containing either octanoic acid or dodecylamine. In general, the ionic form of the solute tended to remain in the aqueous phase and reduced the capillary pressure through its impact on the interfacial tension and contact angle; on the other hand, the neutral form of the solute partitioned into the organic liquid phase and had a lesser impact on the capillary pressure for the same total mass of solute. A comparison of these data with data generated in previous research in similar systems where o-xylene was the organic liquid showed that the trends are analogous. Thus, the behavior of these two solvent systems seems to be driven primarily by the aqueous phase speciation of the solute, and the differences between the capillary pressure relationships for the two systems could be attributed to the pure system interfacial tension.

  8. Organ- and species-specific biological activity of rosmarinic acid.

    PubMed

    Iswandana, R; Pham, B T; van Haaften, W T; Luangmonkong, T; Oosterhuis, D; Mutsaers, H A M; Olinga, P

    2016-04-01

    Rosmarinic acid (RA), a compound found in several plant species, has beneficial properties, including anti-inflammatory and antibacterial effects. We investigated the toxicity, anti-inflammatory, and antifibrotic effects of RA using precision-cut liver slices (PCLS) and precision-cut intestinal slices (PCIS) prepared from human, mouse, and rat tissue. PCLS and PCIS were cultured up to 48h in the absence or presence of RA. Gene expression of the inflammatory markers: IL-6, IL-8/CXCL1/KC, and IL-1β, as well as the fibrosis markers: pro-collagen 1a1, heat shock protein 47, α-smooth muscle actin, fibronectin (Fn2) and plasminogen activator inhibitor-1 (PAI-1) were evaluated by qPCR. RA was only toxic in murine PCIS. RA failed to mitigate the inflammatory response in most models, while it clearly reduced IL-6 and CXCL1/KC gene expression in murine PCIS at non-toxic concentrations. With regard to fibrosis, RA decreased the gene levels of Fn2 and PAI-1 in murine PCLS, and Fn2 in murine PCIS. Yet, no effect was observed on the gene expression of fibrosis markers in human and rat PCIS. In conclusion, we observed clear organ- and species-specific effects of RA. RA had little influence on inflammation. However, our study further establishes RA as a potential candidate for the treatment of liver fibrosis. PMID:26804033

  9. Collection and analysis of organic acids in exhaust gas. Comparison of different methods

    NASA Astrophysics Data System (ADS)

    Zervas, E.; Montagne, X.; Lahaye, J.

    This paper reports the development of a specific method to identify organic acids in exhaust gases. The organic acids are collected in two impingers containing liquids (pure water or Na 2CO 3 1% aqueous solution) and four cartridges containing solids (silica, fluorisil, alumina B and alumina N). Once collected, the acids are eluted of the solids by a hot water stream. These traps performances, in terms of organic acids collection and elution efficiency, are evaluated and compared. Two sources are used to produce the gas flow containing organic acids: one generates a flow whose concentration is known and stable, the other produces organic acids among other combustion products. For eluted solutions analysis, two methods are used: isocratic ionic chromatography/conductivity detection and GC/FID. Their efficiency in separating 10 aliphatic acids are compared. Their characteristics such as detection limits, detection linearity, repeatability and possible interferences with other components found in exhaust gases are determined. The stability of the organic acids solutions is also studied. Lastly, the use of these methods is illustrated by the analysis of the gas-phase organic acids exhausted by a spark ignition and by a diesel engine.

  10. Concentration and fractionation of hydrophobic organic acid constituents from natural waters by liquid chromatography

    USGS Publications Warehouse

    Thurman, E.M.; Malcolm, R.L.

    1979-01-01

    A scheme is presented which used adsorption chromatography with pH gradient elution and size-exclusion chromatography to concentrate and separate hydrophobic organic acids from water. A review of chromatographic processes involved in the flow scheme is also presented. Organic analytes which appear in each aqueous fraction are quantified by dissolved organic carbon analysis. Hydrophobic organic acids in a water sample are concentrated on a porous acrylic resin. These acids usually constitute approximately 30-50 percent of the dissolved organic carbon in an unpolluted water sample and are eluted with an aqueous eluent (dilute base). The concentrate is then passed through a column of polyacryloylmorpholine gel, which separates the acids into high- and low-molecular-weight fractions. The high- and low-molecular-weight eluates are reconcentrated by adsorption chromatography, then are eluted with a pH gradient into strong acids (predominately carboxylic acids) and weak acids (predominately phenolic compounds). For standard compounds and samples of unpolluted waters, the scheme fractionates humic substances into strong and weak acid fractions that are separated from the low molecular weight acids. A new method utilizing conductivity is also presented to estimate the acidic components in the methanol fraction.

  11. Production of organic acid esters from biomass - novel processes and concepts

    SciTech Connect

    Datta, R.

    1981-01-01

    After low cost, low energy pretreatment, lignocellulose can be converted directly to volatile (C/sub 2/-C/sub 6/) organic acids by mixed-culture acidogenic fermentation. The principal components of lignocellulose (pectins, hemicellulose, cellulose, and lignin) are all converted to organic acids in high yields. Esterification from dilute aqueous solutions using novel techniques based on adsorption, solvent extraction, or biochemical conversion could be an important method for recovering these acids and simultaneously producing liquid fuels or chemical feedstocks. Uses of organic acid esters and conceptual biomass conversion processes are outlined. The significance of these processes for substantially increasing liquid fuel productivity from biomass feedstocks are discussed.

  12. Organic Acid Excretion in Penicillium ochrochloron Increases with Ambient pH

    PubMed Central

    Vrabl, Pamela; Fuchs, Viktoria; Pichler, Barbara; Schinagl, Christoph W.; Burgstaller, Wolfgang

    2012-01-01

    Despite being of high biotechnological relevance, many aspects of organic acid excretion in filamentous fungi like the influence of ambient pH are still insufficiently understood. While the excretion of an individual organic acid may peak at a certain pH value, the few available studies investigating a broader range of organic acids indicate that total organic acid excretion rises with increasing external pH. We hypothesized that this phenomenon might be a general response of filamentous fungi to increased ambient pH. If this is the case, the observation should be widely independent of the organism, growth conditions, or experimental design and might therefore be a crucial key point in understanding the function and mechanisms of organic acid excretion in filamentous fungi. In this study we explored this hypothesis using ammonium-limited chemostat cultivations (pH 2–7), and ammonium or phosphate-limited bioreactor batch cultivations (pH 5 and 7). Two strains of Penicillium ochrochloron were investigated differing in the spectrum of excreted organic acids. Confirming our hypothesis, the main result demonstrated that organic acid excretion in P. ochrochloron was enhanced at high external pH levels compared to low pH levels independent of the tested strain, nutrient limitation, and cultivation method. We discuss these findings against the background of three hypotheses explaining organic acid excretion in filamentous fungi, i.e., overflow metabolism, charge balance, and aggressive acidification hypothesis. PMID:22493592

  13. Utility of monitoring mycophenolic acid in solid organ transplant patients.

    PubMed Central

    Oremus, Mark; Zeidler, Johannes; Ensom, Mary H H; Matsuda-Abedini, Mina; Balion, Cynthia; Booker, Lynda; Archer, Carolyn; Raina, Parminder

    2008-01-01

    OBJECTIVES To investigate whether monitoring concentrations of mycophenolic acid (MPA) in the serum or plasma of persons who receive a solid organ transplant will result in a lower incidence of transplant rejections and adverse events versus no monitoring of MPA. To investigate whether the incidence of rejection or adverse events differs according to MPA dose or frequency, type of MPA, the form of MPA monitored, the method of MPA monitoring, or sample characteristics. To assess whether monitoring is cost-effective versus no monitoring. DATA SOURCES The following databases were searched from their dates of inception (in brackets) until October 2007: MEDLINE (1966); BIOSIS Previews (1976); EMBASE (1980); Cochrane Database of Systematic Reviews (1995); and Cochrane Central Register of Controlled Trials (1995). REVIEW METHODS Studies identified from the data sources went through two levels of screening (i.e., title and abstract, full text) and the ones that passed were abstracted. Criteria for abstraction included publication in the English language, study design (i.e., randomized controlled trial [RCT], observational study with comparison group, case series), and patient receipt of allograft solid organ transplant. Additionally, any form of MPA had to be measured at least once in the plasma or serum using any method of measurement (e.g., AUC0-12, C0). Furthermore, these measures had to be linked to a health outcome (e.g., transplant rejection). Certain biomarkers (e.g., serum creatinine, glomular filtration rate) and all adverse events were also considered health outcomes. RESULTS The published evidence on MPA monitoring is inconclusive. Direct, head-to-head comparison of monitoring versus no monitoring is limited to one RCT in adult, kidney transplant patients. Inferences about monitoring can be made from some observational studies, although the evidence is equivocal for MPA dose and dose frequency, nonexistent for type of MPA, inconclusive for form of MPA monitored

  14. Ozonolysis mechanism of lignin model compounds and microbial treatment of organic acids produced.

    PubMed

    Nakamura, Y; Daidai, M; Kobayashi, F

    2004-01-01

    Treatment methods comprising ozonolysis and microbial treatment of lignin discharged from the pulp manufacture industries were investigated by using a sulfite pulp wastewater and a lignin model compound, i.e. sodium lignosulfonate. Dynamic behaviors for the formations of intermediate derivatives such as muconic acid, maleic acid, and oxalic acid produced from the ozonolysis of sulfite pulp wastewater were observed from data of UV absorption at 280 nm by a spectrophotometer and at 210 nm by high performance liquid chromatography. The microorganisms that were isolated by the enrichment culture method were used to degrade the organic acids such as oxalic acid and acetic acid. Time courses of biological degradation of these organic acids indicated diauxic growth, which was found in a culture with mixed substrates. In the treatment of sodium lignosulfonate, the ozonolysis and microbial treatment using activated sludge converted sodium lignosulfonate into carbon dioxide and water almost completely. PMID:15461411

  15. Relative efficacy of organic acids and antibiotics as growth promoters in broiler chicken

    PubMed Central

    Bagal, Vikrant Laxman; Khatta, Vinod Kumar; Tewatia, Bachu Singh; Sangwan, Sandeep Kumar; Raut, Subhash Shamrao

    2016-01-01

    Aim: The objective of this study was to evaluate the effect of organic acids as replacer to antibiotics in their various combinations on feed consumption, body weight gain, and feed conversion ratio (FCR) in broiler chicks during different phases of growth. Materials and Methods: Antibiotics and organic acids were incorporated into boiler feed in different combinations to form 10 maize based test diets (T1 to T10). Each test diet was offered to four replicates of 10 birds each constituting a total of 400 birds kept for 45 days. Results: Significantly better effect in terms of body weight gain from supplementation of 1% citric acid and 1% citric acid along with antibiotic was observed throughout the entire study, whereas the effect of tartaric acid supplementation was similar to control group. Citric acid (1%) along with antibiotic supplementation showed highest feed intake during the experimental period. Significantly better FCR was observed in groups supplemented with 1% citric acid and 1% citric acid along with antibiotic followed by antibiotic along with organic acids supplemented group. Conclusion: Growth performance of birds in terms of body weight, body weight gain, and FCR improved significantly in 1% citric acid which was significantly higher than antibiotic supplemented group. 1% citric acid can effectively replace antibiotic growth promoter (chlortetracycline) without affecting growth performance of birds. PMID:27182133

  16. Students' Understanding of Acids/Bases in Organic Chemistry Contexts

    ERIC Educational Resources Information Center

    Cartrette, David P.; Mayo, Provi M.

    2011-01-01

    Understanding key foundational principles is vital to learning chemistry across different contexts. One such foundational principle is the acid/base behavior of molecules. In the general chemistry sequence, the Bronsted-Lowry theory is stressed, because it lends itself well to studying equilibrium and kinetics. However, the Lewis theory of…

  17. Microbial production of glyceric acid, an organic acid that can be mass produced from glycerol.

    PubMed

    Habe, Hiroshi; Shimada, Yuko; Yakushi, Toshiharu; Hattori, Hiromi; Ano, Yoshitaka; Fukuoka, Tokuma; Kitamoto, Dai; Itagaki, Masayuki; Watanabe, Kunihiro; Yanagishita, Hiroshi; Matsushita, Kazunobu; Sakaki, Keiji

    2009-12-01

    Glyceric acid (GA), an unfamiliar biotechnological product, is currently produced as a small by-product of dihydroxyacetone production from glycerol by Gluconobacter oxydans. We developed a method for the efficient biotechnological production of GA as a target compound for new surplus glycerol applications in the biodiesel and oleochemical industries. We investigated the ability of 162 acetic acid bacterial strains to produce GA from glycerol and found that the patterns of productivity and enantiomeric GA compositions obtained from several strains differed significantly. The growth parameters of two different strain types, Gluconobacter frateurii NBRC103465 and Acetobacter tropicalis NBRC16470, were optimized using a jar fermentor. G. frateurii accumulated 136.5 g/liter of GA with a 72% d-GA enantiomeric excess (ee) in the culture broth, whereas A. tropicalis produced 101.8 g/liter of d-GA with a 99% ee. The 136.5 g/liter of glycerate in the culture broth was concentrated to 236.5 g/liter by desalting electrodialysis during the 140-min operating time, and then, from 50 ml of the concentrated solution, 9.35 g of GA calcium salt was obtained by crystallization. Gene disruption analysis using G. oxydans IFO12528 revealed that the membrane-bound alcohol dehydrogenase (mADH)-encoding gene (adhA) is required for GA production, and purified mADH from G. oxydans IFO12528 catalyzed the oxidation of glycerol. These results strongly suggest that mADH is involved in GA production by acetic acid bacteria. We propose that GA is potentially mass producible from glycerol feedstock by a biotechnological process. PMID:19837846

  18. OXIDATIVE DEGRADATION OF ORGANIC ACIDS CONJUGATED WITH SULFITE OXIDATION IN FLUE GAS DESULFURIZATION

    EPA Science Inventory

    The report gives results of a study of organic acid degradation conjugated with sulfite oxidation under flue gas desulfurization (FGD) conditions. The oxidative degradation constant, k12, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate times th...

  19. Acid Rain.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1987-01-01

    Provides some background information on acid deposition. Includes a historical perspective, describes some effects of acid precipitation, and discusses acid rain in the United Kingdom. Contains several experiments that deal with the effects of acid rain on water quality and soil. (TW)

  20. Sensitive Amino Acid Composition and Chirality Analysis with the Mars Organic Analyzer (MOA)

    NASA Technical Reports Server (NTRS)

    Skelley, Alison M.; Scherer, James R.; Aubrey, Andrew D.; Grover, William H.; Ivester, Robin H. C.; Ehrenfreund, Pascale; Grunthaner, Frank J.; Bada, Jeffrey L.; Mathies, Richard A.

    2005-01-01

    Detection of life on Mars requires definition of a suitable biomarker and development of sensitive yet compact instrumentation capable of performing in situ analyses. Our studies are focused on amino acid analysis because amino acids are more resistant to decomposition than other biomolecules, and because amino acid chirality is a well-defined biomarker. Amino acid composition and chirality analysis has been previously demonstrated in the lab using microfabricated capillary electrophoresis (CE) chips. To analyze amino acids in the field, we have developed the Mars Organic Analyzer (MOA), a portable analysis system that consists of a compact instrument and a novel multi-layer CE microchip.

  1. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum.

    PubMed

    Tesfaye, M; Temple, S J; Allan, D L; Vance, C P; Samac, D A

    2001-12-01

    Al toxicity is a severe impediment to production of many crops in acid soil. Toxicity can be reduced through lime application to raise soil pH, however this amendment does not remedy subsoil acidity, and liming may not always be practical or cost-effective. Addition of organic acids to plant nutrient solutions alleviates phytotoxic Al effects, presumably by chelating Al and rendering it less toxic. In an effort to increase organic acid secretion and thereby enhance Al tolerance in alfalfa (Medicago sativa), we produced transgenic plants using nodule-enhanced forms of malate dehydrogenase and phosphoenolpyruvate carboxylase cDNAs under the control of the constitutive cauliflower mosaic virus 35S promoter. We report that a 1.6-fold increase in malate dehydrogenase enzyme specific activity in root tips of selected transgenic alfalfa led to a 4.2-fold increase in root concentration as well as a 7.1-fold increase in root exudation of citrate, oxalate, malate, succinate, and acetate compared with untransformed control alfalfa plants. Overexpression of phosphoenolpyruvate carboxylase enzyme specific activity in transgenic alfalfa did not result in increased root exudation of organic acids. The degree of Al tolerance by transformed plants in hydroponic solutions and in naturally acid soil corresponded with their patterns of organic acid exudation and supports the concept that enhancing organic acid synthesis in plants may be an effective strategy to cope with soil acidity and Al toxicity. PMID:11743127

  2. Yearly trend of dicarboxylic acids in organic aerosols from south of Sweden and source attribution

    NASA Astrophysics Data System (ADS)

    Hyder, Murtaza; Genberg, Johan; Sandahl, Margareta; Swietlicki, Erik; Jönsson, Jan Åke

    2012-09-01

    Seven aliphatic dicarboxylic acids (C3-C9) along with phthalic acid, pinic acid and pinonic acid were determined in 35 aerosol (PM10) samples collected over the year at Vavihill sampling station in south of Sweden. Mixture of dichloromethane and methanol (ratio 1:3) was preferred over water for extraction of samples and extraction was assisted by ultrasonic agitation. Analytes were derivatized using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) containing 1% trimethylsilyl chloride and analyzed using gas chromatography/mass spectrometry. Among studied analytes, azelaic acid was found maximum with an average concentration of 6.0 ± 3.6 ng m-3 and minimum concentration was found for pimelic acid (1.06 ± 0.63 ng m-3). A correlation coefficients analysis was used for defining the possible sources of analytes. Higher dicarboxylic acids (C7-C9) showed a strong correlation with each other (correlation coefficients (r) range, 0.96-0.97). Pinic and pinonic acids showed an increase in concentration during summer. Lower carbon number dicarboxylic acids (C3-C6) and phthalic acid were found strongly correlated, but showed a poor correlation with higher carbon number dicarboxylic acids (C7-C9), suggesting a different source for them. Biomass burning, vehicle exhaust, photo-oxidation of volatile organic compounds (natural and anthropogenic emissions) were possible sources for dicarboxylic acids.

  3. Effects of simulated acid precipitation on decomposition and leaching of organic carbon in forest soils

    SciTech Connect

    Chang, F.H.; Alexander, M.

    1984-09-01

    Soil samples from three watersheds of New York State were treated with simulated rain at pH 3.5, 4.1, and 5.6 daily for 14 d, at 12 3-d intervals in three separate tests, or at 22 7-d intervals. Except for one system of treating the three forest soils, simulated acid rain reduced the amount of organic matter leached from samples of soil from which more than 0.05% of the organic carbon was leached during the exposure period. In the soil samples representing the exceptions, acid rain enhanced the leaching of organic matter. Samples from the organic layer of the treated samples of acid soil were taken at two equal depths, and the rates of organic matter decomposition in the two layers were studied. As compared with simulated rain at pH 5.6, simulated acid rain reduced the decomposition of organic matter in the three soils at both depths in three of the five tests and at both depths of two of the soils in the fourth test. In some instances, organic matter decomposition was enhanced by the simulated acid rain. Except for the sample of soil at the highest initial pH, carbon mineralization was inhibited in soils and treatments in which simulated acid rain reduced the amount of organic carbon leached, and it was stimulated in soils and treatments in which the quantity of organic carbon leached was increased by the simulated acid rain. 12 references, 3 figures, 8 tables.

  4. Effects of CO2 enrichment on soluble amino acids and organic acids in barley primary leaves as a function of age, photoperiod, and chlorosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Responses of soluble amino acids and organic acids to CO2 enrichment were determined using barley primary leaves (Hordeum vulgare L. cv. Brant). Plants were grown in controlled environment chambers using either ambient (36 Pa) or elevated (100 Pa) CO2 treatments. Total soluble amino acids were inc...

  5. Organic acids and selected nitrogen species for ABLE-3

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.

    1991-01-01

    The NASA Global Tropospheric Experiment (GTE) executed airborne science missions aboard the NASA Wallops Electra (NA429) in the North American high latitude (greater than 45 deg North) atmosphere during Jul. to Aug. 1988 and Jul. to Aug. 1990. These missions were part of GTE's Atmospheric Boundary Layer Experiment (ABLE). The 1988 mission , ABLE-3A, examined the ecosystems of Alaska as a source and/or sink for important tropospheric gases and particles, and gained new information on the chemical composition of the Arctic atmosphere during the summertime. During 1990 the second high latitude mission, ABLE-3B, focused on the Hudson Bay Lowland and Labrador regions of Canada. Both of these missions provided benchmark data sets on atmosphere biosphere exchange and atmospheric chemistry over largely uninhabited regions of North America. In support of the GTE/ABLE-3A and -3B field missions, the University of New Hampshire flew instrumentation aboard the Wallops Electra research aircraft to provide measurements of the trace gases nitric (HNO3), formic (HCOOH), and acetic (CH3COOH) acid. In addition, measurements were conducted to determine the major water soluble ionic composition of the atmospheric aerosol. For ABLE-3B, groundbased measurements of the acidic trace gases were also performed from the NASA micrometerological tower situated at Schefferville, Laborador. These measurements were aimed at assessing dry deposition of acidic gases to the taiga ecosystem in the Laborador region of Canada.

  6. Mobilization of soil-borne arsenic by three common organic acids: Dosage and time effects.

    PubMed

    Onireti, Olaronke O; Lin, Chuxia

    2016-03-01

    A batch experiment was conducted to investigate the mobilization of soil-borne arsenic by three common low-molecular-weight organic acids with a focus on dosage and time effects. The results show that oxalic acid behaved differently from citric acid and malic acid in terms of mobilizing As that was bound to iron compounds. At an equivalent molar concentration, reactions between oxalic acid and soil-borne Fe were kinetically more favourable, as compared to those between either citric acid or malic acid and the soil-borne Fe. It was found that reductive dissolution of soil-borne Fe played a more important role in liberating As, as compared to non-reductive reactions. Prior to the 7th day of the experiment, As mobility increased with increasing dose of oxalic acid while there was no significant difference (P > 0.05) in mobilized As among the treatments with different doses of citric acid or malic acid. The dosage effect on soil-borne As mobilization in the citric acid and malic acid treatments became clear only after the 7th day of the experiment. Soluble Ca present in the soils could cause re-immobilization of As by competing with solution-borne Fe for available organic ligands to form practically insoluble organic compounds of calcium (i.e. calcium oxalate). This resulted in transformation of highly soluble organic complexes of iron (i.e. iron oxalate complexes) into slightly soluble organic compounds of iron (i.e. iron oxalate) or free ferric ion, which then reacted with the solution-borne arsenate ions to form practically insoluble iron arsenates in the latter part of the experiment. PMID:26774299

  7. Analysis of Organic Acids, Deacetyl Asperulosidic Acid and Polyphenolic Compounds as a Potential Tool for Characterization of Noni (Morinda citrifolia) Products.

    PubMed

    Bittová, Miroslava; Hladůkova, Dita; Roblová, Vendula; Krácmar, Stanislav; Kubán, Petr; Kubán, Vlastimil

    2015-11-01

    Organic acids, deacetyl asperulosidic acid (DAA) and polyphenolic compounds in various noni (Morinda citrifolia L.) products (4 juices, 4 dry fruit powders and 2 capsules with dry fruit powder) were analyzed. Reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a variable wavelength detector (VWD) and electrospray ionization time-of-flight mass spectrometer (ESI-TOF MS) was applied for simultaneous analysis of organic acids (malic, lactic, citric and succinic acid) and DAA. An RP-HPLC method with diode-array detector (DAD) was developed for the analysis of polyphenolic compound content (rutin, catechin, quercitrin, kaempferol, gallic acid, caffeic acid and p-coumaric acid). The developed methods can contribute to better characterization of available noni products that is required from the consumers. In our study, we discovered significant dissimilarities in the content of DAA, citric acid and several phenolic compounds in some samples. PMID:26749805

  8. Capture and release of mixed acid gasses with binding organic liquids

    DOEpatents

    Heldebrant, David J.; Yonker, Clement R.

    2010-09-21

    Reversible acid-gas binding organic liquid systems that permit separation and capture of one or more of several acid gases from a mixed gas stream, transport of the liquid, release of the acid gases from the ionic liquid and reuse of the liquid to bind more acid gas with significant energy savings compared to current aqueous systems. These systems utilize acid gas capture compounds made up of strong bases and weak acids that form salts when reacted with a selected acid gas, and which release these gases when a preselected triggering event occurs. The various new materials that make up this system can also be included in various other applications such as chemical sensors, chemical reactants, scrubbers, and separators that allow for the specific and separate removal of desired materials from a gas stream such as flue gas.

  9. Organosulfates and organic acids in Arctic aerosols: speciation, annual variation and concentration levels

    NASA Astrophysics Data System (ADS)

    Hansen, A. M. K.; Kristensen, K.; Nguyen, Q. T.; Zare, A.; Cozzi, F.; Nøjgaard, J. K.; Skov, H.; Brandt, J.; Christensen, J. H.; Ström, J.; Tunved, P.; Krejci, R.; Glasius, M.

    2014-02-01

    Sources, composition and occurrence of secondary organic aerosols (SOA) in the Arctic were investigated at Zeppelin Mountain, Svalbard, and Station Nord, northeast Greenland, during the full annual cycle of 2008 and 2010 respectively. We focused on the speciation of three types of SOA tracers: organic acids, organosulfates and nitrooxy organosulfates from both anthropogenic and biogenic precursors, here presenting organosulfate concentrations and compositions during a full annual cycle and chemical speciation of organosulfates in Arctic aerosols for the first time. Aerosol samples were analysed using High Performance Liquid Chromatography coupled to a quadrupole Time-of-Flight mass spectrometer (HPLC-q-TOF-MS). A total of 11 organic acids (terpenylic acid, benzoic acid, phthalic acid, pinic acid, suberic acid, azelaic acid, adipic acid, pimelic acid, pinonic acid, diaterpenylic acid acetate (DTAA) and 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA)), 12 organosulfates and one nitrooxy organosulfate were identified at the two sites. Six out of the 12 organosulfates are reported for the first time. Concentrations of organosulfates follow a distinct annual pattern at Station Nord, where high concentration were observed in late winter and early spring, with a mean total concentration of 47 (±14) ng m-3, accounting for 7 (±2)% of total organic matter, contrary to a considerably lower organosulfate mean concentration of 2 (±3) ng m-3 (accounting for 1 (±1)% of total organic matter) observed during the rest of the year. The organic acids followed the same temporal trend as the organosulfates at Station Nord; however the variations in organic acid concentrations were less pronounced, with a total mean organic acid concentration of 11.5 (±4) ng m-3 (accounting for 1.7 (±0.6)% of total organic matter) in late winter and early spring, and 2.2 (±1) ng m-3 (accounting for 0.9 (±0.4)% of total organic matter) during the rest of the year. At Zeppelin Mountain

  10. Influence of organic acids on the transport of heavy metals in soil.

    PubMed

    Schwab, A P; Zhu, D S; Banks, M K

    2008-06-01

    Vegetation historically has been an important part of reclamation of sites contaminated with metals, whether the objective was to stabilize the metals or remove them through phytoremediation. Understanding the impact of organic acids typically found in the rhizosphere would contribute to our knowledge of the impact of plants in contaminated environments. Heavy metal transport in soils in the presence of simple organic acids was assessed in two laboratory studies. In the first study, thin layer chromatography (TLC) was used to investigate Zn, Cd, and Pb movement in a sandy loam soil as affected by soluble organic acids in the rhizosphere. Many of these organic acids enhanced heavy metal movement. For organic acid concentrations of 10mM, citric acid had the highest R(f) values (frontal distance moved by metal divided by frontal distance moved by the solution) for Zn, followed by malic, tartaric, fumaric, and glutaric acids. Citric acid also has the highest R(f) value for Cd movement followed by fumaric acid. Citric acid and tartaric acid enhanced Pb transport to the greatest degree. For most organic acids studied, R(f) values followed the trend Zn>Cd>Pb. Citric acid (10mM) increased R(f) values of Zn and Cd by approximately three times relative to water. In the second study, small soil columns were used to test the impact of simple organic acids on Zn, Cd, and Pb leaching in soils. Citric acid greatly enhanced Zn and Cd movement in soils but had little influence on Pb movement. The Zn and Cd in the effluents from columns treated with 10mM citric acid attained influent metal concentrations by the end of the experiment, but effluent metal concentrations were much less than influent concentrations for citrate <10mM. Exchangeable Zn in the soil columns was about 40% of total Zn, and approximately 80% total Cd was in exchangeable form. Nearly all of the Pb retained by the soil columns was exchangeable. PMID:18482743

  11. Oxidative degradation of organic acids conjugated with sulfite oxidation in flue gas desulfurization

    SciTech Connect

    Lee, Y.I.

    1986-01-01

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (EGD) conditions. The oxidative degradation constant, k/sub 12/, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate after being normalized by the concentrations of organic acid and dissolved S(IV). K/sub 12/, not significantly affected by pH or dissolved oxygen, is around 10/sup -3/ in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Co, Ni, and Fe and is decreased by Mn and halides. Lower dissolved S(IV) magnified these effects. No k/sub 12/ greater than 4 x 10/sup -3/ or smaller than 0.1 x 10/sup -3/ has been observed. A free radical mechanism was proposed to describe the kinetics: (1) sulfate free radical is the major radical responsible to the degradation of organic acid; (2) ferrous generates sulfate radical by reacting with monoxypersulfate to enhance k/sub 12/; (3) manganous consumes sulfate radical to decrease k/sub 12/; (4) dissolved S(IV) competes with ferrous for monoxypersulfate and with manganous for sulfate radical to demonstrate the effects of dissolved S(IV) on k/sub 12/. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product, glutaric semialdehyde - the major retained product with low manganese, glutaric acid and valeric acids - the major retained product with high manganese, lower molecular weight mono- and dicarboxylic acids, other carbonyl compounds, and hydrocarbons.

  12. Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01

    SciTech Connect

    Zaldivar, J.; Ingram, L.O.

    1999-07-01

    Hemicellulose residues can be hydrolyzed into a sugar syrup using dilute mineral acids. Although this syrup represents a potential feedstock for biofuel production, toxic compounds generated during hydrolysis limit microbial metabolism. Escherichia coli LY01, an ethanologenic biocatalyst engineered to ferment the mixed sugars in hemicellulose syrups, has been tested for resistance to selected organic acids that re present in hemicellulose hydrolysates. Compounds tested include aromatic acids derived from lignin (ferulic, gallic, 4-hydroxybenzoic, syringic, and vanillic acids), acetic acid from the hydrolysis of acetylxylan, and others derived from sugar destruction (furoic, formic, levulinic, and caproic acids). Toxicity was related to hydrophobicity. Combinations of acids were roughly additive as inhibitors of cell growth. When tested at concentrations that inhibited growth by 80%, none appeared to strongly inhibit glycolysis and energy generation, or to disrupt membrane integrity. Toxicity was not markedly affected by inoculum size or incubation temperature. The toxicity of all acids except gallic acid was reduced by an increase in initial pH (from pH 6.0 to pH 7.0 to pH 8.0). Together, these results are consistent with the hypothesis that both aliphatic and mononuclear organic acids inhibit growth and ethanol production in LY01 by collapsing ion gradients and increasing internal anion concentrations.

  13. Halogenated methanesulfonic acids: A new class of organic micropollutants in the water cycle.

    PubMed

    Zahn, Daniel; Frömel, Tobias; Knepper, Thomas P

    2016-09-15

    Mobile and persistent organic micropollutants may impact raw and drinking waters and are thus of concern for human health. To identify such possible substances of concern nineteen water samples from five European countries (France, Switzerland, The Netherlands, Spain and Germany) and different compartments of the water cycle (urban effluent, surface water, ground water and drinking water) were enriched with mixed-mode solid phase extraction. Hydrophilic interaction liquid chromatography - high resolution mass spectrometry non-target screening of these samples led to the detection and structural elucidation of seven novel organic micropollutants. One structure could already be confirmed by a reference standard (trifluoromethanesulfonic acid) and six were tentatively identified based on experimental evidence (chloromethanesulfonic acid, dichloromethanesulfonic acid, trichloromethanesulfonic acid, bromomethanesulfonic acid, dibromomethanesulfonic acid and bromochloromethanesulfonic acid). Approximated concentrations for these substances show that trifluoromethanesulfonic acid, a chemical registered under the European Union regulation REACH with a production volume of more than 100 t/a, is able to spread along the water cycle and may be present in concentrations up to the μg/L range. Chlorinated and brominated methanesulfonic acids were predominantly detected together which indicates a common source and first experimental evidence points towards water disinfection as a potential origin. Halogenated methanesulfonic acids were detected in drinking waters and thus may be new substances of concern. PMID:27267477

  14. Some organic acids attenuate the effects of furosemide on the endocochlear potential.

    PubMed

    Rybak, L P; Whitworth, C

    1987-01-01

    A series of organic acid transport inhibitors significantly reduced the endocochlear potential (EP) decline produced by furosemide in the chinchilla. Probenecid, sodium salicylate and penicillin G were much more effective than novobiocin, meclofenamate or diatrizoate. Inhibitors of organic base transport, choline and N-methyl nicotinamide, had no effect on the furosemide-induced drop of the EP. These findings suggest that at least part of furosemide ototoxicity may be mediated by organic acid transport. PMID:2951360

  15. The sensory interactions of organic acids and various flavors in ramen soup systems.

    PubMed

    Kang, M-W; Chung, S-J; Lee, H-S; Kim, Y; Kim, K-O

    2007-11-01

    This study was conducted to investigate the sensory interactions between various organic acids and flavorants in 3 types of ramen soup ('beef,' seafood, and 'kimchi') when types and levels of organic acids (citric, malic, and lactic) varied. For 'beef' and seafood ramen soup, weak suprathreshold levels of acids (0.0039% to 0.0071%) were applied to the system and medium suprathreshold of acids (0.0128% to 0.0299%) were applied to the kimchi ramen soup. The amount of acid applied to each system was chosen based on the equiweight level. Descriptive analyses were performed separately for each ramen soup system using 8 trained panelists. A total of 11, 13, and 12 flavor descriptors were generated for 'beef,' seafood, and 'kimchi' soup, respectively. Analysis of variance was conducted to evaluate the effect of organic acid on the sensory characteristics of ramen soup. Principal component analysis was conducted to summarize the relationship between the soup samples and attributes. The effect of organic acids on the flavor attributes of ramen soup was dependent on the soup system as well as adding levels of acid. Addition of lactic acid power (at 0.0066%) in 'beef'ramen soup showed enhancement effect on the sour, salty, beefy, 'mushroom' flavor, and fermented soybean paste soup flavor, whereas lactic acid powder (at 0.0071%) showed enhancement effect only on the sour and fermented soybean paste soup flavor in seafood ramen soup due to the strong 'hot' flavor characteristics of the soup. In kimchi ramen soup, flavor attributes congruent to sourness were enhanced by the addition of organic acids to the system. PMID:18034748

  16. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis

    PubMed Central

    Oliveira, Flora Magno de Jesus; Burth, Patrícia; Bozza, Patrícia Torres; Castro Faria, Mauro Velho; Silva, Adriana Ribeiro; de Castro-Faria-Neto, Hugo Caire

    2016-01-01

    Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA) are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA), a monounsaturated fatty acid (MUFA). We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP). OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS) production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A) mRNA levels were increased, while uncoupling protein 2 (UCP2) liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK) expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA). PMID:27078880

  17. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis.

    PubMed

    Gonçalves-de-Albuquerque, Cassiano Felippe; Medeiros-de-Moraes, Isabel Matos; Oliveira, Flora Magno de Jesus; Burth, Patrícia; Bozza, Patrícia Torres; Castro Faria, Mauro Velho; Silva, Adriana Ribeiro; Castro-Faria-Neto, Hugo Caire de

    2016-01-01

    Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA) are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA), a monounsaturated fatty acid (MUFA). We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP). OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS) production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A) mRNA levels were increased, while uncoupling protein 2 (UCP2) liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK) expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA). PMID:27078880

  18. Organic compounds in lunar samples: pyrolysis products, hydrocarbons, amino acids.

    PubMed

    Nagy, B; Drew, D M; Hamilton, P B; Modzeleski, V E; Murphy, M E; Scott, W M; Urey, H C; Young, M

    1970-01-30

    Lunar fines and a chip from inside a rock pyrolyzed in helium at 700 degrees C gave methane, other gases, and aromatic hydrocarbons. Benzene/methanol extracts of fines yielded traces of high molecular weight alkanes and sulfur. Traces of glycine, alanine, ethanolamine, and urea were found in aqueous extracts. Biological controls and a terrestrial rock, dunite, subjected to exhaust from the lunar module descent engine showed a different amino acid distribution. Interpretation of the origin of the carbon compounds requires extreme care, because of possible contamination acquired during initial sample processing. PMID:5410553

  19. Mefenamic Acid

    MedlinePlus

    Mefenamic acid is used to relieve mild to moderate pain, including menstrual pain (pain that happens before or during a menstrual period). Mefenamic acid is in a class of medications called NSAIDs. ...

  20. Aminocaproic Acid

    MedlinePlus

    Aminocaproic acid is used to control bleeding that occurs when blood clots are broken down too quickly. This type ... the baby is ready to be born). Aminocaproic acid is also used to control bleeding in the ...

  1. Ascorbic Acid

    MedlinePlus

    Ascorbic acid is used to prevent and treat scurvy, a disease caused by a lack of vitamin C in ... Ascorbic acid comes in extended-release (long-acting) capsules and tablets, lozenges, syrup, chewable tablets, and liquid drops to ...

  2. Acid mucopolysaccharides

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003368.htm Acid mucopolysaccharides To use the sharing features on this page, please enable JavaScript. Acid mucopolysaccharides is a test that measures the amount ...

  3. Ethacrynic Acid

    MedlinePlus

    Ethacrynic acid, a 'water pill,' is used to treat swelling and fluid retention caused by various medical problems. It ... Ethacrynic acid comes as a tablet to take by mouth. It is usually taken once or twice a day ...

  4. Modulation of sialic acid levels among some organs during insulin resistance or hyperglycemic states.

    PubMed

    Ibrahim, Mohammed Auwal; Abdulkadir, Aisha; Onojah, Alice; Sani, Lawal; Adamu, Auwal; Abdullahi, Hadiza

    2016-01-01

    Previous studies have suggested a possible connection between insulin resistance and chronic hyperglycemia with membrane sialic acid content. In this study, the effects of high (20% ad libitum) fructose and glucose feeding on the sialic acid levels of some organs were investigated in rats. The blood glucose levels of the high fructose- and glucose-fed rats were consistently and significantly (P < 0.05) higher than the normal control throughout the experiment. Free serum sialic acid and total hepatic sialic acid levels were elevated in the high fructose- and glucose-fed rats compared to normal control, but only the data for the high glucose-fed group were significantly (P < 0.05) different from the normal control. Conversely, a significant (P < 0.05) decrease in the pancreatic sialic acid level was observed in high glucose-fed group compared to normal control. Also, the high fructose-fed rats had lower, but insignificant (P > 0.05), pancreatic sialic acid level than the normal control. On the other hand, high fructose and glucose feeding did not significantly (P > 0.05) affect the sialic acid levels of the skeletal muscle and heart, though a tendency to increase the sialic acid level was evident in the heart. In the kidney, the sialic acid level was significantly (P < 0.05) increased in both high fructose- and glucose-fed groups. It was concluded that the liver and kidney tend to stimulate sialic acid synthesis, while the pancreas downregulate sialic acids synthesis and/or promote sialic acid release from glycoconjugates. Also, these organs may contribute to high-serum sialic acid level observed during diabetes. PMID:26468092

  5. Top value platform chemicals: bio-based production of organic acids.

    PubMed

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation. PMID:26360870

  6. Leaching of organic acids from macromolecular organic matter by non-supercritical CO2

    NASA Astrophysics Data System (ADS)

    Sauer, P.; Glombitza, C.; Kallmeyer, J.

    2012-04-01

    The storage of CO2 in underground reservoirs is discussed controversly in the scientific literature. The worldwide search for suitable storage formations also considers coal-bearing strata. CO2 is already injected into seams for enhanced recovery of coal bed methane. However, the effects of increased CO2 concentration, especially on organic matter rich formations, are rarely investigated. The injected CO2 will dissolve in the pore water, causing a decrease in pH and resulting in acidic formation waters. Huge amounts of low molecular weight organic acids (LMWOAs) are chemically bound to the macromolecular matrix of sedimentary organic matter and may be liberated by hydrolysis, which is enhanced by the acidic porewater. Recent investigations outlined the importance of LMWOAs as a feedstock for microbial life in the subsurface [1]. Therefore, injection of CO2 into coal formations may result in enhanced nutrient supply for subsurface microbes. To investigate the effect of high concentrations of dissolved CO2 on the release of LMWOAs from coal we developed an inexpensive high-pressure high temperature system that allows manipulating the partial pressure of dissolved gases at pressures and temperatures up to 60 MPa and 120° C, respectively. In a reservoir vessel, gases are added to saturate the extraction medium to the desired level. Inside the extraction vessel hangs a flexible and inert PVDF sleeve (polyvinylidene fluoride, almost impermeable for gases), holding the sample and separating it from the pressure fluid. The flexibility of the sleeve allows for subsampling without loss of pressure. Coal samples from the DEBITS-1 well, Waikato Basin, NZ (R0 = 0.29, TOC = 30%). were extracted at 90° C and 5 MPa, either with pure or CO2-saturated water. Subsamples were taken at different time points during the extraction. The extracted LMWOAs such as formate, acetate and oxalate were analysed by ion chromatography. Yields of LMWOAs were higher with pure water than with CO2

  7. Six hydrogen-bonded supramolecular frameworks assembled from organic acids and p-dimethylaminobenzaldehyde

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Wang, Lanqing; Lou, Yulei; Liu, Li; Li, Bin; Li, Linyu; Feng, Chao; Liu, Hui; Wang, Daqi

    2016-03-01

    Cocrystallization of the commonly available organic compound, p-dimethylaminobenzaldehyde, with a series of organic acids gave a total of six molecular adducts with the compositions: p-dimethylaminobenzaldehyde : (3,5-dinitrosalicylic acid) [(L) · (Hdsa), Hdsa = 3,5-dinitrosalicylic acid] (1), p-dimethylaminobenzaldehyde : (3-nitrophthalic acid) [(L) · (3-H2npa), 3-H2npa = 3-nitrophthalic acid] (2), p-dimethylaminobenzaldehyde : (4-nitrophthalic acid) [(L) · (4-H2npa), 4-H2npa = 4-nitrophthalic acid] (3), p-dimethylaminobenzaldehyde : (1,5-naphthalenedisulfonic acid) : (NH3)2 [NH4 · (HL) · (nds2-) · NH3, nds- = 1,5-naphthalenedisulfonate] (4), p-dimethylaminobenzaldehyde : (oxalic acid)0.5 [(L) · (H2oa)0.5, H2oa = oxalic acid] (5), and p-dimethylaminobenzaldehyde : (fumaric acid)0.5 [(L) · (H2fum)0.5, H2fum = fumaric acid] (6). The six molecular adducts have been characterized by X-ray diffraction technique, IR, and elemental analysis, and the melting points of all adducts were also reported. And their structural and supramolecular aspects are fully analyzed. Of the six adducts, only 4 is an organic salt and the other five are cocrystals. The crystal packing is interpreted in terms of the strong classical hydrogen bonds as well as other weak non-classical hydrogen bonds. The different families of non-covalent bonds contribute to the stabilization and expansion of the total high-dimensional (2D-3D) frameworks.

  8. Microgravity Compatible Reagentless Instrumentation for Detection of Dissolved Organic Acids and Alcohols in Potable Water

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Jan, Darrell L. (Technical Monitor)

    2002-01-01

    The Organic Acid and Alcohol Monitor (OAAM) program has resulted in the successful development of a computer controlled prototype analyzer capable of accurately determining aqueous organic acids and primary alcohol concentrations over a large dynamic range with high sensitivity. Formic, acetic, and propionic acid were accurately determined at concentrations as low as 5 to 10 micrograms/L in under 20 minutes, or as high as 10 to 20 mg/L in under 30 minutes. Methanol, ethanol, and propanol were determined at concentrations as low as 20 to 100 micrograms/L, or as high as 10 mg/L in under 30 minutes. Importantly for space based application, the OAAM requires no reagents or hazardous chemicals to perform these analyses needing only power, water, and CO2 free purge gas. The OAAM utilized two membrane processes to segregate organic acids from interfering ions. The organic acid concentration was then determined based upon the conductiometric signal. Separation of individual organic acids was accomplished using a chromatographic column. Alcohols are determined in a similar manner after conversion to organic acids by sequential biocatalytic and catalytic oxidation steps. The OAAM was designed to allow the early diagnosis of under performing or failing sub-systems within the Water Recovery System (WRS) baselined for the International Space Station (ISS). To achieve this goal, several new technologies were developed over the course of the OAAM program.

  9. Role of organic acids in promoting colloidal transport of mercury from mine tailings

    USGS Publications Warehouse

    Slowey, A.J.; Johnson, S.B.; Rytuba, J.J.; Brown, Gordon E., Jr.

    2005-01-01

    A number of factors affect the transport of dissolved and paniculate mercury (Hg) from inoperative Hg mines, including the presence of organic acids in the rooting zone of vegetated mine waste. We examined the role of the two most common organic acids in soils (oxalic and citric acid) on Hg transport from such waste by pumping a mixed organic acid solution (pH 5.7) at 1 mL/min through Hg mine tailings columns. For the two total organic acid concentrations investigated (20 ??M and 1 mM), particle-associated Hg was mobilized, with the onset of paniculate Hg transport occurring later for the lower organic acid concentration. Chemical analyses of column effluent indicate that 98 wt % of Hg mobilized from the column was paniculate. Hg speciation was determined using extended X-ray absorption fine structure spectroscopy and transmission electron microscopy, showing that HgS minerals are dominant in the mobilized particles. Hg adsorbed to colloids is another likely mode of transport due to the abundance of Fe-(oxyhydr)oxides, Fe-sulfides, alunite, and jarosite in the tailings to which Hg(II) adsorbs. Organic acids produced by plants are likely to enhance the transport of colloid-associated Hg from vegetated Hg mine tailings by dissolving cements to enable colloid release. ?? 2005 American Chemical Society.

  10. The effect of low solublility organic acids on the hygroscopicity of sodium halide aerosols

    NASA Astrophysics Data System (ADS)

    Miñambres, L.; Méndez, E.; Sánchez, M. N.; Castaño, F.; Basterretxea, F. J.

    2014-02-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be performed in this study. The hygroscopic properties of sodium halide submicrometer particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, Scanning Electron Microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion: whereas the organic covering has little effect in NaBr particles, NaCl and NaI covered particles change their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.

  11. The effect of low solubility organic acids on the hygroscopicity of sodium halide aerosols

    NASA Astrophysics Data System (ADS)

    Miñambres, L.; Méndez, E.; Sánchez, M. N.; Castaño, F.; Basterretxea, F. J.

    2014-10-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be investigated in this study. The hygroscopic properties of sodium halide sub-micrometre particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, scanning electron microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion, whereas the organic surfactant has little effect in NaBr particles, NaCl and NaI covered particles experience appreciable shifts in their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.

  12. Resource recovery from waste LCD panel by hydrothermal transformation of polarizer into organic acids.

    PubMed

    Li, Feng; Bai, Lan; He, Wenzhi; Li, Guangming; Huang, Juwen

    2015-12-15

    Based on the significant advantages of hydrothermal technology, it was applied to treat polarizer from the waste LCD panel with the aim of transforming it into organic acids (mainly acetic acid and lactic acid). Investigation was done to evaluate the effects of different factors on yields of organic acids, including the reaction temperature, reaction time and H2O2 supply, and the degradation process of polarizer was analyzed. Liquid samples were analyzed by GC/MS and HPLC, and solid-phase products were characterized by SEM and FTIR. Results showed that at the condition of temperature 300 °C and reaction time 5 min, the organic materials reached its highest conversion rate of 71.47% by adding 0.2 mL H2O2 and acetic acid was dominant in the products of organic acids with the yield of 6.78%. When not adding H2O2 to the system, the yields of lactic and acetic acid were respectively 4.24% and 3.80% at a nearly equal degree, they are suitable for esterification to form ethyl lactate instead of separating them for this case. In the hydrothermal process, polarizer was first decomposed to monosaccharides, alkane, etc., and then furfural and acids are produced with further decomposition. PMID:26094243

  13. Isolation of hydrophilic organic acids from water using nonionic macroporous resins

    USGS Publications Warehouse

    Aiken, G.R.; McKnight, Diane M.; Thorn, K.A.; Thurman, E.M.

    1992-01-01

    A method has been developed for the isolation of hydrophilic organic acids from aquatic environments using Amberlite* * Use of trade names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. XAD-4 resin. The method uses a two column array of XAD-8 and XAD-4 resins in series. The hydrophobic organic acids, composed primarily of aquatic fulvic acid, are removed from the sample on XAD-8, followed by the isolation of the more hydrophilic organic acids on XAD-4. For samples from a number of diverse environments, more of the dissolved organic carbon was isolated on the XAD-8 resin (23-58%) than on the XAD-4 resin (7-25%). For these samples, the hydrophilic acids have lower carbon and hydrogen contents, higher oxygen and nitrogen contents, and are lower in molecular weight than the corresponding fulvic acids. 13C NMR analyses indicate that the hydrophilic acids have a lower concentration of aromatic carbon and greater heteroaliphatic, ketone and carboxyl content than the fulvic acid. ?? 1992.

  14. Usnic Acid and the Intramolecular Hydrogen Bond: A Computational Experiment for the Organic Laboratory

    ERIC Educational Resources Information Center

    Green, Thomas K.; Lane, Charles A.

    2006-01-01

    A computational experiment is described for the organic chemistry laboratory that allows students to estimate the relative strengths of the intramolecular hydrogen bonds of usnic and isousnic acids, two related lichen secondary metabolites. Students first extract and purify usnic acid from common lichens and obtain [superscript 1]H NMR and IR…

  15. Physicochemical aspects of inhibition of acid corrosion of metals by unsaturated organic compounds

    NASA Astrophysics Data System (ADS)

    Avdeev, Ya G.; Kuznetsov, Yurii I.

    2012-12-01

    The state-of-the-art in the development and improvement of methods for protecting metals from corrosion in mineral acid solutions using unsaturated organic compounds is considered. Characteristic features of the mechanism of their protective action on metal corrosion in acidic media are discussed. The bibliography includes 203 references.

  16. Valproic Acid

    MedlinePlus

    Valproic acid is used alone or with other medications to treat certain types of seizures. Valproic acid is also used to treat mania (episodes of ... to relieve headaches that have already begun. Valproic acid is in a class of medications called anticonvulsants. ...

  17. A note on the prebiotic synthesis of organic acids in carbonaceous meteorites

    NASA Technical Reports Server (NTRS)

    Kerridge, John F.

    1991-01-01

    Strong similarities between monocarboxylic and hydrocarboxylic acids in the Murchison meteorite suggest corresponding similarities in their origins. However, various lines of evidence apparently implicate quite different precursor compounds in the synthesis of the different acids. These seeming inconsistencies can be resolved by postulating that the apparent precursors also share a related origin. Pervasive D enrichment indicates that this origin was in a presolar molecular cloud. The organic acids themselves were probably synthesized in an aqueous environment on an asteroidal parent body, the hydroxy (and amino) acids by means of the Strecker cyanohydrin reaction.

  18. Bifunctional Organic Polymeric Catalysts with a Tunable Acid-Base Distance and Framework Flexibility

    NASA Astrophysics Data System (ADS)

    Chen, Huanhui; Wang, Yanan; Wang, Qunlong; Li, Junhui; Yang, Shiqi; Zhu, Zhirong

    2014-09-01

    Acid-base bifunctional organic polymeric catalysts were synthesized with tunable structures. we demonstrated two synthesis approaches for structural fine-tune. In the first case, the framework flexibility was tuned by changing the ratio of rigid blocks to flexible blocks within the polymer framework. In the second case, we precisely adjusted the acid-base distance by distributing basic monomers to be adjacent to acidic monomers, and by changing the chain length of acidic monomers. In a standard test reaction for the aldol condensation of 4-nitrobenzaldehyde with acetone, the catalysts showed good reusability upon recycling and maintained relatively high conversion percentage.

  19. [Relationships between cadmium accumulation and organic acids in leaves of Solanum nigrum L. as a cadmium-hyperaccumulator].

    PubMed

    Sun, Rui-lian; Zhou, Qi-xing; Wang, Xin

    2006-04-01

    The influence of different cadmium concentrations on the organic acid level in leaves of the Cd hyperaccumulator, Solanum nigrum L., in particular, the relationship of organic acids with Cd accumulation in S. nigrum was investigated based on the pot-culture experiment. The results showed that the Cd concentration in S. nigrum leaves exceeded 100 microg x g(-1), the threshold value used to define Cd-hyperaccumulators, and the bioaccumulation coefficient of cadmium in shoots of S. nigrum was higher than 1 when Cd concentration in soil was 25 microg x g(-1). The level of organic acids in leaves of S. nigrum had significant differences between the seedling stage and the mature stage. At the seedling stage, the sequence of organic acids in leaves of S. nigrum was acetic acid> tartaric acid> malic acid> citric acid. On the contrary, the accumulation of organic acids in S. nigrum at the mature stage was approximately in the following sequence malic acid> tartaric acid, acetic acid> citric acid. The significant positive correlation between Cd accumulation in leaves of S. nigrum and the concentration of tartaric acid in leaves of S. nigrum was observed at the seedling stage, whereas there was a significant positive correlation between Cd accumulation in leaves of S. nigrum and both acetic and citric acid concentrations at the mature stage. These results indicated that tartaric, acetic and citric acids in leaves of S. nigrum might act as the indication of Cd hyperaccumulation. PMID:16768003

  20. Direct activation of GABAA receptors by substances in the organic acid fraction of Japanese sake.

    PubMed

    Izu, Hanae; Shigemori, Kensuke; Eguchi, Masaya; Kawane, Shuhei; Fujii, Shouko; Kitamura, Yuji; Aoshima, Hitoshi; Yamada, Yasue

    2017-01-01

    We investigated the effect of substances present in Japanese sake on the response of ionotropic γ-aminobutyric acid (GABA)A receptors expressed in Xenopus oocytes. Sake was fractionated by ion-exchange chromatography. The fraction containing organic acids (OA fraction) showed agonist activities on the GABAA receptor. OA fractions from sake were analyzed by capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Of the 64 compounds identified, 13 compounds showed GABAA receptor agonist activities. Especially, l-lactic acid showed high agonist activity and its EC50 value was 37μM. Intraperitoneal injections of l-lactic acid, gluconic acid, and pyruvic acid (10, 10, and 5mg/kg BW, respectively), which showed agonistic activity on the GABAA receptor, led to significant anxiolytic effects during an elevated plus-maze test in mice. PMID:27507485

  1. Generation of organic acids and monosaccharides by hydrolytic and oxidative transformation of food processing residues.

    PubMed

    Fischer, Klaus; Bipp, Hans-Peter

    2005-05-01

    Carbohydrate-rich biomass residues, i.e. sugar beet molasses, whey powder, wine yeast, potato peel sludge, spent hops, malt dust and apple marc, were tested as starting materials for the generation of marketable chemicals, e.g. aliphatic acids, sugar acids and mono-/disaccharides. Residues were oxidized or hydrolyzed under acidic or alkaline conditions applying conventional laboratory digestion methods and microwave assisted techniques. Yields and compositions of the oxidation products differed according to the oxidizing agent used. Main products of oxidation by 30% HNO(3) were acetic, glucaric, oxalic and glycolic acids. Applying H(2)O(2)/CuO in alkaline solution, the organic acid yields were remarkably lower with formic, acetic and threonic acids as main products. Gluconic acid was formed instead of glucaric acid throughout. Reaction of a 10% H(2)O(2) solution with sugar beet molasses generated formic and lactic acids mainly. Na(2)S(2)O(8) solutions were very inefficient at oxidizing the residues. Glucose, arabinose and galactose were formed during acidic hydrolysis of malt dust and apple marc. The glucose content reached 0.35 g per gram of residue. Important advantages of the microwave application were lower reaction times and reduced reagent demands. PMID:15607197

  2. Protected Organic Acid Blends as an Alternative to Antibiotics in Finishing Pigs

    PubMed Central

    Upadhaya, S. D.; Lee, K. Y.; Kim, I. H.

    2014-01-01

    A total of 120 finishing pigs ([Yorkshire×Landrace]×Duroc) with an average body weight (BW) of 49.72 ±1.72 kg were used in 12-wk trial to evaluate the effects of protected organic acids on growth performance, nutrient digestibility, fecal micro flora, meat quality and fecal gas emission. Pigs were randomly allotted to one of three dietary treatments (10 replication pens with 4 pigs per pen) in a randomly complete block design based on their initial BW. Each dietary treatment consisted of: Control (CON/basal diet), OA1 (basal diet+0.1% organic acids) and OA2 (basal diet+0.2% organic acids). Dietary treatment with protected organic acid blends linearly improved (p<0.001) average daily gain during 0 to 6 week, 6 to 12 week as well as overall with the increase in their inclusion level in the diet. The dry matter, N, and energy digestibility was higher (linear effect, p<0.001) with the increase in the dose of protected organic acid blends during 12 week. During week 6, a decrease (linear effect, p = 0.01) in fecal ammonia contents was observed with the increase in the level of protected organic acid blends on d 3 and d 5 of fermentation. Moreover, acetic acid emission decreased linearly (p = 0.02) on d7 of fermentation with the increase in the level of protected organic acid blends. During 12 weeks, linear decrease (p<0.001) in fecal ammonia on d 3 and d 5 and acetic acid content on d 5 of fermentation was observed with the increase in the level of protected organic acid blends. Supplementation of protected organic acid blends linearly increased the longissimus muscle area with the increasing concentration of organic acids. Moreover, color of meat increased (linear effect, quadratic effect, p<0.001, p<0.002 respectively) and firmness of meat showed quadratic effect (p = 0.003) with the inclusion of increasing level of protected organic acid in the diet. During the 6 week, increment in the level of protected organic acid blends decreased (linear effect, p = 0

  3. Amphiphilic calixresorcinarene associates as effective solubilizing agents for hydrophobic organic acids: construction of nano-aggregates.

    PubMed

    Morozova, Ju E; Syakaev, V V; Kazakova, E Kh; Shalaeva, Ya V; Nizameev, I R; Kadirov, M K; Voloshina, A D; Zobov, V V; Konovalov, A I

    2016-07-01

    Here we represent the first example of the formation of mixed nanoscale associates, constructed from amphiphilic calixresorcinarenes and hydrophobic carboxylic acids including drugs. The amidoamino-calixresorcinarene self-associates effectively solubilize hydrophobic carboxylic acids - drugs such as naproxen, ibuprofen, ursodeoxycholic acid and aliphatic dodecanoic acid - with the formation of the mixed aggregates with the macrocycle/substrate stoichiometry from 1/1 to 1/7. The ionization of organic acids and the peripheral nitrogen atoms of the macrocycles with the subsequent inclusion of hydrophobic acids into the macrocycle self-associates is the driving force of solubilization. In some cases, this leads to the co-assembly of the macrocycle polydisperse associates into supramolecular monodisperse nanoparticles with the diameter of about 100 nm. The efficiency of drug loading into the nanoparticles is up to 45% and depends on the structure of organic acid. The dissociation of the mixed aggregates and release of organic acid are attained by decreasing pH. PMID:27252123

  4. Stable carbon isotopic compositions of organic acids in total suspended particles and dusts from Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Ma, Shexia; Peng, Ping'an; Song, Jianzhong; Zhao, Jinping; He, Lulu; Sheng, Guoying; Fu, Jiamo

    2010-10-01

    Stable carbon isotopic compositions of individual organic acids were determined in total suspended particles and dusts from Guangzhou. The δ 13C values of high molecular weight n-alkanoic acids (C 20-C 28) varied from -34.1‰ to -32.4‰ and tended to be heavier in summer and lighter in winter. These δ 13C values indicate that high molecular weight n-alkanoic acids were derived mainly from emission by C 3 plants. Reduced biological synthesis of high molecular weight n-alkanoic acids in winter may be the reason for the light carbon isotopic composition. The δ 13C values of low molecular weight n-alkanoic acids (C 10-C 18) changed from -31.7‰ to -30.3‰ and exhibited a reverse seasonal trend, i.e., heavier in winter and lighter in summer. Slightly heavier δ 13C values of low molecular weight n-alkanoic acids than those of high molecular weight n-alkanoic acids suggested that they may be emitted from blended sources, e.g., anthropogenic sources and vegetation waxes. Lighter δ 13C values in summer may be attributed to relatively low anthropogenic sources and high botanic sources in summer. Dicarboxylic acids and aromatic acids have been proposed as secondary products from photochemical degradation. The average δ 13C values of dicarboxylic acids and aromatic acids were heavier, and ranged from -25.2‰ to -22.9‰ and from -30.0‰ to -27.6‰, respectively. Both dicarboxylic acids and aromatic acids displayed the same temporal variations in the δ 13C values, i.e., negative δ 13C in the summer samples and positive in the winter samples, which may be controlled by photochemical reactions; they are generally severe in winter in Guangzhou under the monsoon weather system. The heaviest δ 13C values were observed in dicarboxylic acids, indicating that dicarboxylic acids were formed by fast and more complete oxidation reactions. These results indicate that the stable carbon isotopic composition of organic acids may provide important information about sources and

  5. Adsorption of small weak organic acids on goethite: Modeling of mechanisms

    SciTech Connect

    Filius, J.D.; Hiemstra, T.; Riemsdijk, W.H. Van

    1997-11-15

    The adsorption of lactate, oxalate, malonate, phthalate, and citrate has been determined experimentally as a function of concentration, pH, and ionic strength. The data have been described with the CD-MUSIC model of Hiemstra and Van Riemsdijk which allows a distribution of charge of the organic molecule over the surface and the Stern layer. Simultaneously, the concentration, pH, and salt dependency as well as the basic charging behavior of goethite could be described well. On the basis of model calculations, a distinction is made between inner and outer sphere complexation of weak organic acids by goethite. The results indicate that the affinity of the organic acids is dominated by the electrostatic attraction. The intrinsic affinity constants for the exchange reaction of surface water groups and organic acids, expressed per bond, increases with increasing number of reactive groups on the organic molecule. Ion pair formation between noncoordinated carboxylic groups of adsorbed organic acids and cations of the background electrolyte proved to be important for the salt dependency. The knowledge obtained may contribute to the interpretation of the binding of larger organic acids like fulvic and humic acids.

  6. The effect of several organic acids on phytate phosphorus hydrolysis in broiler chicks.

    PubMed

    Liem, A; Pesti, G M; Edwards, H M

    2008-04-01

    Supplementation of some organic acids to a P-deficient diet has been shown to improve phytate P utilization. Two experiments were conducted from 0 to 16 d in battery brooders to determine the effect of various organic acids supplementation on phytate P utilization. In both experiments, birds were fed P-deficient corn and soybean meal-based diets. In experiment 1, citric acid, malic acid, fumaric acid, and EDTA were supplemented. Experiment 2 had a 2 x 2 factorial design with 2 sources of Met, 2-hydroxy-4-(methylthio) butanoic acid (HMB) and dl-Met, with or without 500 U/kg of phytase. In experiment 1, the addition of citric, malic, and fumaric acids increased percentage of bone ash, but only the effect of citric acid was significant. The addition of citric and malic acids also significantly increased the retention of P and phytate P (P<0.05). In experiment 2, the addition of phytase to the diet significantly increased 16-d BW gain, feed intake, percentage of bone ash, milligrams of bone ash, phytate P disappearance, and decreased the incidence of P-deficiency rickets. Methionine source did not affect 16-d BW gain, feed intake, feed efficiency, milligrams of bone ash, or P rickets incidence. However, the birds fed HMB had a higher percentage of bone ash and phytate P disappearance compared with the groups fed dl-Met only when phytase was added to the diets. The additions of citric acid and HMB improved phytate P utilization. However, the reason why some organic acids are effective whereas others are not is not apparent. PMID:18339989

  7. Broiler skin color as affected by organic acids: influence of concentration and method of application.

    PubMed

    Bilgili, S F; Conner, D E; Pinion, J L; Tamblyn, K C

    1998-05-01

    Color of broiler skin was evaluated after exposure to organic acids under various concentrations and simulated potential plant application conditions. Breast skin from chilled broiler carcasses was treated with acetic (AA), citric (CA), lactic (LA), malic (ML), mandelic (MN), propionic (PA), or tartaric (TA) acids at 0.5, 1, 2, 4, and 6% concentrations. Each acid and concentration was applied in simulated dip (23 C for 15 s), scalder (50 C for 2 min), and immersion chiller (1 C for 60 min) conditions. A tap water control was included with each application method. Objective color values of L* (lightness), a* (redness), and b* (yellowness) were measured before and after the treatments to calculate color differentials under a factorial arrangement of organic acids and concentrations. Skin lightness increased (P < 0.01) in simulated chiller as compared to dip and scalder applications. Skin redness was reduced significantly in scalder, and yellowness in dip and scalder applications, respectively. In simulated dip application, with the exception of PA, all acids decreased lightness and increased redness and yellowness values. Propionic acid had little affect on lightness and redness values, but decreased yellowness values. In simulated scalder application, with the exception of PA, all acids decreased lightness with increasing concentration. The redness values changed little in scalder application. However, yellowness values were increased with all acids, except for PA, which decreased yellowness values. In simulated chiller conditions, all acids, except for PA, decreased lightness and redness and increased yellowness values. Propionic acid increased lightness and decreased yellowness values significantly in chiller conditions. Alterations in skin color should be taken into account in the selection and application of organic acids as carcass disinfectants. PMID:9603365

  8. Microbial production of specialty organic acids from renewable and waste materials.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2015-01-01

    Microbial production of organic acids has become a fast-moving field due to the increasing role of these compounds as platform chemicals. In recent years, the portfolio of specialty fermentation-derived carboxylic acids has increased considerably, including the production of glyceric, glucaric, succinic, butyric, xylonic, fumaric, malic, itaconic, lactobionic, propionic and adipic acid through innovative fermentation strategies. This review summarizes recent trends in the use of novel microbial platforms as well as renewable and waste materials for efficient and cost-effective bio-based production of emerging high-value organic acids. Advances in the development of robust and efficient microbial bioprocesses for producing carboxylic acids from low-cost feedstocks are also discussed. The industrial market scenario is also reviewed, including the latest information on the stage of development for producing these emerging bio-products via large-scale fermentation. PMID:24754448

  9. Crystal and molecular structures of twelve salts from isopropylamine and different organic acids

    NASA Astrophysics Data System (ADS)

    Wen, Xianhong; Zhang, Huan; Xu, Kai; Sun, JiaHui; Ye, Jiaying; Jin, Shouwen; Wang, Daqi

    2015-08-01

    Twelve isopropylamine derived supramolecular complexes isopropylamine: (m-toluic acid) [(Hipa)+ ṡ (mtua-), mtua- = m-toluate] (1), isopropylamine: (p-toluic acid) [(Hipa)+ ṡ (ptua-), ptua- = p-toluate] (2), isopropylamine: (p-methoxybenzoic acid) [(Hipa)+ ṡ (pmba-), pmba- = p-methoxybenzoate] (3), (isopropylamine): (3,4-methylenedioxybenzoic acid) [(Hipa)+ ṡ (mba)-, mba = 3,4-methylenedioxybenzoate] (4), (isopropylamine): (2-methyl-2-phenoxypropanoic acid) [(Hipa)+ ṡ (mpa-), mpa- = 2-methyl-2-phenoxypropionate] (5), (isopropylamine): (4-chlorophenoxyacetic acid) [(Hipa)+ ṡ (cpa-), cpa- = 4-chlorophenoxyacetate] (6), (isopropylamine): (3,5-dinitrobenzoic acid) [(Hipa)+ ṡ (dnba-), dnba- = 3,5-dinitrobenzoate] (7), (isopropylamine): (2-furoic acid) [(Hipa)+ ṡ (fura-), fura- = 2-furoate] (8), (isopropylamine): (1-hydroxy-2-naphthoic acid) [(Hipa)+ ṡ (hna), hna = 1-hydroxy-2-naphthoate] (9), (isopropylamine): (4-nitrophthalic acid) [(Hipa)2+ ṡ (npa2-), npa2- = 4-nitrophthalate] (10), (isopropylamine)2: (2,5-bis-isopropylcarbamoyl-terephthalic acid): 2H2O [(Hipa)2+ ṡ (bta2-) ṡ 2H2O, bta2- = 2,5-bis-isopropylcarbamoyl-terephthalate] (11), and (isopropylamine)2: (1,5-naphthalenedisulfonic acid) [(Hipa)2+ ṡ (nds2-), nds2- = 1,5-naphthalenedisulfonate] (12) were synthesized and structurally characterized by X-ray crystallography. All supramolecular architectures of 1-12 involve extensive classical hydrogen bonds as well as other non-covalent interactions. The results presented herein indicate that the strength and directionality of the Nsbnd H⋯O, Osbnd H⋯O, and Osbnd H⋯S hydrogen bonds between the acidic components and isopropylamine are sufficient to bring about the formation of binary organic salts. The role of weak and strong non-covalent interactions in the crystal packing is ascertained. These weak interactions combined, the complexes 1-12 displayed 1D-3D framework structure.

  10. Cationic RAFT polymerization using ppm concentrations of organic acid.

    PubMed

    Uchiyama, Mineto; Satoh, Kotaro; Kamigaito, Masami

    2015-02-01

    A metal-free, cationic, reversible addition-fragmentation chain-transfer (RAFT) polymerization was proposed and realized. A series of thiocarbonylthio compounds were used in the presence of a small amount of triflic acid for isobutyl vinyl ether to give polymers with controlled molecular weight of up to 1×10(5) and narrow molecular-weight distributions (Mw /Mn <1.1). This "living" or controlled cationic polymerization is applicable to various electron-rich monomers including vinyl ethers, p-methoxystyrene, and even p-hydroxystyrene that possesses an unprotected phenol group. A transformation from cationic to radical RAFT polymerization enables the synthesis of block copolymers between cationically and radically polymerizable monomers, such as vinyl ether and vinyl acetate or methyl acrylate. PMID:25511364

  11. Fatty acids - trans fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  12. Interactions of low molecular weight aromatic acids and amino acids with goethite, kaolinite and bentonite with or without organic matter coating

    NASA Astrophysics Data System (ADS)

    Gao, Jiajia; Jansen, Boris; Cerli, Chiara; Kalbitz, Karsten

    2015-04-01

    Interaction of organic matter molecules with the soil's solid phase is a key factor influencing the stabilization of carbon in soils and thus forms a crucial aspect of the global carbon cycle. While subject of much research attention so far, we still have much to learn about such interactions at the molecular level; in particular in the light of competition between different classes of organic molecules and in the presence of previously adsorbed soil organic matter. We studied the interaction of a group of low molecular weight (LMW) aromatic acids (salicylic, syringic, vanillic and ferulic acid) and amino acids (lysine, glutamic, leucine and phenylalanine) on goethite, kaolinite and bentonite with and without previously adsorbed dissolved organic matter (DOM). For this we used batch experiments at pH = 6.0 where some of the organic compounds were positively charged (i.e. lysine) or negatively charged (i.e. glutamic and salicylic acid) while the minerals also displayed positively (i.e. goethite) or negatively charged surfaces (i.e. bentonite). We found much higher sorption of salicylic acid and lysine than other compounds. On the bare minerals we found a great variety of sorption strength, with salicylic acid strongly adsorbed, while syringic, vanillic and ferulic acid showed little or no adsorption. For the amino acids, protonated lysine showed a stronger affinity to negatively charged kaolinite and bentonite than other amino acids. While deprotonated glutamic acid showed the strongest adsorption on goethite. Leucine and phenylalanine showed hardly any adsorption on any of the minerals. When present concurrently, amino acids decreased the sorption of salicylic acid on the three types of mineral, while the presence of LMW aromatic acids increased the sorption of lysine on kaolinite and bentonite and the sorption of glutamic acid on goethite. The presence of previously adsorbed DOM reduced the sorption of salicylic acid and lysine. The results confirm that

  13. Seasonal and spatial changes of free and bound organic acids in total suspended particles in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Ma, Shexia; Peng, Ping'an; Song, Jianzhong; Bi, Xinhui; Zhao, Jinping; He, Lulu; Sheng, Guoying; Fu, Jiamo

    2010-12-01

    The concentrations and compositions of free and bound organic acids in total suspended particles from typical urban, suburban and forest park sites of Guangzhou were determined in this study. The free form of organic acids (solvent extractable) in aerosols in Guangzhou varied with site and season. The suburban samples contained the highest contents of alkanoic, alkenoic and dicarboxylic acids. These findings were consistent with a higher supply of hydrocarbons and NOx in the suburban area. However, concentrations of aromatic acids were similar in the urban, suburban and forest park sites. Generally, winter season samples of the acids from anthropogenic sources contained more organic acids than summer season samples due to stronger removal by wet deposition in the summer. For the acids from botanic sources, the summer season samples were higher. In addition to the free acids, bound acids (solvent non-extractable) mainly formed by esterification of free acids were also found in the samples. In general, bound acids were higher than free acids. Esterification is mainly controlled by the pKa of organic acids and the atmospheric pH value. This explains why aromatic and dicarboxylic acids occur mainly as bound forms and why the samples from urban sites contained high levels of bound acids as the pH of rain water can reach 4.53. Concentrations of alkanoic and alkenoic acids in the aerosols of Guangzhou were much higher than those in the other areas studied.

  14. A review of the effects of dietary organic acids fed to swine.

    PubMed

    Suiryanrayna, Mocherla V A N; Ramana, J V

    2015-01-01

    Animal production depends on nutrient utilization and if done there is an accelerated momentum towards growth with a low cost to feed ratio Public concern over the consumption of pork with antibiotic residues of the animals fed with antibiotic growth promoters (AGP) has paved the way to use other additives like herbs and their products, probiotics, prebiotics etc. Numerous feed additives are in vogue for achieving this target and one such classical example is the usage of organic acids and their salts. Usage of organic acids was in progress for over four decades. Early weaned piglets are (3-4 weeks age) exposed to stress with a reduced feed intake, little or no weight gain. This post weaning lag period is due to a limited digestive and absorptive capacity due to insufficient production of hydrochloric acid, pancreatic enzymes and sudden changes in feed consistency and intake. Lowering dietary pH by weak organic acids was found to overcome these problems. The main activity of organic acids is associated with a reduction in gastric pH converting the inactive pepsinogen to active pepsin for effective protein hydrolysis. Organic acids are both bacteriostatic and bactericidal. Lactic acid has been reported to reduce gastric pH and delay the multiplication of an enterotoxigenic E. coli. These acids are the intermediary products in Kreb's cycle and thus act as an energy source preventing the tissue breakdown resulting from gluconeogenesis and lipolysis. Excretion of supplemental minerals and nitrogen are minimized with organic acids as these form complexes with minerals and aids for their bio-availability. Short chain fatty cids like acetic, propionic and n-butyric acid produced by microbial fermentation of dietary fibre in the large intestines may increase the proliferation of epithelial cells and have stimulatory effects on both endocrine and exocrine pancreatic secretions in pigs. Organic acids also enhances apparent total tract digestibility and improves growth

  15. Aliphatic, Cyclic, and Aromatic Organic Acids, Vitamins, and Carbohydrates in Soil: A Review

    PubMed Central

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-01-01

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research. PMID:24319374

  16. Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review.

    PubMed

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-01-01

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research. PMID:24319374

  17. Role of Organic Acids in Bioformation of Kaolinite: Results of Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Bontognali, T. R. R.; Vasconcelos, C.; McKenzie, J. A.

    2012-04-01

    Clay minerals and other solid silica phases have a broad distribution in the geological record and greatly affect fundamental physicochemical properties of sedimentary rocks, including porosity. An increasing number of studies suggests that microbial activity and microbially produced organic acids might play an important role in authigenic clay mineral formation, at low temperatures and under neutral pH conditions. In particular, early laboratory experiments (Linares and Huertas, 1971) reported the precipitation of kaolinite in solutions of SiO2 and Al2O3 with different molar ratios SiO2/Al2O3, together with fulvic acid (a non-characterized mixture of many different acids containing carboxyl and phenolate groups) that was extracted from peat soil. Despite many attempts, these experiments could not be reproduced until recently. Fiore et al. (2011) hypothesized that the non-sterile fulvic acid might have contained microbes that participated in the formation of kaolinite. Using solutions saturated with Si and Al and containing oxalate and/or mixed microbial culture extracted from peat-moss soil, they performed incubation experiments, which produced kaolinite exclusively in solutions containing oxalate and microbes. We proposed to test the role of specific organic acids for kaolinite formation, conducting laboratory experiments at 25˚C, with solutions of sodium silicate, aluminum chloride and various organic compounds (i.e. EDTA, citric acid, succinic acid and oxalic acid). Specific organic acids may stabilize aluminum in octahedral coordination positions, which is crucial for the initial nucleation step. In our experiments, a poorly crystalline mineral that is possibly a kaolinite precursor formed exclusively in the presence of succinic acid. In experiments with other organic compounds, no incorporation of Al was observed, and amorphous silica was the only precipitated phase. In natural environments, succinic acid is produced by a large variety of microbes as an

  18. [Progress in engineering Escherichia coli for production of high-value added organic acids and alcohols].

    PubMed

    Wang, Jiming; Liu, Wei; Xu, Xin; Zhang, Haibo; Xian, Mo

    2013-10-01

    Confronted with the gradual exhaustion of the earth's fossil energy resources and the grimmer environmental deterioration, the bio-based process to produce high-value added platform chemicals from renewable biomass is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to various advantages, such as clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. This review focuses on recent progresses in metabolic engineering of E. coli that lead to efficient recombinant biocatalysts for production of high-value organic acids such as succinic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like glycerol and xylitol. Besides, this review also discusses several other platform chemicals, including 2,5-furan dicarboxylic acid, aspartic acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxy-gamma-butyrolactone and sorbitol, which have not been produced by E. coli until now. PMID:24432652

  19. Non-covalent bonded 2D-3D supramolecular architectures based on 4-dimethylaminopyridine and organic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Huan; Jin, Shouwen; Wen, Xianhong; Liu, Bin; Fang, Yang; Zhang, Yani; Wang, Daqi

    2015-07-01

    Studies concentrating on non-covalent weak interactions between the organic base of 4-dimethylaminopyridine, and acidic derivatives have led to an increased understanding of the role 4-dimethylaminopyridine has in binding with the organic acid derivatives. Here anhydrous and hydrous multicomponent organic acid-base adducts of 4-dimethylaminopyridine have been prepared with organic acids such as 1,3-benzodioxole-5-carboxylic acid, p-aminobenzoic acid, 2,4-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, 5-chlorosalicylic acid, 5-bromosalicylic acid, 5-nitrosalicylic acid, and 5-sulfosalicylic acid. The 4-dimethylaminopyridine is only monoprotonated. All compounds are organic salts with the 1:1 ratio of the cation and the anion. For the 5-sulfosalicylic acid only one H is ionized to exhibit the valence number of -1. The eight crystalline complexes were characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. These structures adopted the hetero supramolecular synthons. Analysis of the crystal packing of 1-8 suggests that there are Nsbnd H⋯O, Osbnd H⋯O, and Osbnd H⋯S hydrogen bonds (charge assisted or neutral) between the organic acid and the 4-dimethylaminopyridine moieties in the studied compounds. Except the classical hydrogen bonding interactions, the secondary propagating interactions also play important roles in structure extension. For the synergistic effect of the various non-covalent interactions, the complexes displayed 2D-3D framework structures.

  20. Carbon dioxide and organic acids: origin and role in burial diagenesis (Texas Gulf Coast Tertiary)

    SciTech Connect

    Lundegard, P.D.

    1985-01-01

    Carbon dioxide produced by decarboxylation of organic matter is not a dominant factor in secondary porosity development. Material balance calculations indicate the amount of feldspar and carbonate dissolution that has taken place in Tertiary sandstones of the Texas Gulf Coast far exceeds that which is explainable by decarboxylation. Other potential sources of acid for dissolution reactions include reverse weathering reactions in shales, an hydrous pyrolysis reactions between organic carbon and oxygen in H/sub 2/O to yield CO/sub 2/ or organic acids. Considerations of CO/sub 2/ solubility and the temperature distribution of organic acids imply that these species must be generated locally to cause significant dissolution. The CO/sub 2/ content of gas from Gulf Coast Tertiary sandstones is proportional to reservoir age, and increases with depth and temperature at a rate that is approximately exponential. In the Wilcox Formation the increase in CO/sub 2/ content continues beyond depths where dissolved organic acids are abundant and where kerogen has lost its oxygen from functional groups that are readily liberated as CO/sub 2/. In this formation the /sup 13/C of CO/sub 2/ and CH/sub 4/ are proportional to temperature and to each other. Either mixing with fluids derived from the Mesozoic carbonate section of deep CO/sub 2/ generation by kinetically controlled organic reactions may explain these data. Organic acid concentration with depth and temperature indicates a non-biological origin by thermal cracking of kerogen during burial. Continued burial leads to their thermal decomposition. Cessation of burial may lead to meteoric water invasion and organic acid destruction by biological processes. The effect of time on organic acid production is minor compared to temperature.

  1. Effect of organic acids found in cottonseed hull hydrolysate on the xylitol fermentation by Candida tropicalis.

    PubMed

    Wang, Le; Wu, Dapeng; Tang, Pingwah; Yuan, Qipeng

    2013-08-01

    Five organic acids (acetic, ferulic, 4-hydroxybenzoic, formic and levulinic acids) typically associated in the hemicellulose hydrolysate were selected to study their effects on the xylitol fermentation. The effects of individual and combined additions were independently evaluated on the following parameters: inhibitory concentration; initial cell concentration; pH value; and membrane integrity. The results showed that the toxicities of organic acids were related to their hydrophobility and significantly affected by the fermentative pH value. In addition, it was revealed that the paired combinations of organic acids did not impose synergetic inhibition. Moreover, it was found that the fermentation inhibition could be alleviated with the simple manipulations by increasing the initial cell concentration, raising the initial pH value and minimizing furfural levels by evaporation during the concentration of hydrolysates. The proposed strategies for minimizing the negative effects could be adopted to improve the xylitol fermentation in the industrial applications. PMID:23138642

  2. In vitro susceptibility of Brachyspira hyodysenteriae to organic acids and essential oil components

    PubMed Central

    VANDE MAELE, Lien; HEYNDRICKX, Marc; MAES, Dominiek; DE PAUW, Nele; MAHU, Maxime; VERLINDEN, Marc; HAESEBROUCK, Freddy; MARTEL, An; PASMANS, Frank; BOYEN, Filip

    2015-01-01

    The antibacterial potential of organic acids and essential oil components against Brachyspira hyodysenteriae, the causative pathogen of swine dysentery, was evaluated. Minimum inhibitory concentrations (MIC) of 15 compounds were determined at pH 7.2 and pH 6.0, using a broth microdilution assay. In addition, possible synergism was determined. MIC values for the three tested strains were similar. For organic acids, MIC values at pH 6.0 were lower than at pH 7.2. B. hyodysenteriae was most sensitive to cinnamaldehyde and lauric acid, with MIC values <1.5 mM. Most antibacterial effects of binary combinations were additive, however, for thymol and carvacrol, synergism could be observed. In vitro results demonstrate the antibacterial action of certain essential oil components and organic acids against B. hyodysenteriae. PMID:26369432

  3. Five organic salts assembled from carboxylic acids and bis-imidazole derivatives through collective noncovalent interactions

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Guo, Jianzhong; Liu, Li; Wang, Daqi

    2011-10-01

    Five multicomponent crystals of bis(imidazole) derivatives have been prepared with 5-nitrosalicylic acid, 5-sulfosalicylic acid, and phthalic acid. The five crystalline forms reported are organic salts of which the crystal structures have all been determined by X-ray diffraction. The results presented herein indicate that the strength and directionality of the N sbnd H⋯O, O sbnd H⋯O, and N sbnd H⋯N hydrogen bonds (ionic or neutral) between carboxylic acids and ditopic imidazoles are sufficient to bring about the formation of binary organic salts. All supramolecular architectures of the organic salts 1- 5 involve extensive O sbnd H⋯O, and N sbnd H⋯O hydrogen bonds as well as other noncovalent interactions. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These noncovalent interactions combined, all the complexes displayed 3D framework structure.

  4. In vitro susceptibility of Brachyspira hyodysenteriae to organic acids and essential oil components.

    PubMed

    Vande Maele, Lien; Heyndrickx, Marc; Maes, Dominiek; De Pauw, Nele; Mahu, Maxime; Verlinden, Marc; Haesebrouck, Freddy; Martel, An; Pasmans, Frank; Boyen, Filip

    2016-02-01

    The antibacterial potential of organic acids and essential oil components against Brachyspira hyodysenteriae, the causative pathogen of swine dysentery, was evaluated. Minimum inhibitory concentrations (MIC) of 15 compounds were determined at pH 7.2 and pH 6.0, using a broth microdilution assay. In addition, possible synergism was determined. MIC values for the three tested strains were similar. For organic acids, MIC values at pH 6.0 were lower than at pH 7.2. B. hyodysenteriae was most sensitive to cinnamaldehyde and lauric acid, with MIC values <1.5 mM. Most antibacterial effects of binary combinations were additive, however, for thymol and carvacrol, synergism could be observed. In vitro results demonstrate the antibacterial action of certain essential oil components and organic acids against B. hyodysenteriae. PMID:26369432

  5. The effects of different thermal treatments and organic acid levels on nutrient digestibility in broilers.

    PubMed

    Goodarzi Boroojeni, F; Mader, A; Knorr, F; Ruhnke, I; Röhe, I; Hafeez, A; Männer, K; Zentek, J

    2014-05-01

    Poultry feed is a potential vector for pathogens. Heat processing and organic acid treatments may decontaminate feed and can affect bird performance as well as feed digestibility. The present study was performed to investigate the effect of different thermal treatments including pelleting (P), long-term conditioning at 85°C for 3 min (L), or expanding at 110°C (E110) and 130°C for 3 to 5 s (E130) without or with 0.75 and 1.5% organic acid supplementation (63.75% formic acid, 25.00% propionic acid, and 11.25% water) on performance, nutrient digestibility, and organ weights of broilers. In total, 960 one-day-old broiler chicks were randomly assigned to 8 replicates using a 3 × 4 factorial arrangement. Performance variables were determined, and the relative organ weights and ileal and total amino acid (AA) digestibilities were measured at d 35. The organic acid inclusion linearly improved feed efficiency in the first week (P ≤ 0.05). The acid inclusion levels and thermal treatments had no significant effect on the performance variables at later intervals of the growing period of the birds. The L group showed the lowest ileal AA and CP digestibility. The inclusion of organic acids had a quadratic effect on total and ileal digestibility of isoleucine (P ≤ 0.05), whereas it had no significant effect on the ileal digestibility of other AA and nutrients. The relative weights of the jejunum and small intestine were significantly higher in the E130 group compared with P and L (P ≤ 0.05). In conclusion, our study demonstrated that long-term heat conditioning can decrease ileal nutrient digestibility, whereas pelleting and expansion, independently of organic acid addition, seemed to have no negative impact on broiler performance and nutrient digestibilities. Moreover, adding a blend of organic acids to broiler diets had neither positive nor negative effects on nutrient digestibility and final broiler performance. This indicates the feasibility of short-term thermal

  6. Uric Acid Spherulites in the Reflector Layer of Firefly Light Organ

    PubMed Central

    Goh, King-Siang; Sheu, Hwo-Shuenn; Hua, Tzu-En; Kang, Mei-Hua; Li, Chia-Wei

    2013-01-01

    Background In firefly light organs, reflector layer is a specialized tissue which is believed to play a key role for increasing the bioluminescence intensity through reflection. However, the nature of this unique tissue remains elusive. In this report, we investigated the role, fine structure and nature of the reflector layer in the light organ of adult Luciola cerata. Principal Findings Our results indicated that the reflector layer is capable of reflecting bioluminescence, and contains abundant uric acid. Electron microscopy (EM) demonstrated that the cytosol of the reflector layer's cells is filled with densely packed spherical granules, which should be the uric acid granules. These granules are highly regular in size (∼700 nm in diameter), and exhibit a radial internal structure. X-ray diffraction (XRD) analyses revealed that an intense single peak pattern with a d-spacing value of 0.320 nm is specifically detected in the light organ, and is highly similar to the diffraction peak pattern and d-spacing value of needle-formed crystals of monosodium urate monohydrate. However, the molar ratio evaluation of uric acid to various cations (K+, Na+, Ca2+ and Mg2+) in the light organ deduced that only a few uric acid molecules were in the form of urate salts. Thus, non-salt uric acid should be the source of the diffraction signal detected in the light organ. Conclusions In the light organ, the intense single peak diffraction signal might come from a unique needle-like uric acid form, which is different from other known structures of non-salt uric acid form. The finding of a radial structure in the granules of reflector layer implies that the spherical uric acid granules might be formed by the radial arrangement of needle-formed packing matter. PMID:23441187

  7. Deoxyribonucleic acid methylation and chromatin organization in Tetrahymena thermophila.

    PubMed Central

    Pratt, K; Hattman, S

    1981-01-01

    Deoxyribonucleic acid (DNA) of the transcriptionally active macronucleus of Tetrahymena thermophila is methylated at the N6 position of adenine to produce methyladenine (MeAde); approximately 1 in every 125 adenine residues (0.8 mol%) is methylated. Transcriptionally inert micronuclear DNA is not methylated (< or = 0.01 mol% MeAde; M. A. Gorovsky, S. Hattman, and G. L. Pleger, J. Cell Biol. 56:697-701, 1973). There is no detectable cytosine methylation in macronuclei in Tetrahymena DNA (< or = 0.01 mol% 5-methylcytosine). MeAde-containing DNA sequences in macronuclei are preferentially digested by both staphylococcal nuclease and pancreatic deoxyribonuclease I. In contrast, there is no preferential release of MeAde during digestion of purified DNA. These results indicate that MeAde residues are predominantly located in "linker DNA" and perhaps have a function in transcription. Pulse-chase studies showed that labeled MeAde remains preferentially in linker DNA during subsequent rounds of DNA replication; i.e., there is little, if any, movement of nucleosomes during chromatin replication. This implies that nucleosomes may be phased with respect to DNA sequence. PMID:9279374

  8. The effect of organic acids on plagioclase dissolution rates and stoichiometry

    NASA Astrophysics Data System (ADS)

    Welch, Susan A.; Ullman, William J.

    1993-06-01

    The rates of plagioclase dissolution in solutions containing organic acids are up to ten times greater than the rates determined in solutions containing inorganic acids at the same acidity. Initial rates of dissolution are poorly reproduced in replicate experiments. After a day, however, the rates of plagioclase dissolution calculated from the rates of silicon release are reproducible and constant for up to nineteen days. Steady-state rates of dissolution are highest (up to 1.3 × 10 -8 mol/m 2/sec) in acidic solutions (pH ≈ 3) and decrease (to 1 × 10 -11 mol/m 2/sec) as acidity decreases toward neutral pH. The polyfunctional acids, oxalate, citrate, succinate, pyruvate, and 2-ketoglutarate, are the most effective at promoting dissolution. Acetate and propionate are not as effective as the other organic acids but are nonetheless more effective than solutions containing only inorganic acids. The degree of ligand-promoted enhancement of dissolution rate (rate in organic-containing solution/rate in inorganic solution at the same pH) decreases as acidity increases, indicating that the ligand-promoted dissolution mechanism becomes relatively more important as the rate of proton-promoted dissolution decreases. The stoichiometry of release to solution indicates that dissolution is selective even after the rates of dissolution become constant. As in previously published studies, Na and Ca are rapidly released from the plagioclase feldspar, leaving a surface enriched in Si and/or Al. The ratio of Al/Si released to solution indicates that the stoichiometry of the residual plagioclase surface is a function of pH and the nature of the organic ligand. The ligands which remove Al in preference to Si from the dissolving mineral surface are also those which enhance overall plagioclase dissolution rates.

  9. Isotherm-Based Thermodynamic Models for Solute Activities of Organic Acids with Consideration of Partial Dissociation.

    PubMed

    Nandy, Lucy; Ohm, Peter B; Dutcher, Cari S

    2016-06-23

    Organic acids make up a significant fraction of the organic mass in atmospheric aerosol particles. The calculation of gas-liquid-solid equilibrium partitioning of the organic acid is therefore critical for accurate determination of atmospheric aerosol physicochemical properties and processes such as new particle formation and activation to cloud condensation nuclei. Previously, an adsorption isotherm-based statistical thermodynamic model was developed for capturing solute concentration-activity relationships for multicomponent aqueous solutions over the entire concentration range (Dutcher et al. J. Phys. Chem. C/A 2011, 2012, 2013), with model parameters for energies of adsorption successfully related to dipole-dipole electrostatic forces in solute-solvent and solvent-solvent interactions for both electrolytes and organics (Ohm et al. J. Phys. Chem. A 2015). However, careful attention is needed for weakly dissociating semivolatile organic acids. Dicarboxylic acids, such as malonic acid and glutaric acid are treated here as a mixture of nondissociated organic solute (HA) and dissociated solute (H(+) + A(-)). It was found that the apparent dissociation was greater than that predicted by known dissociation constants alone, emphasizing the effect of dissociation on osmotic and activity coefficient predictions. To avoid additional parametrization from the mixture approach, an expression was used to relate the Debye-Hückel hard-core collision diameter to the adjustable solute-solvent intermolecular distance. An improved reference state treatment for electrolyte-organic aqueous mixtures, such as that observed here with partial dissociation, has also been proposed. This work results in predictive correlations for estimation of organic acid and water activities for which there is little or no activity data. PMID:27222917

  10. Crystallization and immersion freezing ability of oxalic and succinic acid in multicomponent aqueous organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Wagner, Robert; Höhler, Kristina; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin

    2015-04-01

    This study reports on heterogeneous ice nucleation efficiency of immersed oxalic and succinic acid crystals in the temperature range from 245 to 215 K, as investigated with expansion cooling experiments using suspended particles. In contrast to previous laboratory work with emulsified solution droplets where the precipitation of solid inclusions required a preceding freezing/evaporation cycle, we show that immersed solids readily form by homogeneous crystallization within aqueous solution droplets of multicomponent organic mixtures, which have noneutonic compositions with an excess of oxalic or succinic acid. Whereas succinic acid crystals did not act as heterogeneous ice nuclei, immersion freezing by oxalic acid dihydrate crystals led to a reduction of the ice saturation ratio at freezing onset by 0.066-0.072 compared to homogeneous freezing, which is by a factor of 2 higher than previously reported laboratory data. These observations emphasize the importance of oxalic acid in heterogeneous ice nucleation.

  11. Regeneration of carboxylic acid-laden basic sorbents by leaching with a volatile base in an organic solvent

    DOEpatents

    King, C. Judson; Husson, Scott M.

    1999-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with an organic solution of alkylamine thus forming an alkylamine/carboxylic acid complex which is decomposed with improved efficiency to the desired carboxylic acid and the alkylamine. Carbon dioxide addition can be used to improve the adsorption or the carboxylic acids by the solid phase sorbent.

  12. Determination of sugars, organic acids, aroma components, and carotenoids in grapefruit pulps.

    PubMed

    Zheng, Huiwen; Zhang, Qiuyun; Quan, Junping; Zheng, Qiao; Xi, Wanpeng

    2016-08-15

    The composition and content of sugars, organic acids, volatiles and carotenoids, in the pulps of six grapefruit cultivars, were examined by HPLC and GC-MS. The results showed that sucrose was the dominant sugar in grapefruit, making up 40.08-59.68% of the total sugars, and the ratio of fructose to glucose was almost 1:1. Citric acid was the major organic acid and represented 39.10-63.55% of the total organic acids, followed by quininic acid. The ratios of individual sugars and organic acids play an important role in grapefruit taste determination. Monoterpenes and sesquiterpenes were the predominant volatiles in grapefruit, in particular d-limonene and caryophyllene. Caryophyllene, α-humulene, humulen-(v1), β-linalool and tert-butyl 2-methylpropanoate are the characteristic aroma compounds of grapefruit. Although β-carotene is the primary carotenoid in grapefruit, the pulp color is mainly determined by the ratios of zeaxanthin, β-cryptoxanthin and lycopene. Our results provide the first complete chemical characterization of the taste, aroma and color of grapefruit. PMID:27006221

  13. Expanding the modular ester fermentative pathways for combinatorial biosynthesis of esters from volatile organic acids.

    PubMed

    Layton, Donovan S; Trinh, Cong T

    2016-08-01

    Volatile organic acids are byproducts of fermentative metabolism, for example, anaerobic digestion of lignocellulosic biomass or organic wastes, and are often times undesired inhibiting cell growth and reducing directed formation of the desired products. Here, we devised a general framework for upgrading these volatile organic acids to high-value esters that can be used as flavors, fragrances, solvents, and biofuels. This framework employs the acid-to-ester modules, consisting of an AAT (alcohol acyltransferase) plus ACT (acyl CoA transferase) submodule and an alcohol submodule, for co-fermentation of sugars and organic acids to acyl CoAs and alcohols to form a combinatorial library of esters. By assembling these modules with the engineered Escherichia coli modular chassis cell, we developed microbial manufacturing platforms to perform the following functions: (i) rapid in vivo screening of novel AATs for their catalytic activities; (ii) expanding combinatorial biosynthesis of unique fermentative esters; and (iii) upgrading volatile organic acids to esters using single or mixed cell cultures. To demonstrate this framework, we screened for a set of five unique and divergent AATs from multiple species, and were able to determine their novel activities as well as produce a library of 12 out of the 13 expected esters from co-fermentation of sugars and (C2-C6) volatile organic acids. We envision the developed framework to be valuable for in vivo characterization of a repertoire of not-well-characterized natural AATs, expanding the combinatorial biosynthesis of fermentative esters, and upgrading volatile organic acids to high-value esters. Biotechnol. Bioeng. 2016;113: 1764-1776. © 2016 Wiley Periodicals, Inc. PMID:26853081

  14. Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids

    USGS Publications Warehouse

    Scott, D.T.; Runkel, R.L.; McKnight, Diane M.; Voelker, B.M.; Kimball, B.A.; Carraway, E.R.

    2003-01-01

    An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.

  15. [Effects of simulated acid rain on decomposition of soil organic carbon and crop straw].

    PubMed

    Zhu, Xue-Zhu; Huang, Yao; Yang, Xin-Zhong

    2009-02-01

    To evaluate the effects of acid rain on the organic carbon decomposition in different acidity soils, a 40-day incubation test was conducted with the paddy soils of pH 5.48, 6.70 and 8.18. The soils were amended with 0 and 15 g x kg(-1) of rice straw, adjusted to the moisture content of 400 g x kg(-1) air-dried soil by using simulated rain of pH 6.0, 4.5, and 3.0, and incubated at 20 degrees C. The results showed that straw, acid rain, and soil co-affected the CO2 emission from soil system. The amendment of straw increased the soil CO2 emission rate significantly. Acid rain had no significant effects on soil organic carbon decomposition, but significantly affected the straw decomposition in soil. When treated with pH 3.0 acid rain, the amount of decomposed straw over 40-day incubation in acid (pH 5.48) and alkaline (pH 8.18) soils was 8% higher, while that in neutral soil (pH 6.70) was 15% lower, compared to the treatment of pH 6.0 rain. In the treatment of pH 3.0 acid rain, the decomposition rate of soil organic C in acid (pH 5.48) soil was 43% and 50% (P < 0.05) higher than that in neutral (pH 6.70) and alkaline (pH 8.18) soils, while the decomposition rate of straw in neutral soil was 17% and 16% (P < 0.05) lower than that in acid and alkaline soils, respectively. PMID:19459394

  16. Sulfation of metal-organic framework: Opportunities for acid catalysis and proton conductivity

    SciTech Connect

    Goesten, M.G.; Stavitski, E.; Juan-Alcaniz, J.; Ramos-Fernandez, E.V.; Sai Sankar Gupta, K.B.; van Bekkum, H.; Gascon, J. and Kapteijn, F.

    2011-05-24

    A new post-functionalization method for metal-organic frameworks (MOFs) has been developed to introduce acidity for catalysis. Upon treatment with a mixture of triflic anhydride and sulfuric acid, chemically stable MOF structures MIL-101(Cr) and MIL-53(Al) can be sulfated, resulting in a Broensted sulfoxy acid group attached to up to 50% of the aromatic terephthalate linkers of the structure. The sulfated samples have been extensively characterized by solid-state NMR, XANES, and FTIR spectroscopy. The functionalized acidic frameworks show catalytic activity similar to that of acidic polymers like Nafion{reg_sign} display in the esterification of n-butanol with acetic acid (TOF {approx} 1 min{sup -1} {at} 343 K). Water adsorbs strongly up to 4 molecules per sulfoxy acid group, and an additional 2 molecules are taken up at lower temperatures in the 1-D pore channels of S-MIL-53(Al). The high water content and Broensted acidity provide the structure S-MIL-53(Al) a high proton conductivity up to moderate temperatures.

  17. Protocatechuic Acid Levels Discriminate Between Organic and Conventional Wheat from Denmark.

    PubMed

    Weesepoel, Yannick; Heenan, Samuel; Boerrigter-Eenling, Rita; Venderink, Tjerk; Blokland, Marco; van Ruth, Saskia

    2016-01-01

    Organic wheat retails at higher market prices than the conventionally grown counterparts. In view of fair competition and sustainable consumer confidence, the organic nature of organic wheat needs to be assured. Amongst other controls this requires analytical tests based on discriminating traits. In this paper, phenolic acids were examined by liquid chromatography analysis as biomarkers for discriminating between the two groups by means of a controlled grown full factorial design Danish wheat sample set. By combining baseline and retention-time correction pre-treatments and principal component analysis, discrimination between organic and conventional produce was found to be expressed in the first principal component (93%), whilst the second principal component accounted for the production year (4%). Upon examination of the loadings plot, a single chromatographic peak was found to account for a large part in the discrimination between the two wheat production systems. This was further underpinned by statistically significant differences found in concentrations between the organic and conventional production systems of this phenolic acid (ANOVA, P<0.05). The phenolic acid was tentatively identified as protocatechuic acid by negative mode mass spectrometry. The results obtained implied that protocatechuic acid may serve as a single marker for discrimination between organic and conventional produced wheat. PMID:27198816

  18. Comparative Inter-Species Pharmacokinetics of Phenoxyacetic Acid Herbicides and Related Organic Acids. Evidence that the Dog is Not a Relevant Species for Evaluation of Human Health Risk.

    SciTech Connect

    Timchalk, Chuck

    2004-07-15

    Phenoxyacetic acids including 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA) are widely utilized organic acid herbicides that have undergone extensive toxicity and pharmacokinetic analyses. The dog is particularly susceptible to the toxicity of phenoxyacetic acids and related organic acids relative to other species. Active renal clearance mechanisms for organic acids are ubiquitous in mammalian species, and thus a likely mechanism responsible for the increased sensitivity of the dog to these agents is linked to a lower capacity to secrete organic acids from the kidney. Using published data describing the pharmacokinetics of phenoxyacetic and structurally related organic acids in a variety of species including humans, inter-species comparative pharmacokinetics were evaluated using allometic parameter scaling. For both 2,4-D and MCPA the dog plasma half-life (t1/2) and renal clearance (Clr; ml hr-1) rates did not scale as a function of body weight across species; whereas for all other species evaluated, including humans, these pharmacokinetic parameters reasonably scaled. This exceptional response in the dog is clearly illustrated by comparing the plasma t1/2 at comparable doses of 2,4-D and MCPA, across several species. At a dosage of 5 mg/kg, in dogs the plasma t1/2 for 2,4-D and MCPA were {approx}92 - 106 hr and 63 hr, respectively, which is substantially longer than in the rat ({approx}1 and 6 hr, respectively) or in humans (12 and 11 hr, respectively). This longer t1/2, and slower elimination in the dog, results in substantially higher body burdens of these organic acids, at comparable doses, relative to other species. Although these results indicate the important role of renal transport clearance mechanisms as determinants of the clearance and potential toxicity outcomes of phenoxyacetic acid herbicides across several species, other contributing mechanisms such as reabsorption from the renal tubules is highly likely. These

  19. Uptake of Amino Acids and Other Organic Compounds by Lemna paucicostata Hegelm. 6746

    PubMed Central

    Datko, Anne H.; Mudd, S. Harvey

    1985-01-01

    A survey of the capacity of Lemna paucicostata to take up organic compounds such as might be present in the natural environment of this plant has identified eight discrete transport systems. Reciprocal inhibition studies defined the preferred substrates for these systems as follows: (a) neutral l-α-amino acids, (b) basic amino acids, (c) purine bases, (d) choline, (e) ethanolamine, (f) tyramine, (g) urea, and (h) aldohexoses. Each of these systems takes up its preferred substrates at high rates. At low concentrations, each Lemna frond during each minute takes up amounts which would be found in volumes ranging from 0.4 (tyramine) to 3.9 (urea) times its own volume. The two systems for amino acid transport both showed kinetics of the biphasic type, so that uptake by each can be described as the composite result of two Michaelis-Menten processes. The neutral amino acid system neither transports basic amino acids nor is inhibited by these compounds. The basic amino acid system does not transport neutral amino acids but is strongly inhibited by some, but not all, of these compounds. It is argued that the maintenance of these active, specific, and discrete systems in Lemna suggests they play important roles permitting this plant to utilize organic compounds occurring naturally in its environment. PMID:16664132

  20. The Production of Amino Acids in Interstellar Ices: Implications for Meteoritic Organics

    NASA Technical Reports Server (NTRS)

    Sandford, A.; Bernstein, M. P.; Dworkin, J. P.; Cooper, G. W.; Allamandola, L. J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Indigenous amino acids have been detected in a number of meteorites, over 70 in the Murchison meteorite alone. It has been generally accepted that the amino acids in meteorites formed in liquid water on an asteroid or comet parent-body. However, the water in the Murchison meteorite, for example, was depleted of deuterium, making the distribution of deuterium in organic acids in Murchison difficult to explain. Similarly, occasional but consistent meteoritic biases for non-terrestrial L amino acids cannot be reasonably rationalized by liquid water parent-body reactions. We will present the results of a laboratory demonstration showing that the amino acids glycine, alanine, and serine should result from the UV (ultraviolet) photolysis of interstellar ice grains. This suggests that some meteoritic amino acids may be the result of interstellar ice photochemistry, rather than having formed by reactions in liquid water. We will describe some of the potential implications of these findings for the organic materials found in primitive meteorites, in particular how interstellar ice synthesis might more easily accommodate the presence and distribution of deuterium, and the meteoritic bias for L amino acids.

  1. Adsorption behavior of antimony(III) oxyanions on magnetite surface in aqueous organic acid environment

    NASA Astrophysics Data System (ADS)

    Mittal, Vinit K.; Bera, Santanu; Narasimhan, S. V.; Velmurugan, S.

    2013-02-01

    Antimony(III) adsorption is observed on magnetite (Fe3O4) surface under acidic and reducing condition through surface hydroxyl (SOH) groups bonding on Fe3O4 surface. Desorption of adsorbed Sb(III) is observed from Fe3O4 surface along with iron release in organic acid at 85 °C after 5 h of experiment. Tartaric acid (TA) shows minimum Sb(III) adsorption on Fe3O4 among the organic acid studied. The reason is TA having two sets of adjacent functional groups viz. Odbnd Csbnd OH and Csbnd OH which are responsible for the formation of five-membered bidendate chelate with Sb(III). Other oxyanions, cations or complexing agents along with TA influences the Sb(III) adsorption on Fe3O4. The surface of magnetite is modified by the addition of fatty acids viz. Lauric acid, benzoic acid to bind the Ssbnd OH groups present on the surface. This results in delaying the process of adsorption without changing the quantity of saturation adsorption of Sb(III) on Fe3O4 surface.

  2. Microbial production of organic acids in aquitard sediments and its role in aquifer geochemistry

    USGS Publications Warehouse

    McMahon, P.B.; Chapelle, F.H.

    1991-01-01

    MICROBIAL activity in aquifers plays an important part in the chemical evolution of ground water1-5. The most important terminal electron-accepting microbial processes in deeply buried anaerobic aquifers are iron reduction, sulphate reduction and methanogenesis5-8, each of which requires simple organic compounds or hydrogen (H2) as electron donors. Until now, the source of these compounds was unknown because the concentrations of dissolved organic carbon and sedimentary organic carbon in aquifers are extremely low9-11. Here we show that rates of microbial fermentation exceed rates of respiration in organic-rich aquitards (low-permeability sediments stratigraphically adjacent to higher-permeability aquifer sediments), resulting in a net accumulation of simple organic acids in pore waters. In aquifers, however, respiration outpaces fermentation, resulting in a net consumption of organic acids. The concentration gradient that develops in response to these two processes drives a net diffusive flux of organic acids from aquitards to aquifers. Diffusion calculations demonstrate that rates of organic acid transport are sufficient to account for observed rates of microbial respiration in aquifers. This overall process effectively links the large pool of sedimentary organic carbon in aquitards to microbial respiration in aquifers, and is a principal mechanism driving groundwater chemistry changes in aquifers.

  3. Organic acids from lignocellulose: Candida lignohabitans as a new microbial cell factory.

    PubMed

    Bellasio, Martina; Mattanovich, Diethard; Sauer, Michael; Marx, Hans

    2015-05-01

    Biorefinery applications require microbial cell factories for the conversion of various sugars derived from lignocellulosic material into value-added chemicals. Here, the capabilities of the yeast Candida lignohabitans to utilize a range of such sugars is characterized. Substrates efficiently converted by this yeast include the pentoses xylose and arabinose. Genetic engineering of C. lignohabitans with the isolated endogenous GAP promoter and GAP terminator was successful. GFP expression was used as a proof of functionality for the isolated transcription elements. Expression of lactate dehydrogenase and cis-aconitate decarboxylase resulted in stable and reproducible production of lactic acid and itaconic acid, respectively. The desired organic acids were accumulated converting pure sugars as well as lignocellulosic hydrolysates. C. lignohabitans proved therefore to be a promising reliable microbial host for production of organic acids from lignocellulosic material. PMID:25651876

  4. AB115. Plasma amino acid and urine organic acid profiles of Filipino patients with maple syrup urine disease (MSUD) and correlation with their neurologic features

    PubMed Central

    Chiong, Mary Anne D.; Cordero, Cynthia P.; Fodra, Esphie Grace D; Manliguis, Judy S.; Lopez, Cristine P.; Dalmacio, Leslie Michelle M.

    2015-01-01

    Background and objective Maple syrup urine disease (MSUD) is the most common inborn error of metabolism in the country. The main cause of the neuropathology is still not well established although the accumulation of branched chain amino acids (BCAA) and alteration in large neutral amino acids (LNAA) as well as energy deprivation have been suggested. It is the aim of the study to determine the plasma amino acid and urine organic acid profiles of Filipino patients with MSUD and correlate the findings with their neurologic features. Methods Twenty six Filipino patients confirmed to have MSUD were studied in terms of their plasma amino acid and urine organic acid profiles. Their results were compared with 26 age and sex matched controls. Their neurologic features were reviewed and correlated with the results of their plasma amino acid and urine organic acid profiles. Results Majority of the patients with MSUD had developmental delay/intellectual disability (88%), speech delay (69%) and seizures (65%). The amino acid profile of MSUD patients revealed low glutamine and alanine with high levels of leucine, isoleucine, phenylalanine, threonine and alloisoleucine compared to controls (P<0.05). The urine organic acids showed significantly elevated excretion of the branched chain ketoacids and succinate (P<0.05), however other Krebs cycle metabolites that would indicate possible energy perturbation were not found in significant amounts. There were also no metabolite markers in the plasma amino acids or urine organic acids that correlated significantly with the neurologic features. The most remarkable finding in this study was the discriminant analysis done on 7 clinically and statistically significant important amino acids in the plasma wherein elevations in leucine, isoleucine, alloisoleucine, phenylalanine and threonine, and decreased levels of glutamine and alanine clearly defined the boundary between an MSUD case and control. Conclusions The findings suggest that there

  5. Effect of 1-naphthaleneacetic acid on organic acid exudation by the roots of white lupin plants grown under phosphorus-deficient conditions.

    PubMed

    Gómez, Diego A; Carpena, Ramón O

    2014-09-15

    The effect of NAA (1-naphthaleneacetic acid) on organic acid exudation in white lupin plants grown under phosphorus deficiency was investigated. Plants were sampled periodically for collecting of organic acids (citrate, malate, succinate), and also were used to study the effect on proton extrusion and release of Na(+), K(+), Ca(2+) and Mg(2+). The tissues were later processed to quantify the organic acids in tissues, the phosphorus content and the effects on plant biomass. The exogenous addition of NAA led to an increase in organic acid exudation, but this response was not proportional to the concentration of the dose applied, noticing the largest increments with NAA 10(-8)M. In contrast the increase in root weight was proportional to the dose applied, which shows that with higher doses the roots produced are not of proteoid type. Proton extrusion and the release of cations were related to the NAA dose, the first was proportional to the dose applied and the second inversely proportional. Regarding the analysis of tissues, the results of citrate and phosphorus content in shoots show that the overall status of these parts are the main responsible of the organic acids exuded. NAA served as an enhancer of the organic acid exudation that occurs under phosphorus deficient conditions, with a response that depends on the dose applied, not only in its magnitude, but also in the mechanism of action of the plant hormone. PMID:25046756

  6. The Synthesis and Isolation of N-Tert-Butyl-2-Phenylsuccinamic Acid and N-Tert-Butyl-3-Phenylsuccinamic Acid: An Undergraduate Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Cesare, Victor; Sadarangani, Ishwar; Rollins, Janet; Costello, Dennis

    2004-01-01

    The facile, high yielding synthesis of phenylsuccinamic acids is described and one of these syntheses, the reaction of phenylsuccinic anhydride with tert-butylamine, is successfully modified and adapted for use in the second-semester organic chemistry laboratory at St. John's University. Succinamic acids are compounds that contain both the amide…

  7. Acid Deposition

    EPA Science Inventory

    This indicator presents acid deposition trends in the contiguous U.S. from 1989 to 2007. Data are broken down by wet and dry deposition and deposition of nitrogen and sulfur compounds. Acid deposition is particularly damaging to lakes, streams, and forests and the plants and a...

  8. Acid rain

    SciTech Connect

    White, J.C. )

    1988-01-01

    This book presents the proceedings of the third annual conference sponsored by the Acid Rain Information Clearinghouse (ARIC). Topics covered include: Legal aspects of the source-receptor relationship: an energy perspective; Scientific uncertainty, agency inaction, and the courts; and Acid rain: the emerging legal framework.

  9. Acid rain

    SciTech Connect

    Elsworth, S.

    1985-01-01

    This book was written in a concise and readable style for the lay public. It's purpose was to make the public aware of the damage caused by acid rain and to mobilize public opinion to favor the elimination of the causes of acid rain.

  10. [Determination of organic acids in cane vinasse by micellar electrokinetic capillary chromatography with indirect ultraviolet detection].

    PubMed

    Xu, Yuanjin; Xu, Guiping; Wei, Yuanan

    2006-01-01

    Micellar electrokinetic capillary chromatography (MECC) with indirect ultraviolet (UV) detection method for the separation and determination of several organic acids in cane vinasse, including malonic, formic, tartaric, malic, succinic, glutaric, acetic, lactic and glutamic acids, were developed. Electrophoretic conditions were as follows: uncoated fused silica capillary (56 cm/ 64 cm (effective/total length), 50 microm i. d. ), 7.5 mmol/L potassium acid phthalate-1. 5 mmol/L cetyltrimethyl-ammonium bromide (CTAB) at pH = 6.50 as buffer solution, applied voltage -25 kV, temperature 25 degrees C, detection wavelength 300 nm, reference wavelength 210 nm. Good linearities were obtained for nine organic acids, and the detection limits were 0.5 mg/L, 0.3 mg/L, 1.5 mg/L, 1.5 mg/L, 0.3 mg/L, 0.3 mg/L, 0.4 mg/L, 0.4 mg/L, 0.4 mg/L for malonic, formic, tartaric, malic, succinic, glutaric, acetic, lactic and glutamic acid, respectively. The relative standard deviations (RSDs) for migration times and peak areas of nine organic acids within a day were 0.4% - 0.6% and 2.3% - 4.8%, respectively. The corresponding data for five days were 0.5% -0.7% and 3.3% - 5.2%. The recoveries of acid standards were above 93%. The method can be applied to determine the organic acids in cane vinasse with satisfactory results. PMID:16827307

  11. The secretion of organic acids is also regulated by factors other than aluminum.

    PubMed

    Ding, Haiyan; Wen, Danni; Fu, Zhengwei; Qian, Haifeng

    2014-02-01

    As a result of natural processes and human activities, aluminum (Al) toxicity is recognized as a major limiting factor for plant productivity, and the secretion of organic acids facilitated by channel proteins is one of the most important Al resistance mechanisms in plants. The objective of this study was to evaluate the effects of several types of stress, including herbicide (imazethapyr (IM) and diclofop-methyl (DM)), heavy metal (Al and Cu), salt stress (NaCl), and proton stress (HCl), on the release of organic acids in rice. The results showed that 0.05 mg/L IM, 0.1 mg/L DM, 4680 mg/L NaCl, 0.5 mg/L CuSO4, and 18 mg/L AlCl3 significantly inhibited rice root elongation and the root fresh weight. In contrast, no significant inhibitory effects on rice growth were found with HCl (pH = 4.5). Similar to the effect of AlCl3 on organic acid induction, treatment with IM, DM, NaCl, and CuSO4 also induced the synthesis of endogenous citric acid and oxalic acid but decreased endogenous malic acid synthesis in the seedlings, though only citric acid was released into the environment after these treatments. We also analyzed the transcripts of three citrate channel proteins and found they were up-regulated by NaCl, CuSO4, and AlCl3 but not by IM or DM. This study clarified that organic acid secretion in plants might be a common phenomenon when plants are exposed to environmental stress other than Al toxicity. PMID:24097010

  12. Effects of organic acids on cadmium and copper sorption and desorption by two calcareous soils.

    PubMed

    Najafi, Sarvenaz; Jalali, Mohsen

    2015-09-01

    Low molecular weight organic acids (LMWOAs) present in soil alter equilibrium pH of soil, and consequently, affect heavy metal sorption and desorption on soil constitutes. This study was conducted to investigate the effects of different concentrations (0.1, 1, 2.5, 5, 10, 30, 40, 50, 70, and 100 mM) of citric, malic, and oxalic acids on sorption and desorption of cadmium (Cd) and copper (Cu) in two calcareous soils. Increasing the concentrations of three LMWOAs decreased the equilibrium pH of soil solutions. The results indicated that increase in organic acids concentrations generally reduced Cd and Cu sorption in soils. Increase concentrations of LMWOAs generally promoted Cd and Cu desorption from soils. A valley-like curve was observed for desorption of Cu after the citric acid concentration increment in soil 2. Increasing the concentrations of three LMWOAs caused a marked decrease in Kd(sorp) values of Cd and Cu in soils. In general, citric acid was the most effective organic acid in reducing sorption and increasing desorption of both metals, and oxalic acid had the minimal impact. The results indicated that LMWOAs had a greater impact on Cu sorption and desorption than Cd, which can be attributed to higher stability constants of organic acids complexes with Cu compared to Cd. It can be concluded that by selecting suitable type and concentration of LMWOAs, mobility, and hence, bioavailability of heavy metals can be changed. So, environmental implications concerning heavy metals mobility might be derived from these findings. PMID:26298186

  13. Acid rain

    SciTech Connect

    Sweet, W.

    1980-06-20

    Acid precipitation includes not only rain but also acidified snow, hail and frost, as well as sulfur and nitrogen dust. The principal source of acid precipitation is pollution emitted by power plants and smelters. Sulfur and nitrogen compounds contained in the emissions combine with moisture to form droplets with a high acid content - sometimes as acidic as vinegar. When sufficiently concentrated, these acids can kill fish and damage material structures. Under certain circumstances they may reduce crop and forest yields and cause or aggravate respiratory diseases in humans. During the summer, especially, pollutants tend to collect over the Great Lakes in high pressure systems. Since winds typically are westerly and rotate clockwise around high pressure systems, the pollutants gradually are dispersed throughout the eastern part of the continent.

  14. Asparagusic acid.

    PubMed

    Mitchell, Stephen C; Waring, Rosemary H

    2014-01-01

    Asparagusic acid (1,2-dithiolane-4-carboxylic acid) is a simple sulphur-containing 5-membered heterocyclic compound that appears unique to asparagus, though other dithiolane derivatives have been identified in non-food species. This molecule, apparently innocuous toxicologically to man, is the most probable culprit responsible for the curious excretion of odorous urine following asparagus ingestion. The presence of the two adjacent sulphur atoms leads to an enhanced chemical reactivity, endowing it with biological properties including the ability to substitute potentially for α-lipoic acid in α-keto-acid oxidation systems. This brief review collects the scattered data available in the literature concerning asparagusic acid and highlights its properties, intermediary metabolism and exploratory applications. PMID:24099657

  15. Volatility of Organic Aerosol: Evaporation of Ammonium Sulfate/Succinic Acid Aqueous Solution Droplets

    PubMed Central

    2013-01-01

    Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol. PMID:24107221

  16. Dietary Omega-3 Fatty Acids Modulate Large-Scale Systems Organization in the Rhesus Macaque Brain

    PubMed Central

    Kroenke, Christopher D.; Neuringer, Martha; Fair, Damien A.

    2014-01-01

    Omega-3 fatty acids are essential for healthy brain and retinal development and have been implicated in a variety of neurodevelopmental disorders. This study used resting-state functional connectivity MRI to define the large-scale organization of the rhesus macaque brain and changes associated with differences in lifetime ω-3 fatty acid intake. Monkeys fed docosahexaenoic acid, the long-chain ω-3 fatty acid abundant in neural membranes, had cortical modular organization resembling the healthy human brain. In contrast, those with low levels of dietary ω-3 fatty acids had decreased functional connectivity within the early visual pathway and throughout higher-order associational cortex and showed impairment of distributed cortical networks. Our findings illustrate the similarity in modular cortical organization between the healthy human and macaque brain and support the notion that ω-3 fatty acids play a crucial role in developing and/or maintaining distributed, large-scale brain systems, including those essential for normal cognitive function. PMID:24501348

  17. High concentrations of furan fatty acids in organic butter samples from the German market.

    PubMed

    Wendlinger, Christine; Vetter, Walter

    2014-08-27

    Furan fatty acids (F-acids) are valuable antioxidants containing a furan moiety in the central part of the molecule. They occur in the lipids of different foodstuffs and plants, with grass being the main source for their presence in milk fat and butter. Because cows from organic farming receive higher portions of grass-based feed, it was tested whether organic butter samples (n = 26) contain more F-acids than conventional ones (n = 25) in Germany. For this purpose, samples were melted, and the lipid phase was separated and transesterified into methyl esters, which were enriched using silver ion chromatography and analyzed by GC-EI/MS in the selected ion monitoring (SIM) mode. Levels of F-acids in butter were higher in summer than in winter, and in both seasons, organic samples contained significantly higher levels of F-acids than conventional ones (one-way ANOVA: p < 0.001). Furthermore, the daily intake of F-acids via milk fat and other foodstuffs was calculated. PMID:25098958

  18. Heterogeneous Chemistry of Carbonyls and Alcohols With Sulfuric Acid: Implications for Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Levitt, N.; Zhang, R.

    2006-12-01

    Recent environmental chamber studies have suggested that acid-catalyzed particle-phase reactions of organic carbonyls lead to multifold increases in secondary organic aerosol (SOA) mass and acid-catalyzed reactions between alcohols and aldehydes in the condensed phase lead to the formation of hemiacetals and acetals, also enhancing secondary organic aerosol growth. The kinetics and mechanism of the heterogeneous chemistry of carbonyls and alcohols with sulfuric acid, however, remain largely uncertain. In this talk, we present measurements of heterogeneous uptake of several carbonyls and alcohols on liquid H2SO4 in a wide range of acid concentrations and temperatures. The results indicate that uptake of larger carbonyls is explained by aldol condensation. For small dicarbonyls, heterogeneous reactions are shown to decrease with acidity and involve negligible formation of sulfate esters. Hydration and polymerization likely explain the measured uptake of such small dicarbonyls on H2SO4 and the measurements do not support an acid- catalyzed uptake. Atmospheric implications from our findings will be discussed.

  19. Study of the organic acids composition of quince (Cydonia oblonga Miller) fruit and jam.

    PubMed

    Silva, Branca M; Andrade, Paula B; Mendes, Gisela C; Seabra, Rosa M; Ferreira, Margarida A

    2002-04-10

    The organic acids present in several samples of quince fruit (pulp and peel) and quince jam (homemade and industrially manufactured) were analyzed by HPLC. The sample preparation was simple, involving only extraction with methanol (40 degrees C) and filtration through a Sep-pack C18 cartridge. The chromatographic separation was achieved using an ion exclusion column, Nucleogel Ion 300 OA (300 x 7.7 mm), in conjunction with a column heating device at 30 degrees C. An isocratic elution with H(2)SO(4) 0.01 N as the mobile phase, with a flow rate of 0.1 mL/min, and UV detection at 214 nm were used. These analyses showed that all samples presented a similar profile composed of at least six identified organic acids: citric, ascorbic, malic, quinic, shikimic, and fumaric acids. Several samples also contained oxalic acid. This study suggests that the organic acids levels and ratios may be useful for the determination of percent fruit content of quince jams. The citric acid value can also be used in the differentiation of the type of manufacture of the commercial quince jams (homemade or industrially manufactured). PMID:11929290

  20. Organic acids as cloud condensation nuclei: Laboratory studies of highly soluble and insoluble species

    NASA Astrophysics Data System (ADS)

    Pradeep Kumar, P.; Broekhuizen, K.; Abbatt, J. P. D.

    2003-05-01

    The ability of sub-micron-sized organic acid particles to act as cloud condensation nuclei (CCN) has been examined at room temperature using a newly constructed continuous-flow, thermal-gradient diffusion chamber (TGDC). The organic acids studied were: oxalic, malonic, glutaric, oleic and stearic. The CCN properties of the highly soluble acids - oxalic, malonic and glutaric - match very closely Köhler theory predictions which assume full dissolution of the dry particle and a surface tension of the growing droplet equal to that of water. In particular, for supersaturations between 0.3 and 0.6, agreement between the dry particle diameter which gives 50% activation and that calculated from Köhler theory is to within 3nm on average. In the course of the experiments, considerable instability of glutaric acid particles was observed as a function of time and there is evidence that they fragment to some degree to smaller particles. Stearic acid and oleic acid, which are both highly insoluble in water, did not activate at supersaturations of 0.6% with dry diameters up to 140nm. Finally, to validate the performance of the TGDC, we present results for the activation of ammonium sulfate particles that demonstrate good agreement with Köhler theory if solution non-ideality is considered. Our findings support earlier studies in the literature that showed highly soluble organics to be CCN active but insoluble species to be largely inactive.

  1. Control of Listeria monocytogenes in Turkey Deli Loaves using Organic Acids as Formulation Ingredients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The growth of Listeria monocytogenes (LM) in further processed meat products has become a major concern and an important food safety issue. The meat and poultry industries have incorporated interventions such as organic acids in marinades in order to inhibit the growth of LM. In this study, organic...

  2. PH BUFFERING IN FOREST SOIL ORGANIC HORIZONS: RELEVANCE TO ACID PRECIPITATION

    EPA Science Inventory

    Samples of organic surface horizons (Oi, Oe, Oa) from New York State forest soils were equilibrated with 0 to 20 cmol HNO3 Kg(-1) soil in the laboratory by a batch technique designed to simulate reactions of acid precipitation with forest floors. Each organic horizon retained a c...

  3. EFFECT OF ACID TREATMENT ON DISSOLVED ORGANIC CARBON RETENTION BY A SPODIC HORIZON

    EPA Science Inventory

    Processes involving the movement of organic substances in forest soils are not well understood. This study was conducted to examine the role of acidic inputs on dissolved organic carbon (DOC) mobility, processes affecting the retention of DOV by a B horizon, and SO2-4 adsorption....

  4. Acid-Base Learning Outcomes for Students in an Introductory Organic Chemistry Course

    ERIC Educational Resources Information Center

    Stoyanovich, Carlee; Gandhi, Aneri; Flynn, Alison B.

    2015-01-01

    An outcome-based approach to teaching and learning focuses on what the student demonstrably knows and can do after instruction, rather than on what the instructor teaches. This outcome-focused approach can then guide the alignment of teaching strategies, learning activities, and assessment. In organic chemistry, mastery of organic acid-base…

  5. [Gastric Acid].

    PubMed

    Ruíz Chávez, R

    1996-01-01

    Gastric acid, a product of parietal cells secretion, full fills multiple biological roles which are absolutely necessary to keep corporal homeostasis. The production of the acid depends upon an effector cellular process represented in the first step by histamine, acetilcholine and gastrin, first messengers of the process. These interact with specific receptors than in sequence activate second messengers -cAMP and the calcium-calmodulin system- which afterwards activate a kinase. An specific protein is then phosphorilated by this enzyme, being the crucial factor that starts the production of acid. Finally, a proton bomb, extrudes the acid towards the gastric lumen. The secretion process mentioned above, is progressive lyactivated in three steps, two of which are stimulators -cephalic and gastric phases- and the other one inhibitor or intestinal phase. These stages are started by mental and neurological phenomena -thought, sight, smell or memory-; by food, drugs or other ingested substances; and by products of digestion. Changes in regulation of acid secretion, in the structure of gastro-duodenal mucosal barrier by a wide spectrum of factors and agents including food, drugs and H. pylori, are the basis of acid-peptic disease, entity in which gastric acid plays a fundamental role. From the therapeutic point of view, so at the theoretical as at the practical levels, t is possible to interfere with the secretion of acid by neutralization of some of the steps of the effector cellular process. An adequate knowledge of the basics related to gastric acid, allows to create strategies for the clinical handling of associated pathology, specifically in relation to peptic acid disease in all of the known clinical forms. PMID:12165790

  6. Relationship between cadmium, zinc, Cd-peptide, and organic acid in tobacco suspension cells

    SciTech Connect

    Krotz, R.M.; Evangelou, B.P.; Wagner, G.J. )

    1989-10-01

    Responses of tobacco (Nicotiana tabacum) suspension cells to Cd and Zn were studied in the presence and absence of ligand of Cd-peptide in order to understand the role of this peptide versus other mechanisms in Cd and Zn accumulation and accommodation in plants. With 45 micromolar Cd and 300 micromolar Zn (non-growth-inhibiting levels), metals appeared rapidly within cells, and intracellular Cd and Zn reached medium concentrations after 6 to 10 hours. Cd-peptide was observed in response to Cd after 2 hours, but this form only accounted for {approximately}30% of soluble Cd after 24 hours. Peptide was not observed in cells exposed to 300 micromolar Zn for up to 7 days. Organic acid-to-metal stoichiometry indicated that endogenous organic acid content of cells was more than sufficient to complex absorbed metals and no evidence was found for stimulation of organic acid biosynthesis by Cd or Zn. Metal-complexing potential of organic acids for Cd and Zn versus endogenous cations is discussed as is vacuolar-extravacuolar distribution of metals. The absence of Cd-peptide does not limit Cd-accumulation in the system studied. Results suggest that tobacco suspension cells accommodte the presence of non-growth-inhibiting and growth-inhibiting levels of Cd and Zn by sequestration in the vacuole as complexes with endogenous organic acids and that this may be a principal means for accommodation of Cd as well as Zn in the presence and absence of Cd-peptide.

  7. Protecting cell walls from binding aluminum by organic acids contributes to aluminum resistance.

    PubMed

    Li, Ya-Ying; Zhang, Yue-Jiao; Zhou, Yuan; Yang, Jian-Li; Zheng, Shao-Jian

    2009-06-01

    Aluminum-induced secretion of organic acids from the root apex has been demonstrated to be one major Al resistance mechanism in plants. However, whether the organic acid concentration is high enough to detoxify Al in the growth medium is frequently questioned. The genotypes of Al-resistant wheat, Cassia tora L. and buckwheat secrete malate, citrate and oxalate, respectively. In the present study we found that at a 35% inhibition of root elongation, the Al activities in the solution were 10, 20, and 50 muM with the corresponding malate, citrate, and oxalate exudation at the rates of 15, 20 and 21 nmol/cm(2) per 12 h, respectively, for the above three plant species. When exogenous organic acids were added to ameliorate Al toxicity, twofold and eightfold higher oxalate and malate concentrations were required to produce the equal effect by citrate. After the root apical cell walls were isolated and preincubated in 1 mM malate, oxalate or citrate solution overnight, the total amount of Al adsorbed to the cell walls all decreased significantly to a similar level, implying that these organic acids own an equal ability to protect the cell walls from binding Al. These findings suggest that protection of cell walls from binding Al by organic acids may contribute significantly to Al resistance. PMID:19522816

  8. Statistical Thermodynamic Model for Surface Tension of Aqueous Organic Acids with Consideration of Partial Dissociation.

    PubMed

    Boyer, Hallie C; Dutcher, Cari S

    2016-06-30

    With statistical mechanics, an isotherm-based surface tension model for single solute aqueous solutions was derived previously (Wexler et al. J. Phys. Chem. Lett. 2013) for the entire concentration range, from infinite dilution to pure liquid solute, as a function of solute activity. In recent work (Boyer et al. J. Phys. Chem. Lett. 2015), empirical model parameters were reduced through physicochemical interpretations of both electrolyte and organic solutes, enabling surface tension predictions for systems where there is little or no data. The prior binary model is extended in the current work for the first time to treat multicomponent systems to predict surface tensions of partially dissociating organic acids (acetic, butyric, citric, formic, glutaric, maleic, malic, malonic, oxalic, propionic, and succinic acids). These organic acids are especially applicable to the study of atmospheric aqueous aerosols, due to their abundance in the atmosphere. In the model developed here, surface tension depends explicitly on activities of both the neutral organic and deprotonated components of the acid. The relative concentrations of the nondissociated and dissociated mole fractions are found using known dissociation constants. Model parameters strongly depend on molecular size, number of functional groups, O:C ratio, and number of carbons. For all organic acids in this study, fully predictive modeling of surface tensions is demonstrated. PMID:27219322

  9. Rapid simultaneous determination of amines and organic acids in citrus using high-performance liquid chromatography.

    PubMed

    Uckoo, Ram M; Jayaprakasha, Guddadarangavvanahally K; Nelson, Shad D; Patil, Bhimanagouda S

    2011-01-15

    Rapid analytical method for the simultaneous separation and determination of amines and organic acids is a vital interest for quality control of citrus and their products. In the present study, a simultaneous high performance liquid chromatography (HPLC) method for the rapid separation of three amines and two organic acids was developed. Chromatographic separation of compounds was achieved using Xbridge C(18) column at ambient temperature, with an isocratic mobile phase of 3mM phosphoric acid at a flow rate of 1.0 mL min(-1). A photodiode array (PDA) detector was used to monitor the eluent at 223 nm and 254 nm with a total analysis time of 10 min. Extraction of amines and organic acids from citrus juice was optimized. The method was validated by tests of linearity, recovery, precision and ruggedness. The limit of detection (LOD) and limit of quantification (LOQ) for amines and ascorbic acid were determined to be 5 ng and 9.8 ng, respectively. All calibration curves showed good linearity (R(2) ≥ 0.9999) within the test ranges. The recoveries of the amines and organic acids ranged between 84% and 117%. The identity of each peak was confirmed by mass spectral (MS) analysis. The developed method was successfully applied to analyze the content of amines and organic acids in six different species and two varieties of citrus. Results indicate that mandarin and Marrs sweet orange contain high level of amines, while pummelo and Rio Red grapefruit had high content of ascorbic acid (137-251 μg mL(-1)) and citric acid (5-22 mg mL(-1)). Synephrine was the major amine present in Clementine (114 μg mL(-1)) and Marrs sweet orange (85 μg mL(-1)). To the best of our knowledge, this is the first report on simultaneous separation and quantification of amines and organic acids in Marrs sweet orange, Meyer lemon, Nova tangerine, Clementine, Ugli tangelo and Wekiwa tangelo. PMID:21147342

  10. Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter of 2007 to 2008: Dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Jung, Jinsang; Tsatsral, Batmunkh; Kim, Young J.; Kawamura, Kimitaka

    2010-11-01

    To investigate the distributions and sources of water-soluble organic acids in the Mongolian atmosphere, aerosol samples (PM2.5, n = 34) were collected at an urban site (47.92°N, 106.90°E, ˜1300 m above sea level) in Ulaanbaatar, the capital of Mongolia, during the cold winter. The samples were analyzed for water-soluble dicarboxylic acids (C2-C12) and related compounds (ketocarboxylic acids and α-dicarbonyls), as well as organic carbon (OC), elemental carbon, water-soluble OC, and inorganic ions. Distributions of dicarboxylic acids and related compounds were characterized by a predominance of terephthalic acid (tPh; 130 ± 51 ng m-3, 19% of total detected organic acids) followed by oxalic (107 ± 28 ng m-3, 15%), succinic (63 ± 20 ng m-3, 9%), glyoxylic (55 ± 18 ng m-3, 8%), and phthalic (54 ± 27 ng m-3, 8%) acids. Predominance of terephthalic acid, which has not been reported previously in atmospheric aerosols, was mainly due to uncontrolled burning of plastic bottles and bags in home stoves for heating and waste incineration during the cold winter. This study demonstrated that most of the air pollutants were directly emitted from local sources such as heat and power plants, home stoves, and automobiles. Development of an inversion layer (<700 m above ground level) over the basin of Ulaanbaatar accelerated the accumulation of pollutants, causing severe haze episodes during the winter season.

  11. Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter.

    PubMed

    Gao, Yaohuan; Deshusses, Marc A

    2011-12-01

    The adsorption of two acidic pharmaceutically active compounds (PhACs), clofibric acid and ketoprofen, onto powdered activated carbon (PAC) was investigated with a particular focus on the influence of natural organic matter (NOM) on the adsorption of the PhACs. Suwannee River humic acids (SRHAs) were used as a substitute for NOM. Batch adsorption experiments were conducted to obtain adsorption kinetics and adsorption isotherms with and without SRHAs in the system. The adsorption isotherms and adsorption kinetics showed that the adsorption ofclofibric acid was not significantly affected by the presence of SRHAs at a concentration of 5 mg (as carbon) L(-1). An adsorption capacity of 70 to 140 mg g(-1) was observed and equilibrium was reached within 48 h. In contrast, the adsorption of ketoprofen was markedly decreased (from about 120 mg g(-1) to 70-100 mg g(-1)) in the presence of SRHAs. Higher initial concentrations of clofibric acid than ketoprofen during testing may explain the different behaviours that were observed. Also, the more hydrophobic ketoprofen molecules may have less affinity for PAC when humic acids (which are hydrophilic) are present. The possible intermolecular forces that could account for the different behaviour of clofibric acid and ketoprofen adsorption onto PAC are discussed. In particular, the relevance of electrostatic forces, electron donor-acceptor interaction, hydrogen bonding and London dispersion forces are discussed PMID:22439557

  12. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β-caryophyllene

    NASA Astrophysics Data System (ADS)

    Chan, M.; Surratt, J. D.; Chan, A. W.; Schlling, K.; Offenberg, J. H.; Lewandowski, M.; Edney, E.; Kleindienst, T. E.; Jaoui, M.; Edgerton, E. S.; Tanner, R. L.; Shaw, S. L.; Zheng, M.; Knipping, E. M.; Seinfeld, J.

    2011-12-01

    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI- TOFMS). A number of first- , second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS).

  13. Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene

    NASA Astrophysics Data System (ADS)

    Chan, M. N.; Surratt, J. D.; Chan, A. W. H.; Schilling, K.; Offenberg, J. H.; Lewandowski, M.; Edney, E. O.; Kleindienst, T. E.; Jaoui, M.; Edgerton, E. S.; Tanner, R. L.; Shaw, S. L.; Zheng, M.; Knipping, E. M.; Seinfeld, J. H.

    2011-02-01

    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS). A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS).

  14. Influence of aerosol acidity on the chemical composition of Secondary Organic Aerosol from β-caryophyllene

    NASA Astrophysics Data System (ADS)

    Chan, M. N.; Surratt, J. D.; Chan, A. W. H.; Schilling, K.; Offenberg, J. H.; Lewandowski, M.; Edney, E. O.; Kleindienst, T. E.; Jaoui, M.; Edgerton, E. S.; Tanner, R. L.; Shaw, S. L.; Zheng, M.; Knipping, E. M.; Seinfeld, J. H.

    2010-11-01

    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS). A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increase of acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are identified as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS).

  15. Particulate organic acids in the atmosphere of Italian cities: Are they environmentally relevant?

    NASA Astrophysics Data System (ADS)

    Balducci, Catia; Cecinato, Angelo

    2010-02-01

    Mono- and dicarboxylic n-alkyl acids were extensively investigated in downtown Rome, Italy, and in Montelibretti, ˜30 km NE of the city, during 2005-2007. Congeners ranging from lauric to mellisic, and from succinic to α,ω-docosanedioic acids were evaluated as well as phthalic, palmitoleic and oleic acids, by solvent extraction of airborne particulates followed by derivatization with propanol in the presence of boron trifluoride, and gas chromatographic-mass spectrometric analysis. Shorter measurements were made in Milan, in Taranto, at suburban and rural sites of Italy, and in the polar regions, from 1996 to 2005. The predominance of palmitic and stearic acids observed elsewhere was confirmed, and the behaviour of azelaic and phthalic acids resulted strongly dependent upon the year season. In the urban sites, among the long-chain compounds, the lignoceric acid was usually the most abundant, while the cerotic, montanic and mellisic homologues cumulatively never exceeded 8% of the total. Unlike other contaminants, the concentrations of organic acids remained fairly invariant over the last decade, suggesting that more attention must be paid to them in the future.

  16. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China.

    PubMed

    Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2016-02-15

    With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China. PMID:26657252

  17. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids

    USGS Publications Warehouse

    Chiou, C.T.; Malcolm, R.L.; Brinton, T.I.; Kile, D.E.

    1986-01-01

    Water solubility enhancements by dissolved humic and fulvic acids from soil and aquatic origins and by synthetic organic polymers have been determined for selected organic pollutants and pesticides (p,p???-DDT, 2,4,5,2???,5???-PCB, 2,4,4???-PCB, 1,2,3-trichlorobenzene, and lindane). Significant solubility enhancements of relatively water-insoluble solutes by dissolved organic matter (DOM) of soil and aquatic origins may be described in terms of a partition-like interaction of the the solutes with the microscopic organic environment of the high-molecular-weight DOM species; the apparent solute solubilities increase linearly with DOM concentration and show no competitive effect between solutes. With a given DOM sample, the solute partition coefficient (Kdom) increases with a decrease of solute solubility (Sw) or with an increase of the solute's octanol-water partition coefficient (Kow). The Kdom values of solutes with soil-derived humic acid are approximately 4 times greater than with soil fulvic acid and 5-7 times greater than with aquatic humic and fulvic acids. The effectiveness of DOM in enhancing solute solubility appears to be largely controlled by the DOM molecular size and polarity. The relative inability of high-molecular-weight poly(acrylic acids) to enhance solute solubility is attributed to their high polarities and extended chain structures that do not permit the formation of a sizable intramolecular nonpolar environment.

  18. Uptake of Small Organic Compounds by Sulfuric Acid Aerosols: Dissolution and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Michelsen, R. R.; Ashbourn, S. F. M.; Staton, S. J. R.

    2003-01-01

    To assess the role of oxygenated volatile organic compounds in the upper troposphere and lower stratosphere, the interactions of a series of small organic compounds with low-temperature aqueous sulfuric acid will be evaluated. The total amount of organic material which may be taken up from the gas phase by dissolution, surface layer formation, and reaction during the particle lifetime will be quantified. Our current results for acetaldehyde uptake on 40 - 80 wt% sulfuric acid solutions will be compared to those of methanol, formaldehyde, and acetone to investigate the relationships between chemical functionality and heterogeneous activity. Where possible, equilibrium uptake will be ascribed to component pathways (hydration, protonation, etc.) to facilitate evaluation of other species not yet studied in low temperature aqueous sulfuric acid.

  19. Gas chromatographic organic acid profiling analysis of brandies and whiskeys for pattern recognition analysis.

    PubMed

    Park, Y J; Kim, K R; Kim, J H

    1999-06-01

    An efficient gas chromatographic profiling and pattern recognition method is described for brandy and whiskey samples according to their organic acid contents. It involves solid-phase extraction of organic acids using Chromosorb P with subsequent conversion to stable tert-butyldimethylsilyl derivatives for the direct analysis by capillary column gas chromatography and gas chromatography-mass spectrometry. A total of 12 organic acids were reproducibly identified in liquor samples (1 mL). When the GC profiles were simplified to their retention index spectra, characteristic patterns were obtained for each liquor sample as well as for each group average. Stepwise discriminant analysis provided star symbols characteristic for each liquor sample and group average. As expected, canonical discriminant analysis correctly classified 23 liquor samples studied into two groups of either brandy or whiskey. PMID:10794629

  20. A Reexamination of Amino Acids in Lunar Soils: Implications for the Survival of Exogenous Organic Material During Impact Delivery

    NASA Technical Reports Server (NTRS)

    Brinton, Karen L. F.; Bada, Jeffrey L.

    1996-01-01

    Using a sensitive high performance liquid chromatography technique, we have analyzed both the hot water extract and the acid hydrolyzed hot water extract of lunar soil collected during the Apollo 17 mission. Both free amino acids and those derived from acid labile precursors are present at a level of roughly 15 ppb. Based on the D/L amino acid ratios, the free alanine and aspartic acid observed in the hot water extract can be entirely attributed to terrestrial biogenic contamination. However, in the acid labile fraction, precursors which yield amino acids are apparently present in the lunar soil. The amino acid distribution suggests that the precursor is probably solar wind implanted HCN. We have evaluated our results with regard to the meteoritic input of intact organic compounds to the moon based on an upper limit of less than or equal to 0.3 ppb for alpha-aminoisobutyric acid, a non-protein amino acid which does not generally occur in terrestrial organisms and which is not a major amino acid produced from HCN, but which is a predominant amino acid in many carbonaceous chondrites. We find that the survival of exogenous organic compounds during lunar impact is less than or equal to 0.8%. This result represents an example of minimum organic impact survivability. This is an important first step toward a better understanding of similar processes on Earth and on Mars, and their possible contribution to the budget of prebiotic organic compounds on the primitive Earth.

  1. A reexamination of amino acids in lunar soils: implications for the survival of exogenous organic material during impact delivery.

    PubMed

    Brinton, K L; Bada, J L

    1996-01-01

    Using a sensitive high performance liquid chromatography technique, we have analyzed both the hot water extract and the acid hydrolyzed hot water extract of lunar soil collected during the Apollo 17 mission. Both free amino acids and those derived from acid labile precursors are present at a level of roughly 15 ppb. Based on the D/L amino acid ratios, the free alanine and aspartic acid observed in the hot water extract can be entirely attributed to terrestrial biogenic contamination. However, in the acid labile fraction, precursors which yield amino acids are apparently present in the lunar soil. The amino acid distribution suggests that the precursor is probably solar wind implanted HCN. We have evaluated our results with regard to the meteoritic input of intact organic compounds to the moon based on an upper limit of < or = 0.3 ppb for alpha-aminoisobutyric acid, a non-protein amino acid which does not generally occur in terrestrial organisms and which is not a major amino acid produced from HCN, but which is a predominant amino acid in many carbonaceous chondrites. We find that the survival of exogenous organic compounds during lunar impact is < or = 0.8%. This result represents an example of minimum organic impact survivability. This is an important first step toward a better understanding of similar processes on Earth and on Mars, and their possible contribution to the budget of prebiotic organic compounds on the primitive Earth. PMID:11541128

  2. Acid fog

    SciTech Connect

    Hileman, B.

    1983-03-01

    Fog in areas of southern California previously thought to be pollution-free has been shown to have a pH as low as 1.69. It has been found to be most acidic after smoggy days, suggesting that it forms on the aerosol associated with the previously exiting smog. Studies on Whiteface Mountain in the Adirondacks show that fog water is often 10 times as acidic as rainwater. As a result of their studies, California plans to spend $4 million on acid deposition research in the coming year. (JMT)

  3. Glyoxylate cycle and metabolism of organic acids in the scutellum of barley seeds during germination.

    PubMed

    Ma, Zhenguo; Marsolais, Frédéric; Bernards, Mark A; Sumarah, Mark W; Bykova, Natalia V; Igamberdiev, Abir U

    2016-07-01

    During the developmental processes from dry seeds to seedling establishment, the glyoxylate cycle becomes active in the mobilization of stored oils in the scutellum of barley (Hordeum vulgare L.) seeds, as indicated by the activities of isocitrate lyase and malate synthase. The succinate produced is converted to carbohydrates via phosphoenolpyruvate carboxykinase and to amino acids via aminotransferases, while free organic acids may participate in acidifying the endosperm tissue, releasing stored starch into metabolism. The abundant organic acid in the scutellum was citrate, while malate concentration declined during the first three days of germination, and succinate concentration was low both in scutellum and endosperm. Malate was more abundant in endosperm tissue during the first three days of germination; before citrate became predominant, indicating that malate may be the main acid acidifying the endosperm. The operation of the glyoxylate cycle coincided with an increase in the ATP/ADP ratio, a buildup of H2O2 and changes in the redox state of ascorbate and glutathione. It is concluded that operation of the glyoxylate cycle in the scutellum of cereals may be important not only for conversion of fatty acids to carbohydrates, but also for the acidification of endosperm and amino acid synthesis. PMID:27181945

  4. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    PubMed Central

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K.; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P.; Rondo, Linda; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S.; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M.; Worsnop, Douglas R.

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  5. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules.

    PubMed

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P; Rondo, Linda; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M; Worsnop, Douglas R

    2013-10-22

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  6. Fatty acid profile, trans-octadecenoic, α-linolenic and conjugated linoleic acid contents differing in certified organic and conventional probiotic fermented milks.

    PubMed

    Florence, Ana Carolina R; Béal, Catherine; Silva, Roberta C; Bogsan, Cristina S B; Pilleggi, Ana Lucia O S; Gioielli, Luiz Antonio; Oliveira, Maricê N

    2012-12-15

    Development of dairy organic probiotic fermented products is of great interest as they associate ecological practices and benefits of probiotic bacteria. As organic management practices of cow milk production allow modification of the fatty acid composition of milk (as compared to conventional milk), we studied the influence of the type of milk on some characteristics of fermented milks, such as acidification kinetics, bacterial counts and fatty acid content. Conventional and organic probiotic fermented milks were produced using Bifidobacterium animalis subsp. lactis HN019 in co-culture with Streptococcus thermophilus TA040 and Lactobacillus delbrueckii subsp. bulgaricus LB340. The use of organic milk led to a higher acidification rate and cultivability of Lactobacillus bulgaricus. Fatty acids profile of organic fermented milks showed higher amounts of trans-octadecenoic acid (C18:1, 1.6 times) and polyunsaturated fatty acids, including cis-9 trans-11, C18:2 conjugated linoleic (CLA-1.4 times), and α-linolenic acids (ALA-1.6 times), as compared to conventional fermented milks. These higher levels were the result of both initial percentage in the milk and increase during acidification, with no further modification during storage. Finally, use of bifidobacteria slightly increased CLA relative content in the conventional fermented milks, after 7 days of storage at 4°C, whereas no difference was seen in organic fermented milks. PMID:22980792

  7. Modulation by Amino Acids: Toward Superior Control in the Synthesis of Zirconium Metal-Organic Frameworks.

    PubMed

    Gutov, Oleksii V; Molina, Sonia; Escudero-Adán, Eduardo C; Shafir, Alexandr

    2016-09-12

    The synthesis of zirconium metal-organic frameworks (Zr MOFs) modulated by various amino acids, including l-proline, glycine, and l-phenylalanine, is shown to be a straightforward approach toward functional-group incorporation and particle-size control. High yields in Zr-MOF synthesis are achieved by employing 5 equivalents of the modulator at 120 °C. At lower temperatures, the method provides a series of Zr MOFs with increased particle size, including many suitable for single-crystal X-ray diffraction studies. Furthermore, amino acid modulators can be incorporated at defect sites in Zr MOFs with an amino acid/ligand ratio of up to 1:1, depending on the ligand structure and reaction conditions. The MOFs obtained through amino acid modulation exhibit an improved CO2 -capture capacity relative to nonfunctionalized materials. PMID:27482849

  8. Kinetics of Acid-Catalyzed Dehydration of Cyclic Hemiacetals in Organic Aerosol Particles in Equilibrium with Nitric Acid Vapor.

    PubMed

    Ranney, April P; Ziemann, Paul J

    2016-04-28

    Previous studies have shown that 1,4-hydroxycarbonyls, which are often major products of the atmospheric oxidation of hydrocarbons, can undergo acid-catalyzed cyclization and dehydration in aerosol particles to form highly reactive unsaturated dihydrofurans. In this study the kinetics of dehydration of cyclic hemiacetals, the rate-limiting step in this process, was investigated in a series of environmental chamber experiments in which secondary organic aerosol (SOA) containing cyclic hemiacetals was formed from the reaction of n-pentadecane with OH radicals in dry air in the presence of HNO3. A particle beam mass spectrometer was used to monitor the formation and dehydration of cyclic hemiacetals in real time, and SOA and HNO3 were quantified in filter samples by gravimetric analysis and ion chromatography. Measured dehydration rate constants increased linearly with increasing concentration of HNO3 in the gas phase and in SOA, corresponding to catalytic rate constants of 0.27 h(-1) ppmv(-1) and 7.0 h(-1) M(-1), respectively. The measured Henry's law constant for partitioning of HNO3 into SOA was 3.7 × 10(4) M atm(-1), ∼25% of the value for dissolution into water, and the acid dissociation constant was estimated to be <8 × 10(-4), at least a factor of 10(4) less than that for HNO3 in water. The results indicate that HNO3 was only weakly dissociated in the SOA and that dehydration of cyclic hemiacetals was catalyzed by molecular HNO3 rather than by H(+). The Henry's law constant and kinetics relationships measured here can be used to improve mechanisms and models of SOA formation from the oxidation of hydrocarbons in dry air in the presence of NOx, which are conditions commonly used in laboratory studies. The fate of cyclic hemiacetals in the atmosphere, where the effects of higher relative humidity, organic/aqueous phase separation, and acid catalysis by molecular H2SO4 and/or H(+) are likely to be important, is discussed. PMID:27043733

  9. Correlation between organic acid exudation and metal uptake by ectomycorrhizal fungi grown on pond ash in vitro.

    PubMed

    Ray, Prasun; Adholeya, Alok

    2009-04-01

    Experiments were conducted to investigate the effect of coal ash on organic acid exudation and subsequent metal uptake by ectomycorrhizal fungi. Four isolates of ectomycorrhizal fungi namely, Pisolithus tinctorius (EM-1293 and EM-1299), Scleroderma verucosum (EM-1283) and Scleroderma cepa (EM-1233) were grown on pond ash moistened with Modified Melin-Norkans medium in vitro. Exudation of formic acid, malic acid and succinic acid by these fungi were detected by HPLC. Mycelial accumulation of Al, As, Cd, Cr, Ni and Pb by these fungi was assayed by atomic absorption spectrophotometer. Relationship between organic acid exudation and metal uptake was determined using classical multivariate linear regression model. Correlation between organic acid exudation and metal uptake could be substantiated when several metals are considered collectively. The finding supports the widespread role of low molecular weight organic acid as a function of tolerance, when exposed to metals in vitro. PMID:18800194

  10. Poly(isophthalic acid)(ethylene oxide) as a Macromolecular Modulator for Metal-Organic Polyhedra.

    PubMed

    Chen, Teng-Hao; Wang, Le; Trueblood, Jonathan V; Grassian, Vicki H; Cohen, Seth M

    2016-08-01

    A new strategy was developed by using a polymer ligand, poly(isophthalic acid)(ethylene oxide), to modulate the growth of metal-organic polyhedra (MOP) crystals. This macromolecular modulator can effectively control the crystal habit of several different Cu24L24 (L = isophthalic acid derivatives) MOPs. The polymer also directed the formation of MOP structures under reaction conditions that only produce metal-organic frameworks in the absence of modulator. Moreover, the polymer also enabled the deposition of MOP crystals on glass surfaces. This macromolecular modulator strategy provides an innovative approach to control the morphology and assembly of MOP particles. PMID:27400759

  11. Highly efficient inverted organic solar cells using amino acid modified indium tin oxide as cathode

    SciTech Connect

    Li, Aiyuan; Nie, Riming; Deng, Xianyu; Wei, Huaixin; Li, Yanqing; Tang, Jianxin; Zheng, Shizhao; Wong, King-Young

    2014-03-24

    In this paper, we report that highly efficient inverted organic solar cells were achieved by modifying the surface of indium tin oxide (ITO) using an amino acid, Serine (Ser). With the modification of the ITO surface, device efficiency was significantly enhanced from 0.63% to 4.17%, accompanied with an open circuit voltage (Voc) that was enhanced from 0.30 V to 0.55 V. Ultraviolet and X-ray photoelectron spectroscopy studies indicate that the work function reduction induced by the amino acid modification resulting in the decreased barrier height at the ITO/organic interface played a crucial role in the enhanced performances.

  12. Recovery Processes of Organic Acids from Fermentation Broths in the Biomass-Based Industry.

    PubMed

    Li, Qian-Zhu; Jiang, Xing-Lin; Feng, Xin-Jun; Wang, Ji-Ming; Sun, Chao; Zhang, Hai-Bo; Xian, Mo; Liu, Hui-Zhou

    2016-01-01

    The new movement towards green chemistry and renewable feedstocks makes microbial production of chemicals more competitive. Among the numerous chemicals, organic acids are more attractive targets for process development efforts in the renewable-based biorefinery industry. However, most of the production costs in microbial processes are higher than that in chemical processes, among which over 60% are generated by separation processes. Therefore, the research of separation and purification processes is important for a promising biorefinery industry. This review highlights the progress of recovery processes in the separation and purification of organic acids, including their advantages and disadvantages, current situation, and future prospects in terms of recovery yields and industrial application. PMID:26403818

  13. Integrated process of distillation with side reactors for synthesis of organic acid esters

    SciTech Connect

    Panchal, Chandrakant B; Prindle, John C; Kolah, Aspri; Miller, Dennis J; Lira, Carl T

    2015-11-04

    An integrated process and system for synthesis of organic-acid esters is provided. The method of synthesizing combines reaction and distillation where an organic acid and alcohol composition are passed through a distillation chamber having a plurality of zones. Side reactors are used for drawing off portions of the composition and then recycling them to the distillation column for further purification. Water is removed from a pre-reactor prior to insertion into the distillation column. An integrated heat integration system is contained within the distillation column for further purification and optimizing efficiency in the obtaining of the final product.

  14. Acidic precipitation-induced chemical changes in subalpine fir forest organic soil layers

    SciTech Connect

    Hanson, D.W.

    1980-01-01

    The effects of acid precipitation and heavy metal deposition on the surface organic layer of conifer forest soils of New England and Canada were studied. Trends in concentrations of elements across the regional precipitation pH gradient were analyzed. Leaching of Mn, and Ca from subalpine fir forest soil litter increased as precipitation acidity increased. The order of relative susceptibility to increased leaching due to increased precipitation acidity is Mn > Ca > Mg greater than or equal to K greater than or equal to Zn. Sodium and Cd possibly show leaching patterns similar to those of Mg, K, and Zn. Iron and Pb concentrations increased as precipitation acidity increased. The Fe and Pb concentration gradients are partially caused by relative enrichment of Fe and Pb in litter as more mobile cations and compounds are leached. Relative enrichment was greatest at sites receiving precipitation of greater acidity. A large part of the Pb concentration gradient in litter is due to an atmospheric Pb deposition gradient which parallels the regional precipitation-pH gradient. The order of relative accumulation is Pb > Fe. Lead concentrations were highest in soil L and F layers, indicating that Pb accumulation is a recent, continuing phenomenon. Soil litter showed a pH gradient across the sampling transect. Litter generally increased in acidity as precipitation acidity increased. Increased soil litter acidity and increased cation leaching are related; both are caused by acidic precipitation. Cluster analysis of soil litter chemistry data ordered the mountain sites, with one exception, according to their position along the regional precipitation-pH gradient. This implies that precipitation-pH, and associated heavy metal deposition, control soil litter chemistry in subalpine fir forests. 113 references. (MDF)

  15. Folic acid

    MedlinePlus

    ... in the blood vessel to keep it open. Bipolar disorder. Taking folic acid does not appear to improve the antidepressant effects of lithium in people with bipolar disorder. However, taking folate with the medication valproate improves ...

  16. Mefenamic Acid

    MedlinePlus

    ... as mefenamic acid may cause ulcers, bleeding, or holes in the stomach or intestine. These problems may ... like coffee grounds, blood in the stool, or black and tarry stools.Keep all appointments with your ...

  17. ACID RAIN

    EPA Science Inventory

    Acid precipitation has become one of the major environmental problems of this decade. It is a challenge to scientists throughout the world. Researchers from such diverse disciplines as plant pathology, soil science, bacteriology, meteorology and engineering are investigating diff...

  18. Acid Precipitation

    ERIC Educational Resources Information Center

    Likens, Gene E.

    1976-01-01

    Discusses the fact that the acidity of rain and snow falling on parts of the U.S. and Europe has been rising. The reasons are still not entirely clear and the consequences have yet to be well evaluated. (MLH)

  19. Carnosic acid.

    PubMed

    Birtić, Simona; Dussort, Pierre; Pierre, François-Xavier; Bily, Antoine C; Roller, Marc

    2015-07-01

    Carnosic acid (salvin), which possesses antioxidative and antimicrobial properties, is increasingly exploited within the food, nutritional health and cosmetics industries. Since its first extraction from a Salvia species (∼70 years ago) and its identification (∼50 years ago), numerous articles and patents (∼400) have been published on specific food and medicinal applications of Rosmarinus and Salvia plant extracts abundant in carnosic acid. In contrast, relevant biochemical, physiological or molecular studies in planta have remained rare. In this overview, recent advances in understanding of carnosic acid distribution, biosynthesis, accumulation and role in planta, and its applications are summarised. We also discuss the deficiencies in our understanding of the relevant biochemical processes, and suggest the molecular targets of carnosic acid. Finally, future perspectives and studies related to its potential roles are highlighted. PMID:25639596

  20. Aminocaproic Acid

    MedlinePlus

    Amicar® Oral Solution ... Aminocaproic acid comes as a tablet and a solution (liquid) to take by mouth. It is usually ... it at room temperature and away from excess heat and moisture (not in the bathroom). Throw away ...

  1. Tranexamic Acid

    MedlinePlus

    ... is used to treat heavy bleeding during the menstrual cycle (monthly periods) in women. Tranexamic acid is in ... tablets for more than 5 days in a menstrual cycle or take more than 6 tablets in a ...

  2. Acidic precipitation

    SciTech Connect

    Martin, H.C.

    1987-01-01

    At the International Symposium on Acidic Precipitation, over 400 papers were presented, and nearly 200 of them are included here. They provide an overview of the present state of the art of acid rain research. The Conference focused on atmospheric science (monitoring, source-receptor relationships), aquatic effects (marine eutrophication, lake acidification, impacts on plant and fish populations), and terrestrial effects (forest decline, soil acidification, etc.).

  3. Some Organic Acids Acting as Stimulants of Recruitment and Feeding for the Formosan Subterranean Termite (Isoptera: Rhinotermitidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The feeding stimulating properties of 3 organic acids (salicylic, oxalic, and glucuronic acids) and 2 nitrogen containing compounds (uric acid, and glucosamine) for the Formosan subterranean termite were tested. A two choice test between cellulosic matrices with the compounds and blanks showed that...

  4. Effects of Water Stress on the Organic Acid and Carbohydrate Compositions of Cotton Plants

    PubMed Central

    Timpa, Judy D.; Burke, John J.; Quisenberry, Jerry E.; Wendt, Charles W.

    1986-01-01

    Two photoperiodic cotton (Gossypium hirsutum L.) strains (T185 and T466) which had been empirically selected because of poor performance and two strains (T25 and T256) selected because of enhanced performance under field water stress were evaluated for stress-induced changes in their organic acids and carbohydrates. Profiles and quantitation of organic acids and carbohydrates from aqueous extractions of cotton leaf tissue were determined by high performance liquid chromatography. In all cases, the water-stressed plants showed two to five times greater amounts of organic acids and carbohydrates over the values determined for the irrigated samples. Under stress, sucrose accumulation was observed in wilting strains (poor performers) probably related to rate of translocation out of the leaf. The most dramatic response to water stress was the accumulation of citric acid in strains T25 and T256 as compared to T185 and T466. Citric/malic acid ratios for both the irrigated and water-stressed samples of T25 and T256 were twice those of T185 and T466. PMID:16665100

  5. Forward osmosis filtration for removal of organic foulants: Effects of combined tannic and alginic acids.

    PubMed

    Wang, Lin; Zhang, Wanzhu; Chu, Huaqiang; Dong, Bingzhi

    2016-03-15

    The filtration performance of combined organic foulants by forward osmosis (FO) in active-layer-facing-the-draw-solution (AL-facing-DS) orientation was investigated systematically. Tannic acid and alginate were used as model organic foulants for polysaccharides and humic dissolved organic matters, respectively. The FO could reject combined and single tannic acid and alginate foulants effectively. The more severe fouling flux decline, accompanied with lower combined foulants' retention, was observed with increasing proportions of tannic acid in the combined foulants-containing feed, which was ascribed mainly to the more severe fouling resulting from tannic acid adsorption within the porous support layer of the FO membrane compared to minor alginate deposition on the membrane surface. It was found that the higher the initial flux level and cross flow velocity, the faster the flux decline with lower mixed foulants retention. It was also revealed that the calcium ions in a basic solution enhanced the combined fouling flux reduction and combined foulants retention. As the major constituent of the combined fouling layer, the adsorption of tannic acid might play a more significant role in the mixed fouling of the FO membrane, which was probably influenced by permeation drag caused by water flux and chemical interactions induced by feed solution pH and calcium ion concentration. PMID:26803261

  6. Dissolved total hydrolyzable enantiomeric amino acids in precipitation: Implications on bacterial contributions to atmospheric organic matter

    NASA Astrophysics Data System (ADS)

    Yan, Ge; Kim, Guebuem; Kim, Jeonghyun; Jeong, Yu-Sik; Kim, Young Il

    2015-03-01

    We analyzed dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved enantiomeric amino acids in precipitation samples collected at two sites in Korea over a one-year period. The average concentrations of DOC, DON, and total hydrolyzable amino acids at Seoul (an inland urban area) were lower than those at Uljin (a coastal rural area). The different bulk compositions of dissolved organic matter (DOM) at these two sites (reflected by qualitative indicators) were mainly attributed to differences in contributing sources. The D-enantiomers of four individual amino acids (aspartic acid, glutamic acid, serine, and alanine) were ubiquitously present, with average enantiomeric (D/L) ratios of 0.34, 0.26, 0.21, and 0.61 for Seoul, and 0.18, 0.11, 0.09, and 0.31 for Uljin, respectively. The much higher D/L ratios observed at Seoul than at Uljin might result from more advanced diagenetic stages as well as higher contributions from bacteria inhabiting terrestrial environments. The C- and N-normalized yields of D-alanine in DOM of our samples were found to be comparable to literature values reported for aquatic systems, where a significant portion of DOM was suggested to be of bacterial origin. Our study suggests that bacteria and their remnants might constitute an important fraction of OM in the atmosphere, contributing significantly to the quality of atmospheric OM and its post-depositional bioavailability in the surface ecosystems.

  7. Understanding the effect low molecular weight organic acids on the desorption and availability of soil phosphorus

    NASA Astrophysics Data System (ADS)

    Blackburn, Daniel; Zhang, Hao; Stutter, Marc; Giles, Courtney; George, Timothy; Shand, Charles; Lumsdon, David; Cooper, Pat; Wendler, Renate; Brown, Lawrie; Blackwell, Martin; Darch, Tegan; Wearing, Catherine; Haygarth, Philip

    2016-04-01

    The mobility and resupply of inorganic phosphorus (P) from the soil solid phase after equilibration with increasing doses of citric acid (CA) and oxalic acid (OA) were studied in 2 soils with contrasting P status. The combined methods of diffusive gradients in thin films (DGT), diffusive equilibration in thin films (DET) and the DGT-induced fluxes in sediments model (DIFS) were used as tools to evaluate the changes in solid-to-solution interchange kinetics. A significant effect of CA and OA in soil solution P was observed only for doses over 1 mMol kg-1. Curiously, low organic acid doses (0.5-1 mMol kg-1) were associated with a steep increase in microbial biomass P, which was not seen for doses over 2 mMol kg-1. The trivalent CA was able to promote a higher increase in soil solution P than the bivalent OA for both soils. Organic phosphorus was only significantly mobilized by organic acids in the low P soil, possibly because in the high P soil these P forms were less labile than inorganic P. Both CA and OA promoted a decrease in the adsorbed-to-solution distribution coefficient, desorption rate constants and an increase in the response time of solution P equilibration. The extent of this effect was shown to be both soil specific and organic acid specific. Since both organic acids negatively affected the kinetics of P interchange between the soil matrix and the soil solution, their net effect on P bioavailability is expected to be much lower than the observed increase in solution concentration.

  8. Determination of primary and secondary sources of organic acids and carbonaceous aerosols using stable carbon isotopes

    NASA Astrophysics Data System (ADS)

    Fisseha, Rebeka; Saurer, Matthias; Jäggi, Maya; Siegwolf, Rolf T. W.; Dommen, Josef; Szidat, Sönke; Samburova, Vera; Baltensperger, Urs

    Stable carbon isotope ratio ( δ13C) data can provide important information regarding the sources and the processing of atmospheric organic carbon species. Formic, acetic and oxalic acid were collected from Zurich city in August-September 2002 and March 2003 in the gas and aerosol phase, and the corresponding δ13C analysis was performed using a wet oxidation method followed by isotope ratio mass spectrometry. In August, the δ13C values of gas phase formic acid showed a significant correlation with ozone (coefficient of determination ( r2) = 0.63) due to the kinetic isotope effect (KIE). This indicates the presence of secondary sources (i.e. production of organic acids in the atmosphere) in addition to direct emission. In March, both gaseous formic and acetic acid exhibited similar δ13C values and did not show any correlation with ozone, indicating a predominantly primary origin. Even though oxalic acid is mainly produced by secondary processes, the δ13C value of particulate oxalic acid was not depleted and did not show any correlation with ozone, which may be due to the enrichment of 13C during the gas - aerosol partitioning. The concentrations and δ13C values of the different aerosol fractions (water soluble organic carbon, water insoluble organic carbon, carbonate and black carbon) collected during the same period were also determined. Water soluble organic carbon (WSOC) contributed about 60% to the total carbon and was enriched in 13C compared to other fractions indicating a possible effect of gas - aerosol partitioning on δ13C of carbonaceous aerosols. The carbonate fraction in general was very low (3% of the total carbon).

  9. Aqueous leaching of organic acids and dissolved organic carbon from various biochars prepared at different temperatures.

    PubMed

    Liu, Peng; Ptacek, Carol J; Blowes, David W; Berti, William R; Landis, Richard C

    2015-03-01

    Biochar has been used as a soil amendment, as a water treatment material, and for carbon (C) sequestration. Thirty-six biochars, produced from wood, agricultural residue, and manure feedstocks at different temperatures, were evaluated for the aqueous leaching of different forms of soluble C. The release of inorganic C (alkalinity), organic acids (OAs), and total dissolved organic C (DOC) was highly variable and dependent on the feedstock and pyrolysis temperature. The pH and alkalinity increased for the majority of samples. Higher pH values were associated with high-temperature (high-T) (600 and 700°C) biochars. Statistically significant differences in alkalinity were not observed between low-temperature (low-T) (300°C) and high-T biochars, whereas alkalinity released from wood-based biochar was significantly lower than from others. Concentrations of OAs and DOC released from low-T biochars were greater than from high-T biochars. The C in the OAs represented 1 to 60% of the total DOC released, indicating the presence of other DOC forms. The C released as DOC represented up to 3% (majority <0.1%) of the total C in the biochar. Scanning electron microscopy with energy dispersive X-ray spectroscopy showed the high-T biochars had a greater proportion of micropores. Fourier transform infrared spectroscopy showed that hydroxyl, aliphatic, and quinone were the predominant functional groups of all biochars and that the abundance of other functional groups was dependent on the feedstock. The release of DOC, especially bioavailable forms such as OAs, may promote growth of organisms and heavy metal complexation and diminish the potential effectiveness of various biochars for C sequestration. PMID:26023986

  10. Hydrolysis of ketene catalyzed by formic acid: modification of reaction mechanism, energetics, and kinetics with organic acid catalysis.

    PubMed

    Louie, Matthew K; Francisco, Joseph S; Verdicchio, Marco; Klippenstein, Stephen J; Sinha, Amitabha

    2015-05-14

    The hydrolysis of ketene (H2C═C═O) to form acetic acid involving two water molecules and also separately in the presence of one to two water molecules and formic acid (FA) was investigated. Our results show that, while the currently accepted indirect mechanism, involving addition of water across the carbonyl C═O bond of ketene to form an ene-diol followed by tautomerization of the ene-diol to form acetic acid, is the preferred pathway when water alone is present, with formic acid as catalyst, addition of water across the ketene C═C double bond to directly produce acetic acid becomes the kinetically favored pathway for temperatures below 400 K. We find not only that the overall barrier for ketene hydrolysis involving one water molecule and formic acid (H2C2O + H2O + FA) is significantly lower than that involving two water molecules (H2C2O + 2H2O) but also that FA is able to reduce the barrier height for the direct path, involving addition of water across the C═C double bond, so that it is essentially identical with (6.4 kcal/mol) that for the indirect ene-diol formation path involving addition of water across the C═O bond. For the case of ketene hydrolysis involving two water molecules and formic acid (H2C2O + 2H2O + FA), the barrier for the direct addition of water across the C═C double bond is reduced even further and is 2.5 kcal/mol lower relative to the ene-diol path involving addition of water across the C═O bond. In fact, the hydrolysis barrier for the H2C2O + 2H2O + FA reaction through the direct path is sufficiently low (2.5 kcal/mol) for it to be an energetically accessible pathway for acetic acid formation under atmospheric conditions. Given the structural similarity between acetic and formic acid, our results also have potential implications for aqueous-phase chemistry. Thus, in an aqueous environment, even in the absence of formic acid, though the initial mechanism for ketene hydrolysis is expected to involve addition of water across the

  11. Amino Acids as a Source of Organic Nitrogen in Antarctic Endolithic Microbial Communities

    NASA Astrophysics Data System (ADS)

    McDonald, G. D.; Sun, H. J.

    2002-12-01

    In the Antarctic Dry Valleys, cryptoendolithic microbial communities occur within porous sandstone rocks. Current understanding of the mechanisms of physiological adaptation of these communities to the harsh Antarctic environment is limited, because traditional methods of studying microbial physiology are very difficult to apply to organisms with extremely low levels of metabolic activity. In order to fully understand carbon and nitrogen cycling and nutrient uptake in cryptoendolithic communities, and the metabolic costs that the organisms incur in order to survive, it is necessary to employ molecular geochemical techniques such as amino acid analysis in addition to physiological methods. Low-molecular-weight biomolecules such as amino acids can be used as tracers of carbon and nitrogen uptake and loss by microbial communities living in solid-state matrices such as rock or sediment. We have measured the concentrations and D/L ratios for several amino acids as a function of depth in a large sandstone boulder. Concentrations of both free and bound amino acids decrease by more than two orders of magnitude from the surface to the visible base of the community (approximately 1.2 cm depth), while the D/L ratios of the amino acids increase from near zero to 0.2 or greater over the same depth interval. We interpret these data as an indication that one or more community members are selectively scavenging L-amino acids as the amino acids are transported through the rock by intermittently percolating meltwater. This is consistent with the known preference of lichens for amino acids as nitrogen sources rather than inorganic nitrogen under conditions of nutrient limitation. It is not yet clear whether there is also a contribution to amino acid uptake from heterotropic bacteria associated with the cryptoendolithic community. The increase in D/L ratios with depth observed in the rock is too great to be attributable solely to the natural occurrence of D-amino acids in bacteria

  12. Sorption of vapors of some organic liquids on soil humic acid and its relation to partitioning of organic compounds in soil organic matter

    USGS Publications Warehouse

    Chlou, G.T.; Kile, D.E.; Malcolm, R.L.

    1988-01-01

    Vapor sorption of water, ethanol, benzene, hexane, carbon tetrachloride, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, and 1,2-dibromoethane on (Sanhedron) soil humic acid has been determined at room temperature. Isotherms for all organic liquids are highly linear over a wide range of relative pressure (P/P??), characteristic of the partitioning (dissolution) of the organic compounds in soil humic acid. Polar liquids exhibit markedly greater sorption capacities on soil humic acid than relatively nonpolar liquids, in keeping with the polar nature of the soil humic acid as a partition medium. The limiting sorption (partition) capacities of relatively non-polar liquids are remarkably similar when expressed in terms of volumes per unit weight of soil humic acid. The soil humic acid is found to be about half as effective as soil organic matter in sorption of relatively nonpolar organic compounds. The nearly constant limiting sorption capacity for nonpolar organic liquids with soil humic acid on a volume-to-weight basis and its efficiency in sorption relative to soil organic matter provide a basis for predicting the approximate sorption (partition) coefficients of similar compounds in uptake by soil in aqueous systems.

  13. HPLC-Profiles of Tocopherols, Sugars, and Organic Acids in Three Medicinal Plants Consumed as Infusions.

    PubMed

    Roriz, Custódio Lobo; Barros, Lillian; Carvalho, Ana Maria; Ferreira, Isabel C F R

    2014-01-01

    Pterospartum tridentatum (L.) Willk, Gomphrena globosa L., and Cymbopogon citratus (DC.) Stapf are medicinal plants that require a more detailed chemical characterization, given the importance of their consumption as infusions. Therefore, the individual profiles in tocopherols, free sugars, and organic acids were obtained by high performance liquid chromatography (HPLC) coupled to different detectors (fluorescence, refraction index, and photodiode array, resp.). C. citratus revealed the highest content of α-, and total tocopherols, glucose, sucrose, succinic, and ascorbic acids. P. tridentatum presented the highest fructose and total sugars content. Otherwise, G. globosa showed the highest organic acids concentration. As far as we know, this is the first study reporting the mentioned chemical compounds in G. globosa and C. citratus. PMID:26904623

  14. A closed loop for municipal organic solid waste by lactic acid fermentation.

    PubMed

    Probst, Maraike; Walde, Janette; Pümpel, Thomas; Wagner, Andreas Otto; Insam, Heribert

    2015-01-01

    In order to investigate the feasibility of producing lactic acid from municipal organic solid waste different pH values (4-7) and temperatures (37°C and 55°C) were tested. For the evaluation of fermentation conditions the chemical, physical, and microbial characters were monitored over a period of 7days. Quantitative real time PCR, PCR-DGGE, and next generation sequencing of a 16S rRNA gene library were applied to identify the key players of the lactic acid production and their association. Lactobacillus acidophilus and its closest relatives were found to be efficient lactic acid producers (>300mM) under most suitable fermentation conditions tested in this study: 37°C with either uncontrolled pH or at a pH of 5. These data provide the first step in the realization of the idea "reuse, reduce, and recycle" of municipal organic solid waste. PMID:25459815

  15. Reevaluating the contribution of sulfuric acid and the origin of organic compounds in atmospheric nanoparticle growth

    NASA Astrophysics Data System (ADS)

    Vakkari, Ville; Tiitta, Petri; Jaars, Kerneels; Croteau, Philip; Beukes, Johan Paul; Josipovic, Miroslav; Kerminen, Veli-Matti; Kulmala, Markku; Venter, Andrew D.; Zyl, Pieter G.; Worsnop, Douglas R.; Laakso, Lauri

    2015-12-01

    Aerosol particles formed in the atmosphere are important to the Earth's climate system due to their ability to affect cloud properties. At present, little is known about the atmospheric chemistry responsible for the growth of newly formed aerosol particles to climate-relevant sizes. Here combining detailed aerosol measurements with a theoretical framework we found that depending on the gaseous precursors and size of the newly formed particles, the growth was dominated by either sulfuric acid accompanied by ammonium or organic compounds originating in either biogenic emissions or savannah fires. The contribution of sulfuric acid was larger during the early phases of the growth, but in clean conditions organic compounds dominated the growth from 1.5 nm up to climatically relevant sizes. Furthermore, our analysis indicates that in polluted environments the contribution of sulfuric acid to the growth may have been underestimated by up to a factor of 10.

  16. HPLC-Profiles of Tocopherols, Sugars, and Organic Acids in Three Medicinal Plants Consumed as Infusions

    PubMed Central

    Roriz, Custódio Lobo; Barros, Lillian; Carvalho, Ana Maria; Ferreira, Isabel C. F. R.

    2014-01-01

    Pterospartum tridentatum (L.) Willk, Gomphrena globosa L., and Cymbopogon citratus (DC.) Stapf are medicinal plants that require a more detailed chemical characterization, given the importance of their consumption as infusions. Therefore, the individual profiles in tocopherols, free sugars, and organic acids were obtained by high performance liquid chromatography (HPLC) coupled to different detectors (fluorescence, refraction index, and photodiode array, resp.). C. citratus revealed the highest content of α-, and total tocopherols, glucose, sucrose, succinic, and ascorbic acids. P. tridentatum presented the highest fructose and total sugars content. Otherwise, G. globosa showed the highest organic acids concentration. As far as we know, this is the first study reporting the mentioned chemical compounds in G. globosa and C. citratus. PMID:26904623

  17. Spatially-Interactive Biomolecular Networks Organized by Nucleic Acid Nanostructures

    PubMed Central

    Fu, Jinglin; Liu, Minghui; Liu, Yan; Yan, Hao

    2013-01-01

    Conspectus Living systems have evolved a variety of nanostructures to control the molecular interactions that mediate many functions including the recognition of targets by receptors, the binding of enzymes to substrates, and the regulation of enzymatic activity. Mimicking these structures outside of the cell requires methods that offer nanoscale control over the organization of individual network components. Advances in DNA nanotechnology have enabled the design and fabrication of sophisticated one-, two- and three-dimensional (1D, 2D and 3D) nanostructures that utilize spontaneous and sequence specific DNA hybridization. Compared to other self-assembling biopolymers, DNA nanostructures offer predictable and programmable interactions, and surface features to which other nanoparticles and bio-molecules can be precisely positioned. The ability to control the spatial arrangement of the components while constructing highly-organized networks will lead to various applications of these systems. For example, DNA nanoarrays with surface displays of molecular probes can sense noncovalent hybridization interactions with DNA, RNA, and proteins and covalent chemical reactions. DNA nanostructures can also align external molecules into well-defined arrays, which may improve the resolution of many structural determination methods, such as X-ray diffraction, cryo-EM, NMR, and super-resolution fluorescence. Moreover, by constraining target entities to specific conformations, self-assembled DNA nanostructures can serve as molecular rulers to evaluate conformation-dependent activities. This Account describes the most recent advances in the DNA nanostructure directed assembly of biomolecular networks and explores the possibility of applying this technology to other fields of study. Recently, several reports have demonstrated the DNA nanostructure directed assembly of spatially-interactive biomolecular networks. For example, researchers have constructed synthetic multi-enzyme cascades

  18. Amino acid analysis

    NASA Technical Reports Server (NTRS)

    Winitz, M.; Graff, J. (Inventor)

    1974-01-01

    The process and apparatus for qualitative and quantitative analysis of the amino acid content of a biological sample are presented. The sample is deposited on a cation exchange resin and then is washed with suitable solvents. The amino acids and various cations and organic material with a basic function remain on the resin. The resin is eluted with an acid eluant, and the eluate containing the amino acids is transferred to a reaction vessel where the eluant is removed. Final analysis of the purified acylated amino acid esters is accomplished by gas-liquid chromatographic techniques.

  19. Aquatic photolysis: photolytic redox reactions between goethite and adsorbed organic acids in aqueous solutions

    USGS Publications Warehouse

    Goldberg, M.C.; Cunningham, K.M.; Weiner, Eugene R.

    1993-01-01

    Photolysis of mono and di-carboxylic acids that are adsorbed onto the surface of the iron oxyhydroxide (goethite) results in an oxidation of the organic material and a reduction from Fe(III) to Fe(II) in the iron complex. There is a subsequent release of Fe2+ ions into solution. At constant light flux and constant solution light absorption, the factors responsible for the degree of photolytic reaction include: the number of lattice sites that are bonded by the organic acid; the rate of acid readsorption to the surface during photolysis; the conformation and structure of the organic acid; the degree of oxidation of the organic acid; the presence or absence of an ??-hydroxy group on the acid, the number of carbons in the di-acid chain and the conformation of the di-acid. The ability to liberate Fe(III) at pH 6.5 from the geothite lattice is described by the lyotropic series: tartrate>citrate> oxalate > glycolate > maleate > succinate > formate > fumarate > malonate > glutarate > benzoate = butanoate = control. Although a larger amount of iron is liberated, the series is almost the same at pH 5.5 except that oxalate > citrate and succinate > maleate. A set of rate equations are given that describe the release of iron from the goethite lattice. It was observed that the pH of the solution increases during photolysis if the solutions are not buffered. There is evidence to suggest the primary mechanism for all these reactions is an electron transfer from the organic ligand to the Fe(III) in the complex. Of all the iron-oxyhydroxide materials, crystalline goethite is the least soluble in water; yet, this study indicates that in an aqueous suspension, iron can be liberated from the goethite lattice. Further, it has been shown that photolysis can occur in a multiphase system at the sediment- water interface which results in an oxidation of the organic species and release of Fe2+ to solution where it becomes available for further reaction. ?? 1993.

  20. Characterizing Corrosion Effects of Weak Organic Acids Using a Modified Bono Test

    NASA Astrophysics Data System (ADS)

    Zhou, Yuqin; Turbini, Laura J.; Ramjattan, Deepchand; Christian, Bev; Pritzker, Mark

    2013-12-01

    To meet environmental requirements and achieve benefits of cost-effective manufacturing, no-clean fluxes (NCFs) or low-solids fluxes have become popular in present electronic manufacturing processes. Weak organic acids (WOAs) as the activation ingredients in NCFs play an important role, especially in the current lead-free and halogen-free soldering technology era. However, no standard or uniform method exists to characterize the corrosion effects of WOAs on actual metallic circuits of printed wiring boards (PWBs). Hence, the development of an effective quantitative test method for evaluating the corrosion effects of WOAs on the PWB's metallic circuits is imperative. In this paper, the modified Bono test, which was developed to quantitatively examine the corrosion properties of flux residues, is used to characterize the corrosion effects of five WOAs (i.e., abietic acid, succinic acid, glutaric acid, adipic acid, and malic acid) on PWB metallic circuits. Experiments were performed under three temperature/humidity conditions (85°C/85% RH, 60°C/93% RH, and 40°C/93% RH) using two WOA solution concentrations. The different corrosion effects among the various WOAs were best reflected in the testing results at 40°C and 60°C. Optical microscopy was used to observe the morphology of the corroded copper tracks, and scanning electron microscopy (SEM) energy-dispersive x-ray (EDX) characterization was performed to determine the dendrite composition.

  1. Interactions between hydrated cement paste and organic acids: Thermodynamic data and speciation modeling

    SciTech Connect

    De Windt, Laurent; Bertron, Alexandra; Larreur-Cayol, Steeves; Escadeillas, Gilles

    2015-03-15

    Interactions of short-chain organic acids with hydrated cement phases affect structure durability in the agro-food and nuclear waste industries but can also be used to modify cement properties. Most previous studies have been experimental, performed at fixed concentrations and pH, without quantitatively discriminating among polyacidity effects, or complexation and salt precipitation processes. This paper addresses such issues by thermodynamic equilibrium calculations for acetic, citric, oxalic, succinic acids and a simplified hydrated CEM-I. The thermodynamic constants collected from the literature allow the speciation to be modeled over a wide range of pH and concentrations. Citric and oxalic had a stronger chelating effect than acetic acid, while succinic acid was intermediate. Similarly, Ca-citrate and Ca-oxalate salts were more insoluble than Ca-acetate and Ca-succinate salts. Regarding aluminium complexation, hydroxyls, sulfates, and acid competition was highlighted. The exploration of acid mixtures showed the preponderant effect of oxalate and citrate over acetate and succinate.

  2. Roles of Organic Acid Anion Secretion in Aluminium Tolerance of Higher Plants

    PubMed Central

    Yang, Lin-Tong; Qi, Yi-Ping; Jiang, Huan-Xin; Chen, Li-Song

    2013-01-01

    Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium(Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H+-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed. PMID:23509687

  3. Roles of organic acid anion secretion in aluminium tolerance of higher plants.

    PubMed

    Yang, Lin-Tong; Qi, Yi-Ping; Jiang, Huan-Xin; Chen, Li-Song

    2013-01-01

    Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium (Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H(+)-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed. PMID:23509687

  4. Effective Removal of Tetracycline from Aqueous Solution by Organic Acid-Coated Magnetic Nanoparticles.

    PubMed

    Guo, Liang; Liang, Yuyan; Chen, Xuelan; Xu, Wei; Wu, Kesheng; Wei, Hua; Xiong, Yonghua

    2016-03-01

    Self-assembled iron oxide nanocomposites are good magnetic nano-adsorbents that can be prepared using simple methods. Four types of organic acid-functionalised (oleic acid, undecenoic acid, caprylic acid or hexanoic acid) magnetic nanoparticles (MNPs) were synthesised through a one-pot chemisorption method for the removal of tetracycline (TC) from aqueous solution. The undecenoic acid-coated MNPs (UA-MNPs) exhibited the highest adsorption efficiency and can be easily retrieved with a low-gradient magnetic separator (0.4 Tesla) at pH 5.0 aqueous solution. The TC adsorption process on the UA-MNPs followed the Langmuir isotherm and the maximum adsorption capacities increased from 86.96 mg g(-1) to 222.2 mg g(-1) with the increase in temperature from 288 K to 318 K. The kinetics of adsorption fits pseudo-second-order model perfectly with a rate constant, 5.946 g mg(-1) min(-1) at 298 K. The positive values of the enthalpy (AH) and the negative value of the free energy (AG) indicated an endothermic and spontaneous adsorption process of TC on the UA-MNPs. Moreover, the UA-MNPs possessed excellent ability to adsorb the other three major types of TC antibiotics, including chlortetracycline, oxytetracycline and doxycycline. PMID:27455621

  5. On-line electrodialytic matrix isolation for chromatographic determination of organic acids in wine.

    PubMed

    Ohira, Shin-Ichi; Kuhara, Kenta; Shigetomi, Aki; Yamasaki, Takayuki; Kodama, Yuko; Dasgupta, Purnendu K; Toda, Kei

    2014-10-31

    Chromatographic determination of organic acids is widely performed, but the matrix often calls for lengthy and elaborate sample preparation prior to actual analysis. Matrix components, e.g., proteins, non-ionics, lipids etc. are typically removed by a combination of centrifugation/filtration and solid phase extraction (SPE) that may include the use of ion-exchange media. Here we report the quantitative electrodialytic transfer of organic acids from complex samples to ultrapure water in seconds using cellulose membranes modified with N,N-dimethylaminoethyl methacrylate, which essentially eliminates the negative ζ-potential of a regenerated cellulose membrane surface. The transfer characteristics of the ion transfer device (ITD) were evaluated with linear carboxylic acids. While the ion transfer efficiencies may be affected by the acid dissociation constants, in most cases it is possible to achieve quantitative transfer under optimized device residence time (solution flow rate) and the applied voltage. In addition, the transfer efficiency was unaffected by the wide natural variation of pH represented in real samples. The approach was applied to organic acids in various samples, including red wine, considered to represent an especially difficult matrix. While quantitative transfer of the organic acids (as judged by agreement with standard pretreatment procedures involving SPE) was achieved, transfer of other matrix components was <5%. The processed samples could then be chromatographically analyzed in a straightforward manner. We used ion exclusion chromatography with direct UV detection; in treated samples; there was a dramatic reduction of the large early peaks observed compared to only 0.45μm membrane filtered samples. PMID:25465003

  6. Effect of pH and organic acids on nitrogen transformations and metal dissolution in soils

    SciTech Connect

    Fu, Minhong.

    1989-01-01

    The effect of pH (4, 6, and 8) on nitrogen mineralization was evaluated in three Iowa surface soils treated with crop residues (corn (Zea mays L.), soybean (Glycine max (L.) Merr.), and sorghum (Sorghum vulgare Pers.), or alfalfa (Medicago sativa L.)) and incubated in leaching columns under aerobic conditions at 30C for 20 weeks. In general, N mineralization was significantly depressed at soil pH 4, compared with pH 6 or 8. The types of crop residues added influenced the pattern and amount of N mineralization. A study on the effect of 19 trace elements on the nitrate red activity of four Iowa surface soils showed that most trace elements inhibited this enzyme in acid and neutral soils. The trace elements Ag(I), Cd(II), Se(IV), As(V), and W(VI) were the most effective inhibitors, with >75% inhibition. Mn(II) was the least effective inhibitor, with <10% inhibition. Other trace elements included Cu(I), Co(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), Al(III), As(III), Cr(III), Fe(III), V(IV), Mo(VI), and Se(VI). The application of high-performance liquid chromatography (HPLC) showed that, when coupled to a refractive index detector, it is a rapid, sensitive, and accurate method for determining organic acids in soils. Three organic acids, acetic (2-20 mM), propionic (0-3 mM), and n-butyric (0-1.4 mM), were identified with HPLC and confirmed by gas chromatography in crop-residue-treated soils incubated under waterlogged conditions at 25C for 72 h. No organic acids were detected under aerobic conditions. Four mineral acids and 29 organic acids were studied for their effect on N mineralization and metal dissolution in soils incubated under waterlogged conditions at 30C for 10 days.

  7. Changes on organic acid secretion and accumulation in Plantago almogravensis Franco and Plantago algarbiensis Samp. under aluminum stress.

    PubMed

    Martins, Neusa; Gonçalves, Sandra; Andrade, Paula B; Valentão, Patrícia; Romano, Anabela

    2013-01-01

    We investigated the effect of Al (400μM) on organic acids secretion, accumulation and metabolism in Plantago almogravensis Franco and Plantago algarbiensis Samp. Al induced a significant reduction on root elongation only in P. algarbiensis. Both species accumulated considerable amounts of Al (>120μgg(-1)) in their tissues, roots exhibiting the highest contents (>900μgg(-1)). Al stimulated malonic acid secretion in P. algarbiensis, while citric, succinic and malic acids were secreted by P. almogravensis. Moreover, Al uptake was accompanied by substantial increases of citric, oxalic, malonic and fumaric acids contents in the plantlets of either species. Overall, the acid metabolizing enzymes were not directly involved in the Al induced organic acid secretion and accumulation. Our data suggest that Al detoxification in P. almogravensis implies both secretion of organic acids from roots and tolerance to high Al tissue concentrations, while in P. algarbiensis only the tolerance mechanism seems to be involved. PMID:23199681

  8. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger.

    PubMed

    Li, Zhen; Bai, Tongshuo; Dai, Letian; Wang, Fuwei; Tao, Jinjin; Meng, Shiting; Hu, Yunxiao; Wang, Shimei; Hu, Shuijin

    2016-01-01

    Phosphate solubilizing fungi (PSF) have huge potentials in enhancing release of phosphorus from fertilizer. Two PSF (NJDL-03 and NJDL-12) were isolated and identified as Penicillium oxalicum and Aspergillus niger respectively in this study. The quantification and identification of organic acids were performed by HPLC. Total concentrations of organic acids secreted by NJDL-03 and NJDL-12 are ~4000 and ~10,000 mg/L with pH values of 3.6 and 2.4 respectively after five-days culture. Oxalic acid dominates acidity in the medium due to its high concentration and high acidity constant. The two fungi were also cultured for five days with the initial pH values of the medium varied from 6.5 to 1.5. The biomass reached the maximum when the initial pH values are 4.5 for NJDL-03 and 2.5 for NJDL-12. The organic acids for NJDL-12 reach the maximum at the initial pH = 5.5. However, the acids by NJDL-03 continue to decrease and proliferation of the fungus terminates at pH = 2.5. The citric acid production increases significantly for NJDL-12 at acidic environment, whereas formic and oxalic acids decrease sharply for both two fungi. This study shows that NJDL-12 has higher ability in acid production and has stronger adaptability to acidic environment than NJDL-03. PMID:27126606

  9. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger

    PubMed Central

    Li, Zhen; Bai, Tongshuo; Dai, Letian; Wang, Fuwei; Tao, Jinjin; Meng, Shiting; Hu, Yunxiao; Wang, Shimei; Hu, Shuijin

    2016-01-01

    Phosphate solubilizing fungi (PSF) have huge potentials in enhancing release of phosphorus from fertilizer. Two PSF (NJDL-03 and NJDL-12) were isolated and identified as Penicillium oxalicum and Aspergillus niger respectively in this study. The quantification and identification of organic acids were performed by HPLC. Total concentrations of organic acids secreted by NJDL-03 and NJDL-12 are ~4000 and ~10,000 mg/L with pH values of 3.6 and 2.4 respectively after five-days culture. Oxalic acid dominates acidity in the medium due to its high concentration and high acidity constant. The two fungi were also cultured for five days with the initial pH values of the medium varied from 6.5 to 1.5. The biomass reached the maximum when the initial pH values are 4.5 for NJDL-03 and 2.5 for NJDL-12. The organic acids for NJDL-12 reach the maximum at the initial pH = 5.5. However, the acids by NJDL-03 continue to decrease and proliferation of the fungus terminates at pH = 2.5. The citric acid production increases significantly for NJDL-12 at acidic environment, whereas formic and oxalic acids decrease sharply for both two fungi. This study shows that NJDL-12 has higher ability in acid production and has stronger adaptability to acidic environment than NJDL-03. PMID:27126606

  10. Acidity and origin of dissolved organic carbon in different vegetation zones

    NASA Astrophysics Data System (ADS)

    Hruška, Jakub; Oulehle, Filip; Myška, Oldřích; Chuman, Tomáš

    2016-04-01

    The acid/base character of aquatic dissolved organic carbon (DOC) has been studied intensively during recent decades with regard to the role of DOC in stream water acidity and the balance between natural acidity and anthropogenic acidification. Recently, DOC has been shown to play an important role in preindustrial surface waters. Studies focused on the acid/base properties of DOC have been carried out in mainly in Europe and North America and paint a conflicting picture. Some studies reported large differences in acid base properties, sometimes between quite similar and nearby localities, or between seasons at the same site. Other studies, however, found similar acid/base properties in waters from a variety of sites, sometimes far from each other as well as stable acid/base properties at the same site through different seasons or runoff events. Site density of DOC (amount of carboxylic groups per milligram of DOC) and SUVA was measured for streams (or small tundra ponds respectively) from the tundra in northern Alaska, boreal zone of Sweden, western Czech Republic (temperate region), and tropical Congo rain forest in central Africa. At least 10 samples from each region were taken from surface waters during the growing season. Titration of carboxylic groups after proton saturation on cation-exchange resin was used for site density determination. Despite very different climatic and vegetation properties and internal variation within a region, there was no statistically significant difference among regions for site density (it varied between 10.2-10.5 ueq/mg DOC) as well as for SUVA (tested by ANOVA). Results suggest that different vegetation and climate produced generally the same DOC in respect of acid/base character and SUVA. It also suggests that use of the one analytical technique was more important than differences between climatic zones itself.

  11. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    SciTech Connect

    White, T. L.; Wiedenman, B. J.; Lambert, D. P.; Crump, S. L.; Fondeur, F. F.; Papathanassiu, A. E.; Kot, W. K.; Pegg, I. L.

    2013-10-01

    The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tank farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts

  12. Phytoremediation of uranium-contaminated soils: Role of organic acids in triggering uranium hyperaccumulation in plants

    SciTech Connect

    Huang, J.W.; Blaylock, M.J.; Kapulnik, Y.; Ensley, B.D.

    1998-07-01

    Uranium phytoextraction, the use of plants to extract U from contaminated soils, is an emerging technology. The authors report on the development of this technology for the cleanup of U-contaminated soils. In this research, they investigated the effects of various soil amendments on U desorption from soil to soil solution, studied the physiological characteristics of U uptake and accumulation in plants, and developed techniques to trigger U hyperaccumulation in plants. A key to the success of U phytoextraction is to increase soil U availability to plants. The authors have found that some organic acids can be added to soils to increase U desorption from soil to soil solution and to trigger a rapid U accumulation in plants. Of the organic acids (acetic acid, citric acid, and malic acid) tested, citric acid was the most effective in enhancing U accumulation in plants. Shoot U concentrations of Brassica juncea and Brassica chinensis grown in a U-contaminated soil increased from less than 5 mg kg{sup {minus}1} to more than 5,000 mg kg{sup {minus}1} in citric acid-treated soils. To their knowledge, this is the highest shoot U concentration reported for plants grown on U-contaminated soils. Using this U hyperaccumulation technique, they are now able to increase U accumulation in shoots of selected plant species grown in two U-contaminated soils by more than 1,000-fold within a few days. The results suggest that U phytoextraction may provide an environmentally friendly alternative for the cleanup of U-contaminated soils.

  13. Properties of whey protein-based films containing organic acids and nisin to control Listeria monocytogenes.

    PubMed

    Pintado, Cristina M B S; Ferreira, Maria A S S; Sousa, Isabel

    2009-09-01

    Whey protein isolate and glycerol were mixed to form a matrix to incorporate antimicrobial agents and produce edible films with antimicrobial activity against Listeria monocytogenes strains isolated from cheeses. Various organic acids were used to decrease pH down to approximately 3. In a preliminary assay without nisin, the effect of each organic acid was evaluated with respect to the rheological properties of the film solutions and the inhibitory and mechanical properties of the films. Lactic, malic, and citric acids (3%, wt/vol), which were used in a subsequent study of their combined inhibitory effect with nisin (50 IU/ml), had significantly higher antilisterial activity (P < 0.05) compared with the control (2 N HCl, 3% [wt/vol], with nisin). The largest mean zone of inhibition was 4.00 +/- 0.92 mm for malic acid with nisin. Under small-amplitude oscillatory stress, the protein-glycerol-acid film solutions exhibited a predominantly viscous behavior or a weak gel behavior, with the storage modulus (G') slightly higher than the loss modulus (G"). The malic acid-based solution was the only one whose viscosity was not influenced by the addition of nisin. The addition of nisin resulted in a nonsignificant (P > 0.05) increase in the percentage of elongation at break. Results from tensile and puncture stress were variable, but in general no significant differences were found after the incorporation of nisin. The overall results support the use of malic acid with nisin to produce effective antimicrobial films to control L. monocytogenes growth. PMID:19777891

  14. COMPOSITIONAL AND FUNCTIONAL FEATURES OF HUMIC ACIDS FROM ORGANIC AMENDMENTS AND AMENDED SOILS IN MINNESOTA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of organic amendments requires an adequate control of the chemical quality of their humic acid (HA)-like fractions and of the effects that these materials may have on the status, quality, chemistry and functions of native soil HAs. In this work, the compositional, functional and structural p...

  15. A Green Polymerization of Aspartic Acid for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Bennett, George D.

    2005-01-01

    The green polymerization of aspartic acid carried out during an organic-inorganic synthesis laboratory course for undergraduate students is described. The procedure is based on work by Donlar Corporation, a Peru, Illinois-based company that won a Green Chemistry Challenge Award in 1996 in the Small Business category for preparing thermal…

  16. Determination of low molecular weight organic acids in soil, plants, and water by capillary zone electrophoresis.

    PubMed

    Li, Ying-Hui; Huang, Bi-Xia; Shan, Xiao-Quan

    2003-03-01

    Determination of low molecular weight organic acids in soils and plants by capillary zone electrophoresis was accomplished using a phthalate buffer and indirect UV detection mode. The influence of some crucial parameters, such as pH, buffer concentration and surfactant were investigated. A good separation of seven organic acids was achieved within 5 min using an electrolyte containing 15 mmol L(-1) potassium hydrogen phthalate, 0.5 mmol L(-1) myristyltrimethylammonium bromide (MTAB), and 5% methanol (MeOH) (v/v) at pH 5.60, separation voltage -20 kV, and temperature 25 degrees C. The relative standard deviation (n=5) of the method was found to be in range 0.18-0.56% for migration time and 3.2-4.8% for peak area. The limit of detection ranged between 0.5 micro mol L(-1) to 6 micro mol L(-1) at a signal-to-noise ratio of 3. The recovery of standard organic acids added to real samples ranged from 87 to 119%. This method was simple, rapid and reproducible, and could be applied to the simultaneous determination of organic acids in environmental samples. PMID:12664177

  17. Control of Listeria monocytogenes in Ham Deli Loaves using Organic Acids as Formulation Ingredients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic acids are popular preservatives and are utilized in the industry to inhibit the growth of Listeria monocytogenes (LM) in ready-to-eat (RTE) products. In this study, sodium lactate (SL), potassium lactate (PL) and sodium diacetate (SD) were utilized alone or in combination in the raw product...

  18. 40 CFR 747.115 - Mixed mono and diamides of an organic acid.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for product containing P-84-529) has been regulated by the Environmental Protection Agency, at 40 CFR... substance known to cause cancer in laboratory animals. The mixed mono and diamides of an organic acid has... to cause cancer. This product is designed to be used without nitrites. (iii) The first work of...

  19. Influence of aluminum on growth, mineral nutrition and organic acid exudation of rambutan (Nephelium lappaceum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A randomized complete block design experiment with six aluminum (Al) concentrations was carried out to evaluate the effect of aluminum on nutrient content, plant growth, dry matter production and Al-induced organic acid exudation in rambutan (Nephelium lappaceum). One rambutan cultivar was grown in...

  20. 40 CFR 747.115 - Mixed mono and diamides of an organic acid.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for product containing P-84-529) has been regulated by the Environmental Protection Agency, at 40 CFR... substance known to cause cancer in laboratory animals. The mixed mono and diamides of an organic acid has... to cause cancer. This product is designed to be used without nitrites. (iii) The first work of...

  1. 40 CFR 747.115 - Mixed mono and diamides of an organic acid.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for product containing P-84-529) has been regulated by the Environmental Protection Agency, at 40 CFR... substance known to cause cancer in laboratory animals. The mixed mono and diamides of an organic acid has... to cause cancer. This product is designed to be used without nitrites. (iii) The first work of...

  2. SEMIVOLATILE ORGANIC ACIDS AND LEVOGLUCOSAN IN NEW YORK CITY AIR FOLLOWING 9/11/2001

    EPA Science Inventory

    Organic acid compounds and levoglucosan, an important molecular marker of burning cellulose, are detected in New York City air collected between 9/26/01 and 10/24/01 500 m from Ground Zero. Sampling of Ground Zero emissions at our site is commensurate with a southwesterly wind f...

  3. Adsorption of short-chain organic acids onto nearshore marine sediments

    NASA Astrophysics Data System (ADS)

    Sansone, Francis J.; Andrews, Christine C.; Okamoto, Mauri Y.

    1987-07-01

    The adsorption of acetate, butyrate, lactate, and stearate was measured using a clastic mud from Cape Lookout Bight N.C. (CLB), a lateritic muddy sand from Kahana Stream, Oahu, Hawaii (KS), and a fine carbonate sand from Waimanalo Beach, Oahu, (WB). Partition coefficients ( Kd, moles adsorbed per g of solid phase/moles dissolved per ml of porewater) ranged from 10 2.3 to ≤10 -3.0, and displayed the following trends: CLB > KS > WB, and stearate > acetate ˜- butyrate > lactate. The percent adsorption of the sediment organic acid pools showed similar trends: stearate, 99%; acetate, 9-23%; butyrate, 5-23%; lactate, ≤0.2-7%. These results reflected the relatively nonpolar nature of the sand surfaces in WB and KS sediments, and the polarities of the organic acids. Kd was approximately constant for each organic acid-sediment combination over a dissolved organic acid concentration range of 10 7, using concentrations between 1M and 10 -14 M. This constancy over a wide porewater concentration range suggested that adsorption was not limited by the availability of surface adsorption sites.

  4. Effects of organic acid-surfactant mixtures on levels of bacteria and beef quality traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Organic acid efficacy as an antimicrobial treatment of beef carcass surfaces may be increased through the addition of surfactants. However, the effects of antimicrobial-surfactant mixtures on beef quality traits such as flavor and color stability may make their use unacceptable. Purp...

  5. Surfactant enhanced disinfection of the human norovirus surrogate, tulane virus with organic acids and surfactant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human infection with foodborne viruses can occur following consumption of contaminated food, person-to-person body contact, or release of aerosols. Combinatorial treatments of surfactants and organic acids may have synergistic or additive mechanisms to inactivate foodborne viruses and prevent outbr...

  6. Nitric acid-organic mixtures surveyed for use in separation by anion exchange methods

    NASA Technical Reports Server (NTRS)

    Bloomquist, C. A. A.; Faris, J. P.; Stewart, D. C.

    1968-01-01

    Column elution-spectrographic analysis technique compares certain solvents directly to the methanol system, using inert rare earths instead of actinides. Distribution ratios for americium between 90 percent solvent, 10 percent 5 M nitric acid and Dowex 1 nitrate form resin for a large group of organics miscible in water was determined.

  7. Chirality of meteoritic free and IOM-derived monocarboxylic acids and implications for prebiotic organic synthesis

    NASA Astrophysics Data System (ADS)

    Aponte, José C.; Tarozo, Rafael; Alexandre, Marcelo R.; Alexander, Conel M. O.'D.; Charnley, Steven B.; Hallmann, Christian; Summons, Roger E.; Huang, Yongsong

    2014-04-01

    The origin of homochirality and its role in the development of life on Earth are among the most intriguing questions in science. It has been suggested that carbonaceous chondrites seeded primitive Earth with the initial organic compounds necessary for the origin of life. One of the strongest pieces of evidence supporting this theory is that certain amino acids in carbonaceous chondrites display a significant L-enantiomeric excess (ee), similar to those use by terrestrial life. Analyses of ee in meteoritic molecules other than amino acids would shed more light on the origins of homochirality. In this study we investigated the stereochemistry of two groups of compounds: (1) free monocarboxylic acids (MCAs) from CM2 meteorites LON 94101 and Murchison; and (2) the aliphatic side chains present in the insoluble organic matter (IOM) and extracted in the form of monocarboxylic acids (MCAs) from EET 87770 (CR2) and Orgueil (CI1). Contrary to the well-known ee observed for amino acids in meteorites, we found that meteoritic branched free and IOM-derived MCAs with 5-8 carbon atoms are essentially racemic. The racemic nature of these compounds is used to discuss the possible influence of ultraviolet circularly polarized light (UVCPL) and aqueous alterations on the parent body on chirality observed in in carbonaceous chondrites.

  8. Direct Capture of Organic Acids From Fermentation Media Using Ionic Liquids

    SciTech Connect

    Klasson, K.T.

    2004-11-03

    Several ionic liquids have been investigated for the extraction of organic acids from fermentation broth. Partitioning of representative organic acids (lactic, acetic, and succinic) between aqueous solution and nine hydrophobic ionic liquids was measured. The extraction efficiencies were strongly dependent on pH of the aqueous phase. Distribution coefficient was very good (approximately 60) at low succinic acid concentrations for one of the ionic liquids (trihexyltetradecylphosphonium methanesulfonate) at neutral pH. However, this ionic liquid had to be diluted with nonanol due to its high viscosity in order to be useful. A diluent (trioctylamine) was also added to this mixture. The results suggest that an extraction system based on ionic liquids may be feasible for succinic acid recovery from fermentation broth and that two ideal extraction stages are needed to reduce the concentration from 33 g/L to 1 g/L of succinic acid. Further studies are needed to evaluate other issues related to practical applications, including ionic liquid loss in the process, toxicity effects of ionic liquids during simultaneous fermentation and extractions.

  9. Fractionation of Fe isotopes by soil microbes and organic acids

    USGS Publications Warehouse

    Brantley, Susan L.; Liermann, Laura; Bullen, Thomas D.

    2001-01-01

    Small natural variations in Fe isotopes have been attributed to biological cycling. However, without understanding the mechanism of fractionation, it is impossible to interpret such variations. Here we show that the δ56Fe of Fe dissolved from a silicate soil mineral by siderophore-producing bacteria is as much as 0.8% lighter than bulk Fe in the mineral. A smaller isotopic shift is observed for Fe released abiotically by two chelates, and the magnitude of the shift increases with affinity of the ligand for Fe, consistent with a kinetic isotope effect during hydrolysis of Fe at the mineral surface. Fe dissolved abiotically without chelates shows no isotopic shift. The δ56Fe of the exchange fraction on soil grains is also lighter by ~0.6%-1% than Fe from both hornblende and iron oxyhydroxides. The kinetic isotope effect is therefore preserved in open systems such as soils. when recorded in the rock record, Fe isotopic fractionation could document Fe transport by organic molecules or by microbes where such entities were present in the geologic past.

  10. An organic solvent-tolerant phenolic acid decarboxylase from Bacillus licheniformis for the efficient bioconversion of hydroxycinnamic acids to vinyl phenol derivatives.

    PubMed

    Hu, Hongfei; Li, Lulu; Ding, Shaojun

    2015-06-01

    A new phenolic acid decarboxylase gene (blpad) from Bacillus licheniformis was cloned and overexpressed in Escherichia coli. The full-length blpad encodes a 166-amino acid polypeptide with a predicted molecular mass and pI of 19,521 Da and 5.02, respectively. The recombinant BLPAD displayed maximum activity at 37 °C and pH 6.0. This enzyme possesses a broad substrate specificity and is able to decarboxylate p-coumaric, ferulic, caffeic, and sinapic acids at the relative ratios of specific activities 100:74.59:34.41:0.29. Kinetic constant K m values toward p-coumaric, ferulic, caffeic, and sinapic acids were 1.64, 1.55, 1.93, and 2.45 mM, and V max values were 268.43, 216.80, 119.07, and 0.78 U mg(-1), respectively. In comparison with other phenolic acid decarboxylases, BLPAD exhibited remarkable organic solvent tolerance and good thermal stability. BLPAD showed excellent catalytic performance in biphasic organic/aqueous systems and efficiently converted p-coumaric and ferulic acids into 4-vinylphenol and 4-vinylguaiacol. At 500 mM of p-coumaric and ferulic acids, the recombinant BLPAD produced a total 60.63 g l(-1) 4-vinylphenol and 58.30 g l(-1) 4-vinylguaiacol with the conversion yields 97.02 and 70.96 %, respectively. The low yield and product concentration are the crucial drawbacks to the practical bioproduction of vinyl phenol derivatives using phenolic acid decarboxylases. These unusual properties make BLPAD a desirable biocatalyst for commercial use in the bioconversion of hydroxycinnamic acids to vinyl phenol derivatives via enzymatic decarboxylation in a biphasic organic/aqueous reaction system. PMID:25547838

  11. Predicting sorption of organic acids to a wide range of carbonized sorbents

    NASA Astrophysics Data System (ADS)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2016-04-01

    Many contaminants and infochemicals are organic acids that undergo dissociation under environmental conditions. The sorption of dissociated anions to biochar and other carbonized sorbents is typically lower than that of neutral species. It is driven by complex processes that are not yet fully understood. It is known that predictive approaches developed for neutral compounds are unlikely to be suitable for organic acids, due to the effects of dissociation on sorption. Previous studies on the sorption of organic acids to soils have demonstrated that log Dow, which describes the decrease in hydrophobicity of acids upon dissociation, is a useful alternative to log Kow. The aim of the present study was to adapt a log Dow based approach to describe the sorption of organic acids to carbonized sorbents. Batch experiments were performed with a series of 9 sorbents (i.e., carbonized wood shavings, pig manure, and sewage sludge, carbon nanotubes and activated carbon), and four acids commonly used for pesticidal and biocidal purposes (i.e., 2,4-D, MCPA, 2,4-DB, and triclosan). Sorbents were comprehensively characterized, including by N2 and CO2 physisorption, Fourier transform infrared spectroscopy, and elemental analysis. The wide range of sorbents considered allows (i) discussing the mechanisms driving the sorption of neutral and anionic species to biochar, and (ii) their dependency on sorbate and sorbent properties. Results showed that the sorption of the four acids was influenced by factors that are usually not considered for neutral compounds (i.e., pH, ionic strength). Dissociation affected the sorption of the four compounds, and sorption of the anions ranged over five orders of magnitude, thus substantially contributing to sorption in some cases. For prediction purposes, most of the variation in sorption to carbonized sorbents (89%) could be well described with a two-parameter regression equation including log Dow and sorbent specific surface area. The proposed model

  12. Permeability of acetic acid through organic films at the air-aqueous interface.

    PubMed

    Gilman, Jessica B; Vaida, Veronica

    2006-06-22

    Recent field studies of collected aerosol particles, both marine and continental, show that the outermost layers contain long-chain (C >or= 18) organics. The presence of these long-chain organics could impede the transport of gases and other volatile species across the interface. This could effect the particle's composition, lifetime, and heterogeneous chemistry. In this study, the uptake rate of acetic acid vapor across a clean interface and through films of long-chain organics into an aqueous subphase solution containing an acid-base indicator (bromocresol green) was measured under ambient conditions using visible absorption spectroscopy. Acetic acid is a volatile organic compound (VOC) and is an atmospherically relevant organic acid. The uptake of acetic acid through single-component organic films of 1-octadecanol (C(18)H(38)O), 1-triacontanol (C(30)H(62)O), cis-9-octadecen-1-ol (C(18)H(36)O), and nonacosane (C(29)H(60)) in addition to two mixed films containing equimolar 1-triacontanol/nonacosane and equimolar 1-triacontanol/cis-9-octadecen-1-ol was determined. These species represent long-chain organic compounds that reside at the air-aqueous interface of atmospheric aerosols. The cis-9-octadecen-1-ol film had little effect on the net uptake rate of acetic acid vapor into solution; however, the uptake rate was reduced by almost one-half by an interfacial film of 1-triacontanol. The measured uptake rates were used to calculate the permeability of acetic acid through the various films which ranged from 1.5 x 10(-3) cm s(-1) for 1-triacontanol, the least permeable film, to 2.5 x 10(-2) cm s(-1) for cis-9-octadecen-1-ol, the most permeable film. Both mixed films had permeabilities that were between that of the single-component films comprising the mixture. This shows that the permeability of a mixed film may not be solely determined by the most permeable species in the mixture. The permeabilities of all the films studied here are discussed in relation to their

  13. Alteration of organic matter during infaunal polychaete gut passage and links to sediment organic geochemistry. Part I: Amino acids

    NASA Astrophysics Data System (ADS)

    Woulds, Clare; Middelburg, Jack J.; Cowie, Greg L.

    2012-01-01

    Of the factors which control the quantity and composition of organic matter (OM) buried in marine sediments, the links between infaunal ingestion and gut passage and sediment geochemistry have received relatively little attention. This study aimed to use feeding experiments and novel isotope tracing techniques to quantify amino acid net accumulation and loss during polychaete gut passage, and to link this to patterns of selective preservation and decay in sediments. Microcosms containing either Arenicolamarina or Hediste (formerly Nereis) diversicolor were constructed from defaunated sediment and filtered estuarine water, and maintained under natural temperature and light conditions. They were fed with 13C-labelled diatoms daily for 8 days, and animals were transferred into fresh, un-labelled sediment after ∼20 days. Samples of fauna, microcosm sediment and faecal matter were collected after 8, ∼20 and ∼40 days, and analysed for their bulk isotopic signatures and 13C-labelled amino acid compositions. Bulk isotopic data showed that, consistent with their feeding modes, Hediste assimilated added 13C more quickly, and attained a higher labelling level than Arenicola. Both species retained the added 13C in their biomass even after removal from the food. A principal component analysis of 13C-labelled amino acid mole percentages showed clear differences in composition between the algae, faunal tissues, and sediment plus faecal matter. Further, the two species of polychaete showed different compositions in their tissues. The amino acids phenylalanine, valine, leucine, iso-leucine, threonine and proline showed net accumulation in polychaete tissues. Serine, methionine, lysine, aspartic and glutamic acids and tyrosine were rapidly lost through metabolism, consistent with their presence in easily digestible cell components (as opposed to cell walls which offer physical protection). All sample types (polychaete tissues, sediments and faecal matter) were enriched in

  14. Salicylic Acid-Based Organic Dyes Acting as the Photosensitizer for Solar Cells.

    PubMed

    Hong, Sungjun; Park, Jae-Hyeong; Han, Ah-Reum; Ko, Kwan-Woo; Eom, Jin Hee; Namgoong, Sung Keon; Lo, Alvie S V; Gordon, Keith C; Yoon, Sungho; Han, Chi-Hwan

    2016-05-01

    A D-π-A metal-free organic dye, featuring salicylic acid as a novel acceptor/anchoring unit, has been designed, synthesized and applied to dye-sensitized solar cell. The detailed photophysical, electrochemical, photovoltaic and sensitizing properties of the organic dye were investigated, in addition to the computational studies of the dye and dye-(TiO2)6 system. A solar cell device using this new organic dye as a sensitizer produced a solar to electric power conversion efficiency (PCE) of 3.49% (J(sc) = 6.69 mAcm-2, V(oc) = 0.74 V and ff = 0.70) under 100 mWcm(-2) simulated AM 1.5 G solar irradiation, demonstrating that the salicylic acid-based organic dye is a suitable alternative to currently used organometallic dyes. PMID:27483839

  15. Molecular analysis of microbial community structure in the chicken ileum following organic acid supplementation.

    PubMed

    Nava, Gerardo M; Attene-Ramos, Matias S; Gaskins, H Rex; Richards, James D

    2009-06-12

    To compensate for possible decreases in animal production due to restrictions on the use of antibiotics as growth promoters, several non-antibiotic alternatives have been investigated. Organic acid supplementation (OAS) of feed or water has shown some promising results for affecting intestinal microbiota and reducing pathogenic bacteria in the gastrointestinal (GI) tract. However, few studies have explored the effects of OAS on microbial communities using objective molecular-based techniques. The aim of the present study was to characterize via 16S rRNA gene-based approaches responses of the intestinal microbiota after OAS in chicks. Newborn chicks were randomly divided in four treatments: (a) control (no antibiotic, no OAS); (b) antibiotic administration (bacitracin MD); (c) organic acid blend dl-2-hydroxy-4(methylthio) butanoic acid [HMTBA]; lactic, and phosphoric acid (HLP); and (d) organic acid blend HMTBA, formic, and propionic acid (HFP). Ileal contents and mucosal scrapings from 7 chicks/treatment/day were taken at 15, 22, and 29 days of age, and genomic DNA was isolated for the molecular analysis of the intestinal microbiota. The data demonstrate that HFP blend treatment for 29 consecutive days affected ileal microbial populations as indicated by community fingerprinting analysis (16S rRNA PCR-DGGE). In parallel, total bacterial and lactobacilli populations were increased by the HFP blend treatment as demonstrated by targeted qPCR analysis of 16S rRNA. In summary, the present data demonstrate that OAS, HFP blend treatment in particular, shifts intestinal microbiota, generates more homogenous and distinct populations, and increases Lactobacillus spp. colonization of the chick ileum. PMID:19269115

  16. Identification of Organic Sulfate Esters in d-Limonene Ozonolysis SOA Under Acidic Condition

    NASA Astrophysics Data System (ADS)

    Iinuma, Y.; Mueller, C.; Boege, O.; Herrmann, H.

    2006-12-01

    Secondary organic aerosol (SOA) components from gas phase ozonolysis of d-limonene were investigated in a series of indoor chamber experiments. The compounds smaller than 300 Da were quantified using capillary electrophoresis coupled to electrospray ionisation ion trap mass spectrometry (CE/ESI-ITMS). HPLC coupled to an ESI-TOFMS and an ESI-ITMS was used for structural study of dimmers and oligomers. Only 10% of the produced SOA could be attributed to low molecular weight carboxylic acids (Mw<300). The oxidation products which have molecular weights over 300 were detected regardless of the seed particle acidity but the concentrations of these compounds were much higher for acidic seed particle experiments. Strong signals of the compounds with mass to charge ratios (m/z) 281, 465 and 481 were detected when sulphuric acid was used in the seed particles. These compounds showed a strong fragment of m/z 97 in MS2 or MS3 spectra indicating the presence of sulfate in the structures. HPLC/ESI-TOFMS analysis suggests the elemental compositions of C10H17O7S-, C20H33O10S- and C20H33O11S- for m/z 281, 465 and 481, respectively. Based on MS^{n} and TOFMS results, they are most likely organic sulfate esters, possibly formed by a heterogeneous acid catalyzed reaction of a limonene oxidation product and sulfuric acid in the particle phase. The concentrations of the organic sulfate ester were as high as 3.7 μgm-3 for m/z 281.

  17. Aquatic photodegradation of sunscreen agent p-aminobenzoic acid in the presence of dissolved organic matter.

    PubMed

    Zhou, Lei; Ji, Yuefei; Zeng, Chao; Zhang, Ya; Wang, Zunyao; Yang, Xi

    2013-01-01

    Dissolved organic matter (DOM) is an important photosensitizer for the phototransformation of organic contaminants in sunlit natural waters. This article focuses on the photolysis kinetics and mechanism of sunscreen agent p-aminobenzoic acid (PABA) in the presence of four kinds of DOM; Suwannee River fulvic acid (SRFA), Suwannee River humic acid (SRHA), Nordic Lake fulvic acid (NOFA) and Nordic Lake humic acid (NOHA). It is evident that direct photolysis of PABA is highly pH-dependent because different species of PABA have different electrical densities on the ring system. The presence of four kinds of DOM inhibits the photolysis of PABA primarily due to their light screening effect. Meanwhile, a complex interaction involving energy transfer, triplet carbonyl group induced electron transfer, and amino acid induced proton abstraction between PABA and DOM is verified by competition kinetics experiments and density functional theory (DFT) computation. In addition, DOM-induced singlet oxygen ((1)O(2)) and hydroxyl radical (OH) are determined to play an insignificant role in PABA photolysis by competition dynamics method. Photoproducts identification using solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC-MS) techniques reveals that the distribution of the photoproducts could not be affected by the addition of DOM. Two photodegradation pathways of PABA are temporarily proposed, in which the di(tri)-polymerization of intermediates are the dominant pathway whereas the oxidation of amino group to nitryl followed by hydroxylation is a minor process. Our findings reveal that direct photolysis is the dominant transformation pathway of PABA in natural sunlit waters, while the presence of DOM could evidently influence such process by light screening effect, energy transfer, electron transfer and proton abstraction mechanism. The findings in this study provide useful information for understanding of interaction between DOM and organic contaminants. PMID

  18. Chemically Activated Formation of Organic Acids in Reactions of the Criegee Intermediate with Aldehydes and Ketones

    SciTech Connect

    Jalan, Amrit; Allen, Joshua W.; Green, William H.

    2013-08-08

    Reactions of the Criegee intermediate (CI, .CH2OO.) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between .CH2OO. and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48–51 kcal mol-1 lower in energy, formed via 1,3- cycloaddition of .CH2OO. across the CQO bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O–O bond to form hydroxyalkyl esters. These hydroxyalkyl esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO o CH3CHO o CH3COCH3 (the highest yield being 10-4 times lower than the initial .CH2OO. concentration). At low pressures, chemically activated formation of organic acids (formic acid in the case of HCHO and CH3COCH3, formic and acetic acid in the case of CH3CHO) was found to be the major product channel in agreement with recent direct measurements. Collisional energy transfer parameters and the barrier heights for SOZ reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.

  19. Recovery of nickel and cobalt from organic acid complexes: adsorption mechanisms of metal-organic complexes onto aminophosphonate chelating resin.

    PubMed

    Deepatana, A; Valix, M

    2006-09-21

    This study examined the recovery of nickel and cobalt from organic acid complexes using a chelating aminophosphonate Purolite S950 resin. These metal complexes are generated by bioleaching nickel laterite ores, a commercial nickel and cobalt mineral oxide, with heterotrophic organism and their metabolites or organic acid products. Equilibrium adsorption tests were conducted as a function of Ni and Co concentrations (15-2000 mg/L), solution pH (0.01 and 0.1 M acids) and three metabolic complexing agents (citrate, malate and lactate). It was shown that the adsorption of the various Ni- and Co-complexes on Purolite were quite low, 16-18 and 5.4-9 mg/g of resin, respectively, in comparison to the smaller nickel ions and nickel sulfate. This was attributed to the bulky organic ligands which promoted crowding effect or steric hindrance. The adsorption of these complexes was further hampered by the strong affinity of the resin to H+ ions under acidic conditions. Mechanisms of adsorption, as inferred from the fitted empirical Langmuir and Freundlich models, were correlated to the proposed steric hindrance and competitive adsorption effects. Nickel and cobalt elution from the resin were found be effective and were independent of the type of metal complexes and metal concentrations. This study demonstrated the relative challenges involved in recovering nickel and cobalt from bioleaching solutions. PMID:16698178

  20. The Separative Bioreactor: A Continuous Separation Process for the Simultaneous Production and Direct Capture of Organic Acids

    PubMed Central

    Arora, M. B.; Hestekin, J. A.; Snyder, S. W.; St. Martin, E. J.; Lin, Y. J.; Donnelly, M. I.; Millard, C. Sanville

    2007-01-01

    Abstract The replacement of petrochemicals with biobased chemicals requires efficient bioprocesses, biocatalysis, and product recovery. Biocatalysis (e.g., enzyme conversion and fermentation) offers an attractive alternative to chemical processing because biocatalysis utilize renewable feedstocks under benign reaction conditions. One class of chemical products that could be produced in large volumes by biocatalysis is organic acids. However, biocatalytic reactions to produce organic acids typically result in only dilute concentrations of the product because of product inhibition and acidification that drives the reaction pH outside of the optimal range for the biocatalyst. Buffering or neutralization results in formation of the acid salt rather than the acid, which requires further processing to recover the free acid product. To address these barriers to biocatalytic organic acid production, we developed the “separative bioreactor” based on resin wafer electrodeionization, which is an electro-deionization platform that uses resin wafers fabricated from ion exchange resins. The separative bioreactor simultaneously separates the organic acid from the biocatalyst as it is produced, thus it avoids product inhibition enhancing reaction rates. In addition, the separative bioreactor recovers the product in its acid form to avoid neutralization. The instantaneous separation of acid upon formation in the separative bioreactor is one of the first truly one-step systems for producing organic acids. The separative bioreactor was demonstrated with two systems. In the first demonstration, the enzyme glucose fructose oxidoreductase (GFOR) was immobilized in the reactor and later regenerated in situ. GFOR produced gluconic acid (in its acid form) continuously for 7 days with production rates up to 1000 mg/L/hr at >99% product recovery and GFOR reactivity >30mg gluconic acid/mg GFOR/hour. In the second demonstration, the E. coli strain CSM1 produced lactic acid for up to 24

  1. Amino acid diagenesis, organic carbon and nitrogen mineralization in surface sediments from the inner Oslofjord, Norway

    SciTech Connect

    Haugen, J.E. ); Lichtentaler, R. )

    1991-06-01

    Total hydrolyzed amino acids (THAA), total organic carbon (TOC), and total nitrogen (TN) have been measured in an oxic and anoxic surface sediment from the inner Oslofjord. Downcore variations of these parameters are ascribed to both diagenesis and changes in organic matter supply, the latter being most important. These changes are most prominent in the anoxic sediment, which reflects the eutrophication history of the innermost part of the fjord. Downcore, THAA content decreased from 3.8 to 2.0 mg/g (salt-free dry weight) in the oxic sediment and from 22.3 to 3.8 mg/g in the anoxic sediment. Total amino acid nitrogen varied between 17 and 34% of total nitrogen in the oxic, and 25 and 54% in the anoxic, sediment. Organic carbon and organic nitrogen accumulation rates and depth integrated mineralization rates are about three times higher in the anoxic sediment than in the oxic sediment. Recycling of amino acids accounted for 4 to 12% of the total organic carbon and 13 to 40% of the total organic nitrogen regenerated in these sediments.

  2. Ethanol exposure affects gene expression in the embryonic organizer and reduces retinoic acid levels.

    PubMed

    Yelin, Ronit; Schyr, Racheli Ben-Haroush; Kot, Hadas; Zins, Sharon; Frumkin, Ayala; Pillemer, Graciela; Fainsod, Abraham

    2005-03-01

    Fetal Alcohol Spectrum Disorder (FASD) is a set of developmental malformations caused by alcohol consumption during pregnancy. Fetal Alcohol Syndrome (FAS), the strongest manifestation of FASD, results in short stature, microcephally and facial dysmorphogenesis including microphthalmia. Using Xenopus embryos as a model developmental system, we show that ethanol exposure recapitulates many aspects of FAS, including a shortened rostro-caudal axis, microcephally and microphthalmia. Temporal analysis revealed that Xenopus embryos are most sensitive to ethanol exposure between late blastula and early/mid gastrula stages. This window of sensitivity overlaps with the formation and early function of the embryonic organizer, Spemann's organizer. Molecular analysis revealed that ethanol exposure of embryos induces changes in the domains and levels of organizer-specific gene expression, identifying Spemann's organizer as an early target of ethanol. Ethanol also induces a defect in convergent extension movements that delays gastrulation movements and may affect the overall length. We show that mechanistically, ethanol is antagonistic to retinol (Vitamin A) and retinal conversion to retinoic acid, and that the organizer is active in retinoic acid signaling during early gastrulation. The model suggests that FASD is induced in part by an ethanol-dependent reduction in retinoic acid levels that are necessary for the normal function of Spemann's organizer. PMID:15708568

  3. Demospongic Acids Revisited

    PubMed Central

    Kornprobst, Jean-Michel; Barnathan, Gilles

    2010-01-01

    The well-known fatty acids with a Δ5,9 unsaturation system were designated for a long period as demospongic acids, taking into account that they originally occurred in marine Demospongia sponges. However, such acids have also been observed in various marine sources with a large range of chain-lengths (C16–C32) and from some terrestrial plants with short acyl chains (C18–C19). Finally, the Δ5,9 fatty acids appear to be a particular type of non-methylene-interrupted fatty acids (NMA FAs). This article reviews the occurrence of these particular fatty acids in marine and terrestrial organisms and shows the biosynthetic connections between Δ5,9 fatty acids and other NMI FAs. PMID:21116406

  4. Salicylic acids

    PubMed Central

    Hayat, Shamsul; Irfan, Mohd; Wani, Arif; Nasser, Alyemeni; Ahmad, Aqil

    2012-01-01

    Salicylic acid is well known phytohormone, emerging recently as a new paradigm of an array of manifestations of growth regulators. The area unleashed yet encompassed the applied agriculture sector to find the roles to strengthen the crops against plethora of abiotic and biotic stresses. The skipped part of integrated picture, however, was the evolutionary insight of salicylic acid to either allow or discard the microbial invasion depending upon various internal factors of two interactants under the prevailing external conditions. The metabolic status that allows the host invasion either as pathogenesis or symbiosis with possible intermediary stages in close systems has been tried to underpin here. PMID:22301975

  5. Capillary electrophoresis for the analysis of short-chain organic acids in coffee.

    PubMed

    Galli, Verónica; Barbas, Coral

    2004-04-01

    A simple and rapid capillary electrophoresis method for low-molecular mass carboxylic acids measurement in coffee has been optimised and validated. Regarding separation conditions, phosphate concentration in the background electrolyte, surfactant type [cetyltrimethylammonium bromide (CTAB), tetradecyltri methylammonium bromide (TTAB) and hexadimethrine bromide (HDB)], percentages of organic modifier and pH were assayed. The best conditions were: 500 mM phosphate buffer at pH 6.25 with CTAB 0.5 mM. The separation was carried out with an uncoated fused-silica capillary (57 cm x 50 microm i.d.) which was operated at -10 kV potential. Detection was performed at 200 nm. In such conditions 17 short-chain organic acids: oxalic, formic, fumaric, mesaconic, succinic, maleic, malic, isocitric, citric, acetic, citraconic, glycolic, propionic, lactic, furanoic, pyroglutamic, quinic acids plus nitrate were separated, identified and measured. Validation parameters of the method allow us to consider it lineal, accurate and precise and, therefore, reliable for its employment in food composition studies or for quality control. Results in coffees with different industrial treatment allow the detection of important differences in the organic acid profile. PMID:15065808

  6. Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon availability.

    PubMed

    Figueroa, Carlos M; Feil, Regina; Ishihara, Hirofumi; Watanabe, Mutsumi; Kölling, Katharina; Krause, Ursula; Höhne, Melanie; Encke, Beatrice; Plaxton, William C; Zeeman, Samuel C; Li, Zhi; Schulze, Waltraud X; Hoefgen, Rainer; Stitt, Mark; Lunn, John E

    2016-02-01

    Trehalose 6-phosphate (Tre6P) is an essential signal metabolite in plants, linking growth and development to carbon metabolism. The sucrose-Tre6P nexus model postulates that Tre6P acts as both a signal and negative feedback regulator of sucrose levels. To test this model, short-term metabolic responses to induced increases in Tre6P levels were investigated in Arabidopsis thaliana plants expressing the Escherichia coli Tre6P synthase gene (otsA) under the control of an ethanol-inducible promoter. Increased Tre6P levels led to a transient decrease in sucrose content, post-translational activation of nitrate reductase and phosphoenolpyruvate carboxylase, and increased levels of organic and amino acids. Radio-isotope ((14)CO2) and stable isotope ((13)CO2) labelling experiments showed no change in the rates of photoassimilate export in plants with elevated Tre6P, but increased labelling of organic acids. We conclude that high Tre6P levels decrease sucrose levels by stimulating nitrate assimilation and anaplerotic synthesis of organic acids, thereby diverting photoassimilates away from sucrose to generate carbon skeletons and fixed nitrogen for amino acid synthesis. These results are consistent with the sucrose-Tre6P nexus model, and implicate Tre6P in coordinating carbon and nitrogen metabolism in plants. PMID:26714615

  7. Parallel transport of an organic acid by solid-phase and macropore diffusion in a weakly basic ion exchanger

    SciTech Connect

    Yoshida, Hiroyuki; Takatsuji; Wataru

    2000-04-01

    The parallel transport of an organic acid by solid-phase and macropore diffusion within a porous ion exchanger was studied by measuring equilibrium isotherms and uptake curves for adsorption of acetic acid and lactic acid on a weakly basic ion exchanger, DIAION WA30. Experimental adsorption isotherms were correlated by the Langmuir equation. The Langmuir equilibrium constant of acetic acid was close to that of lactic acid, and the saturation capacity of acetic acid was about 84% that of lactic acid. Intraparticle effective diffusivity D{sub eff} was determined using the homogeneous Fickian diffusion model. The value of D{sub eff} for acetic acid was about 1.5 times lactic acid. Because D{sub eff} increased with linearly increasing bulk phase concentration C{sub 0}, D{sub eff} was separated to the solid-phase diffusivity D{sub s} and the macropore diffusivity D{sub P} by applying the parallel diffusion model. The model agreed well with the experimental curves. The values of D{sub S} and D{sub P} for acetic acid were about 2 and 1.5 times those of lactic acid, respectively. The acetic acid and the lactic acid may be separated by the difference of the diffusion rates.

  8. Deracemization of Amino Acids by Partial Sublimation and via Homochiral Self-Organization

    NASA Astrophysics Data System (ADS)

    Tarasevych, Arkadii V.; Sorochinsky, Alexander E.; Kukhar, Valery P.; Guillemin, Jean-Claude

    2013-04-01

    Deracemization of a 50/50 mixture of enantiomers of aliphatic amino acids (Ala, Leu, Pro, Val) can be achieved by a simple sublimation of a pre-solubilized solid mixture of the racemates with a huge amount of a less-volatile optically active amino acid (Asn, Asp, Glu, Ser, Thr). The choice of chirality correlates with the handedness of the enantiopure amino acids—Asn, Asp, Glu, Ser, and Thr. The deracemization, enantioenrichment and enantiodepletion observed in these experiments clearly demonstrate the preferential homochiral interactions and a tendency of natural amino acids to homochiral self-organization. These data may contribute toward an ultimate understanding of the pathways by which prebiological homochirality might have emerged.

  9. Recent advances in alcohol and organic acid fractionation of lignocellulosic biomass.

    PubMed

    Li, Ming-Fei; Yang, Sheng; Sun, Run-Cang

    2016-01-01

    Organosolv fractionation is a promising process to separate lignocellulosic biomass for the preparation of multiply products including biofuels, chemicals, and materials. This review presents the state of art of different processes applying alcohols and organic acids to treat lignocellulosic biomass for the production of ethanol, lignin, xylose, etc. The major organosolv technologies using ethanol, formic acid, and acetic acid, are intensively introduced and discussed in depth. In addition, the structural modifications of the major components of lignocelluloses, the technical processes, and the applications of the products were also summarized. The object of the review is to provide recent information in the field of organosolv process for the integrated biorefinery. The perspectives of the challenge and opportunity related to this topic are also presented. PMID:26476870

  10. Codon and Amino Acid Usage Are Shaped by Selection Across Divergent Model Organisms of the Pancrustacea.

    PubMed

    Whittle, Carrie A; Extavour, Cassandra G

    2015-11-01

    In protein-coding genes, synonymous codon usage and amino acid composition correlate to expression in some eukaryotes, and may result from translational selection. Here, we studied large-scale RNA-seq data from three divergent arthropod models, including cricket (Gryllus bimaculatus), milkweed bug (Oncopeltus fasciatus), and the amphipod crustacean Parhyale hawaiensis, and tested for optimization of codon and amino acid usage relative to expression level. We report strong signals of AT3 optimal codons (those favored in highly expressed genes) in G. bimaculatus and O. fasciatus, whereas weaker signs of GC3 optimal codons were found in P. hawaiensis, suggesting selection on codon usage in all three organisms. Further, in G. bimaculatus and O. fasciatus, high expression was associated with lowered frequency of amino acids with large size/complexity (S/C) scores in favor of those with intermediate S/C values; thus, selection may favor smaller amino acids while retaining those of moderate size for protein stability or conformation. In P. hawaiensis, highly transcribed genes had elevated frequency of amino acids with large and small S/C scores, suggesting a complex dynamic in this crustacean. In all species, the highly transcribed genes appeared to favor short proteins, high optimal codon usage, specific amino acids, and were preferentially involved in cell-cycling and protein synthesis. Together, based on examination of 1,680,067, 1,667,783, and 1,326,896 codon sites in G. bimaculatus, O. fasciatus, and P. hawaiensis, respectively, we conclude that translational selection shapes codon and amino acid usage in these three Pancrustacean arthropods. PMID:26384771

  11. Codon and Amino Acid Usage Are Shaped by Selection Across Divergent Model Organisms of the Pancrustacea

    PubMed Central

    Whittle, Carrie A.; Extavour, Cassandra G.

    2015-01-01

    In protein-coding genes, synonymous codon usage and amino acid composition correlate to expression in some eukaryotes, and may result from translational selection. Here, we studied large-scale RNA-seq data from three divergent arthropod models, including cricket (Gryllus bimaculatus), milkweed bug (Oncopeltus fasciatus), and the amphipod crustacean Parhyale hawaiensis, and tested for optimization of codon and amino acid usage relative to expression level. We report strong signals of AT3 optimal codons (those favored in highly expressed genes) in G. bimaculatus and O. fasciatus, whereas weaker signs of GC3 optimal codons were found in P. hawaiensis, suggesting selection on codon usage in all three organisms. Further, in G. bimaculatus and O. fasciatus, high expression was associated with lowered frequency of amino acids with large size/complexity (S/C) scores in favor of those with intermediate S/C values; thus, selection may favor smaller amino acids while retaining those of moderate size for protein stability or conformation. In P. hawaiensis, highly transcribed genes had elevated frequency of amino acids with large and small S/C scores, suggesting a complex dynamic in this crustacean. In all species, the highly transcribed genes appeared to favor short proteins, high optimal codon usage, specific amino acids, and were preferentially involved in cell-cycling and protein synthesis. Together, based on examination of 1,680,067, 1,667,783, and 1,326,896 codon sites in G. bimaculatus, O. fasciatus, and P. hawaiensis, respectively, we conclude that translational selection shapes codon and amino acid usage in these three Pancrustacean arthropods. PMID:26384771

  12. Optimization of the polar organic chemical integrative sampler for the sampling of acidic and polar herbicides.

    PubMed

    Fauvelle, Vincent; Mazzella, Nicolas; Belles, Angel; Moreira, Aurélie; Allan, Ian J; Budzinski, Hélène

    2014-05-01

    This paper presents an optimization of the pharmaceutical Polar Organic Chemical Integrative Sampler (POCIS-200) under controlled laboratory conditions for the sampling of acidic (2,4-dichlorophenoxyacetic acid (2,4-D), acetochlor ethanesulfonic acid (ESA), acetochlor oxanilic acid, bentazon, dicamba, mesotrione, and metsulfuron) and polar (atrazine, diuron, and desisopropylatrazine) herbicides in water. Indeed, the conventional configuration of the POCIS-200 (46 cm(2) exposure window, 200 mg of Oasis® hydrophilic lipophilic balance (HLB) receiving phase) is not appropriate for the sampling of very polar and acidic compounds because they rapidly reach a thermodynamic equilibrium with the Oasis HLB receiving phase. Thus, we investigated several ways to extend the initial linear accumulation. On the one hand, increasing the mass of sorbent to 600 mg resulted in sampling rates (R s s) twice as high as those observed with 200 mg (e.g., 287 vs. 157 mL day(-1) for acetochlor ESA). Although detection limits could thereby be reduced, most acidic analytes followed a biphasic uptake, proscribing the use of the conventional first-order model and preventing us from estimating time-weighted average concentrations. On the other hand, reducing the exposure window (3.1 vs. 46 cm(2)) allowed linear accumulations of all analytes over 35 days, but R s s were dramatically reduced (e.g., 157 vs. 11 mL day(-1) for acetochlor ESA). Otherwise, the observation of biphasic releases of performance reference compounds (PRC), though mirroring acidic herbicide biphasic uptake, might complicate the implementation of the PRC approach to correct for environmental exposure conditions. PMID:24691721

  13. Mechanistic study of secondary organic aerosol components formed from nucleophilic addition reactions of methacrylic acid epoxide

    NASA Astrophysics Data System (ADS)

    Birdsall, A. W.; Miner, C. R.; Mael, L. E.; Elrod, M. J.

    2014-08-01

    Recently, methacrylic acid epoxide (MAE) has been proposed as a precursor to an important class of isoprene-derived compounds found in secondary organic aerosol (SOA): 2-methylglyceric acid (2-MG) and a set of oligomers, nitric acid esters and sulfuric acid esters related to 2-MG. However, the specific chemical mechanisms by which MAE could form these compounds have not been previously studied. In order to determine the relevance of these processes to atmospheric aerosol, MAE and 2-MG have been synthesized and a series of bulk solution-phase experiments aimed at studying the reactivity of MAE using nuclear magnetic resonance (NMR) spectroscopy have been performed. The present results indicate that the acid-catalyzed MAE reaction is more than 600 times slower than a similar reaction of an important isoprene-derived epoxide, but is still expected to be kinetically feasible in the atmosphere on more acidic SOA. The specific mechanism by which MAE leads to oligomers was identified, and the reactions of MAE with a number of atmospherically relevant nucleophiles were also investigated. Because the nucleophilic strengths of water, sulfate, alcohols (including 2-MG), and acids (including MAE and 2-MG) in their reactions with MAE were found to be of a similar magnitude, it is expected that a diverse variety of MAE + nucleophile product species may be formed on ambient SOA. Thus, the results indicate that epoxide chain reaction oligomerization will be limited by the presence of high concentrations of non-epoxide nucleophiles (such as water); this finding is consistent with previous environmental chamber investigations of the relative humidity-dependence of 2-MG-derived oligomerization processes and suggests that extensive oligomerization may not be likely on ambient SOA because of other competitive MAE reaction mechanisms.

  14. Mechanistic study of secondary organic aerosol components formed from nucleophilic addition reactions of methacrylic acid epoxide

    NASA Astrophysics Data System (ADS)

    Birdsall, A. W.; Miner, C. R.; Mael, L. E.; Elrod, M. J.

    2014-12-01

    Recently, methacrylic acid epoxide (MAE) has been proposed as a precursor to an important class of isoprene-derived compounds found in secondary organic aerosol (SOA): 2-methylglyceric acid (2-MG) and a set of oligomers, nitric acid esters, and sulfuric acid esters related to 2-MG. However, the specific chemical mechanisms by which MAE could form these compounds have not been previously studied with experimental methods. In order to determine the relevance of these processes to atmospheric aerosol, MAE and 2-MG have been synthesized and a series of bulk solution-phase experiments aimed at studying the reactivity of MAE using nuclear magnetic resonance (NMR) spectroscopy have been performed. The present results indicate that the acid-catalyzed MAE reaction is more than 600 times slower than a similar reaction of an important isoprene-derived epoxide, but is still expected to be kinetically feasible in the atmosphere on more acidic SOA. The specific mechanism by which MAE leads to oligomers was identified, and the reactions of MAE with a number of atmospherically relevant nucleophiles were also investigated. Because the nucleophilic strengths of water, sulfate, alcohols (including 2-MG), and acids (including MAE and 2-MG) in their reactions with MAE were found to be of similar magnitudes, it is expected that a diverse variety of MAE + nucleophile product species may be formed on ambient SOA. Thus, the results indicate that epoxide chain reaction oligomerization will be limited by the presence of high concentrations of non-epoxide nucleophiles (such as water); this finding is consistent with previous environmental chamber investigations of the relative humidity dependence of 2-MG-derived oligomerization processes and suggests that extensive oligomerization may not be likely on ambient SOA because of other competitive MAE reaction mechanisms.

  15. Initial pH of medium affects organic acids production but do not affect phosphate solubilization

    PubMed Central

    Marra, Leandro M.; de Oliveira-Longatti, Silvia M.; Soares, Cláudio R.F.S.; de Lima, José M.; Olivares, Fabio L.; Moreira, Fatima M.S.

    2015-01-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization. PMID:26273251

  16. Initial pH of medium affects organic acids production but do not affect phosphate solubilization.

    PubMed

    Marra, Leandro M; de Oliveira-Longatti, Silvia M; Soares, Cláudio R F S; de Lima, José M; Olivares, Fabio L; Moreira, Fatima M S

    2015-06-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization. PMID:26273251

  17. Chemical and structural properties of sweet potato starch treated with organic and inorganic acid.

    PubMed

    Babu, A Surendra; Parimalavalli, R; Jagannadham, K; Rao, J Sudhakara

    2015-09-01

    In the present study sweet potato starch was treated with hydrochloric acid or citric acid at 1 or 5 % concentration and its properties were investigated. Citric acid treatment resulted higher starch yield. Water holding capacity and water absorption index was increased with increased acid concentration. Emulsion properties improved at 5 % acid concentration. The DE value of acid-thinned sweet potato starches was ranged between 1.93 and 3.76 %. Hydrochloric acid treated starches displayed a higher fraction of amylose. X-ray diffraction (XRD) study revealed that all the starches displayed C-type crystalline pattern with varied crystallinity. FT-IR spectra perceived a slight change in percentage intensity of C-H stretch of citric acid modified starches. Starch granules tended to appear less smooth than the native starch granules after acid treatment in Scanning Electron Micrographs (SEM) with granule size ranging between 8.00 and 8.90 μm. A drastic decrease in the pasting profile was noticed in hydrochloric acid (5 %) treated starch. While 5 % citric acid treated starch exhibited higher pasting profile. Differential Scanning Calorimeter (DSC) showed that peak and conclusion gelatinisation temperatures increased with increase in hydrochloric acid or citric acid concentration. Hence citric acid was found to mimic the hydrochloric acid with some variation which suggests that it may have promising scope in acid modification. PMID:26344988

  18. Isotopic composition of Murchison organic compounds: Intramolecular carbon isotope fractionation of acetic acid. Simulation studies of cosmochemical organic syntheses

    NASA Technical Reports Server (NTRS)

    Yuen, G. U.; Cronin, J. R.; Blair, N. E.; Desmarais, D. J.; Chang, S.

    1991-01-01

    Recently, in our laboratories, samples of Murchison acetic acid were decarboxylated successfully and the carbon isotopic composition was measured for the methane released by this procedure. These analyses showed significant differences in C-13/C-12 ratios for the methyl and carboxyl carbons of the acetic acid molecule, strongly suggesting that more than one carbon source may be involved in the synthesis of the Murchison organic compounds. On the basis of this finding, laboratory model systems simulating cosmochemical synthesis are being studied, especially those processes capable of involving two or more starting carbon sources.

  19. Application of potential phosphate-solubilizing bacteria and organic acids on phosphate solubilization from phosphate rock in aerobic rice.

    PubMed

    Panhwar, Qurban Ali; Jusop, Shamshuddin; Naher, Umme Aminun; Othman, Radziah; Razi, Mohd Ismail

    2013-01-01

    A study was conducted at Universiti Putra Malaysia to determine the effect of phosphate-solubilizing bacteria (PSB) and organic acids (oxalic & malic) on phosphate (P) solubilization from phosphate rock (PR) and growth of aerobic rice. Four rates of each organic acid (0, 10, 20, and 30 mM), and PSB strain (Bacillus sp.) were applied to aerobic rice. Total bacterial populations, amount of P solubilization, P uptake, soil pH, and root morphology were determined. The results of the study showed significantly high P solubilization in PSB with organic acid treatments. Among the two organic acids, oxalic acid was found more effective compared to malic acid. Application of oxalic acid at 20 mM along with PSB16 significantly increased soluble soil P (28.39 mg kg(-1)), plant P uptake (0.78 P pot(-1)), and plant biomass (33.26 mg). Addition of organic acids with PSB and PR had no influence on soil pH during the planting period. A higher bacterial population was found in rhizosphere (8.78 log10 cfu g(-1)) compared to the nonrhizosphere and endosphere regions. The application of organic acids along with PSB enhanced soluble P in the soil solution, improved root growth, and increased plant biomass of aerobic rice seedlings without affecting soil pH. PMID:24288473

  20. Transformation of Monoaromatic hydrocarbons to organic acids in anoxic groundwater environment

    USGS Publications Warehouse

    Cozzarelli, I.M.; Eganhouse, R.P.; Baedecker, M.J.

    1990-01-01

    The transformation of benzene and a series of alkylbenzenes was studied in anoxic groundwater of a shallow glacial-outwash aquifer near Bemidji, Minnesota, U.S.A. Monoaromatic hydrocarbons, the most water-soluble components of crude oil, were transported downgradient of an oil spill, forming a plume of contaminated groundwater. Organic acids that were not original components of the oil were identified in the anoxic groundwater. The highest concentrations of these oxidized organic compounds were found in the anoxic plume where a decrease in concentrations of structurally related alkylbenzenes was observed. These results suggest that biological transformation of benzene and alkylbenzenes to organic acid intermediates may be an important attenuation process in anoxic environments. The transformation of a complex mixture of hydrocarbons to a series of corresponding oxidation products in an anoxic subsurface environment provides new insight into in situ anaerobic degradation processes. ?? 1990 Springer-Verlag New York Inc.

  1. Sequential photochemical and microbial degradation of organic molecules bound to humic acid

    SciTech Connect

    Amador, J.A.; Zika, R.G. ); Alexander, M. )

    1989-11-01

    We studied the effects of photochemical processes on the mineralization by soil microorganisms of (2-{sup 14}C)glycine bound to soil humic acid. Microbial mineralization of these complexes in the dark increased inversely with the molecular weight of the complex molecules. Sunlight irradiation of glycine-humic acid complexes resulted in loss of absorbance in the UV range and an increase in the amount of {sup 14}C-labeled low-molecular-weight photoproducts and the rate and extent of mineralization. More than half of the radioactivity in the low-molecular-weight photoproducts appears to be associated with carboxylic acids. Microbial mineralization of the organic carbon increased with solar flux and was proportional to the loss of A{sub 330}. Mineralization was proportional to the percentage of the original complex that was converted to low-molecular-weight photoproducts. Only light at wavelengths below 380 nm had an effect on the molecular weight distribution of the products formed from the glycine-humic acid complexes and on the subsequent microbial mineralization. Our results indicate that photochemical processes generate low-molecular-weight, readily biodegradable molecules from high-molecular-weight complexes of glycine with humic acid.

  2. Sequential photochemical and microbial degradation of organic molecules bound to humic Acid.

    PubMed

    Amador, J A; Alexander, M; Zika, R G

    1989-11-01

    We studied the effects of photochemical processes on the mineralization by soil microorganisms of [2-C]glycine bound to soil humic acid. Microbial mineralization of these complexes in the dark increased inversely with the molecular weight of the complex molecules. Sunlight irradiation of glycine-humic acid complexes resulted in loss of absorbance in the UV range and an increase in the amount of C-labeled low-molecular-weight photoproducts and the rate and extent of mineralization. More than half of the radioactivity in the low-molecular-weight photoproducts appears to be associated with carboxylic acids. Microbial mineralization of the organic carbon increased with solar flux and was proportional to the loss of A(330). Mineralization was proportional to the percentage of the original complex that was converted to low-molecular-weight photoproducts. Only light at wavelengths below 380 nm had an effect on the molecular weight distribution of the products formed from the glycine-humic acid complexes and on the subsequent microbial mineralization. Our results indicate that photochemical processes generate low-molecular-weight, readily biodegradable molecules from high-molecular-weight complexes of glycine with humic acid. PMID:16348046

  3. Sequential Photochemical and Microbial Degradation of Organic Molecules Bound to Humic Acid

    PubMed Central

    Amador, José A.; Alexander, Martin; Zika, Rod G.

    1989-01-01

    We studied the effects of photochemical processes on the mineralization by soil microorganisms of [2-14C]glycine bound to soil humic acid. Microbial mineralization of these complexes in the dark increased inversely with the molecular weight of the complex molecules. Sunlight irradiation of glycine-humic acid complexes resulted in loss of absorbance in the UV range and an increase in the amount of 14C-labeled low-molecular-weight photoproducts and the rate and extent of mineralization. More than half of the radioactivity in the low-molecular-weight photoproducts appears to be associated with carboxylic acids. Microbial mineralization of the organic carbon increased with solar flux and was proportional to the loss of A330. Mineralization was proportional to the percentage of the original complex that was converted to low-molecular-weight photoproducts. Only light at wavelengths below 380 nm had an effect on the molecular weight distribution of the products formed from the glycine-humic acid complexes and on the subsequent microbial mineralization. Our results indicate that photochemical processes generate low-molecular-weight, readily biodegradable molecules from high-molecular-weight complexes of glycine with humic acid. PMID:16348046

  4. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  5. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste... nitrogen oxides in excess of the emission limits listed in table 2 of this subpart for affected...

  6. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  7. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... limits for nitrogen oxides at least as protective as the emission limits listed in table 1 of...

  8. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... limits for nitrogen oxides at least as protective as the emission limits listed in table 1 of...

  9. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste... nitrogen oxides in excess of the emission limits listed in table 2 of this subpart for affected...

  10. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    PubMed Central

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab.

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  11. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    PubMed

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  12. Effect of Dietary Supplementation of Organic Acids on Performance, Intestinal Histomorphology, and Serum Biochemistry of Broiler Chicken

    PubMed Central

    Adil, Sheikh; Banday, Tufail; Bhat, Gulam Ahmad; Mir, Masood Saleem; Rehman, Manzoor

    2010-01-01

    The aim of the study was to determine the effect of dietary supplementation of organic acids on the performance, intestinal histomorphology, and blood biochemistry of broiler chicken. The birds in the control (T1) group were fed the basal diet whereas in other treatment groups basal diet was supplemented with 2% butyric acid (T2), 3% butyric acid (T4), 2% fumaric acid (T4), 3% fumaric acid (T5), 2% lactic acid (T6), and 3% lactic acid (T7). Broiler chicken fed diets supplemented with organic acids had significantly (P < .05) improved body weight gains and feed conversion ratio. No effect (P < .05) on cumulative feed consumption was observed. The addition of organic increased villus height in the small intestines but the differences were not significant (P < .05) in case of the ileum. Serum calcium and phosphorus concentrations were increased (P < .05) but no effect (P < .05) on the concentration of serum glucose and cholesterol, serum glutamic pyruvic transaminase (SGPT), and serum glutamic oxaloacetate transaminase (SGOT) was observed. The results indicated that the organic acid supplementation, irrespective of type and level of acid used, had a beneficial effect on the performance of broiler chicken. PMID:20613998

  13. Folic acid

    MedlinePlus

    ... disease called vitiligo, and an inherited disease called Fragile-X syndrome. It is also used for reducing harmful side ... to blood clots (ischemic stroke). Inherited disease called Fragile-X syndrome.Taking folic acid by mouth does not improve ...

  14. Acid rain

    SciTech Connect

    Not Available

    1984-06-01

    An overview is presented of acid rain and the problems it causes to the environment worldwide. The acidification of lakes and streams is having a dramatic effect on aquatic life. Aluminum, present in virtually all forest soils, leaches out readily under acid conditions and interferes with the gills of all fish, some more seriously than others. There is evidence of major damage to forests in European countries. In the US, the most severe forest damage appears to be in New England, New York's Adirondacks, and the central Appalachians. This small region is part of a larger area of the Northeast and Canada that appears to have more acid rainfall than the rest of the country. It is downwind from major coal burning states, which produce about one quarter of US SO/sub 2/ emissions and one sixth of nitrogen oxide emissions. Uncertainties exist over the causes of forest damage and more research is needed before advocating expensive programs to reduce rain acidity. The President's current budget seeks an expansion of research funds from the current $30 million per year to $120 million.

  15. Formic acid

    Integrated Risk Information System (IRIS)

    Formic acid ; CASRN 64 - 18 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  16. Selenious acid

    Integrated Risk Information System (IRIS)

    Selenious acid ; CASRN 7783 - 00 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  17. Benzoic acid

    Integrated Risk Information System (IRIS)

    Benzoic acid ; CASRN 65 - 85 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  18. Trichloroacetic acid

    Integrated Risk Information System (IRIS)

    Trichloroacetic acid ( TCA ) ; CASRN 76 - 03 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonca

  19. Dichloroacetic acid

    Integrated Risk Information System (IRIS)

    Dichloroacetic acid ; CASRN 79 - 43 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  20. Acrylic acid

    Integrated Risk Information System (IRIS)

    Acrylic acid ( CASRN 79 - 10 - 7 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  1. Cacodylic acid

    Integrated Risk Information System (IRIS)

    Cacodylic acid ; CASRN 75 - 60 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  2. Phosphoric acid

    Integrated Risk Information System (IRIS)

    Phosphoric acid ; CASRN 7664 - 38 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  3. Stearic Acid

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) is presented for the chemical, stearic acid. The profile lists the chemical's physical and harmful characteristics, exposure limits, and symptoms of major exposure, for the benefit of teachers and students, who use the chemical in the laboratory.

  4. Chemical characteristics and sources of organic acids in precipitation at a semi-urban site in Southwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Lee, X. Q.; Cao, F.

    2011-01-01

    In order to investigate the chemical characteristics and sources of organic acids in precipitation in Southwest China, 105 rainwater samples were collected at a semi-urban site in Anshun from June 2007 to June 2008. Organic acids and major anions were analyzed along with pH and electrical conductivity. The pH values varied from 3.57 to 7.09 for all the rainfall events sampled, with an average of 4.67 which was typical acidic value. Formic, acetic and oxalic acids were found to be the predominant carboxylic acids and their volume weighted average (VWA) concentrations were 8.77, 6.93 and 2.84 μmol l -1, respectively. These organic acids were estimated to account for 8.1% to the total free acidity (TFA) in precipitation. The concentrations of the majority organic acids at studied site had a clear seasonal pattern, reaching higher levels during the non-growing season than those in growing season, which was attributed to dilution effect of heavy rainfall during the growing season. The seasonal variation of wet deposition flux of these organic acids confirmed higher source strength of biogenic emissions from vegetation during the growing season. Formic-to-acetic acids ratio (F/A), an indicator of primary versus secondary sources of these organic acids, suggested that primary sources from vehicular emission, biomass burning, soil and vegetation emissions were dominant sources. In addition, the lowest concentrations of organic acids were found under type S, when air masses originated from the marine (South China Sea) during Southern Asian Monsoon period. And the highest concentrations were observed in precipitation events from Northeast China (type NE), prevailing mostly during winter with the lowest rainfall.

  5. Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system

    DOEpatents

    Balazs, G.B.; Chiba, Z.; Lewis, P.R.; Nelson, N.; Steward, G.A.

    1999-06-15

    An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO[sub 2]. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement. 2 figs.

  6. Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system

    DOEpatents

    Balazs, G. Bryan; Chiba, Zoher; Lewis, Patricia R.; Nelson, Norvell; Steward, G. Anthony

    1999-01-01

    An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO.sub.2. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement.

  7. Effect of organic acids on calcium phosphate nucleation and osteogenic differentiation of human mesenchymal stem cells on peptide functionalized nanofibers.

    PubMed

    Barati, Danial; Walters, Joshua D; Shariati, Seyed Ramin Pajoum; Moeinzadeh, Seyedsina; Jabbari, Esmaiel

    2015-05-12

    Carboxylate-rich organic acids play an important role in controlling the growth of apatite crystals and the extent of mineralization in the natural bone. The objective of this work was to investigate the effect of organic acids on calcium phosphate (CaP) nucleation on nanofiber microsheets functionalized with a glutamic acid peptide and osteogenic differentiation of human mesenchymal stem cells (hMSCs) seeded on the CaP-nucleated microsheets. High molecular weight poly(dl-lactide) (DL-PLA) was mixed with low molecular weight L-PLA conjugated with Glu-Glu-Gly-Gly-Cys peptide, and the mixture was electrospun to generate aligned nanofiber microsheets. The nanofiber microsheets were incubated in a modified simulated body fluid (mSBF) supplemented with different organic acids for nucleation and growth of CaP crystals on the nanofibers. Organic acids included citric acid (CA), hydroxycitric acid (HCA), tartaric acid (TART), malic acid (MA), ascorbic acid (AsA), and salicylic acid (SalA). HCA microsheets had the highest CaP content at 240 ± 10% followed by TART and CA with 225 ± 8% and 225 ± 10%, respectively. The Ca/P ratio and percent crystallinity of the nucleated CaP in TART microsheets was closest to that of stoichiometric hydroxyapatite. The extent of CaP nucleation and growth on the nanofiber microsheets depended on the acidic strength and number of hydrogen-bonding hydroxyl groups of the organic acids. Compressive modulus and degradation of the CaP nucleated microsheets were related to percent crystallinity and CaP content. Osteogenic differentiation of hMSCs seeded on the microsheets and cultured in osteogenic medium increased only for those microsheets nucleated with CaP by incubation in CA or AsA-supplemented mSBF. Further, only CA microsheets stimulated bone nodule formation by the seeded hMSCs. PMID:25879768

  8. A new physiological role for Pdr12p in Saccharomyces cerevisiae: export of aromatic and branched-chain organic acids produced in amino acid catabolism.

    PubMed

    Hazelwood, Lucie A; Tai, Siew Leng; Boer, Viktor M; de Winde, Johannes H; Pronk, Jack T; Daran, Jean Marc

    2006-09-01

    Saccharomyces cerevisiae can use a broad range of compounds as sole nitrogen source. Many amino acids, such as leucine, tyrosine, phenylalanine and methionine, are utilized through the Ehrlich pathway. The fusel acids and alcohols produced from this pathway, along with their derived esters, are important contributors to beer and wine flavor. It is unknown how these compounds are exported from the cell. Analysis of nitrogen-source-dependent transcript profiles via microarray analysis of glucose-limited, aerobic chemostat cultures revealed a common upregulation of PDR12 in cultures grown with leucine, methionine or phenylalanine as sole nitrogen source. PDR12 encodes an ABC transporter involved in weak-organic-acid resistance, which has hitherto been studied in the context of resistance to exogenous organic acids. The hypothesis that PDR12 is involved in export of natural products of amino acid catabolism was evaluated by analyzing the phenotype of null mutants in PDR12 or in WAR1, its positive transcriptional regulator. The hypersensitivity of the pdr12Delta and war1Delta strains for some of these compounds indicates that Pdr12p is involved in export of the fusel acids, but not the fusel alcohols derived from leucine, isoleucine, valine, phenylalanine and tryptophan. PMID:16911515

  9. How three adventitious lactic acid bacteria affect proteolysis and organic acid production in model Portuguese cheeses manufactured from several milk sources and two alternative coagulants.

    PubMed

    Pereira, C I; Neto, D M; Capucho, J C; Gião, M S; Gomes, A M P; Malcata, F X

    2010-04-01

    Model cheeses were manufactured according to a full factorial experimental design to help shed light on the individual and combined roles played by 3 native lactic acid bacteria (Lactococcus lactis ssp. lactis, Lactobacillus brevis, and Lactobacillus plantarum) upon proteolysis and organic acid evolution in cheese. The model cheeses were manufactured according to a generally representative Portuguese artisanal protocol, but the (ubiquitous) adventitious microflora in the cheesemaking milk were removed via sterilization before manufacture; therefore, the specific effects of only those lactic acid bacteria selected were monitored. In addition, 2 types of coagulant (animal and plant) and 3 types of cheesemaking milk (cow, sheep, and goat) were assessed to determine their influence on the final characteristics of the model cheeses. The nature of the coagulant appeared to be essential during the first stage of proteolysis as expected, whereas the contribution of those bacteria to the pools of total free AA and organic acids was crucial afterward. This was especially so in terms of the differences observed in the metabolisms of lactic acid (in the case of Lactococcus spp.) as well as acetic and citric acids (in the case of Lactobacillus spp.). PMID:20338410

  10. Exudation of organic acids by Lupinus albus and Lupinus angustifolius as affected by phosphorus supply

    NASA Astrophysics Data System (ADS)

    Hentschel, Werner; Wiche, Oliver

    2016-04-01

    In phytomining and phytoremediation research mixed cultures of bioenergy crops with legumes hold promise to enhance availability of trace metals and metalloids in the soil plant system. This is due to the ability of certain legumes to mobilize trace elements during acquisition of nutrients making these elements available for co-cultured species. The legumes achieve this element mobilization by exudating carboxylates and enzymes as well as by lowering the pH value in the rhizosphere. The aim of our research was to determine characteristics and differences in the exudation of Lupinus albus and Lupinus angustifolius regarding to quantitative as to qualitative aspects. Especially the affection by phosphorus (P) supply was a point of interest. Thus we conducted laboratory batch experiments, wherein the plants were grown over four weeks under controlled light, moisture and nutritional conditions on sand as substrate. Half of the plants were supplied with 12 mg P per kg substrate, the other half were cultivated under a total lack of P. After cultivation the plants were transferred from the cultivation substrate into a 0,05 mmolṡL‑1 CaCl2 solution. After two hours the plants were removed, moist and dry mass off shoots and roots were measured together with the root length (Tennants' method). Concentrations of exudated carboxylates in the CaCl2 solution were determined via IC (column: Metrosept OrganicAcids, eluent 0.5 molṡL‑1 H2SO4 + 15% acetone, pH=3; 0.5 mLṡmin‑1). As a result four different organic acids were identified (citric acid, fumaric acid, tartaric acid, malic acid) in concentration ranges of 0.15 mgṡL‑1 (fumaric acid) to 9.21 mgṡL‑1 (citric acid). Lupinus angustifolius showed a higher exudation rate (in nmol per cm root length per hour) than Lupinus albus in the presence of phosphorus (e.g. regarding citric acid: 1.99 vs 0.64 nmolṡ(gṡh)‑1). However, as the root complexity and length of L. albus were far higher than of L. angustifolius

  11. Artificially MoO3 graded ITO anodes for acidic buffer layer free organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Lee, Hye-Min; Kim, Seok-Soon; Kim, Han-Ki

    2016-02-01

    We report characteristics of MoO3 graded ITO anodes prepared by a RF/DC graded sputtering for acidic poly(3,4-ethylene dioxylene thiophene):poly(styrene sulfonic acid) (PEDOT:PSS)-free organic solar cells (OSCs). Graded sputtering of the MoO3 buffer layer on top of the ITO layer produced MoO3 graded ITO anodes with a sheet resistance of 12.67 Ω/square, a resistivity of 2.54 × 10-4 Ω cm, and an optical transmittance of 86.78%, all of which were comparable to a conventional ITO anode. In addition, the MoO3 graded ITO electrode showed a greater work function of 4.92 eV than that (4.6 eV) of an ITO anode, which is beneficial for hole extraction from an organic active layer. Due to the high work function of MoO3 graded ITO electrodes, the acidic PEDOT:PSS-free OSCs fabricated on the MoO3 graded ITO electrode exhibited a power conversion efficiency 3.60% greater than that of a PEDOT:PSS-free OSC on the conventional ITO anode. The successful operation of PEDOT:PSS-free OSCs indicates simpler fabrication steps for cost-effective OSCs and elimination of interfacial reactions caused by the acidic PEDOT:PSS layer for reliable OSCs.

  12. Impact of several water-miscible organic solvents on sorption of benzoic acid by soil

    SciTech Connect

    Lee, L.S.; Rao, P.S.C.

    1996-05-01

    Sorption of benzoic acid by a surface soil was measured from several binary mixtures of water and various organic cosolvents spanning a wide range in solvent properties. For all solvents investigated, the addition to an aqueous solution resulted in an increase in solubility and an alkaline shift in the conditional ionization constant (pK{sub a}{sup c}) of benzoic acid. Sorption data were assessed using a cosolvency model that incorporated speciation of the organic acid as determined by the pK{sub a}{sup c} and soil-solution pH. The model provided reasonable predictions of the sorption trends observed from acetone/water, acetonitrile/ water, and 1,4-dioxane/water solutions. However, enhanced sorption observed from DMSO/water solutions was not well described by the cosolvency model similar to what was previously observed for the sorption of carboxylic acids from methanol/water solutions. The relative importance of cosolvent properties and various solvent-specific mechanisms is discussed. Hydrogen bonding along with preferential solvation are hypothesized as the primary mechanisms responsible for the observed deviations from the model. 36 refs., 5 figs., 1 tab.

  13. Toxicity of boric acid to Blattella germanica (Dictyoptera: Blattellidae) and analysis of residues in several organs.

    PubMed

    Habes, D; Kilani-Morakchi, S; Aribi, N; Farine, J P; Soltani, N

    2001-01-01

    Pestiferous cockroach species are associated closely with humans and are important from medical and public health points of view. Conventional insecticides have been used widely to control cockroaches which have developed resistance to these compounds. Thus, interest has again centered on lesser-used compounds such as boric acid. Boric acid has been used as an insecticide for many years, especially against cockroach. Its mode of action on insects has not been satisfactorily established. In Algeria, Blattella germanica (Dictyoptera: Blattellidae) is a serious pest in the urban environment and their infestation were controlled for many years by organophosphate, carbamate or pyrethroid insecticides. In order to obtain more information on the mode of action of boric acid, we first evaluated the oral toxicity of boric acid on B. germanica adults. Then, the compound was determined in several organs by an colorimetric method. This insecticide was incorporated into the diet and orally administered at different concentrations ranging from 1 to 40% (w/w) to newly emerged adults. Mortality was recorded at different times during treatment (24, 48, 72 and 144 h). Treatment resulted in a dose-dependent mortality since the LD50 (%) recorded are 85 at 24 h, 67 at 48 h, 39 at 72 h and 8 at 144 h, respectively. Then the quantity of boric acid accumulated in several organs (hemolymph, gut, ovaries, testicles and fat body) was determined as function the duration of treatment (1 to 5 days) for two doses (LD50 and LD90). Results revealed that bioaccumulation of residues in these organs increased as function the duration of treatment. In addition, relatively important amounts of residues, are detected in fat body. PMID:12425074

  14. The geochemical evolution of low-molecular-weight organic acids derived from the degradation of petroleum contaminants in groundwater

    USGS Publications Warehouse

    Cozzarelli, I.M.; Baedecker, M.J.; Eganhouse, R.P.; Goerlitz, D.F.

    1994-01-01

    The geochemical evolution of low-molecular-weight organic acids in groundwater downgradient from a crude-oil spill near Bemidji, Minnesota, was studied over a five year period (1986-1990). The organic acids are metabolic intermediates of the degradation of components of the crude oil and are structurally related to hydrocarbon precursors. The concentrations of organic acids, particularly aliphatic acids, increase as the microbial alteration of hydrocarbons progresses. The organic-acid pool changes in composition and concentration over time and in space as the degradation processes shift from Fe(III) reduction to methanogenesis. Over time, the aquifer system evolves into one in which the groundwater contains more oxidized products of hydrocarbon degradation and the reduced forms of iron, manganese, and nitrogen. Laboratory microcosm experiments with aquifer material support the hypothesis that organic acids observed in the groundwater originate from the microbial degradation of aromatic hydrocarbons under anoxic conditions. The geochemistry of two other shallow aquifers in coastal plain sediments, one contaminated with creosote waste and the other with gasoline, were compared to the Bemidji site. The geochemical evolution of the low-molecular-weight organic acid pool in these systems is controlled, in part, by the presence of electron acceptors available for microbially mediated electron-transfer reactions. The depletion of electron acceptors in aquifers leads to the accumulation of aliphatic organic acids in anoxic groundwater. ?? 1994.

  15. The geochemical evolution of low-molecular-weight organic acids derived from the degradation of petroleum contaminants in groundwater

    SciTech Connect

    Cozzarelli, I.M.; Baedecker, M.J.; Eganhouse, R.P. ); Goerlitz, D.F. )

    1994-01-01

    The geochemical evolution of low-molecular-weight organic acids in groundwater downgradient from a crude-oil spill near Bemidji, Minnesota, was studied over a five year period (1986-90). The organic acids are metabolic intermediates of the degradation of components of the crude oil and are structurally related to hydrocarbon precursors. The concentrations of organic acids, particularly aliphatic acids, increase as the microbial alteration of hydrocarbons progresses. The organic-acid pool changes in composition and concentration over time and in space as the degradation processes shift from Fe(III) reduction to methanogenesis. Over time, the aquifer system evolves into one in which the groundwater contains more oxidized products of hydrocarbon degradation and the reduced forms of iron, manganese, and nitrogen. Laboratory microcosm experiments with aquifer material support the hypothesis that organic acids observed in the groundwater originate from the microbial degradation of aromatic hydrocarbons under anoxic conditions. The geochemistry of two other shallow aquifers in coastal plain sediments, one contaminated with creosote waste and the other with gasoline, were compared to the Bemidji site. The geochemical evolution of the low-molecular-weight organic acid pool in these systems is controlled, in part, by the presence of electron acceptors available for microbially mediated electron-transfer reactions. The depletion of electron acceptors in aquifers leads to the accumulation of aliphatic organic acids in anoxic groundwater.

  16. Involvement of Sialic Acid on Endothelial Cells in Organ-Specific Lymphocyte Recirculation

    NASA Astrophysics Data System (ADS)

    Rosen, Steven D.; Singer, Mark S.; Yednock, Ted A.; Stoolman, Lloyd M.

    1985-05-01

    Mouse lymphocytes incubated on cryostat-cut sections of lymphoid organs (lymph nodes and Peyer's patches) specifically adhere to the endothelium of high endothelial venules (HEV), the specialized blood vessels to which recirculating lymphocytes attach as they migrate from the blood into the parenchyma of the lymphoid organs. Treatment of sections with sialidase eliminated the binding of lymphocytes to peripheral lymph node HEV, had no effect on binding to Peyer's patch HEV, and had an intermediate effect on mesenteric lymph node HEV. These results suggest that sialic acid on endothelial cells may be an organ-specific recognition determinant for lymphocyte attachment.

  17. Toxicology of Perfluoroalkyl acids

    EPA Science Inventory

    The Perfluoroalkyl acids(PFAAs) area a family of organic chemicals consisting of a perflurinated carbon backbone (4-12in length) and a acidic functional moiety (Carboxylate or sulfonate). These compounds have excellent surface-tension reducing properties and have numerous industr...

  18. Toxicology of Perfluoroalkyl Acids*

    EPA Science Inventory

    The perfluoroalkyl acids (PFAAs) are a family of organic chemicals consisting of a perfluorinated carbon backbone (4-12 in length) and an acidic functional moiety (carboxylate or sulfonate). These compounds are chemically stable, have excellent surface-tension reducing properties...

  19. Lead-acid cell

    SciTech Connect

    Hradcovsky, R.J.; Kozak, O.R.

    1980-12-09

    A lead-acid storage battery is described that has a lead negative electrode, a lead dioxide positive electrode and a sulfuric acid electrolyte having an organic catalyst dissolved therein which prevents dissolution of the electrodes into lead sulfate whereby in the course of discharge, the lead dioxide is reduced to lead oxide and the lead is oxidized.

  20. Proteins and Amino Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the most abundant substances in living organisms and cells. All proteins are constructed from the same twenty amino acids that are linked together by covalent bonds. Shorter chains of two or more amino acids can be linked by covalent bonds to form polypeptides. There are twenty amino...

  1. The organic geochemistry of black sedimentary barite: significance and implications of trapped fatty acids

    USGS Publications Warehouse

    Miller, R.E.; Brobst, D.A.; Beck, P.C.

    1977-01-01

    Fatty acids isolated in sedimentary black barite (BaSO4) from Arkansas and Nevada were identified by gas chromatography-mass spectroscopy. The dominant or major fatty acids found in these beds of barite are C16:0, C18:0, and C18:1. The occurrence and distribution of these acids in this type of rock may serve as "molecular fingerprints" of microbial biogeochemical processes. The organic matter and associated microorganisms are shown to be trapped within the finely crystalline barite, thus forming a closed system for microbial diagenesis. Important differences that occur in the distribution of the lesser or minor fatty acids probably result from: (1) the nature of the progenitor organic detritus in the environment of barite deposition: and (2) the subsequent degree of microbiological alteration of the parent organic debris swept into and trapped in the depositional environment. Three general models of sedimentary environments are proposed in which anoxic conditions may prevail and where barium sulfate (BaSO4) may precipitate: (1) in a silled basin with semi-restricted circulation; (2) on an outer continental shelf where the slope is encroached upon by water of the oxygen minimum layer; (3) on a low-energy, inner shelf or semi-restricted embayment impinged by a wedge of anoxic water. The major geochemical and geological parameters which are believed to be the significant factors controlling the formation and high grade of these organic-rich, black bedded barites are: (1) a unique source of barium-rich fluid that only contains trace amounts of other elements; (2) the presence of an anoxic bottom environment within the depositional basin; (3) a reflux source of sulfate ion; (4) an adequate source of organic matter. The results of this study may serve as guidelines for future exploration in similar, untested sedimentary basins, especially those with rocks of middle Paleozoic age. ?? 1977.

  2. Impacts of Sulfate Seed Acidity and Water Content on Isoprene Secondary Organic Aerosol Formation.

    PubMed

    Wong, Jenny P S; Lee, Alex K Y; Abbatt, Jonathan P D

    2015-11-17

    The effects of particle-phase water and the acidity of pre-existing sulfate seed particles on the formation of isoprene secondary organic aerosol (SOA) was investigated. SOA was generated from the photo-oxidation of isoprene in a flow tube reactor at 70% relative humidity (RH) and room temperature in the presence of three different sulfate seeds (effloresced and deliquesced ammonium sulfate and ammonium bisulfate) under low NOx conditions. High OH exposure conditions lead to little isoprene epoxydiol (IEPOX) SOA being generated. The primary result is that particle-phase water had the largest effect on the amount of SOA formed, with 60% more SOA formation occurring with deliquesced ammonium sulfate seeds as compared to that on effloresced ones. The additional organic material was highly oxidized. Although the amount of SOA formed did not exhibit a dependence on the range of seed particle acidity examined, perhaps because of the low amount of IEPOX SOA, the levels of high-molecular-weight material increased with acidity. While the uptake of organics was partially reversible under drying, the results nevertheless indicate that particle-phase water enhanced the amount of organic aerosol material formed and that the RH cycling of sulfate particles may mediate the extent of isoprene SOA formation in the atmosphere. PMID:26460477

  3. Ursolic Acid Inhibits Superoxide Production in Activated Neutrophils and Attenuates Trauma-Hemorrhage Shock-Induced Organ Injury in Rats

    PubMed Central

    Hwang, Tsong-Long; Shen, Hsin-I; Liu, Fu-Chao; Tsai, Hsin-I; Wu, Yang-Chang; Chang, Fang-Rong; Yu, Huang-Ping

    2014-01-01

    Neutrophil activation is associated with the development of organ injury after trauma–hemorrhagic shock. In the present study, ursolic acid inhibited the superoxide anion generation and elastase release in human neutrophils. Administration of ursolic acid attenuated trauma–hemorrhagic shock-induced hepatic and lung injuries in rats. In addition, administration of ursolic acid attenuated the hepatic malondialdehyde levels and reduced the plasma aspartate aminotransferase and alanine aminotransferase levels after trauma–hemorrhagic shock. In conclusion, ursolic acid, a bioactive natural compound, inhibits superoxide anion generation and elastase release in human neutrophils and ameliorates trauma–hemorrhagic shock-induced organ injury in rats. PMID:25360589

  4. The Effects of Acid Rock Drainage (ARD) on Fluorescent Dissolved Organic Matter (DOM)

    NASA Astrophysics Data System (ADS)

    Lee, R. H.; Gabor, R. S.; SanClements, M.; McKnight, D. M.

    2011-12-01

    Located in the Rocky Mountains of central Colorado, the catchments drained by the headwaters of the Snake River are dominated by metal- and sulfide-rich bedrock. The breakdown of these minerals results in acidic metal-rich waters in the Snake (pH ~3) that persist until the confluence with Deer Creek (pH ~7). Previous research has been conducted examining the interactions of acid-rock drainage (ARD) and dissolved organic matter (DOM), but the effects of ARD on DOM production is not as well understood. In a synoptic study, samples of creek water were collected at evenly spaced intervals along the length of a tributary to the Snake River which drains an area with ARD. At each sampling location, water samples were collected and pH, conductivity, and temperature were measured. Water samples were analyzed for metal chemistry, and the DOM was analyzed with UV-Vis and fluorescence spectroscopy. The character of the DOM was described using PARAFAC and index calculations. This work demonstrates that the introduction of acid and dissolved metal species has notable effects on DOM composition. Preliminary data suggests that the introduction of acid drainage is responsible for the formation of a fluorophore not accounted for in the Cory and McKnight PARAFAC model. Both high concentrations of heavy metals (e.g. zinc) and the novel fluorophore are present downstream from a mining site, which indicates it as a possible source of both species. The data suggest a link between the introduction of fluorophores in acidic waters and acidophile populations at the source of the acid rock drainage.

  5. Co-consumption of glucose and xylose for organic acid production by Aspergillus carbonarius cultivated in wheat straw hydrolysate.

    PubMed

    Yang, Lei; Lübeck, Mette; Souroullas, Konstantinos; Lübeck, Peter S

    2016-04-01

    Aspergillus carbonarius exhibits excellent abilities to utilize a wide range of carbon sources and to produce various organic acids. In this study, wheat straw hydrolysate containing high concentrations of glucose and xylose was used for organic acid production by A. carbonarius. The results indicated that A. carbonarius efficiently co-consumed glucose and xylose and produced various types of organic acids in hydrolysate adjusted to pH 7. The inhibitor tolerance of A. carbonarius to the hydrolysate at different pH values was investigated and compared using spores and recycled mycelia. This comparison showed a slight difference in the inhibitor tolerance of the spores and the recycled mycelia based on their growth patterns. Moreover, the wild-type and a glucose oxidase deficient (Δgox) mutant were compared for their abilities to produce organic acids using the hydrolysate and a defined medium. The two strains showed a different pattern of organic acid production in the hydrolysate where the Δgox mutant produced more oxalic acid but less citric acid than the wild-type, which was different from the results obtained in the defined medium This study demonstrates the feasibility of using lignocellulosic biomass for the organic acid production by A. carbonarius. PMID:26925619

  6. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOEpatents

    Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  7. Arabidopsis uses two gluconeogenic gateways for organic acids to fuel seedling establishment.

    PubMed

    Eastmond, Peter J; Astley, Holly M; Parsley, Kate; Aubry, Sylvain; Williams, Ben P; Menard, Guillaume N; Craddock, Christian P; Nunes-Nesi, Adriano; Fernie, Alisdair R; Hibberd, Julian M

    2015-01-01

    Gluconeogenesis is a fundamental metabolic process that allows organisms to make sugars from non-carbohydrate stores such as lipids and protein. In eukaryotes only one gluconeogenic route has been described from organic acid intermediates and this relies on the enzyme phosphoenolpyruvate carboxykinase (PCK). Here we show that two routes exist in Arabidopsis, and that the second uses pyruvate, orthophosphate dikinase (PPDK). Gluconeogenesis is critical to fuel the transition from seed to seedling. Arabidopsis pck1 and ppdk mutants are compromised in seed-storage reserve mobilization and seedling establishment. Radiolabelling studies show that PCK predominantly allows sugars to be made from dicarboxylic acids, which are products of lipid breakdown. However, PPDK also allows sugars to be made from pyruvate, which is a major product of protein breakdown. We propose that both routes have been evolutionarily conserved in plants because, while PCK expends less energy, PPDK is twice as efficient at recovering carbon from pyruvate. PMID:25858700

  8. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    SciTech Connect

    Pierce, R.A.; Smith, J.R.; Ramsey, W.G.; Cicero-Herman, C.A.; Bickford, D.F.

    1999-09-28

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140 C to about 210 C for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  9. Arabidopsis uses two gluconeogenic gateways for organic acids to fuel seedling establishment

    PubMed Central

    Eastmond, Peter J.; Astley, Holly M.; Parsley, Kate; Aubry, Sylvain; Williams, Ben P.; Menard, Guillaume N.; Craddock, Christian P.; Nunes-Nesi, Adriano; Fernie, Alisdair R.; Hibberd, Julian M.

    2015-01-01

    Gluconeogenesis is a fundamental metabolic process that allows organisms to make sugars from non-carbohydrate stores such as lipids and protein. In eukaryotes only one gluconeogenic route has been described from organic acid intermediates and this relies on the enzyme phosphoenolpyruvate carboxykinase (PCK). Here we show that two routes exist in Arabidopsis, and that the second uses pyruvate, orthophosphate dikinase (PPDK). Gluconeogenesis is critical to fuel the transition from seed to seedling. Arabidopsis pck1 and ppdk mutants are compromised in seed-storage reserve mobilization and seedling establishment. Radiolabelling studies show that PCK predominantly allows sugars to be made from dicarboxylic acids, which are products of lipid breakdown. However, PPDK also allows sugars to be made from pyruvate, which is a major product of protein breakdown. We propose that both routes have been evolutionarily conserved in plants because, while PCK expends less energy, PPDK is twice as efficient at recovering carbon from pyruvate. PMID:25858700

  10. Eight supramolecular assemblies constructed from bis(benzimidazole) and organic acids through strong classical hydrogen bonding and weak noncovalent interactions

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Wang, Daqi

    2014-05-01

    Eight crystalline organic acid-base adducts derived from alkane bridged bis(N-benzimidazole) and organic acids (2,4,6-trinitrophenol, p-nitrobenzoic acid, m-nitrobenzoic acid, 3,5-dinitrobenzoic acid, 5-sulfosalicylic acid and oxalic acid) were prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. Of the eight compounds five are organic salts (1, 4, 6, 7 and 8) and the other three (2, 3, and 5) are cocrystals. In all of the adducts except 1 and 8, the ratio of the acid and the base is 2:1. All eight supramolecular assemblies involve extensive intermolecular classical hydrogen bonds as well as other noncovalent interactions. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, all the complexes displayed 3D framework structure. The results presented herein indicate that the strength and directionality of the classical N+-H⋯O-, O-H⋯O, and O-H⋯N hydrogen bonds (ionic or neutral) and other nonbonding associations between acids and ditopic benzimidazoles are sufficient to bring about the formation of cocrystals or organic salts.

  11. Organism-Adapted Specificity of the Allosteric Regulation of Pyruvate Kinase in Lactic Acid Bacteria

    PubMed Central

    Veith, Nadine; Feldman-Salit, Anna; Cojocaru, Vlad; Henrich, Stefan; Kummer, Ursula; Wade, Rebecca C.

    2013-01-01

    Pyruvate kinase (PYK) is a critical allosterically regulated enzyme that links glycolysis, the primary energy metabolism, to cellular metabolism. Lactic acid bacteria rely almost exclusively on glycolysis for their energy production under anaerobic conditions, which reinforces the key role of PYK in their metabolism. These organisms are closely related, but have adapted to a huge variety of native environments. They include food-fermenting organisms, important symbionts in the human gut, and antibiotic-resistant pathogens. In contrast to the rather conserved inhibition of PYK by inorganic phosphate, the activation of PYK shows high variability in the type of activating compound between different lactic acid bacteria. System-wide comparative studies of the metabolism of lactic acid bacteria are required to understand the reasons for the diversity of these closely related microorganisms. These require knowledge of the identities of the enzyme modifiers. Here, we predict potential allosteric activators of PYKs from three lactic acid bacteria which are adapted to different native environments. We used protein structure-based molecular modeling and enzyme kinetic modeling to predict and validate potential activators of PYK. Specifically, we compared the electrostatic potential and the binding of phosphate moieties at the allosteric binding sites, and predicted potential allosteric activators by docking. We then made a kinetic model of Lactococcus lactis PYK to relate the activator predictions to the intracellular sugar-phosphate conditions in lactic acid bacteria. This strategy enabled us to predict fructose 1,6-bisphosphate as the sole activator of the Enterococcus faecalis PYK, and to predict that the PYKs from Streptococcus pyogenes and Lactobacillus plantarum show weaker specificity for their allosteric activators, while still having fructose 1,6-bisphosphate play the main activator role in vivo. These differences in the specificity of allosteric activation may

  12. Humic and fluvic acids and organic colloidal materials in the environment

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.; Clark, S.B.

    1996-04-01

    Humic substances are ubiquitous in the environment, occurring in all soils, waters, and sediments of the ecosphere. Humic substances arise from the decomposition of plant and animal tissues yet are more stable than their precursors. Their size, molecular weight, elemental composition, structure, and the number and position of functional groups vary, depending on the origin and age of the material. Humic and fulvic substances have been studied extensively for more than 200 years; however, much remains unknown regarding their structure and properties. Humic substances are those organic compounds found in the environment that cannot be classified as any other chemical class of compounds. They are traditionally defined according to their solubilities. Fulvic acids are those organic materials that are soluble in water at all pH values. Humic acids are those materials that are insoluble at acidic pH values (pH < 2) but are soluble at higher pH values. Humin is the fraction of natural organic materials that is insoluble in water at all pH values. These definitions reflect the traditional methods for separating the different fractions from the original mixture. The humic content of soils varies from 0 to almost 10%. In surface waters, the humic content, expressed as dissolved organic carbon (DOC), varies from 0.1 to 50 ppm in dark-water swamps. In ocean waters, the DOC varies from 0.5 to 1.2 ppm at the surface, and the DOC in samples from deep groundwaters varies from 0.1 to 10 ppm. In addition, about 10% of the DOC in surface waters is found in suspended matter, either as organic or organically coated inorganic particulates. Humic materials function as surfactants, with the ability to bind both hydrophobic and hydrophyllic materials, making numic and fluvic materials effective agents in transporting both organic and inorganic contaminants in the environment.

  13. Seasonal variations and source identification of selected organic acids associated with PM10 in the coastal area of Southeastern China

    NASA Astrophysics Data System (ADS)

    Wu, Shui-Ping; Schwab, James; Liu, Bi-Lian; Li, Tsung-Chang; Yuan, Chung-Shin

    2015-03-01

    PM10 aerosols from the coastal area of Southeastern China were collected from April 2010 to March 2011 and were measured for C2-C10 dicarboxylic acids, phthalic acids (Ph) and five fatty acids (palmitic, stearic, oleic, linoleic and elaidic acids). For all sites and seasons, molecular distributions of diacids were always characterized by a predominance of oxalic acid (C2), with a relative abundance of 68-87%, followed by malonic acid (C3) and by either succinic acid (C4) or phthalic acid (Ph). This observed molecular composition was different from that in Chinese megacities where Ph was significantly higher than C3 and C4 diacids, which was likely due to the less intensive traffic emissions in the coastal area. Seasonal means of total diacids ranged between 394 and 547 ng m- 3 at the coastal urban sites and between 163 and 245 ng m- 3 at off-island sites. These levels were much lower than those reported in Chinese megacities (668-1568 ng m- 3) and slightly lower than those in Jeju Island, Korea (464-744 ng m- 3) but higher than those in marine and continental background locations. In all seasons, saturated fatty acids were significantly higher than unsaturated fatty acids due to their greater photochemical stabilities in the atmosphere. Most organic acids showed higher levels in spring and winter and lower levels in summer and fall, which was likely due to the influence of transport and meteorology. The diagnostic ratios of malonic acid to succinic acid (C3/C4), adipic acid to azelaic acid (C6/C9) and phthalic acid to azelaic acid (Ph/C9) were significantly higher in summer than in winter. These diagnostic ratios in the sampled ambient aerosols were completely different from those in primary emissions, suggesting the importance of photochemical production - especially in summer. The diurnal variations of diacids and fatty acid as well as the diagnostic ratios are associated with higher solar radiation and anthropogenic activities during the daytime. Principal

  14. Relationship of Cell Sap pH to Organic Acid Change During Ion Uptake 1

    PubMed Central

    Hiatt, A. J.

    1967-01-01

    Excised roots of barley (Hordeum vulgare, var. Campana) were incubated in KCl, K2SO4, CaCl2, and NaCl solutions at concentrations of 10−5 to 10−2 n. Changes in substrate solution pH, cell sap pH, and organic acid content of the roots were related to differences in cation and anion absorption. The pH of expressed sap of roots increased when cations were absorbed in excess of anions and decreased when anions were absorbed in excess of cations. The pH of the cell sap shifted in response to imbalances in cation and anion uptake in salt solutions as dilute as 10−5 n. Changes in cell sap pH were detectable within 15 minutes after the roots were placed in 10−3 n K2SO4. Organic acid changes in the roots were proportional to expressed sap pH changes induced by unbalanced ion uptake. Changes in organic acid content in response to differential cation and anion uptake appear to be associated with the low-salt component of ion uptake. PMID:16656506

  15. Strong Fluorescent Smart Organogel as a Dual Sensing Material for Volatile Acid and Organic Amine Vapors.

    PubMed

    Xue, Pengchong; Yao, Boqi; Wang, Panpan; Gong, Peng; Zhang, Zhenqi; Lu, Ran

    2015-11-23

    An L-phenylalanine derivative (C12PhBPCP) consisting of a strong emission fluorophore with benzoxazole and cyano groups is designed and synthesized to realize dual responses to volatile acid and organic amine vapors. The photophysical properties and self-assembly of the said derivative in the gel phase are also studied. C12PhBPCP can gelate organic solvents and self-assemble into 1 D nanofibers in the gels. UV/Vis absorption spectral results show H-aggregate formation during gelation, which indicates strong exciton coupling between fluorophores. Both wet gel and xerogel emit strong green fluorescence because the cyano group suppresses fluorescence quenching in the self-assemblies. Moreover, the xerogel film with strong green fluorescence can be used as a dual chemosensor for quantitative detection of volatile acid and organic amine vapors with fast response times and low detection limits owing to its large surface area and amplified fluorescence quenching. The detection limits are 796 ppt and 25 ppb for gaseous aniline and trifluoroacetic acid (TFA), respectively. PMID:26449736

  16. Quantum chemical modeling of humic acid/air equilibrium partitioning of organic vapors.

    PubMed

    Niederer, Christian; Goss, Kai-Uwe

    2007-05-15

    Classical approaches for predicting soil organic matter partition coefficients of organic compounds require a calibration with experimental partition data and, for good accuracy, experimental compound descriptors. In this study we evaluate the quantum chemical model COSMO-RS in its COSMOtherm implementation for the prediction of about 200 experimental Leonardite humic acid/air partition coefficients without calibration or experimental compound descriptors, but simply based on molecular structures. For this purpose a Leonardite Humic Acid model monomer limited to 31 carbon atoms was derived from 13C NMR analysis, elemental analysis, and acidic function analysis provided in the literature. Altogether the COSMOtherm calculations showed a good performance and we conclude that it may become a very promising tool for the prediction of sorption in soil organic matter for compounds for which the molecular structure is the only reliable information available. COSMOtherm can be expected to be very robust with respectto new and complex compound structures because its calculations are based on a fundamental assessment of the underlying intermolecular forces. In contrast, other empirical models that are also based on the molecular structure of the sorbate have an application domain that is limited by their calibration data set that is often unknown to the user. PMID:17547191

  17. Highly Conductive and Reliable Copper-Filled Isotropically Conductive Adhesives Using Organic Acids for Oxidation Prevention

    NASA Astrophysics Data System (ADS)

    Chen, Wenjun; Deng, Dunying; Cheng, Yuanrong; Xiao, Fei

    2015-07-01

    The easy oxidation of copper is one critical obstacle to high-performance copper-filled isotropically conductive adhesives (ICAs). In this paper, a facile method to prepare highly reliable, highly conductive, and low-cost ICAs is reported. The copper fillers were treated by organic acids for oxidation prevention. Compared with ICA filled with untreated copper flakes, the ICA filled with copper flakes treated by different organic acids exhibited much lower bulk resistivity. The lowest bulk resistivity achieved was 4.5 × 10-5 Ω cm, which is comparable to that of commercially available Ag-filled ICA. After 500 h of 85°C/85% relative humidity (RH) aging, the treated ICAs showed quite stable bulk resistivity and relatively stable contact resistance. Through analyzing the results of x-ray diffraction, x-ray photoelectron spectroscopy, and thermogravimetric analysis, we found that, with the assistance of organic acids, the treated copper flakes exhibited resistance to oxidation, thus guaranteeing good performance.

  18. Hydroxycarboxylic acids and salts

    DOEpatents

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  19. Exploration of amino acid biomarkers in polar ice with the Mars Organic Analyzer

    NASA Astrophysics Data System (ADS)

    Jayarajah, C.; Botta, O.; Aubrey, A.; Parker, E.; Bada, J.; Mathies, R.

    2009-05-01

    A portable microfabricated capillary electrophoresis (CE) system named the Mars Organic Analyzer (MOA) has been developed to analyze fluorescently-labeled biomarkers including amino acids, amines, nucleobases, and amino sugars with the goal of life detection on Mars (1,2). This technology has also been shown to be effective in screening the formation of biogenic amines during fermentation (3). The MOA is a part of the Urey instrument package that has been selected for the 2016 European ExoMars mission by ESA. The identification of recent gully erosion sites, observations of ice on and beneath the surface of Mars, and the discovery of large reservoirs of sub-surface ice on Mars point to water-ice as an important target for astrobiological analyses. In addition, the ice samples on the Moon, Mercury, Europa and Enceladus are of interest due to the possibility that they may contain information on biogenic material relevant to the evolution of life. We explore here the use of the MOA instrument for the analysis of amino acids in polar ice samples. The amino acids valine, alanine/serine, glycine, glutamic acid, and aspartic acid were found in the parts-per-billion range from Greenland ice-core samples. Chiral analysis of these samples yielded D/L ratios of 0.51/0.09 for alanine/serine and 0.14/0.06 for aspartic acid. Individual amino acids in the parts-per-trillion range were found in Antarctic ice samples collected from the surface of a meteorite collection area. The distinct amino acid and amine content of these samples indicates that further biomarker characterization of ice samples as a function of sampling location, depth, and structural features will be highly informative. The rapid sensitive analysis capabilities demonstrated here establish the feasibility of using the MOA to analyze the biomarker content of ice samples in planetary exploration. 1. Skelley, A. M.; Scherer, J. R.; Aubrey, A. D.; Grover, W. H.; Ivester, R. H. C., Ehrenfreund, P.; Grunthaner, F. J

  20. Hydrogen isotope measurements of organic acids and alcohols by Pyrolysis-GC-MS-TC-IRMS

    NASA Astrophysics Data System (ADS)

    Socki, R. A.; Fu, Q.; Niles, P. B.

    2011-12-01

    One possible process responsible for methane generation on Mars is abiotic formation by Fischer-Tropsch-type (FTT) synthesis during serpentinization reactions. Measurement of carbon and hydrogen isotopes of intermediary organic compounds can help constrain the origin of this methane by tracing the geochemical pathway during formation. Of particular interest within the context of this work is the isotopic composition of organic intermediaries produced on the surfaces of mineral catalysts (i.e. magnetite) during hydrothermal experiments, and the ability to make meaningful and reproducible hydrogen isotope measurements. Reported here are results of experiments to characterize the hydrogen isotope composition of low molecular weight organic acids and alcohols. The presence of these organic compounds has been suggested by us and others as intermediary products made during mineral surface catalyzed reactions. This work compliments our previous study characterizing the carbon isotope composition of similar low molecular weight intermediary organic compounds (Socki, et al, American Geophysical Union Fall meeting, Abstr. #V51B-2189, Dec., 2010). Our hydrogen isotope measurements utilize a unique analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). Our technique is unique in that it carries a split of the pyrolyzed GC-separated product to a Thermo DSQ-II° quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample. Samples of carboxylic acid (C1 through C4) and alcohols (C1 through C4) were pyrolyzed at 200°C on a CDS Analytical. Inc. Model 5200° pyroprobe and passed through a Thermo Electron GC-MS-TC-IRMS system operating in continuous flow mode. The High Temperature Conversion step

  1. Organic production enhances milk nutritional quality by shifting fatty acid composition: a United States-wide, 18-month study.

    PubMed

    Benbrook, Charles M; Butler, Gillian; Latif, Maged A; Leifert, Carlo; Davis, Donald R

    2013-01-01

    Over the last century, intakes of omega-6 (ω-6) fatty acids in Western diets have dramatically increased, while omega-3 (ω-3) intakes have fallen. Resulting ω-6/ω-3 intake ratios have risen to nutritionally undesirable levels, generally 10 to 15, compared to a possible optimal ratio near 2.3. We report results of the first large-scale, nationwide study of fatty acids in U.S. organic and conventional milk. Averaged over 12 months, organic milk contained 25% less ω-6 fatty acids and 62% more ω-3 fatty acids than conventional milk, yielding a 2.5-fold higher ω-6/ω-3 ratio in conventional compared to organic milk (5.77 vs. 2.28). All individual ω-3 fatty acid concentrations were higher in organic milk--α-linolenic acid (by 60%), eicosapentaenoic acid (32%), and docosapentaenoic acid (19%)--as was the concentration of conjugated linoleic acid (18%). We report mostly moderate regional and seasonal variability in milk fatty acid profiles. Hypothetical diets of adult women were modeled to assess milk fatty-acid-driven differences in overall dietary ω-6/ω-3 ratios. Diets varied according to three choices: high instead of moderate dairy consumption; organic vs. conventional dairy products; and reduced vs. typical consumption of ω-6 fatty acids. The three choices together would decrease the ω-6/ω-3 ratio among adult women by ∼80% of the total decrease needed to reach a target ratio of 2.3, with relative impact "switch to low ω-6 foods" > "switch to organic dairy products" ≈ "increase consumption of conventional dairy products." Based on recommended servings of dairy products and seafoods, dairy products supply far more α-linolenic acid than seafoods, about one-third as much eicosapentaenoic acid, and slightly more docosapentaenoic acid, but negligible docosahexaenoic acid. We conclude that consumers have viable options to reduce average ω-6/ω-3 intake ratios, thereby reducing or eliminating probable risk factors for a wide range of developmental and

  2. Organic Production Enhances Milk Nutritional Quality by Shifting Fatty Acid Composition: A United States–Wide, 18-Month Study

    PubMed Central

    Benbrook, Charles M.; Butler, Gillian; Latif, Maged A.; Leifert, Carlo; Davis, Donald R.

    2013-01-01

    Over the last century, intakes of omega-6 (ω-6) fatty acids in Western diets have dramatically increased, while omega-3 (ω-3) intakes have fallen. Resulting ω-6/ω-3 intake ratios have risen to nutritionally undesirable levels, generally 10 to 15, compared to a possible optimal ratio near 2.3. We report results of the first large-scale, nationwide study of fatty acids in U.S. organic and conventional milk. Averaged over 12 months, organic milk contained 25% less ω-6 fatty acids and 62% more ω-3 fatty acids than conventional milk, yielding a 2.5-fold higher ω-6/ω-3 ratio in conventional compared to organic milk (5.77 vs. 2.28). All individual ω-3 fatty acid concentrations were higher in organic milk—α-linolenic acid (by 60%), eicosapentaenoic acid (32%), and docosapentaenoic acid (19%)—as was the concentration of conjugated linoleic acid (18%). We report mostly moderate regional and seasonal variability in milk fatty acid profiles. Hypothetical diets of adult women were modeled to assess milk fatty-acid-driven differences in overall dietary ω-6/ω-3 ratios. Diets varied according to three choices: high instead of moderate dairy consumption; organic vs. conventional dairy products; and reduced vs. typical consumption of ω-6 fatty acids. The three choices together would decrease the ω-6/ω-3 ratio among adult women by ∼80% of the total decrease needed to reach a target ratio of 2.3, with relative impact “switch to low ω-6 foods” > “switch to organic dairy products” ≈ “increase consumption of conventional dairy products.” Based on recommended servings of dairy products and seafoods, dairy products supply far more α-linolenic acid than seafoods, about one-third as much eicosapentaenoic acid, and slightly more docosapentaenoic acid, but negligible docosahexaenoic acid. We conclude that consumers have viable options to reduce average ω-6/ω-3 intake ratios, thereby reducing or eliminating probable risk factors for a wide range of

  3. Computational 17O-NMR spectroscopy of organic acids and peracids: comparison of solvation models.

    PubMed

    Baggioli, Alberto; Crescenzi, Orlando; Field, Martin J; Castiglione, Franca; Raos, Guido

    2013-01-28

    We examine several computational strategies for the prediction of the (17)O-NMR shielding constants for a selection of organic acids and peracids in aqueous solution. In particular, we consider water (the solvent and reference for the chemical shifts), hydrogen peroxide, acetic acid, lactic acid and peracetic acid. First of all, we demonstrate that the PBE0 density functional in combination with the 6-311+G(d,p) basis set provides an excellent compromise between computational cost and accuracy in the calculation of the shielding constants. Next, we move on to the problem of the solvent representation. Our results confirm the shortcomings of the Polarizable Continuum Model (PCM) in the description of systems susceptible to strong hydrogen bonding interactions, while at the same time they demonstrate its usefulness within a molecular-continuum approach, whereby PCM is applied to describe the solvation of the solute surrounded by some explicit solvent molecules. We examine different models of the solvation shells, sampling their configurations using both energy minimizations of finite clusters and molecular dynamics simulations of bulk systems. Hybrid molecular dynamics simulations, in which the solute is described at the PM6 semiempirical level and the solvent by the TIP3P model, prove to be a promising sampling method for medium-to-large sized systems. The roles of solvent shell size and structure are also briefly discussed. PMID:23223608

  4. Purification of organic acids by chromatography with strong anionic resins: Investigation of uptake mechanisms.

    PubMed

    Lemaire, Julien; Blanc, Claire-Line; Lutin, Florence; Théoleyre, Marc-André; Stambouli, Moncef; Pareau, Dominique

    2016-08-01

    Bio-based organic acids are promising renewable carbon sources for the chemical industry. However energy-consuming purification processes are used, like distillation or crystallization, to reach high purities required in some applications. That is why preparative chromatography was studied as an alternative separation technique. In a previous work dealing with the purification of lactic, succinic and citric acids, the Langmuir model was insufficient to explain the elution profiles obtained with a strong anionic resin. Consequently the Langmuir model was coupled with a usual ion-exchange model to take into account the retention of their conjugate bases (<2%), which are commonly neglected at low pH (<1.5). Elution simulations with both uptake mechanisms fitted very well with experimental pulse tests. Only two parameters were optimized (equilibrium constant of acid uptake and ion-exchange selectivity coefficient of conjugate base) and their value were coherent with experimental and resin suppliers' data. These results confirmed that the singular tailing and apparent delay observed with succinic and citric acids can be explained by the high affinity of succinate and citrate for resin cationic sites. The model was implemented in a preparative chromatography simulation program in order to optimize operating parameters of our pilot-scale ISMB unit (Improved Simulated Moving Bed). The comparison with experimental ISMB profiles was conclusive. PMID:27373374

  5. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids.

    PubMed

    Aasen, Inga Marie; Ertesvåg, Helga; Heggeset, Tonje Marita Bjerkan; Liu, Bin; Brautaset, Trygve; Vadstein, Olav; Ellingsen, Trond E

    2016-05-01

    Thraustochytrids have been applied for industrial production of the omega-3 fatty acid docosahexaenoic (DHA) since the 1990s. During more than 20 years of research on this group of marine, heterotrophic microorganisms, considerable increases in DHA productivities have been obtained by process and medium optimization. Strains of thraustochytrids also produce high levels of squalene and carotenoids, two other commercially interesting compounds with a rapidly growing market potential, but where yet few studies on process optimization have been reported. Thraustochytrids use two pathways for fatty acid synthesis. The saturated fatty acids are produced by the standard fatty acid synthesis, while DHA is synthesized by a polyketide synthase. However, fundamental knowledge about the relationship between the two pathways is still lacking. In the present review, we extract main findings from the high number of reports on process optimization for DHA production and interpret these in the light of the current knowledge of DHA synthesis in thraustochytrids and lipid accumulation in oleaginous microorganisms in general. We also summarize published reports on squalene and carotenoid production and review the current status on strain improvement, which has been hampered by the yet very few published genome sequences and the lack of tools for gene transfer to the organisms. As more sequences now are becoming available, targets for strain improvement can be identified and open for a system-level metabolic engineering for improved productivities. PMID:27041691

  6. Mononuclear metal complexes of organic carboxylic acid derivatives: Synthesis, spectroscopic characterization, thermal investigation and antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Abd El-Wahab, Zeinab H.

    2007-05-01

    Two Schiff base ligands bearing organic acid moiety, vis., N-(2-thienylmethylidene)-2-amino-4-chlorobenzoic acid (HL 1) and N-(2-hydroxybenzylidene)-2-amino-4-chlorobenzoic acid (H 2L 2) have been synthesized by the interaction of 2-thiophenecarboxaldehyde and 2-hydroxybenzaldehyde with 2-amino-4-chlorobenzoic acid. Co(II), Ni(II), Cu(II) and Zn(II) complexes of these ligands have been prepared. They are characterized on the basis of analytical data, molar conductance, IR, 1H NMR, UV-vis, mass spectra, magnetic measurements, thermal analysis and X-ray powder diffraction technique. The molar conductance data reveal that these complexes are non-electrolytes. The ligands are coordinated to the metal ions in a terdentate manner with ONO/ONS donor sites of the carbonyl oxygen, azomethine nitrogen and phenolic oxygen or thiophenic sulphur. An octahedral structure is proposed for the prepared metal complexes and some ligand field parameters ( Dq, B and β) in addition to CFSE were calculated. The thermal stability of the metal complexes is evaluated. The Schiff base ligands and their metal complexes have been tested against four species of bacteria as well as four species of fungi and the results have been compared with some known antibiotics.

  7. New Particle Formation and Growth from Methanesulfonic Acid, Amines, Water, and Organics

    NASA Astrophysics Data System (ADS)

    Arquero, K. D.; Ezell, M. J.; Finlayson-Pitts, B. J.

    2014-12-01

    Particles in the atmosphere can influence visibility, negatively impact human health, and affect climate. The largest uncertainty in determining global radiative forcing is attributed to atmospheric aerosols. While new particle formation in many locations is correlated with sulfuric acid in air, neither the gas-phase binary nucleation of H2SO4-H2O nor the gas-phase ternary nucleation of H2SO4-NH3-H2O alone can fully explain observations. An additional potential particle source, based on previous studies in this laboratory, is methanesulfonic acid (MSA) with amines and water vapor. However, organics are ubiquitous in the atmosphere, with secondary organic aerosol (SOA) being a major component of particles. Organics could be involved in the initial stages of particle formation by enhancing or inhibiting nucleation from sulfuric acid or MSA, in addition to contributing to their growth to form SOA. Experiments to measure the effects of a series of organics of varying structure on particle formation and growth from MSA, amines, and water were performed in a custom-built small volume aerosol flow tube reactor. Analytical instruments and techniques include a scanning mobility particle sizer to measure particle size distributions, sampling onto a weak cation exchange resin with analysis by ion chromatography to measure amine concentrations, and filter collection and analysis by ultra-high performance liquid chromatography tandem mass spectrometry to measure MSA concentrations. Organics were measured by atmospheric pressure chemical ionization tandem mass spectrometry. The impact of these organics on the initial particle formation as well as growth will be reported. The outcome is an improved understanding of fundamental chemistry of nucleation and growth to ultimately be incorporated into climate models to better predict how particles affect the global climate budget.

  8. [Influence of Three Low-Molecular-Weight Organic Acids on the Adsorption of Phenanthrene in Purple Soil].

    PubMed

    Xie, Li; Chen, Ben-shou; Zhang, Jin-zhong; Lu, Song; Jiang, Tao

    2016-03-15

    The effects of three low-molecular-weight organic acids (citric acid, malic acid and oxalic acid) on the adsorption of phenanthrene in purple soil were studied by static adsorption experiment. The results showed that the adsorption kinetic process of phenanthrene in purple soil could be described by the second-order kinetic model, and the adsorption rate constant would significantly decrease in the presence of the three low-molecular-weight organic acids ( LMWOAs). The adsorption thermodynamic process could be well described by linear adsorption model, which was dominated by distribution role. The three LMWOAs could promote the adsorption of phenantherene in purple soil when their concentrations were less than 5 mmol · L⁻¹, whereas inhibit the adsorption when their concentrations were more than 10 mmol · L⁻¹, and the inhibition would increase with increasing concentrations. Moreover, the inhibitory ability displayed a decreasing order of citric acid, oxalic acid, and malic acid when their concentrations were 20 mmol · L⁻¹, which is related to the molecular structure and acidity of the three LMWOAs. Compared with the control, the content of dissolved organic matter (DOM) released from purple soil showed a trend of first decrease and then increase with increasing LMWOAs concentration, and the adsorption capacity of phenanthrene in purple soil was negatively related to DOM content. PMID:27337897

  9. Amino acids as a source of organic nitrogen in Antarctic endolithic microbial communities

    NASA Technical Reports Server (NTRS)

    McDonald, G.; Sun, H.

    2002-01-01

    In the Antarctic Dry Valleys, cryptoendolithic microbial communities occur within porous sandstone rocks. Current understanding of the mechanisms of physiological adaptation of these communities to the harsh Antarctic environment is limited, because traditional methods of studying microbial physiology are very difficult to apply to organisms with extremely low levels of metabolic activity. In order to fully understand carbon and nitrogen cycling and nutrient uptake in cryptoendolithic communities, and the metabolic costs that the organisms incur in order to survive, it is necessary to employ molecular geochemical techniques such as amino acid analysis in addition to physiological methods.

  10. Using organic acids to control subacute ruminal acidosis and fermentation in feedlot cattle fed a high-grain diet.

    PubMed

    Vyas, D; Beauchemin, K A; Koenig, K M

    2015-08-01

    The objective of this study was to determine whether supplementing organic acids can prevent incidences of subacute ruminal acidosis (SARA) in beef heifers fed a diet consisting of 8% barley silage and 92% barley grain-based concentrate (DM basis). Ten ruminally cannulated Hereford crossbred heifers (484 ± 25 kg BW) were used in a replicated 5 × 5 Latin square design with 14-d periods including 10 d for dietary adaptation and 4 d for measurements. Dietary treatments included no supplementation (Control), low fumaric acid (61 g/d), high fumaric acid (125 g/d), low malic acid (59 g/d), and high malic acid (134 g/d). Organic acid supplementation had no effect on DMI ( = 0.77). Similarly, no effects were observed on mean ( = 0.74), minimum ( = 0.64), and maximum ( = 0.27) ruminal pH measured continuously for 48 h. Moreover, area under the curve for pH thresholds 6.2 ( = 0.97), 5.8 ( = 0.66), 5.5 ( = 0.55), and 5.2 ( = 0.93) was similar for all treatments. However, malic acid supplementation lowered the amount of time that ruminal pH was <6.2 compared with the Control ( = 0.02) and fumaric acid treatments ( < 0.01). No effects were observed on total VFA concentrations with organic acid supplementation ( = 0.98) compared with the Control, but greater total VFA concentrations were observed with fumaric acid compared with the malic acid treatments ( = 0.02). The population of total culturable bacteria 3 h after feeding was reduced with supplemental malic acid compared with the Control ( = 0.03) and fumaric acid treatments ( = 0.03). However, no effects were observed with organic acid supplementation on lactic acid-utilizing bacteria ( = 0.59). In conclusion, under the conditions of the present study, organic acid supplementation did not have any significant effects on ruminal fermentation parameters compared with the Control and were not effective in preventing SARA in beef cattle fed high-grain diets. PMID:26440175

  11. Sensitive Amino Acid Composition and Chirality Analysis with the Mars Organic Analyzer (MOA)

    NASA Astrophysics Data System (ADS)

    Skelley, A. M.; Scherer, J. R.; Aubrey, A. D.; Ivester, R. H.; Ehrenfreund, P.; Grunthaner, F. J.; Bada, J. L.; Mathies, R. A.

    2004-12-01

    Detection of life on Mars requires definition of a suitable biomarker and development of sensitive yet compact instrumentation capable of performing in situ analyses. Our studies are focused on amino acid analysis because amino acids are more resistant to decomposition than other biomolecules, and because amino acid chirality is a well-defined biomarker. Amino acid composition and chirality analysis has been previously demonstrated in the lab on microfabricated capillary electrophoresis (CE) chips (1, 2). To analyze amino acids in situ, we have developed the Mars Organic Analyzer (MOA), a portable analysis system that consists of a compact instrument and a novel multi-layer CE microchip. The heart of the MOA is the microchip that contains the CE separation channels as well as microfabricated valves and pumps (3) for sample handling. The pneumatic microfabricated valves are created by combining an etched displacement chamber, an actuated PDMS membrane layer, and a discontinuous fluidic channel structure. A microfabricated pump is created by combining three individually-addressable valves in series. These membrane valves and pumps are integrated with the glass separation channel using a novel multilayer design in which sample enters the top fluidic layer for routing and is directed to the bottom glass layers for CE separation and analysis. The microfabricated device is operated by the portable instrument which contains solenoids for controlling fluidic valves, electronics, a 15 mW 400 nm diode laser, confocal detection optics, and a fiber-optic coupled photomultiplier for fluorescence detection. Limits of detection of fluorescamine-labeled amino acids are in the nM to pM range corresponding to part-per-trillion sensitivities in soil samples (4). The portable CE instrument, in combination with the Mars Organic Detector (MOD) (5), was recently successfully field tested on soil samples rich in jarosite from Panoche Valley, CA. Jarosite has recently been detected on Mars

  12. Fatty Acids of Thiobacillus thiooxidans

    PubMed Central

    Levin, Richard A.

    1971-01-01

    Fatty acid spectra were made on Thiobacillus thiooxidans cultures both in the presence and absence of organic compounds. Small additions of glucose or acetate had no significant effect either on growth or fatty acid content. The addition of biotin had no stimulatory effect but did result in slight quantitative changes in the fatty acid spectrum. The predominant fatty acid was a C19 cyclopropane acid. PMID:4945206

  13. Lack of correlation between organic acid concentrations and predominant electron-accepting processes in a contaminated aquifer

    USGS Publications Warehouse

    Vroblesky, D.A.; Bradley, P.M.; Chapelle, F.H.

    1997-01-01

    Long-term (1992-1995) monitoring data from a petroleum hydrocarbon- contaminated aquifer were used to examine the hypothesis that concentrations of low molecular weight (LMW) aliphatic organic acids reflect terminal electron-accepting processes. During the period of study, concentrations of dissolved hydrogen (H2) indicated that methanogenic, sulfate-reducing, and iron(III)-reducing conditions predominated at the site. However, there was no correlation between LMW organic acid concentrations and concentrations of dissolved H2. These results indicate that organic acid concentrations are not a reliable indicator of local redox conditions at this site.

  14. Bile acid transporters

    PubMed Central

    Dawson, Paul A.; Lan, Tian; Rao, Anuradha

    2009-01-01

    In liver and intestine, transporters play a critical role in maintaining the enterohepatic circulation and bile acid homeostasis. Over the past two decades, there has been significant progress toward identifying the individual membrane transporters and unraveling their complex regulation. In the liver, bile acids are efficiently transported across the sinusoidal membrane by the Na+ taurocholate cotransporting polypeptide with assistance by members of the organic anion transporting polypeptide family. The bile acids are then secreted in an ATP-dependent fashion across the canalicular membrane by the bile salt export pump. Following their movement with bile into the lumen of the small intestine, bile acids are almost quantitatively reclaimed in the ileum by the apical sodium-dependent bile acid transporter. The bile acids are shuttled across the enterocyte to the basolateral membrane and effluxed into the portal circulation by the recently indentified heteromeric organic solute transporter, OSTα-OSTβ. In addition to the hepatocyte and enterocyte, subgroups of these bile acid transporters are expressed by the biliary, renal, and colonic epithelium where they contribute to maintaining bile acid homeostasis and play important cytoprotective roles. This article will review our current understanding of the physiological role and regulation of these important carriers. PMID:19498215

  15. Selective conversion of organic pollutant p-chlorophenol to formic acid using zeolite Fenton catalyst.

    PubMed

    Shen, Chensi; Ma, Jianqing; Liu, Wanpeng; Wen, Yuezhong; Rashid, Sadia

    2016-10-01

    Effective remediation technologies which can converse the harmful organic pollutants to high-value chemicals are crucial both for wastewater treatment and energy regeneration. This study provides an evidence that extracting useful chemicals from wastewater is feasible through selective conversion of p-chlorophenol to high value formic acid as an example. The reported system works with a readily available Fe-containing ZSM-5 catalyst, water as the solvent and hydrogen peroxide as the oxidant. The yield of formic acid reached up to 50.7% when the Si/Al ratio of ZSM-5 was 80 and the Fe-content was 1.4%. By X-ray adsorption fine structure (XAFS), NH3 temperature-programmed desorption (NH3-TPD) technique, the pyridine adsorption Fourier-transition infrared (Py-IR) spectroscopy and adsorption measurements, it was concluded that the controllable degradation of p-CP could be approached through selective adsorption, the moderate Brønsted acid sites for H2O2 activation and the properly selective conversion control due to extra-framework coordination unsaturated sites (CUS) of Fe. This approach might provide a new avenue for the field of organic pollutant remediation. PMID:27459155

  16. Organic compounds containing methoxy and cyanoacrylic acid: Synthesis, characterization, crystal structures, and theoretical studies

    SciTech Connect

    Khalaji, A. D.; Maddahi, E.; Dusek, M.; Fejfarova, K.; Chow, T. J.

    2015-12-15

    Metal-free organic compounds 24-SC ((E)-2-cyano-3-(2,4-dimethoxyphenyl)acrylic acid) and 34-SC ((E)-2-cyano-3-(3,4-dimethoxyphenyl)acrylic acid), containing methoxy groups as a donor and the acrylic acid as an acceptor were synthesized and characterized by CHN, FT-IR, UV-Vis, {sup 1}H-NMR and single crystal X-ray diffraction and used as photosensitizers for the application of dye-sensitized solar cells (DSSC). The sensitizing characteristics of them were evaluated. Both compounds contain the natural molecule, its anionic form and the piperidinium cation and they differ by number of these molecules in the asymmetric unit. To get further insight into the effect of molecular structure on the performance of DSSC, their geometry and energies of HOMO and LUMO were optimized by density functional theory calculation at the B3LYP/6-31G(d) level with Gaussian 03. Overall conversion efficiencies of 0.78 under full sunlight irradiation are obtained for DSSCs based on the new metal-free organic dyes 24-SC and 34-SC.

  17. Organic compounds containing methoxy and cyanoacrylic acid: Synthesis, characterization, crystal structures, and theoretical studies

    NASA Astrophysics Data System (ADS)

    Khalaji, A. D.; Maddahi, E.; Dusek, M.; Fejfarova, K.; Chow, T. J.

    2015-12-01

    Metal-free organic compounds 24-SC (( E)-2-cyano-3-(2,4-dimethoxyphenyl)acrylic acid) and 34-SC (( E)-2-cyano-3-(3,4-dimethoxyphenyl)acrylic acid), containing methoxy groups as a donor and the acrylic acid as an acceptor were synthesized and characterized by CHN, FT-IR, UV-Vis, 1H-NMR and single crystal X-ray diffraction and used as photosensitizers for the application of dye-sensitized solar cells (DSSC). The sensitizing characteristics of them were evaluated. Both compounds contain the natural molecule, its anionic form and the piperidinium cation and they differ by number of these molecules in the asymmetric unit. To get further insight into the effect of molecular structure on the performance of DSSC, their geometry and energies of HOMO and LUMO were optimized by density functional theory calculation at the B3LYP/6-31G(d) level with Gaussian 03. Overall conversion efficiencies of 0.78 under full sunlight irradiation are obtained for DSSCs based on the new metal-free organic dyes 24-SC and 34-SC.

  18. Recovery of organic extractant from secondary emulsions formed in the extraction of uranium from wet-process phosphoric acid

    SciTech Connect

    Korchnak, J.D.; Fett, R.H.G.

    1984-01-03

    Uranium in wet-process phosphoric acid is extracted with an organic extractant. The pregnant extractant is then centrifuged to separate contaminants from the extractant. Secondary emulsions obtained by separating the contaminants following centrifugation are mixed with water or an acid leaching solution. After mixing, the mixture is centrifuged to separate and recover extractant which is recycled for stripping.

  19. Thermochemical studies on the quantity-antibacterial effect relationship of four organic acids from Radix Isatidis on Escherichia coli growth.

    PubMed

    Kong, Weijun; Zhao, Yanling; Shan, Limei; Xiao, Xiaohe; Guo, Weiying

    2008-07-01

    In this report, we have investigated the inhibitory action of four organic acids from Radix Isatidis on Escherichia coli growth was investigated at 37 degrees C by using a microcalorimeter. The four organic acids were: syringic acid, 2-amino-benzoic acid, salicylic acid, benzoic acid. In accordance with thermokinetic model, the pertaining relationships of the drugs, such as growth inhibitory ratio vs. concentration, maximal power-output vs. growth rate constant, growth rate constant vs. concentration, were obtained. Half-inhibitory concentration of the drugs, IC(50), was obtained by quantitative analysis. From the view of thermodynamics and molecular structure, the relationship between quantity and effect of the four organic acids has been discussed. The functional groups on phenyl ring had important influence on the antibacterial activities. Our work suggests that microcalorimetry is a fast, simple and more sensitive method that can be easily performed and applied to study the anti-bacterial activities of organic acids from Radix Isatidis on microorganism compared to other biological methods. PMID:18591764

  20. Acid-Catalyzed Preparation of Biodiesel from Waste Vegetable Oil: An Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bladt, Don; Murray, Steve; Gitch, Brittany; Trout, Haylee; Liberko, Charles

    2011-01-01

    This undergraduate organic laboratory exercise involves the sulfuric acid-catalyzed conversion of waste vegetable oil into biodiesel. The acid-catalyzed method, although inherently slower than the base-catalyzed methods, does not suffer from the loss of product or the creation of emulsion producing soap that plagues the base-catalyzed methods when…

  1. Separation and determination of organic acids and phenolic compounds in fruit juices and drinks by high-performance liquid chromatography.

    PubMed

    Shui, Guanghou; Leong, Lai Peng

    2002-11-15

    A high-performance liquid chromatographic (HPLC) separation method with photo-diode array detection has been developed for the simultaneous determination of organic acids and phenolic compounds in juices and drinks. The chromatographic analysis of organic acids and phenolic compounds was carried out after their elution with sulphuric acid solution (pH 2.5) and methanol from C18 stationary phase. The mobile phase employed was sulphuric acid solution working at a flow-rate of 0.35 ml min(-1) for the whole run, while methanol was linearly increased to 0.45 ml min(-1) from 15 to 75 min followed by a 5-min isocratic elution. Ten organic acid acids were eluted in 30 min and 21 phenolic compounds, which include phenolic acids and flavonoids, were eluted in the following 50 min. Target compounds were detected at 215 nm. The repeatability (n=3) and between day precision of peak area (n=3) were all within 5.0% RSD. The within-day repeatability (n=3) and between-day precision (n=10) of retention times were within 0.3 and 1.6% relative standard deviation (RSD), respectively. The accuracy of the method was confirmed with an average recovery ranging between 85 and 106%. The method was successfully used to measure a variety of organic acids and phenolic compounds in juices and beverages. This method could also be used to evaluate the authenticity, spoilage or micronutrient contents of juices. PMID:12456098

  2. An extended-gate type organic field effect transistor functionalised by phenylboronic acid for saccharide detection in water.

    PubMed

    Minami, Tsuyoshi; Minamiki, Tsukuru; Hashima, Yuki; Yokoyama, Daisuke; Sekine, Tomohito; Fukuda, Kenjiro; Kumaki, Daisuke; Tokito, Shizuo

    2014-12-21

    Saccharides in water are detected electrically using an extended-gate type organic field effect transistor (OFET) functionalised by a phenylboronic acid monolayer. The response patterns of the monosaccharides are significantly different, suggesting that OFET devices can successfully read out the saccharide recognition behaviour of boronic acids and be potentially applied to healthcare devices modified with supramolecular receptors. PMID:25360460

  3. Development and Assessment of a Diagnostic Tool to Identify Organic Chemistry Students' Alternative Conceptions Related to Acid Strength

    ERIC Educational Resources Information Center

    McClary, LaKeisha M.; Bretz, Stacey Lowery

    2012-01-01

    The central goal of this study was to create a new diagnostic tool to identify organic chemistry students' alternative conceptions related to acid strength. Twenty years of research on secondary and college students' conceptions about acids and bases has shown that these important concepts are difficult for students to apply to qualitative problem…

  4. Chemically modified polymeric resins for separation of cations, organic acids, and small polar moleculea by high performance liquid chromatography

    SciTech Connect

    Morris, J.B.

    1993-07-01

    This thesis is divided into 4 parts: a review, ion chromatography of metal cations on carboxylic resins, separation of hydrophilic organic acids and small polar compounds on macroporous resin columns, and use of eluent modifiers for liquid chromatographic separation of carboxylic acids using conductivity detection.

  5. Atmospheric oxidation of isoprene and 1,3-Butadiene: influence of aerosol acidity and Relative humidity on secondary organic aerosol

    EPA Science Inventory

    The effects of acidic seed aerosols on the formation of secondary organic aerosol (SOA)have been examined in a number of previous studies, several of which have observed strong linear correlations between the aerosol acidity (measured as nmol H+ per m3 air s...

  6. Effect of organic acid treatments on microbial safety and overall acceptability of fresh-cut melon cubes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is much interest in developing effective minimal processing methodologies for fruits and vegetables that would enhance the microbial safety and not change overall acceptability. In this study, several organic acids (EDTA, nisin, sorbic acid and sodium lactate) generally regarded as safe (GRAS)...

  7. Marsh plant response to metals: Exudation of aliphatic low molecular weight organic acids (ALMWOAs)

    NASA Astrophysics Data System (ADS)

    Rocha, A. Cristina S.; Almeida, C. Marisa R.; Basto, M. Clara P.; Vasconcelos, M. Teresa S. D.

    2016-03-01

    Metal exposure is known to induce the production and secretion of substances, such as aliphatic low molecular weight organic acids (ALMWOAs), into the rhizosphere by plant roots. Knowledge on this matter is extensive for soil plants but still considerably scarce regarding marsh plants roots adapted to high salinity media. Phragmites australis and Halimione portulacoides, two marsh plants commonly distributed in European estuarine salt marshes, were used to assess the response of roots of both species, in terms of ALMWOAs exudation, to Cu, Ni and Cd exposure (isolated and in mixture since in natural environment, they are exposed to mixture of metals). As previous studies were carried out in unrealistic and synthetic media, here a more natural medium was selected. Therefore, in vitro experiments were carried out, with specimens of both marsh plants, and in freshwater contaminated with two different Cu, Ni and Cd concentrations (individual metal and in mixture). Both marsh plants were capable of liberating ALMWOAs into the surrounding medium. Oxalic, citric and maleic acids were found in P. australis root exudate solutions and oxalic and maleic acids in H. portulacoides root exudate solutions. ALMWOA liberation by both plants was plant species and metal-dependent. For instance, Cu affected the exudation of oxalic acid by H. portulacoides and of oxalic and citric acids by P. australis roots. In contrast, Ni and Cd did not stimulate any specific response. Regarding the combination of all metals, H. portulacoides showed a similar response to that observed for Cu individually. However, in the P. australis case, at high metal concentration mixture, a synergetic effect led to the increase of oxalic acid levels in root exudate solution and to a decrease of citric acid liberation. A correlation between ALMWOAs exudation and metal accumulation could not be established. P. australis and H. portulacoides are considered suitable metal phytoremediators of estuarine impacted areas

  8. Why sulfuric acid forms particles so extremely well, and how organics might still compete

    NASA Astrophysics Data System (ADS)

    Kurten, T.; Ehn, M.; Kupiainen, O.; Olenius, T.; Rissanen, M.; Thornton, J. A.; Nielsen, L.; Jørgensen, S.; Ortega Colomer, I. K.; Kjaergaard, H. G.; Vehkamäki, H.

    2013-12-01

    It is a well-known result in aerosol science that the single most important molecule for the first steps of new-particle formation in our atmosphere is sulfuric acid, H2SO4. From a chemical perspective, this seems somewhat counterintuitive: the atmosphere contains thousands of different organic compounds, many of which can potentially form oxidation products with even lower volatility than H2SO4. The unique role of sulfuric acid is due to its formation kinetics. The conversion of sulfur dioxide, SO2 to H2SO4 requires only a single oxidant molecule (e.g. OH), as subsequent steps are extremely rapid. Still, the saturation vapor pressure of H2SO4 is over 108 times lower than that of SO2. In contrast, the oxidation reactions of organic molecules typically lower their saturation vapor pressure by only a factor of 10-1000 per oxidation step. Therefore, organic compounds are usually lost to pre-existing aerosol surfaces before they have undergone sufficiently many oxidation reactions to nucleate on their own. The presence of strong nitrogen-containing base molecules such as amines enhances the particle-forming advantages of sulfuric acid even further. Quantum chemical calculations indicate that the evaporation rate of sulfuric acid from key clusters containing two acid molecules may decrease by a factor of 108 in the presence of ppt-level concentrations of amines, implying a total decrease of up to 1016 in the effective vapor pressure going from SO2 to H2SO4. In some circumstances, this decrease causes the energy barrier for new-particle formation to disappear: the process is no longer nucleation, and some common applications of e.g. the nucleation theorem cease to apply. Cluster kinetic models combined with first-principles evaporation rates appear to describe this sulfuric acid - base clustering reasonably well, and result in cluster formation rates close to those measured at the CLOUD experiment in CERN. There may nevertheless exist exceptions to the general rule that

  9. Organic reactions increasing the absorption index of atmospheric sulfuric acid aerosols

    NASA Astrophysics Data System (ADS)

    Nozière, B.; Esteve, W.

    2005-02-01

    Unlike most environments present at Earth's surface atmospheric aerosols can be favorable to organic reactions. Among them, the acid-catalyzed aldol condensation of aldehydes and ketones produces light-absorbing compounds. In this work the increase of the absorption index of sulfuric acid solutions 50-96 wt. % resulting from the uptake of gas-phase acetaldehyde, acetone, and 2-butanone (methyl ethyl ketone), has been measured in the near UV and visible range. Our results indicate that the absorption index between 200 and 500 nm for stratospheric sulfuric aerosols exposed to 100 pptV of acetaldehyde (1 pptV = 10-12 v/v) would increase by four orders of magnitude over a two-year lifetime. Rough estimates based on previous radiative calculations suggest that this reaction could result in an increase of the radiative forcing of sulfate aerosols of the order of 0.01 W m-2, and that these processes are worth further investigation.

  10. Modeling the degradation of Portland cement pastes by biogenic organic acids

    SciTech Connect

    De Windt, Laurent; Devillers, Philippe

    2010-08-15

    Reactive transport models can be used to assess the long-term performance of cement-based materials subjected to biodegradation. A bioleaching test (with Aspergillus niger fungi) applied to ordinary Portland cement pastes during 15 months is modeled with HYTEC. Modeling indicates that the biogenic organic acids (acetic, butyric, lactic and oxalic) strongly accelerate hydrate dissolution by acidic hydrolysis whilst their complexation of aluminum has an effect on the secondary gel stability only. The deepest degradation front corresponds to portlandite dissolution and decalcification of calcium silicate hydrates. A complex pattern of sulfate phases dissolution and precipitation takes place in an intermediate zone. The outermost degraded zone consists of alumina and silica gels. The modeling accurateness of calcium leaching, pH evolution and degradation thickness is consistently enhanced whilst considering increase of diffusivity in the degraded zones. Precipitation of calcium oxalate is predicted by modeling but was hindered in the bioleaching reactor.

  11. Role of Dissolved Organic Matter in Sorption of Perfluorooctanoic Acid to Metal Oxides.

    PubMed

    Yang, Kai-Hsing; Ruan, Ci-Jie; Lin, Yen-Ching; Fang, Meng-Der; Wu, Chung-Hsin; Hong, Pui-Kwan Andy; Lin, Cheng-Fang

    2016-08-01

    Perfluorooctanoic acid (PFOA) is an important perfluorinated chemical of significant environmental concern. It has been widely found at high concentrations in the environment. We have exposed sediment constituent minerals SiO2, Fe2O3, and Al2O3 to PFOA and humic acid (HA) and studied the adsorption of PFOA by introducing the adsorbates in different orders. The results suggest concurrent sorption of PFOA and HA to the mineral surface or enhanced PFOA sorption when both are introduced to the aqueous phase. However, when PFOA is introduced to the mineral surface that has already been exposed to and extensively coated with HA, little PFOA adsorption occurs, which implies that PFOA released to rivers rich in dissolved organic matter (DOM, i.e. HA) may be immune to sorptive retention by the sediment and be transported downstream unabated. DOM thus can play a significant role in the transport and fate of PFOA in the natural water system. PMID:27338563

  12. Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids.

    PubMed

    Dienstmaier, Jürgen F; Medina, Dana D; Dogru, Mirjam; Knochel, Paul; Bein, Thomas; Heckl, Wolfgang M; Lackinger, Markus

    2012-08-28

    On-surface self-condensation of 1,4-benzenediboronic acid was previously shown to yield extended surface-supported, long-range-ordered two-dimensional covalent organic frameworks (2D COFs). The most important prerequisite for obtaining high structural quality is that the polycondensation (dehydration) reaction is carried out under slightly reversible reaction conditions, i.e., in the presence of water. Only then can the subtle balance between kinetic and thermodynamic control of the polycondensation be favorably influenced, and defects that are unavoidable during growth can be corrected. In the present study we extend the previously developed straightforward preparation protocol to a variety of para-diboronic acid building blocks with the aim to tune lattice parameters and pore sizes of 2D COFs. Scanning tunneling microscopy is employed for structural characterization of the covalent networks and of noncovalently self-assembled structures that form on the surface prior to the thermally activated polycondensation reaction. PMID:22775491

  13. Phosphatidic acid is a major phospholipid class in reproductive organs of Arabidopsis thaliana

    PubMed Central

    Yunus, Ian Sofian; Cazenave-Gassiot, Amaury; Liu, Yu-chi; Lin, Ying-Chen; Wenk, Markus R; Nakamura, Yuki

    2015-01-01

    Phospholipids are the crucial components of biological membranes and signal transduction. Among different tissues, flower phospholipids are one of the least characterized features of plant lipidome. Here, we report that floral reproductive organs of Arabidopsis thaliana contain high levels of phosphatidic acid (PA), a known lipid second messenger. By using floral homeotic mutants enriched with specific floral organs, lipidomics study showed increased levels of PA species in ap3-3 mutant with enriched pistils. Accompanied gene expression study for 7 diacylglycerol kinases and 11 PA phosphatases revealed distinct floral organ specificity, suggesting an active phosphorylation/dephosphorylation between PA and diacylglycerol in flowers. Our results suggest that PA is a major phospholipid class in floral reproductive organs of A. thaliana. PMID:26179579

  14. Organic Analysis in the Miller Range 090657 CR2 Chondrite: Part 2 Amino Acid Analyses

    NASA Technical Reports Server (NTRS)

    Burton, A. S.; Cao, T.; Nakamura-Messenger, K.; Berger, E. L.; Messenger, S.; Clemett, S. J.; Aponte, J. C.; Elsila, J. E.

    2016-01-01

    Primitive carbonaceous chondrites contain a wide variety of organic material, ranging from soluble discrete molecules to insoluble, unstructured kerogen-like components, as well as structured nano-globules of macromolecular carbon. The relationship between the soluble organic molecules, macromolecular organic material, and host minerals are poorly understood. Due to the differences in extractability of soluble and insoluble organic materials, the analysis methods for each differ and are often performed independently. The combination of soluble and insoluble analyses, when performed concurrently, can provide a wider understanding of spatial distribution, and elemental, structural and isotopic composition of organic material in primitive meteorites. Using macroscale extraction and analysis techniques in combination with in situ microscale observation, we have been studying both insoluble and soluble organic material in the primitive CR2 chondrite Miller Range (MIL) 090657. In accompanying abstracts (Cao et al. and Messenger et al.) we discuss insoluble organic material in the samples. By performing the consortium studies, we aim to improve our understanding of the relationship between the meteorite minerals and the soluble and insoluble organic phases and to delineate which species formed within the meteorite and those that formed in nebular or presolar environments. In this abstract, we present the results of amino acid analyses of MIL 090657 by ultra performance liquid chromatography with fluorescence detection and quadrupole-time of flight mass spectrometry. Amino acids are of interest because they are essential to life on Earth, and because they are present in sufficient structural, enantiomeric and isotopic diversity to allow insights into early solar system chemical processes. Furthermore, these are among the most isotopically anomalous species, yet at least some fraction are thought to have formed by aqueously-mediated processes during parent body alteration.

  15. Folic acid - test

    MedlinePlus

    Folic acid is a type of B vitamin. This article discusses the test to measure the amount of folic acid in the blood. ... that may interfere with test results, including folic acid supplements. Drugs that can decrease folic acid measurements ...

  16. Uric acid urine test

    MedlinePlus

    The uric acid urine test measures the level of uric acid in urine. Uric acid level can also be checked using a blood ... help determine the cause of a high uric acid level in the blood. It may also be ...

  17. Methylmalonic acid blood test

    MedlinePlus

    The methylmalonic acid blood test measures the amount of methylmalonic acid in the blood. ... Methylmalonic acid is a substance produced when proteins, called amino acids, in the body break down. The health care ...

  18. Folic Acid and Pregnancy

    MedlinePlus

    ... 5 Things to Know About Zika & Pregnancy Folic Acid and Pregnancy KidsHealth > For Parents > Folic Acid and ... before conception and during early pregnancy . About Folic Acid Folic acid, sometimes called folate, is a B ...

  19. Variation of low molecular weight organic acids in precipitation and cloudwater at high elevation in South China

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Sun, Minghu; Li, Penghui; Li, Yuhua; Xue, Likun; Wang, Wenxing

    2011-11-01

    To investigate the sources and chemical behaviors of carboxylic acids in Southern China, precipitation and corresponding cloudwater samples were collected in an acid rain-prone area of Mount Heng. The carboxylic acid levels in the samples were measured, and the concentration patterns were evaluated with respect to temporal and seasonal variations. Formic and acetic acids were predominant among the carboxylic acids identified for both precipitation and cloudwater. Most of the organic acids in the precipitation had a clear seasonal pattern, reaching higher levels during the warm season; these higher levels were attributed to the stronger source strength of biogenic emissions during this season. The cloud-fog samples did not display a similar trend. A distinctive diurnal pattern in carboxylic acids was only observed in the precipitation samples during the warm season. In cloud-fog, the ratio of formic to acetic acid differed considerably with time, with these values varying little in the precipitation samples. This result indicates that the organic acids in precipitation originate consistently from primary sources throughout the entire period, while those in cloud are mainly associated with direct emissions in the earlier stage and with secondary sources in the later period.

  20. Hygroscopicity of water-soluble organic compounds in atmospheric aerosols: amino acids and biomass burning derived organic species.

    PubMed

    Chan, Man Nin; Choi, Man Yee; Ng, Nga Lee; Chan, Chak K

    2005-03-15

    Amino acids and organic species derived from biomass burning can potentially affect the hygroscopicity and cloud condensation activities of aerosols. The hygroscopicity of seven amino acids (glycine, alanine, serine, glutamine, threonine, arginine, and asparagine) and three organic species most commonly detected in biomass burning aerosols (levoglucosan, mannosan, and galactosan) were measured using an electrodynamic balance. Crystallization was observed in the glycine, alanine, serine, glutamine, and threonine particles upon evaporation of water, while no phase transition was observed in the arginine and asparagine particles even at 5% relative humidity (RH). Water activity data from these aqueous amino acid particles, except arginine and asparagine, was used to revise the interaction parameters in UNIQUAC functional group activity coefficients to give predictions to within 15% of the measurements. Levoglucosan, mannosan, and galactosan particles did not crystallize nor did they deliquesce. They existed as highly concentrated liquid droplets at low RH, suggesting that biomass burning aerosols retain water at low RH. In addition, these particles follow a very similar pattern in hygroscopic growth. A generalized growth law (Gf = (1 - RH/100)-0.095) is proposed for levoglucosan, mannosan, and galactosan particles. PMID:15819209

  1. Periodic acid-Schiff-positive organisms in primary cutaneous Bacillus cereus infection. Case report and an investigation of the periodic acid-Schiff staining properties of bacteria.

    PubMed

    Khavari, P A; Bolognia, J L; Eisen, R; Edberg, S C; Grimshaw, S C; Shapiro, P E

    1991-04-01

    Primary cutaneous Bacillus cereus infection frequently presents as a single necrotic bulla on the extremity of an immunocompromised patient. In lesional biopsy specimens and smears, the large gram-positive rods of B cereus may be mistaken for Clostridium species. This is a potentially serious error, as Bacillus species are resistant to penicillin and other beta-lactam antibiotics. We studied a case in which large periodic acid-Schiff-staining organisms were seen in the biopsy specimen from a necrotic bulla on the finger of a neutropenic patient with diffuse large cell lymphoma. The tissue biopsy specimen subsequently yielded a pure culture of B cereus. Staining with periodic acid-Schiff was then performed on a series of bacterial species in human tissue and from smears of culture colonies. The following bacterial species were found to be consistently periodic acid-Schiff positive after diastase digestion: B cereus, Corynebacterium diphtheriae, Propionibacterium acnes, Klebsiella pneumoniae, and Micrococcus luteus. PMID:1900984

  2. Comparative structure analysis of non-polar organic ferrofluids stabilized by saturated mono-carboxylic acids.

    PubMed

    Avdeev, M V; Bica, D; Vékás, L; Aksenov, V L; Feoktystov, A V; Marinica, O; Rosta, L; Garamus, V M; Willumeit, R

    2009-06-01

    The structure of ferrofluids (magnetite in decahydronaphtalene) stabilized with saturated mono-carboxylic acids of different chain lengths (lauric, myristic, palmitic and stearic acids) is studied by means of magnetization analysis and small-angle neutron scattering. It is shown that in case of saturated acid surfactants, magnetite nanoparticles are dispersed in the carrier approximately with the same size distribution whose mean value and width are significantly less as compared to the classical stabilization with non-saturated oleic acid. The found thickness of the surfactant shell around magnetite is analyzed with respect to stabilizing properties of mono-carboxylic acids. PMID:19376524

  3. The short-term effect of cadmium on low molecular weight organic acid and amino acid exudation from mangrove (Kandelia obovata (S., L.) Yong) roots.

    PubMed

    Xie, Xiangyu; Weiss, Dominik J; Weng, Bosen; Liu, Jingchun; Lu, Haoliang; Yan, Chongling

    2013-02-01

    The aim of this study was to evaluate short-term concentration and time effects of cadmium on Kandelia obovata (S., L.) Yong root exudation, thereby evaluating and predicting the ecophysiological effects of mangrove to heavy metals at the root level. Mature K. obovata propagules were cultivated in a sandy medium for 3 months, and then six concentrations of Cd (0, 2.5, 5, 10, 20, and 40 mg L(-1)) were applied. After exposure time of 24 h and 7 days, respectively, the root exudates of K. obovata were collected and low molecular weight organic acids (LMWOAs) and amino acids of which were analyzed. In addition, we measured glutathione, soluble protein content, and Cd concentration in the plant. We found 10 and 15 types of LMWOAs and amino acids in root exudates of K. obovata with total concentrations ranging from 29.54 to 43.08 mg g(-1) dry weight (DW) roots and from 737.35 to 1,452.46 ng g(-1) DW roots, respectively. Both of them varied in quality and quantity under different Cd treatment strengths and exposure times. Oxalic, acetic, L-malic, tartaric acid, tyrosine, methionine, cysteine, isoleucine, and arginine were dominant. Both LMWOAs and amino acids excreted from K. obovata roots play a key role in Cd toxicity resistance. The responsiveness of amino acids was less than that of LMWOAs. We suggest that the ecological effect of root-excreted free amino acids in the rhizosphere is mainly based on the role of nutrients, supplemented with detoxification to heavy metals. PMID:22729874

  4. Toxic synergism between quinolinic acid and organic acids accumulating in glutaric acidemia type I and in disorders of propionate metabolism in rat brain synaptosomes: Relevance for metabolic acidemias.

    PubMed

    Colín-González, A L; Paz-Loyola, A L; Serratos, I; Seminotti, B; Ribeiro, C A J; Leipnitz, G; Souza, D O; Wajner, M; Santamaría, A

    2015-11-12

    The brain of children affected by organic acidemias develop acute neurodegeneration linked to accumulation of endogenous toxic metabolites like glutaric (GA), 3-hydroxyglutaric (3-OHGA), methylmalonic (MMA) and propionic (PA) acids. Excitotoxic and oxidative events are involved in the toxic patterns elicited by these organic acids, although their single actions cannot explain the extent of brain damage observed in organic acidemias. The characterization of co-adjuvant factors involved in the magnification of early toxic processes evoked by these metabolites is essential to infer their actions in the human brain. Alterations in the kynurenine pathway (KP) - a metabolic route devoted to degrade tryptophan to form NAD(+) - produce increased levels of the excitotoxic metabolite quinolinic acid (QUIN), which has been involved in neurodegenerative disorders. Herein we investigated the effects of subtoxic concentrations of GA, 3-OHGA, MMA and PA, either alone or in combination with QUIN, on early toxic endpoints in rat brain synaptosomes. To establish specific mechanisms, we pre-incubated synaptosomes with different protective agents, including the endogenous N-methyl-d-aspartate (NMDA) receptor antagonist kynurenic acid (KA), the antioxidant S-allylcysteine (SAC) and the nitric oxide synthase (NOS) inhibitor nitro-l-arginine methyl ester (l-NAME). While the incubation of synaptosomes with toxic metabolites at subtoxic concentrations produced no effects, their co-incubation (QUIN+GA, +3-OHGA, +MMA or +PA) decreased the mitochondrial function and increased reactive oxygen species (ROS) formation and lipid peroxidation. For all cases, this effect was partially prevented by KA and l-NAME, and completely avoided by SAC. These findings suggest that early damaging events elicited by organic acids involved in metabolic acidemias can be magnified by toxic synergism with QUIN, and this process is mostly mediated by oxidative stress, and in a lesser extent by excitotoxicity and

  5. Contributions of Acid-Catalysed Processes to Secondary Organic Aerosol Mass - A Modelling pproach

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Feingold, G.; Kreidenweis, S. M.

    2005-12-01

    A significant fraction of secondary organic aerosol (SOA) mass is formed by chemical and/or physical processes. However, the amount of organic material found in ambient organic aerosols cannot be explained with current models. Recently, several laboratory studies have been published which suggest that also acid-catalyzed processes that occur either in particles or at their surfaces (heterogeneous) might contribute significantly to mass formation. However, to date there is no general conclusion about the efficiency of such processes due to the great diversity of species and experimental conditions. We present a compilation of literature data (thermodynamic and kinetic) of these processes. The aerosol yields of (i) additional species which are thought previously not contribute to SOA formation (e.g. isoprene, aliphatic aldehydes) and (ii) species which form apparently higher SOA masses on acidic seed aerosols are reported and compared to input data of previous SOA models. Available kinetic data clearly exclude aldol condensation as a significant process for SOA formation on a time scale of typical aerosol life times. Using aerosol size distributions and gas phase concentrations measured during NEAQS2002 as model input data, we show that (even under assumption of equilibrium conditions) these additional processes only contribute a minor fraction to the organic aerosol mass.

  6. Optimisation of an HPLC method for the simultaneous quantification of the major sugars and organic acids in grapevine berries.

    PubMed

    Eyéghé-Bickong, Hans A; Alexandersson, Erik O; Gouws, Liezel M; Young, Philip R; Vivier, Melané A

    2012-02-15

    A high performance liquid chromatographic method was developed to profile major sugars and organic acids in grapevine berries. Sugars and organic acids in grapevine berries were extracted by chloroform/polyvinylpolypyrrolidone purification. The extracts were chromatographed on an Aminex HPX-87H ion-exchange HPLC column with 5mM sulphuric acid as mobile phase. Chromatography was visualised via a diode array detector combined with a refractive index detector. The analysis was calibrated using external standard calibration and a novel equation was used to calculate the concentrations of malic acid and fructose from unresolved separation. For the method to be utilised for analysing a large numbers of berry samples, each sample was directly injected after sample extraction and the extraction step was downscaled to allow the use of small amounts of sample material. The concentrations of sugars and organic acids in grapevine berry samples were normalised to the internal standard concentrations obtained after extraction of an internal standard mixture. The analysis method exhibits a good precision and a high analyte recovery from samples spiked with the standard mixture and is suitable for the profiling of major sugars and organic acids in grapevine berry samples at different stages of berry development. This is the first report on the combined profiling of the major sugars and organic acids in grapevine berries using milligram amounts of plant material with direct injection after sample extraction. PMID:22265666

  7. EFFECTS OF PH, SOLID/SOLUTION RATIO, IONIC STRENGTH, AND ORGANIC ACIDS ON PB AND CD ON KAOLINITE

    EPA Science Inventory

    Potentiometric and ion-selective electrode titrations together with batch sorption/desorption experiments, were performed to explain the aqueous and surface complexation reactions between kaolinite, Pb, Cd and organic acids. Variables included pH, ionic strength, metal concentrat...

  8. 11-Aminoundecanoic acid: a versatile unit for the generation of low molecular weight gelators for water and organic solvents.

    PubMed

    D'Aléo, Anthony; Pozzo, Jean-Luc; Fages, Frédéric; Schmutz, Marc; Mieden-Gundert, Gudrun; Vögtle, Fritz; Caplar, Vesna; Zinic, Mladen

    2004-01-21

    The use of 11-aminoundecanoic acid as a synthetic building-block allows the systematic preparation of (oligo)amide organogelators-including chiral ones-which display remarkable gelation properties in organic solvents and water. PMID:14737543

  9. Effects of sulfhydryl compounds, carbohydrates, organic acids, and sodium sulfite on the formation of lysinoalanine in preserved egg.

    PubMed

    Luo, Xu-Ying; Tu, Yong-Gang; Zhao, Yan; Li, Jian-Ke; Wang, Jun-Jie

    2014-08-01

    To identify inhibitors for lysinoalanine formation in preserved egg, sulfhydryl compounds (glutathione, L-cysteine), carbohydrates (sucrose, D-glucose, maltose), organic acids (L-ascorbic acid, citric acid, DL-malic acid, lactic acid), and sodium sulfite were individually added at different concentrations to a pickling solution to prepare preserved eggs. Lysinoalanine formation as an index of these 10 substances was determined. Results indicate that glutathione, D-glucose, maltose, L-ascorbic acid, citric acid, lactic acid, and sodium sulfite all effectively diminished lysinoalanine formation in preserved egg albumen and yolk. When 40 and 80 mmol/L of sodium sulfite, citric acid, L-ascorbic acid, and D-glucose were individually added into the pickling solution, the inhibition rates of lysinoalanine in the produced preserved egg albumen and yolk were higher. However, the attempt of minimizing lysinoalanine formation was combined with the premise of ensuring preserved eggs quality. Moreover, the addition of 40 and 80 mmol/L of sodium sulfite, 40 and 80 mmol/L of D-glucose, 40 mmol/L of citric acid, and 40 mmol/L of L-ascorbic acid was optimal to produce preserved eggs. The corresponding inhibition rates of lysinoalanine in the albumen were approximately 76.3% to 76.5%, 67.6% to 67.8%, 74.6%, and 74.6%, and the corresponding inhibition rates of lysinoalanine in the yolk were about 68.7% to 69.7%, 50.6% to 51.8%, 70.4%, and 57.8%. It was concluded that sodium sulfite, D-glucose, L-ascorbic, and citric acid at suitable concentrations can be used to control the formation of lysinoalanine during preserved egg processing. PMID:25047093

  10. Understanding Acid Rain

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    The term acid rain describes rain, snow, or fog that is more acidic than normal precipitation. To understand what acid rain is, it is first necessary to know what an acid is. Acids can be defined as substances that produce hydrogen ions (H+), when dissolved in water. Scientists indicate how acidic a substance is by a set of numbers called the pH…

  11. New bioactive fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to the new compounds, 7,10-dihydroxy-8(E)-octad...

  12. New Bioactive Fatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to new compounds, 7,10-dihydroxy-8(E)-octadecen...

  13. Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil.

    PubMed

    Ash, Christopher; Tejnecký, Václav; Borůvka, Luboš; Drábek, Ondřej

    2016-04-01

    Low-molecular-mass organic acids (LMMOA) are of key importance for mobilisation and fate of metals in soil, by functioning as ligands that increase the amount of dissolved metal in solution or by dissociation of metal binding minerals. Column leaching experiments were performed on soil polluted with As and Pb, in order to determine the specificity of LMMOA related release for individual elements, at varying organic acid concentrations. Acetic, citric and oxalic acids were applied in 12h leaching experiments over a concentration range (0.5-25 mM) to soil samples that represent organic and mineral horizons. The leaching of As followed the order: oxalic>citric>acetic acid in both soils. Arsenic leaching was attributed primarily to ligand-enhanced dissolution of mineral oxides followed by As released into solution, as shown by significant correlation between oxalic and citric acids and content of Al and Fe in leaching solutions. Results suggest that subsurface mineral soil layers are more vulnerable to As toxicity. Leaching of Pb from both soils followed the order: citric>oxalic>acetic acid. Mineral soil samples were shown to be more susceptible to leaching of Pb than samples characterised by a high content of organic matter. The leaching efficiency of citric acid was attributed to formation of stable complexes with Pb ions, which other acids are not capable of. Results obtained in the study are evidence that the extent of As and Pb leaching in contaminated surface and subsurface soil depends significantly on the types of carboxylic acid involved. The implications of the type of acid and the specific element that can be mobilised become increasingly significant where LMMOA concentrations are highest, such as in rhizosphere soil. PMID:26849837

  14. Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil

    NASA Astrophysics Data System (ADS)

    Ash, Christopher; Tejnecký, Václav; Borůvka, Luboš; Drábek, Ondřej

    2016-04-01

    Low-molecular-mass organic acids (LMMOA) are of key importance for mobilisation and fate of metals in soil, by functioning as ligands that increase the amount of dissolved metal in solution or by dissociation of metal binding minerals. Column leaching experiments were performed on soil polluted with As and Pb, in order to determine the specificity of LMMOA related release for individual elements, at varying organic acid concentrations. Acetic, citric and oxalic acids were applied in 12 h leaching experiments over a concentration range (0.5-25 mM) to soil samples that represent organic and mineral horizons. The leaching of As followed the order: oxalic > citric > acetic acid in both soils. Arsenic leaching was attributed primarily to ligand-enhanced dissolution of mineral oxides followed by As released into solution, as shown by significant correlation between oxalic and citric acids and content of Al and Fe in leaching solutions. Results suggest that subsurface mineral soil layers are more vulnerable to As toxicity. Leaching of Pb from both soils followed the order: citric > oxalic > acetic acid. Mineral soil samples were shown to be more susceptible to leaching of Pb than samples characterised by a high content of organic matter. The leaching efficiency of citric acid was attributed to formation of stable complexes with Pb ions, which other acids are not capable of. Results obtained in the study are evidence that the extent of As and Pb leaching in contaminated surface and subsurface soil depends significantly on the types of carboxylic acid involved. The implications of the type of acid and the specific element that can be mobilised become increasingly significant where LMMOA concentrations are highest, such as in rhizosphere soil.

  15. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost.

    PubMed

    Scaglia, Barbara; Nunes, Ramom Rachide; Rezende, Maria Olímpia Oliveira; Tambone, Fulvia; Adani, Fabrizio

    2016-08-15

    This work studied the auxin-like activity of humic acids (HA) obtained from vermicomposts produced using leather wastes plus cattle dung at different maturation stages (fresh, stable and mature). Bioassays were performed by testing HA concentrations in the range of 100-6000mgcarbonL(-1). (13)C CPMAS-NMR and GC-MS instrumental methods were used to assess the effect of biological processes and starting organic mixtures on HA composition. Not all HAs showed IAA-like activity and in general, IAA-like activity increased with the length of the vermicomposting process. The presence of leather wastes was not necessary to produce the auxin-like activity of HA, since HA extracted from a mix of cattle manure and sawdust, where no leather waste was added, showed IAA-like activity as well. CPMAS (13)CNMR revealed that HAs were similar independently of the mix used and that the humification process involved the increasing concentration of pre-existing alkali soluble fractions in the biomass. GC/MS allowed the identification of the molecules involved in IAA-like effects: carboxylic acids and amino acids. The concentration of active molecules, rather than their simple presence in HA, determined the bio-stimulating effect, and a good linear regression between auxin-like activity and active stimulating molecules concentration was found (R(2)=-0.85; p<0.01, n=6). PMID:27100009

  16. Exciton-blocking phosphonic acid-treated anode buffer layers for organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Zimmerman, Jeramy D.; Song, Byeongseop; Griffith, Olga; Forrest, Stephen R.

    2013-12-01

    We demonstrate significant improvements in power conversion efficiency of bilayer organic photovoltaics by replacing the exciton-quenching MoO3 anode buffer layer with an exciton-blocking benzylphosphonic acid (BPA)-treated MoO3 or NiO layer. We show that the phosphonic acid treatment creates buffers that block up to 70% of excitons without sacrificing the hole extraction efficiency. Compared to untreated MoO3 anode buffers, BPA-treated NiO buffers exhibit a ˜ 25% increase in the near-infrared spectral response in diphenylanilo functionalized squaraine (DPSQ)/C60-based bilayer devices, increasing the power conversion efficiency under 1 sun AM1.5G simulated solar illumination from 4.8 ± 0.2% to 5.4 ± 0.3%. The efficiency can be further increased to 5.9 ± 0.3% by incorporating a highly conductive exciton blocking bathophenanthroline (BPhen):C60 cathode buffer. We find similar increases in efficiency in two other small-molecule photovoltaic systems, indicating the generality of the phosphonic acid-treated buffer approach to enhance exciton blocking.

  17. Ammonia capture in porous organic polymers densely functionalized with Brønsted acid groups.

    PubMed

    Van Humbeck, Jeffrey F; McDonald, Thomas M; Jing, Xiaofei; Wiers, Brian M; Zhu, Guangshan; Long, Jeffrey R

    2014-02-12

    The elimination of specific environmental and industrial contaminants, which are hazardous at only part per million to part per billion concentrations, poses a significant technological challenge. Adsorptive materials designed for such processes must be engendered with an exceptionally high enthalpy of adsorption for the analyte of interest. Rather than relying on a single strong interaction, the use of multiple chemical interactions is an emerging strategy for achieving this requisite physical parameter. Herein, we describe an efficient, catalytic synthesis of diamondoid porous organic polymers densely functionalized with carboxylic acids. Physical parameters such as pore size distribution, application of these materials to low-pressure ammonia adsorption, and comparison with analogous materials featuring functional groups of varying acidity are presented. In particular, BPP-5, which features a multiply interpenetrated structure dominated by <6 Å pores, is shown to exhibit an uptake of 17.7 mmol/g at 1 bar, the highest capacity yet demonstrated for a readily recyclable material. A complementary framework, BPP-7, features slightly larger pore sizes, and the resulting improvement in uptake kinetics allows for efficient adsorption at low pressure (3.15 mmol/g at 480 ppm). Overall, the data strongly suggest that the spatial arrangement of acidic sites allows for cooperative behavior, which leads to enhanced NH3 adsorption. PMID:24456083

  18. Influence of Grapevine leafroll associated viruses (GLRaV-2 and -3) on the Fruit Composition of Oregon Vitis vinifera L. cv. Pinot Noir: Free Amino Acids, Sugars, and Organic Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Individual free amino acids, yeast assimilable amino acid (YAN) content, ammonium, organic acids, and simple sugars of berries from GLRaV-2 or GLRaV-3 infected vines were compared with paired vines free of these viruses. Samples were taken from two commercial vineyards during two growing seasons (20...

  19. Detection of trace amino acid biomarkers in ice from extreme environments with the Mars Organic Analyzer

    NASA Astrophysics Data System (ADS)

    Jayarajah, Christine; Jayarajah, Christine; Botta, Oliver; Aubrey, Andrew; Parker, Eric; Bada, Jeffrey; Mathies, Richard

    A portable microfabricated capillary electrophoresis (CE) system named the Mars Organic Analyzer (MOA) has been developed to analyze fluorescently-labeled biomarkers including amino acids, amines, nucleobases, and amino sugars with the goal of life detection on Mars (1,2). This system consists of a multilayer microfabricated glass wafer containing electrophoresis channels as well as microfluidic valves and pumps for sample manipulation, a confocal laser excitation and fluorescence detection system, and integrated CE power supplies. The MOA has been successfully field tested in the Panoche Valley, CA and in the Atacama Desert, Chile, detecting amino acids at the ppb levels (3). In addition, this technology has been shown to be effective in screening the formation of biogenic amines during fermentation (4). The MOA is a part of the Urey instrument package that has been selected for the 2013 European ExoMars mission by ESA. The identification of recent gully erosion sites, observations of ice on and beneath the surface of Mars, and the discovery of large reservoirs of sub-surface ice on Mars point to water-ice as an important target for astrobiological analyses (5). In addition, the ice moons Europa and Enceladus are of astrobiological interest due to the possibility that they may contain liquid water under their ice crusts. Consequently, we explore here the use of the MOA instrument for the analysis of amino acids in polar ice samples. Soil extracts as well as concentrated icecore samples tend to be highly saline and inhomogeneous. Furthermore, brine pockets in ice form potential refugia for extant extra-terrestrial life, rendering near surface ice a key target for the search for a record of past life on the planet (6). Therefore, we have determined the effect of salinity on sample injection parameters in ice-core samples retrieved from Greenland. The amino acids valine, alanine/serine, glycine, glutamic acid, and aspartic acid were found in the parts

  20. Stabilization of amorphous calcium carbonate by phosphate rich organic matrix proteins and by single phosphoamino acids.

    PubMed

    Bentov, Shmuel; Weil, Simy; Glazer, Lilah; Sagi, Amir; Berman, Amir

    2010-08-01

    Stable amorphous calcium carbonate (ACC) is a unique material produced naturally exclusively as a biomineral. It was demonstrated that proteins extracted from biogenic stable ACC induce and stabilize synthetic ACC in vitro. Polyphosphate molecules were similarly shown to induce amorphous calcium carbonate formation in vitro. Accordingly, we tested the hypothesis that biogenic ACC induction and stabilization is mediated by the phosphorylated residues of phosphoproteins. We show that extracellular organic matrix extracted from gastroliths of the red claw crayfish Cherax quadricarinatus induce stable ACC formation in vitro. The proteinaceous fraction of this organic matrix is highly phosphorylated and is incorporated into the ACC mineral phase during precipitation. We have identified the major phosphoproteins of the organic matrix and showed that they have high calcium binding capacity. Based on the above, in vitro precipitation experiments with single phosphoamino acids were performed, indicating that phosphoserine or phosphothreonine alone can induce the formation of highly stable ACC. The results indicate that phosphoproteins may play a major role in the control of ACC formation and stabilization and that their phosphoamino acid moieties are key components in this process. PMID:20416381