Science.gov

Sample records for acid oxidase system

  1. Activity of D-amino acid oxidase is widespread in the human central nervous system

    PubMed Central

    Sasabe, Jumpei; Suzuki, Masataka; Imanishi, Nobuaki; Aiso, Sadakazu

    2014-01-01

    It has been proposed that D-amino acid oxidase (DAO) plays an essential role in degrading D-serine, an endogenous coagonist of N-methyl-D-aspartate (NMDA) glutamate receptors. DAO shows genetic association with amyotrophic lateral sclerosis (ALS) and schizophrenia, in whose pathophysiology aberrant metabolism of D-serine is implicated. Although the pathology of both essentially involves the forebrain, in rodents, enzymatic activity of DAO is hindbrain-shifted and absent in the region. Here, we show activity-based distribution of DAO in the central nervous system (CNS) of humans compared with that of mice. DAO activity in humans was generally higher than that in mice. In the human forebrain, DAO activity was distributed in the subcortical white matter and the posterior limb of internal capsule, while it was almost undetectable in those areas in mice. In the lower brain centers, DAO activity was detected in the gray and white matters in a coordinated fashion in both humans and mice. In humans, DAO activity was prominent along the corticospinal tract, rubrospinal tract, nigrostriatal system, ponto-/olivo-cerebellar fibers, and in the anterolateral system. In contrast, in mice, the reticulospinal tract and ponto-/olivo-cerebellar fibers were the major pathways showing strong DAO activity. In the human corticospinal tract, activity-based staining of DAO did not merge with a motoneuronal marker, but colocalized mostly with excitatory amino acid transporter 2 and in part with GFAP, suggesting that DAO activity-positive cells are astrocytes seen mainly in the motor pathway. These findings establish the distribution of DAO activity in cerebral white matter and the motor system in humans, providing evidence to support the involvement of DAO in schizophrenia and ALS. Our results raise further questions about the regulation of D-serine in DAO-rich regions as well as the physiological/pathological roles of DAO in white matter astrocytes. PMID:24959138

  2. Activity of D-amino acid oxidase is widespread in the human central nervous system.

    PubMed

    Sasabe, Jumpei; Suzuki, Masataka; Imanishi, Nobuaki; Aiso, Sadakazu

    2014-01-01

    It has been proposed that D-amino acid oxidase (DAO) plays an essential role in degrading D-serine, an endogenous coagonist of N-methyl-D-aspartate (NMDA) glutamate receptors. DAO shows genetic association with amyotrophic lateral sclerosis (ALS) and schizophrenia, in whose pathophysiology aberrant metabolism of D-serine is implicated. Although the pathology of both essentially involves the forebrain, in rodents, enzymatic activity of DAO is hindbrain-shifted and absent in the region. Here, we show activity-based distribution of DAO in the central nervous system (CNS) of humans compared with that of mice. DAO activity in humans was generally higher than that in mice. In the human forebrain, DAO activity was distributed in the subcortical white matter and the posterior limb of internal capsule, while it was almost undetectable in those areas in mice. In the lower brain centers, DAO activity was detected in the gray and white matters in a coordinated fashion in both humans and mice. In humans, DAO activity was prominent along the corticospinal tract, rubrospinal tract, nigrostriatal system, ponto-/olivo-cerebellar fibers, and in the anterolateral system. In contrast, in mice, the reticulospinal tract and ponto-/olivo-cerebellar fibers were the major pathways showing strong DAO activity. In the human corticospinal tract, activity-based staining of DAO did not merge with a motoneuronal marker, but colocalized mostly with excitatory amino acid transporter 2 and in part with GFAP, suggesting that DAO activity-positive cells are astrocytes seen mainly in the motor pathway. These findings establish the distribution of DAO activity in cerebral white matter and the motor system in humans, providing evidence to support the involvement of DAO in schizophrenia and ALS. Our results raise further questions about the regulation of D-serine in DAO-rich regions as well as the physiological/pathological roles of DAO in white matter astrocytes.

  3. Involvement of phospholipase D and NADPH-oxidase in salicylic acid signaling cascade.

    PubMed

    Kalachova, Tetiana; Iakovenko, Oksana; Kretinin, Sergii; Kravets, Volodymyr

    2013-05-01

    Salicylic acid is associated with the primary defense responses to biotic stress and formation of systemic acquired resistance. However, molecular mechanisms of early cell reactions to phytohormone application are currently undisclosed. The present study investigates the participation of phospholipase D and NADPH-oxidase in salicylic acid signal transduction cascade. The activation of lipid signaling enzymes within 15 min of salicylic acid application was shown in Arabidopsis thaliana plants by measuring the phosphatidic acid accumulation. Adding of primary alcohol (1-butanol) to the incubation medium led to phosphatidylbutanol accumulation as a result of phospholipase D (PLD) action in wild-type and NADPH-oxidase RbohD deficient plants. Salicylic acid induced rapid increase in NADPH-oxidase activity in histochemical assay with nitroblue tetrazolium but the reaction was not observed in presence of 1-butanol and NADPH-oxidase inhibitor diphenylene iodide (DPI). The further physiological effect of salicylic acid and inhibitory analysis of the signaling cascade were made in the guard cell model. Stomatal closure induced by salicylic acid was inhibited by 1-butanol and DPI treatment. rbohD transgenic plants showed impaired stomatal reaction upon phytohormone effect, while the reaction to H2O2 did not differ from that of wild-type plants. Thus a key role of NADPH-oxidase D-isoform in the process of stomatal closure in response to salicylic acid has been postulated. It has enabled to predict a cascade implication of PLD and NADPH oxidase to salicylic acid signaling pathway.

  4. THE PREPARATION AND PROPERTIES OF HIGHLY PURIFIED ASCORBIC ACID OXIDASE

    PubMed Central

    Powers, Wendell H.; Lewis, Stanley; Dawson, Charles R.

    1944-01-01

    1. A method is described for the preparation of a highly purified ascorbic acid oxidase containing 0.24 per cent copper. 2. Using comparable activity measurements, this oxidase is about one and a half times as active on a dry weight basis as the hitherto most highly purified preparation described by Lovett-Janison and Nelson. The latter contained 0.15 per cent copper. 3. The oxidase activity is proportional to the copper content and the proportionality factor is the same as that reported by Lovett-Janison and Nelson. 4. When dialyzed free of salt, the blue concentrated oxidase solutions precipitate a dark green-blue protein which carries the activity. This may be prevented by keeping the concentrated solutions about 0.1 M in Na2HPO4. 5. When highly diluted for activity measurements the oxidase rapidly loses activity (irreversibly) previous to the measurement, unless the dilution is made with a dilute inert protein (gelatin) solution. Therefore activity values obtained using such gelatin-stabilized dilute solutions of the oxidase run considerably higher than values obtained by the Lovett-Janison and Nelson technique. 6. The effect of pH and substrate concentration on the activity of the purified oxidase in the presence and absence of inert protein was studied. PMID:19873382

  5. Covalent immobilization of ascorbate oxidase onto polycarbonate strip for L-ascorbic acid detection.

    PubMed

    Kannoujia, Dileep Kumar; Kumar, Saroj; Nahar, Pradip

    2012-10-01

    Herein, a simple and rapid method is described for detection of L-ascorbic acid by ascorbate oxidase immobilized onto polycarbonate strip pre-activated by 1-fluoro-2-nitro-4-azidobenzene in photochemical reaction. Covalent attachment of ascorbate oxidase was confirmed by XPS studies. The immobilized-ascorbate oxidase shows higher pH, thermal and storage stability in comparison to free enzyme.

  6. The NADH oxidase-Prx system in Amphibacillus xylanus.

    PubMed

    Niimura, Youichi

    2007-01-01

    Amphibacillus NADH oxidase belongs to a growing new family of peroxiredoxin-linked oxidoreductases including alkyl hydroperoxide reductase F (AhpF). Like AhpF it displays extremely high hydroperoxide reductase activity in the presence of a Prx, thus making up the NADH oxidase-Prx system. The NADH oxidase primarily catalyzes the reduction of oxygen by NADH to form H2O2, while the Prx immediately reduces H2O2 (or ROOH) to water (or ROH). Consequently, the NADH oxidase-Prx system catalyzes the reduction of both oxygen and hydrogen peroxide to water with NADH as the preferred electron donor. The NADH oxidase-Prx system is widely distributed in aerobically growing bacteria lacking a respiratory chain and catalase, and plays an important role not only in scavenging hydroperoxides but also in regenerating NAD in these bacteria.

  7. Endoplasmic Reticulum Thiol Oxidase Deficiency Leads to Ascorbic Acid Depletion and Noncanonical Scurvy in Mice

    PubMed Central

    Zito, Ester; Hansen, Henning Gram; Yeo, Giles S.H.; Fujii, Junichi; Ron, David

    2012-01-01

    Summary Endoplasmic reticulum (ER) thiol oxidases initiate a disulfide relay to oxidatively fold secreted proteins. We found that combined loss-of-function mutations in genes encoding the ER thiol oxidases ERO1α, ERO1β, and PRDX4 compromised the extracellular matrix in mice and interfered with the intracellular maturation of procollagen. These severe abnormalities were associated with an unexpectedly modest delay in disulfide bond formation in secreted proteins but a profound, 5-fold lower procollagen 4-hydroxyproline content and enhanced cysteinyl sulfenic acid modification of ER proteins. Tissue ascorbic acid content was lower in mutant mice, and ascorbic acid supplementation improved procollagen maturation and lowered sulfenic acid content in vivo. In vitro, the presence of a sulfenic acid donor accelerated the oxidative inactivation of ascorbate by an H2O2-generating system. Compromised ER disulfide relay thus exposes protein thiols to competing oxidation to sulfenic acid, resulting in depletion of ascorbic acid, impaired procollagen proline 4-hydroxylation, and a noncanonical form of scurvy. PMID:22981861

  8. Endoplasmic reticulum thiol oxidase deficiency leads to ascorbic acid depletion and noncanonical scurvy in mice.

    PubMed

    Zito, Ester; Hansen, Henning Gram; Yeo, Giles S H; Fujii, Junichi; Ron, David

    2012-10-12

    Endoplasmic reticulum (ER) thiol oxidases initiate a disulfide relay to oxidatively fold secreted proteins. We found that combined loss-of-function mutations in genes encoding the ER thiol oxidases ERO1α, ERO1β, and PRDX4 compromised the extracellular matrix in mice and interfered with the intracellular maturation of procollagen. These severe abnormalities were associated with an unexpectedly modest delay in disulfide bond formation in secreted proteins but a profound, 5-fold lower procollagen 4-hydroxyproline content and enhanced cysteinyl sulfenic acid modification of ER proteins. Tissue ascorbic acid content was lower in mutant mice, and ascorbic acid supplementation improved procollagen maturation and lowered sulfenic acid content in vivo. In vitro, the presence of a sulfenic acid donor accelerated the oxidative inactivation of ascorbate by an H(2)O(2)-generating system. Compromised ER disulfide relay thus exposes protein thiols to competing oxidation to sulfenic acid, resulting in depletion of ascorbic acid, impaired procollagen proline 4-hydroxylation, and a noncanonical form of scurvy.

  9. Expression of Ascorbic Acid Oxidase in Zucchini Squash (Cucurbita pepo L.) 1

    PubMed Central

    Lin, Liang-Shiou; Varner, Joseph E.

    1991-01-01

    The expression of ascorbic acid oxidase was studied in zucchini squash (Cucurbita pepo L.), one of the most abundant natural sources of the enzyme. In the developing fruit, specific activity of ascorbic acid oxidase was highest between 4 and 6 days after anthesis. Protein and mRNA levels followed the same trend as enzyme activity. Highest growth rate of the fruit occurred before 6 days after anthesis. Within a given fruit, ascorbic acid oxidase activity and mRNA level were highest in the epidermis, and lowest in the central placental region. In leaf tissue, ascorbic acid oxidase activity was higher in young leaves, and very low in old leaves. Within a given leaf, enzyme activity was highest in the fast-growing region (approximately the lower third of the blade), and lowest in the slow-growing region (near leaf apex). High expression of ascorbic acid oxidase at a stage when rapid growth is occurring (in both fruits and leaves), and localization of the enzyme in the fruit epidermis, where cells are under greatest tension during rapid growth in girth, suggest that ascorbic acid oxidase might be involved in reorganization of the cell wall to allow for expansion. Based on the known chemistry of dehydroascorbic acid, the end product of the ascorbic acid oxidase-catalyzed reaction, we have proposed several hypotheses to explain how dehydroascorbic acid might cause cell wall “loosening.” ImagesFigure 3Figure 4Figure 5 PMID:16668145

  10. Deletion of glucose oxidase changes the pattern of organic acid production in Aspergillus carbonarius

    PubMed Central

    2014-01-01

    Aspergillus carbonarius has potential as a cell factory for the production of different organic acids. At pH 5.5, A.carbonarius accumulates high amounts of gluconic acid when it grows on glucose based medium whereas at low pH, it produces citric acid. The conversion of glucose to gluconic acid is carried out by secretion of the enzyme, glucose oxidase. In this work, the gene encoding glucose oxidase was identified and deleted from A. carbonarius with the aim of changing the carbon flux towards other organic acids. The effect of genetic engineering was examined by testing glucose oxidase deficient (Δgox) mutants for the production of different organic acids in a defined production medium. The results obtained showed that the gluconic acid accumulation was completely inhibited and increased amounts of citric acid, oxalic acid and malic acid were observed in the Δgox mutants. PMID:25401063

  11. Nanoparticle strategies for cancer therapeutics: Nucleic acids, polyamines, bovine serum amine oxidase and iron oxide nanoparticles (Review).

    PubMed

    Agostinelli, Enzo; Vianello, Fabio; Magliulo, Giuseppe; Thomas, Thresia; Thomas, T J

    2015-01-01

    Nanotechnology for cancer gene therapy is an emerging field. Nucleic acids, polyamine analogues and cytotoxic products of polyamine oxidation, generated in situ by an enzyme-catalyzed reaction, can be developed for nanotechnology-based cancer therapeutics with reduced systemic toxicity and improved therapeutic efficacy. Nucleic acid-based gene therapy approaches depend on the compaction of DNA/RNA to nanoparticles and polyamine analogues are excellent agents for the condensation of nucleic acids to nanoparticles. Polyamines and amine oxidases are found in higher levels in tumours compared to that of normal tissues. Therefore, the metabolism of polyamines spermidine and spermine, and their diamine precursor, putrescine, can be targets for antineoplastic therapy since these naturally occurring alkylamines are essential for normal mammalian cell growth. Intracellular polyamine concentrations are maintained at a cell type-specific set point through the coordinated and highly regulated interplay between biosynthesis, transport, and catabolism. In particular, polyamine catabolism involves copper-containing amine oxidases. Several studies showed an important role of these enzymes in developmental and disease-related processes in animals through the control of polyamine homeostasis in response to normal cellular signals, drug treatment, and environmental and/or cellular stress. The production of toxic aldehydes and reactive oxygen species (ROS), H2O2 in particular, by these oxidases suggests a mechanism by which amine oxidases can be exploited as antineoplastic drug targets. The combination of bovine serum amine oxidase (BSAO) and polyamines prevents tumour growth, particularly well if the enzyme has been conjugated with a biocompatible hydrogel polymer. The findings described herein suggest that enzymatically formed cytotoxic agents activate stress signal transduction pathways, leading to apoptotic cell death. Consequently, superparamagnetic nanoparticles or other

  12. D-amino acid oxidase: its potential in the production of 7-aminocephalosporanic acid.

    PubMed

    Mujawar, S K

    1999-01-01

    D-Amino acid oxidase (DAAO) used in the preparation of alpha-keto acids, in the determination of D-amino acids and in the resolution of racemic mixture of amino acids is produced by a wide range of microorganisms. In the recent past this enzyme is being recognized for its potential in the commercial production of 7-aminocephalosporanic acid (7-ACA), a starting material for various semisynthetic cephalosporins. Though this enzyme is widespread among microorganisms, very few microbial species have been explored for the production of 7-ACA; this is because cephalosporin C is quantitatively deaminated by limited microbial DAAOs. Comparison of physico-chemical properties of enzyme preparations indicate wide variations, however in general DAAOs are specific for D-configuration of amino acids. Both immobilized enzyme and cell preparations are developed for its various applications. The advantages of DAAO in the production of 7-ACA are discussed.

  13. Expression of ascorbic acid oxidase in zucchini squash (Cucurbita pepo L. )

    SciTech Connect

    Lin, Liangshiou; Varner, J.E. )

    1991-05-01

    The expression of ascorbic acid oxidase was studied in zuchini squash (Cucurbita pepo L.), one of the most abundant natural sources of the enzyme. In the developing fruit, specific activity of ascorbic acid oxidase was highest between 4 and 6 days after anthesis. Protein and mRNA levels followed the same trend as enzyme activity. Highest growth rate of the fruit occurred before 6 days after anthesis. Within a given fruit, ascorbic acid oxidase activity was higher in young leaves, and very low in old leaves. Within a given leaf, enzyme activity was highest in the fast-growing region (approximately the lower third of the blade), and lowest in the central placental region. In leaf tissue, ascorbic acid oxidase activity was higher in young leaves, and very low in old leaves. Within a given leaf, enzyme activity was highest in the fast-growing region (approximately the lower third of the blade), and lowest in the slow-growing region (near leaf apex). High expression of ascorbic acid oxidase at a stage when rapid growth is occurring (in both fruits and leaves), and localization of the enzyme in the fruit epidermis, where cells are under greatest tension during rapid growth in girth, suggest that ascorbic acid oxidase might be involved in reorganization of the cell wall to allow for expansion. Based on the known chemistry of dehydroascorbic acid, the end product of the ascorbic acid oxidase-catalyzed reaction, the authors have proposed several hypotheses to explain how dehydroascorbic acid might cause cell wall loosening.

  14. Induction of the d-Amino Acid Oxidase from Trigonopsis variabilis

    PubMed Central

    Horner, R.; Wagner, F.; Fischer, L.

    1996-01-01

    Induction of the d-amino acid oxidase (EC. 1.4.3.3) from the yeast Trigonopsis variabilis was investigated by using a minimal medium containing glucose as the carbon and energy source, (NH(inf4))(inf2)SO(inf4) as the nitrogen source, and various d- and dl-amino acid derivatives as inducers. The best new inducers found were N-carbamoyl-d-alanine, N-acetyl-d-tryptophan, and N-chloroacetyl-d-(alpha)-aminobutyric acid; when the induction effects of these compounds were compared with the effects of d-alanine as the nitrogen source and inducer, the resulting activities of d-amino acid oxidase per gram of dried yeast were 4.2, 2.1, and 1.5 times higher, respectively. The optimum concentration of the best inducer, N-carbamoyl-d-alanine, was 5 mM. This inducer could also be used in its racemic form. The induction was pH dependent. After cultivation of the yeast in a 50-liter bioreactor, d-amino acid oxidase activity of about 3,850 (mu)kat (231,000 U) was obtained. In addition, production of the d-amino acid oxidase was found to be significantly dependent on the metal salt composition of the medium. Addition of zinc ions was required to obtain high d-amino acid oxidase levels in the cells. The optimum concentration of ZnSO(inf4) was about 140 (mu)M. PMID:16535339

  15. Genipin Cross-Linked Glucose Oxidase and Catalase Multi-enzyme for Gluconic Acid Synthesis.

    PubMed

    Cui, Caixia; Chen, Haibin; Chen, Biqiang; Tan, Tianwei

    2017-02-01

    In this work, glucose oxidase (GOD) and catalase (CAT) were used simultaneously to produce gluconic acid from glucose. In order to reduce the distance between the two enzymes, and therefore improve efficiency, GOD and CAT were cross-linked together using genipin. Improvements in gluconic acid production were due to quick removal of harmful intermediate hydrogen peroxide by CAT. GOD activity was significantly affected by the proportion of CAT in the system, with GOD activity in the cross-linked multi-enzyme (CLME) being 10 times higher than that in an un-cross-linked GOD/CAT mixture. The glucose conversion rate after 15 h using 15 % glucose was also 10 % higher using the CLME than was measured using a GOD/CAT mixture.

  16. Snake Venom L-Amino Acid Oxidases: Trends in Pharmacology and Biochemistry

    PubMed Central

    Izidoro, Luiz Fernando M.; Sobrinho, Juliana C.; Mendes, Mirian M.; Costa, Tássia R.; Grabner, Amy N.; Rodrigues, Veridiana M.; da Silva, Saulo L.; Zanchi, Fernando B.; Zuliani, Juliana P.; Fernandes, Carla F. C.; Calderon, Leonardo A.; Stábeli, Rodrigo G.; Soares, Andreimar M.

    2014-01-01

    L-amino acid oxidases are enzymes found in several organisms, including venoms of snakes, where they contribute to the toxicity of ophidian envenomation. Their toxicity is primarily due to enzymatic activity, but other mechanisms have been proposed recently which require further investigation. L-amino acid oxidases exert biological and pharmacological effects, including actions on platelet aggregation and the induction of apoptosis, hemorrhage, and cytotoxicity. These proteins present a high biotechnological potential for the development of antimicrobial, antitumor, and antiprotozoan agents. This review provides an overview of the biochemical properties and pharmacological effects of snake venom L-amino acid oxidases, their structure/activity relationship, and supposed mechanisms of action described so far. PMID:24738050

  17. Time dependent inhibition of xanthine oxidase in irradiated solutions of folic acid, aminopterin and methotrexate

    SciTech Connect

    Robinson, K.; Pilot, T.F.; Meany, J.E. )

    1990-01-01

    The xanthine oxidase catalyzed oxidation of hypoxanthine was followed by monitoring the formation of uric acid at 290 nm. Inhibition of xanthine oxidase occurs in aqueous solutions of folic acid methotrexate and aminopterin. These compounds are known to dissociate upon exposure to ultraviolet light resulting in the formation of their respective 6-formylpteridine derivatives. The relative rates of dissociation were monitored spectrophotometrically by determining the absorbance of their 2,4-dinitrophenylhydrazine derivatives at 500 nm. When aqueous solutions of folic acid, aminopterin and methotrexate were exposed to uv light, a direct correlation was observed between the concentrations of the 6-formylpteridine derivatives existing in solution and the ability of these solutions to inhibit xanthine oxidase. The relative potency of the respective photolysis products were estimated.

  18. Snake venom L-amino acid oxidases: trends in pharmacology and biochemistry.

    PubMed

    Izidoro, Luiz Fernando M; Sobrinho, Juliana C; Mendes, Mirian M; Costa, Tássia R; Grabner, Amy N; Rodrigues, Veridiana M; da Silva, Saulo L; Zanchi, Fernando B; Zuliani, Juliana P; Fernandes, Carla F C; Calderon, Leonardo A; Stábeli, Rodrigo G; Soares, Andreimar M

    2014-01-01

    L-amino acid oxidases are enzymes found in several organisms, including venoms of snakes, where they contribute to the toxicity of ophidian envenomation. Their toxicity is primarily due to enzymatic activity, but other mechanisms have been proposed recently which require further investigation. L-amino acid oxidases exert biological and pharmacological effects, including actions on platelet aggregation and the induction of apoptosis, hemorrhage, and cytotoxicity. These proteins present a high biotechnological potential for the development of antimicrobial, antitumor, and antiprotozoan agents. This review provides an overview of the biochemical properties and pharmacological effects of snake venom L-amino acid oxidases, their structure/activity relationship, and supposed mechanisms of action described so far.

  19. L-Amino acid oxidases from microbial sources: types, properties, functions, and applications.

    PubMed

    Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-dong; Du, Guocheng; Liu, Long; Chen, Jian

    2014-02-01

    L-Amino acid oxidases (LAAOs), which catalyze the stereospecific oxidative deamination of L-amino acids to α-keto acids and ammonia, are flavin adenine dinucleotide-containing homodimeric proteins. L-Amino acid oxidases are widely distributed in diverse organisms and have a range of properties. Because expressing LAAOs as recombinant proteins in heterologous hosts is difficult, their biotechnological applications have not been thoroughly advanced. LAAOs are thought to contribute to amino acid catabolism, enhance iron acquisition, display antimicrobial activity, and catalyze keto acid production, among other roles. Here, we review the types, properties, structures, biological functions, heterologous expression, and applications of LAAOs obtained from microbial sources. We expect this review to increase interest in LAAO studies.

  20. Early Effects of Boron Deficiency on Indoleacetic Acid Oxidase Levels of Squash Root Tips

    PubMed Central

    Bohnsack, Charles W.; Albert, Luke S.

    1977-01-01

    The indoleacetic acid (IAA) oxidase activity of root tips of boron-sufficient, -deficient, recovering, and IAA-treated boron-sufficient squash plants (Cucurbita pepo L.) was determined. Apical and subapical root sections displayed an increase in IAA oxidase activity between 6 and 9 hours after boron was withheld, and after 24 hours the activity of the apical sections showed a 20-fold increase over +B controls. Root elongation of -B plants was inhibited before an increase in oxidase activity could be detected. Roots of plants subjected to 12 hours of -B treatment and then transferred to +B treatment for recovery regained normal elongation rates and oxidase activity within 18 to 20 hours. IAA treatment of +B plants increased IAA oxidase activity of apical and subapical root sections and also inhibited root elongation and caused symptoms similar to -B treatments. These results have demonstrated the earliest enzymic change for intact boron-deficient plants. The results are in agreement with the theory that boron deficiency symptoms may be the result of supraoptimal endogenous levels of IAA. These high levels of IAA may inhibit cell division and lead to an induction of the IAA oxidase enzyme. PMID:16659990

  1. Effect of high pressure on peanut allergens in the presence of polyphenol oxidase and caffeic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High pressure (HP) enhances enzymatic reactions. Because polyphenol oxidase (PPO) is an enzyme, and reduces IgE binding of peanut allergens in presence of caffeic acid (CA), we postulated that a further reduction in IgE binding can be achieved, using HP together with PPO and CA. Peanut extracts cont...

  2. High-level expression of Rhodotorula gracilis D-amino acid oxidase in Pichia pastoris.

    PubMed

    Abad, Sandra; Nahalka, Jozef; Winkler, Margit; Bergler, Gabriele; Speight, Robert; Glieder, Anton; Nidetzky, Bernd

    2011-03-01

    By combining gene design and heterologous over-expression of Rhodotorula gracilis D-amino acid oxidase (RgDAO) in Pichia pastoris, enzyme production was enhanced by one order of magnitude compared to literature benchmarks, giving 350 kUnits/l of fed-batch bioreactor culture with a productivity of 3.1 kUnits/l h. P. pastoris cells permeabilized by freeze-drying and incubation in 2-propanol (10% v/v) produce a highly active (1.6 kUnits/g dry matter) and stable oxidase preparation. Critical bottlenecks in the development of an RgDAO catalyst for industrial applications have been eliminated.

  3. D-Amino acid oxidase and presence of D-proline in Xenopus laevis.

    PubMed

    Soma, Hiroki; Furuya, Ryuji; Kaneko, Ryo; Tsukamoto, Ayaka; Shirasu, Kazumitsu; Tanigawa, Minoru; Nagata, Yoko

    2013-10-01

    We purified D-amino acid oxidase (EC 1.4.3.3, DAO) from Xenopus laevis tadpoles. The optimal temperature and pH for enzyme activity were 35-40 °C and 8.3-9.0, respectively, depending on the substrate amino acids available to the enzyme; the highest activity was observed with D-proline followed by D-phenylalanine. Activity was significantly inhibited by p-hydroxymercuribenzoate, but only moderately by p-chloromercuribenzoate or benzoate. Enzyme activity was increased until the final tadpole stage, but was reduced to one-third in the adult and was localized primarily in the kidney. The tadpoles contained high concentrations of D-proline close to the final developmental stage and nearly no D-amino acids were detected in the adult frog, indicating that D-amino acid oxidase functions in metamorphosis.

  4. Electrochemical L-lactic acid sensor based on immobilized ZnO nanorods with lactate oxidase.

    PubMed

    Ibupoto, Zafar Hussain; Shah, Syed Muhammad Usman Ali; Khun, Kimleang; Willander, Magnus

    2012-01-01

    In this work, fabrication of gold coated glass substrate, growth of ZnO nanorods and potentiometric response of lactic acid are explained. The biosensor was developed by immobilizing the lactate oxidase on the ZnO nanorods in combination with glutaraldehyde as a cross linker for lactate oxidase enzyme. The potentiometric technique was applied for the measuring the output (EMF) response of l-lactic acid biosensor. We noticed that the present biosensor has wide linear detection range of concentration from 1 × 10(-4)-1 × 10(0) mM with acceptable sensitivity about 41.33 ± 1.58 mV/decade. In addition, the proposed biosensor showed fast response time less than 10 s, a good selectivity towards l-lactic acid in presence of common interfering substances such as ascorbic acid, urea, glucose, galactose, magnesium ions and calcium ions. The present biosensor based on immobilized ZnO nanorods with lactate oxidase sustained its stability for more than three weeks.

  5. Planarian D-amino acid oxidase is involved in ovarian development during sexual induction.

    PubMed

    Maezawa, Takanobu; Tanaka, Hiroyuki; Nakagawa, Haruka; Ono, Mizuki; Aoki, Manabu; Matsumoto, Midori; Ishida, Tetsuo; Horiike, Kihachiro; Kobayashi, Kazuya

    2014-05-01

    To elucidate the molecular mechanisms underlying switching from asexual to sexual reproduction, namely sexual induction, we developed an assay system for sexual induction in the hermaphroditic planarian species Dugesia ryukyuensis. Ovarian development is the initial and essential step in sexual induction, and it is followed by the formation of other reproductive organs, including the testes. Here, we report a function of a planarian D-amino acid oxidase, Dr-DAO, in the control of ovarian development in planarians. Asexual worms showed significantly more widespread expression of Dr-DAO in the parenchymal space than did sexual worms. Inhibition of Dr-DAO by RNAi caused the formation of immature ovaries. In addition, we found that feeding asexual worms 5 specific D-amino acids could induce the formation of immature ovaries that are similar to those observed in Dr-DAO knockdown worms, suggesting that Dr-DAO inhibits the formation of immature ovaries by degrading these D-amino acids. Following sexual induction, Dr-DAO expression was observed in the ovaries. The knockdown of Dr-DAO during sexual induction delayed the maturation of the other reproductive organs, as well as ovary. These findings suggest that Dr-DAO acts to promote ovarian maturation and that complete sexual induction depends on the production of mature ovaries. We propose that Dr-DAO produced in somatic cells prevents the onset of sexual induction in the asexual state, and then after sexual induction, the female germ cells specifically produce Dr-DAO to induce full maturation. Therefore, Dr-DAO produced in somatic and female germline cells may play different roles in sexual induction.

  6. Probiotic yogurts manufactured with increased glucose oxidase levels: postacidification, proteolytic patterns, survival of probiotic microorganisms, production of organic acid and aroma compounds.

    PubMed

    Cruz, A G; Castro, W F; Faria, J A F; Lollo, P C B; Amaya-Farfán, J; Freitas, M Q; Rodrigues, D; Oliveira, C A F; Godoy, H T

    2012-05-01

    We investigated the effect of increased glucose oxidase concentration as a technological option to decrease oxidative stress during the processing of probiotic yogurts. Probiotic yogurts were produced with increased concentrations of glucose oxidase (0, 250, 500, 750, or 1,000 mg/kg) and submitted to physicochemical and microbiological analysis at 1, 15, and 30 d of refrigerated storage. Higher concentrations of glucose oxidase (750 and 1,000 mg/kg) and a longer storage time were found to have an influence on the characteristics of the probiotic yogurt, contributing to more extensive postacidification, an increase in the dissolved oxygen level, and higher proteolysis. In addition, increased production of aroma compounds (diacetyl and acetaldehyde) and organic acids (mainly lactic acid) and a decrease in the probiotic bacteria count were reported. The use of glucose oxidase was a feasible option to minimize oxidative stress in probiotic yogurts. However, supplementation with excessive amounts of the enzyme may be ineffective, because insufficient substrate (glucose) is present for its action. Consumer tests should be performed to evaluate changes in the sensory attributes of the probiotic yogurts with increased supplementation of glucose oxidase. In addition, packaging systems with different permeability to oxygen should be evaluated.

  7. Kinetics of Inhibition of Monoamine Oxidase Using Curcumin and Ellagic Acid

    PubMed Central

    Khatri, Dharmendra Kumar; Juvekar, Archana Ramesh

    2016-01-01

    Background: Curcumin and ellagic are the natural polyphenols having a wide range of pharmacological actions. They have been reported to have their use in various neurological disorders. Objective: This study was aimed to evaluate the effect of curcumin and ellagic acid on the activity of monoamine oxidase (MAO), the enzyme responsible for metabolism of monoamine neurotransmitters which are pivotal for neuronal development and function. Materials and Methods: The in vitro effects of these selected polyphenols on MAO activities in mitochondria isolated from rat brains were examined. Brain mitochondria were assayed for MAO type-B (MAO-B) using benzylamine as substrates. Rat brain mitochondrial MAO preparation was used to study the kinetics of enzyme inhibition using double reciprocal Lineweaver–Burk plot. Results: MAO activity was inhibited by curcumin and ellagic acid; however, higher half maximal inhibitory concentrations of curcumin (500.46 nM) and ellagic acid (412.24 nM) were required compared to the known MAO-B inhibitor selegiline. It is observed that the curcumin and ellagic acid inhibit the MAO activity with both the competitive and noncompetitive type of inhibitions. Conclusions: Curcumin and ellagic acid can be considered a possible source of MAO inhibitor used in the treatment of Parkinson's and other neurological disorders. SUMMARY Monoamine oxidase (MAO) is involved in a variety of neurological disorders including Parkinson's disease (PD)Curcumin and ellagic acid inhibit the monoamine oxidase activityEllagic acid revealed more potent MAO type-B (MAO-B) inhibitory activity than curcuminKinetic studies of MAO inhibition using different concentrations of curcumin and ellagic acid were plotted as double reciprocal Lineweaver–Burk plotThe mode of inhibition of both compounds toward MAO-B is mixed (competitive and uncompetitive) type of inhibition with both the competitive and noncompetitive type of inhibitions. Abbreviations used: MAO: Monoamine oxidase

  8. Evidence for the involvement of GPR40 and NADPH oxidase in palmitic acid-induced superoxide production and insulin secretion.

    PubMed

    Graciano, Maria Fernanda; Valle, Maíra Mello; Curi, Rui; Carpinelli, Angelo Rafael

    2013-01-01

    G protein coupled receptor 40 (GPR40) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex have been shown to be involved in the fatty acid amplification of glucose-stimulated insulin secretion (GSIS). The effect of palmitic acid on superoxide production and insulin secretion by INS-1E cells and the possible involvement of GPR40 and NADPH oxidase in these processes were examined in this study. Cells were incubated during 1 h with palmitic acid in low and high glucose concentrations, a GPR40 agonist (GW9508) and inhibitors of NADPH oxidase (diphenyleneiodonium, DPI) and PKC (calphostin C). GW9508 induced superoxide production at 2.8 and 5.6 mM glucose concentrations and stimulated insulin secretion at 16.7 mM glucose concentration involving both PKC and NADPH oxidase activation. Palmitic acid induced superoxide production through NADPH oxidase and GPR40-dependent pathways and the stimulation of insulin secretion in the presence of a high glucose concentration was reduced by knockdown of GPR40 using siRNA. Our results suggest that palmitic acid induces superoxide production and potentiates GSIS through NADPH oxidase and GPR40 pathways in pancreatic ? cells.

  9. A Highly Stable d-Amino Acid Oxidase of the Thermophilic Bacterium Rubrobacter xylanophilus

    PubMed Central

    Furukawara, Makoto; Omae, Keishi; Tadokoro, Namiho; Saito, Yayoi; Abe, Katsumasa; Kera, Yoshio

    2014-01-01

    d-Amino acid oxidase (DAO) is a biotechnologically attractive enzyme that can be used in a variety of applications, but its utility is limited by its relatively poor stability. A search of a bacterial genome database revealed a gene encoding a protein homologous to DAO in the thermophilic bacterium Rubrobacter xylanophilus (RxDAO). The recombinant protein expressed in Escherichia coli was a monomeric protein containing noncovalently bound flavin adenine dinucleotide as a cofactor. This protein exhibited oxidase activity against neutral and basic d-amino acids and was significantly inhibited by a DAO inhibitor, benzoate, but not by any of the tested d-aspartate oxidase (DDO) inhibitors, thus indicating that the protein is DAO. RxDAO exhibited higher activities and affinities toward branched-chain d-amino acids, with the highest specific activity toward d-valine and catalytic efficiency (kcat/Km) toward d-leucine. Substrate inhibition was observed in the case of d-tyrosine. The enzyme had an optimum pH range and temperature of pH 7.5 to 10 and 65°C, respectively, and was stable between pH 5.0 and pH 8.0, with a T50 (the temperature at which 50% of the initial enzymatic activity is lost) of 64°C. No loss of enzyme activity was observed after a 1-week incubation period at 30°C. This enzyme was markedly inactivated by phenylmethylsulfonyl fluoride but not by thiol-modifying reagents and diethyl pyrocarbonate, which are known to inhibit certain DAOs. These results demonstrated that RxDAO is a highly stable DAO and suggested that this enzyme may be valuable for practical applications, such as the determination and quantification of branched-chain d-amino acids, and as a scaffold to generate a novel DAO via protein engineering. PMID:25217016

  10. Evidence for cancer-associated expression of NADPH oxidase 1 (Nox1)-based oxidase system in the human stomach.

    PubMed

    Tominaga, Kumiko; Kawahara, Tsukasa; Sano, Toshiaki; Toida, Kazunori; Kuwano, Yuki; Sasaki, Hideyuki; Kawai, Tomoko; Teshima-Kondo, Shigetada; Rokutan, Kazuhito

    2007-12-15

    Helicobacter pylori infection has been suggested to stimulate expression of the NADPH oxidase 1 (Nox1)-based oxidase system in guinea pig gastric epithelium, whereas Nox1 mRNA expression has not yet been documented in the human stomach. PCR of human stomach cDNA libraries showed that Nox1 and Nox organizer 1 (NOXO1) messages were absent from normal stomachs, while they were specifically coexpressed in intestinal- and diffuse-type adenocarcinomas including signet-ring cell carcinoma. Immunohistochemistry showed that Nox1 and NOXO1 proteins were absent from chronic atrophic gastritis (15 cases), adenomas (4 cases), or surrounding tissues of adenocarcinomas (45 cases). In contrast, Nox1 and its partner proteins were expressed in intestinal-type adenocarcinomas (19/21 cases), diffuse-type adenocarcinomas (15/15 cases), and signet-ring cell carcinomas (9/9 cases). Confocal microscopy revealed that Nox1, NOXO1, Nox activator 1, and p22(phox) were predominantly associated with Golgi apparatus in these cancer cells, while diffuse-type adenocarcinomas also contained cancer cells having Nox1 and its partner proteins in their nuclei. Nox1-expressing cancer cells exhibited both gastric and intestinal phenotypes, as assessed by expression of mucin core polypeptides. Thus, the Nox1-base oxidase may be a potential marker of neoplastic transformation and play an important role in oxygen radical- and inflammation-dependent carcinogenesis in the human stomach.

  11. Screening of Bothrops snake venoms for L-amino acid oxidase activity

    SciTech Connect

    Pessati, M.L.; Fontana, J.D.; Guimaraes, M.F.

    1995-12-31

    Toxins, enzymes, and biologically active peptides are the main components of snake venoms from the genus Bothrops. Following the venom inoculation, the local effects are hemorrhage, edema, and myonecrosis. Nineteen different species of Brazilian Bothrops were screened for protein content and L-amino acid oxidase activity. B. cotiara, formerly found in the South of Brazil, is now threatened with extinction. Its venom contains a highly hemorrhagic fraction and, as expected from the deep yellow color of the corresponding lyophilized powder, a high L-amino acid oxidase (LAO) activity was also characterized. Flavin adenine dinucleotide (FAD) is its associate coenzyme. B. cotiara venom LAO catalyzed the oxidative deamination of several L-amino acids, and the best substrates were methionine, leucine, tryptophan, and phenylalanine, hence, its potential application for the use in biosensors for aspartame determination and for the removal of amino acids from plasma. High levels for LAO were also found in other species than B. cotiara. In addition, the technique of isoelectric focusing (IEF) was employed as a powerful tool to study the iso- or multi-enzyme distribution for LAO activity in the B. cotiara snake venom.

  12. In Situ Click Chemistry for the Identification of a Potent D-Amino Acid Oxidase Inhibitor.

    PubMed

    Toguchi, Shohei; Hirose, Tomoyasu; Yorita, Kazuko; Fukui, Kiyoshi; Sharpless, K Barry; Ōmura, Satoshi; Sunazuka, Toshiaki

    2016-07-01

    In situ click chemistry is a target-guided synthesis approach for discovering novel lead compounds by assembling organic azides and alkynes into triazoles inside the affinity site of target biogenic molecules such as proteins. We report in situ click chemistry screening with human D-amino acid oxidase (hDAO), which led to the identification of a more potent hDAO inhibitor. The hDAO inhibitors have chemotherapeutic potential as antipsychotic agents. The new inhibitor displayed competitive inhibition of hDAO and showed significantly increased inhibitory activity against hDAO compared with that of an anchor molecule of in situ click chemistry.

  13. A novel D-amino acid oxidase from a contaminated agricultural soil metagenome and its characterization.

    PubMed

    Ou, Qian; Liu, Yao; Deng, Jie; Chen, Gao; Yang, Ying; Shen, Peihong; Wu, Bo; Jiang, Chengjian

    2015-06-01

    A novel D-amino acid oxidase (DAAO) gene designated as daoE was cloned by the sequence-based screening of a plasmid metagenomic library of uncultured microorganisms from contaminated agricultural soil. The deduced amino acid sequence comparison and phylogenetic analysis indicated that daoE and other putative DAAOs are closely related. The putative DAAO gene was subcloned into a pETBlue-2 vector and overexpressed in Escherichia coli Tunner(DE3)pLacI. The recombinant protein was purified to homogeneity. The maximum activity of DaoE protein occurred at pH 8.0 and 37 °C. DaoE recombinant protein had an apparent K m of 2.96 mM, V max of 0.018 mM/min, k cat of 10.9/min, and k cat/K m of 1.16 × 10(4)/mol/min. The identification of this novel DAAO gene demonstrated the importance of metagenomic libraries in exploring new D-amino acid oxidases from environmental microorganisms to optimize their applications.

  14. Ascorbate Oxidase-Based Amperometric Biosensor for l-Ascorbic Acid Determination in Beverages.

    PubMed

    Csiffáry, Gábor; Fűtő, Péter; Adányi, Nóra; Kiss, Attila

    2016-03-01

    A novel biosensor for l-ascorbic acid determination in different beverages was elaborated. The ascorbate oxidase enzyme (AAO) from Cucurbita sp., EC 1.10.3.3, was immobilized on a screen-printed carbon electrode with poly(ethylene glycol) (400) diglycidyl ether (PEGDGE) as a crosslinking agent. The standards and samples were measured first with a blank electrode. An inert protein, bovine serum albumin (BSA), was immobilized on the surface of this electrode with PEGDGE. The BSA mass was equivalent to the mass of 10 U of AAO enzyme immobilized on the electrodes (0.021 mg). The linear measuring range for l-ascorbic acid was between 5 and 150 µmol/L. As l-ascorbic acid is a vital vitamin and a common antioxidant used in food industry, fruit juices and vitamin C effervescent tablets were examined. The results were compared to HPLC measurements.

  15. Crystal structure and molecular dynamics studies of L-amino acid oxidase from Bothrops atrox.

    PubMed

    Feliciano, Patricia R; Rustiguel, Joane K; Soares, Ricardo O S; Sampaio, Suely V; Cristina Nonato, M

    2017-03-15

    L-amino acid oxidases (LAAOs) are dimeric flavoproteins that catalyze the deamination of L-amino acid to α-keto acid, producing ammonia and hydrogen peroxide. In this study, we report the crystal structure and molecular dynamics simulations of LAAO from the venom of Bothrops atrox (BatroxLAAO). BatroxLAAO presents several biological and pharmacological properties with promising biomedical applications. BatroxLAAO structure contains the highly conserved structural pattern of LAAOs comprising a FAD-binding domain, substrate-binding domain and helical domain, and a dimeric arrangement that can be stabilized by zinc. Also, molecular dynamics results show an asymmetric behavior, and a direct communication between FAD- and substrate-binding domains of counterpart subunits. These findings shed light on the structural role of dimerization to catalytic mechanism of SV-LAAOs.

  16. Ascorbate Oxidase-Based Amperometric Biosensor for l-Ascorbic Acid Determination in Beverages

    PubMed Central

    Csiffáry, Gábor; Fűtő, Péter; Adányi, Nóra; Kiss, Attila

    2016-01-01

    Summary A novel biosensor for l-ascorbic acid determination in different beverages was elaborated. The ascorbate oxidase enzyme (AAO) from Cucurbita sp., EC 1.10.3.3, was immobilized on a screen-printed carbon electrode with poly(ethylene glycol) (400) diglycidyl ether (PEGDGE) as a crosslinking agent. The standards and samples were measured first with a blank electrode. An inert protein, bovine serum albumin (BSA), was immobilized on the surface of this electrode with PEGDGE. The BSA mass was equivalent to the mass of 10 U of AAO enzyme immobilized on the electrodes (0.021 mg). The linear measuring range for l-ascorbic acid was between 5 and 150 µmol/L. As l-ascorbic acid is a vital vitamin and a common antioxidant used in food industry, fruit juices and vitamin C effervescent tablets were examined. The results were compared to HPLC measurements. PMID:27904390

  17. Oxalic acid degradation by a novel fungal oxalate oxidase from Abortiporus biennis.

    PubMed

    Grąz, Marcin; Rachwał, Kamila; Zan, Radosław; Jarosz-Wilkołazka, Anna

    2016-01-01

    Oxalate oxidase was identified in mycelial extracts of a basidiomycete Abortiporus biennis strain. Intracellular enzyme activity was detected only after prior lowering of the pH value of the fungal cultures by using oxalic or hydrochloric acids. This enzyme was purified using size exclusion chromatography (Sephadex G-25) and ion-exchange chromatography (DEAE-Sepharose). This enzyme exhibited optimum activity at pH 2 when incubated at 40°C, and the optimum temperature was established at 60°C. Among the tested organic acids, this enzyme exhibited specificity only towards oxalic acid. Molecular mass was calculated as 58 kDa. The values of Km for oxalate and Vmax for the enzyme reaction were 0.015 M and 30 mmol min(-1), respectively.

  18. In vitro and in vivo studies on adlay-derived seed extracts: phenolic profiles, antioxidant activities, serum uric acid suppression, and xanthine oxidase inhibitory effects.

    PubMed

    Zhao, Mouming; Zhu, Dashuai; Sun-Waterhouse, Dongxiao; Su, Guowan; Lin, Lianzhu; Wang, Xiao; Dong, Yi

    2014-08-06

    This study aimed to explore the potential of polished adlay, brown adlay, adlay bran, and adlay hull to prevent and treat hyperuricemia. Brown adlay extract effectively decreased the serum uric acid levels of oxonate-induced hyperuricemic rats. Free and bound phenolic extracts from these materials contained significant amounts of phenolics, with free phenolics dominated by chlorogenic acid and p-coumaric acid while bound phenolics dominated by p-coumaric acid and ferulic acid. Free and bound phenolics of adlay bran exhibited significant xanthine oxidase inhibition activities, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities, oxygen radical absorbance capacities, and superoxide radical scavenging activities. Adlay bran phenolics could be effective xanthine oxidase inhibitors and radical scavengers. p-Coumaric acid is a xanthine oxidase inhibitor with strong superoxide radical scavenging activity. However, ferulic acid is a xanthine oxidase inhibitor with weak superoxide radical scavenging activity. Chlorogenic acid is a superoxide radical scavenger with weak xanthine oxidase inhibitory activity.

  19. Use of Glucose Oxidase in a Membrane Reactor for Gluconic Acid Production

    NASA Astrophysics Data System (ADS)

    Das Neves, Luiz Carlos Martins; Vitolo, Michele

    This article aims at the evaluation of the catalytic performance of glucose oxidase (GO) (EC.1.1.3.4) for the glucose/gluconic acid conversion in the ultrafiltration cell type membrane reactor (MB-CSTR). The reactor was coupled with a Millipore ultrafiltration-membrane (cutoff of 100 kDa) and operated for 24 h under agitation of 100 rpm, pH 5.5, and 30°C. The experimental conditions varied were the glucose concentration (2.5, 5.0, 10.0, 20.0, and 40.0 mM), the feeding rate (0.5, 1.0, 3.0, and 6.0/h), dissolved oxygen (8.0 and 16.0 mg/L), GO concentration (2.5, 5.0, 10.0, and 20.0 UGO/mL), and the glucose oxidase/catalase activity ratio (UGO/UCAT)(1∶0, 1∶10, 1∶20, and 1∶30). A conversion yield of 80% and specific reaction rate of 40×10-4 mmol/h·UGO were attained when the process was carried out under the following conditions: D=3.0/h, dissolved oxygen=16.0 mg/L, [G]=40 mM, and (UGO/UCAT)=1∶20. A simplified model for explaining the inhibition of GO activity by hydrogen peroxide, formed during the glucose/gluconic acid conversion, was presented.

  20. Plant and animal glycolate oxidases have a common eukaryotic ancestor and convergently duplicated to evolve long-chain 2-hydroxy acid oxidases.

    PubMed

    Esser, Christian; Kuhn, Anke; Groth, Georg; Lercher, Martin J; Maurino, Veronica G

    2014-05-01

    Glycolate oxidase (GOX) is a crucial enzyme of plant photorespiration. The encoding gene is thought to have originated from endosymbiotic gene transfer between the eukaryotic host and the cyanobacterial endosymbiont at the base of plantae. However, animals also possess GOX activities. Plant and animal GOX belong to the gene family of (L)-2-hydroxyacid-oxidases ((L)-2-HAOX). We find that all (L)-2-HAOX proteins in animals and archaeplastida go back to one ancestral eukaryotic sequence; the sole exceptions are green algae of the chlorophyta lineage. Chlorophyta replaced the ancestral eukaryotic (L)-2-HAOX with a bacterial ortholog, a lactate oxidase that may have been obtained through the primary endosymbiosis at the base of plantae; independent losses of this gene may explain its absence in other algal lineages (glaucophyta, rhodophyta, and charophyta). We also show that in addition to GOX, plants possess (L)-2-HAOX proteins with different specificities for medium- and long-chain hydroxyacids (lHAOX), likely involved in fatty acid and protein catabolism. Vertebrates possess lHAOX proteins acting on similar substrates as plant lHAOX; however, the existence of GOX and lHAOX subfamilies in both plants and animals is not due to shared ancestry but is the result of convergent evolution in the two most complex eukaryotic lineages. On the basis of targeting sequences and predicted substrate specificities, we conclude that the biological role of plantae (L)-2-HAOX in photorespiration evolved by co-opting an existing peroxisomal protein.

  1. [Enzymatic production of α-ketoglutaric acid by L-glutamate oxidase from L-glutamic acid].

    PubMed

    Niu, Panqing; Zhang, Zhenyu; Liu, Liming

    2014-08-01

    We produced α-ketoglutaric acid (α-KG) from L-glutamic acid, using enzymatic transformation approach with L-glutamate oxidase (LGOX). First, wild strain Streptomyces sp. FMME066 was mutated with NTG, a genetically stable mutant Streptomyces sp. FMME067 was obtained. Under the optimal nutrition conditions with fructose 10 g/L, peptone 7.5 g/L, KH2PO4 1 g/L and CaCl2 0.05 g/L, the maximum LGOX activity reached 0.14 U/mL. The LGOX was stable to pH and temperature, and Mn2+ had a stimulating effect. Finally, after 24 h enzymatic conversion under the optimal conditions, the maximum titer of α-KG reached 38.1 g/L from 47 g/L L-glutamic acid. Enzymatic transformation by LGOX is a potential approach for α-KG production.

  2. Discovery of pyrazole carboxylic acids as potent inhibitors of rat long chain L-2-hydroxy acid oxidase.

    PubMed

    Barawkar, Dinesh A; Bandyopadhyay, Anish; Deshpande, Anil; Koul, Summon; Kandalkar, Sachin; Patil, Pradeep; Khose, Goraksha; Vyas, Samir; Mone, Mahesh; Bhosale, Shubhangi; Singh, Umesh; De, Siddhartha; Meru, Ashwin; Gundu, Jayasagar; Chugh, Anita; Palle, Venkata P; Mookhtiar, Kasim A; Vacca, Joseph P; Chakravarty, Prasun K; Nargund, Ravi P; Wright, Samuel D; Roy, Sophie; Graziano, Michael P; Cully, Doris; Cai, Tian-Quan; Singh, Sheo B

    2012-07-01

    Long chain L-2-hydroxy acid oxidase 2 (Hao2) is a peroxisomal enzyme expressed in the kidney and the liver. Hao2 was identified as a candidate gene for blood pressure (BP) quantitative trait locus (QTL) but the identity of its physiological substrate and its role in vivo remains largely unknown. To define a pharmacological role of this gene product, we report the development of selective inhibitors of Hao2. We identified pyrazole carboxylic acid hits 1 and 2 from screening of a compound library. Lead optimization of these hits led to the discovery of 15-XV and 15-XXXII as potent and selective inhibitors of rat Hao2. This report details the structure activity relationship of the pyrazole carboxylic acids as specific inhibitors of Hao2.

  3. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation

    PubMed Central

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  4. Oleic, linoleic and linolenic acids increase ros production by fibroblasts via NADPH oxidase activation.

    PubMed

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47 (phox) phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47 (phox) mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts.

  5. Isolation of oxalic acid tolerating fungi and decipherization of its potential to control Sclerotinia sclerotiorum through oxalate oxidase like protein.

    PubMed

    Yadav, Shivani; Srivastava, Alok K; Singh, Dhanajay P; Arora, Dilip K

    2012-11-01

    Oxalic acid plays major role in the pathogenesis by Sclerotinia sclerotiorum; it lowers the pH of nearby environment and creates the favorable condition for the infection. In this study we examined the degradation of oxalic acid through oxalate oxidase and biocontrol of Sclerotinia sclerotiorum. A survey was conducted to collect the rhizospheric soil samples from Indo-Gangetic Plains of India to isolate the efficient fungal strains able to tolerate oxalic acid. A total of 120 fungal strains were isolated from root adhering soils of different vegetable crops. Out of 120 strains a total of 80 isolates were able to grow at 10 mM of oxalic acid whereas only 15 isolates were grow at 50 mM of oxalic acid concentration. Then we examined the antagonistic activity of the 15 isolates against Sclerotinia sclerotiorum. These strains potentially inhibit the growth of the test pathogen. A total of three potential strains and two standard cultures of fungi were tested for the oxalate oxidase activity. Strains S7 showed the maximum degradation of oxalic acid (23 %) after 60 min of incubation with fungal extract having oxalate oxidase activity. Microscopic observation and ITS (internally transcribed spacers) sequencing categorized the potential fungal strains into the Aspergillus, Fusarium and Trichoderma. Trichoderma sp. are well studied biocontrol agent and interestingly we also found the oxalate oxidase type activity in these strains which further strengthens the potentiality of these biocontrol agents.

  6. Effects of salicylic acid on alternative pathway respiration and alternative oxidase expression in tobacco calli.

    PubMed

    Lei, Tao; Yan, Ying-Cai; Xi, De-Hui; Feng, Hong; Sun, Xin; Zhang, Fan; Xu, Wei-Lin; Liang, Hou-Guo; Lin, Hong-Hui

    2008-01-01

    The alternative pathway (AP) respiration of plants is a cyanide-resistant and non-phosphorylating electron transport pathway in mitochondria. Alternative oxidase (AOX) is the terminal oxidase of the AP and exists in plant mitochondria as two states: the reduced, noncovalently linked state or the oxidized, covalently cross-linked state. In the present study, the effects of 20 microM exogenous salicylic acid (SA) on both AP activity and AOX expression in mitochondria of tobacco (Nicotiana rustica L. cv. yellow flower) calli were investigated. The results showed that SA treatment enhanced the AP activity. During the process of SA treatment, the AP activity increased dramatically and achieved the peak value after 8 h of treatment. Then it declined until 16 h, and maintained a steady level between 16 and 24 h. Changes in both the total AOX protein level and the reduced state were in accordance with the AP activity, but the oxidized state changed differently. The aox1 gene transcript level also showed a similar change as the AP activity and AOX protein level. The induction of AOX expression by low concentrations of SA was inferred through a reactive oxygen species (ROS)-independent pathway. These results indicate that the enhancement of AP activity in response to SA is correlated to the expression of AOX, and the reduced, non-covalently linked state of AOX plays an important role during this process.

  7. In vitro oxidation of indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots. [Zea mays L

    SciTech Connect

    Beffa, R.; Martin, H.V.; Pilet, P.E. )

    1990-10-01

    Soluble auxin-oxidases were extracted from Zea mays L. cv LG11 apical root segments and partially separated from peroxidases (EC 1.11.1.7) by size-exclusion chromatography. Auxin-oxidases were resolved into one main peak corresponding to a molecular mass of 32.5 kilodaltons and a minor peak at 54.5 kilodaltons. Peroxidases were separated into at least four peaks, with molecular masses from 32.5 to 78 kilodaltons. In vitro activity of indoleacetic acid-oxidases was dependent on the presence of MnCl{sub 2} and p-coumaric acid. Compound(s) present in the crude extract and several synthetic auxin transport inhibitors (including 2,3,5-triiodobenzoic acid and N-1-naphthylphthalamic acid) inhibited auxin-oxidase activity, but had no effect on peroxidases. The products resulting from the in vitro enzymatic oxidation of ({sup 3}H)indoleacetic acid were separated by HPLC and the major metabolite was found to cochromatograph with indol-3yl-methanol.

  8. Identification of the Atlantic cod L-amino acid oxidase and its alterations following bacterial exposure.

    PubMed

    Kitani, Yoichiro; Fernandes, Jorge M O; Kiron, Viswanath

    2015-06-01

    Antibacterial factors that are present in epidermal mucus of fish have a potential role in the first line of host defence to bacterial pathogens. This study reports the identification of L-amino acid oxidase (LAO) in Atlantic cod (GmLao) and the changes in the molecule following bacterial exposure. The gmlao transcripts and LAO activity were present on both the body surface and in the internal organs of the fish. Relative mRNA level of gmlao increased significantly in the gills, the spleen and the head kidney (up to 8-fold) of fish that were challenged with the pathogen Vibrio anguillarum. The gmlao expression in skin was 4-fold higher in challenged fish. Our data indicate that LAO may be an important effector of antibacterial defence in Atlantic cod.

  9. Effect of L-amino acid oxidase from Calloselasma rhodosthoma snake venom on human neutrophils.

    PubMed

    Pontes, Adriana S; da S Setúbal, Sulamita; Xavier, Caroline V; Lacouth-Silva, Fabianne; Kayano, Anderson M; Pires, Weverson L; Nery, Neriane Monteiro; Boeri de Castro, Onassis; da Silva, Silvana D; Calderon, Leonardo A; Stábeli, Rodrigo G; Soares, Andreimar M; Zuliani, Juliana P

    2014-03-01

    The in vitro effects of LAAO, an l-amino acid oxidase isolated from Calloselasma rhodosthoma snake venom, on isolated human neutrophil function were investigated. LAAO showed no toxicity on neutrophils. At non-cytotoxic concentrations, LAAO induced the superoxide anion production by isolated human neutrophil. This toxin, in its native form, is also able to stimulate the production of hydrogen peroxide in neutrophils, suggesting that its primary structure is essential for stimulation the cell. Moreover, the incubation of LAAO and phenol red medium did not induce the production of hydrogen peroxide. Furthermore, LAAO was able to stimulate neutrophils to release proinflammatory mediators such as IL-8 and TNF-α as well as NETs liberation. Together, the data showed that the LAAO triggers relevant proinflammatory events. Particular regions of the molecule distinct from the LAAO catalytic site may be involved in the onset of inflammatory events.

  10. Identification, cloning, and expression of L-amino acid oxidase from marine Pseudoalteromonas sp. B3.

    PubMed

    Yu, Zhiliang; Zhou, Ning; Qiao, Hua; Qiu, Juanping

    2014-01-01

    L-amino acid oxidase (LAAO) is attracting more attentions due to its broad and important biological functions. Recently, an LAAO-producing marine microorganism (strain B3) was isolated from the intertidal zone of Dinghai sea area, China. Physiological, biochemical, and molecular identifications together with phylogenetic analysis congruously suggested that it belonged to the genus Pseudoalteromonas. Therefore, it was designated as Pseudoalteromonas sp. B3. Its capability of LAAO production was crossly confirmed by measuring the products of H2O2, a-keto acids, and NH4+ in oxidization reaction. Two rounds of PCR were performed to gain the entire B3-LAAO gene sequence of 1608 bps in length encoding for 535 amino acid residues. This deduced amino acid sequence showed 60 kDa of the calculated molecular mass, supporting the SDS-PAGE result. Like most of flavoproteins, B3-LAAO also contained two conserved typical motifs, GG-motif and βαβ-dinucleotide-binding domain motif. On the other hand, its unique substrate spectra and sequence information suggested that B3-LAAO was a novel LAAO. Our results revealed that it could be functionally expressed in E. coli BL21(DE3) using vectors, pET28b(+) and pET20b(+). However, compared with the native LAAO, the expression level of the recombinant one was relatively low, most probably due to the formation of inclusion bodies. Several solutions are currently being conducted in our lab to increase its expression level.

  11. Contributions of spinal D-amino acid oxidase to chronic morphine-induced hyperalgesia.

    PubMed

    Ma, Shuai; Li, Xin-Yan; Gong, Nian; Wang, Yong-Xiang

    2015-12-10

    Spinal D-amino acid oxidase (DAAO) is an FAD-dependent peroxisomal flavoenzyme which mediates the conversion of neutral and polar D-amino acids (including D-serine) to the corresponding α-keto acids, and simultaneously produces hydrogen peroxide and ammonia. This study has aimed to explore the potential contributions of spinal DAAO and its mediated hydrogen peroxide/D-serine metabolism to the development of morphine-induced hyperalgesia. Bi-daily subcutaneous injections of morphine to mice over 7 days induced thermal hyperalgesia as measured by both the hot-plate and tail-immersion tests, and spinal astroglial activation with increased spinal gene expression of DAAO, glial fibrillary acidic protein (GFAP) and pro-inflammatory cytokines (interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)). Subcutaneous injections of the potent DAAO inhibitor CBIO (5-chloro-benzo[D]isoxazol-3-ol) prevented and reversed the chronic morphine-induced hyperalgesia. CBIO also inhibited both astrocyte activation and the expression of pro-inflammatory cytokines. Intrathecal injection of the hydrogen peroxide scavenger PBN (phenyl-N-tert-butylnitrone) and of catalase completely reversed established morphine hyperalgesia, whereas subcutaneous injections of exogenous D-serine failed to alter chronic morphine-induced hyperalgesia. These results provided evidence that spinal DAAO and its subsequent production of hydrogen peroxide rather than the D-serine metabolism contributed to the development of morphine-induced hyperalgesia.

  12. Involvement of Peroxidase and Indole-3-acetic Acid Oxidase Isozymes from Pear, Tomato, and Blueberry Fruit in Ripening.

    PubMed

    Frenkel, C

    1972-05-01

    Protein extracts were obtained from climacteric fruits (pear, tomato) and nonclimacteric fruits (blueberry) during various stages of ripening. The use of a gel electrophoresis technique revealed a consistent reinforcement in indoleacetic acid oxidase but not in peroxidase isozymes during ripening. The significance of the results is discussed in relation to the resistance of fruits to ripening and ethylene action.

  13. Fabrication of enzyme reactor utilizing magnetic porous polymer membrane for screening D-Amino acid oxidase inhibitors.

    PubMed

    Jiang, Jun Fang; Qiao, Juan; Mu, Xiao Yu; Moon, Myeong Hee; Qi, Li

    2017-04-01

    In this work, a unique D-amino acid oxidase reactor for enhanced enzymolysis efficiency is presented. A kind of magnetic polymer matrices, composed of iron oxide nanoparticles and porous polymer membrane (poly styrene-co-maleic anhydride), was prepared. With covalent bonding D-Amino acid oxidase on the surface of the matrices and characterization of scanning electron microscope and vibrating sample magnetometer, it demonstrated that the membrane enzyme reactor was successfully constructed. The enzymolysis efficiency of the enzyme reactor was evaluated and the apparent Michaelis-Menten constants of D-Amino acid oxidase were determined (Km was 1.10mM, Vmax was 23.8mMmin(-1)) by a chiral ligand exchange capillary electrophoresis protocol with methionine as the substrate. The results indicated that the enzyme reactor could exhibit good stability and excellent reusability. Importantly, because the enzyme and the substrate could be confined into the pores of the matrices, the enzyme reactor displayed the improved enzymolysis efficiency due to the confinement effect. Further, the prepared enzyme reactor was applied for D-Amino acid oxidase inhibitors screening. It has displayed that the proposed protocol could pave a new way for fabrication of novel porous polymer membrane based enzyme reactors to screen enzyme inhibitors.

  14. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: Role of NADPH oxidase and hypochlorous acid.

    PubMed

    Tian, Rong; Ding, Yun; Peng, Yi-Yuan; Lu, Naihao

    2017-03-11

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H2O2), have emerged as important molecules in the pathogenesis of diabetic endothelial dysfunction. Additionally, neutrophils-derived myeloperoxidase (MPO) and MPO-catalyzed hypochlorous acid (HOCl) play important roles in the vascular injury. However, it is unknown whether MPO can use vascular-derived ROS to induce diabetic endothelial dysfunction. In the present study, we demonstrated that NADPH oxidase was the main source of ROS formation in high glucose-cultured human umbilical vein endothelial cells (HUVECs), and played a critical role in high glucose-induced endothelial dysfunction such as cell apoptosis, loss of cell viability and reduction of nitric oxide (NO). However, the addition of MPO could amplify the high glucose-induced endothelial dysfunction which was inhibited by the presence of apocynin (NADPH oxidase inhibitor), catalase (H2O2 scavenger), or methionine (HOCl scavenger), demonstrating the contribution of NADPH oxidase-H2O2-MPO-HOCl pathway in the MPO/high glucose-induced vascular injury. In high glucose-incubated rat aortas, MPO also exacerbated the NADPH oxidase-induced impairment of endothelium-dependent relaxation. Consistent with these in vitro data, in diabetic rat aortas, both MPO expresion and NADPH oxidase activity were increased while the endothelial function was simultaneously impaired. The results suggested that vascular-bound MPO could amplify high glucose-induced vascular injury in diabetes. MPO-NADPH oxidase-HOCl may represent an important pathogenic pathway in diabetic vascular diseases.

  15. Enzymatic production of α-ketoglutaric acid from l-glutamic acid via l-glutamate oxidase.

    PubMed

    Niu, Panqing; Dong, Xiaoxiang; Wang, Yuancai; Liu, Liming

    2014-06-10

    In this study, a novel strategy for α-ketoglutaric acid (α-KG) production from l-glutamic acid using recombinant l-glutamate oxidase (LGOX) was developed. First, by analyzing the molecular structure characteristics of l-glutamic acid and α-KG, LGOX was found to be the best catalyst for oxidizing the amino group of l-glutamic acid to a ketonic group without the need for exogenous cofactor. Then the LGOX gene was expressed in Escherichia coli BL21 (DE3) in a soluble and active form, and the recombinant LGOX activity reached to a maximum value of 0.59U/mL at pH 6.5, 30°C. Finally, the maximum α-KG concentration reached 104.7g/L from 110g/L l-glutamic acid in 24h, under the following optimum conditions: 1.5U/mL LGOX, 250U/mL catalase, 3mM MnCl2, 30°C, and pH 6.5.

  16. Recombinant expression and characterization of a L-amino acid oxidase from the fungus Rhizoctonia solani.

    PubMed

    Hahn, Katharina; Neumeister, Katrin; Mix, Andreas; Kottke, Tilman; Gröger, Harald; Fischer von Mollard, Gabriele

    2017-04-01

    L-Amino acid oxidases (L-AAOs) catalyze the oxidative deamination of L-amino acids to the corresponding α-keto acids, ammonia, and hydrogen peroxide. L-AAOs are homodimeric enzymes with FAD as a non-covalently bound cofactor. They are of potential interest for biotechnological applications. However, heterologous expression has not succeeded in producing large quantities of active recombinant L-AAOs with a broad substrate spectrum so far. Here, we report the heterologous expression of an active L-AAO from the fungus Rhizoctonia solani in Escherichia coli as a fusion protein with maltose-binding protein (MBP) as a solubility tag. After purification, it was possible to remove the MBP-tag proteolytically without influencing the enzyme activity. MBP-rsLAAO1 and 9His-rsLAAO1 converted basic and large hydrophobic L-amino acids as well as methyl esters of these L-amino acids. The progress of the conversion of L-phenylalanine and L-leucine into the corresponding α-keto acids was determined by HPLC and (1)H-NMR analysis of reaction mixtures, respectively. Enzymatic activity was stimulated 50-100-fold by SDS treatment. K m values ranging from 0.9-10 mM and v max values from 3 to 10 U mg(-1) were determined after SDS activation of 9His-rsLAAO1 for the best substrates. The enzyme displayed a broad pH optimum between pH 7.0 and 9.5. In summary, a successful overexpression of recombinant L-AAO in E. coli was established that results in a promising enzymatic activity and a broad substrate spectrum for biotechnological application.

  17. Molecular characterization of L-amino acid oxidase from king cobra venom.

    PubMed

    Jin, Yang; Lee, Wen-Hui; Zeng, Lin; Zhang, Yun

    2007-09-15

    An L-amino acid oxidase from Ophiophagus hannah snake venom (Oh-LAAO) was purified by successive gel filtration, ion-exchange and heparin chromatography. Oh-LAAO did not induce platelet aggregation; however, it had potent inhibitory activity on platelet aggregation induced by ADP and U46619, but showed no effect on platelet aggregation induced by thrombin, mucetin, ristocetin and stejnulxin. By RT-PCR and 5'-RACE methods, the complete Oh-LAAO cDNA was cloned from the venom gland total RNA preparations. The cDNA sequence contains an open-reading frame (ORF) of 1476-bp, which encodes a protein of 491 amino acids comprising a signal peptide of 25 amino acids and 466-residue mature protein. The predicted protein sequence of Oh-LAAO was confirmed by N-terminal and trypsin-digested internal peptides sequencing together with peptide mass fingerprinting. cDNAs encoding for ORF of LAAOs from Bungarus fasciatus and B. multicinctus were cloned and reported in this study. In addition, partial cDNA encoding for Naja atra LAAO was also reported. Oh-LAAO shared approximately 50% protein sequence identity with other known snake venom LAAOs. Phylogenetic analysis indicated that Oh-LAAO is evolutionary distant to other snake venom LAAOs.

  18. Changes in D-aspartic acid and D-glutamic acid levels in the tissues and physiological fluids of mice with various D-aspartate oxidase activities.

    PubMed

    Han, Hai; Miyoshi, Yurika; Koga, Reiko; Mita, Masashi; Konno, Ryuichi; Hamase, Kenji

    2015-12-10

    D-Aspartic acid (D-Asp) and D-glutamic acid (D-Glu) are currently paid attention as modulators of neuronal transmission and hormonal secretion. These two D-amino acids are metabolized only by D-aspartate oxidase (DDO) in mammals. Therefore, in order to design and develop new drugs controlling the D-Asp and D-Glu amounts via regulation of the DDO activities, changes in these acidic D-amino acid amounts in various tissues are expected to be clarified in model animals having various DDO activities. In the present study, the amounts of Asp and Glu enantiomers in 6 brain tissues, 11 peripheral tissues and 2 physiological fluids of DDO(+/+), DDO(+/-) and DDO(-/-) mice were determined using a sensitive and selective two-dimensional HPLC system. As a result, the amounts of D-Asp were drastically increased with the decrease in the DDO activity in all the tested tissues and physiological fluids. On the other hand, the amounts of D-Glu were almost the same among the 3 strains of mice. The present results are useful for designing new drug candidates, such as DDO inhibitors, and further studies are expected.

  19. Identification of Crucial Amino Acids in Mouse Aldehyde Oxidase 3 That Determine Substrate Specificity

    PubMed Central

    Mahro, Martin; Brás, Natércia F.; Cerqueira, Nuno M. F. S. A.; Teutloff, Christian; Coelho, Catarina; Romão, Maria João; Leimkühler, Silke

    2013-01-01

    In order to elucidate factors that determine substrate specificity and activity of mammalian molybdo-flavoproteins we performed site directed mutagenesis of mouse aldehyde oxidase 3 (mAOX3). The sequence alignment of different aldehyde oxidase (AOX) isoforms identified variations in the active site of mAOX3 in comparison to other AOX proteins and xanthine oxidoreductases (XOR). Based on the structural alignment of mAOX3 and bovine XOR, differences in amino acid residues involved in substrate binding in XORs in comparison to AOXs were identified. We exchanged several residues in the active site to the ones found in other AOX homologues in mouse or to residues present in bovine XOR in order to examine their influence on substrate selectivity and catalytic activity. Additionally we analyzed the influence of the [2Fe-2S] domains of mAOX3 on its kinetic properties and cofactor saturation. We applied UV-VIS and EPR monitored redox-titrations to determine the redox potentials of wild type mAOX3 and mAOX3 variants containing the iron-sulfur centers of mAOX1. In addition, a combination of molecular docking and molecular dynamic simulations (MD) was used to investigate factors that modulate the substrate specificity and activity of wild type and AOX variants. The successful conversion of an AOX enzyme to an XOR enzyme was achieved exchanging eight residues in the active site of mAOX3. It was observed that the absence of the K889H exchange substantially decreased the activity of the enzyme towards all substrates analyzed, revealing that this residue has an important role in catalysis. PMID:24358164

  20. The stabilizing effects of immobilization in D-amino acid oxidase from Trigonopsis variabilis

    PubMed Central

    Dib, Iskandar; Nidetzky, Bernd

    2008-01-01

    Background Immobilization of Trigonopsis variabilis D-amino acid oxidase (TvDAO) on solid support is the key to a reasonably stable performance of this enzyme in the industrial process for the conversion of cephalosporin C as well as in other biocatalytic applications. Results To provide a mechanistic basis for the stabilization of the carrier-bound oxidase we analyzed the stabilizing effects of immobilization in TvDAO exposed to the stress of elevated temperature and operational conditions. Two different strategies of immobilization were used: multi-point covalent binding to epoxy-activated Sepabeads EC-EP; and non-covalent oriented immobilization of the enzyme through affinity of its N-terminal Strep-tag to Strep-Tactin coated on insoluble particles. At 50°C, the oriented immobilizate was not stabilized as compared to the free enzyme. The structure of TvDAO was stabilized via covalent attachment to Sepabeads EC-EP but concomitantly, binding of the FAD cofactor was weakened. FAD release from the enzyme into solution markedly reduced the positive effect of immobilization on the overall stability of TvDAO. Under conditions of substrate conversion in a bubble-aerated stirred tank reactor, both immobilization techniques as well as the addition of the surfactant Pluronic F-68 stabilized TvDAO by protecting the enzyme from the deleterious effect of gas-liquid interfaces. Immobilization of TvDAO on Sepabeads EC-EP however stabilized the enzyme beyond this effect and led to a biocatalyst that could be re-used in multiple cycles of substrate conversion. Conclusion Multi-point covalent attachment of TvDAO on an isoluble porous carrier provides stabilization against the denaturing effects of high temperature and exposure to a gas-liquid interface. Improvement of binding of the FAD cofactor, probably by using methods of protein engineering, would further enhance the stability of the immobilized enzyme. PMID:18798979

  1. Implications of terminal oxidase function in regulation of salicylic acid on soybean seedling photosynthetic performance under water stress.

    PubMed

    Tang, Yanping; Sun, Xin; Wen, Tao; Liu, Mingjie; Yang, Mingyan; Chen, Xuefei

    2017-03-01

    The aim of this study is to investigate whether exogenous application of salicylic acid (SA) could modulate the photosynthetic capacity of soybean seedlings in water stress tolerance, and to clarify the potential functions of terminal oxidase (plastid terminal oxidase (PTOX) and alternative oxidase (AOX)) in SA' s regulation on photosynthesis. The effects of SA and water stress on gas exchange, pigment contents, chlorophyll fluorescence, enzymes (guaiacol peroxidase (POD; EC 1.11.1.7), superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11) and NADP-malate dehydrogenase (NADP-MDH; EC1.1.1.82)) activity and transcript levels of PTOX, AOX1, AOX2a, AOX2b were examined in a hydroponic cultivation system. Results indicate that water stress significantly decreased the photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (E), pigment contents (Chla + b, Chla/b, Car), maximum quantum yield of PSⅡphotochemistry (Fv/Fm), efficiency of excitation capture of open PSⅡcenter (Fv'/Fm'), quantum efficiency of PSⅡphotochemistry (ΦPSⅡ), photochemical quenching (qP), and increased malondialdehyde (MDA) content and the activity of all the enzymes. SA pretreatment led to significant decreases in Ci and MDA content, and increases in Pn, Gs, E, pigment contents, Fv/Fm, Fv'/Fm', ΦPSⅡ, qP, and the activity of all the enzymes. SA treatment and water stress alone significantly up-regulated the expression of PTOX, AOX1 and AOX2b. SA pretreatment further increased the transcript levels of PTOX and AOX2b of soybean seedling under water stress. These results indicate that SA application alleviates the water stress-induced decrease in photosynthesis may mainly through maintaining a lower reactive oxygen species (ROS) level, a greater PSⅡefficiency, and an enhanced alternative respiration and chlororespiration. PTOX and AOX may play important roles in SA-mediated resistance to water stress.

  2. Fermentation and alternative oxidase contribute to the action of amino acid biosynthesis-inhibiting herbicides.

    PubMed

    Zulet, Amaia; Gil-Monreal, Miriam; Zabalza, Ana; van Dongen, Joost T; Royuela, Mercedes

    2015-03-01

    Acetolactate synthase inhibitors (ALS-inhibitors) and glyphosate (GLP) are two classes of herbicide that act by the specific inhibition of an enzyme in the biosynthetic pathway of branched-chain or aromatic amino acids, respectively. The physiological effects that are detected after application of these two classes of herbicides are not fully understood in relation to the primary biochemical target inhibition, although they have been well documented. Interestingly, the two herbicides' toxicity includes some common physiological effects suggesting that they kill the treated plants by a similar pattern despite targeting different enzymes. The induction of aerobic ethanol fermentation and alternative oxidase (AOX) are two examples of these common effects. The objective of this work was to gain further insight into the role of fermentation and AOX induction in the toxic consequences of ALS-inhibitors and GLP. For this, Arabidopsis T-DNA knockout mutants of alcohol dehydrogenase (ADH) 1 and AOX1a were used. The results found in wild-type indicate that both GLP and ALS-inhibitors reduce ATP production by inducing fermentation and alternative respiration. The main physiological effects in the process of herbicide activity upon treated plants were accumulation of carbohydrates and total free amino acids. The effects of the herbicides on these parameters were less pronounced in mutants compared to wild-type plants. The role of fermentation and AOX regarding pyruvate availability is also discussed.

  3. Synthesis and evaluation of quinazoline amino acid derivatives as mono amine oxidase (MAO) inhibitors.

    PubMed

    Khattab, Sherine Nabil; Haiba, Nesreen Saied; Asal, Ahmed Mosaad; Bekhit, Adnan A; Amer, Adel; Abdel-Rahman, Hamdy M; El-Faham, Ayman

    2015-07-01

    A series of quinazolinone amino acid ester and quinazolinone amino acid hydrazides were prepared under microwave irradiation as well as conventional condition. The microwave irradiation afforded the product in less reaction time, higher yield and purity. The structures of the synthesized compounds were confirmed by IR, NMR, and elemental analysis. The new synthesized compounds were studied for their monoamine oxidase inhibitory activity. They showed more selective inhibitory activity toward MAO-A than MAO-B. Compounds 7, 10, and 15 showed MAO-A inhibition activity (IC50=3.6×10(-9), 2.8×10(-9), 2.1×10(-9) M, respectively) comparable to that of the standard clorgyline (IC50=2.9×10(-9)M). 2-(2-(Benzo[d][1,3]dioxol-5-yl)-4-oxo-1,2-dihydroquinazolin-3(4H)-yl)acetohydrazide 15 showed selective MAO-A inhibition activity (SI=39524) superior to that of the standard clorgyline (SI=33793). The acute toxicity of the synthesized compounds was determined. In addition, computer-assisted simulated docking experiments were performed to rationalize the biological activity.

  4. Low expression of the antibacterial factor L-amino acid oxidase in bovine mammary gland.

    PubMed

    Nagaoka, Kentaro; Zhang, Haolin; Arakuni, Masahiro; Taya, Kazuyoshi; Watanabe, Gen

    2014-12-01

    In the mouse, L-amino acid oxidase (LAO) produces hydrogen peroxide by utilizing free amino acids and is a proven antibacterial factor in mammary glands. Mastitis, a bacterial infection of the mammary gland, is the most frequent disease in dairy cattle. Here, we investigate whether LAO is expressed in the mammary gland of dairy cattle and is antibacterial. In dairy cattle, the expression level of LAO mRNA in the mammary gland was considerably lower than that in mice, and LAO activity was not observed in cattle milk that produced hydrogen peroxide. The expression of LAO mRNA was also low in Japanese Black cattle, the same as in Holstein cattle. A higher LAO mRNA expression was observed in the mastitis glands than in the lactating glands. Furthermore, spleen and lymph nodes expressed high levels of LAO mRNA in dairy cattle. We conclude that mammary glands in dairy cattle have lower ability to express the LAO gene compared to that in mice, which may result in a high incidence of mastitis.

  5. Bio-inspired amino acid oxidation by a non-heme iron catalyst modeling the action of 1-aminocyclopropane-1-carboxylic acid oxidase.

    PubMed

    Baráth, Gábor; Kaizer, József; Pap, József Sándor; Speier, Gábor; El Bakkali-Taheri, Nadia; Simaan, A Jalila

    2010-10-21

    In this communication we describe the first example of a biomimetic mononuclear iron complex, [Fe(III)(Salen)Cl] (Salen = N,N'-bis(salicylidene)-ethylenediaminato), that highly selectively and efficiently catalyzes the oxidation of 1-aminocyclopropane-1-carboxylic acid (ACCH), α-aminoisobutyric acid (AIBH), and alanine (ALAH) to ethylene or the corresponding carbonyl compounds, mimicking the action of the non-heme iron enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO).

  6. Synthesis and bioevaluation of 2-phenyl-4-methyl-1,3-selenazole-5-carboxylic acids as potent xanthine oxidase inhibitors.

    PubMed

    Guan, Qi; Cheng, Zengjin; Ma, Xiaoxue; Wang, Lijie; Feng, Dongjie; Cui, Yuanhang; Bao, Kai; Wu, Lan; Zhang, Weige

    2014-10-06

    A series of 2-phenyl-4-methyl-1,3-selenazole-5-carboxylic acid derivatives (8a-f, 9a-m) were synthesized and evaluated for inhibitory activity against xanthine oxidase in vitro. Structure-activity relationship analyses have also been presented. Most of the target compounds exhibited potency levels in the nanomolar range. Compound 9e emerged as the most potent xanthine oxidase inhibitor (IC50 = 5.5 nM) in comparison to febuxostat (IC50 = 18.6 nM). Steady-state kinetics measurements with the bovine milk enzyme indicated a mixed type inhibition with Ki and Ki' values of 0.9 and 2.3 nM, respectively. A molecular modeling study on compounds 9e was performed to gain an insight into its binding mode with xanthine oxidase, and to provide the basis for further structure-guided design of new non-purine xanthine oxidase inhibitors related with 2-phenyl-4-methyl-1,3-selenazole-5-carboxylic acid scaffold.

  7. Cyclic voltammetry at TCNQ and TTF-TCNQ modified platinum electrodes: A study of the glucose oxidase/glucose and galactose oxidase/galactose systems

    SciTech Connect

    Hale, P.D.; Skotheim, T.A.

    1988-01-01

    Recent work has shown that the synthetic metal TTF-TCNQ can be used as an electrode material for the oxidation of enzymes containing the prosthetic group flavin adenine dinucleotide (FAD). This direct electron transfer (direct in the sense that oxygen is not a mediator) between reduced enzyme and electrode, a process which does not occur to any measurable extent at a typical metal electrode, is not very well understood. In the present work, electron transfer between reduced glucose oxidase and TTF-TCNQ is investigated using cyclic voltammetry, and it is also shown that TCNQ itself can mediate this electron transfer between the enzyme and a platinum electrode. In addition to the glucose oxidase studies, cyclic voltammetric experiments have been performed on the galactose oxidase system, which contains a copper redox center rather than FAD. The results of these experiments demonstrate that the catalytic ability of TTF-TCNQ in enzyme-based electrochemical sensors is quite general. 15 refs., 4 figs.

  8. A rational protocol for the successful crystallization of l-amino-acid oxidase from Bothrops atrox

    PubMed Central

    Alves, Raquel Melo; Feliciano, Patricia Rosa; Sampaio, Suely Vilela; Nonato, Maria Cristina

    2011-01-01

    Despite the valuable contributions of robotics and high-throughput approaches to protein crystallization, the role of an experienced crystallographer in the evaluation and rationalization of a crystallization process is still crucial to obtaining crystals suitable for X-ray diffraction measurements. In this work, the difficult task of crystallizing the flavoenzyme l-amino-acid oxidase purified from Bothrops atrox snake venom was overcome by the development of a protocol that first required the identification of a non-amorphous precipitate as a promising crystallization condition followed by the implementation of a methodology that combined crystallization in the presence of oil and seeding techniques. Crystals were obtained and a complete data set was collected to 2.3 Å resolution. The crystals belonged to space group P21, with unit-cell parameters a = 73.64, b = 123.92, c = 105.08 Å, β = 96.03°. There were four protein subunits in the asymmetric unit, which gave a Matthews coefficient V M of 2.12 Å3 Da−1, corresponding to 42% solvent content. The structure has been solved by molecular-replacement techniques. PMID:21505245

  9. Gene expression and distribution of antibacterial L-amino acid oxidase in the rockfish Sebastes schlegeli.

    PubMed

    Kitani, Yoichiro; Mori, Tsukasa; Nagai, Hiroshi; Toyooka, Keiko; Ishizaki, Shoichiro; Shimakura, Kuniyoshi; Shiomi, Kazuo; Nagashima, Yuji

    2007-12-01

    Antibacterial factors in the epidermal mucus of fish have a potential importance in the first line of the host defense response to bacterial pathogens. We previously isolated a novel antibacterial protein termed SSAP (Sebastes schlegeli antibacterial protein) from the skin mucus of the rockfish S. schlegeli and identified it as a new member of the L-amino acid oxidase (LAO) family. In the present study, the localization of SSAP in S. schlegeli was investigated by reverse transcription (RT)-PCR, quantitative real time RT-PCR, Western blotting and measurements of LAO and antibacterial activities. SSAP mRNA was expressed dominantly in skin and gill and weakly in ovary or kidney as shown by RT-PCR and real time RT-PCR. The quantity of SSAP mRNA in skin varied among the individuals, ranging from 1.1 to 13.9 ng microg(-1) total RNA, although no relationship was found between the size of fish and gene expression. SSAP was exclusively detected in skin and gill by Western blotting using a specific anti-SSAP antiserum. In addition, the extracts of both tissues apparently showed LAO activity and antibacterial activity against Photobacterium damselae subsp. piscicida. This study demonstrates that SSAP is predominantly synthesized in skin and gill and probably functions as an antibacterial LAO in both tissues.

  10. Lysyl oxidase-like 4 involvement in retinoic acid epithelial wound healing

    PubMed Central

    Comptour, Aurélie; Rouzaire, Marion; Belville, Corinne; Bonnin, Nicolas; Daniel, Estelle; Chiambaretta, Frédéric; Blanchon, Loïc; Sapin, Vincent

    2016-01-01

    Vitamin A and its active forms (retinoic acids/RAs) are known to have pro-healing properties, but their mechanisms of action are still poorly understood. This work aimed to identify the cellular and molecular processes by which atRA (all-trans RA) improves wound healing, using an in vivo model of mouse corneal alkali burns and an in vitro cellular human corneal epithelial injury model. Regulation by atRA has been studied on most of the cellular events that occur in wound healing. We investigated the direct influence of atRA on a specific target gene known to be involved in the extracellular matrix (ECM) dynamics, one of the pathways contributing to epithelial repair. Our results demonstrate that atRA promotes corneal epithelial wound healing by acting preferentially on migration. The induction of lysyl oxidase-like 4 (LOXL4) expression by atRA in the corneal epithelium environment was established as essential in the mechanism of atRA-dependent wound healing. Our study describes for the first time a direct link between a retinoic-induced gene and protein, LOXL4, and its general clinical pro-healing properties in ECM dynamics. PMID:27597564

  11. Manageable cytotoxicity of nanocapsules immobilizing D-amino acid oxidase via exogenous administration of nontoxic prodrug

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Zhu, Yingchun; Fu, Jingke

    2014-02-01

    D-Amino acid oxidase (DAO), which could catalyze generation of hydrogen peroxide with strong oxidbility and cytotoxicity, has become of interest as a biocatalyst for therapeutic treatments. Herein we report that amino-functional hollow mesoporous silica with large pore size (10.27 nm) and positively charged surface effectively immobilize DAO with negative charge. The adsorption, activity and stability of DAO are demonstrated to depend mainly on the amino-functionalization of surface. Significant cancer cell killing effect is observed when the cells are treated by the nanocapsules entrapping DAO together with D-alanine, showing distinct dose-dependency on concentration of the nanocapsules entrapping DAO or D-alanine. Nevertheless, the toxicity is completely neutralized by the addition of catalase, and anti-tumor effect is not observed when either the nanocapsules entrapping DAO or D-alanine is applied alone. The results indicate that cytotoxicity of the nanocapsules entrapping DAO could be managed by exogenous administration of nontoxic prodrug to tumor tissue, due to the stereoselectivity of DAO and the scarcity of its substrates in mammalian organisms. Thus, the method might be exploited as a potential treatment for cancer therapy.

  12. Synthesis and characterization of microparticles based on poly-methacrylic acid with glucose oxidase for biosensor applications.

    PubMed

    Hervás Pérez, J P; López-Ruiz, B; López-Cabarcos, E

    2016-01-01

    In the line of the applicability of biocompatible monomers pH and temperature dependent, we assayed poly-methacrylic acid (p-MAA) microparticles as immobilization system in the design of enzymatic biosensors. Glucose oxidase was used as enzyme model for the study of microparticles as immobilization matrices and as biological material in the performance of glucose biosensors. The enzyme immobilization method was optimized by investigating the influence of monomer concentration and cross-linker content (N',N'-methylenebisacrylamide), used in the preparation of the microparticles in the response of the biosensors. The kinetics of the polymerization and the effects of the temperature were studied, also the conversion of the polymerization was determinates by a weight method. The structure of the obtained p-MAA microparticles were studied through scanning electron microscopy (SEM) and differential scanning microscopy (DSC). The particle size measurements were performed with a Galai-Cis 1 particle analyzer system. Furthermore, the influence of the swelling behavior of hydrogel matrix as a function of pH and temperature were studied. Analytical properties such as sensitivity, linear range, response time and detection limit were studied for the glucose biosensors. The sensitivity for glucose detection obtained with poly-methacrylic acid (p-MAA) microparticles was 11.98mAM(-1)cm(-2) and 10μM of detection limit. A Nafion® layer was used to eliminate common interferents of the human serum such as uric and ascorbic acids. The biosensors were used to determine glucose in human serum samples with satisfactory results. When stored in a frozen phosphate buffer solution (pH 6.0) at -4°C, the useful lifetime of all biosensors was at least 550 days.

  13. Interplay between microbial d-amino acids and host d-amino acid oxidase modifies murine mucosal defence and gut microbiota.

    PubMed

    Sasabe, Jumpei; Miyoshi, Yurika; Rakoff-Nahoum, Seth; Zhang, Ting; Mita, Masashi; Davis, Brigid M; Hamase, Kenji; Waldor, Matthew K

    2016-07-25

    L-Amino acids are the building blocks for proteins synthesized in ribosomes in all kingdoms of life, but d-amino acids (d-aa) have important non-ribosome-based functions(1). Mammals synthesize d-Ser and d-Asp, primarily in the central nervous system, where d-Ser is critical for neurotransmission(2). Bacteria synthesize a largely distinct set of d-aa, which become integral components of the cell wall and are also released as free d-aa(3,4). However, the impact of free microbial d-aa on host physiology at the host-microbial interface has not been explored. Here, we show that the mouse intestine is rich in free d-aa that are derived from the microbiota. Furthermore, the microbiota induces production of d-amino acid oxidase (DAO) by intestinal epithelial cells, including goblet cells, which secrete the enzyme into the lumen. Oxidative deamination of intestinal d-aa by DAO, which yields the antimicrobial product H2O2, protects the mucosal surface in the small intestine from the cholera pathogen. DAO also modifies the composition of the microbiota and is associated with microbial induction of intestinal sIgA. Collectively, these results identify d-aa and DAO as previously unrecognized mediators of microbe-host interplay and homeostasis on the epithelial surface of the small intestine.

  14. Characterization and cytotoxicity of L-amino acid oxidase from the venom of king cobra (Ophiophagus hannah).

    PubMed

    Ahn, M Y; Lee, B M; Kim, Y S

    1997-06-01

    The aim of this project was to determine the cytotoxic components from the venom of king cobra, Ophiophagus hannah. Venom was purified by a combination of gel-filtration, ion-exchange and reversed-phase chromatographic steps. The biochemical properties of the cytotoxic component were consistent with those of L-amino acid oxidase. The molecular weight of the enzyme was estimated to be 150,000 by gel filtration and 70,000 under the denaturing conditions of SDS-PAGE, indicating a dimer. It has an isoelectric point of 4.5 and is a glycoprotein. The N-terminal sequence of L-amino acid oxidase from the king cobra venom was determined to be SVINLEESFQEPEYE. The cytotoxicity of L-amino acid oxidase was observed in stomach cancer, murine melanoma, fibrosarcoma, colorectal cancer and Chinese hamster ovary cell lines. Cytotoxicity resulted in the loss of ability in attachment and inhibition of cell proliferation. The cytotoxic protein decreased the level of cell proliferation by 74% according to [3H]thymidine uptake assay. The mechanism of enzyme action may be related to the inhibition of thymidine incorporation and an interaction with DNA.

  15. Cloning and characterization of the gene for L-amino acid oxidase in hybrid tilapia.

    PubMed

    Shen, Yubang; Fu, Gui Hong; Liu, Feng; Yue, Gen Hua

    2015-12-01

    Tilapia is the common name for a group of cichlid fishes. Identification of DNA markers significantly associated with important traits in candidate genes may speed up genetic improvement. L-Amino acid oxidase (LAO) plays a crucial role in the innate immune defences of animals. Previously, whether LAO variants were associated with economic traits had not been studied in fish. We characterized the cDNA sequence of the LAO gene of hybrid tilapia (Oreochromis spp.). Its ORF was 1536 bp, encoding a flavoenzyme of 511 amino acids. This gene consisted of seven exons and six introns. Its expression was detected in the intestine, blood, kidney, skin, liver. It was highly expressed in the intestine. After a challenge with a bacterial pathogen, Streptococcus agalactiae, its expression was up-regulated significantly in the liver, intestine and spleen (P < 0.05). We identified one SNP in the genomic sequence of the gene and found that this SNP was associated significantly with body length (P < 0.05), but not with resistance to S. agalactiae. The results of this study suggest that the LAO gene plays an important role in innate immune responses to the bacterial pathogen in tilapia. The investigation of relationship between polymorphism of LAO gene and disease resistance and growth in tilapia showed that one SNP was associated significantly with body length. Further experiments on whether SNPs in the LAO gene are associated with growth in tilapia and other populations could be useful in understanding more functions of the LAO gene.

  16. The antiviral drug acyclovir is a slow-binding inhibitor of (D)-amino acid oxidase.

    PubMed

    Katane, Masumi; Matsuda, Satsuki; Saitoh, Yasuaki; Sekine, Masae; Furuchi, Takemitsu; Koyama, Nobuhiro; Nakagome, Izumi; Tomoda, Hiroshi; Hirono, Shuichi; Homma, Hiroshi

    2013-08-20

    d-Amino acid oxidase (DAO) is a degradative enzyme that is stereospecific for d-amino acids, including d-serine and d-alanine, which are believed to be coagonists of the N-methyl-d-aspartate (NMDA) receptor. To identify a new class of DAO inhibitor(s) that can be used to elucidate the molecular details of the active site environment of DAO, manifold biologically active compounds of microbial origin and pre-existing drugs were screened for their ability to inhibit DAO activity, and several compounds were identified as candidates. One of these compounds, acyclovir (ACV), a well-known antiviral drug used for the treatment of herpesvirus infections, was characterized and evaluated as a novel DAO inhibitor in vitro. Analysis showed that ACV acts on DAO as a reversible slow-binding inhibitor, and interestingly, the time required to achieve equilibrium between DAO, ACV, and the DAO/ACV complex was highly dependent on temperature. The binding mechanism of ACV to DAO was investigated in detail by several approaches, including kinetic analysis, structural modeling of DAO complexed with ACV, and site-specific mutagenesis of an active site residue postulated to be involved in the binding of ACV. The results confirm that ACV is a novel, active site-directed inhibitor of DAO that can be a valuable tool for investigating the structure-function relationships of DAO, including the molecular details of the active site environment of DAO. In particular, it appears that ACV can serve as an active site probe to study the structural basis of temperature-induced conformational changes of DAO.

  17. Involvement of NADPH oxidase in high-dose phenolic acid-induced pro-oxidant activity on rat mesenteric venules.

    PubMed

    Du, Wen-Yuan; Xiao, Ying; Yao, Jian-Jing; Hao, Zhe; Zhao, Yu-Bin

    2017-01-01

    In the present study, we investigated the potential role of phenolic acids in initiating oxidative damage to microvascular endothelial cells and the underlying mechanism mediating the pro-oxidant action. Male Wistar rats received high doses of phenolic acid [caffeic acid (CA), salvianolic acid B (SAB), chlorogenic acid (ChA) or ferulic acid (FA)]. The creation of reactive oxygen species in mesenteric microcirculation endothelial cells and adherent leukocytes along with venules were assessed using intravital microscopy. The expression levels of NADPH oxidase subunits (Nox4 and p22(phox)) in terminal ileum tissues were determined by western blot analysis. Intravenous injection of high-dose ChA or CA (7 mg/kg) markedly increased the peroxide production in the venular walls and upregulated the protein expression levels of Nox4 and p22(phox) in the ileum tissues, while the same dose of CA and SAB made no difference within the observation period. No changes were observed in the number of leukocytes adhering to the venular walls. High-dose ChA and FA led to an imbalance between the oxidant and antioxidant mechanism by boosting the expression levels of NADPH oxidase. Thus, we clarified the rationale behind the adverse effects of a herbal injection containing high levels of phenolic acid compounds.

  18. Purification and characterization of L-amino acid oxidase from king cobra (Ophiophagus hannah) venom and its effects on human platelet aggregation.

    PubMed

    Li, Z Y; Yu, T F; Lian, E C

    1994-11-01

    Venoms of several snake species contain large amounts of L-amino acid oxidase but its effects on human plasma coagulation and platelet aggregation have not been explored. We have purified L-amino acid oxidase from king cobra venom through CM-Sephadex C-25, Sephadex G-100 and DEAE Sephadex A-50 chromatographies. The purified enzyme has a mol. wt of 135,000 as determined by gel filtration and 65,000 by SDS-PAGE under non-reducing and reducing conditions. Incubation of plasma with L-amino acid oxidase at 200 micrograms/ml did not affect prothrombin time, activated partial thromboplastin time, or thrombin time. Upon addition of L-amino acid oxidase, platelets in platelet-rich plasma were aggregated. The enzyme-induced aggregation was abolished by catalase. The aggregation was also inhibited by indomethacin, aspirin, ethylenediaminetetraacetate, sodium nitroprusside, prostaglandin E1, mepacrine and verapamil, but not by heparin, hirudin, creatine phosphate/creatine phosphokinase or antimycin/2-deoxy-D-glucose. These results suggest that L-amino acid oxidase induces human platelet aggregation through the formation of H2O2, and subsequent thromboxane A2 synthesis requiring Ca2+ but independent of ADP release. The platelet aggregation caused by L-amino acid oxidase is likely to contribute to toxicity inflicted by cobra venom.

  19. Thermal stability of ascorbic acid and ascorbic acid oxidase in african cowpea leaves ( Vigna unguiculata ) of different maturities.

    PubMed

    Wawire, Michael; Oey, Indrawati; Mathooko, Francis; Njoroge, Charles; Shitanda, Douglas; Hendrickx, Marc

    2011-03-09

    Cowpea, an African leafy vegetable ( Vigna unguiculata ), contains a high level of vitamin C. The leaves harvested at 4-9 weeks are highly prone to vitamin C losses during handling and processing. Therefore, the purpose of this research was to study the effect of thermal treatment on the stability of ascorbic acid oxidase (AAO), total vitamin C content (l-ascorbic acid, l-AA), and dehydroascorbic acid (DHAA) and l-AA/DHAA ratio in cowpea leaves harvested at different maturities (4, 6, and 8 weeks old). The results showed that AAO activity, total vitamin C content, and l-AA/DHAA ratio in cowpea leaves increased with increasing maturity (up to 8 weeks). Eight-week-old leaves were the best source of total vitamin C and showed a high ratio of l-AA/DHAA (4:1). Thermal inactivation of AAO followed first-order reaction kinetics. Heating at temperatures above 90 °C for short times resulted in a complete AAO inactivation, resulting in a protective effect of l-AA toward enzyme-catalyzed oxidation. Total vitamin C in young leaves (harvested at 4 and 6 weeks) was predominantly in the form of DHAA, and therefore temperature treatment at 30-90 °C for 10 min decreased the total vitamin C content, whereas total vitamin C in 8-week-old cowpea leaves was more than 80% in the form of l-AA, so that a high retention of the total vitamin C can be obtained even after heating and/or reheating (30-90 °C for 10 min) before consumption. The results indicated that the stability of total vitamin C in situ was strongly dependent on the plant maturity stage and the processing conditions applied.

  20. Antiproliferative activity of king cobra (Ophiophagus hannah) venom L-amino acid oxidase.

    PubMed

    Li Lee, Mui; Chung, Ivy; Yee Fung, Shin; Kanthimathi, M S; Hong Tan, Nget

    2014-04-01

    King cobra (Ophiophagus hannah) venom L-amino acid oxidase (LAAO), a heat-stable enzyme, is an extremely potent antiproliferative agent against cancer cells when compared with LAAO isolated from other snake venoms. King cobra venom LAAO was shown to exhibit very strong antiproliferative activities against MCF-7 (human breast adenocarcinoma) and A549 (human lung adenocarcinoma) cells, with an IC50 value of 0.04±0.00 and 0.05±0.00 μg/mL, respectively, after 72-hr treatment. In comparison, its cytotoxicity was about 3-4 times lower when tested against human non-tumourigenic breast (184B5) and lung (NL 20) cells, suggesting selective antitumour activity. Furthermore, its potency in MCF-7 and A549 cell lines was greater than the effects of doxorubicin, a clinically established cancer chemotherapeutic agent, which showed an IC50 value of 0.18±0.03 and 0.63±0.21 μg/mL, respectively, against the two cell lines. The selective cytotoxic action of the LAAO was confirmed by phycoerythrin (PE) annexin V/7-amino-actinomycin (AAD) apoptotic assay, in which a significant increase in apoptotic cells was observed in LAAO-treated tumour cells than in their non-tumourigenic counterparts. The ability of LAAO to induce apoptosis in tumour cells was further demonstrated using caspase-3/7 and DNA fragmentation assays. We also determined that this enzyme may target oxidative stress in its killing of tumour cells, as its cytotoxicity was significantly reduced in the presence of catalase (a H2O2 scavenger). In view of its heat stability and selective and potent cytotoxic action on cancer cells, king cobra venom LAAO can be potentially developed for treating solid tumours.

  1. Modulation of NMDA receptor function by inhibition of D-amino acid oxidase in rodent brain.

    PubMed

    Strick, Christine A; Li, Cheryl; Scott, Liam; Harvey, Brian; Hajós, Mihály; Steyn, Stefanus J; Piotrowski, Mary A; James, Larry C; Downs, James T; Rago, Brian; Becker, Stacey L; El-Kattan, Ayman; Xu, Youfen; Ganong, Alan H; Tingley, F David; Ramirez, Andres D; Seymour, Patricia A; Guanowsky, Victor; Majchrzak, Mark J; Fox, Carol B; Schmidt, Christopher J; Duplantier, Allen J

    2011-01-01

    Observations that N-Methyl-D-Aspartate (NMDA) antagonists produce symptoms in humans that are similar to those seen in schizophrenia have led to the current hypothesis that schizophrenia might result from NMDA receptor hypofunction. Inhibition of D-amino acid oxidase (DAAO), the enzyme responsible for degradation of D-serine, should lead to increased levels of this co-agonist at the NMDA receptor, and thereby provide a therapeutic approach to schizophrenia. We have profiled some of the preclinical biochemical, electrophysiological, and behavioral consequences of administering potent and selective inhibitors of DAAO to rodents to begin to test this hypothesis. Inhibition of DAAO activity resulted in a significant dose and time dependent increase in D-serine only in the cerebellum, although a time delay was observed between peak plasma or brain drug concentration and cerebellum D-serine response. Pharmacokinetic/pharmacodynamic (PK/PD) modeling employing a mechanism-based indirect response model was used to characterize the correlation between free brain drug concentration and D-serine accumulation. DAAO inhibitors had little or no activity in rodent models considered predictive for antipsychotic activity. The inhibitors did, however, affect cortical activity in the Mescaline-Induced Scratching model, produced a modest but significant increase in NMDA receptor-mediated synaptic currents in primary neuronal cultures from rat hippocampus, and resulted in a significant increase in evoked hippocampal theta rhythm, an in vivo electrophysiological model of hippocampal activity. These findings demonstrate that although DAAO inhibition did not cause a measurable increase in D-serine in forebrain, it did affect hippocampal and cortical activity, possibly through augmentation of NMDA receptor-mediated currents.

  2. Engineering the properties of D-amino acid oxidases by a rational and a directed evolution approach.

    PubMed

    Pollegioni, Loredano; Sacchi, Silvia; Caldinelli, Laura; Boselli, Angelo; Pilone, Mirella S; Piubelli, Luciano; Molla, Gianluca

    2007-12-01

    D-amino acid oxidase (DAAO) is a FAD-containing flavoprotein that dehydrogenates the D-isomer of amino acids to the corresponding imino acids, coupled with the reduction of FAD. The cofactor then reoxidizes on molecular oxygen and the imino acid hydrolyzes spontaneously to the alpha-keto acid and ammonia. In vitro DAAO displays broad substrate specificity, acting on several neutral and basic D-amino acids: the most efficient substrates are amino acids with hydrophobic side chains. D-aspartic acid and D-glutamic acid are not substrates for DAAO. Through the years, it has been the subject of a number of structural, functional and kinetic investigations. The most recent advances are represented by site-directed mutagenesis studies and resolution of the 3D-structure of the enzymes from pig, human and yeast. The two approaches have given us a deeper understanding of the structure-function relationships and promoted a number of investigations aimed at the modulating the protein properties. By a rational and/or a directed evolution approach, DAAO variants with altered substrate specificity (e.g., active on acidic or on all D-amino acids), increased stability (e.g., stable up to 60 degrees C), modified interaction with the flavin cofactor, and altered oligomeric state were produced. The aim of this paper is to provide an overview of the most recent research on the engineering of DAAOs to illustrate their new intriguing properties, which also have enabled us to pursue new biotechnological applications.

  3. Inhibition of NADPH oxidase activation by synthetic peptides mapping within the carboxyl-terminal domain of small GTP-binding proteins. Lack of amino acid sequence specificity and importance of polybasic motif.

    PubMed

    Joseph, G; Gorzalczany, Y; Koshkin, V; Pick, E

    1994-11-18

    The small GTP-binding protein (G protein) Rac1 is an obligatory participant in the assembly of the superoxide (O2-.)-generating NADPH oxidase complex of macrophages. We investigated the effect of synthetic peptides, mapping within the near carboxyl-terminal domains of Rac1 and of related G proteins, on the activity of NADPH oxidase in a cell-free system consisting of solubilized guinea pig macrophage membrane, a cytosolic fraction enriched in p47phox and p67phox (or total cytosol), highly purified Rac1-GDP dissociation inhibitor for Rho (Rho GDI) complex, and the activating amphiphile, lithium dodecyl sulfate. Peptides Rac1-(178-188) and Rac1-(178-191), but not Rac2-(178-188), inhibited NADPH oxidase activity in a Rac1-dependent system when added prior to or simultaneously with the initiation of activation. However, undecapeptides corresponding to the near carboxyl-terminal domains of RhoA and RhoC and, most notably, a peptide containing the same amino acids as Rac1-(178-188), but in reversed orientation, were also inhibitory. Surprisingly, O2-. production in a Rac2-dependent cell-free system was inhibited by Rac1-(178-188) but not by Rac2-(178-188). Finally, basic polyamino acids containing lysine, histidine, or arginine, also inhibited NADPH oxidase activation. We conclude that inhibition of NADPH oxidase activation by synthetic peptides mapping within the carboxyl-terminal domain of certain small G proteins is not amino acid sequence-specific but related to the presence of a polybasic motif. It has been proposed that such a motif serves as a plasma membrane targeting signal for a number of small G proteins (Hancock, J.F., Paterson, H., and Marshall, C.J. (1990) Cell 63, 133-139).

  4. Induction of apoptosis in yeast by L-amino acid oxidase from the Malayan pit viper Calloselasma rhodostoma.

    PubMed

    Ande, Sudharsana Rao; Fussi, Heike; Knauer, Heide; Murkovic, Michael; Ghisla, Sandro; Fröhlich, Kai-Uwe; Macheroux, Peter

    2008-05-01

    Here we report for the first time that L-amino acid oxidase (LAAO), a major component of snake venom, induces apoptosis in yeast. The causative agent for induction of apoptosis has been shown to be hydrogen peroxide, produced by the enzymatic activity of LAAO. However, the addition of catalase, a specific hydrogen peroxide scavenger, does not prevent cell demise completely. Intriguingly, depletion of leucine from the medium by LAAO and the interaction of LAAO with yeast cells are shown to be the major factors responsible for cell demise in the presence of catalase.

  5. Expression of Mitochondrial Cytochrome C Oxidase Chaperone Gene (COX20) Improves Tolerance to Weak Acid and Oxidative Stress during Yeast Fermentation

    PubMed Central

    Kumar, Vinod; Hart, Andrew J.; Keerthiraju, Ethiraju R.; Waldron, Paul R.; Tucker, Gregory A.; Greetham, Darren

    2015-01-01

    Introduction Saccharomyces cerevisiae is the micro-organism of choice for the conversion of fermentable sugars released by the pre-treatment of lignocellulosic material into bioethanol. Pre-treatment of lignocellulosic material releases acetic acid and previous work identified a cytochrome oxidase chaperone gene (COX20) which was significantly up-regulated in yeast cells in the presence of acetic acid. Results A Δcox20 strain was sensitive to the presence of acetic acid compared with the background strain. Overexpressing COX20 using a tetracycline-regulatable expression vector system in a Δcox20 strain, resulted in tolerance to the presence of acetic acid and tolerance could be ablated with addition of tetracycline. Assays also revealed that overexpression improved tolerance to the presence of hydrogen peroxide-induced oxidative stress. Conclusion This is a study which has utilised tetracycline-regulated protein expression in a fermentation system, which was characterised by improved (or enhanced) tolerance to acetic acid and oxidative stress. PMID:26427054

  6. A novel L-amino acid oxidase from Trichoderma harzianum ETS 323 associated with antagonism of Rhizoctonia solani.

    PubMed

    Yang, Chia-Ann; Cheng, Chi-Hua; Lo, Chaur-Tsuen; Liu, Shu-Ying; Lee, Jeng-Woei; Peng, Kou-Cheng

    2011-05-11

    Trichoderma spp. are used as biocontrol agents against phytopathogens such as Rhizoctonia solani, but their biocontrol mechanisms are poorly understood. A novel L-amino oxidase (Th-LAAO) was identified from the extracellular proteins of Trichoderma harzianum ETS 323. Here, we show a FAD-binding glycoprotein with the best substrate specificity constant for L-phenylalanine. Although the amino acid sequence of Th-LAAO revealed limited homology (16-24%) to other LAAO members, a highly conserved FAD-binding motif was identified in the N-terminus. Th-LAAO was shown to be a homodimeric protein, but the monomeric form was predominant when grown in the presence of deactivated Rhizoctonia solani. Furthermore, in vitro assays demonstrated that Th-LAAO had an antagonistic effect against Rhizoctonia solani and a stimulatory one on hyphal density and sporulation in T. harzianum ETS 323. These findings further our understanding of T. harzianum as a biocontrol agent and provide insight into the biological function of l-amino acid oxidase.

  7. Distribution in Different Organisms of Amino Acid Oxidases with FAD or a Quinone As Cofactor and Their Role as Antimicrobial Proteins in Marine Bacteria

    PubMed Central

    Campillo-Brocal, Jonatan C.; Lucas-Elío, Patricia; Sanchez-Amat, Antonio

    2015-01-01

    Amino acid oxidases (AAOs) catalyze the oxidative deamination of amino acids releasing ammonium and hydrogen peroxide. Several kinds of these enzymes have been reported. Depending on the amino acid isomer used as a substrate, it is possible to differentiate between l-amino acid oxidases and d-amino acid oxidases. Both use FAD as cofactor and oxidize the amino acid in the alpha position releasing the corresponding keto acid. Recently, a novel class of AAOs has been described that does not contain FAD as cofactor, but a quinone generated by post-translational modification of residues in the same protein. These proteins are named as LodA-like proteins, after the first member of this group described, LodA, a lysine epsilon oxidase synthesized by the marine bacterium Marinomonas mediterranea. In this review, a phylogenetic analysis of all the enzymes described with AAO activity has been performed. It is shown that it is possible to recognize different groups of these enzymes and those containing the quinone cofactor are clearly differentiated. In marine bacteria, particularly in the genus Pseudoalteromonas, most of the proteins described as antimicrobial because of their capacity to generate hydrogen peroxide belong to the group of LodA-like proteins. PMID:26694422

  8. Immunocytochemical Localization of Monoamine Oxidase Type B in Rat's Peripheral Nervous System.

    PubMed

    Chen, Qiang; Xu, Yang; Zhang, Hui; Tan, Xiao; Liu, Shu Hui; Yan, Fen

    2015-11-01

    Immunohistochemistry is used to investigate subcellular localization of monoamine oxidase type B (MAOB) in the axon of the rat's peripheral nervous system. Through light and electron microscopy, the presence of MAOB-immunoreactive structures in the propria lamina of tongue and on the outer membranes of mitochondria in both myelinated and unmyelinated axons can be detected. As a result, MAOB may potentially play a crucial role in the axons of the rat's peripheral nervous system and may be closely associated with both axonal transport and nerve conduction.

  9. Modulating NMDA Receptor Function with D-Amino Acid Oxidase Inhibitors: Understanding Functional Activity in PCP-Treated Mouse Model

    PubMed Central

    Sershen, Henry; Hashim, Audrey; Dunlop, David S.; Suckow, Raymond F.; Cooper, Tom B.; Javitt, Daniel C.

    2016-01-01

    Deficits in N-methyl-D-aspartate receptor (NMDAR) function are increasingly linked to persistent negative symptoms and cognitive deficits in schizophrenia. Accordingly, clinical studies have been targeting the modulatory site of the NMDA receptor, based on the decreased function of NMDA receptor, to see whether increasing NMDA function can potentially help treat the negative and cognitive deficits seen in the disease. Glycine and D-serine are endogenous ligands to the NMDA modulatory site, but since high doses are needed to affect brain levels, related compounds are being developed, for example glycine transport (GlyT) inhibitors to potentially elevate brain glycine or targeting enzymes, such as D-amino acid oxidase (DAAO) to slow the breakdown and increase the brain level of D-serine. In the present study we further evaluated the effect of DAAO inhibitors 5-chloro-benzo[d]isoxazol-3-ol (CBIO) and sodium benzoate (NaB) in a phencyclidine (PCP) rodent mouse model to see if the inhibitors affect PCP-induced locomotor activity, alter brain D-serine level, and thereby potentially enhance D-serine responses. D-Serine dose-dependently reduced the PCP-induced locomotor activity at doses above 1000 mg/kg. Acute CBIO (30 mg/kg) did not affect PCP-induced locomotor activity, but appeared to reduce locomotor activity when given with D-serine (600 mg/kg); a dose that by itself did not have an effect. However, the effect was also present when the vehicle (Trappsol®) was tested with D-serine, suggesting that the reduction in locomotor activity was not related to DAAO inhibition, but possibly reflected enhanced bioavailability of D-serine across the blood brain barrier related to the vehicle. With this acute dose of CBIO, D-serine level in brain and plasma were not increased. Another weaker DAAO inhibitor sodium benzoate (NaB) (400 mg/kg), and NaB plus D-serine also significantly reduced PCP-induced locomotor activity, but without affecting plasma or brain D-serine level

  10. Surface modification of polyvinyl alcohol/malonic acid nanofibers by gaseous dielectric barrier discharge plasma for glucose oxidase immobilization

    NASA Astrophysics Data System (ADS)

    Afshari, Esmail; Mazinani, Saeedeh; Ranaei-Siadat, Seyed-Omid; Ghomi, Hamid

    2016-11-01

    Polymeric nanofiber prepares a suitable situation for enzyme immobilization for variety of applications. In this research, we have fabricated polyvinyl alcohol (PVA)/malonic acid nanofibers using electrospinning. After fabrication of nanofibers, the effect of air, nitrogen, CO2, and argon DBD (dielectric barrier discharge) plasmas on PVA/malonic acid nanofibers were analysed. Among them, air plasma had the most significant effect on glucose oxidase (GOx) immobilization. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum analysis and X-ray photoelectron spectroscopy (XPS) results revealed that in case of air plasma modified nanofibers, the carboxyl groups on the surface are increased. The scanning electron microscopy (SEM) images showed that, after GOx immobilization, the modified nanofibers with plasma has retained its nanofiber structure. Finally, we analysed reusability and storage stability of GOx immobilized on plasma modified and unmodified nanofibers. The results were more satisfactory for modified nanofibers with respect to unmodified ones.

  11. Synthesis and evaluation of xanthine oxidase inhibitory and antioxidant activities of 2-arylbenzo[b]furan derivatives based on salvianolic acid C.

    PubMed

    Tang, Hong-Jin; Zhang, Xiao-Wei; Yang, Lin; Li, Wei; Li, Jia-Huang; Wang, Jin-Xin; Chen, Jun

    2016-11-29

    Xanthine oxidase (XO) is the key enzyme in humans which is related to a variety of diseases such as gout, hyperuricemia and cardiovascular diseases. In this work, a series of 2-arylbenzo[b]furan derivatives were synthesized based on salvianolic acid C, and they were evaluated for xanthine oxidase inhibitory and antioxidant activities. Compounds 5b, 6a, 6e and 6f showed potent xanthine oxidase inhibitory activities with IC50 values ranging from 3.99 to 6.36 μM, which were comparable with that of allopurinol. Lineweaver-Burk plots analysis revealed that the representative derivative 6e could bind to either xanthine oxidase or the xanthine oxidase-xanthine complex, which exhibited a mixed-type competitive mechanism. A DPPH radical scavenging assay showed most of the hydroxyl-functionalized 2-arylbenzo[b]furan derivatives possessed the potent antioxidant activity, which was further validated on LPS-stimulated RAW 264.7 macrophages model. The structure-activity relationships were preliminary analyzed and indicated that the structural skeleton of 2-arylbenzo[b]furan and phenolic hydroxyl groups played an important role in maintaining xanthine oxidase inhibitory effect and antioxidant property for the series of derivatives. Meanwhile, molecular docking studies were performed to further confirm the structure-activity relationships and investigate the proposed binding mechanisms of compounds 5d, 6d and 10d binding to the protein.

  12. Extraction of ascorbate oxidase from Cucurbita maxima by continuous process in perforated rotating disc contactor using aqueous two-phase systems.

    PubMed

    Porto, T S; Marques, P P; Porto, C S; Moreira, K A; Lima-Filho, J L; Converti, A; Pessoa, A; Porto, A L F

    2010-02-01

    The ascorbate oxidase is the enzyme used to determine the content of ascorbic acid in the pharmaceutical and food industries and clinics analyses. The techniques currently used for the purification of this enzyme raise its production cost. Thus, the development of alternative processes and with the potential to reduce costs is interesting. The application of aqueous two-phase system is proposed as an alternative to purification because it enables good separation of biomolecules. The objective of this study was to determine the conditions to continuously pre-purify the enzyme ascorbate oxidase by an aqueous two-phase system (PEG/citrate) using rotating column provided with perforated discs. Under the best conditions (20,000 g/mol PEG molar mass, 10% PEG concentration, and 25% citrate concentration), the system showed satisfactory results (partition coefficient, 3.35; separation efficiency, 54.98%; and purification factor, 1.46) and proved suitable for the pre-purification of ascorbate oxidase in continuous process.

  13. Functional identification of a rice ent-kaurene oxidase, OsKO2, using the Pichia pastoris expression system.

    PubMed

    Ko, Kwang-Wook; Lin, Fengqiu; Katsumata, Takumi; Sugai, Yoshinori; Miyazaki, Sho; Kawaide, Hiroshi; Okada, Kazunori; Nojiri, Hideaki; Yamane, Hisakazu

    2008-12-01

    Rice ent-kaurene oxidase 2 (OsKO2) perhaps functions in the early steps of gibberellin biosynthesis. We found that microsomes from the methylotropic yeast Pichia pastoris expressing both OsKO2 and a fungal cytochrome P450 monooxygenase (P450) reductase converted ent-kaurene to ent-kaurenoic acid. This is direct evidence that OsKO2 is involved in the sequential oxidation of ent-kaurene to ent-kaurenoic acid in gibberellin biosynthesis in rice.

  14. Construction of a D-amino acid oxidase reactor based on magnetic nanoparticles modified by a reactive polymer and its application in screening enzyme inhibitors.

    PubMed

    Mu, Xiaoyu; Qiao, Juan; Qi, Li; Liu, Ying; Ma, Huimin

    2014-08-13

    Developing facile and high-throughput methods for exploring pharmacological inhibitors of D-amino acid oxidase (DAAO) has triggered increasing interest. In this work, DAAO was immobilized on the magnetic nanoparticles, which were modified by a biocompatible reactive polymer, poly(glycidyl methacrylate) (PGMA) via an atom transfer radical polymerization technique. Interestingly, the enzyme immobilization process was greatly promoted with the assistance of a lithium perchlorate catalyst. Meanwhile, a new amino acid ionic liquid (AAIL) was successfully synthesized and employed as the efficient chiral ligand in a chiral ligand exchange capillary electrophoresis (CLE-CE) system for chiral separation of amino acids (AAs) and quantitation of methionine, which was selected as the substrate of DAAO. Then, the apparent Michaelis-Menten constants in the enzyme system were determined with the proposed CLE-CE method. The prepared DAAO-PGMA-Fe3O4 nanoparticles exhibited excellent reusability and good stability. Moreover, the enzyme reactor was successfully applied in screening DAAO inhibitors. These results demonstrated that the enzyme could be efficiently immobilized on the polymer-grafted magnetic nanoparticles and that the obtained enzyme reactor has great potential in screening enzyme inhibitors, further offering new insight into monitoring the relevant diseases.

  15. Bioseparation of Four Proteins from Euphorbia characias Latex: Amine Oxidase, Peroxidase, Nucleotide Pyrophosphatase/Phosphodiesterase, and Purple Acid Phosphatase

    PubMed Central

    Medda, Rosaria; Pintus, Francesca; Spanò, Delia; Floris, Giovanni

    2011-01-01

    This paper deals with the purification of four proteins from Euphorbia characias latex, a copper amine oxidase, a nucleotide pyrophosphatase/phosphodiesterase, a peroxidase, and a purple acid phosphatase. These proteins, very different in molecular weight, in primary structure, and in the catalyzed reaction, are purified using identical preliminary steps of purification and by chromatographic methods. In particular, the DEAE-cellulose chromatography is used as a useful purification step for all the four enzymes. The purification methods here reported allow to obtain a high purification of all the four proteins with a good yield. This paper will give some thorough suggestions for researchers busy in separation of macromolecules from different sources. PMID:22013530

  16. Salicylic acid inhibits enzymatic browning of fresh-cut Chinese chestnut (Castanea mollissima) by competitively inhibiting polyphenol oxidase.

    PubMed

    Zhou, Dan; Li, Lin; Wu, Yanwen; Fan, Junfeng; Ouyang, Jie

    2015-03-15

    The inhibitory effect and associated mechanisms of salicylic acid (SA) on the browning of fresh-cut Chinese chestnut were investigated. Shelled and sliced chestnuts were immersed in different concentrations of an SA solution, and the browning of the chestnut surface and interior were inhibited. The activities of polyphenol oxidase (PPO) and peroxidase (POD) extracted from chestnuts were measured in the presence and absence of SA. SA at concentrations higher than 0.3g/L delayed chestnut browning by significantly inhibiting the PPO activity (P<0.01), and the POD activity was not significantly affected (P>0.05). The binding and inhibition modes of SA with PPO and POD, determined by AUTODOCK 4.2 and Lineweaver-Burk plots, respectively, established SA as a competitive inhibitor of PPO.

  17. p38 MAPK is involved in human neutrophil chemotaxis induced by L-amino acid oxidase from Calloselasma rhodosthoma.

    PubMed

    Pontes, Adriana S; Setúbal, Sulamita da S; Nery, Neriane Monteiro; da Silva, Francisquinha Souza; da Silva, Silvana D; Fernandes, Carla F C; Stábeli, Rodrigo G; Soares, Andreimar M; Zuliani, Juliana P

    2016-09-01

    The action of LAAO, an L-amino acid oxidase isolated from Calloselasma rhodosthoma snake venom, on isolated human neutrophil function was investigated. Cr-LAAO showed no toxicity on neutrophils. Cr-LAAO in its native form induced the neutrophil chemotaxis, suggesting that its primary structure is essential for stimulation the cell. p38 MAPK and PI3K have a role as signaling pathways of CR-LAAO induced chemotaxis. This toxin also induced the production of hydrogen peroxide and stimulated phagocytosis in neutrophils. Furthermore, Cr-LAAO was able to stimulate neutrophils to release IL-6, IL-8, MPO, LTB4 and PGE2. Together, the data showed that the Cr-LAAO triggers relevant proinflammatory events.

  18. Interfacial electron transfer of glucose oxidase on poly(glutamic acid)-modified glassy carbon electrode and glucose sensing.

    PubMed

    Zhou, Xuechou; Tan, Bingcan; Zheng, Xinyu; Kong, Dexian; Li, Qinglu

    2015-11-15

    The interfacial electron transfer of glucose oxidase (GOx) on a poly(glutamic acid)-modified glassy carbon electrode (PGA/GCE) was investigated. The redox peaks measured for GOx and flavin adenine dinucleotide (FAD) are similar, and the anodic peak of GOx does not increase in the presence of glucose in a mediator-free solution. These indicate that the electroactivity of GOx is not the direct electron transfer (DET) between GOx and PGA/GCE and that the observed electroactivity of GOx is ascribed to free FAD that is released from GOx. However, efficient electron transfer occurred if an appropriate mediator was placed in solution, suggesting that GOx is active. The PGA/GCE-based biosensor showed wide linear response in the range of 0.5-5.5 mM with a low detection limit of 0.12 mM and high sensitivity and selectivity for measuring glucose.

  19. Triphenylmethane dyes, an alternative for mediated electronic transfer systems in glucose oxidase biofuel cells.

    PubMed

    La Rotta H, Camilo E; Ciniciato, Gustavo P M K; González, Ernesto R

    2011-05-06

    The bioelectrochemical behavior of three triphenylmethane (TPM) dyes commonly used as pH indicators, and their application in mediated electron transfer systems for glucose oxidase bioanodes in biofuel cells was investigated. Bromophenol Blue, Bromothymol Blue, Bromocresol Green were compared bioelectrochemically against two widely used mediators, benzoquinone and ferrocene carboxy aldehyde. Biochemical studies were performed in terms of enzymatic oxidation, enzyme affinity, catalytic efficiency and co-factor regeneration. The different features of the TPM dyes as mediators are determined by the characteristics in the oxidation/reduction processes studied electrochemically. The reversibility of the oxidation/reduction processes was also established through the dependence of the voltammetric peaks with the sweep rates. All three dyes showed good performances compared to the FA and BQ when evaluated in a half enzymatic fuel cell. Potentiodynamic and power response experiments showed maxima power densities of 32.8 μW cm(-2) for ferrocene carboxy aldehyde followed by similar values obtained for TPM dyes around 30 μW cm(-2) using glucose and mediator concentrations of 10 mmol L(-1) and 1.0 mmol L(-1), respectively. Since no mediator consumption was observed during the bioelectrochemical process, and also good redox re-cycled processes were achieved, the use of triphenylmethane dyes is considered to be promising compared to other mediated systems used with glucose oxidase bioanodes and/or biofuel cells.

  20. Properties of some reductase enzymes in the nitrifying bacteria and their relationship to the oxidase systems

    PubMed Central

    Wallace, W.; Nicholas, D. J. D.

    1968-01-01

    The reductase enzymes in Nitrosomonas and Nitrobacter were studied under anaerobic conditions when the oxidase enzymes were inactive. The most effective electron-donor systems for nitrate reductase in Nitrobacter were reduced benzyl viologen alone, phenazine methosulphate with either NADH or NADPH, and FMN or FAD with NADH. Nitrite and hydroxylamine reductases were found in both nitrifying bacteria, and optimum activity for each enzyme was obtained with NADH or NADPH with either FMN or FAD. The product of both these enzymes was identified as ammonia. In extracts of Nitrosomonas the ammonia was further utilized by an NADPH-specific glutamate dehydrogenase. 15N-labelled nitrite, hydroxylamine and ammonia were rapidly incorporated into cell protein by Nitrosomonas, and Nitrobacter in addition incorporated [15N]nitrate. Relatively gentle methods of cell disruption were compared with ultrasonic treatment, to enable a more exact study to be undertaken of the intracellular distribution of the oxidase and reductase enzymes. The functional relationship of these opposing enzyme systems in the nitrifying bacteria is considered. PMID:4386932

  1. Substrate Orientation and Catalytic Specificity in the Action of Xanthine Oxidase: The Sequential Hydroxylation of Hypoxanthine to Uric Acid

    SciTech Connect

    Cao, Hongnan; Pauff, James M.; Hille, Russ

    2010-11-29

    Xanthine oxidase is a molybdenum-containing enzyme catalyzing the hydroxylation of a sp{sup 2}-hybridized carbon in a broad range of aromatic heterocycles and aldehydes. Crystal structures of the bovine enzyme in complex with the physiological substrate hypoxanthine at 1.8 {angstrom} resolution and the chemotherapeutic agent 6-mercaptopurine at 2.6 {angstrom} resolution have been determined, showing in each case two alternate orientations of substrate in the two active sites of the crystallographic asymmetric unit. One orientation is such that it is expected to yield hydroxylation at C-2 of substrate, yielding xanthine. The other suggests hydroxylation at C-8 to give 6,8-dihydroxypurine, a putative product not previously thought to be generated by the enzyme. Kinetic experiments demonstrate that >98% of hypoxanthine is hydroxylated at C-2 rather than C-8, indicating that the second crystallographically observed orientation is significantly less catalytically effective than the former. Theoretical calculations suggest that enzyme selectivity for the C-2 over C-8 of hypoxanthine is largely due to differences in the intrinsic reactivity of the two sites. For the orientation of hypoxanthine with C-2 proximal to the molybdenum center, the disposition of substrate in the active site is such that Arg880 and Glu802, previous shown to be catalytically important for the conversion of xanthine to uric acid, play similar roles in hydroxylation at C-2 as at C-8. Contrary to the literature, we find that 6,8-dihydroxypurine is effectively converted to uric acid by xanthine oxidase.

  2. Immunological identification of the alternative oxidase of Neurospora crassa mitochondria.

    PubMed Central

    Lambowitz, A M; Sabourin, J R; Bertrand, H; Nickels, R; McIntosh, L

    1989-01-01

    Neurospora crassa mitochondria use a branched electron transport system in which one branch is a conventional cytochrome system and the other is an alternative cyanide-resistant, hydroxamic acid-sensitive oxidase that is induced when the cytochrome system is impaired. We used a monoclonal antibody to the alternative oxidase of the higher plant Sauromatum guttatum to identify a similar set of related polypeptides (Mr, 36,500 and 37,000) that was associated with the alternative oxidase activity of N. crassa mitochondria. These polypeptides were not present constitutively in the mitochondria of a wild-type N. crassa strain, but were produced in high amounts under conditions that induced alternative oxidase activity. Under the same conditions, mutants in the aod-1 gene, with one exception, produced apparently inactive alternative oxidase polypeptides, whereas mutants in the aod-2 gene failed to produce these polypeptides. The latter findings support the hypothesis that aod-1 is a structural gene for the alternative oxidase and that the aod-2 gene encodes a component that is required for induction of alternative oxidase activity. Finally, our results indicate that the alternative oxidase is highly conserved, even between plant and fungal species. Images PMID:2524649

  3. Effects of Seselin and Coumarin on Growth, Indoleacetic Acid Oxidase, and Peroxidase, with Special Reference to Cucumber (Cucumis sativa L.) Radicles

    PubMed Central

    Goren, Raphael; Tomer, Eliahu

    1971-01-01

    Seselin, a natural coumarin derivative isolated from citrus roots, inhibited radicle growth in seedlings of cucumber (Cucumis sativa), lettuce (Lactuca sativum), radish (Raphanus sativus), and wheat (Triticum aestivum) grown in the dark. Coumarin similarly inhibited radicle growth of cucumber seedlings. Growth retardation of the cucumber radicles was accompanied by an increased activity of peroxidase and indole-3-acetic acid oxidase. Both compounds antagonized indole-3-acetic acid-induced growth of wheat coleoptiles, whereas coumarin was much less effective than seselin in antagonizing gibberellic acid-induced release of reducing sugars from barley endosperm. It is suggested that seselin plays an important role in the regulation of root growth, and that it is the indole-3-acetic acid oxidase cofactor previously detected in citrus roots. Images PMID:16657614

  4. Characteristics of cytochrome oxidase activity in visual system neurons in kittens reared in conditions of flashing illumination.

    PubMed

    Merkul'eva, N S; Makarov, F N

    2005-10-01

    The studies reported here addressed the effects of flashing (15 Hz) lights on the metabolic activity of visual system neurons in animals reared in condition of crepuscular illumination. Activity of the respiratory enzyme cytochrome oxidase was detected in the cortex of visual areas 17 and 18 and in the lateral geniculate body in kittens. The results showed that kittens subjected to this stimulation, unlike intact kittens and kittens reared in conditions of crepuscular illumination, showed a change in the pattern of cytochrome oxidase distribution in cortical field 17 consisting of the appearance of alternating areas of increased and decreased enzyme activity in layers III and IV. In cortical field 18 and the lateral geniculate body, experimental kittens showed no changes in the cytochrome oxidase activity distribution pattern. It is suggested that flashing illumination leads to disturbance of the balance in activity in the Y and X conducting channels of the visual system.

  5. Polyacrylic acid-coated cerium oxide nanoparticles: An oxidase mimic applied for colorimetric assay to organophosphorus pesticides.

    PubMed

    Zhang, Shi-Xiang; Xue, Shi-Fan; Deng, Jingjing; Zhang, Min; Shi, Guoyue; Zhou, Tianshu

    2016-11-15

    It is important and urgent to develop reliable and highly sensitive methods that can provide on-site and rapid detection of extensively used organophosphorus pesticides (OPs) for their neurotoxicity. In this study, we developed a novel colorimetric assay for the detection of OPs based on polyacrylic acid-coated cerium oxide nanoparticles (PAA-CeO2) as an oxidase mimic and OPs as inhibitors to suppress the activity of acetylcholinesterase (AChE). Firstly, highly dispersed PAA-CeO2 was prepared in aqueous solution, which could catalyze the oxidation of TMB to produce a color reaction from colorless to blue. And the enzyme of AChE was used to catalyze the substrate of acetylthiocholine (ATCh) to produce thiocholine (TCh). As a thiol-containing compound with reducibility, TCh can decrease the oxidation of TMB catalyzed by PAA-CeO2. Upon incubated with OPs, the enzymatic activity of AChE was inhibited to produce less TCh, resulting in more TMB catalytically oxidized by PAA-CeO2 to show an increasing blue color. The two representative OPs, dichlorvos and methyl-paraoxon, were tested using our proposed assay. The novel assay showed notable color change in a concentration-dependent manner, and as low as 8.62 ppb dichlorvos and 26.73 ppb methyl-paraoxon can be readily detected. Therefore, taking advantage of such oxidase-like activity of PAA-CeO2, our proposed colorimetric assay can potentially be a screening tool for the precise and rapid evaluation of the neurotoxicity of a wealth of OPs.

  6. Terminal oxidase mutants of the cyanobacterium Synechocystis sp. PCC 6803 show increased electrogenic activity in biological photo-voltaic systems.

    PubMed

    Bradley, Robert W; Bombelli, Paolo; Lea-Smith, David J; Howe, Christopher J

    2013-08-28

    Biological photo-voltaic systems are a type of microbial fuel cell employing photosynthetic microbes at the anode, enabling the direct transduction of light energy to electrical power. Unlike the anaerobic bacteria found in conventional microbial fuel cells that use metals in the environment as terminal electron acceptors, oxygenic photosynthetic organisms are poorly adapted for electron transfer out of the cell. Mutant strains of the cyanobacterium Synechocystis sp. PCC 6803 were created in which all combinations of the three respiratory terminal oxidase complexes had been inactivated. These strains were screened for the ability to reduce the membrane-impermeable soluble electron acceptor ferricyanide, and the results were compared to the performance of the mutants in a biological photo-voltaic system. Deletion of the two thylakoid-localised terminal oxidases, the bd-quinol oxidase and cytochrome c oxidase resulted in a 16-fold increase in ferricyanide reduction rate in the dark compared to the wild-type. A further improvement to a 24-fold increase was seen upon deletion of the remaining "alternative respiratory terminal oxidase". These increases were reflected in the peak power generated in the biological photo-voltaic systems. Inactivation of all three terminal oxidase complexes resulted in a substantial redirection of reducing power; in the dark the equivalent of 10% of the respiratory electron flux was channelled to ferricyanide, compared to less than 0.2% in the wild-type. Only minor improvements in ferricyanide reduction rates over the wild-type were seen in illuminated conditions, where carbon dioxide is preferentially used as an electron sink. This study demonstrates the potential for optimising photosynthetic microbes for direct electrical current production.

  7. Biochemistry, Physiology and Pathophysiology of NADPH Oxidases in the Cardiovascular System

    PubMed Central

    Lassègue, Bernard; San Martín, Alejandra; Griendling, Kathy K.

    2012-01-01

    The NADPH oxidase (Nox) enzymes are critical mediators of cardiovascular physiology and pathophysiology. These proteins are expressed in virtually all cardiovascular cells, and regulate such diverse functions as differentiation, proliferation, apoptosis, senescence, inflammatory responses and oxygen sensing. They target a number of important signaling molecules, including kinases, phosphatases, transcription factors, ion channels and proteins that regulate the cytoskeleton. Nox enzymes have been implicated in many different cardiovascular pathologies: atherosclerosis, hypertension, cardiac hypertrophy and remodeling, angiogenesis and collateral formation, stroke and heart failure. In this review, we discuss in detail the biochemistry of Nox enzymes expressed in the cardiovascular system (Nox1, 2, 4 and 5), their roles in cardiovascular cell biology, and their contributions to disease development. PMID:22581922

  8. Structural characterization of CalO2: A putative orsellinic acid P450 oxidase in the calicheamicin biosynthetic

    SciTech Connect

    McCoy, Jason G.; Johnson, Heather D.; Singh, Shanteri; Bingman, Craig A.; Lei, In-Kyoung; Thorson, Jon S.; Phillips, Jr., George N.

    2009-08-13

    Although bacterial iterative Type I polyketide synthases are now known to participate in the biosynthesis of a small set of diverse natural products, the subsequent downstream modification of the resulting polyketide products remains poorly understood. Toward this goal, we report the X-ray structure determination at 2.5 A resolution and preliminary characterization of the putative orsellenic acid P450 oxidase (CalO2) involved in calicheamicin biosynthesis. These studies represent the first crystal structure for a P450 involved in modifying a bacterial iterative Type I polyketide product and suggest the CalO2-catalyzed step may occur after CalO3-catalyzed iodination and may also require a coenzyme A- (CoA) or acyl carrier protein- (ACP) bound substrate. Docking studies also reveal a putative docking site within CalO2 for the CLM orsellinic acid synthase (CalO5) ACP domain which involves a well-ordered helix along the CalO2 active site cavity that is unique compared with other P450 structures.

  9. Alternative Oxidase Activity in Tobacco Leaf Mitochondria (Dependence on Tricarboxylic Acid Cycle-Mediated Redox Regulation and Pyruvate Activation).

    PubMed

    Vanlerberghe, G. C.; Day, D. A.; Wiskich, J. T.; Vanlerberghe, A. E.; McIntosh, L.

    1995-10-01

    Transgenic Nicotiana tabacum (cv Petit Havana SR1) containing high levels of mitochondrial alternative oxidase (AOX) protein due to the introduction of a sense transgene(s) of Aox1, the nuclear gene encoding AOX, were used to investigate mechanisms regulating AOX activity. After purification of leaf mitochondria, a large proportion of the AOX protein was present as the oxidized (covalently associated and less active) dimer. High AOX activity in these mitochondria was dependent on both reduction of the protein by DTT (to the noncovalently associated and more active dimer) and its subsequent activation by certain [alpha]-keto acids, particularly pyruvate. Reduction of AOX to its more active form could also be mediated by intramitochondrial reducing power generated by the oxidation of certain tricarboxylic acid cycle substrates, most notably isocitrate and malate. Our evidence suggests that NADPH may be specifically required for AOX reduction. All of the above regulatory mechanisms applied to AOX in wild-type mitochondria as well. Transgenic leaves lacking AOX due to the introduction of an Aox1 antisense transgene or multiple sense transgenes were used to investigate the potential physiological significance of the AOX-regulatory mechanisms. Under conditions in which respiratory carbon metabolism is restricted by the capacity of mitochondrial electron transport, feed-forward activation of AOX by mitochondrial reducing power and pyruvate may act to prevent redirection of carbon metabolism, such as to fermentative pathways.

  10. D-Amino acid oxidase-induced oxidative stress, 3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancer effects.

    PubMed

    El Sayed, S M; El-Magd, R M Abou; Shishido, Y; Yorita, K; Chung, S P; Tran, D H; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-10-01

    Angiogenesis is critical for cancer growth and metastasis. Steps of angiogenesis are energy consuming, while vascular endothelial cells are highly glycolytic. Glioblastoma multiforme (GBM) is a highly vascular tumor and this enhances its aggressiveness. D-amino acid oxidase (DAO) is a promising therapeutic protein that induces oxidative stress upon acting on its substrates. Oxidative stress-energy depletion (OSED) therapy was recently reported (El Sayed et al., Cancer Gene Ther, 19, 1-18, 2012). OSED combines DAO-induced oxidative stress with energy depletion caused by glycolytic inhibitors such as 3-bromopyruvate (3BP), a hexokinase II inhibitor that depleted ATP in cancer cells and induced production of hydrogen peroxide. 3BP disturbs the Warburg effect and antagonizes effects of lactate and pyruvate (El Sayed et al., J Bioenerg Biomembr, 44, 61-79, 2012). Citrate is a natural organic acid capable of inhibiting glycolysis by targeting phosphofructokinase. Here, we report that DAO, 3BP and citrate significantly inhibited angiogenesis, decreased the number of vascular branching points and shortened the length of vascular tubules. OSED delayed the growth of C6/DAO glioma cells. 3BP combined with citrate delayed the growth of C6 glioma cells and decreased significantly the number and size of C6 glioma colonies in soft agar. Human GBM cells (U373MG) were resistant to chemotherapy e.g. cisplatin and cytosine arabinoside, while 3BP was effective in decreasing the viability and disturbing the morphology of U373MG cells.

  11. Exploring Regulation Genes Involved in the Expression of L-Amino Acid Oxidase in Pseudoalteromonas sp. Rf-1

    PubMed Central

    Wang, Ju; Lin, Jianxun; Zhao, Minyan

    2015-01-01

    Bacterial L-amino acid oxidase (LAAO) is believed to play important biological and ecological roles in marine niches, thus attracting increasing attention to understand the regulation mechanisms underlying its production. In this study, we investigated genes involved in LAAO production in marine bacterium Pseudoalteromonas sp. Rf-1 using transposon mutagenesis. Of more than 4,000 mutants screened, 15 mutants showed significant changes in LAAO activity. Desired transposon insertion was confirmed in 12 mutants, in which disrupted genes and corresponding functionswere identified. Analysis of LAAO activity and lao gene expression revealed that GntR family transcriptional regulator, methylase, non-ribosomal peptide synthetase, TonB-dependent heme-receptor family, Na+/H+ antiporter and related arsenite permease, N-acetyltransferase GCN5, Ketol-acid reductoisomerase and SAM-dependent methytransferase, and their coding genes may be involved in either upregulation or downregulation pathway at transcriptional, posttranscriptional, translational and/or posttranslational level. The nhaD and sdmT genes were separately complemented into the corresponding mutants with abolished LAAO-activity. The complementation of either gene can restore LAAO activity and lao gene expression, demonstrating their regulatory role in LAAO biosynthesis. This study provides, for the first time, insights into the molecular mechanisms regulating LAAO production in Pseudoalteromonas sp. Rf-1, which is important to better understand biological and ecological roles of LAAO. PMID:25815733

  12. The conformational state of polyphenol oxidase from field bean (Dolichos lablab) upon SDS and acid-pH activation.

    PubMed

    Kanade, Santosh R; Paul, Beena; Rao, A G Appu; Gowda, Lalitha R

    2006-05-01

    Field bean (Dolichos lablab) contains a single isoform of PPO (polyphenol oxidase)--a type III copper protein that catalyses the o-hydroxylation of monophenols and oxidation of o-diphenols using molecular oxygen--and is a homotetramer with a molecular mass of 120 kDa. The enzyme is activated manyfold either in the presence of the anionic detergent SDS below its critical micellar concentration or on exposure to acid-pH. The enhancement of kcat upon activation is accompanied by a marked shift in the pH optimum for the oxidation of t-butyl catechol from 4.5 to 6.0, an increased sensitivity to tropolone, altered susceptibility to proteolytic degradation and decreased thermostability. The Stokes radius of the native enzyme is found to increase from 49.1+/-2 to 75.9+/-0.6 A (1 A=0.1 nm). The activation by SDS and acid-pH results in a localized conformational change that is anchored around the catalytic site of PPO that alters the microenvironment of an essential glutamic residue. Chemical modification of field bean and sweet potato PPO with 1-ethyl-3-(3-dimethylaminopropyl)carbodi-imide followed by kinetic analysis leads to the conclusion that both the enzymes possess a core carboxylate essential to activity. This enhanced catalytic efficiency of PPO, considered as an inducible defence oxidative enzyme, is vital to the physiological defence strategy adapted by plants to insect herbivory and pathogen attack.

  13. A facile and effective immobilization of glucose oxidase on tannic acid modified CoFe2O4 magnetic nanoparticles.

    PubMed

    Altun, Seher; Çakıroğlu, Bekir; Özacar, Münteha; Özacar, Mahmut

    2015-12-01

    This article presents a study of glucose oxidase (GOx) immobilization by employing tannic acid (TA) modified-CoFe2O4 (CFO) magnetic nanoparticles which demonstrates novel aspect for enzyme immobilization. By using the strong protein and tannic acid binding, GOx immobilization was carried out via physical adsorption in a simpler way compared with the other immobilization methods which require various chemicals and complicated procedures which is difficult, expensive, time-consuming, and destructive to the enzyme structure. CFO was synthesized by hydrothermal synthesis and modified with TA to immobilize GOx. The immobilized GOx demonstrated maximum catalytic activity at pH 6.5 and 45 °C. The samples were characterized by vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA), zeta potential, and fourier transform infrared spectroscopy (FTIR), all of which confirm the surface modification of CFO and GOx immobilization. Also, field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD) were performed to demonstrate the surface morphology and chemical structure of samples. According to the Lineweaver-Burk plot, GOx possessed lower affinity to glucose after immobilization, and the Michelis-Menten constant (KM) of immobilized and free GOx were found to be 50.05 mM and 28.00 mM, respectively. The immobilized GOx showed excellent reusability, and even after 8 consecutive activity assay runs, the immobilized GOx maintained ca. 60% of its initial activity.

  14. Systemic induction and role of mitochondrial alternative oxidase and nitric oxide in a compatible tomato-Tobacco mosaic virus interaction.

    PubMed

    Fu, Li-Jun; Shi, Kai; Gu, Min; Zhou, Yan-Hong; Dong, De-Kun; Liang, Wu-Sheng; Song, Feng-Ming; Yu, Jing-Quan

    2010-01-01

    The role of mitochondrial alternative oxidase (AOX) and the relationship between AOX and nitric oxide (NO) in virus-induced systemic defense to Tobacco mosaic virus (TMV) were investigated in susceptible tomato (Solanum lycopersicum) plants. TMV inoculation to the lower leaves induced a rapid NO synthesis and AOX activation in upper uninoculated leaves as early as 0.5 day postinoculation. Application of exogenous potassium cyanide (KCN, a cytochrome pathway inhibitor) at nonlethal concentrations and NO donor diethylamine NONOate (DEA/NO) to the upper uninoculated leaves greatly induced accumulation of AOX transcript, reduced TMV viral RNA accumulation, and increased the leaf photochemical quantum yield at photosystem II. Pretreatment with NO scavenger almost completely blocked TMV-induced AOX induction and substantially increased TMV susceptibility. Salicylhydroxamic acid (SHAM, an AOX inhibitor) pretreatment reduced the DEA/NO-induced cyanide-resistant respiration and partially compromised induced resistance to TMV. Conversely, KCN and SHAM pretreatment had very little effect on generation of NO, and pretreatment with NO scavenger did not affect KCN-induced AOX induction and TMV resistance. These results suggest that TMV-induced NO generation acts upstream and mediates AOX induction which, in turn, induces mitochondrial alternative electron transport and triggers systemic basal defense against the viral pathogen.

  15. Quantitative electron spin resonance (ESR) analysis of antioxidative properties using the acetaldehyde/xanthine oxidase system

    NASA Astrophysics Data System (ADS)

    Souchard, J.-P.; Nepveu, F.

    1998-05-01

    We present a method for the quantitative ESR analysis of the antioxidant properties of drugs using the acetaldhehyde/xanthine oxidase (AC/XOD) superoxide generating system and 5,5-dimethyl-l-pyrroline-N-oxide (DMPO) as spin trap. In stoichiometric conditions (AC/XOD, 60 mM/0.018 U), the resulting paramagnetic DMPO adduct disappeared with superoxide dismutase and remained when catalase or DMSO were used. That adduct was dependent only on superoxide and resulted from the trapping of a carboxyl radical by DMPO (aN = 15.2 G, aH = 18.9 G). Similar results were obtained using 4-pyridyl-l-oxide-N-t-butyl nitrone (POBN) as spin trap. The ESR signal of the DMPO-CO2- adduct was very stable and allowed quantitative analysis of the antioxidative activity of redox molecules from an IC{50} value representing the concentration causing 50% inhibition of its intensity. Among the tested compounds, manganese(II), complexes were the most effective, 25 times as active as ascorbic acid or (+)catechin and 500-fold more antioxidative than Trolox^R. Nous présentons une méthode d'analyse quantitative de l'activité antioxydante de composés d'intérêt pharmaceutique basée sur le système acétaldéhyde/xanthine oxydase (AC/XOD), l'utilisation de la RPE et du piégeage de spin avec le 5,5-diméthyl-l-pyrroline-N-oxyde (DMPO). Dans les conditions stoechiométriques {AC/XOD, 60 mM/0,018 U/ml}, l'adduit radicalaire résultant de ce système disparaît en présence de superoxyde dismutase et persiste en présence de catalase ou de DMSO. Cet adduit ne dépend que de la présence de l'anion superoxyde et provient du piégeage d'un radical carboxyle CO2- sur le DMPO (aN = 15.2 G, aH = 18.9 G). Des résultats similaires ont été obtenus avec le piégeur de spin 4-pyridyl-l-oxyde-N-t-butyl nitrone (POBN). Le signal RPE de l'adduit DMPO-CO2- est très stable et permet la quantification de l'activité antioxydante de pharmacophores redox par la détermination de la CI{50}, concentration qui

  16. EFFECTS OF HYDRAZINES ON THE METABOLISM OF CERTAIN AMINES AND AMINO ACIDS.

    DTIC Science & Technology

    AMINES, * AMINO ACIDS , *DIAMINE OXIDASE, TOXICITY, METABOLISM, METABOLISM, DIMETHYLHYDRAZINES, GLUTAMIC ACID, ENZYMES, PHARMACOLOGY, TRACER STUDIES, LABELED SUBSTANCES, RESPIRATION, GASTROINTESTINAL SYSTEM, RATS.

  17. D-amino acid oxidase gene therapy sensitizes glioma cells to the antiglycolytic effect of 3-bromopyruvate.

    PubMed

    El Sayed, S M; Abou El-Magd, R M; Shishido, Y; Chung, S P; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-01-01

    Glioma tumors are refractory to conventional treatment. Glioblastoma multiforme is the most aggressive type of primary brain tumors in humans. In this study, we introduce oxidative stress-energy depletion (OSED) therapy as a new suggested treatment for glioblastoma. OSED utilizes D-amino acid oxidase (DAO), which is a promising therapeutic protein that induces oxidative stress and apoptosis through generating hydrogen peroxide (H2O2). OSED combines DAO with 3-bromopyruvate (3BP), a hexokinase II (HK II) inhibitor that interferes with Warburg effect, a metabolic alteration of most tumor cells that is characterized by enhanced aerobic glycolysis. Our data revealed that 3BP induced depletion of energetic capabilities of glioma cells. 3BP induced H2O2 production as a novel mechanism of its action. C6 glioma transfected with DAO and treated with D-serine together with 3BP-sensitized glioma cells to 3BP and decreased markedly proliferation, clonogenic power and viability in a three-dimensional tumor model with lesser effect on normal astrocytes. DAO gene therapy using atelocollagen as an in vivo transfection agent proved effective in a glioma tumor model in Sprague-Dawley (SD) rats, especially after combination with 3BP. OSED treatment was safe and tolerable in SD rats. OSED therapy may be a promising therapeutic modality for glioma.

  18. Factors influencing diamine oxidase activity and γ-aminobutyric acid content of fava bean (Vicia faba L.) during germination.

    PubMed

    Yang, Runqiang; Chen, Hui; Gu, Zhenxin

    2011-11-09

    Factors (germination time, spectra, temperature, pH, and chemical inhibitors) influencing diamine oxidase (DAO, EC 1.4.3.6) activity and γ-aminobutyric acid (GABA) content of fava bean (Vicia faba L.) during germination were investigated in this study. DAO activity significantly increased in germinating seeds but varied with different organs. The enzyme activity was higher in shoot than that in cotyledon, hypocotyl, and radicle. When seeds were germinated in the dark, DAO activity was 2.35-, 2.00-, 2.36-, 4.40-, and 1.67-fold of that under white, red, blue, green, and yellow spectra, respectively. The optimum germination temperature and pH value for increasing DAO activity were 30 °C and 3.0, respectively. The DAO activity was inhibited significantly by aminoguanidine and sodium ethylenediamine tetracetate, while it was activated by CuCl(2) and CaCl(2). Germinating at an appropriate temperature and pH, 30% of GABA formation was supplied by DAO. Calcium was related to the regulation of DAO activity and GABA accumulation.

  19. Mechanism of the cytotoxic effect of l-amino acid oxidase isolated from Bothrops alternatus snake venom.

    PubMed

    Ribeiro, Patrícia H; Zuliani, Juliana P; Fernandes, Carla F C; Calderon, Leonardo A; Stábeli, Rodrigo G; Nomizo, Auro; Soares, Andreimar M

    2016-11-01

    BaltLAAO-I, an L-amino acid oxidase isolated from Bothrops alternatus, is a glycoprotein enzyme with a pI-5.3, 15% sugar and a related molecular mass of 66,000Da in its monomeric form, and 123,000Da in its dimeric form. The objective of this study is to describe the cytotoxicity activity induced by BaltLAAO-I isolated from Bothrops alternatus venom and its possible mechanism of action on tumor cells. Our results clearly depict that BaltLAAO-I has a strong selective cytotoxic activity on tumor cell lines (JURKAT, SK-BR-3 and B16F10). On the other hand, the results show low cytotoxicity on human peripheral blood mononuclear cells. Furthermore, our findings demonstrate that BaltLAAO-I induces the apoptosis of tumor cell lines through a cytotoxic activity exerted by a generation of reactive oxygen intermediates. All in all, the data indicate that LAAOs exert a selective cytotoxic role on tumor cells, demonstrating a great potential for future use in clinical therapy.

  20. Association-dissociation of the flavoprotein hog kidney D-amino acid oxidase. Determination of the monomer-dimer equilibrium constant and the energetics of subunit association.

    PubMed

    Horiike, K; Shiga, K; Nishina, Y; Isomoto, A; Yamano, T

    1977-11-01

    The enzyme concentration dependence of spectrophotometric titrations of hog kidney D-amino acid oxidase [EC 1.4.3.3] with p-aminobenzoate was studied. The monomer-dimer equilibrium constant of the oxidized holoenzyme at 25 degrees C was estimated to be 7 X 10(5)M-1 at pH 7.5 and 4X 10(6)M-1 at pH 8.3. The energetics of subunit association are discussed.

  1. Use of a quantitative oxidase test for characterizing oxidative metabolism in bacteria.

    PubMed Central

    Jurtshuk, P; McQuitty, D N

    1976-01-01

    It was possible to quantitate the terminal oxidase(s) reaction using bacterial resting-cell suspensions and demonstrate the usefulness of this reaction for taxonomic purposes. Resting-cell suspensions of physiologically diverse bacteria were examined for their capabilities of oxidizing N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) using a manometric assay. For organisms having this capability, it was possible to calculate the conventional TMPD oxidase Q(O2) value (microliters of O2 consumed per hour per milligram [dry weight]). All cultures were grown heterotrophically at 30 C, under identical nutritional conditions, and were harvested at the late-logarithmic growth phase. The TMPD oxidase Q(O2) values showed perfect correlation with the Kovacs oxidase test and, in addition, it was possible to define quantitatively that point which separated oxidase-positive from oxidase-negative bacteria. Oxidase-negative bacteria exhibited a TMPD oxidase Q(O2) value (after correcting for the endogenous by substraction) of less than or equal 33 and had an uncorrected TMPD/endogenous ratio of less than or equal 5. The TMPD oxidase Q(O2) values were also correlated with the data obtained for the Hugh-Leifson Oxferm test. In general, bacteria that exhibited a respiratory mechanism had high TMPD oxidase values, whereas fermentative organsims had low TMPD oxidase activity. All exceptions to this are noted. This quantitative study also demonstrated that organisms that (i) lack a type c cytochrome, or (ii) lack a cytochrome-containing electron transport system, like the lactic acid bacteria, exhibited low or negligible TMPD oxidase Q(O2) values. From the 79 bacterial species (36 genera) examined, it appears that this quantitative oxidase test has taxonomic value that can differentiate the oxidative relationships between bacteria at the subspecies, species, and genera levels. PMID:1275489

  2. Sensitive electrochemical measurement of hydroxyl radical generation induced by the xanthine-xanthine oxidase system.

    PubMed

    Tatsumi, Hirosuke; Tsuchiya, Yui; Sakamoto, Koichi

    2014-12-15

    A sensitive electrochemical measurement system for hydroxyl radical (OH) was developed using enzyme-catalyzed signal amplification. In the presence of 2,6-xylenol as a trapping agent, glucose as a substrate, and pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) as a catalyst, the amperometric signal of the trapping adduct 2,6-dimethylhydroquinone (DMHQ) produced by the hydroxylation of 2,6-xylenol was able to be amplified and detected sensitively. The limit of detection (signal/noise [S/N]=3) for DMHQ was 1 nM. There was no significant interference from urate and other oxidizable compounds in the reaction mixture at the applied potential of 0V versus Ag/AgCl. This method was employed to observe the OH generation induced by the xanthine-xanthine oxidase (XO) system. The reaction rates of the DMHQ production induced from the xanthine-XO system in the presence and absence of various Fe(III) complexes and proteins were compared. Those with a free coordination site on the Fe atom effectively enhanced the OH generation.

  3. Human spermatozoa possess an IL4I1 l-amino acid oxidase with a potential role in sperm function.

    PubMed

    Houston, B; Curry, B; Aitken, R J

    2015-06-01

    Reactive oxygen species (ROS) are known to play an important role in the regulation of human sperm function. In this study, we demonstrate for the first time that human spermatozoa possess interleukin-induced gene 1 (IL4I1), an l-amino acid oxidase (LAAO) which is capable of generating ROS on exposure to aromatic amino acids in the presence of oxygen. The preferred substrates were found to be phenylalanine and tryptophan while the enzyme was located in the acrosomal region and midpiece of these cells. In contrast to equine and bovine spermatozoa, enzyme activity was lost as soon as the spermatozoa became non-viable. On a cell-to-cell basis human spermatozoa were also shown to generate lower levels of hydrogen peroxide than their equine counterparts on exposure to phenylalanine. Stimulation of LAAO activity resulted in the induction of several hallmarks of capacitation including tyrosine phosphorylation of the sperm flagellum and concomitant activation of phospho-SRC expression. In addition, stimulation of LAAO resulted in an increase in the levels of acrosomal exocytosis in both the presence and absence of progesterone stimulation, via mechanisms that could be significantly reversed by the presence of catalase. As is often the case with free radical-mediated phenomena, prolonged exposure of human spermatozoa to phenylalanine resulted in the stimulation of apoptosis as indicated by significant increases in mitochondrial superoxide generation and the activation of intracellular caspases. These results confirm the existence of an LAAO in human spermatozoa with a potential role in driving the redox regulation of sperm capacitation and acrosomal exocytosis.

  4. Mechanism-based pharmacokinetic-pharmacodynamic modeling of salvianolic acid A effects on plasma xanthine oxidase activity and uric acid levels in acute myocardial infarction rats.

    PubMed

    Wang, Haidong; Li, Xi; Zhang, Wenting; Liu, Yao; Wang, Shijun; Liu, Xiaoquan; He, Hua

    2017-03-01

    1. Salvianolic acid A (SalA) was found to attenuate plasma uric acid (UA) concentration and xanthine oxidase (XO) activity in acute myocardial infraction (AMI) rats, which was characterized with developed mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) model. 2. AMI was induced in rats by coronary artery ligation. Surviving AMI rats received a single intravenous dose of 5 mg/kg of SalA and normal saline. The plasma SalA concentrations were determined by HPLC-MS/MS method. The plasma UA concentrations were determined by HPLC method and plasma XO activity were measured spectrophotometrically. An integrated mathematical model characterized the relationship between plasma UA and SalA. 3. Pharmacokinetics was described using two-compartment model for SalA with linear metabolic process. In post-AMI rats, XO activity and UA concentrations were increased, while SalA dosing palliated this increase. These effects were well captured by using two series of transduction models, simulating the delay of inhibition on XO driven by SalA and UA elevation resulted from the multiple factors, respectively. 4. The effect was well described by the developed PK-PD model, indicating that SalA can exert cardiovascular protective effects by decreasing elevated plasma UA levels induced by AMI.

  5. The subcellular particulate NADPH-dependent O2.(-)-generating oxidase from human blood monocytes: comparison to the neutrophil system.

    PubMed

    Chaudhry, A N; Santinga, J T; Gabig, T G

    1982-10-01

    Highly purified preparations of normal human monocytes obtained from peripheral blood were shown to contain a subcellular particulate O2.(-)-generating oxidase system. This O2.(-)-generating activity was present in particulate preparations from monocytes that had been previously stimulated with phorbol myristate acetate but was low or absent in control preparations from unstimulated monocytes or stimulated monocytes from a patient with chronic granulomatous disease. In the stimulated preparations from normal monocytes, O2.(-)-generation was linearly proportional to cell protein concentration, insensitive to inhibition by azide, and dependent on NADPH as substrate. These characteristics are similar to the O2.(-)-generating oxidase system from human neutrophils. A significant difference in the apparent Km for NADPH was shown between preparations from stimulated monocytes and neutrophils (monocyte 83 +/- 16 microM, neutrophil 31 +/- 5 microM, mean +/- SE). Additionally, affinity of the stimulated monocyte particulate preparation for NADH was unmeasurably low.

  6. Retinoic acid modulation of thyroid dual oxidase activity in rats and its impact on thyroid iodine organification.

    PubMed

    Mühlbauer, Mônica; da Silva, Alba Cenélia Matos; Marassi, Michelle Porto; Lourenço, Alexandre Lopes; Ferreira, Andrea Claudia Freitas; de Carvalho, Denise Pires

    2010-06-01

    The sodium-iodide symporter (NIS) mediates iodide uptake into the thyrocytes, which is important for the diagnosis and therapy of thyroid disorders. Decreased ability to uptake iodide in thyroid carcinomas reduces the efficacy of radioiodine therapy, and retinoic acid (RA) treatment reinduces iodide uptake. The effectiveness of treatment depends not only on iodide uptake but also on the ability of thyrocytes to organify iodine, which is catalyzed by thyroperoxidase (TPO) in the presence of H(2)O(2). Our goal was to determine the influence of RA on thyroid iodide uptake, iodine organification, and TPO and dual oxidase (DuOx) activities. Normal rats were treated with all-trans-RA or 13-cis-RA (100 or 1500 microg/100 g body weight (b.w.), s.c.) for 14 and 28 days. The 2 h thyroid radioiodine content significantly decreased in rats treated with all-trans-RA (100 microg/100 g b.w.) for 14 days. In this group, NIS function and TPO activity were unchanged, whereas DuOx activity was significantly decreased, which might have contributed to the decrease in iodine organification. Both doses of 13-cis-RA for 28 days increased the 15 min thyroid radioiodine uptake, while the 2 h radioiodide uptake increased only in rats treated with the highest dose of 13-cis-RA. While TPO activity did not change, H(2)O(2) generation was increased in this group, and serum thyroxine levels were normal. Since radioiodine half-life in the thyroid gland is important for treatment efficacy, our results highlight the importance of correctly choosing the RA isomer, the time and the dose of treatment, in order to improve the efficacy of radioiodine therapy.

  7. Retinal NMDA receptor function and expression are altered in a mouse lacking d-amino acid oxidase

    PubMed Central

    Morgans, Catherine W.; Tekmen, Merve; Sullivan, Steven J.; Esguerra, Manuel; Konno, Ryuichi; Miller, Robert F.

    2013-01-01

    d-serine is present in the vertebrate retina and serves as a coagonist for the N-methyl-d-aspartate (NMDA) receptors of ganglion cells. Although the enzyme d-amino acid oxidase (DAO) has been implicated as a pathway for d-serine degradation, its role in the retina has not been established. In this study, we investigated the role of DAO in regulating d-serine levels using a mutant mouse line deficient in DAO (ddY/DAO−) and compared these results with their wild-type counterparts (ddY/DAO+). Our results show that DAO is functionally present in the mouse retina and normally serves to reduce the background levels of d-serine. The enzymatic activity of DAO was restricted to the inner plexiform layer as determined by histochemical analysis. Using capillary electrophoresis, we showed that mutant mice had much higher levels of d-serine. Whole cell recordings from identified retinal ganglion cells demonstrated that DAO-deficient animals had light-evoked synaptic activity strongly biased toward a high NMDA-to-AMPA receptor ratio. In contrast, recordings from wild-type ganglion cells showed a more balanced ratio between the two receptor subclasses. Immunostaining for AMPA and NMDA receptors was carried out to compare the two receptor ratios by quantitative immunofluorescence. These studies revealed that the mutant mouse had a significantly higher representation of NMDA receptors compared with the wild-type controls. We conclude that 1) DAO is an important regulatory enzyme and normally functions to reduce d-serine levels in the retina, and 2) d-serine levels play a role in the expression of NMDA receptors and the NMDA-to-AMPA receptor ratio. PMID:24068757

  8. Molecular mechanism of cell death induced by king cobra (Ophiophagus hannah) venom l-amino acid oxidase.

    PubMed

    Fung, Shin Yee; Lee, Mui Li; Tan, Nget Hong

    2015-03-01

    Snake venom LAAOs have been reported to exhibit a wide range of pharmacological activities, including cytotoxic, edema-inducing, platelet aggregation-inducing/platelet aggregation-inhibiting, bactericidal and antiviral activities. A heat-stable form of l-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom (OH-LAAO) has been shown to exhibit very potent cytotoxicity against human tumorigenic cells but not in their non-tumorigenic counterparts, and the cytotoxicity was due to the apoptosis-inducing effect of the enzyme. In this work, the molecular mechanism of cell death induced by OH-LAAO was investigated. The enzyme exerts its apoptosis-inducing effect presumably via both intrinsic and extrinsic pathways as suggested by the increase in caspase-8 and -9 activities. Oligonucleotide microarray analysis showed that the expression of a total of 178 genes was significantly altered as a result of oxidative stress induced by the hydrogen peroxide generated by the enzyme. Of the 178 genes, at least 27 genes are involved in apoptosis and cell death. These alterations of gene expression was presumably caused by the direct cytotoxic effect of H2O2 generated during the enzymatic reaction, as well as the non-specific oxidative modifications of signaling molecules that eventually lead to apoptosis and cell death. The very substantial up-regulation of cytochrome P450 genes may also contribute to the potent cytotoxic action of OH-LAAO by producing excessive reactive oxygen species (ROS). In conclusion, the potent apoptosis inducing activity of OH-LAAO was likely due to the direct cytotoxic effect of H2O2 generated during the enzymatic reaction, as well as the non-specific oxidation of signalling molecules.

  9. Cytotoxic L-amino-acid oxidases from Amanita phalloides and Clitocybe geotropa induce caspase-dependent apoptosis

    PubMed Central

    Pišlar, A; Sabotič, J; Šlenc, J; Brzin, J; Kos, J

    2016-01-01

    L-amino-acid oxidases (LAO) purified from fungi induce cell death in various mammalian cells including human tumor cell lines. The mechanism, however, remains poorly understood. In this study, we aimed to define a precise mechanism of cell death induced in Jurkat and MCF7 cancer cell lines by ApLAO and CgLAO, LAOs isolated from Amanita phalloides and Clitocybe geotropa, respectively. Cell death induced by both LAOs is shown to be concentration- and time-dependent, with higher toxic effects in Jurkat cells. LAO activity is required for the cytotoxicity. Detailed study on Jurkat cells further demonstrated that ApLAO and CgLAO both induce the intrinsic mitochondrial pathway of apoptosis, accompanied by a time-dependent depolarization of the mitochondrial membrane through the generation of reactive oxygen species. Treatment with the LAOs resulted in an increased ratio of the expression of proapoptotic Bax to that of antiapoptotic Bcl-2, subsequently leading to the activation of caspase-9 and -3. However, the pancaspase inhibitor, Z-VAD-FMK, did not completely abolish the cell death induced by either ApLAO or CgLAO, suggesting an alternative pathway for LAO-induced apoptosis. Indeed, caspase-8 activity in ApLAO- and CgLAO-treated cells was increased. Further, Fas/FasL (Fas ligand) antagonist caused a slight reduction in toxin-induced cell death, supporting the involvement of ApLAO and CgLAO in death-receptor-mediated apoptosis. These results thus provide new evidence that ApLAO and CgLAO induce apoptosis in Jurkat cells via both the intrinsic and extrinsic pathways, although the significantly higher increase of caspase-9 over caspase-8 activity suggests that it is the intrinsic pathway that is the predominant mode of ApLAO- and CgLAO-induced apoptosis. PMID:27551514

  10. Haplotypes of the D-Amino Acid Oxidase Gene Are Significantly Associated with Schizophrenia and Its Neurocognitive Deficits

    PubMed Central

    Hwu, Hai-Gwo; Fann, Cathy Shen-Jang; Yang, Ueng-Cheng; Yang, Wei-Chih; Hsu, Pei-Chun; Chang, Chien-Ching; Wen, Chun-Chiang; Tsai-Wu, Jyy-Jih; Hwang, Tzung-Jeng; Hsieh, Ming H.; Liu, Chen-Chung; Chien, Yi-Ling; Fang, Chiu-Ping; Faraone, Stephen V.; Tsuang, Ming T.; Chen, Wei J.; Liu, Chih-Min

    2016-01-01

    D-amino acid oxidase (DAO) has been reported to be associated with schizophrenia. This study aimed to search for genetic variants associated with this gene. The genomic regions of all exons, highly conserved regions of introns, and promoters of this gene were sequenced. Potentially meaningful single-nucleotide polymorphisms (SNPs) obtained from direct sequencing were selected for genotyping in 600 controls and 912 patients with schizophrenia and in a replicated sample consisting of 388 patients with schizophrenia. Genetic associations were examined using single-locus and haplotype association analyses. In single-locus analyses, the frequency of the C allele of a novel SNP rs55944529 located at intron 8 was found to be significantly higher in the original large patient sample (p = 0.016). This allele was associated with a higher level of DAO mRNA expression in the Epstein-Barr virus-transformed lymphocytes. The haplotype distribution of a haplotype block composed of rs11114083-rs2070586-rs2070587-rs55944529 across intron 1 and intron 8 was significantly different between the patients and controls and the haplotype frequencies of AAGC were significantly higher in patients, in both the original (corrected p < 0.0001) and replicated samples (corrected p = 0.0003). The CGTC haplotype was specifically associated with the subgroup with deficits in sustained attention and executive function and the AAGC haplotype was associated with the subgroup without such deficits. The DAO gene was a susceptibility gene for schizophrenia and the genomic region between intron 1 and intron 8 may harbor functional genetic variants, which may influence the mRNA expression of DAO and neurocognitive functions in schizophrenia. PMID:26986737

  11. Evidence that d-cysteine protects mice from gastric damage via hydrogen sulfide produced by d-amino acid oxidase.

    PubMed

    Souza, Luan Kelves M; Araújo, Thiago S L; Sousa, Nayara A; Sousa, Francisca Beatriz M; Nogueira, Kerolayne M; Nicolau, Lucas A D; Medeiros, Jand Venes R

    2017-04-01

    Hydrogen sulfide (H2S) is a signaling molecule in the gastrointestinal tract. H2S production can derive from d-cysteine via various pathways, thus pointing to a new therapeutic approach: delivery of H2S to specific tissues. This study was designed to evaluate the concentration and effects of H2S (generated by d-amino acid oxidase [DAO] from d-cysteine) in the gastric mucosa and the protective effects against ethanol-induced lesions in mice. Mice were treated with l-cysteine or d-cysteine (100 mg/kg per os). Other groups received oral l-propargylglycine (cystathionine γ-lyase inhibitor, 100 mg/kg) or indole-2-carboxylate (DAO inhibitor), and 30 min later, received d- or l-cysteine. After 30 min, 50% ethanol (2.5 mL/kg, per os) was administered. After 1 h, the mice were euthanized and their stomachs excised and analyzed. Pretreatment with either l-cysteine or d-cysteine significantly reduced ethanol-induced lesions. Pretreatment of d-cysteine- or l-cysteine-treated groups with indole-2-carboxylate reversed the gastroprotective effects of d-cysteine but not l-cysteine. Histological analysis revealed that pretreatment with d-cysteine decreased hemorrhagic damage, edema, and the loss of the epithelium, whereas the administration of indole-2-carboxylate reversed these effects. d-Cysteine also reduced malondialdehyde levels but maintained the levels of reduced glutathione. Furthermore, pretreatment with d-cysteine increased the synthesis of H2S. Thus, an H2S-generating pathway (involving d-cysteine and DAO) is present in the gastric mucosa and protects this tissue from ethanol-induced damage by decreasing direct oxidative damage.

  12. On the reaction of D-amino acid oxidase with dioxygen: O2 diffusion pathways and enhancement of reactivity.

    PubMed

    Rosini, Elena; Molla, Gianluca; Ghisla, Sandro; Pollegioni, Loredano

    2011-02-01

    Evidence is accumulating that oxygen access in proteins is guided and controlled. We also have recently described channels that might allow access of oxygen to pockets at the active site of the flavoprotein D-amino acid oxidase (DAAO) that have a high affinity for dioxygen and are in close proximity to the flavin. With the goal of enhancing the reactivity of DAAO with oxygen, we have performed site-saturation mutagenesis at three positions that flank the putative oxygen channels and high-affinity sites. The most interesting variants at positions 50, 201 and 225 were identified by a screening procedure at low oxygen concentration. The biochemical properties of these variants have been studied and compared with those of wild-type DAAO, with emphasis on the reactivity of the reduced enzyme species with dioxygen. The substitutions at positions 50 and 225 do not enhance this reaction, but mainly affect the protein conformation and stability. However, the T201L variant shows an up to a threefold increase in the rate constant for reaction of O(2) with reduced flavin, together with a fivefold decrease in the K(m) for dioxygen. This effect was not observed when a valine is located at position 201, and is thus attributed to a specific alteration in the micro-environment of one high-affinity site for dioxygen (site B) close to the flavin that plays an important role in the storage of oxygen. The increase in O(2) reactivity observed for T201L DAAO is of great interest for designing new flavoenzymes for biotechnological applications.

  13. Pear ACO genes encoding putative 1-aminocyclopropane-1-carboxylate oxidase homologs are functionally expressed during fruit ripening and involved in response to salicylic acid.

    PubMed

    Shi, Hai-Yan; Zhang, Yu-Xing

    2012-10-01

    1-Aminocyclopropane-1-carboxylate (ACC) oxidase catalyzes the final reaction of the ethylene biosynthetic pathway, converting ACC into ethylene. Past studies have shown a possible link between ACC oxidase and salicylic acid during fruit ripening in pear, but the relationship has received no more than modest study at the gene expression level. In this study, two cDNA clones encoding putative ACC oxidase, PpACO1 and PpACO2, were isolated from a cDNA library constructed by our own laboratory and produced using mRNA from mesocarp of pear (Pyrus pyrifolia Nakai. cv.Whangkeumbae). One cDNA clone, designated PpACO1 (GenBank accession No. JN807390), comprised an open reading frame of 945 bp encoding a protein of 314 amino acids. The other cDNA, designated PpACO2 (GenBank accession No. JN807392), encodes a protein with 322 amino acids that shares high similarity with the known plant ACOs. Using PCR amplification techniques, two genomic clones corresponding to PpACO1 and PpACO2 were isolated and shown to contain independently three introns with typical GT/AG boundaries defining the splice junctions. The PpACO1 gene product shared 99 % identity with an ACC oxidase from pear (Pyrus × bretschneideri Rehd.cv.Yali), and phylogenetic analyses clearly placed the gene product in the ACC oxidase cluster of the pear 2-oxoglutarate-dependent dioxygenase superfamily tree. Quantitative RT-PCR analysis indicated that the two PpACO genes are differentially expressed in pear tissues. PpACO1 and PpACO2 were predominantly expressed in fruit. The transcripts of PpACO1 were accumulated at relatively low levels in early fruit, but strongly high levels in fruit ripening and senescence stages, while the transcripts of PpACO2 were accumulated at higher levels in early fruit and much lower levels with further fruit cell development than the transcripts of PpACO1. In addition, PpACO1 gene was down-regulated in fruit by salicylic acid (SA). Nevertheless, PpACO2 gene was dramatically up-regulated in

  14. Ultrasensitive immunoassay based on a pseudobienzyme amplifying system of choline oxidase and luminol-reduced Pt@Au hybrid nanoflowers.

    PubMed

    Zhou, Ying; Zhuo, Ying; Liao, Ni; Chai, Yaqin; Yuan, Ruo

    2014-12-04

    A multi-functional luminol-reduced Pt@Au hybrid flower-like nanocomposite (luminol-Pt@AuNF) which not only acts as an efficient signal probe but also constitutes a pseudobienzyme amplifying system with choline oxidase (ChOx) was firstly synthesized and applied to the construction of a solid-state luminol electrochemiluminescence (ECL) immunosensor for cardiac troponin I (cTnI) detection.

  15. NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration.

    PubMed

    Qin, Liya; Liu, Yuxin; Hong, Jau-Shyong; Crews, Fulton T

    2013-06-01

    Parkinson's disease is characterized by a progressive degeneration of substantia nigra (SN) dopaminergic neurons with age. We previously found that a single systemic lipopolysaccharide (LPS, 5 mg/kg, i.p.) injection caused a slow progressive loss of tyrosine hydroxylase immunoreactive (TH+IR) neurons in SN associated with increasing motor dysfunction. In this study, we investigated the role of NADPH oxidase (NOX) in inflammation-mediated SN neurotoxicity. A comparison of control (NOX2(+/+) ) mice with NOX subunit gp91(phox) -deficient (NOX2(-/-) ) mice 10 months after LPS administration (5 mg/kg, i.p.) resulted in a 39% (P < 0.01) loss of TH+IR neurons in NOX2(+/+) mice, whereas NOX2(-/-) mice did not show a significant decrease. Microglia (Iba1+IR) showed morphological activation in NOX2(+/+) mice, but not in NOX2(-/-) mice at 1 hr. Treatment of NOX2(+/+) mice with LPS resulted in a 12-fold increase in NOX2 mRNA in midbrain and 5.5-6.5-fold increases in NOX2 protein (+IR) in SN compared with the saline controls. Brain reactive oxygen species (ROS), determined using diphenyliodonium histochemistry, was increased by LPS in SN between 1 hr and 20 months. Diphenyliodonium (DPI), an NOX inhibitor, blocked LPS-induced activation of microglia and production of ROS, TNFα, IL-1β, and MCP-1. Although LPS increased microglial activation and ROS at all ages studied, saline control NOX2(+/+) mice showed age-related increases in microglial activation, NOX, and ROS levels at 12 and 22 months of age. Together, these results suggest that NOX contributes to persistent microglial activation, ROS production, and dopaminergic neurodegeneration that persist and continue to increase with age.

  16. NADPH oxidase and aging drive microglial activation, oxidative stress and dopaminergic neurodegeneration following systemic LPS administration

    PubMed Central

    Qin, Liya; Liu, Yuxin; Hong, Jau-Shyong; Crews, Fulton T.

    2013-01-01

    Parkinson’s disease is characterized by a progressive degeneration of substantia nigra (SN) dopaminergic neurons with age. We previously found that a single systemic lipopolysaccharide (LPS, 5 mg/kg, i.p.) injection caused a slow progressive loss of tyrosine hydroxylase immunoreactive (TH+IR) neurons in SN associated with increasing motor dysfunction. In this study, we investigated the role of NADPH oxidase (NOX) in inflammation-mediated SN neurotoxicity. A comparison of control (NOX2+/+) mice with NOX subunit gp91phox-deficient (NOX2−/−) mice 10 months after LPS administration (5 mg/kg, i.p.) resulted in a 39% (p<0.01) loss of TH+IR neurons in NOX2+/+ mice, whereas, NOX2−/− mice did not show a significant decrease. Microglia (Iba1+IR) showed morphological activation in NOX2+/+ mice, but not in NOX2−/− mice at 1 hour. Treatment of NOX2+/+ mice with LPS resulted in a 12 fold increase in NOX2 mRNA in midbrain and 5.5–6.5 fold increases in NOX2 protein (+IR) in SN compared to the saline controls. Brain reactive oxygen species (ROS), determined by hydroethidine histochemistry, was increased by LPS in SN between 1 hour and 20 months. Diphenyliodonium (DPI), a NOX inhibitor, blocked LPS-induced activation of microglia and production of ROS, TNFα, IL-1β, and MCP-1. Although LPS increased microglial activation and ROS at all ages studied, saline control NOX2+/+ mice showed age-related increases in microglial activation, NOX and ROS levels at 12 and 22 months of age. Together, these results suggest that NOX contributes to persistent microglial activation, ROS production and dopaminergic neurodegeneration that persist and continue to increase with age. PMID:23536230

  17. Identification and Structural Analysis of Amino Acid Substitutions that Increase the Stability and Activity of Aspergillus niger Glucose Oxidase

    PubMed Central

    Marín-Navarro, Julia; Roupain, Nicole; Talens-Perales, David; Polaina, Julio

    2015-01-01

    Glucose oxidase is one of the most conspicuous commercial enzymes due to its many different applications in diverse industries such as food, chemical, energy and textile. Among these applications, the most remarkable is the manufacture of glucose biosensors and in particular sensor strips used to measure glucose levels in serum. The generation of ameliorated versions of glucose oxidase is therefore a significant biotechnological objective. We have used a strategy that combined random and rational approaches to isolate uncharacterized mutations of Aspergillus niger glucose oxidase with improved properties. As a result, we have identified two changes that increase significantly the enzyme's thermal stability. One (T554M) generates a sulfur-pi interaction and the other (Q90R/Y509E) introduces a new salt bridge near the interphase of the dimeric protein structure. An additional double substitution (Q124R/L569E) has no significant effect on stability but causes a twofold increase of the enzyme's specific activity. Our results disclose structural motifs of the protein which are critical for its stability. The combination of mutations in the Q90R/Y509E/T554M triple mutant yielded a version of A. niger glucose oxidase with higher stability than those previously described. PMID:26642312

  18. Study of the effects of salicylic acid on soybean mitochondrial lipids and respiratory properties using the alternative oxidase as a stress-reporter protein.

    PubMed

    Matos, Ana Rita; Mendes, Ana Teresa; Scotti-Campos, Paula; Arrabaça, João Daniel

    2009-12-01

    Biotic and abiotic stresses can lead to modifications in the lipid composition of cell membranes. Although mitochondria appear to be implicated in stress responses, little is known about the membrane lipid changes that occur in these organelles in plants. Besides cytochrome c oxidase, plant mitochondria have an alternative oxidase (AOX) that accepts electrons directly from ubiquinol, dissipating energy as heat. AOX upregulation occurs under a variety of stresses and its induction by salicylic acid (SA) has been observed in different plant species. AOX was also suggested to be used as a functional marker for cell reprogramming under stress. In the present study, we have used etiolated soybean (Glycine max (L.) Merr. cv Cresir) seedlings to study the effects of SA treatment on the lipid composition and the respiratory properties of hypocotyl mitochondria. AOX expression was studied in detail, as a reporter protein, to evaluate whether modifications in mitochondrial energy metabolism were occurring. In mitochondria extracted from SA-treated seedlings, AOX capacity and protein contents increased. Both AOX1 and AOX2b transcripts accumulated in response to SA, but with different kinetics. A reduction in external NADH oxidation capacity was observed, whereas succinate respiration remained unchanged. The phospholipid composition of mitochondria remained similar in control and SA-treated plants, but a reduction in the relative amount of linolenic acid was observed in phosphatidylcholine, phosphatidylethanolamine and cardiolipin. The possible causes of the fatty acid modifications observed, and the implications for mitochondrial metabolism are discussed.

  19. Oxidative stress in rats fed a high-fat high-sucrose diet and preventive effect of polyphenols: Involvement of mitochondrial and NAD(P)H oxidase systems.

    PubMed

    Feillet-Coudray, C; Sutra, T; Fouret, G; Ramos, J; Wrutniak-Cabello, C; Cabello, G; Cristol, J P; Coudray, C

    2009-03-01

    Mitochondrial and NADPH oxidase systems and oxidative stress were investigated in 12 week high-fat high-sucrose (HFHS) diet-fed rats. A protective effect of wine polyphenol (PP) extract was also examined. In liver, maximal activities of CII and CII+III mitochondrial complexes were decreased but NADPH oxidase expression (p22(phox) and p47(phox)) and NADPH oxidase-dependent superoxide anion production were not modified, whereas oxidative stress (lipid and protein oxidation products and antioxidant systems) was increased with HFHS diet. In muscle, anion superoxide production was slightly increased while mitochondrial complex activities and lipid and protein oxidation products were not modified with HFHS diet. In heart, NADPH oxidase expression and superoxide anion production were increased, and maximal activity of mitochondrial respiratory chain complexes or oxidative stress parameters were not modified. Wine polyphenol extract had an inhibiting effect on liver oxidative stress and on heart NADPH oxidase expression and superoxide anion production, and on induction of hepatic steatosis with HFHS diet. Induction of mitochondrial dysfunction could be a primary event in the development of oxidative stress in liver, while in skeletal muscle and in heart the NADPH oxidase system seems to be mainly involved in oxidative stress. Wine polyphenol extract was shown to partially prevent oxidative stress in liver and heart tissues and to nearly completely prevent steatosis development in liver.

  20. Urate oxidase knockdown decreases oxidative stress in a murine hepatic cell line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humans, birds, and some primates do not express the uric acid degrading enzyme urate oxidase (UOX) and, as a result, have plasma uric acid concentrations higher than UOX expressing animals. Although high uric acid concentrations are suggested to increase the antioxidant defense system and provide a...

  1. 5,5-Dithiobis(2-nitrobenzoic acid) pyrene derivative-carbon nanotube electrodes for NADH electrooxidation and oriented immobilization of multicopper oxidases for the development of glucose/O2 biofuel cells.

    PubMed

    Giroud, Fabien; Sawada, Koichi; Taya, Masahito; Cosnier, Serge

    2017-01-15

    We report the functionalization of multi-walled carbon nanotubes (MWCNTs) electrodes by a bifunctional nitroaromatic molecule accomplished via π-π interactions of a pyrene derivative. DTNB (5,5'-dithiobis(2-nitrobenzoic acid)) has the particularity to possess both electroactivable nitro groups and negatively charged carboxylic groups. The integration of the DTNB-modified MWCNTs was evaluated for different bioelectrocatalytic systems. The immobilized DTNB-based electrodes showed electrocatalytic activity toward the oxidation of the reduced form of nicotinamide adenine dinucleotide (NADH) with low overpotential of -0.09V vs Ag/AgCl at neutral pH. Glucose dehydrogenase was successfully immobilized at the surface of DTNB-based electrodes and, in the presence of NAD(+), the resulting bioelectrode achieved efficient glucose oxidation with high current densities of 2.03mAcm(-2). On the other hand, the aromatic structure and the negatively charged nature of the DTNB provoked orientation of both laccase and bilirubin oxidase onto the electrode, which enhanced their ability to undergo a direct electron transfer for oxygen reduction. Due to the proper orientation, low overpotentials were obtained (ca. 0.6V vs Ag/AgCl) and high electrocatalytic currents of about 3.5mAcm(-)(2) were recorded at neutral pH in O2 saturated conditions for bilirubin oxidase electrodes. The combination of these bioanodes and bilirubin oxidase biocathodes provided glucose/O2 enzymatic biofuel cells (EBFC) exhibiting an open-circuit potential of 0.640V, with an associated maximum current density of 2.10mAcm(-)(2). Moreover, the fuel cell delivered a maximum power density of 0.50mWcm(-)(2) at 0.36 V.

  2. Spatio-Temporal Detection of the Thiomonas Population and the Thiomonas Arsenite Oxidase Involved in Natural Arsenite Attenuation Processes in the Carnoulès Acid Mine Drainage

    PubMed Central

    Hovasse, Agnès; Bruneel, Odile; Casiot, Corinne; Desoeuvre, Angélique; Farasin, Julien; Hery, Marina; Van Dorsselaer, Alain; Carapito, Christine; Arsène-Ploetze, Florence

    2016-01-01

    The acid mine drainage (AMD) impacted creek of the Carnoulès mine (Southern France) is characterized by acid waters with a high heavy metal content. The microbial community inhabiting this AMD was extensively studied using isolation, metagenomic and metaproteomic methods, and the results showed that a natural arsenic (and iron) attenuation process involving the arsenite oxidase activity of several Thiomonas strains occurs at this site. A sensitive quantitative Selected Reaction Monitoring (SRM)-based proteomic approach was developed for detecting and quantifying the two subunits of the arsenite oxidase and RpoA of two different Thiomonas groups. Using this approach combined with FISH and pyrosequencing-based 16S rRNA gene sequence analysis, it was established here for the first time that these Thiomonas strains are ubiquitously present in minor proportions in this AMD and that they express the key enzymes involved in natural remediation processes at various locations and time points. In addition to these findings, this study also confirms that targeted proteomics applied at the community level can be used to detect weakly abundant proteins in situ. PMID:26870729

  3. CR-LAAO, an L-amino acid oxidase from Calloselasma rhodostoma venom, as a potential tool for developing novel immunotherapeutic strategies against cancer

    PubMed Central

    Costa, Tássia R.; Menaldo, Danilo L.; Zoccal, Karina F.; Burin, Sandra M.; Aissa, Alexandre F.; Castro, Fabíola A. de; Faccioli, Lúcia H.; Greggi Antunes, Lusânia M.; Sampaio, Suely V.

    2017-01-01

    L-amino acid oxidases from snake venoms have been described to possess various biological functions. In this study, we investigated the inflammatory responses induced in vivo and in vitro by CR-LAAO, an L-amino acid oxidase isolated from Calloselasma rhodostoma venom, and its antitumor potential. CR-LAAO induced acute inflammatory responses in vivo, with recruitment of neutrophils and release of IL-6, IL-1β, LTB4 and PGE2. In vitro, IL-6 and IL-1β production by peritoneal macrophages stimulated with CR-LAAO was dependent of the activation of the Toll-like receptors TLR2 and TLR4. In addition, CR-LAAO promoted apoptosis of HL-60 and HepG2 tumor cells mediated by the release of hydrogen peroxide and activation of immune cells, resulting in oxidative stress and production of IL-6 and IL-1β that triggered a series of events, such as activation of caspase 8, 9 and 3, and the expression of the pro-apoptotic gene BAX. We also observed that CR-LAAO modulated the cell cycle of these tumor cells, promoting delay in the G0/G1 and S phases. Taken together, our results suggest that CR-LAAO could serve as a potential tool for the development of novel immunotherapeutic strategies against cancer, since this toxin promoted apoptosis of tumor cells and also activated immune cells against them. PMID:28205610

  4. RNA interference of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO1 and ACO2) genes expression prolongs the shelf life of Eksotika (Carica papaya L.) papaya fruit.

    PubMed

    Sekeli, Rogayah; Abdullah, Janna Ong; Namasivayam, Parameswari; Muda, Pauziah; Abu Bakar, Umi Kalsom; Yeong, Wee Chien; Pillai, Vilasini

    2014-06-19

    The purpose of this study was to evaluate the effectiveness of using RNA interference in down regulating the expression of 1-aminocyclopropane-1-carboxylic acid oxidase gene in Eksotika papaya. One-month old embryogenic calli were separately transformed with Agrobacterium strain LBA 4404 harbouring the three different RNAi pOpOff2 constructs bearing the 1-aminocyclopropane-1-carboxylic acid oxidase gene. A total of 176 putative transformed lines were produced from 15,000 calli transformed, selected, then regenerated on medium supplemented with kanamycin. Integration and expression of the targeted gene in putatively transformed lines were verified by PCR and real-time RT-PCR. Confined field evaluation of a total of 31 putative transgenic lines planted showed a knockdown expression of the targeted ACO1 and ACO2 genes in 13 lines, which required more than 8 days to achieve the full yellow colour (Index 6). Fruits harvested from lines pRNAiACO2 L2-9 and pRNAiACO1 L2 exhibited about 20 and 14 days extended post-harvest shelf life to reach Index 6, respectively. The total soluble solids contents of the fruits ranged from 11 to 14° Brix, a range similar to fruits from non-transformed, wild type seed-derived plants.

  5. Cr(VI) reduction by gluconolactone and hydrogen peroxide, the reaction products of fungal glucose oxidase: Cooperative interaction with organic acids in the biotransformation of Cr(VI).

    PubMed

    Romo-Rodríguez, Pamela; Acevedo-Aguilar, Francisco Javier; Lopez-Torres, Adolfo; Wrobel, Kazimierz; Wrobel, Katarzyna; Gutiérrez-Corona, J Félix

    2015-09-01

    The Cr(VI) reducing capability of growing cells of the environmental A. tubingensis Ed8 strain is remarkably efficient compared to reference strains A. niger FGSC322 and A. tubingensis NRRL593. Extracellular glucose oxidase (GOX) activity levels were clearly higher in colonies developed in solid medium and in concentrated extracts of the spent medium of liquid cultures of the Ed8 strain in comparison with the reference strains. In addition, concentrated extracts of the spent medium of A. tubingensis Ed8, but not those of the reference strains, exhibited the ability to reduce Cr(VI). In line with this observation, it was found that A. niger purified GOX is capable of mediating the conversion of Cr(VI) to Cr(III) in a reaction dependent on the presence of glucose that is stimulated by organic acids. Furthermore, it was found that a decrease in Cr(VI) may occur in the absence of the GOX enzyme, as long as the reaction products gluconolactone and hydrogen peroxide are present; this conversion of Cr(VI) is stimulated by organic acids in a reaction that generates hydroxyl radicals, which may involve the formation of an intermediate peroxichromate(V) complex. These findings indicated that fungal glucose oxidase acts an indirect chromate reductase through the formation of Cr(VI) reducing molecules, which interact cooperatively with other fungal metabolites in the biotransformation of Cr(VI).

  6. Reactive oxygen species derived from xanthine oxidase interrupt dimerization of breast cancer resistance protein, resulting in suppression of uric acid excretion to the intestinal lumen.

    PubMed

    Ogura, Jiro; Kuwayama, Kaori; Sasaki, Shunichi; Kaneko, Chihiro; Koizumi, Takahiro; Yabe, Keisuke; Tsujimoto, Takashi; Takeno, Reiko; Takaya, Atsushi; Kobayashi, Masaki; Yamaguchi, Hiroaki; Iseki, Ken

    2015-09-01

    The prevalence of hyperuricemia/gout increases with aging. However, the effect of aging on function for excretion of uric acid to out of the body has not been clarified. We found that ileal uric acid clearance in middle-aged rats (11-12 months) was decreased compared with that in young rats (2 months). In middle-aged rats, xanthine oxidase (XO) activity in the ileum was significantly higher than that in young rats. Inosine-induced reactive oxygen species (ROS), which are derived from XO, also decreased ileal uric acid clearance. ROS derived from XO decreased the active homodimer level of breast cancer resistance protein (BCRP), which is a uric acid efflux transporter, in the ileum. Pre-administration of allopurinol recovered the BCRP homodimer level, resulting in the recovering ileal uric acid clearance. Moreover, we investigated the effects of ROS derived from XO on BCRP homodimer level directly in Caco-2 cells using hypoxanthine. Treatment with hypoxanthine decreased BCRP homodimer level. Treatment with hypoxanthine induced mitochondrial dysfunction, suggesting that the decreasing BCRP homodimer level might be caused by mitochondrial dysfunction. In conclusion, ROS derived from XO decrease BCRP homodimer level, resulting in suppression of function for uric acid excretion to the ileal lumen. ROS derived from XO may cause the suppression of function of the ileum for the excretion of uric acid with aging. The results of our study provide a new insight into the causes of increasing hyperuricemia/gout prevalence with aging.

  7. Interrelationship Between Broadband NIRS Measurements of Cerebral Cytochrome C Oxidase and Systemic Changes Indicates Injury Severity in Neonatal Encephalopathy.

    PubMed

    Bale, Gemma; Mitra, Subhabrata; de Roever, Isabel; Chan, Marcus; Caicedo-Dorado, Alexander; Meek, Judith; Robertson, Nicola; Tachtsidis, Ilias

    2016-01-01

    Perinatal hypoxic ischaemic encephalopathy (HIE) is associated with severe neurodevelopmental problems and mortality. There is a clinical need for techniques to provide cotside assessment of the injury extent. This study aims to use non-invasive cerebral broadband near-infrared spectroscopy (NIRS) in combination with systemic physiology to assess the severity of HIE injury. Broadband NIRS is used to measure the changes in haemodynamics, oxygenation and the oxidation state of cytochrome c oxidase (oxCCO). We used canonical correlation analysis (CCA), a multivariate statistical technique, to measure the relationship between cerebral broadband NIRS measurements and systemic physiology. A strong relationship between the metabolic marker, oxCCO, and systemic changes indicated severe brain injury; if more than 60 % of the oxCCO signal could be explained by the systemic variations, then the neurodevelopmental outcome was poor. This boundary has high sensitivity and specificity (100 and 83 %, respectively). Broadband NIRS measured concentration changes of the oxidation state of cytochrome c oxidase has the potential to become a useful cotside tool for assessment of injury severity following hypoxic ischaemic brain injury.

  8. Cloning, characterization and expression of escapin, a broadly antimicrobial FAD-containing L-amino acid oxidase from ink of the sea hare Aplysia californica.

    PubMed

    Yang, Hsiuchin; Johnson, Paul Micah; Ko, Ko-Chun; Kamio, Michiya; Germann, Markus W; Derby, Charles D; Tai, Phang C

    2005-09-01

    A 60 kDa monomeric protein isolated from the defensive purple ink secretion of the sea hare Aplysia californica was cloned and sequenced, and is the first sea hare antimicrobial protein to be functionally expressed in E. coli. Sequence analysis suggested that this protein is a flavin-containing l-amino acid oxidase (LAAO), with one predicted potential glycosylation site, although the glycosylation could not be experimentally confirmed. This protein, which we call ;escapin', has high sequence similarity to several other gastropod proteins. Escapin was verified by NMR, mass spectroscopy and HPLC to have FAD as its flavin cofactor. Escapin's antimicrobial effects, bacteriostasis and bactericidal, were determined using a combination of two assays: (1) incubation of bacteria on solid media followed by assessment of inhibition by direct observation of zones of inhibition or by turbidity measurements; and (2) incubation of bacteria in liquid media followed by counting viable colonies after growing on agar plates. Native escapin inhibited the growth of Gram-positive and Gram-negative bacteria, including marine bacteria (Vibrio harveyii and Staphylococcus aureus) and pathogenic bacteria (Staphylococcus aureus, Streptococcus pyogenes and Pseudomonas aeruginosa). Escapin also inhibited the growth of yeast and fungi, with different efficacies. Escapin's antimicrobial activity was concentration dependent and did not decrease when stored for more than 5 months at room temperature. Escapin was bacteriostatic and not bactericidal in minimal media (e.g. salt media) with glucose, yeast extract, and a mixture of 20 amino acids each at 50 micromol l(-1), but was bactericidal in media enriched with Tryptone Peptone. Escapin was also strongly bactericidal in media with l-lysine at concentrations as low as 3 mmol l(-1) and slightly bactericidal in 50 mmol l(-1) l-arginine, but not in most other amino acids even at 50 mmol l(-1). Escapin had high oxidase activity (producing hydrogen

  9. Visual expression analysis of the responses of the alternative oxidase gene (aox1) to heat shock, oxidative, and osmotic stresses in conidia of citric acid-producing Aspergillus niger.

    PubMed

    Honda, Yuki; Hattori, Takasumi; Kirimura, Kohtaro

    2012-03-01

    The citric acid-producing filamentous fungus Aspergillus niger WU-2223L shows cyanide-insensitive respiration catalyzed by alternative oxidase in addition to the cytochrome pathway. Sequence analysis of the 5' flanking region of the alternative oxidase gene (aox1) revealed a potential heat shock element (HSE) and a stress response element (STRE). We have previously confirmed aox1 expression in conidia. In this study, to confirm whether the upstream region of aox1 responds to various stresses, we used a visual expression analysis system for single-cell conidia of the A. niger strain AOXEGFP-1. This strain harbored a fusion gene comprising aox1 and egfp, which encodes the enhanced green fluorescent protein (EGFP). The fluorescence intensity of EGFP increased in conidia of A. niger AOXEGFP-1 that were subjected to heat shock at 35-45 °C, oxidative stress by exposure to 5mM paraquat or 1 mM t-butylhydroperoxide, or osmotic stresses by exposure to 0.5 M KCl or 1.0 M mannitol. These results indicate that the putative HSE and STRE in the upstream region of aox1 directly or indirectly respond to heat shock, oxidative, and osmotic stresses.

  10. The Apoplastic Copper AMINE OXIDASE1 Mediates Jasmonic Acid-Induced Protoxylem Differentiation in Arabidopsis Roots1

    PubMed Central

    Ghuge, Sandip A.; Carucci, Andrea; Rodrigues-Pousada, Renato A.; Tisi, Alessandra; Franchi, Stefano; Tavladoraki, Paraskevi; Cona, Alessandra

    2015-01-01

    Polyamines are involved in key developmental processes and stress responses. Copper amine oxidases oxidize the polyamine putrescine (Put), producing an aldehyde, ammonia, and hydrogen peroxide (H2O2). The Arabidopsis (Arabidopsis thaliana) amine oxidase gene At4g14940 (AtAO1) encodes an apoplastic copper amine oxidase expressed at the early stages of vascular tissue differentiation in roots. Here, its role in root development and xylem differentiation was explored by pharmacological and forward/reverse genetic approaches. Analysis of the AtAO1 expression pattern in roots by a promoter::green fluorescent protein-β-glucuronidase fusion revealed strong gene expression in the protoxylem at the transition, elongation, and maturation zones. Methyl jasmonate (MeJA) induced AtAO1 gene expression in vascular tissues, especially at the transition and elongation zones. Early protoxylem differentiation was observed upon MeJA treatment along with Put level decrease and H2O2 accumulation in wild-type roots, whereas Atao1 loss-of-function mutants were unresponsive to the hormone. The H2O2 scavenger N,N1-dimethylthiourea reversed the MeJA-induced early protoxylem differentiation in wild-type seedlings. Likewise, Put, which had no effect on Atao1 mutants, induced early protoxylem differentiation in the wild type, this event being counteracted by N,N1-dimethylthiourea treatment. Consistently, AtAO1-overexpressing plants showed lower Put levels and early protoxylem differentiation concurrent with H2O2 accumulation in the root zone where the first protoxylem cells with fully developed secondary wall thickenings are found. These results show that the H2O2 produced via AtAO1-driven Put oxidation plays a role in MeJA signaling leading to early protoxylem differentiation in root. PMID:25883242

  11. Arterial endothelial barrier dysfunction: actions of homocysteine and the hypoxanthine-xanthine oxidase free radical generating system.

    PubMed

    Berman, R S; Martin, W

    1993-04-01

    1. Endothelial barrier function was assessed by use of an in vitro model in which transfer of trypan blue-labelled albumin was measured across monolayers of bovine aortic endothelial cells grown on polycarbonate membranes. 2. Addition of either hypoxanthine (0.2 mM) or xanthine oxidase (20 mu ml-1) alone during a 90 min incubation did not affect albumin transfer across endothelial cell monolayers, but a combination of both increased transfer. 3. The increase in albumin transfer induced by hypoxanthine and xanthine oxidase was abolished by catalase (3 u ml-1), reduced by allopurinol (4 mM), but unaffected by superoxide dismutase (6000 u ml-1), the hydroxyl radical scavengers, mannitol (15 mM), dimethylthiourea (10 mM) and N-(2-mercaptopropionyl)-glycine (1 mM), the iron chelator, deferoxamine (0.5 mM), ferric chloride (50 microM), an inhibitor of nitric oxide synthase, NG-nitro-L-arginine (30 microM), or the antioxidant, dithiothreitol (3 mM). 4. Hydrogen peroxide (0.1-30 mM) itself increased albumin transfer across endothelial cell monolayers, exhibiting a biphasic concentration-response curve. The increase induced by 0.1 mM hydrogen peroxide was abolished in the presence of 0.3 u ml-1 catalase whilst that induced by 10 mM hydrogen peroxide was abolished by 3000 u ml-1 catalase. 5. Homocysteine (0.5-1.5 mM) did not affect albumin transfer across endothelial monolayers when added alone, but when added in combination with copper sulphate (50 microM), which catalyses its oxidation, a significant increase in albumin transfer was observed. 6. The increase in albumin transfer induced by the combination of homocysteine (1.5 mM) and copper sulphate was abolished by catalase (1 u ml-1), but was unaffected by superoxide dismutase (6000 u ml-1), mannitol (15 mM), dimethylthiourea (1 mM) or deferoxamine (0.5 mM).7. The data suggest that the endothelial barrier dysfunction induced by the combination of hypoxanthine and xanthine oxidase is mediated solely by the action of

  12. Expression of the secreted FAD-dependent sulfydryl oxidase (QSOX) in the guinea pig central nervous system.

    PubMed

    Amiot, C; Musard, J F; Hadjiyiassemis, M; Jouvenot, M; Fellmann, D; Risold, P Y; Adami, P

    2004-06-18

    cpQSOx1 is a member of the QSOx family of proteins, expressed in the guinea pig (Cavia porcellus) and ortholog of the rat rQSOx1. In this study, in vitro experiments were conducted and showed that, as other member of this family, cpQSOx1 has a sulfydryl oxidase activity, and is a secreted protein. Then, the expression of this enzyme was researched in the guinea pig brain, as very little information exists yet on the expression of QSOx family members in the central nervous system. By immunohistochemistry, RT-PCR and in situ hybridization, cpQSOx1 is synthesized by neurons throughout the whole guinea pig central nervous system. Reticular structures as the basal forebrain, reticular thalamic nucleus and reticular nuclei of the brainstem contained the densest labeling. These results are discussed in terms of putative roles of this protein in synaptic strengthening and in redox activities.

  13. Identification of L-amino acid oxidase (Mb-LAAO) with antibacterial activity in the venom of Montivipera bornmuelleri, a viper from Lebanon.

    PubMed

    Rima, Mohamad; Accary, Claudine; Haddad, Katia; Sadek, Riyad; Hraoui-Bloquet, Souad; Desfontis, Jean C; Fajloun, Ziad

    2013-10-01

    The L-amino acid oxidase (LAAO) is a multifunctional enzyme, able to partake in different activities including antibacterial activity. In this study, a novel LAAO (Mb-LAAO) was isolated from the venom of M. bornmuelleri snake using size exclusion chromatography followed by RP-HPLC and partially characterized. However, the molecular weight of the Mb-LAAO determined by ESI-MS and SDS-PAGE was 59 960.4 Da. Once the enzymatic activity test confirming the enzyme's identity (transformation of L-leucine) was done, the Mb-LAAO was evaluated for its antibacterial activity against Gram-negative bacteria. It showed a remarkable effect against M. morganii and K. pneumoniae. Moreover, no cytotoxic activity was observed for Mb-LAAO against human erythrocytes arguing for an exploration of its pharmaceutical interest.

  14. Chlorpromazine oligomer is a potentially active substance that inhibits human D-amino acid oxidase, product of a susceptibility gene for schizophrenia.

    PubMed

    Iwana, Sanae; Kawazoe, Tomoya; Park, Hwan Ki; Tsuchiya, Koichiro; Ono, Koji; Yorita, Kazuko; Sakai, Takashi; Kusumi, Takenori; Fukui, Kiyoshi

    2008-12-01

    D-amino acid oxidase (DAO), a potential risk factor for schizophrenia, has been proposed to be involved in the decreased glutamatergic neurotransmission in schizophrenia. Here we show the inhibitory effect of an antipsychotic drug, chlorpromazine, on human DAO, which is consistent with previous reports using porcine DAO, although human DAO was inhibited to a lesser degree (K(i) = 0.7 mM) than porcine DAO. Since chlorpromazine is known to induce phototoxic or photoallergic reactions and also to be transformed into various metabolites, we examined the effects of white light-irradiated chlorpromazine on the enzymatic activity. Analytical methods including high-resolution mass spectrometry revealed that irradiation triggered the oligomerization of chlorpromazine molecules. The oligomerized chlorpromazine showed a mixed type inhibition with inhibition constants of low micromolar range, indicative of enhanced inhibition. Taken together, these results suggest that oligomerized chlorpromazine could act as an active substance that might contribute to the therapeutic effects of this drug.

  15. Selected biochemical properties of polyphenol oxidase in butter lettuce leaves (Lactuca sativa L. var. capitata) elicited with dl-β-amino-n-butyric acid.

    PubMed

    Złotek, Urszula; Gawlik-Dziki, Urszula

    2015-02-01

    The study concentrated on changes in certain biochemical parameters of polyphenol oxidase (PPO) from lettuce leaves caused by dl-β-amino-n-butyric acid (BABA) elicitation. PPO from control plants demonstrated the highest affinity toward catechol, whereas PPO from BABA-elicited lettuce showed the highest affinity to 4-methylcatechol. The optimum temperature for enzymes from control plants was 35°C, whereas from plants elicited with 1mM BABA this was 25°C. PPO from plants elicited with BABA was also more sensitive to the tested inhibitors than PPO from control plants. l-Cysteine was the most effective inhibitor. Native gel stained for PPO activity in control samples showed two isoforms. However, in BABA-treated lettuce three bands visualising PPO activity were observed. The information obtained in this study will be valuable for the development of treatment technology and storage conditions to control undesirable browning reactions in elicited lettuce.

  16. Purification and partial characterization of an L-amino acid oxidase from bushmaster snake (Surucucu Pico de Jaca) Lachesis muta muta venom.

    PubMed

    Sánchez, E O; Magalhães, A

    1991-01-01

    1. L-amino acid oxidase (L-AO) from the venom of Lachesis muta muta was purified 72 times (38%) by gel filtration on Sephadex G-100, followed by ion exchange chromatography on DEAE-cellulose and gel filtration on Sephacryl S-300. 2. The protein was shown to be homogeneous by polyacrylamide gel electrophoresis at pH 8.5, immunoelectrophoresis, immunodiffusion and isoelectric focusing. Its specific activity was 44.4 units/mg protein, using 7.5 mM L-leucine as substrate and O-dianisidine as electron donor, at pH 7.6 and 25 degrees C. The increase in absorbance at 436 nm was recorded. 3. The enzyme was characterized as a glycoprotein with an S20,w = 6.72, MW = 138,000 and pI = 5.2. It presented maxima at 389 and 460 nm and contained 2 mol of FAD per mole protein.

  17. Synergistic effect of Aspergillus tubingensis CTM 507 glucose oxidase in presence of ascorbic acid and alpha amylase on dough properties, baking quality and shelf life of bread.

    PubMed

    Kriaa, Mouna; Ouhibi, Rabeb; Graba, Héla; Besbes, Souhail; Jardak, Mohamed; Kammoun, Radhouane

    2016-02-01

    The impact of Aspergillus tubingensis glucose oxidase (GOD) in combination with α-amylase and ascorbic acid on dough properties, qualities and shelf life of bread was investigated. Regression models of alveograph and texture parameters of dough and bread were adjusted. Indeed, the mixture of GOD (44 %) and ascorbic acid (56 %) on flour containing basal improver showed its potential as a corrective action to get better functional and rheological properties of dough and bread texture. Furthermore, wheat flour containing basal additives and enriched with GOD (63.8 %), ascorbic acid (32 %) and α- amylase (4.2 %) led to high technological bread making parameters, to decrease the crumb firmness and chewiness and to improve elasticity, adhesion, cohesion and specific volume of bread. In addition to that, the optimized formulation addition significantly reduced water activity and therefore decreased bread susceptibility to microbial spoilage. These findings demonstrated that GOD could partially substitute not only ascorbic acid but also α-amylase. The generated models allowed to predict the behavior of wheat flour containing additives in the range of values tested and to define the additives formula that led to desired rheological and baking qualities of dough. This fact provides new perspectives to compensate flour quality deficiencies at the moment of selecting raw materials and technological parameters reducing the production costs and facilitating gluten free products development. Graphical abstractᅟ.

  18. Multivalent Interactions of Human Primary Amine Oxidase with the V and C22 Domains of Sialic Acid-Binding Immunoglobulin-Like Lectin-9 Regulate Its Binding and Amine Oxidase Activity

    PubMed Central

    Fair-Mäkelä, Ruth; Salo-Ahen, Outi M. H.; Guédez, Gabriela; Bligt-Lindén, Eva; Grönholm, Janne; Jalkanen, Sirpa; Salminen, Tiina A.

    2016-01-01

    Sialic acid-binding immunoglobulin-like lectin-9 (Siglec-9) on leukocyte surface is a counter-receptor for endothelial cell surface adhesin, human primary amine oxidase (hAOC3), a target protein for anti-inflammatory agents. This interaction can be used to detect inflammation and cancer in vivo, since the labeled peptides derived from the second C2 domain (C22) of Siglec-9 specifically bind to the inflammation-inducible hAOC3. As limited knowledge on the interaction between Siglec-9 and hAOC3 has hampered both hAOC3-targeted drug design and in vivo imaging applications, we have now produced and purified the extracellular region of Siglec-9 (Siglec-9-EC) consisting of the V, C21 and C22 domains, modeled its 3D structure and characterized the hAOC3–Siglec-9 interactions using biophysical methods and activity/inhibition assays. Our results assign individual, previously unknown roles for the V and C22 domains. The V domain is responsible for the unusually tight Siglec-9–hAOC3 interactions whereas the intact C22 domain of Siglec-9 is required for modulating the enzymatic activity of hAOC3, crucial for the hAOC3-mediated leukocyte trafficking. By characterizing the Siglec-9-EC mutants, we could conclude that R120 in the V domain likely interacts with the terminal sialic acids of hAOC3 attached glycans whereas residues R284 and R290 in C22 are involved in the interactions with the active site channel of hAOC3. Furthermore, the C22 domain binding enhances the enzymatic activity of hAOC3 although the sialic acid-binding capacity of the V domain of Siglec-9 is abolished by the R120S mutation. To conclude, our results prove that the V and C22 domains of Siglec-9-EC interact with hAOC3 in a multifaceted and unique way, forming both glycan-mediated and direct protein-protein interactions, respectively. The reported results on the mechanism of the Siglec-9–hAOC3 interaction are valuable for the development of hAOC3-targeted therapeutics and diagnostic tools. PMID:27893774

  19. Rapid deactivation of NADPH oxidase in neutrophils: continuous replacement by newly activated enzyme sustains the respiratory burst.

    PubMed

    Akard, L P; English, D; Gabig, T G

    1988-07-01

    The cell-free system for activation of the neutrophil NADPH oxidase allowed us to examine activation of the oxidase in the absence of its NADPH-dependent turnover. The covalent sulfhydryl-modifying reagent N-ethylmaleimide completely inhibited the activation step (Ki = 40 mumol/L) in the cell-free system but had no effect on turnover of the preactivated particulate NADPH oxidase (up to 1 mmol/L). When N-ethylmaleimide was added to intact neutrophils during the period of maximal O2 generation in response to stimuli that activate the respiratory burst (phorbol myristate acetate, f-Met-Leu-Phe, opsonized zymosan, arachidonic acid), O2- generation ceased within seconds. Study of components of the cell-free activation system indicated that the cytosolic cofactor was irreversibly inhibited by N-ethylmaleimide whereas the N-ethylmaleimide-treated, membrane-associated oxidase could be activated by arachidonate and control cytosolic cofactor. Likewise, the cell-free system prepared from intact neutrophils that had been briefly exposed to N-ethylmaleimide and then washed reflected the effects of N-ethylmaleimide on the isolated cell-free components: cytosolic cofactor activity was absent, but the membrane oxidase remained fully activatable. Thus inhibition of oxidase activation by N-ethylamaleimide unmasked a rapid deactivation step that was operative in intact neutrophils but not in isolated particulate NADPH oxidase preparations. The demonstrated specificity of N-ethylmaleimide for oxidase activation and lack of effect on turnover of the NADPH oxidase suggested that sustained O2- generation by intact neutrophils was a result of continued replenishment of a small pool of active oxidase. The existence of an inactive pool of NADPH oxidase molecules in particulate preparations from stimulated neutrophils was supported more directly by activating these preparations again in the cell-free system.

  20. [Alternative oxidase in industrial fungi].

    PubMed

    Gu, Shuai; Liu, Qiang; He, Hao; Li, Shuang

    2015-01-01

    Filamentous fungi have been used in industrial fermentation extensively. Based on non-phosphorylating electron transport process, alternative respiration pathway (ARP) acts as an energy overflow, which can balance carbon metabolism and electron transport, allow the continuance of tricarboxylic acid cycle without the formation of ATP, and permit the turnover of carbon skeletons. Alternative respiration pathway also plays an important role in the stress response of fungi and the physiological function of conditioned pathogen. Alternative oxidase (AOX) is the terminal oxidase responsible for the activity of alternative respiration pathway, which exists widely in higher plants, parts of fungi and algae. Owing to the property that alternative oxidase (AOX) is sensitive to salicylhydroxamic acid (SHAM) and insensitive to conventional inhibitors of cytochrome respiration, alternative respiration pathway by AOX is also named as cyanide-resistant respiration (CRR). In recent years, the study of the alternative respiration pathway and alternative oxidase has been a hot topic in the area involving cellular respiration metabolism. In this review we summarized the latest research advances about the functions of alternative respiration pathway and alternative oxidase in industrial fungi.

  1. Electropolymerization of pyrrole and immobilization of glucose oxidase in a flow system: influence of the operating conditions on analytical performance.

    PubMed

    Vidal, J C; Garcia, E; Castillo, J R

    1998-03-01

    The in situ potentiostatic electropolymerization of pyrrole (Py) on a Pt electrode in a thin-layer amperometric cell and the entrapment of the enzyme glucose oxidase (GOx) for the determination of glucose are reported. Polypyrrole (PPy) is directly formed by continuous passage of a buffered solution of the monomer (0.4 M) and enzyme (250 U mL-1) at pH 7 at a flow rate of 0.05-0.1 mL min-1 under a constant applied potential of +0.85 V vs Ag/AgCl decreases. The electrosynthesis of PPy by injection of 500 microL of a Py + GOx solution in a carrier electrolyte consisting of 0.05 M phosphate buffer and 0.1 M KCl at pH 7.0 was also assayed. The influence of the electropolymerization conditions on the analytical response of the sensor to glucose was investigated. The analytical performance of the PPy/GOx sensor was also studied in terms of durability and storage life, as well as selectivity against electroactive species such as ascorbic acid and uric acid as a function of the thickness of the polymer film formed.

  2. Dynamic aspects of ascorbic acid metabolism in the circulation: analysis by ascorbate oxidase with a prolonged in vivo half-life.

    PubMed

    Kasahara, Emiko; Kashiba, Misato; Jikumaru, Mika; Kuratsune, Daisuke; Orita, Kumi; Yamate, Yurika; Hara, Kenjiro; Sekiyama, Atsuo; Sato, Eisuke F; Inoue, Masayasu

    2009-06-26

    Because AA (L-ascorbic acid) scavenges various types of free radicals to form MDAA (monodehydroascorbic acid) and DAA (dehydroascorbic acid), its regeneration from the oxidized metabolites is critically important for humans and other animals that lack the ability to synthesize this antioxidant. To study the dynamic aspects of AA metabolism in the circulation, a long acting AOase (ascorbate oxidase) derivative was synthesized by covalently linking PEG [poly(ethylene glycol)] to the enzyme. Fairly low concentrations of the modified enzyme (PEG-AOase) rapidly decreased AA levels in isolated fresh plasma and blood samples with a concomitant increase in their levels of MDAA and DAA. In contrast, relatively high doses of PEG-AOase were required to decrease the circulating plasma AA levels of both normal rats and ODS (osteogenic disorder Shionogi) rats that lack the ability to synthesize AA. Administration of 50 units of PEG-AOase/kg of body weight rapidly decreased AA levels in plasma and the kidney without affecting the levels in other tissues, such as the liver, brain, lung, adrenal grand and skeletal muscles. PEG-AOase slightly, but significantly, decreased glutathione (GSH) levels in the liver without affecting those in other tissues. Suppression of hepatic synthesis of GSH by administration of BSO [L-buthionin-(S,R)-sulfoximine] enhanced the PEG-AOase-induced decrease in plasma AA levels. These and other results suggest that the circulating AA is reductively regenerated from MDAA extremely rapidly and that hepatic GSH plays important roles in the regeneration of this antioxidant.

  3. Respiration of bloodstream forms of the parasite Trypanosoma brucei brucei is dependent on a plant-like alternative oxidase.

    PubMed

    Clarkson, A B; Bienen, E J; Pollakis, G; Grady, R W

    1989-10-25

    CoQ links the sn-glycerol-3-phosphate dehydrogenase and oxidase components of the cyanide-insensitive, non-cytochrome-mediated respiratory system of bloodstream African trypanosomes. In this and other characteristics, their respiratory system is similar to the alternative oxidase of plants. The parasites contain 206 ng of CoQ9 mg protein-1 which co-sediments with respiratory activity. The redox state of this CoQ responds in a manner consistent with respiratory function: 60% being in the reduced form when substrate is available and the oxidase is blocked; 13% being in the reduced form when the oxidase is functioning and there is no substrate. The addition of CoQ to aceton-extracted cells stimulates salicylhydroxamic acid-sensitive respiration by 56%. After inhibition of respiration by digitonin-mediated dispersal of the electron transport components, liposomes restore 40% of respiratory activity while liposomes containing CoQ restore 66% of this activity. A less hydrophobic analogue, reduced decyl CoQ, serves as a direct substrate for the trypanosome oxidase supporting full salicylhydroxamic acid-sensitive respiration. After digitonin disruption of electron transport, the nonreduced form of this synthetic substrate can reestablish the chain by accepting electrons from dispersed sn-glycerol-3-phosphate dehydrogenase and transferring them to the dispersed oxidase. Similarities between the alternative oxidase of plants and the oxidase of the trypanosome respiratory system include: mitochondrial location, lack of oxidative phosphorylation, linkage of a dehydrogenase and an oxidase by CoQ, lack of sensitivity to a range of mitochondrial inhibitors, and sensitivity to a spectrum of inhibitors which selectively block transfer of electrons from reduced CoQ to the terminal oxidase but do not block electron transfer to the cytochrome bc1 complex of the mammalian cytochrome chain.

  4. ESR studies on reaction of saccharide with the free radicals generated from the xanthine oxidase/hypoxanthine system containing iron.

    PubMed

    Luo, G M; Qi, D H; Zheng, Y G; Mu, Y; Yan, G L; Yang, T S; Shen, J C

    2001-03-09

    The free radicals generated from the iron containing system of xanthine oxidase and hypoxanthine (Fe-XO/HX) were directly detected by using spin trapping. It was found that not only superoxide anion (O(2)*-) and hydroxyl radical (OH*), but also alkyl or alkoxyl radicals (R*) were formed when saccharides such as glucose, fructose and sucrose were added into the Fe-XO/HX system. The generated amount of R* was dependent on the kind and concentration of saccharides added into the Fe-XO/HX system and no R* were detected in the absence of saccharides, indicating that there is an interaction between the saccharide molecules and the free radicals generated from the Fe-XO/HX system and saccharide molecules are essential for generating R* in the Fe-XO/HX system. It is expected that the toxicity of R* would be greater than of hydrophilic O(2)*- and OH* because they are liposoluble and their lives are longer and the active sites of biomolecules are closely related with lipophilic phase, thus they can damage cells more seriously than O(2)*- and OH*. The R* generated from the saccharide containing Fe-XO/HX can be effectively scavenged by selenium containing abzyme (Se-abzyme), indicating Se-abzyme is a promising antioxidant.

  5. Logic gate system with three outputs and three inputs based on switchable electrocatalysis of glucose by glucose oxidase entrapped in chitosan films.

    PubMed

    Liu, Shuang; Wang, Lei; Lian, Wenjing; Liu, Hongyun; Li, Chen-Zhong

    2015-01-01

    A logic-gate system with three outputs and three inputs was developed based on the bioelectrocatalysis of glucose by glucose oxidase (GOx) entrapped in chitosan films on the electrode surface by means of ferrocenedicarboxylic acid (Fc(COOH)2 ). Cyclic voltammetric (CV) signals of Fc(COOH)2 exhibited pH-triggered on/off behavior owing to electrostatic interactions between the film and the probe at different pH levels. The addition of glucose greatly increased the oxidation peak current (Ipa ) through the electrocatalytic reaction. pH and glucose were selected as two inputs. As a reversible inhibitor of GOx, Cu(2+) was chosen as the third input. The combination of three inputs led to Ipa with different values according to different mechanisms, which were defined as three outputs with two thresholds. The logic gate with three outputs by using one type of enzyme provided a novel model to build logic circuits based on biomacromolecules, which might be applied to the intelligent medical diagnostics as smart biosensors in the future.

  6. Aldehyde oxidase 1 is highly abundant in hepatic steatosis and is downregulated by adiponectin and fenofibric acid in hepatocytes in vitro

    SciTech Connect

    Neumeier, Markus; Weigert, Johanna; Schaeffler, Andreas; Weiss, Thomas S.; Schmidl, Christian; Buettner, Roland; Bollheimer, Cornelius; Aslanidis, Charalampos; Schoelmerich, Juergen; Buechler, Christa . E-mail: christa.buechler@klinik.uni-regensburg.de

    2006-11-24

    Adiponectin protects the liver from steatosis caused by obesity or alcohol and therefore the influence of adiponectin on human hepatocytes was analyzed. GeneChip experiments indicated that recombinant adiponectin downregulates aldehyde oxidase 1 (AOX1) expression and this was confirmed by real-time RT-PCR and immunoblot. AOX1 is a xenobiotic metabolizing protein and produces reactive oxygen species (ROS), that promote cell damage and fibrogenesis. Adiponectin and fenofibric acid activate peroxisome proliferator-activated receptor-{alpha} (PPAR-{alpha}) and both suppress AOX1 protein and this is blocked by the PPAR-{alpha} antagonist RU486. Obesity is associated with low adiponectin, reduced hepatic PPAR-{alpha} activity and fatty liver, and AOX1 was found induced in the liver of rats on a high-fat diet when compared to controls. Free fatty acids and leptin, that are elevated in obesity, failed to upregulate AOX1 in vitro. The current data indicate that adiponectin reduces AOX1 by activating PPAR-{alpha} whereas fatty liver disease is associated with elevated hepatic AOX1. High AOX1 may be associated with higher ROS well described to induce fibrogenesis in liver tissue but may also influence drug metabolism and activity.

  7. Identification of potent bactericidal compounds produced by escapin, an L-amino acid oxidase in the ink of the sea hare Aplysia californica.

    PubMed

    Ko, Ko-Chun; Wang, Binghe; Tai, Phang C; Derby, Charles D

    2008-12-01

    The ink of sea hares (Aplysia californica) contains escapin, an L-amino acid oxidase that metabolizes L-lysine, thereby producing a mixture that kills microbes and deters attacking predators. This secretion contains H2O2,ammonia, and an equilibrium mixture of "escapin intermediate product" (EIP-K) that includes alpha-keto-epsilon-aminocaproic acid and several other molecules. Components of the equilibrium mixture react nonenzymatically with H2O2 to form "escapin end product" (EEP-K), which contains delta-aminovaleric acid and delta-valerolactam. The proportions of the molecules in this equilibrium mixture change with pH, and this is biologically important because the secretion is pH 5 when released but becomes pH 8 when fully diluted in seawater. The goal of the current study was to identify which molecules in this equilibrium mixture are bactericidal. We show that a mixture of H2O2 and EIP-K, but not EEP-K, at low mM concentrations is synergistically responsible for most of the bactericidal activity of the secretion against Escherichia coli, Vibrio harveyi, Staphylococcus aureus,and Pseudomonas aeruginosa. Low pH enhances the bactericidal effect, and this does not result from stress associated with low pH itself. Sequential exposure to low mM concentrations of EIP-K and H2O2, in either order, does not kill E. coli. Reaction products formed when L-arginine is substituted for L-lysine have almost no bactericidal activity. Our results favor the idea that the bactericidal activity is due to unstable intermediates of the reaction of alpha-keto-epsilon-aminocaproic acid with H2O2.

  8. Biosensing of glucose in flow injection analysis system based on glucose oxidase-quantum dot modified pencil graphite electrode.

    PubMed

    Sağlam, Özlem; Kızılkaya, Bayram; Uysal, Hüseyin; Dilgin, Yusuf

    2016-01-15

    A novel amperometric glucose biosensor was proposed in flow injection analysis (FIA) system using glucose oxidase (GOD) and Quantum dot (ZnS-CdS) modified Pencil Graphite Electrode (PGE). After ZnS-CdS film was electrochemically deposited onto PGE surface, GOD was immobilized on the surface of ZnS-CdS/PGE through crosslinking with chitosan (CT). A pair of well-defined reversible redox peak of GOD was observed at GOD/CT/ZnS-CdS/PGE based on enzyme electrode by direct electron transfer between the protein and electrode. Further, obtained GOD/CT/ZnS-CdS/PGE offers a disposable, low cost, selective and sensitive electrochemical biosensing of glucose in FIA system based on the decrease of the electrocatalytic response of the reduced form of GOD to dissolved oxygen. Under optimum conditions (flow rate, 1.3mL min(-1); transmission tubing length, 10cm; injection volume, 100μL; and constant applied potential, -500mV vs. Ag/AgCl), the proposed method displayed a linear response to glucose in the range of 0.01-1.0mM with detection limit of 3.0µM. The results obtained from this study would provide the basis for further development of the biosensing using PGE based FIA systems.

  9. Prokaryotic orthologues of mitochondrial alternative oxidase and plastid terminal oxidase.

    PubMed

    McDonald, Allison E; Amirsadeghi, Sasan; Vanlerberghe, Greg C

    2003-12-01

    The mitochondrial alternative oxidase (AOX) and the plastid terminal oxidase (PTOX) are two similar members of the membrane-bound diiron carboxylate group of proteins. AOX is a ubiquinol oxidase present in all higher plants, as well as some algae, fungi, and protists. It may serve to dampen reactive oxygen species generation by the respiratory electron transport chain. PTOX is a plastoquinol oxidase in plants and some algae. It is required in carotenoid biosynthesis and may represent the elusive oxidase in chlororespiration. Recently, prokaryotic orthologues of both AOX and PTOX proteins have appeared in sequence databases. These include PTOX orthologues present in four different cyanobacteria as well as an AOX orthologue in an alpha-proteobacterium. We used PCR, RT-PCR and northern analyses to confirm the presence and expression of the PTOX gene in Anabaena variabilis PCC 7120. An extensive phylogeny of newly found prokaryotic and eukaryotic AOX and PTOX proteins supports the idea that AOX and PTOX represent two distinct groups of proteins that diverged prior to the endosymbiotic events that gave rise to the eukaryotic organelles. Using multiple sequence alignment, we identified residues conserved in all AOX and PTOX proteins. We also provide a scheme to readily distinguish PTOX from AOX proteins based upon differences in amino acid sequence in motifs around the conserved iron-binding residues. Given the presence of PTOX in cyanobacteria, we suggest that this acronym now stand for plastoquinol terminal oxidase. Our results have implications for the photosynthetic and respiratory metabolism of these prokaryotes, as well as for the origin and evolution of eukaryotic AOX and PTOX proteins.

  10. Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings.

    PubMed

    Grabelnych, O I; Borovik, O A; Tauson, E L; Pobezhimova, T P; Katyshev, A I; Pavlovskaya, N S; Koroleva, N A; Lyubushkina, I V; Bashmakov, V Yu; Popov, V N; Borovskii, G B; Voinikov, V K

    2014-06-01

    Gene expression, protein synthesis, and activities of alternative oxidase (AOX), uncoupling proteins (UCP), adenine nucleotide translocator (ANT), and non-coupled NAD(P)H dehydrogenases (NDex, NDPex, and NDin) were studied in shoots of etiolated winter wheat (Triticum aestivum L.) seedlings after exposure to hardening low positive (2°C for 7 days) and freezing (-2°C for 2 days) temperatures. The cold hardening efficiently increased frost-resistance of the seedlings and decreased the generation of reactive oxygen species (ROS) during further cold shock. Functioning of mitochondrial energy-dissipating systems can represent a mechanism responsible for the decrease in ROS under these conditions. These systems are different in their response to the action of the hardening low positive and freezing temperatures. The functioning of the first system causes induction of AOX and UCP synthesis associated with an increase in electron transfer via AOX in the mitochondrial respiratory chain and also with an increase in the sensitivity of mitochondrial non-phosphorylating respiration to linoleic and palmitic acids. The increase in electron transfer via AOX upon exposure of seedlings to hardening freezing temperature is associated with retention of a high activity of NDex. It seems that NDex but not the NDPex and NDin can play an important role in maintaining the functional state of mitochondria in heterotrophic tissues of plants under the influence of freezing temperatures. The involvement of the mitochondrial energy-dissipating systems and their possible physiological role in the adaptation of winter crops to cold and frost are discussed.

  11. Comparison of the API 20E and Oxi/Ferm systems in identification of nonfermentative and oxidase-positive fermentative bacteria.

    PubMed

    Oberhofer, T R

    1979-02-01

    The API 20E and Oxi/Ferm systems were tested in parallel to identify nonfermentative bacteria and oxidase-positive fermentative bacteria. Test strains consisted of consecutive clinical isolates, with stock cultures used to supplement those species infrequently recovered. The two microsystems, as well as tubes of triple sugar iron, motility, cetrimide, and oxidative glucose media, were inoculated by each worker for each organism. Identification of each isolate was by the protocol of the manufacturers, with supplemental tests and flagella stains performed when necessary. Concurrent identification was undertaken with a conventional system against which the results of the two systems were compared for accuracy. There was a 95.3% accuracy in identification by the Oxi-Ferm system and 88.9% by the API system. Almost one-fourth of all identification attempts with the API required computer assistance, and most of these were for oxidase positive bacteria. Because of this, and because the API system showed greater accuracy in identification of the oxidase-negative bacteria, it seems best suited for identification of these organisms (P. maltophilia, A. anitratus, and A. lwoffi). The Oxi/Ferm system is technically less cumbersome than the API and is well suited for both groups of organisms.

  12. NADPH Oxidases in Vascular Pathology

    PubMed Central

    Konior, Anna; Schramm, Agata; Czesnikiewicz-Guzik, Marta

    2014-01-01

    Abstract Significance: Reactive oxygen species (ROS) play a critical role in vascular disease. While there are many possible sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases play a central role. They are a source of “kindling radicals,” which affect other enzymes, such as nitric oxide synthase endothelial nitric oxide synthase or xanthine oxidase. This is important, as risk factors for atherosclerosis (hypertension, diabetes, hypercholesterolemia, and smoking) regulate the expression and activity of NADPH oxidases in the vessel wall. Recent Advances: There are seven isoforms in mammals: Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and Duox2. Nox1, Nox2, Nox4, and Nox5 are expressed in endothelium, vascular smooth muscle cells, fibroblasts, or perivascular adipocytes. Other homologues have not been found or are expressed at very low levels; their roles have not been established. Nox1/Nox2 promote the development of endothelial dysfunction, hypertension, and inflammation. Nox4 may have a role in protecting the vasculature during stress; however, when its activity is increased, it may be detrimental. Calcium-dependent Nox5 has been implicated in oxidative damage in human atherosclerosis. Critical Issues: NADPH oxidase-derived ROS play a role in vascular pathology as well as in the maintenance of normal physiological vascular function. We also discuss recently elucidated mechanisms such as the role of NADPH oxidases in vascular protection, vascular inflammation, pulmonary hypertension, tumor angiogenesis, and central nervous system regulation of vascular function and hypertension. Future Directions: Understanding the role of individual oxidases and interactions between homologues in vascular disease is critical for efficient pharmacological regulation of vascular NADPH oxidases in both the laboratory and clinical practice. Antioxid. Redox Signal. 20, 2794–2814. PMID:24180474

  13. Nucleic acid based logical systems.

    PubMed

    Han, Da; Kang, Huaizhi; Zhang, Tao; Wu, Cuichen; Zhou, Cuisong; You, Mingxu; Chen, Zhuo; Zhang, Xiaobing; Tan, Weihong

    2014-05-12

    Researchers increasingly visualize a significant role for artificial biochemical logical systems in biological engineering, much like digital logic circuits in electrical engineering. Those logical systems could be utilized as a type of servomechanism to control nanodevices in vitro, monitor chemical reactions in situ, or regulate gene expression in vivo. Nucleic acids (NA), as carriers of genetic information with well-regulated and predictable structures, are promising materials for the design and engineering of biochemical circuits. A number of logical devices based on nucleic acids (NA) have been designed to handle various processes for technological or biotechnological purposes. This article focuses on the most recent and important developments in NA-based logical devices and their evolution from in vitro, through cellular, even towards in vivo biological applications.

  14. Removal of bisphenol derivatives through quinone oxidation by polyphenol oxidase and subsequent quinone adsorption on chitosan in the heterogeneous system.

    PubMed

    Kimura, Yuji; Takahashi, Ayumi; Kashiwada, Ayumi; Yamada, Kazunori

    2015-01-01

    In this study, the combined use of a biopolymer chitosan and an oxidoreductase polyphenol oxidase (PPO) was systematically investigated for the removal of bisphenol derivatives from aqueous medium. The process parameters, such as the pH value, temperature, and PPO concentration, were estimated to conduct the enzymatic quinone oxidation of bisphenol derivatives by as little enzyme as possible. Bisphenol derivatives effectively underwent PPO-catalysed quinone oxidation without H2O2 unlike other oxidoreductases, such as peroxidase and tyrosinase, and the optimum conditions were determined to be pH 7.0 and 40°C for bisphenol B, bisphenol E, bisphenol O, and bisphenol Z; pH 7.0 and 30°C for bisphenol C and bisphenol F; and pH 8.0 and 40°C for bisphenol T. They were completely removed through adsorption of enzymatically generated quinone derivatives on chitosan beads or chitosan powders. Quinone adsorption on chitosan beads or chitosan powders in the heterogeneous system was found to be a more effective procedure than generation of aggregates in the homogeneous system with chitosan solution. The removal time was shortened by increasing the amount of chitosan beads or decreasing the size of the chitosan powders.

  15. Metabolism of benzene and phenol by a reconstituted purified phenobarbital induced rat liver mixed function oxidase system

    SciTech Connect

    Griffiths, J.C.

    1986-01-01

    Cytochrome P-450 and the electron-donor, NADPH-cytochrome c reductase were isolated from phenobarbital induced rat liver microsomes. Both benzene and its primary metabolite phenol, were substrates for the reconstituted purified phenobarbital induced rat liver mixed function oxidase system. Benzene was metabolized to phenol and the polyhydroxylated metabolites; catechol, hydroquinone and 1,2,4 benzenetriol. Benzene elicited a Type I spectral change upon its interaction with the cytochrome P-450 while phenol's interaction with the cytochrome P-450 produced a reverse Type I spectra. The formation of phenol showed a pH optimum of 7.0 compared with 6.6-6.8 for the production of the polyhyrdoxylated metabolites. Cytochrome P-450 inhibitors, such as metyrapone and SKF 525A, diminished the production of phenol from benzene but not the production of the polyhydroxylated metabolites from phenol. The radical trapping agents, DMSO, KTBA and mannitol, decreased the recovery of polyhydroxylated metabolites, from /sup 14/C-labeled benzene and/or phenol. As KTBA and DMSO interacted with OH. There was a concomitant release of ethylene and methane, which was measured. Desferrioxamine, an iron-chelator and catalase also depressed the recovery of polyhydroxylated metabolites. In summary, benzene and phenol were both substrates for this reconstituted purified enzyme system, but they differed in binding to cytochrome P-450, pH optima and mode of hydroxylation.

  16. Boric Acid Reclamation System (BARS)

    SciTech Connect

    Kniazewycz, B.G.; Markind, J.

    1986-03-01

    KLM Technologies' personnel have identified a Boric Acid Reclamation System (BARS) utilizing reverse osmosis and ultrafiltration to produce a recyclable grade of otherwise waste boric acid at PWRs, thus reducing a major source of low-level radwaste. The design of a prototype BARS as a compact volume reduction system was the result of KLM's Phase 1 Program, and based upon a preliminary feasibility program, which assessed the applicability of membrane technology to refurbish and recycle waste boric acid from floor and equipment drain streams. The analysis of the overall program indicated a substantial savings regarding off-site disposal costs. Today's economic scenario indicates that optimization of volume reduction operation procedures could significantly reduce waste management costs, especially where burial penalties have become more severe. As a reaction to the economic burden imposed by final disposal, many nuclear plants are currently modifying their design and operating philosophies concerning liquid radwaste processing systems to meet stricter environmental regulations, and to derive potential economic benefits by reducing the ever-increasing volumes of wastes that are produced. To effect these changes, innovative practices in waste management and more efficient processing technologies are being successfully implemented.

  17. Ascorbate-synthesizing system in rat liver microsomes. II. A peptide-bound flavin as the prosthetic group of L-gulono-gamma-lactone oxidase.

    PubMed

    Nakagawa, H; Asano, A; Sato, R

    1975-01-01

    L-Gulono-gamma-lactone oxidase [EC 1.1.3.8] was purified 80-fold from rat liver microsomes. In confirmation of our previous finding with a cruder preparation, the purified enzyme was shown to contain an L-gulono-gamma-lactone-reducible pigment as a prosthetic group. This pigment was not liberated from the protein by acid ammonium sulfate, 10% trichloroacetic acid or 2 M area, but was effectively released by proteolytic digestion. The pigment thus released showed a reduced-minus-oxidized difference spectrum characteristic of a flavin compound. The pigment was liberated from a trichloroacetic acid-treated preparation of the enzyme by pronase digestion and purified by Florisil column chromatography and paper chromatography. The absorption spectrum as well as the fluorescence emission and excitation spectra of the purified pigment indicated that it was actually a flavin peptide. It was, however, different not only from FMN but also from flavin peptides isolated from other sources such as succinate dehydrogenase [EC 1.3.99.1] and monoamine oxidase [EC 1.4.3.4] as regards the pH dependence of fluorescence intensity and the Rf value on thin-layer chromatography. A preliminary analysis showed that the purified flavin compound contained several amino acid residues. Alkaline photolysis of the purified flavin peptide suggested that the isoalloxazine ring of the flavin is involved in its binding to the peptide. The hypsochromic shift of the absorption peak in the near-ultraviolet region suggested further that the linkage between the flavin and the peptide may be mediated by the 8-methyl group of the isoalloxazine nucleus. It can be concluded that the prosthetic group of gulonolactone oxidase is a flavin which is covalently bound to the enzyme protein.

  18. Novel L-amino acid oxidase with antibacterial activity against methicillin-resistant Staphylococcus aureus isolated from epidermal mucus of the flounder Platichthys stellatus.

    PubMed

    Kasai, Kosuke; Ishikawa, Takashi; Komata, Takafumi; Fukuchi, Kaori; Chiba, Mitsuru; Nozaka, Hiroyuki; Nakamura, Toshiya; Sato, Tatsusuke; Miura, Tomisato

    2010-01-01

    Fish produce mucus substances as a defensive outer barrier against environmental xenobiotics and predators. Recently, we found a bioactive protein in the mucus layer of the flounder Platichthys stellatus, which showed antibacterial activity against Staphylococcus epidermidis, Staphylococcus aureus and methicillin-resistant S. aureus. In this study, we isolated and identified the antibacterial protein from the mucus components of P. stellatus using a series of column chromatography steps. We then performed gel electrophoresis and cDNA cloning to characterize the protein. The antibacterial protein in the mucus had a molecular mass of approximately 52 kDa with an isoelectric point of 5.3, and cDNA sequencing showed that it corresponded completely with the peptide sequence of antibacterial protein from the gill. A BLAST search suggested that the cDNA encoded an antibacterial protein sharing identity with a number of L-amino acid oxidases (LAAOs) and possessing several conserved motifs found in flavoproteins. RT-PCR using a specific primer, and immunohistochemical analysis with anti-LAAO IgG, demonstrated tissue-specific expression and localization in the gill. Moreover, the anti-LAAO IgG was able to neutralize the antibacterial activity of the protein against methicillin-resistant S. aureus. Thus, we demonstrated that this antibacterial protein, identified from P. stellatus-derived epidermal mucus, is a novel LAAO-like protein with antibacterial activity, similar to snake LAAOs.

  19. Overexpression of Arabidopsis thaliana gibberellic acid 20 oxidase (AtGA20ox) gene enhance the vegetative growth and fiber quality in kenaf (Hibiscus cannabinus L.) plants.

    PubMed

    Withanage, Samanthi Priyanka; Hossain, Md Aktar; Kumar M, Sures; Roslan, Hairul Azman B; Abdullah, Mohammad Puad; Napis, Suhaimi B; Shukor, Nor Aini Ab

    2015-06-01

    Kenaf (Hibiscus cannabinus L.; Family: Malvaceae), is multipurpose crop, one of the potential alternatives of natural fiber for biocomposite materials. Longer fiber and higher cellulose contents are required for good quality biocomposite materials. However, average length of kenaf fiber (2.6 mm in bast and 1.28 mm in whole plant) is below the critical length (4 mm) for biocomposite production. Present study describes whether fiber length and cellulose content of kenaf plants could be enhanced by increasing GA biosynthesis in plants by overexpressing Arabidopsis thaliana Gibberellic Acid 20 oxidase (AtGA20ox) gene. AtGA20ox gene with intron was overexpressed in kenaf plants under the control of double CaMV 35S promoter, followed by in planta transformation into V36 and G4 varieties of kenaf. The lines with higher levels of bioactive GA (0.3-1.52 ng g(-1) fresh weight) were further characterized for their morphological and biochemical traits including vegetative and reproductive growth, fiber dimension and chemical composition. Positive impact of increased gibberellins on biochemical composition, fiber dimension and their derivative values were demonstrated in some lines of transgenic kenaf including increased cellulose content (91%), fiber length and quality but it still requires further study to confirm the critical level of this particular bioactive GA in transgenic plants.

  20. Monomeric L-amino acid oxidase-induced mitochondrial dysfunction in Rhizoctonia solani Reveals a novel antagonistic mechanism of Trichoderma harzianum ETS 323.

    PubMed

    Yang, Chia-Ann; Cheng, Chi-Hua; Lee, Jeng-Woei; Lo, Chaur-Tsuen; Liu, Shu-Ying; Peng, Kou-Cheng

    2012-03-14

    The monomeric L-amino acid oxidase (mTh-LAAO) of Trichoderma harzianum ETS 323 has been suggested to antagonize Rhizoctonia solani by an unknown mechanism. Here, the mTh-LAAO-treated R. solani exhibited hyphal lysis and apoptotic characteristics such as DNA fragmentation, reactive oxygen species (ROS) accumulation, lipid peroxidation, and mitochondrial membrane potential depolarization. This hyphal lysis was suppressed by the mitochondria-dependent apoptosis inhibitor oligomycin while accompanied by reduction of ROS accumulation. This result suggested that mitochondria-mediated apoptosis in R. solani was involved in mTh-LAAO-induced growth inhibition, which was supported by the evidence of cytocheome c release and activation of caspases 9 and 3. Furthermore, the data indicated that the mTh-LAAO-induced fungal cell death was also closely interrelated with the interaction of mTh-LAAO with R. solani hyphal cell wall proteins. These results illuminate the biological function and mechanism underlying the antagonistic action of T. harzianum mTh-LAAO against fungal pathogens.

  1. Spontaneously Occurring Formation of Intranuclear and Cytoplasmic Inclusions in Renal Proximal Epithelium Due to Accumulation of D-Amino Acid Oxidase in Wistar Hannover Rats.

    PubMed

    Shimoyama, Natsumi; Nakatsuji, Shunji; Andoh, Rie; Yamaguchi, Yuko; Tamura, Kazutoshi; Hoshiya, Toru

    2015-07-01

    Intranuclear and cytoplasmic inclusions in the renal proximal tubular epithelium were observed in nontreated male and female Wistar Hannover rats in a 26-week study (32 weeks of age) and a 104-week study (110 weeks of age). The incidence rates were less than 5% in these two studies. In affected animals, the inclusions were observed in more than 60% of proximal tubular epithelium as various sized (approximately 1-8 μm in diameter) round and eosinophilic materials, but not in distal tubules, Henle's loop, or collecting ducts. Ultrastructurally, inclusions appeared finely granular, homogenous with middle-electron density, and without a limiting membrane. These inclusions were determined to be protein histochemically stained by Azan-Mallory and immunoreactive with an antibody against D-amino acid oxidase (DAO). There was no abnormality in in-life observations or in clinical test values suggestive of renal dysfunction. There were no associated degenerative or inflammatory changes in the kidneys, and no similar inclusions were observed in the other organs. These inclusions are very similar to propiverine hydrochloride (propiverine) and norepinephreine/serotonin reuptake inhibitor-induced inclusions. This is the first report of accumulation of DAO and formation of inclusions occurring spontaneously in rat kidneys. The data are important for toxicological studies using Wistar Hannover rats.

  2. Overexpression of Arabidopsis thaliana gibberellic acid 20 oxidase (AtGA20ox) gene enhance the vegetative growth and fiber quality in kenaf (Hibiscus cannabinus L.) plants

    PubMed Central

    Withanage, Samanthi Priyanka; Hossain, Md Aktar; Kumar M., Sures; Roslan, Hairul Azman B; Abdullah, Mohammad Puad; Napis, Suhaimi B.; Shukor, Nor Aini Ab.

    2015-01-01

    Kenaf (Hibiscus cannabinus L.; Family: Malvaceae), is multipurpose crop, one of the potential alternatives of natural fiber for biocomposite materials. Longer fiber and higher cellulose contents are required for good quality biocomposite materials. However, average length of kenaf fiber (2.6 mm in bast and 1.28 mm in whole plant) is below the critical length (4 mm) for biocomposite production. Present study describes whether fiber length and cellulose content of kenaf plants could be enhanced by increasing GA biosynthesis in plants by overexpressing Arabidopsis thaliana Gibberellic Acid 20 oxidase (AtGA20ox) gene. AtGA20ox gene with intron was overexpressed in kenaf plants under the control of double CaMV 35S promoter, followed by in planta transformation into V36 and G4 varieties of kenaf. The lines with higher levels of bioactive GA (0.3–1.52 ng g−1 fresh weight) were further characterized for their morphological and biochemical traits including vegetative and reproductive growth, fiber dimension and chemical composition. Positive impact of increased gibberellins on biochemical composition, fiber dimension and their derivative values were demonstrated in some lines of transgenic kenaf including increased cellulose content (91%), fiber length and quality but it still requires further study to confirm the critical level of this particular bioactive GA in transgenic plants. PMID:26175614

  3. Substrate specificity of THCA-CoA oxidases from rat liver light mitochondrial fractions on dehydrogenation of 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid CoA thioester.

    PubMed

    Ikegawa, S; Goto, T; Mano, N; Goto, J

    1998-11-01

    The substrate specificity of rat liver peroxisomal 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoyl-CoA (THCA-CoA) oxidases, which catalyze the dehydrogenation of 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid (THCA) CoA thioester, having an asymmetric center at C-25, to form (24E)-3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholest-24-enoic acid (delta 24-THCA) CoA thioester, was studied. The stable isotope labeled substrates, [3,7,12-18O3]-(25R)- and (25S)-THCA CoA thioesters were synthesized by an exchange reaction of carbonyl oxygens on a steroid nucleus of 3,7,12-trioxo-5 beta-cholestanoic acid, followed by metal hydride reduction and condensation reaction with CoA. After incubation of a mixture of unlabeled (25R)- and 18O-labeled (25S)-THCA CoA thioester, or vice versa, with hepatic peroxisomal THCA-CoA oxidases, biotransformed delta 24-THCA was determined by liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. The delta 24-THCA was derived only from (25S)-THCA CoA thioester, indicating that the 25S epimer of THCA is a preferential substrate on dehydrogenation by THCA-CoA oxidases.

  4. Searching for cognitive enhancement in the Morris water maze: better and worse performance in D-amino acid oxidase knockout (Dao(-/-)) mice.

    PubMed

    Pritchett, David; Taylor, Amy M; Barkus, Christopher; Engle, Sandra J; Brandon, Nicholas J; Sharp, Trevor; Foster, Russell G; Harrison, Paul J; Peirson, Stuart N; Bannerman, David M

    2016-04-01

    A common strategy when searching for cognitive-enhancing drugs has been to target the N-methyl-d-aspartate receptor (NMDAR), given its putative role in synaptic plasticity and learning. Evidence in favour of this approach has come primarily from studies with rodents using behavioural assays like the Morris water maze. D-amino acid oxidase (DAO) degrades neutral D-amino acids such as D-serine, the primary endogenous co-agonist acting at the glycine site of the synaptic NMDAR. Inhibiting DAO could therefore provide an effective and viable means of enhancing cognition, particularly in disorders like schizophrenia, in which NMDAR hypofunction is implicated. Indirect support for this notion comes from the enhanced hippocampal long-term potentiation and facilitated water maze acquisition of ddY/Dao(-) mice, which lack DAO activity due to a point mutation in the gene. Here, in Dao knockout (Dao(-/-) ) mice, we report both better and worse water maze performance, depending on the radial distance of the hidden platform from the side wall of the pool. Dao(-/-) mice displayed an increased innate preference for swimming in the periphery of the maze (possibly due to heightened anxiety), which facilitated the discovery of a peripherally located platform, but delayed the discovery of a centrally located platform. By contrast, Dao(-/-) mice exhibited normal performance in two alternative assays of long-term spatial memory: the appetitive and aversive Y-maze reference memory tasks. Taken together, these results question the proposed relationship between DAO inactivation and enhanced long-term associative spatial memory. They also have generic implications for how Morris water maze studies are performed and interpreted.

  5. An amperometric enzyme electrode and its biofuel cell based on a glucose oxidase-poly(3-anilineboronic acid)-Pd nanoparticles bionanocomposite for glucose biosensing.

    PubMed

    Sun, Lingen; Ma, Yixuan; Zhang, Pei; Chao, Long; Huang, Ting; Xie, Qingji; Chen, Chao; Yao, Shouzhuo

    2015-06-01

    A new amperometric enzyme electrode and its biofuel cell were fabricated based on a glucose oxidase (GOx)-poly(3-anilineboronic acid) (PABA)-Pd nanoparticles (PdNPs) bionanocomposite for biosensing of glucose. Briefly, Pd was electroplated on a multiwalled carbon nanotubes (MWCNTs)-modified Au electrode, and the GOx-PABA-PdNPs bionanocomposite was prepared on the Pd(plate)/MWCNTs/Au electrode through the chemical oxidation of a GOx-3-anilineboronic acid adduct by Na2PdCl4, followed by electrode-modification with an outer-layer chitosan (CS) film. The thus-prepared CS/GOx-PABA-PdNPs/Pd(plate)/MWCNTs/Au electrode exhibited a linear amperometric response to glucose concentration from 2.0 μM to 4.5 mM with a sensitivity of 160 μA/mM/cm(2), sub-μM detection limit, and excellent operation/storage stability in the first-generation biosensing mode, as well as excellent analytical performance in the second-generation biosensing mode. The good recoveries of glucose obtained from spiked urine samples revealed the application potential of our amperometric enzyme electrode. In addition, a glucose/O2 biofuel cell was constructed using this enzyme electrode as the anode and a Pt/MWCNTs/Au electrode as the cathode, and this biofuel cell as a self-powered biosensing device showed a linear voltage response to glucose concentration from 100 μM to 13.5 mM with a sensitivity of 43.5 mV/mM/cm(2) and excellent operation/storage stability.

  6. Non-equivalent conformations of D-amino acid oxidase dimer from porcine kidney between the two subunits. Molecular dynamics simulation and photoinduced electron transfer.

    PubMed

    Nueangaudom, Arthit; Lugsanangarm, Kiattisak; Pianwanit, Somsak; Kokpol, Sirirat; Nunthaboot, Nadtanet; Tanaka, Fumio

    2014-02-07

    The structural difference between two subunits of D-amino acid oxidase dimer from porcine kidney was studied by molecular dynamics simulation (MDS) and rate of photoinduced electron transfer (ET) from aromatic amino acids as tyrosines (Tyr) and tryptophanes (Trp) to the excited isoalloxazine (Iso*). The donor-acceptor distances (Rc) between isoalloxazine (Iso) and the donors were shortest in Tyr224 (0.74 nm) in Sub A at 10 °C (Sub A10), in Tyr224 (0.79 nm) in Sub B at 10 °C (Sub B10), in Tyr228 (0.85 nm) in Sub A at 30 °C (Sub A30), and in Tyr224 (0.72 nm) in Sub B at 30 °C (Sub B30). The Rcs were mostly shorter in the dimer than those in the monomer. Hydrogen bonding (H-bond) pairs between Iso and surrounding amino acids varied with the subunit and temperature. O2 of the Iso ring formed an H-bond exclusively with Thr317OG1 (side chain) in both Sub A10 and Sub A30, while it formed with Gly315N (peptide), Leu316N and Thr317N in Sub B10 and Sub B30. N3H of Iso formed an H-bond with Leu51O (peptide) in Sub A10 and Sub A30, but not in Sub B10 and Sub B30. Electron affinity of Iso* was appreciably lower in Sub A10 compared to Sub B10, while it was opposite at 30 °C. ET rate to Iso* was fastest from Tyr224 in Sub A10, while it was fastest from Tyr314 in Sub B10. The ET rate was fastest from Tyr314 in Sub A30, while it was fastest from Tyr224 in Sub B30. The greater ET rates in the dimer as compared to those in the monomer were elucidated with shorter Rc in the dimer as compared to the monomer. The static dielectric constants inside the subunits and the static dielectric constant between Iso and Tyr224 or Tyr228 were not different appreciably. A few water molecules and sometimes an amino acid were located between Iso and Tyr224, which may be the reason why the dielectric constant of the entire subunits did not differ from that between Iso and Tyr224.

  7. Development and characterization of an ascorbate oxidase-based sensor-biosensor system for telemetric detection of AA and antioxidant capacity in fresh orange juice.

    PubMed

    Barberis, Antonio; Spissu, Ylenia; Bazzu, Gianfranco; Fadda, Angela; Azara, Emanuela; Sanna, Daniele; Schirra, Mario; Serra, Pier Andrea

    2014-09-02

    A new carbon ascorbate oxidase-based sensor-biosensor system (SB) was coupled to a dual-channel telemetric device for online simultaneous electrochemical detection of ascorbic acid (AA) and antioxidant capacity in Hamlin, Sanguinello, and Moro orange varieties. The electrocatalytic performances of the SB were investigated by cyclic voltammetry and amperometric techniques. The phenol composition of orange juice of each variety, and the cyclic voltammetries of the most represented phenols, were provided. The in vitro calibrations were performed in PBS (pH 5.6), applying a constant potential of +500 mV. A standard mixture of phenols, based on orange juice composition, was used as reference material for studying SB behavior. SB works at an applied potential of +500 mV, in a concentration range comprised between the LOD 0.26 μM and 20 μM. In this concentration range, limiting the data acquisition time to 2 min, the problems of electrode passivation due to phenols polymerization were overcome. AA calibration showed that the biosensor registered statistically lower currents than the sensor since the enzyme oxidized AA before it reached the electrode surface. Standard mixture calibration showed that currents registered by sensor and biosensor did not statistically differ. The difference between sensor and biosensor AA registered currents was used to calculate an AA selectivity index and, consequently, to determine the AA content and the antioxidant capacity in the juices. The novelty of the SB is its ability to distinguish between AA and phenols contribution to antioxidant capacity. The obtained results were in accordance with reference methods.

  8. Kinetic and mutagenic evidence for the role of histidine residues in the Lycopersicon esculentum 1-aminocyclopropane-1-carboxylic acid oxidase.

    PubMed

    Tayeh, M A; Howe, D L; Salleh, H M; Sheflyan, G Y; Son, J K; Woodard, R W

    1999-01-01

    The ACCO gene from Lycopersicon esculentum (tomato) has been cloned into the expression vector PT7-7. The highly expressed protein was recovered in the form of inclusion bodies. ACCO is inactivated by diethyl pyrocarbonate (DEPC) with a second-order rate constant of 170 M(-1) min(-1). The pH-inactivation rate data imply the involvement of an amino acid residue with a pK value of 6.05. The difference UV spectrum of the the DEPC-inactivated versus native ACCO showed a single peak at 242 nm indicating the modification of histidine residues. The inactivation was reversed by the addition of hydroxylamine to the DEPC-inactivated ACCO. Substrate/cofactor protection studies indicate that both iron and ACC bind near the active site, which contains histidine residues. Four histidines of ACCO were individually mutated to alanine and glycine. H39A is catalytically active, while H177A, H177G, H211A, H211G, H234A, and H234G are basically inactive. The results indicate that histidine residues 177, 211, and 234 may serve as ligands for the active-site iron of ACCO and/or may play some important structural or catalytic role.

  9. The effect of high polyphenol oxidase grass silage on metabolism of polyunsaturated fatty acids and nitrogen across the rumen of beef steers.

    PubMed

    Lee, M R F; Theobald, V J; Gordon, N; Leyland, M; Tweed, J K S; Fychan, R; Scollan, N D

    2014-11-01

    Polyphenol oxidase (PPO) activity in red clover (Trifolium pratense) has been reported to reduce both proteolysis and lipolysis, resulting in greater N use efficiency and protection of PUFA across the rumen. Although high levels of PPO have been reported in grasses such as cocksfoot (orchard grass; Dactylis glomerata), no in vivo research has determined whether grass PPO elicits the same response as red clover PPO. To test the hypothesis that silage ensiled from grass with high levels of PPO protects N and PUFA across the rumen, 6 steers with ruminal and duodenal cannulas were offered cocksfoot silage (CO; high-PPO grass), perennial ryegrass silage (PR; Lolium perenne; low-PPO grass), or red clover silage (RC; high-PPO control) at 16 g DM/kg BW daily with the experiment consisting of two 3 × 3 Latin squares with 21-d periods, consisting of 12 d of diet adaptation, 6 d of duodenal marker infusion, 2 d of duodenal sampling, and 1 d of ruminal sampling. All silages were well preserved, with DM of 34.4, 55.3, and 45.4% for CO, PR, and RC. Activity of PPO in silages was low due to deactivation but was greater in CO than either PR or RC (0.15 vs. 0.05 and 0.08 μkatal/g DM). Protein-bound phenol (mg/g DM) as a measure of the degree of oxidation and an indication of PPO protection was greatest for RC (15.9) but comparable for PR (10.1) and CO (12.2). Biohydrogenation of C18 PUFA was significantly lower on RC compared to the 2 grass silages with CO greater than PR. Despite lower levels of total fatty acid intake and subsequent duodenal flow, CO resulted in greater levels of phytanic acid and total branched and odd chain fatty acids in duodenal digesta than RC or PR. Ruminal ammonia concentration was greatest for RC, with no difference between the grasses. Duodenal flow of microbial N and efficiency of microbial protein synthesis were lowest for CO and comparable for RC and PR. The CO (high-grass PPO) did not result in elevated levels of C18 PUFA escaping the rumen or

  10. Promoter analyses and transcriptional profiling of eggplant polyphenol oxidase 1 gene (SmePPO1) reveal differential response to exogenous methyl jasmonate and salicylic acid.

    PubMed

    Shetty, Santoshkumar M; Chandrashekar, Arun; Venkatesh, Yeldur P

    2012-05-01

    The transcriptional regulation of multigenic eggplant (Solanum melongena) polyphenol oxidase genes (SmePPO) is orchestrated by their corresponding promoters which mediate developmentally regulated expression in response to myriad biotic and abiotic factors. However, information on structural features of SmePPO promoters and modulation of their expression by plant defense signals are lacking. In the present study, SmePPOPROMOTERs were cloned by genome walking, and their transcription start sites (TSS) were determined by RLM-RACE. Extensive sequence analyses revealed the presence of evolutionarily conserved and over-represented putative cis-acting elements involved in light-regulated transcription, biosynthetic pathways (phenylpropanoid/flavonoid), hormone signaling (abscisic acid, gibberellic acid, jasmonate and salicylate), elicitor and stress responses (cold/dehydration responses), sugar metabolism and plant defense signaling (W-BOX/WRKY) that are common to SmePPOPROMOTER1 and 2. The TSS for SmePPO genes are located 9-15bp upstream of ATG with variable lengths of 5' untranslated regions. Transcriptional profiling of SmePPOs in eggplant seedlings has indicated differential response to methyl jasmonate (MeJA) or salicylic acid (SA) treatment. In planta, while MeJA elicited expression of all the six SmePPOs, SA was only able to induce the expression of SmePPO4-6. Interestingly, in dual treatment, SA considerably repressed the MeJA-induced expression of SmePPOs. Functional dissection of SmePPOPROMOTER1 by deletion analyses using Agrobacterium-mediated transient expression in tobacco leaves has shown that MeJA enhances the SmePPOPROMOTER1-β-glucuronidase (GUS) expression in vivo, while SA does not. Histochemical and quantitative GUS assays have also indicated the negative effect of SA on MeJA-induced expression of SmePPOPROMOTER1. By combining in silico analyses, transcriptional profiling and expression of SmePPOPROMOTER1-GUS fusions, the role of SA on the modulation

  11. A Penicillium expansum glucose oxidase-encoding gene, GOX2, is essential for gluconic acid production and acidification during colonization of deciduous fruit.

    PubMed

    Barad, Shiri; Horowitz, Sigal Brown; Moscovitz, Oren; Lichter, Amnon; Sherman, Amir; Prusky, Dov

    2012-06-01

    Penicillium expansum, the causal agent of blue mold rot, causes severe postharvest maceration of fruit through secretion of total, d-gluconic acid (GLA). Two P. expansum glucose oxidase (GOX)-encoding genes, GOX1 and GOX2, were analyzed. GOX activity and GLA accumulation were strongly related to GOX2 expression, which increased with pH to a maximum at pH 7.0, whereas GOX1 was expressed at pH 4.0, where no GOX activity or extracellular GLA were detected. This differential expression was also observed at the leading edge of the decaying tissue, where GOX2 expression was dominant. The roles of the GOX genes in pathogenicity were further studied through i) development of P. expansum goxRNAi mutants exhibiting differential downregulation of GOX2, ii) heterologous expression of the P. expansum GOX2 gene in the nondeciduous fruit-pathogen P. chrysogenum, and iii) modulation of GLA production by FeSO(4) chelation. Interestingly, in P. expansum, pH and GLA production elicited opposite effects on germination and biomass accumulation: 26% of spores germinated at pH 7.0 when GOX activity and GLA were highest whereas, in P. chrysogenum at the same pH, when GLA did not accumulate, 72% of spores germinated. Moreover, heterologous expression of P. expansum GOX2 in P. chrysogenum resulted in enhanced GLA production and reduced germination, suggesting negative regulation of spore germination and GLA production. These results demonstrate that pH modulation, mediated by GLA accumulation, is an important factor in generating the initial signal or signals for fungal development leading to host-tissue colonization by P. expansum.

  12. Effect of endogenous ascorbic acid oxidase activity and stability on vitamin C in carrots (Daucus carota subsp. sativus) during thermal treatment.

    PubMed

    Leong, Sze Ying; Oey, Indrawati

    2012-10-15

    The purpose of this research was to study the effect of endogenous ascorbic acid oxidase (AAO) on vitamin C in carrots (Daucus carota subsp. sativus), namely Nantes, Egmont Gold and baby carrots during thermal treatment. Enzyme-substrate reaction kinetics of AAO were described using Michaelis-Menten equation. The estimated K(m) and V(max) values of AAO ranged from 50.34 to 63.54 μM and 23.70 to 26.82 μmol/min, respectively. Nantes carrots had the lowest AAO activity. On the other hand, Egmont Gold had the highest V(max). AAO activity in all carrot cultivars was stable up to 50 °C and inactivated above 50 °C. Irreversible thermal inactivation of AAO followed first order kinetics (55-70 °C) and the estimated activation energy of the three carrot cultivars situated between 114.33 and 191.45 kJ/mol. Regarding vitamin C stability, thermal treatment at 60-70 °C has resulted in total conversion of l-AA to DHAA due to residual AAO activity; a complete AAO inactivation was found in 80 °C-treated carrots with high vitamin C retention predominantly in l-AA form, up to 90%. On average, the carrots had a total vitamin C content amounting from 368.24 to 379.87 μg/g dry matter and the Nantes carrots had the highest vitamin C content. The effectiveness of rapid inactivation of endogenous AAO via heating (>80 °C, 10 min) prior to matrix disruption gave protection to l-AA towards enzymatic oxidation, thus resulted in a higher vitamin C content and stability in carrots.

  13. Evidence for association and epistasis at the DAOA/G30 and D-amino acid oxidase loci in an Irish schizophrenia sample.

    PubMed

    Corvin, A; McGhee, K A; Murphy, K; Donohoe, G; Nangle, J M; Schwaiger, S; Kenny, N; Clarke, S; Meagher, D; Quinn, J; Scully, P; Baldwin, P; Browne, D; Walsh, C; Waddington, J L; Morris, D W; Gill, M

    2007-10-05

    The D-amino acid oxidase (DAO) signaling pathway has been implicated in schizophrenia pathogenesis. This may be mediated through modulation of NMDA function by DAO, which is in turn activated by DAO activator (DAOA, formerly G72). Chumakov et al. (2002); PNAS 99: 13675-13680, identifying the novel schizophrenia susceptibility gene DAOA/G30 and a number of independent studies have since reported evidence of association between the DAOA and DAO genes and schizophrenia. However, at least two studies have failed to replicate the epistatic interaction between these loci described in the original report and there have been differences in the associated alleles/haplotypes reported at each locus. In this study, we performed association and epistasis analyses of the DAOA/G30 and DAO loci in a sample of 373 cases with DSM-IV schizophrenia/schizoaffective disorder and 812 controls from the Republic of Ireland. Corrected for the number of tests performed, we found evidence for association between markers at both genes and schizophrenia: DAOA/G30 (P = 0.005, OR = 1.34 (1.09, 1.65)) and DAO (P = 0.003, OR = 1.43 (1.12, 1.84). The data suggest that evidence for association at DAO (marker rs2111902) is more consistent than previously realized, particularly in Caucasian schizophrenia populations. We identified evidence for epistatic interaction between the associated SNPs at DAOA and DAO genes in contributing to schizophrenia risk (OR = 9.3 (1.4, 60.5). Based on these data, more systematic investigation of genes involved in DAO signaling is required.

  14. Effect of pulsed electric field treatment on enzyme kinetics and thermostability of endogenous ascorbic acid oxidase in carrots (Daucus carota cv. Nantes).

    PubMed

    Leong, Sze Ying; Oey, Indrawati

    2014-03-01

    The objective of this research was to study the enzyme kinetics and thermostability of endogenous ascorbic acid oxidase (AAO) in carrot purée (Daucus carota cv. Nantes) after being treated with pulsed electric field (PEF) processing. Various PEF treatments using electric field strength between 0.2 and 1.2kV/cm and pulsed electrical energy between 1 and 520kJ/kg were conducted. The enzyme kinetics and the kinetics of AAO thermal inactivation (55-70°C) were described using Michaelis-Menten model and first order reaction model, respectively. Overall, the estimated Vmax and KM values were situated in the same order of magnitude as the untreated carrot purée after being exposed to pulsed electrical energy between 1 and 400kJ/kg, but slightly changed at pulsed electrical energy above 500kJ/kg. However, AAO presented different thermostability depending on the electric field strength applied. After PEF treatment at the electric field strength between 0.2 and 0.5kV/cm, AAO became thermolabile (i.e. increase in inactivation rate (k value) at reference temperature) but the temperature dependence of k value (Ea value) for AAO inactivation in carrot purée decreased, indicating that the changes in k values were less temperature dependent. It is obvious that PEF treatment affects the temperature stability of endogenous AAO. The changes in enzyme kinetics and thermostability of AAO in carrot purée could be related to the resulting carrot purée composition, alteration in intracellular environment and the effective concentration of AAO released after being subjected to PEF treatment.

  15. An integrated bienzyme glucose oxidase-fructose dehydrogenase-tetrathiafulvalene-3-mercaptopropionic acid-gold electrode for the simultaneous determination of glucose and fructose.

    PubMed

    Campuzano, Susana; Loaiza, Oscar A; Pedrero, María; de Villena, F Javier Manuel; Pingarrón, José M

    2004-06-01

    A bienzyme biosensor for the simultaneous determination of glucose and fructose was developed by coimmobilising glucose oxidase (GOD), fructose dehydrogenase (FDH), and the mediator, tetrathiafulvalene (TTF), by cross-linking with glutaraldehyde atop a 3-mercaptopropionic acid (MPA) self-assembled monolayer (SAM) on a gold disk electrode (AuE). The performance of this bienzyme electrode under batch and flow injection (FI) conditions, as well as an amperometric detection in high-performance liquid chromatography (HPLC), are reported. The order of enzyme immobilisation atop the MPA-SAM affected the biosensor amperometric response in terms of sensitivity, with the immobilisation order GOD, FDH, TTF being selected. Similar analytical characteristics to those obtained with single GOD or FDH SAM-based biosensors for glucose and fructose were achieved with the bienzyme electrode, indicating that no noticeable changes in the biosensor responses to the analytes occurred as a consequence of the coimmobilisation of both enzymes on the same MPA-AuE. The suitability of the bienzyme biosensor for the analysis of real samples under flow injection conditions was tested by determining glucose in two certified serum samples. The simultaneous determination of glucose and fructose in the same sample cannot be performed without a separation step because at the detection potential used (+0.10 V), both sugars show amperometric response. Consequently, HPLC with amperometric detection at the TTF-FDH-GOD-MPA-AuE was accomplished. Glucose and fructose were simultaneously determined in honey, cola softdrink, and commercial apple juice, and the results were compared with those obtained by using other reference methods.

  16. Antibacterial action of a heat-stable form of L-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom.

    PubMed

    Lee, Mui Li; Tan, Nget Hong; Fung, Shin Yee; Sekaran, Shamala Devi

    2011-03-01

    The major l-amino acid oxidase (LAAO, EC 1.4.3.2) of king cobra (Ophiophagus hannah) venom is known to be an unusual form of snake venom LAAO as it possesses unique structural features and unusual thermal stability. The antibacterial effects of king cobra venom LAAO were tested against several strains of clinical isolates including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli using broth microdilution assay. For comparison, the antibacterial effects of several antibiotics (cefotaxime, kanamycin, tetracycline, vancomycin and penicillin) were also examined using the same conditions. King cobra venom LAAO was very effective in inhibiting the two Gram-positive bacteria (S. aureus and S. epidermidis) tested, with minimum inhibitory concentration (MIC) of 0.78μg/mL (0.006μM) and 1.56μg/mL (0.012μM) against S. aureus and S. epidermidis, respectively. The MICs are comparable to the MICs of the antibiotics tested, on a weight basis. However, the LAAO was only moderately effective against three Gram-negative bacteria tested (P. aeruginosa, K. pneumoniae and E. coli), with MIC ranges from 25 to 50μg/mL (0.2-0.4μM). Catalase at the concentration of 1mg/mL abolished the antibacterial effect of LAAO, indicating that the antibacterial effect of the enzyme involves generation of hydrogen peroxide. Binding studies indicated that king cobra venom LAAO binds strongly to the Gram-positive S. aureus and S. epidermidis, but less strongly to the Gram-negative E. coli and P. aeruginosa, indicating that specific binding to bacteria is important for the potent antibacterial activity of the enzyme.

  17. Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using a 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line.

    PubMed

    Atkinson, Ross G; Gunaseelan, Kularajathevan; Wang, Mindy Y; Luo, Luke; Wang, Tianchi; Norling, Cara L; Johnston, Sarah L; Maddumage, Ratnasiri; Schröder, Roswitha; Schaffer, Robert J

    2011-07-01

    During climacteric fruit ripening, autocatalytic (Type II) ethylene production initiates a transcriptional cascade that controls the production of many important fruit quality traits including flavour production and softening. The last step in ethylene biosynthesis is the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene by the enzyme ACC oxidase (ACO). Ten independent kiwifruit (Actinidia chinensis) lines were generated targeting suppression of fruit ripening-related ACO genes and the fruit from one of these lines (TK2) did not produce detectable levels of climacteric ethylene. Ripening behaviour in a population of kiwifruit at harvest is asynchronous, so a short burst of exogenous ethylene was used to synchronize ripening in TK2 and control fruit. Following such a treatment, TK2 and control fruit softened to an 'eating-ripe' firmness. Control fruit produced climacteric ethylene and softened beyond eating-ripe by 5 d. In contrast, TK2 fruit maintained an eating-ripe firmness for >25 d and total volatile production was dramatically reduced. Application of continuous exogenous ethylene to the ripening-arrested TK2 fruit re-initiated fruit softening and typical ripe fruit volatiles were detected. A 17 500 gene microarray identified 401 genes that changed after ethylene treatment, including a polygalacturonase and a pectate lyase involved in cell wall breakdown, and a quinone oxidoreductase potentially involved in volatile production. Many of the gene changes were consistent with the softening and flavour changes observed after ethylene treatment. However, a surprisingly large number of genes of unknown function were also observed, which could account for the unique flavour and textural properties of ripe kiwifruit.

  18. A high performance liquid chromatography system for quantification of hydroxyl radical formation by determination of dihydroxy benzoic acids.

    PubMed

    Owen, R W; Wimonwatwatee, T; Spiegelhalder, B; Bartsch, H

    1996-08-01

    The hypoxanthine/xanthine oxidase enzyme system is known to produce the superoxide ion and hydrogen peroxide during the hydroxylation of hypoxanthine via xanthine to uric acid. When chelated iron is included in this system, superoxide reduces iron (III) to iron(II) and the iron(II)-chelate further reacts with hydrogen peroxide to form the highly reactive hydroxyl radical. Because of the limitations of colourimetric and spectrophotometric techniques by which, to date, the mechanisms of hydroxyl radical formation in the hypoxanthine/xanthine oxidase system have been monitored, a high performance liquid chromatography method utilizing the ion-pair reagent tetrabutylammonium hydroxide and salicylic acid as an aromatic probe for quantification of hydroxyl radical formation was set up. In the hypoxanthine/xanthine oxidase system the major products of hydroxyl radical attack on salicylic acid were 2,5-dihydroxy benzoic acid and 2,3-dihydroxy benzoic acid in the approximate ratio of 5:1. That the hydroxyl radical is involved in the hydroxylation of salicylic acid in this system was demonstrated by the potency especially of dimethyl sulphoxide, butanol and ethanol as scavengers. Phytic acid, which is considered to be an important protective dietary constituent against colorectal cancer, inhibited hydroxylation of salicylic acid at a concentration one order of magnitude lower than the classical scavengers, but was only effective in the absence of EDTA. The method has been applied to the study of free radical generation in faeces, and preliminary results indicate that the faecal flora are able to produce reactive oxygen species in abundance.

  19. Comparative study on functionalized SBA-15 and SBA-16 nanostructured materials used for immobilization of D-amino acid oxidase

    NASA Astrophysics Data System (ADS)

    Hy, Le Gia; Phuong, Dang Tuyet; Yen, Hoang; Hoan, Nguyen Thi Vuong; Linh, Bui Thi Hai; Thang, Hoang vinh; Hoa, Tran Thi Kim; Thang, Dinh Cao; Nguyen, Vu Thi Hanh; Thao, Phan Thi Hong; Giap, Chu Van; Tuan, Vu Anh

    2008-12-01

    SBA-15 and SBA-16 nanostucrured materials were synthesized via hydrothermal treatment and were functionalized with 3-aminopropyltriethoxysilane (APTES), and vinyltriethoxysilane (VTES). The obtained samples were characterized by different techniques such as XRD, BET, IR and TEM. After functionalization, it showed that these nanostrucrured materials were still maintained the hexagonal pore structure of the parent SBA-15 and cubic cage structure of the parent SBA-16. The non-functionalized pure silica SBA-15 and SBA-16 as well as functionalized SBA-15 and SBA-16 materials were used to immobilize DAAO, which is industrially important enzyme for the production of glutaryl 7-amino cephalosporanic acid (GL-7-ACA) from cephalosporin C (CPC). The obtained results revealed that functionalized SBA- 15 and SBA-16 materials exhibited higher enzymatic activity and stability than those of non-functionalized ones. This might be due to the enhancing of surface hydrophobicity upon functionalization. The surface functionalization of the nanostructured silicas with organic groups can enhance the interaction between enzyme and the supports and consequently increasing the operational stability of the immobilized enzyme. The loading of enzyme on SBA-15 materials was higher than that on SBA-16 samples (both functionalized and non-functionalized types). This might be explained by the difference in pore size and type (cylindrical for SBA-15 and bottle-neck for SBA-16) as well as structure shape (hexagonal for SBA-15 and cubic cage for SBA-16) of both mesoporous materials. Additionally, nature of functionalized groups significantly affected the enzymatic activity. Effects on surface binding force, nature of functional groups, pore size of supports were investigated and discussed.

  20. Structural insights into sulfite oxidase deficiency.

    PubMed

    Karakas, Erkan; Wilson, Heather L; Graf, Tyler N; Xiang, Song; Jaramillo-Busquets, Sandra; Rajagopalan, K V; Kisker, Caroline

    2005-09-30

    Sulfite oxidase deficiency is a lethal genetic disease that results from defects either in the genes encoding proteins involved in molybdenum cofactor biosynthesis or in the sulfite oxidase gene itself. Several point mutations in the sulfite oxidase gene have been identified from patients suffering from this disease worldwide. Although detailed biochemical analyses have been carried out on these mutations, no structural data could be obtained because of problems in crystallizing recombinant human and rat sulfite oxidases and the failure to clone the chicken sulfite oxidase gene. We synthesized the gene for chicken sulfite oxidase de novo, working backward from the amino acid sequence of the native chicken liver enzyme by PCR amplification of a series of 72 overlapping primers. The recombinant protein displayed the characteristic absorption spectrum of sulfite oxidase and exhibited steady state and rapid kinetic parameters comparable with those of the tissue-derived enzyme. We solved the crystal structures of the wild type and the sulfite oxidase deficiency-causing R138Q (R160Q in humans) variant of recombinant chicken sulfite oxidase in the resting and sulfate-bound forms. Significant alterations in the substrate-binding pocket were detected in the structure of the mutant, and a comparison between the wild type and mutant protein revealed that the active site residue Arg-450 adopts different conformations in the presence and absence of bound sulfate. The size of the binding pocket is thereby considerably reduced, and its position relative to the cofactor is shifted, causing an increase in the distance of the sulfur atom of the bound sulfate to the molybdenum.

  1. Bioconversion of α-linolenic acid to n-3 LCPUFA and expression of PPAR-alpha, acyl Coenzyme A oxidase 1 and carnitine acyl transferase I are incremented after feeding rats with α-linolenic acid-rich oils.

    PubMed

    González-Mañán, Daniel; Tapia, Gladys; Gormaz, Juan Guillermo; D'Espessailles, Amanda; Espinosa, Alejandra; Masson, Lilia; Varela, Patricia; Valenzuela, Alfonso; Valenzuela, Rodrigo

    2012-07-01

    High dietary intake of n-6 fatty acids in relation to n-3 fatty acids may generate health disorders, such as cardiovascular and other chronic diseases. Fish consumption rich in n-3 fatty acids is low in Latin America, it being necessary to seek other alternatives to provide α-linolenic acid (ALA), precursor of n-3 LCPUFA (EPA and DHA). Two innovative oils were assayed, chia (Salvia hispanica) and rosa mosqueta (Rosa rubiginosa). This study evaluated hepatic bioconversion of ALA to EPA and DHA, expression of PPAR-α, acyl-Coenzyme A oxidase 1 (ACOX1) and carnitine acyltransferase I (CAT-I), and accumulation of EPA and DHA in plasma and adipose tissue in Sprague-Dawley rats. Three experimental groups were fed 21 days: sunflower oil (SFO, control); chia oil (CO); rosa mosqueta oil (RMO). Fatty acid composition of total lipids and phospholipids from plasma, hepatic and adipose tissue was assessed by gas-liquid chromatography and TLC. Expression of PPAR-α (RT-PCR) and ACOX1 and CAT-I (Western blot). CO and RMO increased plasma, hepatic and adipose tissue levels of ALA, EPA and DHA and decreased n-6:n-3 ratio compared to SFO (p < 0.05, One-way ANOVA and Newman-Keuls test). CO increased levels of ALA and EPA compared to RMO (p < 0.05). No significant differences were observed for DHA levels. CO also increased the expression of PPAR-α, ACOX1 and CAT-I. Only CAT-I levels were increased by RO. CO and RMO may be a nutritional alternative to provide ALA for its bioconversion to EPA and DHA, and to increase the expression of PPAR-α, ACOX1 and CAT-I, especially CO-oil.

  2. Regulation of neutrophil NADPH oxidase activation in a cell-free system by guanine nucleotides and fluoride. Evidence for participation of a pertussis and cholera toxin-insensitive G protein.

    PubMed

    Gabig, T G; English, D; Akard, L P; Schell, M J

    1987-02-05

    Guanine nucleotide-binding regulatory proteins (G proteins) transduce a remarkably diverse group of extracellular signals to a relatively limited number of intracellular target enzymes. In the neutrophil, transduction of the signal following fMet-Leu-Phe receptor-ligand interaction is mediated by a pertussis toxin substrate (Gi) that activates inositol-specific phospholipase C. We have utilized a plasma membrane-containing fraction from unstimulated human neutrophils as the target enzyme to explore the role of G proteins in arachidonate and cytosolic cofactor-dependent activation of the NADPH-dependent O-2-generating oxidase. When certain guanine nucleotides or their nonhydrolyzable analogues were present during arachidonate and cytosolic cofactor-dependent activation, they exerted substantial dose-dependent effects. The GTP analogue, GTP gamma S, caused a 2-fold increase in NADPH oxidase activation (half-maximal stimulation, 1.1 microM). Either GDP or its nonhydrolyzable analogue, GDP beta S, inhibited up to 80% of the basal NADPH oxidase activation (Ki GDP = 0.12 mM, GDP beta S = 0.23 mM). GTP caused only slight and variable stimulation, whereas F-, an agent known to promote the active conformation of G proteins, caused a 1.6-fold stimulation of NADPH oxidase activation. NADPH oxidase activation in the cell-free system was absolutely and specifically dependent on Mg2+. Although O2- production in response to fMet-Leu-Phe was inhibited greater than 90% in neutrophils pretreated with pertussis toxin, cytosolic cofactor and target oxidase membranes from neutrophils treated with pertussis toxin showed no change in basal- or GTP gamma S-stimulated NADPH oxidase activation. Cholera toxin treatment of neutrophils also had no effect on the cell-free activation system. Our results suggest a role for a G protein that is distinct from Gs or Gi in the arachidonate and cytosolic cofactor-dependent NADPH oxidase cell-free activation system.

  3. [Establishment of double targets of high throughput screening model for xanthine oxidase inhibitors and superoxide anion scavengers].

    PubMed

    Xie, Tao; Qin, Zhi-Zhen; Zhou, Rui; Zhao, Ying; Du, Guan-hua

    2015-04-01

    A double targets of high throughput screening model for xanthine oxidase inhibitors and superoxide anion scavengers was established. In the reaction system of xanthine oxidase, WST-1 works as the probe for the ultra oxygen anion generation, and product uric acid works as xanthine oxidase activity indicator. By using SpectraMax M5 continuous spectrum enzyme sign reflectoscope reflector, the changes of these indicators' concentration were observed and the influence factors of this reaction system to establish the high throughput screening model were studied. And the model is confirmed by positive drugs. In the reaction system, the final volume of reaction system is 50 μL and the concentrations of xanthine oxidase is 4 mU x mL(-1), xanthine 250 μmol x L(-1) and WST-1 100 μmol x L(-1), separately. The Z'-factor of model for xanthine oxidase inhibitors is 0.537 4, S/N is 47.519 9; the Z'-factor of model for superoxide anion scavengers is 0.507 4, S/N is 5.388 9. This model for xanthine oxidase inhibitors and superoxide anion scavengers has more common characteristics of the good stability, the fewer reagent types and quantity, the good repeatability, and so on. And it can be widely applied in high-throughput screening research.

  4. Nitro-oleic acid ameliorates oxygen and glucose deprivation/re-oxygenation triggered oxidative stress in renal tubular cells via activation of Nrf2 and suppression of NADPH oxidase.

    PubMed

    Nie, Huibin; Xue, Xia; Liu, Gang; Guan, Guangju; Liu, Haiying; Sun, Lina; Zhao, Long; Wang, Xueling; Chen, Zhixin

    2016-01-01

    Nitroalkene derivative of oleic acid (OA-NO2), due to its ability to mediate revisable Michael addition, has been demonstrated to have various biological properties and become a therapeutic agent in various diseases. Though its antioxidant properties have been reported in different models of acute kidney injury (AKI), the mechanism by which OA-NO2 attenuates intracellular oxidative stress is not well investigated. Here, we elucidated the anti-oxidative mechanism of OA-NO2 in an in vitro model of renal ischemia/reperfusion (I/R) injury. Human tubular epithelial cells were subjected to oxygen and glucose deprivation/re-oxygenation (OGD/R) injury. Pretreatment with OA-NO2 (1.25 μM, 45 min) attenuated OGD/R triggered reactive oxygen species (ROS) generation and subsequent mitochondrial membrane potential disruption. This action was mediated via up-regulating endogenous antioxidant defense components including superoxide dismutase (SOD1), heme oxygenase 1 (HO-1), and γ-glutamyl cysteine ligase modulatory subunits (GCLM). Moreover, subcellular fractionation analyses demonstrated that OA-NO2 promoted nuclear translocation of nuclear factor-E2- related factor-2 (Nrf2) and Nrf2 siRNA partially abrogated these protective effects. In addition, OA-NO2 inhibited NADPH oxidase activation and NADPH oxidase 4 (NOX4), NADPH oxidase 2 (NOX2) and p22(phox) up-regulation after OGD/R injury, which was not relevant to Nrf2. These results contribute to clarify that the mechanism of OA-NO2 reno-protection involves both inhibition of NADPH oxidase activity and induction of SOD1, Nrf2-dependent HO-1, and GCLM.

  5. Reactions of copper(II)-phenol systems with O2: models for TPQ biosynthesis in copper amine oxidases.

    PubMed

    Tabuchi, Kae; Ertem, Mehmed Z; Sugimoto, Hideki; Kunishita, Atsushi; Tano, Tetsuro; Fujieda, Nobutaka; Cramer, Christopher J; Itoh, Shinobu

    2011-03-07

    Copper(II) complexes supported by a series of phenol-containing bis(pyridin-2-ylmethyl)amine N(3) ligands (denoted as L(o)H, L(m)H, and L(p)H) have been synthesized, and their O(2) reactivity has been examined in detail to gain mechanistic insights into the biosynthesis of the TPQ cofactor (2,4,5-trihydroxyphenylalaninequinone, TOPA quinone) in copper-containing amine oxidases. The copper(II) complex of L(o)H (ortho-phenol derivative) involves a direct phenolate to copper(II) coordination and exhibits almost no reactivity toward O(2) at 60 °C in CH(3)OH. On the other hand, the copper(II) complex of L(m)H (meta-phenol derivative), which does not involve direct coordinative interaction between the phenol moiety and the copper(II) ion, reacts with O(2) in the presence of triethylamine as a base to give a methoxy-substituted para-quinone derivative under the same conditions. The product structure has been established by detailed nuclear magnetic resonance (NMR), infrared (IR) spectroscopy, and electrospray ionization-mass spectroscopy (ESI-MS) (including (18)O-labeling experiment) analyses. Density functional theory predicts that the reaction involves (i) intramolecular electron transfer from the deprotonated phenol (phenolate) to copper(II) to generate a copper(I)-phenoxyl radical; (ii) the addition of O(2) to this intermediate, resulting in an end-on copper(II) superoxide; (iii) electrophilic substitution of the phenolic radical to give a copper(II)-alkylperoxo intermediate; (iv) O-O bond cleavage concomitant with a proton migration, giving a para-quinone derivative; and (v) Michael addition of methoxide from copper(II) to the para-quinone ring and subsequent O(2) oxidation. This reaction sequence is similar to that proposed for the biosynthetic pathway leading to the TPQ cofactor in the enzymatic system. The generated para-quinone derivative can act as a turnover catalyst for aerobic oxidation of benzylamine to N-benzylidene benzylamine. Another type of copper

  6. A multidisciplinary study of the extracutaneous pigment system of European sea bass (Dicentrarchus labrax L.). A possible relationship between kidney disease and dopa oxidase activity level.

    PubMed

    Arciuli, Marcella; Brunetti, Adalberto; Fiocco, Daniela; Zacchino, Valentina; Centoducati, Gerardo; Aloi, Antonio; Tommasi, Raffaele; Santeramo, Arcangela; De Nitto, Emanuele; Gallone, Anna

    2015-01-01

    Infectious diseases and breeding conditions can influence fish health status. Furthermore it is well known that human and animal health are strongly correlated. In lower vertebrates melano-macrophage centres, clusters of pigment-containing cells forming the extracutaneous pigment system, are widespread in the stroma of the haemopoietic tissue, mainly in kidney and spleen. In fishes, melano-macrophage centres play an important role in the immune response against antigenic stimulants and pathogens. Hence, they are employed as biomarker of fish health status. We have investigated this cell system in the European sea bass (Dicentrarchus labrax L.) following the enzyme activities involved in melanin biosynthesis. We have found a possible relationship between kidney disease of farmed fishes and dopa oxidase activity level, suggesting it as an indicator of kidney disease. Moreover variations of dopa oxidase activity in extracutaneous pigment system have been observed with respect to environmental temperature. At last, for the first time, using femtosecond transient absorption spectroscopy (Femto-TA), we pointed out that pigment-containing cells of fish kidney tissue present melanin pigments.

  7. Activation of polyphenol oxidase of chloroplasts.

    PubMed

    Tolbert, N E

    1973-02-01

    Polyphenol oxidase of leaves is located mainly in chloroplasts isolated by differential or sucrose density gradient centrifugation. This activity is part of the lamellar structure that is not lost on repeated washing of the plastids. The oxidase activity was stable during prolonged storage of the particles at 4 C or -18 C. The Km (dihydroxyphenylalanine) for spinach leaf polyphenol oxidase was 7 mm by a spectrophotometric assay and 2 mm by the manometric assay. Polyphenol oxidase activity in the leaf peroxisomal fraction, after isopycnic centrifugation on a linear sucrose gradient, did not coincide with the peroxisomal enzymes but was attributed to proplastids at nearly the same specific density.Plants were grouped by the latency properties for polyphenol oxidase in their isolated chloroplasts. In a group including spinach, Swiss chard, and beet leaves the plastids immediately after preparation from fresh leaves required a small amount of light for maximal rates of oxidation of dihydroxyphenylalanine. Polyphenol oxidase activity in the dark or light increased many fold during aging of these chloroplasts for 1 to 5 days. Soluble polyphenol oxidase of the cytoplasm was not so stimulated. Chloroplasts prepared from stored leaves were also much more active than from fresh leaves. Maximum rates of dihydroxyphenylalanine oxidation were 2 to 6 mmoles x mg(-1) chlorophyll x hr(-1). Equal stimulation of latent polyphenol oxidase in fresh or aged chloroplasts in this group was obtained by either light, an aged trypsin digest, 3-(4-chlorophenyl)-1, 1-dimethylurea, or antimycin A. A variety of other treatments did not activate or had little effect on the oxidase, including various peptides, salts, detergents, and other proteolytic enzymes.Activation of latent polyphenol oxidase in spinach chloroplasts by trypsin amounted to as much as 30-fold. The trypsin activation occurred even after the trypsin had been treated with 10% trichloroacetic acid, 1.0 n HCl or boiled for 30

  8. Structural basis for the temperature-induced transition of D-amino acid oxidase from pig kidney revealed by molecular dynamic simulation and photo-induced electron transfer.

    PubMed

    Nueangaudom, Arthit; Lugsanangarm, Kiattisak; Pianwanit, Somsak; Kokpol, Sirirat; Nunthaboot, Nadtanet; Tanaka, Fumio

    2012-02-28

    The structural basis for the temperature-induced transition in the D-amino acid oxidase (DAAO) monomer from pig kidney was studied by means of molecular dynamic simulations (MDS). The center to center (Rc) distances between the isoalloxazine ring (Iso) and all aromatic amino acids (Trp and Tyr) were calculated at 10 °C and 30 °C. Rc was shortest in Tyr224 (0.82 and 0.88 nm at 10 and 30 °C, respectively), and then in Tyr228. Hydrogen bonding (H-bond) formed between the Iso N1 and Gly315 N (peptide), between the Iso N3H and Leu51 O (peptide) and between the Iso N5 and Ala49 N (peptide) at 10 °C, whilst no H-bond was formed at the Iso N1 and Iso N3H at 30 °C. The H-bond of Iso O4 with Leu51 N (peptide) at 10 °C switched to that with Ala49 N (peptide) at 30 °C. The reported fluorescence lifetimes (228 and 182 ps at 10 and 30 °C, respectively) of DAAO were analyzed with Kakitani and Mataga (KM) ET theory. The calculated fluorescence lifetimes displayed an excellent agreement with the observed lifetimes. The ET rate was fastest from Tyr224 to the excited Iso (Iso*) at 10 °C and from Tyr314 at 30 °C, despite the fact that the Rc was shortest between Iso and Tyr224 at both temperatures. This was explained by the electrostatic energy in the protein. The differences in the observed fluorescence lifetimes at 10 and 30 °C were ascribed to the differences in electron affinity of the Iso* at both temperatures, in which the free energies of the electron affinity of Iso* at 10 and 30 °C were -8.69 eV and -8.51 eV respectively. The other physical quantities related to ET did not differ appreciably at both temperatures. The electron affinities at both temperatures were calculated with a semi-empirical molecular orbital method (MO) of PM6. Mean calculated electron affinities over 100 snapshots with 0.1 ps intervals were -7.69 eV at 10 °C and -7.59 eV at 30 °C. The difference in the calculated electron affinities, -0.11 eV, was close to the observed difference in the

  9. The chemistry of escapin: identification and quantification of the components in the complex mixture generated by an L-amino acid oxidase in the defensive secretion of the sea snail Aplysia californica.

    PubMed

    Kamio, Michiya; Ko, Ko-Chun; Zheng, Shilong; Wang, Binghe; Collins, Stacy L; Gadda, Giovanni; Tai, Phang C; Derby, Charles D

    2009-01-01

    Escapin is an L-amino acid oxidase in the ink of a marine snail, the sea hare Aplysia californica, which oxidizes L-lysine (1) to produce a mixture of chemicals which is antipredatory and antimicrobial. The goal of our study was to determine the identity and relative abundance of the constituents of this mixture, using molecules generated enzymatically with escapin and also using products of organic syntheses. We examined this mixture under the natural range of pH values for ink-from approximately 5 at full strength to approximately 8 when fully diluted in sea water. The enzymatic reaction likely forms an equilibrium mixture containing the linear form alpha-keto-epsilon-aminocaproic acid (2), the cyclic imine Delta(1)-piperidine-2-carboxylic acid (3), the cyclic enamine Delta(2)-piperidine-2-carboxylic acid (4), possibly the linear enol 6-amino-2-hydroxy-hex-2-enoic acid (7), the alpha-dihydroxy acid 6-amino-2,2-dihydroxy-hexanoic acid (8), and the cyclic aminol 2-hydroxy-piperidine-2-carboxylic acid (9). Using NMR and mass spectroscopy, we show that 3 is the major component of this enzymatic product at any pH, but at more basic conditions, the equilibrium shifts to produce relatively more 4, and at acidic conditions, the equilibrium shifts to produce relatively more 2, 7, and/or 9. Studies of escapin's enzyme kinetics demonstrate that because of the high concentrations of escapin and L-lysine in the ink secretion, millimolar concentrations of 3, H(2)O(2), and ammonia are produced, and also lower concentrations of 2, 4, 7, and 9 as a result. We also show that reactions of this mixture with H(2)O(2) produce delta-aminovaleric acid (5) and delta-valerolactam (6), with 6 being the dominant component under the naturally acidic conditions of ink. Thus, the product of escapin's action on L-lysine contains an equilibrium mixture that is more complex than previously known for any L-amino acid oxidase.

  10. Effects of transient and prolonged flashing light stimulation on the cytochrome oxidase module system in layer IV of the primary visual cortex of kittens.

    PubMed

    Merkul'eva, N S; Makarov, F N

    2009-06-01

    Cytochrome oxidase spots in layer IV of field 17 of the primary visual cortex were studied in kittens aged 33, 49, and 93 days, stimulated with a light flashing at a frequency of 15 Hz. The kittens of one group received stimulation from the moment of eye opening until euthanasia (prolonged stimulation); other groups received stimulation for eight days starting from ages 26, 42, or 85 days (transient stimulation), again until euthanasia. Both types of stimulation were found not to alter the geometrical characteristics of cytochrome oxidase spots, but led to significant increases in the contrast of spots located in the splenial gyrus. Increases in spot contrast in the lateral gyrus occurred only after prolonged stimulation to age 93 days or after transient stimulation from age 26 days to age 33 days. Thus, stimulation of kittens of different ages with a light flashing at a frequency of 15 Hz led to structural-metabolic changes in the primary visual cortex. These changes were apparent to different extents in areas of the cortex responsible for central and peripheral vision. This may be explained, firstly, by the predominant activation of the Y conducting channel of the visual system and, secondly, by the increase in dominance of the contralateral input to the primary visual cortex.

  11. Wireless Biosensor System for Real-Time l-Lactic Acid Monitoring in Fish

    PubMed Central

    Hibi, Kyoko; Hatanaka, Kengo; Takase, Mai; Ren, Huifeng; Endo, Hideaki

    2012-01-01

    We have developed a wireless biosensor system to continuously monitor l-lactic acid concentrations in fish. The blood l-lactic acid level of fish is a barometer of stress. The biosensor comprised Pt-Ir wire (φ0.178 mm) as the working electrode and Ag/AgCl paste as the reference electrode. Lactate oxidase was immobilized on the working electrode using glutaraldehyde. The sensor calibration was linear and good correlated with l-lactic acid levels (R = 0.9959) in the range of 0.04 to 6.0 mg·dL−1. We used the eyeball interstitial sclera fluid (EISF) as the site of sensor implantation. The blood l-lactic acid levels correlated closely with the EISF l-lactic acid levels in the range of 3 to 13 mg·dL−1 (R = 0.8173, n = 26). Wireless monitoring of l-lactic acid was performed using the sensor system in free-swimming fish in an aquarium. The sensor response was stable for over 60 h. Thus, our biosensor provided a rapid and convenient method for real-time monitoring of l-lactic acid levels in fish. PMID:22778641

  12. Effects of xanthine oxidase inhibitors on renal function and blood pressure in hypertensive patients with hyperuricemia.

    PubMed

    Kohagura, Kentaro; Tana, Takeshi; Higa, Akira; Yamazato, Masanobu; Ishida, Akio; Nagahama, Kazufumi; Sakima, Atsushi; Iseki, Kunitoshi; Ohya, Yusuke

    2016-08-01

    Hyperuricemia may promote the progression of hypertension and renal dysfunction. However, the effects of hyperuricemia treatment on blood pressure and renal function in adult hypertensive patients with hyperuricemia remain unclear. A total of 137 hypertensive patients with hyperuricemia (96 men and 41 women; mean age of 67 years) who recently started taking xanthine oxidase inhibitors (allopurinol or febuxostat) as outpatients were recruited. Serum uric acid level, estimated glomerular filtration rate (eGFR, ml min(-1) per 1.73 m(2)) and blood pressure (mm Hg) were retrospectively compared immediately before and shortly after starting treatment with xanthine oxidase inhibitors. The mean blood pressure and the eGFR immediately before starting treatment were 128/71 mm Hg and 44.6 ml min(-1) per 1.73 m(2), respectively. Although the eGFR decreased from 46.6 to 44.6 ml min(-1) per 1.73 m(2) before starting treatment with xanthine oxidase inhibitors, it increased to 46.2 ml min(-1) per 1.73 m(2) (P=0.001, compared with immediately before treatment) without any significant changes in blood pressure after the administration of xanthine oxidase inhibitors. Multiple regression analysis revealed that the increase in eGFR after starting xanthine oxidase inhibitor treatment positively correlated with the changes in systolic blood pressure and negatively correlated with the changes in uric acid levels and the use of renin-angiotensin system inhibitors. These results suggest that xanthine oxidase inhibitors may delay the progression of renal dysfunction in adult hypertensive patients with hyperuricemia.

  13. A ROS-Assisted Calcium Wave Dependent on the AtRBOHD NADPH Oxidase and TPC1 Cation Channel Propagates the Systemic Response to Salt Stress1[OPEN

    PubMed Central

    Evans, Matthew J.; Choi, Won-Gyu

    2016-01-01

    Plants exhibit rapid, systemic signaling systems that allow them to coordinate physiological and developmental responses throughout the plant body, even to highly localized and quickly changing environmental stresses. The propagation of these signals is thought to include processes ranging from electrical and hydraulic networks to waves of reactive oxygen species (ROS) and cytoplasmic Ca2+ traveling throughout the plant. For the Ca2+ wave system, the involvement of the vacuolar ion channel TWO PORE CHANNEL1 (TPC1) has been reported. However, the precise role of this channel and the mechanism of cell-to-cell propagation of the wave have remained largely undefined. Here, we use the fire-diffuse-fire model to analyze the behavior of a Ca2+ wave originating from Ca2+ release involving the TPC1 channel in Arabidopsis (Arabidopsis thaliana). We conclude that a Ca2+ diffusion-dominated calcium-induced calcium-release mechanism is insufficient to explain the observed wave transmission speeds. The addition of a ROS-triggered element, however, is able to quantitatively reproduce the observed transmission characteristics. The treatment of roots with the ROS scavenger ascorbate and the NADPH oxidase inhibitor diphenyliodonium and analysis of Ca2+ wave propagation in the Arabidopsis respiratory burst oxidase homolog D (AtrbohD) knockout background all led to reductions in Ca2+ wave transmission speeds consistent with this model. Furthermore, imaging of extracellular ROS production revealed a systemic spread of ROS release that is dependent on both AtRBOHD and TPC1. These results suggest that, in the root, plant systemic signaling is supported by a ROS-assisted calcium-induced calcium-release mechanism intimately involving ROS production by AtRBOHD and Ca2+ release dependent on the vacuolar channel TPC1. PMID:27261066

  14. A ROS-Assisted Calcium Wave Dependent on the AtRBOHD NADPH Oxidase and TPC1 Cation Channel Propagates the Systemic Response to Salt Stress.

    PubMed

    Evans, Matthew J; Choi, Won-Gyu; Gilroy, Simon; Morris, Richard J

    2016-07-01

    Plants exhibit rapid, systemic signaling systems that allow them to coordinate physiological and developmental responses throughout the plant body, even to highly localized and quickly changing environmental stresses. The propagation of these signals is thought to include processes ranging from electrical and hydraulic networks to waves of reactive oxygen species (ROS) and cytoplasmic Ca(2+) traveling throughout the plant. For the Ca(2+) wave system, the involvement of the vacuolar ion channel TWO PORE CHANNEL1 (TPC1) has been reported. However, the precise role of this channel and the mechanism of cell-to-cell propagation of the wave have remained largely undefined. Here, we use the fire-diffuse-fire model to analyze the behavior of a Ca(2+) wave originating from Ca(2+) release involving the TPC1 channel in Arabidopsis (Arabidopsis thaliana). We conclude that a Ca(2+) diffusion-dominated calcium-induced calcium-release mechanism is insufficient to explain the observed wave transmission speeds. The addition of a ROS-triggered element, however, is able to quantitatively reproduce the observed transmission characteristics. The treatment of roots with the ROS scavenger ascorbate and the NADPH oxidase inhibitor diphenyliodonium and analysis of Ca(2+) wave propagation in the Arabidopsis respiratory burst oxidase homolog D (AtrbohD) knockout background all led to reductions in Ca(2+) wave transmission speeds consistent with this model. Furthermore, imaging of extracellular ROS production revealed a systemic spread of ROS release that is dependent on both AtRBOHD and TPC1 These results suggest that, in the root, plant systemic signaling is supported by a ROS-assisted calcium-induced calcium-release mechanism intimately involving ROS production by AtRBOHD and Ca(2+) release dependent on the vacuolar channel TPC1.

  15. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lactic acid test system. 862.1450 Section...

  16. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lactic acid test system. 862.1450 Section...

  17. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lactic acid test system. 862.1450 Section...

  18. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lactic acid test system. 862.1450 Section 862.1450....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base...

  19. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactic acid test system. 862.1450 Section 862.1450....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base...

  20. Phenol oxidase activity in secondary transformed peat-moorsh soils

    NASA Astrophysics Data System (ADS)

    Styła, K.; Szajdak, L.

    2009-04-01

    The chemical composition of peat depends on the geobotanical conditions of its formation and on the depth of sampling. The evolution of hydrogenic peat soils is closely related to the genesis of peat and to the changes in water conditions. Due to a number of factors including oscillation of ground water level, different redox potential, changes of aerobic conditions, different plant communities, and root exudes, and products of the degradation of plant remains, peat-moorsh soils may undergo a process of secondary transformation conditions (Sokolowska et al. 2005; Szajdak et al. 2007). Phenol oxidase is one of the few enzymes able to degrade recalcitrant phenolic materials as lignin (Freeman et al. 2004). Phenol oxidase enzymes catalyze polyphenol oxidation in the presence of oxygen (O2) by removing phenolic hydrogen or hydrogenes to from radicals or quinines. These products undergo nucleophilic addition reactions in the presence or absence of free - NH2 group with the eventual production of humic acid-like polymers. The presence of phenol oxidase in soil environments is important in the formation of humic substances a desirable process because the carbon is stored in a stable form (Matocha et al. 2004). The investigations were carried out on the transect of peatland 4.5 km long, located in the Agroecological Landscape Park host D. Chlapowski in Turew (40 km South-West of Poznań, West Polish Lowland). The sites of investigation were located along Wyskoć ditch. The following material was taken from four chosen sites marked as Zbechy, Bridge, Shelterbelt and Hirudo in two layers: cartel (0-50cm) and cattle (50-100cm). The object of this study was to characterize the biochemical properties by the determination of the phenol oxidize activity in two layers of the four different peat-moors soils used as meadow. The phenol oxidase activity was determined spectrophotometrically by measuring quinone formation at λmax=525 nm with catechol as substrate by method of Perucci

  1. Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis.

    PubMed

    Bao, Teng; Zhang, Xian; Rao, Zhiming; Zhao, Xiaojing; Zhang, Rongzhen; Yang, Taowei; Xu, Zhenghong; Yang, Shangtian

    2014-01-01

    Acetoin (3-hydroxy-2-butanone), an extensively-used food spice and bio-based platform chemical, is usually produced by chemical synthesis methods. With increasingly requirement of food security and environmental protection, bio-fermentation of acetoin by microorganisms has a great promising market. However, through metabolic engineering strategies, the mixed acid-butanediol fermentation metabolizes a certain portion of substrate to the by-products of organic acids such as lactic acid and acetic acid, which causes energy cost and increases the difficulty of product purification in downstream processes. In this work, due to the high efficiency of enzymatic reaction and excellent selectivity, a strategy for efficiently converting 2,3-butandiol to acetoin using whole-cell biocatalyst by engineered Bacillus subtilis is proposed. In this process, NAD+ plays a significant role on 2,3-butanediol and acetoin distribution, so the NADH oxidase and 2,3-butanediol dehydrogenase both from B. subtilis are co-expressed in B. subtilis 168 to construct an NAD+ regeneration system, which forces dramatic decrease of the intracellular NADH concentration (1.6 fold) and NADH/NAD+ ratio (2.2 fold). By optimization of the enzymatic reaction and applying repeated batch conversion, the whole-cell biocatalyst efficiently produced 91.8 g/L acetoin with a productivity of 2.30 g/(L·h), which was the highest record ever reported by biocatalysis. This work indicated that manipulation of the intracellular cofactor levels was more effective than the strategy of enhancing enzyme activity, and the bioprocess for NAD+ regeneration may also be a useful way for improving the productivity of NAD+-dependent chemistry-based products.

  2. The Use of Multiscale Molecular Simulations in Understanding a Relationship between the Structure and Function of Biological Systems of the Brain: The Application to Monoamine Oxidase Enzymes

    PubMed Central

    Vianello, Robert; Domene, Carmen; Mavri, Janez

    2016-01-01

    HIGHLIGHTS Computational techniques provide accurate descriptions of the structure and dynamics of biological systems, contributing to their understanding at an atomic level.Classical MD simulations are a precious computational tool for the processes where no chemical reactions take place.QM calculations provide valuable information about the enzyme activity, being able to distinguish among several mechanistic pathways, provided a carefully selected cluster model of the enzyme is considered.Multiscale QM/MM simulation is the method of choice for the computational treatment of enzyme reactions offering quantitative agreement with experimentally determined reaction parameters.Molecular simulation provide insight into the mechanism of both the catalytic activity and inhibition of monoamine oxidases, thus aiding in the rational design of their inhibitors that are all employed and antidepressants and antiparkinsonian drugs. Aging society and therewith associated neurodegenerative and neuropsychiatric diseases, including depression, Alzheimer's disease, obsessive disorders, and Parkinson's disease, urgently require novel drug candidates. Targets include monoamine oxidases A and B (MAOs), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and various receptors and transporters. For rational drug design it is particularly important to combine experimental synthetic, kinetic, toxicological, and pharmacological information with structural and computational work. This paper describes the application of various modern computational biochemistry methods in order to improve the understanding of a relationship between the structure and function of large biological systems including ion channels, transporters, receptors, and metabolic enzymes. The methods covered stem from classical molecular dynamics simulations to understand the physical basis and the time evolution of the structures, to combined QM, and QM/MM approaches to probe the chemical mechanisms of enzymatic

  3. The Use of Multiscale Molecular Simulations in Understanding a Relationship between the Structure and Function of Biological Systems of the Brain: The Application to Monoamine Oxidase Enzymes.

    PubMed

    Vianello, Robert; Domene, Carmen; Mavri, Janez

    2016-01-01

    HIGHLIGHTS Computational techniques provide accurate descriptions of the structure and dynamics of biological systems, contributing to their understanding at an atomic level.Classical MD simulations are a precious computational tool for the processes where no chemical reactions take place.QM calculations provide valuable information about the enzyme activity, being able to distinguish among several mechanistic pathways, provided a carefully selected cluster model of the enzyme is considered.Multiscale QM/MM simulation is the method of choice for the computational treatment of enzyme reactions offering quantitative agreement with experimentally determined reaction parameters.Molecular simulation provide insight into the mechanism of both the catalytic activity and inhibition of monoamine oxidases, thus aiding in the rational design of their inhibitors that are all employed and antidepressants and antiparkinsonian drugs. Aging society and therewith associated neurodegenerative and neuropsychiatric diseases, including depression, Alzheimer's disease, obsessive disorders, and Parkinson's disease, urgently require novel drug candidates. Targets include monoamine oxidases A and B (MAOs), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and various receptors and transporters. For rational drug design it is particularly important to combine experimental synthetic, kinetic, toxicological, and pharmacological information with structural and computational work. This paper describes the application of various modern computational biochemistry methods in order to improve the understanding of a relationship between the structure and function of large biological systems including ion channels, transporters, receptors, and metabolic enzymes. The methods covered stem from classical molecular dynamics simulations to understand the physical basis and the time evolution of the structures, to combined QM, and QM/MM approaches to probe the chemical mechanisms of enzymatic

  4. Titanium Dioxide Nanoparticles Increase Superoxide Anion Production by Acting on NADPH Oxidase.

    PubMed

    Masoud, Rawand; Bizouarn, Tania; Trepout, Sylvain; Wien, Frank; Baciou, Laura; Marco, Sergio; Houée Levin, Chantal

    2015-01-01

    Titanium dioxide (TiO2) anatase nanoparticles (NPs) are metal oxide NPs commercialized for several uses of everyday life. However their toxicity has been poorly investigated. Cellular internalization of NPs has been shown to activate macrophages and neutrophils that contribute to superoxide anion production by the NADPH oxidase complex. Transmission electron micrososcopy images showed that the membrane fractions were close to the NPs while fluorescence indicated an interaction between NPs and cytosolic proteins. Using a cell-free system, we have investigated the influence of TiO2 NPs on the behavior of the NADPH oxidase. In the absence of the classical activator molecules of the enzyme (arachidonic acid) but in the presence of TiO2 NPs, no production of superoxide ions could be detected indicating that TiO2 NPs were unable to activate by themselves the complex. However once the NADPH oxidase was activated (i.e., by arachidonic acid), the rate of superoxide anion production went up to 140% of its value without NPs, this effect being dependent on their concentration. In the presence of TiO2 nanoparticles, the NADPH oxidase produces more superoxide ions, hence induces higher oxidative stress. This hyper-activation and the subsequent increase in ROS production by TiO2 NPs could participate to the oxidative stress development.

  5. Sulfuric acid thermoelectrochemical system and method

    DOEpatents

    Ludwig, Frank A.

    1989-01-01

    A thermoelectrochemical system in which an electrical current is generated between a cathode immersed in a concentrated sulfuric acid solution and an anode immersed in an aqueous buffer solution of sodium bisulfate and sodium sulfate. Reactants consumed at the electrodes during the electrochemical reaction are thermochemically regenerated and recycled to the electrodes to provide continuous operation of the system.

  6. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-12-21

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  7. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-08-17

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  8. Acid sensing by the Drosophila olfactory system.

    PubMed

    Ai, Minrong; Min, Soohong; Grosjean, Yael; Leblanc, Charlotte; Bell, Rati; Benton, Richard; Suh, Greg S B

    2010-12-02

    The odour of acids has a distinct quality that is perceived as sharp, pungent and often irritating. How acidity is sensed and translated into an appropriate behavioural response is poorly understood. Here we describe a functionally segregated population of olfactory sensory neurons in the fruitfly, Drosophila melanogaster, that are highly selective for acidity. These olfactory sensory neurons express IR64a, a member of the recently identified ionotropic receptor (IR) family of putative olfactory receptors. In vivo calcium imaging showed that IR64a+ neurons projecting to the DC4 glomerulus in the antennal lobe are specifically activated by acids. Flies in which the function of IR64a+ neurons or the IR64a gene is disrupted had defects in acid-evoked physiological and behavioural responses, but their responses to non-acidic odorants remained unaffected. Furthermore, artificial stimulation of IR64a+ neurons elicited avoidance responses. Taken together, these results identify cellular and molecular substrates for acid detection in the Drosophila olfactory system and support a labelled-line mode of acidity coding at the periphery.

  9. Codon-Optimized NADH Oxidase Gene Expression and Gene Fusion with Glycerol Dehydrogenase for Bienzyme System with Cofactor Regeneration

    PubMed Central

    Zhou, Qiang; Wang, Shizhen

    2015-01-01

    NADH oxidases (NOXs) play an important role in maintaining balance of NAD+/NADH by catalyzing cofactors regeneration. The expression of nox gene from Lactobacillus brevis in Escherichia coli BL21 (BL21 (DE3)) was studied. Two strategies, the high AT-content in the region adjacent to the initiation codon and codon usage of the whole gene sequence consistent with the host, obtained the NOX activity of 59.9 U/mg and 73.3 U/mg (crude enzyme), with enhanced expression level of 2.0 and 2.5-folds, respectively. Purified NOX activity was 213.8 U/mg. Gene fusion of glycerol dehydrogenase (GDH) and NOX formed bifuctional multi-enzymes for bioconversion of glycerol coupled with coenzyme regeneration. Kinetic parameters of the GDH-NOX for each substrate, glycerol and NADH, were calculated as Vmax(Glycerol) 20 μM/min, Km(Glycerol) 19.4 mM, Vmax (NADH) 12.5 μM/min and Km (NADH) 51.3 μM, respectively, which indicated the potential application of GDH-NOX for quick glycerol analysis and dioxyacetone biosynthesis. PMID:26115038

  10. 21 CFR 862.1295 - Folic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Folic acid test system. 862.1295 Section 862.1295....1295 Folic acid test system. (a) Identification. A folic acid test system is a device intended to measure the vitamin folic acid in plasma and serum. Folic acid measurements are used in the diagnosis...

  11. 21 CFR 862.1290 - Fatty acids test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fatty acids test system. 862.1290 Section 862.1290....1290 Fatty acids test system. (a) Identification. A fatty acids test system is a device intended to measure fatty acids in plasma and serum. Measurements of fatty acids are used in the diagnosis...

  12. 21 CFR 862.1295 - Folic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Folic acid test system. 862.1295 Section 862.1295....1295 Folic acid test system. (a) Identification. A folic acid test system is a device intended to measure the vitamin folic acid in plasma and serum. Folic acid measurements are used in the diagnosis...

  13. 21 CFR 862.1290 - Fatty acids test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fatty acids test system. 862.1290 Section 862.1290....1290 Fatty acids test system. (a) Identification. A fatty acids test system is a device intended to measure fatty acids in plasma and serum. Measurements of fatty acids are used in the diagnosis...

  14. A novel functionalisation process for glucose oxidase immobilisation in poly(methyl methacrylate) microchannels in a flow system for amperometric determinations.

    PubMed

    Cerqueira, Marcos Rodrigues Facchini; Grasseschi, Daniel; Matos, Renato Camargo; Angnes, Lucio

    2014-08-01

    Different materials like glass, silicon and poly(methyl methacrylate) (PMMA) are being used to immobilise enzymes in microchannels. PMMA shows advantages such as its low price, biocompatibility and attractive mechanical and chemical properties. Despite this, the introduction of reactive functional groups on PMMA is still problematic, either because of the complex chemistry or extended reaction time involved. In this paper, a new methodology was developed to immobilise glucose oxidase (GOx) in PMMA microchannels, with the benefit of a rapid immobilisation process and a very simple route. The new procedure involves only two steps, based on the reaction of 5.0% (w/w) polyethyleneimine (PEI) with PMMA in a dimethyl sulphoxide medium, followed by the immobilisation of glucose oxidase using a solution containing 100U enzymes and 1.0% (v/v) glutaraldehyde. The reactors prepared in this way were evaluated by a flowing system with amperometric detection (+0.60V) based on the oxidation of the H2O2 produced by the reactor. The microreactor proposed here was able to work with high bioconversion and a frequency of 60 samples h(-1), with detection and quantification limits of 0.50 and 1.66µmol L(-1), respectively. Michaelis-Menten parameters (Vmax and KM) were calculated as 449±47.7nmol min(-1) and 7.79±0.98mmol. Statistical evaluations were done to validate the proposed methodology. The content of glucose in natural and commercial coconut water samples was evaluated using the developed method. Comparison with spectrophotometric measurements showed that both methodologies have a very good correlation (tcalculated, 0.05, 4=1.35

  15. An investigation into the antigenic cross-reactivity of Ophiophagus hannah (king cobra) venom neurotoxin, phospholipase A2, hemorrhagin and L-amino acid oxidase using enzyme-linked immunosorbent assay.

    PubMed

    Tan, N H; Lim, K K; Jaafar, M I

    1993-07-01

    The antigenic cross-reactivity of four Ophiophagus hannah (king cobra) venom components, the neurotoxin (OH-NTX), phospholipase A2 (OH-PLA2), hemorrhagin (OH-HMG) and L-amino acid oxidase (OH-LAAO) were examined by indirect and double sandwich ELISAs. The indirect ELISAs for OH-NTX, OH-PLA2 and OH-HMG were very specific when assayed against the various heterologous snake venoms and O. hannah venom components, at 25 ng/ml antigen level. At higher antigen concentrations (100-400 ng/ml), there were moderate to strong indirect ELISA cross-reactions between anti-O. hannah neurotoxin and venoms from various species of cobra as well as two short neurotoxins. However, anti-O. hannah hemorrhagin did not cross-react with any of the venoms tested, even at these high antigen concentrations, indicating that O. hannah hemorrhagin is antigenically very different from other venom hemorrhagins. Examination of the indirect ELISA cross-reactions between anti-O. hannah PLA2 and several elapid PLA2 enzymes suggests that the elapid PLA2 antigenic class has more than two subgroups. The antibodies to O. hannah L-amino acid oxidase, however, yielded indirect ELISA cross-reactions with many venoms as well as with OH-NTX, OH-PLA2 and OH-HMG, indicating that OH-LAAO shares common epitopes even with unrelated proteins. The double sandwich ELISAs for the four anti-O. hannah venom components, on the other hand, generally exhibited a higher degree of selectivity than the indirect ELISA procedure.

  16. High resolution crystal structure of rat long chain hydroxy acid oxidase in complex with the inhibitor 4-carboxy-5-[(4-chlorophenyl)sulfanyl]-1, 2, 3-thiadiazole. Implications for inhibitor specificity and drug design

    SciTech Connect

    Chen, Zhi-wei; Vignaud, Caroline; Jaafar, Adil; Lévy, Bernard; Guéritte, Françoise; Guénard, Daniel; Lederer, Florence; Mathews, F. Scott

    2012-05-24

    Long chain hydroxy acid oxidase (LCHAO) is responsible for the formation of methylguanidine, a toxic compound with elevated serum levels in patients with chronic renal failure. Its isozyme glycolate oxidase (GOX), has a role in the formation of oxalate, which can lead to pathological deposits of calcium oxalate, in particular in the disease primary hyperoxaluria. Inhibitors of these two enzymes may have therapeutic value. These enzymes are the only human members of the family of FMN-dependent L-2-hydroxy acid-oxidizing enzymes, with yeast flavocytochrome b{sub 2} (Fcb2) among its well studied members. We screened a chemical library for inhibitors, using in parallel rat LCHAO, human GOX and the Fcb2 flavodehydrogenase domain (FDH). Among the hits was an inhibitor, CCPST, with an IC{sub 50} in the micromolar range for all three enzymes. We report here the crystal structure of a complex between this compound and LCHAO at 1.3 {angstrom} resolution. In comparison with a lower resolution structure of this enzyme, binding of the inhibitor induces a conformational change in part of the TIM barrel loop 4, as well as protonation of the active site histidine. The CCPST interactions are compared with those it forms with human GOX and those formed by two other inhibitors with human GOX and spinach GOX. These compounds differ from CCPST in having the sulfur replaced with a nitrogen in the five-membered ring as well as different hydrophobic substituents. The possible reason for the {approx}100-fold difference in affinity between these two series of inhibitors is discussed. The present results indicate that specificity is an issue in the quest for therapeutic inhibitors of either LCHAO or GOX, but they may give leads for this quest.

  17. Succinate oxidase in Neurospora.

    PubMed

    West, D J; Woodward, D O

    1973-02-01

    Two kinetically distinct states of succinate oxidase have been detected in the mitochondria of Neruospora crassa. One state has a K(m) for succinate of 4.1 x 10(-3)m, and the other has a K(m) for succinate of 3.5 x 10(-4)m. The high K(m) state was found in freshly extracted mitochondria from either 20- or 72-hr mycelium. However, the succinate oxidase activity in mitochondria from 20-hr mycelium rapidly deteriorated in vitro, leaving a stable residual activity with the lower K(m) for succinate. Adenosine triphosphate (ATP) plus Mg(2+) stabilized the high K(m) state in these preparations. The high K(m) state of succinate oxidase was further characterized by a two- to threefold increase in activity over the pH range 6.6 to 8.0 and by classical competitive inhibition by fumarate and malonate. By contrast, the low K(m) state of succinate oxidase showed a relatively flat response to pH over the range 6.6 to 8.0 and a nonclassical pattern of inhibition by fumarate and malonate, as shown by nonlinear plots of reciprocal velocity versus reciprocal substrate concentration in the presence of inhibitor or reciprocal velocity versus inhibitor concentration at fixed substrate concentrations. The relationship of mycelial age to the in vitro stability of succinate oxidase is considered with reference to probable changes in the relative pool sizes of extra- and intramitochondrial ATP in response to changes in the rate of glycolysis.

  18. On the direct electron transfer, sensing, and enzyme activity in the glucose oxidase/carbon nanotubes system.

    PubMed

    Wooten, Marilyn; Karra, Sushma; Zhang, Maogen; Gorski, Waldemar

    2014-01-07

    The signal transduction and enzyme activity were investigated in biosensors based on the glucose oxidase (GOx) and carbon nanotubes (CNT) embedded in a bioadhesive film of chitosan (CHIT). The voltammetric studies showed that, regardless of CHIT matrix, the GOx adsorbed on CNT yielding a pair of surface-confined current peaks at -0.48 V. The anodic peak did not increase in the presence of glucose in an O2-free solution indicating the lack of direct electron transfer (DET) between the enzymatically active GOx and CNT. The voltammetric peaks were due to the redox of enzyme cofactor flavin adenine dinucleotide (FAD), which was not the part of active enzyme. The presented data suggest that DET may not be happening for any type of GOx/CNT-based sensor. The biosensor was sensitive to glucose in air-equilibrated solutions indicating the O2-mediated enzymatic oxidation of glucose. The signal transduction relied on the net drop in a biosensor current that was caused by a decrease in a 4-e(-) O2 reduction current and an increase in a 2-e(-) H2O2 reduction current. The enzyme assays showed that CNT nearly doubled the retention of GOx in a biosensor while decreasing the average enzymatic activity of retained enzyme by a factor of 4-5. Such inhibition should be considered when using a protein-assisted solubilization of CNT in water for biomedical applications. The proposed analytical protocols can be also applied to study the effects of nanoparticles on proteins in assessing the health risks associated with the use of nanomaterials.

  19. 21 CFR 862.1795 - Vanilmandelic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Vanilmandelic acid test system. 862.1795 Section... Systems § 862.1795 Vanilmandelic acid test system. (a) Identification. A vanilmandelic acid test system is a device intended to measure vanilmandelic acid in urine. Measurements of vanilmandelic...

  20. 21 CFR 862.1795 - Vanilmandelic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Vanilmandelic acid test system. 862.1795 Section... Systems § 862.1795 Vanilmandelic acid test system. (a) Identification. A vanilmandelic acid test system is a device intended to measure vanilmandelic acid in urine. Measurements of vanilmandelic...

  1. Microdialysis with radiometric monitoring of L-[β-11C]DOPA to assess dopaminergic metabolism: effect of inhibitors of L-amino acid decarboxylase, monoamine oxidase, and catechol-O-methyltransferase on rat striatal dialysate.

    PubMed

    Okada, Maki; Nakao, Ryuji; Hosoi, Rie; Zhang, Ming-Rong; Fukumura, Toshimitsu; Suzuki, Kazutoshi; Inoue, Osamu

    2011-01-01

    The catecholamine, dopamine (DA), is synthesized from 3,4-dihydroxy-L-phenylalanine (L-DOPA) by aromatic L-amino acid decarboxylase (AADC). Dopamine metabolism is regulated by monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT). To measure dopaminergic metabolism, we used microdialysis with radiometric detection to monitor L-[β-(11)C]DOPA metabolites in the extracellular space of the rat striatum. We also evaluated the effects of AADC, MAO, and COMT inhibitors on metabolite profiles. The major early species measured after administration of L-[β-(11)C]DOPA were [(11)C]3,4-dihydroxyphenylacetic acid ([(11)C]DOPAC) and [(11)C]homovanillic acid ([(11)C]HVA) in a 1:1 ratio, which shifted toward [(11)C]HVA with time. An AADC inhibitor increased the uptake of L-[β-(11)C]DOPA and L-3-O-methyl-[(11)C]DOPA and delayed the accumulation of [(11)C]DOPAC and [(11)C]HVA. The MAO and COMT inhibitors increased the production of [(11)C]3-methoxytyramine and [(11)C]DOPAC, respectively. These results reflect the L-DOPA metabolic pathway, suggesting that this method may be useful for assessing dopaminergic metabolism.

  2. Uric Acid Nephrolithiasis: A Systemic Metabolic Disorder

    PubMed Central

    Moe, Orson W.

    2014-01-01

    Uric acid nephrolithiasis is characteristically a manifestation of a systemic metabolic disorder. It has a prevalence of about 10% among all stone formers, the third most common type of kidney stone in the industrialized world. Uric acid stones form primarily due to an unduly acid urine; less deciding factors are hyperuricosuria and a low urine volume. The vast majority of uric acid stone formers have the metabolic syndrome, and not infrequently, clinical gout is present as well. A universal finding is a low baseline urine pH plus insufficient production of urinary ammonium buffer. Persons with gastrointestinal disorders, in particular chronic diarrhea or ostomies, and patients with malignancies with a large tumor mass and high cell turnover comprise a less common but nevertheless important subset. Pure uric acid stones are radiolucent but well visualized on renal ultrasound. A 24 h urine collection for stone risk analysis provides essential insight into the pathophysiology of stone formation and may guide therapy. Management includes a liberal fluid intake and dietary modification. Potassium citrate to alkalinize the urine to a goal pH between 6 and 6.5 is essential, as undissociated uric acid deprotonates into its much more soluble urate form. PMID:25045326

  3. Evaluation of the Initiation/Promotion Potential of CTFE Trimer Acid

    DTIC Science & Technology

    1990-11-01

    Chlorotrifluoroethylene Trimer Acid Hepatocarcinogenesis 43 Initiation Perhalogenated Fatty Acid 16. PRICE CODE Peroxisome Proliferator Promotion 17...peroxisomal proliferation. Several peroxisome proliferators have been shown to inhibit mitochondrial fatty acid oxidation in rat liver (Bone et al., 1982...in the fatty acid oxidase system (Harrison et al., 1988). These findings and the fact that mammals can oxidize n-alkanes to the corresponding fatty

  4. Novel determination system for urea in alcoholic beverages by using an FIA system with an acid urease column.

    PubMed

    Iida, Yasuhiro; Suganuma, Yuko; Matsumoto, Kunio; Satoh, Ikuo

    2006-01-01

    A novel determination method for urea using an acid urease column-FIA system was developed, and the system was applied to the determination of urea in rice wine. This novel FIA system was characterized by CO2 detection due to the property of acid urease and by a microfluidic gas-diffusion device with the use of an ultra-thin hollow fiber membrane. A biosensing system fabricated in this study was assembled with a double-plunger pump, a sample-injection valve, an immobilized acid urease column as a recognition element for the assay of urea, a gas-diffusion unit, and a flow-type spectrophotometer. The gas-diffusion unit consisted of a double-tubing structure in which the outer tubing was made of PTFE (i.d. 1.0 mm; o.d. 1.5 mm) and the inner tubing was of porous PTFE (i.d. 0.19 mm; o.d. 0.25 mm). Standard urea solutions (20 microl) were measured through monitoring variations in the absorbance of a coloring agent solution resulting from a pH shift due to carbon dioxide molecules being enzymatically generated. A wide and linear relationship was obtained between the concentration of urea (16 microM - 1.0 mM) and the change in absorbance. This FIA system has great advantages that the system did not suffer from ammonia and ethanol in samples. This system, armed with a microfluidic gas-diffusion device, was applicable to the determination of various substrates of many kinds of decarboxylase, amino-acid oxidase, and amino-acid oxygenase, producing CO2 and NH3 molecules.

  5. Production, Purification, and Identification of Cholest-4-en-3-one Produced by Cholesterol Oxidase from Rhodococcus sp. in Aqueous/Organic Biphasic System

    PubMed Central

    Wu, Ke; Li, Wei; Song, Jianrui; Li, Tao

    2015-01-01

    Cholest-4-en-3-one has positive uses against obesity, liver disease, and keratinization. It can be applied in the synthesis of steroid drugs as well. Most related studies are focused on preparation of cholest-4-en-3-one by using whole cells as catalysts, but production of high-quality cholest-4-en-3-one directly from cholesterol oxidase (COD) using an aqueous/organic two-phase system has been rarely explored. This study set up an enzymatic reaction system to produce cholest-4-en-3-one. We developed and optimized the enzymatic reaction system using COD from COX5-6 (a strain of Rhodococcus) instead of whole-cell biocatalyst. This not only simplifies and accelerates the production but also benefits the subsequent separation and purification process. Through extraction, washing, evaporation, column chromatography, and recrystallization, we got cholest-4-en-3-one with purity of 99.78%, which was identified by nuclear magnetic resonance, mass spectroscopy, and infrared spectroscopy. In addition, this optimized process of cholest-4-en-3-one production and purification can be easily scaled up for industrial production, which can largely decrease the cost and guarantee the purity of the product. PMID:25733914

  6. Acid mine water aeration and treatment system

    DOEpatents

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  7. A biochemical approach to study the role of the terminal oxidases in aerobic respiration in Shewanella oneidensis MR-1.

    PubMed

    Le Laz, Sébastien; Kpebe, Arlette; Bauzan, Marielle; Lignon, Sabrina; Rousset, Marc; Brugna, Myriam

    2014-01-01

    The genome of the facultative anaerobic γ-proteobacterium Shewanella oneidensis MR-1 encodes for three terminal oxidases: a bd-type quinol oxidase and two heme-copper oxidases, a A-type cytochrome c oxidase and a cbb 3-type oxidase. In this study, we used a biochemical approach and directly measured oxidase activities coupled to mass-spectrometry analysis to investigate the physiological role of the three terminal oxidases under aerobic and microaerobic conditions. Our data revealed that the cbb 3-type oxidase is the major terminal oxidase under aerobic conditions while both cbb 3-type and bd-type oxidases are involved in respiration at low-O2 tensions. On the contrary, the low O2-affinity A-type cytochrome c oxidase was not detected in our experimental conditions even under aerobic conditions and would therefore not be required for aerobic respiration in S. oneidensis MR-1. In addition, the deduced amino acid sequence suggests that the A-type cytochrome c oxidase is a ccaa 3-type oxidase since an uncommon extra-C terminal domain contains two c-type heme binding motifs. The particularity of the aerobic respiratory pathway and the physiological implication of the presence of a ccaa 3-type oxidase in S. oneidensis MR-1 are discussed.

  8. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pyruvic acid test system. 862.1655 Section 862....1655 Pyruvic acid test system. (a) Identification. A pyruvic acid test system is a device intended to measure pyruvic acid (an intermediate compound in the metabolism of carbohydrate) in plasma....

  9. 21 CFR 862.1095 - Ascorbic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ascorbic acid test system. 862.1095 Section 862....1095 Ascorbic acid test system. (a) Identification. An ascorbic acid test system is a device intended to measure the level of ascorbic acid (vitamin C) in plasma, serum, and urine. Ascorbic...

  10. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Uric acid test system. 862.1775 Section 862.1775....1775 Uric acid test system. (a) Identification. A uric acid test system is a device intended to measure uric acid in serum, plasma, and urine. Measurements obtained by this device are used in the...

  11. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Uric acid test system. 862.1775 Section 862.1775....1775 Uric acid test system. (a) Identification. A uric acid test system is a device intended to measure uric acid in serum, plasma, and urine. Measurements obtained by this device are used in the...

  12. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pyruvic acid test system. 862.1655 Section 862....1655 Pyruvic acid test system. (a) Identification. A pyruvic acid test system is a device intended to measure pyruvic acid (an intermediate compound in the metabolism of carbohydrate) in plasma....

  13. 21 CFR 862.1095 - Ascorbic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ascorbic acid test system. 862.1095 Section 862....1095 Ascorbic acid test system. (a) Identification. An ascorbic acid test system is a device intended to measure the level of ascorbic acid (vitamin C) in plasma, serum, and urine. Ascorbic...

  14. Characterization of two amine oxidases from Aspergillus carbonarius AIU 205.

    PubMed

    Sugawara, Asami; Matsui, Daisuke; Yamada, Miwa; Asano, Yasuhisa; Isobe, Kimiyasu

    2015-06-01

    We have reported that Aspergillus carbonarius AIU 205, which was isolated by our group, produced three enzymes exhibiting oxidase activity for 4-aminobutanamide (4-ABAD) (J. Biosci. Bioeng., 117, 263-268, 2014). Among three enzymes, characteristics of enzyme I have been revealed, but those of the other two enzymes have not. In this study, we purified enzymes II and III, and compared their characteristics with those of enzyme I. Enzymes II and III also oxidized aliphatic monoamines, aromatic amines, and aliphatic aminoalcohols. In addition, the oxidase activity of both enzymes was strongly inhibited by carbonyl reagents and specific inhibitors for copper-containing amine oxidases. Thus, enzymes II and III were also classified into the copper-containing amine oxidase group (EC 1.4.3.6) along with enzyme I. However, these three enzymes differed from each other in their enzymatic, kinetic, and physicochemical properties. The N-terminal amino acid sequences also differed from each other; that of enzyme I was modified, that of enzyme II was similar to those of peroxisomal copper-containing amine oxidases, and that of enzyme III was similar to those of copper-containing amine oxidases from the genus Aspergillus. Therefore, we concluded that A. carbonarius AIU 205 produced three different types of amine oxidase in the mycelia.

  15. Specific Inhibition of Acyl-CoA Oxidase-1 by an Acetylenic Acid Improves Hepatic Lipid and Reactive Oxygen Species (ROS) Metabolism in Rats Fed a High Fat Diet.

    PubMed

    Zeng, Jia; Deng, Senwen; Wang, Yiping; Li, Ping; Tang, Lian; Pang, Yefeng

    2017-03-03

    A chronic high fat diet results in hepatic mitochondrial dysfunction and induction of peroxisomal fatty acid oxidation (FAO); whether specific inhibition of peroxisomal FAO benefits mitochondrial FAO and reactive oxygen species (ROS) metabolism remains unclear. In this study a specific inhibitor for the rate-limiting enzyme involved in peroxisomal FAO, acyl-CoA oxidase-1 (ACOX1) was developed and used for the investigation of peroxisomal FAO inhibition upon mitochondrial FAO and ROS metabolism. Specific inhibition of ACOX1 by 10,12-tricosadiynoic acid increased hepatic mitochondrial FAO via activation of the SIRT1-AMPK (adenosine 5'-monophosphate-activated protein kinase) pathway and proliferator activator receptor α and reduced hydrogen peroxide accumulation in high fat diet-fed rats, which significantly decreased hepatic lipid and ROS contents, reduced body weight gain, and decreased serum triglyceride and insulin levels. Inhibition of ACOX1 is a novel and effective approach for the treatment of high fat diet- or obesity-induced metabolic diseases by improving mitochondrial lipid and ROS metabolism.

  16. 21 CFR 862.1509 - Methylmalonic acid (nonquantitative) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... methylmalonic acid (nonquantitative) test system is a device intended to identify methylmalonic acid in urine. The identification of methylmalonic acid in urine is used in the diagnosis and treatment...

  17. Oriented and selective enzyme immobilization on functionalized silica carrier using the cationic binding module Z basic2: design of a heterogeneous D-amino acid oxidase catalyst on porous glass.

    PubMed

    Bolivar, Juan M; Nidetzky, Bernd

    2012-06-01

    D-amino acid oxidase from Trigonopsis variabilis (TvDAO) is applied in industry for the synthesis of pharmaceutical intermediates. Because free TvDAO is extremely sensitive to exposure to gas-liquid interfaces, biocatalytic processing is usually performed with enzyme immobilizates that offer enhanced stability under bubble aeration. We herein present an "Immobilization by Design" approach that exploits engineered charge complementarity between enzyme and carrier to optimize key features of the immobilization of TvDAO. A fusion protein between TvDAO and the positively charged module Z(basic2) was generated, and a corresponding oppositely charged carrier was obtained by derivatization of mesoporous glass with 3-(trihydroxysilyl)-1-propane-sulfonic acid. Using 250 mM NaCl for charge screening at pH 7.0, the Z(basic2) fusion of TvDAO was immobilized directly from E. coli cell extract with almost absolute selectivity and full retention of catalytic effectiveness of the isolated enzyme in solution. Attachment of the homodimeric enzyme to the carrier was quasi-permanent in low-salt buffer but fully reversible upon elution with 5 M NaCl. Immobilized TvDAO was not sensitive to bubble aeration and received substantial (≥ tenfold) stabilization of the activity at 45°C as compared to free enzyme, suggesting immobilization via multisubunit oriented interaction of enzyme with the insoluble carrier. The Z(basic2) enzyme immobilizate was demonstrated to serve as re-usable heterogeneous catalyst for D-amino acid oxidation. Z(basic2) -mediated binding on a sulfonic acid group-containing glass carrier constitutes a generally useful strategy of enzyme immobilization that supports transition from case-specific empirical development to rational design.

  18. Selective monoamine oxidase B inhibition by an Aphanizomenon flos-aquae extract and by its constitutive active principles phycocyanin and mycosporine-like amino acids.

    PubMed

    Scoglio, Stefano; Benedetti, Yanina; Benvenuti, Francesca; Battistelli, Serafina; Canestrari, Franco; Benedetti, Serena

    2014-06-15

    Aphanizomenon flos-aquae (AFA) is a fresh water unicellular blue-green alga that has been traditionally used for over 25 years for its health-enhancing properties. Recent studies have shown the ability of a proprietary AFA extract (Klamin(®)) to improve mood, counteract anxiety, and enhance attention and learning. Aim of this study was to test the monoamine oxidase (MAO) inhibition activity of the same AFA extract and of its constituents phycocyanin (AFA-PC) and mycosporine-like aminoacids (AFA-MAAs). All compounds showed a dose-dependent selective inhibition of MAO-B activity as compared to MAO-A. The IC50 values of the AFA extract (concentration 10 mg/ml), AFA-PC and AFA-MAAs were 6.4 μl/ml, 1.33 μM and 1.98 μM, respectively, evidencing a mixed-type of inhibition for the AFA extract (Ki 0.99 μl/ml), a non-competitive inhibition for AFA-PC (Ki 1.06 μM) and a competitive inhibition for AFA-MAAs (Ki 0.585 μM). These results are important to explain the neuromodulating properties of the AFA extract Klamin(®), which is rich in phenylethylamine, a general neuromodulator, that would nevertheless rapidly destroyed by MAO-B enzymes without the inhibitory activity of the synergic active principles AFA-PC and AFA-MAAs. The present investigation thus proposes the extract as potentially relevant in clinical areas such as mood disorders and neurodegenerative diseases.

  19. HypC, the anthrone oxidase involved in aflatoxin biosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Based on gene disruption and enzyme activity, hypC, an open reading frame in the pksA (aflC)/nor-1 (aflD) intergenic region in the aflatoxin biosynthesis cluster, encodes a 17 kDa oxidase that catalyzes the conversion of norsolorinic acid anthrone to norsolorinic acid....

  20. [Isolation and purification of alpha-glycerophosphate oxidase in a polyethylene glycol/(NH4 )2SO4 aqueous two-phase system].

    PubMed

    Meng, Yao; Jin, Jiagui; Liu, Shuangfeng; Yang, Min; Zhang, Qinglian; Wan, Li; Tang, Kun

    2014-02-01

    Alpha-glycerophosphate oxidase (alpha-GPO) from Enterococcus casseli flavus was successfully isolated and purified by using polyethylene glycol (PEG)/(NH4)2SO4 aqueous two-phase system (ATPS). The results showed that the chosen PEG/(NH4)2SO4 ATPS could be affected by PEG molecular weight, pH, concentration of PEG and (NH4)2SO4, and inorganic salt as well as additional amount of crude enzyme. After evaluating these influencing factors, the final optimum purification strategy was formed by 16.5% (m/m) PEG2000, 13.2% (m/m) (NH4)2SO4, pH 7.5 and 30% (m/m) additive crude enzyme, respectively. The NaCl was a negative influencing factor which would lead to lower purification fold and activity recovery. These conditions eventually resulted in the activity recovery of 89% (m/m), distribution coefficient of 1.2 and purification fold of 7.0.

  1. Azide inhibition of urate oxidase.

    PubMed

    Gabison, Laure; Colloc'h, Nathalie; Prangé, Thierry

    2014-07-01

    The inhibition of urate oxidase (UOX) by azide was investigated by X-ray diffraction techniques and compared with cyanide inhibition. Two well characterized sites for reagents are present in the enzyme: the dioxygen site and the substrate-binding site. To examine the selectivity of these sites towards azide inhibition, several crystallization conditions were developed. UOX was co-crystallized with azide (N3) in the presence or absence of either uric acid (UA, the natural substrate) or 8-azaxanthine (8AZA, a competitive inhibitor). In a second set of experiments, previously grown orthorhombic crystals of the UOX-UA or UOX-8AZA complexes were soaked in sodium azide solutions. In a third set of experiments, orthorhombic crystals of UOX with the exchangeable ligand 8-nitroxanthine (8NXN) were soaked in a solution containing uric acid and azide simultaneously (competitive soaking). In all assays, the soaking periods were either short (a few hours) or long (one or two months). These different experimental conditions showed that one or other of the sites, or the two sites together, could be inhibited. This also demonstrated that azide not only competes with dioxygen as cyanide does but also competes with the substrate for its enzymatic site. A model in agreement with experimental data would be an azide in equilibrium between two sites, kinetically in favour of the dioxygen site and thermodynamically in favour of the substrate-binding site.

  2. Azide inhibition of urate oxidase

    PubMed Central

    Gabison, Laure; Colloc’h, Nathalie; Prangé, Thierry

    2014-01-01

    The inhibition of urate oxidase (UOX) by azide was investigated by X-ray diffraction techniques and compared with cyanide inhibition. Two well characterized sites for reagents are present in the enzyme: the dioxygen site and the substrate-binding site. To examine the selectivity of these sites towards azide inhibition, several crystallization conditions were developed. UOX was co-crystallized with azide (N3) in the presence or absence of either uric acid (UA, the natural substrate) or 8-azaxanthine (8AZA, a competitive inhibitor). In a second set of experiments, previously grown orthorhombic crystals of the UOX–UA or UOX–8AZA complexes were soaked in sodium azide solutions. In a third set of experiments, orthorhombic crystals of UOX with the exchangeable ligand 8-nitroxanthine (8NXN) were soaked in a solution containing uric acid and azide simultaneously (competitive soaking). In all assays, the soaking periods were either short (a few hours) or long (one or two months). These different experimental conditions showed that one or other of the sites, or the two sites together, could be inhibited. This also demonstrated that azide not only competes with dioxygen as cyanide does but also competes with the substrate for its enzymatic site. A model in agreement with experimental data would be an azide in equilibrium between two sites, kinetically in favour of the dioxygen site and thermodynamically in favour of the substrate-binding site. PMID:25005084

  3. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Uric acid test system. 862.1775 Section 862.1775...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1775 Uric acid test system. (a) Identification. A uric acid test system is a device intended to...

  4. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Uric acid test system. 862.1775 Section 862.1775...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1775 Uric acid test system. (a) Identification. A uric acid test system is a device intended to...

  5. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Uric acid test system. 862.1775 Section 862.1775...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1775 Uric acid test system. (a) Identification. A uric acid test system is a device intended to...

  6. A new broadband near-infrared spectroscopy system for in-vivo measurements of cerebral cytochrome-c-oxidase changes in neonatal brain injury.

    PubMed

    Bale, Gemma; Mitra, Subhabrata; Meek, Judith; Robertson, Nicola; Tachtsidis, Ilias

    2014-10-01

    We present a novel lens-based broadband near-infrared spectroscopy system to simultaneously measure cerebral changes in tissue oxygenation and haemodynamics via estimation of the changes in haemoglobin concentration; in addition to oxygen utilization via the measurement of the oxidation state of cytochrome-c-oxidase (CCO). We demonstrate the use of the system in a cohort of 6 newborn infants with neonatal encephalopathy in the Neonatal Intensive Care Unit for continuous measurement periods of up to 5 days. NIRS data was collected from above the frontal lobe on the left and right hemispheres simultaneously with systemic data to allow multimodal data analysis. This allowed us to study the NIRS variables in response to global pathophysiological events and we focused our analysis to spontaneous oxygen desaturations. We identified changes from the NIRS variables during 236 oxygen desaturations from over 212 hours of data with a change from the baseline to nadir of -12 ± 3%. There was a consistent negative change in the Δ[HbD] (= oxygenated - deoxygenated haemoglobin) and Δ[oxCCO] measurements, mean decreases were 3.0 ± 1.7μM and 0.22 ± 0.11μM, and a positive change in the Δ[HbT] (= oxygenated + deoxygenated haemoglobin) measurements across all subjects, mean increase was 0.85 ± 0.58μM. We have shown with a feasibility study that the relationship between haemoglobin oxygenation changes and CCO oxidation changes during these desaturation events was significantly associated with a magnetic resonance spectroscopy (MRS)-measured biomarker of injury severity (r = 0.91, p<0.01).

  7. Multiple mechanisms of NADPH oxidase inhibition by type A and type B Francisella tularensis

    PubMed Central

    McCaffrey, Ramona L.; Schwartz, Justin T.; Lindemann, Stephen R.; Moreland, Jessica G.; Buchan, Blake W.; Jones, Bradley D.; Allen, Lee-Ann H.

    2010-01-01

    Ft is a facultative intracellular pathogen that infects many cell types, including neutrophils. In previous work, we demonstrated that the type B Ft strain LVS disrupts NADPH oxidase activity throughout human neutrophils, but how this is achieved is incompletely defined. Here, we used several type A and type B strains to demonstrate that Ft-mediated NADPH oxidase inhibition is more complex than appreciated previously. We confirm that phagosomes containing Ft opsonized with AS exclude flavocytochrome b558 and extend previous results to show that soluble phox proteins were also affected, as indicated by diminished phosphorylation of p47phox and other PKC substrates. However, a different mechanism accounts for the ability of Ft to inhibit neutrophil activation by formyl peptides, Staphylococcus aureus, OpZ, and phorbol esters. In this case, enzyme targeting and assembly were normal, and impaired superoxide production was characterized by sustained membrane accumulation of dysfunctional NADPH oxidase complexes. A similar post-assembly inhibition mechanism also diminished the ability of anti-Ft IS to confer neutrophil activation and bacterial killing, consistent with the limited role for antibodies in host defense during tularemia. Studies of mutants that we generated in the type A Ft strain Schu S4 demonstrate that the regulatory factor fevR is essential for NADPH oxidase inhibition, whereas iglI and iglJ, candidate secretion system effectors, and the acid phosphatase acpA are not. As Ft uses multiple mechanisms to block neutrophil NADPH oxidase activity, our data strongly suggest that this is a central aspect of virulence. PMID:20610796

  8. Proton-pumping mechanism of cytochrome c oxidase: a kinetic master-equation approach.

    PubMed

    Kim, Young C; Hummer, Gerhard

    2012-04-01

    Cytochrome c oxidase is an efficient energy transducer that reduces oxygen to water and converts the released chemical energy into an electrochemical membrane potential. As a true proton pump, cytochrome c oxidase translocates protons across the membrane against this potential. Based on a wealth of experiments and calculations, an increasingly detailed picture of the reaction intermediates in the redox cycle has emerged. However, the fundamental mechanism of proton pumping coupled to redox chemistry remains largely unresolved. Here we examine and extend a kinetic master-equation approach to gain insight into redox-coupled proton pumping in cytochrome c oxidase. Basic principles of the cytochrome c oxidase proton pump emerge from an analysis of the simplest kinetic models that retain essential elements of the experimentally determined structure, energetics, and kinetics, and that satisfy fundamental physical principles. The master-equation models allow us to address the question of how pumping can be achieved in a system in which all reaction steps are reversible. Whereas proton pumping does not require the direct modulation of microscopic reaction barriers, such kinetic gating greatly increases the pumping efficiency. Further efficiency gains can be achieved by partially decoupling the proton uptake pathway from the active-site region. Such a mechanism is consistent with the proposed Glu valve, in which the side chain of a key glutamic acid shuttles between the D channel and the active-site region. We also show that the models predict only small proton leaks even in the absence of turnover. The design principles identified here for cytochrome c oxidase provide a blueprint for novel biology-inspired fuel cells, and the master-equation formulation should prove useful also for other molecular machines. .

  9. Changes in mixed-function oxidase system in the perfused liver of the cold-acclimated rat

    NASA Astrophysics Data System (ADS)

    Takano, T.; Miyazaki, Y.; Motohashi, Y.; Yamada, K.

    1986-09-01

    Changes in the hepatic cytochrome P-450-dependent drug-metabolizing system were studied in perfused livers obtained from cold-acclimated male Wistar rats after 30 days of cold exposure (4‡C) when using hexobarbital as a substrate. In fasted animals the cold-acclimated rats showed higher levels of hexobarbital metabolic rates compared to control rats, but there was no significant difference in fed animals. The maximum rates of hexobarbital metabolism produced by xylitol perfusion were also significantly higher in the perfused liver of cold-acclimated rats. It was concluded that the function of the cytochrome P-450 system for hexobarbital in cold-acclimated rats changed due to both an increase in the activity of the cytochrome P-450 system and to changes in regulation of the cytochrome P-450 system by the supply of reducing equivalents.

  10. Influence of altered gravity on the cytochemical localization of cytochrome oxidase activity in central and peripheral gravisensory systems in developing cichlid fish

    NASA Astrophysics Data System (ADS)

    Paulus, U.; Nindl, G.; Körtje, K. H.; Slenzka, K.; Neubert, J.; Rahmann, H.

    Cichlid fish larvae were reared from hatching to active free swimming under different gravity conditions: natural environment, increased acceleration in a centrifuge, simulated weightlessness in a clinostat and near weightlessness during space flight. Cytochrome oxidase activity was analyzed semiquantitatively on the ultrastructural level as a marker of regional neuronal activity in a primary, vestibular brainstem nucleus and in gravity receptive epithelia in the inner ear. Our results show, that gravity seems to be positively correlated with cytochrome oxidase activity in the magnocellular nucleus of developing fish brain. In the inner ear the energy metabolism is decreased under microgravity concerning utricle but not saccule. Hypergravity has not effect on cytochrome oxidase activity in sensory inner ear epithelia.

  11. Involvement of NADH Oxidase in Competition and Endocarditis Virulence in Streptococcus sanguinis

    PubMed Central

    Ge, Xiuchun; Yu, Yang; Zhang, Min; Chen, Lei; Chen, Weihua; Elrami, Fadi; Kong, Fanxiang; Kitten, Todd

    2016-01-01

    Here, we report for the first time that the Streptococcus sanguinis nox gene encoding NADH oxidase is involved in both competition with Streptococcus mutans and virulence for infective endocarditis. An S. sanguinis nox mutant was found to fail to inhibit the growth of Streptococcus mutans under microaerobic conditions. In the presence of oxygen, the recombinant Nox protein of S. sanguinis could reduce oxygen to water and oxidize NADH to NAD+. The oxidation of NADH to NAD+ was diminished in the nox mutant. The nox mutant exhibited decreased levels of extracellular H2O2; however, the intracellular level of H2O2 in the mutant was increased. Furthermore, the virulence of the nox mutant was attenuated in a rabbit endocarditis model. The nox mutant also was shown to be more sensitive to blood killing, oxidative and acid stresses, and reduced growth in serum. Thus, NADH oxidase contributes to multiple phenotypes related to competitiveness in the oral cavity and systemic virulence. PMID:26930704

  12. An amperometric biosensor based on ascorbate oxidase immobilized in poly(3,4-ethylenedioxythiophene)/multi-walled carbon nanotubes composite films for the determination of L-ascorbic acid.

    PubMed

    Liu, Ming; Wen, Yangping; Xu, Jingkun; He, Haohua; Li, Dong; Yue, Ruirui; Liu, Guodong

    2011-01-01

    An amperometric L-ascorbic acid (AA) biosensor fabricated by immobilizing ascorbate oxidase (AO) in poly(3,4-ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) composite films was reported for the first time. The entrapment of AO in PEDOT/MWCNTs composite films was performed during an electrochemical polymerization process. The influence of various experimental conditions was examined for determining the optimum analytical performance. The response of the biosensor towards AA under the optimized conditions is linear from 0.05 to 20 mM with a detection limit of 15 µM (S/N = 3). The biosensor shows a response time of 20 s and a sensitivity of 23.95 mA M(-1) cm(-2). The apparent Michaelis-Menten constant (K(m)) and apparent activation energy (E(a)) are 19.5 mM and 21 kJ mol(-1), respectively. Moreover, the biosensor exhibits good anti-interferent ability, good reproducibility and remarkable storage stability.

  13. Synthesis, crystal structures, molecular docking, in vitro monoamine oxidase-B inhibitory activity of transition metal complexes with 2-{4-[bis (4-fluorophenyl)methyl]piperazin-1-yl} acetic acid

    NASA Astrophysics Data System (ADS)

    Yang, Dan-dan; Wang, Riu; Zhu, Jin-long; Cao, Qi-yue; Qin, Jie; Zhu, Hai-liang; Qian, Shao-song

    2017-01-01

    Three novel complexes, [Cu(L)2(H2O)](1), [Zn(L)2(H2O)2]·CH3OH·1.5H2O(2), and [Ni(L)2(H2O)1.8]·CH3OH·1.2H2O (3) (HL = 2-{4-[bis(4-fluorophenyl)methyl]pipera-zin-1-yl} acetic acid), were synthesized and structurally determined by single-crystal X-ray diffraction. Molecular docking study preliminarily revealed that complex 1 had potential Monoamine oxidase B inhibitory activity. All acquired compounds were tested against rat brain MAO-B in vitro. In accordance with the result of calculation, it showed complex 1 (IC50 = 1.85 ± 0.31 μM) have good inhibitory activity against MAO-B at the same micromolar concentrations with positive control Iproniazid Phosphate (IP, IC50 = 7.59 ± 1.17 μM). These results indicated that complex 1 was a potent MAO-B inhibitor.

  14. Acid preservation systems for food products

    SciTech Connect

    Tiberio, J. E.; Cirigiano, M. C.

    1984-10-16

    Fumaric acid is used in combination with critical amounts of acetic acid to preserve acid containing food products from microbiological spoilage in the absence of or at reduced levels of chemical preservative.

  15. Bezafibrate induces acyl-CoA oxidase mRNA levels and fatty acid peroxisomal beta-oxidation in rat white adipose tissue.

    PubMed

    Vázquez, M; Roglans, N; Cabrero, A; Rodríguez, C; Adzet, T; Alegret, M; Sánchez, R M; Laguna, J C

    2001-01-01

    Rats treated with bezafibrate, a PPAR activator, gain less body weight and increase daily food intake. Previously, we have related these changes to a shift of thermogenesis from brown adipose tissue to white adipose tissue attributable to bezafibrate, which induces uncoupling proteins (UCP), UCP-1 and UCP-3, in rat white adipocytes. Nevertheless, UCP induction was weak, implying additional mechanisms in the change of energy homeostasis produced by bezafibrate. Here we show that bezafibrate, in addition to inducing UCPs, modifies energy homeostasis by directly inducing aco gene expression and peroxisomal fatty acid beta-oxidation in white adipose tissue. Further, bezafibrate significantly reduced plasma triglyceride and leptin concentrations, without modifying the levels of PPARgamma or ob gene in white adipose tissue. These results indicate that bezafibrate reduces the amount of fatty acids available for triglyceride synthesis in white adipose tissue.

  16. Alternative respiration and fumaric acid production of Rhizopus oryzae.

    PubMed

    Gu, Shuai; Xu, Qing; Huang, He; Li, Shuang

    2014-06-01

    Under the conditions of fumaric acid fermentation, Rhizopus oryzae ME-F14 possessed at least two respiratory systems. The respiration of mycelia was partially inhibited by the cytochrome respiration inhibitor antimycin A or the alternative respiration inhibitor salicylhydroxamic acid and was completely inhibited in the presence of both antimycin A and salicylhydroxamic acid. During fumaric acid fermentation process, the activity of alternative respiration had a great correlation with fumaric acid productivity; both of them reached peak at the same time. The alternative oxidase gene, which encoded the mitochondrial alternative oxidase responsible for alternative respiration in R. oryzae ME-F14, was cloned and characterized in Escherichia coli. The activity of alternative respiration, the alternative oxidase gene transcription level, as well as the fumaric acid titer were measured under different carbon sources and different carbon-nitrogen ratios. The activity of alternative respiration was found to be comparable to the transcription level of the alternative oxidase gene and the fumaric acid titer. These results indicated that the activity of the alternative oxidase was regulated at the transcription stage under the conditions tested for R. oryzae ME-F14.

  17. Arabidopsis alternative oxidase sustains Escherichia coli respiration.

    PubMed Central

    Kumar, A M; Söll, D

    1992-01-01

    Glutamyl-tRNA reductase, encoded by the hemA gene, is the first enzyme in porphyrin biosynthesis in many organisms. Hemes, important porphyrin derivatives, are essential components of redox enzymes, such as cytochromes. Thus a hemA Escherichia coli strain (SASX41B) is deficient in cytochrome-mediated aerobic respiration. Upon complementation of this strain with an Arabidopsis thaliana cDNA library, we isolated a clone which permitted the SASX41B strain to grow aerobically. The clone encodes the gene for Arabidopsis alternative oxidase, whose deduced amino acid sequence was found to have 71% identity with that of the enzyme from the voodoo lily, Sauromatum guttatum. The Arabidopsis protein is expressed as a 31-kDa protein in E. coli and confers on this organism cyanide-resistant growth, which in turn is sensitive to salicylhydroxamate. This implies that a single polypeptide is sufficient for alternative oxidase activity. Based on these observations we propose that a cyanide-insensitive respiratory pathway operates in the transformed E. coli hemA strain. Introduction of this pathway now opens the way to genetic/molecular biological investigations of alternative oxidase and its cofactor. Images PMID:1438286

  18. Apoptosis induction in human breast cancer (MCF-7) cells by a novel venom L-amino acid oxidase (Rusvinoxidase) is independent of its enzymatic activity and is accompanied by caspase-7 activation and reactive oxygen species production.

    PubMed

    Mukherjee, Ashis K; Saviola, Anthony J; Burns, Patrick D; Mackessy, Stephen P

    2015-10-01

    We report the elucidation of a mechanism of apoptosis induction in breast cancer (MCF-7) cells by an L-amino acid oxidase (LAAO), Rusvinoxidase, purified from the venom of Daboia russelii russelii. Peptide mass fingerprinting analysis of Rusvinoxidase, an acidic monomeric glycoprotein with a mass of ~57 kDa, confirmed its identity as snake venom LAAO. The enzymatic activity of Rusvinoxidase was completely abolished after two cycles of freezing and thawing; however, its cytotoxicity toward MCF-7 cells remained unaffected. Dose- and time-dependent induction of apoptosis by Rusvinoxidase on MCF-7 cells was evident from changes in cell morphology, cell membrane integrity, shrinkage of cells and apoptotic body formation accompanied by DNA fragmentation. Rusvinoxidase induced apoptosis in MCF-7 cells by both the extrinsic (death-receptor) and intrinsic (mitochondrial) signaling pathways. The former pathway of apoptosis operated through activation of caspase-8 that subsequently activated caspase-7 but not caspase-3. Rusvinoxidase-induced intrinsic pathway of apoptosis was accompanied by a time-dependent depolarization of the mitochondrial membrane through the generation of reactive oxygen species, followed by a decrease in cellular glutathione content and catalase activity, and down-regulation of expression of anti-apoptotic proteins Bcl-XL and heat-shock proteins (HSP-90 and HSP-70). Rusvinoxidase treatment resulted in increase of the pro-apoptotic protein Bax, subsequently leading to the release of cytochrome c from mitochondria to the cytosol and activating caspase-9, which in turn stimulated effector caspase-7. Rusvinoxidase at a dose of 4 mg/kg was non-toxic in mice, indicating that it may be useful as a model for the development of peptide-based anticancer drugs.

  19. Aldehyde-induced xanthine oxidase activity in raw milk.

    PubMed

    Steffensen, Charlotte L; Andersen, Henrik J; Nielsen, Jacob H

    2002-12-04

    In the present study, the aldehyde-induced pro-oxidative activity of xanthine oxidase was followed in an accelerated raw milk system using spin-trap electron spin resonance (ESR) spectroscopy. The aldehydes acetaldehyde, propanal, hexanal, trans-2-hexenal, trans-2-heptenal, trans-2-nonenal, and 3-methyl-2-butenal were all found to initiate radical reactions when added to milk. Formation of superoxide through aldehyde-induced xanthine oxidase activity is suggested as the initial reaction, as all tested aldehydes were shown to trigger superoxide formation in an ultrahigh temperature (UHT) milk model system with added xanthine oxidase. It was found that addition of aldehydes to milk initially increased the ascorbyl radical concentration with a subsequent decay due to ascorbate depletion, which renders the formation of superoxide in milk with added aldehyde. The present study shows for the first time potential acceleration of oxidative events in milk through aldehyde-induced xanthine oxidase activity.

  20. In vitro treatment of HepG2 cells with saturated fatty acids reproduces mitochondrial dysfunction found in nonalcoholic steatohepatitis.

    PubMed

    García-Ruiz, Inmaculada; Solís-Muñoz, Pablo; Fernández-Moreira, Daniel; Muñoz-Yagüe, Teresa; Solís-Herruzo, José A

    2015-02-01

    Activity of the oxidative phosphorylation system (OXPHOS) is decreased in humans and mice with nonalcoholic steatohepatitis. Nitro-oxidative stress seems to be involved in its pathogenesis. The aim of this study was to determine whether fatty acids are implicated in the pathogenesis of this mitochondrial defect. In HepG2 cells, we analyzed the effect of saturated (palmitic and stearic acids) and monounsaturated (oleic acid) fatty acids on: OXPHOS activity; levels of protein expression of OXPHOS complexes and their subunits; gene expression and half-life of OXPHOS complexes; nitro-oxidative stress; and NADPH oxidase gene expression and activity. We also studied the effects of inhibiting or silencing NADPH oxidase on the palmitic-acid-induced nitro-oxidative stress and subsequent OXPHOS inhibition. Exposure of cultured HepG2 cells to saturated fatty acids resulted in a significant decrease in the OXPHOS activity. This effect was prevented in the presence of a mimic of manganese superoxide dismutase. Palmitic acid reduced the amount of both fully-assembled OXPHOS complexes and of complex subunits. This reduction was due mainly to an accelerated degradation of these subunits, which was associated with a 3-tyrosine nitration of mitochondrial proteins. Pretreatment of cells with uric acid, an antiperoxynitrite agent, prevented protein degradation induced by palmitic acid. A reduced gene expression also contributed to decrease mitochondrial DNA (mtDNA)-encoded subunits. Saturated fatty acids induced oxidative stress and caused mtDNA oxidative damage. This effect was prevented by inhibiting NADPH oxidase. These acids activated NADPH oxidase gene expression and increased NADPH oxidase activity. Silencing this oxidase abrogated totally the inhibitory effect of palmitic acid on OXPHOS complex activity. We conclude that saturated fatty acids caused nitro-oxidative stress, reduced OXPHOS complex half-life and activity, and decreased gene expression of mtDNA-encoded subunits

  1. Decavanadate inhibits the cell-free activation of neutrophil NADPH oxidase without affecting tyrosine phosphorylation.

    PubMed

    Okamura, N; Sakai, T; Nishimura, Y; Sakai, M; Araki, S; Yamaguchi, M; Ishibashi, S

    1999-08-01

    NADPH oxidase was activated by arachidonate in a cell-free system consisting of membrane and cytosol fractions prepared from guinea pig neutrophils. Vanadate apparently inhibited the NADPH oxidase activity in the cell-free system (IC50=2 microM) without phosphotyrosine accumulation. The pH dependency and stability of the inhibitory effect observed for vanadate solution indicated that decavanadate, an isopolyanion of vanadate, was responsible for the inhibition. Pervanadate (vanadyl hydroperoxide) also inhibited the oxidase activity but at a higher concentration (IC50=0.2 mM). Decavanadate lowered the Vmax but did not affect the Km value of NADPH oxidase for NADPH. Decavanadate inhibited the activation process of NADPH oxidase but not the oxidase activity itself. Decavanadate-pretreatment of membrane and cytosol fractions irreversibly decreased the abilities of both fractions to activate NADPH oxidase in the cell-free system. Translocation of p47-phox, one of the cytosolic activation factors of NADPH oxidase, from cytosol to membrane, was little affected by decavanadate. These results suggest that decavanadate inhibits the activation of NADPH oxidase in the cell-free system without affecting the phosphotyrosine phosphatase, and that decavanadate can bind to both the membrane and cytosolic activation factors when they are in a dormant state, but not to the active oxidase complex.

  2. Lysyl oxidase in colorectal cancer.

    PubMed

    Cox, Thomas R; Erler, Janine T

    2013-11-15

    Colorectal cancer is the third most prevalent form of cancer worldwide and fourth-leading cause of cancer-related mortality, leading to ~600,000 deaths annually, predominantly affecting the developed world. Lysyl oxidase is a secreted, extracellular matrix-modifying enzyme previously suggested to act as a tumor suppressor in colorectal cancer. However, emerging evidence has rapidly implicated lysyl oxidase in promoting metastasis of solid tumors and in particular colorectal cancer at multiple stages, affecting tumor cell proliferation, invasion, and angiogenesis. This emerging research has stimulated significant interest in lysyl oxidase as a strong candidate for developing and deploying inhibitors as functional efficacious cancer therapeutics. In this review, we discuss the rapidly expanding body of knowledge concerning lysyl oxidase in solid tumor progression, highlighting recent advancements in the field of colorectal cancer.

  3. Respiratory burst oxidase of fertilization.

    PubMed Central

    Heinecke, J W; Shapiro, B M

    1989-01-01

    Partially reduced oxygen species are toxic, yet sea urchin eggs synthesize H2O2 in a "respiratory burst" at fertilization, as an extracellular oxidant to crosslink their protective surface envelopes. To study the biochemical mechanism for H2O2 production, we have isolated an NADPH-specific oxidase fraction from homogenates of unfertilized Strongylocentrotus purpuratus eggs that produces H2O2 when stimulated with Ca2+ and MgATP2-. Concentrations of free Ca2+ previously implicated in regulation of egg activation modulate the activity of the oxidase. Inhibitors were used to test the relevance of this oxidase to the respiratory burst of fertilization. Procaine, two phenothiazines, and N-ethylmaleimide (but not iodoacetamide) inhibited H2O2 production by the oxidase fraction and oxygen consumption by activated eggs. The ATP requirement suggested that protein kinase activity might regulate the respiratory burst of fertilization; consonant with this hypothesis, H-7 and staurosporine were inhibitory. The respiratory burst oxidase of fertilization is an NADPH:O2 oxidoreductase that appears to be regulated by a protein kinase; although it bears a remarkable resemblance to the neutrophil oxidase, unlike the latter it does not form O2- as its initial product. PMID:2537493

  4. Hydroxybenzoic acid isomers and the cardiovascular system

    PubMed Central

    2014-01-01

    Today we are beginning to understand how phytochemicals can influence metabolism, cellular signaling and gene expression. The hydroxybenzoic acids are related to salicylic acid and salicin, the first compounds isolated that have a pharmacological activity. In this review we examine how a number of hydroxyphenolics have the potential to ameliorate cardiovascular problems related to aging such as hypertension, atherosclerosis and dyslipidemia. The compounds focused upon include 2,3-dihydroxybenzoic acid (Pyrocatechuic acid), 2,5-dihydroxybenzoic acid (Gentisic acid), 3,4-dihydroxybenzoic acid (Protocatechuic acid), 3,5-dihydroxybenzoic acid (α-Resorcylic acid) and 3-monohydroxybenzoic acid. The latter two compounds activate the hydroxycarboxylic acid receptors with a consequence there is a reduction in adipocyte lipolysis with potential improvements of blood lipid profiles. Several of the other compounds can activate the Nrf2 signaling pathway that increases the expression of antioxidant enzymes, thereby decreasing oxidative stress and associated problems such as endothelial dysfunction that leads to hypertension as well as decreasing generalized inflammation that can lead to problems such as atherosclerosis. It has been known for many years that increased consumption of fruits and vegetables promotes health. We are beginning to understand how specific phytochemicals are responsible for such therapeutic effects. Hippocrates’ dictum of ‘Let food be your medicine and medicine your food’ can now be experimentally tested and the results of such experiments will enhance the ability of nutritionists to devise specific health-promoting diets. PMID:24943896

  5. Sodium iron EDTA and ascorbic acid, but not polyphenol oxidase treatment, counteract the strong inhibitory effect of polyphenols from brown sorghum on the absorption of fortification iron in young women.

    PubMed

    Cercamondi, Colin I; Egli, Ines M; Zeder, Christophe; Hurrell, Richard F

    2014-02-01

    In addition to phytate, polyphenols (PP) might contribute to low Fe bioavailability from sorghum-based foods. To investigate the inhibitory effects of sorghum PP on Fe absorption and the potential enhancing effects of ascorbic acid (AA), NaFeEDTA and the PP oxidase enzyme laccase, we carried out three Fe absorption studies in fifty young women consuming dephytinised Fe-fortified test meals based on white and brown sorghum varieties with different PP concentrations. Fe absorption was measured as the incorporation of stable Fe isotopes into erythrocytes. In study 1, Fe absorption from meals with 17 mg PP (8·5%) was higher than that from meals with 73 mg PP (3·2%) and 167 mg PP (2·7%; P< 0·001). Fe absorption from meals containing 73 and 167 mg PP did not differ (P= 0·9). In study 2, Fe absorption from NaFeEDTA-fortified meals (167 mg PP) was higher than that from the same meals fortified with FeSO₄ (4·6 v. 2·7%; P< 0·001), but still it was lower than that from FeSO₄-fortified meals with 17 mg PP (10·7%; P< 0·001). In study 3, laccase treatment decreased the levels of PP from 167 to 42 mg, but it did not improve absorption compared with that from meals with 167 mg PP (4·8 v. 4·6%; P= 0·4), whereas adding AA increased absorption to 13·6% (P< 0·001). These findings suggest that PP from brown sorghum contribute to low Fe bioavailability from sorghum foods and that AA and, to a lesser extent, NaFeEDTA, but not laccase, have the potential to overcome the inhibitory effect of PP and improve Fe absorption from sorghum foods.

  6. King cobra (Ophiophagus hannah) venom L-amino acid oxidase induces apoptosis in PC-3 cells and suppresses PC-3 solid tumor growth in a tumor xenograft mouse model.

    PubMed

    Lee, Mui Li; Fung, Shin Yee; Chung, Ivy; Pailoor, Jayalakshmi; Cheah, Swee Hung; Tan, Nget Hong

    2014-01-01

    King cobra (Ophiophagus hannah) venom L-amino acid oxidase (OH-LAAO), a heat stable enzyme, has been shown to exhibit very potent anti-proliferative activity against human breast and lung tumorigenic cells but not in their non-tumorigenic counterparts. We further examine its in vitro and in vivo anti-tumor activity in a human prostate adenocarcinoma (PC-3) model. OH-LAAO demonstrated potent cytotoxicity against PC-3 cells with IC50 of 0.05 µg/mL after 72 h incubation in vitro. It induced apoptosis as evidenced with an increase in caspase-3/7 cleavages and an increase in annexin V-stained cells. To examine its in vivo anti-tumor activity, we treated PC-3 tumor xenograft implanted subcutaneously in immunodeficient NU/NU (nude) mice with 1 µg/g OH-LAAO given intraperitoneally (i.p.). After 8 weeks of treatment, OH-LAAO treated PC-3 tumors were markedly inhibited, when compared to the control group (P <0.05). TUNEL staining analysis on the tumor sections showed a significantly increase of apoptotic cells in the LAAO-treated animals. Histological examinations of the vital organs in these two groups showed no significant differences with normal tissues, indicating no obvious tissue damage. The treatment also did not cause any significant changes on the body weight of the mice during the duration of the study. These observations suggest that OH-LAAO cytotoxic effects may be specific to tumor xenografts and less to normal organs. Given its potent anti-tumor activities shown in vitro as well as in vivo, the king cobra venom LAAO can potentially be developed to treat prostate cancer and other solid tumors.

  7. Abscisic acid and aldehyde oxidase activity in maize ear leaf and grain relative to post-flowering photosynthetic capacity and grain-filling rate under different water/nitrogen treatments.

    PubMed

    Qin, Shujun; Zhang, Zongzheng; Ning, Tangyuan; Ren, Shizhong; Su, Licheng; Li, Zengjia

    2013-09-01

    This study investigated changes in leaf abscisic acid (ABA) concentrations and grain ABA concentrations in two maize cultivars and analyzed the following relationships under different water/nitrogen treatments: leaf ABA concentrations and photosynthetic parameters; leaf ABA concentrations and grain ABA concentrations; leaf/grain ABA concentrations and grain-filling parameters; and aldehyde oxidase (AO, EC 1.2.3.1) activities and ABA concentrations. The ear leaf average AO activities and ABA concentrations were lower in the controlled release urea treatments compared with the conventional urea treatments. The average AO activities in the grains were higher in the controlled release urea treatments, and the ABA concentrations were significantly increased at 11-30 DAF. The Pn and ABA concentrations in ear leaves were negatively correlated. And the Gmean were positively correlated with the grain ABA concentrations at 11-30 DAF and negatively correlated with the leaf ABA concentrations at 20 and 40-50 DAF. The grain ABA concentrations and leaf ABA concentrations were positively correlated. Thus, the Gmean were closely related to the AO activities and to the ear leaf and grain ABA concentrations. As compared to other treatments, the subsoiling and controlled release urea treatment promoted the uptake of water and nitrogen by maize, increased the photosynthetic capacity of the ear leaves, increased the grain-filling rate, and improved the movement of photosynthetic assimilates toward the developing grains. In the cultivar Z958, higher ABA concentrations in grains at 11-30 DAF and lower ABA concentrations in ear leaves during the late grain-filling stage, resulted in higher grain-filling rate and increased accumulation of photosynthetic products (relative to the cultivar D3).

  8. Evidence for a Key Role of Cytochrome bo3 Oxidase in Respiratory Energy Metabolism of Gluconobacter oxydans

    PubMed Central

    Richhardt, Janine; Luchterhand, Bettina; Büchs, Jochen

    2013-01-01

    The obligatory aerobic acetic acid bacterium Gluconobacter oxydans oxidizes a variety of substrates in the periplasm by membrane-bound dehydrogenases, which transfer the reducing equivalents to ubiquinone. Two quinol oxidases, cytochrome bo3 and cytochrome bd, then catalyze transfer of the electrons from ubiquinol to molecular oxygen. In this study, mutants lacking either of these terminal oxidases were characterized. Deletion of the cydAB genes for cytochrome bd had no obvious influence on growth, whereas the lack of the cyoBACD genes for cytochrome bo3 severely reduced the growth rate and the cell yield. Using a respiration activity monitoring system and adjusting different levels of oxygen availability, hints of a low-oxygen affinity of cytochrome bd oxidase were obtained, which were supported by measurements of oxygen consumption in a respirometer. The H+/O ratio of the ΔcyoBACD mutant with mannitol as the substrate was 0.56 ± 0.11 and more than 50% lower than that of the reference strain (1.26 ± 0.06) and the ΔcydAB mutant (1.31 ± 0.16), indicating that cytochrome bo3 oxidase is the main component for proton extrusion via the respiratory chain. Plasmid-based overexpression of cyoBACD led to increased growth rates and growth yields, both in the wild type and the ΔcyoBACD mutant, suggesting that cytochrome bo3 might be a rate-limiting factor of the respiratory chain. PMID:23852873

  9. Quick identification of xanthine oxidase inhibitor and antioxidant from Erycibe obtusifolia by a drug discovery platform composed of multiple mass spectrometric platforms and thin-layer chromatography bioautography.

    PubMed

    Chen, Zhiyong; Tao, Hongxun; Liao, Liping; Zhang, Zijia; Wang, Zhengtao

    2014-08-01

    As a final step of the purine metabolism process, xanthine oxidase catalyzes the oxidation of hypoxanthine and xanthine into uric acid. Our research has demonstrated that Erycibe obtusifolia has xanthine oxidase inhibitory properties. The purpose of this paper is to describe a new strategy based on a combination of multiple mass spectrometric platforms and thin-layer chromatography bioautography for effectively screening the xanthine oxidase inhibitory and antioxidant properties of E. obtusifolia. This strategy was accomplished through the following steps. (i) Separate the extract of E. obtusifolia into fractions by an autopurification system controlled by liquid chromatography with mass spectrometry. (ii) Determine the active fractions of E. obtusifolia by thin-layer chromatography bioautography. (iii) Identify the structure of the main active compounds with the information provided by direct analysis in real time mass spectrometry. (iv) Calculate the IC50 value of each compound against xanthine oxidase using high-performance liquid chromatography. Using the caulis of E. obtusifolia as the experimental material, seven target peaks were screened out as xanthine oxidase inhibitors or antioxidants. Our screening strategy allows for rapid analysis of small molecules with almost no sample preparation and can be completed within a week, making it a useful assay to identify unstable compounds and provide the empirical foundation for E. obtusifolia as a natural remedy for gout and oxidative-stress-related diseases.

  10. Urate oxidase knockdown decreases oxidative stress in a murine hepatic cell line.

    PubMed

    Cleveland, Beth M; Leonard, Stephen S; Klandorf, Hillar; Blemings, Kenneth P

    2009-01-01

    Humans, birds, and some primates do not express the uric acid degrading enzyme urate oxidase (UOX) and, as a result, have plasma uric acid concentrations higher than UOX expressing animals. Although high uric acid concentrations are suggested to increase the antioxidant defense system and provide a health advantage to animals without UOX, knockout mice lacking UOX develop pathological complications including gout and kidney failure. As an alternative to the knockout model, RNA interference was used to decrease UOX expression using stable transfection in a mouse hepatic cell line (ATCC, FL83B). Urate oxidase mRNA was reduced 66% (p < 0.05) compared to wild type, as measured by real time RT-PCR. To determine if UOX knockdown resulted in enhanced protection against oxidative stress, cells were challenged with hexavalent chromium (Cr(VI)) or 3-morpholinosydnonimine hydrochloride (SIN-1). Compared to wild type, cells with UOX knockdown exhibited a 37.2 +/- 3.5% reduction (p < 0.05) in the electron spin resonance (ESR) signal after being exposed to Cr(VI) and displayed less DNA fragmentation (p < 0.05) following SIN-1 treatment. Cell viability decreased in wild type cells (p < 0.05), but not cells with UOX knockdown, after treatment with SIN-1. These results are consistent with an increased intracellular uric acid concentration and an increased defense against oxidative stress.

  11. Urate oxidase knockdown decreases oxidative stress in a murine hepatic cell line

    PubMed Central

    Cleveland, Beth M; Leonard, Stephen S; Klandorf, Hillar

    2009-01-01

    Humans, birds, and some primates do not express the uric acid degrading enzyme urate oxidase (UOX) and, as a result, have plasma uric acid concentrations higher than UOX expressing animals. Although high uric acid concentrations are suggested to increase the antioxidant defense system and provide a health advantage to animals without UOX, knockout mice lacking UOX develop pathological complications including gout and kidney failure. As an alternative to the knockout model, RNA interference was used to decrease UOX expression using stable transfection in a mouse hepatic cell line (ATCC, FL83B). Urate oxidase mRNA was reduced 66% (p < 0.05) compared to wild type, as measured by real time RT-PCR. To determine if UOX knockdown resulted in enhanced protection against oxidative stress, cells were challenged with hexavalent chromium (Cr(VI)) or 3-morpholinosydnonimine hydrochloride (SIN-1). Compared to wild type, cells with UOX knockdown exhibited a 37.2 ± 3.5% reduction (p < 0.05) in the electron spin resonance (ESR) signal after being exposed to Cr(VI) and displayed less DNA fragmentation (p < 0.05) following SIN-1 treatment. Cell viability decreased in wild type cells (p < 0.05), but not cells with UOX knockdown, after treatment with SIN-1. These results are consistent with an increased intracellular uric acid concentration and an increased defense against oxidative stress. PMID:20357931

  12. Purification of xanthine dehydrogenase and sulfite oxidase from chicken liver.

    PubMed

    Ratnam, K; Brody, M S; Hille, R

    1996-05-01

    Xanthine dehydrogenase and sulfite oxidase from chicken liver are oxomolybdenum enzymes which catalyze the oxidation of xanthine to uric acid and sulfite to sulfate, respectively. Independent purification protocols have been previously described for both enzymes. Here we describe a procedure by which xanthine dehydrogenase and sulfite oxidase are purified simultaneously from the same batch of fresh chicken liver. Also, unlike the protocols described earlier, this procedure avoids the use of acetone extraction as well as a heat step, thus minimizing damage to the molybdenum centers of the enzymes.

  13. A low perfusion rate microreactor for continuous monitoring of enzyme characteristics: application to glucose oxidase

    PubMed Central

    Venema, K.; van Berkel, W. J. H.; Korf, J.

    2007-01-01

    This report describes a versatile and robust microreactor for bioactive proteins physically immobilized on a polyether sulfone filter. The potential of the reactor is illustrated with glucose oxidase immobilized on a filter with a cut-off value of 30 kDa. A flow-injection system was used to deliver the reactants and the device was linked on-line to an electrochemical detector. The microreactor was used for on-line preparation of apoglucose oxidase in strong acid and its subsequent reactivation with flavin adenine dinucleotide. In addition we describe a miniaturized version of the microreactor used to assess several characteristics of femtomole to attomole amounts of glucose oxidase. A low negative potential over the electrodes was used when ferrocene was the mediator in combination with horseradish peroxidase, ensuring the absence of oxidation of electro-active compounds in biological fluids. A low backpressure at very low flow rates is an advantage, which increases the sensitivity. A variety of further applications of the microreactor are suggested. Figure Preparation of apoGOx and restoration of enzyme activity using a soluton of FAD PMID:17909761

  14. 21 CFR 862.1509 - Methylmalonic acid (nonquantitative) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Methylmalonic acid (nonquantitative) test system. 862.1509 Section 862.1509 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Test Systems § 862.1509 Methylmalonic acid (nonquantitative) test system. (a) Identification....

  15. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis

    PubMed Central

    Ge, Xiuchun; Shi, Xiaoli; Shi, Limei; Liu, Jinlin; Stone, Victoria; Kong, Fanxiang; Kitten, Todd; Xu, Ping

    2016-01-01

    Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation. PMID:26950587

  16. Inhibitory effect of rice bran extracts and its phenolic compounds on polyphenol oxidase activity and browning in potato and apple puree.

    PubMed

    Sukhonthara, Sukhontha; Kaewka, Kunwadee; Theerakulkait, Chockchai

    2016-01-01

    Full-fatted and commercially defatted rice bran extracts (RBE and CDRBE) were evaluated for their ability to inhibit enzymatic browning in potato and apple. RBE showed more effective inhibition of polyphenol oxidase (PPO) activity and browning in potato and apple as compared to CDRBE. Five phenolic compounds in RBE and CDRBE (protocatechuic acid, vanillic acid, p-coumaric acid, ferulic acid and sinapic acid) were identified by HPLC. They were then evaluated for their important role in the inhibition using a model system which found that ferulic acid in RBE and p-coumaric acid in CDRBE were active in enzymatic browning inhibition of potato and apple. p-Coumaric acid exhibited the highest inhibitory effect on potato and apple PPO (p ⩽ 0.05). Almost all phenolic compounds showed higher inhibitory effect on potato and apple PPO than 100 ppm citric acid.

  17. Amino acid isotopic analysis in agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A relatively new approach to stable isotopic analysis—referred to as compound-specific isotopic analysis (CSIA)—has emerged, centering on the measurement of 15N:14N ratios in amino acids (glutamic acid and phenylalanine). CSIA has recently been used to generate trophic position estimates among anima...

  18. Regulation of the plasma amino acid profile by leucine via the system L amino acid transporter.

    PubMed

    Zhen, Hongmin; Nakamura, Koichi; Kitaura, Yasuyuki; Kadota, Yoshihiro; Ishikawa, Takuya; Kondo, Yusuke; Xu, Minjun; Shimomura, Yoshiharu

    2015-01-01

    Plasma concentrations of amino acids reflect the intracellular amino acid pool in mammals. However, the regulatory mechanism requires clarification. In this study, we examined the effect of leucine administration on plasma amino acid profiles in mice with and without the treatment of 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) or rapamycin as an inhibitor of system L or mammalian target of rapamycin complex 1, respectively. The elevation of plasma leucine concentration after leucine administration was associated with a significant decrease in the plasma concentrations of isoleucine, valine, methionine, phenylalanine, and tyrosine; BCH treatment almost completely blocked the leucine-induced decrease in plasma amino acid concentrations. Rapamycin treatment had much less effects on the actions of leucine than BCH treatment. These results suggest that leucine regulates the plasma concentrations of branched-chain amino acids, methionine, phenylalanine, and tyrosine, and that system L amino acid transporters are involved in the leucine action.

  19. Intracellular substrates of a heme-containing ascorbate oxidase in Pleurotus ostreatus.

    PubMed

    Lee, Seung-Rock; Joo, Woo-Jeong; Baek, Yong-Un; Lee, Youn-Kyong; Yu, Seong-Woon; Kim, Yeon-Ran; Chay, Kee-Oh; Cho, Seung-Hyun; Kang, Sa-Ouk; Rang, Sa-Ouk

    2009-04-01

    A novel heme-containing ascorbate oxidase isolated from oyster mushroom, Pleurotus ostreatus, catalyzes oxidation of ascorbic acid (Kim et al., 1996). In this report, we describe the identification of intracellular substrates of the enzyme in the mushroom. Six compounds, which can serve as substrate of the heme-containing ascorbate oxidase, were identified as L-ascorbic acid, D-erythroascorbic acid, 5-O-(alpha-D-glucopyranosyl)-D-erythroascorbic acid, 5-O-(alpha-D-xylopyranosyl)-D-erythroascorbic acid, 5-methyl-5-O-(alpha-D-gluco-pyranosyl)-D-erythroascorbic acid, and 5-methyl-5-O-(alpha-D-xylopyranosyl)-D-erythroascorbic acid. All of the compounds were oxidized at a significant rate by the heme-containing ascorbate oxidase. Oxidation of the compounds produced equimolar amounts of hydrogen peroxide per mole of substrate.

  20. Red clover polyphenol oxidase and lipid metabolism.

    PubMed

    Van Ranst, G; Lee, M R F; Fievez, V

    2011-02-01

    Increasing the polyunsaturated fatty acid (PUFA) composition of milk is acknowledged to be of benefit to consumer health. Despite the high PUFA content of forages, milk fat contains only about 3% of PUFA and only about 0.5% of n-3 fatty acids. This is mainly due to intensive lipid metabolism in the rumen (lipolysis and biohydrogenation) and during conservation (lipolysis and oxidation) such as drying (hay) and ensiling (silage). In red clover, polyphenol oxidase (PPO) has been suggested to protect lipids against degradation, both in the silage as well as in the rumen, leading to a higher output of PUFA in ruminant products (meat and milk). PPO mediates the oxidation of phenols and diphenols to quinones, which will readily react with nucleophilic binding sites. Such binding sites can be found on proteins, resulting in the formation of protein-bound phenols. This review summarizes the different methods that have been used to assess PPO activity in red clover, and an overview on the current understanding of PPO activity and activation in red clover. Knowledge on these aspects is of major importance to fully harness PPO's lipid-protecting role. Furthermore, we review the studies that evidence PPO-mediated lipid protection and discuss its possible importance in lab-scale silages and further in an in vitro rumen system. It is demonstrated that high (induction of) PPO activity can lead to lower lipolysis in the silage and lower biohydrogenation in the rumen. There are three hypotheses on its working mechanism: (i) protein-bound phenols could directly bind to enzymes (e.g. lipases) as such inhibiting them; (ii) binding of quinones in and between proteins embedded in a lipid membrane (e.g. in the chloroplast) could lead to encapsulation of the lipids; (iii) direct binding of quinones to nucleophilic sites in polar lipids also could lead to protection. There is no exclusive evidence on which mechanism is most important, although there are strong indications that only lipid

  1. Thoron-tartaric acid systems for spectrophotometric determination of thorium

    USGS Publications Warehouse

    Grimaldi, F.S.; Fletcher, M.H.

    1956-01-01

    Thoron is commonly used for the spectrophotometric determination of thorium. An undesirable feature of its use is its high sensitivity to zirconium. This study describes the use of tartaric acid as a masking reagent for zirconium. Three tartaric acid-thoron systems, developed for the determination of thorium, differ with respect to the concentrations of thoron and tartaric acid. Mesotartaric acid, used in one of the systems, is most effective in masking zirconium. The behavior of rarer elements, usually associated with thorium ores, is determined in two systems, and a dilution method is described for the direct determination of thorium in monazite concentrates.

  2. Individual variation in hepatic aldehyde oxidase activity.

    PubMed

    Al-Salmy, H S

    2001-04-01

    Aldehyde oxidase (AO) is a molybdo-flavo enzyme expressed predominantly in the liver, lung, and kidney. AO plays a major role in oxidation of aldehydes, as well as oxidation of various N-heterocyclic compounds of pharmacological and toxicological importance including antiviral (famciclovir), antimalarial (quinine), antitumour (methotrexate), and nicotine. The aim of this study was to investigate cytosolic aldehyde oxidase activity in human liver. Cytosolic AO was characterised using both the metabolism of N-[(2-dimethylamino)ethyl] acridine-4-carboxamide (DACA) and benzaldehyde to form DACA-9(10H)-acridone (quantified by HPLC with fluorescence detection) and benzoic acid (quantified spectrophotometrically). Thirteen livers (10 female, 3 male) were examined. The intrinsic clearance (Vmax/Km) of DACA varied 18-fold (0.03-0.50 m/min/mg). Vmax ranged from 0.20-3.10 nmol/ min/mg, and Km ranged from 3.5-14.2 microM. In the same specimens, the intrinsic clearance for benzaldehyde varied 5-fold (0.40-1.8 ml/min/mg). Vmax ranged from 3.60-12.6 nmol/min/mg and Km ranged from 3.6-14.6 microM. Furthermore, there were no differences in AO activity between male and female human livers, nor was there any relationship to age of donor (range 29-73 years), smoking status, or disease status. In conclusion, our results showed that there are variations in AO activity in human liver. These variations in aldehyde oxidase activity might reflect individual variations or they might be due to AO stability during processing and storage.

  3. Cooperative coupling and role of heme a in the proton pump of heme-copper oxidases.

    PubMed

    Papa, S; Capitanio, N; Villani, G; Capitanio, G; Bizzoca, A; Palese, L L; Carlino, V; De Nitto, E

    1998-10-01

    In the last few years, evidence has accumulated supporting the applicability of the cooperative model of proton pumps in cytochrome systems, vectorial Bohr mechanisms, to heme-copper oxidases. The vectorial Bohr mechanism is based on short- and long-range protonmotive cooperative effects linked to redox transitions of the metal centers. The crystal structure of oxidized and reduced bovine-heart cytochrome c oxidase reveals, upon reduction, the occurrence of long-range conformational changes in subunit I of the oxidase. Analysis of the crystal structure of cytochrome c oxidase shows the existence of hydrogen-bonded networks of amino acid residues which could undergo redox-linked pK shifts resulting in transmembrane proton translocation. Our group has identified four proteolytic groups undergoing reversible redox-linked pK shifts. Two groups result in being linked to redox transitions of heme a3. One group is apparently linked to CuB. The fourth group is linked to oxido-reduction of heme a. We have shown that the proton transfer resulting from the redox Bohr effects linked to heme a and CuB in the bovine oxidase displays membrane vectorial asymmetry, i.e., protons are taken up from the inner aqueous space (N), upon reduction, and released in the external space (P), upon oxidation of the metals. This direction of proton uptake and release is just what is expected from the vectorial Bohr mechanism. The group linked to heme a, which can transfer up to 0.9 H+/e- at pHs around neutrality, can provide the major contribution to the proton pump. It is proposed that translocation of pumped protons, linked to electron flow through heme a, utilizes a channel (channel D) which extends from a conserved aspartate at the N entrance to a conserved glutamate located between heme a and the binuclear center. The carboxylic group of this glutamic acid, after having delivered, upon electron flow through heme a, pumped protons towards the P phase, once reprotonated from the N phase, moves

  4. Tested Demonstrations: Color Oscillations in the Formic Acid-Nitric Acid-Sulfuric Acid System.

    ERIC Educational Resources Information Center

    Raw, C. J. G.; And Others

    1983-01-01

    Presented are procedures for demonstrating the production of color oscillations when nitric acid is added to a formic acid/concentrated sulfuric acid mixture. Because of safety considerations, "Super-8" home movie of the color changes was found to be satisfactory for demonstration purposes. (JN)

  5. Parasitic worms stimulate host NADPH oxidases to produce reactive oxygen species that limit plant cell death and promote infection.

    PubMed

    Siddique, Shahid; Matera, Christiane; Radakovic, Zoran S; Hasan, M Shamim; Gutbrod, Philipp; Rozanska, Elzbieta; Sobczak, Miroslaw; Torres, Miguel Angel; Grundler, Florian M W

    2014-04-08

    Plants and animals produce reactive oxygen species (ROS) in response to infection. In plants, ROS not only activate defense responses and promote cell death to limit the spread of pathogens but also restrict the amount of cell death in response to pathogen recognition. Plants also use hormones, such as salicylic acid, to mediate immune responses to infection. However, there are long-lasting biotrophic plant-pathogen interactions, such as the interaction between parasitic nematodes and plant roots during which defense responses are suppressed and root cells are reorganized to specific nurse cell systems. In plants, ROS are primarily generated by plasma membrane-localized NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidases, and loss of NADPH oxidase activity compromises immune responses and cell death. We found that infection of Arabidopsis thaliana by the parasitic nematode Heterodera schachtii activated the NADPH oxidases RbohD and RbohF to produce ROS, which was necessary to restrict infected plant cell death and promote nurse cell formation. RbohD- and RbohF-deficient plants exhibited larger regions of cell death in response to nematode infection, and nurse cell formation was greatly reduced. Genetic disruption of SID2, which is required for salicylic acid accumulation and immune activation in nematode-infected plants, led to the increased size of nematodes in RbohD- and RbohF-deficient plants, but did not decrease plant cell death. Thus, by stimulating NADPH oxidase-generated ROS, parasitic nematodes fine-tune the pattern of plant cell death during the destructive root invasion and may antagonize salicylic acid-induced defense responses during biotrophic life stages.

  6. Expression of alternative oxidase in tomato

    SciTech Connect

    Kakefuda, M.; McIntosh, L. )

    1990-05-01

    Tomato fruit ripening is characterized by an increase in ethylene biosynthesis, a burst in respiration (i.e. the climacteric), fruit softening and pigmentation. As whole tomatoes ripened from mature green to red, there was an increase in the alternative oxidase capacity. Aging pink tomato slices for 24 and 48 hrs also showed an increase of alternative oxidase and cytochrome oxidase capacities. Monoclonal antibodies prepared to the Sauromatum guttatum alternative oxidase were used to follow the appearance of alternative oxidase in tomato fruits. There is a corresponding increase in a 36kDa protein with an increase in alternative oxidase capacity. Effects of ethylene and norbornadiene on alternative oxidase capacity were also studied. We are using an alternative oxidase cDNA clone from potato to study the expression of mRNA in ripening and wounded tomatoes to determine if the gene is transcriptionally regulated.

  7. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, James E.; Ross, Harley H.

    1981-01-01

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  8. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, J.E.; Ross, H.H.

    1980-01-11

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  9. Inhibition of apple polyphenol oxidase activity by procyanidins and polyphenol oxidation products.

    PubMed

    Le Bourvellec, Carine; Le Quéré, Jean-Michel; Sanoner, Philippe; Drilleau, Jean-François; Guyot, Sylvain

    2004-01-14

    The rate of consumption of dissolved oxygen by apple polyphenol oxidase in cider apple juices did not correlate with polyphenol oxidase activity in the fruits and decreased faster than could be explained by the decrease of its polyphenolic substrates. The kinetics parameters of a crude polyphenol oxidase extract, prepared from apple (Braeburn cultivar), were determined using caffeoylquinic acid as a substrate. Three apple procyanidin fractions of n 80, 10.5, and 4 were purified from the parenchyma of cider apples of various cultivars. Procyanidins, caffeoylquinic acid, (-)-epicatechin, and a mixture of caffeoylquinic acid and (-)-epicatechin were oxidized by reaction with caffeoylquinic acid o-quinone in order to form oxidation products. All the fractions were evaluated for their inhibitory effect on PPO activity. Native procyanidins inhibited polyphenol oxidase activity, the inhibition intensity increasing with n. The polyphenol oxidase activity decreased by 50% for 0.026 g/L of the fraction of n 80, 0.17 g/L of the fraction of n 10.5, and 1 g/L of the fraction of n 4. The inhibitory effect of oxidized procyanidins was twice that of native procyanidins. Oxidation products of caffeoylquinic acid and (-)-epicatechin also inhibited polyphenol oxidase.

  10. Polyphenol oxidase from yacon roots (Smallanthus sonchifolius).

    PubMed

    Neves, Valdir Augusto; da Silva, Maraiza Aparecida

    2007-03-21

    Polyphenol oxidase (E.C. 1.14.18.1) (PPO) extracted from yacon roots (Smallanthus sonchifolius) was partially purified by ammonium sulfate fractionation and separation on Sephadex G-100. The enzyme had a molecular weight of 45 490+/-3500 Da and Km values of 0.23, 1.14, 1.34, and 5.0 mM for the substrates caffeic acid, chlorogenic acid, 4-methylcatechol, and catechol, respectively. When assayed with resorcinol, DL-DOPA, pyrogallol, protocatechuic, p-coumaric, ferulic, and cinnamic acids, catechin, and quercetin, the PPO showed no activity. The optimum pH varied from 5.0 to 6.6, depending on substrate. PPO activity was inhibited by various phenolic and nonphenolic compounds. p-Coumaric and cinnamic acids showed competitive inhibition, with Ki values of 0.017 and 0.011 mM, respectively, using chlorogenic acid as substrate. Heat inactivation from 60 to 90 degrees C showed the enzyme to be relatively stable at 60-70 degrees C, with progressive inactivation when incubated at 80 and 90 degrees C. The Ea (apparent activation energy) for inactivation was 93.69 kJ mol-1. Sucrose, maltose, glucose, fructose, and trehalose at high concentrations appeared to protect yacon PPO against thermal inactivation at 75 and 80 degrees C.

  11. Nucleic acid detection system and method for detecting influenza

    DOEpatents

    Cai, Hong; Song, Jian

    2015-03-17

    The invention provides a rapid, sensitive and specific nucleic acid detection system which utilizes isothermal nucleic acid amplification in combination with a lateral flow chromatographic device, or DNA dipstick, for DNA-hybridization detection. The system of the invention requires no complex instrumentation or electronic hardware, and provides a low cost nucleic acid detection system suitable for highly sensitive pathogen detection. Hybridization to single-stranded DNA amplification products using the system of the invention provides a sensitive and specific means by which assays can be multiplexed for the detection of multiple target sequences.

  12. Evolutionary systems biology of amino acid biosynthetic cost in yeast.

    PubMed

    Barton, Michael D; Delneri, Daniela; Oliver, Stephen G; Rattray, Magnus; Bergman, Casey M

    2010-08-17

    Every protein has a biosynthetic cost to the cell based on the synthesis of its constituent amino acids. In order to optimise growth and reproduction, natural selection is expected, where possible, to favour the use of proteins whose constituents are cheaper to produce, as reduced biosynthetic cost may confer a fitness advantage to the organism. Quantifying the cost of amino acid biosynthesis presents challenges, since energetic requirements may change across different cellular and environmental conditions. We developed a systems biology approach to estimate the cost of amino acid synthesis based on genome-scale metabolic models and investigated the effects of the cost of amino acid synthesis on Saccharomyces cerevisiae gene expression and protein evolution. First, we used our two new and six previously reported measures of amino acid cost in conjunction with codon usage bias, tRNA gene number and atomic composition to identify which of these factors best predict transcript and protein levels. Second, we compared amino acid cost with rates of amino acid substitution across four species in the genus Saccharomyces. Regardless of which cost measure is used, amino acid biosynthetic cost is weakly associated with transcript and protein levels. In contrast, we find that biosynthetic cost and amino acid substitution rates show a negative correlation, but for only a subset of cost measures. In the economy of the yeast cell, we find that the cost of amino acid synthesis plays a limited role in shaping transcript and protein expression levels compared to that of translational optimisation. Biosynthetic cost does, however, appear to affect rates of amino acid evolution in Saccharomyces, suggesting that expensive amino acids may only be used when they have specific structural or functional roles in protein sequences. However, as there appears to be no single currency to compute the cost of amino acid synthesis across all cellular and environmental conditions, we conclude that

  13. Identification of the alternative terminal oxidase of higher plant mitochondria

    PubMed Central

    Elthon, Thomas E.; McIntosh, Lee

    1987-01-01

    In addition to cytochrome oxidase, plant mitochondria have a second terminal oxidase called the alternative oxidase. The alternative oxidase is of great interest in that energy is not conserved when electrons flow through it. The potential energy of the system is thus lost as heat, and, in plants with high levels of the alternative oxidase, this results in thermogenesis. We have purified the alternative oxidase from mitochondria of the thermogenic spadix of Sauromatum guttatum and have identified its polypeptide constituents by using polyclonal antibodies. A 166-fold purification was achieved through a combination of cation-exchange (carboxymethyl-Sepharose) and hydrophobic-interaction (phenyl-Sepharose) chromatography. Polyclonal antibodies raised to the CM-Sepharose fractions readily immunoprecipitated alternative oxidase activity and immunoprecipitated four of the proteins that copurify with the activity. These proteins have apparent molecular masses of 37, 36, 35.5, and 35 kDa. Polyclonal antibodies raised individually to the 37-, 36-, and 35.5- plus 35-kDa proteins cross-reacted with all of these proteins, indicating the presence of common antigenic sites. The 37-kDa protein appears to be constitutive in Sauromatum, whereas expression of the 36- and 35-kDa proteins was correlated with presence of alternative pathway activity. The 35.5-kDa protein appears with loss of alternative pathway activity during senescence, indicating that this protein may be a degradation product of the 36-kDa protein. Binding of anti-36-kDa protein antibodies to total mitochondrial protein blots of five plant species indicated that similar proteins were always present when alternative pathway activity was observed. Images PMID:16593898

  14. Defects in a quinol oxidase lead to loss of KatC catalase activity in Pseudomonas aeruginosa: KatC activity is temperature dependent and it requires an intact disulphide bond formation system.

    PubMed

    Mossialos, Dimitris; Tavankar, Gholam Reza; Zlosnik, James E A; Williams, Huw D

    2006-03-17

    Mutation or overexpression of the cyanide-insensitive terminal oxidase (CIO) of Pseudomonas aeruginosa leads to temperature-sensitivity, multiple antibiotic sensitivity, and abnormal cell division and failure to produce a temperature-inducible catalase [G.R. Tavankar, D. Mossialos, H.D. Williams, Mutation or overexpression of a terminal oxidase leads to a cell division defect and multiple antibiotic sensitivity in Pseudomonas aeruginosa, J. Biol. Chem. 278 (2003) 4524-4530]. We identify this enzyme as KatC, a newly described catalase from P. aeruginosa. Loss of KatC activity leads to temperature-dependent hydrogen peroxide sensitivity, which correlates with its temperature-inducible expression pattern. This is the first description, to our knowledge, of a temperature-inducible bacterial catalase. The transcription of katC is not affected in strains lacking or overexpressing the CIO, indicating that a post-transcriptional effect leads to loss of KatC activity. Disulphide bond formation is affected in strains lacking or overexpressing the CIO. This is shown by reduced activity of the extracellular enzymes lipase and elastase, and an altered pattern of redox states of DsbA, a key protein in disulphide bond formation in P. aeruginosa, in these strains. Moreover, a dsbA mutant had no detectable KatC activity, demonstrating that an intact disulphide bond formation system is required for KatC activity and thus explaining the loss of this catalase in the cio mutant and overexpressing strains.

  15. Amino acid auxotrophy as a system of immunological control nodes.

    PubMed

    Murray, Peter J

    2016-02-01

    Cells of the immune system are auxotrophs for most amino acids, including several nonessential ones. Arginine and tryptophan are used within the regulatory immune networks to control proliferation and function through pathways that actively deplete the amino acid from the microenvironment or that create regulatory molecules such as nitric oxide or kynurenines. How immune cells integrate information about essential amino acid supplies and then transfer these signals to growth and activation pathways remains unclear but has potential for pathway discovery about amino sensing. In applied research, strategies to harness amino acid auxotrophy so as to block cancerous lymphocyte growth have been attempted for decades with limited success. Emerging insights about amino acid metabolism may lead to new strategies in clinical medicine whereby both amino acid auxotrophy and the immunoregulatory pathways controlled by amino acids can be manipulated.

  16. System for agitating the acid in a lead-acid battery

    DOEpatents

    Weintraub, Alvin; MacCormack, Robert S.

    1987-01-01

    A system and method for agitating the acid in a large lead-sulfuric acid storage battery of the calcium type. An air-lift is utilized to provide the agitation. The air fed to the air-lift is humidified prior to being delivered to the air-lift.

  17. Hyper-responsive Toll-like receptor 7 and 9 activation in NADPH oxidase-deficient B lymphoblasts.

    PubMed

    McLetchie, Shawna; Volpp, Bryan D; Dinauer, Mary C; Blum, Janice S

    2015-12-01

    Chronic granulomatous disease (CGD) is an inherited immunodeficiency linked with mutations in the multi-subunit leucocyte NADPH oxidase. Myeloid-derived phagocytic cells deficient in NADPH oxidase fail to produce sufficient levels of reactive oxygen species to clear engulfed pathogens. In this study we show that oxidase also influences B-cell functions, including responses to single-stranded RNA or unmethylated DNA by endosomal Toll-like receptors (TLRs) 7 and 9. In response to TLR7/9 ligands, B-cell lines derived from patients with CGD with mutations in either the NADPH oxidase p40(phox) or p47(phox) subunits produced only low levels of reactive oxygen species. Remarkably, cytokine secretion and p38 mitogen-activated protein kinase activation by these oxidase-deficient B cells was significantly increased upon TLR7/9 activation when compared with oxidase-sufficient B cells. Increased TLR responsiveness was also detected in B cells from oxidase-deficient mice. NADPH oxidase-deficient patient-derived B cells also expressed enhanced levels of TLR7 and TLR9 mRNA and protein compared with the same cells reconstituted to restore oxidase activity. These data demonstrate that the loss of oxidase function associated with CGD can significantly impact B-cell TLR signalling in response to nucleic acids with potential repercussions for auto-reactivity in patients.

  18. Inhibition of xanthine oxidase by the aldehyde oxidase inhibitor raloxifene: implications for identifying molybdopterin nitrite reductases.

    PubMed

    Weidert, E R; Schoenborn, S O; Cantu-Medellin, N; Choughule, K V; Jones, J P; Kelley, E E

    2014-02-15

    Sources of nitric oxide alternative to nitric oxide synthases are gaining significant traction as crucial mediators of vessel function under hypoxic inflammatory conditions. For example, capacity to catalyze the one electron reduction of nitrite (NO2-) to ·NO has been reported for hemoglobin, myoglobin and molybdopterin-containing enzymes including xanthine oxidoreductase (XOR) and aldehyde oxidase (AO). For XOR and AO, use of selective inhibition strategies is therefore crucial when attempting to assign relative contributions to nitrite-mediated ·NO formation in cells and tissue. To this end, XOR inhibition has been accomplished with application of classic pyrazolopyrimidine-based inhibitors allo/oxypurinol or the newly FDA-approved XOR-specific inhibitor, Uloric® (febuxostat). Likewise, raloxifene, an estrogen receptor antagonist, has been identified as a potent (Ki=1.0 nM) inhibitor of AO. Herein, we characterize the inhibition kinetics of raloxifene for XOR and describe the resultant effects on inhibiting XO-catalyzed ·NO formation. Exposure of purified XO to raloxifene (PBS, pH 7.4) resulted in a dose-dependent (12.5-100 μM) inhibition of xanthine oxidation to uric acid. Dixon plot analysis revealed a competitive inhibition process with a Ki=13 μM. This inhibitory process was more effective under acidic pH; similar to values encountered under hypoxic/inflammatory conditions. In addition, raloxifene also inhibited anoxic XO-catalyzed reduction of NO2- to NO (EC50=64 μM). In contrast to having no effect on XO-catalyzed uric acid production, the AO inhibitor menadione demonstrated potent inhibition of XO-catalyzed NO2- reduction (EC50=60 nM); somewhat similar to the XO-specific inhibitor, febuxostat (EC50=4 nM). Importantly, febuxostat was found to be a very poor inhibitor of human AO (EC50=613 μM) suggesting its usefulness for validating XO-dependent contributions to NO2- reduction in biological systems. Combined, these data indicate care should be taken

  19. The Impact of Single Nucleotide Polymorphisms on Human Aldehyde OxidaseS

    PubMed Central

    Hartmann, Tobias; Terao, Mineko; Garattini, Enrico; Teutloff, Christian; Alfaro, Joshua F.; Jones, Jeffrey P.; Leimkühler, Silke

    2012-01-01

    Aldehyde oxidase (AO) is a complex molybdo-flavoprotein that belongs to the xanthine oxidase family. AO is active as a homodimer, and each 150-kDa monomer binds two distinct [2Fe2S] clusters, FAD, and the molybdenum cofactor. AO has an important role in the metabolism of drugs based on its broad substrate specificity oxidizing aromatic aza-heterocycles, for example, N1-methylnicotinamide and N-methylphthalazinium, or aldehydes, such as benzaldehyde, retinal, and vanillin. Sequencing the 35 coding exons of the human AOX1 gene in a sample of 180 Italian individuals led to the identification of relatively frequent, synonymous, missense and nonsense single-nucleotide polymorphisms (SNPs). Human aldehyde oxidase (hAOX1) was purified after heterologous expression in Escherichia coli. The recombinant protein was obtained with a purity of 95% and a yield of 50 μg/l E. coli culture. Site-directed mutagenesis of the hAOX1 cDNA allowed the purification of protein variants bearing the amino acid changes R802C, R921H, N1135S, and H1297R, which correspond to some of the identified SNPs. The hAOX1 variants were purified and compared with the wild-type protein relative to activity, oligomerization state, and metal content. Our data show that the mutation of each amino acid residue has a variable impact on the ability of hAOX1 to metabolize selected substrates. Thus, the human population is characterized by the presence of functionally inactive hAOX1 allelic variants as well as variants encoding enzymes with different catalytic activities. Our results indicate that the presence of these allelic variants should be considered for the design of future drugs. PMID:22279051

  20. NADPH OXIDASE: STRUCTURE AND ACTIVATION MECHANISMS (REVIEW). NOTE I.

    PubMed

    Filip-Ciubotaru, Florina; Manciuc, Carmen; Stoleriu, Gabriela; Foia, Liliana

    2016-01-01

    NADPH oxidase (nicotinamide adenine dinucleotide phosphate-oxidase), with its generically termed NOX isoforms, is the major source of ROS (reactive oxigen species) in biological systems. ROS are small oxygen-derived molecules with an important role in various biological processes (physiological or pathological). If under physiological conditions some processes are beneficial and necessary for life, under pathophysiological conditions they are noxious, harmful. NADPH oxidases are present in phagocytes and in a wide variety of nonphagocytic cells. The enzyme generates superoxide by transferring electrons from NADPH inside the cell across the membrane and coupling them to molecular oxygen to produce superoxide anion, a reactive free-radical. Structurally, NADPH oxidase is a multicomponent enzyme which includes two integral membrane proteins, glycoprotein gp9 1 Phox and adaptor protein p22(phox), which together form the heterodimeric flavocytochrome b558 that constitutes the core of the enzyme. During the resting state, the multidomain regulatory subunits p40P(phox), p47(phox), p67(Phox) are located in the cytosol organized as a complex. The activation of phagocytic NADPH oxidase occurs through a complex series of protein interactions.

  1. A novel amperometric alcohol biosensor developed in a 3rd generation bioelectrode platform using peroxidase coupled ferrocene activated alcohol oxidase as biorecognition system.

    PubMed

    Chinnadayyala, Somasekhar R; Kakoti, Ankana; Santhosh, Mallesh; Goswami, Pranab

    2014-05-15

    Alcohol oxidase (AOx) with a two-fold increase in efficiency (Kcat/Km) was achieved by physical entrapment of the activator ferrocene in the protein matrix through a simple microwave based partial unfolding technique and was used to develop a 3rd generation biosensor for improved detection of alcohol in liquid samples. The ferrocene molecules were stably entrapped in the AOx protein matrix in a molar ratio of ~3:1 through electrostatic interaction with the Trp residues involved in the functional activity of the enzyme as demonstrated by advanced analytical techniques. The sensor was fabricated by immobilizing ferrocene entrapped alcohol oxidase (FcAOx) and sol-gel chitosan film coated horseradish peroxidase (HRP) on a multi-walled carbon nanotube (MWCNT) modified glassy carbon electrode through layer-by-layer technique. The bioelectrode reactions involved the formation of H2O2 by FcAOx biocatalysis of substrate alcohol followed by HRP-catalyzed reduction of the liberated H2O2 through MWCNT supported direct electron transfer mechanism. The amperometric biosensor exhibited a linear response to alcohol in the range of 5.0 × 10(-6) to 30 × 10(-4)mol L(-1) with a detection limit of 2.3 × 10(-6) mol L(-1), and a sensitivity of 150 µA mM(-1) cm(-2). The biosensor response was steady for 28 successive measurements completed in a period of 5h and retained ~90% of the original response even after four weeks when stored at 4 °C. The biosensor was successfully applied for the determination of alcohol in commercial samples and its performance was validated by comparing with the data obtained by GC analyses of the samples.

  2. 300 Area waste acid treatment system closure plan. Revision 1

    SciTech Connect

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

  3. Heterologous Production and Characterization of Two Glyoxal Oxidases from Pycnoporus cinnabarinus

    PubMed Central

    Daou, Marianne; Piumi, François; Cullen, Daniel; Record, Eric

    2016-01-01

    ABSTRACT The genome of the white rot fungus Pycnoporus cinnabarinus includes a large number of genes encoding enzymes implicated in lignin degradation. Among these, three genes are predicted to encode glyoxal oxidase, an enzyme previously isolated from Phanerochaete chrysosporium. The glyoxal oxidase of P. chrysosporium is physiologically coupled to lignin-oxidizing peroxidases via generation of extracellular H2O2 and utilizes an array of aldehydes and α-hydroxycarbonyls as the substrates. Two of the predicted glyoxal oxidases of P. cinnabarinus, GLOX1 (PciGLOX1) and GLOX2 (PciGLOX2), were heterologously produced in Aspergillus niger strain D15#26 (pyrG negative) and purified using immobilized metal ion affinity chromatography, yielding 59 and 5 mg of protein for PciGLOX1 and PciGLOX2, respectively. Both proteins were approximately 60 kDa in size and N-glycosylated. The optimum temperature for the activity of these enzymes was 50°C, and the optimum pH was 6. The enzymes retained most of their activity after incubation at 50°C for 4 h. The highest relative activity and the highest catalytic efficiency of both enzymes occurred with glyoxylic acid as the substrate. The two P. cinnabarinus enzymes generally exhibited similar substrate preferences, but PciGLOX2 showed a broader substrate specificity and was significantly more active on 3-phenylpropionaldehyde. IMPORTANCE This study addresses the poorly understood role of how fungal peroxidases obtain an in situ supply of hydrogen peroxide to enable them to oxidize a variety of organic and inorganic compounds. This cooperative activity is intrinsic in the living organism to control the amount of toxic H2O2 in its environment, thus providing a feed-on-demand scenario, and can be used biotechnologically to supply a cheap source of peroxide for the peroxidase reaction. The secretion of multiple glyoxal oxidases by filamentous fungi as part of a lignocellulolytic mechanism suggests a controlled system, especially as these

  4. Amino acid synthesis in a supercritical carbon dioxide - water system.

    PubMed

    Fujioka, Kouki; Futamura, Yasuhiro; Shiohara, Tomoo; Hoshino, Akiyoshi; Kanaya, Fumihide; Manome, Yoshinobu; Yamamoto, Kenji

    2009-06-15

    Mars is a CO(2)-abundant planet, whereas early Earth is thought to be also CO(2)-abundant. In addition, water was also discovered on Mars in 2008. From the facts and theory, we assumed that soda fountains were present on both planets, and this affected amino acid synthesis. Here, using a supercritical CO(2)/liquid H(2)O (10:1) system which mimicked crust soda fountains, we demonstrate production of amino acids from hydroxylamine (nitrogen source) and keto acids (oxylic acid sources). In this research, several amino acids were detected with an amino acid analyzer. Moreover, alanine polymers were detected with LC-MS. Our research lights up a new pathway in the study of life's origin.

  5. Amino Acid Synthesis in a Supercritical Carbon Dioxide - Water System

    PubMed Central

    Fujioka, Kouki; Futamura, Yasuhiro; Shiohara, Tomoo; Hoshino, Akiyoshi; Kanaya, Fumihide; Manome, Yoshinobu; Yamamoto, Kenji

    2009-01-01

    Mars is a CO2-abundant planet, whereas early Earth is thought to be also CO2-abundant. In addition, water was also discovered on Mars in 2008. From the facts and theory, we assumed that soda fountains were present on both planets, and this affected amino acid synthesis. Here, using a supercritical CO2/liquid H2O (10:1) system which mimicked crust soda fountains, we demonstrate production of amino acids from hydroxylamine (nitrogen source) and keto acids (oxylic acid sources). In this research, several amino acids were detected with an amino acid analyzer. Moreover, alanine polymers were detected with LC-MS. Our research lights up a new pathway in the study of life’s origin. PMID:19582225

  6. Acid-base homeostasis in the human system

    NASA Technical Reports Server (NTRS)

    White, R. J.

    1974-01-01

    Acid-base regulation is a cooperative phenomena in vivo with body fluids, extracellular and intracellular buffers, lungs, and kidneys all playing important roles. The present account is much too brief to be considered a review of present knowledge of these regulatory systems, and should be viewed, instead, as a guide to the elements necessary to construct a simple model of the mutual interactions of the acid-base regulatory systems of the body.

  7. Azachalcones: a new class of potent polyphenol oxidase inhibitors.

    PubMed

    Radhakrishnan, Sini Karanayil; Shimmon, Ronald Gibrial; Conn, Costa; Baker, Anthony T

    2015-04-15

    A library of potent inhibitors of polyphenol oxidase and their structure activity relationships are described. Azachalcone derivatives were synthesized and tested for their tyrosinase inhibitory activity. Their inhibitory activities on mushroom tyrosinase using l-DOPA as a substrate were investigated. Two compounds that are the reduction congeners of the pyridinyl azachalcones strongly inhibited the enzyme activity and were more potent than the positive control kojic acid.

  8. [Alternative oxidase - never ending story].

    PubMed

    Szal, Bożena; Rychter, Anna M

    2016-01-01

    Investigations of plant cyanide resistant respiration lead to the discovery in mitochondrial respiratory chain of the second terminal oxidase, alternative oxidase (AOX). AOX transfers electrons from reduced ubiquinone to oxygen omitting two coupling places thus lowering energetic efficiency of respiration. The presence of AOX was shown in all plants and also in some fungi, mollusca and protista. In termogenic plants the activity of AOX is connected with heat production. In other organisms AOX activity is important for maintaining metabolic homeostasis (carbon metabolism, cell redox state and energy demand) and ROS homeostasis. In this article structure of plant AOX protein and the regulation on molecular levels was described. Possible role of AOX as stress marker was pointed and the possibility of using AOX in human gene therapy was discussed.

  9. Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa.

    PubMed

    Kawakami, Takuro; Kuroki, Miho; Ishii, Masaharu; Igarashi, Yasuo; Arai, Hiroyuki

    2010-06-01

    Pseudomonas aeruginosa has five terminal oxidases for aerobic respiration. Two of them, the bo(3) oxidase (Cyo) and the cyanide-insensitive oxidase (CIO), are quinol oxidases and the other three, the cbb(3)-1 oxidase (Cbb3-1), the cbb(3)-2 oxidase (Cbb3-2) and the aa(3) oxidase (Aa3), are cytochrome c oxidases. The expression pattern of the genes for these terminal oxidases under various growth conditions was investigated by using lacZ transcriptional fusions and some novel regulatory issues were found. The Aa3 genes were induced under starvation conditions. The Cyo genes were induced by exposure to the nitric oxide-generating reagent S-nitrosoglutathione. The CIO genes were induced by exposure to sodium nitroprusside as well as cyanide. The stationary phase sigma factor RpoS was found to be involved in the expression of the Aa3 and CIO genes. The role of two redox-responsive transcriptional regulators, ANR and RoxSR, was investigated using the anr and roxSR mutant strains. The ANR was involved in the repression of the CIO genes and induction of the Cbb3-2 genes. The other three terminal oxidase genes were not significantly regulated by ANR. On the other hand, all five terminal oxidase genes were shown to be directly or indirectly regulated by RoxSR. The Aa3 genes were repressed but the genes for the other four enzymes were induced by RoxSR. The transcriptome data also showed that some respiration-related genes were regulated by RoxSR, suggesting that this two-component regulatory system plays an important role in the regulation of respiration in P. aeruginosa.

  10. Changes in Activities of Respiratory Enzymes in Lungs of Guinea-pigs Exposed to Silica Dust: II. Comparison of the Effects of Quartz Dust and Lampblack on the Succinate Oxidase System

    PubMed Central

    Breyer, Maria G.; Kilroe-Smith, T. A.; Prinsloo, H.

    1964-01-01

    Kilroe-Smith and Breyer (1963) reported that in the early stages of silicosis in guinea-pigs exposed to the inhalation of quartz dust, before the formation of collagen, there were increases in the specific activities of the complete succinate oxidase system and succinate dehydrogenase. The effects on these enzymes of quartz dust have now been compared with the effects of the fibrogenically `inert' lampblack. Lampblack causes a slight increase in the specific activities of these enzymes but the effects are small compared to those caused by quartz. Lampblack also causes a much smaller increase in lung weight than quartz, thus the enzyme increases are roughly parallel to the rise in lung weight. It appears that the effects observed on the enzymes are part of the general pattern associated with the early stages of the development of silicosis. PMID:14106132

  11. Lysyl oxidase in cancer research.

    PubMed

    Perryman, Lara; Erler, Janine T

    2014-01-01

    Metastasis is the main reason for cancer-associated deaths and therapies are desperately needed to target the progression of cancer. Lysyl oxidase (LOX) plays a pivotal role in cancer progression, including metastasis, and is therefore is an attractive therapeutic target. In this review we will breakdown the process of cancer progression and the various roles that LOX plays has in the advancement of cancer. We will highlight why LOX is an exciting therapeutic target for the future.

  12. Resolution of a low molecular weight G protein in neutrophil cytosol required for NADPH oxidase activation and reconstitution by recombinant Krev-1 protein.

    PubMed

    Eklund, E A; Marshall, M; Gibbs, J B; Crean, C D; Gabig, T G

    1991-07-25

    Activation of the membrane-associated NADPH oxidase in intact human neutrophils requires a receptor-associated heterotrimeric GTP-binding protein that is sensitive to pertussis toxin. Activation of this NADPH oxidase by arachidonate in a cell-free system requires an additional downstream pertussis toxin-insensitive G protein (Gabig, T. G., English, D., Akard, L. P., and Schell, M. J. (1987) (J. Biol. Chem. 262, 1685-1690) that is located in the cytosolic fraction of unstimulated cells (Gabig, T. G., Eklund, E. A., Potter, G. B., and Dykes, J. R. (1990) J. Immunol. 145, 945-951). In the present study, immunodepletion of G proteins from the cytosolic fraction of unstimulated neutrophils resulted in a loss of the ability to activate NADPH oxidase in the membrane fraction. The activity in immunodepleted cytosol was fully reconstituted by a partially purified fraction from neutrophil cytosol that contained a 21-kDa GTP-binding protein. Purified human recombinant Krev-1 p21 also completely reconstituted immunodepleted cytosol whereas recombinant human H-ras p21 or yeast RAS GTP-binding proteins had no reconstitutive activity. Rabbit antisera raised against a synthetic peptide corresponding to the effector region of Krev-1 (amino acids 31-43) completely inhibited cell-free NADPH oxidase activation, and this inhibition was blocked by the synthetic 31-43 peptide. An inhibitory monoclonal antibody specific for ras p21 amino acids 60-77 (Y13-259) had no effect on cell-free NADPH oxidase activation. Activation of the NADPH oxidase in intact neutrophils by stimulation with phorbol myristate acetate caused a marked increase in the amount of membrane-associated antigen recognized by 151 antiserum on Western blot. Thus a G protein in the cytosol of unstimulated neutrophils antigenically and functionally related to Krev-1 may be the downstream effector G protein for NADPH oxidase activation. This system represents a unique model to study molecular interactions of a ras-like G

  13. The terminal oxidases of Paracoccus denitrificans.

    PubMed

    de Gier, J W; Lübben, M; Reijnders, W N; Tipker, C A; Slotboom, D J; van Spanning, R J; Stouthamer, A H; van der Oost, J

    1994-07-01

    Three distinct types of terminal oxidases participate in the aerobic respiratory pathways of Paracoccus denitrificans. Two alternative genes encoding subunit I of the aa3-type cytochrome c oxidase have been isolated before, namely ctaDI and ctaDII. Each of these genes can be expressed separately to complement a double mutant (delta ctaDI, delta ctaDII), indicating that they are isoforms of subunit I of the aa3-type oxidase. The genomic locus of a quinol oxidase has been isolated: cyoABC. This protohaem-containing oxidase, called cytochrome bb3, is the only quinol oxidase expressed under the conditions used. In a triple oxidase mutant (delta ctaDI, delta ctaDII, cyoB::KmR) an alternative cytochrome c oxidase has been characterized; this cbb3-type oxidase has been partially purified. Both cytochrome aa3 and cytochrome bb3 are redox-driven proton pumps. The proton-pumping capacity of cytochrome cbb3 has been analysed; arguments for and against the active transport of protons by this novel oxidase complex are discussed.

  14. D-Amino Acids in the Nervous and Endocrine Systems

    PubMed Central

    Kiriyama, Yoshimitsu

    2016-01-01

    Amino acids are important components for peptides and proteins and act as signal transmitters. Only L-amino acids have been considered necessary in mammals, including humans. However, diverse D-amino acids, such as D-serine, D-aspartate, D-alanine, and D-cysteine, are found in mammals. Physiological roles of these D-amino acids not only in the nervous system but also in the endocrine system are being gradually revealed. N-Methyl-D-aspartate (NMDA) receptors are associated with learning and memory. D-Serine, D-aspartate, and D-alanine can all bind to NMDA receptors. H2S generated from D-cysteine reduces disulfide bonds in receptors and potentiates their activity. Aberrant receptor activity is related to diseases of the central nervous system (CNS), such as Alzheimer's disease, amyotrophic lateral sclerosis, and schizophrenia. Furthermore, D-amino acids are detected in parts of the endocrine system, such as the pineal gland, hypothalamus, pituitary gland, pancreas, adrenal gland, and testis. D-Aspartate is being investigated for the regulation of hormone release from various endocrine organs. Here we focused on recent findings regarding the synthesis and physiological functions of D-amino acids in the nervous and endocrine systems. PMID:28053803

  15. Mapping patterns of depression-related brain regions with cytochrome oxidase histochemistry: relevance of animal affective systems to human disorders, with a focus on resilience to adverse events.

    PubMed

    Harro, Jaanus; Kanarik, Margus; Matrov, Denis; Panksepp, Jaak

    2011-10-01

    The search for novel antidepressants may be facilitated by pre-clinical animal models that relay on specific neural circuit and related neurochemical endpoint measures, which are anchored in concrete neuro-anatomical and functional neural-network analyzes. One of the most important initial considerations must be which regions of the brain are candidates for the maladaptive response to depressogenic challenges. Consideration of persistent differences or changes in the activity of cerebral networks can be achieved by mapping oxidative metabolism in ethologically or pathogenetically relevant animal models. Cytochrome oxidase histochemistry is a technique suitable to detect regional long-term brain activity changes relative to control conditions and has been used in a variety of animal models. This work is summarized and indicates that major changes occur mainly in subcortical areas, highlighting specific brain regions where some alterations in regional oxidative metabolism may represent adaptive changes to depressogenic adverse life events, while others may reflect failures of adaptation. Many of these changes in oxidative metabolism may depend upon the integrity of serotonergic neurotransmission, and occur in several brain regions shown by other techniques to be involved in endogenous affective circuits that control emotional behaviors as well as related higher brain regions that integrate learning and cognitive information processing. These brain regions appear as primary targets for further identification of endophenotypes specific to affective disorders.

  16. High-yield production of aryl alcohol oxidase under limited growth conditions in small-scale systems using a mutant Aspergillus nidulans strain.

    PubMed

    Pardo-Planas, Oscar; Prade, Rolf A; Wilkins, Mark R

    2017-02-01

    Aryl alcohol oxidase (MtGloA) is an enzyme that belongs to the ligninolytic consortium and can play an important role in the bioenergy industry. This study investigated production of an MtGloA client enzyme by a mutant strain of Aspergillus nidulans unable to synthesize its own pyridoxine. Pyridoxine limitation can be used to control cell growth, diverting substrate to protein production. In agitated culture, enzyme production was similar when using media with 1 mg/L and without pyridoxine (26.64 ± 6.14 U/mg mycelia and 26.14 ± 8.39 U/mg mycelia using media with and without pyridoxine, respectively). However, the treatment lacking pyridoxine had to be supplemented with pyridoxine after 156 h of fermentation to sustain continued enzyme production. Use of extremely diluted pyridoxine levels allowed reduced fungal growth while maintaining steady enzyme production. Concentrations of 9 and 13.5 µg/L pyridoxine allowed MtGloA production with a growth rate of only 5% of that observed when using the standard 1 mg/L pyridoxine media.

  17. Catalase-conjugated liposomes encapsulating glucose oxidase for controlled oxidation of glucose with decomposition of hydrogen peroxide produced.

    PubMed

    Yoshimoto, Makoto; Takaki, Noriyuki; Yamasaki, Miku

    2010-09-01

    The catalase-conjugated liposome encapsulating glucose oxidase (CLG) was prepared for developing a novel liposomal system for glucose oxidation with controllable enzyme activities. The catalase molecules were conjugated to the surface of liposome with 100 nm in mean diameter through coupling with the membrane-incorporated 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(glutaryl) (NGPE) at its mole fraction f(G) of 0.05 or 0.15. The average number of enzyme molecules per CLG with f(G) of 0.15 was 8.7 for glucose oxidase and 6.5 for catalase. The CLG-catalyzed oxidation of glucose was performed at 40 degrees C for prolonged period up to 99 h. The CLG with f(G) of 0.15 gave larger oxidation rate than that with f(G) of 0.05. In the fed-batch oxidation of glucose catalyzed by the former CLG, the stable oxidation rate was observed for 75 h with negligible accumulation of H(2)O(2) produced because of the durable catalytic actions of the liposomal enzymes. The oxidation rate of the CLG reaction increased to 1.1 mM-glucose/(hmM-lipid) at the acidic pH in the internal phase of liposome and the neutral pH in the external one corresponding to the optimal pH conditions for the activities of glucose oxidase and catalase, respectively. The oxidation rate catalyzed by the CLG could be controlled by adding sublytic concentrations of cholate to increase permeability of the liposome membrane to glucose. The catalase-conjugated liposomal system is potentially utilized for controlling the rate of reactions catalyzed by a variety of oxidases.

  18. CotA, a multicopper oxidase from Bacillus pumilus WH4, exhibits manganese-oxidase activity.

    PubMed

    Su, Jianmei; Bao, Peng; Bai, Tenglong; Deng, Lin; Wu, Hui; Liu, Fan; He, Jin

    2013-01-01

    Multicopper oxidases (MCOs) are a family of enzymes that use copper ions as cofactors to oxidize various substrates. Previous research has demonstrated that several MCOs such as MnxG, MofA and MoxA can act as putative Mn(II) oxidases. Meanwhile, the endospore coat protein CotA from Bacillus species has been confirmed as a typical MCO. To study the relationship between CotA and the Mn(II) oxidation, the cotA gene from a highly active Mn(II)-oxidizing strain Bacillus pumilus WH4 was cloned and overexpressed in Escherichia coli strain M15. The purified CotA contained approximately four copper atoms per molecule and showed spectroscopic properties typical of blue copper oxidases. Importantly, apart from the laccase activities, the CotA also displayed substantial Mn(II)-oxidase activities both in liquid culture system and native polyacrylamide gel electrophoresis. The optimum Mn(II) oxidase activity was obtained at 53°C in HEPES buffer (pH 8.0) supplemented with 0.8 mM CuCl2. Besides, the addition of o-phenanthroline and EDTA both led to a complete suppression of Mn(II)-oxidizing activity. The specific activity of purified CotA towards Mn(II) was 0.27 U/mg. The Km, Vmax and kcat values towards Mn(II) were 14.85±1.17 mM, 3.01×10(-6)±0.21 M·min(-1) and 0.32±0.02 s(-1), respectively. Moreover, the Mn(II)-oxidizing activity of the recombinant E. coli strain M15-pQE-cotA was significantly increased when cultured both in Mn-containing K liquid medium and on agar plates. After 7-day liquid cultivation, M15-pQE-cotA resulted in 18.2% removal of Mn(II) from the medium. Furthermore, the biogenic Mn oxides were clearly observed on the cell surfaces of M15-pQE-cotA by scanning electron microscopy. To our knowledge, this is the first report that provides the direct observation of Mn(II) oxidation with the heterologously expressed protein CotA, Therefore, this novel finding not only establishes the foundation for in-depth study of Mn(II) oxidation mechanisms, but also offers a

  19. Sequence analysis of the cbb3 oxidases and an atomic model for the Rhodobacter sphaeroides enzyme.

    PubMed

    Sharma, Vivek; Puustinen, Anne; Wikström, Mårten; Laakkonen, Liisa

    2006-05-09

    The cbb3-type oxidases are members of the heme-copper oxidase superfamily, distant by sequence comparisons, but sharing common functional characteristics. To understand the minimal common properties of the superfamily, and to learn about cbb3-type oxidases specifically, we have analyzed a wide set of heme-copper oxidase sequences and built a homology model of the catalytic subunit of the cbb3 oxidase from Rhodobacter sphaeroides. We conclude that with regard to the active site surroundings, the cbb3 oxidases greatly resemble the structurally known oxidases, while major differences are found in three segments: the additional N-terminal stretch of ca. 60 amino acids, the segment following helix 3 to the end of helix 5, and the C-terminus from helix 11 onward. The conserved core contains the active site tyrosine and also an analogue of the K-channel of proton transfer, but centered on a well-conserved histidine in the lower part of helix 7. Modeling the variant parts of the enzyme suggests that two periplasmic loops (between helices 3 and 4 and between helices 11 and 12) could interact with each other as a part of the active site structure and might have an important role in proton pumping. An analogue of the D-channel is not found, but an alternative channel might form around helix 9. A preliminary packing model of the trimeric enzyme is also presented.

  20. Spinach Thylakoid Polyphenol Oxidase : ISOLATION, ACTIVATION, AND PROPERTIES OF THE NATIVE CHLOROPLAST ENZYME.

    PubMed

    Golbeck, J H; Cammarata, K V

    1981-05-01

    Polyphenol oxidase activity (E.C. 1.14.18.1) has been found in two enzyme species isolated from thylakoid membranes of spinach chloroplasts. The proteins were released from the membrane by sonication and purified >900-fold by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography. The enzymes appear to be the tetramer and monomer of a subunit with a molecular weight of 42,500 as determined by lithium dodecyl sulfate gel electrophoresis. The higher molecular weight enzyme is the predominant form in freshly isolated preparations but on aging or further purification, the amount of lower molecular weight enzyme increases at the expense of the higher.Sonication releases polyphenol oxidase from the membrane largely in the latent state. C(18) fatty acids, especially linolenic acid, are potent activators of the enzymic activity. In the absence of added fatty acids, the isolated enzyme spontaneously, but slowly, activates with time.Purified polyphenol oxidase utilizes o-diphenols as substrates and shows no detectable levels of monophenol or p-diphenol oxidase activities. The K(m) values for 3,4-dihydroxyphenylalanine and O(2) are 6.5 and 0.065 millimolar, respectively. Suitable substrates include chlorogenic acid, catechol, caffeic acid, pyrogallol, and dopamine; however, the enzyme is substrate-inhibited by the last four at concentrations near their K(m) A large seasonal variation in polyphenol oxidase activity may result from a decrease in enzyme content rather than inhibition of the enzyme present.

  1. Expert systems help design cementing and acidizing jobs

    SciTech Connect

    Onan, D.D.; Kulakofsky, D.; Van Domelen, M.S.; Ford, W.G.F. )

    1993-04-19

    Knowledge-based expert information systems can help train less-experienced designers and orient seasoned designers at new locations. These systems are playing an increased role in completion and production operations. Expert systems help: design treatments based on an accumulation of knowledge from experts; provide technical information and guidelines on the proper use of additives; and serve as a training tool for less-experienced personnel. The paper describes expert systems design; practical applications; and details about a cement job and acidizing.

  2. Expression studies of gibberellin oxidases in developing pumpkin seeds.

    PubMed

    Frisse, Andrea; Pimenta, Maria João; Lange, Theo

    2003-03-01

    Two cDNA clones, 3-ox and 2-ox, have been isolated from developing pumpkin (Cucurbita maxima) embryos that show significant amino acid homology to gibberellin (GA) 3-oxidases and 2-oxidases, respectively. Recombinant fusion protein of clone 3-ox converted GA(12)-aldehyde, GA(12), GA(15), GA(24), GA(25), and GA(9) to GA(14)-aldehyde, GA(14), GA(37), GA(36), GA(13), and GA(4), respectively. Recombinant 2-ox protein oxidized GA(9), GA(4), and GA(1) to GA(51), GA(34), and GA(8), respectively. Previously cloned GA 7-oxidase revealed additional 3beta-hydroxylation activity of GA(12). Transcripts of this gene were identified in endosperm and embryo of the developing seed by quantitative reverse transcriptase-polymerase chain reaction and localized in protoderm, root apical meristem, and quiescent center by in situ hybridization. mRNA of the previously cloned GA 20-oxidase from pumpkin seeds was localized in endosperm and in tissues of protoderm, ground meristem, and cotyledons of the embryo. However, transcripts of the recently cloned GA 20-oxidase from pumpkin seedlings were found all over the embryo, and in tissues of the inner seed coat at the micropylar end. Previously cloned GA 2beta,3beta-hydroxylase mRNA molecules were specifically identified in endosperm tissue. Finally, mRNA molecules of the 3-ox and 2-ox genes were found in the embryo only. 3-ox transcripts were localized in tissues of cotyledons, protoderm, and inner cell layers of the root apical meristem, and 2-ox transcripts were found in all tissues of the embryo except the root tips. These results indicate tissue-specific GA-biosynthetic pathways operating within the developing seed.

  3. Microbial Nucleic Acid Sensing in Oral and Systemic Diseases.

    PubMed

    Crump, K E; Sahingur, S E

    2016-01-01

    One challenge in studying chronic infectious and inflammatory disorders is understanding how host pattern recognition receptors (PRRs), specifically toll-like receptors (TLRs), sense and respond to pathogen- or damage-associated molecular patterns, their communication with each other and different components of the immune system, and their role in propagating inflammatory stages of disease. The discovery of innate immune activation through nucleic acid recognition by intracellular PRRs such as endosomal TLRs (TLR3, TLR7, TLR8, and TLR9) and cytoplasmic proteins (absent in melanoma 2 and DNA-dependent activator of interferon regulatory factor) opened a new paradigm: Nucleic acid sensing is now implicated in multiple immune and inflammatory conditions (e.g., atherosclerosis, cancer), viral (e.g., human papillomavirus, herpes virus) and bacterial (e.g., Helicobacter pylori, pneumonia) diseases, and autoimmune disorders (e.g., systemic lupus erythematosus, rheumatoid arthritis). Clinical investigations reveal the overexpression of specific nucleic acid sensors in diseased tissues. In vivo animal models show enhanced disease progression associated with receptor activation. The involvement of nucleic acid sensors in various systemic conditions is further supported by studies reporting receptor knockout mice being either protected from or prone to disease. TLR9-mediated inflammation is also implicated in periodontal diseases. Considering that persistent inflammation in the oral cavity is associated with systemic diseases and that oral microbial DNA is isolated at distal sites, nucleic acid sensing may potentially be a link between oral and systemic diseases. In this review, we discuss recent advances in how intracellular PRRs respond to microbial nucleic acids and emerging views on the role of nucleic acid sensors in various systemic diseases. We also highlight new information on the role of intracellular PRRs in the pathogenesis of oral diseases including periodontitis

  4. 21 CFR 862.1320 - Gastric acidity test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gastric acidity test system. 862.1320 Section 862.1320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  5. 21 CFR 862.1295 - Folic acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Folic acid test system. 862.1295 Section 862.1295 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  6. 21 CFR 862.1295 - Folic acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Folic acid test system. 862.1295 Section 862.1295 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  7. 21 CFR 862.1290 - Fatty acids test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fatty acids test system. 862.1290 Section 862.1290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  8. 21 CFR 862.1290 - Fatty acids test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fatty acids test system. 862.1290 Section 862.1290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  9. 21 CFR 862.1295 - Folic acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Folic acid test system. 862.1295 Section 862.1295 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  10. 21 CFR 862.1095 - Ascorbic acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ascorbic acid test system. 862.1095 Section 862.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  11. 21 CFR 862.1290 - Fatty acids test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fatty acids test system. 862.1290 Section 862.1290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  12. 21 CFR 862.1095 - Ascorbic acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ascorbic acid test system. 862.1095 Section 862.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  13. 21 CFR 862.1095 - Ascorbic acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ascorbic acid test system. 862.1095 Section 862.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  14. 21 CFR 862.1320 - Gastric acidity test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Gastric acidity test system. 862.1320 Section 862.1320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  15. 21 CFR 862.1320 - Gastric acidity test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gastric acidity test system. 862.1320 Section 862.1320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  16. 21 CFR 862.1320 - Gastric acidity test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gastric acidity test system. 862.1320 Section 862.1320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  17. 21 CFR 862.1320 - Gastric acidity test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gastric acidity test system. 862.1320 Section 862.1320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  18. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pyruvic acid test system. 862.1655 Section 862.1655 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  19. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pyruvic acid test system. 862.1655 Section 862.1655 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  20. The NADPH oxidase inhibitor apocynin (acetovanillone) induces oxidative stress

    SciTech Connect

    Riganti, Chiara . E-mail: dario.ghigo@unito.it

    2006-05-01

    Apocynin (acetovanillone) is often used as a specific inhibitor of NADPH oxidase. In N11 glial cells, apocynin induced, in a dose-dependent way, a significant increase of both malonyldialdehyde level (index of lipid peroxidation) and lactate dehydrogenase release (index of a cytotoxic effect). Apocynin evoked also, in a significant way, an increase of H{sub 2}O{sub 2} concentration and a decrease of the intracellular glutathione/glutathione disulfide ratio, accompanied by augmented efflux of glutathione and glutathione disulfide. Apocynin induced the activation of both pentose phosphate pathway and tricarboxylic acid cycle, which was blocked when the cells were incubated with glutathione together with apocynin. The cell incubation with glutathione prevented also the apocynin-induced increase of malonyldialdehyde generation and lactate dehydrogenase leakage. Apocynin exerted an oxidant effect also in a cell-free system: indeed, in aqueous solution, it evoked a faster oxidation of the thiols glutathione and dithiothreitol, and elicited the generation of reactive oxygen species, mainly superoxide anions. Our results suggest that apocynin per se can induce an oxidative stress and exert a cytotoxic effect in N11 cells and other cell types, and that some effects of apocynin in in vitro and in vivo experimental models should be interpreted with caution.

  1. Mouse aldehyde-oxidase-4 controls diurnal rhythms, fat deposition and locomotor activity

    PubMed Central

    Terao, Mineko; Barzago, Maria Monica; Kurosaki, Mami; Fratelli, Maddalena; Bolis, Marco; Borsotti, Andrea; Bigini, Paolo; Micotti, Edoardo; Carli, Mirjana; Invernizzi, Roberto William; Bagnati, Renzo; Passoni, Alice; Pastorelli, Roberta; Brunelli, Laura; Toschi, Ivan; Cesari, Valentina; Sanoh, Seigo; Garattini, Enrico

    2016-01-01

    Aldehyde-oxidase-4 (AOX4) is one of the mouse aldehyde oxidase isoenzymes and its physiological function is unknown. The major source of AOX4 is the Harderian-gland, where the enzyme is characterized by daily rhythmic fluctuations. Deletion of the Aox4 gene causes perturbations in the expression of the circadian-rhythms gene pathway, as indicated by transcriptomic analysis. AOX4 inactivation alters the diurnal oscillations in the expression of master clock-genes. Similar effects are observed in other organs devoid of AOX4, such as white adipose tissue, liver and hypothalamus indicating a systemic action. While perturbations of clock-genes is sex-independent in the Harderian-gland and hypothalamus, sex influences this trait in liver and white-adipose-tissue which are characterized by the presence of AOX isoforms other than AOX4. In knock-out animals, perturbations in clock-gene expression are accompanied by reduced locomotor activity, resistance to diet induced obesity and to hepatic steatosis. All these effects are observed in female and male animals. Resistance to obesity is due to diminished fat accumulation resulting from increased energy dissipation, as white-adipocytes undergo trans-differentiation towards brown-adipocytes. Metabolomics and enzymatic data indicate that 5-hydroxyindolacetic acid and tryptophan are novel endogenous AOX4 substrates, potentially involved in AOX4 systemic actions. PMID:27456060

  2. Mapping of functional domains in p47(phox) involved in the activation of NADPH oxidase by "peptide walking".

    PubMed

    Morozov, I; Lotan, O; Joseph, G; Gorzalczany, Y; Pick, E

    1998-06-19

    The superoxide generating NADPH oxidase of phagocytes consists, in resting cells, of a membrane-associated electron transporting flavocytochrome (cytochrome b559) and four cytosolic proteins as follows: p47(phox), p67(phox), p40(phox), and the small GTPase, Rac(1 or 2). Activation of the oxidase is consequent to the assembly of a membrane-localized multimolecular complex consisting of cytochrome b559 and the cytosolic components. We used "peptide walking" (Joseph, G., and Pick, E. (1995) J. Biol. Chem. 270, 29079-29082) for mapping domains in the amino acid sequence of p47(phox) participating in the molecular events leading to the activation of NADPH oxidase. Ninety-five overlapping pentadecapeptides, with a four-residue offset between neighboring peptides, spanning the complete p47(phox) sequence, were tested for the ability to inhibit NADPH oxidase activation in a cell-free system. This consisted of solubilized macrophage membranes, recombinant p47(phox), p67(phox), and Rac1, and lithium dodecyl sulfate, as the activator. Eight functional domains were identified and labeled a-h. These were (N- and C-terminal residue numbers are given for each domain) as follows: a (21-35); b (105-119); c (149-159); d (193-207); e (253-267); f (305-319); g (325-339), and h (373-387). Four of these domains (c, d, e, and g) correspond to or form parts of regions shown before to participate in NADPH oxidase assembly. Thus, domain c corresponds to a region on the N-terminal boundary of the first src homology 3 (SH3) domain, whereas domains d and e represent more precisely defined sites within the full-length first and second SH3 domains, respectively. Domain g overlaps an extensively investigated arginine-rich region. Domains a and b, in the N-terminal half of p47(phox), and domains f and h, in the C-terminal half, represent newly identified entities, for which there is no earlier experimental evidence of involvement in NADPH oxidase activation. "Peptide walking" was also applied to

  3. Jasmonic acid and salicylic acid activate a common defense system in rice

    PubMed Central

    Tamaoki, Daisuke; Seo, Shigemi; Yamada, Shoko; Kano, Akihito; Miyamoto, Ayumi; Shishido, Hodaka; Miyoshi, Seika; Taniguchi, Shiduku; Akimitsu, Kazuya; Gomi, Kenji

    2013-01-01

    Jasmonic acid (JA) and salicylic acid (SA) play important roles in plant defense systems. JA and SA signaling pathways interact antagonistically in dicotyledonous plants, but, the status of crosstalk between JA and SA signaling is unknown in monocots. Our rice microarray analysis showed that more than half of the genes upregulated by the SA analog BTH are also upregulated by JA, suggesting that a major portion of the SA-upregulated genes are regulated by JA-dependent signaling in rice. A common defense system that is activated by both JA and SA is thus proposed which plays an important role in pathogen defense responses in rice. PMID:23518581

  4. Xanthine oxidase inhibition attenuates ischemic-reperfusion lung injury

    SciTech Connect

    Lynch, M.J.; Grum, C.M.; Gallagher, K.P.; Bolling, S.F.; Deeb, G.M.; Morganroth, M.L.

    1988-05-01

    Ischemic-reperfusion lung injury is a factor potentially limiting the usefulness of distant organ procurement for heart-lung transplantation. Toxic oxygen metabolites are considered a major etiologic factor in reperfusion injury. Although oxygen-free radicals may be generated by many mechanisms, we investigated the role of xanthine oxidase in this injury process by using lodoxamide, a xanthine oxidase inhibitor, to inhibit ischemic-reperfusion injury in an isolated rat lung model. Isolated rat lungs were perfused with physiologic salt solution (PSS) osmotically stabilized with Ficoll until circulating blood elements were nondetectable in the pulmonary venous effluent. Lungs were rendered ischemic by interrupting ventilation and perfusion for 2 hr at 37/sup 0/C. After the ischemic interval, the lungs were reperfused with whole blood and lung injury was determined by measuring the accumulation of /sup 125/I-bovine serum albumin in lung parenchyma and alveolar lavage fluid as well as by gravimetric measurements. Lung effluent was collected immediately pre- and postischemia for analysis of uric acid by high-pressure liquid chromatography. Lodoxamide (1 mM) caused significant attenuation of postischemic lung injury. Uric acid levels in the lung effluent confirmed inhibition of xanthine oxidase. Protection from injury was not complete, however, implying that additional mechanisms may contribute to ischemic-reperfusion injury in the lung.

  5. Effect of polymerization on antioxidant and xanthine oxidase inhibitory potential of sea buckthorn (H. rhamnoides) proanthocyanidins.

    PubMed

    Arimboor, Ranjith; Arumughan, C

    2012-10-01

    Inhibitory potential of sea buckthorn (Hippophae rhamnoides L) seed proanthocyanidins against oxidative stress and xanthine oxidase activity was evaluated. Composition of antioxidant proanthocyanidins was profiled by analyzing the cleavage products obtained by the acid catalyzed hydrolysis in the presence of phloroglucinol. Catechin, epicatechin, gallocatechin, and epigallocatechin were found as the extension and terminal subunits of proanthocyanidins with an average degree of polymerization (ADP) of 14.7. Seed proanthocyanidins showed considerably high antioxidant and xanthine oxidase inhibitory potentials. Antioxidant and xanthine oxidase inhibitory capacity evaluation of proanthocyanidin fractions with varying ADP showed that proanthocyanidins with lower molecular size were more effective as superoxide anion (ADP ≤ 4.2) and hydroxyl radical (ADP ≤ 5.9) scavengers and xanthine oxidase (ADP ≤ 3.1) inhibitors. ADP of the studied proanthocyanidin fractions did not show significant influence on their DPPH and ABTS radical scavenging and ferric reduction capacities.

  6. Phase diagram of a system of adipic, glutaric, and sebacic acids

    NASA Astrophysics Data System (ADS)

    Kolyado, A. V.; Alenova, S. M.; Garkushin, I. K.

    2016-06-01

    Adipic acid-glutaric acid, glutaric acid-sebacic acid, and adipic acid-sebacic acid binary systems are studied, along with an adipic acid-glutaric acid-sebacic acid ternary system. It is shown all of these systems are eutectic. Phase equilibria for the diagram elements of the binary systems and the ternary system are described. It is concluded that the above low-melting compounds can be recommended for use as working bodies in heat accumulators, and for preparing electrolytes used in the thin-layer anodic oxidation of aluminum alloys.

  7. Identification and Characterization of an Antennae-Specific Aldehyde Oxidase from the Navel Orangeworm

    PubMed Central

    Choo, Young-Moo; Pelletier, Julien; Atungulu, Elizabeth; Leal, Walter S.

    2013-01-01

    Antennae-specific odorant-degrading enzymes (ODEs) are postulated to inactivate odorant molecules after they convey their signal. Different classes of insect ODEs are specific to esters, alcohols, and aldehydes – the major functional groups of female-produced, hydrophobic sex pheromones from moth species. Esterases that rapidly inactive acetate and other esters have been well-studied, but less is known about aldehyde oxidases (AOXs). Here we report cloning of an aldehyde oxidase, AtraAOX2, from the antennae of the navel orangeworm (NOW), Amyelois transitella, and the first activity characterization of a recombinant insect AOX. AtraAOX2 gene spans 3,813 bp and encodes a protein with 1,270 amino acid residues. AtraAOX2 cDNA was expressed in baculovirus-infected insect Sf21 cells as a ≈280 kDa homodimer with 140 kDa subunits. Recombinant AtraAOX2 degraded Z11Z13–16Ald and plant volatile aldehydes as substrates. However, as expected for aldehyde oxidases, recombinant AtraAOX2 did not show specificity for Z11Z13–16Ald, the main constituent of the sex pheromone, but showed high activity for plant volatile aldehydes. Our data suggest AtraAOX2 might be involved in degradation of a diversity of aldehydes including sex pheromones, plant-derived semiochemicals, and chemical cues for oviposition sites. Additionally, AtraAOX2 could protect the insect's olfactory system from xenobiotics, including pesticides that might reach the sensillar lymph surrounding the olfactory receptor neurons. PMID:23826341

  8. Gas dilution system results and application to acid rain utilities

    SciTech Connect

    Jolley-Souders, K.; Geib, R.; Dunn, C.

    1997-12-31

    In 1997, the United States EPA will remove restrictions preventing acid rain utilities from using gas dilution systems for calibration or linearity studies for continuous emissions monitoring, Test Method 205 in 40CFR51 requires that a gas dilution system must produce calibration gases whose measured values are within {+-}2% of predicted values. This paper presents the evaluation of the Environics/CalMat 2020 Dilution System for use in calibration studies. Internal studies show that concentrations generated by this unit are within {+-}0.5% of predicted values. Studies are being conducted by several acid rain utilities to evaluate the Environics/CalMat system using single minor component calibration standards. In addition, an internally generated study is being performed to demonstrate the system`s accuracy using a multi-component gas mixture. Data from these tests will be presented in the final version of the paper.

  9. Monoamine Oxidase Inhibitors: Clinical Review

    PubMed Central

    Remick, Ronald A.; Froese, Colleen

    1990-01-01

    Monoamine oxidase inhibitors (MAOIs) are effective antidepressant agents. They are increasingly and effectively used in a number of other psychiatric and non-psychiatric medical syndromes. Their potential for serious toxicity (i.e., hypertensive reaction) is far less than original reports suggest, and newer reversible substrate-specific MAOIs may offer even less toxicity. The author reviews the pharmacology, mechanism of action, clinical indications, and dosing strategies of MAOIs. The common MAOI side-effects (hypotension, weight gain, sexual dysfunction, insomnia, daytime sedation, myoclonus, and hypertensive episodes) are described and management techniques suggested. Recent clinical developments involving MAOIs are outlined. PMID:21233984

  10. 300 Area waste acid treatment system closure plan

    SciTech Connect

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

  11. Identification of a gene for pyruvate-insensitive mitochondrial alternative oxidase expressed in the thermogenic appendices in Arum maculatum.

    PubMed

    Ito, Kikukatsu; Ogata, Takafumi; Kakizaki, Yusuke; Elliott, Catherine; Albury, Mary S; Moore, Anthony L

    2011-12-01

    Heat production in thermogenic plants has been attributed to a large increase in the expression of the alternative oxidase (AOX). AOX acts as an alternative terminal oxidase in the mitochondrial respiratory chain, where it reduces molecular oxygen to water. In contrast to the mitochondrial terminal oxidase, cytochrome c oxidase, AOX is nonprotonmotive and thus allows the dramatic drop in free energy between ubiquinol and oxygen to be dissipated as heat. Using reverse transcription-polymerase chain reaction-based cloning, we reveal that, although at least seven cDNAs for AOX exist (AmAOX1a, -1b, -1c, -1d, -1e, -1f, and -1g) in Arum maculatum, the organ and developmental regulation for each is distinct. In particular, the expression of AmAOX1e transcripts appears to predominate in thermogenic appendices among the seven AmAOXs. Interestingly, the amino acid sequence of AmAOX1e indicates that the ENV element found in almost all other AOX sequences, including AmAOX1a, -1b, -1c, -1d, and -1f, is substituted by QNT. The existence of a QNT motif in AmAOX1e was confirmed by nano-liquid chromatography-tandem mass spectrometry analysis of mitochondrial proteins from thermogenic appendices. Further functional analyses with mitochondria prepared using a yeast heterologous expression system demonstrated that AmAOX1e is insensitive to stimulation by pyruvate. These data suggest that a QNT type of pyruvate-insensitive AOX, AmAOX1e, plays a crucial role in stage- and organ-specific heat production in the appendices of A. maculatum.

  12. Discovery of xanthine oxidase inhibitors from a complex mixture using an online, restricted-access material coupled with column-switching liquid chromatography with a diode-array detection system.

    PubMed

    Li, De-qiang; Zhao, Jing; Li, Shao-ping; Zhang, Qing-wen

    2014-03-01

    To find potential lead compounds for antigout drug discovery, an automated online, restricted-access material coupled with column-switching liquid chromatography with a diode-array detection (RAM-LC-DAD) system was developed for screening of xanthine oxidase (XO) inhibitors and their affinity rankings in complex mixtures. The system was first evaluated by analyzing a mixture of six compounds with known inhibition of XO. Nonspecific binding to the denatured XO was investigated and used as the control for screening. Subsequently, the newly developed system was applied to screening of a natural product, Oroxylum indicum extract, and four compounds which could specifically interact with XO were found and identified as oroxin B, oroxin A, baicalin, and baicalein. The results were verified by a competitive binding test using the known competitive inhibitor allopurinol and were further validated by an inhibition assay in vitro. The online RAM-LC-DAD system developed was shown to be a simple and effective strategy for the rapid screening of bioactive compounds from a complex mixture.

  13. Status of commercial phosphoric acid fuel cell system development

    NASA Technical Reports Server (NTRS)

    Warshay, M.; Prokopius, P. R.; Simons, S. N.; King, R. B.

    1981-01-01

    A review of the current commercial phosphoric acid fuel cell system development efforts is presented. In both the electric utility and on-site integrated energy system applications, reducing cost and increasing reliability are important. The barrier to the attainment of these goals has been materials. The differences in approach among the three major participants are their technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy.

  14. Reconstitution of the membrane-bound, ubiquinone-dependent pyruvate oxidase respiratory chain of Escherichia coli with the cytochrome d terminal oxidase

    SciTech Connect

    Koland, J.G.; Miller, M.J.; Gennis, R.B.

    1984-01-31

    Pyruvate oxidase is a flavoprotein dehydrogenase located on the inner surface of the Escherichia coli cytoplasmic membrane and coupled to the E. coli aerobic respiratory chain. The role of quinones in the pyruvate oxidase system is investigated, and a minimal respiratory chain is described consisting of only two pure proteins plus ubiquinone 8 incorporated in phospholipid vesicles. The enzymes used in this reconstitution are the flavorprotein and the recently purified E. coli cytochrome d terminal oxidase. The catalytic velocity of the reconstituted liposome system is about 30% of that observed when the flavoprotein is reconstituted with E. coli membranes. It is also shown that electron transport from pyruvate to oxygen in the liposome system generates a transmembrane potential of at least 180 mV (negative inside), which is sensitive to the uncouplers carbonyl cyanide p-(trichloromethoxy)phenylhydrazone and valinomycin. A transmembrane potential is also generated by the oxidation of ubiquinol 1 by the terminal oxidase in the absence of the flavoprotein. It is concluded that: the flavoprotein can directly reduce ubiquinone 8 within the phospholipid bilayer; menaquinone 8 will not effectively substitute for ubiquinone 8 in this electron-transfer chain; and the cytochrome d terminal oxidase functions as a ubiquinol 8 oxidase and serves as a coupling site in the E. coli aerobic respiratory chain. These investigations suggest a relatively simple organization for the E. coli respiratory chain.

  15. Reconstitution of the membrane-bound, ubiquinone-dependent pyruvate oxidase respiratory chain of Escherichia coli with the cytochrome d terminal oxidase.

    PubMed

    Koland, J G; Miller, M J; Gennis, R B

    1984-01-31

    Pyruvate oxidase is a flavoprotein dehydrogenase located on the inner surface of the Escherichia coli cytoplasmic membrane and coupled to the E. coli aerobic respiratory chain. In this paper, the role of quinones in the pyruvate oxidase system is investigated, and a minimal respiratory chain is described consisting of only two pure proteins plus ubiquinone 8 incorporated in phospholipid vesicles. The enzymes used in this reconstitution are the flavoprotein and the recently purified E. coli cytochrome d terminal oxidase. The catalytic velocity of the reconstituted liposome system is about 30% of that observed when the flavoprotein is reconstituted with E. coli membranes. It is also shown that electron transport from pyruvate to oxygen in the liposome system generates a transmembrane potential of at least 180 mV (negative inside), which is sensitive to the uncouplers carbonyl cyanide p-(tri-chloromethoxy)phenylhydrazone and valinomycin. A trans-membrane potential is also generated by the oxidation of ubiquinol 1 by the terminal oxidase in the absence of the flavoprotein. It is concluded that (1) the flavoprotein can directly reduce ubiquinone 8 within the phospholipid bilayer, (2) menaquinone 8 will not effectively substitute for ubiquinone 8 in this electron-transfer chain, and (3) the cytochrome d terminal oxidase functions as a ubiquinol 8 oxidase and serves as a "coupling site" in the E. coli aerobic respiratory chain. These investigations suggest a relatively simple organization for the E. coli respiratory chain.

  16. Homogeneous vs. heterogeneous nucleation in water-dicarboxylic acid systems

    NASA Astrophysics Data System (ADS)

    Hienola, A. I.; Vehkamäki, H.; Riipinen, I.; Kulmala, M.

    2009-03-01

    Binary heterogeneous nucleation of water-succinic/glutaric/malonic/adipic acid on nanometer-sized particles is investigated within the frame of classical heterogeneous nucleation theory. Homogeneous nucleation is also included for comparison. It is found that the nucleation probabilities depend on the contact angle and on the size of the seed particles. New thermodynamical properties, such as saturation vapor pressure, density and surface tension for all the dicarboxylic acid aqueous solutions are included in the calculations. While the new surface tension and density formulations do not bring any significant difference in the computed nucleation rate for homogeneous nucleation for succinic and glutaric acids, the use of the newly derived equations for the vapor pressure decrease the acid concentrations in gas phase by 3 orders of magnitude. According to our calculations, the binary heterogeneous nucleation of succinic acid-water and glutaric acid-water - although it requires a 3-4 orders of magnitude lower vapor concentrations than the homogeneous nucleation - cannot take place under atmospheric conditions. On the other hand binary homogeneous nucleation of adipic acid-water systems might be possible under conditions occuring in upper boundary layer. However, a more detailed characterization of the interaction between the surface and the molecules of the nucleating vapor should be considered in the future.

  17. Benefits and risks of folic acid to the nervous system

    PubMed Central

    Reynolds, E

    2002-01-01

    During three decades of neurological practice I have witnessed a remarkable change in attitudes to the benefits and risks of folic acid therapy in nervous system disorders. In the 1960s all that was known and taught was that folic acid was harmful to the nervous system, especially in precipitating or exacerbating the neurological complications of vitamin B12 deficiency. So deeply held was this view that the possibility of neuropsychological benefits from this vitamin was initially viewed with considerable scepticism.1 PMID:11971038

  18. Lead/acid batteries in systems to improve power quality

    NASA Astrophysics Data System (ADS)

    Taylor, P.; Butler, P.; Nerbun, W.

    Increasing dependence on computer technology is driving needs for extremely high-quality power to prevent loss of information, material, and workers' time that represent billions of dollars annually. This cost has motivated commercial and Federal research and development of energy storage systems that detect and respond to power-quality failures in milliseconds. Electrochemical batteries are among the storage media under investigation for these systems. Battery energy storage systems that employ either flooded lead/acid or valve-regulated lead/acid battery technologies are becoming commercially available to capture a share of this emerging market. Cooperative research and development between the US Department of Energy and private industry have led to installations of lead/acid-based battery energy storage systems to improve power quality at utility and industrial sites and commercial development of fully integrated, modular battery energy storage system products for power quality. One such system by AC Battery Corporation, called the PQ2000, is installed at a test site at Pacific Gas and Electric Company (San Ramon, CA, USA) and at a customer site at Oglethorpe Power Corporation (Tucker, GA, USA). The PQ2000 employs off-the-shelf power electronics in an integrated methodology to control the factors that affect the performance and service life of production-model, low-maintenance, flooded lead/acid batteries. This system, and other members of this first generation of lead/acid-based energy storage systems, will need to compete vigorously for a share of an expanding, yet very aggressive, power quality market.

  19. NADPH Oxidases in Lung Health and Disease

    PubMed Central

    Bernard, Karen; Hecker, Louise; Luckhardt, Tracy R.; Cheng, Guangjie

    2014-01-01

    Abstract Significance: The evolution of the lungs and circulatory systems in vertebrates ensured the availability of molecular oxygen (O2; dioxygen) for aerobic cellular metabolism of internal organs in large animals. O2 serves as the physiologic terminal acceptor of mitochondrial electron transfer and of the NADPH oxidase (Nox) family of oxidoreductases to generate primarily water and reactive oxygen species (ROS), respectively. Recent advances: The purposeful generation of ROS by Nox family enzymes suggests important roles in normal physiology and adaptation, most notably in host defense against invading pathogens and in cellular signaling. Critical issues: However, there is emerging evidence that, in the context of chronic stress and/or aging, Nox enzymes contribute to the pathogenesis of a number of lung diseases. Future Directions: Here, we review evolving functions of Nox enzymes in normal lung physiology and emerging pathophysiologic roles in lung disease. Antioxid. Redox Signal. 20, 2838–2853. PMID:24093231

  20. Phorbic Acid Biosynthesis in the Latex Vessel System of Euphorbia

    PubMed Central

    Nordal, Arnold; Benson, A. A.

    1969-01-01

    Evidence is presented that phorbic acid is formed in the latex producing cell system, rather than in photosynthetic or chlorophyll-free tissues of Euphorbia resinifera Berg. When a branch of the plant was kept first in a 14CO2 atmosphere with 12 hr light-dark periods for 2 days and then left under natural conditions in the air outside for at least 2 to 3 days, radioactive phorbic acid was found in the latex. Phorbic acid synthesis appeared to be independent of the photosynthetic and respiratory activities of the plant. Besides phorbic acid 2 other major radioactive compounds were recognized in the latex, a glycoside or oligosaccharide, and a lipid belonging to the group of triterpenoid compounds characteristic of the latex in several species of Euphorbia. Images PMID:16657036

  1. Purification of gibberellin sub 53 -oxidase from spinach

    SciTech Connect

    Wilson, T.M.; Zeevaart, J.A.D. )

    1989-04-01

    Spinach is a long-day rosette plants, in which stem growth is mediated by gibberellins. It has been shown that two enzymatic steps, GA{sub 53}-oxidase and GA{sub 19}-oxidase, are controlled by light. To develop an understanding into this light regulation, purification of GA{sub 53}-oxidase has been undertaken. The original assay relied on the HPLC separation of the product and substrate, but was considered too slow for the development of a purification scheme. A TLC system was developed which in conjunction with improvements to the assay conditions was sensitive and gave rapid results. The partial purification of the GA{sub 53}-oxidase is achieved by a high speed centrifugation, 40-55% ammonium sulfate precipitation, an hydroxyapatite column, Sephadex G-100 column and an anion exchange FPLC column, Mono Q HR10/10, yielding 1000-fold purification and 15% recovery. Monoclonal antibodies to the protein will be raised and used to further characterize the enzyme.

  2. The influence of dietary docosahexaenoic acid and arachidonic acid on central nervous system polyunsaturated fatty acid composition.

    PubMed

    Brenna, J Thomas; Diau, Guan-Yeu

    2007-01-01

    Numerous studies on perinatal long-chain polyunsaturated fatty acid nutrition have clarified the influence of dietary docosahexaenoic acid (DHA) and arachidonic acid (ARA) on central nervous system PUFA concentrations. In humans, omnivorous primates, and piglets, DHA and ARA plasma and red blood cells concentrations rise with dietary preformed DHA and ARA. Brain and retina DHA are responsive to diet while ARA is not. DHA is at highest concentration in cells and tissues associated with high energy consumption, consistent with high DHA levels in mitochondria and synaptosomes. DHA is a substrate for docosanoids, signaling compounds of intense current interest. The high concentration in tissues with high rates of oxidative metabolism may be explained by a critical role related to oxidative metabolism.

  3. The Influence of Dietary Docosahexaenoic Acid and Arachidonic Acid on Central Nervous System Polyunsaturated Fatty Acid Composition

    PubMed Central

    Brenna, J. Thomas; Diau, Guan-Yeu

    2007-01-01

    Numerous studies on perinatal long chain polyunsaturated fatty acid nutrition have clarified the influence of dietary docosahexaenoic acid (DHA) and arachidonic acid (ARA) on central nervous system PUFA concentrations. In humans, omnivorous primates, and piglets, DHA and ARA plasma and red blood cells concentrations rise with dietary preformed DHA and ARA. Brain and retina DHA are responsive to diet while ARA is not. DHA is at highest concentration cells and tissues associated with high energy consumption, consistent with high DHA levels in mitochondria and synaptosomes. DHA is a substrate for docosanoids, signaling compounds of intense current interest. The high concentration in tissues with high rates of oxidative metabolism may be explained by a critical role related to oxidative metabolism. PMID:18023566

  4. Mitochondrial cytochrome c oxidase deficiency.

    PubMed

    Rak, Malgorzata; Bénit, Paule; Chrétien, Dominique; Bouchereau, Juliette; Schiff, Manuel; El-Khoury, Riyad; Tzagoloff, Alexander; Rustin, Pierre

    2016-03-01

    As with other mitochondrial respiratory chain components, marked clinical and genetic heterogeneity is observed in patients with a cytochrome c oxidase deficiency. This constitutes a considerable diagnostic challenge and raises a number of puzzling questions. So far, pathological mutations have been reported in more than 30 genes, in both mitochondrial and nuclear DNA, affecting either structural subunits of the enzyme or proteins involved in its biogenesis. In this review, we discuss the possible causes of the discrepancy between the spectacular advances made in the identification of the molecular bases of cytochrome oxidase deficiency and the lack of any efficient treatment in diseases resulting from such deficiencies. This brings back many unsolved questions related to the frequent delay of clinical manifestation, variable course and severity, and tissue-involvement often associated with these diseases. In this context, we stress the importance of studying different models of these diseases, but also discuss the limitations encountered in most available disease models. In the future, with the possible exception of replacement therapy using genes, cells or organs, a better understanding of underlying mechanism(s) of these mitochondrial diseases is presumably required to develop efficient therapy.

  5. Immunological comparison of sulfite oxidase

    SciTech Connect

    Pollock, V.; Barber, M.J. )

    1991-03-11

    Polyclonal antibodies (rabbit), elicited against FPLC-purified chicken and rat liver sulfite oxidase (SO), have been examined for inhibition and binding to purified chicken (C), rat (R), bovine (B), alligator (A) and shark (S) liver enzymes. Anti-CSO IgG cross-reacted with all five enzymes, with varying affinities, in the order CSO=ASO{gt}RSO{gt}BSO{gt}SSO. Anti-ROS IgG also cross-reacted with all five enzymes in the order RSO{gt}CSO=ASO{gt}BSO{gt}SSO. Anti-CSO IgG inhibited sulfite:cyt. c reductase (S:CR), sulfite:ferricyanide reductase (S:FR) and sulfite:dichlorophenolindophenol reductase (S:DR) activities of CSO to different extents (S:CR{gt}S:FR=S:DR). Similar differential inhibition was found for anti-ROS IgG and RSO S:CR, S:FR and S:DR activities. Anti-CSO IgG inhibited S:CR activities in the order CSO=ASO{much gt}SSO{gt}BSO. RSO was uninhibited. For anti-RSO IgG the inhibition order was RSO{gt}SSO{gt}BSO{gt}ASO. CSO was uninhibited. Anti-CSO and RSO IgGs partially inhibited Chlorella nitrate reductase (NR). Minor cross-reactivity was found for xanthine oxidase. Common antigenic determinants for all five SO's and NR are indicated.

  6. Mitochondrial Cytochrome c Oxidase Deficiency

    PubMed Central

    Rak, Malgorzata; Bénit, Paule; Chrétien, Dominique; Bouchereau, Juliette; Schiff, Manuel; El-Khoury, Riyad; Tzagoloff, Alexander; Rustin, Pierre

    2016-01-01

    As with other mitochondrial respiratory chain components, marked clinical and genetic heterogeneity is observed in patients with a cytochrome c oxidase deficiency. This constitutes a considerable diagnostic challenge and raises a number of puzzling questions. So far, pathological mutations have been reported in more than 30 genes, in both mitochondrial and nuclear DNA, affecting either structural subunits of the enzyme or proteins involved in its biogenesis. In this review, we discuss the possible causes of the discrepancy between the spectacular advances made in the identification of the molecular bases of cytochrome oxidase deficiency and the lack of any efficient treatment in diseases resulting from such deficiencies. This brings back many unsolved questions related to the frequent delay of clinical manifestation, variable course and severity, and tissue-involvement often associated with these diseases. In this context, we stress the importance to study different models of these diseases, but also discuss the limitations encountered in most available disease models. In the future, with the possible exception of replacement therapy using genes, cells or organs, a better understanding of underlying mechanism(s) of these mitochondrial diseases is presumably required to develop efficient therapy. PMID:26846578

  7. Study of Self Assembly Systems Formed by Malic Acid and Alkyloxy Benzoic Acids

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Vellalapalayam Nallagounder; Madhu Mohan, Mathukumalli Lakshmi Narayana

    2010-12-01

    Self assembly systems formed by malic acid and alkyloxy benzoic acids are characterized. The ferroelectric ingredient malic acid formed double hydrogen bond with p-n-alkyloxy benzoic acids. Various hydrogen bonded complexes have been synthesized with malic acid and pentyl to dodecyloxy benzoic acid, respectively. Fourier transformation infrared (FTIR) studies confirm the hydrogen bond formation. Polarizing optical microscopic (POM) studies revealed the textural information while the transition and enthalpy values are calculated from differential scanning calorimetry (DSC) studies. A phase diagram has been constructed from the POMand DSC studies. A new smectic ordering, smectic X*, has been identified which exhibits a finger print type texture. This phase has been characterized by POM, DSC, helix, and tilt angle studies. The transition from traditional cholesteric to smectic X* phase is observed to be first order. The tilt angle data in this phase has been fitted to a power law and the temperature variation of the tilt angle follows mean field theory predictions. The results of FTIR, POM, DSC, tilt angle, and helicoidal studies are discussed.

  8. Difference between Chitosan Hydrogels via Alkaline and Acidic Solvent Systems

    PubMed Central

    Nie, Jingyi; Wang, Zhengke; Hu, Qiaoling

    2016-01-01

    Chitosan (CS) has generated considerable interest for its desirable properties and wide applications. Hydrogel has been proven to be a major and vital form in the applications of CS materials. Among various types of CS hydrogels, physical cross-linked CS hydrogels are popular, because they avoided the potential toxicity and sacrifice of intrinsic properties caused by cross-linking or reinforcements. Alkaline solvent system and acidic solvent system are two important solvent systems for the preparation of physical cross-linked CS hydrogels, and also lay the foundations of CS hydrogel-based materials in many aspects. As members of physical cross-linked CS hydrogels, gel material via alkaline solvent system showed significant differences from that via acidic solvent system, but the reasons behind are still unexplored. In the present work, we studied the difference between CS hydrogel via alkaline system and acidic system, in terms of gelation process, hydrogel structure and mechanical property. In-situ/pseudo in-situ studies were carried out, including fluorescent imaging of gelation process, which provided dynamic visualization. Finally, the reasons behind the differences were explained, accompanied by the discussion about design strategy based on gelation behavior of the two systems. PMID:27786262

  9. Difference between Chitosan Hydrogels via Alkaline and Acidic Solvent Systems

    NASA Astrophysics Data System (ADS)

    Nie, Jingyi; Wang, Zhengke; Hu, Qiaoling

    2016-10-01

    Chitosan (CS) has generated considerable interest for its desirable properties and wide applications. Hydrogel has been proven to be a major and vital form in the applications of CS materials. Among various types of CS hydrogels, physical cross-linked CS hydrogels are popular, because they avoided the potential toxicity and sacrifice of intrinsic properties caused by cross-linking or reinforcements. Alkaline solvent system and acidic solvent system are two important solvent systems for the preparation of physical cross-linked CS hydrogels, and also lay the foundations of CS hydrogel-based materials in many aspects. As members of physical cross-linked CS hydrogels, gel material via alkaline solvent system showed significant differences from that via acidic solvent system, but the reasons behind are still unexplored. In the present work, we studied the difference between CS hydrogel via alkaline system and acidic system, in terms of gelation process, hydrogel structure and mechanical property. In-situ/pseudo in-situ studies were carried out, including fluorescent imaging of gelation process, which provided dynamic visualization. Finally, the reasons behind the differences were explained, accompanied by the discussion about design strategy based on gelation behavior of the two systems.

  10. Globular adiponectin elicits neuroprotection by inhibiting NADPH oxidase-mediated oxidative damage in ischemic stroke.

    PubMed

    Song, W; Huo, T; Guo, F; Wang, H; Wei, H; Yang, Q; Dong, H; Wang, Q; Xiong, L

    2013-09-17

    Recent studies indicate that adiponectin can attenuate cerebral ischemic lesions via its functional area located in the C-terminal globular domain, which is called globular adiponectin (gAD). However, the mechanisms underlying this action remain unclear. In this study, we investigated the antioxidant properties of gAD during cerebral ischemia. Adult male C57BL/6 mice received an intracerebral injection of gAD with or without tetrabromocinnamic acid (TBCA, a NADPH oxidase activator). Mice were subjected to middle cerebral artery occlusion (MCAO) after gAD injection. Infarct volume, neurological function, the activity of antioxidant enzymes (superoxide dismutase [SOD], catalase), the content of malondialdehyde (MDA), and the expression of Bax, Bcl-2, cleaved caspase-3 and NADPH oxidase 2 (NOX2) were examined at 24h after MCAO. Infarct volume was attenuated in gAD-transduced mice when compared with mice in the MCAO group, with significant improvement in neurological function. In addition, neuronal apoptosis was attenuated, along with the expression of Bax/Bcl-2 and cleaved caspase 3. Furthermore, the activities of SOD and catalase increased, and the content of MDA reduced. However, TBCA blocked the effect of gAD on cerebral protection and its antioxidant abilities. Taken together, these results demonstrate that the neuroprotective action of gAD may result from the promotion of antioxidant capacity by inhibiting the NOX2 signaling system.

  11. The proton collecting function of the inner surface of cytochrome c oxidase from Rhodobacter sphaeroides.

    PubMed

    Marantz, Y; Nachliel, E; Aagaard, A; Brzezinski, P; Gutman, M

    1998-07-21

    The experiments presented in this study address the problem of how the cytoplasmic surface (proton-input side) of cytochrome c oxidase interacts with protons in the bulk. For this purpose, the cytoplasmic surface of the enzyme was labeled with a fluorescein (Flu) molecule covalently bound to Cys223 of subunit III. Using the Flu as a proton-sensitive marker on the surface and phiOH as a soluble excited-state proton emitter, the dynamics of the acid-base equilibration between the surface and the bulk was measured in the time-resolved domain. The results were analyzed by using a rigorous kinetic analysis that is based on numeric integration of coupled nonliner differential rate equations in which the rate constants are used as adjustable parameters. The analysis of 11 independent measurements, carried out under various initial conditions, indicated that the protonation of the Flu proceeds through multiple pathways involving diffusion-controlled reactions and proton exchange among surface groups. The surface of the protein carries an efficient system made of carboxylate and histidine moieties that are sufficiently close to each other as to form a proton-collecting antenna. It is the passage of protons among these sites that endows cytochrome c oxidase with the capacity to pick up protons from the buffered cytoplasmic matrix within a time frame compatible with the physiological turnover of the enzyme.

  12. Identification, expression, and taxonomic distribution of alternative oxidases in non-angiosperm plants.

    PubMed

    Neimanis, Karina; Staples, James F; Hüner, Norman P A; McDonald, Allison E

    2013-09-10

    Alternative oxidase (AOX) is a terminal ubiquinol oxidase present in the respiratory chain of all angiosperms investigated to date, but AOX distribution in other members of the Viridiplantae is less clear. We assessed the taxonomic distribution of AOX using bioinformatics. Multiple sequence alignments compared AOX proteins and examined amino acid residues involved in AOX catalytic function and post-translational regulation. Novel AOX sequences were found in both Chlorophytes and Streptophytes and we conclude that AOX is widespread in the Viridiplantae. AOX multigene families are common in non-angiosperm plants and the appearance of AOX1 and AOX2 subtypes pre-dates the divergence of the Coniferophyta and Magnoliophyta. Residues involved in AOX catalytic function are highly conserved between Chlorophytes and Streptophytes, while AOX post-translational regulation likely differs in these two lineages. We demonstrate experimentally that an AOX gene is present in the moss Physcomitrella patens and that the gene is transcribed. Our findings suggest that AOX will likely exert an influence on plant respiration and carbon metabolism in non-angiosperms such as green algae, bryophytes, liverworts, lycopods, ferns, gnetophytes, and gymnosperms and that further research in these systems is required.

  13. A continuous acetic acid system for polyacrylamide gel electrophoresis of gliadins and other prolamines.

    PubMed

    Clements, R L

    1988-02-01

    A polyacrylamide gel electrophoresis system buffered by acetic acid alone was developed for electrophoresis of prolamines. When applied to gliadin electrophoresis, the acetic acid system produces more bands than does a conventional aluminum lactate-lactic acid system (using 12% acrylamide gels). The acetic acid system is relatively simple, requiring a single buffer component that is universally available in high purity.

  14. 21 CFR 862.3580 - Lysergic acid diethylamide (LSD) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lysergic acid diethylamide (LSD) test system. 862... Test Systems § 862.3580 Lysergic acid diethylamide (LSD) test system. (a) Identification. A lysergic acid diethylamide (LSD) test system is a device intended to measure lysergic acid diethylamide,...

  15. 21 CFR 862.3580 - Lysergic acid diethylamide (LSD) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lysergic acid diethylamide (LSD) test system. 862... Test Systems § 862.3580 Lysergic acid diethylamide (LSD) test system. (a) Identification. A lysergic acid diethylamide (LSD) test system is a device intended to measure lysergic acid diethylamide,...

  16. 21 CFR 862.3580 - Lysergic acid diethylamide (LSD) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lysergic acid diethylamide (LSD) test system. 862... Test Systems § 862.3580 Lysergic acid diethylamide (LSD) test system. (a) Identification. A lysergic acid diethylamide (LSD) test system is a device intended to measure lysergic acid diethylamide,...

  17. 21 CFR 862.3580 - Lysergic acid diethylamide (LSD) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lysergic acid diethylamide (LSD) test system. 862... Test Systems § 862.3580 Lysergic acid diethylamide (LSD) test system. (a) Identification. A lysergic acid diethylamide (LSD) test system is a device intended to measure lysergic acid diethylamide,...

  18. 21 CFR 862.3580 - Lysergic acid diethylamide (LSD) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lysergic acid diethylamide (LSD) test system. 862... Test Systems § 862.3580 Lysergic acid diethylamide (LSD) test system. (a) Identification. A lysergic acid diethylamide (LSD) test system is a device intended to measure lysergic acid diethylamide,...

  19. High Level Waste System Impacts from Acid Dissolution of Sludge

    SciTech Connect

    KETUSKY, EDWARD

    2006-04-20

    This research evaluates the ability of OLI{copyright} equilibrium based software to forecast Savannah River Site High Level Waste system impacts from oxalic acid dissolution of Tank 1-15 sludge heels. Without further laboratory and field testing, only the use of oxalic acid can be considered plausible to support sludge heel dissolution on multiple tanks. Using OLI{copyright} and available test results, a dissolution model is constructed and validated. Material and energy balances, coupled with the model, identify potential safety concerns. Overpressurization and overheating are shown to be unlikely. Corrosion induced hydrogen could, however, overwhelm the tank ventilation. While pH adjustment can restore the minimal hydrogen generation, resultant precipitates will notably increase the sludge volume. OLI{copyright} is used to develop a flowsheet such that additional sludge vitrification canisters and other negative system impacts are minimized. Sensitivity analyses are used to assess the processability impacts from variations in the sludge/quantities of acids.

  20. Characterization of polyphenol oxidase from Cape gooseberry (Physalis peruviana L.) fruit.

    PubMed

    Bravo, Karent; Osorio, Edison

    2016-04-15

    Cape gooseberry (Physalis peruviana) is an exotic fruit highly valued, however it is a very rich source of polyphenol oxidase (PPO). In this study, Cape gooseberry PPO was isolated and biochemically characterized. The enzyme was extracted and purified using acetone and aqueous two-phase systems. The data indicated that PPO had the highest substrate affinity for chlorogenic acid, 4-methylcatechol and catechol. Chlorogenic acid was the most suitable substrate (Km=0.56±0.07 mM and Vmax=53.15±2.03 UPPO mL(-1) min(-1)). The optimal pH values were 5.5 for catechol and 4-methylcatechol and 5.0 for chlorogenic acid. Optimal temperatures were 40°C for catechol, 25°C for 4-methylcatechol and 20°C for chlorogenic acid. In inhibition tests, the most potent inhibitor was found to be ascorbic acid followed by L-cysteine and quercetin. This study shows possible treatments that can be implemented during the processing of Cape gooseberry fruits to prevent browning.

  1. 21 CFR 862.1305 - Formiminoglutamic acid (FIGLU) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Formiminoglutamic acid (FIGLU) test system. 862.1305 Section 862.1305 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  2. 21 CFR 862.1305 - Formiminoglutamic acid (FIGLU) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Formiminoglutamic acid (FIGLU) test system. 862.1305 Section 862.1305 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  3. Dynamic Buffer Capacity in Acid-Base Systems.

    PubMed

    Michałowska-Kaczmarczyk, Anna M; Michałowski, Tadeusz

    The generalized concept of 'dynamic' buffer capacity βV is related to electrolytic systems of different complexity where acid-base equilibria are involved. The resulting formulas are presented in a uniform and consistent form. The detailed calculations are related to two Britton-Robinson buffers, taken as examples.

  4. Excess boron reduces polyphenol oxidase activities in embryo and endosperm of maize seed during germination.

    PubMed

    Olçer, Hillya; Kocaçaliskan, Ismail

    2007-01-01

    The effects of increasing concentrations of boron (0, 0.1, 1, 10 and 20 mM) as boric acid on the rate of germination and polyphenol oxidase activities in embryo and endosperm tissues of maize seeds (Zea mays L. cv. Arifiye) were studied. The germination percentage of maize seeds was not affected by boron concentrations up to 10 mM, and decreased by 20 mM. Distilled water and lower boron concentrations (0.1 and 1 mM) increased polyphenol oxidase activities at the beginning of germination up to 12 h whereas its excess levels (10 and 20 mM) decreased polyphenol oxidase activities in embryos and endosperm during germination. Polyphenol oxidase activities with o-diphenolic substrates (caffeic acid, catechol and dopa) were found to be higher than with a monophenolic substrat (tyrosine) in both embryos and endosperms. Further, caffeic acid oxidizing polyphenol oxidase was found to show more activity in embryos of the seeds germinating in distilled water when compared to other substrates.

  5. Spinach thylakoid polyphenol oxidase isolation, activation, and properties of the native chloroplast enzyme

    SciTech Connect

    Golbeck, J.H.; Cammarata, K.V.

    1981-05-01

    Polyphenol oxidase activity (E.C. 1.14,18.1) has been found in two enzyme species isolated from thylakoid membranes of spinach chloroplasts. The proteins were released from the membrane by sonication and purified >900-fold by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography. The enzymes appear to be the tetramer and monomer of a subunit with a molecular weight of 42,500 as determined by lithium dodecyl sulfate gel electrophoresis. Sonication releases polyphenol oxidase from the membrane largely in the latent state. In the absence of added fatty acids, the isolated enzyme spontaneously, but slowly, activates with time. Purified polyphenol oxidase utilizes o-diphenols as substrates and shows no detectable levels of monophenol or p-diphenol oxidase activities. Suitable substrates include chlorogenic acid, catechol, caffeic acid, pyrogallol, and dopamine; however, the enzyme is substrate-inhibited by the last four at concentrations near their K/sub m/. A large seasonal variation in polyphenol oxidase activity may result from a decrease in enzyme content rather than inhibition of the enzyme present.

  6. Isolation of ubiquinol oxidase from Paracoccus denitrificans and resolution into cytochrome bc1 and cytochrome c-aa3 complexes.

    PubMed

    Berry, E A; Trumpower, B L

    1985-02-25

    An enzyme complex with ubiquinol-cytochrome c oxidoreductase, cytochrome c oxidase, and ubiquinol oxidase activities was purified from a detergent extract of the plasma membrane of aerobically grown Paracoccus denitrificans. This ubiquinol oxidase consists of seven polypeptides and contains two b cytochromes, cytochrome c1, cytochrome aa3, and a previously unreported c-type cytochrome. This c-type cytochrome has an apparent Mr of 22,000 and an alpha absorption maximum at 552 nm. Retention of this c cytochrome through purification presumably accounts for the independence of ubiquinol oxidase activity on added cytochrome c. Ubiquinol oxidase can be separated into a 3-subunit bc1 complex, a 3-subunit c-aa3 complex, and a 57-kDa polypeptide. This, together with detection of covalently bound heme and published molecular weights of cytochrome c1 and the subunits of cytochrome c oxidase, allows tentative identification of most of the subunits of ubiquinol oxidase with the prosthetic groups present. Ubiquinol oxidase contains cytochromes corresponding to those of the mitochondrial bc1 complex, cytochrome c oxidase complex, and a bound cytochrome c. Ubiquinol-cytochrome c oxidoreductase activity of the complex is inhibited by inhibitors of the mitochondrial bc1 complex. Thus it seems likely that the pathway of electron transfer through the bc1 complex of ubiquinol oxidase is similar to that through the mitochondrial bc1 complex. The number of polypeptides present is less than half the number in the corresponding mitochondrial complexes. This structural simplicity may make ubiquinol oxidase from P. denitrificans a useful system with which to study the mechanisms of electron transfer and energy transduction in the bc1 and cytochrome c oxidase sections of the respiratory chain.

  7. Binary nucleation in acid-water systems. II. Sulfuric acid-water and a comparison with methanesulfonic acid-water

    NASA Astrophysics Data System (ADS)

    Wyslouzil, B. E.; Seinfeld, J. H.; Flagan, R. C.; Okuyama, K.

    1991-05-01

    This work presents a systematic investigation of binary nucleation rates for sulfuric acid and water and the effect of temperature on these rates at isothermal, subsaturated conditions. The results from nucleation rate measurements for the sulfuric acid (H2SO4) -water system are discussed and compared to those previously presented for methanesulfonic acid (MSA)-water [B. E. Wyslouzil, J. H. Seinfeld, R. C. Flagan, and K. Okuyama, J. Chem. Phys. (submitted)]. Experiments were conducted at relative humidities (Rh) ranging from 0.006acidities (Ra) in the range of 0.04acid molecules in the critical nucleus for both the H2SO4 -water and MSA-water systems.

  8. Amino acid transport by prosthecae of Asticcacaulis biprosthecum: evidence for a broad-range transport system.

    PubMed

    Tam, E; Pate, J L

    1985-10-01

    Prosthecae purified from cells of Asticcaulis biprosthecum possess active transport systems that transport all 20 amino acids tested. Using ascorbate-reduced phenazine methosulphate in the presence of oxygen, all 20 amino acids are accumulated against a concentration gradient by isolated prosthecae. Results of experiments testing the inhibition of transport of one amino acid by another, and of experiments testing the exchange of exogenous amino acids with those preloaded in prosthecae, along with characteristics of mutants defective in amino acid transport, suggest the presence in prosthecae of three amino acid transport systems. One, the general or G system, transports at least 18 of the 20 amino acids tested. Another system, referred to as the proline or P system, transports seven amino acids (including proline) that are also transported by the G system. The third system transports only glutamate and aspartate, and is referred to as the acidic amino acid transport system or A system.

  9. The oxidation of linoleic acid in the Udenfriend's system.

    PubMed

    Wakizaka, A; Imai, Y

    1974-11-01

    The autocatalytic oxidation of linoleate was observed in the incubation mixture containing ferrous ion and ascorbic acid as the catalysts (Undenfriend's system). The rate of oxidation of linoleate was estimated wither by the TBA method, iodometry or by the measurement of the absorbance at 235 nm. Reaction products were analyzed by TLC, GLC and UV-, IR-, NMR- and mass spectrometries. The main oxidized products were assumed to have one oxygen atom at the position of carbon 9 or 13 of linoleate or two oxygen atoms at the both positions of the original acid. The conjugated double bond was formed at carbon 10 and 12 of the carbon chain of linoleate.

  10. Dietary docosahexaenoic acid but not arachidonic acid influences central nervous system fatty acid status in baboon neonates.

    PubMed

    Hsieh, Andrea T; Brenna, J Thomas

    2009-01-01

    The influence of dietary docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) on infant central nervous system (CNS) composition has implications for neural development, including vision, cognition, and motor function. We consider here combined results of three published studies of DHA/AA-containing formulas and breastfeeding to evaluate the CNS tissue response of baboon neonates with varied concentration and duration of DHA/AA consumption [G.Y. Diau, A.T. Hsieh, E.A. Sarkadi-Nagy, V. Wijendran, P.W. Nathanielsz, J.T. Brenna, The influence of long chain polyunsaturate supplementation on docosahexaenoic acid and arachidonic acid in baboon neonate central nervous system, BMC Med. 3 (2005) 11; A.T. Hsieh, J.C. Anthony, D.A. Diersen-Schade, et al., The influence of moderate and high dietary long chain polyunsaturated fatty acids (LCPUFA) on baboon neonate tissue fatty acids, Pediatr. Res. 61 (2007) 537-45; E. Sarkadi-Nagy, V. Wijendran, G.Y. Diau, et al., The influence of prematurity and long chain polyunsaturate supplementation in 4-week adjusted age baboon neonate brain and related tissues, Pediatr. Res. 54 (2003) 244-252]. A total of 43 neonates born spontaneously at term, or preterm by Cesarean section, consumed diets with DHA-AA (%w/w) at several levels: none (0,0), moderate (0.3, 0.6), or high (>0.6, 0.67 or 1.2). CNS fatty acids were analyzed at 4 and 12 weeks postpartum for term baboons and 7.5 weeks for preterm neonates. CNS DHA was consistently greater by 5-30% in neonates consuming DHA and nearer 30% for cortex. In contrast, CNS AA was unaffected by dietary AA and decreased in all structures with age. Dietary DHA consistently supports greater CNS DHA and maintenance of cortex DHA concentration with feeding duration, while CNS AA is not related to dietary supply. These data on structure-specific LCPUFA accretion may provide insight into neural mechanisms responsible for suboptimal functional outcomes in infants consuming diets that do not

  11. Advancing polymeric delivery systems amidst a nucleic acid therapy renaissance

    PubMed Central

    Burke, Paul A.; Pun, Suzie H.; Reineke, Theresa M.

    2013-01-01

    Nucleic acid therapeutics are attracting renewed interest due to recent clinical advances and product approvals. Most leading programs use chemical conjugates, or viral vectors in the case of gene therapy, while several use no delivery system at all. Polymer systems, which have been at the periphery of this renaissance, often involve greater molecular complexity than competing approaches, which must be justified by their advantages. Advanced analytical methods, along with biological tools for characterizing biotransformation and intracellular trafficking, are increasingly being applied to nucleic acid delivery systems including those based on polymers. These frontiers of investigation create the opportunity for an era where highly defined polymer compositions are optimized based on mechanistic insights in a way that has not been previously possible, offering the prospect of greater differentiation from alternatives. This will require integrated collaboration between polymer scientists and those from other disciplines. PMID:24683504

  12. Skin delivery of ferulic acid from different vesicular systems.

    PubMed

    Chen, Ming; Liu, Xiangli; Fahr, Alfred

    2010-10-01

    The aim of the present research is to evaluate the skin delivery capabilities of different vesicular systems, including conventional liposomes (CL), Tween 80-based deformable liposomes (DL), invasomes (INS) and ethosomes bearing ferulic acid (FA) being an antioxidant exhibiting a wide range of therapeutic effects against various diseases. All of the test formulations were characterized for particle size distribution, zeta-potential, vesicular shape and surface morphology, in vitro human skin permeation and skin deposition. Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) defined that all of liposomal vesicles were almost spherical, displaying unilamellar structures with low polydispersity (PDI < 0.2) and nanometric size range (z-average no more than 150 nm). In addition, all the vesicular systems except conventional liposomes were negatively charged to a certain extent. In vitro skin permeation and skin deposition experiments demonstrated that the permeation profile of ferulic acid through human stratum corneum epidermis membrane (SCE) and the drug deposition in skin were both improved significantly using these vesicular liposomal systems. Permeation and skin deposition enhancing effect was highlighted by the ethosomal system containing 18.0 mg/ml of ferulic acid with an significantly (P < 0.01) enhanced skin flux (267.8 +/- 16.77 microg/cm2/h) and skin drug deposition (51.67 +/- 1.94 microg/cm2), which was 75 times and 7.3 times higher than those of ferulic acid from saturated PBS (pH 7.4) solution, respectively. This study demonstrated that ethosomes are promising vesicular carriers for delivering ferulic acid into or across the skin.

  13. The function of ascorbate oxidase in tobacco.

    PubMed

    Pignocchi, Cristina; Fletcher, John M; Wilkinson, Joy E; Barnes, Jeremy D; Foyer, Christine H

    2003-07-01

    The function of the apoplastic enzyme ascorbate oxidase (AO) was investigated in tobacco (Nicotiana tabacum). The abundance of AO mRNA was up-regulated by light. Cytosolic ascorbate peroxidase (APX1) transcripts were also highest in the light. In contrast, L-galactono-gamma-lactone dehydrogenase, stromal APX, and thylakoid APX transcripts remained constant over the day/night cycle. Salicylic acid inhibited growth, increased expression of the pathogenesis-related protein (PR) 1a, and decreased AO transcript abundance. In contrast, the application of auxin enhanced growth and increased AO and PR 1a gene expression. Therefore, AO transcript abundance varied in a manner similar to hormone-mediated changes in plant growth. To study the effects of modified AO expression on growth, transformed tobacco plants expressing AO in the sense and antisense orientations were generated. The resultant large changes in apoplastic AO activity in the transformed tobacco plants had little effect on whole leaf ascorbate (AA) content, but they had dramatic effects on apoplastic AA levels. Enhanced AO activity oxidized the apoplastic AA pool, whereas decreased AO activity increased the amount of AA compared with dehydroascorbate. A relationship was observed between AO activity and plant height and biomass. Native AO transcript levels were no longer subject to light/dark regulation in AO sense and antisense plants. Taken together, these data show that there is an interaction between hormone, redox, and light signals at the level of the apoplast via modulation of ion of AA content.

  14. Dietary inhibitors of monoamine oxidase A.

    PubMed

    Dixon Clarke, Sarah E; Ramsay, Rona R

    2011-07-01

    Inhibition of monoamine oxidase is one way to treat depression and anxiety. The information now available on the pharmacokinetics of flavonoids and of the components of tobacco prompted an exploration of whether a healthy diet (with or without smoking) provides active compounds in amounts sufficient to partially inhibit monoamine oxidase. A literature search was used to identify dietary monoamine oxidase inhibitors, the levels of these compounds in foods, the pharmacokinetics of the absorption and distribution, and tissue levels observed. An estimated daily intake and the expected tissue concentrations were compared with the measured efficacies of the compounds as inhibitors of monoamine oxidases. Norharman, harman and quercetin dietary presence, pharmacokinetics, and tissue levels were consistent with significant levels reaching neuronal monoamine oxidase from the diet or smoking; 1,2,3,4-tetrahydroisoquinoline, eugenol, 1-piperoylpiperidine, and coumarin were not. Quercetin was equipotent with norharman as a monoamine oxidase A inhibitor and its metabolite, isorhamnetin, also inhibits. Total quercetin was the highest of the compounds in the sample diet. Although bioavailability was variable depending on the source, a healthy diet contains amounts of quercetin that might give sufficient amounts in brain to induce, by monoamine oxidase A inhibition, a small decrease in neurotransmitter breakdown.

  15. Crystal Structures of Intermediates in the Nitroalkane Oxidase Reaction†

    PubMed Central

    Héroux, Annie; Bozinovski, Dragana M.; Valley, Michael P.; Fitzpatrick, Paul F.; Orville, Allen M.

    2009-01-01

    The flavoenzyme nitroalkane oxidase is a member of the acyl-CoA dehydrogenase superfamily. Nitroalkane oxidase catalyzes the oxidation of neutral nitroalkanes to nitrite and the corresponding aldehydes or ketones. Crystal structures to 2.2 Å resolution or better are described of enzyme complexes with bound substrates and of a trapped substrate-flavin adduct. The D402N enzyme has no detectable activity with neutral nitroalkanes (Valley, M. P., and Fitzpatrick, P. F. (2003) J. Am. Chem. Soc. 23, 8738–8739). The structure of the D402N enzyme crystallized in the presence of 1-nitrohexane or 1-nitrooctane shows the presence of the substrate in the binding site. The aliphatic chain of the substrate extends into a tunnel leading to the enzyme surface. The oxygens of the substrate nitro group interact both with amino acid residues and with the 2’-hydroxyl of the FAD. When nitroalkane oxidase oxidizes nitroalkanes in the presence of cyanide, an electrophilic flavin imine intermediate can be trapped (Valley, M. P., Tichy, S. E., and Fitzpatrick, P. F. (2005) J. Am. Chem. Soc. 127, 2062–2066). The structure of the enzyme trapped with cyanide during oxidation of 1-nitrohexane shows the presence of the modified flavin. A continuous hydrogen bond network connects the nitrogen of the CN-hexyl-FAD through the FAD 2’-hydroxyl to a chain of water molecules extending to the protein surface. Together, our complementary approaches provide strong evidence that the flavin cofactor is in the appropriate oxidation state and correlates well with the putative intermediate state observed within each of the crystal structures. Consequently, these results provide important structural descriptions of several steps along the nitroalkane oxidase reaction cycle. PMID:19265437

  16. Soluble CuA domain of cyanobacterial cytochrome c oxidase.

    PubMed

    Paumann, Martina; Lubura, Borjana; Regelsberger, Günther; Feichtinger, Markus; Köllensberger, Gunda; Jakopitsch, Christa; Furtmüller, Paul G; Peschek, Günter A; Obinger, Christian

    2004-03-12

    The genomes of several cyanobacteria show the existence of gene clusters encoding subunits I, II, and III of aa(3)-type cytochrome c oxidase. The enzyme occurs on both plasma and thylakoid membranes of these oxygenic phototrophic prokaryotes. Here we report the expression and purification of a truncated subunit II copper A (Cu(A)) domain (i.e. the electron entry and donor binding site) of cytochrome c oxidase from the cyanobacterium Synechocystis PCC 6803 in high yield. The water-soluble purple redox-active bimetallic center displays a relatively low standard reduction potential of 216 mV. Its absorption spectrum at pH 7 is similar to that of other soluble fragments from aa(3)-type oxidases, but the insensitivity of both absorbance and circular dichroism spectra to pH suggests that it is less exposed to the aqueous milieu compared with other Cu(A) domains. Oxidation of horse heart cytochrome c by the bimetallic center follows monophasic kinetics. At pH 7 and low ionic strength the bimolecular rate constant is (2.1 +/- 0.3) x 10(4) m-1 s(-1), and the rates decrease upon the increase of ionic strength. Sequence alignment and modeling of cyanobacterial Cu(A) domains show several peculiarities such as: (i) a large insertion located between the second transmembrane region and the putative hydrophobic cytochrome c docking site, (ii) the lack of acidic residues shown to be important in the interaction between cytochrome c and Paracoccus Cu(A) domain, and (iii) an extended C terminus similar to Escherichia coli ubiquinol oxidase.

  17. Crystal Structures of Intermediates in the Nitroalkane Oxidase Reaction

    SciTech Connect

    Heroux, A.; Bozinovski, D; Valley, M; Fitzpatrick, P; Orville, A

    2009-01-01

    The flavoenzyme nitroalkane oxidase is a member of the acyl-CoA dehydrogenase superfamily. Nitroalkane oxidase catalyzes the oxidation of neutral nitroalkanes to nitrite and the corresponding aldehydes or ketones. Crystal structures to 2.2 {angstrom} resolution or better of enzyme complexes with bound substrates and of a trapped substrate-flavin adduct are described. The D402N enzyme has no detectable activity with neutral nitroalkanes. The structure of the D402N enzyme crystallized in the presence of 1-nitrohexane or 1-nitrooctane shows the presence of the substrate in the binding site. The aliphatic chain of the substrate extends into a tunnel leading to the enzyme surface. The oxygens of the substrate nitro group interact both with amino acid residues and with the 2'-hydroxyl of the FAD. When nitroalkane oxidase oxidizes nitroalkanes in the presence of cyanide, an electrophilic flavin imine intermediate can be trapped (Valley, M. P., Tichy, S. E., and Fitzpatrick, P. F. (2005) J. Am. Chem. Soc. 127, 2062-2066). The structure of the enzyme trapped with cyanide during oxidation of 1-nitrohexane shows the presence of the modified flavin. A continuous hydrogen bond network connects the nitrogen of the CN-hexyl-FAD through the FAD 2'-hydroxyl to a chain of water molecules extending to the protein surface. Together, our complementary approaches provide strong evidence that the flavin cofactor is in the appropriate oxidation state and correlates well with the putative intermediate state observed within each of the crystal structures. Consequently, these results provide important structural descriptions of several steps along the nitroalkane oxidase reaction cycle.

  18. Measurement of xanthine oxidase inhibition activity of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method.

    PubMed

    Ozyürek, Mustafa; Bektaşoğlu, Burcu; Güçlü, Kubilay; Apak, Reşat

    2009-03-16

    Various dietary polyphenolics have been found to show an inhibitory effect on xanthine oxidase (XO) which mediates oxidative stress-originated diseases because of its ability to generate reactive oxygen species (ROS), including superoxide anion radical (O(2)(-)) and hydrogen peroxide. XO activity has usually been determined by following the rate of uric acid formation from xanthine-xanthine oxidase (X-XO) system using the classical XO activity assay (UV-method) at 295nm. Since some polyphenolics have strong absorption from the UV to visible region, XO-inhibitory activity of polyphenolics was alternatively determined without interference by directly measuring the formation of uric acid and hydrogen peroxide using the modified CUPRAC (cupric reducing antioxidant capacity) spectrophotometric method at 450nm. The CUPRAC absorbance of the incubation solution due to the reduction of Cu(II)-neocuproine reagent by the products of the X-XO system decreased in the presence of polyphenolics, the difference being proportional to the XO inhibition ability of the tested compound. The structure-activity relationship revealed that the flavones and flavonols with a 7-hydroxyl group such as apigenin, luteolin, kaempferol, quercetin, and myricetin inhibited XO-inhibitory activity at low concentrations (IC(50) values from 1.46 to 1.90microM), while the flavan-3-ols and naringin were less inhibitory. The findings of the developed method for quercetin and catechin in the presence of catalase were statistically alike with those of HPLC. In addition to polyphenolics, five kinds of herbs were evaluated for their XO-inhibitory activity using the developed method. The proposed spectrophotometric method was practical, low-cost, rapid, and could reliably assay uric acid and hydrogen peroxide in the presence of polyphenols (flavonoids, simple phenolic acids and hydroxycinnamic acids), and less open to interferences by UV-absorbing substances.

  19. A fully automatic system for acid-base coulometric titrations

    PubMed Central

    Cladera, A.; Caro, A.; Estela, J. M.; Cerdà, V.

    1990-01-01

    An automatic system for acid-base titrations by electrogeneration of H+ and OH- ions, with potentiometric end-point detection, was developed. The system includes a PC-compatible computer for instrumental control, data acquisition and processing, which allows up to 13 samples to be analysed sequentially with no human intervention. The system performance was tested on the titration of standard solutions, which it carried out with low errors and RSD. It was subsequently applied to the analysis of various samples of environmental and nutritional interest, specifically waters, soft drinks and wines. PMID:18925283

  20. Commercial phosphoric acid fuel cell system technology development

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Warshay, M.; Simons, S. N.; King, R. B.

    1979-01-01

    A review of the current commercial phosphoric acid fuel cell system technology development efforts is presented. In both the electric utility and on-site integrated energy system applications, reducing cost and increasing reliability are the technology drivers at this time. The longstanding barrier to the attainment of these goals, which manifests itself in a number of ways, has been materials. The differences in approach among the three major participants (United Technologies Corporation (UTC), Westinghouse Electric Corporation/Energy Research Corporation (ERC), and Engelhard Industries) and their unique technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy are discussed.

  1. Cloning and sequencing of two Ceriporiopsis subvermispora bicupin oxalate oxidase allelic isoforms: implications for the reaction specificity of oxalate oxidases and decarboxylases.

    PubMed

    Escutia, Marta R; Bowater, Laura; Edwards, Anne; Bottrill, Andrew R; Burrell, Matthew R; Polanco, Rubén; Vicuña, Rafael; Bornemann, Stephen

    2005-07-01

    Oxalate oxidase is thought to be involved in the production of hydrogen peroxide for lignin degradation by the dikaryotic white rot fungus Ceriporiopsis subvermispora. This enzyme was purified, and after digestion with trypsin, peptide fragments of the enzyme were sequenced using quadrupole time-of-flight mass spectrometry. Starting with degenerate primers based on the peptide sequences, two genes encoding isoforms of the enzyme were cloned, sequenced, and shown to be allelic. Both genes contained 14 introns. The sequences of the isoforms revealed that they were both bicupins that unexpectedly shared the greatest similarity to microbial bicupin oxalate decarboxylases rather than monocupin plant oxalate oxidases (also known as germins). We have shown that both fungal isoforms, one of which was heterologously expressed in Escherichia coli, are indeed oxalate oxidases that possess < or =0.2% oxalate decarboxylase activity and that the organism is capable of rapidly degrading exogenously supplied oxalate. They are therefore the first bicupin oxalate oxidases to have been described. Heterologous expression of active enzyme was dependent on the addition of manganese salts to the growth medium. Molecular modeling provides new and independent evidence for the identity of the catalytic site and the key amino acid involved in defining the reaction specificities of oxalate oxidases and oxalate decarboxylases.

  2. Genistein effect on xanthine oxidase activity.

    PubMed

    Sumbayev, V V

    2001-01-01

    Genistein was defined to be an allosteric xanthine oxidase inhibitor in the concentrations 0.1-4.0 microM and xanthine oxidase activator with superoxide scavenging activity in the concentrations 5.0 microM and higher. But the most effective allosteric binding with the highest affinity was observed in the genistein concentrations 0.1-1.0 microM. Intraperitoneum injections of genistein (500 micrograms/kg) during three days with the interval 24 hours decrease xanthine oxidase activity in the liver, lung and brain of the Vistar rats.

  3. Steady state equivalence among autocatalytic peroxidase-oxidase reactions.

    PubMed

    Méndez-González, José; Femat, Ricardo

    2016-12-14

    Peroxidase-oxidase is an enzymatic reaction that can exhibit dynamical scenarios such as bistability, sustained oscillations, and Shilnikov chaos. In this work, we apply the chemical reaction network theory approach to find kinetic constants such that the associated mass action kinetics ordinary differential equations induced by three four dimensional structurally different enzymatic reaction systems can support the same steady states for several chemical species despite differences in their chemical nature.

  4. Steady state equivalence among autocatalytic peroxidase-oxidase reactions

    NASA Astrophysics Data System (ADS)

    Méndez-González, José; Femat, Ricardo

    2016-12-01

    Peroxidase-oxidase is an enzymatic reaction that can exhibit dynamical scenarios such as bistability, sustained oscillations, and Shilnikov chaos. In this work, we apply the chemical reaction network theory approach to find kinetic constants such that the associated mass action kinetics ordinary differential equations induced by three four dimensional structurally different enzymatic reaction systems can support the same steady states for several chemical species despite differences in their chemical nature.

  5. IR-UV photochemistry of protein-nucleic acid systems

    SciTech Connect

    Kozub, J.; Edwards, G.

    1995-12-31

    UV light has often been used to induce the formation of covalent bonds between DNA (or RNA) and tightly-bound protein molecules. However, the internal photoreactions of nucleic acids and proteins limit the yield and complicate the analysis of intermolecular crosslinks. In an ongoing search for improved reaction specificity or new photoreactions in these systems, we have employed UV photons from a Nd:YAG-pumped dye laser and mid-IR photons from the Vanderbilt FEL. Having crosslinked several protein-nucleic acid systems with nanosecond UV laser pulses, we are currently studying the effect of various IR wavelengths on a model system (gene 32 protein and poly[dT]). We have found that irradiation with sufficiently intense FEL macropulses creates an altered form of gene 32 protein which was not observed with UV-only irradiation. The electrophoretic nobility of the product is consistent with the formation of a specific protein-protein crosslink. No evidence of the non-specific protein damage typically induced by UV light is found. The yield of the new photoproduct is apparently enhanced by exposure to FEL macropulses which are synchronized with UV laser pulses. With ideal exposure parameters, the two-color reaction effectively competes with UV-only reactions. Experiments designed to determine the reaction mechanism and to demonstrate FEL-induced reactions in other protein-nucleic acid systems are currently underway.

  6. Systems solutions by lactic acid bacteria: from paradigms to practice

    PubMed Central

    2011-01-01

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications. PMID:21995776

  7. Purification and characterization of a novel caffeine oxidase from Alcaligenes species.

    PubMed

    Mohapatra, B R; Harris, N; Nordin, R; Mazumder, A

    2006-09-18

    Alcaligenes species CF8 isolated from surface water of a lake produced a novel serine type metallo-caffeine oxidase. The optimal medium for caffeine oxidase production by this strain was (w/v) NaNO(3), 0.4%; KH(2)PO(4), 0.15%; Na(2)HPO(4), 0.05%; FeCl(3).6H(2)O, 0.0005%; CaCl(2).2H(2)O, 0.001%; MgSO(4).7H(2)O, 0.02%; glucose, 0.2%; caffeine, 0.05%, pH 7.5. The enzyme was purified to 63-fold by using ammonium sulfate precipitation, dialysis, ion exchange (diethylaminoethyl-cellulose) and gel filtration (Sephadex G-100) chromatographic techniques. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the purified caffeine oxidase was monomeric with a molecular mass of 65 kDa. The purified caffeine oxidase with a half-life of 20 min at 50 degrees C had maximal activity at pH 7.5 and 35 degrees C. The purified caffeine oxidase had strict substrate specificity towards caffeine (K(m) 8.94 microM and V(max) 47.62 U mg protein(-1)) and was not able to oxidize xanthine and hypoxanthine. The enzyme activity was not inhibited by para-chloromercuribenzoic acid, iodoacetamide, n-methylmaleimide, salicylic acid and sodium arsenite indicating the enzyme did not belong to xanthine oxidase family. The enzyme was not affected by Ca(+2), Mg(+2) and Na(+), but was completely inhibited by Co(+2), Cu(+2) and Mn(+2) at 1mM level. The novel caffeine oxidase isolated here from Alcaligenes species CF8 may be useful in biotechnological processes including waste treatment and biosensor development.

  8. NADH oxidase and alkyl hydroperoxide reductase subunit C (peroxiredoxin) from Amphibacillus xylanus form an oligomeric assembly.

    PubMed

    Arai, Toshiaki; Kimata, Shinya; Mochizuki, Daichi; Hara, Keita; Zako, Tamotsu; Odaka, Masafumi; Yohda, Masafumi; Arisaka, Fumio; Kanamaru, Shuji; Matsumoto, Takashi; Yajima, Shunsuke; Sato, Junichi; Kawasaki, Shinji; Niimura, Youichi

    2015-01-01

    The NADH oxidase-peroxiredoxin (Prx) system of Amphibacillus xylanus reduces hydroperoxides with the highest turnover rate among the known hydroperoxide-scavenging enzymes. The high electron transfer rate suggests that there exists close interaction between NADH oxidase and Prx. Variant enzyme experiments indicated that the electrons from β-NADH passed through the secondary disulfide, Cys128-Cys131, of NADH oxidase to finally reduce Prx. We previously reported that ionic strength is essential for a system to reduce hydroperoxides. In this study, we analyzed the effects of ammonium sulfate (AS) on the interaction between NADH oxidase and Prx by surface plasmon resonance analysis. The interaction between NADH oxidase and Prx was observed in the presence of AS. Dynamic light scattering assays were conducted while altering the concentration of AS and the ratio of NADH oxidase to Prx in the solutions. The results revealed that the two proteins formed a large oligomeric assembly, the size of which depended on the ionic strength of AS. The molecular mass of the assembly converged at approximately 300 kDa above 240 mM AS. The observed reduction rate of hydrogen peroxide also converged at the same concentration of AS, indicating that a complex formation is required for activation of the enzyme system. That the complex generation is dependent on ionic strength was confirmed by ultracentrifugal analysis, which resulted in a signal peak derived from a complex of NADH oxidase and Prx (300 mM AS, NADH oxidase: Prx = 1:10). The complex formation under this condition was also confirmed structurally by small-angle X-ray scattering.

  9. Developing nucleic acid-based electrical detection systems

    PubMed Central

    Gabig-Ciminska, Magdalena

    2006-01-01

    Development of nucleic acid-based detection systems is the main focus of many research groups and high technology companies. The enormous work done in this field is particularly due to the broad versatility and variety of these sensing devices. From optical to electrical systems, from label-dependent to label-free approaches, from single to multi-analyte and array formats, this wide range of possibilities makes the research field very diversified and competitive. New challenges and requirements for an ideal detector suitable for nucleic acid analysis include high sensitivity and high specificity protocol that can be completed in a relatively short time offering at the same time low detection limit. Moreover, systems that can be miniaturized and automated present a significant advantage over conventional technology, especially if detection is needed in the field. Electrical system technology for nucleic acid-based detection is an enabling mode for making miniaturized to micro- and nanometer scale bio-monitoring devices via the fusion of modern micro- and nanofabrication technology and molecular biotechnology. The electrical biosensors that rely on the conversion of the Watson-Crick base-pair recognition event into a useful electrical signal are advancing rapidly, and recently are receiving much attention as a valuable tool for microbial pathogen detection. Pathogens may pose a serious threat to humans, animal and plants, thus their detection and analysis is a significant element of public health. Although different conventional methods for detection of pathogenic microorganisms and their toxins exist and are currently being applied, improvements of molecular-based detection methodologies have changed these traditional detection techniques and introduced a new era of rapid, miniaturized and automated electrical chip detection technologies into pathogen identification sector. In this review some developments and current directions in nucleic acid-based electrical

  10. Optimization of catechol production by membrane-immobilized polyphenol oxidase: a modeling approach.

    PubMed

    Boshoff, A; Burton, M H; Burton, S G

    2003-07-05

    Although previous research has focused on phenol removal efficiencies using polyphenol oxidase in nonimmobilized and immobilized forms, there has been little consideration of the use of polyphenol oxidase in a biotransformation system for the production of catechols. In this study, polyphenol oxidase was successfully immobilized on various synthetic membranes and used to convert phenolic substrates to catechol products. A neural network model was developed and used to model the rates of substrate utilization and catechol production for both nonimmobilized and immobilized polyphenol oxidase. The results indicate that the biotransformation of the phenols to their corresponding catechols was strongly influenced by the immobilization support, resulting in differing yields of catechols. Hydrophilic membranes were found to be the most suitable immobilization supports for catechol production. The successful biocatalytic production of 3-methylcatechol, 4-methylcatechol, catechol, and 4-chlorocatechol is demonstrated.

  11. Prokaryotic origins for the mitochondrial alternative oxidase and plastid terminal oxidase nuclear genes.

    PubMed

    Finnegan, Patrick M; Umbach, Ann L; Wilce, Jackie A

    2003-12-18

    The mitochondrial alternative oxidase is a diiron carboxylate quinol oxidase (Dox) found in plants and some fungi and protists, but not animals. The plastid terminal oxidase is distantly related to alternative oxidase and is most likely also a Dox protein. Database searches revealed that the alpha-proteobacterium Novosphingobium aromaticivorans and the cyanobacteria Nostoc sp. PCC7120, Synechococcus sp. WH8102 and Prochlorococcus marinus subsp. pastoris CCMP1378 each possess a Dox homolog. Each prokaryotic protein conforms to the current structural models of the Dox active site and phylogenetic analyses suggest that the eukaryotic Dox genes arose from an ancestral prokaryotic gene.

  12. Superabsorbent biphasic system based on poly(lactic acid) and poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Pandini, Stefano; Baldi, Francesco; Bignotti, Fabio

    2016-05-01

    In this research work, biocomposites based on crosslinked particles of poly(acrylic acid), commonly used as superabsorbent polymer (SAP), and poly-L-lactic acid (PLLA) were developed to elucidate the role of the filler (i.e., polymeric crosslinked particles) on the overall physico-mechanical behavior and to obtain superabsorbent thermoplastic products. Samples prepared by melt-blending of components in different ratios showed a biphasic system with a regular distribution of particles, with diameter ranging from 5 to 10 μm, within the PLLA polymeric matrix. The polymeric biphasic system, coded PLASA i.e. superabsorbent poly(lactic acid), showed excellent swelling properties, demonstrating that cross-linked particles retain their superabsorbent ability, as in their free counterparts, even if distributed in a thermoplastic polymeric matrix. The thermal characteristics of the biocomposites evidence enhanced thermal stability in comparison with neat PLLA and also mechanical properties are markedly modified by addition of crosslinked particles which induce regular stiffening effect. Furthermore, in aqueous environments the particles swell and are leached from PLLA matrix generating very high porosity. These new open-pore PLLA foams, produced in absence of organic solvents and chemical foaming agents, with good physico-mechanical properties appear very promising for several applications, for instance in tissue engineering for scaffold production.

  13. High-throughput system for screening of high L-lactic acid-productivity strains in deep-well microtiter plates.

    PubMed

    Lv, Xiangyun; Song, Jiali; Yu, Bo; Liu, Huilan; Li, Chao; Zhuang, Yingping; Wang, Yonghong

    2016-11-01

    For strain improvement, robust and scalable high-throughput cultivation systems as well as simple and rapid high-throughput detection methods are crucial. However, most of the screening methods for lactic acid bacteria (LAB) strains were conducted in shake flasks and detected by high-performance liquid chromatography (HPLC), making the screening program laborious, time-consuming and costly. In this study, an integrated strategy for high-throughput screening of high L-lactic acid-productivity strains by Bacillus coagulans in deep-well microtiter plates (MTPs) was developed. The good agreement of fermentation results obtained in the MTPs platform with shake flasks confirmed that 24-well U-bottom MTPs could well alternate shake flasks for cell cultivation as a scale-down tool. The high-throughput pH indicator (bromocresol green) and L-lactate oxidase (LOD) assays were subsequently developed to qualitatively and quantitatively analyze L-lactic acid concentration. Together with the color halos method, the pH indicator assay and LOD assay, the newly developed three-step screening strategy has greatly accelerated the screening process for LAB strains with low cost. As a result, two high L-lactic acid-productivity mutants, IH6 and IIIB5, were successfully screened out, which presented, respectively, 42.75 and 46.10 % higher productivities than that of the parent strain in a 5-L bioreactor.

  14. Copper Amine Oxidase Expression in Defense Responses to Wounding and Ascochyta rabiei Invasion1

    PubMed Central

    Rea, Giuseppina; Metoui, Ouissal; Infantino, Alessandro; Federico, Rodolfo; Angelini, Riccardo

    2002-01-01

    Wounding chickpea (Cicer arietinum) internodes or cotyledons resulted in an increase in the steady-state level of copper amine oxidase (CuAO) expression both locally and systemically. Dissection of the molecular mechanisms controlling CuAO expression indicated that jasmonic acid worked as a potent inducer of the basal and wound-inducible CuAO expression, whereas salicylic acid and abscisic acid caused a strong reduction of the wound-induced CuAO expression, without having any effect on the basal levels. Epicotyl treatment with the CuAO mechanism-based inhibitor 2-bromoethylamine decreased hydrogen peroxide (H2O2) levels in all the internodes, as evidenced in vivo by 3,3′-diaminobenzidine oxidation. Moreover, inhibitor pretreatment of wounded epicotyls resulted in a lower accumulation of H2O2 both at the wound site and in distal organs. In vivo CuAO inhibition by 2-bromoethylamine after inoculation of resistant chickpea cv Sultano with Ascochyta rabiei resulted in the development of extended necrotic lesions, with extensive cell damage occurring in sclerenchyma and cortical parenchyma tissues. These results, besides stressing the fine-tuning by key signaling molecules in wound-induced CuAO regulation, demonstrate that local and systemic CuAO induction is essential for H2O2 production in response to wounding and indicate the relevance of these enzymes in protection against pathogens. PMID:11891243

  15. [Effect of population density on enzymatic activity of antioxidative and phenol oxidase systems of imagoes and nymphs of the marble cockroach Nauphoeta cinerea].

    PubMed

    Murzagulov, G S; Saltykova, E S; Gaĭfullina, L R; Nikolenko, A G

    2013-01-01

    The work deals with effect of density of population on functional activity of components pf protective system of adult individuals and nymphs of the marble cockroach. The resistance of individuals has been noted to decrease both at individual maintenance and under conditions of overpopulation. Changes in activities of enzymes of antioxidative and phenoloxidase systems are studied ion the insect hemolymph and intestine. Possible consequences of isolation and overpopulation are discussed both for stability and for individual development.

  16. [Linoleic acid and the immune system. Controversies about lipid emulsions].

    PubMed

    García de Lorenzo, A; Culebras, J M

    1992-01-01

    The selection of a given lipidic function for nutritional backup requires not only knowledge of the metabolism of the different existing lipidic emulsions and of their specific therapeutic indications, but also of their contraindications and controversies because, apart from their calorific value, the contribution of liposoluble vitamins and their function in preventing essential fatty acid deficiencies, we know that they are powerful metabolic modulators. This in associated with the fact that manipulation of dietary lipids (enteral or parenteral) can affect and modulate the response to the disease, attack or infection by improving or impairing the different immune functions. This review is focused on the scientific publications which have examined the varying effects of lipidic emulsions, in quantity and in quality (particularly linoleic acid) on the immune system, on the fatty acid composition of the cellular membranes and on the production of and prostaglandins and leukotrienes. An update is given of the known interrelation between lipids and immunity, with appraisal of triglycerides and long-medium -- and short-chain fatty acids, mixtures of medium -- and long-chain triglycerides, the proportions between infinity-3/infinity-6, and structured lipids.

  17. System for portable nucleic acid testing in low resource settings

    NASA Astrophysics Data System (ADS)

    Lu, Hsiang-Wei; Roskos, Kristina; Hickerson, Anna I.; Carey, Thomas; Niemz, Angelika

    2013-03-01

    Our overall goal is to enable timely diagnosis of infectious diseases through nucleic acid testing at the point-of-care and in low resource settings, via a compact system that integrates nucleic acid sample preparation, isothermal DNA amplification, and nucleic acid lateral flow (NALF) detection. We herein present an interim milestone, the design of the amplification and detection subsystem, and the characterization of thermal and fluidic control and assay execution within this system. Using an earlier prototype of the amplification and detection unit, comprised of a disposable cartridge containing flexible pouches, passive valves, and electrolysis-driven pumps, in conjunction with a small heater, we have demonstrated successful execution of an established and clinically validated isothermal loop-mediated amplification (LAMP) reaction targeting Mycobacterium tuberculosis (M.tb) DNA, coupled to NALF detection. The refined design presented herein incorporates miniaturized and integrated electrolytic pumps, novel passive valves, overall design changes to facilitate integration with an upstream sample preparation unit, and a refined instrument design that automates pumping, heating, and timing. Nucleic acid amplification occurs in a two-layer pouch that facilitates fluid handling and appropriate thermal control. The disposable cartridge is manufactured using low-cost and scalable techniques and forms a closed system to prevent workplace contamination by amplicons. In a parallel effort, we are developing a sample preparation unit based on similar design principles, which performs mechanical lysis of mycobacteria and DNA extraction from liquefied and disinfected sputum. Our next step is to combine sample preparation, amplification, and detection in a final integrated cartridge and device, to enable fully automated sample-in to answer-out diagnosis of active tuberculosis in primary care facilities of low-resource and high-burden countries.

  18. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  19. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  20. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  1. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  2. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity

    PubMed Central

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M.; Park, Jin-Byung

    2016-01-01

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass. PMID:27681369

  3. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity.

    PubMed

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M; Park, Jin-Byung

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass.

  4. Low- and high-affinity transport systems for citric acid in the yeast Candida utilis.

    PubMed Central

    Cássio, F; Leáo, C

    1991-01-01

    Citric acid-grown cells of the yeast Candida utilis induced two transport systems for citric acid, presumably a proton symport and a facilitated diffusion system for the charged and the undissociated forms of the acid, respectively. Both systems could be observed simultaneously when the transport was measured at 25 degrees C with labelled citric acid at pH 3.5 with the following kinetic parameters: for the low-affinity system, Vmax, 1.14 nmol of undissociated citric acid s-1 mg (dry weight) of cells-1, and Km, 0.59 mM undissociated acid; for the high-affinity system, Vmax, 0.38 nmol of citrate s-1 mg (dry weight) of cells-1, and Km, 0.056 mM citrate. At high pH values (above 5.0), the low-affinity system was absent or not measurable. The two transport systems exhibited different substrate specificities. Isocitric acid was a competitive inhibitor of citric acid for the high-affinity system, suggesting that these tricarboxylic acids used the same transport system, while aconitic, tricarballylic, trimesic, and hemimellitic acids were not competitive inhibitors. With respect to the low-affinity system, isocitric acid, L-lactic acid, and L-malic acid were competitive inhibitors, suggesting that all of these mono-, di-, and tricarboxylic acids used the same low-affinity transport system. The two transport systems were repressed by glucose, and as a consequence diauxic growth was observed. Both systems were inducible, and not only citric acid but also lactic acid and malic acid may induce those transport systems. The induction of both systems was not dependent on the relative concentration of the anionic form(s) and of undissociated citric acid in the culture medium.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1664712

  5. Abscisic acid-regulated responses of aba2-1 under osmotic stress: the abscisic acid-inducible antioxidant defence system and reactive oxygen species production.

    PubMed

    Ozfidan, C; Turkan, I; Sekmen, A H; Seckin, B

    2012-03-01

    We investigated the interaction among abscisic acid (ABA), reactive oxygen species (ROS) and antioxidant defence system in the transduction of osmotic stress signalling using Arabidopsis thaliana WT (Columbia ecotype, WT) and an ABA-deficient mutant (aba2-1). For this, 50 μm ABA and osmotic stress, induced with 40% (w/v) polyethylene glycol (PEG8000; -0.7 MPa), were applied to WT and aba2-1 for 6, 12 or 24 h. Time course analysis was undertaken for determination of total/isoenzyme activity of the antioxidant enzymes, superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11), NADPH oxidase (NOX; EC 1.6.3.1) activity; scavenging activity of the hydroxyl radical (OH˙), hydrogen peroxide (H(2) O(2) ); endogenous ABA and malondialdehyde (MDA). The highest H(2) O(2) and MDA content was found in PEG-treated groups of both genotypes, but with more in aba2-1. ABA treatment under stress reduced the accumulation of H(2) O(2) and MDA, while it promoted activity of SOD, CAT and APX. APX activity was higher than CAT activity in ABA-treated WT and aba2-1, indicating a protective role of APX rather than CAT during osmotic stress-induced oxidative damage. Treatment with ABA also significantly induced increased NOX activity. Oxidative damage was lower in ABA-treated seedlings of both genotypes, which was associated with greater activity of SOD (Mn-SOD1 and 2 and Fe-SOD isoenzymes), CAT and APX in these seedlings after 24 h of stress. These results suggest that osmotic stress effects were overcome by ABA treatment because of increased SOD, CAT, APX and NOX.

  6. Effects of ascorbic acid on carcinogenicity and acute toxicity of nickel subsulfide, and on tumor transplants growth in gulonolactone oxidase knock-out mice and wild-type C57BL mice.

    PubMed

    Kasprzak, Kazimierz S; Diwan, Bhalchandra A; Kaczmarek, Monika Z; Logsdon, Daniel L; Fivash, Mathew J; Salnikow, Konstantin

    2011-11-15

    The aim of this study was to test a hypothesis that ascorbate depletion could enhance carcinogenicity and acute toxicity of nickel. Homozygous L-gulono--lactone oxidase gene knock-out mice (Gulo-/- mice) unable to produce ascorbate and wild-type C57BL mice (WT mice) were injected intramuscularly with carcinogenic nickel subsulfide (Ni₃S₂), and observed for the development of injection site tumors for 57 weeks. Small pieces of one of the induced tumors were transplanted subcutaneously into separate groups of Gulo-/- and WT mice and the growth of these tumors was measured for up to 3 months. The two strains of mice differed significantly with regard to (1) Ni₃S₂ carcinogenesis: Gulo-/- mice were 40% more susceptible than WT mice; and (2) transplanted tumors development: Gulo-/- mice were more receptive to tumor growth than WT mice, but only in terms of a much shorter tumor latency; later in the exponential phase of growth, the growth rates were the same. And, with adequate ascorbate supplementation, the two strains were equally susceptible to acute toxicity of Ni₃S₂. Statistically significant effects of dietary ascorbate dosing levels were the following: (1) reduction in ascorbate supplementation increased acute toxicity of Ni₃S₂ in Gulo-/- mice; (2) ascorbate supplementation extended the latency of transplanted tumors in WT mice. In conclusion, the lack of endogenous ascorbate synthesis makes Gulo-/- mice more susceptible to Ni₃S₂ carcinogenesis. Dietary ascorbate tends to attenuate acute toxicity of Ni₃S₂ and to extend the latency of transplanted tumors. The latter effects may be of practical importance to humans and thus deserve further studies.

  7. Systemic regulation of soybean nodulation by acidic growth conditions.

    PubMed

    Lin, Meng-Han; Gresshoff, Peter M; Ferguson, Brett J

    2012-12-01

    Mechanisms inhibiting legume nodulation by low soil pH, although highly prevalent and economically significant, are poorly understood. We addressed this in soybean (Glycine max) using a combination of physiological and genetic approaches. Split-root and grafting studies using an autoregulation-of-nodulation-deficient mutant line, altered in the autoregulation-of-nodulation receptor kinase GmNARK, determined that a systemic, shoot-controlled, and GmNARK-dependent mechanism was critical for facilitating the inhibitory effect. Acid inhibition was independent of aluminum ion concentration and occurred early in nodule development, between 12 and 96 h post inoculation with Bradyrhizobium japonicum. Biological effects were confirmed by measuring transcript numbers of known early nodulation genes. Transcripts decreased on both sides of split-root systems, where only one side was subjected to low-pH conditions. Our findings enhance the present understanding of the innate mechanisms regulating legume nodulation control under acidic conditions, which could benefit future attempts in agriculture to improve nodule development and biological nitrogen fixation in acid-stressed soils.

  8. Involvement of Polyamine Oxidase in Wound Healing12[W

    PubMed Central

    Angelini, Riccardo; Tisi, Alessandra; Rea, Giuseppina; Chen, Martha M.; Botta, Maurizio; Federico, Rodolfo; Cona, Alessandra

    2008-01-01

    Hydrogen peroxide (H2O2) is involved in plant defense responses that follow mechanical damage, such as those that occur during herbivore or insect attacks, as well as pathogen attack. H2O2 accumulation is induced during wound healing processes as well as by treatment with the wound signal jasmonic acid. Plant polyamine oxidases (PAOs) are H2O2 producing enzymes supposedly involved in cell wall differentiation processes and defense responses. Maize (Zea mays) PAO (ZmPAO) is a developmentally regulated flavoprotein abundant in primary and secondary cell walls of several tissues. In this study, we investigated the effect of wounding on ZmPAO gene expression in the outer tissues of the maize mesocotyl and provide evidence that ZmPAO enzyme activity, protein, and mRNA levels increased in response to wounding as well as jasmonic acid treatment. Histochemically detected ZmPAO activity especially intensified in the epidermis and in the wound periderm, suggesting a tissue-specific involvement of ZmPAO in wound healing. The role played by ZmPAO-derived H2O2 production in peroxidase-mediated wall stiffening events was further investigated by exploiting the in vivo use of N-prenylagmatine (G3), a selective and powerful ZmPAO inhibitor, representing a reliable diagnostic tool in discriminating ZmPAO-mediated H2O2 production from that generated by peroxidase, oxalate oxidase, or by NADPH oxidase activity. Here, we demonstrate that G3 inhibits wound-induced H2O2 production and strongly reduces lignin and suberin polyphenolic domain deposition along the wound, while it is ineffective in inhibiting the deposition of suberin aliphatic domain. Moreover, ZmPAO ectopic expression in the cell wall of transgenic tobacco (Nicotiana tabacum) plants strongly enhanced lignosuberization along the wound periderm, providing evidence for a causal relationship between PAO and peroxidase-mediated events during wound healing. PMID:17993545

  9. 4-Hydroxyanisole: the most suitable monophenolic substrate for determining spectrophotometrically the monophenolase activity of polyphenol oxidase from fruits and vegetables.

    PubMed

    Espín, J C; Tudela, J; García-Cánovas, F

    1998-05-15

    A continuous spectrophotometric method for determining the monophenolase activity of polyphenol oxidase from several plant sources is described. This assay method is based on the coupling reaction between 3-methyl-2-benzothiazolinone hydrazone and the quinone product of the oxidation of 4-hydroxyanisole in the presence of polyphenol oxidase. 4-Hydroxyanisole proved to be the best monophenol assayed to measure the monophenolase activity of polyphenol oxidase from apple, artichoke, avocado, medlar, pear, and strawberry. Kinetic constants of 4-hydroxyanisole were compared to those of p-hydroxyphenyl propionic acid, a very sensitive monophenol previously reported to assay the monophenolase activity of polyphenol oxidase from apple, pear, and mushroom. The high values of the maximum steady state rate obtained for 4-hydroxyanisole suggest the existence of high catalytic constant toward this monophenol. These kinetic values were supported by nuclear magnetic resonance assays which predicted the highest reactivity of 4-hydroxyanisole. Therefore nuclear magnetic resonance assays proved to be a valuable and useful tool to predict the best monophenolic substrate for plant polyphenol oxidases. The 3-methyl-2-benzothiazlolinone-adduct for 4-hydroxyanisole was stable, with high molar absorptivity at the optimum pHs of the polyphenol oxidases assayed. All this together makes the use of 4-hydroxyanisol as monophenolic substrate and 3-methyl-2-benzothiazolinone as coupling reagent the most sensitive and precise assay method up to date reported in the literature to determine the monophenolas activity of polyphenol oxidase from fruits and vegetables.

  10. Childhood encephalomyopathy with cytochrome c oxidase deficiency, ataxia, muscle wasting, and mental impairment.

    PubMed

    Angelini, C; Bresolin, N; Pegolo, G; Bet, L; Rinaldo, P; Trevisan, C; Vergani, L

    1986-08-01

    The son of third cousins was normal until age 2 when he had difficulty walking. At age 8 there was limb weakness, ataxia, loss of tendon reflexes, dislalia, and he was mildly retarded. During fasting, urinary organic acid excretion was abnormally high. Cytochrome c oxidase activity in muscle was 7% of the normal mean. The enzyme in platelets was 16% of controls with a decreased cytochrome aa3 peak. These data suggest an autosomal recessive transmission of this variant of cytochrome c oxidase deficiency.

  11. Immunological and molecular comparison of polyphenol oxidase in Rosaceae fruit trees.

    PubMed

    Haruta, M; Murata, M; Kadokura, H; Homma, S

    1999-03-01

    An antibody raised against apple polyphenol oxidase (PPO) cross-reacted with PPOs from Japanese pear (Pyrus pyrifolia), pear (Pyrus communis), peach (Prunus persica), Chinese quince (Pseudocydonia sinensis) and Japanese loquat (Eriobotrya japonica). Core fragments (681 bp) of the corresponding PPO genes were amplified and characterized. The deduced protein sequences showed identities of 85.3 to 97.5%. Chlorogenic acid oxidase activity of these PPOs showed higher activities when assayed at pH 4 than at pH 6. These results indicate that PPOs in Rosaceae plants are structurally and enzymatically similar.

  12. Low Cytochrome Oxidase 1 Links Mitochondrial Dysfunction to Atherosclerosis in Mice and Pigs

    PubMed Central

    Vanhaverbeke, Maarten; Geeraert, Benjamine; De Keyzer, Dieuwke; Hulsmans, Maarten; Janssens, Stefan

    2017-01-01

    Background Cytochrome oxidase IV complex regulates energy production in mitochondria. Therefore, we determined the relation of COX genes with atherosclerosis in mice and pigs. Methods and results First, we compared atherosclerosis in the aortic arch of age-matched (24 weeks) C57BL/6J control (n = 10), LDL-receptor deficient (n = 8), leptin-deficient ob/ob (n = 10), and double knock-out (lacking LDL-receptor and leptin) mice (n = 12). Low aortic mitochondria-encoded cytochrome oxidase 1 in obese diabetic double knock-out mice was associated with a larger plaque area and higher propensity of M1 macrophages and oxidized LDL. Caloric restriction increased mitochondria-encoded cytochrome oxidase 1 and reduced plaque area and oxidized LDL. This was associated with a reduction of titer of anti-oxidized LDL antibodies, a proxy of systemic oxidative stress. Low of mitochondria-encoded cytochrome oxidase 1 was related to low expression of peroxisome proliferative activated receptors α, δ, and γ and of peroxisome proliferative activated receptor, gamma, co-activator 1 alpha reflecting mitochondrial dysfunction. Caloric restriction increased them. To investigate if there was a diabetic/obesity requirement for mitochondria-encoded cytochrome oxidase 1 to be down-regulated, we then studied atherosclerosis in LAD of hypercholesterolemic pigs (n = 37). Pigs at the end of the study were divided in three groups based on increasing LAD plaque complexity according to Stary (Stary I: n = 12; Stary II: n = 13; Stary III: n = 12). Low mitochondria-encoded cytochrome oxidase 1 in isolated plaque macrophages was associated with more complex coronary plaques and oxidized LDL. Nucleus-encoded cytochrome oxidase 4I1 and cytochrome oxidase 10 did not correlate with plaque complexity and oxidative stress. In mice and pigs, MT-COI was inversely related to insulin resistance. Conclusions Low MT-COI is related to mitochondrial dysfunction, oxidative stress and atherosclerosis and plaque

  13. Inactivation of nitric oxide by cytochrome c oxidase under steady-state oxygen conditions.

    PubMed

    Unitt, David C; Hollis, Veronica S; Palacios-Callender, Miriam; Frakich, Nanci; Moncada, Salvador

    2010-03-01

    We have developed a respiration chamber that allows intact cells to be studied under controlled oxygen (O(2)) conditions. The system measures the concentrations of O(2) and nitric oxide (NO) in the cell suspension, while the redox state of cytochrome c oxidase is continuously monitored optically. Using human embryonic kidney cells transfected with a tetracycline-inducible NO synthase we show that the inactivation of NO by cytochrome c oxidase is dependent on both O(2) concentration and electron turnover of the enzyme. At a high O(2) concentration (70 microM), and while the enzyme is in turnover, NO generated by the NO synthase upon addition of a given concentration of l-arginine is partially inactivated by cytochrome c oxidase and does not affect the redox state of the enzyme or consumption of O(2). At low O(2) (15 microM), when the cytochrome c oxidase is more reduced, inactivation of NO is decreased. In addition, the NO that is not inactivated inhibits the cytochrome c oxidase, further reducing the enzyme and lowering O(2) consumption. At both high and low O(2) concentrations the inactivation of NO is decreased when sodium azide is used to inhibit cytochrome c oxidase and decrease electron turnover.

  14. Pentamines as substrate for human spermine oxidase

    PubMed Central

    Takao, Koichi; Shirahata, Akira; Samejima, Keijiro; Casero, Robert A.; Igarashi, Kazuei; Sugita, Yoshiaki

    2013-01-01

    Substrate activities of various linear polyamines to human spermine oxidase (hSMO) were investigated. The activities were evaluated by monitoring the amount of H2O2 released from sample polyamines by hSMO. H2O2 was measured by a HPLC method that analyzed fluorescent dimers derived from the oxidation of homovanillic acid in the presence of horseradish peroxidase. Six triamines were tested and were found not to be hSMO substrates. Of sixteen tetramines tested, spermine (Spm) was the most active substrate, followed by homospermine and N-butylated Spm. Pentamines showed a characteristic pattern of substrate activity. Of thirteen pentamines tested, 3343 showed higher substrate activity than Spm, and 4343 showed similar activity to Spm. The activities of the other pentamines were as follows: 3443, 4443, 4344, 3344, 4334, 4444, and 3334 (in decreasing order). Product amines released from these pentamines by hSMO were then analyzed by HPLC. Triamine was the only observed product, and the amount of triamine was nearly equivalent to that of released H2O2. A marked difference in the pH dependency curves between tetramines and pentamines suggested that hSMO favored reactions with a non-protonated secondary nitrogen at the cleavage site. The Km and Vmax values for Spm and 3343 at pH 7.0 and 9.0 were consistent with the higher substrate activity of 3343 compared to Spm, as well as with the concept of a non-protonated secondary nitrogen at the cleavage site being preferred, and 3343 was well degraded at a physiological pH by hSMO. PMID:23449327

  15. Availability: A Metric for Nucleic Acid Strand Displacement Systems

    PubMed Central

    2016-01-01

    DNA strand displacement systems have transformative potential in synthetic biology. While powerful examples have been reported in DNA nanotechnology, such systems are plagued by leakage, which limits network stability, sensitivity, and scalability. An approach to mitigate leakage in DNA nanotechnology, which is applicable to synthetic biology, is to introduce mismatches to complementary fuel sequences at key locations. However, this method overlooks nuances in the secondary structure of the fuel and substrate that impact the leakage reaction kinetics in strand displacement systems. In an effort to quantify the impact of secondary structure on leakage, we introduce the concepts of availability and mutual availability and demonstrate their utility for network analysis. Our approach exposes vulnerable locations on the substrate and quantifies the secondary structure of fuel strands. Using these concepts, a 4-fold reduction in leakage has been achieved. The result is a rational design process that efficiently suppresses leakage and provides new insight into dynamic nucleic acid networks. PMID:26875531

  16. An automated sequential injection spectrophotometric method for evaluation of tyramine oxidase inhibitory activity of some flavonoids.

    PubMed

    Moonrungsee, Nuntaporn; Shimamura, Tomoko; Kashiwagi, Takehiro; Jakmunee, Jaroon; Higuchi, Keiro; Ukeda, Hiroyuki

    2014-05-01

    An automated sequential injection (SI) spectrophotometric system has been developed for evaluation of tyramine oxidase (TOD) inhibitory activity. The method is based on the inhibition of TOD that catalyzes the oxidation of tyramine substrate to produce aldehyde and hydrogen peroxide (H₂O₂). The produced H₂O₂ reacts with vanillic acid and 4-aminoantipyrine (4-AA) in the presence of peroxidase (POD) to form a quinoneimine dye, the absorbance of which is measured of absorbance at wavelength of 490 nm. The decrease of the quinoneimine dye is related to an increase of TOD inhibitory activity. Under the optimum conditions: 1.0 mM tyramine, 8 U mL(-1) TOD, 1.0 mM vanillic acid, 1.0 mM 4-AA and delay time of 10 s, some flavonoid compounds were examined for the TOD inhibitory activity expressed as IC₅₀ value. It was found that flavonols (quercetin and myricetin) and flavans (epicatechin gallate (ECG) and epigallocatechin (EGC)) showed higher TOD inhibitory activity than flavones and flavanones. The results of IC₅₀ values obtained from the proposed method and a batch-wise method were not significantly different from each other. Moreover, the SI system enabled automation of the analysis, leading to more convenient, more sensitive and faster analysis than the batch-wise method. A precise timing of the system also improves precision and accuracy of the assay, especially when the measurement of absorbance at non-steady state condition is involved.

  17. Molecular "wiring" glucose oxidase in supramolecular architecture.

    PubMed

    Deng, Liu; Liu, Ying; Yang, Guocheng; Shang, Li; Wen, Dan; Wang, Fuan; Xu, Zhiai; Dong, Shaojun

    2007-07-01

    Supramolecular organized multilayers were constructed by multiwalled carbon nanotubes modified with ferrocene-derivatized poly(allylamine) redox polymer and glucose oxidase by electrostatic self-assembly. From the analysis of voltammetric signals and fluorescence results, a linear increment of the coverage of enzyme per bilayer was estimated, which demonstrated that the multilayer is constructed in a spatially ordered manner. The cyclic voltammograms obtained from the indium tin oxide (ITO) electrodes coated by the (Fc-PAH@CNT/GOx)n multilayers revealed that bioelectrocatalytic response is directly correlated to the number of deposited bilayers; that is, the sensitivity is tunable by controlling the number of bilayers associated with ITO electrodes. The incorporation of redox-polymer-functionalized carbon nanotubes (CNT) into enzyme films resulted in a 6-10-fold increase in the glucose electrocatalytic current; the bimolecular rate constant of FADH2 oxidation (wiring efficiency) was increased up to 12-fold. Impedance spectroscopy data have yielded the electron diffusion coefficient (De) of this nanostructure to be over 10(-8) cm2 s(-1), which is typically higher than those systems without CNT by at least a factor of 10, indicating that electron transport in the new supramolecular architecture was enhanced by communication of the redox active site of enzyme, redox polymer, and CNT.

  18. Study of dynamics of glucose-glucose oxidase-ferricyanide reaction

    NASA Astrophysics Data System (ADS)

    Nováková, A.; Schreiberová, L.; Schreiber, I.

    2011-12-01

    This work is focused on dynamics of the glucose-glucose oxidase-ferricyanide enzymatic reaction with or without sodium hydroxide in a continuous-flow stirred tank reactor (CSTR) and in a batch reactor. This reaction exhibits pH-variations having autocatalytic character and is reported to provide nonlinear dynamic behavior (bistability, excitability). The dynamical behavior of the reaction was examined within a wide range of inlet parameters. The main inlet parameters were the ratio of concentrations of sodium hydroxide and ferricyanide and the flow rate. In a batch reactor we observed an autocatalytic drop of pH from slightly basic to medium acidic values. In a CSTR our aim was to find bistability in the presence of sodium hydroxide. However, only a basic steady state was found. In order to reach an acidic steady state, we investigated the system in the absence of sodium hydroxide. Under these conditions the transition from the basic to the acidic steady state was observed when inlet glucose concentration was increased.

  19. Results of electric-vehicle propulsion system performance on three lead-acid battery systems

    NASA Technical Reports Server (NTRS)

    Ewashinka, J. G.

    1984-01-01

    Three types of state of the art 6 V lead acid batteries were tested. The cycle life of lead acid batteries as a function of the electric vehicle propulsion system design was determined. Cycle life, degradation rate and failure modes with different battery types (baseline versus state of the art tubular and thin plate batteries) were compared. The effects of testing strings of three versus six series connected batteries on overall performance were investigated. All three types do not seem to have an economically feasible battery system for the propulsion systems. The tubular plate batteries on the load leveled profile attained 235 cycles with no signs of degradation and minimal capacity loss.

  20. Results of electric-vehicle propulsion system performance on three lead-acid battery systems

    NASA Technical Reports Server (NTRS)

    Ewashinka, J. G.

    1984-01-01

    Three types of state of the art 6 V lead acid batteries were tested. The cycle life of lead acid batteries as a function of the electric vehicle propulsion system design was determined. Cycle life, degradation rate and failure modes with different battery types (baseline versus state of the art tubular and thin plate batteries were compared. The effects of testing strings of three versus six series connected batteries on overall performance were investigated. All three types do not seem to have an economically feasible battery system for the propulsion systems. The tubular plate batteries on the load leveled profile attained 235 cycles with no signs of degradation and minimal capacity loss.

  1. Effects of ascorbic acid on carcinogenicity and acute toxicity of nickel subsulfide, and on tumor transplants growth in gulonolactone oxidase knock-out mice and wild-type C57BL mice

    SciTech Connect

    Kasprzak, Kazimierz S.; Diwan, Bhalchandra A.; Kaczmarek, Monika Z.; Logsdon, Daniel L.; Fivash, Mathew J.; Salnikow, Konstantin

    2011-11-15

    The aim of this study was to test a hypothesis that ascorbate depletion could enhance carcinogenicity and acute toxicity of nickel. Homozygous L-gulono- < gamma > -lactone oxidase gene knock-out mice (Gulo-/- mice) unable to produce ascorbate and wild-type C57BL mice (WT mice) were injected intramuscularly with carcinogenic nickel subsulfide (Ni{sub 3}S{sub 2}), and observed for the development of injection site tumors for 57 weeks. Small pieces of one of the induced tumors were transplanted subcutaneously into separate groups of Gulo-/- and WT mice and the growth of these tumors was measured for up to 3 months. The two strains of mice differed significantly with regard to (1) Ni{sub 3}S{sub 2} carcinogenesis: Gulo-/- mice were 40% more susceptible than WT mice; and (2) transplanted tumors development: Gulo-/- mice were more receptive to tumor growth than WT mice, but only in terms of a much shorter tumor latency; later in the exponential phase of growth, the growth rates were the same. And, with adequate ascorbate supplementation, the two strains were equally susceptible to acute toxicity of Ni{sub 3}S{sub 2}. Statistically significant effects of dietary ascorbate dosing levels were the following: (1) reduction in ascorbate supplementation increased acute toxicity of Ni{sub 3}S{sub 2} in Gulo-/- mice; (2) ascorbate supplementation extended the latency of transplanted tumors in WT mice. In conclusion, the lack of endogenous ascorbate synthesis makes Gulo-/- mice more susceptible to Ni{sub 3}S{sub 2} carcinogenesis. Dietary ascorbate tends to attenuate acute toxicity of Ni{sub 3}S{sub 2} and to extend the latency of transplanted tumors. The latter effects may be of practical importance to humans and thus deserve further studies. -- Highlights: Black-Right-Pointing-Pointer Ascorbate depletion enhances carcinogenicity and acute toxicity of nickel. Black-Right-Pointing-Pointer Gulo-/- mice unable to synthesize ascorbate were used in this study. Black

  2. Bioluminescence regenerative cycle (BRC) system for nucleic acid quantification assays

    NASA Astrophysics Data System (ADS)

    Hassibi, Arjang; Lee, Thomas H.; Davis, Ronald W.; Pourmand, Nader

    2003-07-01

    A new label-free methodology for nucleic acid quantification has been developed where the number of pyrophosphate molecules (PPi) released during polymerization of the target nucleic acid is counted and correlated to DNA copy number. The technique uses the enzymatic complex of ATP-sulfurylase and firefly luciferase to generate photons from PPi. An enzymatic unity gain positive feedback is also implemented to regenerate the photon generation process and compensate any decay in light intensity by self regulation. Due to this positive feedback, the total number of photons generated by the bioluminescence regenerative cycle (BRC) can potentially be orders of magnitude higher than typical chemiluminescent processes. A system level kinetic model that incorporates the effects of contaminations and detector noise was used to show that the photon generation process is in fact steady and also proportional to the nucleic acid quantity. Here we show that BRC is capable of detecting quantities of DNA as low as 1 amol (10-18 mole) in 40μlit aqueous solutions, and this enzymatic assay has a controllable dynamic range of 5 orders of magnitude. The sensitivity of this technology, due to the excess number of photons generated by the regenerative cycle, is not constrained by detector performance, but rather by possible PPi or ATP (adenosine triphosphate) contamination, or background bioluminescence of the enzymatic complex.

  3. Oleic acid stimulates system A amino acid transport in primary human trophoblast cells mediated by toll-like receptor 4.

    PubMed

    Lager, Susanne; Gaccioli, Francesca; Ramirez, Vanessa I; Jones, Helen N; Jansson, Thomas; Powell, Theresa L

    2013-03-01

    Obese women have an increased risk to deliver large babies. However, the mechanisms underlying fetal overgrowth in these pregnancies are not well understood. Obese pregnant women typically have elevated circulating lipid levels. We tested the hypothesis that fatty acids stimulate placental amino acid transport, mediated via toll-like receptor 4 (TLR4) and mammalian target of rapamycin (mTOR) signaling pathways. Circulating NEFA levels and placental TLR4 expression were assessed in women with varying prepregnancy body mass index (BMI). The effects of oleic acid on system A and system L amino acid transport, and on the activation of the mTOR (4EBP1, S6K1, rpS6), TLR4 (IĸB, JNK, p38 MAPK), and STAT3 signaling pathways were determined in cultured primary human trophoblast cells. Maternal circulating NEFAs (n = 33), but not placental TLR4 mRNA expression (n = 16), correlated positively with BMI (P < 0.05). Oleic acid increased trophoblast JNK and STAT3 phosphorylation (P < 0.05), whereas mTOR activity was unaffected. Furthermore, oleic acid doubled trophoblast system A activity (P < 0.05), without affecting system L activity. siRNA-mediated silencing of TLR4 expression prevented the stimulatory effect of oleic acid on system A activity. Our data suggest that maternal fatty acids can increase placental nutrient transport via TLR4, thereby potentially affecting fetal growth.

  4. Arabidopsis ent-kaurene oxidase catalyzes three steps of gibberellin biosynthesis.

    PubMed

    Helliwell, C A; Poole, A; Peacock, W J; Dennis, E S

    1999-02-01

    The Arabidopsis GA3 cDNA was expressed in yeast (Saccharomyces cerevisiae) and the ability of the transformed yeast cells to metabolize ent-kaurene was tested. We show by full-scan gas chromatography-mass spectrometry that the transformed cells produce ent-kaurenoic acid, and demonstrate that the single enzyme GA3 (ent-kaurene oxidase) catalyzes the three steps of gibberellin biosynthesis from ent-kaurene to ent-kaurenoic acid.

  5. Three-dimensional organization of three-domain copper oxidases: A review

    NASA Astrophysics Data System (ADS)

    Zhukhlistova, N. E.; Zhukova, Yu. N.; Lyashenko, A. V.; Zaĭtsev, V. N.; Mikhaĭlov, A. M.

    2008-01-01

    “Blue” copper-containing proteins are multidomain proteins that utilize a unique redox property of copper ions. Among other blue multicopper oxidases, three-domain oxidases belong to the group of proteins that exhibit a wide variety of compositions in amino acid sequences, functions, and occurrences in organisms. This paper presents a review of the data obtained from X-ray diffraction investigations of the three-dimensional structures of three-domain multicopper oxidases, such as the ascorbate oxidase catalyzing oxidation of ascorbate to dehydroascorbate and its three derivatives; the multicopper oxidase CueO (the laccase homologue); the laccases isolated from the basidiomycetes Coprinus cinereus, Trametes versicolor, Coriolus zonatus, Cerrena maxima, and Rigidoporus lignosus and the ascomycete Melanocarpus albomyces; and the bacterial laccases CotA from the endospore coats of Bacillus subtilis. A comparison of the molecular structures of the laccases of different origins demonstrates that, structurally, these objects are highly conservative. This obviously indicates that the catalytic activity of the enzymes under consideration is characterized by similar mechanisms.

  6. Single mutations that redirect internal proton transfer in the ba3 oxidase from Thermus thermophilus.

    PubMed

    Smirnova, Irina; Chang, Hsin-Yang; von Ballmoos, Christoph; Ädelroth, Pia; Gennis, Robert B; Brzezinski, Peter

    2013-10-08

    The ba3-type cytochrome c oxidase from Thermus thermophilus is a membrane-bound proton pump. Results from earlier studies have shown that with the aa3-type oxidases proton uptake to the catalytic site and "pump site" occurs simultaneously. However, with ba3 oxidase the pump site is loaded before proton transfer to the catalytic site because the proton transfer to the latter is slower than that with the aa3 oxidases. In addition, the timing of formation and decay of catalytic intermediates is different in the two types of oxidases. In the present study, we have investigated two mutant ba3 CytcOs in which residues of the proton pathway leading to the catalytic site as well as the pump site were exchanged, Thr312Val and Tyr244Phe. Even though ba3 CytcO uses only a single proton pathway for transfer of the substrate and "pumped" protons, the amino-acid residue substitutions had distinctly different effects on the kinetics of proton transfer to the catalytic site and the pump site. The results indicate that the rates of these reactions can be modified independently by replacement of single residues within the proton pathway. Furthermore, the data suggest that the Thr312Val and Tyr244Phe mutations interfere with a structural rearrangement in the proton pathway that is rate limiting for proton transfer to the catalytic site.

  7. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase*

    PubMed Central

    Bihan, Dominique; Bonna, Arkadiusz; Rubin, Kristofer; Farndale, Richard W.

    2016-01-01

    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites. PMID:26893379

  8. Amyloid-β peptide binds to cytochrome C oxidase subunit 1.

    PubMed

    Hernandez-Zimbron, Luis Fernando; Luna-Muñoz, Jose; Mena, Raul; Vazquez-Ramirez, Ricardo; Kubli-Garfias, Carlos; Cribbs, David H; Manoutcharian, Karen; Gevorkian, Goar

    2012-01-01

    Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD). However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1-42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1-42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1-42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1-42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1-42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD.

  9. Three-dimensional organization of three-domain copper oxidases: A review

    SciTech Connect

    Zhukhlistova, N. E. Zhukova, Yu. N.; Lyashenko, A. V.; Zaitsev, V. N.; Mikhailov, A. M.

    2008-01-15

    'Blue' copper-containing proteins are multidomain proteins that utilize a unique redox property of copper ions. Among other blue multicopper oxidases, three-domain oxidases belong to the group of proteins that exhibit a wide variety of compositions in amino acid sequences, functions, and occurrences in organisms. This paper presents a review of the data obtained from X-ray diffraction investigations of the three-dimensional structures of three-domain multicopper oxidases, such as the ascorbate oxidase catalyzing oxidation of ascorbate to dehydroascorbate and its three derivatives; the multicopper oxidase CueO (the laccase homologue); the laccases isolated from the basidiomycetes Coprinus cinereus, Trametes versicolor, Coriolus zonatus, Cerrena maxima, and Rigidoporus lignosus and the ascomycete Melanocarpus albomyces; and the bacterial laccases CotA from the endospore coats of Bacillus subtilis. A comparison of the molecular structures of the laccases of different origins demonstrates that, structurally, these objects are highly conservative. This obviously indicates that the catalytic activity of the enzymes under consideration is characterized by similar mechanisms.

  10. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase.

    PubMed

    Kalamajski, Sebastian; Bihan, Dominique; Bonna, Arkadiusz; Rubin, Kristofer; Farndale, Richard W

    2016-04-08

    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites.

  11. Amyloid-β Peptide Binds to Cytochrome C Oxidase Subunit 1

    PubMed Central

    Hernandez-Zimbron, Luis Fernando; Luna-Muñoz, Jose; Mena, Raul; Vazquez-Ramirez, Ricardo; Kubli-Garfias, Carlos; Cribbs, David H.; Manoutcharian, Karen; Gevorkian, Goar

    2012-01-01

    Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD). However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1–42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1–42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1–42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1–42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1–42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD. PMID:22927926

  12. Disruption of the CYTOCHROME C OXIDASE DEFICIENT1 gene leads to cytochrome c oxidase depletion and reorchestrated respiratory metabolism in Arabidopsis.

    PubMed

    Dahan, Jennifer; Tcherkez, Guillaume; Macherel, David; Benamar, Abdelilah; Belcram, Katia; Quadrado, Martine; Arnal, Nadège; Mireau, Hakim

    2014-12-01

    Cytochrome c oxidase is the last respiratory complex of the electron transfer chain in mitochondria and is responsible for transferring electrons to oxygen, the final acceptor, in the classical respiratory pathway. The essentiality of this step makes it that depletion in complex IV leads to lethality, thereby impeding studies on complex IV assembly and respiration plasticity in plants. Here, we characterized Arabidopsis (Arabidopsis thaliana) embryo-lethal mutant lines impaired in the expression of the CYTOCHROME C OXIDASE DEFICIENT1 (COD1) gene, which encodes a mitochondria-localized PentatricoPeptide Repeat protein. Although unable to germinate under usual conditions, cod1 homozygous embryos could be rescued from immature seeds and developed in vitro into slow-growing bush-like plantlets devoid of a root system. cod1 mutants were defective in C-to-U editing events in cytochrome oxidase subunit2 and NADH dehydrogenase subunit4 transcripts, encoding subunits of respiratory complex IV and I, respectively, and consequently lacked cytochrome c oxidase activity. We further show that respiratory oxygen consumption by cod1 plantlets is exclusively associated with alternative oxidase activity and that alternative NADH dehydrogenases are also up-regulated in these plants. The metabolomics pattern of cod1 mutants was also deeply altered, suggesting that alternative metabolic pathways compensated for the probable resulting restriction in NADH oxidation. Being the first complex IV-deficient mutants described in higher plants, cod1 lines should be instrumental to future studies on respiration homeostasis.

  13. Expression of alternative oxidase in Drosophila ameliorates diverse phenotypes due to cytochrome oxidase deficiency.

    PubMed

    Kemppainen, Kia K; Rinne, Juho; Sriram, Ashwin; Lakanmaa, Matti; Zeb, Akbar; Tuomela, Tea; Popplestone, Anna; Singh, Satpal; Sanz, Alberto; Rustin, Pierre; Jacobs, Howard T

    2014-04-15

    Mitochondrial dysfunction is a significant factor in human disease, ranging from systemic disorders of childhood to cardiomyopathy, ischaemia and neurodegeneration. Cytochrome oxidase, the terminal enzyme of the mitochondrial respiratory chain, is a frequent target. Lower eukaryotes possess alternative respiratory-chain enzymes that provide non-proton-translocating bypasses for respiratory complexes I (single-subunit reduced nicotinamide adenine dinucleotide dehydrogenases, e.g. Ndi1 from yeast) or III + IV [alternative oxidase (AOX)], under conditions of respiratory stress or overload. In previous studies, it was shown that transfer of yeast Ndi1 or Ciona intestinalis AOX to Drosophila was able to overcome the lethality produced by toxins or partial knockdown of complex I or IV. Here, we show that AOX can provide a complete or substantial rescue of a range of phenotypes induced by global or tissue-specific knockdown of different cIV subunits, including integral subunits required for catalysis, as well as peripheral subunits required for multimerization and assembly. AOX was also able to overcome the pupal lethality produced by muscle-specific knockdown of subunit CoVb, although the rescued flies were short lived and had a motility defect. cIV knockdown in neurons was not lethal during development but produced a rapidly progressing locomotor and seizure-sensitivity phenotype, which was substantially alleviated by AOX. Expression of Ndi1 exacerbated the neuronal phenotype produced by cIV knockdown. Ndi1 expressed in place of essential cI subunits produced a distinct residual phenotype of delayed development, bang sensitivity and male sterility. These findings confirm the potential utility of alternative respiratory chain enzymes as tools to combat mitochondrial disease, while indicating important limitations thereof.

  14. Kinetics of browning and correlations between browning degree and pyrazine compounds in l-ascorbic acid/acidic amino acid model systems.

    PubMed

    Yu, Ai-Nong; Zhou, Yong-Yan; Yang, Yi-Ni

    2017-04-15

    The kinetics of browning and the correlation between browning products (BPs) and pyrazine compounds were investigated by heating equimolar l-ascorbic acid (ASA)/acidic amino acids under weak alkaline conditions at 120-150°C for 10-120min. The formations of BPs and pyrazine compounds from the reaction were monitored by UV-vis and SPME-GC-FID, respectively. The formation of BPs in both ASA/l-glutamic acid and ASA/l-aspartic acid model reaction systems followed zero order reaction kinetics with activation energies (Ea) of 90.13 and 93.38kJ/mol, respectively. ASA/l-aspartic acid browned at a slightly higher rate than ASA/l-glutamic acid. The total concentration of pyrazine compounds was highly and positively correlated with that of BPs. Based on the observed kinetic data, the formation mechanisms of BPs and pyrazine compounds were proposed.

  15. 21 CFR 862.1187 - Conjugated sulfolithocholic acid (SLCG) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1187 Conjugated sulfolithocholic acid (SLCG) test system. (a) Identification....

  16. 21 CFR 862.1187 - Conjugated sulfolithocholic acid (SLCG) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1187 Conjugated sulfolithocholic acid (SLCG) test system. (a) Identification....

  17. 21 CFR 862.1187 - Conjugated sulfolithocholic acid (SLCG) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1187 Conjugated sulfolithocholic acid (SLCG) test system. (a) Identification....

  18. 21 CFR 862.1187 - Conjugated sulfolithocholic acid (SLCG) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1187 Conjugated sulfolithocholic acid (SLCG) test system. (a) Identification....

  19. 21 CFR 862.1187 - Conjugated sulfolithocholic acid (SLCG) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1187 Conjugated sulfolithocholic acid (SLCG) test system. (a) Identification....

  20. Comparison of protective effect of ascorbic acid on redox and endocannabinoid systems interactions in in vitro cultured human skin fibroblasts exposed to UV radiation and hydrogen peroxide.

    PubMed

    Gęgotek, Agnieszka; Bielawska, Katarzyna; Biernacki, Michał; Zaręba, Ilona; Surażyński, Arkadiusz; Skrzydlewska, Elżbieta

    2017-03-11

    The mechanisms of biological activity of commonly used natural compounds are constantly examined. Therefore, the aim of this study was to compare ascorbic acid efficacy in counteracting the consequences of UV and hydrogen peroxide treatment on lipid mediators and their regulative action on antioxidant abilities. Skin fibroblasts exposed to UVA and UVB irradiation, treated with hydrogen peroxide and ascorbic acid. The redox system was estimated through reactive oxygen species (ROS) generation (electron spin resonance spectrometer) and antioxidants level/activity (HPLC/spectrometry) which activity was evaluated by the level of phospholipid metabolites: 4-hydroxynonenal, malondialdehyde, 8-isoprostanes and endocannabinoids (GC/LC-MS) in the human skin fibroblasts. Protein and DNA oxidative modifications were also determined (LC). The expression of nuclear factor erythroid 2-related factor 2 (Nrf2), its activators and inhibitors as well as pro/anti-apoptotic proteins and endocannabinoid receptors was examined (Western blot) and collagen metabolism was evaluated by collagen biosynthesis and prolidase activity (spectrometry). UVA and UVB irradiation and hydrogen peroxide treatment enhanced activity of xanthine and NADPH oxidases resulting in ROS generation as well as diminution of antioxidant phospholipid protection (glutathione peroxidase-glutathione-vitamin E), what led to increased lipid peroxidation and decreased endocannabinoids level. Dysregulation of cannabinoid receptors expression and environment of transcription factor Nrf2 caused apoptosis induction. Ascorbic acid partially prevented ROS generation, antioxidant capacity diminution and endocannabinoid systems disturbances but only slightly protected macromolecules such as phospholipid, protein and DNA against oxidative modifications. However, ascorbic acid significantly prevented decrease in collagen type I biosynthesis. Ascorbic acid in similar degree prevents UV (UVA and UVB) and hydrogen peroxide

  1. Kinetics of DNA Strand Displacement Systems with Locked Nucleic Acids.

    PubMed

    Olson, Xiaoping; Kotani, Shohei; Yurke, Bernard; Graugnard, Elton; Hughes, William L

    2017-03-30

    Locked nucleic acids (LNAs) are conformationally restricted RNA nucleotides. Their increased thermal stability and selectivity toward their complements make them well-suited for diagnostic and therapeutic applications. Although the structural and thermodynamic properties of LNA-LNA, LNA-RNA, and LNA-DNA hybridizations are known, the kinetic effects of incorporating LNA nucleotides into DNA strand displacement systems are not. Here, we thoroughly studied the strand displacement kinetics as a function of the number and position of LNA nucleotides in DNA oligonucleotides. When compared to that of an all-DNA control, with an identical sequence, the leakage rate constant was reduced more than 50-fold, to an undetectable level, and the invasion rate was preserved for a hybrid DNA/LNA system. The total performance enhancement ratio also increased more than 70-fold when calculating the ratio of the invading rate to the leakage rate constants for a hybrid system. The rational substitution of LNA nucleotides for DNA nucleotides preserves sequence space while improving the signal-to-noise ratio of strand displacement systems. Hybrid DNA/LNA systems offer great potential for high-performance chemical reaction networks that include catalyzed hairpin assemblies, hairpin chain reactions, motors, walkers, and seesaw gates.

  2. Oxidation of the flavonol fisetin by polyphenol oxidase.

    PubMed

    Jiménez, M; Escribano-Cebrián, J; García-Carmona, F

    1998-11-27

    The present study demonstrates the antiradical efficiency of fisetin, a flavonol widely distributed in fruits and vegetables, by its ability to react with two different free radicals, ABTS; and DPPH;. The polyphenolic nature of fisetin led us to consider whether it might be oxidised by polyphenol oxidase (PPO), and the results reported show that it can be oxidised by PPO extracted and partially purified from broad bean seeds. The reaction was followed by recording spectral changes with time, with maximal spectral changes being observed at 282 nm (increase in absorbance) and at 362 nm (decrease). The presence of two isosbectic points (at 265 and 304 nm) suggested that only one absorbent product was formed. These spectral changes were not observed in the absence of PPO. The oxidation rate varied with the pH, reaching its highest value at pH 5.5. The fisetin oxidation rate increased in the presence of sodium dodecyl sulfate, an activator of polyphenol oxidase. Maximal activity was obtained at 0.87 mM sodium dodecyl sulfate. The following kinetic parameters were determined: Vmax=49 microM/min, Km=0.6 mM, Vmax/Km=8.2x10-2 min-1. Flavonol oxidation was inhibited by selective PPO inhibitors such as cinnamic acid (a classical competitive inhibitor, Ki=1.4 mM) and 4-hexylresorcinol, which behaved as a slow-binding inhibitor. The results reported show that fisetin oxidation was strictly dependent on the presence of polyphenol oxidase.

  3. Effect of naphthalene on cytochrome oxidase activity

    SciTech Connect

    Harmon, H.J.

    1988-01-01

    Previous reports have demonstrated that naphthalene inhibits oxygen consumption in Daphnia magna tissue culture cells, and intact mitochondria and submitochondrial particles. These studies were extended to algal mitochondrial respiration as well as photosynthetic activity. The authors were able to demonstrate the specific site of apparent respiratory inhibition to be coenzyme Q (ubiquinone, UQ) and later to demonstrate the molecular basis of this inhibition at ubiquinone. The authors previously could not demonstrate an effect of naphthalene on cytochrome oxidase activity. However, the observation that naphthalene can stimulate respiration in algae prompted the reinvestigation of the effect of naphthalene on the kinetics of cytochrome oxidase. Cytochrome oxidase is a multi-subunit membranous protein responsible for the oxidation of cytochrome c and the reduction of molecular oxygen to water. Because of the complicated nature and mechanism of this enzyme, the potential exists for multiple and possibly opposite effects of naphthalene on its function.

  4. The CYP701B1 of Physcomitrella patens is an ent-kaurene oxidase that resists inhibition by uniconazole-P.

    PubMed

    Miyazaki, Sho; Katsumata, Takumi; Natsume, Masahiro; Kawaide, Hiroshi

    2011-06-23

    The moss Physcomitrella patens produces both ent-kaurene and ent-kaurenoic acid, which are intermediates of gibberellin biosynthesis in flowering plants. The CYP701 superfamily of cytochrome P450s functions as ent-kaurene oxidases in the biosynthesis of ent-kaurenoic acid. A candidate gene encoding ent-kaurene oxidase in P. patens, CYP701B1, was cloned and heterologously expressed in yeast to examine enzyme activities in vitro. The recombinant CYP701B1 protein catalyzed the oxidation reaction from ent-kaurene to ent-kaurenoic acid. CYP701B1 activity was highly resistant to the ent-kaurene oxidase inhibitor uniconazole-P (IC(50) 64 μM), even though the activity of Arabidopsis ent-kaurene oxidase (CYP701A3) was sensitive (IC(50) 0.26 μM).

  5. Stereospecific dehydrogenation of (25R)- and (25S)-3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acids by acyl-CoA oxidase in rat liver light mitochondrial fraction.

    PubMed

    Ikegawa, S; Watanabe, H; Goto, T; Mano, N; Goto, J; Nambara, T

    1995-08-01

    From a stereochemical point of view, the dehydrogenation mechanism of the biotransformation of 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid (THCA) into (24E)-3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholest-24-enoic acid (delta 24-THCA) has been studied with capillary gas chromatography (GC)/negative ion chemical ionization (NICI)-mass spectrometry. After incubation of (24R,25R)- or (24S,25S)-[24,25-2H2]THCA, synthesized from (24E)-delta 24-THCA by a deuterated diimide reduction, with a rat liver light mitochondrial fraction, 5 beta-cholestanoic acids were extracted and derivatized into a pentafluorobenzyl (PFB) ester-dimethylethylsilyl (DMES) ether. Subsequent resolution into THCA and delta 24-THCA was attained by GC on a cross-linked 5% phenylmethyl silicone fused-silica capillary column monitored with a corresponding characteristic carboxylate anion [M-PFB]- in the NICI mode. The stereospecific elimination of a pro-R hydrogen at C-24 in both (25R)- and (25S)-THCA indicated syn-elimination for the former, whereas anti-elimination for the latter was observed.

  6. The Promotion of Indole-3-acetic Acid Oxidation in Pea Buds by Gibberellic Acid and Treatment 1

    PubMed Central

    Ockerse, Ralph; Waber, Jack

    1970-01-01

    Terminal buds of dark-grown pea (Pisum sativum) seedlings have an indole-3-acetic acid oxidase which does not require Mn2+ and 2,4-dichlorophenol as cofactors. Oxidase activity is at least 50 times higher in buds of tall peas than in dwarf seedlings. Administration of gibberellic acid to dwarf peas stimulates both growth and indoleacetic acid oxidase activity to the same levels as in tall seedlings. By contrast, indoleacetic acid oxidation assayed in the presence of Mn2+ and 2,4-dichlorophenol proceeds at similar rates regardless of gibberellin application. Treatment of tall peas with the growth retardant AMO-1618 reduces growth and oxidase activity. Such treated seedlings are indistinguishably dwarf. The enzyme does not appear to be polyphenol oxidase, nor do the results suggest that reduced activity in dwarf buds is due to higher levels of a dialyzable inhibitor. The peroxidative nature of the oxidase is probable. PMID:5500209

  7. Sequence analysis of the oxidase/reductase genes upstream of the Rhodococcus erythropolis aldehyde dehydrogenase gene thcA reveals a gene organisation different from Mycobacterium tuberculosis.

    PubMed

    Nagy, I; De Mot, R

    1999-01-01

    The sequence of the DNA region upstream of the thiocarbamate-inducible aldehyde dehydrogenase gene thcA of Rhodococcus erythropolis NI86/21 was determined. Most of the predicted ORFs are related to various oxidases/reductases, including short-chain oxidases/reductases, GMC oxidoreductases, alpha-hydroxy acid oxidases (subfamily 1 flavin oxidases/dehydrogenases), and subfamily 2 flavin oxidases/dehydrogenases. One ORF is related to enzymes involved in biosynthesis of PQQ or molybdopterin cofactors. In addition, a putative member of the TetR family of regulatory proteins was identified. The substantial sequence divergence from functionally characterized enzymes precludes a reliable prediction about the probable function of these proteins at this stage. In Mycobacterium tuberculosis H37Rv, most of these ORFs have homologs that are also clustered in the genome, but some striking differences in gene organization were observed between Rhodococcus and Mycobacterium.

  8. Molecular cloning and expression analysis of cytochrome c oxidase subunit II from Sitophilus zeamais.

    PubMed

    Hou, Chang-Liang; Wang, Jing-Bo; Wu, Hua; Liu, Jia-Yu; Ma, Zhi-Qing; Feng, Jun-Tao; Zhang, Xing

    2016-09-30

    Cytochrome c oxidase subunit II (COX II) containing a dual core CuA active site is one of the core subunits of mitochondrial Cytochrome c oxidase (Cco), which plays a significant role in the physiological process. In this report, the full-length cDNA of COXII gene was cloned from Sitophilus zeamais, which had an open reading frame (ORF) of 684 bp encoding 227 amino acids residues. The predicted COXII protein had a molecular mass of 26.2 kDa with pI value of 6.37. multiple sequence alignment and phylogenetic analysis indicated that Sitophilus zeamais COXII had high sequence identity with the COXII of other insect species. The gene was subcloned into the expression vector pET-32a, and induced by isopropyl β-d-thiogalactopyranoside (IPTG) in E. coli Transetta (DE3) expression system. Finally the recombinant COXII with 6-His tag was purified using affinity chromatography with Ni(2+)-NTA agarose. Western Blotting (WB) showed the recombinant protein was about 44 kD, and the concentration of fusion protein was 50 μg/mL. UV-spectrophotometer and infrared spectrometer analysis showed that recombinant COXII could catalyze the oxidation of substrate Cytochrome C (Cyt c), and influenced by allyl isothiocyanate (AITC). By using molecular docking method, It was found that a sulfur atom of AITC structure could form a length of 2.9 Å hydrogen bond with Leu-31. These results suggested that tag-free COXII was functional and one of the action sites of AITC, which will be helpful to carry out a point mutation in binding sites for the future research.

  9. Highly sensitive luminol electrochemiluminescence immunosensor based on ZnO nanoparticles and glucose oxidase decorated graphene for cancer biomarker detection.

    PubMed

    Cheng, Yinfeng; Yuan, Ruo; Chai, Yaqin; Niu, Huan; Cao, Yaling; Liu, Huijing; Bai, Lijuan; Yuan, Yali

    2012-10-01

    In this work, we reported a sandwiched luminol electrochemiluminescence (ECL) immunosensor using ZnO nanoparticles (ZnONPs) and glucose oxidase (GOD) decorated graphene as labels and in situ generated hydrogen peroxide as coreactant. In order to construct the base of the immunosensor, a hybrid architecture of Au nanoparticles and graphene by reduction of HAuCl(4) and graphene oxide (GO) with ascorbic acid was prepared. The resulted hybrid architecture modified electrode provided an excellent platform for immobilization of antibody with good bioactivity and stability. Then, ZnONPs and GOD functionalized graphene labeled secondary antibody was designed for fabricating a novel sandwiched ECL immunosensor. Enhanced sensitivity was obtained by in situ generating hydrogen peroxide with glucose oxidase and the catalysis of ZnONPs to the ECL reaction of luminol-H(2)O(2) system. The as-prepared ECL immunosensor exhibited excellent analytical property for the detection of carcinoembryonic antigen (CEA) in the range from 10 pg mL(-1) to 80 ng mL(-1) and with a detection limit of 3.3 pg mL(-1) (SN(-1)=3). The amplification strategy performed good promise for clinical application of screening of cancer biomarkers.

  10. Patterns of Protein Evolution in Cytochrome c Oxidase 1 (COI) from the Class Arachnida

    PubMed Central

    Young, Monica R; Hebert, Paul D. N.

    2015-01-01

    Because sequence information is now available for the 648bp barcode region of cytochrome c oxidase 1 (COI) from more than 400,000 animal species, this gene segment can be used to probe patterns of mitochondrial evolution. The present study examines levels of amino acid substitution and the frequency of indels in COI from 4177 species of arachnids, including representatives from all 16 orders and 43% of its families (267/625). It examines divergences at three taxonomic levels—among members of each order to an outgroup, among families in each order and among BINs, a species proxy, in each family. Order Distances vary fourfold (0.10–0.39), while the mean of the Family Distances for the ten orders ranges fivefold (0.07–0.35). BIN Distances show great variation, ranging from 0.01 or less in 12 families to more than 0.25 in eight families. Patterns of amino acid substitution in COI are generally congruent with previously reported variation in nucleotide substitution rates in arachnids, but provide some new insights, such as clear rate acceleration in the Opiliones. By revealing a strong association between elevated rates of nucleotide and amino acid substitution, this study builds evidence for the selective importance of the rate variation among arachnid lineages. Moreover, it establishes that groups whose COI genes have elevated levels of amino acid substitution also regularly possess indels, a dramatic form of protein reconfiguration. Overall, this study suggests that the mitochondrial genome of some arachnid groups is dynamic with high rates of amino acid substitution and frequent indels, while it is ‘locked down’ in others. Dynamic genomes are most prevalent in arachnids with short generation times, but the possible impact of breeding system deserves investigation since many of the rapidly evolving lineages reproduce by haplodiploidy, a mode of reproduction absent in ‘locked down’ taxa. PMID:26308206

  11. The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: Molecular cloning and functional expression

    SciTech Connect

    Xu, Yun-Ling; Li, Li; Wu, Keqiang

    1995-07-03

    The biosynthesis of gibberellins (GAs) after GA{sub 12}-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a G